WorldWideScience

Sample records for acidification affects marine

  1. Oceanic acidification affects marine carbon pump and triggers extended marine oxygen holes.

    Science.gov (United States)

    Hofmann, Matthias; Schellnhuber, Hans-Joachim

    2009-03-03

    Rising atmospheric CO(2) levels will not only drive future global mean temperatures toward values unprecedented during the whole Quaternary but will also lead to massive acidification of sea water. This constitutes by itself an anthropogenic planetary-scale perturbation that could significantly modify oceanic biogeochemical fluxes and severely damage marine biota. As a step toward the quantification of such potential impacts, we present here a simulation-model-based assessment of the respective consequences of a business-as-usual fossil-fuel-burning scenario where a total of 4,075 Petagrams of carbon is released into the atmosphere during the current millennium. In our scenario, the atmospheric pCO(2) level peaks at approximately 1,750 microatm in the year 2200 while the sea-surface pH value drops by >0.7 units on global average, inhibiting the growth of marine calcifying organisms. The study focuses on quantifying 3 major concomitant effects. The first one is a significant (climate-stabilizing) negative feedback on rising pCO(2) levels as caused by the attenuation of biogenic calcification. The second one is related to the biological carbon pump. Because mineral ballast, notably CaCO(3), is found to play a dominant role in carrying organic matter through the water column, a reduction of its export fluxes weakens the strength of the biological carbon pump. There is, however, a third effect with severe consequences: Because organic matter is oxidized in shallow waters when mineral-ballast fluxes weaken, oxygen holes (hypoxic zones) start to expand considerably in the oceans in our model world--with potentially harmful impacts on a variety of marine ecosystems.

  2. Ocean acidification affects marine chemical communication by changing structure and function of peptide signalling molecules.

    Science.gov (United States)

    Roggatz, Christina C; Lorch, Mark; Hardege, Jörg D; Benoit, David M

    2016-12-01

    Ocean acidification is a global challenge that faces marine organisms in the near future with a predicted rapid drop in pH of up to 0.4 units by the end of this century. Effects of the change in ocean carbon chemistry and pH on the development, growth and fitness of marine animals are well documented. Recent evidence also suggests that a range of chemically mediated behaviours and interactions in marine fish and invertebrates will be affected. Marine animals use chemical cues, for example, to detect predators, for settlement, homing and reproduction. But, while effects of high CO 2 conditions on these behaviours are described across many species, little is known about the underlying mechanisms, particularly in invertebrates. Here, we investigate the direct influence of future oceanic pH conditions on the structure and function of three peptide signalling molecules with an interdisciplinary combination of methods. NMR spectroscopy and quantum chemical calculations were used to assess the direct molecular influence of pH on the peptide cues, and we tested the functionality of the cues in different pH conditions using behavioural bioassays with shore crabs (Carcinus maenas) as a model system. We found that peptide signalling cues are susceptible to protonation in future pH conditions, which will alter their overall charge. We also show that structure and electrostatic properties important for receptor binding differ significantly between the peptide forms present today and the protonated signalling peptides likely to be dominating in future oceans. The bioassays suggest an impaired functionality of the signalling peptides at low pH. Physiological changes due to high CO 2 conditions were found to play a less significant role in influencing the investigated behaviour. From our results, we conclude that the change of charge, structure and consequently function of signalling molecules presents one possible mechanism to explain altered behaviour under future oceanic p

  3. CO2-induced seawater acidification affects physiological performance of the marine diatom Phaeodactylum tricornutum

    Directory of Open Access Journals (Sweden)

    U. Riebesell

    2010-09-01

    Full Text Available CO2/pH perturbation experiments were carried out under two different pCO2 levels (39.3 and 101.3 Pa to evaluate effects of CO2-induced ocean acidification on the marine diatom Phaeodactylum tricornutum. After acclimation (>20 generations to ambient and elevated CO2 conditions (with corresponding pH values of 8.15 and 7.80, respectively, growth and photosynthetic carbon fixation rates of high CO2 grown cells were enhanced by 5% and 12%, respectively, and dark respiration stimulated by 34% compared to cells grown at ambient CO2. The half saturation constant (Km for carbon fixation (dissolved inorganic carbon, DIC increased by 20% under the low pH and high CO2 condition, reflecting a decreased affinity for HCO3– or/and CO2 and down-regulated carbon concentrating mechanism (CCM. In the high CO2 grown cells, the electron transport rate from photosystem II (PSII was photoinhibited to a greater extent at high levels of photosynthetically active radiation, while non-photochemical quenching was reduced compared to low CO2 grown cells. This was probably due to the down-regulation of CCM, which serves as a sink for excessive energy. The balance between these positive and negative effects on diatom productivity will be a key factor in determining the net effect of rising atmospheric CO2 on ocean primary production.

  4. Biogeochemical processes and buffering capacity concurrently affect acidification in a seasonally hypoxic coastal marine basin

    Science.gov (United States)

    Hagens, M.; Slomp, C. P.; Meysman, F. J. R.; Seitaj, D.; Harlay, J.; Borges, A. V.; Middelburg, J. J.

    2015-03-01

    Coastal areas are impacted by multiple natural and anthropogenic processes and experience stronger pH fluctuations than the open ocean. These variations can weaken or intensify the ocean acidification signal induced by increasing atmospheric pCO2. The development of eutrophication-induced hypoxia intensifies coastal acidification, since the CO2 produced during respiration decreases the buffering capacity in any hypoxic bottom water. To assess the combined ecosystem impacts of acidification and hypoxia, we quantified the seasonal variation in pH and oxygen dynamics in the water column of a seasonally stratified coastal basin (Lake Grevelingen, the Netherlands). Monthly water-column chemistry measurements were complemented with estimates of primary production and respiration using O2 light-dark incubations, in addition to sediment-water fluxes of dissolved inorganic carbon (DIC) and total alkalinity (TA). The resulting data set was used to set up a proton budget on a seasonal scale. Temperature-induced seasonal stratification combined with a high community respiration was responsible for the depletion of oxygen in the bottom water in summer. The surface water showed strong seasonal variation in process rates (primary production, CO2 air-sea exchange), but relatively small seasonal pH fluctuations (0.46 units on the total hydrogen ion scale). In contrast, the bottom water showed less seasonality in biogeochemical rates (respiration, sediment-water exchange), but stronger pH fluctuations (0.60 units). This marked difference in pH dynamics could be attributed to a substantial reduction in the acid-base buffering capacity of the hypoxic bottom water in the summer period. Our results highlight the importance of acid-base buffering in the pH dynamics of coastal systems and illustrate the increasing vulnerability of hypoxic, CO2-rich waters to any acidifying process.

  5. Ocean acidification reduces growth and calcification in a marine dinoflagellate

    NARCIS (Netherlands)

    Van de Waal, D.B.; John, U.; Ziveri, P.; Reichart, G.J.; Hoins, M.; Sluijs, A.; Rost, B.

    2013-01-01

    Ocean acidification is considered a major threat to marine ecosystems and may particularly affect calcifying organisms such as corals, foraminifera and coccolithophores. Here we investigate the impact of elevated pCO2 and lowered pH on growth and calcification in the common calcareous dinoflagellate

  6. Impacts of ocean acidification on marine seafood.

    Science.gov (United States)

    Branch, Trevor A; DeJoseph, Bonnie M; Ray, Liza J; Wagner, Cherie A

    2013-03-01

    Ocean acidification is a series of chemical reactions due to increased CO(2) emissions. The resulting lower pH impairs the senses of reef fishes and reduces their survival, and might similarly impact commercially targeted fishes that produce most of the seafood eaten by humans. Shelled molluscs will also be negatively affected, whereas cephalopods and crustaceans will remain largely unscathed. Habitat changes will reduce seafood production from coral reefs, but increase production from seagrass and seaweed. Overall effects of ocean acidification on primary productivity and, hence, on food webs will result in hard-to-predict winners and losers. Although adaptation, parental effects, and evolution can mitigate some effects of ocean acidification, future seafood platters will look rather different unless CO(2) emissions are curbed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Ocean acidification and marine microorganisms: responses and consequences

    Directory of Open Access Journals (Sweden)

    Surajit Das

    2015-10-01

    Full Text Available Ocean acidification (OA is one of the global issues caused by rising atmospheric CO2. The rising pCO2 and resulting pH decrease has altered ocean carbonate chemistry. Microbes are key components of marine environments involved in nutrient cycles and carbon flow in marine ecosystems. However, these marine microbes and the microbial processes are sensitive to ocean pH shift. Thus, OA affects the microbial diversity, primary productivity and trace gases emission in oceans. Apart from that, it can also manipulate the microbial activities such as quorum sensing, extracellular enzyme activity and nitrogen cycling. Short-term laboratory experiments, mesocosm studies and changing marine diversity scenarios have illustrated undesirable effects of OA on marine microorganisms and ecosystems. However, from the microbial perspective, the current understanding on effect of OA is based mainly on limited experimental studies. It is challenging to predict response of marine microbes based on such experiments for this complex process. To study the response of marine microbes towards OA, multiple approaches should be implemented by using functional genomics, new generation microscopy, small-scale interaction among organisms and/or between organic matter and organisms. This review focuses on the response of marine microorganisms to OA and the experimental approaches to investigate the effect of changing ocean carbonate chemistry on microbial mediated processes.

  8. Divergent ecosystem responses within a benthic marine community to ocean acidification.

    Science.gov (United States)

    Kroeker, Kristy J; Micheli, Fiorenza; Gambi, Maria Cristina; Martz, Todd R

    2011-08-30

    Ocean acidification is predicted to impact all areas of the oceans and affect a diversity of marine organisms. However, the diversity of responses among species prevents clear predictions about the impact of acidification at the ecosystem level. Here, we used shallow water CO(2) vents in the Mediterranean Sea as a model system to examine emergent ecosystem responses to ocean acidification in rocky reef communities. We assessed in situ benthic invertebrate communities in three distinct pH zones (ambient, low, and extreme low), which differed in both the mean and variability of seawater pH along a continuous gradient. We found fewer taxa, reduced taxonomic evenness, and lower biomass in the extreme low pH zones. However, the number of individuals did not differ among pH zones, suggesting that there is density compensation through population blooms of small acidification-tolerant taxa. Furthermore, the trophic structure of the invertebrate community shifted to fewer trophic groups and dominance by generalists in extreme low pH, suggesting that there may be a simplification of food webs with ocean acidification. Despite high variation in individual species' responses, our findings indicate that ocean acidification decreases the diversity, biomass, and trophic complexity of benthic marine communities. These results suggest that a loss of biodiversity and ecosystem function is expected under extreme acidification scenarios.

  9. Spatial aspects affecting acidification factors in European acidification modelling

    NARCIS (Netherlands)

    Bellekom, S.; Hettelingh, J. -P.; Aben, J.

    Plain linear models have recently been used in methodologies to model fate and transport for assessing acidification in life cycle impact assessment (LCIA), or in support of air pollution abatement policies. These models originate from a statistical analysis of the relationship between inputs and

  10. Ocean acidification reduces growth and calcification in a marine dinoflagellate.

    Directory of Open Access Journals (Sweden)

    Dedmer B Van de Waal

    Full Text Available Ocean acidification is considered a major threat to marine ecosystems and may particularly affect calcifying organisms such as corals, foraminifera and coccolithophores. Here we investigate the impact of elevated pCO2 and lowered pH on growth and calcification in the common calcareous dinoflagellate Thoracosphaera heimii. We observe a substantial reduction in growth rate, calcification and cyst stability of T. heimii under elevated pCO2. Furthermore, transcriptomic analyses reveal CO2 sensitive regulation of many genes, particularly those being associated to inorganic carbon acquisition and calcification. Stable carbon isotope fractionation for organic carbon production increased with increasing pCO2 whereas it decreased for calcification, which suggests interdependence between both processes. We also found a strong effect of pCO2 on the stable oxygen isotopic composition of calcite, in line with earlier observations concerning another T. heimii strain. The observed changes in stable oxygen and carbon isotope composition of T. heimii cysts may provide an ideal tool for reconstructing past seawater carbonate chemistry, and ultimately past pCO2. Although the function of calcification in T. heimii remains unresolved, this trait likely plays an important role in the ecological and evolutionary success of this species. Acting on calcification as well as growth, ocean acidification may therefore impose a great threat for T. heimii.

  11. Lost at sea: ocean acidification undermines larval fish orientation via altered hearing and marine soundscape modification.

    Science.gov (United States)

    Rossi, Tullio; Nagelkerken, Ivan; Pistevos, Jennifer C A; Connell, Sean D

    2016-01-01

    The dispersal of larvae and their settlement to suitable habitat is fundamental to the replenishment of marine populations and the communities in which they live. Sound plays an important role in this process because for larvae of various species, it acts as an orientational cue towards suitable settlement habitat. Because marine sounds are largely of biological origin, they not only carry information about the location of potential habitat, but also information about the quality of habitat. While ocean acidification is known to affect a wide range of marine organisms and processes, its effect on marine soundscapes and its reception by navigating oceanic larvae remains unknown. Here, we show that ocean acidification causes a switch in role of present-day soundscapes from attractor to repellent in the auditory preferences in a temperate larval fish. Using natural CO2 vents as analogues of future ocean conditions, we further reveal that ocean acidification can impact marine soundscapes by profoundly diminishing their biological sound production. An altered soundscape poorer in biological cues indirectly penalizes oceanic larvae at settlement stage because both control and CO2-treated fish larvae showed lack of any response to such future soundscapes. These indirect and direct effects of ocean acidification put at risk the complex processes of larval dispersal and settlement. © 2016 The Author(s).

  12. Marine oxygen holes as a consequence of oceanic acidification

    Science.gov (United States)

    Hofmann, M.; Schellnhuber, H.-J.

    2009-04-01

    An increase of atmospheric CO2 levels will not only drive future global mean temperatures towards values unprecedented during the whole Quaternary, but will also lead to an acidification of sea water which could harm the marine biota. Here we assess possible impacts of elevated atmospheric CO2 concentrations on the marine biological carbon pump by utilizing a business-as-usual emission scenario of anthropogenic CO2. A corresponding release of 4075 Petagrams of Carbon in total has been applied to simulate the current millennium by employing an Earth System Model of Intermediate Complexity (EMIC). This work is focused on studying the implications of reduced biogenic calcification caused by an increasing degree of oceanic acidification on the marine biological carbon pump. The attenuation of biogenic calcification imposes a small negative feedback on rising atmospheric pCO2 levels, tending to stabilize the Earth's climate. Since mineral ballast, notably particulate CaCO3, plays a dominant role in carrying organic matter through the water column, a reduction of its export fluxes weakens the strength of the biological carbon pump. There is, however, a dramatic effect discovered in our model world with severe consequences: since organic matter is oxidized in shallow waters when mineral-ballast fluxes weaken, oxygen holes (hypoxic zones) start to expand considerably in the oceans with potentially harmful impacts on a variety of marine ecosystems. Our study indicates that unbridled ocean acidification would exacerbate the observed hypoxia trends due to various environmental factors as reported in recent empirical studies.

  13. Reviews and Syntheses: Ocean acidification and its potential impacts on marine ecosystems

    Science.gov (United States)

    Mostofa, Khan M. G.; Liu, Cong-Qiang; Zhai, WeiDong; Minella, Marco; Vione, Davide; Gao, Kunshan; Minakata, Daisuke; Arakaki, Takemitsu; Yoshioka, Takahito; Hayakawa, Kazuhide; Konohira, Eiichi; Tanoue, Eiichiro; Akhand, Anirban; Chanda, Abhra; Wang, Baoli; Sakugawa, Hiroshi

    2016-03-01

    Ocean acidification, a complex phenomenon that lowers seawater pH, is the net outcome of several contributions. They include the dissolution of increasing atmospheric CO2 that adds up with dissolved inorganic carbon (dissolved CO2, H2CO3, HCO3-, and CO32-) generated upon mineralization of primary producers (PP) and dissolved organic matter (DOM). The aquatic processes leading to inorganic carbon are substantially affected by increased DOM and nutrients via terrestrial runoff, acidic rainfall, increased PP and algal blooms, nitrification, denitrification, sulfate reduction, global warming (GW), and by atmospheric CO2 itself through enhanced photosynthesis. They are consecutively associated with enhanced ocean acidification, hypoxia in acidified deeper seawater, pathogens, algal toxins, oxidative stress by reactive oxygen species, and thermal stress caused by longer stratification periods as an effect of GW. We discuss the mechanistic insights into the aforementioned processes and pH changes, with particular focus on processes taking place with different timescales (including the diurnal one) in surface and subsurface seawater. This review also discusses these collective influences to assess their potential detrimental effects to marine organisms, and of ecosystem processes and services. Our review of the effects operating in synergy with ocean acidification will provide a broad insight into the potential impact of acidification itself on biological processes. The foreseen danger to marine organisms by acidification is in fact expected to be amplified by several concurrent and interacting phenomena.

  14. Effects of acidification on olfactory-mediated behaviour in freshwater and marine ecosystems: a synthesis.

    Science.gov (United States)

    Leduc, Antoine O H C; Munday, Philip L; Brown, Grant E; Ferrari, Maud C O

    2013-01-01

    For many aquatic organisms, olfactory-mediated behaviour is essential to the maintenance of numerous fitness-enhancing activities, including foraging, reproduction and predator avoidance. Studies in both freshwater and marine ecosystems have demonstrated significant impacts of anthropogenic acidification on olfactory abilities of fish and macroinvertebrates, leading to impaired behavioural responses, with potentially far-reaching consequences to population dynamics and community structure. Whereas the ecological impacts of impaired olfactory-mediated behaviour may be similar between freshwater and marine ecosystems, the underlying mechanisms are quite distinct. In acidified freshwater, molecular change to chemical cues along with reduced olfaction sensitivity appear to be the primary causes of olfactory-mediated behavioural impairment. By contrast, experiments simulating future ocean acidification suggest that interference of high CO2 with brain neurotransmitter function is the primary cause for olfactory-mediated behavioural impairment in fish. Different physico-chemical characteristics between marine and freshwater systems are probably responsible for these distinct mechanisms of impairment, which, under globally rising CO2 levels, may lead to strikingly different consequences to olfaction. While fluctuations in pH may occur in both freshwater and marine ecosystems, marine habitat will remain alkaline despite future ocean acidification caused by globally rising CO2 levels. In this synthesis, we argue that ecosystem-specific mechanisms affecting olfaction need to be considered for effective management and conservation practices.

  15. Impact of ocean acidification on the early development and escape behavior of marine medaka (Oryzias melastigma).

    Science.gov (United States)

    Wang, Xiaojie; Song, Lulu; Chen, Yi; Ran, Haoyu; Song, Jiakun

    2017-10-01

    Ocean acidification is predicted to affect a wide diversity of marine organisms. However, no studies have reported the effects of ocean acidification on Indian Ocean fish. We have used the Indian Ocean medaka (Oryzias melastigma) as a model species for a marine fish that lives in coastal waters. We investigated the impact of ocean acidification on the embryonic development and the stereotyped escape behavior (mediated by the Mauthner cell) in newly hatched larvae. Newly fertilized eggs of medaka were reared in seawater at three different partial pressures of carbon dioxide (pCO 2 ): control at 450 μatm, moderate at 1160 μatm, and high at 1783 μatm. Hatch rates, embryonic duration, and larval malformation rates were compared and were not significantly different between the treatments and the control. In the high pCO 2 group, however, the yolks of larvae were significantly smaller than in the control group, and the newly hatched larvae were significantly longer than the larvae in the control. In the moderate pCO 2 group, the eye distance decreased significantly. No significantly negative growth effects were observed in the larvae when exposed to pCO 2 levels that are predicted as a result of ocean acidification in the next 100-200 years. Larvae reared under control conditions readily produced C-start escape behavior to mechanosensory stimuli; however, in the moderate and high pCO 2 experimental groups, the probabilities of C-start were significantly lower than those of the control group. Therefore, the sensory integration needed for the C-start escape behavior appears to be vulnerable to ocean acidification. Altered behavior in marine larval fish, particularly behaviors involved in escape from predation, could have potentially negative implications to fish populations, and, further, to the marine ecosystems at the levels of CO 2 projected for the future. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Impacts of Ocean Acidification on Sensory Function in Marine Organisms.

    Science.gov (United States)

    Ashur, Molly M; Johnston, Nicole K; Dixson, Danielle L

    2017-07-01

    Ocean acidification has been identified as a major contributor to ocean ecosystem decline, impacting the calcification, survival, and behavior of marine organisms. Numerous studies have observed altered sensory perception of chemical, auditory, and visual cues after exposure to elevated CO2. Sensory systems enable the observation of the external environment and therefore play a critical role in survival, communication, and behavior of marine organisms. This review seeks to (1) summarize the current knowledge of sensory impairment caused by ocean acidification, (2) discuss potential mechanisms behind this disruption, and (3) analyze the expected taxa differences in sensitivities to elevated CO2 conditions. Although a lack of standardized methodology makes cross-study comparisons challenging, trends and biases arise from this synthesis including a substantial focus on vertebrates, larvae or juveniles, the reef ecosystem, and chemosensory perception. Future studies must broaden the scope of the field by diversifying the taxa and ecosystems studied, incorporating ontogenetic comparisons, and focusing on cryptic sensory systems such as electroreception, magnetic sense, and the lateral line system. A discussion of possible mechanisms reveals GABAA receptor reversal as the conspicuous physiological mechanism. However, the potential remains for alternative disruption through structure or cue changes. Finally, a taxonomic comparison of physiological complexity reveals few trends in sensory sensitivities to lowered pH, but we hypothesize potential correlations relating to habitat, life history or relative use of sensory systems. Elevated CO2, in concordance with other global and local stressors, has the potential to drastically shift community composition and structure. Therefore research addressing the extent of sensory impairment, the underlying mechanisms, and the differences between taxa is vital for improved predictions of organismal response to ocean acidification.

  17. Effects of near-future ocean acidification, fishing, and marine protection on a temperate coastal ecosystem.

    Science.gov (United States)

    Cornwall, Christopher E; Eddy, Tyler D

    2015-02-01

    Understanding ecosystem responses to global and local anthropogenic impacts is paramount to predicting future ecosystem states. We used an ecosystem modeling approach to investigate the independent and cumulative effects of fishing, marine protection, and ocean acidification on a coastal ecosystem. To quantify the effects of ocean acidification at the ecosystem level, we used information from the peer-reviewed literature on the effects of ocean acidification. Using an Ecopath with Ecosim ecosystem model for the Wellington south coast, including the Taputeranga Marine Reserve (MR), New Zealand, we predicted ecosystem responses under 4 scenarios: ocean acidification + fishing; ocean acidification + MR (no fishing); no ocean acidification + fishing; no ocean acidification + MR for the year 2050. Fishing had a larger effect on trophic group biomasses and trophic structure than ocean acidification, whereas the effects of ocean acidification were only large in the absence of fishing. Mortality by fishing had large, negative effects on trophic group biomasses. These effects were similar regardless of the presence of ocean acidification. Ocean acidification was predicted to indirectly benefit certain species in the MR scenario. This was because lobster (Jasus edwardsii) only recovered to 58% of the MR biomass in the ocean acidification + MR scenario, a situation that benefited the trophic groups lobsters prey on. Most trophic groups responded antagonistically to the interactive effects of ocean acidification and marine protection (46%; reduced response); however, many groups responded synergistically (33%; amplified response). Conservation and fisheries management strategies need to account for the reduced recovery potential of some exploited species under ocean acidification, nonadditive interactions of multiple factors, and indirect responses of species to ocean acidification caused by declines in calcareous predators. © 2014 Society for Conservation Biology.

  18. Persistent natural acidification drives major distribution shifts in marine benthic ecosystems

    Science.gov (United States)

    Linares, C.; Vidal, M.; Canals, M.; Kersting, D. K.; Amblas, D.; Aspillaga, E.; Cebrián, E.; Delgado-Huertas, A.; Díaz, D.; Garrabou, J.; Hereu, B.; Navarro, L.; Teixidó, N.; Ballesteros, E.

    2015-01-01

    Ocean acidification is receiving increasing attention because of its potential to affect marine ecosystems. Rare CO2 vents offer a unique opportunity to investigate the response of benthic ecosystems to acidification. However, the benthic habitats investigated so far are mainly found at very shallow water (less than or equal to 5 m depth) and therefore are not representative of the broad range of continental shelf habitats. Here, we show that a decrease from pH 8.1 to 7.9 observed in a CO2 vent system at 40 m depth leads to a dramatic shift in highly diverse and structurally complex habitats. Forests of the kelp Laminaria rodriguezii usually found at larger depths (greater than 65 m) replace the otherwise dominant habitats (i.e. coralligenous outcrops and rhodolith beds), which are mainly characterized by calcifying organisms. Only the aragonite-calcifying algae are able to survive in acidified waters, while high-magnesium-calcite organisms are almost completely absent. Although a long-term survey of the venting area would be necessary to fully understand the effects of the variability of pH and other carbonate parameters over the structure and functioning of the investigated mesophotic habitats, our results suggest that in addition of significant changes at species level, moderate ocean acidification may entail major shifts in the distribution and dominance of key benthic ecosystems at regional scale, which could have broad ecological and socio-economic implications. PMID:26511045

  19. Coral and mollusc resistance to ocean acidification adversely affected by warming

    OpenAIRE

    Rodolfo-Metalpa, R; Houlbrèque, F; Tambutté, E; Boisson, F; Baggini, C; Patti, FP; Jeffree, R; Fine, M; Foggo, A; Gattuso, JP; Hall-Spencer, JM

    2011-01-01

    Increasing atmospheric carbon dioxide (CO 2) concentrations are expectedto decrease surface ocean pH by 0.3-0.5 units by 2100 (refs,), lowering the carbonate ion concentration of surfacewaters. This rapid acidification is predicted to dramatically decrease calcification in many marine organisms. Reduced skeletal growth under increased CO 2 levels has already been shown for corals, molluscs and many other marine organisms. The impact of acidification on the ability of individual species to cal...

  20. Effects of ocean acidification on marine dissolved organic matter are not detectable over the succession of phytoplankton blooms.

    Science.gov (United States)

    Zark, Maren; Riebesell, Ulf; Dittmar, Thorsten

    2015-10-01

    Marine dissolved organic matter (DOM) is one of the largest active organic carbon reservoirs on Earth, and changes in its pool size or composition could have a major impact on the global carbon cycle. Ocean acidification is a potential driver for these changes because it influences marine primary production and heterotrophic respiration. We simulated ocean acidification as expected for a "business-as-usual" emission scenario in the year 2100 in an unprecedented long-term mesocosm study. The large-scale experiments (50 m(3) each) covered a full seasonal cycle of marine production in a Swedish Fjord. Five mesocosms were artificially enriched in CO2 to the partial pressure expected in the year 2100 (900 μatm), and five more served as controls (400 μatm). We applied ultrahigh-resolution mass spectrometry to monitor the succession of 7360 distinct DOM formulae over the course of the experiment. Plankton blooms had a clear effect on DOM concentration and molecular composition. This succession was reproducible across all 10 mesocosms, independent of CO2 treatment. In contrast to the temporal trend, there were no significant differences in DOM concentration and composition between present-day and year 2100 CO2 levels at any time point of the experiment. On the basis of our results, ocean acidification alone is unlikely to affect the seasonal accumulation of DOM in productive coastal environments.

  1. Impacts of ocean acidification on marine organisms: quantifying sensitivities and interaction with warming.

    Science.gov (United States)

    Kroeker, Kristy J; Kordas, Rebecca L; Crim, Ryan; Hendriks, Iris E; Ramajo, Laura; Singh, Gerald S; Duarte, Carlos M; Gattuso, Jean-Pierre

    2013-06-01

    Ocean acidification represents a threat to marine species worldwide, and forecasting the ecological impacts of acidification is a high priority for science, management, and policy. As research on the topic expands at an exponential rate, a comprehensive understanding of the variability in organisms' responses and corresponding levels of certainty is necessary to forecast the ecological effects. Here, we perform the most comprehensive meta-analysis to date by synthesizing the results of 228 studies examining biological responses to ocean acidification. The results reveal decreased survival, calcification, growth, development and abundance in response to acidification when the broad range of marine organisms is pooled together. However, the magnitude of these responses varies among taxonomic groups, suggesting there is some predictable trait-based variation in sensitivity, despite the investigation of approximately 100 new species in recent research. The results also reveal an enhanced sensitivity of mollusk larvae, but suggest that an enhanced sensitivity of early life history stages is not universal across all taxonomic groups. In addition, the variability in species' responses is enhanced when they are exposed to acidification in multi-species assemblages, suggesting that it is important to consider indirect effects and exercise caution when forecasting abundance patterns from single-species laboratory experiments. Furthermore, the results suggest that other factors, such as nutritional status or source population, could cause substantial variation in organisms' responses. Last, the results highlight a trend towards enhanced sensitivity to acidification when taxa are concurrently exposed to elevated seawater temperature. © 2013 Blackwell Publishing Ltd.

  2. Impacts of ocean acidification on marine organisms: quantifying sensitivities and interaction with warming

    Science.gov (United States)

    Kroeker, Kristy J; Kordas, Rebecca L; Crim, Ryan; Hendriks, Iris E; Ramajo, Laura; Singh, Gerald S; Duarte, Carlos M; Gattuso, Jean-Pierre

    2013-01-01

    Ocean acidification represents a threat to marine species worldwide, and forecasting the ecological impacts of acidification is a high priority for science, management, and policy. As research on the topic expands at an exponential rate, a comprehensive understanding of the variability in organisms' responses and corresponding levels of certainty is necessary to forecast the ecological effects. Here, we perform the most comprehensive meta-analysis to date by synthesizing the results of 228 studies examining biological responses to ocean acidification. The results reveal decreased survival, calcification, growth, development and abundance in response to acidification when the broad range of marine organisms is pooled together. However, the magnitude of these responses varies among taxonomic groups, suggesting there is some predictable trait-based variation in sensitivity, despite the investigation of approximately 100 new species in recent research. The results also reveal an enhanced sensitivity of mollusk larvae, but suggest that an enhanced sensitivity of early life history stages is not universal across all taxonomic groups. In addition, the variability in species' responses is enhanced when they are exposed to acidification in multi-species assemblages, suggesting that it is important to consider indirect effects and exercise caution when forecasting abundance patterns from single-species laboratory experiments. Furthermore, the results suggest that other factors, such as nutritional status or source population, could cause substantial variation in organisms' responses. Last, the results highlight a trend towards enhanced sensitivity to acidification when taxa are concurrently exposed to elevated seawater temperature. PMID:23505245

  3. Ocean acidification increases cadmium accumulation in marine bivalves: a potential threat to seafood safety.

    Science.gov (United States)

    Shi, Wei; Zhao, Xinguo; Han, Yu; Che, Zhumei; Chai, Xueliang; Liu, Guangxu

    2016-01-21

    To date, the effects of ocean acidification on toxic metals accumulation and the underlying molecular mechanism remains unknown in marine bivalve species. In the present study, the effects of the realistic future ocean pCO2 levels on the cadmium (Cd) accumulation in the gills, mantle and adductor muscles of three bivalve species, Mytilus edulis, Tegillarca granosa, and Meretrix meretrix, were investigated. The results obtained suggested that all species tested accumulated significantly higher Cd (p ocean acidification-induced increase in Cd accumulation may have occurred due to (i) the ocean acidification increased the concentration of Cd and the Cd(2+)/Ca(2+) in the seawater, which in turn increased the Cd influx through Ca channel; (ii) the acidified seawater may have brought about epithelia damage, resulting in easier Cd penetration; and (iii) ocean acidification hampered Cd exclusion.

  4. Ocean acidification and the loss of phenolic substances in marine plants.

    Directory of Open Access Journals (Sweden)

    Thomas Arnold

    Full Text Available Rising atmospheric CO(2 often triggers the production of plant phenolics, including many that serve as herbivore deterrents, digestion reducers, antimicrobials, or ultraviolet sunscreens. Such responses are predicted by popular models of plant defense, especially resource availability models which link carbon availability to phenolic biosynthesis. CO(2 availability is also increasing in the oceans, where anthropogenic emissions cause ocean acidification, decreasing seawater pH and shifting the carbonate system towards further CO(2 enrichment. Such conditions tend to increase seagrass productivity but may also increase rates of grazing on these marine plants. Here we show that high CO(2 / low pH conditions of OA decrease, rather than increase, concentrations of phenolic protective substances in seagrasses and eurysaline marine plants. We observed a loss of simple and polymeric phenolics in the seagrass Cymodocea nodosa near a volcanic CO(2 vent on the Island of Vulcano, Italy, where pH values decreased from 8.1 to 7.3 and pCO(2 concentrations increased ten-fold. We observed similar responses in two estuarine species, Ruppia maritima and Potamogeton perfoliatus, in in situ Free-Ocean-Carbon-Enrichment experiments conducted in tributaries of the Chesapeake Bay, USA. These responses are strikingly different than those exhibited by terrestrial plants. The loss of phenolic substances may explain the higher-than-usual rates of grazing observed near undersea CO(2 vents and suggests that ocean acidification may alter coastal carbon fluxes by affecting rates of decomposition, grazing, and disease. Our observations temper recent predictions that seagrasses would necessarily be "winners" in a high CO(2 world.

  5. IPCC workshop on impacts of ocean acidification on marine biology and ecosystems. Workshop report

    Energy Technology Data Exchange (ETDEWEB)

    Field, C.B.; Barros, V.; Stocker, T.F.; Dahe, Q.; Mach, K.J.; Plattner, G.-K.; Mastrandrea, M.D.; Tignor, M.; Ebi, K.L.

    2011-09-15

    Understanding the effects of increasing atmospheric CO{sub 2} concentrations on ocean chemistry, commonly termed ocean acidification, as well as associated impacts on marine biology and ecosystems, is an important component of scientific knowledge about global change. The Fifth Assessment Report (AR5) of the Intergovernmental Panel on Climate Change (IPCC) will include comprehensive coverage of ocean acidification and its impacts, including potential feedbacks to the climate system. To support ongoing AR5 assessment efforts, Working Group II and Working Group I (WGII and WGI) of the IPCC held a joint Workshop on Impacts of Ocean Acidification on Marine Biology and Ecosystems in Okinawa, Japan, from 17 to 19 January 2011. The workshop convened experts from the scientific community, including WGII and WGI AR5 authors and review editors, to synthesise scientific understanding of changes in ocean chemistry due to increased CO{sub 2} and of impacts of this changing chemistry on marine organisms, ecosystems, and ecosystem services. This workshop report summarises the scientific content and perspectives presented and discussed during the workshop. It provides syntheses of these perspectives for the workshop's core topics: (i) the changing chemistry of the oceans, (ii) impacts of ocean acidification for individual organisms, and (iii) scaling up responses from individual organisms to ecosystems. It also presents summaries of workshop discussions of key cross-cutting themes, ranging from detection and attribution of ocean acidification and its impacts to understanding ocean acidification in the context of other stressors on marine systems. Additionally, the workshop report includes extended abstracts for keynote and poster presentations at the workshop. (Author)

  6. Demonstrating the Effects of Ocean Acidification on Marine Organisms to Support Climate Change Understanding

    Science.gov (United States)

    Kelley, Amanda L.; Hanson, Paul R.; Kelley, Stephanie A.

    2015-01-01

    Ocean acidification, a product of CO[subscript 2] absorption by the world's oceans, is largely driven by the anthropogenic combustion of fossil fuels and has already lowered the pH of marine ecosystems. Organisms with calcium carbonate shells and skeletons are especially susceptible to increasing environmental acidity due to reduction in the…

  7. Effects of acidification on olfactory-mediated behaviour in freshwater and marine ecosystems: a synthesis

    OpenAIRE

    Leduc, Antoine O. H. C.; Munday, Philip L.; Brown, Grant E.; Ferrari, Maud C. O.

    2013-01-01

    For many aquatic organisms, olfactory-mediated behaviour is essential to the maintenance of numerous fitness-enhancing activities, including foraging, reproduction and predator avoidance. Studies in both freshwater and marine ecosystems have demonstrated significant impacts of anthropogenic acidification on olfactory abilities of fish and macroinvertebrates, leading to impaired behavioural responses, with potentially far-reaching consequences to population dynamics and community structure. Wh...

  8. Effects of Ocean Acidification on Temperate Coastal Marine Ecosystems and Fisheries in the Northeast Pacific

    Science.gov (United States)

    Haigh, Rowan; Ianson, Debby; Holt, Carrie A.; Neate, Holly E.; Edwards, Andrew M.

    2015-01-01

    As the oceans absorb anthropogenic CO2 they become more acidic, a problem termed ocean acidification (OA). Since this increase in CO2 is occurring rapidly, OA may have profound implications for marine ecosystems. In the temperate northeast Pacific, fisheries play key economic and cultural roles and provide significant employment, especially in rural areas. In British Columbia (BC), sport (recreational) fishing generates more income than commercial fishing (including the expanding aquaculture industry). Salmon (fished recreationally and farmed) and Pacific Halibut are responsible for the majority of fishery-related income. This region naturally has relatively acidic (low pH) waters due to ocean circulation, and so may be particularly vulnerable to OA. We have analyzed available data to provide a current description of the marine ecosystem, focusing on vertical distributions of commercially harvested groups in BC in the context of local carbon and pH conditions. We then evaluated the potential impact of OA on this temperate marine system using currently available studies. Our results highlight significant knowledge gaps. Above trophic levels 2–3 (where most local fishery-income is generated), little is known about the direct impact of OA, and more importantly about the combined impact of multi-stressors, like temperature, that are also changing as our climate changes. There is evidence that OA may have indirect negative impacts on finfish through changes at lower trophic levels and in habitats. In particular, OA may lead to increased fish-killing algal blooms that can affect the lucrative salmon aquaculture industry. On the other hand, some species of locally farmed shellfish have been well-studied and exhibit significant negative direct impacts associated with OA, especially at the larval stage. We summarize the direct and indirect impacts of OA on all groups of marine organisms in this region and provide conclusions, ordered by immediacy and certainty. PMID

  9. Acidification and warming affect both a calcifying predator and prey, but not their interaction

    DEFF Research Database (Denmark)

    Landes, Anja; Zimmer, Martin

    2012-01-01

    Both ocean warming and acidification have been demonstrated to affect the growth, performance and reproductive success of calcifying invertebrates. However, relatively little is known regarding how such environmental change may affect interspecific interactions. We separately treated green crabs...... to environmental change. Acidification negatively affected the closer-muscle length of the crusher chela and correspondingly the claw-strength increment in C. maenas. The effects of warming and/or acidification on L. littorea were less consistent but indicated weaker shells in response to acidification...... Carcinus maenas and periwinkles Littorina littorea under conditions that mimicked either ambient conditions (control) or warming and acidification, both separately and in combination, for 5 mo. After 5 mo, the predators, prey and predator-prey interactions were screened for changes in response...

  10. A quantitative genetic approach to assess the evolutionary potential of a coastal marine fish to ocean acidification

    KAUST Repository

    Malvezzi, Alex J.; Murray, Christopher S.; Feldheim, Kevin A.; DiBattista, Joseph; Garant, Dany; Gobler, Christopher J.; Chapman, Demian D.; Baumann, Hannes

    2015-01-01

    Assessing the potential of marine organisms to adapt genetically to increasing oceanic CO2 levels requires proxies such as heritability of fitness-related traits under ocean acidification (OA). We applied a quantitative genetic method to derive

  11. Ocean acidification and warming in the Norwegian and Barents Seas: impacts on marine ecosystems and human uses

    OpenAIRE

    Koenigstein, Stefan; Gößling-Reisemann, Stefan

    2014-01-01

    This report synthesizes the results about the impacts of climate change and ocean acidification on marine ecosystems and ecosystem services in Norway, from interviews and a workshop with stakeholders in 2013.

  12. Silent oceans: ocean acidification impoverishes natural soundscapes by altering sound production of the world's noisiest marine invertebrate.

    Science.gov (United States)

    Rossi, Tullio; Connell, Sean D; Nagelkerken, Ivan

    2016-03-16

    Soundscapes are multidimensional spaces that carry meaningful information for many species about the location and quality of nearby and distant resources. Because soundscapes are the sum of the acoustic signals produced by individual organisms and their interactions, they can be used as a proxy for the condition of whole ecosystems and their occupants. Ocean acidification resulting from anthropogenic CO2 emissions is known to have profound effects on marine life. However, despite the increasingly recognized ecological importance of soundscapes, there is no empirical test of whether ocean acidification can affect biological sound production. Using field recordings obtained from three geographically separated natural CO2 vents, we show that forecasted end-of-century ocean acidification conditions can profoundly reduce the biological sound level and frequency of snapping shrimp snaps. Snapping shrimp were among the noisiest marine organisms and the suppression of their sound production at vents was responsible for the vast majority of the soundscape alteration observed. To assess mechanisms that could account for these observations, we tested whether long-term exposure (two to three months) to elevated CO2 induced a similar reduction in the snapping behaviour (loudness and frequency) of snapping shrimp. The results indicated that the soniferous behaviour of these animals was substantially reduced in both frequency (snaps per minute) and sound level of snaps produced. As coastal marine soundscapes are dominated by biological sounds produced by snapping shrimp, the observed suppression of this component of soundscapes could have important and possibly pervasive ecological consequences for organisms that use soundscapes as a source of information. This trend towards silence could be of particular importance for those species whose larval stages use sound for orientation towards settlement habitats. © 2016 The Author(s).

  13. Ocean acidification does not affect the physiology of the tropical coral Acropora digitifera during a 5-week experiment

    Science.gov (United States)

    Takahashi, A.; Kurihara, H.

    2013-03-01

    The increase in atmospheric CO2 concentration, which has resulted from the burning of fossil fuels, is being absorbed by the oceans and is causing ocean acidification. Ocean acidification involves the decrease of both the pH and the calcium carbonate saturation state. Ocean acidification is predicted to impact the physiology of marine organisms and reduce the calcification rates of corals. In the present study, we measured the rates of calcification, respiration, photosynthesis, and zooxanthellae density of the tropical coral Acropora digitifera under near-natural summertime temperature and sunlight for a 5-week period. We found that these key physiological parameters were not affected by both mid-CO2 (pCO2 = 744 ± 38, pH = 7.97 ± 0.02, Ωarag = 2.6 ± 0.1) and high-CO2 conditions (pCO2 = 2,142 ± 205, pH = 7.56 ± 0.04, Ωarag = 1.1 ± 0.2) throughout the 35 days experimental period. Additionally, there was no significant correlation between calcification rate and seawater aragonite saturation (Ωarag). These results suggest that the impacts of ocean acidification on corals physiology may be more complex than have been previously proposed.

  14. Ontogenetic variability in the feeding behavior of a marine amphipod in response to ocean acidification.

    Science.gov (United States)

    Benítez, Samanta; Duarte, Cristian; López, Jorge; Manríquez, Patricio H; Navarro, Jorge M; Bonta, Cesar C; Torres, Rodrigo; Quijón, Pedro A

    2016-11-15

    Global stressors like ocean acidification (OA) are expected to influence the quality or palatability of primary producers like algae. Such changes can trigger a response on algal consumers' feeding strategies, and this response may not necessarily be the same for the consumers during the ontogeny. We used a mesocosm's system to expose algae to current and projected OA conditions (390 and 1000ppm, respectively) and then compared the feeding behavior and absorption efficiency of juvenile and adult stages of the amphipod Orchestoidea tuberculata. Specifically, we measured consumption rates (with and without a choice) and absorption efficiency on algae exposed and not exposed to OA. Our results show that OA affect the amphipod's consumption and feeding preferences, and that these effects were related with the analyzed ontogenetic stage (juveniles versus adults). These results support the existence of an ontogenetic change in the response of this species and others similar marine invertebrates to OA, which highlight the need to incorporate different life stages in the study of OA or others global stressors. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Ocean warming and acidification have complex interactive effects on the dynamics of a marine fungal disease

    Science.gov (United States)

    Williams, Gareth J.; Price, Nichole N.; Ushijima, Blake; Aeby, Greta S.; Callahan, Sean M.; Davy, Simon K.; Gove, Jamison M.; Johnson, Maggie D.; Knapp, Ingrid S.; Shore-Maggio, Amanda; Smith, Jennifer E.; Videau, Patrick; Work, Thierry M.

    2014-01-01

    Diseases threaten the structure and function of marine ecosystems and are contributing to the global decline of coral reefs. We currently lack an understanding of how climate change stressors, such as ocean acidification (OA) and warming, may simultaneously affect coral reef disease dynamics, particularly diseases threatening key reef-building organisms, for example crustose coralline algae (CCA). Here, we use coralline fungal disease (CFD), a previously described CCA disease from the Pacific, to examine these simultaneous effects using both field observations and experimental manipulations. We identify the associated fungus as belonging to the subphylum Ustilaginomycetes and show linear lesion expansion rates on individual hosts can reach 6.5 mm per day. Further, we demonstrate for the first time, to our knowledge, that ocean-warming events could increase the frequency of CFD outbreaks on coral reefs, but that OA-induced lowering of pH may ameliorate outbreaks by slowing lesion expansion rates on individual hosts. Lowered pH may still reduce overall host survivorship, however, by reducing calcification and facilitating fungal bio-erosion. Such complex, interactive effects between simultaneous extrinsic environmental stressors on disease dynamics are important to consider if we are to accurately predict the response of coral reef communities to future climate change.

  16. Multistressor impacts of warming and acidification of the ocean on marine invertebrates' life histories.

    Science.gov (United States)

    Byrne, Maria; Przeslawski, Rachel

    2013-10-01

    Benthic marine invertebrates live in a multistressor world where stressor levels are, and will continue to be, exacerbated by global warming and increased atmospheric carbon dioxide. These changes are causing the oceans to warm, decrease in pH, become hypercapnic, and to become less saturated in carbonate minerals. These stressors have strong impacts on biological processes, but little is known about their combined effects on the development of marine invertebrates. Increasing temperature has a stimulatory effect on development, whereas hypercapnia can depress developmental processes. The pH, pCO2, and CaCO3 of seawater change simultaneously with temperature, challenging our ability to predict future outcomes for marine biota. The need to consider both warming and acidification is reflected in the recent increase in cross-factorial studies of the effects of these stressors on development of marine invertebrates. The outcomes and trends in these studies are synthesized here. Based on this compilation, significant additive or antagonistic effects of warming and acidification of the ocean are common (16 of 20 species studied), and synergistic negative effects also are reported. Fertilization can be robust to near-future warming and acidification, depending on the male-female mating pair. Although larvae and juveniles of some species tolerate near-future levels of warming and acidification (+2°C/pH 7.8), projected far-future conditions (ca. ≥4°C/ ≤pH 7.6) are widely deleterious, with a reduction in the size and survival of larvae. It appears that larvae that calcify are sensitive both to warming and acidification, whereas those that do not calcify are more sensitive to warming. Different sensitivities of life-history stages and species have implications for persistence and community function in a changing ocean. Some species are more resilient than others and may be potential "winners" in the climate-change stakes. As the ocean will change more gradually over

  17. Hypoxia and acidification in ocean ecosystems: coupled dynamics and effects on marine life.

    Science.gov (United States)

    Gobler, Christopher J; Baumann, Hannes

    2016-05-01

    There is increasing recognition that low dissolved oxygen (DO) and low pH conditions co-occur in many coastal and open ocean environments. Within temperate ecosystems, these conditions not only develop seasonally as temperatures rise and metabolic rates accelerate, but can also display strong diurnal variability, especially in shallow systems where photosynthetic rates ameliorate hypoxia and acidification by day. Despite the widespread, global co-occurrence of low pH and low DO and the likelihood that these conditions may negatively impact marine life, very few studies have actually assessed the extent to which the combination of both stressors elicits additive, synergistic or antagonistic effects in marine organisms. We review the evidence from published factorial experiments that used static and/or fluctuating pH and DO levels to examine different traits (e.g. survival, growth, metabolism), life stages and species across a broad taxonomic spectrum. Additive negative effects of combined low pH and low DO appear to be most common; however, synergistic negative effects have also been observed. Neither the occurrence nor the strength of these synergistic impacts is currently predictable, and therefore, the true threat of concurrent acidification and hypoxia to marine food webs and fisheries is still not fully understood. Addressing this knowledge gap will require an expansion of multi-stressor approaches in experimental and field studies, and the development of a predictive framework. In consideration of marine policy, we note that DO criteria in coastal waters have been developed without consideration of concurrent pH levels. Given the persistence of concurrent low pH-low DO conditions in estuaries and the increased mortality experienced by fish and bivalves under concurrent acidification and hypoxia compared with hypoxia alone, we conclude that such DO criteria may leave coastal fisheries more vulnerable to population reductions than previously anticipated. © 2016

  18. The positive relationship between ocean acidification and pollution.

    Science.gov (United States)

    Zeng, Xiangfeng; Chen, Xijuan; Zhuang, Jie

    2015-02-15

    Ocean acidification and pollution coexist to exert combined effects on the functions and services of marine ecosystems. Ocean acidification can increase the biotoxicity of heavy metals by altering their speciation and bioavailability. Marine pollutants, such as heavy metals and oils, could decrease the photosynthesis rate and increase the respiration rate of marine organisms as a result of biotoxicity and eutrophication, facilitating ocean acidification to varying degrees. Here we review the complex interactions between ocean acidification and pollution in the context of linkage of multiple stressors to marine ecosystems. The synthesized information shows that pollution-affected respiration acidifies coastal oceans more than the uptake of anthropogenic carbon dioxide. Coastal regions are more vulnerable to the negative impact of ocean acidification due to large influxes of pollutants from terrestrial ecosystems. Ocean acidification and pollution facilitate each other, and thus coastal environmental protection from pollution has a large potential for mitigating acidification risk. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Ocean Acidification

    Science.gov (United States)

    Ocean and coastal acidification is an emerging issue caused by increasing amounts of carbon dioxide being absorbed by seawater. Changing seawater chemistry impacts marine life, ecosystem services, and humans. Learn what EPA is doing and what you can do.

  20. Response to ocean acidification in larvae of a large tropical marine fish, Rachycentron canadum.

    Science.gov (United States)

    Bignami, Sean; Sponaugle, Su; Cowen, Robert K

    2013-04-01

    Currently, ocean acidification is occurring at a faster rate than at any time in the last 300 million years, posing an ecological challenge to marine organisms globally. There is a critical need to understand the effects of acidification on the vulnerable larval stages of marine fishes, as there is potential for large ecological and economic impacts on fish populations and the human economies that rely on them. We expand upon the narrow taxonomic scope found in the literature today, which overlooks many life history characteristics of harvested species, by reporting on the larvae of Rachycentron canadum (cobia), a large, highly mobile, pelagic-spawning, widely distributed species with a life history and fishery value contrasting other species studied to date. We raised larval cobia through the first 3 weeks of ontogeny under conditions of predicted future ocean acidification to determine effects on somatic growth, development, otolith formation, swimming ability, and swimming activity. Cobia exhibited resistance to treatment effects on growth, development, swimming ability, and swimming activity at 800 and 2100 μatm pCO2 . However, these scenarios resulted in a significant increase in otolith size (up to 25% larger area) at the lowest pCO2 levels reported to date, as well as the first report of significantly wider daily otolith growth increments. When raised under more extreme scenarios of 3500 and 5400 μatm pCO2 , cobia exhibited significantly reduced size-at-age (up to 25% smaller) and a 2-3 days developmental delay. The robust nature of cobia may be due to the naturally variable environmental conditions this species currently encounters throughout ontogeny in coastal environments, which may lead to an increased acclimatization ability even during long-term exposure to stressors. © 2012 Blackwell Publishing Ltd.

  1. Sea Water Acidification Affects Osmotic Swelling, Regulatory Volume Decrease and Discharge in Nematocytes of the Jellyfish Pelagia noctiluca

    Directory of Open Access Journals (Sweden)

    Rossana Morabito

    2013-12-01

    Full Text Available Background: Increased acidification/PCO2 of sea water is a threat to the environment and affects the homeostasis of marine animals. In this study, the effect of sea water pH changes on the osmotic phase (OP, regulatory volume decrease (RVD and discharge of the jellyfish Pelagia noctiluca (Cnidaria, Scyphozoa nematocytes, collected from the Strait of Messina (Italy, was assessed. Methods: Isolated nematocytes, suspended in artificial sea water (ASW with pH 7.65, 6.5 and 4.5, were exposed to hyposmotic ASW of the same pH values and their osmotic response and RVD measured optically in a special flow through chamber. Nematocyte discharge was analyzed in situ in ASW at all three pH values. Results: At normal pH (7.65, nematocytes subjected to hyposmotic shock first expanded osmotically and then regulated their cell volume within 15 min. Exposure to hyposmotic ASW pH 6.5 and 4.5 compromised the OP and reduced or totally abrogated the ensuing RVD, respectively. Acidic pH also significantly reduced the nematocyte discharge response. Conclusion: Data indicate that the homeostasis and function of Cnidarians may be altered by environmental changes such as sea water acidification, thereby validating their use as novel bioindicators for the quality of the marine environment.

  2. Sea water acidification affects osmotic swelling, regulatory volume decrease and discharge in nematocytes of the jellyfish Pelagia noctiluca.

    Science.gov (United States)

    Morabito, Rossana; Marino, Angela; Lauf, Peter K; Adragna, Norma C; La Spada, Giuseppa

    2013-01-01

    Increased acidification/PCO2 of sea water is a threat to the environment and affects the homeostasis of marine animals. In this study, the effect of sea water pH changes on the osmotic phase (OP), regulatory volume decrease (RVD) and discharge of the jellyfish Pelagia noctiluca (Cnidaria, Scyphozoa) nematocytes, collected from the Strait of Messina (Italy), was assessed. Isolated nematocytes, suspended in artificial sea water (ASW) with pH 7.65, 6.5 and 4.5, were exposed to hyposmotic ASW of the same pH values and their osmotic response and RVD measured optically in a special flow through chamber. Nematocyte discharge was analyzed in situ in ASW at all three pH values. At normal pH (7.65), nematocytes subjected to hyposmotic shock first expanded osmotically and then regulated their cell volume within 15 min. Exposure to hyposmotic ASW pH 6.5 and 4.5 compromised the OP and reduced or totally abrogated the ensuing RVD, respectively. Acidic pH also significantly reduced the nematocyte discharge response. Data indicate that the homeostasis and function of Cnidarians may be altered by environmental changes such as sea water acidification, thereby validating their use as novel bioindicators for the quality of the marine environment. © 2014 S. Karger AG, Basel.

  3. Ocean acidification of a coastal Antarctic marine microbial community reveals a critical threshold for CO2 tolerance in phytoplankton productivity

    Science.gov (United States)

    Deppeler, Stacy; Petrou, Katherina; Schulz, Kai G.; Westwood, Karen; Pearce, Imojen; McKinlay, John; Davidson, Andrew

    2018-01-01

    High-latitude oceans are anticipated to be some of the first regions affected by ocean acidification. Despite this, the effect of ocean acidification on natural communities of Antarctic marine microbes is still not well understood. In this study we exposed an early spring, coastal marine microbial community in Prydz Bay to CO2 levels ranging from ambient (343 µatm) to 1641 µatm in six 650 L minicosms. Productivity assays were performed to identify whether a CO2 threshold existed that led to a change in primary productivity, bacterial productivity, and the accumulation of chlorophyll a (Chl a) and particulate organic matter (POM) in the minicosms. In addition, photophysiological measurements were performed to identify possible mechanisms driving changes in the phytoplankton community. A critical threshold for tolerance to ocean acidification was identified in the phytoplankton community between 953 and 1140 µatm. CO2 levels ≥ 1140 µatm negatively affected photosynthetic performance and Chl a-normalised primary productivity (csGPP14C), causing significant reductions in gross primary production (GPP14C), Chl a accumulation, nutrient uptake, and POM production. However, there was no effect of CO2 on C : N ratios. Over time, the phytoplankton community acclimated to high CO2 conditions, showing a down-regulation of carbon concentrating mechanisms (CCMs) and likely adjusting other intracellular processes. Bacterial abundance initially increased in CO2 treatments ≥ 953 µatm (days 3-5), yet gross bacterial production (GBP14C) remained unchanged and cell-specific bacterial productivity (csBP14C) was reduced. Towards the end of the experiment, GBP14C and csBP14C markedly increased across all treatments regardless of CO2 availability. This coincided with increased organic matter availability (POC and PON) combined with improved efficiency of carbon uptake. Changes in phytoplankton community production could have negative effects on the Antarctic food web and the

  4. Ocean acidification of a coastal Antarctic marine microbial community reveals a critical threshold for CO2 tolerance in phytoplankton productivity

    Directory of Open Access Journals (Sweden)

    S. Deppeler

    2018-01-01

    Full Text Available High-latitude oceans are anticipated to be some of the first regions affected by ocean acidification. Despite this, the effect of ocean acidification on natural communities of Antarctic marine microbes is still not well understood. In this study we exposed an early spring, coastal marine microbial community in Prydz Bay to CO2 levels ranging from ambient (343 µatm to 1641 µatm in six 650 L minicosms. Productivity assays were performed to identify whether a CO2 threshold existed that led to a change in primary productivity, bacterial productivity, and the accumulation of chlorophyll a (Chl a and particulate organic matter (POM in the minicosms. In addition, photophysiological measurements were performed to identify possible mechanisms driving changes in the phytoplankton community. A critical threshold for tolerance to ocean acidification was identified in the phytoplankton community between 953 and 1140 µatm. CO2 levels  ≥ 1140 µatm negatively affected photosynthetic performance and Chl a-normalised primary productivity (csGPP14C, causing significant reductions in gross primary production (GPP14C, Chl a accumulation, nutrient uptake, and POM production. However, there was no effect of CO2 on C : N ratios. Over time, the phytoplankton community acclimated to high CO2 conditions, showing a down-regulation of carbon concentrating mechanisms (CCMs and likely adjusting other intracellular processes. Bacterial abundance initially increased in CO2 treatments  ≥ 953 µatm (days 3–5, yet gross bacterial production (GBP14C remained unchanged and cell-specific bacterial productivity (csBP14C was reduced. Towards the end of the experiment, GBP14C and csBP14C markedly increased across all treatments regardless of CO2 availability. This coincided with increased organic matter availability (POC and PON combined with improved efficiency of carbon uptake. Changes in phytoplankton community production could have negative

  5. Ocean Warming and CO2-Induced Acidification Impact the Lipid Content of a Marine Predatory Gastropod

    Directory of Open Access Journals (Sweden)

    Roselyn Valles-Regino

    2015-09-01

    Full Text Available Ocean warming and acidification are current global environmental challenges impacting aquatic organisms. A shift in conditions outside the optimal environmental range for marine species is likely to generate stress that could impact metabolic activity, with consequences for the biosynthesis of marine lipids. The aim of this study was to investigate differences in the lipid content of Dicathais orbita exposed to current and predicted future climate change scenarios. The whelks were exposed to a combination of temperature and CO2-induced acidification treatments in controlled flowthrough seawater mesocosms for 35 days. Under current conditions, D. orbita foot tissue has an average of 6 mg lipid/g tissue, but at predicted future ocean temperatures, the total lipid content dropped significantly, to almost half. The fatty acid composition is dominated by polyunsaturated fatty acids (PUFA 52% with an n-3:6 fatty acid ratio of almost 2, which remains unchanged under future ocean conditions. However, we detected an interactive effect of temperature and pCO2 on the % PUFAs and n-3 and n-6 fatty acids were significantly reduced by elevated water temperature, while both the saturated and monounsaturated fatty acids were significantly reduced under increased pCO2 acidifying conditions. The present study indicates the potential for relatively small predicted changes in ocean conditions to reduce lipid reserves and alter the fatty acid composition of a predatory marine mollusc. This has potential implications for the growth and survivorship of whelks under future conditions, but only minimal implications for human consumption of D. orbita as nutritional seafood are predicted.

  6. Coral and mollusc resistance to ocean acidification adversely affected by warming

    Science.gov (United States)

    Rodolfo-Metalpa, R.; Houlbrèque, F.; Tambutté, É.; Boisson, F.; Baggini, C.; Patti, F. P.; Jeffree, R.; Fine, M.; Foggo, A.; Gattuso, J.-P.; Hall-Spencer, J. M.

    2011-09-01

    Increasing atmospheric carbon dioxide (CO2) concentrations are expectedto decrease surface ocean pH by 0.3-0.5 units by 2100 (refs , ), lowering the carbonate ion concentration of surfacewaters. This rapid acidification is predicted to dramatically decrease calcification in many marine organisms. Reduced skeletal growth under increased CO2 levels has already been shown for corals, molluscs and many other marine organisms. The impact of acidification on the ability of individual species to calcify has remained elusive, however, as measuring net calcification fails to disentangle the relative contributions of gross calcification and dissolution rates on growth. Here, we show that corals and molluscs transplanted along gradients of carbonate saturation state at Mediterranean CO2 vents are able to calcify and grow at even faster than normal rates when exposed to the high CO2 levels projected for the next 300 years. Calcifiers remain at risk, however, owing to the dissolution of exposed shells and skeletons that occurs as pH levels fall. Our results show that tissues and external organic layers play a major role in protecting shells and skeletons from corrosive sea water, limiting dissolution and allowing organisms to calcify. Our combined field and laboratory results demonstrate that the adverse effects of global warming are exacerbated when high temperatures coincide with acidification.

  7. Impact of climate change and ocean acidification on the marine nitrogen cycle

    International Nuclear Information System (INIS)

    Martinez-Rey, Jorge

    2015-01-01

    The marine nitrogen cycle is responsible for two climate feedbacks in the Earth System. Firstly, it modulates the fixed nitrogen pool available for phytoplankton growth and hence it modulates in part the strength of the biological pump, one of the mechanisms contributing to the oceanic uptake of anthropogenic CO 2 . Secondly, the nitrogen cycle produces a powerful greenhouse gas and ozone (O 3 ) depletion agent called nitrous oxide (N 2 O). Future changes of the nitrogen cycle in response to global warming, ocean deoxygenation and ocean acidification are largely unknown. Processes such as N 2 -fixation, nitrification, denitrification and N 2 O production will experience changes under the simultaneous effect of these three stressors. Global ocean biogeochemical models allow us to study such interactions. Using NEMO-PISCES and the CMIP5 model ensemble we project changes in year 2100 under the business-as-usual high CO 2 emissions scenario in global scale N 2 -fixation rates, nitrification rates, N 2 O production and N 2 O sea-to-air fluxes adding CO 2 sensitive functions into the model parameterizations. Second order effects due to the combination of global warming in tandem with ocean acidification on the fixed nitrogen pool, primary productivity and N 2 O radiative forcing feedbacks are also evaluated in this thesis. (author) [fr

  8. Effects of ocean acidification on the marine calcium isotope record at the Paleocene-Eocene Thermal Maximum

    Science.gov (United States)

    Griffith, Elizabeth M.; Fantle, Matthew S.; Eisenhauer, Anton; Paytan, Adina; Bullen, Thomas D.

    2015-06-01

    Carbonates are used extensively to reconstruct paleoclimate and paleoceanographic conditions over geologic time scales. However, these archives are susceptible to diagenetic alteration via dissolution, recrystallization and secondary precipitation, particularly during ocean acidification events when intense dissolution can occur. Despite the possible effects of diagenesis on proxy fidelity, the impacts of diagenesis on the calcium isotopic composition (δ44Ca) of carbonates are unclear. To shed light on this issue, bulk carbonate δ44Ca was measured at high resolution in two Pacific deep sea sediment cores (ODP Sites 1212 and 1221) with considerably different dissolution histories over the Paleocene-Eocene Thermal Maximum (PETM, ∼ 55 Ma). The δ44Ca of marine barite was also measured at the deeper Site 1221, which experienced severe carbonate dissolution during the PETM. Large variations (∼ 0.8 ‰) in bulk carbonate δ44Ca occur in the deeper of the two sites at depths corresponding to the peak carbon isotope excursion, which correlate with a large drop in carbonate weight percent. Such an effect is not observed in either the 1221 barite record or the bulk carbonate record at the shallower Site 1212, which is also less affected by dissolution. We contend that ocean chemical changes associated with abrupt and massive carbon release into the ocean-atmosphere system and subsequent ocean acidification at the PETM affected the bulk carbonate δ44Ca record via diagenesis in the sedimentary column. Such effects are considerable, and need to be taken into account when interpreting Ca isotope data and, potentially, other geochemical proxies over extreme climatic events that drive sediment dissolution.

  9. Study on the effects of near-future ocean acidification on marine yeasts: a microcosm approach

    Science.gov (United States)

    Krause, Evamaria; Wichels, Antje; Erler, René; Gerdts, Gunnar

    2013-12-01

    Marine yeasts play an important role in biodegradation and nutrient cycling and are often associated with marine flora and fauna. They show maximum growth at pH levels lower than present-day seawater pH. Thus, contrary to many other marine organisms, they may actually profit from ocean acidification. Hence, we conducted a microcosm study, incubating natural seawater from the North Sea at present-day pH (8.10) and two near-future pH levels (7.81 and 7.67). Yeasts were isolated from the initial seawater sample and after 2 and 4 weeks of incubation. Isolates were classified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and representative isolates were identified by partial sequencing of the large subunit rRNA gene. From the initial seawater sample, we predominantly isolated a yeast-like filamentous fungus related to Aureobasidium pullulans, Cryptococcus sp., Candida sake, and various cold-adapted yeasts. After incubation, we found more different yeast species at near-future pH levels than at present-day pH. Yeasts reacting to low pH were related to Leucosporidium scottii, Rhodotorula mucilaginosa, Cryptococcus sp., and Debaryomyces hansenii. Our results suggest that these yeasts will benefit from seawater pH reductions and give a first indication that the importance of yeasts will increase in a more acidic ocean.

  10. The metabolic response of marine copepods to environmental warming and ocean acidification in the absence of food

    Science.gov (United States)

    Mayor, Daniel J.; Sommer, Ulf; Cook, Kathryn B.; Viant, Mark R.

    2015-09-01

    Marine copepods are central to the productivity and biogeochemistry of marine ecosystems. Nevertheless, the direct and indirect effects of climate change on their metabolic functioning remain poorly understood. Here, we use metabolomics, the unbiased study of multiple low molecular weight organic metabolites, to examine how the physiology of Calanus spp. is affected by end-of-century global warming and ocean acidification scenarios. We report that the physiological stresses associated with incubation without food over a 5-day period greatly exceed those caused directly by seawater temperature or pH perturbations. This highlights the need to contextualise the results of climate change experiments by comparison to other, naturally occurring stressors such as food deprivation, which is being exacerbated by global warming. Protein and lipid metabolism were up-regulated in the food-deprived animals, with a novel class of taurine-containing lipids and the essential polyunsaturated fatty acids (PUFAs), eicosapentaenoic acid and docosahexaenoic acid, changing significantly over the duration of our experiment. Copepods derive these PUFAs by ingesting diatoms and flagellated microplankton respectively. Climate-driven changes in the productivity, phenology and composition of microplankton communities, and hence the availability of these fatty acids, therefore have the potential to influence the ability of copepods to survive starvation and other environmental stressors.

  11. Meta-analysis reveals complex marine biological responses to the interactive effects of ocean acidification and warming

    Science.gov (United States)

    Harvey, Ben P; Gwynn-Jones, Dylan; Moore, Pippa J

    2013-01-01

    Ocean acidification and warming are considered two of the greatest threats to marine biodiversity, yet the combined effect of these stressors on marine organisms remains largely unclear. Using a meta-analytical approach, we assessed the biological responses of marine organisms to the effects of ocean acidification and warming in isolation and combination. As expected biological responses varied across taxonomic groups, life-history stages, and trophic levels, but importantly, combining stressors generally exhibited a stronger biological (either positive or negative) effect. Using a subset of orthogonal studies, we show that four of five of the biological responses measured (calcification, photosynthesis, reproduction, and survival, but not growth) interacted synergistically when warming and acidification were combined. The observed synergisms between interacting stressors suggest that care must be made in making inferences from single-stressor studies. Our findings clearly have implications for the development of adaptive management strategies particularly given that the frequency of stressors interacting in marine systems will be likely to intensify in the future. There is now an urgent need to move toward more robust, holistic, and ecologically realistic climate change experiments that incorporate interactions. Without them accurate predictions about the likely deleterious impacts to marine biodiversity and ecosystem functioning over the next century will not be possible. PMID:23610641

  12. Marine Science

    African Journals Online (AJOL)

    Aims and scope: The Western Indian Ocean Journal of Marine Science provides an avenue .... shell growth is adversely affected. ... local stressors in action, such as ocean acidification ..... that the distribution of many intertidal sessile animals.

  13. Sea urchin response to rising pCO2 shows ocean acidification may fundamentally alter the chemistry of marine skeletons

    Directory of Open Access Journals (Sweden)

    L. BRAY

    2014-04-01

    Full Text Available Ocean acidification caused by an increase in pCO2 is expected to drastically affect marine ecosystem composition, yet there is much uncertainty about the mechanisms through which ecosystems may be affected. Here we studied sea urchins that are common and important grazers in the Mediterranean (Paracentrotus lividus and Arbacia lixula. Our study included a natural CO2 seep plus reference sites in the Aegean Sea off Greece. The distribution of A. lixula was unaffected by the low pH environment, whereas densities of P. lividus were much reduced. There was skeletal degradation in both species living in acidified waters compared to reference sites and remarkable increases in skeletal manganese levels (P. lividus had a 541% increase, A. lixula a 243% increase, presumably due to changes in mineral crystalline structure. Levels of strontium and zinc were also altered. It is not yet known whether such dramatic changes in skeletal chemistry will affect coastal systems but our study reveals a mechanism that may alter inter-species interactions.

  14. Evaluation of the threat of marine CO2 leakage-associated acidification on the toxicity of sediment metals to juvenile bivalves

    International Nuclear Information System (INIS)

    Basallote, M. Dolores; Rodríguez-Romero, Araceli; De Orte, Manoela R.; Del Valls, T. Ángel; Riba, Inmaculada

    2015-01-01

    Highlights: • Short-term tests using juveniles of bivalves to study the effects of CO 2 dissolved. • CO 2 causes effects if the threshold concentration of the organism is overlapped. • Flows of escaped CO 2 would affect the geochemical composition of sediment–seawater. • CO 2 -induced acidification would affect differently to marine sediment toxicity. - Abstract: The effects of the acidification associated with CO 2 leakage from sub-seabed geological storage was studied by the evaluation of the short-term effects of CO 2 -induced acidification on juveniles of the bivalve Ruditapes philippinarum. Laboratory scale experiments were performed using a CO 2 -bubbling system designed to conduct ecotoxicological assays. The organisms were exposed for 10 days to elutriates of sediments collected in different littoral areas that were subjected to various pH treatments (pH 7.1, 6.6, 6.1). The acute pH-associated effects on the bivalves were observed, and the dissolved metals in the elutriates were measured. The median toxic effect pH was calculated, which ranged from 6.33 to 6.45. The amount of dissolved Zn in the sediment elutriates increased in parallel with the pH reductions and was correlated with the proton concentrations. The pH, the pCO 2 and the dissolved metal concentrations (Zn and Fe) were linked with the mortality of the exposed bivalves

  15. The Oceans 2015 Initiative, Part II - An updated understanding of the observed and projected impacts of ocean warming and acidification on marine and coastal socioeconomic activities/sectors

    International Nuclear Information System (INIS)

    Weatherdon, Lauren; Sumaila, Rashid; Cheung, William W.L.; Rogers, Alex; Magnan, Alexandre

    2015-01-01

    Between 1971 and 2010, the oceans have absorbed approximately 93% of the excess heat caused by global warming, leading to several major changes such as the increase in stratification, limitation in the circulation of nutrients from deep waters to the surface, and sea level rise. In addition, the oceans absorbed 26% of anthropogenic CO 2 emitted since the start of the Industrial Revolution, which resulted in ocean acidification. Together, these processes strongly affect marine and coastal species' geographic distribution, abundance, migration patterns and phenology. As a consequence of these complex environmental changes, marine and coastal human sectors (i.e., fisheries, aquaculture, coastal tourism and health) are in turn at risk. This report provides an updated synthesis of what the science tells us about such a risk, based upon IPCC AR5 (2013- 2014) and published scientific articles and grey literature that have been published between July 2013 and April 2015. Although uncertainty remains strong, there is growing scientific evidence that ocean warming and acidification will affect key resources for societies through ecosystems services. For example, while AR5 indicated that coral reefs had little scope for adaptation, recent research has suggested that there may be some capacity for some coral species to recover from climatic hocks and bleaching events, and to acquire heat resistance through acclimatization. This will have huge implications on many coastal economies in the developing and developed countries. More generally, key sectors will be affected. For example, while the fish catch potential is expected to decrease at the global scale, it will show diversified trends at the regional scale as fish stocks have started shifting in latitudes or by depth. This will impact regional to local fisheries systems. Also, climate and acidification-related impacts to existing aquaculture are expected to be generally negative, with impacts varying by location

  16. The development of contemporary European sea bass larvae (Dicentrarchus labrax) is not affected by projected ocean acidification scenarios.

    Science.gov (United States)

    Crespel, Amélie; Zambonino-Infante, José-Luis; Mazurais, David; Koumoundouros, George; Fragkoulis, Stefanos; Quazuguel, Patrick; Huelvan, Christine; Madec, Laurianne; Servili, Arianna; Claireaux, Guy

    2017-01-01

    Ocean acidification is a recognized consequence of anthropogenic carbon dioxide (CO 2 ) emission in the atmosphere. Despite its threat to marine ecosystems, little is presently known about the capacity for fish to respond efficiently to this acidification. In adult fish, acid-base regulatory capacities are believed to be relatively competent to respond to hypercapnic conditions. However, fish in early life stage could be particularly sensitive to environmental factors as organs and important physiological functions become progressively operational during this period. In this study, the response of European sea bass ( Dicentrarchus labrax ) larvae reared under three ocean acidification scenarios, i.e., control (present condition, [Formula: see text] = 590 µatm, pH total = 7.9), low acidification (intermediate IPCC scenario, [Formula: see text] = 980 µatm, pH total = 7.7), and high acidification (most severe IPCC scenario, [Formula: see text] = 1520 µatm, pH total = 7.5) were compared across multiple levels of biological organizations. From 2 to 45 days-post-hatching, the chronic exposure to the different scenarios had limited influence on the survival and growth of the larvae (in the low acidification condition only) and had no apparent effect on the digestive developmental processes. The high acidification condition induced both faster mineralization and reduction in skeletal deformities. Global (microarray) and targeted (qPCR) analysis of transcript levels in whole larvae did not reveal any significant changes in gene expression across tested acidification conditions. Overall, this study suggests that contemporary sea bass larvae are already capable of coping with projected acidification conditions without having to mobilize specific defense mechanisms.

  17. COMBINED EFFECTS OF OCEAN ACIDIFICATION, OCEAN WARMING AND OIL SPILL ON ASPECTS OF DEVELOPMENT OF MARINE INVERTEBRATES

    OpenAIRE

    Arnberg, maj

    2016-01-01

    Full version unavailable due to 3rd party copyright restrictions. For decades, humans have impacted marine ecosystems in a variety of ways including contamination by pollution, fishing, and physical destruction of habitats. Global change has, and will, lead to alterations in in a number of abiotic factors of our ocean in particular reduced oxygen saturation, salinity changes, elevated temperature (ocean warming or OW) and elevated carbon dioxide (ocean acidification or OA). Now and in the...

  18. Climate change and ocean acidification effects on seagrasses and marine macroalgae.

    Science.gov (United States)

    Koch, Marguerite; Bowes, George; Ross, Cliff; Zhang, Xing-Hai

    2013-01-01

    Although seagrasses and marine macroalgae (macro-autotrophs) play critical ecological roles in reef, lagoon, coastal and open-water ecosystems, their response to ocean acidification (OA) and climate change is not well understood. In this review, we examine marine macro-autotroph biochemistry and physiology relevant to their response to elevated dissolved inorganic carbon [DIC], carbon dioxide [CO2 ], and lower carbonate [CO3 (2-) ] and pH. We also explore the effects of increasing temperature under climate change and the interactions of elevated temperature and [CO2 ]. Finally, recommendations are made for future research based on this synthesis. A literature review of >100 species revealed that marine macro-autotroph photosynthesis is overwhelmingly C3 (≥ 85%) with most species capable of utilizing HCO3 (-) ; however, most are not saturated at current ocean [DIC]. These results, and the presence of CO2 -only users, lead us to conclude that photosynthetic and growth rates of marine macro-autotrophs are likely to increase under elevated [CO2 ] similar to terrestrial C3 species. In the tropics, many species live close to their thermal limits and will have to up-regulate stress-response systems to tolerate sublethal temperature exposures with climate change, whereas elevated [CO2 ] effects on thermal acclimation are unknown. Fundamental linkages between elevated [CO2 ] and temperature on photorespiration, enzyme systems, carbohydrate production, and calcification dictate the need to consider these two parameters simultaneously. Relevant to calcifiers, elevated [CO2 ] lowers net calcification and this effect is amplified by high temperature. Although the mechanisms are not clear, OA likely disrupts diffusion and transport systems of H(+) and DIC. These fluxes control micro-environments that promote calcification over dissolution and may be more important than CaCO3 mineralogy in predicting macroalgal responses to OA. Calcareous macroalgae are highly vulnerable to OA

  19. The Impact of Ocean Acidification on Reproduction, Early Development and Settlement of Marine Organisms

    Directory of Open Access Journals (Sweden)

    Elizabeth A. Bailey

    2011-11-01

    Full Text Available Predicting the impact of warming and acidifying on oceans on the early development life history stages of invertebrates although difficult, is essential in order to anticipate the severity and consequences of future climate change. This review summarises the current literature and meta-analyses on the early life-history stages of invertebrates including fertilisation, larval development and the implications for dispersal and settlement of populations. Although fertilisation appears robust to near future predictions of ocean acidification, larval development is much more vulnerable and across invertebrate groups, evidence indicates that the impacts may be severe. This is especially for those many marine organisms which start to calcify in their larval and/or juvenile stages. Species-specificity and variability in responses and current gaps in the literature are highlighted, including the need for studies to investigate the total effects of climate change including the synergistic impact of temperature, and the need for long-term multigenerational experiments to determine whether vulnerable invertebrate species have the capacity to adapt to elevations in atmospheric CO2 over the next century.

  20. CO2-induced ocean acidification does not affect individual or group behaviour in a temperate damselfish.

    Science.gov (United States)

    Kwan, Garfield Tsz; Hamilton, Trevor James; Tresguerres, Martin

    2017-07-01

    Open ocean surface CO 2 levels are projected to reach approximately 800 µatm, and ocean pH to decrease by approximately 0.3 units by the year 2100 due to anthropogenic CO 2 emissions and the subsequent process of ocean acidification (OA). When exposed to these CO 2 /pH values, several fish species display abnormal behaviour in laboratory tests, an effect proposed to be linked to altered neuronal GABA A- receptor function. Juvenile blacksmith ( Chromis punctipinnis ) are social fish that regularly experience CO 2 /pH fluctuations through kelp forest diurnal primary production and upwelling events, so we hypothesized that they might be resilient to OA. Blacksmiths were exposed to control conditions (pH ∼ 7.92; p CO 2  ∼ 540 µatm), constant acidification (pH ∼ 7.71; p CO 2  ∼ 921 µatm) and oscillating acidification (pH ∼ 7.91, p CO 2  ∼ 560 µatm (day), pH ∼ 7.70, p CO 2  ∼ 955 µatm (night)), and caught and tested in two seasons of the year when the ocean temperature was different: winter (16.5 ± 0.1°C) and summer (23.1 ± 0.1°C). Neither constant nor oscillating CO 2 -induced acidification affected blacksmith individual light/dark preference, inter-individual distance in a shoal or the shoal's response to a novel object, suggesting that blacksmiths are tolerant to projected future OA conditions. However, blacksmiths tested during the winter demonstrated significantly higher dark preference in the individual light/dark preference test, thus confirming season and/or water temperature as relevant factors to consider in behavioural tests.

  1. Ocean Futures Under Ocean Acidification, Marine Protection, and Changing Fishing Pressures Explored Using a Worldwide Suite of Ecosystem Models

    Directory of Open Access Journals (Sweden)

    Erik Olsen

    2018-03-01

    Full Text Available Ecosystem-based management (EBM of the ocean considers all impacts on and uses of marine and coastal systems. In recent years, there has been a heightened interest in EBM tools that allow testing of alternative management options and help identify tradeoffs among human uses. End-to-end ecosystem modeling frameworks that consider a wide range of management options are a means to provide integrated solutions to the complex ocean management problems encountered in EBM. Here, we leverage the global advances in ecosystem modeling to explore common opportunities and challenges for ecosystem-based management, including changes in ocean acidification, spatial management, and fishing pressure across eight Atlantis (atlantis.cmar.csiro.au end-to-end ecosystem models. These models represent marine ecosystems from the tropics to the arctic, varying in size, ecology, and management regimes, using a three-dimensional, spatially-explicit structure parametrized for each system. Results suggest stronger impacts from ocean acidification and marine protected areas than from altering fishing pressure, both in terms of guild-level (i.e., aggregations of similar species or groups biomass and in terms of indicators of ecological and fishery structure. Effects of ocean acidification were typically negative (reducing biomass, while marine protected areas led to both “winners” and “losers” at the level of particular species (or functional groups. Changing fishing pressure (doubling or halving had smaller effects on the species guilds or ecosystem indicators than either ocean acidification or marine protected areas. Compensatory effects within guilds led to weaker average effects at the guild level than the species or group level. The impacts and tradeoffs implied by these future scenarios are highly relevant as ocean governance shifts focus from single-sector objectives (e.g., sustainable levels of individual fished stocks to taking into account competing

  2. Ocean acidification affects competition for space: projections of community structure using cellular automata.

    Science.gov (United States)

    McCoy, Sophie J; Allesina, Stefano; Pfister, Catherine A

    2016-03-16

    Historical ecological datasets from a coastal marine community of crustose coralline algae (CCA) enabled the documentation of ecological changes in this community over 30 years in the Northeast Pacific. Data on competitive interactions obtained from field surveys showed concordance between the 1980s and 2013, yet also revealed a reduction in how strongly species interact. Here, we extend these empirical findings with a cellular automaton model to forecast ecological dynamics. Our model suggests the emergence of a new dominant competitor in a global change scenario, with a reduced role of herbivory pressure, or trophic control, in regulating competition among CCA. Ocean acidification, due to its energetic demands, may now instead play this role in mediating competitive interactions and thereby promote species diversity within this guild. © 2016 The Author(s).

  3. Ocean Acidification

    Science.gov (United States)

    Ludwig, Claudia; Orellana, Mónica V.; DeVault, Megan; Simon, Zac; Baliga, Nitin

    2015-01-01

    The curriculum module described in this article addresses the global issue of ocean acidification (OA) (Feely 2009; Figure 1). OA is a harmful consequence of excess carbon dioxide (CO[subscript 2]) in the atmosphere and poses a threat to marine life, both algae and animal. This module seeks to teach and help students master the cross-disciplinary…

  4. Pig slurry characteristics, nutrient balance and biogas production as affected by separation and acidification

    DEFF Research Database (Denmark)

    Sommer, S G; Hjorth, Maibritt; Leahy, J J

    2015-01-01

    and separation fraction applied to fields and crop need. Total biogas production was not affected by separation, whereas acidification reduced biogas production because the process was inhibited by a low pH and a high sulphur concentration. The amount of copper applied per hectare in the liquid manure...... to the wheat field was lower than the amount taken up and more zink and copper was applied in the solid fraction to maize field than taken up. The transportation and field application of solids and liquids did not increase management costs when compared to the transportation of slurry alone, but the investment...

  5. Trans-life cycle acclimation to experimental ocean acidification affects gastric pH homeostasis and larval recruitment in the sea star Asterias rubens.

    Science.gov (United States)

    Hu, Marian Y; Lein, Etienne; Bleich, Markus; Melzner, Frank; Stumpp, Meike

    2018-04-16

    Experimental simulation of near-future ocean acidification (OA) has been demonstrated to affect growth and development of echinoderm larval stages through energy allocation towards ion and pH compensatory processes. To date, it remains largely unknown how major pH regulatory systems and their energetics are affected by trans-generational exposure to near-future acidification levels. Here we used the common sea star Asterias rubens in a reciprocal transplant experiment comprising different combinations of OA scenarios, in order to study trans-generational plasticity using morphological and physiological endpoints. Acclimation of adults to pH T 7.2 (pCO 2 3500μatm) led to reductions in feeding rates, gonad weight, and fecundity. No effects were evident at moderate acidification levels (pH T 7.4; pCO 2 2000μatm). Parental pre-acclimation to pH T 7.2 for 85 days reduced developmental rates even when larvae were raised under moderate and high pH conditions, whereas pre-acclimation to pH T 7.4 did not alter offspring performance. Microelectrode measurements and pharmacological inhibitor studies carried out on larval stages demonstrated that maintenance of alkaline gastric pH represents a substantial energy sink under acidified conditions that may contribute up to 30% to the total energy budget. Parental pre-acclimation to acidification levels that are beyond the pH that is encountered by this population in its natural habitat (e.g. pH T 7.2) negatively affected larval size and development, potentially through reduced energy transfer. Maintenance of alkaline gastric pH and reductions in maternal energy reserves probably constitute the main factors for a reduced juvenile recruitment of this marine keystone species under simulated OA. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  6. Predicting interactions among fishing, ocean warming, and ocean acidification in a marine system with whole-ecosystem models.

    Science.gov (United States)

    Griffith, Gary P; Fulton, Elizabeth A; Gorton, Rebecca; Richardson, Anthony J

    2012-12-01

    An important challenge for conservation is a quantitative understanding of how multiple human stressors will interact to mitigate or exacerbate global environmental change at a community or ecosystem level. We explored the interaction effects of fishing, ocean warming, and ocean acidification over time on 60 functional groups of species in the southeastern Australian marine ecosystem. We tracked changes in relative biomass within a coupled dynamic whole-ecosystem modeling framework that included the biophysical system, human effects, socioeconomics, and management evaluation. We estimated the individual, additive, and interactive effects on the ecosystem and for five community groups (top predators, fishes, benthic invertebrates, plankton, and primary producers). We calculated the size and direction of interaction effects with an additive null model and interpreted results as synergistic (amplified stress), additive (no additional stress), or antagonistic (reduced stress). Individually, only ocean acidification had a negative effect on total biomass. Fishing and ocean warming and ocean warming with ocean acidification had an additive effect on biomass. Adding fishing to ocean warming and ocean acidification significantly changed the direction and magnitude of the interaction effect to a synergistic response on biomass. The interaction effect depended on the response level examined (ecosystem vs. community). For communities, the size, direction, and type of interaction effect varied depending on the combination of stressors. Top predator and fish biomass had a synergistic response to the interaction of all three stressors, whereas biomass of benthic invertebrates responded antagonistically. With our approach, we were able to identify the regional effects of fishing on the size and direction of the interacting effects of ocean warming and ocean acidification. ©2012 Society for Conservation Biology.

  7. Evaluation of the threat of marine CO{sub 2} leakage-associated acidification on the toxicity of sediment metals to juvenile bivalves

    Energy Technology Data Exchange (ETDEWEB)

    Basallote, M. Dolores, E-mail: dolores.basallote@uca.es [Cátedra UNESCO/UNITWIN WiCop, Departamento de Química-Física, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Polígono Río San Pedro s/n, 11510 Puerto Real, Cádiz (Spain); Rodríguez-Romero, Araceli [Departamento de Ecología y Gestión Costera, Instituto de Ciencias Marinas de Andalucía (CSIC), Campus Río San Pedro, 11510 Puerto Real, Cádiz (Spain); De Orte, Manoela R.; Del Valls, T. Ángel; Riba, Inmaculada [Cátedra UNESCO/UNITWIN WiCop, Departamento de Química-Física, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Polígono Río San Pedro s/n, 11510 Puerto Real, Cádiz (Spain)

    2015-09-15

    Highlights: • Short-term tests using juveniles of bivalves to study the effects of CO{sub 2} dissolved. • CO{sub 2} causes effects if the threshold concentration of the organism is overlapped. • Flows of escaped CO{sub 2} would affect the geochemical composition of sediment–seawater. • CO{sub 2}-induced acidification would affect differently to marine sediment toxicity. - Abstract: The effects of the acidification associated with CO{sub 2} leakage from sub-seabed geological storage was studied by the evaluation of the short-term effects of CO{sub 2}-induced acidification on juveniles of the bivalve Ruditapes philippinarum. Laboratory scale experiments were performed using a CO{sub 2}-bubbling system designed to conduct ecotoxicological assays. The organisms were exposed for 10 days to elutriates of sediments collected in different littoral areas that were subjected to various pH treatments (pH 7.1, 6.6, 6.1). The acute pH-associated effects on the bivalves were observed, and the dissolved metals in the elutriates were measured. The median toxic effect pH was calculated, which ranged from 6.33 to 6.45. The amount of dissolved Zn in the sediment elutriates increased in parallel with the pH reductions and was correlated with the proton concentrations. The pH, the pCO{sub 2} and the dissolved metal concentrations (Zn and Fe) were linked with the mortality of the exposed bivalves.

  8. Ocean acidification modulates expression of genes and physiological performance of a marine diatom

    Science.gov (United States)

    Li, Y.; Zhuang, S.; Wu, Y.; Ren, H.; Cheng, F.; Lin, X.; Wang, K.; Beardall, J.; Gao, K.

    2015-09-01

    Ocean Acidification (OA) is known to affect various aspects of the physiological performance of diatoms, but there is little information on the underlining molecular mechanisms involved. Here, we show that in the model diatom Phaeodactylum tricornutum expression of the genes related to light harvesting, carbon acquisition and carboxylation, nitrite assimilation and ATP synthesis are modulated by OA. Growth and photosynthetic carbon fixation were enhanced by elevated CO2 (1000 μatm) under both constant indoor and fluctuating outdoor light regimes. The genetic expression of nitrite reductase (NiR) was up-regulated by OA regardless of light levels and/or regimes. The transcriptional expression of fucoxanthin chlorophyll a/c protein (lhcf type (FCP)) and mitochondrial ATP synthase (mtATP synthase) genes were also enhanced by OA, but only under high light intensity. OA treatment decreased the expression of β-carbonic anhydrase (β-CA) along with down-regulation of CO2 concentrating mechanisms (CCMs). Additionally, the genes for these proteins (NiR, FCP, mtATP synthase, β-CA) showed diel expressions either under constant indoor light or fluctuating sunlight. Thus, OA enhanced photosynthetic and growth rates by stimulating nitrogen assimilation and indirectly by down-regulating the energy-costly inorganic carbon acquisition process.

  9. Transformation of organic matter and the emissions of methane and ammonia during storage of liquid manure as affected by acidification

    DEFF Research Database (Denmark)

    Sommer, Sven G.; Clough, Timothy J.; Balaine, Nimlesh

    2017-01-01

    ), suggesting that DOC may be a predictor for CH4 emission from dilute slurries. volatile fatty acid and total ammoniacal nitrogen concentrations in surface layers were substantially higher than at the center of stored liquid manure, perhaps resulting from microbial activity at the surface. This pattern......Acidification of livestock manure can reduce emission of the greenhouse gases methane (CH4) and nitrous oxide (N2O), as well as ammonia (NH3). We examined the relation between emission of these gases and transformation of organic matter as affected by acidification. Liquid cattle manure......, probably due to the absence of a surface crust. Reductions in NH3 and CH4 emission were highest at the start but declined over time concomitantly with a gradual increase in the stored liquid manure pH. Acidification did not significantly affect CO2 emissions. Emission of CO2 was high, fiveto ten-fold of CH...

  10. Natural acidification changes the timing and rate of succession, alters community structure, and increases homogeneity in marine biofouling communities.

    Science.gov (United States)

    Brown, Norah E M; Milazzo, Marco; Rastrick, Samuel P S; Hall-Spencer, Jason M; Therriault, Thomas W; Harley, Christopher D G

    2018-01-01

    Ocean acidification may have far-reaching consequences for marine community and ecosystem dynamics, but its full impacts remain poorly understood due to the difficulty of manipulating pCO 2 at the ecosystem level to mimic realistic fluctuations that occur on a number of different timescales. It is especially unclear how quickly communities at various stages of development respond to intermediate-scale pCO 2 change and, if high pCO 2 is relieved mid-succession, whether past acidification effects persist, are reversed by alleviation of pCO 2 stress, or are worsened by departures from prior high pCO 2 conditions to which organisms had acclimatized. Here, we used reciprocal transplant experiments along a shallow water volcanic pCO 2 gradient to assess the importance of the timing and duration of high pCO 2 exposure (i.e., discrete events at different stages of successional development vs. continuous exposure) on patterns of colonization and succession in a benthic fouling community. We show that succession at the acidified site was initially delayed (less community change by 8 weeks) but then caught up over the next 4 weeks. These changes in succession led to homogenization of communities maintained in or transplanted to acidified conditions, and altered community structure in ways that reflected both short- and longer-term acidification history. These community shifts are likely a result of interspecific variability in response to increased pCO 2 and changes in species interactions. High pCO 2 altered biofilm development, allowing serpulids to do best at the acidified site by the end of the experiment, although early (pretransplant) negative effects of pCO 2 on recruitment of these worms were still detectable. The ascidians Diplosoma sp. and Botryllus sp. settled later and were more tolerant to acidification. Overall, transient and persistent acidification-driven changes in the biofouling community, via both past and more recent exposure, could have important

  11. Effects of Seawater Acidification on the Liffe Cycle and Fitness of Opossum Shrimp Population

    Science.gov (United States)

    Much of the current concern about ecological effects of ocean acidification focuses on molluscs and coccolithophores because of their importance in the global calcium cycle. However, many other marine organisms are likely to be affected by acidification because of their known se...

  12. Effects of Seawater Acidification on the Life Cycle and fitness of Opossum Shrimp Populations

    Science.gov (United States)

    Much of the current concern about ecological effects of ocean acidification focuses on molluscs and coccolithophores because of their importance in the global calcium cycle. However, many other marine organisms are likely to be affected by acidification because of their known ph...

  13. Seawater acidification affects the physiological energetics and spawning capacity of the Manila clam Ruditapes philippinarum during gonadal maturation.

    Science.gov (United States)

    Xu, Xian; Yang, Feng; Zhao, Liqiang; Yan, Xiwu

    2016-06-01

    Ocean acidification is predicted to have widespread implications for marine bivalve mollusks. While our understanding of its impact on their physiological and behavioral responses is increasing, little is known about their reproductive responses under future scenarios of anthropogenic climate change. In this study, we examined the physiological energetics of the Manila clam Ruditapes philippinarum exposed to CO 2 -induced seawater acidification during gonadal maturation. Three recirculating systems filled with 600 L of seawater were manipulated to three pH levels (8.0, 7.7, and 7.4) corresponding to control and projected pH levels for 2100 and 2300. In each system, temperature was gradually increased ca. 0.3°C per day from 10 to 20°C for 30days and maintained at 20°C for the following 40days. Irrespective of seawater pH levels, clearance rate (CR), respiration rate (RR), ammonia excretion rate (ER), and scope for growth (SFG) increased after a 30-day stepwise warming protocol. When seawater pH was reduced, CR, ratio of oxygen to nitrogen, and SFG significantly decreased concurrently, whereas ammonia ER increased. RR was virtually unaffected under acidified conditions. Neither temperature nor acidification showed a significant effect on food absorption efficiency. Our findings indicate that energy is allocated away from reproduction under reduced seawater pH, potentially resulting in an impaired or suppressed reproductive function. This interpretation is based on the fact that spawning was induced in only 56% of the clams grown at pH 7.4. Seawater acidification can therefore potentially impair the physiological energetics and spawning capacity of R. philippinarum. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Ocean acidification postcards

    Science.gov (United States)

    Schreppel, Heather A.; Cimitile, Matthew J.

    2011-01-01

    The U.S. Geological Survey (USGS) is conducting research on ocean acidification in polar, temperate, subtropical, and tropical regions including the Arctic, West Florida Shelf, and the Caribbean. Project activities include field assessment, experimental laboratory studies, and evaluation of existing data. The USGS is participating in international and interagency working groups to develop research strategies to increase understanding of the global implications of ocean acidification. Research strategies include new approaches for seawater chemistry observation and modeling, assessment of physiological effects on organisms, changes in marine ecosystem structure, new technologies, and information resources. These postcards highlight ongoing USGS research efforts in ocean acidification and carbon cycling in marine and coastal ecosystems in three different regions: polar, temperate, and tropical. To learn more about ocean acidification visit: http://coastal.er.usgs.gov/ocean-acidification/.

  15. Ocean Acidification and the End-Permian Mass Extinction: To What Extent does Evidence Support Hypothesis?

    Directory of Open Access Journals (Sweden)

    Marie-Béatrice Forel

    2012-09-01

    Full Text Available Ocean acidification in modern oceans is linked to rapid increase in atmospheric CO2, raising concern about marine diversity, food security and ecosystem services. Proxy evidence for acidification during past crises may help predict future change, but three issues limit confidence of comparisons between modern and ancient ocean acidification, illustrated from the end-Permian extinction, 252 million years ago: (1 problems with evidence for ocean acidification preserved in sedimentary rocks, where proposed marine dissolution surfaces may be subaerial. Sedimentary evidence that the extinction was partly due to ocean acidification is therefore inconclusive; (2 Fossils of marine animals potentially affected by ocean acidification are imperfect records of past conditions; selective extinction of hypercalcifying organisms is uncertain evidence for acidification; (3 The current high rates of acidification may not reflect past rates, which cannot be measured directly, and whose temporal resolution decreases in older rocks. Thus large increases in CO2 in the past may have occurred over a long enough time to have allowed assimilation into the oceans, and acidification may not have stressed ocean biota to the present extent. Although we acknowledge the very likely occurrence of past ocean acidification, obtaining support presents a continuing challenge for the Earth science community.

  16. To brood or not to brood: Are marine invertebrates that protect their offspring more resilient to ocean acidification?

    Science.gov (United States)

    Lucey, Noelle Marie; Lombardi, Chiara; Demarchi, Lucia; Schulze, Anja; Gambi, Maria Cristina; Calosi, Piero

    2015-07-01

    Anthropogenic atmospheric carbon dioxide (CO2) is being absorbed by seawater resulting in increasingly acidic oceans, a process known as ocean acidification (OA). OA is thought to have largely deleterious effects on marine invertebrates, primarily impacting early life stages and consequently, their recruitment and species’ survival. Most research in this field has been limited to short-term, single-species and single-life stage studies, making it difficult to determine which taxa will be evolutionarily successful under OA conditions. We circumvent these limitations by relating the dominance and distribution of the known polychaete worm species living in a naturally acidic seawater vent system to their life history strategies. These data are coupled with breeding experiments, showing all dominant species in this natural system exhibit parental care. Our results provide evidence supporting the idea that long-term survival of marine species in acidic conditions is related to life history strategies where eggs are kept in protected maternal environments (brooders) or where larvae have no free swimming phases (direct developers). Our findings are the first to formally validate the hypothesis that species with life history strategies linked to parental care are more protected in an acidifying ocean compared to their relatives employing broadcast spawning and pelagic larval development.

  17. Lost at sea: ocean acidification undermines larval fish orientation via altered hearing and marine soundscape modification

    OpenAIRE

    Rossi, Tullio; Nagelkerken, Ivan; Pistevos, Jennifer C. A.; Connell, Sean D.

    2016-01-01

    The dispersal of larvae and their settlement to suitable habitat is fundamental to the replenishment of marine populations and the communities in which they live. Sound plays an important role in this process because for larvae of various species, it acts as an orientational cue towards suitable settlement habitat. Because marine sounds are largely of biological origin, they not only carry information about the location of potential habitat, but also information about the quality of habitat. ...

  18. A novel marine mesocosm facility to study global warming, water quality, and ocean acidification.

    Science.gov (United States)

    Duarte, Gustavo; Calderon, Emiliano N; Pereira, Cristiano M; Marangoni, Laura F B; Santos, Henrique F; Peixoto, Raquel S; Bianchini, Adalto; Castro, Clovis B

    2015-10-01

    We describe a completely randomizable flow-through outdoor mesocosm for climate change and ecotoxicology studies that was built with inexpensive materials. The 16 raceway tanks allow up to 6× water renewal per hour, avoiding changes in natural abiotic seawater conditions. We use an open-source hardware board (Arduino) that was adapted to control heaters and an innovative CO 2 injection system. This system reduced seawater pH up to -0.9 units and increased temperature up to +6°C in three treatments and a control. Treatments can be continuously compared with the control and vary according to diel fluctuations, thus following the diel range observed in the sea. The mesocosm facility also includes an integrated secondary system of 48 aquaria for ecotoxicology studies. We validated the reproducibility and relevance of our experimental system by analyzing the variation of the total DNA of the microbial community extracted from corals in three elevated temperature scenarios during a 40-day experiment. We also present data from temperature, acidification, and copper contamination trials, which allowed continuous, reliable, and consistent treatment manipulations.

  19. A quantitative genetic approach to assess the evolutionary potential of a coastal marine fish to ocean acidification

    KAUST Repository

    Malvezzi, Alex J.

    2015-02-01

    Assessing the potential of marine organisms to adapt genetically to increasing oceanic CO2 levels requires proxies such as heritability of fitness-related traits under ocean acidification (OA). We applied a quantitative genetic method to derive the first heritability estimate of survival under elevated CO2 conditions in a metazoan. Specifically, we reared offspring, selected from a wild coastal fish population (Atlantic silverside, Menidia menidia), at high CO2 conditions (~2300 μatm) from fertilization to 15 days posthatch, which significantly reduced survival compared to controls. Perished and surviving offspring were quantitatively sampled and genotyped along with their parents, using eight polymorphic microsatellite loci, to reconstruct a parent-offspring pedigree and estimate variance components. Genetically related individuals were phenotypically more similar (i.e., survived similarly long at elevated CO2 conditions) than unrelated individuals, which translated into a significantly nonzero heritability (0.20 ± 0.07). The contribution of maternal effects was surprisingly small (0.05 ± 0.04) and nonsignificant. Survival among replicates was positively correlated with genetic diversity, particularly with observed heterozygosity. We conclude that early life survival of M. menidia under high CO2 levels has a significant additive genetic component that could elicit an evolutionary response to OA, depending on the strength and direction of future selection.

  20. Implications of Ocean Acidification for Marine Microorganisms from the Free-Living to the Host-Associated

    Directory of Open Access Journals (Sweden)

    Paul A O'Brien

    2016-04-01

    Full Text Available Anthropogenic CO2 emissions are causing oceans to become more acidic, with consequences for all marine life including microorganisms. Studies reveal that from the microbes that occupy the open ocean to those intimately associated with their invertebrate hosts, changing ocean chemistry will alter the critical functions of these important organisms. Our current understanding indicates that bacterial communities associated with their host will shift as pH drops by another 0.2-0.4 units over the next 100 years. It is unclear what impacts this will have for host health, however increased vulnerability to disease seems likely for those associated with reef corals. Natural CO2 seeps have provided a unique setting for the study of microbial communities under OA in situ, where shifts in the bacterial communities associated with corals at the seep are correlated with a decline in abundance of the associated coral species. Changes to global biogeochemical cycles also appear likely as photosynthesis and nitrogen fixation by pelagic microbes becomes enhanced under low pH conditions. However, recent long-term studies have shown that pelagic microbes are also capable of evolutionary adaptation, with some physiological responses to a decline in pH restored after hundreds of generations at high pCO2 levels. The impacts of ocean acidification (OA also will not work in isolation, thus synergistic interactions with other potential stressors, such as rising seawater temperatures, will likely exacerbate the microbial response to OA. This review discusses our existing understanding of the impacts of OA on both pelagic and host-associated marine microbial communities, whilst highlighting the importance of controlled laboratory studies and in situ experiments, to fill the current gaps in our knowledge.

  1. Biological responses of two marine organisms of ecological relevance to on-going ocean acidification and global warming.

    Science.gov (United States)

    Gomiero, A; Bellerby, R G J; Manca Zeichen, M; Babbini, L; Viarengo, A

    2018-05-01

    Recently, there has been a growing concern that climate change may rapidly and extensively alter global ecosystems with unknown consequences for terrestrial and aquatic life. While considerable emphasis has been placed on terrestrial ecology consequences, aquatic environments have received relatively little attention. Limited knowledge is available on the biological effects of increments of seawater temperature and pH decrements on key ecological species, i.e., primary producers and/or organisms representative of the basis of the trophic web. In the present study, we addressed the biological effects of global warming and ocean acidification on two model organisms, the microbenthic marine ciliate Euplotes crassus and the green alga Dunaliella tertiocleta using a suite of high level ecological endpoint tests and sub-lethal stress measures. Organisms were exposed to combinations of pH and temperature (TR1: 7.9 [pH], 25.5 °C and TR2: 7.8 [pH], 27,0 °C) simulating two possible environmental scenarios predicted to occur in the habitats of the selected species before the end of this century. The outcomes of the present study showed that the tested scenarios did not induce a significant increment of mortality on protozoa. Under the most severe exposure conditions, sub-lethal stress indices show that pH homeostatic mechanisms have energetic costs that divert energy from essential cellular processes and functions. The marine protozoan exhibited significant impairment of the lysosomal compartment and early signs of oxidative stress under these conditions. Similarly, significant impairment of photosynthetic efficiency and an increment in lipid peroxidation were observed in the autotroph model organism held under the most extreme exposure condition tested. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. The Arctic Ocean marine carbon cycle: evaluation of air-sea CO2 exchanges, ocean acidification impacts and potential feedbacks

    Directory of Open Access Journals (Sweden)

    N. R. Bates

    2009-11-01

    Full Text Available At present, although seasonal sea-ice cover mitigates atmosphere-ocean gas exchange, the Arctic Ocean takes up carbon dioxide (CO2 on the order of −66 to −199 Tg C year−1 (1012 g C, contributing 5–14% to the global balance of CO2 sinks and sources. Because of this, the Arctic Ocean has an important influence on the global carbon cycle, with the marine carbon cycle and atmosphere-ocean CO2 exchanges sensitive to Arctic Ocean and global climate change feedbacks. In the near-term, further sea-ice loss and increases in phytoplankton growth rates are expected to increase the uptake of CO2 by Arctic Ocean surface waters, although mitigated somewhat by surface warming in the Arctic. Thus, the capacity of the Arctic Ocean to uptake CO2 is expected to alter in response to environmental changes driven largely by climate. These changes are likely to continue to modify the physics, biogeochemistry, and ecology of the Arctic Ocean in ways that are not yet fully understood. In surface waters, sea-ice melt, river runoff, cooling and uptake of CO2 through air-sea gas exchange combine to decrease the calcium carbonate (CaCO3 mineral saturation states (Ω of seawater while seasonal phytoplankton primary production (PP mitigates this effect. Biological amplification of ocean acidification effects in subsurface waters, due to the remineralization of organic matter, is likely to reduce the ability of many species to produce CaCO3 shells or tests with profound implications for Arctic marine ecosystems

  3. Ocean acidification affects parameters of immune response and extracellular pH in tropical sea urchins Lytechinus variegatus and Echinometra luccunter.

    Science.gov (United States)

    Leite Figueiredo, Débora Alvares; Branco, Paola Cristina; Dos Santos, Douglas Amaral; Emerenciano, Andrews Krupinski; Iunes, Renata Stecca; Shimada Borges, João Carlos; Machado Cunha da Silva, José Roberto

    2016-11-01

    The rising concentration of atmospheric CO 2 by anthropogenic activities is changing the chemistry of the oceans, resulting in a decreased pH. Several studies have shown that the decrease in pH can affect calcification rates and reproduction of marine invertebrates, but little attention has been drawn to their immune response. Thus this study evaluated in two adult tropical sea urchin species, Lytechinus variegatus and Echinometra lucunter, the effects of ocean acidification over a period of 24h and 5days, on parameters of the immune response, the extracellular acid base balance, and the ability to recover these parameters. For this reason, the phagocytic capacity (PC), the phagocytic index (PI), the capacity of cell adhesion, cell spreading, cell spreading area of phagocytic amebocytes in vitro, and the coelomic fluid pH were analyzed in animals exposed to a pH of 8.0 (control group), 7.6 and 7.3. Experimental pH's were predicted by IPCC for the future of the two species. Furthermore, a recovery test was conducted to verify whether animals have the ability to restore these physiological parameters after being re-exposed to control conditions. Both species presented a significant decrease in PC, in the pH of coelomic fluid and in the cell spreading area. Besides that, Echinometra lucunter showed a significant decrease in cell spreading and significant differences in coelomocyte proportions. The recovery test showed that the PC of both species increased, also being below the control values. Even so, they were still significantly higher than those exposed to acidified seawater, indicating that with the re-establishment of the pH value the phagocytic capacity of cells tends to restore control conditions. These results demonstrate that the immune system and the coelomic fluid pH of these animals can be affected by ocean acidification. However, the effects of a short-term exposure can be reversible if the natural values ​​are re-established. Thus, the effects of

  4. Pontellid copepods, Labidocera spp., affected by ocean acidification: A field study at natural CO2 seeps.

    Science.gov (United States)

    Smith, Joy N; Richter, Claudio; Fabricius, Katharina E; Cornils, Astrid

    2017-01-01

    CO2 seeps in coral reefs were used as natural laboratories to study the impacts of ocean acidification on the pontellid copepod, Labidocera spp. Pontellid abundances were reduced by ∼70% under high-CO2 conditions. Biological parameters and substratum preferences of the copepods were explored to determine the underlying causes of such reduced abundances. Stage- and sex-specific copepod lengths, feeding ability, and egg development were unaffected by ocean acidification, thus changes in these physiological parameters were not the driving factor for reduced abundances under high-CO2 exposure. Labidocera spp. are demersal copepods, hence they live amongst reef substrata during the day and emerge into the water column at night. Deployments of emergence traps showed that their preferred reef substrata at control sites were coral rubble, macro algae, and turf algae. However, under high-CO2 conditions they no longer had an association with any specific substrata. Results from this study indicate that even though the biology of a copepod might be unaffected by high-CO2, Labidocera spp. are highly vulnerable to ocean acidification.

  5. Pontellid copepods, Labidocera spp., affected by ocean acidification: A field study at natural CO2 seeps.

    Directory of Open Access Journals (Sweden)

    Joy N Smith

    Full Text Available CO2 seeps in coral reefs were used as natural laboratories to study the impacts of ocean acidification on the pontellid copepod, Labidocera spp. Pontellid abundances were reduced by ∼70% under high-CO2 conditions. Biological parameters and substratum preferences of the copepods were explored to determine the underlying causes of such reduced abundances. Stage- and sex-specific copepod lengths, feeding ability, and egg development were unaffected by ocean acidification, thus changes in these physiological parameters were not the driving factor for reduced abundances under high-CO2 exposure. Labidocera spp. are demersal copepods, hence they live amongst reef substrata during the day and emerge into the water column at night. Deployments of emergence traps showed that their preferred reef substrata at control sites were coral rubble, macro algae, and turf algae. However, under high-CO2 conditions they no longer had an association with any specific substrata. Results from this study indicate that even though the biology of a copepod might be unaffected by high-CO2, Labidocera spp. are highly vulnerable to ocean acidification.

  6. Marine Microbial Gene Abundance and Community Composition in Response to Ocean Acidification and Elevated Temperature in Two Contrasting Coastal Marine Sediments

    Directory of Open Access Journals (Sweden)

    Ashleigh R. Currie

    2017-08-01

    Full Text Available Marine ecosystems are exposed to a range of human-induced climate stressors, in particular changing carbonate chemistry and elevated sea surface temperatures as a consequence of climate change. More research effort is needed to reduce uncertainties about the effects of global-scale warming and acidification for benthic microbial communities, which drive sedimentary biogeochemical cycles. In this research, mesocosm experiments were set up using muddy and sandy coastal sediments to investigate the independent and interactive effects of elevated carbon dioxide concentrations (750 ppm CO2 and elevated temperature (ambient +4°C on the abundance of taxonomic and functional microbial genes. Specific quantitative PCR primers were used to target archaeal, bacterial, and cyanobacterial/chloroplast 16S rRNA in both sediment types. Nitrogen cycling genes archaeal and bacterial ammonia monooxygenase (amoA and bacterial nitrite reductase (nirS were specifically targeted to identify changes in microbial gene abundance and potential impacts on nitrogen cycling. In muddy sediment, microbial gene abundance, including amoA and nirS genes, increased under elevated temperature and reduced under elevated CO2 after 28 days, accompanied by shifts in community composition. In contrast, the combined stressor treatment showed a non-additive effect with lower microbial gene abundance throughout the experiment. The response of microbial communities in the sandy sediment was less pronounced, with the most noticeable response seen in the archaeal gene abundances in response to environmental stressors over time. 16S rRNA genes (amoA and nirS were lower in abundance in the combined stressor treatments in sandy sediments. Our results indicated that marine benthic microorganisms, especially in muddy sediments, are susceptible to changes in ocean carbonate chemistry and seawater temperature, which ultimately may have an impact upon key benthic biogeochemical cycles.

  7. How the marine biotoxins affect human health.

    Science.gov (United States)

    Morabito, Silvia; Silvestro, Serena; Faggio, Caterina

    2018-03-01

    Several marine microalgae produce dangerous toxins very damaging to human health, aquatic ecosystems and coastal resources. These Harmful Algal Blooms (HABs) in recent decades seem greatly increased regarding frequency, severity and biogeographical level, causing serious health risks as a consequence of the consumption of contaminated seafood. Toxins can cause various clinically described syndromes, characterised by a wide range of symptoms: amnesic (ASP), diarrhoetic (DSP), azaspirazid (AZP), neurotoxic (NSP) and paralytic (PSP) shellfish poisonings and ciguatera fish poisoning. The spread of HABs is probably a result of anthropogenic activities and climate change, that influence marine planktonic systems, including global warming, habitat modification, eutrophication and growth of exogenous species in response to human pressures. HABs are a worldwide matter that requests local solutions and international cooperation. This review supplies an overview of HAB phenomena, and, in particular, we describe the major consequences of HABs on human health.

  8. Ocean acidification affects fish spawning but not paternity at CO2 seeps.

    Science.gov (United States)

    Milazzo, Marco; Cattano, Carlo; Alonzo, Suzanne H; Foggo, Andrew; Gristina, Michele; Rodolfo-Metalpa, Riccardo; Sinopoli, Mauro; Spatafora, Davide; Stiver, Kelly A; Hall-Spencer, Jason M

    2016-07-27

    Fish exhibit impaired sensory function and altered behaviour at levels of ocean acidification expected to occur owing to anthropogenic carbon dioxide emissions during this century. We provide the first evidence of the effects of ocean acidification on reproductive behaviour of fish in the wild. Satellite and sneaker male ocellated wrasse (Symphodus ocellatus) compete to fertilize eggs guarded by dominant nesting males. Key mating behaviours such as dominant male courtship and nest defence did not differ between sites with ambient versus elevated CO2 concentrations. Dominant males did, however, experience significantly lower rates of pair spawning at elevated CO2 levels. Despite the higher risk of sperm competition found at elevated CO2, we also found a trend of lower satellite and sneaker male paternity at elevated CO2 Given the importance of fish for food security and ecosystem stability, this study highlights the need for targeted research into the effects of rising CO2 levels on patterns of reproduction in wild fish. © 2016 The Author(s).

  9. New perspectives in ocean acidification research: editor's introduction to the special feature on ocean acidification.

    Science.gov (United States)

    Munday, Philip L

    2017-09-01

    Ocean acidification, caused by the uptake of additional carbon dioxide (CO 2 ) from the atmosphere, will have far-reaching impacts on marine ecosystems (Gattuso & Hansson 2011 Ocean acidification Oxford University Press). The predicted changes in ocean chemistry will affect whole biological communities and will occur within the context of global warming and other anthropogenic stressors; yet much of the biological research conducted to date has tested the short-term responses of single species to ocean acidification conditions alone. While an important starting point, these studies may have limited predictive power because they do not account for possible interactive effects of multiple climate change drivers or for ecological interactions with other species. Furthermore, few studies have considered variation in responses among populations or the evolutionary potential within populations. Therefore, our knowledge about the potential for marine organisms to adapt to ocean acidification is extremely limited. In 2015, two of the pioneers in the field, Ulf Riebesell and Jean-Pierre Gattuso, noted that to move forward as a field of study, future research needed to address critical knowledge gaps in three major areas: (i) multiple environmental drivers, (ii) ecological interactions and (iii) acclimation and adaptation (Riebesell and Gattuso 2015 Nat. Clim. Change 5 , 12-14 (doi:10.1038/nclimate2456)). In May 2016, more than 350 researchers, students and stakeholders met at the 4th International Symposium on the Ocean in a High-CO 2 World in Hobart, Tasmania, to discuss the latest advances in understanding ocean acidification and its biological consequences. Many of the papers presented at the symposium reflected this shift in focus from short-term, single species and single stressor experiments towards multi-stressor and multispecies experiments that address knowledge gaps about the ecological impacts of ocean acidification on marine communities. The nine papers in this

  10. Ocean Acidification Affects Hemocyte Physiology in the Tanner Crab (Chionoecetes bairdi)

    Science.gov (United States)

    Meseck, Shannon L.; Alix, Jennifer H.; Swiney, Katherine M.; Long, W. Christopher; Wikfors, Gary H.; Foy, Robert J.

    2016-01-01

    We used flow cytometry to determine if there would be a difference in hematology, selected immune functions, and hemocyte pH (pHi), under two different, future ocean acidification scenarios (pH = 7.50, 7.80) compared to current conditions (pH = 8.09) for Chionoecetes bairdi, Tanner crab. Hemocytes were analyzed after adult Tanner crabs were held for two years under continuous exposure to acidified ocean water. Total counts of hemocytes did not vary among control and experimental treatments; however, there were significantly greater number of dead, circulating hemocytes in crabs held at the lowest pH treatment. Phagocytosis of fluorescent microbeads by hemocytes was greatest at the lowest pH treatment. These results suggest that hemocytes were dying, likely by apoptosis, at a rate faster than upregulated phagocytosis was able to remove moribund cells from circulation at the lowest pH. Crab hemolymph pH (pHe) averaged 8.09 and did not vary among pH treatments. There was no significant difference in internal pH (pHi) within hyalinocytes among pH treatments and the mean pHi (7.26) was lower than the mean pHe. In contrast, there were significant differences among treatments in pHi of the semi-granular+granular cells. Control crabs had the highest mean semi-granular+granular pHi compared to the lowest pH treatment. As physiological hemocyte functions changed from ambient conditions, interactions with the number of eggs in the second clutch, percentage of viable eggs, and calcium concentration in the adult crab shell was observed. This suggested that the energetic costs of responding to ocean acidification and maintaining defense mechanisms in Tanner crab may divert energy from other physiological processes, such as reproduction. PMID:26859148

  11. Impacts of Ocean Acidification

    Energy Technology Data Exchange (ETDEWEB)

    Bijma, Jelle (Alfred Wegener Inst., D-27570 Bremerhaven (Germany)) (and others)

    2009-08-15

    There is growing scientific evidence that, as a result of increasing anthropogenic carbon dioxide (CO{sub 2}) emissions, absorption of CO{sub 2} by the oceans has already noticeably increased the average oceanic acidity from pre-industrial levels. This global threat requires a global response. According to the Intergovernmental Panel on Climate Change (IPCC), continuing CO{sub 2} emissions in line with current trends could make the oceans up to 150% more acidic by 2100 than they were at the beginning of the Anthropocene. Acidification decreases the ability of the ocean to absorb additional atmospheric CO{sub 2}, which implies that future CO{sub 2} emissions are likely to lead to more rapid global warming. Ocean acidification is also problematic because of its negative effects on marine ecosystems, especially marine calcifying organisms, and marine resources and services upon which human societies largely depend such as energy, water, and fisheries. For example, it is predicted that by 2100 around 70% of all cold-water corals, especially those in the higher latitudes, will live in waters undersaturated in carbonate due to ocean acidification. Recent research indicates that ocean acidification might also result in increasing levels of jellyfish in some marine ecosystems. Aside from direct effects, ocean acidification together with other global change-induced impacts such as marine and coastal pollution and the introduction of invasive alien species are likely to result in more fragile marine ecosystems, making them more vulnerable to other environmental impacts resulting from, for example, coastal deforestation and widescale fisheries. The Marine Board-ESF Position Paper on the Impacts of Climate Change on the European Marine and Coastal Environment - Ecosystems indicated that presenting ocean acidification issues to policy makers is a key issue and challenge. Indeed, as the consequences of ocean acidification are expected to emerge rapidly and drastically, but are

  12. Ocean acidification ameliorates harmful effects of warming in primary consumer.

    Science.gov (United States)

    Pedersen, Sindre Andre; Hanssen, Anja Elise

    2018-01-01

    Climate change-induced warming and ocean acidification are considered two imminent threats to marine biodiversity and current ecosystem structures. Here, we have for the first time examined an animal's response to a complete life cycle of exposure to co-occurring warming (+3°C) and ocean acidification (+1,600 μatm CO 2 ), using the key subarctic planktonic copepod, Calanus finmarchicus , as a model species. The animals were generally negatively affected by warming, which significantly reduced the females' energy status and reproductive parameters (respectively, 95% and 69%-87% vs. control). Unexpectedly, simultaneous acidification partially offset the negative effect of warming in an antagonistic manner, significantly improving reproductive parameters and hatching success (233%-340% improvement vs. single warming exposure). The results provide proof of concept that ocean acidification may partially offset negative effects caused by warming in some species. Possible explanations and ecological implications for the observed antagonistic effect are discussed.

  13. Stability of immobilization remediation of several amendments on cadmium contaminated soils as affected by simulated soil acidification.

    Science.gov (United States)

    Guo, Fuyu; Ding, Changfeng; Zhou, Zhigao; Huang, Gaoxiang; Wang, Xingxiang

    2018-06-04

    Chemical immobilization is a practical approach to remediate heavy metal contamination in agricultural soils. However, the potential remobilization risks of immobilized metals are a major environmental concern, especially in acid rain zones. In the present study, changes in the immobilization efficiency of several amendments as affected by simulated soil acidification were investigated to evaluate the immobilization remediation stability of several amendments on two cadmium (Cd) contaminated soils. Amendments (hydrated lime, hydroxyapatite and biochar) effectively immobilized Cd, except for organic fertilizer, and their immobilizations were strongly decreased by the simulated soil acidification. The ratio of changes in CaCl 2 -extractable Cd: pH (△CaCl 2 -Cd/△pH) can represent the Cd remobilization risk of different amended soils. Hydroxyapatite and biochar had a stronger durable immobilizing effect than did hydrated lime, particularly in soil with a lower pH buffering capacity, which was further confirmed by the Cd concentration and accumulation in lettuce. These results can be attributed to that hydroxyapatite and biochar transformed greater proportions of exchangeable Cd to other more stable fractions than lime. After 48 weeks of incubation, in soil with a lower pH buffering capacity, the immobilization efficiencies of lime, hydroxyapatite, biochar and organic fertilizer in the deionized water group (pH 6.5) were 71.7%, 52.7%, 38.6% and 23.9%, respectively, and changed to 19.1%, 33.6%, 26.5% and 5.0%, respectively, in the simulated acid rain group (pH 2.5). The present study provides a simple method to preliminarily estimate the immobilization efficiency of amendments and predict their stability in acid rain regions before large-scale field application. In addition, hydrated lime is recommended to be combined with other acid-stable amendments (such as hydroxyapatite or biochar) to remediate heavy metal-contaminated agricultural soils in acid precipitation

  14. Does ultraviolet radiation affect the xanthophyll cycle in marine phytoplankton?

    NARCIS (Netherlands)

    van de Poll, W.H.; Buma, A.G.J.

    2009-01-01

    This Perspective summarizes the state of knowledge of the impact of ultraviolet radiation on the photoprotective xanthophyll cycle in marine phytoplankton. Excess photosynthetically active radiation (PAR; 400-700 nm) and ultraviolet radiation (UVR; 280-400 nm) affect various cellular processes and

  15. Biogenic acidification reduces sea urchin gonad growth and increases susceptibility of aquaculture to ocean acidification.

    Science.gov (United States)

    Mos, Benjamin; Byrne, Maria; Dworjanyn, Symon A

    2016-02-01

    Decreasing oceanic pH (ocean acidification) has emphasised the influence of carbonate chemistry on growth of calcifying marine organisms. However, calcifiers can also change carbonate chemistry of surrounding seawater through respiration and calcification, a potential limitation for aquaculture. This study examined how seawater exchange rate and stocking density of the sea urchin Tripneustes gratilla that were reproductively mature affected carbonate system parameters of their culture water, which in turn influenced growth, gonad production and gonad condition. Growth, relative spine length, gonad production and consumption rates were reduced by up to 67% by increased density (9-43 individuals.m(-2)) and reduced exchange rates (3.0-0.3 exchanges.hr(-1)), but survival and food conversion efficiency were unaffected. Analysis of the influence of seawater parameters indicated that reduced pH and calcite saturation state (ΩCa) were the primary factors limiting gonad production and growth. Uptake of bicarbonate and release of respiratory CO2 by T. gratilla changed the carbonate chemistry of surrounding water. Importantly total alkalinity (AT) was reduced, likely due to calcification by the urchins. Low AT limits the capacity of culture water to buffer against acidification. Direct management to counter biogenic acidification will be required to maintain productivity and reproductive output of marine calcifiers, especially as the ocean carbonate system is altered by climate driven ocean acidification. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. How will ocean acidification affect Baltic sea ecosystems? an assessment of plausible impacts on key functional groups.

    Science.gov (United States)

    Havenhand, Jonathan N

    2012-09-01

    Increasing partial pressure of atmospheric CO₂ is causing ocean pH to fall-a process known as 'ocean acidification'. Scenario modeling suggests that ocean acidification in the Baltic Sea may cause a ≤ 3 times increase in acidity (reduction of 0.2-0.4 pH units) by the year 2100. The responses of most Baltic Sea organisms to ocean acidification are poorly understood. Available data suggest that most species and ecologically important groups in the Baltic Sea food web (phytoplankton, zooplankton, macrozoobenthos, cod and sprat) will be robust to the expected changes in pH. These conclusions come from (mostly) single-species and single-factor studies. Determining the emergent effects of ocean acidification on the ecosystem from such studies is problematic, yet very few studies have used multiple stressors and/or multiple trophic levels. There is an urgent need for more data from Baltic Sea populations, particularly from environmentally diverse regions and from controlled mesocosm experiments. In the absence of such information it is difficult to envision the likely effects of future ocean acidification on Baltic Sea species and ecosystems.

  17. Adaptation and acclimatization to ocean acidification in marine ectotherms: an in situ transplant experiment with polychaetes at a shallow CO2 vent system.

    Science.gov (United States)

    Calosi, Piero; Rastrick, Samuel P S; Lombardi, Chiara; de Guzman, Heidi J; Davidson, Laura; Jahnke, Marlene; Giangrande, Adriana; Hardege, Jörg D; Schulze, Anja; Spicer, John I; Gambi, Maria-Cristina

    2013-01-01

    Metabolic rate determines the physiological and life-history performances of ectotherms. Thus, the extent to which such rates are sensitive and plastic to environmental perturbation is central to an organism's ability to function in a changing environment. Little is known of long-term metabolic plasticity and potential for metabolic adaptation in marine ectotherms exposed to elevated pCO2. Consequently, we carried out a series of in situ transplant experiments using a number of tolerant and sensitive polychaete species living around a natural CO2 vent system. Here, we show that a marine metazoan (i.e. Platynereis dumerilii) was able to adapt to chronic and elevated levels of pCO2. The vent population of P. dumerilii was physiologically and genetically different from nearby populations that experience low pCO2, as well as smaller in body size. By contrast, different populations of Amphiglena mediterranea showed marked physiological plasticity indicating that adaptation or acclimatization are both viable strategies for the successful colonization of elevated pCO2 environments. In addition, sensitive species showed either a reduced or increased metabolism when exposed acutely to elevated pCO2. Our findings may help explain, from a metabolic perspective, the occurrence of past mass extinction, as well as shed light on alternative pathways of resilience in species facing ongoing ocean acidification.

  18. Digestion in sea urchin larvae impaired under ocean acidification

    Science.gov (United States)

    Stumpp, Meike; Hu, Marian; Casties, Isabel; Saborowski, Reinhard; Bleich, Markus; Melzner, Frank; Dupont, Sam

    2013-12-01

    Larval stages are considered as the weakest link when a species is exposed to challenging environmental changes. Reduced rates of growth and development in larval stages of calcifying invertebrates in response to ocean acidification might be caused by energetic limitations. So far no information exists on how ocean acidification affects digestive processes in marine larval stages. Here we reveal alkaline (~pH 9.5) conditions in the stomach of sea urchin larvae. Larvae exposed to decreased seawater pH suffer from a drop in gastric pH, which directly translates into decreased digestive efficiencies and triggers compensatory feeding. These results suggest that larval digestion represents a critical process in the context of ocean acidification, which has been overlooked so far.

  19. Transcriptome analysis of Lactococcus lactis subsp. lactis during milk acidification as affected by dissolved oxygen and the redox potential.

    Science.gov (United States)

    Larsen, Nadja; Moslehi-Jenabian, Saloomeh; Werner, Birgit Brøsted; Jensen, Maiken Lund; Garrigues, Christel; Vogensen, Finn Kvist; Jespersen, Lene

    2016-06-02

    Performance of Lactococcus lactis as a starter culture in dairy fermentations depends on the levels of dissolved oxygen and the redox state of milk. In this study the microarray analysis was used to investigate the global gene expression of L. lactis subsp. lactis DSM20481(T) during milk acidification as affected by oxygen depletion and the decrease of redox potential. Fermentations were carried out at different initial levels of dissolved oxygen (dO2) obtained by milk sparging with oxygen (high dO2, 63%) or nitrogen (low dO2, 6%). Bacterial exposure to high initial oxygen resulted in overexpression of genes involved in detoxification of reactive oxygen species (ROS), oxidation-reduction processes, biosynthesis of trehalose and down-regulation of genes involved in purine nucleotide biosynthesis, indicating that several factors, among them trehalose and GTP, were implicated in bacterial adaptation to oxidative stress. Generally, transcriptional changes were more pronounced during fermentation of oxygen sparged milk. Genes up-regulated in response to oxygen depletion were implicated in biosynthesis and transport of pyrimidine nucleotides, branched chain amino acids and in arginine catabolic pathways; whereas genes involved in salvage of nucleotides and cysteine pathways were repressed. Expression pattern of genes involved in pyruvate metabolism indicated shifts towards mixed acid fermentation after oxygen depletion with production of specific end-products, depending on milk treatment. Differential expression of genes, involved in amino acid and pyruvate pathways, suggested that initial oxygen might influence the release of flavor compounds and, thereby, flavor development in dairy fermentations. The knowledge of molecular responses involved in adaptation of L. lactis to the shifts of redox state and pH during milk fermentations is important for the dairy industry to ensure better control of cheese production. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. MEDUSA-2.0: an intermediate complexity biogeochemical model of the marine carbon cycle for climate change and ocean acidification studies

    Directory of Open Access Journals (Sweden)

    A. Yool

    2013-10-01

    Full Text Available MEDUSA-1.0 (Model of Ecosystem Dynamics, nutrient Utilisation, Sequestration and Acidification was developed as an "intermediate complexity" plankton ecosystem model to study the biogeochemical response, and especially that of the so-called "biological pump", to anthropogenically driven change in the World Ocean (Yool et al., 2011. The base currency in this model was nitrogen from which fluxes of organic carbon, including export to the deep ocean, were calculated by invoking fixed C:N ratios in phytoplankton, zooplankton and detritus. However, due to anthropogenic activity, the atmospheric concentration of carbon dioxide (CO2 has significantly increased above its natural, inter-glacial background. As such, simulating and predicting the carbon cycle in the ocean in its entirety, including ventilation of CO2 with the atmosphere and the resulting impact of ocean acidification on marine ecosystems, requires that both organic and inorganic carbon be afforded a more complete representation in the model specification. Here, we introduce MEDUSA-2.0, an expanded successor model which includes additional state variables for dissolved inorganic carbon, alkalinity, dissolved oxygen and detritus carbon (permitting variable C:N in exported organic matter, as well as a simple benthic formulation and extended parameterizations of phytoplankton growth, calcification and detritus remineralisation. A full description of MEDUSA-2.0, including its additional functionality, is provided and a multi-decadal spin-up simulation (1860–2005 is performed. The biogeochemical performance of the model is evaluated using a diverse range of observational data, and MEDUSA-2.0 is assessed relative to comparable models using output from the Coupled Model Intercomparison Project (CMIP5.

  1. Effects of seawater acidification on a coral reef meiofauna community

    Science.gov (United States)

    Sarmento, V. C.; Souza, T. P.; Esteves, A. M.; Santos, P. J. P.

    2015-09-01

    Despite the increasing risk that ocean acidification will modify benthic communities, great uncertainty remains about how this impact will affect the lower trophic levels, such as members of the meiofauna. A mesocosm experiment was conducted to investigate the effects of water acidification on a phytal meiofauna community from a coral reef. Community samples collected from the coral reef subtidal zone (Recife de Fora Municipal Marine Park, Porto Seguro, Bahia, Brazil), using artificial substrate units, were exposed to a control pH (ambient seawater) and to three levels of seawater acidification (pH reductions of 0.3, 0.6, and 0.9 units below ambient) and collected after 15 and 30 d. After 30 d of exposure, major changes in the structure of the meiofauna community were observed in response to reduced pH. The major meiofauna groups showed divergent responses to acidification. Harpacticoida and Polychaeta densities did not show significant differences due to pH. Nematoda, Ostracoda, Turbellaria, and Tardigrada exhibited their highest densities in low-pH treatments (especially at the pH reduction of 0.6 units, pH 7.5), while harpacticoid nauplii were strongly negatively affected by low pH. This community-based mesocosm study supports previous suggestions that ocean acidification induces important changes in the structure of marine benthic communities. Considering the importance of meiofauna in the food web of coral reef ecosystems, the results presented here demonstrate that the trophic functioning of coral reefs is seriously threatened by ocean acidification.

  2. Responses of pink salmon to CO2-induced aquatic acidification

    Science.gov (United States)

    Ou, Michelle; Hamilton, Trevor J.; Eom, Junho; Lyall, Emily M.; Gallup, Joshua; Jiang, Amy; Lee, Jason; Close, David A.; Yun, Sang-Seon; Brauner, Colin J.

    2015-10-01

    Ocean acidification negatively affects many marine species and is predicted to cause widespread changes to marine ecosystems. Similarly, freshwater ecosystems may potentially be affected by climate-change-related acidification; however, this has received far less attention. Freshwater fish represent 40% of all fishes, and salmon, which rear and spawn in freshwater, are of immense ecosystem, economical and cultural importance. In this study, we investigate the impacts of CO2-induced acidification during the development of pink salmon, in freshwater and following early seawater entry. At this critical and sensitive life stage, we show dose-dependent reductions in growth, yolk-to-tissue conversion and maximal O2 uptake capacity; as well as significant alterations in olfactory responses, anti-predator behaviour and anxiety under projected future increases in CO2 levels. These data indicate that future populations of pink salmon may be at risk without mitigation and highlight the need for further studies on the impact of CO2-induced acidification on freshwater systems.

  3. Ocean acidification affects redox-balance and ion-homeostasis in the life-cycle stages of Emiliania huxleyi.

    Directory of Open Access Journals (Sweden)

    Sebastian D Rokitta

    Full Text Available Ocean Acidification (OA has been shown to affect photosynthesis and calcification in the coccolithophore Emiliania huxleyi, a cosmopolitan calcifier that significantly contributes to the regulation of the biological carbon pumps. Its non-calcifying, haploid life-cycle stage was found to be relatively unaffected by OA with respect to biomass production. Deeper insights into physiological key processes and their dependence on environmental factors are lacking, but are required to understand and possibly estimate the dynamics of carbon cycling in present and future oceans. Therefore, calcifying diploid and non-calcifying haploid cells were acclimated to present and future CO(2 partial pressures (pCO(2; 38.5 Pa vs. 101.3 Pa CO(2 under low and high light (50 vs. 300 µmol photons m(-2 s(-1. Comparative microarray-based transcriptome profiling was used to screen for the underlying cellular processes and allowed to follow up interpretations derived from physiological data. In the diplont, the observed increases in biomass production under OA are likely caused by stimulated production of glycoconjugates and lipids. The observed lowered calcification under OA can be attributed to impaired signal-transduction and ion-transport. The haplont utilizes distinct genes and metabolic pathways, reflecting the stage-specific usage of certain portions of the genome. With respect to functionality and energy-dependence, however, the transcriptomic OA-responses resemble those of the diplont. In both life-cycle stages, OA affects the cellular redox-state as a master regulator and thereby causes a metabolic shift from oxidative towards reductive pathways, which involves a reconstellation of carbon flux networks within and across compartments. Whereas signal transduction and ion-homeostasis appear equally OA-sensitive under both light intensities, the effects on carbon metabolism and light physiology are clearly modulated by light availability. These interactive effects

  4. Ocean acidification affects redox-balance and ion-homeostasis in the life-cycle stages of Emiliania huxleyi.

    Science.gov (United States)

    Rokitta, Sebastian D; John, Uwe; Rost, Björn

    2012-01-01

    Ocean Acidification (OA) has been shown to affect photosynthesis and calcification in the coccolithophore Emiliania huxleyi, a cosmopolitan calcifier that significantly contributes to the regulation of the biological carbon pumps. Its non-calcifying, haploid life-cycle stage was found to be relatively unaffected by OA with respect to biomass production. Deeper insights into physiological key processes and their dependence on environmental factors are lacking, but are required to understand and possibly estimate the dynamics of carbon cycling in present and future oceans. Therefore, calcifying diploid and non-calcifying haploid cells were acclimated to present and future CO(2) partial pressures (pCO(2); 38.5 Pa vs. 101.3 Pa CO(2)) under low and high light (50 vs. 300 µmol photons m(-2) s(-1)). Comparative microarray-based transcriptome profiling was used to screen for the underlying cellular processes and allowed to follow up interpretations derived from physiological data. In the diplont, the observed increases in biomass production under OA are likely caused by stimulated production of glycoconjugates and lipids. The observed lowered calcification under OA can be attributed to impaired signal-transduction and ion-transport. The haplont utilizes distinct genes and metabolic pathways, reflecting the stage-specific usage of certain portions of the genome. With respect to functionality and energy-dependence, however, the transcriptomic OA-responses resemble those of the diplont. In both life-cycle stages, OA affects the cellular redox-state as a master regulator and thereby causes a metabolic shift from oxidative towards reductive pathways, which involves a reconstellation of carbon flux networks within and across compartments. Whereas signal transduction and ion-homeostasis appear equally OA-sensitive under both light intensities, the effects on carbon metabolism and light physiology are clearly modulated by light availability. These interactive effects can be

  5. Effects of Ocean Acidification on the Life Cycle and Fitness of the Mysid Shrimp Americamysis Bahia

    Science.gov (United States)

    Most concern about effects of CO2-induced ocean acidification focuses on mollusks, corals, and coccolithophores because skeletal and shell formation by these organisms is sensitive to the solubility of calcium minerals. However, many other marine organisms are likely affected by...

  6. The effect of ocean acidification on carbon storage and sequestration in seagrass beds; a global and UK context.

    Science.gov (United States)

    Garrard, Samantha L; Beaumont, Nicola J

    2014-09-15

    Ocean acidification will have many negative consequences for marine organisms and ecosystems, leading to a decline in many ecosystem services provided by the marine environment. This study reviews the effect of ocean acidification (OA) on seagrasses, assessing how this may affect their capacity to sequester carbon in the future and providing an economic valuation of these changes. If ocean acidification leads to a significant increase in above- and below-ground biomass, the capacity of seagrass to sequester carbon will be significantly increased. The associated value of this increase in sequestration capacity is approximately £500 and 600 billion globally between 2010 and 2100. A proportionally similar increase in carbon sequestration value was found for the UK. This study highlights one of the few positive stories for ocean acidification and underlines that sustainable management of seagrasses is critical to avoid their continued degradation and loss of carbon sequestration capacity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. NEOTEC: Negative-CO2-Emissions Marine Energy With Direct Mitigation of Global Warming, Sea-Level Rise and Ocean Acidification

    Science.gov (United States)

    Rau, G. H.; Baird, J.; Noland, G.

    2016-12-01

    The vertical thermal energy potential in the ocean is a massive renewable energy resource that is growing due to anthropogenic warming of the surface and near-surface ocean. The conversion of this thermal energy to useful forms via Ocean Thermal Energy Conversion (OTEC) has been demonstrated over the past century, albeit at small scales. Because OTEC removes heat from the surface ocean, this could help directly counter ongoing, deleterious ocean/atmosphere warming. The only other climate intervention that could do this is solar radiation "geoengineering". Conventional OTEC requires energy intensive, vertical movement of seawater resulting in ocean and atmospheric chemistry alteration, but this can be avoided via more energy efficient, vertical closed-cycle heating and cooling of working fluid like CO2 or NH3. An energy carrier such as H2 is required to transport energy optimally extracted far offshore, and methods of electrochemically generating H2 while also consuming CO2 and converting it to ocean alkalinity have been demonstrated. The addition of such alkalinity to the ocean would provide vast, stable, carbon storage, while also helping chemically counter the effects of ocean acidification. The process might currently be profitable given the >$100/tonne CO2 credit offered by California's Low Carbon Fuel Standard for transportation fuels like H2. Negative-Emissions OTEC, NEOTEC, thus can potentially provide constant, cost effective, high capacity, negative-emissions energy while: a) reducing surface ocean heat load, b) reducing thermal ocean expansion and sea-level rise, c) utilizing a very large, natural marine carbon storage reservoir, and d) helping mitigate ocean acidification. The technology also avoids the biophysical and land use limitations posed by negative emissions methods that rely on terrestrial biology, such as afforestation and BECCS. NEOTEC and other marine-based, renewable energy and CO2 removal approaches could therefore greatly increase the

  8. The geological record of ocean acidification

    NARCIS (Netherlands)

    Hönisch, B.; Ridgwell, A.; Schmidt, D.N.; Thomas, E.; Gibbs, S.J.; Sluijs, A.; Zeebe, R.; Kump, L.; Martindale, R.C.; Greene, S.E.; Kiessling, W.; Ries, J.; Zachos, J.C.; Royer, D.L.; Barker, S.; Marchitto Jr., T.M.; Moyer, R.; Pelejero, C.; Ziveri, P.; Foster, G.L.; Williams, B.

    2012-01-01

    Ocean acidification may have severe consequences for marine ecosystems; however, assessing its future impact is difficult because laboratory experiments and field observations are limited by their reduced ecologic complexity and sample period, respectively. In contrast, the geological record

  9. Nighttime dissolution in a temperate coastal ocean ecosystem increases under acidification.

    Science.gov (United States)

    Kwiatkowski, Lester; Gaylord, Brian; Hill, Tessa; Hosfelt, Jessica; Kroeker, Kristy J; Nebuchina, Yana; Ninokawa, Aaron; Russell, Ann D; Rivest, Emily B; Sesboüé, Marine; Caldeira, Ken

    2016-03-18

    Anthropogenic emissions of carbon dioxide (CO2) are causing ocean acidification, lowering seawater aragonite (CaCO3) saturation state (Ω arag), with potentially substantial impacts on marine ecosystems over the 21(st) Century. Calcifying organisms have exhibited reduced calcification under lower saturation state conditions in aquaria. However, the in situ sensitivity of calcifying ecosystems to future ocean acidification remains unknown. Here we assess the community level sensitivity of calcification to local CO2-induced acidification caused by natural respiration in an unperturbed, biodiverse, temperate intertidal ecosystem. We find that on hourly timescales nighttime community calcification is strongly influenced by Ω arag, with greater net calcium carbonate dissolution under more acidic conditions. Daytime calcification however, is not detectably affected by Ω arag. If the short-term sensitivity of community calcification to Ω arag is representative of the long-term sensitivity to ocean acidification, nighttime dissolution in these intertidal ecosystems could more than double by 2050, with significant ecological and economic consequences.

  10. Food supply confers calcifiers resistance to ocean acidification

    KAUST Repository

    Ramajo, Laura; Pé rez-Leó n, Elia; Hendriks, Iris E.; Marbà , Nú ria; Krause-Jensen, Dorte; Sejr, Mikael K.; Blicher, Martin E.; Lagos, Nelson A.; Olsen, Ylva S.; Duarte, Carlos M.

    2016-01-01

    Invasion of ocean surface waters by anthropogenic CO2 emitted to the atmosphere is expected to reduce surface seawater pH to 7.8 by the end of this century compromising marine calcifiers. A broad range of biological and mineralogical mechanisms allow marine calcifiers to cope with ocean acidification, however these mechanisms are energetically demanding which affect other biological processes (trade-offs) with important implications for the resilience of the organisms against stressful conditions. Hence, food availability may play a critical role in determining the resistance of calcifiers to OA. Here we show, based on a meta-analysis of existing experimental results assessing the role of food supply in the response of organisms to OA, that food supply consistently confers calcifiers resistance to ocean acidification.

  11. Food supply confers calcifiers resistance to ocean acidification

    KAUST Repository

    Ramajo, Laura

    2016-01-18

    Invasion of ocean surface waters by anthropogenic CO2 emitted to the atmosphere is expected to reduce surface seawater pH to 7.8 by the end of this century compromising marine calcifiers. A broad range of biological and mineralogical mechanisms allow marine calcifiers to cope with ocean acidification, however these mechanisms are energetically demanding which affect other biological processes (trade-offs) with important implications for the resilience of the organisms against stressful conditions. Hence, food availability may play a critical role in determining the resistance of calcifiers to OA. Here we show, based on a meta-analysis of existing experimental results assessing the role of food supply in the response of organisms to OA, that food supply consistently confers calcifiers resistance to ocean acidification.

  12. Changes in Soil Dissolved Organic Carbon Affect Reconstructed History and Projected Future Trends in Surface Water Acidification

    Czech Academy of Sciences Publication Activity Database

    Hruška, Jakub; Krám, Pavel; Moldan, Filip; Oulehle, Filip; Evans, C. D.; Wright, R. F.; Cosby, B. J.; Kopáček, Jiří

    2014-01-01

    Roč. 225, č. 7 (2014), s. 2015 ISSN 0049-6979 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0073 Institutional support: RVO:67179843 ; RVO:60077344 Keywords : acidification * surface waters * soils * dissolved organic carbon * magic model * preindustrial water chemistry Subject RIV: EH - Ecology, Behaviour; DA - Hydrology ; Limnology (BC-A) Impact factor: 1.554, year: 2014

  13. Ocean Futures Under Ocean Acidification, Marine Protection, and Changing Fishing Pressures Explored Using a Worldwide Suite of Ecosystem Models

    OpenAIRE

    Erik Olsen; Isaac C. Kaplan; Cameron Ainsworth; Gavin Fay; Sarah Gaichas; Robert Gamble; Raphael Girardin; Cecilie H. Eide; Thomas F. Ihde; Hem Nalini Morzaria-Luna; Hem Nalini Morzaria-Luna; Hem Nalini Morzaria-Luna; Kelli F. Johnson; Marie Savina-Rolland; Howard Townsend

    2018-01-01

    Ecosystem-based management (EBM) of the ocean considers all impacts on and uses of marine and coastal systems. In recent years, there has been a heightened interest in EBM tools that allow testing of alternative management options and help identify tradeoffs among human uses. End-to-end ecosystem modeling frameworks that consider a wide range of management options are a means to provide integrated solutions to the complex ocean management problems encountered in EBM. Here, we leverage the glo...

  14. Pig slurry acidification and separation techniques affect soil N and C turnover and N2O emissions from solid, liquid and biochar fractions

    DEFF Research Database (Denmark)

    Gomez Muñoz, Beatriz; Case, Sean; Jensen, Lars Stoumann

    2016-01-01

    the separated solid fractions in soil, but did not affect N2O and CO2 emissions. However acidification reduced soil N and C turnover from the liquid fraction. The use of more advanced separation techniques (flocculation and drainage > decanting centrifuge > screw press) increased N mineralisation from acidified...... solid fractions, but also increased N2O and CO2 emissions in soil amended with the liquid fraction. Finally, the biochar production from the solid fraction of pig slurry resulted in a very recalcitrant material, which reduced N and C mineralisation in soil compared to the raw solid fractions....

  15. Indicators: Acidification

    Science.gov (United States)

    Acidification is a broad term that refers to the process by which aquatic ecosystems become more acidic. Acid rain and acid mine drainage are major sources of acidifying compounds, lowering the pH below the range where most living organisms function.

  16. Marine ecosystem community carbon and nutrient uptake stoichiometry under varying ocean acidification during the PeECE III experiment

    Directory of Open Access Journals (Sweden)

    R. G. J. Bellerby

    2008-11-01

    Full Text Available Changes to seawater inorganic carbon and nutrient concentrations in response to the deliberate CO2 perturbation of natural plankton assemblages were studied during the 2005 Pelagic Ecosystem CO2 Enrichment (PeECE III experiment. Inverse analysis of the temporal inorganic carbon dioxide system and nutrient variations was used to determine the net community stoichiometric uptake characteristics of a natural pelagic ecosystem perturbed over a range of pCO2 scenarios (350, 700 and 1050 μatm. Nutrient uptake showed no sensitivity to CO2 treatment. There was enhanced carbon production relative to nutrient consumption in the higher CO2 treatments which was positively correlated with the initial CO2 concentration. There was no significant calcification response to changing CO2 in Emiliania huxleyi by the peak of the bloom and all treatments exhibited low particulate inorganic carbon production (~15 μmol kg−1. With insignificant air-sea CO2 exchange across the treatments, the enhanced carbon uptake was due to increase organic carbon production. The inferred cumulative C:N:P stoichiometry of organic production increased with CO2 treatment from 1:6.3:121 to 1:7.1:144 to 1:8.25:168 at the height of the bloom. This study discusses how ocean acidification may incur modification to the stoichiometry of pelagic production and have consequences for ocean biogeochemical cycling.

  17. Climate change impact on future ocean acidification

    International Nuclear Information System (INIS)

    McNeil, Ben

    2007-01-01

    Full text: Elevated atmospheric C02 levels and associated uptake by the ocean is changing its carbon chemistry, leading to an acidification. The implications of future ocean acidification on the marine ecosystem are unclear but seemingly detrimental particularly to those organisms and phytoplankton that secrete calcium carbonate (like corals). Here we present new results from the Australian CSIRO General Circulation Model that predicts the changing nature of oceanic carbon chemistry in response to future climate change feedbacks (circulation, temperature and biological). We will discuss the implications of future ocean acidification and the potential implications on Australia's marine ecosystems

  18. Viral attack exacerbates the susceptibility of a bloom-forming alga to ocean acidification.

    Science.gov (United States)

    Chen, Shanwen; Gao, Kunshan; Beardall, John

    2015-02-01

    Both ocean acidification and viral infection bring about changes in marine phytoplankton physiological activities and community composition. However, little information is available on how the relationship between phytoplankton and viruses may be affected by ocean acidification and what impacts this might have on photosynthesis-driven marine biological CO2 pump. Here, we show that when the harmful bloom alga Phaeocystis globosa is infected with viruses under future ocean conditions, its photosynthetic performance further decreased and cells became more susceptible to stressful light levels, showing enhanced photoinhibition and reduced carbon fixation, up-regulation of mitochondrial respiration and decreased virus burst size. Our results indicate that ocean acidification exacerbates the impacts of viral attack on P. globosa, which implies that, while ocean acidification directly influences marine primary producers, it may also affect them indirectly by altering their relationship with viruses. Therefore, viruses as a biotic stressor need to be invoked when considering the overall impacts of climate change on marine productivity and carbon sequestration. © 2014 John Wiley & Sons Ltd.

  19. Difference in physiological responses of growth, photosynthesis and calcification of the coccolithophore Emiliania huxleyi to acidification by acid and CO2 enrichment.

    Science.gov (United States)

    Fukuda, Shin-Ya; Suzuki, Yurina; Shiraiwa, Yoshihiro

    2014-09-01

    Ocean acidification, one of the great global environmental issues at present, is expected to result in serious damage on marine calcareous organisms such as corals and calcifying algae, which potentially release huge amounts of CO2 from the ocean to the atmosphere. The coccolithophore, Emiliania huxleyi (Haptophyceae), which frequently produces blooms, has greatly contributed to the biological CO2 pump. This study was aimed at analyzing effects of how E. huxleyi responds to acidification. Acidification was performed by two methods, namely by just adding HCl under bubbling ordinary air at 8.2-8.4, 7.6-7.8 and 7.1-7.3 (acidification by HCl) and by bubbling with ordinary air or with increased CO2 concentration such as 406, 816 and 1,192 ppm that maintained pH of the medium at 8.0-8.3, 7.6-7.9 and 7.5-7.7 (acidification by CO2 enrichment). As a result, cell growth and cellular calcification of E. huxleyi were strongly damaged by acidification by HCl, but not by acidification by CO2 enrichment. The activities of photosystems such as F v/F m and ϕPSII were not affected by any acidification conditions while photosynthetic O2 evolution was slightly stimulated. A (45)Ca-radiotracer experiment revealed that Ca(2+)-uptake was strongly suppressed by acidification with HCl. This suppression recovered after increasing the dissolved inorganic carbon (DIC) concentration and further stimulated by an additional increase in DIC concentration. The production of storage and coccolith polysaccharides was increased by acidification by HCl and also highly stimulated by acidification with CO2 enrichment. The present study clearly showed that the coccolithophore, E. huxleyi, has an ability to respond positively to acidification with CO2 enrichment, but not just acidification.

  20. Ocean acidification

    International Nuclear Information System (INIS)

    Soubelet, Helene; Veyre, Philippe; Monnoyer-Smith, Laurence

    2017-09-01

    This brief publication first recalls and outlines that ocean acidification is expected to increase, and will result in severe ecological impacts (more fragile coral reefs, migration of species, and so on), and therefore social and economic impacts. This issue is particularly important for France who possesses the second exclusive maritime area in the world. The various impacts of ocean acidification on living species is described, notably for phytoplankton, coral reefs, algae, molluscs, and fishes. Social and economic impacts are also briefly presented: tourism, protection against risks (notably by coral reefs), shellfish aquaculture and fishing. Issues to be addressed by scientific research are evoked: interaction between elements of an ecosystem and between different ecosystems, multi-stress effects all along organism lifetime, vulnerability and adaptability of human societies

  1. Ocean Acidification Affects the Cytoskeleton, Lysozymes, and Nitric Oxide of Hemocytes: A Possible Explanation for the Hampered Phagocytosis in Blood Clams, Tegillarca granosa.

    Science.gov (United States)

    Su, Wenhao; Rong, Jiahuan; Zha, Shanjie; Yan, Maocang; Fang, Jun; Liu, Guangxu

    2018-01-01

    An enormous amount of anthropogenic carbon dioxide (CO 2 ) has been dissolved into the ocean, leading to a lower pH and changes in the chemical properties of seawater, which has been termed ocean acidification (OA). The impacts of p CO 2 -driven acidification on immunity have been revealed recently in various marine organisms. However, the mechanism causing the reduction in phagocytosis still remains unclear. Therefore, the impacts of p CO 2 -driven OA at present and near-future levels (pH values of 8.1, 7.8, and 7.4) on the rate of phagocytosis, the abundance of cytoskeleton components, the levels of nitric oxide (NO), and the concentration and activity of lysozymes (LZM) of hemocytes were investigated in a commercial bivalve species, the blood clam ( Tegillarca granosa ). In addition, the effects of OA on the expression of genes regulating actin skeleton and nitric oxide synthesis 2 ( NOS2 ) were also analyzed. The results obtained showed that the phagocytic rate, cytoskeleton component abundance, concentration and activity of LZM of hemocytes were all significantly reduced after a 2-week exposure to the future OA scenario of a pH of 7.4. On the contrary, a remarkable increase in the concentration of NO compared to that of the control was detected in clams exposed to OA. Furthermore, the expression of genes regulating the actin cytoskeleton and NOS were significantly up-regulated after OA exposure. Though the mechanism causing phagocytosis seemed to be complicated based on the results obtained in the present study and those reported previously, our results suggested that OA may reduce the phagocytosis of hemocytes by (1) decreasing the abundance of cytoskeleton components and therefore hampering the cytoskeleton-mediated process of engulfment, (2) reducing the concentration and activity of LZM and therefore constraining the degradation of the engulfed pathogen through an oxygen-independent pathway, and (3) inducing the production of NO, which may negatively

  2. 77 FR 40860 - Strategic Plan for Federal Research and Monitoring of Ocean Acidification

    Science.gov (United States)

    2012-07-11

    ... Plan for Federal Research and Monitoring of Ocean Acidification AGENCY: National Marine Fisheries... Federal Research and Monitoring of Ocean Acidification is being made available for public review and... understanding of the process of ocean acidification, its effects on marine ecosystems, and the steps that could...

  3. Puget Sound ocean acidification model outputs - Modeling the impacts of ocean acidification on ecosystems and populations

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NWFSC OA team will model the effects of ocean acidification on regional marine species and ecosystems using food web models, life-cycle models, and bioenvelope...

  4. Combined Effects of Ocean Warming and Acidification on Copepod Abundance, Body Size and Fatty Acid Content.

    Directory of Open Access Journals (Sweden)

    Jessica Garzke

    Full Text Available Concerns about increasing atmospheric CO2 concentrations and global warming have initiated studies on the consequences of multiple-stressor interactions on marine organisms and ecosystems. We present a fully-crossed factorial mesocosm study and assess how warming and acidification affect the abundance, body size, and fatty acid composition of copepods as a measure of nutritional quality. The experimental set-up allowed us to determine whether the effects of warming and acidification act additively, synergistically, or antagonistically on the abundance, body size, and fatty acid content of copepods, a major group of lower level consumers in marine food webs. Copepodite (developmental stages 1-5 and nauplii abundance were antagonistically affected by warming and acidification. Higher temperature decreased copepodite and nauplii abundance, while acidification partially compensated for the temperature effect. The abundance of adult copepods was negatively affected by warming. The prosome length of copepods was significantly reduced by warming, and the interaction of warming and CO2 antagonistically affected prosome length. Fatty acid composition was also significantly affected by warming. The content of saturated fatty acids increased, and the ratios of the polyunsaturated essential fatty acids docosahexaenoic- (DHA and arachidonic acid (ARA to total fatty acid content increased with higher temperatures. Additionally, here was a significant additive interaction effect of both parameters on arachidonic acid. Our results indicate that in a future ocean scenario, acidification might partially counteract some observed effects of increased temperature on zooplankton, while adding to others. These may be results of a fertilizing effect on phytoplankton as a copepod food source. In summary, copepod populations will be more strongly affected by warming rather than by acidifying oceans, but ocean acidification effects can modify some temperature impacts.

  5. Combined Effects of Ocean Warming and Acidification on Copepod Abundance, Body Size and Fatty Acid Content.

    Science.gov (United States)

    Garzke, Jessica; Hansen, Thomas; Ismar, Stefanie M H; Sommer, Ulrich

    2016-01-01

    Concerns about increasing atmospheric CO2 concentrations and global warming have initiated studies on the consequences of multiple-stressor interactions on marine organisms and ecosystems. We present a fully-crossed factorial mesocosm study and assess how warming and acidification affect the abundance, body size, and fatty acid composition of copepods as a measure of nutritional quality. The experimental set-up allowed us to determine whether the effects of warming and acidification act additively, synergistically, or antagonistically on the abundance, body size, and fatty acid content of copepods, a major group of lower level consumers in marine food webs. Copepodite (developmental stages 1-5) and nauplii abundance were antagonistically affected by warming and acidification. Higher temperature decreased copepodite and nauplii abundance, while acidification partially compensated for the temperature effect. The abundance of adult copepods was negatively affected by warming. The prosome length of copepods was significantly reduced by warming, and the interaction of warming and CO2 antagonistically affected prosome length. Fatty acid composition was also significantly affected by warming. The content of saturated fatty acids increased, and the ratios of the polyunsaturated essential fatty acids docosahexaenoic- (DHA) and arachidonic acid (ARA) to total fatty acid content increased with higher temperatures. Additionally, here was a significant additive interaction effect of both parameters on arachidonic acid. Our results indicate that in a future ocean scenario, acidification might partially counteract some observed effects of increased temperature on zooplankton, while adding to others. These may be results of a fertilizing effect on phytoplankton as a copepod food source. In summary, copepod populations will be more strongly affected by warming rather than by acidifying oceans, but ocean acidification effects can modify some temperature impacts.

  6. Differential tolerances to ocean acidification by parasites that share the same host.

    Science.gov (United States)

    MacLeod, C D; Poulin, R

    2015-06-01

    Ocean acidification is predicted to cause major changes in marine ecosystem structure and function over the next century, as species-specific tolerances to acidified seawater may alter previously stable relationships between coexisting organisms. Such differential tolerances could affect marine host-parasite associations, as either host or parasite may prove more susceptible to the stressors associated with ocean acidification. Despite their important role in many ecological processes, parasites have not been studied in the context of ocean acidification. We tested the effects of low pH seawater on the cercariae and, where possible, the metacercariae of four species of marine trematode parasite. Acidified seawater (pH 7.6 and 7.4, 12.5 °C) caused a 40-60% reduction in cercarial longevity and a 0-78% reduction in metacercarial survival. However, the reduction in longevity and survival varied distinctly between parasite taxa, indicating that the effects of reduced pH may be species-specific. These results suggest that ocean acidification has the potential to reduce the transmission success of many trematode species, decrease parasite abundance and alter the fundamental regulatory role of multi-host parasites in marine ecosystems. Copyright © 2015 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.

  7. Ocean acidification effects on Caribbean scleractinian coral calcification using a recirculating system: a novel approach to OA research

    Science.gov (United States)

    Projected increases in ocean pCO2 levels are likely to affect calcifying organisms more rapidly and to a greater extent than any other marine organisms. The effects of ocean acidification (OA) has been documented in numerous species of corals in both laboratory and field studies....

  8. Impacts of ocean acidification on respiratory gas exchange and acid-base balance in a marine teleost, Opsanus beta.

    Science.gov (United States)

    Esbaugh, Andrew J; Heuer, Rachael; Grosell, Martin

    2012-10-01

    The oceanic carbonate system is changing rapidly due to rising atmospheric CO(2), with current levels expected to rise to between 750 and 1,000 μatm by 2100, and over 1,900 μatm by year 2300. The effects of elevated CO(2) on marine calcifying organisms have been extensively studied; however, effects of imminent CO(2) levels on teleost acid-base and respiratory physiology have yet to be examined. Examination of these physiological processes, using a paired experimental design, showed that 24 h exposure to 1,000 and 1,900 μatm CO(2) resulted in a characteristic compensated respiratory acidosis response in the gulf toadfish (Opsanus beta). Time course experiments showed the onset of acidosis occurred after 15 min of exposure to 1,900 and 1,000 μatm CO(2), with full compensation by 2 and 4 h, respectively. 1,900-μatm exposure also resulted in significantly increased intracellular white muscle pH after 24 h. No effect of 1,900 μatm was observed on branchial acid flux; however, exposure to hypercapnia and HCO(3)(-) free seawater compromised compensation. This suggests branchial HCO(3)(-) uptake rather than acid extrusion is part of the compensatory response to low-level hypercapnia. Exposure to 1,900 μatm resulted in downregulation in branchial carbonic anhydrase and slc4a2 expression, as well as decreased Na(+)/K(+) ATPase activity after 24 h of exposure. Infusion of bovine carbonic anhydrase had no effect on blood acid-base status during 1,900 μatm exposures, but eliminated the respiratory impacts of 1,000 μatm CO(2). The results of the current study clearly show that predicted near-future CO(2) levels impact respiratory gas transport and acid-base balance. While the full physiological impacts of increased blood HCO(3)(-) are not known, it seems likely that chronically elevated blood HCO(3)(-) levels could compromise several physiological systems and furthermore may explain recent reports of increased otolith growth during exposure to elevated CO(2).

  9. Ocean acidification alters temperature and salinity preferences in larval fish.

    Science.gov (United States)

    Pistevos, Jennifer C A; Nagelkerken, Ivan; Rossi, Tullio; Connell, Sean D

    2017-02-01

    Ocean acidification alters the way in which animals perceive and respond to their world by affecting a variety of senses such as audition, olfaction, vision and pH sensing. Marine species rely on other senses as well, but we know little of how these might be affected by ocean acidification. We tested whether ocean acidification can alter the preference for physicochemical cues used for dispersal between ocean and estuarine environments. We experimentally assessed the behavioural response of a larval fish (Lates calcarifer) to elevated temperature and reduced salinity, including estuarine water of multiple cues for detecting settlement habitat. Larval fish raised under elevated CO 2 concentrations were attracted by warmer water, but temperature had no effect on fish raised in contemporary CO 2 concentrations. In contrast, contemporary larvae were deterred by lower salinity water, where CO 2 -treated fish showed no such response. Natural estuarine water-of higher temperature, lower salinity, and containing estuarine olfactory cues-was only preferred by fish treated under forecasted high CO 2 conditions. We show for the first time that attraction by larval fish towards physicochemical cues can be altered by ocean acidification. Such alterations to perception and evaluation of environmental cues during the critical process of dispersal can potentially have implications for ensuing recruitment and population replenishment. Our study not only shows that freshwater species that spend part of their life cycle in the ocean might also be affected by ocean acidification, but that behavioural responses towards key physicochemical cues can also be negated through elevated CO 2 from human emissions.

  10. Gene expression changes in the coccolithophore Emiliania huxleyi after 500 generations of selection to ocean acidification.

    Science.gov (United States)

    Lohbeck, Kai T; Riebesell, Ulf; Reusch, Thorsten B H

    2014-07-07

    Coccolithophores are unicellular marine algae that produce biogenic calcite scales and substantially contribute to marine primary production and carbon export to the deep ocean. Ongoing ocean acidification particularly impairs calcifying organisms, mostly resulting in decreased growth and calcification. Recent studies revealed that the immediate physiological response in the coccolithophore Emiliania huxleyi to ocean acidification may be partially compensated by evolutionary adaptation, yet the underlying molecular mechanisms are currently unknown. Here, we report on the expression levels of 10 candidate genes putatively relevant to pH regulation, carbon transport, calcification and photosynthesis in E. huxleyi populations short-term exposed to ocean acidification conditions after acclimation (physiological response) and after 500 generations of high CO2 adaptation (adaptive response). The physiological response revealed downregulation of candidate genes, well reflecting the concomitant decrease of growth and calcification. In the adaptive response, putative pH regulation and carbon transport genes were up-regulated, matching partial restoration of growth and calcification in high CO2-adapted populations. Adaptation to ocean acidification in E. huxleyi likely involved improved cellular pH regulation, presumably indirectly affecting calcification. Adaptive evolution may thus have the potential to partially restore cellular pH regulatory capacity and thereby mitigate adverse effects of ocean acidification. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  11. Extreme ocean acidification reduces the susceptibility of eastern oyster shells to a polydorid parasite.

    Science.gov (United States)

    Clements, J C; Bourque, D; McLaughlin, J; Stephenson, M; Comeau, L A

    2017-11-01

    Ocean acidification poses a threat to marine organisms. While the physiological and behavioural effects of ocean acidification have received much attention, the effects of acidification on the susceptibility of farmed shellfish to parasitic infections are poorly understood. Here we describe the effects of moderate (pH 7.5) and extreme (pH 7.0) ocean acidification on the susceptibility of Crassostrea virginica shells to infection by a parasitic polydorid, Polydora websteri. Under laboratory conditions, shells were exposed to three pH treatments (7.0, 7.5 and 8.0) for 3- and 5-week periods. Treated shells were subsequently transferred to an oyster aquaculture site (which had recently reported an outbreak of P. websteri) for 50 days to test for effects of pH and exposure time on P. websteri recruitment to oyster shells. Results indicated that pH and exposure time did not affect the length, width or weight of the shells. Interestingly, P. websteri counts were significantly lower under extreme (pH 7.0; ~50% reduction), but not moderate (pH 7.5; ~20% reduction) acidification levels; exposure time had no effect. This study suggests that extreme levels - but not current and projected near-future levels - of acidification (∆pH ~1 unit) can reduce the susceptibility of eastern oyster shells to P. websteri infections. © 2017 John Wiley & Sons Ltd.

  12. Combined Effects of Ocean Acidification and Light or Nitrogen Availabilities on 13C Fractionation in Marine Dinoflagellates.

    Directory of Open Access Journals (Sweden)

    Mirja Hoins

    Full Text Available Along with increasing oceanic CO2 concentrations, enhanced stratification constrains phytoplankton to shallower upper mixed layers with altered light regimes and nutrient concentrations. Here, we investigate the effects of elevated pCO2 in combination with light or nitrogen-limitation on 13C fractionation (εp in four dinoflagellate species. We cultured Gonyaulax spinifera and Protoceratium reticulatum in dilute batches under low-light ('LL' and high-light ('HL' conditions, and grew Alexandrium fundyense and Scrippsiella trochoidea in nitrogen-limited continuous cultures ('LN' and nitrogen-replete batches ('HN'. The observed CO2-dependency of εp remained unaffected by the availability of light for both G. spinifera and P. reticulatum, though at HL εp was consistently lower by about 2.7‰ over the tested CO2 range for P. reticulatum. This may reflect increased uptake of (13C-enriched bicarbonate fueled by increased ATP production under HL conditions. The observed CO2-dependency of εp disappeared under LN conditions in both A. fundyense and S. trochoidea. The generally higher εp under LN may be associated with lower organic carbon production rates and/or higher ATP:NADPH ratios. CO2-dependent εp under non-limiting conditions has been observed in several dinoflagellate species, showing potential for a new CO2-proxy. Our results however demonstrate that light- and nitrogen-limitation also affect εp, thereby illustrating the need to carefully consider prevailing environmental conditions.

  13. Combined Effects of Ocean Acidification and Light or Nitrogen Availabilities on 13C Fractionation in Marine Dinoflagellates.

    Science.gov (United States)

    Hoins, Mirja; Eberlein, Tim; Groβmann, Christian H; Brandenburg, Karen; Reichart, Gert-Jan; Rost, Björn; Sluijs, Appy; Van de Waal, Dedmer B

    2016-01-01

    Along with increasing oceanic CO2 concentrations, enhanced stratification constrains phytoplankton to shallower upper mixed layers with altered light regimes and nutrient concentrations. Here, we investigate the effects of elevated pCO2 in combination with light or nitrogen-limitation on 13C fractionation (εp) in four dinoflagellate species. We cultured Gonyaulax spinifera and Protoceratium reticulatum in dilute batches under low-light ('LL') and high-light ('HL') conditions, and grew Alexandrium fundyense and Scrippsiella trochoidea in nitrogen-limited continuous cultures ('LN') and nitrogen-replete batches ('HN'). The observed CO2-dependency of εp remained unaffected by the availability of light for both G. spinifera and P. reticulatum, though at HL εp was consistently lower by about 2.7‰ over the tested CO2 range for P. reticulatum. This may reflect increased uptake of (13C-enriched) bicarbonate fueled by increased ATP production under HL conditions. The observed CO2-dependency of εp disappeared under LN conditions in both A. fundyense and S. trochoidea. The generally higher εp under LN may be associated with lower organic carbon production rates and/or higher ATP:NADPH ratios. CO2-dependent εp under non-limiting conditions has been observed in several dinoflagellate species, showing potential for a new CO2-proxy. Our results however demonstrate that light- and nitrogen-limitation also affect εp, thereby illustrating the need to carefully consider prevailing environmental conditions.

  14. Ocean acidification impairs crab foraging behaviour.

    Science.gov (United States)

    Dodd, Luke F; Grabowski, Jonathan H; Piehler, Michael F; Westfield, Isaac; Ries, Justin B

    2015-07-07

    Anthropogenic elevation of atmospheric CO2 is driving global-scale ocean acidification, which consequently influences calcification rates of many marine invertebrates and potentially alters their susceptibility to predation. Ocean acidification may also impair an organism's ability to process environmental and biological cues. These counteracting impacts make it challenging to predict how acidification will alter species interactions and community structure. To examine effects of acidification on consumptive and behavioural interactions between mud crabs (Panopeus herbstii) and oysters (Crassostrea virginica), oysters were reared with and without caged crabs for 71 days at three pCO2 levels. During subsequent predation trials, acidification reduced prey consumption, handling time and duration of unsuccessful predation attempt. These negative effects of ocean acidification on crab foraging behaviour more than offset any benefit to crabs resulting from a reduction in the net rate of oyster calcification. These findings reveal that efforts to evaluate how acidification will alter marine food webs should include quantifying impacts on both calcification rates and animal behaviour. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  15. Ocean acidification does not affect magnesium composition or dolomite formation in living crustose coralline algae, Porolithon onkodes in an experimental system

    Science.gov (United States)

    Nash, M. C.; Uthicke, S.; Negri, A. P.; Cantin, N. E.

    2015-09-01

    There are concerns that Mg-calcite crustose coralline algae (CCA), which are key reef builders on coral reefs, will be most susceptible to increased rates of dissolution under higher pCO2 and ocean acidification. Due to the higher solubility of Mg-calcite, it has been hypothesised that magnesium concentrations in CCA Mg-calcite will decrease as the ocean acidifies, and that this decrease will make their skeletons more chemically stable. In addition to Mg-calcite, CCA Porolithon onkodes, the predominant encrusting species on tropical reefs, can have dolomite (Ca0.5Mg0.5CO3) infilling cell spaces which increases their stability. However, nothing is known about how bio-mineralised dolomite formation responds to higher pCO2. Using P. onkodes grown for 3 and 6 months in tank experiments, we aimed to determine (1) if mol % MgCO3 in new crust and new settlement was affected by increasing CO2 levels (365, 444, 676 and 904 μatm), (2) whether bio-mineralised dolomite formed within these time frames, and (3) if so, whether this was effected by CO2. Our results show that there was no significant effect of CO2 on mol % MgCO3 in any sample set, indicating an absence of a plastic response under a wide range of experimental conditions. Dolomite within the CCA cells formed within 3 months and dolomite abundance did not vary significantly with CO2 treatment. While evidence mounts that climate change will impact many sensitive coral and CCA species, the results from this study indicate that reef-building P. onkodes will continue to form stabilising dolomite infill under near-future acidification conditions, thereby retaining its higher resistance to dissolution.

  16. Climate change and Southern Ocean ecosystems I: how changes in physical habitats directly affect marine biota.

    Science.gov (United States)

    Constable, Andrew J; Melbourne-Thomas, Jessica; Corney, Stuart P; Arrigo, Kevin R; Barbraud, Christophe; Barnes, David K A; Bindoff, Nathaniel L; Boyd, Philip W; Brandt, Angelika; Costa, Daniel P; Davidson, Andrew T; Ducklow, Hugh W; Emmerson, Louise; Fukuchi, Mitsuo; Gutt, Julian; Hindell, Mark A; Hofmann, Eileen E; Hosie, Graham W; Iida, Takahiro; Jacob, Sarah; Johnston, Nadine M; Kawaguchi, So; Kokubun, Nobuo; Koubbi, Philippe; Lea, Mary-Anne; Makhado, Azwianewi; Massom, Rob A; Meiners, Klaus; Meredith, Michael P; Murphy, Eugene J; Nicol, Stephen; Reid, Keith; Richerson, Kate; Riddle, Martin J; Rintoul, Stephen R; Smith, Walker O; Southwell, Colin; Stark, Jonathon S; Sumner, Michael; Swadling, Kerrie M; Takahashi, Kunio T; Trathan, Phil N; Welsford, Dirk C; Weimerskirch, Henri; Westwood, Karen J; Wienecke, Barbara C; Wolf-Gladrow, Dieter; Wright, Simon W; Xavier, Jose C; Ziegler, Philippe

    2014-10-01

    Antarctic and Southern Ocean (ASO) marine ecosystems have been changing for at least the last 30 years, including in response to increasing ocean temperatures and changes in the extent and seasonality of sea ice; the magnitude and direction of these changes differ between regions around Antarctica that could see populations of the same species changing differently in different regions. This article reviews current and expected changes in ASO physical habitats in response to climate change. It then reviews how these changes may impact the autecology of marine biota of this polar region: microbes, zooplankton, salps, Antarctic krill, fish, cephalopods, marine mammals, seabirds, and benthos. The general prognosis for ASO marine habitats is for an overall warming and freshening, strengthening of westerly winds, with a potential pole-ward movement of those winds and the frontal systems, and an increase in ocean eddy activity. Many habitat parameters will have regionally specific changes, particularly relating to sea ice characteristics and seasonal dynamics. Lower trophic levels are expected to move south as the ocean conditions in which they are currently found move pole-ward. For Antarctic krill and finfish, the latitudinal breadth of their range will depend on their tolerance of warming oceans and changes to productivity. Ocean acidification is a concern not only for calcifying organisms but also for crustaceans such as Antarctic krill; it is also likely to be the most important change in benthic habitats over the coming century. For marine mammals and birds, the expected changes primarily relate to their flexibility in moving to alternative locations for food and the energetic cost of longer or more complex foraging trips for those that are bound to breeding colonies. Few species are sufficiently well studied to make comprehensive species-specific vulnerability assessments possible. Priorities for future work are discussed. © 2014 John Wiley & Sons Ltd.

  17. Ocean warming and acidification synergistically increase coral mortality

    Science.gov (United States)

    Prada, F.; Caroselli, E.; Mengoli, S.; Brizi, L.; Fantazzini, P.; Capaccioni, B.; Pasquini, L.; Fabricius, K. E.; Dubinsky, Z.; Falini, G.; Goffredo, S.

    2017-01-01

    Organisms that accumulate calcium carbonate structures are particularly vulnerable to ocean warming (OW) and ocean acidification (OA), potentially reducing the socioeconomic benefits of ecosystems reliant on these taxa. Since rising atmospheric CO2 is responsible for global warming and increasing ocean acidity, to correctly predict how OW and OA will affect marine organisms, their possible interactive effects must be assessed. Here we investigate, in the field, the combined temperature (range: 16-26 °C) and acidification (range: pHTS 8.1-7.4) effects on mortality and growth of Mediterranean coral species transplanted, in different seasonal periods, along a natural pH gradient generated by a CO2 vent. We show a synergistic adverse effect on mortality rates (up to 60%), for solitary and colonial, symbiotic and asymbiotic corals, suggesting that high seawater temperatures may have increased their metabolic rates which, in conjunction with decreasing pH, could have led to rapid deterioration of cellular processes and performance. The net calcification rate of the symbiotic species was not affected by decreasing pH, regardless of temperature, while in the two asymbiotic species it was negatively affected by increasing acidification and temperature, suggesting that symbiotic corals may be more tolerant to increasing warming and acidifying conditions compared to asymbiotic ones.

  18. Acidification and Acid Rain

    Science.gov (United States)

    Norton, S. A.; Veselã½, J.

    2003-12-01

    Air pollution by acids has been known as a problem for centuries (Ducros, 1845; Smith, 1872; Camuffo, 1992; Brimblecombe, 1992). Only in the mid-1900s did it become clear that it was a problem for more than just industrially developed areas, and that precipitation quality can affect aquatic resources ( Gorham, 1955). The last three decades of the twentieth century saw tremendous progress in the documentation of the chemistry of the atmosphere, precipitation, and the systems impacted by acid atmospheric deposition. Chronic acidification of ecosystems results in chemical changes to soil and to surface waters and groundwater as a result of reduction of base cation supply or an increase in acid (H+) supply, or both. The most fundamental changes during chronic acidification are an increase in exchangeable H+ or Al3+ (aluminum) in soils, an increase in H+ activity (˜concentration) in water in contact with soil, and a decrease in alkalinity in waters draining watersheds. Water draining from the soil is acidified and has a lower pH (=-log [H+]). As systems acidify, their biotic community changes.Acidic surface waters occur in many parts of the world as a consequence of natural processes and also due to atmospheric deposition of strong acid (e.g., Canada, Jeffries et al. (1986); the United Kingdom, Evans and Monteith (2001); Sweden, Swedish Environmental Protection Board (1986); Finland, Forsius et al. (1990); Norway, Henriksen et al. (1988a); and the United States (USA), Brakke et al. (1988)). Concern over acidification in the temperate regions of the northern hemisphere has been driven by the potential for accelerating natural acidification by pollution of the atmosphere with acidic or acidifying compounds. Atmospheric pollution ( Figure 1) has resulted in an increased flux of acid to and through ecosystems. Depending on the ability of an ecosystem to neutralize the increased flux of acidity, acidification may increase only imperceptibly or be accelerated at a rate that

  19. An analysis of the factors affecting Marine Corps officer retention

    OpenAIRE

    Theilmann, Robert J.

    1990-01-01

    Approved for public release; distribution unlimited. This thesis examines factors which influence the retention of male, company-grade Marine Corps officers (grades O-1 to O-3) who are within their initial period of obligated service. Data used combined responses from the 1985 DoD Survey of Officer and Enlisted Personnel and the respondents' 1989 status from the officer master fine maintained by the Defense Manpower Data Center (DMDC). Logit regression was used to measure the relative impo...

  20. The influence of hypercapnia and the infaunal brittlestar Amphiura filiformis on sediment nutrient flux – will ocean acidification affect nutrient exchange?

    Directory of Open Access Journals (Sweden)

    S. Widdicombe

    2009-10-01

    Full Text Available Rising levels of atmospheric carbon dioxide and the concomitant increased uptake of this by the oceans is resulting in hypercapnia-related reduction of ocean pH. Research focussed on the direct effects of these physicochemical changes on marine invertebrates has begun to improve our understanding of impacts at the level of individual physiologies. However, CO2-related impairment of organisms' contribution to ecological or ecosystem processes has barely been addressed. The burrowing ophiuroid Amphiura filiformis, which has a physiology that makes it susceptible to reduced pH, plays a key role in sediment nutrient cycling by mixing and irrigating the sediment, a process known as bioturbation. Here we investigate the role of A. filiformis in modifying nutrient flux rates across the sediment-water boundary and the impact of CO2- related acidification on this process. A 40 day exposure study was conducted under predicted pH scenarios from the years 2100 (pH 7.7 and 2300 (pH 7.3, plus an additional treatment of pH 6.8. This study demonstrated strong relationships between A. filiformis density and cycling of some nutrients; activity increases the sediment uptake of phosphate and the release of nitrite and nitrate. No relationship between A. filiformis density and the flux of ammonium or silicate were observed. Results also indicated that, within the timescale of this experiment, effects at the individual bioturbator level appear not to translate into reduced ecosystem influence. However, long term survival of key bioturbating species is far from assured and changes in both bioturbation and microbial processes could alter key biogeochemical processes in future, more acidic oceans.

  1. Resilience of SAR11 bacteria to rapid acidification in the high latitude open ocean

    OpenAIRE

    Hartmann, Manuela; Hill, Polly G.; Tynan, Eithne; Achterberg, Eric P.; Leakey, Raymond J. G.; Zubkov, Mikhail V.

    2016-01-01

    Ubiquitous SAR11 Alphaproteobacteria numerically dominate marine planktonic communities. Because they are excruciatingly difficult to cultivate, there is comparatively little known about their physiology and metabolic responses to long- and short- term environmental changes. As surface oceans take up anthropogenic, atmospheric CO2, the consequential process of ocean acidification could affect the global biogeochemical significance of SAR11. Shipping accidents or inadvertent release of chemica...

  2. Calcification in Caribbean reef-building corals at high pCO2 levels in a recirculating ocean acidification exposure system

    Science.gov (United States)

    Projected increases in ocean pCO2 levels are anticipated to affect calcifying organisms more rapidly and to a greater extent than other marine organisms. The effects of ocean acidification (OA) have been documented in numerous species of corals in laboratory studies, largely test...

  3. Infectious diseases affect marine fisheries and aquaculture economics

    Science.gov (United States)

    Lafferty, Kevin D.; Harvell, C. Drew; Conrad, Jonathan M.; Friedman, Carolyn S.; Kent, Michael L.; Kuris, Armand M.; Powell, Eric N.; Rondeau, Daniel; Saksida, Sonja M.

    2015-01-01

    Seafood is a growing part of the economy, but its economic value is diminished by marine diseases. Infectious diseases are common in the ocean, and here we tabulate 67 examples that can reduce commercial species' growth and survivorship or decrease seafood quality. These impacts seem most problematic in the stressful and crowded conditions of aquaculture, which increasingly dominates seafood production as wild fishery production plateaus. For instance, marine diseases of farmed oysters, shrimp, abalone, and various fishes, particularly Atlantic salmon, cost billions of dollars each year. In comparison, it is often difficult to accurately estimate disease impacts on wild populations, especially those of pelagic and subtidal species. Farmed species often receive infectious diseases from wild species and can, in turn, export infectious agents to wild species. However, the impact of disease export on wild fisheries is controversial because there are few quantitative data demonstrating that wild species near farms suffer more from infectious diseases than those in other areas. The movement of exotic infectious agents to new areas continues to be the greatest concern.

  4. Reduced resilience of a globally distributed coccolithophore to ocean acidification: Confirmed up to 2000 generations, supplement to: Jin, Peng; Gao, Kunshan (2016): Reduced resilience of a globally distributed coccolithophore to ocean acidification: Confirmed up to 2000 generations. Marine Pollution Bulletin, 103(1-2), 101-108

    KAUST Repository

    Jin, Peng

    2016-01-01

    Ocean acidification (OA), induced by rapid anthropogenic CO2 rise and its dissolution in seawater, is known to have consequences for marine organisms. However, knowledge on the evolutionary responses of phytoplankton to OA has been poorly studied. Here we examined the coccolithophore Gephyrocapsa oceanica, while growing it for 2000 generations under ambient and elevated CO2 levels. While OA stimulated growth in the earlier selection period (from generations 700 to 1550), it reduced it in the later selection period up to 2000 generations. Similarly, stimulated production of particulate organic carbon and nitrogen reduced with increasing selection period and decreased under OA up to 2000 generations. The specific adaptation of growth to OA disappeared in generations 1700 to 2000 when compared with that at 1000 generations. Both phenotypic plasticity and fitness decreased within selection time, suggesting that the species\\' resilience to OA decreased after 2000 generations under high CO2 selection.

  5. Interaction strength between different grazers and macroalgae mediated by ocean acidification over warming gradients.

    Science.gov (United States)

    Sampaio, E; Rodil, I F; Vaz-Pinto, F; Fernández, A; Arenas, F

    2017-04-01

    Since the past century, rising CO 2 levels have led to global changes (ocean warming and acidification) with subsequent effects on marine ecosystems and organisms. Macroalgae-herbivore interactions have a main role in the regulation of marine community structure (top-down control). Gradients of warming prompt complex non-linear effects on organism metabolism, cascading into altered trophic interactions and community dynamics. However, not much is known on how will acidification and grazer assemblage composition shape these effects. Within this context, we aimed to assess the combined effects of warming gradients and acidification on macroalgae-herbivore interactions, using three cosmopolitan species, abundant in the Iberian Peninsula and closely associated in nature: the amphipod Melita palmata, the gastropod Gibbula umbilicalis, and the green macroalga Ulva rigida. Under two CO 2 treatments (ΔCO 2 ≃ 450 μatm) across a temperature gradient (13.5, 16.6, 19.9 and 22.1 °C), two mesocosm experiments were performed to assess grazer consumption rates and macroalgae-herbivore interaction, respectively. Warming (Experiment I and II) and acidification (Experiment II) prompted negative effects in grazer's survival and species-specific differences in consumption rates. M. palmata was shown to be the stronger grazer per biomass (but not per capita), and also the most affected by climate stressors. Macroalgae-herbivore interaction strength was markedly shaped by the temperature gradient, while simultaneous acidification lowered thermal optimal threshold. In the near future, warming and acidification are likely to strengthen top-down control, but further increases in disturbances may lead to bottom-up regulated communities. Finally, our results suggest that grazer assemblage composition may modulate future macroalgae-herbivore interactions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Resilience of SAR11 bacteria to rapid acidification in the high-latitude open ocean.

    Science.gov (United States)

    Hartmann, Manuela; Hill, Polly G; Tynan, Eithne; Achterberg, Eric P; Leakey, Raymond J G; Zubkov, Mikhail V

    2016-02-01

    Ubiquitous SAR11 Alphaproteobacteria numerically dominate marine planktonic communities. Because they are excruciatingly difficult to cultivate, there is comparatively little known about their physiology and metabolic responses to long- and short-term environmental changes. As surface oceans take up anthropogenic, atmospheric CO2, the consequential process of ocean acidification could affect the global biogeochemical significance of SAR11. Shipping accidents or inadvertent release of chemicals from industrial plants can have strong short-term local effects on oceanic SAR11. This study investigated the effect of 2.5-fold acidification of seawater on the metabolism of SAR11 and other heterotrophic bacterioplankton along a natural temperature gradient crossing the North Atlantic Ocean, Norwegian and Greenland Seas. Uptake rates of the amino acid leucine by SAR11 cells as well as other bacterioplankton remained similar to controls despite an instant ∼50% increase in leucine bioavailability upon acidification. This high physiological resilience to acidification even without acclimation, suggests that open ocean dominant bacterioplankton are able to cope even with sudden and therefore more likely with long-term acidification effects. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Ocean Acidification and Coral Reefs: An Emerging Big Picture

    Directory of Open Access Journals (Sweden)

    John E. N. Veron

    2011-05-01

    Full Text Available This article summarises the sometimes controversial contributions made by the different sciences to predict the path of ocean acidification impacts on the diversity of coral reefs during the present century. Although the seawater carbonate system has been known for a long time, the understanding of acidification impacts on marine biota is in its infancy. Most publications about ocean acidification are less than a decade old and over half are about coral reefs. Contributions from physiological studies, particularly of coral calcification, have covered such a wide spectrum of variables that no cohesive picture of the mechanisms involved has yet emerged. To date, these studies show that coral calcification varies with carbonate ion availability which, in turn controls aragonite saturation. They also reveal synergies between acidification and the better understood role of elevated temperature. Ecological studies are unlikely to reveal much detail except for the observations of the effects of carbon dioxide springs in reefs. Although ocean acidification events are not well constrained in the geological record, recent studies show that they are clearly linked to extinction events including four of the five greatest crises in the history of coral reefs. However, as ocean acidification is now occurring faster than at any know time in the past, future predictions based on past events are in unchartered waters. Pooled evidence to date indicates that ocean acidification will be severely affecting reefs by mid century and will have reduced them to ecologically collapsed carbonate platforms by the century’s end. This review concludes that most impacts will be synergistic and that the primary outcome will be a progressive reduction of species diversity correlated with habitat loss and widespread extinctions in most metazoan phyla.

  8. Our Changing Oceans: All about Ocean Acidification

    International Nuclear Information System (INIS)

    Rickwood, Peter

    2013-01-01

    The consequences of ocean acidification are global in scale. More research into ocean acidification and its consequences is needed. It is already known, for example, that there are regional differences in the vulnerability of fisheries to acidification. The combination of other factors, such as global warming, the destruction of habitats, overfishing and pollution, need to be taken into account when developing strategies to increase the marine environment’s resilience. Among steps that can be taken to reduce the impact is better protection of marine coastal ecosystems, such as mangrove swamps and seagrass meadows, which will help protect fisheries. This recommendation was one of the conclusions of a three-day workshop attended by economists and scientists and organized by the IAEA and the Centre Scientifique de Monaco in November 2012. In their recommendations the workshop also stressed that the impact of increasing ocean acidity must be taken into account in the management of fisheries, particularly where seafood is a main dietary source

  9. Transgenerational acclimation of fishes to climate change and ocean acidification

    OpenAIRE

    Munday, Philip L.

    2014-01-01

    There is growing concern about the impacts of climate change and ocean acidification on marine organisms and ecosystems, yet the potential for acclimation and adaptation to these threats is poorly understood. Whereas many short-term experiments report negative biological effects of ocean warming and acidification, new studies show that some marine species have the capacity to acclimate to warmer and more acidic environments across generations. Consequently, transgenerational plasticity may be...

  10. Shotgun proteomics reveals physiological response to ocean acidification in Crassostrea gigas.

    Science.gov (United States)

    Timmins-Schiffman, Emma; Coffey, William D; Hua, Wilber; Nunn, Brook L; Dickinson, Gary H; Roberts, Steven B

    2014-11-03

    Ocean acidification as a result of increased anthropogenic CO2 emissions is occurring in marine and estuarine environments worldwide. The coastal ocean experiences additional daily and seasonal fluctuations in pH that can be lower than projected end-of-century open ocean pH reductions. In order to assess the impact of ocean acidification on marine invertebrates, Pacific oysters (Crassostrea gigas) were exposed to one of four different p CO2 levels for four weeks: 400 μatm (pH 8.0), 800 μatm (pH 7.7), 1000 μatm (pH 7.6), or 2800 μatm (pH 7.3). At the end of the four week exposure period, oysters in all four p CO2 environments deposited new shell, but growth rate was not different among the treatments. However, micromechanical properties of the new shell were compromised by elevated p CO2. Elevated p CO2 affected neither whole body fatty acid composition, nor glycogen content, nor mortality rate associated with acute heat shock. Shotgun proteomics revealed that several physiological pathways were significantly affected by ocean acidification, including antioxidant response, carbohydrate metabolism, and transcription and translation. Additionally, the proteomic response to a second stress differed with p CO2, with numerous processes significantly affected by mechanical stimulation at high versus low p CO2 (all proteomics data are available in the ProteomeXchange under the identifier PXD000835). Oyster physiology is significantly altered by exposure to elevated p CO2, indicating changes in energy resource use. This is especially apparent in the assessment of the effects of p CO2 on the proteomic response to a second stress. The altered stress response illustrates that ocean acidification may impact how oysters respond to other changes in their environment. These data contribute to an integrative view of the effects of ocean acidification on oysters as well as physiological trade-offs during environmental stress.

  11. Ocean Acidification and the End-Permian Mass Extinction: To What Extent does Evidence Support Hypothesis?

    OpenAIRE

    Kershaw, Stephen; Crasquin, Sylvie; Li, Yue; Collin, Pierre-Yves; Forel, Marie-Béatrice

    2012-01-01

    Ocean acidification in modern oceans is linked to rapid increase in atmospheric CO2, raising concern about marine diversity, food security and ecosystem services. Proxy evidence for acidification during past crises may help predict future change, but three issues limit confidence of comparisons between modern and ancient ocean acidification, illustrated from the end-Permian extinction, 252 million years ago: (1) problems with evidence for ocean acidification preserved in sedimentary rocks, wh...

  12. Ocean Acidification and the End-Permian Mass Extinction: To What Extent does Evidence Support Hypothesis?

    OpenAIRE

    Kershaw , Stephen; Crasquin , Sylvie; Li , Yue; Collin , Pierre-Yves; Forel , Marie-Béatrice

    2012-01-01

    International audience; Ocean acidification in modern oceans is linked to rapid increase in atmospheric CO 2 , raising concern about marine diversity, food security and ecosystem services. Proxy evidence for acidification during past crises may help predict future change, but three issues limit confidence of comparisons between modern and ancient ocean acidification, illustrated from the end-Permian extinction, 252 million years ago: (1) problems with evidence for ocean acidification preserve...

  13. Animal behaviour shapes the ecological effects of ocean acidification and warming: moving from individual to community-level responses.

    Science.gov (United States)

    Nagelkerken, Ivan; Munday, Philip L

    2016-03-01

    Biological communities are shaped by complex interactions between organisms and their environment as well as interactions with other species. Humans are rapidly changing the marine environment through increasing greenhouse gas emissions, resulting in ocean warming and acidification. The first response by animals to environmental change is predominantly through modification of their behaviour, which in turn affects species interactions and ecological processes. Yet, many climate change studies ignore animal behaviour. Furthermore, our current knowledge of how global change alters animal behaviour is mostly restricted to single species, life phases and stressors, leading to an incomplete view of how coinciding climate stressors can affect the ecological interactions that structure biological communities. Here, we first review studies on the effects of warming and acidification on the behaviour of marine animals. We demonstrate how pervasive the effects of global change are on a wide range of critical behaviours that determine the persistence of species and their success in ecological communities. We then evaluate several approaches to studying the ecological effects of warming and acidification, and identify knowledge gaps that need to be filled, to better understand how global change will affect marine populations and communities through altered animal behaviours. Our review provides a synthesis of the far-reaching consequences that behavioural changes could have for marine ecosystems in a rapidly changing environment. Without considering the pervasive effects of climate change on animal behaviour we will limit our ability to forecast the impacts of ocean change and provide insights that can aid management strategies. © 2015 John Wiley & Sons Ltd.

  14. Respiration of Mediterranean cold-water corals is not affected by ocean acidification as projected for the end of the century

    Science.gov (United States)

    Maier, C.; Bils, F.; Weinbauer, M. G.; Watremez, P.; Peck, M. A.; Gattuso, J.-P.

    2013-08-01

    The rise of CO2 has been identified as a major threat to life in the ocean. About one-third of the anthropogenic CO2 produced in the last 200 yr has been taken up by the ocean, leading to ocean acidification. Surface seawater pH is projected to decrease by about 0.4 units between the pre-industrial revolution and 2100. The branching cold-water corals Madrepora oculata and Lophelia pertusa are important, habitat-forming species in the deep Mediterranean Sea. Although previous research has investigated the abundance and distribution of these species, little is known regarding their ecophysiology and potential responses to global environmental change. A previous study indicated that the rate of calcification of these two species remained constant up to 1000 μatm CO2, a value that is at the upper end of changes projected to occur by 2100. We examined whether the ability to maintain calcification rates in the face of rising pCO2 affected the energetic requirements of these corals. Over the course of three months, rates of respiration were measured at a pCO2 ranging between 350 and 1100 μatm to distinguish between short-term response and longer-term acclimation. Respiration rates ranged from 0.074 to 0.266 μmol O2 (g skeletal dry weight)-1 h-1 and 0.095 to 0.725 μmol O2 (g skeletal dry weight)-1 h-1 for L. pertusa and M. oculata, respectively, and were independent of pCO2. Respiration increased with time likely due to regular feeding, which may have provided an increased energy supply to sustain coral metabolism. Future studies are needed to confirm whether the insensitivity of respiration to increasing pCO2 is a general feature of deep-sea corals in other regions.

  15. Respiration of Mediterranean cold-water corals is not affected by ocean acidification as projected for the end of the century

    Directory of Open Access Journals (Sweden)

    C. Maier

    2013-08-01

    Full Text Available The rise of CO2 has been identified as a major threat to life in the ocean. About one-third of the anthropogenic CO2 produced in the last 200 yr has been taken up by the ocean, leading to ocean acidification. Surface seawater pH is projected to decrease by about 0.4 units between the pre-industrial revolution and 2100. The branching cold-water corals Madrepora oculata and Lophelia pertusa are important, habitat-forming species in the deep Mediterranean Sea. Although previous research has investigated the abundance and distribution of these species, little is known regarding their ecophysiology and potential responses to global environmental change. A previous study indicated that the rate of calcification of these two species remained constant up to 1000 μatm CO2, a value that is at the upper end of changes projected to occur by 2100. We examined whether the ability to maintain calcification rates in the face of rising pCO2 affected the energetic requirements of these corals. Over the course of three months, rates of respiration were measured at a pCO2 ranging between 350 and 1100 μatm to distinguish between short-term response and longer-term acclimation. Respiration rates ranged from 0.074 to 0.266 μmol O2 (g skeletal dry weight−1 h−1 and 0.095 to 0.725 μmol O2 (g skeletal dry weight−1 h−1 for L. pertusa and M. oculata, respectively, and were independent of pCO2. Respiration increased with time likely due to regular feeding, which may have provided an increased energy supply to sustain coral metabolism. Future studies are needed to confirm whether the insensitivity of respiration to increasing pCO2 is a general feature of deep-sea corals in other regions.

  16. Cascading effects of ocean acidification in a rocky subtidal community.

    Directory of Open Access Journals (Sweden)

    Valentina Asnaghi

    Full Text Available Temperate marine rocky habitats may be alternatively characterized by well vegetated macroalgal assemblages or barren grounds, as a consequence of direct and indirect human impacts (e.g. overfishing and grazing pressure by herbivorous organisms. In future scenarios of ocean acidification, calcifying organisms are expected to be less competitive: among these two key elements of the rocky subtidal food web, coralline algae and sea urchins. In order to highlight how the effects of increased pCO2 on individual calcifying species will be exacerbated by interactions with other trophic levels, we performed an experiment simultaneously testing ocean acidification effects on primary producers (calcifying and non-calcifying algae and their grazers (sea urchins. Artificial communities, composed by juveniles of the sea urchin Paracentrotus lividus and calcifying (Corallina elongata and non-calcifying (Cystoseira amentacea var stricta, Dictyota dichotoma macroalgae, were subjected to pCO2 levels of 390, 550, 750 and 1000 µatm in the laboratory. Our study highlighted a direct pCO2 effect on coralline algae and on sea urchin defense from predation (test robustness. There was no direct effect on the non-calcifying macroalgae. More interestingly, we highlighted diet-mediated effects on test robustness and on the Aristotle's lantern size. In a future scenario of ocean acidification a decrease of sea urchins' density is expected, due to lower defense from predation, as a direct consequence of pH decrease, and to a reduced availability of calcifying macroalgae, important component of urchins' diet. The effects of ocean acidification may therefore be contrasting on well vegetated macroalgal assemblages and barren grounds: in the absence of other human impacts, a decrease of biodiversity can be predicted in vegetated macroalgal assemblages, whereas a lower density of sea urchin could help the recovery of shallow subtidal rocky areas affected by overfishing from

  17. Cascading effects of ocean acidification in a rocky subtidal community.

    Science.gov (United States)

    Asnaghi, Valentina; Chiantore, Mariachiara; Mangialajo, Luisa; Gazeau, Frédéric; Francour, Patrice; Alliouane, Samir; Gattuso, Jean-Pierre

    2013-01-01

    Temperate marine rocky habitats may be alternatively characterized by well vegetated macroalgal assemblages or barren grounds, as a consequence of direct and indirect human impacts (e.g. overfishing) and grazing pressure by herbivorous organisms. In future scenarios of ocean acidification, calcifying organisms are expected to be less competitive: among these two key elements of the rocky subtidal food web, coralline algae and sea urchins. In order to highlight how the effects of increased pCO2 on individual calcifying species will be exacerbated by interactions with other trophic levels, we performed an experiment simultaneously testing ocean acidification effects on primary producers (calcifying and non-calcifying algae) and their grazers (sea urchins). Artificial communities, composed by juveniles of the sea urchin Paracentrotus lividus and calcifying (Corallina elongata) and non-calcifying (Cystoseira amentacea var stricta, Dictyota dichotoma) macroalgae, were subjected to pCO2 levels of 390, 550, 750 and 1000 µatm in the laboratory. Our study highlighted a direct pCO2 effect on coralline algae and on sea urchin defense from predation (test robustness). There was no direct effect on the non-calcifying macroalgae. More interestingly, we highlighted diet-mediated effects on test robustness and on the Aristotle's lantern size. In a future scenario of ocean acidification a decrease of sea urchins' density is expected, due to lower defense from predation, as a direct consequence of pH decrease, and to a reduced availability of calcifying macroalgae, important component of urchins' diet. The effects of ocean acidification may therefore be contrasting on well vegetated macroalgal assemblages and barren grounds: in the absence of other human impacts, a decrease of biodiversity can be predicted in vegetated macroalgal assemblages, whereas a lower density of sea urchin could help the recovery of shallow subtidal rocky areas affected by overfishing from barren grounds to

  18. Ocean Acidification Effects on Atlantic Cod Larval Survival and Recruitment to the Fished Population.

    Science.gov (United States)

    Stiasny, Martina H; Mittermayer, Felix H; Sswat, Michael; Voss, Rüdiger; Jutfelt, Fredrik; Chierici, Melissa; Puvanendran, Velmurugu; Mortensen, Atle; Reusch, Thorsten B H; Clemmesen, Catriona

    2016-01-01

    How fisheries will be impacted by climate change is far from understood. While some fish populations may be able to escape global warming via range shifts, they cannot escape ocean acidification (OA), an inevitable consequence of the dissolution of anthropogenic carbon dioxide (CO2) emissions in marine waters. How ocean acidification affects population dynamics of commercially important fish species is critical for adapting management practices of exploited fish populations. Ocean acidification has been shown to impair fish larvae's sensory abilities, affect the morphology of otoliths, cause tissue damage and cause behavioural changes. Here, we obtain first experimental mortality estimates for Atlantic cod larvae under OA and incorporate these effects into recruitment models. End-of-century levels of ocean acidification (~1100 μatm according to the IPCC RCP 8.5) resulted in a doubling of daily mortality rates compared to present-day CO2 concentrations during the first 25 days post hatching (dph), a critical phase for population recruitment. These results were consistent under different feeding regimes, stocking densities and in two cod populations (Western Baltic and Barents Sea stock). When mortality data were included into Ricker-type stock-recruitment models, recruitment was reduced to an average of 8 and 24% of current recruitment for the two populations, respectively. Our results highlight the importance of including vulnerable early life stages when addressing effects of climate change on fish stocks.

  19. Effects of CO2-driven acidification of seawater on the calcification process in the calcareous hydrozoan Millepora alcicornis (Linnaeus, 1758)

    Science.gov (United States)

    de Barros Marangoni, Laura Fernandes; Calderon, Emiliano Nicolas; Marques, Joseane Aparecida; Duarte, Gustavo Adolpho Santos; Pereira, Cristiano Macedo; e Castro, Clovis Barreira; Bianchini, Adalto

    2017-12-01

    Ocean acidification is expected to intensify due to increasing levels in the partial pressure of atmospheric CO2 ( pCO2). This could negatively affect major calcifying reef organisms. In this study, the effects of different levels of CO2-driven acidification of seawater (control: pH 8.1; moderate: pH 7.8; intermediate: pH 7.5; and severe: pH 7.2) on the net calcification rate and activity of enzymes related to the calcification process (Ca-ATPase and carbonic anhydrase) were evaluated in the calcareous hydrozoan Millepora alcicornis. The experiment was run for 30 d using a marine mesocosm system. Net calcification ratio was significantly reduced in hydrocorals exposed to intermediate seawater acidification for 16 d and to severe seawater acidification for 16 d or 30 d, compared to animals at control conditions. However, only hydrocorals exposed to severe seawater acidification showed lower net calcification rates than those exposed to control conditions for 30 d. In accordance, the activities of enzymes involved in the calcification process markedly increased in hydrocorals exposed to reduced pH. Ca-ATPase seemed to be more sensitive to seawater acidification than carbonic anhydrase as it increased in hydrocorals exposed to intermediate and severe seawater acidification for 30 d, while carbonic anhydrase activity was only stimulated under severe seawater acidification. Therefore, our findings clearly show that the hydrocoral M. alcicornis is able to cope, to some extent, with long-term CO2-driven acidification of seawater (pH ≥ 7.5). In addition, they show that Ca-ATPase plays a key role in the maintenance of calcification rate under scenarios of moderate and intermediate levels of seawater acidification. However, the observed increase in Ca-ATPase and carbonic anhydrase activity was not enough to compensate for the effects of CO2-driven reduction in seawater pH on the net calcification rate of the hydrocoral M. alcicornis under a scenario of severe ocean

  20. Large-scale climatic anomalies affect marine predator foraging behaviour and demography

    Science.gov (United States)

    Bost, Charles A.; Cotté, Cedric; Terray, Pascal; Barbraud, Christophe; Bon, Cécile; Delord, Karine; Gimenez, Olivier; Handrich, Yves; Naito, Yasuhiko; Guinet, Christophe; Weimerskirch, Henri

    2015-10-01

    Determining the links between the behavioural and population responses of wild species to environmental variations is critical for understanding the impact of climate variability on ecosystems. Using long-term data sets, we show how large-scale climatic anomalies in the Southern Hemisphere affect the foraging behaviour and population dynamics of a key marine predator, the king penguin. When large-scale subtropical dipole events occur simultaneously in both subtropical Southern Indian and Atlantic Oceans, they generate tropical anomalies that shift the foraging zone southward. Consequently the distances that penguins foraged from the colony and their feeding depths increased and the population size decreased. This represents an example of a robust and fast impact of large-scale climatic anomalies affecting a marine predator through changes in its at-sea behaviour and demography, despite lack of information on prey availability. Our results highlight a possible behavioural mechanism through which climate variability may affect population processes.

  1. RAF 7015: Strengthening Regional Capacities for Marine Risk Assessment Using Nuclear and Related Techniques

    International Nuclear Information System (INIS)

    Okuku, E.; Mwangi, S.

    2017-01-01

    To develop and implement harmonized and integrated regional sea food safety monitoring in the MS through the application of nuclear techniques for enhanced sustainability of marine resource. Rapid urbanization and industrialization are causing alterations of the characteristics of marine environment thus threatening the ecosystem health and sustainability of marine environment and Affects public health, recreational water quality and economic viability.Threats to marine ecosystem include Over-exploitation, habitat destruction, Global warming- rise in SST, HABs and invasive species, Ocean acidification and Marine pollution

  2. How ocean acidification can benefit calcifiers.

    Science.gov (United States)

    Connell, Sean D; Doubleday, Zoë A; Hamlyn, Sarah B; Foster, Nicole R; Harley, Christopher D G; Helmuth, Brian; Kelaher, Brendan P; Nagelkerken, Ivan; Sarà, Gianluca; Russell, Bayden D

    2017-02-06

    Reduction in seawater pH due to rising levels of anthropogenic carbon dioxide (CO 2 ) in the world's oceans is a major force set to shape the future of marine ecosystems and the ecological services they provide [1,2]. In particular, ocean acidification is predicted to have a detrimental effect on the physiology of calcifying organisms [3]. Yet, the indirect effects of ocean acidification on calcifying organisms, which may counter or exacerbate direct effects, is uncertain. Using volcanic CO 2 vents, we tested the indirect effects of ocean acidification on a calcifying herbivore (gastropod) within the natural complexity of an ecological system. Contrary to predictions, the abundance of this calcifier was greater at vent sites (with near-future CO 2 levels). Furthermore, translocation experiments demonstrated that ocean acidification did not drive increases in gastropod abundance directly, but indirectly as a function of increased habitat and food (algal biomass). We conclude that the effect of ocean acidification on algae (primary producers) can have a strong, indirect positive influence on the abundance of some calcifying herbivores, which can overwhelm any direct negative effects. This finding points to the need to understand ecological processes that buffer the negative effects of environmental change. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Acid-base physiology, neurobiology and behaviour in relation to CO2-induced ocean acidification.

    Science.gov (United States)

    Tresguerres, Martin; Hamilton, Trevor J

    2017-06-15

    Experimental exposure to ocean and freshwater acidification affects the behaviour of multiple aquatic organisms in laboratory tests. One proposed cause involves an imbalance in plasma chloride and bicarbonate ion concentrations as a result of acid-base regulation, causing the reversal of ionic fluxes through GABA A receptors, which leads to altered neuronal function. This model is exclusively based on differential effects of the GABA A receptor antagonist gabazine on control animals and those exposed to elevated CO 2 However, direct measurements of actual chloride and bicarbonate concentrations in neurons and their extracellular fluids and of GABA A receptor properties in aquatic organisms are largely lacking. Similarly, very little is known about potential compensatory mechanisms, and about alternative mechanisms that might lead to ocean acidification-induced behavioural changes. This article reviews the current knowledge on acid-base physiology, neurobiology, pharmacology and behaviour in relation to marine CO 2 -induced acidification, and identifies important topics for future research that will help us to understand the potential effects of predicted levels of aquatic acidification on organisms. © 2017. Published by The Company of Biologists Ltd.

  4. Ocean acidification impacts mussel control on biomineralisation.

    Science.gov (United States)

    Fitzer, Susan C; Phoenix, Vernon R; Cusack, Maggie; Kamenos, Nicholas A

    2014-08-28

    Ocean acidification is altering the oceanic carbonate saturation state and threatening the survival of marine calcifying organisms. Production of their calcium carbonate exoskeletons is dependent not only on the environmental seawater carbonate chemistry but also the ability to produce biominerals through proteins. We present shell growth and structural responses by the economically important marine calcifier Mytilus edulis to ocean acidification scenarios (380, 550, 750, 1000 µatm pCO2). After six months of incubation at 750 µatm pCO2, reduced carbonic anhydrase protein activity and shell growth occurs in M. edulis. Beyond that, at 1000 µatm pCO2, biomineralisation continued but with compensated metabolism of proteins and increased calcite growth. Mussel growth occurs at a cost to the structural integrity of the shell due to structural disorientation of calcite crystals. This loss of structural integrity could impact mussel shell strength and reduce protection from predators and changing environments.

  5. Ocean acidification challenges copepod phenotypic plasticity

    Directory of Open Access Journals (Sweden)

    A. Vehmaa

    2016-11-01

    Full Text Available Ocean acidification is challenging phenotypic plasticity of individuals and populations. Calanoid copepods (zooplankton are shown to be fairly plastic against altered pH conditions, and laboratory studies indicate that transgenerational effects are one mechanism behind this plasticity. We studied phenotypic plasticity of the copepod Acartia sp. in the course of a pelagic, large-volume mesocosm study that was conducted to investigate ecosystem and biogeochemical responses to ocean acidification. We measured copepod egg production rate, egg-hatching success, adult female size and adult female antioxidant capacity (ORAC as a function of acidification (fCO2  ∼  365–1231 µatm and as a function of quantity and quality of their diet. We used an egg transplant experiment to reveal whether transgenerational effects can alleviate the possible negative effects of ocean acidification on offspring development. We found significant negative effects of ocean acidification on adult female size. In addition, we found signs of a possible threshold at high fCO2, above which adaptive maternal effects cannot alleviate the negative effects of acidification on egg-hatching and nauplii development. We did not find support for the hypothesis that insufficient food quantity (total particulate carbon < 55 µm or quality (C : N weakens the transgenerational effects. However, females with high-ORAC-produced eggs with high hatching success. Overall, these results indicate that Acartia sp. could be affected by projected near-future CO2 levels.

  6. Ocean acidification challenges copepod reproductive plasticity

    Science.gov (United States)

    Vehmaa, A.; Almén, A.-K.; Brutemark, A.; Paul, A.; Riebesell, U.; Furuhagen, S.; Engström-Öst, J.

    2015-11-01

    Ocean acidification is challenging phenotypic plasticity of individuals and populations. Calanoid copepods (zooplankton) are shown to be fairly plastic against altered pH conditions, and laboratory studies indicate that transgenerational effects are one mechanism behind this plasticity. We studied phenotypic plasticity of the copepod Acartia bifilosa in the course of a pelagic, large-volume mesocosm study that was conducted to investigate ecosystem and biogeochemical responses to ocean acidification. We measured copepod egg production rate, egg hatching success, adult female size and adult female antioxidant capacity (ORAC) as a function of acidification (fCO2 ~ 365-1231 μatm), and as a function of quantity and quality of their diet. We used an egg transplant experiment to reveal if transgenerational effects can alleviate the possible negative effects of ocean acidification on offspring development. We found significant negative effects of ocean acidification on adult female copepod size and egg hatching success. In addition, we found a threshold of fCO2 concentration (~ 1000 μatm), above which adaptive maternal effects cannot alleviate the negative effects of acidification on egg hatching and nauplii development. We did not find support for the hypothesis that insufficient food quantity (total particulate carbon ~ 55 μm) or quality (C : N) weakens the transgenerational effects. However, females with high ORAC produced eggs with high hatching success. Overall, these results indicate that A. bifilosa could be affected by projected near future CO2 levels.

  7. Ocean acidification challenges copepod phenotypic plasticity

    Science.gov (United States)

    Vehmaa, Anu; Almén, Anna-Karin; Brutemark, Andreas; Paul, Allanah; Riebesell, Ulf; Furuhagen, Sara; Engström-Öst, Jonna

    2016-11-01

    Ocean acidification is challenging phenotypic plasticity of individuals and populations. Calanoid copepods (zooplankton) are shown to be fairly plastic against altered pH conditions, and laboratory studies indicate that transgenerational effects are one mechanism behind this plasticity. We studied phenotypic plasticity of the copepod Acartia sp. in the course of a pelagic, large-volume mesocosm study that was conducted to investigate ecosystem and biogeochemical responses to ocean acidification. We measured copepod egg production rate, egg-hatching success, adult female size and adult female antioxidant capacity (ORAC) as a function of acidification (fCO2 ˜ 365-1231 µatm) and as a function of quantity and quality of their diet. We used an egg transplant experiment to reveal whether transgenerational effects can alleviate the possible negative effects of ocean acidification on offspring development. We found significant negative effects of ocean acidification on adult female size. In addition, we found signs of a possible threshold at high fCO2, above which adaptive maternal effects cannot alleviate the negative effects of acidification on egg-hatching and nauplii development. We did not find support for the hypothesis that insufficient food quantity (total particulate carbon < 55 µm) or quality (C : N) weakens the transgenerational effects. However, females with high-ORAC-produced eggs with high hatching success. Overall, these results indicate that Acartia sp. could be affected by projected near-future CO2 levels.

  8. Acceleration of modern acidification in the South China Sea driven by anthropogenic CO2

    Science.gov (United States)

    Liu, Yi; Peng, Zicheng; Zhou, Renjun; Song, Shaohua; Liu, Weiguo; You, Chen-Feng; Lin, Yen-Po; Yu, Kefu; Wu, Chung-Che; Wei, Gangjian; Xie, Luhua; Burr, George S.; Shen, Chuan-Chou

    2014-01-01

    Modern acidification by the uptake of anthropogenic CO2 can profoundly affect the physiology of marine organisms and the structure of ocean ecosystems. Centennial-scale global and regional influences of anthropogenic CO2 remain largely unknown due to limited instrumental pH records. Here we present coral boron isotope-inferred pH records for two periods from the South China Sea: AD 1048–1079 and AD 1838–2001. There are no significant pH differences between the first period at the Medieval Warm Period and AD 1830–1870. However, we find anomalous and unprecedented acidification during the 20th century, pacing the observed increase in atmospheric CO2. Moreover, pH value also varies in phase with inter-decadal changes in Asian Winter Monsoon intensity. As the level of atmospheric CO2 keeps rising, the coupling global warming via weakening the winter monsoon intensity could exacerbate acidification of the South China Sea and threaten this expansive shallow water marine ecosystem. PMID:24888785

  9. Ocean acidification risk assessment for Alaska's fishery sector

    Science.gov (United States)

    Mathis, J. T.; Cooley, S. R.; Lucey, N.; Colt, S.; Ekstrom, J.; Hurst, T.; Hauri, C.; Evans, W.; Cross, J. N.; Feely, R. A.

    2015-08-01

    The highly productive fisheries of Alaska are located in seas projected to experience strong global change, including rapid transitions in temperature and ocean acidification-driven changes in pH and other chemical parameters. Many of the marine organisms that are most intensely affected by ocean acidification (OA) contribute substantially to the state's commercial fisheries and traditional subsistence way of life. Prior studies of OA's potential impacts on human communities have focused only on possible direct economic losses from specific scenarios of human dependence on commercial harvests and damages to marine species. However, other economic and social impacts, such as changes in food security or livelihoods, are also likely to result from climate change. This study evaluates patterns of dependence on marine resources within Alaska that could be negatively impacted by OA and current community characteristics to assess the potential risk to the fishery sector from OA. Here, we used a risk assessment framework based on one developed by the Intergovernmental Panel on Climate Change to analyze earth-system global ocean model hindcasts and projections of ocean chemistry, fisheries harvest data, and demographic information. The fisheries examined were: shellfish, salmon and other finfish. The final index incorporates all of these data to compare overall risk among Alaska's federally designated census areas. The analysis showed that regions in southeast and southwest Alaska that are highly reliant on fishery harvests and have relatively lower incomes and employment alternatives likely face the highest risk from OA. Although this study is an intermediate step toward our full understanding, the results presented here show that OA merits consideration in policy planning, as it may represent another challenge to Alaskan communities, some of which are already under acute socio-economic strains.

  10. The impacts of pharmaceutical drugs under ocean acidification: New data on single and combined long-term effects of carbamazepine on Scrobicularia plana.

    Science.gov (United States)

    Freitas, Rosa; Almeida, Ângela; Calisto, Vânia; Velez, Cátia; Moreira, Anthony; Schneider, Rudolf J; Esteves, Valdemar I; Wrona, Frederick J; Figueira, Etelvina; Soares, Amadeu M V M

    2016-01-15

    Ocean acidification and increasing discharges of pharmaceutical contaminants into aquatic systems are among key and/or emerging drivers of environmental change affecting marine ecosystems. A growing body of evidence demonstrates that ocean acidification can have direct and indirect impacts on marine organisms although combined effects with other stressors, namely with pharmaceuticals, have received very little attention to date. The present study aimed to evaluate the impacts of the pharmaceutical drug Carbamazepine and pH 7.1, acting alone and in combination, on the clam Scrobicularia plana. For this, a long-term exposure (28 days)was conducted and a set of oxidative stress markers was investigated. The results obtained showed that S. plana was able to develop mechanisms to prevent oxidative damage when under low pH for a long period, presenting higher survival when exposed to this stressor compared to CBZ or the combination of CBZ with pH 7.1. Furthermore, the toxicity of CBZ on S. plana was synergistically increased under ocean acidification conditions (CBZ + pH 7.1): specimens survival was reduced and oxidative stress was enhanced when compared to single exposures. These findings add to the growing body of evidence that ocean acidification will act to increase the toxicity of CBZ to marine organisms,which has clear implications for coastal benthic ecosystems suffering chronic pollution from pharmaceutical drugs.

  11. Ocean Acidification Product Suite

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Scientists within the ACCRETE (Acidification, Climate, and Coral Reef Ecosystems Team) Lab of AOML_s Ocean Chemistry and Ecosystems Division (OCED) have constructed...

  12. Ocean Acidification | Smithsonian Ocean Portal

    Science.gov (United States)

    Natural History Blog For Educators At The Museum Media Archive Ocean Life & Ecosystems Mammals Sharks Mangroves Poles Census of Marine Life Planet Ocean Tides & Currents Waves & Storms The Seafloor ocean is affected. Such a relatively quick change in ocean chemistry doesn't give marine life, which

  13. Calcification rates of the Caribbean reef-building coral Siderastrea siderea adversely affected by both seawater warming and CO2-induced ocean acidification

    Science.gov (United States)

    Horvath, K. M.; Connolly, B. D.; Westfield, I. T.; Chow, E.; Castillo, K. D.; Ries, J. B.

    2013-05-01

    The Intergovernmental Panel on Climate Change (IPCC) predicts that atmospheric pCO2 will increase to ca. 550-950 ppm by the end of the century, primarily due to the anthropogenic combustion of fossil fuels, deforestation, and cement production. This is predicted to cause SST to increase by 1-3 °C and seawater pH to decrease by 0.1-0.3 units. Laboratory studies have shown that warming depresses calcification rates of scleractinian corals and that acidification yields mixed effects on coral calcification. With both warming and ocean acidification predicted for the next century, we must constrain the interactive effects of these two CO2-induced stressors on scleractinian coral calcification. Here, we present the results of experiments designed to assess the response of the scleractinian coral Siderastrea siderea to both ocean warming and acidification. Coral fragments (12/tank) were reared for 60 days under three temperatures (25.1± 0.02 °C, 28.0± 0.02 °C, 31.8± 0.02 °C) at near modern pCO2 (436 ± 7) and near the highest IPCC estimate for atmospheric pCO2 for the year 2100 AD (883 ± 16). Each temperature and pCO2 treatment was executed in triplicate and contained similarly sized S. Siderea fragments obtained from the same suite of coral colonies equitably distributed amongst the nearshore, backreef, and forereef zones of the Mesoamerican Barrier Reef System off the coast of southern Belize. Individual coral fragments were hand fed Artemia sp. to satiation twice weekly. Weekly seawater samples (250 ml) were collected and analyzed for dissolved inorganic carbon via coulometry and total alkalinity via closed-cell potentiometric titration. Seawater pCO2, pH, carbonate ion concentration, bicarbonate ion concentration, aqueous CO2, and aragonite saturation state (ΩA) were calculated with the program CO2SYS. Under near-modern atmospheric pCO2 of ca. 436 ± 7 ppm, seawater warming from 25 to 28 to 32°C caused coral calcification rates (estimated from change in

  14. Analysis of chemical factors affecting marine ecosystem around nuclear power plant

    International Nuclear Information System (INIS)

    Chun, Kwan Sik; Choi, Yoon Dong; Chun, Ki Jeong; Kim, Jin Kyu; Jung, Kyeong Chai; Lee, Yeong Keun; Park, Hyo Kook

    1994-06-01

    The ecological data of the coastal area of Youngkwang nuclear power plant from 1987 to 1993 were comprehensively analyzed, and various physical and chemical properties of sea water and sediments were measured. Major factors affecting phytoplankton standing crops were suspended substances, nitrate, and silicate. The contents of iron, chromium, copper, and sulfur in sediments sampled from the discharge channel were slightly higher than those in the other areas. In order to qantify the chemical impacts on marine ecosystem, it is desirable that a systematic survey be made through the whole year cycle to assure the consistency and confidence of the related data. (Author)

  15. Arctic ocean acidification: pelagic ecosystem and biogeochemical responses during a mesocosm study

    NARCIS (Netherlands)

    Riebesell, U.; Gattuso, J.-P.; Thingstad, T.F.; Middelburg, J.J.

    2013-01-01

    The growing evidence of potential biological impacts of ocean acidification affirms that this global change phenomenon may pose a serious threat to marine organisms and ecosystems. Whilst ocean acidification will occur everywhere, it will happen more rapidly in some regions than in others. Due

  16. Faster recovery of a diatom from UV damage under ocean acidification.

    Science.gov (United States)

    Wu, Yaping; Campbell, Douglas A; Gao, Kunshan

    2014-11-01

    Diatoms are the most important group of primary producers in marine ecosystems. As oceanic pH declines and increased stratification leads to the upper mixing layer becoming shallower, diatoms are interactively affected by both lower pH and higher average exposures to solar ultraviolet radiation. The photochemical yields of a model diatom, Phaeodactylum tricornutum, were inhibited by ultraviolet radiation under both growth and excess light levels, while the functional absorbance cross sections of the remaining photosystem II increased. Cells grown under ocean acidification (OA) were less affected during UV exposure. The recovery of PSII under low photosynthetically active radiation was much faster than in the dark, indicating that photosynthetic processes were essential for the full recovery of photosystem II. This light dependent recovery required de novo synthesized protein. Cells grown under ocean acidification recovered faster, possibly attributable to higher CO₂ availability for the Calvin cycle producing more resources for repair. The lower UV inhibition combined with higher recovery rate under ocean acidification could benefit species such as P.tricornutum, and change their competitiveness in the future ocean. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Odor tracking in sharks is reduced under future ocean acidification conditions.

    Science.gov (United States)

    Dixson, Danielle L; Jennings, Ashley R; Atema, Jelle; Munday, Philip L

    2015-04-01

    Recent studies show that ocean acidification impairs sensory functions and alters the behavior of teleost fishes. If sharks and other elasmobranchs are similarly affected, this could have significant consequences for marine ecosystems globally. Here, we show that projected future CO2 levels impair odor tracking behavior of the smooth dogfish (Mustelus canis). Adult M. canis were held for 5 days in a current-day control (405 ± 26 μatm) and mid (741 ± 22 μatm) or high CO2 (1064 ± 17 μatm) treatments consistent with the projections for the year 2100 on a 'business as usual' scenario. Both control and mid CO2 -treated individuals maintained normal odor tracking behavior, whereas high CO2 -treated sharks significantly avoided the odor cues indicative of food. Control sharks spent >60% of their time in the water stream containing the food stimulus, but this value fell below 15% in high CO2 -treated sharks. In addition, sharks treated under mid and high CO2 conditions reduced attack behavior compared to the control individuals. Our findings show that shark feeding could be affected by changes in seawater chemistry projected for the end of this century. Understanding the effects of ocean acidification on critical behaviors, such as prey tracking in large predators, can help determine the potential impacts of future ocean acidification on ecosystem function. © 2014 John Wiley & Sons Ltd.

  18. Towards improved socio-economic assessments of ocean acidification's impacts.

    Science.gov (United States)

    Hilmi, Nathalie; Allemand, Denis; Dupont, Sam; Safa, Alain; Haraldsson, Gunnar; Nunes, Paulo A L D; Moore, Chris; Hattam, Caroline; Reynaud, Stéphanie; Hall-Spencer, Jason M; Fine, Maoz; Turley, Carol; Jeffree, Ross; Orr, James; Munday, Philip L; Cooley, Sarah R

    2013-01-01

    Ocean acidification is increasingly recognized as a component of global change that could have a wide range of impacts on marine organisms, the ecosystems they live in, and the goods and services they provide humankind. Assessment of these potential socio-economic impacts requires integrated efforts between biologists, chemists, oceanographers, economists and social scientists. But because ocean acidification is a new research area, significant knowledge gaps are preventing economists from estimating its welfare impacts. For instance, economic data on the impact of ocean acidification on significant markets such as fisheries, aquaculture and tourism are very limited (if not non-existent), and non-market valuation studies on this topic are not yet available. Our paper summarizes the current understanding of future OA impacts and sets out what further information is required for economists to assess socio-economic impacts of ocean acidification. Our aim is to provide clear directions for multidisciplinary collaborative research.

  19. Ocean acidification: the other CO2 problem.

    Science.gov (United States)

    Doney, Scott C; Fabry, Victoria J; Feely, Richard A; Kleypas, Joan A

    2009-01-01

    Rising atmospheric carbon dioxide (CO2), primarily from human fossil fuel combustion, reduces ocean pH and causes wholesale shifts in seawater carbonate chemistry. The process of ocean acidification is well documented in field data, and the rate will accelerate over this century unless future CO2 emissions are curbed dramatically. Acidification alters seawater chemical speciation and biogeochemical cycles of many elements and compounds. One well-known effect is the lowering of calcium carbonate saturation states, which impacts shell-forming marine organisms from plankton to benthic molluscs, echinoderms, and corals. Many calcifying species exhibit reduced calcification and growth rates in laboratory experiments under high-CO2 conditions. Ocean acidification also causes an increase in carbon fixation rates in some photosynthetic organisms (both calcifying and noncalcifying). The potential for marine organisms to adapt to increasing CO2 and broader implications for ocean ecosystems are not well known; both are high priorities for future research. Although ocean pH has varied in the geological past, paleo-events may be only imperfect analogs to current conditions.

  20. Ocean acidification alters the otoliths of a pantropical fish species with implications for sensory function.

    Science.gov (United States)

    Bignami, Sean; Enochs, Ian C; Manzello, Derek P; Sponaugle, Su; Cowen, Robert K

    2013-04-30

    Ocean acidification affects a wide diversity of marine organisms and is of particular concern for vulnerable larval stages critical to population replenishment and connectivity. Whereas it is well known that ocean acidification will negatively affect a range of calcareous taxa, the study of fishes is more limited in both depth of understanding and diversity of study species. We used new 3D microcomputed tomography to conduct in situ analysis of the impact of ocean acidification on otolith (ear stone) size and density of larval cobia (Rachycentron canadum), a large, economically important, pantropical fish species that shares many life history traits with a diversity of high-value, tropical pelagic fishes. We show that 2,100 μatm partial pressure of carbon dioxide (pCO2) significantly increased not only otolith size (up to 49% greater volume and 58% greater relative mass) but also otolith density (6% higher). Estimated relative mass in 800 μatm pCO2 treatments was 14% greater, and there was a similar but nonsignificant trend for otolith size. Using a modeling approach, we demonstrate that these changes could affect auditory sensitivity including a ∼50% increase in hearing range at 2,100 μatm pCO2, which may alter the perception of auditory information by larval cobia in a high-CO2 ocean. Our results indicate that ocean acidification has a graded effect on cobia otoliths, with the potential to substantially influence the dispersal, survival, and recruitment of a pelagic fish species. These results have important implications for population maintenance/replenishment, connectivity, and conservation efforts for other valuable fish stocks that are already being deleteriously impacted by overfishing.

  1. Economic costs of ocean acidification: a look into the impact on shellfish production

    NARCIS (Netherlands)

    Narita, D.; Rehdanz, K.; Tol, R.S.J.

    2012-01-01

    Ocean acidification is increasingly recognized as a major global problem. Yet economic assessments of its effects are currently almost absent. Unlike most other marine organisms, mollusks, which have significant commercial value worldwide, have relatively solid scientific evidence of biological

  2. Effects of ocean acidification, temperature and nutrient regimes on the appendicularian Oikopleura dioica: a mesocosm study

    DEFF Research Database (Denmark)

    Troedsson, Christofer; Bouquet, Jean-Marie; Lobon, Carla M.

    2012-01-01

    , temperature and nutrient levels, consistent with hypotheses concerning gelatinous zooplankton in future oceans. This suggests appendicularians will play more important roles in marine pelagic communities and vertical carbon transport under projected ocean acidification and elevated temperature scenarios....

  3. EPOCA/EUR-OCEANS data compilation on the biological and biogeochemical responses to ocean acidification

    OpenAIRE

    Nisumaa Anne-Marin; Pesant Stephane; Bellerby Richard G J; Delille Bruno; Middelburg Jack J; Orr James C; Riebesell Ulf; Tyrrell Toby; Wolf-Gladrow Dieter A; Gattuso Jean-Pierre

    2010-01-01

    The uptake of anthropogenic CO2 by the oceans has led to a rise in the oceanic partial pressure of CO2, and to a decrease in pH and carbonate ion concentration. This modification of the marine carbonate system is referred to as ocean acidification. Numerous papers report the effects of ocean acidification on marine organisms and communities but few have provided details concerning full carbonate chemistry and complementary observations. Additional...

  4. Ocean Acidification: Adaptive Challenge or Extinction Threat?

    Science.gov (United States)

    Caldeira, K.

    2012-12-01

    Most of the carbon dioxide that we emit to this atmosphere through fossil-fuel burning and deforestation is ultimately absorbed by the oceans. The effects of excess carbon dioxide on the inorganic chemistry of the ocean are largely well understood, but it is less clear what these chemical changes mean for the future of marine biota. Excess dissolved CO2 increases hydrogen-ion concentration (i.e., decreases pH) and decreases carbonate-ion concentrations, affecting the chemical speciation of nutrients and other chemicals dissolved in the ocean, and affecting the ability of organisms to form calcium carbonate shells or skeletons. Some organisms, such as corals, develop shells or skeletons made from aragonite, a particularly soluble form of calcium carbonate. The uptake of O2 and the release of CO2 from the blood of fish are affected by pH, with lower pH leading to a decrease in both O2 uptake and CO2 release. Of these concerns, the effects of excess CO2 on calcification may be the most worrisome. Doubling or quadrupling of atmospheric CO2 content within the space of a few centuries means doubling or quadrupling hydrogen-ion concentrations and halving or quartering the carbonate-ion concentration within a few centuries. Experiments and theory indicate that chemical changes of this magnitude could have important biotic consequences. Changes of this magnitude and rapidity have not occurred on this planet with the possible exception of various paroxysmal extreme events buried deep in Earth history. Most major changes to ocean chemistry occurred over millions of years allowing (i) seawater chemistry to be in approximate equilibrium with respect to riverine and sedimentary fluxes and (ii) marine biota to adapt in evolutionary time. Man's great geochemical experiment will go on at global scale for thousands of years. But experiments can be done in the laboratory in small tanks or in the sea in small enclosures only for limited periods of time. It is difficult to infer from

  5. An Integrated Assessment Model for Helping the United States Sea Scallop (Placopecten magellanicus) Fishery Plan Ahead for Ocean Acidification and Warming.

    Science.gov (United States)

    Cooley, Sarah R; Rheuban, Jennie E; Hart, Deborah R; Luu, Victoria; Glover, David M; Hare, Jonathan A; Doney, Scott C

    2015-01-01

    Ocean acidification, the progressive change in ocean chemistry caused by uptake of atmospheric CO2, is likely to affect some marine resources negatively, including shellfish. The Atlantic sea scallop (Placopecten magellanicus) supports one of the most economically important single-species commercial fisheries in the United States. Careful management appears to be the most powerful short-term factor affecting scallop populations, but in the coming decades scallops will be increasingly influenced by global environmental changes such as ocean warming and ocean acidification. In this paper, we describe an integrated assessment model (IAM) that numerically simulates oceanographic, population dynamic, and socioeconomic relationships for the U.S. commercial sea scallop fishery. Our primary goal is to enrich resource management deliberations by offering both short- and long-term insight into the system and generating detailed policy-relevant information about the relative effects of ocean acidification, temperature rise, fishing pressure, and socioeconomic factors on the fishery using a simplified model system. Starting with relationships and data used now for sea scallop fishery management, the model adds socioeconomic decision making based on static economic theory and includes ocean biogeochemical change resulting from CO2 emissions. The model skillfully reproduces scallop population dynamics, market dynamics, and seawater carbonate chemistry since 2000. It indicates sea scallop harvests could decline substantially by 2050 under RCP 8.5 CO2 emissions and current harvest rules, assuming that ocean acidification affects P. magellanicus by decreasing recruitment and slowing growth, and that ocean warming increases growth. Future work will explore different economic and management scenarios and test how potential impacts of ocean acidification on other scallop biological parameters may influence the social-ecological system. Future empirical work on the effect of ocean

  6. Reviews and Syntheses: Responses of coccolithophores to ocean acidification: a meta-analysis

    Science.gov (United States)

    Meyer, J.; Riebesell, U.

    2015-03-01

    Concerning their sensitivity to ocean acidification, coccolithophores, a group of calcifying single-celled phytoplankton, are one of the best-studied groups of marine organisms. However, in spite of the large number of studies investigating coccolithophore physiological responses to ocean acidification, uncertainties still remain due to variable and partly contradictory results. In the present study we have used all existing data in a meta-analysis to estimate the effect size of future pCO2 changes on the rates of calcification and photosynthesis and the ratio of particulate inorganic to organic carbon (PIC / POC) in different coccolithophore species. Our results indicate that ocean acidification has a negative effect on calcification and the cellular PIC / POC ratio in the two most abundant coccolithophore species: Emiliania huxleyi and Gephyrocapsa oceanica. In contrast, the more heavily calcified species Coccolithus braarudii did not show a distinct response when exposed to elevated pCO2/reduced pH. Photosynthesis in Gephyrocapsa oceanica was positively affected by high CO2, while no effect was observed for the other coccolithophore species. There was no indication that the method of carbonate chemistry manipulation was responsible for the inconsistent results regarding observed responses in calcification and the PIC / POC ratio. The perturbation method, however, appears to affect photosynthesis, as responses varied significantly between total alkalinity (TA) and dissolved inorganic carbon (DIC) manipulations. These results emphasize that coccolithophore species respond differently to ocean acidification, both in terms of calcification and photosynthesis. Where negative effects occur, they become evident at CO2 levels in the range projected for this century in the case of unabated CO2 emissions. As the data sets used in this meta-analysis do not account for adaptive responses, ecological fitness and ecosystem interactions, the question remains as to how these

  7. Communicating Ocean Acidification

    Science.gov (United States)

    Pope, Aaron; Selna, Elizabeth

    2013-01-01

    Participation in a study circle through the National Network of Ocean and Climate Change Interpretation (NNOCCI) project enabled staff at the California Academy of Sciences to effectively engage visitors on climate change and ocean acidification topics. Strategic framing tactics were used as staff revised the scripted Coral Reef Dive program,…

  8. Effect of ocean acidification on the benthic foraminifera

    NARCIS (Netherlands)

    Keul, N.; Langer, G.; de Nooijer, L.J.; Bijma, J.

    2013-01-01

    About 30% of the anthropogenically released CO2 is taken up by the oceans; such uptake causes surface ocean pH to decrease and is commonly referred to as ocean acidification (OA). Foraminifera are one of the most abundant groups of marine calcifiers, estimated to precipitate ca. 50 % of biogenic

  9. Comparative evaluation of sea-urchin larval stage sensitivity to ocean acidification.

    Science.gov (United States)

    Passarelli, M C; Cesar, A; Riba, I; DelValls, T A

    2017-10-01

    Changes in the marine carbonate system may affect various calcifying organisms. This study is aimed to compare the sensitivity of embryo-larval development of two species of sea urchins (Paracentrutos lividus and Lytechinus variegatus) collected and exposed to samples from different coastal zone (Spain and Brazil) to ocean acidification. The results showed that the larval stages are very sensitive to small changes in the seawater's pH. The larvae from P. lividus species showed to be more sensitive to acidified elutriate sediments than larvae from L. variegatus sea urchin. Furthermore, this study has demonstrated that the CO 2 enrichment in aquatic ecosystems cause changes on the mobility of the metals: Zn, Cu, Fe, Al and As, which was presented different behavior among them. Although an increase on the mobility of metals was found, the results using the principal component analysis showed that the pH reduction show the highest correlations with the toxicity and is the main cause of embryo-larval development inhibition. In this comparative study it is demonstrated that both species are able to assess potential effects of the ocean acidification related to CO 2 enrichment by both near future scenarios and the risk associated with CO 2 leakages in the Carbon Capture and Storage (CCS) process, and the importance of comparative studies in different zones to improve the understanding of the impacts caused by ocean acidification. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Tropical CO2 seeps reveal the impact of ocean acidification on coral reef invertebrate recruitment.

    Science.gov (United States)

    Allen, Ro; Foggo, Andrew; Fabricius, Katharina; Balistreri, Annalisa; Hall-Spencer, Jason M

    2017-11-30

    Rising atmospheric CO 2 concentrations are causing ocean acidification by reducing seawater pH and carbonate saturation levels. Laboratory studies have demonstrated that many larval and juvenile marine invertebrates are vulnerable to these changes in surface ocean chemistry, but challenges remain in predicting effects at community and ecosystem levels. We investigated the effect of ocean acidification on invertebrate recruitment at two coral reef CO 2 seeps in Papua New Guinea. Invertebrate communities differed significantly between 'reference' (median pH7.97, 8.00), 'high CO 2 ' (median pH7.77, 7.79), and 'extreme CO 2 ' (median pH7.32, 7.68) conditions at each reef. There were also significant reductions in calcifying taxa, copepods and amphipods as CO 2 levels increased. The observed shifts in recruitment were comparable to those previously described in the Mediterranean, revealing an ecological mechanism by which shallow coastal systems are affected by near-future levels of ocean acidification. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Marine Pharmacology in 2012–2013: Marine Compounds with Antibacterial, Antidiabetic, Antifungal, Anti-Inflammatory, Antiprotozoal, Antituberculosis, and Antiviral Activities; Affecting the Immune and Nervous Systems, and Other Miscellaneous Mechanisms of Action

    Directory of Open Access Journals (Sweden)

    Alejandro M. S. Mayer

    2017-08-01

    Full Text Available The peer-reviewed marine pharmacology literature from 2012 to 2013 was systematically reviewed, consistent with the 1998–2011 reviews of this series. Marine pharmacology research from 2012 to 2013, conducted by scientists from 42 countries in addition to the United States, reported findings on the preclinical pharmacology of 257 marine compounds. The preclinical pharmacology of compounds isolated from marine organisms revealed antibacterial, antifungal, antiprotozoal, antituberculosis, antiviral and anthelmitic pharmacological activities for 113 marine natural products. In addition, 75 marine compounds were reported to have antidiabetic and anti-inflammatory activities and affect the immune and nervous system. Finally, 69 marine compounds were shown to display miscellaneous mechanisms of action which could contribute to novel pharmacological classes. Thus, in 2012–2013, the preclinical marine natural product pharmacology pipeline provided novel pharmacology and lead compounds to the clinical marine pharmaceutical pipeline, and contributed significantly to potentially novel therapeutic approaches to several global disease categories.

  12. Differential protein expression using proteomics from a crustacean brine shrimp (Artemia sinica) under CO2-driven seawater acidification.

    Science.gov (United States)

    Chang, Xue-Jiao; Zheng, Chao-Qun; Wang, Yu-Wei; Meng, Chuang; Xie, Xiao-Lu; Liu, Hai-Peng

    2016-11-01

    Gradually increasing atmospheric CO 2 partial pressure (pCO 2 ) has caused an imbalance in carbonate chemistry and resulted in decreased seawater pH in marine ecosystems, termed seawater acidification. Anthropogenic seawater acidification is postulated to affect the physiology of many marine calcifying organisms. To understand the possible effects of seawater acidification on the proteomic responses of a marine crustacean brine shrimp (Artemia sinica) three groups of cysts were hatched and further raised in seawater at different pH levels (8.2 as control and 7.8 and 7.6 as acidification stress levels according to the predicted levels at the end of this century and next century, respectively) for 1, 7 and 14 days followed by examination of the protein expression changes via two-dimensional gel electrophoresis. Searches of protein databases revealed that 67 differential protein spots were altered due to lower pH level (7.6 and 7.8) stress in comparison to control groups (pH 8.2) by mass spectrometry. Generally, these differentially expressed proteins included the following: 1) metabolic process-related proteins involved in glycolysis and glucogenesis, nucleotide/amino acid/fatty acid metabolism, protein biosynthesis, DNA replication and apoptosis; 2) stress response-related proteins, such as peroxiredoxin, thioredoxin peroxidase, 70-kDa heat shock protein, Na/K ATPase, and ubiquinol-cytochrome c reductase; 3) immune defence-related proteins, such as prophenoloxidase and ferritin; 4) cytoskeletal-related proteins, such as myosin light chain, TCP1 subunit 2, tropomyosin and tubulin alpha chain; and 5) signal transduction-related proteins, such as phospholipase C-like protein, 14-3-3 zeta, translationally controlled tumour protein and RNA binding motif protein. Taken together, these data support the idea that CO 2 -driven seawater acidification may affect protein expression in the crustacean A. sinica and possibly also in other species that feed on brine shrimp in the

  13. Ocean acidification impacts spine integrity but not regenerative capacity of spines and tube feet in adult sea urchins

    Science.gov (United States)

    Emerson, Chloe E.; Reinardy, Helena C.; Bates, Nicholas R.

    2017-01-01

    Increasing atmospheric carbon dioxide (CO2) has resulted in a change in seawater chemistry and lowering of pH, referred to as ocean acidification. Understanding how different organisms and processes respond to ocean acidification is vital to predict how marine ecosystems will be altered under future scenarios of continued environmental change. Regenerative processes involving biomineralization in marine calcifiers such as sea urchins are predicted to be especially vulnerable. In this study, the effect of ocean acidification on regeneration of external appendages (spines and tube feet) was investigated in the sea urchin Lytechinus variegatus exposed to ambient (546 µatm), intermediate (1027 µatm) and high (1841 µatm) partial pressure of CO2 (pCO2) for eight weeks. The rate of regeneration was maintained in spines and tube feet throughout two periods of amputation and regrowth under conditions of elevated pCO2. Increased expression of several biomineralization-related genes indicated molecular compensatory mechanisms; however, the structural integrity of both regenerating and homeostatic spines was compromised in high pCO2 conditions. Indicators of physiological fitness (righting response, growth rate, coelomocyte concentration and composition) were not affected by increasing pCO2, but compromised spine integrity is likely to have negative consequences for defence capabilities and therefore survival of these ecologically and economically important organisms. PMID:28573022

  14. Ocean acidification impacts spine integrity but not regenerative capacity of spines and tube feet in adult sea urchins.

    Science.gov (United States)

    Emerson, Chloe E; Reinardy, Helena C; Bates, Nicholas R; Bodnar, Andrea G

    2017-05-01

    Increasing atmospheric carbon dioxide (CO 2 ) has resulted in a change in seawater chemistry and lowering of pH, referred to as ocean acidification. Understanding how different organisms and processes respond to ocean acidification is vital to predict how marine ecosystems will be altered under future scenarios of continued environmental change. Regenerative processes involving biomineralization in marine calcifiers such as sea urchins are predicted to be especially vulnerable. In this study, the effect of ocean acidification on regeneration of external appendages (spines and tube feet) was investigated in the sea urchin Lytechinus variegatus exposed to ambient (546 µatm), intermediate (1027 µatm) and high (1841 µatm) partial pressure of CO 2 ( p CO 2 ) for eight weeks. The rate of regeneration was maintained in spines and tube feet throughout two periods of amputation and regrowth under conditions of elevated p CO 2 . Increased expression of several biomineralization-related genes indicated molecular compensatory mechanisms; however, the structural integrity of both regenerating and homeostatic spines was compromised in high p CO 2 conditions. Indicators of physiological fitness (righting response, growth rate, coelomocyte concentration and composition) were not affected by increasing p CO 2 , but compromised spine integrity is likely to have negative consequences for defence capabilities and therefore survival of these ecologically and economically important organisms.

  15. Predicting the effects of ocean acidification on predator-prey interactions: a conceptual framework based on coastal molluscs.

    Science.gov (United States)

    Kroeker, Kristy J; Sanford, Eric; Jellison, Brittany M; Gaylord, Brian

    2014-06-01

    The influence of environmental change on species interactions will affect population dynamics and community structure in the future, but our current understanding of the outcomes of species interactions in a high-CO2 world is limited. Here, we draw upon emerging experimental research examining the effects of ocean acidification on coastal molluscs to provide hypotheses of the potential impacts of high-CO2 on predator-prey interactions. Coastal molluscs, such as oysters, mussels, and snails, allocate energy among defenses, growth, and reproduction. Ocean acidification increases the energetic costs of physiological processes such as acid-base regulation and calcification. Impacted molluscs can display complex and divergent patterns of energy allocation to defenses and growth that may influence predator-prey interactions; these include changes in shell properties, body size, tissue mass, immune function, or reproductive output. Ocean acidification has also been shown to induce complex changes in chemoreception, behavior, and inducible defenses, including altered cue detection and predator avoidance behaviors. Each of these responses may ultimately alter the susceptibility of coastal molluscs to predation through effects on predator handling time, satiation, and search time. While many of these effects may manifest as increases in per capita predation rates on coastal molluscs, the ultimate outcome of predator-prey interactions will also depend on how ocean acidification affects the specified predators, which also exhibit complex responses to ocean acidification. Changes in predator-prey interactions could have profound and unexplored consequences for the population dynamics of coastal molluscs in a high-CO2 ocean. © 2014 Marine Biological Laboratory.

  16. Geobiological Responses to Ocean Acidification

    Science.gov (United States)

    Potts, D. C.

    2008-12-01

    During 240Ma of evolution, scleractinian corals survived major changes in ocean chemistry, yet recent concerns with rapid acidification after ca. 40Ma of almost constant oceanic pH have tended to distract attention from natural pH variation in coastal waters, where most corals and reefs occur. Unaltered skeletal environmental proxies reflect conditions experienced by individual organisms, with any variation on micro- habitat and micro-time scales appropriate for that individual's ecology, behavior and physiology, but proxy interpretation usually extrapolates to larger spatial (habitat, region to global) and temporal (seasonal, annual, interannual) scales. Therefore, predicting consequences of acidification for both corals and reefs requires greater understanding of: 1. Many potential indirect consequences of pH change that may affect calcification and/or carbonate accretion: e.g. an individual's developmental rates, growth, final size, general physiology and reproductive success; its population's distribution and abundance, symbionts, food availability, predators and pathogens; and its community and ecosystem services. 2. Potentially diverse responses to declining pH, ranging from non-evolutionary, rapid physiological changes (acclimation) or long term (seasonal to interannual) plasticity (acclimatization) of individuals, through genetic adaptation in local populations, and up to directional changes in species" characteristics and/or radiations/extinctions. 3. The evolutionary and environmental history of an organism's lineage, its ecological (own lifetime) exposure to environmental variation, and "pre-adaptation" via other factors acting on correlated characters.

  17. Anticipating ocean acidification's economic consequences for commercial fisheries

    International Nuclear Information System (INIS)

    Cooley, Sarah R; Doney, Scott C

    2009-01-01

    Ocean acidification, a consequence of rising anthropogenic CO 2 emissions, is poised to change marine ecosystems profoundly by increasing dissolved CO 2 and decreasing ocean pH, carbonate ion concentration, and calcium carbonate mineral saturation state worldwide. These conditions hinder growth of calcium carbonate shells and skeletons by many marine plants and animals. The first direct impact on humans may be through declining harvests and fishery revenues from shellfish, their predators, and coral reef habitats. In a case study of US commercial fishery revenues, we begin to constrain the economic effects of ocean acidification over the next 50 years using atmospheric CO 2 trajectories and laboratory studies of its effects, focusing especially on mollusks. In 2007, the $3.8 billion US annual domestic ex-vessel commercial harvest ultimately contributed $34 billion to the US gross national product. Mollusks contributed 19%, or $748 million, of the ex-vessel revenues that year. Substantial revenue declines, job losses, and indirect economic costs may occur if ocean acidification broadly damages marine habitats, alters marine resource availability, and disrupts other ecosystem services. We review the implications for marine resource management and propose possible adaptation strategies designed to support fisheries and marine-resource-dependent communities, many of which already possess little economic resilience.

  18. Ocean acidification impact on copepod swimming and mating behavior: consequences for population dynamics

    Science.gov (United States)

    Seuront, L.

    2010-12-01

    There is now ample evidence that ocean acidification caused by the uptake of additional carbon dioxide from the atmosphere at the ocean surface will severely impact on marine ecosystem structure and function. To date, most research effort has focused on the impact of ocean acidification on calcifying marine organisms. These include the dissolution of calcifying plankton, reduced growth and shell thickness in gastropods and echinoderms and declining growth of reef-building corals. The effects of increasing the partial pressure in carbon dioxide and decreasing carbonate concentrations on various aspects of phytoplankton biology and ecology have received some attention. It has also recently been shown that the ability of fish larvae to discriminate between the olfactory cues of different habitat types at settlement and to detect predator olfactory cues are impaired at the level of ocean acidification predicted to occur around 2100 on a business-as-usual scenario of CO2 emissions. Average ocean pH has decreased by 0.1 units since the pre-industrial times, and it is predicted to decline another 0.3-0.4 units by 2100, which nearly corresponds to a doubling PCO2. In addition, some locations are expected to exhibit an even greater than predicted rate of decline. In this context, understanding the direct and indirect links between ocean acidification and the mortality of marine species is critical, especially for minute planktonic organisms such as copepods at the base of the ocean food chains. In this context, this work tested if ocean acidification could affect copepod swimming behavior, and subsequently affect, and ultimately disrupt, the ability of male copepods to detect and follow the pheromone plume produced by conspecific females. To ensure the generality and the ecological relevance of the present work, the species used for the experimentation are two of the most common zooplankton species found in estuarine and coastal waters of the Northern Hemisphere, the

  19. Ocean acidification in a geoengineering context

    Science.gov (United States)

    Williamson, Phillip; Turley, Carol

    2012-01-01

    Fundamental changes to marine chemistry are occurring because of increasing carbon dioxide (CO2) in the atmosphere. Ocean acidity (H+ concentration) and bicarbonate ion concentrations are increasing, whereas carbonate ion concentrations are decreasing. There has already been an average pH decrease of 0.1 in the upper ocean, and continued unconstrained carbon emissions would further reduce average upper ocean pH by approximately 0.3 by 2100. Laboratory experiments, observations and projections indicate that such ocean acidification may have ecological and biogeochemical impacts that last for many thousands of years. The future magnitude of such effects will be very closely linked to atmospheric CO2; they will, therefore, depend on the success of emission reduction, and could also be constrained by geoengineering based on most carbon dioxide removal (CDR) techniques. However, some ocean-based CDR approaches would (if deployed on a climatically significant scale) re-locate acidification from the upper ocean to the seafloor or elsewhere in the ocean interior. If solar radiation management were to be the main policy response to counteract global warming, ocean acidification would continue to be driven by increases in atmospheric CO2, although with additional temperature-related effects on CO2 and CaCO3 solubility and terrestrial carbon sequestration. PMID:22869801

  20. Rapid transcriptional acclimation following transgenerational exposure of oysters to ocean acidification.

    Science.gov (United States)

    Goncalves, Priscila; Anderson, Kelli; Thompson, Emma L; Melwani, Aroon; Parker, Laura M; Ross, Pauline M; Raftos, David A

    2016-10-01

    Marine organisms need to adapt in order to cope with the adverse effects of ocean acidification and warming. Transgenerational exposure to CO2 stress has been shown to enhance resilience to ocean acidification in offspring from a number of species. However, the molecular basis underlying such adaptive responses is currently unknown. Here, we compared the transcriptional profiles of two genetically distinct oyster breeding lines following transgenerational exposure to elevated CO2 in order to explore the molecular basis of acclimation or adaptation to ocean acidification in these organisms. The expression of key target genes associated with antioxidant defence, metabolism and the cytoskeleton was assessed in oysters exposed to elevated CO2 over three consecutive generations. This set of target genes was chosen specifically to test whether altered responsiveness of intracellular stress mechanisms contributes to the differential acclimation of oyster populations to climate stressors. Transgenerational exposure to elevated CO2 resulted in changes to both basal and inducible expression of those key target genes (e.g. ecSOD, catalase and peroxiredoxin 6), particularly in oysters derived from the disease-resistant, fast-growing B2 line. Exposure to CO2 stress over consecutive generations produced opposite and less evident effects on transcription in a second population that was derived from wild-type (nonselected) oysters. The analysis of key target genes revealed that the acute responses of oysters to CO2 stress appear to be affected by population-specific genetic and/or phenotypic traits and by the CO2 conditions to which their parents had been exposed. This supports the contention that the capacity for heritable change in response to ocean acidification varies between oyster breeding lines and is mediated by parental conditioning. © 2016 John Wiley & Sons Ltd.

  1. Predicting watershed acidification under alternate rainfall conditions

    International Nuclear Information System (INIS)

    Huntington, T.G.

    1996-01-01

    The effect of alternate rainfall scenarios on acidification of a forested watershed subjected to chronic acidic deposition was assessed using the model of acidification of groundwater in catchments (MAGIC). The model was calibrated at the Panola Mountain Research Watershed, near Atlanta, Georgia, USA using measured soil properties, wet and dry deposition, and modeled hydrologic routing. Model forecast simulations were evaluated to compare alternate temporal averaging of rainfall inputs and variations in rainfall amount and seasonal distribution. Soil water alkalinity was predicted to decrease to substantially lower concentrations under lower rainfall compared with current or higher rainfall conditions. Soil water alkalinity was also predicted to decrease to lower levels when the majority of rainfall occurred during the growing season compared with other rainfall distributions. Changes in rainfall distribution that result in decreases in net soil water flux will temporarily delay acidification. Ultimately, however, decreased soilwater flux will result in larger increases in soil-adsorbed sulfur and soil-water sulfate concentrations and decreases in alkalinity when compared to higher water flux conditions. Potential climate change resulting in significant changes in rainfall amounts, seasonal distributions of rainfall, or evapotranspiration will change net soil water flux and, consequently, will affect the dynamics of the acidification response to continued sulfate loading. 29 refs., 7 figs., 4 tabs

  2. Ocean acidification alters predator behaviour and reduces predation rate.

    Science.gov (United States)

    Watson, Sue-Ann; Fields, Jennifer B; Munday, Philip L

    2017-02-01

    Ocean acidification poses a range of threats to marine invertebrates; however, the emerging and likely widespread effects of rising carbon dioxide (CO 2 ) levels on marine invertebrate behaviour are still little understood. Here, we show that ocean acidification alters and impairs key ecological behaviours of the predatory cone snail Conus marmoreus Projected near-future seawater CO 2 levels (975 µatm) increased activity in this coral reef molluscivore more than threefold (from less than 4 to more than 12 mm min -1 ) and decreased the time spent buried to less than one-third when compared with the present-day control conditions (390 µatm). Despite increasing activity, elevated CO 2 reduced predation rate during predator-prey interactions with control-treated humpbacked conch, Gibberulus gibberulus gibbosus; 60% of control predators successfully captured and consumed their prey, compared with only 10% of elevated CO 2 predators. The alteration of key ecological behaviours of predatory invertebrates by near-future ocean acidification could have potentially far-reaching implications for predator-prey interactions and trophic dynamics in marine ecosystems. Combined evidence that the behaviours of both species in this predator-prey relationship are altered by elevated CO 2 suggests food web interactions and ecosystem structure will become increasingly difficult to predict as ocean acidification advances over coming decades. © 2017 The Author(s).

  3. Marine organic geochemistry in industrially affected coastal areas in Greece: Hydrocarbons in surface sediments

    Science.gov (United States)

    Hatzianestis, Ioannis

    2015-04-01

    Hydrocarbons are abundant components of the organic material in coastal zones. Their sources are mainly anthropogenic, but several natural ones have also been recognized. Among hydrocarbons, the polycyclic aromatic ones (PAHs) have received special attention since they considered as hazardous environmental chemicals and are included in priority pollutant lists. The purpose of this study was to investigate the distribution, sources and transport pathways of hydrocarbons in marine areas in Greece directly influenced from the operation of major industrial units in the coastal zone by using a molecular marker approach, characteristic compositional patterns and related indices and also to evaluate their potential toxicity. Thirty two surface sediment samples were collected from three marine areas: a) Antikyra bay in Korinthiakos gulf, affected from the operation of an alumina and production plant b) Larymna bay in Noth Evoikos, affected from the operation of a nickel production plant and c) Aliveri bay in South Evoikos Gulf, affected from a cement production plant. In all the studied areas aquaculture and fishing activities have been also developed in the coastal zone. High aliphatic hydrocarbon (AHC) concentrations (~500 μg/g), indicating significant petroleum related inputs, were measured only in Antikyra bay. In all the other samples, AHC values were below 100 μg/g. N-alkanes were the most prominent resolved components (R) with an elevated odd to even carbon number preference, revealing the high importance of terrestrial inputs in the study areas. The unresolved complex mixture (UCM) was the major component of the aliphatic fraction (UCM/R > 4), indicating a chronic oil pollution. A series of hopanes were also identified, with patterns characteristic of oil-derived hydrocarbons, further confirming the presence of pollutant inputs from fossil fuel products. Extremely high PAH concentrations (> 100,000 ng/g) were found in the close vicinity of the alumina production

  4. Neither elevated nor reduced CO2 affects the photophysiological performance of the marine Antarctic diatom Chaetoceros brevis

    NARCIS (Netherlands)

    Boelen, Peter; de Poll, Willem H. van; van der Strate, Han J.; Neven, Ika A.; Beardall, John; Buma, Anita G. J.

    2011-01-01

    Enhanced or reduced pCO(2) (partial pressure of CO2) may affect the photosynthetic performance of marine microalgae since changes in pCO(2) can influence the activity of carbon concentrating mechanisms, modulate cellular RuBisCO levels or alter carbon uptake efficiency. In the present study we

  5. Does proximity to urban centres affect the dietary regime of marine benthic filter feeders?

    Science.gov (United States)

    Puccinelli, Eleonora; Noyon, Margaux; McQuaid, Christopher D.

    2016-02-01

    Threats to marine ecosystems include habitat destruction and degradation of water quality, resulting from land- and ocean-based human activities. Anthropogenic input causing modification of water quality, can affect primary productivity and thus food availability and quality for higher trophic levels. This is especially important for sedentary benthic intertidal communities, which rely on local food availability. We investigated the effect of urbanization on the dietary regime of four species of intertidal filter feeders (three barnacles and one mussel) at sites close to high-density cities and at sites far from heavily urbanized areas using fatty acid and stable isotope techniques. δ15N was significantly higher at urbanized sites compared to their corresponding control sites for all species with few exceptions, while no effect on δ13C was recorded. Barnacle fatty acid profiles were not affected by cities, while mussels from sites close to cities had fatty acid signatures with a higher proportion of polyunsaturated fatty acids (PUFA). We suggest that the enrichment in δ15N at urbanised sites reflects the influence of anthropogenically derived nitrogen directly linked to wastewater input from domestic and industrial sewage. Linked to this, the high proportion of PUFA in mussels at urbanized sites may reflect the influence of increased nitrogen concentrations on primary production and enhanced growth of large phytoplankton cells. The results indicate that anthropogenic effects can strongly influence the diets of benthic organisms, but these effects differ among taxa. Changes in the diet of such habitat forming species can affect their fitness and survival with potential effects on the populations associated with them.

  6. Using an Environmental Intelligence Framework to Evaluate the Impacts of Ocean Acidification in the Arctic

    Science.gov (United States)

    Mathis, J. T.; Baskin, M.; Cross, J.

    2016-12-01

    The highly productive coastal seas of the Arctic Ocean are located in areas that are projected to experience strong global change, including rapid transitions in temperature and ocean acidification-driven changes in pH and other chemical parameters. Many of the marine organisms that may be most intensely affected by ocean acidification (OA) and other environmental stressors contribute substantially to the commercial fisheries of the Bering Sea and traditional subsistence food supplies across the Arctic. This could represent a looming challenge in many communities as the average prevalence of household food insecurity and very low food security in Alaska are already 12 percent and 4.3 percent, respectively. Here, we evaluate the patterns of dependence on marine resources within Alaska's Arctic that could be negatively impacted by OA and current community characteristics to assess the potential risk to the fishery sector from OA. We used a risk assessment framework to analyze an earth-system global model of ocean chemistry, fisheries harvest data, and demographic information. The analysis showed that regions around Alaska vary in their vulnerability to OA, but that each one will have to deal with possible impacts. Therefore, OA merits consideration in policy planning, as it may represent another challenge to Alaskan communities, some of which are already under acute socio-economic strains. With this in mind, we will present a number of adaptation strategies for communities living throughout Alaska's Arctic that could be applicable to other Arctic regions.

  7. Juvenile Pen Shells (Pinna nobilis) Tolerate Acidification but Are Vulnerable to Warming

    KAUST Repository

    Basso, Lorena

    2015-02-25

    In the course of this century, rising anthropogenic CO2 emissions will likely cause a decrease in ocean pH, know as ocean acidification, together with an increase of water temperature. Only in the last years, studies have focused on synergetic effects of both stressors on marine invertebrates, particularly on early life stages considered more vulnerable. Disparate responses of their singular and combined effects were reported, highlighting the importance of extending the studies to different species and populations of marine invertebrates. Here, we observed the response of important parameters such as growth, mortality and oxygen consumption of juvenile pen shell Pinna nobilis at supplied pCO2 gas levels of 400 ppm (ambient) and 1000 ppm and at three temperatures (20, 23 and 26 °C) during 36 days. To our knowledge, this is the first study on ocean acidification and temperature effects on juveniles of this species. We show that the two stressors play roles at distinct levels, with pCO2 influencing growth and partially mortality, and temperature increasing mortality rates and oxygen consumption strongly. Therefore, juveniles of P. nobilis are more likely affected by increasing temperature than the pCO2 levels expected by the end of the twenty-first century.

  8. The Phenomenom of Ocean Acidification

    Science.gov (United States)

    Weiss, S.

    2017-12-01

    The earth is 70% and is protected by its atmosphere. The atmosphere is made up of several layers. The sunlight penetrates through the atmosphere and warms the earth surface. The earth's surface then in turn emits invisible infrared radiation back. As this radiation moves back up each layer absorbs some of it. Each layer then sends some of this energy back to earth again. When the layer becomes so thin the energy then escapes back into space. When we are adding more carbon dioxide to these layers we are causing the layers to absorb more of the energy and the radiation. This in turn causes the layers to become warmer since fewer radiation moves up through the layers and this energy bounces back to earth increasing the temperatures. The entire planet is taking on more of this energy and hence the temperatures are rising. The ocean plays a big rule in this change. It has prevented some of the CO2 from entering the earth's atmosphere. Oceans absorb about one third of the anthropogenic CO2 causing the phenomenon of ocean acidification and this comes at a huge cost to our marine environments. The CO2 is absorbed on the surface and then transferred into the deeper waters. Which causes it to be stuck for centuries before making its way back into the atmosphere. As the CO2 dissolves in seawater it causes the PH to lower. With a lowered PH water becomes more acidic. The Hydrogen ions decrease and become less active. With this process carbonic acid is formed. The ocean now is more acidic then it has ever been in the past 650,000 years. The increase in acidic levels has caused our marine life to adjust. Acidosis caused by the increase of carbonic acid in the body fluids means a lower pH in the blood. This changes is just the start to many health issues for these organism's.

  9. Combined effects of ocean acidification and temperature on planula larvae of the moon jellyfish Aurelia coerulea.

    Science.gov (United States)

    Dong, Zhijun; Sun, Tingting

    2018-08-01

    Rapidly rising levels of atmospheric CO 2 have caused two environmental stressors, ocean acidification and seawater temperature increases, which represent major abiotic threats to marine organisms. Here, we investigated for the first time the combined effects of ocean acidification and seawater temperature increases on the behavior, survival, and settlement of the planula larvae of Aurelia coerulea, which is considered a nuisance species around the world. Three pH levels (8.1, 7.7 and 7.3) and two temperature levels (24 °C and 27 °C) were used in the present study. There were no interactive effects of temperature and pH on the behavior, survival, and settlement of planula larvae of A. coerulea. We found that the swimming speed and mortality of the planula larvae of A. coerulea were significantly affected by temperature, and low pH significantly affected settlement. Planula larvae of A. coerulea from the elevated temperature treatment moved faster and showed higher mortality than those at the control temperature. The settlement rate of A. coerulea planulae was significantly higher at the pH level of 7.3 than at other pH levels. These results suggest that seawater temperature increase, rather than reduced pH, was the main stress factor affecting the survival of A. coerulea planulae. Overall, the planula larvae of the common jellyfish A. coerulea appeared to be resistant to ocean acidification, but may be negatively affected by future seawater temperature increases. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Chemoreception of the Seagrass Posidonia Oceanica by Benthic Invertebrates is Altered by Seawater Acidification.

    Science.gov (United States)

    Zupo, Valerio; Maibam, Chingoileima; Buia, Maria Cristina; Gambi, Maria Cristina; Patti, Francesco Paolo; Scipione, Maria Beatrice; Lorenti, Maurizio; Fink, Patrick

    2015-08-01

    Several plants and invertebrates interact and communicate by means of volatile organic compounds (VOCs). These compounds may play the role of infochemicals, being able to carry complex information to selected species, thus mediating inter- or intra-specific communications. Volatile organic compounds derived from the wounding of marine diatoms, for example, carry information for several benthic and planktonic invertebrates. Although the ecological importance of VOCs has been demonstrated, both in terrestrial plants and in marine microalgae, their role as infochemicals has not been demonstrated in seagrasses. In addition, benthic communities, even the most complex and resilient, as those associated to seagrass meadows, are affected by ocean acidification at various levels. Therefore, the acidification of oceans could produce interference in the way seagrass-associated invertebrates recognize and choose their specific environments. We simulated the wounding of Posidonia oceanica leaves collected at two sites (a control site at normal pH, and a naturally acidified site) off the Island of Ischia (Gulf of Naples, Italy). We extracted the VOCs and tested a set of 13 species of associated invertebrates for their specific chemotactic responses in order to determine if: a) seagrasses produce VOCs playing the role of infochemicals, and b) their effects can be altered by seawater pH. Our results indicate that several invertebrates recognize the odor of wounded P. oceanica leaves, especially those strictly associated to the leaf stratum of the seagrass. Their chemotactic reactions may be modulated by the seawater pH, thus impairing the chemical communications in seagrass-associated communities in acidified conditions. In fact, 54% of the tested species exhibited a changed behavioral response in acidified waters (pH 7.7). Furthermore, the differences observed in the abundance of invertebrates, in natural vs. acidified field conditions, are in agreement with these behavioral

  11. Sea Hare Aplysia punctata (Mollusca: Gastropoda) Can Maintain Shell Calcification under Extreme Ocean Acidification.

    Science.gov (United States)

    Carey, Nicholas; Dupont, Sam; Sigwart, Julia D

    2016-10-01

    Ocean acidification is expected to cause energetic constraints upon marine calcifying organisms such as molluscs and echinoderms, because of the increased costs of building or maintaining shell material in lower pH. We examined metabolic rate, shell morphometry, and calcification in the sea hare Aplysia punctata under short-term exposure (19 days) to an extreme ocean acidification scenario (pH 7.3, ∼2800 μatm pCO 2 ), along with a group held in control conditions (pH 8.1, ∼344 μatm pCO 2 ). This gastropod and its congeners are broadly distributed and locally abundant grazers, and have an internal shell that protects the internal organs. Specimens were examined for metabolic rate via closed-chamber respirometry, followed by removal and examination of the shell under confocal microscopy. Staining using calcein determined the amount of new calcification that occurred over 6 days at the end of the acclimation period. The width of new, pre-calcified shell on the distal shell margin was also quantified as a proxy for overall shell growth. Aplysia punctata showed a 30% reduction in metabolic rate under low pH, but calcification was not affected. This species is apparently able to maintain calcification rate even under extreme low pH, and even when under the energetic constraints of lower metabolism. This finding adds to the evidence that calcification is a largely autonomous process of crystallization that occurs as long as suitable haeomocoel conditions are preserved. There was, however, evidence that the accretion of new, noncalcified shell material may have been reduced, which would lead to overall reduced shell growth under longer-term exposures to low pH independent of calcification. Our findings highlight that the chief impact of ocean acidification upon the ability of marine invertebrates to maintain their shell under low pH may be energetic constraints that hinder growth of supporting structure, rather than maintenance of calcification.

  12. Cherchez la femme - impact of ocean acidification on the egg jelly coat and attractants for sperm.

    Science.gov (United States)

    Foo, Shawna A; Deaker, Dione; Byrne, Maria

    2018-04-19

    The impact of ocean acidification on marine invertebrate eggs and consequences for sperm chemotaxis are unknown. In the sea urchins Heliocidaris tuberculata and H. erythrogramma , with small (93µm) and large (393µm) eggs, respectively, we documented the effect of decreased pH on the egg jelly coat, an extracellular matrix that increases target size for sperm and contains sperm attracting molecules. In near future conditions (pH 7.8, 7.6) the jelly coat of H. tuberculata decreased by 11 and 21%, reducing egg target size by 9 and 17%, respectively. In contrast, the egg jelly coat of H. erythrogramma was not affected. The reduction in the jelly coat has implications for sperm chemotaxis in H. tuberculata In the presence of decreased pH and egg chemicals, the sperm of this species increased their velocity, motility and linearity, behaviour that was opposite to that seen for sperm exposed to egg chemicals in ambient conditions. Egg chemistry appears to cause a reduction in sperm velocity where attractants guide them in the direction of the egg. Investigation of the effects of decreased pH on sperm isolated from egg chemistry does not provide an integrative assessment of the effects of ocean acidification on sperm function. Differences in the sensitivity of the jelly coat of the two species is likely associated with egg evolution in H. erythrogramma We highlight important unappreciated impacts of ocean acidification on marine gamete functionality, and insights into potential winners and losers in a changing ocean, pointing to the advantage conveyed by evolution of large eggs. © 2018. Published by The Company of Biologists Ltd.

  13. Ecology of conflict: marine food supply affects human-wildlife interactions on land.

    Science.gov (United States)

    Artelle, Kyle A; Anderson, Sean C; Reynolds, John D; Cooper, Andrew B; Paquet, Paul C; Darimont, Chris T

    2016-05-17

    Human-wildlife conflicts impose considerable costs to people and wildlife worldwide. Most research focuses on proximate causes, offering limited generalizable understanding of ultimate drivers. We tested three competing hypotheses (problem individuals, regional population saturation, limited food supply) that relate to underlying processes of human-grizzly bear (Ursus arctos horribilis) conflict, using data from British Columbia, Canada, between 1960-2014. We found most support for the limited food supply hypothesis: in bear populations that feed on spawning salmon (Oncorhynchus spp.), the annual number of bears/km(2) killed due to conflicts with humans increased by an average of 20% (6-32% [95% CI]) for each 50% decrease in annual salmon biomass. Furthermore, we found that across all bear populations (with or without access to salmon), 81% of attacks on humans and 82% of conflict kills occurred after the approximate onset of hyperphagia (July 1(st)), a period of intense caloric demand. Contrary to practices by many management agencies, conflict frequency was not reduced by hunting or removal of problem individuals. Our finding that a marine resource affects terrestrial conflict suggests that evidence-based policy for reducing harm to wildlife and humans requires not only insight into ultimate drivers of conflict, but also management that spans ecosystem and jurisdictional boundaries.

  14. Seasonal variability in irradiance affects herbicide toxicity to the marine flagellate Dunaliella tertiolecta

    Directory of Open Access Journals (Sweden)

    Sascha eSjollema

    2014-06-01

    Full Text Available Photosynthetically Active Radiation (PAR and Ultraviolet Radiation (UVR of the solar spectrum affect microalgae directly and modify the toxicity of phytotoxic compounds present in water. As a consequence seasonal variable PAR and UVR levels are likely to modulate the toxic pressure of contaminants in the field. Therefore the present study aimed to determine the toxicity of two model contaminants, the herbicides diuron and Irgarol®1051, under simulated irradiance conditions mimicking different seasons. Irradiance conditions of spring and autumn were simulated with a set of Light Emitting Diodes (LEDs. Toxicity of both herbicides was measured individually and in a mixture by determining the inhibition of photosystem II efficiency (ΦPSII of the marine flagellate Dunaliella teriolecta using Pulse Amplitude Modulation (PAM fluorometry. Toxicity of the single herbicides was higher under simulated spring irradiance than under autumn irradiance and this effect was also observed for mixtures of the herbicides. This irradiance dependent toxicity indicates that herbicide toxicity in the field is seasonally variable. Consequently toxicity tests under standard light conditions may overestimate or underestimate the toxic effect of phytotoxic compounds.

  15. Anthropogenic impacts on marine ecosystems in Antarctica.

    Science.gov (United States)

    Aronson, Richard B; Thatje, Sven; McClintock, James B; Hughes, Kevin A

    2011-03-01

    Antarctica is the most isolated continent on Earth, but it has not escaped the negative impacts of human activity. The unique marine ecosystems of Antarctica and their endemic faunas are affected on local and regional scales by overharvesting, pollution, and the introduction of alien species. Global climate change is also having deleterious impacts: rising sea temperatures and ocean acidification already threaten benthic and pelagic food webs. The Antarctic Treaty System can address local- to regional-scale impacts, but it does not have purview over the global problems that impinge on Antarctica, such as emissions of greenhouse gases. Failure to address human impacts simultaneously at all scales will lead to the degradation of Antarctic marine ecosystems and the homogenization of their composition, structure, and processes with marine ecosystems elsewhere. © 2011 New York Academy of Sciences.

  16. Interactive effects of global climate change and pollution on marine microbes: the way ahead.

    Science.gov (United States)

    Coelho, Francisco J R C; Santos, Ana L; Coimbra, Joana; Almeida, Adelaide; Cunha, Angela; Cleary, Daniel F R; Calado, Ricardo; Gomes, Newton C M

    2013-06-01

    Global climate change has the potential to seriously and adversely affect marine ecosystem functioning. Numerous experimental and modeling studies have demonstrated how predicted ocean acidification and increased ultraviolet radiation (UVR) can affect marine microbes. However, researchers have largely ignored interactions between ocean acidification, increased UVR and anthropogenic pollutants in marine environments. Such interactions can alter chemical speciation and the bioavailability of several organic and inorganic pollutants with potentially deleterious effects, such as modifying microbial-mediated detoxification processes. Microbes mediate major biogeochemical cycles, providing fundamental ecosystems services such as environmental detoxification and recovery. It is, therefore, important that we understand how predicted changes to oceanic pH, UVR, and temperature will affect microbial pollutant detoxification processes in marine ecosystems. The intrinsic characteristics of microbes, such as their short generation time, small size, and functional role in biogeochemical cycles combined with recent advances in molecular techniques (e.g., metagenomics and metatranscriptomics) make microbes excellent models to evaluate the consequences of various climate change scenarios on detoxification processes in marine ecosystems. In this review, we highlight the importance of microbial microcosm experiments, coupled with high-resolution molecular biology techniques, to provide a critical experimental framework to start understanding how climate change, anthropogenic pollution, and microbiological interactions may affect marine ecosystems in the future.

  17. Responses of the Emiliania huxleyi proteome to ocean acidification.

    Science.gov (United States)

    Jones, Bethan M; Iglesias-Rodriguez, M Debora; Skipp, Paul J; Edwards, Richard J; Greaves, Mervyn J; Young, Jeremy R; Elderfield, Henry; O'Connor, C David

    2013-01-01

    Ocean acidification due to rising atmospheric CO2 is expected to affect the physiology of important calcifying marine organisms, but the nature and magnitude of change is yet to be established. In coccolithophores, different species and strains display varying calcification responses to ocean acidification, but the underlying biochemical properties remain unknown. We employed an approach combining tandem mass-spectrometry with isobaric tagging (iTRAQ) and multiple database searching to identify proteins that were differentially expressed in cells of the marine coccolithophore species Emiliania huxleyi (strain NZEH) between two CO2 conditions: 395 (∼current day) and ∼1340 p.p.m.v. CO2. Cells exposed to the higher CO2 condition contained more cellular particulate inorganic carbon (CaCO3) and particulate organic nitrogen and carbon than those maintained in present-day conditions. These results are linked with the observation that cells grew slower under elevated CO2, indicating cell cycle disruption. Under high CO2 conditions, coccospheres were larger and cells possessed bigger coccoliths that did not show any signs of malformation compared to those from cells grown under present-day CO2 levels. No differences in calcification rate, particulate organic carbon production or cellular organic carbon: nitrogen ratios were observed. Results were not related to nutrient limitation or acclimation status of cells. At least 46 homologous protein groups from a variety of functional processes were quantified in these experiments, of which four (histones H2A, H3, H4 and a chloroplastic 30S ribosomal protein S7) showed down-regulation in all replicates exposed to high CO2, perhaps reflecting the decrease in growth rate. We present evidence of cellular stress responses but proteins associated with many key metabolic processes remained unaltered. Our results therefore suggest that this E. huxleyi strain possesses some acclimation mechanisms to tolerate future CO2 scenarios

  18. Effect of acidification on an Arctic phytoplankton community from Disko Bay, West Greenland

    DEFF Research Database (Denmark)

    Thoisen, Christina; Riisgaard, Karen; Lundholm, Nina

    2015-01-01

    . Our findings show that coastal phytoplankton from Disko Bay is naturally exposed to pH fluctuations exceeding the experimental pH range used in most ocean acidification studies. We emphasize that studies on ocean acidification should include in situ pH before assumptions on the effect of acidification...... on marine organisms can be made. KEY WORDS: Ocean acidification · Coastal · Arctic phytoplankton · Growth rate · pH · CO2 · DIC......ABSTRACT: Long-term measurements (i.e. months) of in situ pH have not previously been reported from the Arctic; this study shows fluctuations between pH 7.5 and 8.3 during the spring bloom 2012 in a coastal area of Disko Bay, West Greenland. The effect of acidification on phytoplankton from...

  19. Individual and population-level responses to ocean acidification.

    Science.gov (United States)

    Harvey, Ben P; McKeown, Niall J; Rastrick, Samuel P S; Bertolini, Camilla; Foggo, Andy; Graham, Helen; Hall-Spencer, Jason M; Milazzo, Marco; Shaw, Paul W; Small, Daniel P; Moore, Pippa J

    2016-01-29

    Ocean acidification is predicted to have detrimental effects on many marine organisms and ecological processes. Despite growing evidence for direct impacts on specific species, few studies have simultaneously considered the effects of ocean acidification on individuals (e.g. consequences for energy budgets and resource partitioning) and population level demographic processes. Here we show that ocean acidification increases energetic demands on gastropods resulting in altered energy allocation, i.e. reduced shell size but increased body mass. When scaled up to the population level, long-term exposure to ocean acidification altered population demography, with evidence of a reduction in the proportion of females in the population and genetic signatures of increased variance in reproductive success among individuals. Such increased variance enhances levels of short-term genetic drift which is predicted to inhibit adaptation. Our study indicates that even against a background of high gene flow, ocean acidification is driving individual- and population-level changes that will impact eco-evolutionary trajectories.

  20. Reversal of ocean acidification enhances net coral reef calcification.

    Science.gov (United States)

    Albright, Rebecca; Caldeira, Lilian; Hosfelt, Jessica; Kwiatkowski, Lester; Maclaren, Jana K; Mason, Benjamin M; Nebuchina, Yana; Ninokawa, Aaron; Pongratz, Julia; Ricke, Katharine L; Rivlin, Tanya; Schneider, Kenneth; Sesboüé, Marine; Shamberger, Kathryn; Silverman, Jacob; Wolfe, Kennedy; Zhu, Kai; Caldeira, Ken

    2016-03-17

    Approximately one-quarter of the anthropogenic carbon dioxide released into the atmosphere each year is absorbed by the global oceans, causing measurable declines in surface ocean pH, carbonate ion concentration ([CO3(2-)]), and saturation state of carbonate minerals (Ω). This process, referred to as ocean acidification, represents a major threat to marine ecosystems, in particular marine calcifiers such as oysters, crabs, and corals. Laboratory and field studies have shown that calcification rates of many organisms decrease with declining pH, [CO3(2-)], and Ω. Coral reefs are widely regarded as one of the most vulnerable marine ecosystems to ocean acidification, in part because the very architecture of the ecosystem is reliant on carbonate-secreting organisms. Acidification-induced reductions in calcification are projected to shift coral reefs from a state of net accretion to one of net dissolution this century. While retrospective studies show large-scale declines in coral, and community, calcification over recent decades, determining the contribution of ocean acidification to these changes is difficult, if not impossible, owing to the confounding effects of other environmental factors such as temperature. Here we quantify the net calcification response of a coral reef flat to alkalinity enrichment, and show that, when ocean chemistry is restored closer to pre-industrial conditions, net community calcification increases. In providing results from the first seawater chemistry manipulation experiment of a natural coral reef community, we provide evidence that net community calcification is depressed compared with values expected for pre-industrial conditions, indicating that ocean acidification may already be impairing coral reef growth.

  1. Ocean acidification but not warming alters sex determination in the Sydney rock oyster, Saccostrea glomerata.

    Science.gov (United States)

    Parker, Laura M; O'Connor, Wayne A; Byrne, Maria; Dove, Michael; Coleman, Ross A; Pörtner, Hans-O; Scanes, Elliot; Virtue, Patti; Gibbs, Mitchell; Ross, Pauline M

    2018-02-14

    Whether sex determination of marine organisms can be altered by ocean acidification and warming during this century remains a significant, unanswered question. Here, we show that exposure of the protandric hermaphrodite oyster, Saccostrea glomerata to ocean acidification, but not warming, alters sex determination resulting in changes in sex ratios. After just one reproductive cycle there were 16% more females than males. The rate of gametogenesis, gonad area, fecundity, shell length, extracellular pH and survival decreased in response to ocean acidification. Warming as a sole stressor slightly increased the rate of gametogenesis, gonad area and fecundity, but this increase was masked by the impact of ocean acidification at a level predicted for this century. Alterations to sex determination, sex ratios and reproductive capacity will have flow on effects to reduce larval supply and population size of oysters and potentially other marine organisms. © 2018 The Author(s).

  2. Economic Vulnerability Assessment of U.S. Fishery Revenues to Ocean Acidification

    Science.gov (United States)

    Cooley, S. R.; Doney, S. C.

    2008-12-01

    Ocean acidification, a predictable consequence of rising anthropogenic CO2 emissions, is poised to change marine ecosystems profoundly by decreasing average ocean pH and the carbonate mineral saturation state worldwide. These conditions slow or reverse marine plant and animal calcium carbonate shell growth, thereby harming economically valuable species. In 2006, shellfish and crustaceans provided 50% of the 4 billion U.S. domestic commercial harvest value; value added to commercial fishery products contributed 35 billion to the gross national product that year. Laboratory studies have shown that ocean acidification decreases shellfish calcification; ocean acidification--driven declines in commercial shellfish and crustacean harvests between now and 2060 could decrease nationwide time-integrated primary commercial revenues by 860 million to 14 billion (net present value, 2006 dollars), depending on CO2 emissions, discount rates, biological responses, and fishery structure. This estimate excludes losses from coral reef damage and possible fishery collapses if ocean acidification pushes ecosystems past ecological tipping points. Expanding job losses and indirect economic costs will follow harvest decreases as ocean acidification broadly damages marine habitats and alters marine resource availability. Losses will harm many regions already possessing little economic resilience. The only true solution to ocean acidification is reducing atmospheric CO2 emissions, but implementing regional adaptive responses now from an ecosystem-wide, fisheries perspective will help better preserve sustainable ecosystem function and economic yields. Comprehensive management strategies must include monitoring critical fisheries, explicitly accounting for ocean acidification in management models, reducing fishing pressure and environmental stresses, and supporting regional economies most sensitive to acidification's impacts.

  3. Boldness in a deep sea hermit crab to simulated tactile predator attacks is unaffected by ocean acidification

    Science.gov (United States)

    Kim, Tae Won; Barry, James P.

    2016-09-01

    Despite rapidly growing interest in the effects of ocean acidification on marine animals, the ability of deep-sea animals to acclimate or adapt to reduced pH conditions has received little attention. Deep-sea species are generally thought to be less tolerant of environmental variation than shallow-living species because they inhabit relatively stable conditions for nearly all environmental parameters. To explore whether deep-sea hermit crabs ( Pagurus tanneri) can acclimate to ocean acidification over several weeks, we compared behavioral "boldness," measured as time taken to re-emerge from shells after a simulated predatory attack by a toy octopus, under ambient (pH ˜7.6) and expected future (pH ˜7.1) conditions. The boldness measure for crab behavioral responses did not differ between different pH treatments, suggesting that future deep-sea acidification would not influence anti-predatory behavior. However, we did not examine the effects of olfactory cues released by predators that may affect hermit crab behavior and could be influenced by changes in the ocean carbonate system driven by increasing CO2 levels.

  4. Acidification research in Sweden

    International Nuclear Information System (INIS)

    Staaf, H.; Bertills, U.

    1992-01-01

    A number of acid rain research programmes have been conducted in Sweden since 1978. The total cost for these programmes has amounted to about 250 million SEK, and during this period an additional 950 million SEK has been used to finance practical countermeasures, mainly lake liming. Acid deposition has caused damage to soil, lakes, groundwater, flora and fauna, buildings and materials. The role of acid rain in causing forest damage is not yet fully elucidated. However, there is strong evidence suggesting that ongoing soil acidification and nutrient imbalances associated with it pose the major threat to Swedish forests. Current ozone levels are damaging trees on the physiological level, but the effects of ozone on forest production in unknown. Liming is an efficient means of counteracting the negative effects of acidic deposition on forest soil, lakes and watercourses. 8 refs., 6 figs., 1 tab

  5. Acidification policy in Hungary

    International Nuclear Information System (INIS)

    Kovacs, E.

    1992-01-01

    Hungary's policy for air pollution abatement aims to reduce air pollution in cities and industrialised areas, to maintain air quality in relatively 'clean' regions, and to fulfill its obligations to the UN-ECE Convention and Protocols on long-range transboundary air pollution. Emissions of NO x and SO x in Hungary have decreased considerably in the last decade although nitrogen oxide emission from cars has remained unchanged. A catalyst programme is planned to reduce NO x , hydrocarbons and CO emissions. Results of some air pollution monitoring programmes are quoted. Acidification of soils has increased over the last decade. Legislation on air pollution due to be issued in 1992 covers sulphur content of fuels, emission limits, establishing critical loads, and setting up a comprehensive monitoring system. 5 refs., 3 tabs

  6. Coral calcifying fluid pH dictates response to ocean acidification.

    Science.gov (United States)

    Holcomb, M; Venn, A A; Tambutté, E; Tambutté, S; Allemand, D; Trotter, J; McCulloch, M

    2014-06-06

    Ocean acidification driven by rising levels of CO2 impairs calcification, threatening coral reef growth. Predicting how corals respond to CO2 requires a better understanding of how calcification is controlled. Here we show how spatial variations in the pH of the internal calcifying fluid (pHcf) in coral (Stylophora pistillata) colonies correlates with differential sensitivity of calcification to acidification. Coral apexes had the highest pHcf and experienced the smallest changes in pHcf in response to acidification. Lateral growth was associated with lower pHcf and greater changes with acidification. Calcification showed a pattern similar to pHcf, with lateral growth being more strongly affected by acidification than apical. Regulation of pHcf is therefore spatially variable within a coral and critical to determining the sensitivity of calcification to ocean acidification.

  7. Marine Pharmacology in 2009–2011: Marine Compounds with Antibacterial, Antidiabetic, Antifungal, Anti-Inflammatory, Antiprotozoal, Antituberculosis, and Antiviral Activities; Affecting the Immune and Nervous Systems, and other Miscellaneous Mechanisms of Action †

    Science.gov (United States)

    Mayer, Alejandro M. S.; Rodríguez, Abimael D.; Taglialatela-Scafati, Orazio; Fusetani, Nobuhiro

    2013-01-01

    The peer-reviewed marine pharmacology literature from 2009 to 2011 is presented in this review, following the format used in the 1998–2008 reviews of this series. The pharmacology of structurally-characterized compounds isolated from marine animals, algae, fungi and bacteria is discussed in a comprehensive manner. Antibacterial, antifungal, antiprotozoal, antituberculosis, and antiviral pharmacological activities were reported for 102 marine natural products. Additionally, 60 marine compounds were observed to affect the immune and nervous system as well as possess antidiabetic and anti-inflammatory effects. Finally, 68 marine metabolites were shown to interact with a variety of receptors and molecular targets, and thus will probably contribute to multiple pharmacological classes upon further mechanism of action studies. Marine pharmacology during 2009–2011 remained a global enterprise, with researchers from 35 countries, and the United States, contributing to the preclinical pharmacology of 262 marine compounds which are part of the preclinical pharmaceutical pipeline. Continued pharmacological research with marine natural products will contribute to enhance the marine pharmaceutical clinical pipeline, which in 2013 consisted of 17 marine natural products, analogs or derivatives targeting a limited number of disease categories. PMID:23880931

  8. Ocean Acidification-Induced Food Quality Deterioration Constrains Trophic Transfer

    OpenAIRE

    Rossoll, Dennis; Bermúdez, Rafael; Hauss, Helena; Schulz, Kai G.; Riebesell, Ulf; Sommer, Ulrich; Winder, Monika

    2012-01-01

    Our present understanding of ocean acidification (OA) impacts on marine organisms caused by rapidly rising atmospheric carbon dioxide (CO(2)) concentration is almost entirely limited to single species responses. OA consequences for food web interactions are, however, still unknown. Indirect OA effects can be expected for consumers by changing the nutritional quality of their prey. We used a laboratory experiment to test potential OA effects on algal fatty acid (FA) composition and resulting c...

  9. Thermodynamic Forecasts of the Mediterranean Sea Acidification

    Directory of Open Access Journals (Sweden)

    C. GOYET

    2016-07-01

    Full Text Available Anthropogenic CO2 is a major driver of the present ocean acidification. This latter is threatening the marine ecosystems and has been identified as a major environmental and economic menace. This study aims to forecast from the thermodynamic equations, the acidification variation (ΔpH of the Mediterranean waters over the next few decades and beyond this century. In order to do so, we calculated and fitted the theoretical values based upon the initial conditions from data of the 2013 MedSeA cruise. These estimates have been performed both for the Western and for the Eastern basins based upon their respective physical (temperature and salinity and chemical (total alkalinity and total inorganic carbon properties. The results allow us to point out four tipping points, including one when the Mediterranean Sea waters would become acid (pH<7. In order to provide an associated time scale to the theoretical results, we used two of the IPCC (2007 atmospheric CO2 scenarios. Under the most optimistic scenario of the “Special Report: Emissions Scenarios” (SRES of the IPCC (2007, the results indicate that in 2100, pH may decrease down to 0.245 in the Western basin and down to 0.242 in the Eastern basin (compared to the pre-industrial pH. Whereas for the most pessimistic SRES scenario of the IPCC (2007, the results for the year 2100, forecast a pH decrease down to 0.462 and 0.457, for the Western and for the Eastern basins, respectively. Acidification, which increased unprecedentedly in recent years, will rise almost similarly in both Mediterranean basins only well after the end of this century. These results further confirm that both basins may become undersaturated (< 1 with respect to calcite and aragonite (at the base of the mixed layer depth, only in the far future (in a few centuries.

  10. Influence of ocean acidification and deep water upwelling on oligotrophic plankton communities in the subtropical North Atlantic

    DEFF Research Database (Denmark)

    Taucher, Jan; Bach, Lennart T.; Boxhammer, Tim

    2017-01-01

    Oceanic uptake of anthropogenic carbon dioxide (CO2) causes pronounced shifts in marine carbonate chemistry and a decrease in seawater pH. Increasing evidence indicates that these changes-summarized by the term ocean acidification (OA)-can significantly affect marine food webs and biogeochemical...... cycles. However, current scientific knowledge is largely based on laboratory experiments with single species and artificial boundary conditions, whereas studies of natural plankton communities are still relatively rare. Moreover, the few existing community-level studies were mostly conducted in rather...... and successfully simulated a deep water upwelling event that induced a pronounced plankton bloom. Our study revealed significant effects of OA on the entire food web, leading to a restructuring of plankton communities that emerged during the oligotrophic phase, and was further amplified during the bloom...

  11. Effects of ocean acidification on juvenile red king crab (Paralithodes camtschaticus and Tanner crab (Chionoecetes bairdi growth, condition, calcification, and survival.

    Directory of Open Access Journals (Sweden)

    William Christopher Long

    Full Text Available Ocean acidification, a decrease in the pH in marine waters associated with rising atmospheric CO2 levels, is a serious threat to marine ecosystems. In this paper, we determine the effects of long-term exposure to near-future levels of ocean acidification on the growth, condition, calcification, and survival of juvenile red king crabs, Paralithodes camtschaticus, and Tanner crabs, Chionoecetes bairdi. Juveniles were reared in individual containers for nearly 200 days in flowing control (pH 8.0, pH 7.8, and pH 7.5 seawater at ambient temperatures (range 4.4-11.9 °C. In both species, survival decreased with pH, with 100% mortality of red king crabs occurring after 95 days in pH 7.5 water. Though the morphology of neither species was affected by acidification, both species grew slower in acidified water. At the end of the experiment, calcium concentration was measured in each crab and the dry mass and condition index of each crab were determined. Ocean acidification did not affect the calcium content of red king crab but did decrease the condition index, while it had the opposite effect on Tanner crabs, decreasing calcium content but leaving the condition index unchanged. This suggests that red king crab may be able to maintain calcification rates, but at a high energetic cost. The decrease in survival and growth of each species is likely to have a serious negative effect on their populations in the absence of evolutionary adaptation or acclimatization over the coming decades.

  12. Factors affecting virus dynamics and microbial host-virus interactions in marine environments

    NARCIS (Netherlands)

    Mojica, K.D.A.; Brussaard, C.P.D.

    2014-01-01

    Marine microorganisms constitute the largest percentage of living biomass and serve as the major driving force behind nutrient and energy cycles. While viruses only comprise a small percentage of this biomass (i.e., 5%), they dominate in numerical abundance and genetic diversity. Through host

  13. Legal and institutional tools to mitigate plastic pollution affecting marine species: Argentina as a case study

    International Nuclear Information System (INIS)

    González Carman, Victoria; Machain, Natalia; Campagna, Claudio

    2015-01-01

    Highlights: • Plastic pollution in Argentina harms vulnerable marine species of turtles and mammals. • One tool to advance their conservation is policy. • The legal and institutional framework pertinent to plastic pollution is explored. • Laws and agencies are in place, yet implementation and enforcement is deficient. • Interventions to mitigate plastic pollution and protect marine species are advanced. - Abstract: Plastics are the most common form of debris found along the Argentine coastline. The Río de la Plata estuarine area is a relevant case study to describe a situation where ample policy exists against a backdrop of plastics disposed by populated coastal areas, industries, and vessels; with resultant high impacts of plastic pollution on marine turtles and mammals. Policy and institutions are in place but the impact remains due to ineffective waste management, limited public education and awareness, and weaknesses in enforcement of regulations. This context is frequently repeated all over the world. We list possible interventions to increase the effectiveness of policy that require integrating efforts among governments, the private sector, non-governmental organizations and the inhabitants of coastal cities to reduce the amount of plastics reaching the Río de la Plata and protect threatened marine species. What has been identified for Argentina applies to the region and globally

  14. UV radiation induced stress does not affect DMSP synthesis in the marine prymnesiophyte Emiliania huxleyi

    NARCIS (Netherlands)

    van Rijssel, M; Buma, A.G.J.

    2002-01-01

    A possible coupling between UV radiation (UVR; 280 to 400 nm) induced stress and the production of dimethylsulfoniopropionate (DMSP), the precursor of the climate-regulating gas dimethylsulfide (DMS), was investigated in the marine prymnesiophyte Emiliania huxleyi. To this end, axenic cultures of E.

  15. Vegetation and acidification, Chapter 5

    Science.gov (United States)

    David R. DeWalle; James N. Kochenderfer; Mary Beth Adams; Gary W. Miller

    2006-01-01

    In this chapter, the impact of watershed acidification treatments on WS3 at the Fernow Experimental Forest (FEF) and at WS9 on vegetation is presented and summarized in a comprehensive way for the first time. WS7 is used as a vegetative reference basin for WS3, while untreated plots within WS9 are used as a vegetative reference for WS9. Bioindicators of acidification...

  16. Recovery of soil water, groundwater, and streamwater from acidification at the Swedish integrated monitoring catchments.

    Science.gov (United States)

    Löfgren, Stefan; Aastrup, Mats; Bringmark, Lage; Hultberg, Hans; Lewin-Pihlblad, Lotta; Lundin, Lars; Karlsson, Gunilla Pihl; Thunholm, Bo

    2011-12-01

    Recovery from anthropogenic acidification in streams and lakes is well documented across the northern hemisphere. In this study, we use 1996-2009 data from the four Swedish Integrated Monitoring catchments to evaluate how the declining sulfur deposition has affected sulfate, pH, acid neutralizing capacity, ionic strength, aluminum, and dissolved organic carbon in soil water, groundwater and runoff. Differences in recovery rates between catchments, between recharge and discharge areas and between soil water and groundwater are assessed. At the IM sites, atmospheric deposition is the main human impact. The chemical trends were weakly correlated to the sulfur deposition decline. Other factors, such as marine influence and catchment features, seem to be as important. Except for pH and DOC, soil water and groundwater showed similar trends. Discharge areas acted as buffers, dampening the trends in streamwater. Further monitoring and modeling of these hydraulically active sites should be encouraged.

  17. Coping with seawater acidification and the emerging contaminant diclofenac at the larval stage: A tale from the clam Ruditapes philippinarum.

    Science.gov (United States)

    Munari, Marco; Chemello, Giulia; Finos, Livio; Ingrosso, Gianmarco; Giani, Michele; Marin, Maria G

    2016-10-01

    Seawater acidification could alter the susceptibility of marine organisms to emerging contaminants, such as pharmaceuticals. In this study, the combined effects of seawater acidification and the non-steroidal anti-inflammatory drug diclofenac on survival, growth and oxidative stress-related parameters (catalase activity and lipid peroxidation) in the larvae of the Manila clam Ruditapes philippinarum were investigated for the first time. An experimental flow-through system was set up to carry out a 96-h exposure of clam larvae. Two pH levels (pH 8.0, the control, and pH 7.8, the predicted pH by the end of this century) were tested with and without diclofenac (0.5 μg/L). After 4 days, mortality was dramatically higher under reduced pH, particularly in the presence of diclofenac (62% of the larvae dead). Shell morphology was negatively affected by both acidification and diclofenac from the first day of exposure. The percentage of abnormal larvae was always higher at pH 7.8 than in controls, peaking at 98% in the presence of diclofenac after 96 h. Instead, shell length, shell height or the ratio of these values were only negatively influenced by reduced pH throughout the whole experiment. After 96 h, catalase activity was significantly increased in all larvae kept at pH 7.8, whereas no significant difference in lipid peroxidation was found among the treatments. This study demonstrates a high susceptibility of R. philippinarum larvae to a slight reduction in seawater pH. Furthermore, the results obtained highlight that acidification enhances the sensitivity of clam larvae to environmentally relevant concentrations of diclofenac. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Effects of lowered pH on marine phytoplankton growth rates

    DEFF Research Database (Denmark)

    Berge, Terje; Daugbjerg, Niels; Andersen, Betinna Balling

    2010-01-01

    concentration of seawater. Ocean acidification may potentially both stimulate and reduce primary production by marine phytoplankton. Data are scarce on the response of marine phytoplankton growth rates to lowered pH/increased CO2. Using the acid addition method to lower the seawater pH and manipulate...... the carbonate system, we determined in detail the lower pH limit for growth rates of 2 model species of common marine phytoplankton. We also tested whether growth and production rates of 6 other common species of phytoplankton were affected by ocean acidification (lowered to pH 7.0). The lower pH limits...... statistically similar in the pH range of ~7.0 to 8.5. Our results and literature reports on growth at lowered pH indicate that marine phytoplankton in general are resistant to climate change in terms of ocean acidification, and do not increase or decrease their growth rates according to ecological relevant...

  19. The Effects of Ocean Acidification on Feeding and Contest Behaviour by the Beadlet Anemone Actinia equina

    Science.gov (United States)

    Bamber, Tess Olivia; Jackson, Angus Charles; Mansfield, Robert Philip

    2018-05-01

    Increasing concentrations of atmospheric carbon dioxide are causing oceanic pH to decline worldwide, a phenomenon termed ocean acidification. Mounting experimental evidence indicates that near-future levels of CO2 will affect calcareous invertebrates such as corals, molluscs and gastropods, by reducing their scope for calcification. Despite extensive research into ocean acidification in recent years, the effects on non-calcifying anthozoans, such as sea anemones, remain little explored. In Western Europe, intertidal anemones such as Actinia equina are abundant, lower trophic-level organisms that function as important ecosystem engineers. Changes to behaviours of these simple predators could have implications for intertidal assemblages. This investigation identified the effects of reduced seawater pH on feeding and contest behaviour by A. equina. Video footage was recorded for A. equina feeding at current-day seawater (pH 8.1), and the least (pH 7.9) and most (pH 7.6) severe end-of-century predictions. Footage was also taken of contests over ownership of space between anemones exposed to reduced pH and those that were not. No statistically significant differences were identified in feeding duration or various aspects of contest behaviour including initiating, winning, inflating acrorhagi, inflicting acrorhagial peels and contest duration. Multivariate analyses showed no effect of pH on a combination of these variables. This provides contrast with other studies where anemones with symbiotic algae thrive in areas of natural increased acidity. Thus, novel experiments using intraspecific contests and resource-holding potential may prove an effective approach to understand sub-lethal consequences of ocean acidification for A. equina, other sea anemones and more broadly for marine ecosystems.

  20. Temperature modulates the effects of ocean acidification on intestinal ion transport in Atlantic cod, Gadus morhua

    Directory of Open Access Journals (Sweden)

    Marian Yong-An Hu

    2016-06-01

    Full Text Available CO2-driven seawater acidification has been demonstrated to enhance intestinal bicarbonate secretion rates in teleosts, leading to an increased release of CaCO3 under simulated ocean acidification scenarios. In this study, we investigated if increasing CO2 levels stimulate the intestinal acid–base regulatory machinery of Atlantic cod (Gadus morhua and whether temperatures at the upper limit of thermal tolerance stimulate or counteract ion regulatory capacities. Juvenile G. morhua were acclimated for four weeks to three CO2 levels (550, 1,200 and 2,200 μatm covering present and near-future natural variability, at optimum (10°C and summer maximum temperature (18°C, respectively. Immunohistochemical analyses revealed the subcellular localization of ion transporters, including Na+/K+-ATPase (NKA, Na+/H+-exchanger 3 (NHE3, Na+/HCO3- cotransporter (NBC1, pendrin-like Cl-/HCO3- exchanger (SLC26a6, V-type H+-ATPase subunit a (VHA and Cl- channel 3 (CLC3 in epithelial cells of the anterior intestine. At 10°C, proteins and mRNA were generally up-regulated for most transporters in the intestinal epithelium after acclimation to higher CO2 levels. This supports recent findings demonstrating increased intestinal HCO3- secretion rates in response to CO2 induced seawater acidification. At 18°C, mRNA expression and protein concentrations of most ion transporters remained unchanged or were even decreased, suggesting thermal compensation. This response may be energetically favorable to retain blood HCO3- levels to stabilize pHe, but may negatively affect intestinal salt and water resorption of marine teleosts in future oceans.

  1. Acidification increases abundances of Vibrionales and Planctomycetia associated to a seaweed-grazer system: potential consequences for disease and prey digestion efficiency.

    Science.gov (United States)

    Aires, Tania; Serebryakova, Alexandra; Viard, Frédérique; Serrão, Ester A; Engelen, Aschwin H

    2018-01-01

    Ocean acidification significantly affects marine organisms in several ways, with complex interactions. Seaweeds might benefit from rising CO 2 through increased photosynthesis and carbon acquisition, with subsequent higher growth rates. However, changes in seaweed chemistry due to increased CO 2 may change the nutritional quality of tissue for grazers. In addition, organisms live in close association with a diverse microbiota, which can also be influenced by environmental changes, with feedback effects. As gut microbiomes are often linked to diet, changes in seaweed characteristics and associated microbiome can affect the gut microbiome of the grazer, with possible fitness consequences. In this study, we experimentally investigated the effects of acidification on the microbiome of the invasive brown seaweed Sargassum muticum and a native isopod consumer Synisoma nadejda . Both were exposed to ambient CO 2 conditions (380 ppm, pH 8.16) and an acidification treatment (1,000 ppm, pH 7.86) for three weeks. Microbiome diversity and composition were determined using high-throughput sequencing of the variable regions V5-7 of 16S rRNA. We anticipated that as a result of acidification, the seaweed-associated bacterial community would change, leading to further changes in the gut microbiome of grazers. However, no significant effects of elevated CO 2 on the overall bacterial community structure and composition were revealed in the seaweed. In contrast, significant changes were observed in the bacterial community of the grazer gut. Although the bacterial community of S. muticum as whole did not change, Oceanospirillales and Vibrionales (mainly Pseudoalteromonas ) significantly increased their abundance in acidified conditions. The former, which uses organic matter compounds as its main source, may have opportunistically taken advantage of the possible increase of the C/N ratio in the seaweed under acidified conditions. Pseudoalteromonas, commonly associated to diseased

  2. Effect of Ocean Acidification on Organic and Inorganic Speciation of Trace Metals.

    Science.gov (United States)

    Stockdale, Anthony; Tipping, Edward; Lofts, Stephen; Mortimer, Robert J G

    2016-02-16

    Rising concentrations of atmospheric carbon dioxide are causing acidification of the oceans. This results in changes to the concentrations of key chemical species such as hydroxide, carbonate and bicarbonate ions. These changes will affect the distribution of different forms of trace metals. Using IPCC data for pCO2 and pH under four future emissions scenarios (to the year 2100) we use a chemical speciation model to predict changes in the distribution of organic and inorganic forms of trace metals. Under a scenario where emissions peak after the year 2100, predicted free ion Al, Fe, Cu, and Pb concentrations increase by factors of up to approximately 21, 2.4, 1.5, and 2.0 respectively. Concentrations of organically complexed metal typically have a lower sensitivity to ocean acidification induced changes. Concentrations of organically complexed Mn, Cu, Zn, and Cd fall by up to 10%, while those of organically complexed Fe, Co, and Ni rise by up to 14%. Although modest, these changes may have significance for the biological availability of metals given the close adaptation of marine microorganisms to their environment.

  3. Oxidative and interactive challenge of cadmium and ocean acidification on the smooth scallop Flexopecten glaber.

    Science.gov (United States)

    Nardi, Alessandro; Benedetti, Maura; Fattorini, Daniele; Regoli, Francesco

    2018-03-01

    Ocean acidification (OA) may affect sensitivity of marine organisms to metal pollution modulating chemical bioavailability, bioaccumulation and biological responsiveness of several cellular pathways. In this study, the smooth scallop Flexopecten glaber was exposed to various combinations of reduced pH (pH/pCO 2 7.4/∼3000 μatm) and Cd (20 μg/L). The analyses on cadmium uptake were integrated with those of a wide battery of biomarkers including metallothioneins, single antioxidant defenses and total oxyradical scavenging capacity in digestive gland and gills, lysosomal membrane stability and onset of genotoxic damage in haemocytes. Reduced pH slightly increased concentration of Cd in scallop tissues, but no effects were measured in terms of metallothioneins. Induction of some antioxidants by Cd and/or low pH in the digestive gland was not reflected in variations of the total oxyradical scavenging capacity, while the investigated stressors caused a certain inhibition of antioxidants and reduction of the scavenging capacity toward peroxyl radical in the gills. Lysosomal membrane stability and onset of genotoxic damages showed high sensitivity with possible synergistic effects of the investigated factors. The overall results suggest that indirect effects of ocean acidification on metal accumulation and toxicity are tissue-specific and modulate oxidative balance through different mechanisms. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Contrasting calcification responses to ocean acidification between two reef foraminifers harboring different algal symbionts

    Science.gov (United States)

    Hikami, Mana; Ushie, Hiroyuki; Irie, Takahiro; Fujita, Kazuhiko; Kuroyanagi, Azumi; Sakai, Kazuhiko; Nojiri, Yukihiro; Suzuki, Atsushi; Kawahata, Hodaka

    2011-10-01

    Ocean acidification, which like global warming is an outcome of anthropogenic CO2 emissions, severely impacts marine calcifying organisms, especially those living in coral reef ecosystems. However, knowledge about the responses of reef calcifiers to ocean acidification is quite limited, although coral responses are known to be generally negative. In a culture experiment with two algal symbiont-bearing, reef-dwelling foraminifers, Amphisorus kudakajimensis and Calcarina gaudichaudii, in seawater under five different pCO2 conditions, 245, 375, 588, 763 and 907 μatm, maintained with a precise pCO2-controlling technique, net calcification of A. kudakajimensis was reduced under higher pCO2, whereas calcification of C. gaudichaudii generally increased with increased pCO2. In another culture experiment conducted in seawater in which bicarbonate ion concentrations were varied under a constant carbonate ion concentration, calcification was not significantly different between treatments in Amphisorus hemprichii, a species closely related to A. kudakajimensis, or in C. gaudichaudii. From these results, we concluded that carbonate ion and CO2 were the carbonate species that most affected growth of Amphisorus and Calcarina, respectively. The opposite responses of these two foraminifer genera probably reflect different sensitivities to these carbonate species, which may be due to their different symbiotic algae.

  5. Legal and institutional tools to mitigate plastic pollution affecting marine species: Argentina as a case study.

    Science.gov (United States)

    González Carman, Victoria; Machain, Natalia; Campagna, Claudio

    2015-03-15

    Plastics are the most common form of debris found along the Argentine coastline. The Río de la Plata estuarine area is a relevant case study to describe a situation where ample policy exists against a backdrop of plastics disposed by populated coastal areas, industries, and vessels; with resultant high impacts of plastic pollution on marine turtles and mammals. Policy and institutions are in place but the impact remains due to ineffective waste management, limited public education and awareness, and weaknesses in enforcement of regulations. This context is frequently repeated all over the world. We list possible interventions to increase the effectiveness of policy that require integrating efforts among governments, the private sector, non-governmental organizations and the inhabitants of coastal cities to reduce the amount of plastics reaching the Río de la Plata and protect threatened marine species. What has been identified for Argentina applies to the region and globally. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Hypoxia in the changing marine environment

    International Nuclear Information System (INIS)

    Zhang, J; Cowie, G; Naqvi, S W A

    2013-01-01

    The predicted future of the global marine environment, as a combined result of forcing due to climate change (e.g. warming and acidification) and other anthropogenic perturbation (e.g. eutrophication), presents a challenge to the sustainability of ecosystems from tropics to high latitudes. Among the various associated phenomena of ecosystem deterioration, hypoxia can cause serious problems in coastal areas as well as oxygen minimum zones in the open ocean (Diaz and Rosenberg 2008 Science 321 926–9, Stramma et al 2008 Science 320 655–8). The negative impacts of hypoxia include changes in populations of marine organisms, such as large-scale mortality and behavioral responses, as well as variations of species distributions, biodiversity, physiological stress, and other sub-lethal effects (e.g. growth and reproduction). Social and economic activities that are related to services provided by the marine ecosystems, such as tourism and fisheries, can be negatively affected by the aesthetic outcomes as well as perceived or real impacts on seafood quality (STAP 2011 (Washington, DC: Global Environment Facility) p 88). Moreover, low oxygen concentration in marine waters can have considerable feedbacks to other compartments of the Earth system, like the emission of greenhouse gases to the atmosphere, and can affect the global biogeochemical cycles of nutrients and trace elements. It is of critical importance to prediction and adaptation strategies that the key processes of hypoxia in marine environments be precisely determined and understood (cf Zhang et al 2010 Biogeosciences 7 1–24). (synthesis and review)

  7. Hypoxia in the changing marine environment

    Science.gov (United States)

    Zhang, J.; Cowie, G.; Naqvi, S. W. A.

    2013-03-01

    The predicted future of the global marine environment, as a combined result of forcing due to climate change (e.g. warming and acidification) and other anthropogenic perturbation (e.g. eutrophication), presents a challenge to the sustainability of ecosystems from tropics to high latitudes. Among the various associated phenomena of ecosystem deterioration, hypoxia can cause serious problems in coastal areas as well as oxygen minimum zones in the open ocean (Diaz and Rosenberg 2008 Science 321 926-9, Stramma et al 2008 Science 320 655-8). The negative impacts of hypoxia include changes in populations of marine organisms, such as large-scale mortality and behavioral responses, as well as variations of species distributions, biodiversity, physiological stress, and other sub-lethal effects (e.g. growth and reproduction). Social and economic activities that are related to services provided by the marine ecosystems, such as tourism and fisheries, can be negatively affected by the aesthetic outcomes as well as perceived or real impacts on seafood quality (STAP 2011 (Washington, DC: Global Environment Facility) p 88). Moreover, low oxygen concentration in marine waters can have considerable feedbacks to other compartments of the Earth system, like the emission of greenhouse gases to the atmosphere, and can affect the global biogeochemical cycles of nutrients and trace elements. It is of critical importance to prediction and adaptation strategies that the key processes of hypoxia in marine environments be precisely determined and understood (cf Zhang et al 2010 Biogeosciences 7 1-24).

  8. Force majeure: Will climate change affect our ability to attain Good Environmental Status for marine biodiversity?

    Science.gov (United States)

    Elliott, Michael; Borja, Ángel; McQuatters-Gollop, Abigail; Mazik, Krysia; Birchenough, Silvana; Andersen, Jesper H; Painting, Suzanne; Peck, Myron

    2015-06-15

    The EU Marine Strategy Framework Directive (MSFD) requires that Good Environmental Status (GEnS), is achieved for European seas by 2020. These may deviate from GEnS, its 11 Descriptors, targets and baselines, due to endogenic managed pressures (from activities within an area) and externally due to exogenic unmanaged pressures (e.g. climate change). Conceptual models detail the likely or perceived changes expected on marine biodiversity and GEnS Descriptors in the light of climate change. We emphasise that marine management has to accommodate 'shifting baselines' caused by climate change particularly during GEnS monitoring, assessment and management and 'unbounded boundaries' given the migration and dispersal of highly-mobile species. We suggest climate change may prevent GEnS being met, but Member States may rebut legal challenges by claiming that this is outside its control, force majeure or due to 'natural causes' (Article 14 of the MSFD). The analysis is relevant to management of other global seas. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Ocean Acidification Has Multiple Modes of Action on Bivalve Larvae.

    Science.gov (United States)

    Waldbusser, George G; Hales, Burke; Langdon, Chris J; Haley, Brian A; Schrader, Paul; Brunner, Elizabeth L; Gray, Matthew W; Miller, Cale A; Gimenez, Iria; Hutchinson, Greg

    2015-01-01

    Ocean acidification (OA) is altering the chemistry of the world's oceans at rates unparalleled in the past roughly 1 million years. Understanding the impacts of this rapid change in baseline carbonate chemistry on marine organisms needs a precise, mechanistic understanding of physiological responses to carbonate chemistry. Recent experimental work has shown shell development and growth in some bivalve larvae, have direct sensitivities to calcium carbonate saturation state that is not modulated through organismal acid-base chemistry. To understand different modes of action of OA on bivalve larvae, we experimentally tested how pH, PCO2, and saturation state independently affect shell growth and development, respiration rate, and initiation of feeding in Mytilus californianus embryos and larvae. We found, as documented in other bivalve larvae, that shell development and growth were affected by aragonite saturation state, and not by pH or PCO2. Respiration rate was elevated under very low pH (~7.4) with no change between pH of ~ 8.3 to ~7.8. Initiation of feeding appeared to be most sensitive to PCO2, and possibly minor response to pH under elevated PCO2. Although different components of physiology responded to different carbonate system variables, the inability to normally develop a shell due to lower saturation state precludes pH or PCO2 effects later in the life history. However, saturation state effects during early shell development will carry-over to later stages, where pH or PCO2 effects can compound OA effects on bivalve larvae. Our findings suggest OA may be a multi-stressor unto itself. Shell development and growth of the native mussel, M. californianus, was indistinguishable from the Mediterranean mussel, Mytilus galloprovincialis, collected from the southern U.S. Pacific coast, an area not subjected to seasonal upwelling. The concordance in responses suggests a fundamental OA bottleneck during development of the first shell material affected only by

  10. Simulated ocean acidification reveals winners and losers in coastal phytoplankton.

    Directory of Open Access Journals (Sweden)

    Lennart T Bach

    Full Text Available The oceans absorb ~25% of the annual anthropogenic CO2 emissions. This causes a shift in the marine carbonate chemistry termed ocean acidification (OA. OA is expected to influence metabolic processes in phytoplankton species but it is unclear how the combination of individual physiological changes alters the structure of entire phytoplankton communities. To investigate this, we deployed ten pelagic mesocosms (volume ~50 m3 for 113 days at the west coast of Sweden and simulated OA (pCO2 = 760 μatm in five of them while the other five served as controls (380 μatm. We found: (1 Bulk chlorophyll a concentration and 10 out of 16 investigated phytoplankton groups were significantly and mostly positively affected by elevated CO2 concentrations. However, CO2 effects on abundance or biomass were generally subtle and present only during certain succession stages. (2 Some of the CO2-affected phytoplankton groups seemed to respond directly to altered carbonate chemistry (e.g. diatoms while others (e.g. Synechococcus were more likely to be indirectly affected through CO2 sensitive competitors or grazers. (3 Picoeukaryotic phytoplankton (0.2-2 μm showed the clearest and relatively strong positive CO2 responses during several succession stages. We attribute this not only to a CO2 fertilization of their photosynthetic apparatus but also to an increased nutrient competitiveness under acidified (i.e. low pH conditions. The stimulating influence of high CO2/low pH on picoeukaryote abundance observed in this experiment is strikingly consistent with results from previous studies, suggesting that picoeukaryotes are among the winners in a future ocean.

  11. Ocean Acidification Has Multiple Modes of Action on Bivalve Larvae.

    Directory of Open Access Journals (Sweden)

    George G Waldbusser

    Full Text Available Ocean acidification (OA is altering the chemistry of the world's oceans at rates unparalleled in the past roughly 1 million years. Understanding the impacts of this rapid change in baseline carbonate chemistry on marine organisms needs a precise, mechanistic understanding of physiological responses to carbonate chemistry. Recent experimental work has shown shell development and growth in some bivalve larvae, have direct sensitivities to calcium carbonate saturation state that is not modulated through organismal acid-base chemistry. To understand different modes of action of OA on bivalve larvae, we experimentally tested how pH, PCO2, and saturation state independently affect shell growth and development, respiration rate, and initiation of feeding in Mytilus californianus embryos and larvae. We found, as documented in other bivalve larvae, that shell development and growth were affected by aragonite saturation state, and not by pH or PCO2. Respiration rate was elevated under very low pH (~7.4 with no change between pH of ~ 8.3 to ~7.8. Initiation of feeding appeared to be most sensitive to PCO2, and possibly minor response to pH under elevated PCO2. Although different components of physiology responded to different carbonate system variables, the inability to normally develop a shell due to lower saturation state precludes pH or PCO2 effects later in the life history. However, saturation state effects during early shell development will carry-over to later stages, where pH or PCO2 effects can compound OA effects on bivalve larvae. Our findings suggest OA may be a multi-stressor unto itself. Shell development and growth of the native mussel, M. californianus, was indistinguishable from the Mediterranean mussel, Mytilus galloprovincialis, collected from the southern U.S. Pacific coast, an area not subjected to seasonal upwelling. The concordance in responses suggests a fundamental OA bottleneck during development of the first shell material

  12. Simulated ocean acidification reveals winners and losers in coastal phytoplankton.

    Science.gov (United States)

    Bach, Lennart T; Alvarez-Fernandez, Santiago; Hornick, Thomas; Stuhr, Annegret; Riebesell, Ulf

    2017-01-01

    The oceans absorb ~25% of the annual anthropogenic CO2 emissions. This causes a shift in the marine carbonate chemistry termed ocean acidification (OA). OA is expected to influence metabolic processes in phytoplankton species but it is unclear how the combination of individual physiological changes alters the structure of entire phytoplankton communities. To investigate this, we deployed ten pelagic mesocosms (volume ~50 m3) for 113 days at the west coast of Sweden and simulated OA (pCO2 = 760 μatm) in five of them while the other five served as controls (380 μatm). We found: (1) Bulk chlorophyll a concentration and 10 out of 16 investigated phytoplankton groups were significantly and mostly positively affected by elevated CO2 concentrations. However, CO2 effects on abundance or biomass were generally subtle and present only during certain succession stages. (2) Some of the CO2-affected phytoplankton groups seemed to respond directly to altered carbonate chemistry (e.g. diatoms) while others (e.g. Synechococcus) were more likely to be indirectly affected through CO2 sensitive competitors or grazers. (3) Picoeukaryotic phytoplankton (0.2-2 μm) showed the clearest and relatively strong positive CO2 responses during several succession stages. We attribute this not only to a CO2 fertilization of their photosynthetic apparatus but also to an increased nutrient competitiveness under acidified (i.e. low pH) conditions. The stimulating influence of high CO2/low pH on picoeukaryote abundance observed in this experiment is strikingly consistent with results from previous studies, suggesting that picoeukaryotes are among the winners in a future ocean.

  13. Simulated ocean acidification reveals winners and losers in coastal phytoplankton

    Science.gov (United States)

    Alvarez-Fernandez, Santiago; Hornick, Thomas; Stuhr, Annegret; Riebesell, Ulf

    2017-01-01

    The oceans absorb ~25% of the annual anthropogenic CO2 emissions. This causes a shift in the marine carbonate chemistry termed ocean acidification (OA). OA is expected to influence metabolic processes in phytoplankton species but it is unclear how the combination of individual physiological changes alters the structure of entire phytoplankton communities. To investigate this, we deployed ten pelagic mesocosms (volume ~50 m3) for 113 days at the west coast of Sweden and simulated OA (pCO2 = 760 μatm) in five of them while the other five served as controls (380 μatm). We found: (1) Bulk chlorophyll a concentration and 10 out of 16 investigated phytoplankton groups were significantly and mostly positively affected by elevated CO2 concentrations. However, CO2 effects on abundance or biomass were generally subtle and present only during certain succession stages. (2) Some of the CO2-affected phytoplankton groups seemed to respond directly to altered carbonate chemistry (e.g. diatoms) while others (e.g. Synechococcus) were more likely to be indirectly affected through CO2 sensitive competitors or grazers. (3) Picoeukaryotic phytoplankton (0.2–2 μm) showed the clearest and relatively strong positive CO2 responses during several succession stages. We attribute this not only to a CO2 fertilization of their photosynthetic apparatus but also to an increased nutrient competitiveness under acidified (i.e. low pH) conditions. The stimulating influence of high CO2/low pH on picoeukaryote abundance observed in this experiment is strikingly consistent with results from previous studies, suggesting that picoeukaryotes are among the winners in a future ocean. PMID:29190760

  14. Trophic transfer of essential elements in the clownfish Amphiprion ocellaris in the context of ocean acidification.

    Directory of Open Access Journals (Sweden)

    Hugo Jacob

    Full Text Available Little information exists on the effects of ocean acidification (OA on the digestive and post-digestive processes in marine fish. Here, we investigated OA impacts (Δ pH = 0.5 on the trophic transfer of select trace elements in the clownfish Amphiprion ocellaris using radiotracer techniques. Assimilation efficiencies of three essential elements (Co, Mn and Zn as well as their other short-term and long-term kinetic parameters in juvenile clownfish were not affected by this experimental pH change. In complement, their stomach pH during digestion were not affected by the variation in seawater pH. Such observations suggest that OA impacts do not affect element assimilation in these fish. This apparent pCO2 tolerance may imply that clownfish have the ability to self-regulate pH shifts in their digestive tract, or that they can metabolically accommodate such shifts. Such results are important to accurately assess future OA impacts on diverse marine biota, as such impacts are highly species specific, complex, and may be modulated by species-specific metabolic processes.

  15. Taking Action Against Ocean Acidification: A Review of Management and Policy Options

    Science.gov (United States)

    Billé, Raphaël; Kelly, Ryan; Biastoch, Arne; Harrould-Kolieb, Ellycia; Herr, Dorothée; Joos, Fortunat; Kroeker, Kristy; Laffoley, Dan; Oschlies, Andreas; Gattuso, Jean-Pierre

    2013-10-01

    Ocean acidification has emerged over the last two decades as one of the largest threats to marine organisms and ecosystems. However, most research efforts on ocean acidification have so far neglected management and related policy issues to focus instead on understanding its ecological and biogeochemical implications. This shortfall is addressed here with a systematic, international and critical review of management and policy options. In particular, we investigate the assumption that fighting acidification is mainly, but not only, about reducing CO2 emissions, and explore the leeway that this emerging problem may open in old environmental issues. We review nine types of management responses, initially grouped under four categories: preventing ocean acidification; strengthening ecosystem resilience; adapting human activities; and repairing damages. Connecting and comparing options leads to classifying them, in a qualitative way, according to their potential and feasibility. While reducing CO2 emissions is confirmed as the key action that must be taken against acidification, some of the other options appear to have the potential to buy time, e.g. by relieving the pressure of other stressors, and help marine life face unavoidable acidification. Although the existing legal basis to take action shows few gaps, policy challenges are significant: tackling them will mean succeeding in various areas of environmental management where we failed to a large extent so far.

  16. Taking action against ocean acidification: a review of management and policy options.

    Science.gov (United States)

    Billé, Raphaël; Kelly, Ryan; Biastoch, Arne; Harrould-Kolieb, Ellycia; Herr, Dorothée; Joos, Fortunat; Kroeker, Kristy; Laffoley, Dan; Oschlies, Andreas; Gattuso, Jean-Pierre

    2013-10-01

    Ocean acidification has emerged over the last two decades as one of the largest threats to marine organisms and ecosystems. However, most research efforts on ocean acidification have so far neglected management and related policy issues to focus instead on understanding its ecological and biogeochemical implications. This shortfall is addressed here with a systematic, international and critical review of management and policy options. In particular, we investigate the assumption that fighting acidification is mainly, but not only, about reducing CO2 emissions, and explore the leeway that this emerging problem may open in old environmental issues. We review nine types of management responses, initially grouped under four categories: preventing ocean acidification; strengthening ecosystem resilience; adapting human activities; and repairing damages. Connecting and comparing options leads to classifying them, in a qualitative way, according to their potential and feasibility. While reducing CO2 emissions is confirmed as the key action that must be taken against acidification, some of the other options appear to have the potential to buy time, e.g. by relieving the pressure of other stressors, and help marine life face unavoidable acidification. Although the existing legal basis to take action shows few gaps, policy challenges are significant: tackling them will mean succeeding in various areas of environmental management where we failed to a large extent so far.

  17. Non-additive effects of ocean acidification in combination with warming on the larval proteome of the Pacific oyster, Crassostrea gigas.

    Science.gov (United States)

    Harney, Ewan; Artigaud, Sébastien; Le Souchu, Pierrick; Miner, Philippe; Corporeau, Charlotte; Essid, Hafida; Pichereau, Vianney; Nunes, Flavia L D

    2016-03-01

    Increasing atmospheric carbon dioxide results in ocean acidification and warming, significantly impacting marine invertebrate larvae development. We investigated how ocean acidification in combination with warming affected D-veliger larvae of the Pacific oyster Crassostrea gigas. Larvae were reared for 40h under either control (pH8.1, 20 °C), acidified (pH7.9, 20 °C), warm (pH8.1, 22 °C) or warm acidified (pH7.9, 22 °C) conditions. Larvae in acidified conditions were significantly smaller than in the control, but warm acidified conditions mitigated negative effects on size, and increased calcification. A proteomic approach employing two-dimensional electrophoresis (2-DE) was used to quantify proteins and relate their abundance to phenotypic traits. In total 12 differentially abundant spots were identified by nano-liquid chromatography-tandem mass spectrometry. These proteins had roles in metabolism, intra- and extra-cellular matrix formations, stress response, and as molecular chaperones. Seven spots responded to reduced pH, four to increased temperature, and six to acidification and warming. Reduced abundance of proteins such as ATP synthase and GAPDH, and increased abundance of superoxide dismutase, occurred when both pH and temperature changes were imposed, suggesting altered metabolism and enhanced oxidative stress. These results identify key proteins that may be involved in the acclimation of C. gigas larvae to ocean acidification and warming. Increasing atmospheric CO2 raises sea surface temperatures and results in ocean acidification, two climatic variables known to impact marine organisms. Larvae of calcifying species may be particularly at risk to such changing environmental conditions. The Pacific oyster Crassostrea gigas is ecologically and commercially important, and understanding its ability to acclimate to climate change will help to predict how aquaculture of this species is likely to be impacted. Modest, yet realistic changes in pH and

  18. Decreased abundance of crustose coralline algae due to ocean acidification

    Science.gov (United States)

    Kuffner, Ilsa B.; Andersson, Andreas J; Jokiel, Paul L.; Rodgers, Ku'ulei S.; Mackenzie, Fred T.

    2008-01-01

    Owing to anthropogenic emissions, atmospheric concentrations of carbon dioxide could almost double between 2006 and 2100 according to business-as-usual carbon dioxide emission scenarios1. Because the ocean absorbs carbon dioxide from the atmosphere2, 3, 4, increasing atmospheric carbon dioxide concentrations will lead to increasing dissolved inorganic carbon and carbon dioxide in surface ocean waters, and hence acidification and lower carbonate saturation states2, 5. As a consequence, it has been suggested that marine calcifying organisms, for example corals, coralline algae, molluscs and foraminifera, will have difficulties producing their skeletons and shells at current rates6, 7, with potentially severe implications for marine ecosystems, including coral reefs6, 8, 9, 10, 11. Here we report a seven-week experiment exploring the effects of ocean acidification on crustose coralline algae, a cosmopolitan group of calcifying algae that is ecologically important in most shallow-water habitats12, 13, 14. Six outdoor mesocosms were continuously supplied with sea water from the adjacent reef and manipulated to simulate conditions of either ambient or elevated seawater carbon dioxide concentrations. The recruitment rate and growth of crustose coralline algae were severely inhibited in the elevated carbon dioxide mesocosms. Our findings suggest that ocean acidification due to human activities could cause significant change to benthic community structure in shallow-warm-water carbonate ecosystems.

  19. Transgenerational acclimation of fishes to climate change and ocean acidification.

    Science.gov (United States)

    Munday, Philip L

    2014-01-01

    There is growing concern about the impacts of climate change and ocean acidification on marine organisms and ecosystems, yet the potential for acclimation and adaptation to these threats is poorly understood. Whereas many short-term experiments report negative biological effects of ocean warming and acidification, new studies show that some marine species have the capacity to acclimate to warmer and more acidic environments across generations. Consequently, transgenerational plasticity may be a powerful mechanism by which populations of some species will be able to adjust to projected climate change. Here, I review recent advances in understanding transgenerational acclimation in fishes. Research over the past 2 to 3 years shows that transgenerational acclimation can partially or fully ameliorate negative effects of warming, acidification, and hypoxia in a range of different species. The molecular and cellular pathways underpinning transgenerational acclimation are currently unknown, but modern genetic methods provide the tools to explore these mechanisms. Despite the potential benefits of transgenerational acclimation, there could be limitations to the phenotypic traits that respond transgenerationally, and trade-offs between life stages, that need to be investigated. Future studies should also test the potential interactions between transgenerational plasticity and genetic evolution to determine how these two processes will shape adaptive responses to environmental change over coming decades.

  20. Underwater Noise from a Wave Energy Converter is unlikely to Affect Marine Mammals

    DEFF Research Database (Denmark)

    Tougaard, Jakob

    2015-01-01

    Underwater noise was recorded from the Wavestar wave energy converter; a full-scale hydraulic point absorber, placed on a jack-up rig on the Danish North Sea coast. Noise was recorded 25 m from the converter with an autonomous recording unit (10 Hz to 20 kHz bandwidth). Median sound pressure leve...... on a jack-up rig. The results may thus not be directly transferable to other wave converter designs but do demonstrate that it is possible to harness wave energy without noise pollution to the marine environment.......Underwater noise was recorded from the Wavestar wave energy converter; a full-scale hydraulic point absorber, placed on a jack-up rig on the Danish North Sea coast. Noise was recorded 25 m from the converter with an autonomous recording unit (10 Hz to 20 kHz bandwidth). Median sound pressure levels...... were so low that they would barely be audible to marine mammals and the likelihood of negative impact from the noise appears minimal. A likely explanation for the low noise emissions is the construction of the converter where all moving parts, except for the absorbers themselves, are placed above water...

  1. Citizen scientists reveal: Marine litter pollutes Arctic beaches and affects wild life.

    Science.gov (United States)

    Bergmann, Melanie; Lutz, Birgit; Tekman, Mine B; Gutow, Lars

    2017-12-15

    Recent data indicate accumulation areas of marine litter in Arctic waters and significant increases over time. Beaches on remote Arctic islands may be sinks for marine litter and reflect pollution levels of the surrounding waters particularly well. We provide the first quantitative data from surveys carried out by citizen scientists on six beaches of Svalbard. Litter quantities recorded by cruise tourists varied from 9-524gm -2 and were similar to those from densely populated areas. Plastics accounted for >80% of the overall litter, most of which originated from fisheries. Photographs provided by citizens show deleterious effects of beach litter on Arctic wildlife, which is already under strong pressure from global climate change. Our study highlights the potential of citizen scientists to provide scientifically valuable data on the pollution of sensitive remote ecosystems. The results stress once more that current legislative frameworks are insufficient to tackle the pollution of Arctic ecosystems. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Soil acidification by atmospheric pollution and forest growth

    Science.gov (United States)

    Bengt Jonsson

    1976-01-01

    In recent years concern has been expressed about the danger of harmful pollution deposits which affect areas at great distances from the emission sources. The investigation was so designed that a possible reaction in growth resulting from a supposed acidification could be observed as far as possible. A poorer growth development was observed in regions, which are...

  3. Monitoring structure development in milk acidification using diffuse reflectance profiles

    DEFF Research Database (Denmark)

    Skytte, Jacob Lercke; Andersen, Ulf; Møller, Flemming

    2012-01-01

    are needed so that the production can be carried out consistently, regardless of day-to-day variations in the raw materials. Casein micelles aggregate during milk acidification, which leads to formation of a gel network. This change of structure is important for the development of a range of dairy products......, protein, and temperature in the acidification process is conducted. The purpose of the experiment is to investigate how the change of these parameters affects the diffuse reflectance properties as well as to demonstrate the relation between the optical parameters and structure formation in milk......The structure of dairy products is important for the consumer, and milk acidification plays a central role for structural development. To ensure the best possible consumer experience, it is important that a product’s structural properties are stable. Therefore process and quality control tools...

  4. Risks of ocean acidification in the California Current food web and fisheries: ecosystem model projections.

    Science.gov (United States)

    Marshall, Kristin N; Kaplan, Isaac C; Hodgson, Emma E; Hermann, Albert; Busch, D Shallin; McElhany, Paul; Essington, Timothy E; Harvey, Chris J; Fulton, Elizabeth A

    2017-04-01

    The benefits and ecosystem services that humans derive from the oceans are threatened by numerous global change stressors, one of which is ocean acidification. Here, we describe the effects of ocean acidification on an upwelling system that already experiences inherently low pH conditions, the California Current. We used an end-to-end ecosystem model (Atlantis), forced by downscaled global climate models and informed by a meta-analysis of the pH sensitivities of local taxa, to investigate the direct and indirect effects of future pH on biomass and fisheries revenues. Our model projects a 0.2-unit drop in pH during the summer upwelling season from 2013 to 2063, which results in wide-ranging magnitudes of effects across guilds and functional groups. The most dramatic direct effects of future pH may be expected on epibenthic invertebrates (crabs, shrimps, benthic grazers, benthic detritivores, bivalves), and strong indirect effects expected on some demersal fish, sharks, and epibenthic invertebrates (Dungeness crab) because they consume species known to be sensitive to changing pH. The model's pelagic community, including marine mammals and seabirds, was much less influenced by future pH. Some functional groups were less affected to changing pH in the model than might be expected from experimental studies in the empirical literature due to high population productivity (e.g., copepods, pteropods). Model results suggest strong effects of reduced pH on nearshore state-managed invertebrate fisheries, but modest effects on the groundfish fishery because individual groundfish species exhibited diverse responses to changing pH. Our results provide a set of projections that generally support and build upon previous findings and set the stage for hypotheses to guide future modeling and experimental analysis on the effects of OA on marine ecosystems and fisheries. © 2017 John Wiley & Sons Ltd.

  5. Study of environmental and biological factors that affect larval survival in sessile coastal marine organisms

    OpenAIRE

    Viladrich Canudas, Núria; Universitat Autònoma de Barcelona. Institut de Ciència i Tecnologia Ambientals

    2015-01-01

    La reproducció sexual és un procés biològic fonamental per a la majoria de les espècies vives, sent essencial per a la perpetuació de les espècies i assegurar-ne la diversitat genètica. En invertebrats sèssils marins, com corals i gorgònies, aquest tipus de reproducció, a més, permet la dispersió dels individus, el que facilita la colonització de noves àrees i assegurar el flux de gens entre poblacions. En general, la reproducció sexual es caracteritza per un alt cost energètic, la qual cosa ...

  6. The Influence of Marine Microfouling on the Corrosion Behaviour of Passive Materials and Copper Alloys

    National Research Council Canada - National Science Library

    Little, Brenda J; Lee, Jason S; Ray, Richard I

    2008-01-01

    ...) of passive alloys exposed in marine environments. Ennoblement in marine waters has been ascribed to depolarization of the oxygen reduction reaction due to organometallic catalysis, acidification of the electrode surface, the combined effects...

  7. Underwater Noise from a Wave Energy Converter Is Unlikely to Affect Marine Mammals.

    Science.gov (United States)

    Tougaard, Jakob

    2015-01-01

    Underwater noise was recorded from the Wavestar wave energy converter; a full-scale hydraulic point absorber, placed on a jack-up rig on the Danish North Sea coast. Noise was recorded 25 m from the converter with an autonomous recording unit (10 Hz to 20 kHz bandwidth). Median sound pressure levels (Leq) in third-octave bands during operation of the converter were 106-109 dB re. 1 μPa in the range 125-250 Hz, 1-2 dB above ambient noise levels (statistically significant). Outside the range 125-250 Hz the noise from the converter was undetectable above the ambient noise. During start and stop of the converter a more powerful tone at 150 Hz (sound pressure level (Leq) 121-125 dB re 1 μPa) was easily detectable. This tone likely originated from the hydraulic pump which was used to lower the absorbers into the water and lift them out of the water at shutdown. Noise levels from the operating wave converter were so low that they would barely be audible to marine mammals and the likelihood of negative impact from the noise appears minimal. A likely explanation for the low noise emissions is the construction of the converter where all moving parts, except for the absorbers themselves, are placed above water on a jack-up rig. The results may thus not be directly transferable to other wave converter designs but do demonstrate that it is possible to harness wave energy without noise pollution to the marine environment.

  8. Underwater Noise from a Wave Energy Converter Is Unlikely to Affect Marine Mammals.

    Directory of Open Access Journals (Sweden)

    Jakob Tougaard

    Full Text Available Underwater noise was recorded from the Wavestar wave energy converter; a full-scale hydraulic point absorber, placed on a jack-up rig on the Danish North Sea coast. Noise was recorded 25 m from the converter with an autonomous recording unit (10 Hz to 20 kHz bandwidth. Median sound pressure levels (Leq in third-octave bands during operation of the converter were 106-109 dB re. 1 μPa in the range 125-250 Hz, 1-2 dB above ambient noise levels (statistically significant. Outside the range 125-250 Hz the noise from the converter was undetectable above the ambient noise. During start and stop of the converter a more powerful tone at 150 Hz (sound pressure level (Leq 121-125 dB re 1 μPa was easily detectable. This tone likely originated from the hydraulic pump which was used to lower the absorbers into the water and lift them out of the water at shutdown. Noise levels from the operating wave converter were so low that they would barely be audible to marine mammals and the likelihood of negative impact from the noise appears minimal. A likely explanation for the low noise emissions is the construction of the converter where all moving parts, except for the absorbers themselves, are placed above water on a jack-up rig. The results may thus not be directly transferable to other wave converter designs but do demonstrate that it is possible to harness wave energy without noise pollution to the marine environment.

  9. Differences in neurochemical profiles of two gadid species under ocean warming and acidification.

    Science.gov (United States)

    Schmidt, Matthias; Windisch, Heidrun Sigrid; Ludwichowski, Kai-Uwe; Seegert, Sean Lando Levin; Pörtner, Hans-Otto; Storch, Daniela; Bock, Christian

    2017-01-01

    Exposure to future ocean acidification scenarios may alter the behaviour of marine teleosts through interference with neuroreceptor functioning. So far, most studies investigated effects of ocean acidification on the behaviour of fish, either isolated or in combination with environmental temperature. However, only few physiological studies on this issue were conducted despite the putative neurophysiological origin of the CO 2 -induced behavioural changes. Here, we present the metabolic consequences of long-term exposure to projected ocean acidification (396-548 μatm P CO 2 under control and 915-1272 μatm under treatment conditions) and parallel warming in the brain of two related fish species, polar cod ( Boreogadus saida , exposed to 0 °C, 3 °C, 6 °C and 8 °C) and Atlantic cod ( Gadus morhua , exposed to 3 °C, 8 °C, 12 °C and 16 °C). It has been shown that B. saida is behaviourally vulnerable to future ocean acidification scenarios, while G. morhua demonstrates behavioural resilience. We found that temperature alters brain osmolyte, amino acid, choline and neurotransmitter concentrations in both species indicating thermal responses particularly in osmoregulation and membrane structure. In B. saida, changes in amino acid and osmolyte metabolism at the highest temperature tested were also affected by CO 2 , possibly emphasizing energetic limitations. We did not observe changes in neurotransmitters, energy metabolites, membrane components or osmolytes that might serve as a compensatory mechanism against CO 2 induced behavioural impairments. In contrast to B. saida , such temperature limitation was not detected in G. morhua ; however, at 8 °C, CO 2 induced an increase in the levels of metabolites of the glutamate/GABA-glutamine cycle potentially indicating greater GABAergic activity in G.morhua . Further, increased availability of energy-rich substrates was detected under these conditions. Our results indicate a change of GABAergic metabolism in

  10. Metal mobility and toxicity to microalgae associated with acidification of sediments: CO2 and acid comparison.

    Science.gov (United States)

    De Orte, M R; Lombardi, A T; Sarmiento, A M; Basallote, M D; Rodriguez-Romero, A; Riba, I; Del Valls, A

    2014-05-01

    The injection and storage of CO2 into marine geological formations has been suggested as a mitigation measure to prevent global warming. However, storage leaks are possible resulting in several effects in the ecosystem. Laboratory-scale experiments were performed to evaluate the effects of CO2 leakage on the fate of metals and on the growth of the microalgae Phaeodactylum tricornutum. Metal contaminated sediments were collected and submitted to acidification by means of CO2 injection or by adding HCl. Sediments elutriate were prepared to perform toxicity tests. The results showed that sediment acidification enhanced the release of metals to elutriates. Iron and zinc were the metals most influenced by this process and their concentration increased greatly with pH decreases. Diatom growth was inhibited by both processes: acidification and the presence of metals. Data obtained is this study is useful to calculate the potential risk of CCS activities to the marine environment. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Differential Effects of Ocean Acidification on Coral Calcification: Insights from Geochemistry.

    Science.gov (United States)

    Holcomb, M.; Decarlo, T. M.; Venn, A.; Tambutte, E.; Gaetani, G. A.; Tambutte, S.; Allemand, D.; McCulloch, M. T.

    2014-12-01

    Although ocean acidification is expected to negatively impact calcifying animals due to the formation of CaCO3 becoming less favorable, experimental evidence is mixed. Corals have received considerable attention in this regard; laboratory culture experiments show there to be a wide array of calcification responses to acidification. Here we will show how relationships for the incorporation of various trace elements and boron isotopes into synthetic aragonite can be used to reconstruct carbonate chemistry at the site of calcification. In turn the chemistry at the site of calcification can be determined under different ocean acidification scenarios and differences in the chemistry at the site of calcification linked to different calcification responses to acidification. Importantly we will show that the pH of the calcifying fluid alone is insufficient to estimate calcification responses, thus a multi-proxy approach using multiple trace elements and isotopes is required to understand how the site of calcification is affected by ocean acidification.

  12. Effect of Ocean Acidification on the Food Quality of the Coccolithophore Emiliania huxleyi

    Science.gov (United States)

    Maine, J. E.; White, M. M.; Balch, W. M.; Milke, L. M.

    2016-02-01

    The anthropogenic burning of fossil fuels has doubled atmospheric carbon dioxide (CO2) levels over the last 200 years. Atmospheric CO2 diffuses into the ocean, changing the chemistry and decreasing the pH of seawater in a process called Ocean Acidification (OA). Calcifying marine phytoplankton, coccolithophores, are vulnerable to OA. Emiliania huxleyi is a lipid-dense and globally-abundant species of coccolithophore, therefore it is a vital food source for higher marine trophic levels. The objective of this project was to determine how OA affects the lipid profile and calcification of E. huxleyi CCMP #371. Gas chromatography was used to determine how the proportions of saturated (SFA), monounsaturated (MUFA), and polyunsaturated fatty acids (PUFA) in E. huxleyi varied with increasing pCO2. Flow cytometry was used to measure how the distribution of highly calcified cells, partially calcified cells, and un-calcified cells changed with increasing pCO2. The proportion of MUFA increased with pCO2. The proportion of un-calcified and partially calcified cells increased with increasing pCO2, however, the results varied across two experimental runs. In conclusion, the lipid-profile and calcification properties of E. huxleyi, and likely its food quality to predators, are affected by OA.

  13. Impact of seawater acidification on pH at the tissue–skeleton interface and calcification in reef corals

    OpenAIRE

    Venn, Alexander A.; Tambutté, Eric; Holcomb, Michael; Laurent, Julien; Allemand, Denis; Tambutté, Sylvie

    2012-01-01

    Insight into the response of reef corals and other major marine calcifiers to ocean acidification is limited by a lack of knowledge about how seawater pH and carbonate chemistry impact the physiological processes that drive biomineralization. Ocean acidification is proposed to reduce calcification rates in corals by causing declines in internal pH at the calcifying tissue–skeleton interface where biomineralization takes place. Here, we performed an in vivo study on how partial-pressure CO2-dr...

  14. Snohomish RARE summary slides for Interagency Working Group on Ocean Acidification

    Science.gov (United States)

    Rising atmospheric CO2 due to anthropogenic emissions alters local atmospheric gas exchange rates in estuaries, causing alterations of the seawater carbonate system and reductions in pH broadly described as coastal acidification. These changes in marine chemistry have been demon...

  15. EPOCA/EUR-OCEANS data compilation on the biological and biogeochemical responses to ocean acidification

    NARCIS (Netherlands)

    Nisumaa, A.-M.; Pesant, S.; Bellerby, R.G.J.; Delille, B.; Middelburg, J.J.; Orr, J.C.; Riebesell, U.; Tyrrell, T.; Wolf-Gladrow, D.; Gattuso, J.P.

    2010-01-01

    The uptake of anthropogenic CO2 by the oceans has led to a rise in the oceanic partial pressure of CO2, and to a decrease in pH and carbonate ion concentration. This modification of the marine carbonate system is referred to as ocean acidification. Numerous papers report the effects of ocean

  16. Community barcoding reveals little effect of ocean acidification on the composition of coastal plankton communities: Evidence from a long-term mesocosm study in the Gullmar Fjord, Skagerrak.

    Directory of Open Access Journals (Sweden)

    Julia A F Langer

    Full Text Available The acidification of the oceans could potentially alter marine plankton communities with consequences for ecosystem functioning. While several studies have investigated effects of ocean acidification on communities using traditional methods, few have used genetic analyses. Here, we use community barcoding to assess the impact of ocean acidification on the composition of a coastal plankton community in a large scale, in situ, long-term mesocosm experiment. High-throughput sequencing resulted in the identification of a wide range of planktonic taxa (Alveolata, Cryptophyta, Haptophyceae, Fungi, Metazoa, Hydrozoa, Rhizaria, Straminipila, Chlorophyta. Analyses based on predicted operational taxonomical units as well as taxonomical compositions revealed no differences between communities in high CO2 mesocosms (~ 760 μatm and those exposed to present-day CO2 conditions. Observed shifts in the planktonic community composition were mainly related to seasonal changes in temperature and nutrients. Furthermore, based on our investigations, the elevated CO2 did not affect the intraspecific diversity of the most common mesozooplankter, the calanoid copepod Pseudocalanus acuspes. Nevertheless, accompanying studies found temporary effects attributed to a raise in CO2. Differences in taxa composition between the CO2 treatments could, however, only be observed in a specific period of the experiment. Based on our genetic investigations, no compositional long-term shifts of the plankton communities exposed to elevated CO2 conditions were observed. Thus, we conclude that the compositions of planktonic communities, especially those in coastal areas, remain rather unaffected by increased CO2.

  17. Community barcoding reveals little effect of ocean acidification on the composition of coastal plankton communities: Evidence from a long-term mesocosm study in the Gullmar Fjord, Skagerrak.

    Science.gov (United States)

    Langer, Julia A F; Sharma, Rahul; Schmidt, Susanne I; Bahrdt, Sebastian; Horn, Henriette G; Algueró-Muñiz, María; Nam, Bora; Achterberg, Eric P; Riebesell, Ulf; Boersma, Maarten; Thines, Marco; Schwenk, Klaus

    2017-01-01

    The acidification of the oceans could potentially alter marine plankton communities with consequences for ecosystem functioning. While several studies have investigated effects of ocean acidification on communities using traditional methods, few have used genetic analyses. Here, we use community barcoding to assess the impact of ocean acidification on the composition of a coastal plankton community in a large scale, in situ, long-term mesocosm experiment. High-throughput sequencing resulted in the identification of a wide range of planktonic taxa (Alveolata, Cryptophyta, Haptophyceae, Fungi, Metazoa, Hydrozoa, Rhizaria, Straminipila, Chlorophyta). Analyses based on predicted operational taxonomical units as well as taxonomical compositions revealed no differences between communities in high CO2 mesocosms (~ 760 μatm) and those exposed to present-day CO2 conditions. Observed shifts in the planktonic community composition were mainly related to seasonal changes in temperature and nutrients. Furthermore, based on our investigations, the elevated CO2 did not affect the intraspecific diversity of the most common mesozooplankter, the calanoid copepod Pseudocalanus acuspes. Nevertheless, accompanying studies found temporary effects attributed to a raise in CO2. Differences in taxa composition between the CO2 treatments could, however, only be observed in a specific period of the experiment. Based on our genetic investigations, no compositional long-term shifts of the plankton communities exposed to elevated CO2 conditions were observed. Thus, we conclude that the compositions of planktonic communities, especially those in coastal areas, remain rather unaffected by increased CO2.

  18. Zinc affects differently growth, photosynthesis, antioxidant enzyme activities and phytochelatin synthase expression of four marine diatoms.

    Science.gov (United States)

    Nguyen-Deroche, Thi Le Nhung; Caruso, Aurore; Le, Thi Trung; Bui, Trang Viet; Schoefs, Benoît; Tremblin, Gérard; Morant-Manceau, Annick

    2012-01-01

    Zinc-supplementation (20 μM) effects on growth, photosynthesis, antioxidant enzyme activities (superoxide dismutase, ascorbate peroxidase, catalase), and the expression of phytochelatin synthase gene were investigated in four marine diatoms (Amphora acutiuscula, Nitzschia palea, Amphora coffeaeformis and Entomoneis paludosa). Zn-supplementation reduced the maximum cell density. A linear relationship was found between the evolution of gross photosynthesis and total chlorophyll content. The Zn treatment decreased the electron transport rate except in A. coffeaeformis and in E. paludosa at high irradiance. A linear relationship was found between the efficiency of light to evolve oxygen and the size of the light-harvesting antenna. The external carbonic anhydrase activity was stimulated in Zn-supplemented E. paludosa but was not correlated with an increase of photosynthesis. The total activity of the antioxidant enzymes did not display any clear increase except in ascorbate peroxidase activity in N. palea. The phytochelatin synthase gene was identified in the four diatoms, but its expression was only revealed in N. palea, without a clear difference between control and Zn-supplemented cells. Among the four species, A. paludosa was the most sensitive and A. coffeaeformis, the most tolerant. A. acutiuscula seemed to be under metal starvation, whereas, to survive, only N. palea developed several stress responses.

  19. Zinc Affects Differently Growth, Photosynthesis, Antioxidant Enzyme Activities and Phytochelatin Synthase Expression of Four Marine Diatoms

    Directory of Open Access Journals (Sweden)

    Thi Le Nhung Nguyen-Deroche

    2012-01-01

    Full Text Available Zinc-supplementation (20 μM effects on growth, photosynthesis, antioxidant enzyme activities (superoxide dismutase, ascorbate peroxidase, catalase, and the expression of phytochelatin synthase gene were investigated in four marine diatoms (Amphora acutiuscula, Nitzschia palea, Amphora coffeaeformis and Entomoneis paludosa. Zn-supplementation reduced the maximum cell density. A linear relationship was found between the evolution of gross photosynthesis and total chlorophyll content. The Zn treatment decreased the electron transport rate except in A. coffeaeformis and in E. paludosa at high irradiance. A linear relationship was found between the efficiency of light to evolve oxygen and the size of the light-harvesting antenna. The external carbonic anhydrase activity was stimulated in Zn-supplemented E. paludosa but was not correlated with an increase of photosynthesis. The total activity of the antioxidant enzymes did not display any clear increase except in ascorbate peroxidase activity in N. palea. The phytochelatin synthase gene was identified in the four diatoms, but its expression was only revealed in N. palea, without a clear difference between control and Zn-supplemented cells. Among the four species, A. paludosa was the most sensitive and A. coffeaeformis, the most tolerant. A. acutiuscula seemed to be under metal starvation, whereas, to survive, only N. palea developed several stress responses.

  20. Seagrass ecophysiological performance under ocean warming and acidification.

    Science.gov (United States)

    Repolho, Tiago; Duarte, Bernardo; Dionísio, Gisela; Paula, José Ricardo; Lopes, Ana R; Rosa, Inês C; Grilo, Tiago F; Caçador, Isabel; Calado, Ricardo; Rosa, Rui

    2017-02-01

    Seagrasses play an essential ecological role within coastal habitats and their worldwide population decline has been linked to different types of anthropogenic forces. We investigated, for the first time, the combined effects of future ocean warming and acidification on fundamental biological processes of Zostera noltii, including shoot density, leaf coloration, photophysiology (electron transport rate, ETR; maximum PSII quantum yield, F v /F m ) and photosynthetic pigments. Shoot density was severely affected under warming conditions, with a concomitant increase in the frequency of brownish colored leaves (seagrass die-off). Warming was responsible for a significant decrease in ETR and F v /F m (particularly under control pH conditions), while promoting the highest ETR variability (among experimental treatments). Warming also elicited a significant increase in pheophytin and carotenoid levels, alongside an increase in carotenoid/chlorophyll ratio and De-Epoxidation State (DES). Acidification significantly affected photosynthetic pigments content (antheraxanthin, β-carotene, violaxanthin and zeaxanthin), with a significant decrease being recorded under the warming scenario. No significant interaction between ocean acidification and warming was observed. Our findings suggest that future ocean warming will be a foremost determinant stressor influencing Z. noltii survival and physiological performance. Additionally, acidification conditions to occur in the future will be unable to counteract deleterious effects posed by ocean warming.

  1. Temperature and UV light affect the activity of marine cell-free enzymes

    Directory of Open Access Journals (Sweden)

    B. Thomson

    2017-09-01

    Full Text Available Microbial extracellular enzymatic activity (EEA is the rate-limiting step in the degradation of organic matter in the oceans. These extracellular enzymes exist in two forms: cell-bound, which are attached to the microbial cell wall, and cell-free, which are completely free of the cell. Contrary to previous understanding, cell-free extracellular enzymes make up a substantial proportion of the total marine EEA. Little is known about these abundant cell-free enzymes, including what factors control their activity once they are away from their sites (cells. Experiments were run to assess how cell-free enzymes (excluding microbes respond to ultraviolet radiation (UVR and temperature manipulations, previously suggested as potential control factors for these enzymes. The experiments were done with New Zealand coastal waters and the enzymes studied were alkaline phosphatase (APase, β-glucosidase, (BGase, and leucine aminopeptidase (LAPase. Environmentally relevant UVR (i.e. in situ UVR levels measured at our site reduced cell-free enzyme activities by up to 87 % when compared to controls, likely a consequence of photodegradation. This effect of UVR on cell-free enzymes differed depending on the UVR fraction. Ambient levels of UV radiation were shown to reduce the activity of cell-free enzymes for the first time. Elevated temperatures (15 °C increased the activity of cell-free enzymes by up to 53 % when compared to controls (10 °C, likely by enhancing the catalytic activity of the enzymes. Our results suggest the importance of both UVR and temperature as control mechanisms for cell-free enzymes. Given the projected warming ocean environment and the variable UVR light regime, it is possible that there could be major changes in the cell-free EEA and in the enzymes contribution to organic matter remineralization in the future.

  2. Anticipating ocean acidification's economic consequences for commercial fisheries

    Energy Technology Data Exchange (ETDEWEB)

    Cooley, Sarah R; Doney, Scott C [Woods Hole Oceanographic Institution, Woods Hole, MA 02543 (United States)], E-mail: scooley@whoi.edu

    2009-06-15

    Ocean acidification, a consequence of rising anthropogenic CO{sub 2} emissions, is poised to change marine ecosystems profoundly by increasing dissolved CO{sub 2} and decreasing ocean pH, carbonate ion concentration, and calcium carbonate mineral saturation state worldwide. These conditions hinder growth of calcium carbonate shells and skeletons by many marine plants and animals. The first direct impact on humans may be through declining harvests and fishery revenues from shellfish, their predators, and coral reef habitats. In a case study of US commercial fishery revenues, we begin to constrain the economic effects of ocean acidification over the next 50 years using atmospheric CO{sub 2} trajectories and laboratory studies of its effects, focusing especially on mollusks. In 2007, the $3.8 billion US annual domestic ex-vessel commercial harvest ultimately contributed $34 billion to the US gross national product. Mollusks contributed 19%, or $748 million, of the ex-vessel revenues that year. Substantial revenue declines, job losses, and indirect economic costs may occur if ocean acidification broadly damages marine habitats, alters marine resource availability, and disrupts other ecosystem services. We review the implications for marine resource management and propose possible adaptation strategies designed to support fisheries and marine-resource-dependent communities, many of which already possess little economic resilience.

  3. Seasonal variability in irradiance affects herbicide toxicity to the marine flagellate Dunaliella tertiolecta

    NARCIS (Netherlands)

    Sjollema, S.B.; Vavourakis, C.D.; van der Geest, H.G.; Vethaak, A.D.; Admiraal, W.

    2014-01-01

    Photosynthetically Active Radiation (PAR) and Ultraviolet Radiation (UVR) of the solar spectrum affect microalgae directly and modify the toxicity of phytotoxic compounds present in water. As a consequence seasonal variable PAR and UVR levels are likely to modulate the toxic pressure of contaminants

  4. Contrasting macrobenthic activities differentially affect nematode density and diversity in a shallow subtidal marine sediment

    NARCIS (Netherlands)

    Braeckman, U.; van Colen, C.; Soetaert, K.E.R.; Vincx, M.; Vanaverbeke, J.

    2011-01-01

    By bioturbating and bio-irrigating the sea floor, macrobenthic organisms transport organic matter and oxygen from the surface to deeper layers, thereby extending the habitat suitable for smaller infauna. Next to these engineering activities, competition, disturbance and predation may also affect the

  5. Was ocean acidification responsible for history's greatest extinction?

    Science.gov (United States)

    Schultz, Colin

    2011-11-01

    Two hundred fifty million years ago, the world suffered the greatest recorded extinction of all time. More than 90% of marine animals and a majority of terrestrial species disappeared, yet the cause of the Permian-Triassic boundary (PTB) dieoff remains unknown. Various theories abound, with most focusing on rampant Siberian volcanism and its potential consequences: global warming, carbon dioxide poisoning, ocean acidification, or the severe drawdown of oceanic dissolved oxygen levels, also known as anoxia. To narrow the range of possible causes, Montenegro et al. ran climate simulations for PTB using the University of Victoria Earth System Climate Model, a carbon cycle-climate coupled general circulation model.

  6. Diverging seasonal extremes for ocean acidification during the twenty-first century

    Science.gov (United States)

    Kwiatkowski, Lester; Orr, James C.

    2018-01-01

    How ocean acidification will affect marine organisms depends on changes in both the long-term mean and the short-term temporal variability of carbonate chemistry1-8. Although the decadal-to-centennial response to atmospheric CO2 and climate change is constrained by observations and models1, 9, little is known about corresponding changes in seasonality10-12, particularly for pH. Here we assess the latter by analysing nine earth system models (ESMs) forced with a business-as-usual emissions scenario13. During the twenty-first century, the seasonal cycle of surface-ocean pH was attenuated by 16 ± 7%, on average, whereas that for hydrogen ion concentration [H+] was amplified by 81 ± 16%. Simultaneously, the seasonal amplitude of the aragonite saturation state (Ωarag) was attenuated except in the subtropics, where it was amplified. These contrasting changes derive from regionally varying sensitivities of these variables to atmospheric CO2 and climate change and to diverging trends in seasonal extremes in the primary controlling variables (temperature, dissolved inorganic carbon and alkalinity). Projected seasonality changes will tend to exacerbate the impacts of increasing [H+] on marine organisms during the summer and ameliorate the impacts during the winter, although the opposite holds in the high latitudes. Similarly, over most of the ocean, impacts from declining Ωarag are likely to be intensified during the summer and dampened during the winter.

  7. Interactive effects of seawater acidification and elevated temperature on biomineralization and amino acid metabolism in the mussel Mytilus edulis.

    Science.gov (United States)

    Li, Shiguo; Liu, Chuang; Huang, Jingliang; Liu, Yangjia; Zheng, Guilan; Xie, Liping; Zhang, Rongqing

    2015-11-01

    Seawater acidification and warming resulting from anthropogenic production of carbon dioxide are increasing threats to marine ecosystems. Previous studies have documented the effects of either seawater acidification or warming on marine calcifiers; however, the combined effects of these stressors are poorly understood. In our study, we examined the interactive effects of elevated carbon dioxide partial pressure (P(CO2)) and temperature on biomineralization and amino acid content in an ecologically and economically important mussel, Mytilus edulis. Adult M. edulis were reared at different combinations of P(CO2) (pH 8.1 and 7.8) and temperature (19, 22 and 25°C) for 2 months. The results indicated that elevated P(CO2) significantly decreased the net calcification rate, the calcium content and the Ca/Mg ratio of the shells, induced the differential expression of biomineralization-related genes, modified shell ultrastructure and altered amino acid content, implying significant effects of seawater acidification on biomineralization and amino acid metabolism. Notably, elevated temperature enhanced the effects of seawater acidification on these parameters. The shell breaking force significantly decreased under elevated P(CO2), but the effect was not exacerbated by elevated temperature. The results suggest that the interactive effects of seawater acidification and elevated temperature on mussels are likely to have ecological and functional implications. This study is therefore helpful for better understanding the underlying effects of changing marine environments on mussels and other marine calcifiers. © 2015. Published by The Company of Biologists Ltd.

  8. Potential acidification impacts on zooplankton in CCS leakage scenarios

    International Nuclear Information System (INIS)

    Halsband, Claudia; Kurihara, Haruko

    2013-01-01

    Highlights: • Effects of CCS techniques and ocean acidification on zooplankton are under-studied. • Vulnerable zooplankton are meso-, bathypelagic and vertically migrating species. • Impacts include impaired calcification, reproduction, development and survival. • Need for modelling studies combining physico-chemical with ecological impacts. -- Abstract: Carbon capture and storage (CCS) technologies involve localized acidification of significant volumes of seawater, inhabited mainly by planktonic species. Knowledge on potential impacts of these techniques on the survival and physiology of zooplankton, and subsequent consequences for ecosystem health in targeted areas, is scarce. The recent literature has a focus on anthropogenic greenhouse gas emissions into the atmosphere, leading to enhanced absorption of CO 2 by the oceans and a lowered seawater pH, termed ocean acidification. These studies explore the effects of changes in seawater chemistry, as predicted by climate models for the end of this century, on marine biota. Early studies have used unrealistically severe CO 2 /pH values in this context, but are relevant for CCS leakage scenarios. Little studied meso- and bathypelagic species of the deep sea may be especially vulnerable, as well as vertically migrating zooplankton, which require significant residence times at great depths as part of their life cycle

  9. Macroalgal spore dysfunction: ocean acidification delays and weakens adhesion.

    Science.gov (United States)

    Guenther, Rebecca; Miklasz, Kevin; Carrington, Emily; Martone, Patrick T

    2018-04-01

    Early life stages of marine organisms are predicted to be vulnerable to ocean acidification. For macroalgae, reproduction and population persistence rely on spores to settle, adhere and continue the algal life cycle, yet the effect of ocean acidification on this critical life stage has been largely overlooked. We explicitly tested the biomechanical impact of reduced pH on early spore adhesion. We developed a shear flume to examine the effect of reduced pH on spore attachment time and strength in two intertidal rhodophyte macroalgae, one calcified (Corallina vancouveriensis) and one noncalcified (Polyostea robusta). Reduced pH delayed spore attachment of both species by 40%-52% and weakened attachment strength in C. vancouveriensis, causing spores to dislodge at lower flow-induced shear forces, but had no effect on the attachment strength of P. robusta. Results are consistent with our prediction that reduced pH disrupts proper curing and gel formation of spore adhesives (anionic polysaccharides and glycoproteins) via protonation and cation displacement, although experimental verification is needed. Our results demonstrate that ocean acidification negatively, and differentially, impacts spore adhesion in two macroalgae. If results hold in field conditions, reduced ocean pH has the potential to impact macroalgal communities via spore dysfunction, regardless of the physiological tolerance of mature thalli. © 2017 Phycological Society of America.

  10. U.S. ocean acidification researchers: First national meeting

    Science.gov (United States)

    Cooley, Sarah R.; Kleypas, Joan; Benway, Heather

    2011-09-01

    Ocean Carbon and Biogeochemistry Program Ocean Acidification Principal Investigators' Meeting; Woods Hole, Massachusetts, 22-24 March 2011 ; Ocean acidification (OA) is the progressive decrease in seawater pH and change in inorganic carbon chemistry caused by uptake of anthropogenic carbon dioxide (CO2). Marine species respond to OA in multiple ways that could profoundly alter ocean ecosystems and the goods and services they provide to human communities. With major support from the National Oceanic and Atmospheric Administration (NOAA) and the U.S. National Science Foundation (NSF) and additional support from the U.S. Environmental Protection Agency (EPA), the Naval Postgraduate School, and the U.S. Geological Survey (USGS), the Ocean Carbon and Biogeochemistry (OCB) Project Office and Ocean Acidification Subcommittee (http://www.us-ocb.org/about/subcommittees.html) held the first multidisciplinary workshop for U.S. OA researchers at the Woods Hole Oceanographic Institution. The 112 attendees included ecologists, paleoceanographers, instrumentation specialists, chemists, biologists, economists, ocean and ecosystem modelers, and communications specialists.

  11. Ocean acidification and temperature increase impact mussel shell shape and thickness: problematic for protection?

    Science.gov (United States)

    Fitzer, Susan C; Vittert, Liberty; Bowman, Adrian; Kamenos, Nicholas A; Phoenix, Vernon R; Cusack, Maggie

    2015-11-01

    Ocean acidification threatens organisms that produce calcium carbonate shells by potentially generating an under-saturated carbonate environment. Resultant reduced calcification and growth, and subsequent dissolution of exoskeletons, would raise concerns over the ability of the shell to provide protection for the marine organism under ocean acidification and increased temperatures. We examined the impact of combined ocean acidification and temperature increase on shell formation of the economically important edible mussel Mytilus edulis. Shell growth and thickness along with a shell thickness index and shape analysis were determined. The ability of M. edulis to produce a functional protective shell after 9 months of experimental culture under ocean acidification and increasing temperatures (380, 550, 750, 1000 μatm pCO 2, and 750, 1000 μatm pCO 2 + 2°C) was assessed. Mussel shells grown under ocean acidification conditions displayed significant reductions in shell aragonite thickness, shell thickness index, and changes to shell shape (750, 1000 μatm pCO 2) compared to those shells grown under ambient conditions (380 μatm pCO 2). Ocean acidification resulted in rounder, flatter mussel shells with thinner aragonite layers likely to be more vulnerable to fracture under changing environments and predation. The changes in shape presented here could present a compensatory mechanism to enhance protection against predators and changing environments under ocean acidification when mussels are unable to grow thicker shells. Here, we present the first assessment of mussel shell shape to determine implications for functional protection under ocean acidification.

  12. Symbiodinium mitigate the combined effects of hypoxia and acidification on a noncalcifying cnidarian

    KAUST Repository

    Klein, Shannon G.

    2017-04-08

    Anthropogenic nutrient inputs enhance microbial respiration within many coastal ecosystems, driving concurrent hypoxia and acidification. During photosynthesis, Symbiodinium spp., the microalgal endosymbionts of cnidarians and other marine phyla, produce O and assimilate CO and thus potentially mitigate the exposure of the host to these stresses. However, such a role for Symbiodinium remains untested for noncalcifying cnidarians. We therefore contrasted the fitness of symbiotic and aposymbiotic polyps of a model host jellyfish (Cassiopea sp.) under reduced O (~2.09 mg/L) and pH (~ 7.63) scenarios in a full-factorial experiment. Host fitness was characterized as asexual reproduction and their ability to regulate internal pH and Symbiodinium performance characterized by maximum photochemical efficiency, chla content and cell density. Acidification alone resulted in 58% more asexual reproduction of symbiotic polyps than aposymbiotic polyps (and enhanced Symbiodinium cell density) suggesting Cassiopea sp. fitness was enhanced by CO-stimulated Symbiodinium photosynthetic activity. Indeed, greater CO drawdown (elevated pH) was observed within host tissues of symbiotic polyps under acidification regardless of O conditions. Hypoxia alone produced 22% fewer polyps than ambient conditions regardless of acidification and symbiont status, suggesting Symbiodinium photosynthetic activity did not mitigate its effects. Combined hypoxia and acidification, however, produced similar numbers of symbiotic polyps compared with aposymbiotic kept under ambient conditions, demonstrating that the presence of Symbiodinium was key for mitigating the combined effects of hypoxia and acidification on asexual reproduction. We hypothesize that this mitigation occurred because of reduced photorespiration under elevated CO conditions where increased net O production ameliorates oxygen debt. We show that Symbiodinium play an important role in facilitating enhanced fitness of Cassiopea sp. polyps, and

  13. Calcifying invertebrates succeed in a naturally CO2-rich coastal habitat but are threatened by high levels of future acidification

    Directory of Open Access Journals (Sweden)

    M. Wahl

    2010-11-01

    Full Text Available CO2 emissions are leading to an acidification of the oceans. Predicting marine community vulnerability towards acidification is difficult, as adaptation processes cannot be accounted for in most experimental studies. Naturally CO2 enriched sites thus can serve as valuable proxies for future changes in community structure. Here we describe a natural analogue site in the Western Baltic Sea. Seawater pCO2 in Kiel Fjord is elevated for large parts of the year due to upwelling of CO2 rich waters. Peak pCO2 values of >230 Pa (>2300 μatm and pHNBS values of pCO2 values are ~70 Pa (~700 μatm. In contrast to previously described naturally CO2 enriched sites that have suggested a progressive displacement of calcifying auto- and heterotrophic species, the macrobenthic community in Kiel Fjord is dominated by calcifying invertebrates. We show that blue mussels from Kiel Fjord can maintain control rates of somatic and shell growth at a pCO2 of 142 Pa (1400 μatm, pHNBS = 7.7. Juvenile mussel recruitment peaks during the summer months, when high water pCO2 values of ~100 Pa (~1000 μatm prevail. Our findings indicate that calcifying keystone species may be able to cope with surface ocean pHNBS values projected for the end of this century when food supply is sufficient. However, owing to non-linear synergistic effects of future acidification and upwelling of corrosive water, peak seawater pCO2 in Kiel Fjord and many other productive estuarine habitats could increase to values >400 Pa (>4000 μatm. These changes will most likely affect calcification and recruitment, and increase external shell dissolution.

  14. Nitrate limitation and ocean acidification interact with UV-B to reduce photosynthetic performance in the diatom Phaeodactylum tricornutum

    Science.gov (United States)

    Li, W.; Gao, K.; Beardall, J.

    2015-04-01

    It has been proposed that ocean acidification (OA) will interact with other environmental factors to influence the overall impact of global change on biological systems. Accordingly we investigated the influence of nitrogen limitation and OA on the physiology of diatoms by growing the diatom Phaeodactylum tricornutum Bohlin under elevated (1000 μatm; high CO2 - HC) or ambient (390 μatm; low CO2 - LC) levels of CO2 with replete (110 μmol L-1; high nitrate - HN) or reduced (10 μmol L-1; low nitrate - LN) levels of NO3- and subjecting the cells to solar radiation with or without UV irradiance to determine their susceptibility to UV radiation (UVR, 280-400 nm). Our results indicate that OA and UVB induced significantly higher inhibition of both the photosynthetic rate and quantum yield under LN than under HN conditions. UVA or/and UVB increased the cells' non-photochemical quenching (NPQ) regardless of the CO2 levels. Under LN and OA conditions, activity of superoxide dismutase and catalase activities were enhanced, along with the highest sensitivity to UVB and the lowest ratio of repair to damage of PSII. HC-grown cells showed a faster recovery rate of yield under HN but not under LN conditions. We conclude therefore that nutrient limitation makes cells more prone to the deleterious effects of UV radiation and that HC conditions (ocean acidification) exacerbate this effect. The finding that nitrate limitation and ocean acidification interact with UV-B to reduce photosynthetic performance of the diatom P. tricornutum implies that ocean primary production and the marine biological C pump will be affected by OA under multiple stressors.

  15. Millennial-scale ocean acidification and late Quaternary

    Energy Technology Data Exchange (ETDEWEB)

    Riding, Dr Robert E [University of Tennessee (UT); Liang, Liyuan [ORNL; Braga, Dr Juan Carlos [Universidad de Granada, Departamento de Estratigrafıa y Paleontologıa, Granada, Spain

    2014-01-01

    Ocean acidification by atmospheric carbon dioxide has increased almost continuously since the last glacial maximum (LGM), 21 000 years ago. It is expected to impair tropical reef development, but effects on reefs at the present day and in the recent past have proved difficult to evaluate. We present evidence that acidification has already significantly reduced the formation of calcified bacterial crusts in tropical reefs. Unlike major reef builders such as coralline algae and corals that more closely control their calcification, bacterial calcification is very sensitive to ambient changes in carbonate chemistry. Bacterial crusts in reef cavities have declined in thickness over the past 14 000 years with largest reduction occurring 12 000 10 000 years ago. We interpret this as an early effect of deglacial ocean acidification on reef calcification and infer that similar crusts were likely to have been thicker when seawater carbonate saturation was increased during earlier glacial intervals, and thinner during interglacials. These changes in crust thickness could have substantially affected reef development over glacial cycles, as rigid crusts significantly strengthen framework and their reduction would have increased the susceptibility of reefs to biological and physical erosion. Bacterial crust decline reveals previously unrecognized millennial-scale acidification effects on tropical reefs. This directs attention to the role of crusts in reef formation and the ability of bioinduced calcification to reflect changes in seawater chemistry. It also provides a long-term context for assessing anticipated anthropogenic effects.

  16. Climate change and ocean acidification-interactions with aquatic toxicology.

    Science.gov (United States)

    Nikinmaa, Mikko

    2013-01-15

    The possibilities for interactions between toxicants and ocean acidification are reviewed from two angles. First, it is considered how toxicant responses may affect ocean acidification by influencing the carbon dioxide balance. Second, it is introduced, how the possible changes in environmental conditions (temperature, pH and oxygenation), expected to be associated with climate change and ocean acidification, may interact with the toxicant responses of organisms, especially fish. One significant weakness in available data is that toxicological research has seldom been connected with ecological and physiological/biochemical research evaluating the responses of organisms to temperature, pH or oxygenation changes occurring in the natural environment. As a result, although there are significant potential interactions between toxicants and natural environmental responses pertaining to climate change and ocean acidification, it is very poorly known if such interactions actually occur, and can be behind the observed disturbances in the function and distribution of organisms in our seas. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Biological responses of sharks to ocean acidification.

    Science.gov (United States)

    Rosa, Rui; Rummer, Jodie L; Munday, Philip L

    2017-03-01

    Sharks play a key role in the structure of marine food webs, but are facing major threats due to overfishing and habitat degradation. Although sharks are also assumed to be at relatively high risk from climate change due to a low intrinsic rate of population growth and slow rates of evolution, ocean acidification (OA) has not, until recently, been considered a direct threat. New studies have been evaluating the potential effects of end-of-century elevated CO 2 levels on sharks and their relatives' early development, physiology and behaviour. Here, we review those findings and use a meta-analysis approach to quantify the overall direction and magnitude of biological responses to OA in the species of sharks that have been investigated to date. While embryo survival and development time are mostly unaffected by elevated CO 2 , there are clear effects on body condition, growth, aerobic potential and behaviour (e.g. lateralization, hunting and prey detection). Furthermore, studies to date suggest that the effects of OA could be as substantial as those due to warming in some species. A major limitation is that all past studies have involved relatively sedentary, benthic sharks that are capable of buccal ventilation-no studies have investigated pelagic sharks that depend on ram ventilation. Future research should focus on species with different life strategies (e.g. pelagic, ram ventilators), climate zones (e.g. polar regions), habitats (e.g. open ocean), and distinct phases of ontogeny in order to fully predict how OA and climate change will impact higher-order predators and therefore marine ecosystem dynamics. © 2017 The Author(s).

  18. Ocean warming and acidification: Unifying physiological principles linking organism response to ecosystem change?

    Science.gov (United States)

    Pörtner, H. O.; Bock, C.; Lannig, G.; Lucassen, M.; Mark, F. C.; Stark, A.; Walther, K.; Wittmann, A.

    2011-12-01

    The effects of ocean warming and acidification on individual species of marine ectothermic animals may be based on some common denominators, i.e. physiological responses that can be assumed to reflect unifying principles, common to all marine animal phyla. Identification of these principles requires studies, which reach beyond the species-specific response, and consider multiple stressors, for example temperature, CO2 or extreme hypoxia. Analyses of response and acclimation include functional traits of physiological performance on various levels of biological organisation, from changes in the transcriptome to patterns of acid-base regulation and whole animal thermal tolerance. Conclusions are substantiated by comparisons of species and phyla from temperate, Arctic and Antarctic ecosystems and also benefit from the interpretation of paleo-patterns based on the use of a unifying physiological concept, suitable to integrate relevant environmental factors into a more comprehensive picture. Studying the differential specialization of animals on climate regimes and their sensitivity to climate leads to improved understanding of ongoing and past ecosystem change and should then support more reliable projections of future scenarios. For example, accumulating CO2 causes disturbances in acid-base status. Resilience to ocean acidification may be reflected in the capacity to compensate for these disturbances or their secondary effects. Ion and pH regulation comprise thermally sensitive active and passive transfer processes across membranes. Specific responses of ion transporter genes and their products to temperature and CO2 were found in fish, crustaceans and bivalves. However, compensation may cause unfavourable shifts in energy budget and beyond that hamper cellular and mitochondrial metabolism, which are directly linked to the animal's aerobic performance window. In crabs, oysters and, possibly, fishes, a narrowing of the thermal window is caused by moderate increases in

  19. Understanding ocean acidification impacts on organismal to ecological scales

    Science.gov (United States)

    Andersson, Andreas J; Kline, David I; Edmunds, Peter J; Archer, Stephen D; Bednaršek, Nina; Carpenter, Robert C; Chadsey, Meg; Goldstein, Philip; Grottoli, Andrea G.; Hurst, Thomas P; King, Andrew L; Kübler, Janet E.; Kuffner, Ilsa B.; Mackey, Katherine R M; Menge, Bruce A.; Paytan, Adina; Riebesell, Ulf; Schnetzer, Astrid; Warner, Mark E; Zimmerman, Richard C

    2015-01-01

    Ocean acidification (OA) research seeks to understand how marine ecosystems and global elemental cycles will respond to changes in seawater carbonate chemistry in combination with other environmental perturbations such as warming, eutrophication, and deoxygenation. Here, we discuss the effectiveness and limitations of current research approaches used to address this goal. A diverse combination of approaches is essential to decipher the consequences of OA to marine organisms, communities, and ecosystems. Consequently, the benefits and limitations of each approach must be considered carefully. Major research challenges involve experimentally addressing the effects of OA in the context of large natural variability in seawater carbonate system parameters and other interactive variables, integrating the results from different research approaches, and scaling results across different temporal and spatial scales.

  20. Ocean acidification has different effects on the production of dimethylsulfide and dimethylsulfoniopropionate measured in cultures of Emiliania huxleyi and a mesocosm study : A comparison of laboratory monocultures and community interactions

    NARCIS (Netherlands)

    Webb, Alison L.; Malin, Gill; Hopkins, Frances E.; Ho, Kai Lam; Riebesell, Ulf; Schulz, Kai G.; Larsen, Aud; Liss, Peter S.

    2016-01-01

    Environmental context Approximately 25% of CO2 released to the atmosphere by human activities has been absorbed by the oceans, resulting in ocean acidification. We investigate the acidification effects on marine phytoplankton and subsequent production of the trace gas dimethylsulfide, a major route

  1. Ocean acidification reduces the crystallographic control in juvenile mussel shells.

    Science.gov (United States)

    Fitzer, Susan C; Cusack, Maggie; Phoenix, Vernon R; Kamenos, Nicholas A

    2014-10-01

    Global climate change threatens the oceans as anthropogenic carbon dioxide causes ocean acidification and reduced carbonate saturation. Future projections indicate under saturation of aragonite, and potentially calcite, in the oceans by 2100. Calcifying organisms are those most at risk from such ocean acidification, as carbonate is vital in the biomineralisation of their calcium carbonate protective shells. This study highlights the importance of multi-generational studies to investigate how marine organisms can potentially adapt to future projected global climate change. Mytilus edulis is an economically important marine calcifier vulnerable to decreasing carbonate saturation as their shells comprise two calcium carbonate polymorphs: aragonite and calcite. M. edulis specimens were cultured under current and projected pCO2 (380, 550, 750 and 1000μatm), following 6months of experimental culture, adults produced second generation juvenile mussels. Juvenile mussel shells were examined for structural and crystallographic orientation of aragonite and calcite. At 1000μatm pCO2, juvenile mussels spawned and grown under this high pCO2 do not produce aragonite which is more vulnerable to carbonate under-saturation than calcite. Calcite and aragonite were produced at 380, 550 and 750μatm pCO2. Electron back scatter diffraction analyses reveal less constraint in crystallographic orientation with increased pCO2. Shell formation is maintained, although the nacre crystals appear corroded and crystals are not so closely layered together. The differences in ultrastructure and crystallography in shells formed by juveniles spawned from adults in high pCO2 conditions may prove instrumental in their ability to survive ocean acidification. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Ocean acidification buffering effects of seagrass in Tampa Bay

    Science.gov (United States)

    Yates, Kimberly K.; Moyer, Ryan P.; Moore, Christopher; Tomasko, David A.; Smiley, Nathan A.; Torres-Garcia, Legna; Powell, Christina E.; Chappel, Amanda R.; Bociu, Ioana; Smiley, Nathan; Torres-Garcia, Legna M.; Powell, Christina E.; Chappel, Amanda R.; Bociu, Ioana

    2016-01-01

    The Intergovernmental Panel on Climate Change has identified ocean acidification as a critical threat to marine and estuarine species in ocean and coastal ecosystems around the world. However, seagrasses are projected to benefit from elevated atmospheric pCO2, are capable of increasing seawater pH and carbonate mineral saturation states through photosynthesis, and may help buffer against the chemical impacts of ocean acidification. Additionally, dissolution of carbonate sediments may also provide a mechanism for buffering seawater pH. Long-term water quality monitoring data from the Environmental Protection Commission of Hillsborough County indicates that seawater pH has risen since the 1980‘s as seagrass beds have continued to recover since that time. We examined the role of seagrass beds in maintaining and elevating pH and carbonate mineral saturation state in northern and southern Tampa Bay where the percent of carbonate sediments is low (40%), respectively. Basic water quality and carbonate system parameters (including pH, total alkalinity, dissolved inorganic carbon, partial pressure of CO2, and carbonate mineral saturation state) were measured over diurnal time periods along transects (50-100 m) including dense and sparse Thalassia testudinum. seagrass beds, deep edge seagrass, and adjacent bare sand bottom. Seagrass density and productivity, sediment composition and hydrodynamic parameters were also measured, concurrently. Results indicate that seagrass beds locally elevate pH by up to 0.5 pH unit and double carbonate mineral saturation states relative to bare sand habitats. Thus, seagrass beds in Tampa Bay may provide refuge for marine organisms from the impacts of ocean acidification.

  3. Temperature change affected groundwater quality in a confined marine aquifer during long-term heating and cooling.

    Science.gov (United States)

    Saito, Takeshi; Hamamoto, Shoichiro; Ueki, Takashi; Ohkubo, Satoshi; Moldrup, Per; Kawamoto, Ken; Komatsu, Toshiko

    2016-05-01

    Global warming and urbanization together with development of subsurface infrastructures (e.g. subways, shopping complexes, sewage systems, and Ground Source Heat Pump (GSHP) systems) will likely cause a rapid increase in the temperature of relatively shallow groundwater reservoirs (subsurface thermal pollution). However, potential effects of a subsurface temperature change on groundwater quality due to changed physical, chemical, and microbial processes have received little attention. We therefore investigated changes in 34 groundwater quality parameters during a 13-month enhanced-heating period, followed by 14 months of natural or enhanced cooling in a confined marine aquifer at around 17 m depth on the Saitama University campus, Japan. A full-scale GSHP test facility consisting of a 50 m deep U-tube for circulating the heat-carrying fluid and four monitoring wells at 1, 2, 5, and 10 m from the U-tube were installed, and groundwater quality was monitored every 1-2 weeks. Rapid changes in the groundwater level in the area, especially during the summer, prevented accurate analyses of temperature effects using a single-well time series. Instead, Dual-Well Analysis (DWA) was applied, comparing variations in subsurface temperature and groundwater chemical concentrations between the thermally-disturbed well and a non-affected reference well. Using the 1 m distant well (temperature increase up to 7 °C) and the 10 m distant well (non-temperature-affected), the DWA showed an approximately linear relationships for eight components (B, Si, Li, dissolved organic carbon (DOC), Mg(2+), NH4(+), Na(+), and K(+)) during the combined 27 months of heating and cooling, suggesting changes in concentration between 4% and 31% for a temperature change of 7 °C. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. A possible approach to assess acidification of meat starter cultures: a case study from some wild strains of Lactobacillus plantarum.

    Science.gov (United States)

    Speranza, Barbara; Bevilacqua, Antonio; Corbo, Maria Rosaria; Sinigaglia, Milena

    2017-07-01

    The performances of four autochthonous isolates of Lactobacillus plantarum were assessed to study the most important variables acting on acidification and to propose a possible step-by-step approach for the validation at laboratory scale. This main topic was addressed through three intermediate steps: (1) evaluation of acidification in liquid and solid media, as a function of salt, nitrites, nitrates, lactose, pepper and temperature; (2) assessing acidification in a pork-meat preparation; and (3) designing a protocol to improve the performances at sub-optimal temperatures. The concentration of the ingredients and the temperature were combined through a 3 k-p Fractional Factorial Design. Acidification and viable count were assessed and modelled through a multi-factorial ANOVA. In model systems acidification was affected by lactose and was maximum (ΔpH of ca. 2.8-3.0) in the combinations containing 0.4% lactose, 250 mg kg -1 nitrates or 150 mg kg -1 nitrites, 5% salt, and at 30 °C. Solid media caused a higher acidification. In the pork meat preparation, the effect of salt and nitrites was significant. At 10 °C the strains could not reduce pH, but this ability could be induced using an adaptation step. Acidification was affected by lactose in the model system, whereas in meat preparation the other variables were significant. In addition, a protocol to improve acidification at 10 °C was optimised. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  5. Ecological factors differentially affect mercury levels in two species of sympatric marine birds of the North Pacific

    International Nuclear Information System (INIS)

    Hipfner, J.M.; Hobson, K.A.; Elliott, J.E.

    2011-01-01

    In 2003 and 2004, we measured mercury concentrations and δ 15 N and δ 13 C values in the whole blood of adults of two species of seabirds, Cassin's auklet (Ptychoramphus aleuticus) and rhinoceros auklet (Cerorhinca monocerata), during their prelaying, incubation, and provisioning periods. We also collected whole blood from the offspring of both seabirds. Among prey items, δ 15 N values were higher in fish than in crustaceans, while δ 13 C did not vary systematically between prey types. Mercury concentrations in prey showed little relationship with either stable isotope. In the zooplanktivorous Cassin's auklet, year, reproductive stage, and δ 15 N and δ 13 C stable isotope values explained only 14% of the variation in mercury concentrations in adult blood, and none of these variables had a statistically significant effect. In contrast, these same variables explained 41% of the variation in mercury levels in the more piscivorous rhinoceros auklet, and all but δ 15 N values had statistically significant effects. Mercury concentrations in adult rhinoceros auklets were higher in 2003 than in 2004; higher prior to laying than during the incubation or provisioning periods; and increased with δ 13 C values - but in just one of two years. In both species, mercury concentrations were substantially higher in adults than in nestlings. Our results accord with previous studies in showing that mercury concentrations can vary among years, species and age classes, while the marked variation with reproductive stage is noteworthy because it is so rarely considered. Our results may help to explain the disparate conclusions of previous studies: while many factors influence mercury concentrations in marine predators, they apparently do so in a manner that defies easy characterization. We believe that there is a need for more studies that consider a range of physiological, ecological and behavioral factors that might affect mercury burdens in marine predators. - Research

  6. Ocean acidification has little effect on developmental thermal windows of echinoderms from Antarctica to the tropics.

    Science.gov (United States)

    Karelitz, Sam E; Uthicke, Sven; Foo, Shawna A; Barker, Mike F; Byrne, Maria; Pecorino, Danilo; Lamare, Miles D

    2017-02-01

    As the ocean warms, thermal tolerance of developmental stages may be a key driver of changes in the geographical distributions and abundance of marine invertebrates. Additional stressors such as ocean acidification may influence developmental thermal windows and are therefore important considerations for predicting distributions of species under climate change scenarios. The effects of reduced seawater pH on the thermal windows of fertilization, embryology and larval morphology were examined using five echinoderm species: two polar (Sterechinus neumayeri and Odontaster validus), two temperate (Fellaster zelandiae and Patiriella regularis) and one tropical (Arachnoides placenta). Responses were examined across 12-13 temperatures ranging from -1.1 °C to 5.7 °C (S. neumayeri), -0.5 °C to 10.7 °C (O. validus), 5.8 °C to 27 °C (F. zelandiae), 6.0 °C to 27.1 °C (P. regularis) and 13.9 °C to 34.8 °C (A. placenta) under present-day and near-future (2100+) ocean acidification conditions (-0.3 pH units) and for three important early developmental stages 1) fertilization, 2) embryo (prehatching) and 3) larval development. Thermal windows for fertilization were broad and were not influenced by a pH decrease. Embryological development was less thermotolerant. For O. validus, P. regularis and A. placenta, low pH reduced normal development, albeit with no effect on thermal windows. Larval development in all five species was affected by both temperature and pH; however, thermal tolerance was not reduced by pH. Results of this study suggest that in terms of fertilization and development, temperature will remain as the most important factor influencing species' latitudinal distributions as the ocean continues to warm and decrease in pH, and that there is little evidence of a synergistic effect of temperature and ocean acidification on the thermal control of species ranges. © 2016 John Wiley & Sons Ltd.

  7. Effects of ocean acidification increase embryonic sensitivity to thermal extremes in Atlantic cod, Gadus morhua.

    Science.gov (United States)

    Dahlke, Flemming T; Leo, Elettra; Mark, Felix C; Pörtner, Hans-Otto; Bickmeyer, Ulf; Frickenhaus, Stephan; Storch, Daniela

    2017-04-01

    Thermal tolerance windows serve as a powerful tool for estimating the vulnerability of marine species and their life stages to increasing temperature means and extremes. However, it remains uncertain to which extent additional drivers, such as ocean acidification, modify organismal responses to temperature. This study investigated the effects of CO 2 -driven ocean acidification on embryonic thermal sensitivity and performance in Atlantic cod, Gadus morhua, from the Kattegat. Fertilized eggs were exposed to factorial combinations of two PCO 2 conditions (400 μatm vs. 1100 μatm) and five temperature treatments (0, 3, 6, 9 and 12 °C), which allow identifying both lower and upper thermal tolerance thresholds. We quantified hatching success, oxygen consumption (MO 2 ) and mitochondrial functioning of embryos as well as larval morphometrics at hatch and the abundance of acid-base-relevant ionocytes on the yolk sac epithelium of newly hatched larvae. Hatching success was high under ambient spawning conditions (3-6 °C), but decreased towards both cold and warm temperature extremes. Elevated PCO 2 caused a significant decrease in hatching success, particularly at cold (3 and 0 °C) and warm (12 °C) temperatures. Warming imposed limitations to MO 2 and mitochondrial capacities. Elevated PCO 2 stimulated MO 2 at cold and intermediate temperatures, but exacerbated warming-induced constraints on MO 2 , indicating a synergistic interaction with temperature. Mitochondrial functioning was not affected by PCO 2 . Increased MO 2 in response to elevated PCO 2 was paralleled by reduced larval size at hatch. Finally, ionocyte abundance decreased with increasing temperature, but did not differ between PCO 2 treatments. Our results demonstrate increased thermal sensitivity of cod embryos under future PCO 2 conditions and suggest that acclimation to elevated PCO 2 requires reallocation of limited resources at the expense of embryonic growth. We conclude that ocean acidification

  8. Effects of Ocean Acidification and Temperature Increases on the Photosynthesis of Tropical Reef Calcified Macroalgae.

    Science.gov (United States)

    Scherner, Fernando; Pereira, Cristiano Macedo; Duarte, Gustavo; Horta, Paulo Antunes; E Castro, Clovis Barreira; Barufi, José Bonomi; Pereira, Sonia Maria Barreto

    2016-01-01

    Climate change is a global phenomenon that is considered an important threat to marine ecosystems. Ocean acidification and increased seawater temperatures are among the consequences of this phenomenon. The comprehension of the effects of these alterations on marine organisms, in particular on calcified macroalgae, is still modest despite its great importance. There are evidences that macroalgae inhabiting highly variable environments are relatively resilient to such changes. Thus, the aim of this study was to evaluate experimentally the effects of CO2-driven ocean acidification and temperature rises on the photosynthesis of calcified macroalgae inhabiting the intertidal region, a highly variable environment. The experiments were performed in a reef mesocosm in a tropical region on the Brazilian coast, using three species of frondose calcifying macroalgae (Halimeda cuneata, Padina gymnospora, and Tricleocarpa cylindrica) and crustose coralline algae. The acidification experiment consisted of three treatments with pH levels below those occurring in the region (-0.3, -0.6, -0.9). For the temperature experiment, three temperature levels above those occurring naturally in the region (+1, +2, +4°C) were determined. The results of the acidification experiment indicate an increase on the optimum quantum yield by T. cylindrica and a decline of this parameter by coralline algae, although both only occurred at the extreme acidification treatment (-0.9). The energy dissipation mechanisms of these algae were also altered at this extreme condition. Significant effects of the temperature experiment were limited to an enhancement of the photosynthetic performance by H. cuneata although only at a modest temperature increase (+1°C). In general, the results indicate a possible photosynthetic adaptation and/or acclimation of the studied macroalgae to the expected future ocean acidification and temperature rises, as separate factors. Such relative resilience may be a result of the

  9. Biomineralization changes with food supply confer juvenile scallops (Argopecten purpuratus) resistance to ocean acidification

    KAUST Repository

    Ramajo, Laura; Marbà , Nú ria; Prado, Luis; Peron, Sophie; Lardies, Marco A.; Rodriguez-Navarro, Alejandro; Vargas, Cristian A.; Lagos, Nelson A.; Duarte, Carlos M.

    2015-01-01

    Future ocean acidification (OA) will affect physiological traits of marine species, with calcifying species being particularly vulnerable. As OA entails high energy demands, particularly during the rapid juvenile growth phase, food supply may play a key role in the response of marine organisms to OA. We experimentally evaluated the role of food supply in modulating physiological responses and biomineralization processes in juveniles of the Chilean scallop, Argopecten purpuratus, that were exposed to control (pH ~ 8.0) and low pH (pH ~ 7.6) conditions using three food supply treatments (high, intermediate, and low). We found that pH and food levels had additive effects on the physiological response of the juvenile scallops. Metabolic rates, shell growth, net calcification, and ingestion rates increased significantly at low pH conditions, independent of food. These physiological responses increased significantly in organisms exposed to intermediate and high levels of food supply. Hence, food supply seems to play a major role modulating organismal response by providing the energetic means to bolster the physiological response of OA stress. On the contrary, the relative expression of chitin synthase, a functional molecule for biomineralization, increased significantly in scallops exposed to low food supply and low pH, which resulted in a thicker periostracum enriched with chitin polysaccharides. Under reduced food and low pH conditions, the adaptive organismal response was to trade-off growth for the expression of biomineralization molecules and altering of the organic composition of shell periostracum, suggesting that the future performance of these calcifiers will depend on the trajectories of both OA and food supply. Thus, incorporating a suite of traits and multiple stressors in future studies of the adaptive organismal response may provide key insights on OA impacts on marine calcifiers.

  10. Biomineralization changes with food supply confer juvenile scallops (Argopecten purpuratus) resistance to ocean acidification

    KAUST Repository

    Ramajo, Laura

    2015-12-08

    Future ocean acidification (OA) will affect physiological traits of marine species, with calcifying species being particularly vulnerable. As OA entails high energy demands, particularly during the rapid juvenile growth phase, food supply may play a key role in the response of marine organisms to OA. We experimentally evaluated the role of food supply in modulating physiological responses and biomineralization processes in juveniles of the Chilean scallop, Argopecten purpuratus, that were exposed to control (pH ~ 8.0) and low pH (pH ~ 7.6) conditions using three food supply treatments (high, intermediate, and low). We found that pH and food levels had additive effects on the physiological response of the juvenile scallops. Metabolic rates, shell growth, net calcification, and ingestion rates increased significantly at low pH conditions, independent of food. These physiological responses increased significantly in organisms exposed to intermediate and high levels of food supply. Hence, food supply seems to play a major role modulating organismal response by providing the energetic means to bolster the physiological response of OA stress. On the contrary, the relative expression of chitin synthase, a functional molecule for biomineralization, increased significantly in scallops exposed to low food supply and low pH, which resulted in a thicker periostracum enriched with chitin polysaccharides. Under reduced food and low pH conditions, the adaptive organismal response was to trade-off growth for the expression of biomineralization molecules and altering of the organic composition of shell periostracum, suggesting that the future performance of these calcifiers will depend on the trajectories of both OA and food supply. Thus, incorporating a suite of traits and multiple stressors in future studies of the adaptive organismal response may provide key insights on OA impacts on marine calcifiers.

  11. Predicting Natural Neuroprotection in Marine Mammals: Environmental and Biological Factors Affecting the Vulnerability to Acoustically Mediated Tissue Trauma in Marine Species

    Science.gov (United States)

    2013-09-30

    comparing both globin deposition profiles from carcasses ranging in age from neonates to adults, as well as the change in mass-specific metabolic demands...to acoustically mediated trauma, 1) molecular and biochemical evaluation of neuroprotection at the tissue level, and 2) whole animal /physiological...Noren, UCSC.) The second component of this study examined the susceptibility of marine mammals to decompression illness at the whole animal

  12. Sources of Nutrients to Nearshore Areas of a Eutrophic Estuary: Implications for Nutrient-Enhanced Acidification in Puget Sound

    Science.gov (United States)

    Pacella, S. R.

    2016-02-01

    Ocean acidification has recently been highlighted as a major stressor for coastal organisms. Further work is needed to assess the role of anthropogenic nutrient additions in eutrophied systems on local biological processes, and how this interacts with CO2 emission-driven acidification. This study sought to distinguish changes in pH caused by natural versus anthropogenically affected processes. We quantified the variability in water column pH attributable to primary production and respiration fueled by anthropogenically derived nitrogen in a shallow nearshore area. Two study sites were located in shallow subtidal areas of the Snohomish River estuary, a eutrophic system located in central Puget Sound, Washington. These sites were chosen due to the presence of heavy agricultural activity, urbanized areas with associated waste water treatment, as well as influence from deep, high CO2 marine waters transported through the Strait of Juan de Fuca and upwelled into the area during spring and summer. Data was collected from July-December 2015 utilizing continuous moorings and discrete water column sampling. Analysis of stable isotopes, δ15N, δ18O-NO3, δ15N-NH4, was used to estimate the relative contributions of anthropogenic versus upwelled marine nitrogen sources. Continuous monitoring of pH, dissolved oxygen, temperature, and salinity was conducted at both study sites to link changes in nutrient source and availability with changes in pH. We predicted that isotope data would indicate greater contributions of nitrogen from agriculture and wastewater rather than upwelling in the shallow, nearshore study sites. This study seeks to distinguish the relative magnitude of pH change stimulated by anthropogenic versus natural sources of nitrogen to inform public policy decisions in critically important nearshore ecosystems.

  13. Transgenerational exposure of North Atlantic bivalves to ocean acidification renders offspring more vulnerable to low pH and additional stressors.

    Science.gov (United States)

    Griffith, Andrew W; Gobler, Christopher J

    2017-09-12

    While early life-stage marine bivalves are vulnerable to ocean acidification, effects over successive generations are poorly characterized. The objective of this work was to assess the transgenerational effects of ocean acidification on two species of North Atlantic bivalve shellfish, Mercenaria mercenaria and Argopecten irradians. Adults of both species were subjected to high and low pCO 2 conditions during gametogenesis. Resultant larvae were exposed to low and ambient pH conditions in addition to multiple, additional stressors including thermal stress, food-limitation, and exposure to a harmful alga. There were no indications of transgenerational acclimation to ocean acidification during experiments. Offspring of elevated pCO 2 -treatment adults were significantly more vulnerable to acidification as well as the additional stressors. Our results suggest that clams and scallops are unlikely to acclimate to ocean acidification over short time scales and that as coastal oceans continue to acidify, negative effects on these populations may become compounded and more severe.

  14. Juvenile pen shells (Pinna nobilis) tolerate acidification but are vulnerable to warming, supplement to: Basso, L; Hendriks, Iris; Duarte, Carlos M (2015): Juvenile pen shells (Pinna nobilis) tolerate acidification but are vulnerable to warming. Estuaries and Coasts, 38(6), 1976-1985

    KAUST Repository

    Basso, L

    2016-01-01

    In the course of this century, rising anthropogenic CO2 emissions will likely cause a decrease in ocean pH, know as ocean acidification, together with an increase of water temperature. Only in the last years, studies have focused on synergetic effects of both stressors on marine invertebrates, particularly on early life stages considered more vulnerable. Disparate responses of their singular and combined effects were reported, highlighting the importance of extending the studies to different species and populations of marine invertebrates. Here, we observed the response of important parameters such as growth, mortality and oxygen consumption of juvenile pen shell Pinna nobilis at supplied pCO2 gas levels of 400 ppm (ambient) and 1000 ppm and at three temperatures (20, 23 and 26 °C) during 36 days. To our knowledge, this is the first study on ocean acidification and temperature effects on juveniles of this species. We show that the two stressors play roles at distinct levels, with pCO2 influencing growth and partially mortality, and temperature increasing mortality rates and oxygen consumption strongly. Therefore, juveniles of P. nobilis are more likely affected by increasing temperature than the pCO2 levels expected by the end of the twenty-first century.

  15. Investigation of landscape and lake acidification relationships

    Energy Technology Data Exchange (ETDEWEB)

    Rush, R.M.; Honea, R.B.; Krug, E.C.; Peplies, R.W.; Dobson, J.E.; Baxter, F.P.

    1985-10-01

    This interim report presents the rationale and initial results for a program designed to gather and analyze information essential to a better understanding of lake acidification in the northeastern United States. The literature pertinent to a study of landscape and lake acidification relationships is reviewed and presented as the rationale for a landscape/lake acidification study. The results of a study of Emmons Pond in northwestern Connecticut are described and lead to the conclusion that a landscape change was a contributor to the acidification of this pond. A regional study of sixteen lakes in southern New England using Landsat imagery is described, and preliminary observations from a similar study in the Adirondack Mountains are given. These results indicate that satellite imagery can be useful in identifying types of ground cover important to landscape/lake acidification relationships.

  16. Intraspecific variations in responses to ocean acidification in two branching coral species.

    Science.gov (United States)

    Sekizawa, Ayami; Uechi, Hikaru; Iguchi, Akira; Nakamura, Takashi; Kumagai, Naoki H; Suzuki, Atsushi; Sakai, Kazuhiko; Nojiri, Yukihiro

    2017-09-15

    Ocean acidification is widely recognised to have a negative impact on marine calcifying organisms by reducing calcifications, but controversy remains over whether such organisms could cope with ocean acidification within a range of phenotypic plasticity and/or adapt to future acidifying ocean. We performed a laboratory rearing experiment using clonal fragments of the common branching corals Montipora digitata and Porites cylindrica under control and acidified seawater (lower pH) conditions (approximately 400 and 900μatm pCO 2 , respectively) and evaluated the intraspecific variations in their responses to ocean acidification. Intra- and interspecific variations in calcification and photosynthetic efficiency were evident according to both pCO 2 conditions and colony, indicating that responses to acidification may be individually variable at the colony level. Our results suggest that some corals may cope with ocean acidification within their present genotypic composition by adaptation through phenotypic plasticity, while others may be placed under selective pressures resulting in population alteration. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. The influence of food supply on the response of Olympia oyster larvae to ocean acidification

    Directory of Open Access Journals (Sweden)

    A. Hettinger

    2013-10-01

    Full Text Available Increases in atmospheric carbon dioxide drive accompanying changes in the marine carbonate system as carbon dioxide (CO2 enters seawater and alters ocean pH (termed "ocean acidification". However, such changes do not occur in isolation, and other environmental factors have the potential to modulate the consequences of altered ocean chemistry. Given that physiological mechanisms used by organisms to confront acidification can be energetically costly, we explored the potential for food supply to influence the response of Olympia oyster (Ostrea lurida larvae to ocean acidification. In laboratory experiments, we reared oyster larvae under a factorial combination of pCO2 and food level. Elevated pCO2 had negative effects on larval growth, total dry weight, and metamorphic success, but high food availability partially offset these influences. The combination of elevated pCO2 and low food availability led to the greatest reduction in larval performance. However, the effects of food and pCO2 interacted additively rather than synergistically, indicating that they operated independently. Despite the potential for abundant resources to counteract the consequences of ocean acidification, impacts were never completely negated, suggesting that even under conditions of enhanced primary production and elevated food availability, impacts of ocean acidification may still accrue in some consumers.

  18. Forest blowdown and lake acidification

    International Nuclear Information System (INIS)

    Dobson, J.E.; Rush, R.M.; Peplies, R.W.

    1990-01-01

    The authors examine the role of forest blowdown in lake acidification. The approach combines geographic information systems (GIS) and digital remote sensing with traditional field methods. The methods of analysis consist of direct observation, interpretation of satellite imagery and aerial photographs, and statistical comparison of two geographical distributions-one representing forest blow-down and another representing lake chemistry. Spatial and temporal associations between surface water pH and landscape disturbance are strong and consistent in the Adirondack Mountains of New York. In 43 Adirondack Mountain watersheds, lake pH is associated with the percentage of the watershed area blown down and with hydrogen ion deposition (Spearman rank correlation coefficients of -0.67 and -0.73, respectively). Evidence of a temporal association is found at Big Moose Lake and Jerseyfield Lake in New York and the Lygners Vider Plateau of Sweden. They conclude that forest blowdown facilities the acidification of some lakes by altering hydrologic pathways so that waters (previously acidified by acid deposition and/or other sources) do not experience the neutralization normally available through contact with subsurface soils and bedrock. Increased pipeflow is suggested as a mechanism that may link the biogeochemical impacts of forest blowdown to lake chemistry

  19. Ocean acidification over the next three centuries using a simple global climate carbon-cycle model: projections and sensitivities

    Energy Technology Data Exchange (ETDEWEB)

    Hartin, Corinne A.; Bond-Lamberty, Benjamin; Patel, Pralit; Mundra, Anupriya

    2016-08-01

    Continued oceanic uptake of anthropogenic CO2 is projected to significantly alter the chemistry of the upper oceans over the next three centuries, with potentially serious consequences for marine ecosystems. Relatively few models have the capability to make projections of ocean acidification, limiting our ability to assess the impacts and probabilities of ocean changes. In this study we examine the ability of Hector v1.1, a reduced-form global model, to project changes in the upper ocean carbonate system over the next three centuries, and quantify the model's sensitivity to parametric inputs. Hector is run under prescribed emission pathways from the Representative Concentration Pathways (RCPs) and compared to both observations and a suite of Coupled Model Intercomparison (CMIP5) model outputs. Current observations confirm that ocean acidification is already taking place, and CMIP5 models project significant changes occurring to 2300. Hector is consistent with the observational record within both the high- (> 55°) and low-latitude oceans (< 55°). The model projects low-latitude surface ocean pH to decrease from preindustrial levels of 8.17 to 7.77 in 2100, and to 7.50 in 2300; aragonite saturation levels (ΩAr) decrease from 4.1 units to 2.2 in 2100 and 1.4 in 2300 under RCP 8.5. These magnitudes and trends of ocean acidification within Hector are largely consistent with the CMIP5 model outputs, although we identify some small biases within Hector's carbonate system. Of the parameters tested, changes in [H+] are most sensitive to parameters that directly affect atmospheric CO2 concentrations – Q10 (terrestrial respiration temperature response) as well as changes in ocean circulation, while changes in ΩAr saturation levels are sensitive to changes in ocean salinity and Q10. We conclude that Hector is a robust tool well suited for rapid ocean acidification

  20. Ocean acidification in the coastal zone from an organism's perspective: multiple system parameters, frequency domains, and habitats.

    Science.gov (United States)

    Waldbusser, George G; Salisbury, Joseph E

    2014-01-01

    Multiple natural and anthropogenic processes alter the carbonate chemistry of the coastal zone in ways that either exacerbate or mitigate ocean acidification effects. Freshwater inputs and multiple acid-base reactions change carbonate chemistry conditions, sometimes synergistically. The shallow nature of these systems results in strong benthic-pelagic coupling, and marine invertebrates at different life history stages rely on both benthic and pelagic habitats. Carbonate chemistry in coastal systems can be highly variable, responding to processes with temporal modes ranging from seconds to centuries. Identifying scales of variability relevant to levels of biological organization requires a fuller characterization of both the frequency and magnitude domains of processes contributing to or reducing acidification in pelagic and benthic habitats. We review the processes that contribute to coastal acidification with attention to timescales of variability and habitats relevant to marine bivalves.

  1. Marine organism concentrations, carbonate chemistry variables, and nutrient concentrations from Atlantis ecosystem model simulation output in the California Current from 2013-01-01 to 2053-12-31 to understand vulnerability of California current food webs and economics to ocean acidification (NCEI Accession 0131198)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This archival package contains the model output of a study to evaluate likely economic and ecological outcomes of ocean acidification in the California Current....

  2. Hydrostatic pressure and temperature affect the tolerance of the free-living marine nematode Halomonhystera disjuncta to acute copper exposure.

    Science.gov (United States)

    Mevenkamp, Lisa; Brown, Alastair; Hauton, Chris; Kordas, Anna; Thatje, Sven; Vanreusel, Ann

    2017-11-01

    Potential deep-sea mineral extraction poses new challenges for ecotoxicological research since little is known about effects of abiotic conditions present in the deep sea on the toxicity of heavy metals. Due to the difficulty of collecting and maintaining deep-sea organisms alive, a first step would be to understand the effects of high hydrostatic pressure and low temperatures on heavy metal toxicity using shallow-water relatives of deep-sea species. Here, we present the results of acute copper toxicity tests on the free-living shallow-water marine nematode Halomonhystera disjuncta, which has close phylogenetic and ecological links to the bathyal species Halomonhystera hermesi. Copper toxicity was assessed using a semi-liquid gellan gum medium at two levels of hydrostatic pressure (0.1MPa and 10MPa) and temperature (10°C and 20°C) in a fully crossed design. Mortality of nematodes in each treatment was assessed at 4 time intervals (24 and 48h for all experiments and additionally 72 and 96h for experiments run at 10°C). LC 50 values ranged between 0.561 and 1.864mg Cu 2+ L -1 and showed a decreasing trend with incubation time. Exposure to high hydrostatic pressure significantly increased sensitivity of nematodes to copper, whereas lower temperature resulted in an apparently increased copper tolerance, possibly as a result of a slower metabolism under low temperatures. These results indicate that hydrostatic pressure and temperature significantly affect metal toxicity and therefore need to be considered in toxicity assessments for deep-sea species. Any application of pollution limits derived from studies of shallow-water species to the deep-sea mining context must be done cautiously, with consideration of the effects of both stressors. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Effect of CO2-related acidification on aspects of the larval development of the European lobster, Homarus gammarus (L.

    Directory of Open Access Journals (Sweden)

    D. Boothroyd

    2009-08-01

    Full Text Available Oceanic uptake of anthropogenic CO2 results in a reduction in pH termed "Ocean Acidification" (OA. Comparatively little attention has been given to the effect of OA on the early life history stages of marine animals. Consequently, we investigated the effect of culture in CO2-acidified sea water (approx. 1200 ppm, i.e. average values predicted using IPCC 2007 A1F1 emissions scenarios for year 2100 on early larval stages of an economically important crustacean, the European lobster Homarus gammarus. Culture in CO2-acidified sea water did not significantly affect carapace length of H. gammarus. However, there was a reduction in carapace mass during the final stage of larval development in CO2-acidified sea water. This co-occurred with a reduction in exoskeletal mineral (calcium and magnesium content of the carapace. As the control and high CO2 treatments were not undersaturated with respect to any of the calcium carbonate polymorphs measured, the physiological alterations we record are most likely the result of acidosis or hypercapnia interfering with normal homeostatic function, and not a direct impact on the carbonate supply-side of calcification per se. Thus despite there being no observed effect on survival, carapace length, or zoeal progression, OA related (indirect disruption of calcification and carapace mass might still adversely affect the competitive fitness and recruitment success of larval lobsters with serious consequences for population dynamics and marine ecosystem function.

  4. Ocean acidification impacts on sperm mitochondrial membrane potential bring sperm swimming behaviour near its tipping point.

    Science.gov (United States)

    Schlegel, Peter; Binet, Monique T; Havenhand, Jonathan N; Doyle, Christopher J; Williamson, Jane E

    2015-04-01

    Broadcast spawning marine invertebrates are susceptible to environmental stressors such as climate change, as their reproduction depends on the successful meeting and fertilization of gametes in the water column. Under near-future scenarios of ocean acidification, the swimming behaviour of marine invertebrate sperm is altered. We tested whether this was due to changes in sperm mitochondrial activity by investigating the effects of ocean acidification on sperm metabolism and swimming behaviour in the sea urchin Centrostephanus rodgersii. We used a fluorescent molecular probe (JC-1) and flow cytometry to visualize mitochondrial activity (measured as change in mitochondrial membrane potential, MMP). Sperm MMP was significantly reduced in ΔpH -0.3 (35% reduction) and ΔpH -0.5 (48% reduction) treatments, whereas sperm swimming behaviour was less sensitive with only slight changes (up to 11% decrease) observed overall. There was significant inter-individual variability in responses of sperm swimming behaviour and MMP to acidified seawater. We suggest it is likely that sperm exposed to these changes in pH are close to their tipping point in terms of physiological tolerance to acidity. Importantly, substantial inter-individual variation in responses of sperm swimming to ocean acidification may increase the scope for selection of resilient phenotypes, which, if heritable, could provide a basis for adaptation to future ocean acidification. © 2015. Published by The Company of Biologists Ltd.

  5. A Possible Late Paleocene-Early Eocene Ocean Acidification Event Recoded in the Adriatic Carbonate Platform

    Science.gov (United States)

    Weiss, A.; Martindale, R. C.; Kosir, A.; Oefinger, J.

    2017-12-01

    The Paleocene-Eocene Thermal Maximum (PETM) event ( 56.3 Ma) was a period of massive carbon release into the Earth system, resulting in significant shifts in ocean chemistry. It has been proposed that ocean acidification - a decrease in the pH and carbonate saturation state of the water as a result of dissolved carbon dioxide in sea water - occurred in both the shallow and deep marine realms. Ocean acidification would have had a devastating impact on the benthic ecosystem, and has been proposed as the cause of decreased carbonate deposition in marine sections and coral reef collapse during the late Paleocene. To date, however, the only physical evidence of Paleocene-Eocene ocean acidification has been shown for offshore sites (i.e., a shallow carbonate compensation depth), but isotope analysis (i.e. B, I/Ca) suggests that acidification occurred in the shallow shelves as well. Several sites in the Kras region of Slovenia, has been found to contain apparent erosion surfaces coeval with the Paleocene-Eocene Boundary. We have investigated these potentially acidified horizons using petrography, stable carbon isotopes, cathodoluminescence, and elemental mapping. These datasets will inform whether the horizons formed by seafloor dissolution in an acidified ocean, or are due to subaerial exposure, or burial diagenesis (i.e. stylotization). Physical erosion and diagenesis can easily be ruled out based on field relationships and petrography, but the other potential causes must be analyzed more critically.

  6. Empirical evidence reveals seasonally dependent reduction in nitrification in coastal sediments subjected to near future ocean acidification

    NARCIS (Netherlands)

    Braeckman, U.; Van Colen, C.; Guilini, K.; Van Gansbeke, D.; Soetaert, K.; Vincx, M.; Vanaverbeke, J.

    2014-01-01

    Research so far has provided little evidence that benthic biogeochemical cycling is affected by ocean acidification under realistic climate change scenarios. We measured nutrient exchange and sediment community oxygen consumption (SCOC) rates to estimate nitrification in natural coastal permeable

  7. Revisiting four scientific debates in ocean acidification research

    Directory of Open Access Journals (Sweden)

    A. J. Andersson

    2012-03-01

    Full Text Available In recent years, ocean acidification has gained continuously increasing attention from scientists and a number of stakeholders and has raised serious concerns about its effects on marine organisms and ecosystems. With the increase in interest, funding resources, and the number of scientific investigations focusing on this environmental problem, increasing amounts of data and results have been produced, and a progressively growing and more rigorous understanding of this problem has begun to develop. Nevertheless, there are still a number of scientific debates, and in some cases misconceptions, that keep reoccurring at a number of forums in various contexts. In this article, we revisit four of these topics that we think require further thoughtful consideration including: (1 surface seawater CO2 chemistry in shallow water coastal areas, (2 experimental manipulation of marine systems using CO2 gas or by acid addition, (3 net versus gross calcification and dissolution, and (4 CaCO3 mineral dissolution and seawater buffering. As a summation of these topics, we emphasize that: (1 many coastal environments experience seawater pCO2 that is significantly higher than expected from equilibrium with the atmosphere and is strongly linked to biological processes; (2 addition of acid, base or CO2 gas to seawater can all be useful techniques to manipulate seawater chemistry in ocean acidification experiments; (3 estimates of calcification or CaCO3 dissolution based on present techniques are measuring the net of gross calcification and dissolution; and (4 dissolution of metastable carbonate mineral phases will not produce sufficient alkalinity to buffer the pH and carbonate saturation state of shallow water environments on timescales of decades to hundreds of years to the extent that any potential negative effects on marine calcifiers will be avoided.

  8. High resilience of two coastal plankton communities to 21st century seawater acidification: Evidence from microcosm studies

    DEFF Research Database (Denmark)

    Nielsen, Lasse Tor; Jakobsen, Hans Henrik; Hansen, Per Juul

    2010-01-01

    Increased free CO2 and ocean acidification are among the consequences of anthropogenic carbon emissions. Responses of marine protists to increased levels of CO2 are highly species-specific, and this has been suggested to cause an alteration in plankton species composition, community functions...

  9. Economic effects of ocean acidification: Publication patterns and directions for future research.

    Science.gov (United States)

    Falkenberg, Laura J; Tubb, Adeline

    2017-09-01

    Human societies derive economic benefit from marine systems, yet these benefits may be modified as humans drive environmental change. Here, we conducted the first systematic review of literature on the potential economic effects of ocean acidification. We identified that while there is a growing literature discussing this topic, assessments of the direction and magnitude of anticipated economic change remain limited. The few assessments which have been conducted indicate largely negative economic effects of ocean acidification. Insights are, however, limited as the scope of the studies remains restricted. We propose that understanding of this topic will benefit from using standard approaches (e.g. timescales and emissions scenarios) to consider an increasing range of species/habitats and ecosystem services over a range of spatial scales. The resulting understanding could inform decisions such that we maintain, or enhance, economic services obtained from future marine environments.

  10. Atmospheric acidification of mineral aerosols: a source of bioavailable phosphorus for the oceans

    Directory of Open Access Journals (Sweden)

    A. Nenes

    2011-07-01

    Full Text Available Primary productivity of continental and marine ecosystems is often limited or co-limited by phosphorus. Deposition of atmospheric aerosols provides the major external source of phosphorus to marine surface waters. However, only a fraction of deposited aerosol phosphorus is water soluble and available for uptake by phytoplankton. We propose that atmospheric acidification of aerosols is a prime mechanism producing soluble phosphorus from soil-derived minerals. Acid mobilization is expected to be pronounced where polluted and dust-laden air masses mix. Our hypothesis is supported by the soluble compositions and reconstructed pH values for atmospheric particulate matter samples collected over a 5-yr period at Finokalia, Crete. In addition, at least tenfold increase in soluble phosphorus was observed when Saharan soil and dust were acidified in laboratory experiments which simulate atmospheric conditions. Aerosol acidification links bioavailable phosphorus supply to anthropogenic and natural acidic gas emissions, and may be a key regulator of ocean biogeochemistry.

  11. Oxidative stress in the hydrocoral Millepora alcicornis exposed to CO2-driven seawater acidification

    Science.gov (United States)

    Luz, Débora Camacho; Zebral, Yuri Dornelles; Klein, Roberta Daniele; Marques, Joseane Aparecida; Marangoni, Laura Fernandes de Barros; Pereira, Cristiano Macedo; Duarte, Gustavo Adolpho Santos; Pires, Débora de Oliveira; Castro, Clovis Barreira e.; Calderon, Emiliano Nicolas; Bianchini, Adalto

    2018-06-01

    Global impacts are affecting negatively coral reefs' health worldwide. Ocean acidification associated with the increasing CO2 partial pressure in the atmosphere can potentially induce oxidative stress with consequent cellular damage in corals and hydrocorals. In the present study, parameters related to oxidative status were evaluated in the hydrocoral Millepora alcicornis exposed to three different levels of seawater acidification using a mesocosm system. CO2-driven acidification of seawater was performed until reaching 0.3, 0.6 and 0.9 pH units below the current pH of seawater pumped from the coral reef adjacent to the mesocosm. Therefore, treatments corresponded to control (pH 8.1), mild (pH 7.8), intermediate (pH 7.5) and severe (pH 7.2) seawater acidification. After 0, 16 and 30 d of exposure, hydrocorals were collected and the following parameters were analyzed in the holobiont: antioxidant capacity against peroxyl radicals (ACAP), total glutathione (GSHt) concentration, reduced (GSH) and oxidized (GSSG) glutathione ratio (GSH/GSSG), lipid peroxidation (LPO) and protein carbonyl group (PC) levels. ACAP was increased in hydrocorals after 16 d of exposure to intermediate levels of seawater acidification. GSHt and GSH/GSSG did not change over the experimental period. LPO was increased at any level of seawater acidification, while PC content was increased in hydrocorals exposed to intermediate and severe seawater acidification for 30 d. These findings indicate that the antioxidant defense system of M. alcicornis is capable of coping with acidic conditions for a short period of time (16 d). Additionally, they clearly show that a long-term (30 d) exposure to seawater acidification induces oxidative stress with consequent oxidative damage to lipids and proteins, which could compromise hydrocoral health.

  12. Ammonia abatement by slurry acidification

    DEFF Research Database (Denmark)

    Petersen, Søren O.; Hutchings, Nicholas John; Hafner, Sasha D.

    2016-01-01

    sections with 30-32 pigs with or without daily adjustment of slurry pH to below 6. Ammonia losses from reference sections with untreated slurry were between 9.5 and 12.4% of N excreted, and from sections with acidified slurry between 3.1 and 6.2%. Acidification reduced total emissions of NH3 by 66 and 71......% in spring and autumn experiments, and by 44% in the summer experiment. Regression models were used to investigate sources and controls of NH3 emissions. There was a strong relationship between NH3 emissions and ventilation rate during spring and autumn, but less so during summer where ventilation rates were...

  13. Laboratory simulation reveals significant impacts of ocean acidification on microbial community composition and host-pathogen interactions between the blood clam and Vibrio harveyi.

    Science.gov (United States)

    Zha, Shanjie; Liu, Saixi; Su, Wenhao; Shi, Wei; Xiao, Guoqiang; Yan, Maocang; Liu, Guangxu

    2017-12-01

    It has been suggested that climate change may promote the outbreaks of diseases in the sea through altering the host susceptibility, the pathogen virulence, and the host-pathogen interaction. However, the impacts of ocean acidification (OA) on the pathogen components of bacterial community and the host-pathogen interaction of marine bivalves are still poorly understood. Therefore, 16S rRNA high-throughput sequencing and host-pathogen interaction analysis between blood clam (Tegillarca granosa) and Vibrio harveyi were conducted in the present study to gain a better understanding of the ecological impacts of ocean acidification. The results obtained revealed a significant impact of ocean acidification on the composition of microbial community at laboratory scale. Notably, the abundance of Vibrio, a major group of pathogens to many marine organisms, was significantly increased under ocean acidification condition. In addition, the survival rate and haemolytic activity of V. harveyi were significantly higher in the presence of haemolymph of OA treated T. granosa, indicating a compromised immunity of the clam and enhanced virulence of V. harveyi under future ocean acidification scenarios. Conclusively, the results obtained in this study suggest that future ocean acidification may increase the risk of Vibrio pathogen infection for marine bivalve species, such as blood clams. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Quantifying the influence of CO2 seasonality on future ocean acidification

    Science.gov (United States)

    Sasse, T. P.; McNeil, B. I.; Matear, R. J.; Lenton, A.

    2015-04-01

    Ocean acidification is a predictable consequence of rising atmospheric carbon dioxide (CO2), and is highly likely to impact the entire marine ecosystem - from plankton at the base to fish at the top. Factors which are expected to be impacted include reproductive health, organism growth and species composition and distribution. Predicting when critical threshold values will be reached is crucial for projecting the future health of marine ecosystems and for marine resources planning and management. The impacts of ocean acidification will be first felt at the seasonal scale, however our understanding how seasonal variability will influence rates of future ocean acidification remains poorly constrained due to current model and data limitations. To address this issue, we first quantified the seasonal cycle of aragonite saturation state utilizing new data-based estimates of global ocean surface dissolved inorganic carbon and alkalinity. This seasonality was then combined with earth system model projections under different emissions scenarios (RCPs 2.6, 4.5 and 8.5) to provide new insights into future aragonite under-saturation onset. Under a high emissions scenario (RCP 8.5), our results suggest accounting for seasonality will bring forward the initial onset of month-long under-saturation by 17 years compared to annual-mean estimates, with differences extending up to 35 ± 17 years in the North Pacific due to strong regional seasonality. Our results also show large-scale under-saturation once atmospheric CO2 reaches 486 ppm in the North Pacific and 511 ppm in the Southern Ocean independent of emission scenario. Our results suggest that accounting for seasonality is critical to projecting the future impacts of ocean acidification on the marine environment.

  15. Effects of ocean acidification on learning in coral reef fishes.

    Directory of Open Access Journals (Sweden)

    Maud C O Ferrari

    Full Text Available Ocean acidification has the potential to cause dramatic changes in marine ecosystems. Larval damselfish exposed to concentrations of CO(2 predicted to occur in the mid- to late-century show maladaptive responses to predator cues. However, there is considerable variation both within and between species in CO(2 effects, whereby some individuals are unaffected at particular CO(2 concentrations while others show maladaptive responses to predator odour. Our goal was to test whether learning via chemical or visual information would be impaired by ocean acidification and ultimately, whether learning can mitigate the effects of ocean acidification by restoring the appropriate responses of prey to predators. Using two highly efficient and widespread mechanisms for predator learning, we compared the behaviour of pre-settlement damselfish Pomacentrus amboinensis that were exposed to 440 µatm CO(2 (current day levels or 850 µatm CO(2, a concentration predicted to occur in the ocean before the end of this century. We found that, regardless of the method of learning, damselfish exposed to elevated CO(2 failed to learn to respond appropriately to a common predator, the dottyback, Pseudochromis fuscus. To determine whether the lack of response was due to a failure in learning or rather a short-term shift in trade-offs preventing the fish from displaying overt antipredator responses, we conditioned 440 or 700 µatm-CO(2 fish to learn to recognize a dottyback as a predator using injured conspecific cues, as in Experiment 1. When tested one day post-conditioning, CO(2 exposed fish failed to respond to predator odour. When tested 5 days post-conditioning, CO(2 exposed fish still failed to show an antipredator response to the dottyback odour, despite the fact that both control and CO(2-treated fish responded to a general risk cue (injured conspecific cues. These results indicate that exposure to CO(2 may alter the cognitive ability of juvenile fish and render

  16. Affect

    NARCIS (Netherlands)

    Cetinic, M.; Diamanti, J.; Szeman, I.; Blacker, S.; Sully, J.

    2017-01-01

    This chapter historicizes four divergent but historically contemporaneous genres of affect theory – romantic, realist, speculative, and materialist. While critics credited with the turn to affect in the 1990s wrote largely in the wake of poststructuralism from the perspective of gender and queer

  17. Variability in larval gut pH regulation defines sensitivity to ocean acidification in six species of the Ambulacraria superphylum.

    Science.gov (United States)

    Hu, Marian; Tseng, Yung-Che; Su, Yi-Hsien; Lein, Etienne; Lee, Hae-Gyeong; Lee, Jay-Ron; Dupont, Sam; Stumpp, Meike

    2017-10-11

    The unusual rate and extent of environmental changes due to human activities may exceed the capacity of marine organisms to deal with this phenomenon. The identification of physiological systems that set the tolerance limits and their potential for phenotypic buffering in the most vulnerable ontogenetic stages become increasingly important to make large-scale projections. Here, we demonstrate that the differential sensitivity of non-calcifying Ambulacraria (echinoderms and hemichordates) larvae towards simulated ocean acidification is dictated by the physiology of their digestive systems. Gastric pH regulation upon experimental ocean acidification was compared in six species of the superphylum Ambulacraria. We observed a strong correlation between sensitivity to ocean acidification and the ability to regulate gut pH. Surprisingly, species with tightly regulated gastric pH were more sensitive to ocean acidification. This study provides evidence that strict maintenance of highly alkaline conditions in the larval gut of Ambulacraria early life stages may dictate their sensitivity to decreases in seawater pH. These findings highlight the importance of identifying and understanding pH regulatory systems in marine larval stages that may contribute to substantial energetic challenges under near-future ocean acidification scenarios. © 2017 The Author(s).

  18. Benzo[a]pyrene exposure under future ocean acidification scenarios weakens the immune responses of blood clam, Tegillarca granosa.

    Science.gov (United States)

    Su, Wenhao; Zha, Shanjie; Wang, Yichen; Shi, Wei; Xiao, Guoqiang; Chai, Xueliang; Wu, Hongxi; Liu, Guangxu

    2017-04-01

    Persistent organic pollutants (POPs) are known to converge into the ocean and accumulate in the sediment, posing great threats to marine organisms such as the sessile bottom burrowing bivalves. However, the immune toxicity of POPs, such as B[a]P, under future ocean acidification scenarios remains poorly understood to date. Therefore, in the present study, the impacts of B[a]P exposure on the immune responses of a bivalve species, Tegillarca granosa, under present and future ocean acidification scenarios were investigated. Results obtained revealed an increased immune toxicity of B[a]P under future ocean acidification scenarios in terms of reduced THC, altered haemocyte composition, and hampered phagocytosis, which may attribute to the synergetic effects of B[a]P and ocean acidification. In addition, the gene expressions of pathogen pattern recognition receptors (TLR1, TLR2, TLR4, TLR6), pathway mediators (TRAF6, TAK1, TAB2, IKKα and Myd88), and effectors (NF-ĸB) of the important immune related pathways were significantly down-regulated upon exposure to B[a]P under future ocean acidification scenarios. Results of the present study suggested an increased immune toxicity of B[a]P under future ocean acidification scenarios, which will significantly hamper the immune responses of T. granosa and subsequently render individuals more susceptible to pathogens challenges. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Responses of the sea anemone, Exaiptasia pallida, to ocean acidification conditions and zinc or nickel exposure.

    Science.gov (United States)

    Duckworth, Christina G; Picariello, Codie R; Thomason, Rachel K; Patel, Krina S; Bielmyer-Fraser, Gretchen K

    2017-01-01

    Ocean acidification, caused by increasing atmospheric carbon dioxide (CO 2 ), is a growing concern in marine environments. Land-based sources of pollution, such as metals, have also been a noted problem; however, little research has addressed the combined exposure of both pollutants to coral reef organisms. In this study we examined tissue metal accumulation and physiological effects (activity of anti-oxidant enzymes, catalase and glutathione reductase) in the sea anemone, Exaiptasia pallida after exposure to increased CO 2 , as well as zinc (Zn) or nickel (Ni). After exposure to four concentrations (nominal values=control, 10, 50, 100μg/L) of Zn or Ni over 7days, both metals accumulated in the tissues of E. pallida in a concentration-dependent manner. Anemones exposed to elevated CO 2 (1000ppm) accumulated significant tissue burdens of Zn or Ni faster (by 48h) than those exposed to the same metal concentrations at ambient CO 2 . No differences were observed in catalase activity due to Zn exposure; however, 50μg/L Ni caused a significant increase in catalase activity at ambient CO 2 . No significant effect on catalase activity from CO 2 exposure alone was observed. Glutathione reductase activity was affected by increased Zn or Ni exposure and those effects were influenced by increased CO 2 . Results of this study provide insight into the toxic mechanisms and environmental implications of CO 2 and Zn or Ni exposure to the cnidarian E. pallida. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Development of a Continuous Phytoplankton Culture System for Ocean Acidification Experiments

    Directory of Open Access Journals (Sweden)

    Cathryn Wynn-Edwards

    2014-06-01

    Full Text Available Around one third of all anthropogenic CO2 emissions have been absorbed by the oceans, causing changes in seawater pH and carbonate chemistry. These changes have the potential to affect phytoplankton, which are critically important for marine food webs and the global carbon cycle. However, our current knowledge of how phytoplankton will respond to these changes is limited to a few laboratory and mesocosm experiments. Long-term experiments are needed to determine the vulnerability of phytoplankton to enhanced pCO2. Maintaining phytoplankton cultures in exponential growth for extended periods of time is logistically difficult and labour intensive. Here we describe a continuous culture system that greatly reduces the time required to maintain phytoplankton cultures, and minimises variation in experimental pCO2 treatments over time. This system is simple, relatively cheap, flexible, and allows long-term experiments to be performed to further our understanding of chronic responses and adaptation by phytoplankton species to future ocean acidification.

  1. The combined effects of ocean warming and acidification on shallow-water meiofaunal assemblages.

    Science.gov (United States)

    Lee, Matthew R; Torres, Rodrigo; Manríquez, Patricio H

    2017-10-01

    Climate change due to increased anthropogenic CO 2 in the atmosphere is causing an increase in seawater temperatures referred to as ocean warming and a decrease in seawater pH, referred to as ocean acidification. The meiofauna play an important role in the ecology of marine ecosystems and the functions they provide. Using microcosms, meiofaunal assemblages were exposed to two temperatures (15 and 19 °C) and two pHs (pCO 2 of 400 and 1000 ppm), both individually and in combination, for a period of 90 days. The hypothesis that increased temperature will increase meiofaunal abundance was not supported. The hypothesis that a reduced pH will reduce meiofaunal abundance and species richness was supported. The combination of future conditions of temperature and pH (19 °C and pCO 2 of 1000 ppm) did not affect overall abundance but the structure of the nematode assemblage changed becoming dominated by a few opportunistic species. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Getting ocean acidification on decision makers' to-do lists: dissecting the process through case studies

    Science.gov (United States)

    Cooley, Sarah R.; Jewett, Elizabeth B.; Reichert, Julie; Robbins, Lisa L.; Shrestha, Gyami; Wieczorek, Dan; Weisberg, Stephen B.

    2015-01-01

    Much of the detailed, incremental knowledge being generated by current scientific research on ocean acidification (OA) does not directly address the needs of decision makers, who are asking broad questions such as: Where will OA harm marine resources next? When will this happen? Who will be affected? And how much will it cost? In this review, we use a series of mainly US-based case studies to explore the needs of local to international-scale groups that are making decisions to address OA concerns. Decisions concerning OA have been made most naturally and easily when information needs were clearly defined and closely aligned with science outputs and initiatives. For decisions requiring more complex information, the process slows dramatically. Decision making about OA is greatly aided (1) when a mixture of specialists participates, including scientists, resource users and managers, and policy and law makers; (2) when goals can be clearly agreed upon at the beginning of the process; (3) when mixed groups of specialists plan and create translational documents explaining the likely outcomes of policy decisions on ecosystems and natural resources; (4) when regional work on OA fits into an existing set of priorities concerning climate or water quality; and (5) when decision making can be reviewed and enhanced.

  3. Potential acidification impacts on zooplankton in CCS leakage scenarios.

    Science.gov (United States)

    Halsband, Claudia; Kurihara, Haruko

    2013-08-30

    Carbon capture and storage (CCS) technologies involve localized acidification of significant volumes of seawater, inhabited mainly by planktonic species. Knowledge on potential impacts of these techniques on the survival and physiology of zooplankton, and subsequent consequences for ecosystem health in targeted areas, is scarce. The recent literature has a focus on anthropogenic greenhouse gas emissions into the atmosphere, leading to enhanced absorption of CO2 by the oceans and a lowered seawater pH, termed ocean acidification. These studies explore the effects of changes in seawater chemistry, as predicted by climate models for the end of this century, on marine biota. Early studies have used unrealistically severe CO2/pH values in this context, but are relevant for CCS leakage scenarios. Little studied meso- and bathypelagic species of the deep sea may be especially vulnerable, as well as vertically migrating zooplankton, which require significant residence times at great depths as part of their life cycle. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Optogenetic acidification of synaptic vesicles and lysosomes.

    Science.gov (United States)

    Rost, Benjamin R; Schneider, Franziska; Grauel, M Katharina; Wozny, Christian; Bentz, Claudia; Blessing, Anja; Rosenmund, Tanja; Jentsch, Thomas J; Schmitz, Dietmar; Hegemann, Peter; Rosenmund, Christian

    2015-12-01

    Acidification is required for the function of many intracellular organelles, but methods to acutely manipulate their intraluminal pH have not been available. Here we present a targeting strategy to selectively express the light-driven proton pump Arch3 on synaptic vesicles. Our new tool, pHoenix, can functionally replace endogenous proton pumps, enabling optogenetic control of vesicular acidification and neurotransmitter accumulation. Under physiological conditions, glutamatergic vesicles are nearly full, as additional vesicle acidification with pHoenix only slightly increased the quantal size. By contrast, we found that incompletely filled vesicles exhibited a lower release probability than full vesicles, suggesting preferential exocytosis of vesicles with high transmitter content. Our subcellular targeting approach can be transferred to other organelles, as demonstrated for a pHoenix variant that allows light-activated acidification of lysosomes.

  5. Studying ocean acidification in the Arctic Ocean

    Science.gov (United States)

    Robbins, Lisa

    2012-01-01

    The U.S. Geological Survey (USGS) partnership with the U.S. Coast Guard Ice Breaker Healey and its United Nations Convention Law of the Sea (UNCLOS) cruises has produced new synoptic data from samples collected in the Arctic Ocean and insights into the patterns and extent of ocean acidification. This framework of foundational geochemical information will help inform our understanding of potential risks to Arctic resources due to ocean acidification.

  6. Ocean warming ameliorates the negative effects of ocean acidification on Paracentrotus lividus larval development and settlement.

    Science.gov (United States)

    García, Eliseba; Clemente, Sabrina; Hernández, José Carlos

    2015-09-01

    Ocean warming and acidification both impact marine ecosystems. All organisms have a limited body temperature range, outside of which they become functionally constrained. Beyond the absolute extremes of this range, they cannot survive. It is hypothesized that some stressors can present effects that interact with other environmental variables, such as ocean acidification (OA) that have the potential to narrow the thermal range where marine species are functional. An organism's response to ocean acidification can therefore be highly dependent on thermal conditions. This study evaluated the combined effects of predicted ocean warming conditions and acidification, on survival, development, and settlement, of the sea urchin Paracentrotus lividus. Nine combined treatments of temperature (19.0, 20.5 and 22.5 °C) and pH (8.1, 7.7 and 7.4 units) were carried out. All of the conditions tested were either within the current natural ranges of seawater pH and temperature or are within the ranges that have been predicted for the end of the century, in the sampling region (Canary Islands). Our results indicated that the negative effects of low pH on P. lividus larval development and settlement will be mitigated by a rise in seawater temperature, up to a thermotolerance threshold. Larval development and settlement performance of the sea urchin P. lividus was enhanced by a slight increase in temperature, even under lowered pH conditions. However, the species did show negative responses to the levels of ocean warming and acidification that have been predicted for the turn of the century. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Differential behavioural responses to venlafaxine exposure route, warming and acidification in juvenile fish (Argyrosomus regius).

    Science.gov (United States)

    Maulvault, Ana Luísa; Santos, Lúcia H M L M; Paula, José Ricardo; Camacho, Carolina; Pissarra, Vasco; Fogaça, Fabiola; Barbosa, Vera; Alves, Ricardo; Ferreira, Pedro Pousão; Barceló, Damià; Rodriguez-Mozaz, Sara; Marques, António; Diniz, Mário; Rosa, Rui

    2018-09-01

    Antidepressants, such as venlafaxine (VFX), which are considered emerging environmental pollutants, are increasingly more present in the marine environment, and recent evidence suggest that they might have adverse effects on fish behaviour. Furthermore, altered environmental conditions associated to climate change (e.g. warming and acidification) can also have a determinant role on fish behaviour, fitness and survival. Yet, the underlying interactions between these environmental stressors (pharmaceuticals exposure and climate change) are still far from being fully understood. The aim of this study was to assess behavioural responses (in juvenile meagre (Argyrosomus regius) exposed to VFX via water ([VFX] ~20μgL -1 ) and via dietary sources ([VFX] ~160μgkg -1 dry weight), as well as to increased temperature (ΔT°C=+5°C) and high CO 2 levels (ΔpCO 2 ~1000μatm; equivalent to ΔpH=-0.4units). Overall, VFX bioaccumulation in fish plasma was enhanced under the combination of warming and acidification. VFX triggered fish exploration, whereas fish activity and shoal cohesion were reduced. Acidification alone decreased fish exploration and shoal cohesion, and reversed fish preference to turn leftwards compared to control conditions. Such alterations were further enhanced by VFX exposure. The combination of warming and acidification also reduced shoal cohesion and loss of lateralization, regardless of VFX exposure. The distinct behaviour observed when VFX contamination, acidification and warming acted alone or in combination highlighted the need to consider the likely interactive effects of seawater warming and acidification in future research regarding the toxicological aspects of chemical contaminants. Copyright © 2018. Published by Elsevier B.V.

  8. Future oceanic warming and acidification alter immune response and disease status in a commercial shellfish species, Mytilus edulis L.

    Directory of Open Access Journals (Sweden)

    Clara L Mackenzie

    Full Text Available Increases in atmospheric carbon dioxide are leading to physical changes in marine environments including parallel decreases in ocean pH and increases in seawater temperature. This study examined the impacts of a six month exposure to combined decreased pH and increased temperature on the immune response and disease status in the blue mussel, Mytilus edulis L. Results provide the first confirmation that exposure to future acidification and warming conditions via aquarium-based simulation may have parallel implications for bivalve health. Collectively, the data suggests that temperature more than pH may be the key driver affecting immune response in M. edulis. Data also suggests that both increases in temperature and/or lowered pH conditions may lead to changes in parasite abundance and diversity, pathological conditions, and bacterial incidence in M. edulis. These results have implications for future management of shellfish under a predicted climate change scenario and future sustainability of shellfisheries. Examination of the combined effects of two stressors over an extended exposure period provides key preliminary data and thus, this work represents a unique and vital contribution to current research efforts towards a collective understanding of expected near-future impacts of climate change on marine environments.

  9. Altered neurotransmitter function in CO2-exposed stickleback (Gasterosteus aculeatus): a temperate model species for ocean acidification research.

    Science.gov (United States)

    Lai, Floriana; Jutfelt, Fredrik; Nilsson, Göran E

    2015-01-01

    Studies on the consequences of ocean acidification for the marine ecosystem have revealed behavioural changes in coral reef fishes exposed to sustained near-future CO2 levels. The changes have been linked to altered function of GABAergic neurotransmitter systems, because the behavioural alterations can be reversed rapidly by treatment with the GABAA receptor antagonist gabazine. Characterization of the molecular mechanisms involved would be greatly aided if these can be examined in a well-characterized model organism with a sequenced genome. It was recently shown that CO2-induced behavioural alterations are not confined to tropical species, but also affect the three-spined stickleback, although an involvement of the GABAA receptor was not examined. Here, we show that loss of lateralization in the stickleback can be restored rapidly and completely by gabazine treatment. This points towards a worrying universality of disturbed GABAA function after high-CO2 exposure in fishes from tropical to temperate marine habitats. Importantly, the stickleback is a model species with a sequenced and annotated genome, which greatly facilitates future studies on underlying molecular mechanisms.

  10. Effect of ocean acidification on the benthic foraminifera Ammonia sp. is caused by a decrease in carbonate ion concentration

    Directory of Open Access Journals (Sweden)

    N. Keul

    2013-10-01

    Full Text Available About 30% of the anthropogenically released CO2 is taken up by the oceans; such uptake causes surface ocean pH to decrease and is commonly referred to as ocean acidification (OA. Foraminifera are one of the most abundant groups of marine calcifiers, estimated to precipitate ca. 50 % of biogenic calcium carbonate in the open oceans. We have compiled the state of the art literature on OA effects on foraminifera, because the majority of OA research on this group was published within the last three years. Disparate responses of this important group of marine calcifiers to OA were reported, highlighting the importance of a process-based understanding of OA effects on foraminifera. We cultured the benthic foraminifer Ammonia sp. under a range of carbonate chemistry manipulation treatments to identify the parameter of the carbonate system causing the observed effects. This parameter identification is the first step towards a process-based understanding. We argue that [CO32−] is the parameter affecting foraminiferal size-normalized weights (SNWs and growth rates. Based on the presented data, we can confirm the strong potential of Ammonia sp. foraminiferal SNW as a [CO32−] proxy.

  11. Giant Clams and Rising CO2: Light May Ameliorate Effects of Ocean Acidification on a Solar-Powered Animal.

    Directory of Open Access Journals (Sweden)

    Sue-Ann Watson

    Full Text Available Global climate change and ocean acidification pose a serious threat to marine life. Marine invertebrates are particularly susceptible to ocean acidification, especially highly calcareous taxa such as molluscs, echinoderms and corals. The largest of all bivalve molluscs, giant clams, are already threatened by a variety of local pressures, including overharvesting, and are in decline worldwide. Several giant clam species are listed as 'Vulnerable' on the IUCN Red List of Threatened Species and now climate change and ocean acidification pose an additional threat to their conservation. Unlike most other molluscs, giant clams are 'solar-powered' animals containing photosynthetic algal symbionts suggesting that light could influence the effects of ocean acidification on these vulnerable animals. In this study, juvenile fluted giant clams Tridacna squamosa were exposed to three levels of carbon dioxide (CO2 (control ~400, mid ~650 and high ~950 μatm and light (photosynthetically active radiation 35, 65 and 304 μmol photons m-2 s-1. Elevated CO2 projected for the end of this century (~650 and ~950 μatm reduced giant clam survival and growth at mid-light levels. However, effects of CO2 on survival were absent at high-light, with 100% survival across all CO2 levels. Effects of CO2 on growth of surviving clams were lessened, but not removed, at high-light levels. Shell growth and total animal mass gain were still reduced at high-CO2. This study demonstrates the potential for light to alleviate effects of ocean acidification on survival and growth in a threatened calcareous marine invertebrate. Managing water quality (e.g. turbidity and sedimentation in coastal areas to maintain water clarity may help ameliorate some negative effects of ocean acidification on giant clams and potentially other solar-powered calcifiers, such as hard corals.

  12. Giant Clams and Rising CO2: Light May Ameliorate Effects of Ocean Acidification on a Solar-Powered Animal.

    Science.gov (United States)

    Watson, Sue-Ann

    2015-01-01

    Global climate change and ocean acidification pose a serious threat to marine life. Marine invertebrates are particularly susceptible to ocean acidification, especially highly calcareous taxa such as molluscs, echinoderms and corals. The largest of all bivalve molluscs, giant clams, are already threatened by a variety of local pressures, including overharvesting, and are in decline worldwide. Several giant clam species are listed as 'Vulnerable' on the IUCN Red List of Threatened Species and now climate change and ocean acidification pose an additional threat to their conservation. Unlike most other molluscs, giant clams are 'solar-powered' animals containing photosynthetic algal symbionts suggesting that light could influence the effects of ocean acidification on these vulnerable animals. In this study, juvenile fluted giant clams Tridacna squamosa were exposed to three levels of carbon dioxide (CO2) (control ~400, mid ~650 and high ~950 μatm) and light (photosynthetically active radiation 35, 65 and 304 μmol photons m-2 s-1). Elevated CO2 projected for the end of this century (~650 and ~950 μatm) reduced giant clam survival and growth at mid-light levels. However, effects of CO2 on survival were absent at high-light, with 100% survival across all CO2 levels. Effects of CO2 on growth of surviving clams were lessened, but not removed, at high-light levels. Shell growth and total animal mass gain were still reduced at high-CO2. This study demonstrates the potential for light to alleviate effects of ocean acidification on survival and growth in a threatened calcareous marine invertebrate. Managing water quality (e.g. turbidity and sedimentation) in coastal areas to maintain water clarity may help ameliorate some negative effects of ocean acidification on giant clams and potentially other solar-powered calcifiers, such as hard corals.

  13. Coral Carbonic Anhydrases: Regulation by Ocean Acidification.

    Science.gov (United States)

    Zoccola, Didier; Innocenti, Alessio; Bertucci, Anthony; Tambutté, Eric; Supuran, Claudiu T; Tambutté, Sylvie

    2016-06-03

    Global change is a major threat to the oceans, as it implies temperature increase and acidification. Ocean acidification (OA) involving decreasing pH and changes in seawater carbonate chemistry challenges the capacity of corals to form their skeletons. Despite the large number of studies that have investigated how rates of calcification respond to ocean acidification scenarios, comparatively few studies tackle how ocean acidification impacts the physiological mechanisms that drive calcification itself. The aim of our paper was to determine how the carbonic anhydrases, which play a major role in calcification, are potentially regulated by ocean acidification. For this we measured the effect of pH on enzyme activity of two carbonic anhydrase isoforms that have been previously characterized in the scleractinian coral Stylophora pistillata. In addition we looked at gene expression of these enzymes in vivo. For both isoforms, our results show (1) a change in gene expression under OA (2) an effect of OA and temperature on carbonic anhydrase activity. We suggest that temperature increase could counterbalance the effect of OA on enzyme activity. Finally we point out that caution must, thus, be taken when interpreting transcriptomic data on carbonic anhydrases in ocean acidification and temperature stress experiments, as the effect of these stressors on the physiological function of CA will depend both on gene expression and enzyme activity.

  14. Coral Carbonic Anhydrases: Regulation by Ocean Acidification

    Directory of Open Access Journals (Sweden)

    Didier Zoccola

    2016-06-01

    Full Text Available Global change is a major threat to the oceans, as it implies temperature increase and acidification. Ocean acidification (OA involving decreasing pH and changes in seawater carbonate chemistry challenges the capacity of corals to form their skeletons. Despite the large number of studies that have investigated how rates of calcification respond to ocean acidification scenarios, comparatively few studies tackle how ocean acidification impacts the physiological mechanisms that drive calcification itself. The aim of our paper was to determine how the carbonic anhydrases, which play a major role in calcification, are potentially regulated by ocean acidification. For this we measured the effect of pH on enzyme activity of two carbonic anhydrase isoforms that have been previously characterized in the scleractinian coral Stylophora pistillata. In addition we looked at gene expression of these enzymes in vivo. For both isoforms, our results show (1 a change in gene expression under OA (2 an effect of OA and temperature on carbonic anhydrase activity. We suggest that temperature increase could counterbalance the effect of OA on enzyme activity. Finally we point out that caution must, thus, be taken when interpreting transcriptomic data on carbonic anhydrases in ocean acidification and temperature stress experiments, as the effect of these stressors on the physiological function of CA will depend both on gene expression and enzyme activity.

  15. Acidification increases abundances of Vibrionales and Planctomycetia associated to a seaweed-grazer system: potential consequences for disease and prey digestion efficiency

    Directory of Open Access Journals (Sweden)

    Tania Aires

    2018-03-01

    Full Text Available Ocean acidification significantly affects marine organisms in several ways, with complex interactions. Seaweeds might benefit from rising CO2 through increased photosynthesis and carbon acquisition, with subsequent higher growth rates. However, changes in seaweed chemistry due to increased CO2 may change the nutritional quality of tissue for grazers. In addition, organisms live in close association with a diverse microbiota, which can also be influenced by environmental changes, with feedback effects. As gut microbiomes are often linked to diet, changes in seaweed characteristics and associated microbiome can affect the gut microbiome of the grazer, with possible fitness consequences. In this study, we experimentally investigated the effects of acidification on the microbiome of the invasive brown seaweed Sargassum muticum and a native isopod consumer Synisoma nadejda. Both were exposed to ambient CO2 conditions (380 ppm, pH 8.16 and an acidification treatment (1,000 ppm, pH 7.86 for three weeks. Microbiome diversity and composition were determined using high-throughput sequencing of the variable regions V5-7 of 16S rRNA. We anticipated that as a result of acidification, the seaweed-associated bacterial community would change, leading to further changes in the gut microbiome of grazers. However, no significant effects of elevated CO2 on the overall bacterial community structure and composition were revealed in the seaweed. In contrast, significant changes were observed in the bacterial community of the grazer gut. Although the bacterial community of S. muticum as whole did not change, Oceanospirillales and Vibrionales (mainly Pseudoalteromonas significantly increased their abundance in acidified conditions. The former, which uses organic matter compounds as its main source, may have opportunistically taken advantage of the possible increase of the C/N ratio in the seaweed under acidified conditions. Pseudoalteromonas, commonly associated to

  16. Ocean acidification increases fatty acids levels of larval fish.

    Science.gov (United States)

    Díaz-Gil, Carlos; Catalán, Ignacio A; Palmer, Miquel; Faulk, Cynthia K; Fuiman, Lee A

    2015-07-01

    Rising levels of anthropogenic carbon dioxide in the atmosphere are acidifying the oceans and producing diverse and important effects on marine ecosystems, including the production of fatty acids (FAs) by primary producers and their transfer through food webs. FAs, particularly essential FAs, are necessary for normal structure and function in animals and influence composition and trophic structure of marine food webs. To test the effect of ocean acidification (OA) on the FA composition of fish, we conducted a replicated experiment in which larvae of the marine fish red drum (Sciaenops ocellatus) were reared under a climate change scenario of elevated CO2 levels (2100 µatm) and under current control levels (400 µatm). We found significantly higher whole-body levels of FAs, including nine of the 11 essential FAs, and altered relative proportions of FAs in the larvae reared under higher levels of CO2. Consequences of this effect of OA could include alterations in performance and survival of fish larvae and transfer of FAs through food webs. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  17. Bioremediation of waste under ocean acidification: Reviewing the role of Mytilus edulis.

    Science.gov (United States)

    Broszeit, Stefanie; Hattam, Caroline; Beaumont, Nicola

    2016-02-15

    Waste bioremediation is a key regulating ecosystem service, removing wastes from ecosystems through storage, burial and recycling. The bivalve Mytilus edulis is an important contributor to this service, and is used in managing eutrophic waters. Studies show that they are affected by changes in pH due to ocean acidification, reducing their growth. This is forecasted to lead to reductions in M. edulis biomass of up to 50% by 2100. Growth reduction will negatively affect the filtering capacity of each individual, potentially leading to a decrease in bioremediation of waste. This paper critically reviews the current state of knowledge of bioremediation of waste carried out by M. edulis, and the current knowledge of the resultant effect of ocean acidification on this key service. We show that the effects of ocean acidification on waste bioremediation could be a major issue and pave the way for empirical studies of the topic. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Marine viruses and global climate change

    NARCIS (Netherlands)

    Danovaro, R.; Corinaldesi, C.; Dell'Anno, A.; Fuhrman, J.A.; Middelburg, J.J.; Noble, R.T.; Suttle, C.A.

    2011-01-01

    Sea-surface warming, sea-ice melting and related freshening, changes in circulation and mixing regimes, and ocean acidification induced by the present climate changes are modifying marine ecosystem structure and function and have the potential to alter the cycling of carbon and nutrients in surface

  19. The potential of 230Th for detection of ocean acidification impacts on pelagic carbonate production

    Directory of Open Access Journals (Sweden)

    C. Heinze

    2018-06-01

    Full Text Available Concentrations of dissolved 230Th in the ocean water column increase with depth due to scavenging and downward particle flux. Due to the 230Th scavenging process, any change in the calcium carbonate (CaCO3 fraction of the marine particle flux due to changes in biological CaCO3 hard-shell production as a consequence of progressing ocean acidification would be reflected in the dissolved 230Th activity. Our prognostic simulations with a biogeochemical ocean general circulation model using different scenarios for the reduction of CaCO3 production under ocean acidification and different greenhouse gas emission scenarios – the Representative Concentration Pathways (RCPs 8.5 to 2.6 – reveal the potential for deep 230Th measurements to detect reduced CaCO3 production at the sea surface. The time of emergence of an acidification-induced signal on dissolved 230Th is of the same order of magnitude as for alkalinity measurements. Interannual and decadal variability in factors other than a reduction in CaCO3 hard-shell production may mask the ocean-acidification-induced signal in dissolved 230Th and make detection of the pure CaCO3-induced signal more difficult so that only really strong changes in marine CaCO3 export would be unambiguously identifiable soon. Nevertheless, the impacts of changes in CaCO3 export production on marine 230Th are stronger than those for changes in POC (particulate organic carbon or clay fluxes.

  20. Stable carbon and oxygen isotope signatures in molluscan shells under ocean acidification

    Science.gov (United States)

    Nishida, K.; Hayashi, M.; Suzuki, A.; Sato, M.; Nojiri, Y.

    2017-12-01

    Stable carbon and oxygen isotope compositions (δ13C, δ18O) of biogenic carbonate have been widely used for many paleoclimate, paleoecological, and biomineralization studies. δ13C of molluscan shells reflects the mixing of δ13C of dissolved inorganic carbon (DIC) of seawater and respiratory carbon. Previous studies reported physiological effects on molluscs by ocean acidification, and thus the metabolic changes could potentially appear in shell δ13C as changes in a fraction of two carbon sources. In addition, shell δ18O, a commonly used proxy of seawater temperature and seawater δ18O, is also affected by seawater carbonate chemistry. As changes in the marine carbonate system, such as pH and pCO2, have occurred in the past 300 million years, to estimate pH effect on paleotemperature reconstruction is important. Here, we experimentally examined acidification effects on shell δ13C and δ18O of two species of clams for understanding of environmental and physiological proxies. Juvenile specimens of bloody clam Scapharca broughtonii and Japanese surf clam Pseudocardium sachalinense were cultured at five (400, 600, 800, 1000, and 1200 µatm, P. sachalinense) or six (280, 400, 600, 800, 1000, and 1200 µatm, S. broughtonii) different pCO2 levels using CO2 control system of the Demonstration Laboratory, MERI, Japan. Significant negative correlations between shell δ13C and pH appeared in S. broughtonii, which showed non-significant pH effects on calcification, and the slope of the relationship of shell carbonate was lower than that of seawater DIC. On the other hand, in P. sachalinense which showed a decrease in calcification at low-pH treatment, the slopes of the relationship between shell δ13C and pH was roughly the same as that of seawater DIC. Thus, the extrapallial fluid of P. sachalinense might more strongly affected by acidified seawater than S. broughtonii. The results of two species might be attributable to differences in physiological responses to

  1. Ocean acidification research in the 'post-genomic' era: Roadmaps from the purple sea urchin Strongylocentrotus purpuratus.

    Science.gov (United States)

    Evans, Tyler G; Padilla-Gamiño, Jacqueline L; Kelly, Morgan W; Pespeni, Melissa H; Chan, Francis; Menge, Bruce A; Gaylord, Brian; Hill, Tessa M; Russell, Ann D; Palumbi, Stephen R; Sanford, Eric; Hofmann, Gretchen E

    2015-07-01

    Advances in nucleic acid sequencing technology are removing obstacles that historically prevented use of genomics within ocean change biology. As one of the first marine calcifiers to have its genome sequenced, purple sea urchins (Strongylocentrotus purpuratus) have been the subject of early research exploring genomic responses to ocean acidification, work that points to future experiments and illustrates the value of expanding genomic resources to other marine organisms in this new 'post-genomic' era. This review presents case studies of S. purpuratus demonstrating the ability of genomic experiments to address major knowledge gaps within ocean acidification. Ocean acidification research has focused largely on species vulnerability, and studies exploring mechanistic bases of tolerance toward low pH seawater are comparatively few. Transcriptomic responses to high pCO₂ seawater in a population of urchins already encountering low pH conditions have cast light on traits required for success in future oceans. Secondly, there is relatively little information on whether marine organisms possess the capacity to adapt to oceans progressively decreasing in pH. Genomics offers powerful methods to investigate evolutionary responses to ocean acidification and recent work in S. purpuratus has identified genes under selection in acidified seawater. Finally, relatively few ocean acidification experiments investigate how shifts in seawater pH combine with other environmental factors to influence organism performance. In S. purpuratus, transcriptomics has provided insight into physiological responses of urchins exposed simultaneously to warmer and more acidic seawater. Collectively, these data support that similar breakthroughs will occur as genomic resources are developed for other marine species. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Sensitivity to acidification of subalpine ponds and lakes in north-western Colorado

    Science.gov (United States)

    Campbell, D.H.; Muths, E.; Turk, J.T.; Corn, P.S.

    2004-01-01

    Although acidifying deposition in western North America is lower than in many parts of the world, many high-elevation ecosystems there are extremely sensitive to acidification. Previous studies determined that the Mount Zirkel Wilderness Area (MZWA) has the most acidic snowpack and aquatic ecosystems that are among the most sensitive in the region. In this study, spatial and temporal variability of ponds and lakes in and near the MZWA were examined to determine their sensitivity to acidification and the effects of acidic deposition during and after snowmelt. Within the areas identified as sensitive to acidification based on bedrock types, there was substantial variability in acid-neutralizing capacity (ANC), which was related to differences in hydrological flowpaths that control delivery of weathering products to surface waters. Geological and topographic maps were of limited use in predicting acid sensitivity because their spatial resolution was not fine enough to capture the variability of these attributes for lakes and ponds with small catchment areas. Many of the lakes are sensitive to acidification (summer and autumn ANC pH value was 5·4, and pH generally remained less than 6·0 throughout early summer in the most sensitive ponds, indicating that biological effects of acidification are possible at levels of atmospheric deposition that occurred during the study. The aquatic chemistry of lakes was dominated by atmospheric deposition and biogeochemical processes in soils and shallow ground water, whereas the aquatic chemistry of ponds was also affected by organic acids and biogeochemical processes in the water column and at the sediment–water interface. These results indicate that conceptual and mechanistic acidification models that have been developed for lakes and streams may be inadequate for predicting acidification in less-understood systems such as ponds.

  3. Intra-Specific Variation Reveals Potential for Adaptation to Ocean Acidification in a Cold-Water Coral from the Gulf of Mexico

    Directory of Open Access Journals (Sweden)

    Melissa D. Kurman

    2017-05-01

    Full Text Available Ocean acidification, the decrease in seawater pH due to the absorption of atmospheric CO2, profoundly threatens the survival of a large number of marine species. Cold-water corals are considered to be among the most vulnerable organisms to ocean acidification because they are already exposed to relatively low pH and corresponding low calcium carbonate saturation states (Ω. Lophelia pertusa is a globally distributed cold-water scleractinian coral that provides critical three-dimensional habitat for many ecologically and economically significant species. In this study, four different genotypes of L. pertusa were exposed to three pH treatments (pH = 7.60, 7.75, and 7.90 over a short (2-week experimental period, and six genotypes were exposed to two pH treatments (pH = 7.60 and 7.90 over a long (6-month experimental period. Their physiological response was measured as net calcification rate and the activity of carbonic anhydrase, a key enzyme in the calcification pathway. In the short-term experiment, net calcification rates did not significantly change with pH, although they were highly variable in the low pH treatment, including some genotypes that maintained positive net calcification in undersaturated conditions. In the 6-month experiment, average net calcification was significantly reduced at low pH, with corals exhibiting net dissolution of skeleton. However, one of the same genotypes that maintained positive net calcification (+0.04% day−1 under the low pH treatment in the short-term experiment also maintained positive net calcification longer than the other genotypes in the long-term experiment, although none of the corals maintained positive calcification for the entire 6 months. Average carbonic anhydrase activity was not affected by pH, although some genotypes exhibited small, insignificant, increases in activity after the sixth month. Our results suggest that while net calcification in L. pertusa is adversely affected by ocean

  4. Bioenergetic trade-offs in the sea cucumber Apostichopus japonicus (Echinodermata: Holothuroidea) in response to CO2-driven ocean acidification.

    Science.gov (United States)

    Yuan, Xiutang; Shao, Senlin; Yang, Xiaolong; Yang, Dazuo; Xu, Qinzeng; Zong, Humin; Liu, Shilin

    2016-05-01

    Ocean acidification (OA) caused by excessive CO2 is a potential ecological threat to marine organisms. The impacts of OA on echinoderms are well-documented, but there has been a strong bias towards sea urchins, and limited information is available on sea cucumbers. This work examined the effect of medium-term (60 days) exposure to three pH levels (pH 8.06, 7.72, and 7.41, covering present and future pH variability) on the bioenergetic responses of the sea cucumber, Apostichopus japonicus, an ecologically and economically important holothurian in Asian coasts. Results showed that the measured specific growth rate linearly decreased with decreased pH, leading to a 0.42 %·day(-1) decrease at pH 7.41 compared with that at pH 8.06. The impacts of pH on physiological energetics were variable: measured energy consumption and defecation rates linearly decreased with decreased pH, whereas maintenance energy in calculated respiration and excretion were not significantly affected. No shift in energy allocation pattern was observed in A. japonicus upon exposure to pH 7.72 compared with pH 8.06. However, a significant shift in energy budget occurred upon exposure to pH 7.41, leading to decreased energy intake and increased percentage of energy that was lost in feces, thereby resulting in a significantly lowered allocation into somatic growth. These findings indicate that adult A. japonicus is resilient to the OA scenario at the end of the twenty-first century, but further acidification may negatively influence the grazing capability and growth, thereby influencing its ecological functioning as an "ecosystem engineer" and potentially harming its culture output.

  5. Naturally acidified habitat selects for ocean acidification-tolerant mussels.

    Science.gov (United States)

    Thomsen, Jörn; Stapp, Laura S; Haynert, Kristin; Schade, Hanna; Danelli, Maria; Lannig, Gisela; Wegner, K Mathias; Melzner, Frank

    2017-04-01

    Ocean acidification severely affects bivalves, especially their larval stages. Consequently, the fate of this ecologically and economically important group depends on the capacity and rate of evolutionary adaptation to altered ocean carbonate chemistry. We document successful settlement of wild mussel larvae ( Mytilus edulis ) in a periodically CO 2 -enriched habitat. The larval fitness of the population originating from the CO 2 -enriched habitat was compared to the response of a population from a nonenriched habitat in a common garden experiment. The high CO 2 -adapted population showed higher fitness under elevated P co 2 (partial pressure of CO 2 ) than the non-adapted cohort, demonstrating, for the first time, an evolutionary response of a natural mussel population to ocean acidification. To assess the rate of adaptation, we performed a selection experiment over three generations. CO 2 tolerance differed substantially between the families within the F 1 generation, and survival was drastically decreased in the highest, yet realistic, P co 2 treatment. Selection of CO 2 -tolerant F 1 animals resulted in higher calcification performance of F 2 larvae during early shell formation but did not improve overall survival. Our results thus reveal significant short-term selective responses of traits directly affected by ocean acidification and long-term adaptation potential in a key bivalve species. Because immediate response to selection did not directly translate into increased fitness, multigenerational studies need to take into consideration the multivariate nature of selection acting in natural habitats. Combinations of short-term selection with long-term adaptation in populations from CO 2 -enriched versus nonenriched natural habitats represent promising approaches for estimating adaptive potential of organisms facing global change.

  6. Increase in dimethylsulfide (DMS emissions due to eutrophication of coastal waters offsets their reduction due to ocean acidification.

    Directory of Open Access Journals (Sweden)

    Nathalie eGypens

    2014-04-01

    Full Text Available Available information from manipulative experiments suggested that the emission of dimethylsulfide (DMS would decrease in response to the accumulation of anthropogenic CO2 in the ocean (ocean acidification. However, in coastal environments, the carbonate chemistry of surface waters was also strongly modified by eutrophication and related changes in biological activity (increased primary production and change in phytoplankton dominance during the last 50 years. Here, we tested the hypothesis that DMS emissions in marine coastal environments also strongly responded to eutrophication in addition to ocean acidification at decadal timescales. We used the R-MIRO-BIOGAS model in the eutrophied Southern Bight of the North Sea characterized by intense blooms of Phaeocystis that are high producers of dimethylsulfoniopropionate (DMSP, the precursor of DMS. We showed that, for the period from 1951 to 2007, eutrophication actually led to an increase of DMS emissions much stronger than the response of DMS emissions to ocean acidification.

  7. Impact of calcium and TOC on biological acidification assessment in Norwegian rivers.

    Science.gov (United States)

    Schneider, Susanne C

    2011-02-15

    Acidification continues to be a major impact in freshwaters of northern Europe, and the biotic response to chemical recovery from acidification is often not a straightforward process. The focus on biological recovery is relevant within the context of the EU Water Framework Directive, where a biological monitoring system is needed that detects differences in fauna and flora compared to undisturbed reference conditions. In order to verify true reference sites for biological analyses, expected river pH is modeled based on Ca and TOC, and 94% of variability in pH at reference sites is explained by Ca alone, while 98% is explained by a combination of Ca and TOC. Based on 59 samples from 28 reference sites, compared to 547 samples from 285 non-reference sites, the impact of calcium and total organic carbon (TOC) on benthic algae species composition, expressed as acidification index periphyton (AIP), is analyzed. Rivers with a high Ca concentration have a naturally higher AIP, and TOC affects reference AIP only at low Ca concentrations. Four biological river types are needed for assessment of river acidification in Norway based on benthic algae: very calcium-poor, humic rivers (CaTOC>2 mg/l); very calcium-poor, clear rivers (CaTOC4 mg/l). A biological assessment system for river acidification in Norway based on benthic algae is presented, following the demands of the Water Framework Directive. Copyright © 2010 Elsevier B.V. All rights reserved.

  8. Reviews and syntheses: Ice acidification, the effects of ocean acidification on sea ice microbial communities

    Science.gov (United States)

    McMinn, Andrew

    2017-09-01

    Sea ice algae, like some coastal and estuarine phytoplankton, are naturally exposed to a wider range of pH and CO2 concentrations than those in open marine seas. While climate change and ocean acidification (OA) will impact pelagic communities, their effects on sea ice microbial communities remain unclear. Sea ice contains several distinct microbial communities, which are exposed to differing environmental conditions depending on their depth within the ice. Bottom communities mostly experience relatively benign bulk ocean properties, while interior brine and surface (infiltration) communities experience much greater extremes. Most OA studies have examined the impacts on single sea ice algae species in culture. Although some studies examined the effects of OA alone, most examined the effects of OA and either light, nutrients or temperature. With few exceptions, increased CO2 concentration caused either no change or an increase in growth and/or photosynthesis. In situ studies on brine and surface algae also demonstrated a wide tolerance to increased and decreased pH and showed increased growth at higher CO2 concentrations. The short time period of most experiments (bacterial communities in general, impacts appear to be minimal. In sea ice also, the few reports available suggest no negative impacts on bacterial growth or community richness. Sea ice ecosystems are ephemeral, melting and re-forming each year. Thus, for some part of each year organisms inhabiting the ice must also survive outside of the ice, either as part of the phytoplankton or as resting spores on the bottom. During these times, they will be exposed to the full range of co-stressors that pelagic organisms experience. Their ability to continue to make a major contribution to sea ice productivity will depend not only on their ability to survive in the ice but also on their ability to survive the increasing seawater temperatures, changing distribution of nutrients and declining pH forecast for the water

  9. Ocean acidification impacts bacteria – phytoplankton coupling at low-nutrient conditions

    NARCIS (Netherlands)

    Hornick, T.; Bach, L.T.; Crawfurd, K.J.; Spilling, K.; Achterberg, E.P.; Woodhouse, J.N.; Schulz, K.G.; Brussaard, C.P.D.; Riebesell, U.; Grossart, H.-P.

    2017-01-01

    The oceans absorb about a quarter of the annuallyproduced anthropogenic atmospheric carbon dioxide(CO2/, resulting in a decrease in surface water pH, aprocess termed ocean acidification (OA). Surprisingly littleis known about how OA affects the physiology of heterotrophicbacteria or the coupling of

  10. Marine Invertebrates: Communities at Risk

    Directory of Open Access Journals (Sweden)

    Jennifer Mather

    2013-06-01

    Full Text Available Our definition of the word ‘animal’ centers on vertebrates, yet 99% of the animals on the planet are invertebrates, about which we know little. In addition, although the Census of Marine Life (COML.org has recently conducted an extensive audit of marine ecosystems, we still do not understand much about the animals of the seas. Surveys of the best-known ecosystems, in which invertebrate populations often play a key role, show that the invertebrate populations are affected by human impact. Coral animals are the foundation of coral reef systems, which are estimated to contain 30% of the species in the ocean. Physical impact and chemical changes on the water severely damage these reefs, and may lead to the removal of these important habitats. Tiny pteropod molluscs live in huge numbers in the polar seas, and their fragile shells are particularly vulnerable to ocean acidification. Their removal would mean that fishes on which we depend would have a hugely diminished food supply. In the North Sea, warming is leading to replacement of colder water copepods by warmer water species which contain less fat. This is having an effect on the birds which eat them, who enrich the otherwise poor land on which they nest. Conversely, the warming of the water and the loss of top predators such as whales and sharks has led to an explosion of the jumbo squid of the Pacific coast of North America. This is positive in the development of a squid fishery, yet negative because the squid eat fish that have been the mainstay of the fishery along that coast. These examples show how invertebrates are key in the oceans, and what might happen when global changes impact them.

  11. Marine invertebrates: communities at risk.

    Science.gov (United States)

    Mather, Jennifer

    2013-06-10

    Our definition of the word 'animal' centers on vertebrates, yet 99% of the animals on the planet are invertebrates, about which we know little. In addition, although the Census of Marine Life (COML.org) has recently conducted an extensive audit of marine ecosystems, we still do not understand much about the animals of the seas. Surveys of the best-known ecosystems, in which invertebrate populations often play a key role, show that the invertebrate populations are affected by human impact. Coral animals are the foundation of coral reef systems, which are estimated to contain 30% of the species in the ocean. Physical impact and chemical changes on the water severely damage these reefs, and may lead to the removal of these important habitats. Tiny pteropod molluscs live in huge numbers in the polar seas, and their fragile shells are particularly vulnerable to ocean acidification. Their removal would mean that fishes on which we depend would have a hugely diminished food supply. In the North Sea, warming is leading to replacement of colder water copepods by warmer water species which contain less fat. This is having an effect on the birds which eat them, who enrich the otherwise poor land on which they nest. Conversely, the warming of the water and the loss of top predators such as whales and sharks has led to an explosion of the jumbo squid of the Pacific coast of North America. This is positive in the development of a squid fishery, yet negative because the squid eat fish that have been the mainstay of the fishery along that coast. These examples show how invertebrates are key in the oceans, and what might happen when global changes impact them.

  12. Ethanol Induced Urine Acidification is Related with Early Acetaldehyde Concentration

    Directory of Open Access Journals (Sweden)

    Soon Kil Kwon

    2014-06-01

    Conclusion: In conclusion, urine acidification after ethanol ingestion is related with serum acetaldehyde concentration. Early elevation of acetaldhyde could induce urine acidification, but the urine pH was elevated after a few hours, that might make prolonged acidemia.

  13. The exposure of the Great Barrier Reef to ocean acidification

    KAUST Repository

    Mongin, Mathieu; Baird, Mark E.; Tilbrook, Bronte; Matear, Richard J.; Lenton, Andrew; Herzfeld, Mike; Wild-Allen, Karen; Skerratt, Jenny; Margvelashvili, Nugzar; Robson, Barbara J.; Duarte, Carlos M.; Gustafsson, Malin S. M.; Ralph, Peter J.; Steven, Andrew D. L.

    2016-01-01

    The Great Barrier Reef (GBR) is founded on reef-building corals. Corals build their exoskeleton with aragonite, but ocean acidification is lowering the aragonite saturation state of seawater (Ωa). The downscaling of ocean acidification projections

  14. Transdisciplinary science: a path to understanding the interactions among ocean acidification, ecosystems, and society

    Science.gov (United States)

    Yates, Kimberly K.; Turley, Carol; Hopkinson, Brian M.; Todgham, Anne E.; Cross, Jessica N.; Greening, Holly; Williamson, Phillip; Van Hooidonk, Ruben; Deheyn, Dimitri D.; Johnson, Zachary

    2015-01-01

    The global nature of ocean acidification (OA) transcends habitats, ecosystems, regions, and science disciplines. The scientific community recognizes that the biggest challenge in improving understanding of how changing OA conditions affect ecosystems, and associated consequences for human society, requires integration of experimental, observational, and modeling approaches from many disciplines over a wide range of temporal and spatial scales. Such transdisciplinary science is the next step in providing relevant, meaningful results and optimal guidance to policymakers and coastal managers. We discuss the challenges associated with integrating ocean acidification science across funding agencies, institutions, disciplines, topical areas, and regions, and the value of unifying science objectives and activities to deliver insights into local, regional, and global scale impacts. We identify guiding principles and strategies for developing transdisciplinary research in the ocean acidification science community.

  15. Enhanced transfer of organic matter to higher trophic levels caused by ocean acidification and its implications for export production: A mass balance approach.

    Science.gov (United States)

    Boxhammer, Tim; Taucher, Jan; Bach, Lennart T; Achterberg, Eric P; Algueró-Muñiz, María; Bellworthy, Jessica; Czerny, Jan; Esposito, Mario; Haunost, Mathias; Hellemann, Dana; Ludwig, Andrea; Yong, Jaw C; Zark, Maren; Riebesell, Ulf; Anderson, Leif G

    2018-01-01

    Ongoing acidification of the ocean through uptake of anthropogenic CO2 is known to affect marine biota and ecosystems with largely unknown consequences for marine food webs. Changes in food web structure have the potential to alter trophic transfer, partitioning, and biogeochemical cycling of elements in the ocean. Here we investigated the impact of realistic end-of-the-century CO2 concentrations on the development and partitioning of the carbon, nitrogen, phosphorus, and silica pools in a coastal pelagic ecosystem (Gullmar Fjord, Sweden). We covered the entire winter-to-summer plankton succession (100 days) in two sets of five pelagic mesocosms, with one set being CO2 enriched (~760 μatm pCO2) and the other one left at ambient CO2 concentrations. Elemental mass balances were calculated and we highlight important challenges and uncertainties we have faced in the closed mesocosm system. Our key observations under high CO2 were: (1) A significantly amplified transfer of carbon, nitrogen, and phosphorus from primary producers to higher trophic levels, during times of regenerated primary production. (2) A prolonged retention of all three elements in the pelagic food web that significantly reduced nitrogen and phosphorus sedimentation by about 11 and 9%, respectively. (3) A positive trend in carbon fixation (relative to nitrogen) that appeared in the particulate matter pool as well as the downward particle flux. This excess carbon counteracted a potential reduction in carbon sedimentation that could have been expected from patterns of nitrogen and phosphorus fluxes. Our findings highlight the potential for ocean acidification to alter partitioning and cycling of carbon and nutrients in the surface ocean but also show that impacts are temporarily variable and likely depending upon the structure of the plankton food web.

  16. Enhanced transfer of organic matter to higher trophic levels caused by ocean acidification and its implications for export production: A mass balance approach.

    Directory of Open Access Journals (Sweden)

    Tim Boxhammer

    Full Text Available Ongoing acidification of the ocean through uptake of anthropogenic CO2 is known to affect marine biota and ecosystems with largely unknown consequences for marine food webs. Changes in food web structure have the potential to alter trophic transfer, partitioning, and biogeochemical cycling of elements in the ocean. Here we investigated the impact of realistic end-of-the-century CO2 concentrations on the development and partitioning of the carbon, nitrogen, phosphorus, and silica pools in a coastal pelagic ecosystem (Gullmar Fjord, Sweden. We covered the entire winter-to-summer plankton succession (100 days in two sets of five pelagic mesocosms, with one set being CO2 enriched (~760 μatm pCO2 and the other one left at ambient CO2 concentrations. Elemental mass balances were calculated and we highlight important challenges and uncertainties we have faced in the closed mesocosm system. Our key observations under high CO2 were: (1 A significantly amplified transfer of carbon, nitrogen, and phosphorus from primary producers to higher trophic levels, during times of regenerated primary production. (2 A prolonged retention of all three elements in the pelagic food web that significantly reduced nitrogen and phosphorus sedimentation by about 11 and 9%, respectively. (3 A positive trend in carbon fixation (relative to nitrogen that appeared in the particulate matter pool as well as the downward particle flux. This excess carbon counteracted a potential reduction in carbon sedimentation that could have been expected from patterns of nitrogen and phosphorus fluxes. Our findings highlight the potential for ocean acidification to alter partitioning and cycling of carbon and nutrients in the surface ocean but also show that impacts are temporarily variable and likely depending upon the structure of the plankton food web.

  17. Reviews and syntheses: Ice acidification, the effects of ocean acidification on sea ice microbial communities

    Directory of Open Access Journals (Sweden)

    A. McMinn

    2017-09-01

    Full Text Available Sea ice algae, like some coastal and estuarine phytoplankton, are naturally exposed to a wider range of pH and CO2 concentrations than those in open marine seas. While climate change and ocean acidification (OA will impact pelagic communities, their effects on sea ice microbial communities remain unclear. Sea ice contains several distinct microbial communities, which are exposed to differing environmental conditions depending on their depth within the ice. Bottom communities mostly experience relatively benign bulk ocean properties, while interior brine and surface (infiltration communities experience much greater extremes. Most OA studies have examined the impacts on single sea ice algae species in culture. Although some studies examined the effects of OA alone, most examined the effects of OA and either light, nutrients or temperature. With few exceptions, increased CO2 concentration caused either no change or an increase in growth and/or photosynthesis. In situ studies on brine and surface algae also demonstrated a wide tolerance to increased and decreased pH and showed increased growth at higher CO2 concentrations. The short time period of most experiments (< 10 days, together with limited genetic diversity (i.e. use of only a single strain, however, has been identified as a limitation to a broader interpretation of the results. While there have been few studies on the effects of OA on the growth of marine bacterial communities in general, impacts appear to be minimal. In sea ice also, the few reports available suggest no negative impacts on bacterial growth or community richness. Sea ice ecosystems are ephemeral, melting and re-forming each year. Thus, for some part of each year organisms inhabiting the ice must also survive outside of the ice, either as part of the phytoplankton or as resting spores on the bottom. During these times, they will be exposed to the full range of co-stressors that pelagic organisms experience. Their ability

  18. Oxidative responsiveness to multiple stressors in the key Antarctic species, Adamussium colbecki: Interactions between temperature, acidification and cadmium exposure.

    Science.gov (United States)

    Benedetti, Maura; Lanzoni, Ilaria; Nardi, Alessandro; d'Errico, Giuseppe; Di Carlo, Marta; Fattorini, Daniele; Nigro, Marco; Regoli, Francesco

    2016-10-01

    High-latitude marine ecosystems are ranked to be among the most sensitive regions to climate change since highly stenothermal and specially adapted organisms might be seriously affected by global warming and ocean acidification. The present investigation was aimed to provide new insights on the sensitivity to such environmental stressors in the key Antarctic species, Adamussium colbecki, focussing also on their synergistic effects with cadmium exposure, naturally abundant in this area for upwelling phenomena. Scallops were exposed for 2 weeks to various combinations of Cd (0 and 40 μgL-1), pH (8.05 and 7.60) and temperature (-1 and +1 °C). Beside Cd bioaccumulation, a wide panel of early warning biomarkers were analysed in digestive glands and gills including levels of metallothioneins, individual antioxidants and total oxyradical scavenging capacity, onset of oxidative cell damage like lipid peroxidation, lysosomal stability, DNA integrity and peroxisomal proliferation. Results indicated reciprocal interactions between multiple stressors and their elaboration by a quantitative hazard model based on the relevance and magnitude of effects, highlighted a different sensitivity of analysed tissues. Due to cellular adaptations to high basal Cd content, digestive gland appeared more tolerant toward other prooxidant stressors, but sensitive to variations of the metal. On the other hand, gills were more affected by various combinations of stressors occurring at higher temperature. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. First evidence of immunomodulation in bivalves under seawater acidification and increased temperature.

    Directory of Open Access Journals (Sweden)

    Valerio Matozzo

    Full Text Available Water acidification, temperature increases and changes in seawater salinity are predicted to occur in the near future. In such a global climate change (GCC scenario, there is growing concern for the health status of both wild and farmed organisms. Bivalve molluscs, an important component of coastal marine ecosystems, are at risk. At the immunological level, the ability of an organism to maintain its immunosurveillance unaltered under adverse environmental conditions may enhance its survival capability. To our knowledge, only a few studies have investigated the effects of changing environmental parameters (as predicted in a GCC scenario on the immune responses of bivalves. In the present study, the effects of both decreased pH values and increased temperature on the important immune parameters of two bivalve species were evaluated for the first time. The clam Chamelea gallina and the mussel Mytilus galloprovincialis, widespread along the coast of the Northwestern Adriatic Sea, were chosen as model organisms. Bivalves were exposed for 7 days to three pH values (8.1, 7.7 and 7.4 at two temperatures (22 and 28°C. Three independent experiments were carried out at salinities of 28, 34 and 40 PSU. The total haemocyte count, Neutral Red uptake, haemolymph lysozyme activity and total protein levels were measured. The results obtained demonstrated that tested experimental conditions affected significantly most of the immune parameters measured in bivalves, even if the variation pattern of haemocyte responses was not always linear. Between the two species, C. gallina appeared more vulnerable to changing pH and temperature than M. galloprovincialis. Overall, this study demonstrated that climate changes can strongly affect haemocyte functionality in bivalves. However, further studies are needed to clarify better the mechanisms of action of changing environmental parameters, both individually and in combination, on bivalve haemocytes.

  20. Effect of ocean acidification on the nutritional quality of phytoplankton for copepod reproduction

    Science.gov (United States)

    Meyers, M.; Cochlan, W. P.; Kimmerer, W.; Carpenter, E. J.

    2016-02-01

    Phytoplankton are the oceans' primary producers of essential polyunsaturated fatty acids (PUFA), which provide marine organisms with nutrients needed for health and reproduction. It is hypothesized that future ocean acidification (OA) conditions could change the availability of phytoplankton PUFAs for ecologically significant predators such as copepods, affecting their reproductive success. Three species of phytoplankton (Rhodomonas salina, Skeletonema marinoi, Prorocentrum micans) were cultured under present-day (400ppm CO2, pH 8.1) and predicted future (1000ppm CO2, pH 7.8) oceanic conditions. For four days, female Acartia tonsa copepods were fed a phytoplankton mixture from either the present-day or predicted-future treatment. To assess changes in phytoplankton PUFA content, fatty acid profiles were analyzed via capillary gas chromatography. Copepod egg production (EP), hatching success (HS), and egg viability (EV) were determined to assess copepod reproductive success. Fatty acid analysis shows essential PUFAs comprise a smaller percentage of total fatty acids in phytoplankton cultured under high pCO2 (Rho 21.5%; Ske 14.1%; Pro 14.4%) compared to those cultured under present-day pCO2 (Rho 28.8%, Ske 32.7%, Pro 39.3%). Copepod reproduction data demonstrate that females fed phytoplankton cultured under high pCO2 have significantly lower EP (μ=14.3 eggs female-1), HS (μ=35.8%), and EV (μ=12.5%) compared to reproductive success of females fed phytoplankton cultured under present-day CO2 (EP μ=27.0 eggs female-1; HS μ=91.5%; EV μ=96.6%). This study demonstrates that OA can change the nutritional quality of primary producers, which can affect the reproductive success of fundamental secondary consumers.

  1. Ocean acidification alters zooplankton communities and increases top-down pressure of a cubozoan predator.

    Science.gov (United States)

    Hammill, Edd; Johnson, Ellery; Atwood, Trisha B; Harianto, Januar; Hinchliffe, Charles; Calosi, Piero; Byrne, Maria

    2018-01-01

    The composition of local ecological communities is determined by the members of the regional community that are able to survive the abiotic and biotic conditions of a local ecosystem. Anthropogenic activities since the industrial revolution have increased atmospheric CO 2 concentrations, which have in turn decreased ocean pH and altered carbonate ion concentrations: so called ocean acidification (OA). Single-species experiments have shown how OA can dramatically affect zooplankton development, physiology and skeletal mineralization status, potentially reducing their defensive function and altering their predatory and antipredatory behaviors. This means that increased OA may indirectly alter the biotic conditions by modifying trophic interactions. We investigated how OA affects the impact of a cubozoan predator on their zooplankton prey, predominantly Copepoda, Pleocyemata, Dendrobranchiata, and Amphipoda. Experimental conditions were set at either current (pCO 2 370 μatm) or end-of-the-century OA (pCO 2 1,100 μatm) scenarios, crossed in an orthogonal experimental design with the presence/absence of the cubozoan predator Carybdea rastoni. The combined effects of exposure to OA and predation by C. rastoni caused greater shifts in community structure, and greater reductions in the abundance of key taxa than would be predicted from combining the effect of each stressor in isolation. Specifically, we show that in the combined presence of OA and a cubozoan predator, populations of the most abundant member of the zooplankton community (calanoid copepods) were reduced 27% more than it would be predicted based on the effects of these stressors in isolation, suggesting that OA increases the susceptibility of plankton to predation. Our results indicate that the ecological consequences of OA may be greater than predicted from single-species experiments, and highlight the need to understand future marine global change from a community perspective. © 2017 John Wiley & Sons

  2. Comparison of 210Pb level in Kuala Muda tsunami affected marine sediment core measured using two different techniques

    International Nuclear Information System (INIS)

    Yii Mei Wo; Zal Uyun Wan Mahmood; Jalal Sharib; Zaharudin Ahmad

    2010-01-01

    The most commonly used techniques of alpha and gamma spectrometry were compared to measure 210 Pb activity in marine sediment core. Alpha analytical technique measured the activity of 210 Pb from its in-grow grand-daughter 210 Po after a chemical separation by assuming that there is radioactive equilibrium between the two radionuclides. Meanwhile, gamma analysis technique allows direct measurement, non-destructive and no preliminary chemical separation. Through the comparison, it was found that both alpha and gamma analysis techniques were slightly different. Overall, the results from gamma analytical technique were higher than those from the alpha analytical techniques. Some logical argument had been discussed to explain this situation. In routine analysis, the analytical technique used should be chosen carefully based on advantages and disadvantages of the each technique and analysis requirements. Therefore, it is recommended to determine the exact needs and purpose of analysis and to know the sample history before deciding the appropriate analytical technique. (author)

  3. Effects of ocean warming and acidification on survival, growth and skeletal development in the early benthic juvenile sea urchin (Heliocidaris erythrogramma).

    Science.gov (United States)

    Wolfe, Kennedy; Dworjanyn, Symon A; Byrne, Maria

    2013-09-01

    Co-occurring ocean warming, acidification and reduced carbonate mineral saturation have significant impacts on marine biota, especially calcifying organisms. The effects of these stressors on development and calcification in newly metamorphosed juveniles (ca. 0.5 mm test diameter) of the intertidal sea urchin Heliocidaris erythrogramma, an ecologically important species in temperate Australia, were investigated in context with present and projected future conditions. Habitat temperature and pH/pCO2 were documented to place experiments in a biologically and ecologically relevant context. These parameters fluctuated diurnally up to 10 °C and 0.45 pH units. The juveniles were exposed to three temperature (21, 23 and 25 °C) and four pH (8.1, 7.8, 7.6 and 7.4) treatments in all combinations, representing ambient sea surface conditions (21 °C, pH 8.1; pCO2 397; ΩCa 4.7; ΩAr 3.1), near-future projected change (+2-4 °C, -0.3-0.5 pH units; pCO2 400-1820; ΩCa 5.0-1.6; ΩAr 3.3-1.1), and extreme conditions experienced at low tide (+4 °C, -0.3-0.7 pH units; pCO2 2850-2967; ΩCa 1.1-1.0; ΩAr 0.7-0.6). The lowest pH treatment (pH 7.4) was used to assess tolerance levels. Juvenile survival and test growth were resilient to current and near-future warming and acidification. Spine development, however, was negatively affected by near-future increased temperature (+2-4 °C) and extreme acidification (pH 7.4), with a complex interaction between stressors. Near-future warming was the more significant stressor. Spine tips were dissolved in the pH 7.4 treatments. Adaptation to fluctuating temperature-pH conditions in the intertidal may convey resilience to juvenile H. erythrogramma to changing ocean conditions, however, ocean warming and acidification may shift baseline intertidal temperature and pH/pCO2 to levels that exceed tolerance limits. © 2013 John Wiley & Sons Ltd.

  4. Our Changing Oceans: All about Ocean Acidification; Nuestros oceanos estan cambiando: Todo lo que hay que saber sobre la acidificacion de los oceanos

    Energy Technology Data Exchange (ETDEWEB)

    Rickwood, Peter [International Atomic Energy Agency, Division of Public Information, Vienna (Austria)

    2013-09-15

    The consequences of ocean acidification are global in scale. More research into ocean acidification and its consequences is needed. It is already known, for example, that there are regional differences in the vulnerability of fisheries to acidification. The combination of other factors, such as global warming, the destruction of habitats, overfishing and pollution, need to be taken into account when developing strategies to increase the marine environment's resilience. Among steps that can be taken to reduce the impact is better protection of marine coastal ecosystems, such as mangrove swamps and seagrass meadows, which will help protect fisheries. This recommendation was one of the conclusions of a three-day workshop attended by economists and scientists and organized by the IAEA and the Centre Scientifique de Monaco in November 2012. In their recommendations the workshop also stressed that the impact of increasing ocean acidity must be taken into account in the management of fisheries, particularly where seafood is a main dietary source.

  5. Ocean Acidification Scientific Data Stewardship: An approach for end-to-end data management and integration

    Science.gov (United States)

    Arzayus, K. M.; Garcia, H. E.; Jiang, L.; Michael, P.

    2012-12-01

    As the designated Federal permanent oceanographic data center in the United States, NOAA's National Oceanographic Data Center (NODC) has been providing scientific stewardship for national and international marine environmental and ecosystem data for over 50 years. NODC is supporting NOAA's Ocean Acidification Program and the science community by providing end-to-end scientific data management of ocean acidification (OA) data, dedicated online data discovery, and user-friendly access to a diverse range of historical and modern OA and other chemical, physical, and biological oceanographic data. This effort is being catalyzed by the NOAA Ocean Acidification Program, but the intended reach is for the broader scientific ocean acidification community. The first three years of the project will be focused on infrastructure building. A complete ocean acidification data content standard is being developed to ensure that a full spectrum of ocean acidification data and metadata can be stored and utilized for optimal data discovery and access in usable data formats. We plan to develop a data access interface capable of allowing users to constrain their search based on real-time and delayed mode measured variables, scientific data quality, their observation types, the temporal coverage, methods, instruments, standards, collecting institutions, and the spatial coverage. In addition, NODC seeks to utilize the existing suite of international standards (including ISO 19115-2 and CF-compliant netCDF) to help our data producers use those standards for their data, and help our data consumers make use of the well-standardized metadata-rich data sets. These tools will be available through our NODC Ocean Acidification Scientific Data Stewardship (OADS) web page at http://www.nodc.noaa.gov/oceanacidification. NODC also has a goal to provide each archived dataset with a unique ID, to ensure a means of providing credit to the data provider. Working with partner institutions, such as the

  6. Increasing costs due to ocean acidification drives phytoplankton to be more heavily calcified: optimal growth strategy of coccolithophores.

    Directory of Open Access Journals (Sweden)

    Takahiro Irie

    Full Text Available Ocean acidification is potentially one of the greatest threats to marine ecosystems and global carbon cycling. Amongst calcifying organisms, coccolithophores have received special attention because their calcite precipitation plays a significant role in alkalinity flux to the deep ocean (i.e., inorganic carbon pump. Currently, empirical effort is devoted to evaluating the plastic responses to acidification, but evolutionary considerations are missing from this approach. We thus constructed an optimality model to evaluate the evolutionary response of coccolithophorid life history, assuming that their exoskeleton (coccolith serves to reduce the instantaneous mortality rates. Our model predicted that natural selection favors constructing more heavily calcified exoskeleton in response to increased acidification-driven costs. This counter-intuitive response occurs because the fitness benefit of choosing a better-defended, slower growth strategy in more acidic conditions, outweighs that of accelerating the cell cycle, as this occurs by producing less calcified exoskeleton. Contrary to the widely held belief, the evolutionarily optimized population can precipitate larger amounts of CaCO(3 during the bloom in more acidified seawater, depending on parameter values. These findings suggest that ocean acidification may enhance the calcification rates of marine organisms as an adaptive response, possibly accompanied by higher carbon fixation ability. Our theory also provides a compelling explanation for the multispecific fossil time-series record from ∼200 years ago to present, in which mean coccolith size has increased along with rising atmospheric CO(2 concentration.

  7. Impact of ocean acidification on the hypoxia tolerance of the woolly sculpin, Clinocottus analis.

    Science.gov (United States)

    Hancock, Joshua R; Place, Sean P

    2016-01-01

    As we move into the Anthropocene, organisms inhabiting marine environments will continue to face growing challenges associated with changes in ocean pH (ocean acidification), dissolved oxygen (dead zones) and temperature. These factors, in combination with naturally variable environments such as the rocky intertidal zone, may create extreme physiological challenges for organisms that are already performing near their biological limits. Although numerous studies have examined the impacts of climate-related stressors on intertidal animals, little is known about the underlying physiological mechanisms driving adaptation to ocean acidification and how this may alter organism interactions, particularly in marine vertebrates. Therefore, we have investigated the effects of decreased ocean pH on the hypoxia response of an intertidal sculpin, Clinocottus analis . We used both whole-animal and biochemistry-based analyses to examine how the energetic demands associated with acclimation to low-pH environments may impact the fish's reliance on facultative air breathing in low-oxygen environments. Our study demonstrated that acclimation to ocean acidification resulted in elevated routine metabolic rates and acid-base regulatory capacity (Na + ,K + -ATPase activity). These, in turn, had downstream effects that resulted in decreased hypoxia tolerance (i.e. elevated critical oxygen tension). Furthermore, we present evidence that these fish may be living near their physiological capacity when challenged by ocean acidification. This serves as a reminder that the susceptibility of teleost fish to changes in ocean pH may be underestimated, particularly when considering the multiple stressors that many experience in their natural environments.

  8. Effects of ocean acidification on the swimming ability, development and biochemical responses of sand smelt larvae

    International Nuclear Information System (INIS)

    Silva, Cátia S.E.; Novais, Sara C.; Lemos, Marco F.L.; Mendes, Susana; Oliveira, Ana P.; Gonçalves, Emanuel J.; Faria, Ana M.

    2016-01-01

    Ocean acidification, recognized as a major threat to marine ecosystems, has developed into one of the fastest growing fields of research in marine sciences. Several studies on fish larval stages point to abnormal behaviours, malformations and increased mortality rates as a result of exposure to increased levels of CO_2. However, other studies fail to recognize any consequence, suggesting species-specific sensitivity to increased levels of CO_2, highlighting the need of further research. In this study we investigated the effects of exposure to elevated pCO_2 on behaviour, development, oxidative stress and energy metabolism of sand smelt larvae, Atherina presbyter. Larvae were caught at Arrábida Marine Park (Portugal) and exposed to different pCO_2 levels (control: ~ 600 μatm, pH = 8.03; medium: ~ 1000 μatm, pH = 7.85; high: ~ 1800 μatm, pH = 7.64) up to 15 days, after which critical swimming speed (U_c_r_i_t), morphometric traits and biochemical biomarkers were determined. Measured biomarkers were related with: 1) oxidative stress — superoxide dismutase and catalase enzyme activities, levels of lipid peroxidation and DNA damage, and levels of superoxide anion production; 2) energy metabolism — total carbohydrate levels, electron transport system activity, lactate dehydrogenase and isocitrate dehydrogenase enzyme activities. Swimming speed was not affected by treatment, but exposure to increasing levels of pCO_2 leads to higher energetic costs and morphometric changes, with larger larvae in high pCO_2 treatment and smaller larvae in medium pCO_2 treatment. The efficient antioxidant response capacity and increase in energetic metabolism only registered at the medium pCO_2 treatment may indicate that at higher pCO_2 levels the capacity of larvae to restore their internal balance can be impaired. Our findings illustrate the need of using multiple approaches to explore the consequences of future pCO_2 levels on organisms. - Highlights: • Exposure to high pCO_2

  9. Effects of ocean acidification on the swimming ability, development and biochemical responses of sand smelt larvae

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Cátia S.E. [MARE — Marine and Environmental Sciences Centre, ISPA − Instituto Universitário (Portugal); MARE — Marine and Environmental Sciences Centre, ESTM, Instituto Politécnico de Leiria (Portugal); Novais, Sara C.; Lemos, Marco F.L.; Mendes, Susana [MARE — Marine and Environmental Sciences Centre, ESTM, Instituto Politécnico de Leiria (Portugal); Oliveira, Ana P. [IPMA — Instituto Português do Mar e da Atmosfera, Algés (Portugal); Gonçalves, Emanuel J. [MARE — Marine and Environmental Sciences Centre, ISPA − Instituto Universitário (Portugal); Faria, Ana M., E-mail: afaria@ispa.pt [MARE — Marine and Environmental Sciences Centre, ISPA − Instituto Universitário (Portugal)

    2016-09-01

    Ocean acidification, recognized as a major threat to marine ecosystems, has developed into one of the fastest growing fields of research in marine sciences. Several studies on fish larval stages point to abnormal behaviours, malformations and increased mortality rates as a result of exposure to increased levels of CO{sub 2}. However, other studies fail to recognize any consequence, suggesting species-specific sensitivity to increased levels of CO{sub 2}, highlighting the need of further research. In this study we investigated the effects of exposure to elevated pCO{sub 2} on behaviour, development, oxidative stress and energy metabolism of sand smelt larvae, Atherina presbyter. Larvae were caught at Arrábida Marine Park (Portugal) and exposed to different pCO{sub 2} levels (control: ~ 600 μatm, pH = 8.03; medium: ~ 1000 μatm, pH = 7.85; high: ~ 1800 μatm, pH = 7.64) up to 15 days, after which critical swimming speed (U{sub crit}), morphometric traits and biochemical biomarkers were determined. Measured biomarkers were related with: 1) oxidative stress — superoxide dismutase and catalase enzyme activities, levels of lipid peroxidation and DNA damage, and levels of superoxide anion production; 2) energy metabolism — total carbohydrate levels, electron transport system activity, lactate dehydrogenase and isocitrate dehydrogenase enzyme activities. Swimming speed was not affected by treatment, but exposure to increasing levels of pCO{sub 2} leads to higher energetic costs and morphometric changes, with larger larvae in high pCO{sub 2} treatment and smaller larvae in medium pCO{sub 2} treatment. The efficient antioxidant response capacity and increase in energetic metabolism only registered at the medium pCO{sub 2} treatment may indicate that at higher pCO{sub 2} levels the capacity of larvae to restore their internal balance can be impaired. Our findings illustrate the need of using multiple approaches to explore the consequences of future pCO{sub 2} levels on

  10. Ocean acidification genetics - Genetics and genomics of response to ocean acidification

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — We are applying a variety of genetic tools to assess the response of our ocean resources to ocean acidification, including gene expression techniques, identification...

  11. Ocean Acidification Refugia of the Florida Reef Tract

    Science.gov (United States)

    Manzello, Derek P.; Enochs, Ian C.; Melo, Nelson; Gledhill, Dwight K.; Johns, Elizabeth M.

    2012-01-01

    Ocean acidification (OA) is expected to reduce the calcification rates of marine organisms, yet we have little understanding of how OA will manifest within dynamic, real-world systems. Natural CO2, alkalinity, and salinity gradients can significantly alter local carbonate chemistry, and thereby create a range of susceptibility for different ecosystems to OA. As such, there is a need to characterize this natural variability of seawater carbonate chemistry, especially within coastal ecosystems. Since 2009, carbonate chemistry data have been collected on the Florida Reef Tract (FRT). During periods of heightened productivity, there is a net uptake of total CO2 (TCO2) which increases aragonite saturation state (Ωarag) values on inshore patch reefs of the upper FRT. These waters can exhibit greater Ωarag than what has been modeled for the tropical surface ocean during preindustrial times, with mean (± std. error) Ωarag-values in spring = 4.69 (±0.101). Conversely, Ωarag-values on offshore reefs generally represent oceanic carbonate chemistries consistent with present day tropical surface ocean conditions. This gradient is opposite from what has been reported for other reef environments. We hypothesize this pattern is caused by the photosynthetic uptake of TCO2 mainly by seagrasses and, to a lesser extent, macroalgae in the inshore waters of the FRT. These inshore reef habitats are therefore potential acidification refugia that are defined not only in a spatial sense, but also in time; coinciding with seasonal productivity dynamics. Coral reefs located within or immediately downstream of seagrass beds may find refuge from OA. PMID:22848575

  12. Ocean acidification refugia of the Florida Reef Tract.

    Directory of Open Access Journals (Sweden)

    Derek P Manzello

    Full Text Available Ocean acidification (OA is expected to reduce the calcification rates of marine organisms, yet we have little understanding of how OA will manifest within dynamic, real-world systems. Natural CO(2, alkalinity, and salinity gradients can significantly alter local carbonate chemistry, and thereby create a range of susceptibility for different ecosystems to OA. As such, there is a need to characterize this natural variability of seawater carbonate chemistry, especially within coastal ecosystems. Since 2009, carbonate chemistry data have been collected on the Florida Reef Tract (FRT. During periods of heightened productivity, there is a net uptake of total CO(2 (TCO(2 which increases aragonite saturation state (Ω(arag values on inshore patch reefs of the upper FRT. These waters can exhibit greater Ω(arag than what has been modeled for the tropical surface ocean during preindustrial times, with mean (± std. error Ω(arag-values in spring = 4.69 (±0.101. Conversely, Ω(arag-values on offshore reefs generally represent oceanic carbonate chemistries consistent with present day tropical surface ocean conditions. This gradient is opposite from what has been reported for other reef environments. We hypothesize this pattern is caused by the photosynthetic uptake of TCO(2 mainly by seagrasses and, to a lesser extent, macroalgae in the inshore waters of the FRT. These inshore reef habitats are therefore potential acidification refugia that are defined not only in a spatial sense, but also in time; coinciding with seasonal productivity dynamics. Coral reefs located within or immediately downstream of seagrass beds may find refuge from OA.

  13. Assessing physiological tipping points in response to ocean acidification

    Science.gov (United States)

    Dupont, S. T.; Dorey, N.; Lançon, P.; Thorndyke, M. S.

    2011-12-01

    Impact of near-future ocean acidification on marine invertebrates was mostly assessed in single-species perturbation experiment. Moreover, most of these experiments are short-term, only consider one life-history stage and one or few parameters. They do not take into account important processes such as natural variability and acclimation and evolutionary processes. In many studies published so far, there is a clear lack between the observed effects and individual fitness, most of the deviation from the control being considered as potentially negative for the tested species. However, individuals are living in a fluctuating world and changes can also be interpreted as phenotypic plasticity and may not translate into negative impact on fitness. For example, a vent mussel can survive for decades in very acidic waters despite a significantly reduced calcification compare to control (Tunnicliffe et al. 2009). This is possible thanks to the absence of predatory crabs as a result of acidic conditions that may also inhibit carapace formation. This illustrates the importance to take into account ecological interactions when interpreting single-species experiments and to consider the relative fitness between interacting species. To understand the potential consequence of ocean acidification on any given ecosystem, it is then critical to consider the relative impact on fitness for every interactive species and taking into account the natural fluctuation in environment (e.g. pH, temperature, food concentration, abundance) and discriminate between plasticity with no direct impact on fitness and teratology with direct consequence on survival. In this presentation, we will introduce the concept of "physiological tipping point" in the context of ocean acidification. This will be illustrated by some work done on sea urchin development. Embryos and larvae of the sea urchin Strongylocentrotus droebachiensis were exposed to a range of pH from 8.1 to 6.5. When exposed to low pH, growth

  14. Renal acidification defects in medullary sponge kidney

    DEFF Research Database (Denmark)

    Osther, P J; Hansen, A B; Røhl, H F

    1988-01-01

    Thirteen patients with medullary sponge kidney underwent a short ammonium chloride loading test to investigate their renal acidification capacity. All but 1 presented with a history of recurrent renal calculi and showed bilateral widespread renal medullary calcification on X-ray examination. Nine...... of renal calculi in medullary sponge kidney, have considerable therapeutic implications....

  15. Status of soil acidification in North America

    Science.gov (United States)

    M. E. Fenn; T. G. Huntington; S. B. McLaughlin; C. Eagar; A. Gomez; R. B. Cook

    2006-01-01

    Forest soil acidification and depletion of nutrient cations have been reported for several forested regions in North America, predominantly in the eastern United States, including the northeast and in the central Appalachians, but also in parts of southeastern Canada and the southern U.S. Continuing regional inputs of nitrogen and sulfur are of concern because of...

  16. Electrochemical acidification of milk by whey desalination

    NARCIS (Netherlands)

    Balster, J.H.; Punt, Ineke G.M.; Stamatialis, Dimitrios; Lammers, H.; Verver, A.B.; Wessling, Matthias

    2007-01-01

    We describe a process configuration for the electrochemical acidification of milk using the desalination function and the acid/base production function of a bipolar membrane process. First, the milk is acidified by the acid produced in the bipolar membrane stack. The precipitate is removed by a

  17. Sampling depth confounds soil acidification outcomes

    Science.gov (United States)

    In the northern Great Plains (NGP) of North America, surface sampling depths of 0-15 or 0-20 cm are suggested for testing soil characteristics such as pH. However, acidification is often most pronounced near the soil surface. Thus, sampling deeper can potentially dilute (increase) pH measurements an...

  18. The immune-related fatty acids are responsive to CO2 driven seawater acidification in a crustacean brine shrimp Artemia sinica.

    Science.gov (United States)

    Gao, Yan; Zheng, Shu-Cheng; Zheng, Chao-Qun; Shi, Yue-Chen; Xie, Xiao-Lu; Wang, Ke-Jian; Liu, Hai-Peng

    2018-04-01

    The gradual increase of CO 2 concentration in the atmosphere, absorbed by the ocean surface water through air to sea equilibration termed ocean acidification (OA), leads to the decline of pH in seawater. It is not clear so far how the composition of fatty acids, particular the immune-related, in marine crustacean and the subsequent energy supply in marine ecosystem are affected by OA. The brine shrimp Artemia sinica is an open and common feed that provide essential fatty acids for mariculture. In this study, the fatty acids profiles of brine shrimp cultured under different lower pH levels of CO 2 driven seawater were investigated. The results showed a significant reduction of the proportion of total saturated fatty acids under the pH7.6 within one week. Meanwhile, the percentage of total monounsaturated fatty acids was significantly decreased at day 14 under pH7.8, and this percentage gave a significant increase of proportion within one week under pH7.6. Furthermore, the relative content of total polyunsaturated fatty acids (PUFAs) was found to be clearly increased with exposure to different seawater acidification at day 1, suggesting that the brine shrimp immune response was likely to be affected by acidified seawater as the PUFAs have been well known to be involved in immunomodulatory effects through alterations on cell membrane fluidity/lipid mediators and gene expression of cell signaling pathways. Notably, eicosapentaenoic acid and docosahexaenoic acid, which have essential effect on various physiological processes such as inflammatory cytokines production and cell structural stability, were strongly increased under two lower pH treatments within one week and with the significant increase at day 1 under pH7.6. These data clearly supported the hypothesis that OA might affect fatty acids composition, likely also the innate immunity, in crustacean and the subsequent energy transfer by food-chain system in the marine ecosystem. Copyright © 2017 Elsevier Ltd. All

  19. Coral calcification and ocean acidification

    Science.gov (United States)

    Jokiel, Paul L.; Jury, Christopher P.; Kuffner, Ilsa B.

    2016-01-01

    Over 60 years ago, the discovery that light increased calcification in the coral plant-animal symbiosis triggered interest in explaining the phenomenon and understanding the mechanisms involved. Major findings along the way include the observation that carbon fixed by photosynthesis in the zooxanthellae is translocated to animal cells throughout the colony and that corals can therefore live as autotrophs in many situations. Recent research has focused on explaining the observed reduction in calcification rate with increasing ocean acidification (OA). Experiments have shown a direct correlation between declining ocean pH, declining aragonite saturation state (Ωarag), declining [CO32_] and coral calcification. Nearly all previous reports on OA identify Ωarag or its surrogate [CO32] as the factor driving coral calcification. However, the alternate “Proton Flux Hypothesis” stated that coral calcification is controlled by diffusion limitation of net H+ transport through the boundary layer in relation to availability of dissolved inorganic carbon (DIC). The “Two Compartment Proton Flux Model” expanded this explanation and synthesized diverse observations into a universal model that explains many paradoxes of coral metabolism, morphology and plasticity of growth form in addition to observed coral skeletal growth response to OA. It is now clear that irradiance is the main driver of net photosynthesis (Pnet), which in turn drives net calcification (Gnet), and alters pH in the bulk water surrounding the coral. Pnet controls [CO32] and thus Ωarag of the bulk water over the diel cycle. Changes in Ωarag and pH lag behind Gnet throughout the daily cycle by two or more hours. The flux rate Pnet, rather than concentration-based parameters (e.g., Ωarag, [CO3 2], pH and [DIC]:[H+] ratio) is the primary driver of Gnet. Daytime coral metabolism rapidly removes DIC from the bulk seawater. Photosynthesis increases the bulk seawater pH while providing the energy that drives

  20. How does non-formal marine education affect student attitude and knowledge? A case study using SCDNR's Discovery program

    Science.gov (United States)

    McGovern, Mary Francis

    Non-formal environmental education provides students the opportunity to learn in ways that would not be possible in a traditional classroom setting. Outdoor learning allows students to make connections to their environment and helps to foster an appreciation for nature. This type of education can be interdisciplinary---students not only develop skills in science, but also in mathematics, social studies, technology, and critical thinking. This case study focuses on a non-formal marine education program, the South Carolina Department of Natural Resources' (SCDNR) Discovery vessel based program. The Discovery curriculum was evaluated to determine impact on student knowledge about and attitude toward the estuary. Students from two South Carolina coastal counties who attended the boat program during fall 2014 were asked to complete a brief survey before, immediately after, and two weeks following the program. The results of this study indicate that both student knowledge about and attitude significantly improved after completion of the Discovery vessel based program. Knowledge and attitude scores demonstrated a positive correlation.

  1. Substratum type affects recruitment and development of marine assemblages over artificial substrata: A case study in the Alboran Sea

    Science.gov (United States)

    Sempere-Valverde, Juan; Ostalé-Valriberas, Enrique; Farfán, Gonzalo M.; Espinosa, Free

    2018-05-01

    There are more than 27,000 harbours along coasts worldwide and construction is expected to increase. The development and application of new ecological engineering ideas, for both old and new structures, is now imperative in order to reduce perturbation on marine coastal biota and to avoid the spread of non-native species. In this study, the early benthic assessment of subtidal and intertidal communities is tracked on five artificial substrata differing in origin, roughness, and chemical composition: Oyster Sandstone, Limestone, Gabbro, Slate and Concrete. Within substrata, Sandstone was the roughest on a 1-2 mm scale. Also, Sandstone and Limestone had predominantly calcareous composition while silicon was abundant in Concrete, Gabbro and Slate. In the intertidal zone, results showed that primary productivity and diatom abundance markedly increased with substratum roughness. In the subtidal zone, species richness and diversity over experimental substrata were lower than in adjacent rocky reefs. Nonetheless, during the first year of colonization communities varied within the experimental substrata. Coverage was higher on Sandstone than Concrete and Gabbro, and species richness was higher on Sandstone than Limestone. The differences are related to intrinsic substratum-type characteristics and showed Limestone, Gabbro and Concrete hold relatively poor ecological benefits in the first phases of ecological succession. The results may help to promote future research in this field and to test different substrata combinations and heterogeneities, for more environmentally sustainable surfaces in design of coastal structures.

  2. Soil Acidification Aggravates the Occurrence of Bacterial Wilt in South China

    Directory of Open Access Journals (Sweden)

    Chen Xu

    2017-04-01

    Full Text Available Soil acidification is a major problem in modern agricultural systems and is an important factor affecting the soil microbial community and soil health. However, little is known about the effect of soil acidification on soil-borne plant diseases. We performed a 4-year investigation in South China to evaluate the correlation between soil acidification and the occurrence of bacterial wilt. The results showed that the average soil pH in fields infected by bacterial wilt disease was much lower than that in non-disease fields. Moreover, the proportion of infected soils with pH lower than 5.5 was much higher than that of non-infected soils, and this phenomenon became more obvious as the area of bacterial wilt disease increased at soil pH lower than 5.5 from 2011 to 2014. Then, in a field pot experiment, bacterial wilt disease developed more quickly and severely in acidic conditions of pH 4.5, 5.0, and 5.5. These results indicate that soil acidification can cause the outbreak of bacterial wilt disease. Further experiments showed that acidic conditions (pH 4.5–5.5 favored the growth of the pathogen Ralstonia solanacearum but suppressed the growth and antagonistic activity of antagonistic bacteria of Pseudomonas fluorescens and Bacillus cereus. Moreover, acidic conditions of pH 5.5 were conducive to the expression of the virulence genes PopA, PrhA, and SolR but restrained resistance gene expression in tobacco. Finally, application of wood ash and lime as soil pH amendments improved soil pH and reduced the occurrence of bacterial wilt. Together, these findings improve our understanding of the correlation between soil acidification and soil-borne plant diseases and also suggest that regulation of soil acidification is the precondition and foundation of controlling bacterial wilt.

  3. Interacting effects of ocean acidification and warming on growth and DMS-production in the haptophyte coccolithophore Emiliania huxleyi.

    Science.gov (United States)

    Arnold, Hayley E; Kerrison, Philip; Steinke, Michael

    2013-04-01

    The production of the marine trace gas dimethyl sulfide (DMS) provides 90% of the marine biogenic sulfur in the atmosphere where it affects cloud formation and climate. The effects of increasing anthropogenic CO2 and the resulting warming and ocean acidification on trace gas production in the oceans are poorly understood. Here we report the first measurements of DMS-production and data on growth, DMSP and DMS concentrations in pH-stated cultures of the phytoplankton haptophyte Emiliania huxleyi. Four different environmental conditions were tested: ambient, elevated CO2 (+CO2 ), elevated temperature (+T) and elevated temperature and CO2 (+TCO2 ). In comparison to the ambient treatment, average DMS production was about 50% lower in the +CO2 treatment. Importantly, temperature had a strong effect on DMS production and the impacts outweighed the effects of a decrease in pH. As a result, the +T and +TCO2 treatments showed significantly higher DMS production of 36.2 ± 2.58 and 31.5 ± 4.66 μmol L(-1) cell volume (CV) h(-1) in comparison with the +CO2 treatment (14.9 ± 4.20 μmol L(-1) CV h(-1) ). As the cultures were aerated with an air/CO2 mixture, DMS was effectively removed from the incubation bottles so that concentration remained relatively low (3.6-6.1 mmol L(-1) CV). Intracellular DMSP has been shown to increase in E. huxleyi as a result of elevated temperature and/or elevated CO2 and our results are in agreement with this finding: the ambient and +CO2 treatments showed 125 ± 20.4 and 162 ± 27.7 mmol L(-1) CV, whereas +T and +TCO2 showed significantly increased intracellular DMSP concentrations of 195 ± 15.8 and 211 ± 28.2 mmol L(-1) CV respectively. Growth was unaffected by the treatments, but cell diameter decreased significantly under elevated temperature. These results indicate that DMS production is sensitive to CO2 and temperature in E. huxleyi. Hence, global environmental change that manifests in ocean acidification and warming may not result in

  4. Development of Ocean Acidification Flow-Thru Experimental Raceway Units (OAFTERU): Simulating the Future Reefs in the Keys Today

    Science.gov (United States)

    Hall, E. R.; Vaughan, D.; Crosby, M. P.

    2011-12-01

    Ocean acidification, a consequence of anthropogenic CO2 production due to fossil fuel combustion, deforestation, and cement production, has been referred to as "the other CO2 problem" and is receiving much attention in marine science and public policy communities. Critical needs that have been identified by top climate change and marine scientists include using projected pCO2 (partial pressure of CO2 in seawater) levels in manipulative experiments to determine physiological indices of ecologically important species, such as corals. Coral reefs were one of the first ecosystems to be documented as susceptible to ocean acidification. The Florida Keys reef system has already experienced a long-term deterioration, resulting in increased calls for large scale coral reef ecosystem restoration of these critical resources. It has also been speculated that this decline in reef ecosystem health may be exacerbated by increasing atmospheric CO2 levels with resulting ocean acidification. Therefore, reef resilience to ocean acidification and the potential for successful restoration of these systems under forecasted long-term modified pH conditions in the Florida Keys is of great concern. Many studies for testing effects of ocean acidification on corals have already been established and tested. However, many employ pH modification experimental designs that include addition of acid to seawater which may not mimic conditions of climate change induced ocean acidification. It would be beneficial to develop and maintain an ocean acidification testing system more representative of climate change induced changes, and specific to organisms and ecosystems indigenous to the Florida Keys reef tract. The Mote Marine Laboratory research facility in Summerland Key, FL has an established deep well from which its supply of seawater is obtained. This unique source of seawater is 80 feet deep, "fossil" marine water. It is pumped from the on-site aquifer aerated to reduce H2S and ammonia, and passed

  5. Hypoxia and acidification have additive and synergistic negative effects on the growth, survival, and metamorphosis of early life stage bivalves.

    Science.gov (United States)

    Gobler, Christopher J; DePasquale, Elizabeth L; Griffith, Andrew W; Baumann, Hannes

    2014-01-01

    Low oxygen zones in coastal and open ocean ecosystems have expanded in recent decades, a trend that will accelerate with climatic warming. There is growing recognition that low oxygen regions of the ocean are also acidified, a condition that will intensify with rising levels of atmospheric CO2. Presently, however, the concurrent effects of low oxygen and acidification on marine organisms are largely unknown, as most prior studies of marine hypoxia have not considered pH levels. We experimentally assessed the consequences of hypoxic and acidified water for early life stage bivalves (bay scallops, Argopecten irradians, and hard clams, Mercenaria mercenaria), marine organisms of significant economic and ecological value and sensitive to climate change. In larval scallops, experimental and naturally-occurring acidification (pH, total scale  = 7.4-7.6) reduced survivorship (by >50%), low oxygen (30-50 µM) inhibited growth and metamorphosis (by >50%), and the two stressors combined produced additively negative outcomes. In early life stage clams, however, hypoxic waters led to 30% higher mortality, while acidified waters significantly reduced growth (by 60%). Later stage clams were resistant to hypoxia or acidification separately but experienced significantly (40%) reduced growth rates when exposed to both conditions simultaneously. Collectively, these findings demonstrate that the consequences of low oxygen and acidification for early life stage bivalves, and likely other marine organisms, are more severe than would be predicted by either individual stressor and thus must be considered together when assessing how ocean animals respond to these conditions both today and under future climate change scenarios.

  6. Marine ecoregion and Deepwater Horizon oil spill affect recruitment and population structure of a salt marsh snail

    Science.gov (United States)

    Pennings, Steven C.; Zengel, Scott; Oehrig, Jacob; Alber, Merryl; Bishop, T. Dale; Deis, Donald R.; Devlin, Donna; Hughes, A. Randall; Hutchens, John J.; Kiehn, Whitney M.; McFarlin, Caroline R.; Montague, Clay L.; Powers, Sean P.; Proffitt, C. Edward; Rutherford, Nicolle; Stagg, Camille L.; Walters, Keith

    2016-01-01

    Marine species with planktonic larvae often have high spatial and temporal variation in recruitment that leads to subsequent variation in the ecology of benthic adults. Using a combination of published and unpublished data, we compared the population structure of the salt marsh snail, Littoraria irrorata, between the South Atlantic Bight and the Gulf Coast of the United States to infer geographic differences in recruitment and to test the hypothesis that the Deepwater Horizon oil spill led to widespread recruitment failure of L. irrorata in Louisiana in 2010. Size-frequency distributions in both ecoregions were bimodal, with troughs in the distributions consistent with a transition from sub-adults to adults at ~13 mm in shell length as reported in the literature; however, adult snails reached larger sizes in the Gulf Coast. The ratio of sub-adults to adults was 1.5–2 times greater in the South Atlantic Bight than the Gulf Coast, consistent with higher recruitment rates in the South Atlantic Bight. Higher recruitment rates in the South Atlantic Bight could contribute to higher snail densities and reduced adult growth in this region. The ratio of sub-adults to adults in Louisiana was lower in 2011 than in previous years, and began to recover in 2012–2014, consistent with widespread recruitment failure in 2010, when large expanses of spilled oil were present in coastal waters. Our results reveal an important difference in the ecology of a key salt marsh invertebrate between the two ecoregions, and also suggest that the Deepwater Horizon oil spill may have caused widespread recruitment failure in this species and perhaps others with similar planktonic larval stages.

  7. Land use influences on acidification and recovery of freshwaters in Galloway, south-west Scotland

    Directory of Open Access Journals (Sweden)

    R. C. Helliwell

    2001-01-01

    Full Text Available The long term response of surface waters to changes in sulphur deposition and afforestation is investigated for three upland river systems in the Galloway region of south-west Scotland. From 1984-1999, these rivers exhibited a statistically significant decline in non-marine sulphate concentrations in response to reduced acid deposition. This reduction in non-marine sulphate was, however, insufficient to induce a pH recovery over the period. A statistically significant increase in river pH was observed between 1956-1970 (0.05 yr-1 when subsidised agricultural lime payments were at a maximum. In 1976, this subsidy ceased and surface waters have progressively acidified. In addition, climatic change is found to influence long-term trends in pH. Mean annual pH was greatest during a dry period between 1969-1973 when total annual discharge was low. Thereafter, pH declined gradually in response to higher rainfall and increased total annual discharge. Overall, surface waters draining the afforested catchments of the Rivers Cree and Bladnoch are more acid than those draining the moorland catchment of the Luce. These results indicate that in afforested catchments, current reductions in sulphur emissions have not led to an observed improvement in the acid status of surface waters. Forestry, therefore, represents a confounding factor with regard to chemical recovery from acidification in this region. Keywords: acidification, afforestation, deposition, rivers, lochs, non-marine sulphate, pH

  8. CO2 leakage from carbon dioxide capture and storage (CCS) systems affects organic matter cycling in surface marine sediments.

    Science.gov (United States)

    Rastelli, Eugenio; Corinaldesi, Cinzia; Dell'Anno, Antonio; Amaro, Teresa; Greco, Silvestro; Lo Martire, Marco; Carugati, Laura; Queirós, Ana M; Widdicombe, Stephen; Danovaro, Roberto

    2016-12-01

    Carbon dioxide capture and storage (CCS), involving the injection of CO 2 into the sub-seabed, is being promoted worldwide as a feasible option for reducing the anthropogenic CO 2 emissions into the atmosphere. However, the effects on the marine ecosystems of potential CO 2 leakages originating from these storage sites have only recently received scientific attention, and little information is available on the possible impacts of the resulting CO 2 -enriched seawater plumes on the surrounding benthic ecosystem. In the present study, we conducted a 20-weeks mesocosm experiment exposing coastal sediments to CO 2 -enriched seawater (at 5000 or 20,000 ppm), to test the effects on the microbial enzymatic activities responsible for the decomposition and turnover of the sedimentary organic matter in surface sediments down to 15 cm depth. Our results indicate that the exposure to high-CO 2 concentrations reduced significantly the enzymatic activities in the top 5 cm of sediments, but had no effects on subsurface sediment horizons (from 5 to 15 cm depth). In the surface sediments, both 5000 and 20,000 ppm CO 2 treatments determined a progressive decrease over time in the protein degradation (up to 80%). Conversely, the degradation rates of carbohydrates and organic phosphorous remained unaltered in the first 2 weeks, but decreased significantly (up to 50%) in the longer term when exposed at 20,000 ppm of CO 2 . Such effects were associated with a significant change in the composition of the biopolymeric carbon (due to the accumulation of proteins over time in sediments exposed to high-pCO 2 treatments), and a significant decrease (∼20-50% at 5000 and 20,000 ppm respectively) in nitrogen regeneration. We conclude that in areas immediately surrounding an active and long-lasting leak of CO 2 from CCS reservoirs, organic matter cycling would be significantly impacted in the surface sediment layers. The evidence of negligible impacts on the deeper sediments should be

  9. IAEA To Launch Centre On Ocean Acidification

    International Nuclear Information System (INIS)

    2012-01-01

    Full text: The International Atomic Energy Agency (IAEA) is to launch a new centre this summer to address the growing problem of ocean acidification. Operated by the Agency's Monaco Environmental Laboratories, the Ocean Acidification International Coordination Centre will serve the scientific community - as well as policymakers, universities, media and the general public - by facilitating, promoting and communicating global actions on ocean acidification. Growing amounts of carbon dioxide in the Earth's atmosphere are being absorbed in the planet's oceans which increases their acidity. According to the experts, ocean acidification may render most regions of the ocean inhospitable to coral reefs by 2050 if atmospheric carbon dioxide levels continue to increase. This could lead to substantial changes in commercial fish stocks, threatening food security for millions of people as well as the multi-billion dollar fishing industry. International scientists have been studying the effect and possible responses, and the new centre will help coordinate their efforts. ''During the past five years, numerous multinational and national research projects on ocean acidification have emerged and significant research advances have been made,'' said Daud bin Mohamad, IAEA Deputy Director General for Nuclear Sciences and Applications. ''The time is now ripe to provide international coordination to gain the greatest value from national efforts and research investments.'' The centre will be supported by several IAEA Member States and through the Peaceful Uses Initiative, and it will be overseen by an Advisory Board consisting of leading institutions, including the U.N. Intergovernmental Oceanographic Commission, the U.S. National Oceanic and Atmospheric Administration, the U.N. Food and Agriculture Organization, the Fondation Prince Albert II de Monaco, the OA-Reference User Group, as well as leading scientists and economists in the field. The new centre will focus on international

  10. Interactive effects of temperature, food and skeletal mineralogy mediate biological responses to ocean acidification in a widely distributed bryozoan.

    Science.gov (United States)

    Swezey, Daniel S; Bean, Jessica R; Ninokawa, Aaron T; Hill, Tessa M; Gaylord, Brian; Sanford, Eric

    2017-04-26

    Marine invertebrates with skeletons made of high-magnesium calcite may be especially susceptible to ocean acidification (OA) due to the elevated solubility of this form of calcium carbonate. However, skeletal composition can vary plastically within some species, and it is largely unknown how concurrent changes in multiple oceanographic parameters will interact to affect skeletal mineralogy, growth and vulnerability to future OA. We explored these interactive effects by culturing genetic clones of the bryozoan Jellyella tuberculata (formerly Membranipora tuberculata ) under factorial combinations of dissolved carbon dioxide (CO 2 ), temperature and food concentrations. High CO 2 and cold temperature induced degeneration of zooids in colonies. However, colonies still maintained high growth efficiencies under these adverse conditions, indicating a compensatory trade-off whereby colonies degenerate more zooids under stress, redirecting energy to the growth and maintenance of new zooids. Low-food concentration and elevated temperatures also had interactive effects on skeletal mineralogy, resulting in skeletal calcite with higher concentrations of magnesium, which readily dissolved under high CO 2 For taxa that weakly regulate skeletal magnesium concentration, skeletal dissolution may be a more widespread phenomenon than is currently documented and is a growing concern as oceans continue to warm and acidify. © 2017 The Author(s).

  11. Impact of seawater acidification on pH at the tissue–skeleton interface and calcification in reef corals

    Science.gov (United States)

    Venn, Alexander A.; Tambutté, Eric; Holcomb, Michael; Laurent, Julien; Allemand, Denis; Tambutté, Sylvie

    2013-01-01

    Insight into the response of reef corals and other major marine calcifiers to ocean acidification is limited by a lack of knowledge about how seawater pH and carbonate chemistry impact the physiological processes that drive biomineralization. Ocean acidification is proposed to reduce calcification rates in corals by causing declines in internal pH at the calcifying tissue–skeleton interface where biomineralization takes place. Here, we performed an in vivo study on how partial-pressure CO2-driven seawater acidification impacts intracellular pH in coral calcifying cells and extracellular pH in the fluid at the tissue–skeleton interface [subcalicoblastic medium (SCM)] in the coral Stylophora pistillata. We also measured calcification in corals grown under the same conditions of seawater acidification by measuring lateral growth of colonies and growth of aragonite crystals under the calcifying tissue. Our findings confirm that seawater acidification decreases pH of the SCM, but this decrease is gradual relative to the surrounding seawater, leading to an increasing pH gradient between the SCM and seawater. Reductions in calcification rate, both at the level of crystals and whole colonies, were only observed in our lowest pH treatment when pH was significantly depressed in the calcifying cells in addition to the SCM. Overall, our findings suggest that reef corals may mitigate the effects of seawater acidification by regulating pH in the SCM, but they also highlight the role of calcifying cell pH homeostasis in determining the response of reef corals to changes in external seawater pH and carbonate chemistry. PMID:23277567

  12. Impact of seawater acidification on pH at the tissue-skeleton interface and calcification in reef corals.

    Science.gov (United States)

    Venn, Alexander A; Tambutté, Eric; Holcomb, Michael; Laurent, Julien; Allemand, Denis; Tambutté, Sylvie

    2013-01-29

    Insight into the response of reef corals and other major marine calcifiers to ocean acidification is limited by a lack of knowledge about how seawater pH and carbonate chemistry impact the physiological processes that drive biomineralization. Ocean acidification is proposed to reduce calcification rates in corals by causing declines in internal pH at the calcifying tissue-skeleton interface where biomineralization takes place. Here, we performed an in vivo study on how partial-pressure CO(2)-driven seawater acidification impacts intracellular pH in coral calcifying cells and extracellular pH in the fluid at the tissue-skeleton interface [subcalicoblastic medium (SCM)] in the coral Stylophora pistillata. We also measured calcification in corals grown under the same conditions of seawater acidification by measuring lateral growth of colonies and growth of aragonite crystals under the calcifying tissue. Our findings confirm that seawater acidification decreases pH of the SCM, but this decrease is gradual relative to the surrounding seawater, leading to an increasing pH gradient between the SCM and seawater. Reductions in calcification rate, both at the level of crystals and whole colonies, were only observed in our lowest pH treatment when pH was significantly depressed in the calcifying cells in addition to the SCM. Overall, our findings suggest that reef corals may mitigate the effects of seawater acidification by regulating pH in the SCM, but they also highlight the role of calcifying cell pH homeostasis in determining the response of reef corals to changes in external seawater pH and carbonate chemistry.

  13. Effects of hypoxia and ocean acidification on the upper thermal niche boundaries of coral reef fishes.

    Science.gov (United States)

    Ern, Rasmus; Johansen, Jacob L; Rummer, Jodie L; Esbaugh, Andrew J

    2017-07-01

    Rising ocean temperatures are predicted to cause a poleward shift in the distribution of marine fishes occupying the extent of latitudes tolerable within their thermal range boundaries. A prevailing theory suggests that the upper thermal limits of fishes are constrained by hypoxia and ocean acidification. However, some eurythermal fish species do not conform to this theory, and maintain their upper thermal limits in hypoxia. Here we determine if the same is true for stenothermal species. In three coral reef fish species we tested the effect of hypoxia on upper thermal limits, measured as critical thermal maximum (CT max ). In one of these species we also quantified the effect of hypoxia on oxygen supply capacity, measured as aerobic scope (AS). In this species we also tested the effect of elevated CO 2 (simulated ocean acidification) on the hypoxia sensitivity of CT max We found that CT max was unaffected by progressive hypoxia down to approximately 35 mmHg, despite a substantial hypoxia-induced reduction in AS. Below approximately 35 mmHg, CT max declined sharply with water oxygen tension ( P w O 2 ). Furthermore, the hypoxia sensitivity of CT max was unaffected by elevated CO 2 Our findings show that moderate hypoxia and ocean acidification do not constrain the upper thermal limits of these tropical, stenothermal fishes. © 2017 The Author(s).

  14. Ocean Acidification Accelerates the Growth of Two Bloom-Forming Macroalgae.

    Science.gov (United States)

    Young, Craig S; Gobler, Christopher J

    2016-01-01

    While there is growing interest in understanding how marine life will respond to future ocean acidification, many coastal ecosystems currently experience intense acidification in response to upwelling, eutrophication, or riverine discharge. Such acidification can be inhibitory to calcifying animals, but less is known regarding how non-calcifying macroalgae may respond to elevated CO2. Here, we report on experiments performed during summer through fall with North Atlantic populations of Gracilaria and Ulva that were grown in situ within a mesotrophic estuary (Shinnecock Bay, NY, USA) or exposed to normal and elevated, but environmentally realistic, levels of pCO2 and/or nutrients (nitrogen and phosphorus). In nearly all experiments, the growth rates of Gracilaria were significantly increased by an average of 70% beyond in situ and control conditions when exposed to elevated levels of pCO2 (p0.05). The δ13C content of both Gracilaria and Ulva decreased two-to-three fold when grown under elevated pCO2 (pacidification, a process that will intensify in the coming decades.

  15. Stable photosymbiotic relationship under CO₂-induced acidification in the acoel worm Symsagittifera roscoffensis.

    Directory of Open Access Journals (Sweden)

    Sam Dupont

    Full Text Available As a consequence of anthropogenic CO₂ emissions, oceans are becoming more acidic, a phenomenon known as ocean acidification. Many marine species predicted to be sensitive to this stressor are photosymbiotic, including corals and foraminifera. However, the direct impact of ocean acidification on the relationship between the photosynthetic and nonphotosynthetic organism remains unclear and is complicated by other physiological processes known to be sensitive to ocean acidification (e.g. calcification and feeding. We have studied the impact of extreme pH decrease/pCO₂ increase on the complete life cycle of the photosymbiotic, non-calcifying and pure autotrophic acoel worm, Symsagittifera roscoffensis. Our results show that this species is resistant to high pCO₂ with no negative or even positive effects on fitness (survival, growth, fertility and/or photosymbiotic relationship till pCO₂ up to 54 K µatm. Some sub-lethal bleaching is only observed at pCO₂ up to 270 K µatm when seawater is saturated by CO₂. This indicates that photosymbiosis can be resistant to high pCO₂. If such a finding would be confirmed in other photosymbiotic species, we could then hypothesize that negative impact of high pCO₂ observed on other photosymbiotic species such as corals and foraminifera could occur through indirect impacts at other levels (calcification, feeding.

  16. Monitoring and assessment of ocean acidification in the Arctic Ocean-A scoping paper

    Science.gov (United States)

    Robbins, Lisa L.; Yates, Kimberly K.; Feely, Richard; Fabry, Victoria

    2010-01-01

    Carbon dioxide (CO2) in the atmosphere is absorbed at the ocean surface by reacting with seawater to form a weak, naturally occurring acid called carbonic acid. As atmospheric carbon dioxide increases, the concentration of carbonic acid in seawater also increases, causing a decrease in ocean pH and carbonate mineral saturation states, a process known as ocean acidification. The oceans have absorbed approximately 525 billion tons of carbon dioxide from the atmosphere, or about one-quarter to one-third of the anthropogenic carbon emissions released since the beginning of the Industrial Revolution. Global surveys of ocean chemistry have revealed that seawater pH has decreased by about 0.1 units (from a pH of 8.2 to 8.1) since the 1700s due to absorption of carbon dioxide (Raven and others, 2005). Modeling studies, based on Intergovernmental Panel on Climate Change (IPCC) CO2 emission scenarios, predict that atmospheric carbon dioxide levels could reach more than 500 parts per million (ppm) by the middle of this century and 800 ppm by the year 2100, causing an additional decrease in surface water pH of 0.3 pH units. Ocean acidification is a global threat and is already having profound and deleterious effects on the geology, biology, chemistry, and socioeconomic resources of coastal and marine habitats. The polar and sub-polar seas have been identified as the bellwethers for global ocean acidification.

  17. Simulating the long-term chemistry of an upland UK catchment: Major solutes and acidification

    Energy Technology Data Exchange (ETDEWEB)

    Tipping, E. [Centre for Ecology and Hydrology (Lancaster), Library Avenue, Bailrigg, Lancaster LA1 4AP (United Kingdom)]. E-mail: et@ceh.ac.uk; Lawlor, A.J. [Centre for Ecology and Hydrology (Lancaster), Library Avenue, Bailrigg, Lancaster LA1 4AP (United Kingdom); Lofts, S. [Centre for Ecology and Hydrology (Lancaster), Library Avenue, Bailrigg, Lancaster LA1 4AP (United Kingdom)

    2006-05-15

    CHUM-AM was used to investigate changes in soil and water chemical variables in four moorland sub-catchments in Cumbria UK, to which non-marine S deposition has declined by 65% since the 1970s. The principal processes represented in the model comprise N and S uptake and release, water movements, the binding of cations by soil organic matter, chemical interactions in solution, and chemical weathering. CHUM-AM reproduced reasonably well the current soil pH and pools of N and S, and changes in streamwater chemistry over the period 1970-2000, notably decreases in the concentrations of alkaline earth cations and sulphate, and increases in pH. The model also predicts streamwater pH-Al relationships in agreement with observations. Predictive calculations suggest that constant atmospheric deposition of N at present rates will lead to N saturation and re-acidification, whereas a 50% reduction in N would stabilise soil and streamwater pH at about the present levels. - CHUM-AM accounts for recovery from acidification due to sulphur deposition, but predicts re-acidification if nitrogen deposition is not reduced.

  18. Forest land cover continues to exacerbate freshwater acidification despite decline in sulphate emissions

    International Nuclear Information System (INIS)

    Dunford, Robert W.; Donoghue, Daniel N.M.; Burt, Tim P.

    2012-01-01

    Evidence from a multi-date regional-scale analysis of both high-flow and annual-average water quality data from Galloway, south-west Scotland, demonstrates that forest land cover continues to exacerbate freshwater acidification. This is in spite of significant reductions in airborne pollutants. The relationship between freshwater sulphate and forest cover has decreased from 1996 to 2006 indicating a decrease in pollutant scavenging. The relationship between forest cover and freshwater acidity (pH) is, however, still present over the same period, and does not show conclusive signs of having declined. Furthermore, evidence for forest cover contributing to a chlorine bias in marine ion capture suggests that forest scavenging of sea-salts may mean that the forest acidification effect may continue in the absence of anthropogenic pollutant inputs, particularly in coastal areas. - Highlights: ► Forest cover and water chemistry remain linked despite decreased sulphate emissions. ► Forest cover has significant relationships SO 4 2− , Cl − , Na + , pH, ANC and Na:Cl ratio. ► Forest cover: pH relationships shows some evidence of decline 1996–2006. ► Forest cover: freshwater sulphate relationships show evidence of decline 1996–2006. ► Natural forest-mechanisms may exacerbate acidification, particularly sea-salt scavenging. - Relationships between forest land cover and freshwater pH continue to be evident despite declines in anthropogenic pollutant sulphate deposition; sea-salt scavenging may play a role.

  19. Effect factors for terrestrial acidification in Brazil

    DEFF Research Database (Denmark)

    Crespo Mendes, Natalia; Laurent, Alexis; Hauschild, Michael Zwicky

    conditions, which is an essential approach considering countries like Brazil, with high biodiversity. Previous studies have assessed the impacts of terrestrial acidification from the estimations of the potential losses of vascular plants species richness as a result of exposure to acidifying substances...... for 13 biomes, with 2409 species addressed for whole world. In this context this work aims to provide spatially-differentiated effect factors (EF) for terrestrial acidification in Brazil and support the development of spatially-differentiated characterization factors for Brazil. In order to maintain...... in Brazil, represented by 33167 species, indicating that this is a comprehensive study. Maps of soil pH in Brazil were extracted at 1-km resolution and pH values were extracted for the depth range of 0-30cm. For each ecoregion, species richness was plotted against soil pH and the exposure-response curves...

  20. Carbon–climate feedbacks accelerate ocean acidification

    Directory of Open Access Journals (Sweden)

    R. J. Matear

    2018-03-01

    Full Text Available Carbon–climate feedbacks have the potential to significantly impact the future climate by altering atmospheric CO2 concentrations (Zaehle et al. 2010. By modifying the future atmospheric CO2 concentrations, the carbon–climate feedbacks will also influence the future ocean acidification trajectory. Here, we use the CO2 emissions scenarios from four representative concentration pathways (RCPs with an Earth system model to project the future trajectories of ocean acidification with the inclusion of carbon–climate feedbacks. We show that simulated carbon–climate feedbacks can significantly impact the onset of undersaturated aragonite conditions in the Southern and Arctic oceans, the suitable habitat for tropical coral and the deepwater saturation states. Under the high-emissions scenarios (RCP8.5 and RCP6, the carbon–climate feedbacks advance the onset of surface water under saturation and the decline in suitable coral reef habitat by a decade or more. The impacts of the carbon–climate feedbacks are most significant for the medium- (RCP4.5 and low-emissions (RCP2.6 scenarios. For the RCP4.5 scenario, by 2100 the carbon–climate feedbacks nearly double the area of surface water undersaturated with respect to aragonite and reduce by 50 % the surface water suitable for coral reefs. For the RCP2.6 scenario, by 2100 the carbon–climate feedbacks reduce the area suitable for coral reefs by 40 % and increase the area of undersaturated surface water by 20 %. The sensitivity of ocean acidification to the carbon–climate feedbacks in the low to medium emission scenarios is important because recent CO2 emission reduction commitments are trying to transition emissions to such a scenario. Our study highlights the need to better characterise the carbon–climate feedbacks and ensure we do not underestimate the projected ocean acidification.

  1. Carbon-climate feedbacks accelerate ocean acidification

    Science.gov (United States)

    Matear, Richard J.; Lenton, Andrew

    2018-03-01

    Carbon-climate feedbacks have the potential to significantly impact the future climate by altering atmospheric CO2 concentrations (Zaehle et al. 2010). By modifying the future atmospheric CO2 concentrations, the carbon-climate feedbacks will also influence the future ocean acidification trajectory. Here, we use the CO2 emissions scenarios from four representative concentration pathways (RCPs) with an Earth system model to project the future trajectories of ocean acidification with the inclusion of carbon-climate feedbacks. We show that simulated carbon-climate feedbacks can significantly impact the onset of undersaturated aragonite conditions in the Southern and Arctic oceans, the suitable habitat for tropical coral and the deepwater saturation states. Under the high-emissions scenarios (RCP8.5 and RCP6), the carbon-climate feedbacks advance the onset of surface water under saturation and the decline in suitable coral reef habitat by a decade or more. The impacts of the carbon-climate feedbacks are most significant for the medium- (RCP4.5) and low-emissions (RCP2.6) scenarios. For the RCP4.5 scenario, by 2100 the carbon-climate feedbacks nearly double the area of surface water undersaturated with respect to aragonite and reduce by 50 % the surface water suitable for coral reefs. For the RCP2.6 scenario, by 2100 the carbon-climate feedbacks reduce the area suitable for coral reefs by 40 % and increase the area of undersaturated surface water by 20 %. The sensitivity of ocean acidification to the carbon-climate feedbacks in the low to medium emission scenarios is important because recent CO2 emission reduction commitments are trying to transition emissions to such a scenario. Our study highlights the need to better characterise the carbon-climate feedbacks and ensure we do not underestimate the projected ocean acidification.

  2. Millennial-scale ocean acidification and late Quaternary decline of cryptic bacterial crusts in tropical reefs.

    Science.gov (United States)

    Riding, R; Liang, L; Braga, J C

    2014-09-01

    Ocean acidification by atmospheric carbon dioxide has increased almost continuously since the last glacial maximum (LGM), 21,000 years ago. It is expected to impair tropical reef development, but effects on reefs at the present day and in the recent past have proved difficult to evaluate. We present evidence that acidification has already significantly reduced the formation of calcified bacterial crusts in tropical reefs. Unlike major reef builders such as coralline algae and corals that more closely control their calcification, bacterial calcification is very sensitive to ambient changes in carbonate chemistry. Bacterial crusts in reef cavities have declined in thickness over the past 14,000 years with largest reduction occurring 12,000-10,000 years ago. We interpret this as an early effect of deglacial ocean acidification on reef calcification and infer that similar crusts were likely to have been thicker when seawater carbonate saturation was increased during earlier glacial intervals, and thinner during interglacials. These changes in crust thickness could have substantially affected reef development over glacial cycles, as rigid crusts significantly strengthen framework and their reduction would have increased the susceptibility of reefs to biological and physical erosion. Bacterial crust decline reveals previously unrecognized millennial-scale acidification effects on tropical reefs. This directs attention to the role of crusts in reef formation and the ability of bioinduced calcification to reflect changes in seawater chemistry. It also provides a long-term context for assessing anticipated anthropogenic effects. © 2014 John Wiley & Sons Ltd.

  3. Ocean acidification: The little-known impact of CO2 emissions

    International Nuclear Information System (INIS)

    Madsen, Michael Amdi

    2015-01-01

    Ocean acidification, like global warming, is a serious consequence of rising carbon dioxide (CO 2 ) emissions and a growing threat to coastal communities. Scientists and economists alike are calling for ocean acidification mitigation and adaptation plans to be included in any future international climate change agreement, arguing that doing so would make any such agreement stronger and facilitate its implementation. The IAEA uses nuclear techniques to measure ocean acidification and has been providing objective information to scientists, economists, and policymakers to make informed decisions. “Recognizing that billions of people are dependent on a healthy ocean for their wellbeing and economic development is the first step,” said Alexandre Magnan of the Institute for Sustainable Development and International Relations in Paris at an IAEA workshop this year. Acknowledging in the legal text of a climate deal the threats facing the oceans could open the door for coastal communities affected by ocean acidification to benefit from financing available under a climate change agreement, he said. This would enable them to adapt to changing social and economic circumstances, improve understanding of the ecological and biophysical changes expected, and pressure further concrete actions by governments, he added.

  4. Ocean acidification: The little-known impact of CO_2 emissions

    International Nuclear Information System (INIS)

    Madsen, Michael Amdi

    2015-01-01

    Ocean acidification, like global warming, is a serious consequence of rising carbon dioxide (CO_2) emissions and a growing threat to coastal communities. Scientists and economists alike are calling for ocean acidification mitigation and adaptation plans to be included in any future international climate change agreement, arguing that doing so would make any such agreement stronger and facilitate its implementation. The IAEA uses nuclear techniques to measure ocean acidification and has been providing objective information to scientists, economists, and policymakers to make informed decisions. “Recognizing that billions of people are dependent on a healthy ocean for their wellbeing and economic development is the first step,” said Alexandre Magnan of the Institute for Sustainable Development and International Relations in Paris at an IAEA workshop this year. Acknowledging in the legal text of a climate deal the threats facing the oceans could open the door for coastal communities affected by ocean acidification to benefit from financing available under a climate change agreement, he said. This would enable them to adapt to changing social and economic circumstances, improve understanding of the ecological and biophysical changes expected, and pressure further concrete actions by governments, he added.

  5. Ocean acidification exerts negative effects during warming conditions in a developing Antarctic fish.

    Science.gov (United States)

    Flynn, Erin E; Bjelde, Brittany E; Miller, Nathan A; Todgham, Anne E

    2015-01-01

    Anthropogenic CO2 is rapidly causing oceans to become warmer and more acidic, challenging marine ectotherms to respond to simultaneous changes in their environment. While recent work has highlighted that marine fishes, particularly during early development, can be vulnerable to ocean acidification, we lack an understanding of how life-history strategies, ecosystems and concurrent ocean warming interplay with interspecific susceptibility. To address the effects of multiple ocean changes on cold-adapted, slowly developing fishes, we investigated the interactive effects of elevated partial pressure of carbon dioxide (pCO2) and temperature on the embryonic physiology of an Antarctic dragonfish (Gymnodraco acuticeps), with protracted embryogenesis (∼10 months). Using an integrative, experimental approach, our research examined the impacts of near-future warming [-1 (ambient) and 2°C (+3°C)] and ocean acidification [420 (ambient), 650 (moderate) and 1000 μatm pCO2 (high)] on survival, development and metabolic processes over the course of 3 weeks in early development. In the presence of increased pCO2 alone, embryonic mortality did not increase, with greatest overall survival at the highest pCO2. Furthermore, embryos were significantly more likely to be at a later developmental stage at high pCO2 by 3 weeks relative to ambient pCO2. However, in combined warming and ocean acidification scenarios, dragonfish embryos experienced a dose-dependent, synergistic decrease in survival and developed more slowly. We also found significant interactions between temperature, pCO2 and time in aerobic enzyme activity (citrate synthase). Increased temperature alone increased whole-organism metabolic rate (O2 consumption) and developmental rate and slightly decreased osmolality at the cost of increased mortality. Our findings suggest that developing dragonfish are more sensitive to ocean warming and may experience negative physiological effects of ocean acidification only in

  6. Paradigm Lost: Ocean Acidification Will Overturn the Concept of Larval-Fish Biophysical Dispersal

    Directory of Open Access Journals (Sweden)

    Jeffrey M. Leis

    2018-02-01

    Full Text Available Most marine ecologists have in the past 25 years changed from supporting a passive-dispersal paradigm for larval marine fishes to supporting a biophysical-dispersal paradigm wherein the behaviour of larvae plays a central role. Research shows larvae of demersal perciform fishes have considerable swimming and orientation abilities over a major portion of their pelagic larval duration. These abilities depend on sensory function, and some recent research has indicated anthropogenic acidification of the oceans will by the end of the century result in sensory dysfunction. This could strongly alter the ability of fish larvae to orientate in the pelagic environment, to locate suitable settlement habitat, to bet-hedge, and to colonize new locations. This paper evaluates the available publications on the effects of acidification on senses and behaviours relevant to dispersal of fish early life-history stages. A large majority of studies tested CO2 values predicted for the middle to end of the century. Larvae of fourteen families—all but two perciform—were studied. However, half of studies used Damselfishes (Pomacentridae, and except for swimming, most studies used settlement-stage larvae or later stages. In spite of these taxonomic and ontogenetic restrictions, all but two studies on sensory function (chemosensation, hearing, vision, detection of estuarine cues found deleterious effects from acidification. The four studies on lateralization and settlement timing all found deleterious effects from acidification. No clear effect of acidification on swimming ability was found. If fish larvae cannot orientate due to sensory dysfunction, their dispersal will, in effect, conform to the passive dispersal paradigm. Modelling incorporating larval behaviour derived from empirical studies indicates that relative to active larvae, passive larvae will have less self-recruitment, higher median and mean dispersal distances, and lower settlement rates: further, bet

  7. International Symposium on Isotopes in Hydrology, Marine Ecosystems, and Climate Change Studies. Presentations

    International Nuclear Information System (INIS)

    2011-01-01

    Human activities have had a far-reaching impact on the aquatic environments - both marine and freshwater systems. The protection of these systems against further deterioration and the promotion of sustainable use are vital. In order to deepen understanding about the main processes affecting the present situation, as well as possible developments in the future, further investigation is required. The oceans play a major role in climate change, for example, and ocean acidification by increased CO2 release is one major threat to the world's oceans. Isotope methods can play a critical role in identifying and quantifying key processes within aquatic environments. Addressing the problems of global water resources has become a matter of urgency. Water resources are subject to multiple pressures for various reasons, including increasing populations, climate change, rising food and energy costs, the global economic crisis and pollutant loading. Isotope hydrology provides the unique and critical tools required to address complex water problems and helps managers and policy makers understand the closely intertwined relationship between water resources and the various pressures affecting them, as well as the issue of sustainability. The symposium will be an important forum for the exchange of knowledge on the present state of marine and freshwater environments, use of isotopes in water resources investigations and management, and climate change studies. The meeting will involve leading scientists in the field of climate change and hydrology, as well as representatives from other United Nations bodies and international organizations that focus on climate change and other important environmental issues. TOPICS: The role of isotopes in understanding and modelling climate change, marine ecosystems and the water cycle; Carbon dioxide sequestration and related aspects of the carbon cycle, such as ocean acidification; Isotopes in groundwater flow modelling for large aquifers

  8. Coccolithophore calcification response to past ocean acidification and climate change.

    Science.gov (United States)

    O'Dea, Sarah A; Gibbs, Samantha J; Bown, Paul R; Young, Jeremy R; Poulton, Alex J; Newsam, Cherry; Wilson, Paul A

    2014-11-17

    Anthropogenic carbon dioxide emissions are forcing rapid ocean chemistry changes and causing ocean acidification (OA), which is of particular significance for calcifying organisms, including planktonic coccolithophores. Detailed analysis of coccolithophore skeletons enables comparison of calcite production in modern and fossil cells in order to investigate biomineralization response of ancient coccolithophores to climate change. Here we show that the two dominant coccolithophore taxa across the Paleocene-Eocene Thermal Maximum (PETM) OA global warming event (~56 million years ago) exhibited morphological response to environmental change and both showed reduced calcification rates. However, only Coccolithus pelagicus exhibits a transient thinning of coccoliths, immediately before the PETM, that may have been OA-induced. Changing coccolith thickness may affect calcite production more significantly in the dominant modern species Emiliania huxleyi, but, overall, these PETM records indicate that the environmental factors that govern taxonomic composition and growth rate will most strongly influence coccolithophore calcification response to anthropogenic change.

  9. Investigating Undergraduate Science Students’ Conceptions and Misconceptions of Ocean Acidification

    Science.gov (United States)

    Danielson, Kathryn I.; Tanner, Kimberly D.

    2015-01-01

    Scientific research exploring ocean acidification has grown significantly in past decades. However, little science education research has investigated the extent to which undergraduate science students understand this topic. Of all undergraduate students, one might predict science students to be best able to understand ocean acidification. What conceptions and misconceptions of ocean acidification do these students hold? How does their awareness and knowledge compare across disciplines? Undergraduate biology, chemistry/biochemistry, and environmental studies students, and science faculty for comparison, were assessed on their awareness and understanding. Results revealed low awareness and understanding of ocean acidification among students compared with faculty. Compared with biology or chemistry/biochemistry students, more environmental studies students demonstrated awareness of ocean acidification and identified the key role of carbon dioxide. Novel misconceptions were also identified. These findings raise the question of whether undergraduate science students are prepared to navigate socioenvironmental issues such as ocean acidification. PMID:26163563

  10. Coral Reefs Under Rapid Climate Change and Ocean Acidification

    Science.gov (United States)

    Hoegh-Guldberg, O.; Mumby, P. J.; Hooten, A. J.; Steneck, R. S.; Greenfield, P.; Gomez, E.; Harvell, C. D.; Sale, P. F.; Edwards, A. J.; Caldeira, K.; Knowlton, N.; Eakin, C. M.; Iglesias-Prieto, R.; Muthiga, N.; Bradbury, R. H.; Dubi, A.; Hatziolos, M. E.

    2007-12-01

    Atmospheric carbon dioxide concentration is expected to exceed 500 parts per million and global temperatures to rise by at least 2°C by 2050 to 2100, values that significantly exceed those of at least the past 420,000 years during which most extant marine organisms evolved. Under conditions expected in the 21st century, global warming and ocean acidification will compromise carbonate accretion, with corals becoming increasingly rare on reef systems. The result will be less diverse reef communities and carbonate reef structures that fail to be maintained. Climate change also exacerbates local stresses from declining water quality and overexploitation of key species, driving reefs increasingly toward the tipping point for functional collapse. This review presents future scenarios for coral reefs that predict increasingly serious consequences for reef-associated fisheries, tourism, coastal protection, and people. As the International Year of the Reef 2008 begins, scaled-up management intervention and decisive action on global emissions are required if the loss of coral-dominated ecosystems is to be avoided.

  11. Will PM control undermine China's efforts to reduce soil acidification?

    International Nuclear Information System (INIS)

    Zhao Yu; Duan Lei; Lei Yu; Xing Jia; Nielsen, Chris P.; Hao Jiming

    2011-01-01

    China's strategies to control acidifying pollutants and particulate matter (PM) may be in conflict for soil acidification abatement. Acidifying pollutant emissions are estimated for 2005 and 2020 with anticipated control policies. PM emissions including base cations (BCs) are evaluated with two scenarios, a base case applying existing policy to 2020, and a control case including anticipated tightened measures. Depositions of sulfur (S), nitrogen (N) and BCs are simulated and their acidification risks are evaluated with critical load (CL). In 2005, the area exceeding CL covered 15.6% of mainland China, with total exceedance of 2.2 Mt S. These values decrease in the base scenario 2020, implying partial recovery from acidification. Under more realistic PM control, the respective estimates are 17.9% and 2.4 Mt S, indicating increased acidification risks due to abatement of acid-neutralizing BCs. China's anthropogenic PM abatement will have potentially stronger chemical implications for acidification than developed countries. - Highlights: → We model the emission and deposition of base cations and acid precursors in China. → Soil acidification in China is analyzed with exceedance of critical load. → China's PM control increases the acidification risk even with reduced SO 2 emission. → The impact of PM for acidification is stronger than that in developed countries. - The control of anthropogenic PM emission in China will increase the risk of soil acidification even with reduced SO 2 emission. Such implication is stronger than that in developed countries.

  12. Near-shore Antarctic pH variability has implications for the design of ocean acidification experiments

    Science.gov (United States)

    Kapsenberg, Lydia; Kelley, Amanda L.; Shaw, Emily C.; Martz, Todd R.; Hofmann, Gretchen E.

    2015-01-01

    Understanding how declining seawater pH caused by anthropogenic carbon emissions, or ocean acidification, impacts Southern Ocean biota is limited by a paucity of pH time-series. Here, we present the first high-frequency in-situ pH time-series in near-shore Antarctica from spring to winter under annual sea ice. Observations from autonomous pH sensors revealed a seasonal increase of 0.3 pH units. The summer season was marked by an increase in temporal pH variability relative to spring and early winter, matching coastal pH variability observed at lower latitudes. Using our data, simulations of ocean acidification show a future period of deleterious wintertime pH levels potentially expanding to 7–11 months annually by 2100. Given the presence of (sub)seasonal pH variability, Antarctica marine species have an existing physiological tolerance of temporal pH change that may influence adaptation to future acidification. Yet, pH-induced ecosystem changes remain difficult to characterize in the absence of sufficient physiological data on present-day tolerances. It is therefore essential to incorporate natural and projected temporal pH variability in the design of experiments intended to study ocean acidification biology.

  13. Reviewing evidence of marine ecosystem change off South Africa ...

    African Journals Online (AJOL)

    Recent changes have been observed in South African marine ecosystems. The main pressures on these ecosystems are fishing, climate change, pollution, ocean acidification and mining. The best long-term datasets are for trends in fishing pressures but there are many gaps, especially for non-commercial species. Fishing ...

  14. Ocean acidification increases the accumulation of toxic phenolic compounds across trophic levels

    KAUST Repository

    Jin, Peng; Wang, Tifeng; Liu, Nana; Dupont, Sam; Beardall, John; Boyd, Philip W.; Riebesell, Ulf; Gao, Kunshan

    2015-01-01

    Increasing atmospheric CO2 concentrations are causing ocean acidification (OA), altering carbonate chemistry with consequences for marine organisms. Here we show that OA increases by 46–212% the production of phenolic compounds in phytoplankton grown under the elevated CO2 concentrations projected for the end of this century, compared with the ambient CO2 level. At the same time, mitochondrial respiration rate is enhanced under elevated CO2 concentrations by 130–160% in a single species or mixed phytoplankton assemblage. When fed with phytoplankton cells grown under OA, zooplankton assemblages have significantly higher phenolic compound content, by about 28–48%. The functional consequences of the increased accumulation of toxic phenolic compounds in primary and secondary producers have the potential to have profound consequences for marine ecosystem and seafood quality, with the possibility that fishery industries could be influenced as a result of progressive ocean changes.

  15. Ocean acidification increases the accumulation of toxic phenolic compounds across trophic levels

    KAUST Repository

    Jin, Peng

    2015-10-27

    Increasing atmospheric CO2 concentrations are causing ocean acidification (OA), altering carbonate chemistry with consequences for marine organisms. Here we show that OA increases by 46–212% the production of phenolic compounds in phytoplankton grown under the elevated CO2 concentrations projected for the end of this century, compared with the ambient CO2 level. At the same time, mitochondrial respiration rate is enhanced under elevated CO2 concentrations by 130–160% in a single species or mixed phytoplankton assemblage. When fed with phytoplankton cells grown under OA, zooplankton assemblages have significantly higher phenolic compound content, by about 28–48%. The functional consequences of the increased accumulation of toxic phenolic compounds in primary and secondary producers have the potential to have profound consequences for marine ecosystem and seafood quality, with the possibility that fishery industries could be influenced as a result of progressive ocean changes.

  16. EPOCA/EUR-OCEANS data compilation on the biological and biogeochemical responses to ocean acidification

    Directory of Open Access Journals (Sweden)

    A.-M. Nisumaa

    2010-07-01

    Full Text Available The uptake of anthropogenic CO2 by the oceans has led to a rise in the oceanic partial pressure of CO2, and to a decrease in pH and carbonate ion concentration. This modification of the marine carbonate system is referred to as ocean acidification. Numerous papers report the effects of ocean acidification on marine organisms and communities but few have provided details concerning full carbonate chemistry and complementary observations. Additionally, carbonate system variables are often reported in different units, calculated using different sets of dissociation constants and on different pH scales. Hence the direct comparison of experimental results has been problematic and often misleading. The need was identified to (1 gather data on carbonate chemistry, biological and biogeochemical properties, and other ancillary data from published experimental data, (2 transform the information into common framework, and (3 make data freely available. The present paper is the outcome of an effort to integrate ocean carbonate chemistry data from the literature which has been supported by the European Network of Excellence for Ocean Ecosystems Analysis (EUR-OCEANS and the European Project on Ocean Acidification (EPOCA. A total of 185 papers were identified, 100 contained enough information to readily compute carbonate chemistry variables, and 81 data sets were archived at PANGAEA – The Publishing Network for Geoscientific & Environmental Data. This data compilation is regularly updated as an ongoing mission of EPOCA.

    Data access: http://doi.pangaea.de/10.1594/PANGAEA.735138

  17. Assessment of groundwater vulnerability to acidification in the Krusne hory Mts. (Czech Republic)

    Science.gov (United States)

    Vostracka, B.

    2003-04-01

    Several decades of acid precipitation have substantially damaged natural ecosystems in some parts of the Czech Republic. Deterioration of forest quality in the Krusne hory Mts. (NW Bohemia, part of the so-called 'Black Triangle') began as a consequence of acidification at the end of 60's. The acid atmospheric deposition (wet and dry) has changed considerably the quality of groundwater. The groundwater vulnerability is analyzed in the maps using GIS. Various factors affecting acidification are depicted in the separate layers. These factors are geology, type of soils, vegetation cover, altitude, influence of morphology and prevailing direction of winds, and precipitation. Influence of each factor is represented by a corresponding weight coefficient expressing participation of the given factor in the total acidification with respect to the others. Assessment of these weight coefficients is based on the groundwater quality monitoring in the Krusne hory Mts. Chemical data provides evidence of the real spreading of acid groundwater. Acidification is characterized by a low concentration of bicarbonates that have locally almost disappeared in the apical parts of the mountain range. The pH value is very low too (about 4.5). The pH decrease is accompanied by a significant increase in the contents of Al. Concentrations of sulfates and nitrates increase substantially as well. These parameters are used for a determination of the weight coefficients of the above-mentioned individual factors. The proposed analysis of these six factors (characterizing behavior of the individual components separately) enables to derive the resulting map of the groundwater vulnerability to acidification respecting mutual interaction of the individual factors.

  18. Ocean acidification modulates the incorporation of radio-labeled heavy metals in the larvae of the Mediterranean sea urchin Paracentrotus lividus.

    Science.gov (United States)

    Dorey, Narimane; Martin, Sophie; Oberhänsli, François; Teyssié, Jean-Louis; Jeffree, Ross; Lacoue-Labarthe, Thomas

    2018-10-01

    The marine organisms which inhabit the coastline are exposed to a number of anthropogenic pressures that may interact. For instance, the accumulation of toxic metals present in coastal waters is expected to be modified by ocean acidification through e.g. changes in physiological performance and/or elements availability. Changes in bioaccumulation due to lowering pH are likely to be differently affected depending on the nature (essential vs. non-essential) and speciation of each element. The Mediterranean is of high concern for possible cumulative effects due to strong human influences on the coastline. The aim of this study was to determine the effect of ocean acidification (from pH 8.1 down to -1.0 pH units) on the incorporation kinetics of six trace metals (Mn, Co, Zn, Se, Ag, Cd, Cs) and one radionuclide ( 241 Am) in the larvae of an economically- and ecologically-relevant sea urchin of the Mediterranean coastline: Paracentrotus lividus. The radiolabelled metals and radionuclides added in trace concentrations allowed precise tracing of their incorporation in larvae during the first 74 h of their development. Independently of the expected indirect effect of pH on larval size/developmental rates, Paracentrotus lividus larvae exposed to decreasing pHs incorporated significantly more Mn and Ag and slightly less Cd. The incorporation of Co, Cs and 241 Am was unchanged, and Zn and Se exhibited complex incorporation behaviors. Studies such as this are necessary prerequisites to the implementation of metal toxicity mitigation policies for the future ocean. We discuss possible reasons and mechanisms for the specific effect of pH on each metals. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Calcium carbonate production response to future ocean warming and acidification

    Directory of Open Access Journals (Sweden)

    A. J. Pinsonneault

    2012-06-01

    Full Text Available Anthropogenic carbon dioxide (CO2 emissions are acidifying the ocean, affecting calcification rates in pelagic organisms, and thereby modifying the oceanic carbon and alkalinity cycles. However, the responses of pelagic calcifying organisms to acidification vary widely between species, contributing uncertainty to predictions of atmospheric CO2 and the resulting climate change. At the same time, ocean warming caused by rising CO2 is expected to drive increased growth rates of all pelagic organisms, including calcifiers. It thus remains unclear whether anthropogenic CO2 emissions will ultimately increase or decrease pelagic calcification rates. Here, we assess the importance of this uncertainty by introducing a dependence of calcium carbonate (CaCO3 production on calcite saturation state (ΩCaCO3 in an intermediate complexity coupled carbon-climate model. In a series of model simulations, we examine the impact of several variants of this dependence on global ocean carbon cycling between 1800 and 3500 under two different CO2 emissions scenarios. Introducing a calcification-saturation state dependence has a significant effect on the vertical and surface horizontal alkalinity gradients, as well as on the removal of alkalinity from the ocean through CaCO3 burial. These changes result in an additional oceanic uptake of carbon when calcification depends on ΩCaCO3 (of up to 270 Pg C, compared to the case where calcification does not depend on acidification. In turn, this response causes a reduction of global surface air temperature of up to 0.4 °C in year 3500. Different versions of the model produced varying results, and narrowing this range of uncertainty will require better understanding of both temperature and acidification effects on pelagic calcifiers. Nevertheless, our results suggest that alkalinity observations can be used

  20. Inorganic bromine in the marine boundary layer: a critical review

    Directory of Open Access Journals (Sweden)

    R. Sander

    2003-01-01

    Full Text Available The cycling of inorganic bromine in the marine boundary layer (mbl has received increased attention in recent years. Bromide, a constituent of sea water, is injected into the atmosphere in association with sea-salt aerosol by breaking waves on the ocean surface. Measurements reveal that supermicrometer sea-salt aerosol is substantially depleted in bromine (often exceeding 50% relative to conservative tracers, whereas marine submicrometer aerosol is often enriched in bromine. Model calculations, laboratory studies, and field observations strongly suggest that the supermicrometer depletions reflect the chemical transformation of particulate bromide to reactive inorganic gases that influence the processing of ozone and other important constituents of marine air. Mechanisms for the submicrometer enrichments are not well understood. Currently available techniques cannot reliably quantify many Br containing compounds at ambient concentrations and, consequently, our understanding of inorganic Br cycling over the oceans and its global significance are uncertain. To provide a more coherent framework for future research, we have reviewed measurements in marine aerosol, the gas phase, and in rain. We also summarize sources and sinks, as well as model and laboratory studies of chemical transformations. The focus is on inorganic bromine over the open oceans outside the polar regions. The generation of sea-salt aerosol at the ocean surface is the major tropospheric source producing about 6.2 Tg/a of bromide. The transport of Br from continents (as mineral aerosol, and as products from biomass-burning and fossil-fuel combustion can be of local importance. Transport of degradation products of long-lived Br containing compounds from the stratosphere and other sources contribute lesser amounts. Available evidence suggests that, following aerosol acidification, sea-salt bromide reacts to form Br2 and BrCl that volatilize to the gas phase and photolyze in daylight

  1. Effects of ocean acidification on the shells of four Mediterranean gastropod species near a CO2 seep.

    Science.gov (United States)

    Duquette, Ashley; McClintock, James B; Amsler, Charles D; Pérez-Huerta, Alberto; Milazzo, Marco; Hall-Spencer, Jason M

    2017-11-30

    Marine CO 2 seeps allow the study of the long-term effects of elevated pCO 2 (ocean acidification) on marine invertebrate biomineralization. We investigated the effects of ocean acidification on shell composition and structure in four ecologically important species of Mediterranean gastropods (two limpets, a top-shell snail, and a whelk). Individuals were sampled from three sites near a volcanic CO 2 seep off Vulcano Island, Italy. The three sites represented ambient (8.15pH), moderate (8.03pH) and low (7.73pH) seawater mean pH. Shell mineralogy, microstructure, and mechanical strength were examined in all four species. We found that the calcite/aragonite ratio could vary and increased significantly with reduced pH in shells of one of the two limpet species. Moreover, each of the four gastropods displayed reductions in either inner shell toughness or elasticity at the Low pH site. These results suggest that near-future ocean acidification could alter shell biomineralization and structure in these common gastropods. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Response of Halimeda to ocean acidification: Field and laboratory evidence

    Science.gov (United States)

    Robbins, L.L.; Knorr, P.O.; Hallock, P.

    2009-01-01

    Rising atmospheric pCO2 levels are changing ocean chemistry more dramatically now than in the last 20 million years. In fact, pHvalues of the open ocean have decreased by 0.1 since the 1800s and are predicted to decrease 0.1-0.4 globally in the next 90 years. Ocean acidification will affect fundamental geochemical and biological processes including calcification and carbonate sediment production. The west Florida shelf is a natural laboratory to examine the effects of ocean acidification on aragonite production by calcareous green algae. Scanning electron microscopy (SEM) of crystal morphology of calcifying organisms reveals ultrastructural details of calcification that occurred at different saturation states. Comparison of archived and recent specimens of calcareous green alga Halimeda spp. from the west Florida shelf, demonstrates crystal changes in shape and abundance over a 40+ year time span. Halimeda crystal data from apical sections indicate that increases in crystal concentration and decreases in crystal width occurred over the last 40+ years. Laboratory experiments using living specimens of Halimeda grown in environments with known pH values were used to constrain historical observations. Percentages of organic and inorganic carbon per sample weight of pooled species did not significantly change. However, individual species showed decreased inorganic carbon and increased organic carbon in more recent samples, although the sample sizes were limited. These results indicate that the effect of increased pCO 2 and decreased pH on calcification is reflected in the crystal morphology of this organism. More data are needed to confirm the observed changes in mass of crystal and organic carbon. ?? Author(s) 2009.

  3. AMAP Assessment 2013: Arctic Ocean acidification

    Science.gov (United States)

    2013-01-01

    This assessment report presents the results of the 2013 AMAP Assessment of Arctic Ocean Acidification (AOA). This is the first such assessment dealing with AOA from an Arctic-wide perspective, and complements several assessments that AMAP has delivered over the past ten years concerning the effects of climate change on Arctic ecosystems and people. The Arctic Monitoring and Assessment Programme (AMAP) is a group working under the Arctic Council. The Arctic Council Ministers have requested AMAP to: - produce integrated assessment reports on the status and trends of the conditions of the Arctic ecosystems;

  4. Recovery from acidification in European surface waters

    Czech Academy of Sciences Publication Activity Database

    Evans, C. D.; Cullen, J. M.; Alewell, C.; Kopáček, Jiří; Marchetto, A.; Moldan, F.; Prechtel, A.; Rogora, M.; Veselý, J.; Wright, R.

    2001-01-01

    Roč. 5, č. 3 (2001), s. 283-297 ISSN 1027-5606 R&D Projects: GA ČR GA206/00/0063 Grant - others:CEC RECOVER(XE) 2010 EVK1-CT-1999-00018; GMER(DE) PT BEO 51-0339476; UKDETR(GB) EPG1/3/92; NNP(NO) SFT2000; CEC(XE) EMERGE EVK1-CT-1999-00032 Keywords : acidification * recovery * sulphate Subject RIV: DJ - Water Pollution ; Quality Impact factor: 1.127, year: 2001

  5. Climate change feedbacks on future oceanic acidification

    OpenAIRE

    McNeil, Ben I.; Matear, Richard J.

    2011-01-01

    Oceanic anthropogenic CO2 uptake will decrease both the pH and the aragonite saturation state (Ωarag) of seawater leading to an oceanic acidification. However, the factors controlling future changes in pH and Ωarag are independent and will respond differently to oceanic climate change feedbacks such as ocean warming, circulation and biological changes. We examine the sensitivity of these two CO2-related parameters to climate change feedbacks within a coupled atmosphere-ocean model. The ocean ...

  6. Over-calcified forms of the coccolithophore Emiliania huxleyi in high-CO2 waters are not preadapted to ocean acidification

    Science.gov (United States)

    von Dassow, Peter; Díaz-Rosas, Francisco; Mahdi Bendif, El; Gaitán-Espitia, Juan-Diego; Mella-Flores, Daniella; Rokitta, Sebastian; John, Uwe; Torres, Rodrigo

    2018-03-01

    Marine multicellular organisms inhabiting waters with natural high fluctuations in pH appear more tolerant to acidification than conspecifics occurring in nearby stable waters, suggesting that environments of fluctuating pH hold genetic reservoirs for adaptation of key groups to ocean acidification (OA). The abundant and cosmopolitan calcifying phytoplankton Emiliania huxleyi exhibits a range of morphotypes with varying degrees of coccolith mineralization. We show that E. huxleyi populations in the naturally acidified upwelling waters of the eastern South Pacific, where pH drops below 7.8 as is predicted for the global surface ocean by the year 2100, are dominated by exceptionally over-calcified morphotypes whose distal coccolith shield can be almost solid calcite. Shifts in morphotype composition of E. huxleyi populations correlate with changes in carbonate system parameters. We tested if these correlations indicate that the hyper-calcified morphotype is adapted to OA. In experimental exposures to present-day vs. future pCO2 (400 vs. 1200 µatm), the over-calcified morphotypes showed the same growth inhibition (-29.1±6.3 %) as moderately calcified morphotypes isolated from non-acidified water (-30.7±8.8 %). Under the high-CO2-low-pH condition, production rates of particulate organic carbon (POC) increased, while production rates of particulate inorganic carbon (PIC) were maintained or decreased slightly (but not significantly), leading to lowered PIC / POC ratios in all strains. There were no consistent correlations of response intensity with strain origin. The high-CO2-low-pH condition affected coccolith morphology equally or more strongly in over-calcified strains compared to moderately calcified strains. High-CO2-low-pH conditions appear not to directly select for exceptionally over-calcified morphotypes over other morphotypes, but perhaps indirectly by ecologically correlated factors. More generally, these results suggest that oceanic planktonic

  7. Investigating Undergraduate Science Students' Conceptions and Misconceptions of Ocean Acidification

    Science.gov (United States)

    Danielson, Kathryn I.; Tanner, Kimberly D.

    2015-01-01

    Scientific research exploring ocean acidification has grown significantly in past decades. However, little science education research has investigated the extent to which undergraduate science students understand this topic. Of all undergraduate students, one might predict science students to be best able to understand ocean acidification. What…

  8. Combined impact of ocean acidification and corrosive waters in a river-influenced coastal upwelling area off Central Chile

    Science.gov (United States)

    Vargas, C.; De La Hoz, M.; San Martin, V.; Contreras, P.; Navarro, J. M.; Lagos, N. A.; Lardies, M.; Manríquez, P. H.; Torres, R.

    2012-12-01

    Elevated CO2 in the atmosphere promotes a cascade of physical and chemical changes affecting all levels of biological organization, and the evidence from local to global scales has shown that such anthropogenic climate change has triggered significant responses in the Earth's biota. The increased concentration of CO2 is likely to cause a corresponding increase in ocean acidification (OA). In addition, economically valuable shellfish species predominantly inhabit coastal regions both in natural stocks and/or in managed stocks and farming areas. Many coastal ecosystems may experience seawater pCO2 levels significantly higher than expected from equilibrium with the atmosphere, which in this case are strongly linked to biological processes and/or the impact of two important processes; river plumes and coastal upwelling events, which indeed interplay in a very dynamic way on continental shelves, resulting in both source or sink of CO2 to the atmosphere. Coastal ecosystems receive persistent acid inputs as a result of freshwater discharges from river basins into the coastal domain. In this context, since shellfish resources and shellfish aquaculture activities predominantly occur in nearshore areas, it is expected that shellfish species inhabiting river-influenced benthic ecosystems will be exposed persistently to acidic conditions that are suboptimal for its development. In a wider ecological context, little is also known about the potential impacts of acid waters on the performance of larvae and juveniles of almost all the marine species inhabiting this benthic ecosystem in Eastern Southern Pacific Ocean. We present here the main results of a research study aimed to investigate the environmental conditions to which economically valuable calcifiers shellfish species are exposed in a river-influenced continental shelf off Central Chile. By using isotopic measurements in the dissolved inorganic carbon (DIC) pool (d13C-DIC) we showed the effect of the remineralization of

  9. Combined effects of sea water acidification and copper exposure on the symbiont-bearing foraminifer Amphistegina gibbosa

    Science.gov (United States)

    Marques, Joseane Aparecida; de Barros Marangoni, Laura Fernandes; Bianchini, Adalto

    2017-06-01

    Coral reefs are threatened by global and local stressors such as ocean acidification and trace metal contamination. Reliable early warning monitoring tools are needed to assess and monitor coral reef health. Symbiont-bearing foraminifers ( Amphistegina gibbosa) were kept under ambient conditions (no sea water acidification and no copper addition) or exposed to combinations of different levels of sea water pH (8.1, 7.8, 7.5 and 7.2) and environmentally relevant concentrations of dissolved copper (measured: 1.0, 1.6, 2.3 and 3.2 µg L-1) in a mesocosm system. After 10- and 25-d exposure, foraminifers were analyzed for holobiont Ca2+-ATPase activity, bleaching, growth and mortality. Enzyme activity was inhibited in foraminifers exposed to pH 7.2 and 3.2 µg L-1 Cu for 25 d. Bleaching frequency was also higher at pH 7.2 combined with copper addition. There was no significant effect of sea water acidification and copper addition on mortality. However, test size was smaller in foraminifers exposed to copper, with a positive interactive effect of sea water acidification. These findings can be explained by the higher availability of free copper ions at lower water pH. This condition would increase Cu competition with Ca2+ for the binding sites on the organism, thus inhibiting Ca2+-ATPase activity and affecting the organism's overall fitness. Findings reported here suggest that key processes in A. gibbosa, such as calcification and photosynthesis, are affected by the combined effect of global (sea water acidification) and local (copper contamination) stressors. Considering the experimental conditions employed (mesocosm system, possible ocean acidification scenarios, low copper concentrations, biomarkers of ecological relevance and chronic exposure), our findings support the use of foraminifera and biomarkers analyzed in the present study as reliable tools to detect and monitor the ecological impacts of multiple stressors in coral reef environments.

  10. Vulnerability and adaptation of US shellfisheries to ocean acidification

    Science.gov (United States)

    Ekstrom, Julia A.; Suatoni, Lisa; Cooley, Sarah R.; Pendleton, Linwood H.; Waldbusser, George G.; Cinner, Josh E.; Ritter, Jessica; Langdon, Chris; van Hooidonk, Ruben; Gledhill, Dwight; Wellman, Katharine; Beck, Michael W.; Brander, Luke M.; Rittschof, Dan; Doherty, Carolyn; Edwards, Peter E. T.; Portela, Rosimeiry

    2015-03-01

    Ocean acidification is a global, long-term problem whose ultimate solution requires carbon dioxide reduction at a scope and scale that will take decades to accomplish successfully. Until that is achieved, feasible and locally relevant adaptation and mitigation measures are needed. To help to prioritize societal responses to ocean acidification, we present a spatially explicit, multidisciplinary vulnerability analysis of coastal human communities in the United States. We focus our analysis on shelled mollusc harvests, which are likely to be harmed by ocean acidification. Our results highlight US regions most vulnerable to ocean acidification (and why), important knowledge and information gaps, and opportunities to adapt through local actions. The research illustrates the benefits of integrating natural and social sciences to identify actions and other opportunities while policy, stakeholders and scientists are still in relatively early stages of developing research plans and responses to ocean acidification.

  11. Environmental impacts of combining pig slurry acidification and separation under different regulatory regimes - a life cycle assessment

    DEFF Research Database (Denmark)

    ten Hoeve, Marieke; Gomez Muñoz, Beatriz; Jensen, Lars Stoumann

    2016-01-01

    Global livestock production is increasing rapidly, leading to larger amounts of manure and environmental impacts. Technologies that can be applied to treat manure in order to decrease certain environmental impacts include separation and acidification. In this study, a life cycle assessment was used...... on the environmental impacts of the technologies. The impact categories analysed were climate change, terrestrial, marine and freshwater eutrophication, fossil resource depletion and toxicity potential. In-house slurry acidification appeared to be the most beneficial scenario under both N and P regulations. Slurry...... separation led to a lower freshwater eutrophication potential than the other scenarios in which N regulations alone were in force, while these environmental benefits disappeared after implementation of stricter P regulations. With N regulations alone, there was a synergetic positive effect of combining in-house...

  12. Sea urchins in a high-CO2 world: the influence of acclimation on the immune response to ocean warming and acidification.

    Science.gov (United States)

    Brothers, C J; Harianto, J; McClintock, J B; Byrne, M

    2016-08-31

    Climate-induced ocean warming and acidification may render marine organisms more vulnerable to infectious diseases. We investigated the effects of warming and acidification on the immune response of the sea urchin Heliocidaris erythrogramma Sea urchins were gradually introduced to four combinations of temperature and pHNIST (17°C/pH 8.15, 17°C/pH 7.6, 23°C/pH 8.15 and 23°C/pH 7.6) and then held in temperature-pH treatments for 1, 15 or 30 days to determine if the immune response would adjust to stressors over time. Coelomocyte concentration and type, phagocytic capacity and bactericidal activity were measured on day 1, 15 and 30 with different sea urchins used each time. At each time point, the coelomic fluid of individuals exposed to increased temperature and acidification had the lowest coelomocyte concentrations, exhibited lower phagocytic capacities and was least effective at inhibiting bacterial growth of the pathogen Vibrio anguillarum Over time, increased temperature alleviated the negative effects of acidification on phagocytic activity. Our results demonstrate the importance of incorporating acclimation time to multiple stressors when assessing potential responses to future ocean conditions and indicate that the immune response of H. erythrogramma may be compromised under near-future ocean warming and acidification. © 2016 The Author(s).

  13. Is acidification still a major air pollution concern? The analysis from the French Agriculture and Fishing Department; Le probleme de l`acidification d`origine atmospherique est-il toujours d`actualite? l`analyse du Ministere de l`agriculture et de la peche

    Energy Technology Data Exchange (ETDEWEB)

    Landmann, G. [Ministere de l`Agriculture et de la Peche, 75 - Paris (France). Direction de l`espace rural et de la foret

    1997-12-31

    The acidification issues related to agriculture and their effects on ecosystems are analyzed: through ammonium emissions, agriculture is largely contributing to acidification and eutrophication of ecosystems; enhancements of cultivation and fertilization techniques have been achieved in order to decrease these emissions; natural soils and waters, and more especially forests, are still affected by acid and nitrogenous pollution, leading to modifications with soil degradation and eutrophication of forest soils and waters

  14. Climate change feedbacks on future oceanic acidification

    International Nuclear Information System (INIS)

    McNeil, Ben I.; Matear, Richard J.

    2007-01-01

    Oceanic anthropogenic CO 2 uptake will decrease both the pH and the aragonite saturation state (Oarag) of seawater leading to an oceanic acidification. However, the factors controlling future changes in pH and Oarag are independent and will respond differently to oceanic climate change feedbacks such as ocean warming, circulation and biological changes. We examine the sensitivity of these two CO 2 -related parameters to climate change feedbacks within a coupled atmosphere-ocean model. The ocean warming feedback was found to dominate the climate change responses in the surface ocean. Although surface pH is projected to decrease relatively uniformly by about 0.3 by the year 2100, we find pH to be insensitive to climate change feedbacks, whereas Oarag is buffered by ∼15%. Ocean carbonate chemistry creates a situation whereby the direct pH changes due to ocean warming are almost cancelled by the pH changes associated with dissolved inorganic carbon concentrations changes via a reduction in CO 2 solubility from ocean warming. We show that the small climate change feedback on future surface ocean pH is independent to the amount of ocean warming. Our analysis therefore implies that future projections of surface ocean acidification only need to consider future atmospheric CO 2 levels, not climate change induced modifications in the ocean

  15. Marine and terrestrial factors affecting Adélie penguin Pygoscelis adeliae chick growth and recruitment off the western Antarctic Peninsula

    Science.gov (United States)

    Chapman, Erik W.; Hofmann, Eileen E.; Patterson, Donna L.; Ribic, Christine A.; Fraser, William R.

    2011-01-01

    An individual-based bioenergetics model that simulates the growth of an Adélie penguin Pygoscelis adeliaechick from hatching to fledging was used to assess marine and terrestrial factors that affect chick growth and fledging mass off the western Antarctic Peninsula. Simulations considered the effects on Adélie penguin fledging mass of (1) modification of chick diet through the addition of Antarctic silverfish Pleuragramma antarcticum to an all-Antarctic krillEuphausia superba diet, (2) reduction of provisioning rate which may occur as a result of an environmental stress such as reduced prey availability, and (3) increased thermoregulatory costs due to wetting of chicks which may result from increased precipitation or snow-melt in colonies. Addition of 17% Antarctic silverfish of Age-Class 3 yr (AC3) to a penguin chick diet composed of Antarctic krill increased chick fledging mass by 5%. Environmental stress that results in >4% reduction in provisioning rate or wetting of just 10% of the chick’s surface area decreased fledging mass enough to reduce the chick’s probability of successful recruitment. The negative effects of reduced provisioning and wetting on chick growth can be compensated for by inclusion of Antarctic silverfish of AC3 and older in the chick diet. Results provide insight into climate-driven processes that influence chick growth and highlight a need for field research designed to investigate factors that determine the availability of AC3 and older Antarctic silverfish to foraging Adélie penguins and the influence of snowfall on chick wetting, thermoregulation and adult provisioning rate.

  16. Temperature is the evil twin: effects of increased temperature and ocean acidification on reproduction in a reef fish.

    Science.gov (United States)

    Miller, G M; Kroon, F J; Metcalfe, S; Mundayi, P L

    2015-04-01

    Reproduction in many organisms can be disrupted by changes to the physical environment, such as those predicted to occur during climate change. Marine organisms face the dual climate change threats of increasing temperature and ocean acidification, yet no studies have examined the potential interactive effects of these stressors on reproduction in marine fishes. We used a long-term experiment to test the interactive effects of increased temperature and CO2 on the reproductive performance of the anemonefish, Amphiprion melanopus. Adult breeding pairs were kept for 10 months at three temperatures (28.5°C [+0.0°C], 30.0°C [-1.5°C] and 31.5°C [+3.0°C]) cross-factored with three CO2 levels (a current-day control [417 µatm] and moderate [644 µatm] and high [1134 µatm]) treatments consistent with the range of CO2 projections for the year 2100. We recorded each egg clutch produced during the breeding season, the number of eggs laid per clutch, average egg size, fertilization success, survival to hatching, hatchling length, and yolk provisioning. Adult body condition, hepatosomatic index, gonadosomatic index, and plasma 17β-estradiol concentrations were measured at the end of the breeding season to determine the effect of prolonged exposure to increased temperature and elevated. CO2 on adults, and to examine potential physiological mechanisms for changes in reproduction. Temperature had by far the stronger influence on reproduction, with clear declines in reproduction occurring in the +1.5°C treatment and ceasing altogether in the +3.0°C treatment. In contrast, CO2 had a minimal effect on the majority of reproductive traits measured, but caused a decline in offspring quality in combination with elevated temperature. We detected no significant effect of temperature or Co2 on adult body condition or hepatosomatic index. Elevated temperature had a significant negative effect on plasma 17β-estradiol concentrations, suggesting that declines in reproduction with

  17. CoralWatch Data Analysis at Hoi Ha Wan Marine Park, Hong Kong

    Science.gov (United States)

    Lau, A.; Hodgson, P.

    2015-12-01

    CoralWatch is a conservation organization that is based at the University of Queensland in Australia. Their development of the "Coral Health Chart" standardized the colour of corals for the further investigation of coral health and bleaching. The location of this project is in the NE part of Hong Kong in New Territories. The location faces ShenZhen, a heavily industrialized city, which is known for its pollution of the Pearl River. This area is protected by the Hong Kong Government and the WWF since 1996.Human activities have caused large amounts of greenhouse gasses to be released into the atmosphere. Carbon dioxide has caused the global temperature to rise and made ocean waters more acidic due to ocean respiration. The ocean is a carbon sink for mankind and the effect of severe acidification is negatively affecting marine life. The increase of temperature diminishes the amount of diversity of marine life; the decr