WorldWideScience

Sample records for acidic organelles triggered

  1. Fluorogenic Substrates for Visualizing Acidic Organelle Enzyme Activities.

    Directory of Open Access Journals (Sweden)

    Fiona Karen Harlan

    Full Text Available Lysosomes are acidic cytoplasmic organelles that are present in all nucleated mammalian cells and are involved in a variety of cellular processes including repair of the plasma membrane, defense against pathogens, cholesterol homeostasis, bone remodeling, metabolism, apoptosis and cell signaling. Defects in lysosomal enzyme activity have been associated with a variety of neurological diseases including Parkinson's Disease, Lysosomal Storage Diseases, Alzheimer's disease and Huntington's disease. Fluorogenic lysosomal staining probes were synthesized for labeling lysosomes and other acidic organelles in a live-cell format and were shown to be capable of monitoring lysosomal metabolic activity. The new targeted substrates were prepared from fluorescent dyes having a low pKa value for optimum fluorescence at the lower physiological pH found in lysosomes. They were modified to contain targeting groups to direct their accumulation in lysosomes as well as enzyme-cleavable functions for monitoring specific enzyme activities using a live-cell staining format. Application to the staining of cells derived from blood and skin samples of patients with Metachromatic Leukodystrophy, Krabbe and Gaucher Diseases as well as healthy human fibroblast and leukocyte control cells exhibited localization to the lysosome when compared with known lysosomal stain LysoTracker® Red DND-99 as well as with anti-LAMP1 Antibody staining. When cell metabolism was inhibited with chloroquine, staining with an esterase substrate was reduced, demonstrating that the substrates can be used to measure cell metabolism. When applied to diseased cells, the intensity of staining was reflective of lysosomal enzyme levels found in diseased cells. Substrates specific to the enzyme deficiencies in Gaucher or Krabbe disease patient cell lines exhibited reduced staining compared to that in non-diseased cells. The new lysosome-targeted fluorogenic substrates should be useful for research

  2. Characteristics of weak base-induced vacuoles formed around individual acidic organelles.

    Science.gov (United States)

    Hiruma, Hiromi; Kawakami, Tadashi

    2011-01-01

    We have previously found that the weak base 4-aminopyridine induces Brownian motion of acidic organelles around which vacuoles are formed, causing organelle traffic disorder in neurons. Our present study investigated the characteristics of vacuoles induced by weak bases (NH(4)Cl, aminopyridines, and chloroquine) using mouse cells. Individual vacuoles included acidic organelles identified by fluorescent protein expression. Mitochondria and actin filaments were extruded outside the vacuoles, composing the vacuole rim. Staining with amine-reactive fluorescence showed no protein/amino acid content in vacuoles. Thus, serous vacuolar contents are probably partitioned by viscous cytosol, other organelles, and cytoskeletons, but not membrane. The weak base (chloroquine) was immunochemically detected in intravacuolar organelles, but not in vacuoles. Early vacuolization was reversible, but long-term vacuolization caused cell death. The vacuolization and cell death were blocked by the vacuolar H(+)-ATPase inhibitor and Cl--free medium. Staining with LysoTracker or LysoSensor indicated that intravacuolar organelles were strongly acidic and vacuoles were slightly acidic. This suggests that vacuolization is caused by accumulation of weak base and H(+) in acidic organelles, driven by vacuolar H(+)-ATPase associated with Cl(-) entering, and probably by subsequent extrusion of H(+) and water from organelles to the surrounding cytoplasm.

  3. Organelles involved in the intracellular transport of newly synthesized aminopeptidase N and their acidity

    DEFF Research Database (Denmark)

    Hansen, Gert Helge; Danielsen, E M; Sjöström, H;

    1989-01-01

    in the microvillar membrane, the Golgi complex, apical small smooth vesicles, and various acidic lysosomal/endosomal-like organelles. By culturing mucosal explants in the presence of either cycloheximide or (3-(2,4-dinitroanilino)-3-amino-N-methylpropylamine) (DAMP) it was demonstrated that the apical small smooth...

  4. Membraneless organelles can melt nucleic acid duplexes and act as biomolecular filters

    Science.gov (United States)

    Nott, Timothy J.; Craggs, Timothy D.; Baldwin, Andrew J.

    2016-06-01

    Membraneless organelles are cellular compartments made from drops of liquid protein inside a cell. These compartments assemble via the phase separation of disordered regions of proteins in response to changes in the cellular environment and the cell cycle. Here we demonstrate that the solvent environment within the interior of these cellular bodies behaves more like an organic solvent than like water. One of the most-stable biological structures known, the DNA double helix, can be melted once inside the liquid droplet, and simultaneously structures formed from regulatory single-stranded nucleic acids are stabilized. Moreover, proteins are shown to have a wide range of absorption or exclusion from these bodies, and can act as importers for otherwise-excluded nucleic acids, which suggests the existence of a protein-mediated trafficking system. A common strategy in organic chemistry is to utilize different solvents to influence the behaviour of molecules and reactions. These results reveal that cells have also evolved this capability by exploiting the interiors of membraneless organelles.

  5. Cell organelles from crassulacean acid metabolism (CAM) plants : II. Compartmentation of enzymes of the crassulacean acid metabolism.

    Science.gov (United States)

    Schnarrenberger, C; Groß, D; Burkhard, C; Herbert, M

    1980-02-01

    The intracellular distribution of enzymes involved in the Crassulacean acid metabolism (CAM) has been studied in Bryophyllum calycinum Salisb. and Crassula lycopodioides Lam. After separation of cell organelles by isopycnic centrifugation, enzymes of the Crassulacean acid metabolism were found in the following cell fractions: Phosphoenolpyruvate carboxylase in the chloroplasts; NAD-dependent malate dehydrogenase in the mitochondria and in the supernatant; NADP-dependent malate dehydrogenase and phosphoenolpyruvate carboxykinase in the chloroplasts; NADP-dependent malic enzyme in the supernatant and to a minor extent in the chloroplasts; NAD-dependent malic enzyme in the supernatant and to some degree in the mitochondria; and pyruvate; orthophosphate dikinase in the chloroplasts. The activity of the NAD-dependent malate dehydrogenase was due to three isoenzymes separated by (NH4)2SO4 gradient solubilization. These isoenzymes represented 17, 78, and 5% of the activity recovered, respectively, in the order of elution. The isoenzyme eluting first was associated with the mitochondria and the second isoenzyme was of cytosolic origin, while the intracellular location of the third isoenzyme was probably the peroxisome. Based on these findings, the metabolic path of Crassulacean acid metabolism within cells of CAM plants is discussed.

  6. Organelle transformation.

    Science.gov (United States)

    Bhattacharya, Anjanabha; Kumar, Anish; Desai, Nirali; Parikh, Seema

    2012-01-01

    The source of genetic information in a plant cell is contained in nucleus, plastids, and mitochondria. Organelle transformation is getting a lot of attention nowadays because of its superior performance over the conventional and most commonly used nuclear transformation for obtaining transgenic lines. Absence of gene silencing, strong predictable transgene expression, and its application in molecular pharming, both in pharmaceutical and nutraceuticals, are some of many advantages. Other important benefits of utilizing this technology include the absence of transgene flow, as organelles are maternally inherited. This may increase the acceptability of organelle transformation technology in the development of transgenic crops in a wider scale all over the globe. As the need for crop productivity and therapeutic compounds increases, organelle transformation may be able to bridge the gap, thereby having a definite promise for the future.

  7. Cell organelles from crassulacean-acid-metabolism (CAM) plants : I. Enzymes in isolated peroxisomes.

    Science.gov (United States)

    Herbert, M; Burkhard, C; Schnarrenberger, C

    1978-01-01

    Cell organelles were isolated from the CAM plants Crassula lycopodioides Lam., Bryophyllum calycinum Salisb. and Sedum rubrotinctum R.T. Clausen by isopycnic centrifugation in sucrose gradients. The inclusion of 2.5% Ficoll in the grinding medium proved to be essential for a satisfactory separation of cell organelles during the subsequent centrifugation. Peroxisomes, mitochondria, and whole and broken chloroplasts were at least partially resolved as judged by marker-enzyme-activity profiles. The isolated peroxisomes contained activities of glycollate oxidase, catalase, hydroxypyruvate reductase, glycine aminotransferase, serine-glyoxylate aminotransferase, and aspartate aminotransferase, comparable to activities found in spinach (Spinacia oleracea L.) leaf peroxisomes. In contrast to spinach, however, only little, if any, particulate malate dehydrogenase activity could be attributed to isolated peroxisomes of the three CAM plants.

  8. Droplet organelles?

    Science.gov (United States)

    Courchaine, Edward M; Lu, Alice; Neugebauer, Karla M

    2016-08-01

    Cells contain numerous, molecularly distinct cellular compartments that are not enclosed by lipid bilayers. These compartments are implicated in a wide range of cellular activities, and they have been variously described as bodies, granules, or organelles. Recent evidence suggests that a liquid-liquid phase separation (LLPS) process may drive their formation, possibly justifying the unifying term "droplet organelle". A veritable deluge of recent publications points to the importance of low-complexity proteins and RNA in determining the physical properties of phase-separated structures. Many of the proteins linked to such structures are implicated in human diseases, such as amyotrophic lateral sclerosis (ALS). We provide an overview of the organizational principles that characterize putative "droplet organelles" in healthy and diseased cells, connecting protein biochemistry with cell physiology.

  9. Neuronal transport of acid hydrolases and peroxidase within the lysosomal system or organelles: involvement of agranular reticulum-like cisterns.

    Science.gov (United States)

    Broadwell, R D; Oliver, C; Brightman, M W

    1980-04-01

    Neurosecretory neurons of the hyperosmotically stressed hypothalamo-neurohypophysial system have been a useful model with which to demonstrate interrelationships among perikaryal lysosomes, agranular reticulum-like cisterns, endocytotic vacuoles, and the axoplasmic transport of acid hydrolases and horseradish peroxidase. Supraoptic neurons from normal mice and mice given 2% salt water to drink for 5--8 days have been studied using enzyme cytochemical techniques for peroxidase and lysosomal acid hydrolases. Peroxidase-labeling of these neurons was accomplished by intravenous injection or cerebral ventriculocisternal perfusion of the protein as previously reported (Broadwell and Brightman, '79). Compared to normal controls, supraoptic cell bodies from hyperosmotically stimulated mice contained elevated concentrations of peroxidase-labeled dense bodies demonstrated to be secondary lysosomes and acid hydrolase-positive and peroxidase-positive cisterns either attached or unattached to secondary lysosomes. These cisterns were smooth-surfaced and 400--1,000 A wide. Their morphology was similar to that of the agranular reticulum. Some of the cisterns contained both peroxidase and acid hydrolase activities. The cisterns probably represent an elongated form of lysosome and, therefore, are not elements of the agranular reticulum per se. By virtue of their direct connections with perikaryal secondary lysosomes, these cisterns may provide the route by which acid hydrolases and exogenous macromolecules can leave perikaryal secondary lysosomes for anterograde flow down the axon. Very few smooth-surfaced cisterns were involved in the retrograde transport of peroxidase within pituitary stalk axons from normal and salt-treated mice injected intravenously with peroxidase. Peroxidase undergoing retrograde transport was predominantly in endocytotic structures such as vacuoles and cup-shaped organelles, which deliver this exogenous macromolecule directly to secondary lysosomes for

  10. The endoplasmic reticulum is a target organelle for trivalent dimethylarsinic acid (DMA{sup III})-induced cytotoxicity

    Energy Technology Data Exchange (ETDEWEB)

    Naranmandura, Hua, E-mail: narenman@zju.edu.cn [Department of Pharmacology, Toxicology, and Biochemical Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058 (China); Xu, Shi [Department of Pharmacology, Toxicology, and Biochemical Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058 (China); Koike, Shota [Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675 (Japan); Pan, Li Qiang [Department of Pharmacology, Toxicology, and Biochemical Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058 (China); Chen, Bin [Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030 (China); Wang, Yan Wei; Rehman, Kanwal; Wu, Bin [Department of Pharmacology, Toxicology, and Biochemical Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058 (China); Chen, Zhe [Zhejiang Hospital of Traditional Chinese Medicine, Zhejiang Chinese Medical University, Hangzhou (China); Suzuki, Noriyuki, E-mail: n-suzuki@p.chiba-u.ac.jp [Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675 (Japan)

    2012-05-01

    The purpose of present study was to characterize the endoplasmic reticulum stress and generation of ROS in rat liver RLC-16 cells by exposing to trivalent dimethylarsinous acid (DMA{sup III}) and compared with that of trivalent arsenite (iAs{sup III}) and monomethylarsonous acid (MMA{sup III}). Protein kinase-like endoplasmic reticulum kinase (PERK) phosphorylation was significantly induced in cells exposed to DMA{sup III}, while there was no change in phosphorylated PERK (P-PERK) detected in cells after exposure to iAs{sup III} or MMA{sup III}. The generation of reactive oxygen species (ROS) after DMA{sup III} exposure was found to take place specifically in the endoplasmic reticulum (ER), while previous reports showed that ROS was generated in mitochondria following exposure to MMA{sup III}. Meanwhile, cycloheximide (CHX) which is an inhibitor of protein biosynthesis strongly inhibited the DMA{sup III}-induced intracellular ROS generation in the ER and the phosphorylation of PERK, suggesting the induction of ER stress probably occurs through the inhibition of the protein folding process. Activating transcription factor 4 (ATF4) and C/EBP homologous protein (CHOP) mRNA were induced by all three arsenic species, however, evidence suggested that they might be induced by different pathways in the case of iAs{sup III} and MMA{sup III}. In addition, ER resident molecular chaperone glucose-regulated protein78 (GRP78) was not affected by trivalent arsenicals, while it was induced in positive control only at high concentration (Thapsigargin;Tg), suggesting the GRP78 is less sensitive to low levels of ER stress. In summary, our findings demonstrate that the endoplasmic reticulum is a target organelle for DMA{sup III}-induced cytotoxicity. Highlights: ►ER is a target organelle for trivalent DMA{sup III}-induced cytotoxicity. ►Generation of ROS in ER can be induced specially by trivalent DMA{sup III}. ►ER-stress and generation of ROS are caused by the increase in

  11. TRIGGER

    CERN Multimedia

    Wesley Smith

    Level-1 Trigger Hardware and Software The hardware of the trigger components has been mostly finished. The ECAL Endcap Trigger Concentrator Cards (TCC) are in production while Barrel TCC firmware has been upgraded, and the Trigger Primitives can now be stored by the Data Concentrator Card for readout by the DAQ. The Regional Calorimeter Trigger (RCT) system is complete, and the timing is being finalized. All 502 HCAL trigger links to RCT run without error. The HCAL muon trigger timing has been equalized with DT, RPC, CSC and ECAL. The hardware and firmware for the Global Calorimeter Trigger (GCT) jet triggers are being commissioned and data from these triggers is available for readout. The GCT energy sums from rings of trigger towers around the beam pipe beam have been changed to include two rings from both sides. The firmware for Drift Tube Track Finder, Barrel Sorter and Wedge Sorter has been upgraded, and the synchronization of the DT trigger is satisfactory. The CSC local trigger has operated flawlessly u...

  12. TRIGGER

    CERN Multimedia

    Roberta Arcidiacono

    2013-01-01

    Trigger Studies Group (TSG) The Trigger Studies Group has just concluded its third 2013 workshop, where all POGs presented the improvements to the physics object reconstruction, and all PAGs have shown their plans for Trigger development aimed at the 2015 High Level Trigger (HLT) menu. The Strategy for Trigger Evolution And Monitoring (STEAM) group is responsible for Trigger menu development, path timing, Trigger performance studies coordination, HLT offline DQM as well as HLT release, menu and conditions validation – this last task in collaboration with PdmV (Physics Data and Monte Carlo Validation group). In the last months the group has delivered several HLT rate estimates and comparisons, using the available data and Monte Carlo samples. The studies were presented at the Trigger workshops in September and December, and STEAM has contacted POGs and PAGs to understand the origin of the discrepancies observed between 8 TeV data and Monte Carlo simulations. The most recent results show what the...

  13. TRIGGER

    CERN Multimedia

    Wesley Smith

    Level-1 Trigger Hardware and Software The trigger synchronization procedures for running with cosmic muons and operating with the LHC were reviewed during the May electronics week. Firmware maintenance issues were also reviewed. Link tests between the new ECAL endcap trigger concentrator cards (TCC48) and the Regional Calorimeter Trigger have been performed. Firmware for the energy sum triggers and an upgraded tau trigger of the Global Calorimeter Triggers has been developed and is under test. The optical fiber receiver boards for the Track-Finder trigger theta links of the DT chambers are now all installed. The RPC trigger is being made more robust by additional chamber and cable shielding and also by firmware upgrades. For the CSC’s the front-end and trigger motherboard firmware have been updated. New RPC patterns and DT/CSC lookup tables taking into account phi asymmetries in the magnetic field configuration are under study. The motherboard for the new pipeline synchronizer of the Global Trigg...

  14. TRIGGER

    CERN Multimedia

    W. Smith

    2012-01-01

      Level-1 Trigger The Level-1 Trigger group is ready to deploy improvements to the L1 Trigger algorithms for 2012. These include new high-PT patterns for the RPC endcap, an improved CSC PT assignment, a new PT-matching algorithm for the Global Muon Trigger, and new calibrations for ECAL, HCAL, and the Regional Calorimeter Trigger. These should improve the efficiency, rate, and stability of the L1 Trigger. The L1 Trigger group also is migrating the online systems to SLC5. To make the data transfer from the Global Calorimeter Trigger to the Global Trigger more reliable and also to allow checking the data integrity online, a new optical link system has been developed by the GCT and GT groups and successfully tested at the CMS electronics integration facility in building 904. This new system is now undergoing further tests at Point 5 before being deployed for data-taking this year. New L1 trigger menus have recently been studied and proposed by Emmanuelle Perez and the L1 Detector Performance Group...

  15. TRIGGER

    CERN Multimedia

    W. Smith

    At the March meeting, the CMS trigger group reported on progress in production, tests in the Electronics Integration Center (EIC) in Prevessin 904, progress on trigger installation in the underground counting room at point 5, USC55, the program of trigger pattern tests and vertical slice tests and planning for the Global Runs starting this summer. The trigger group is engaged in the final stages of production testing, systems integration, and software and firmware development. Most systems are delivering final tested electronics to CERN. The installation in USC55 is underway and integration testing is in full swing. A program of orderly connection and checkout with subsystems and central systems has been developed. This program includes a series of vertical subsystem slice tests providing validation of a portion of each subsystem from front-end electronics through the trigger and DAQ to data captured and stored. After full checkout, trigger subsystems will be then operated in the CMS Global Runs. Continuous...

  16. TRIGGER

    CERN Multimedia

    Wesley Smith

    Level-1 Trigger Hardware and Software The production of the trigger hardware is now basically finished, and in time for the turn-on of the LHC. The last boards produced are the Trigger Concentrator Cards for the ECAL Endcaps (TCC-EE). After the recent installation of the four EE Dees, the TCC-EE prototypes were used for their commissioning. Production boards are arriving and are being tested continuously, with the last ones expected in November. The Regional Calorimeter Trigger hardware is fully integrated after installation of the last EE cables. Pattern tests from the HCAL up to the GCT have been performed successfully. The HCAL triggers are fully operational, including the connection of the HCAL-outer and forward-HCAL (HO/HF) technical triggers to the Global Trigger. The HCAL Trigger and Readout (HTR) board firmware has been updated to permit recording of the tower “feature bit” in the data. The Global Calorimeter Trigger hardware is installed, but some firmware developments are still n...

  17. TRIGGER

    CERN Multimedia

    by Wesley Smith

    2010-01-01

    Level-1 Trigger Hardware and Software The overall status of the L1 trigger has been excellent and the running efficiency has been high during physics fills. The timing is good to about 1%. The fine-tuning of the time synchronization of muon triggers is ongoing and will be completed after more than 10 nb-1 of data have been recorded. The CSC trigger primitive and RPC trigger timing have been refined. A new configuration for the CSC Track Finder featured modified beam halo cuts and improved ghost cancellation logic. More direct control was provided for the DT opto-receivers. New RPC Cosmic Trigger (RBC/TTU) trigger algorithms were enabled for collision runs. There is further work planned during the next technical stop to investigate a few of the links from the ECAL to the Regional Calorimeter Trigger (RCT). New firmware and a new configuration to handle trigger rate spikes in the ECAL barrel are also being tested. A board newly developed by the tracker group (ReTRI) has been installed and activated to block re...

  18. TRIGGER

    CERN Multimedia

    W. Smith

    2010-01-01

    Level-1 Trigger Hardware and Software The Level-1 Trigger hardware has performed well during both the recent proton-proton and heavy ion running. Efforts were made to improve the visibility and handling of alarms and warnings. The tracker ReTRI boards that prevent fixed frequencies of Level-1 Triggers are now configured through the Trigger Supervisor. The Global Calorimeter Trigger (GCT) team has introduced a buffer cleanup procedure at stops and a reset of the QPLL during configuring to ensure recalibration in case of a switch from the LHC clock to the local clock. A device to test the cables between the Regional Calorimeter Trigger and the GCT has been manufactured. A wrong charge bit was fixed in the CSC Trigger. The ECAL group is improving crystal masking and spike suppression in the trigger primitives. New firmware for the Drift Tube Track Finder (DTTF) sorters was developed to improve fake track tagging and sorting. Zero suppression was implemented in the DT Sector Collector readout. The track finder b...

  19. TRIGGER

    CERN Multimedia

    Wesley Smith

    Trigger Hardware The status of the trigger components was presented during the September CMS Week and Annual Review and at the monthly trigger meetings in October and November. Procedures for cold and warm starts (e.g. refreshing of trigger parameters stored in registers) of the trigger subsystems have been studied. Reviews of parts of the Global Calorimeter Trigger (GCT) and the Global Trigger (GT) have taken place in October and November. The CERN group summarized the status of the Trigger Timing and Control (TTC) system. All TTC crates and boards are installed in the underground counting room, USC55. The central clock system will be upgraded in December (after the Global Run at the end of November GREN) to the new RF2TTC LHC machine interface timing module. Migration of subsystem's TTC PCs to SLC4/ XDAQ 3.12 is being prepared. Work is on going to unify the access to Local Timing Control (LTC) and TTC CMS interface module (TTCci) via SOAP (Simple Object Access Protocol, a lightweight XML-based messaging ...

  20. TRIGGER

    CERN Multimedia

    W. Smith from contributions of C. Leonidopoulos

    2010-01-01

    Level-1 Trigger Hardware and Software Since nearly all of the Level-1 (L1) Trigger hardware at Point 5 has been commissioned, activities during the past months focused on the fine-tuning of synchronization, particularly for the ECAL and the CSC systems, on firmware upgrades and on improving trigger operation and monitoring. Periodic resynchronizations or hard resets and a shortened luminosity section interval of 23 seconds were implemented. For the DT sector collectors, an automatic power-off was installed in case of high temperatures, and the monitoring capabilities of the opto-receivers and the mini-crates were enhanced. The DTTF and the CSCTF now have improved memory lookup tables. The HCAL trigger primitive logic implemented a new algorithm providing better stability of the energy measurement in the presence of any phase misalignment. For the Global Calorimeter Trigger, additional Source Cards have been manufactured and tested. Testing of the new tau, missing ET and missing HT algorithms is underw...

  1. TRIGGER

    CERN Multimedia

    R. Carlin with contributions from D. Acosta

    2012-01-01

    Level-1 Trigger Data-taking continues at cruising speed, with high availability of all components of the Level-1 trigger. We have operated the trigger up to a luminosity of 7.6E33, where we approached 100 kHz using the 7E33 prescale column.  Recently, the pause without triggers in case of an automatic "RESYNC" signal (the "settle" and "recover" time) was reduced in order to minimise the overall dead-time. This may become very important when the LHC comes back with higher energy and luminosity after LS1. We are also preparing for data-taking in the proton-lead run in early 2013. The CASTOR detector will make its comeback into CMS and triggering capabilities are being prepared for this. Steps to be taken include improved cooperation with the TOTEM trigger system and using the LHC clock during the injection and ramp phases of LHC. Studies are being finalised that will have a bearing on the Trigger Technical Design Report (TDR), which is to be rea...

  2. TRIGGER

    CERN Multimedia

    Wesley Smith

    Level-1 Trigger Hardware and Software The final parts of the Level-1 trigger hardware are now being put in place. For the ECAL endcaps, more than half of the Trigger Concentrator Cards for the ECAL Endcap (TCC-EE) are now available at CERN, such that one complete endcap can be covered. The Global Trigger now correctly handles ECAL calibration sequences, without being influenced by backpressure. The Regional Calorimeter Trigger (RCT) hardware is complete and working in USC55. Intra-crate tests of all 18 RCT crates and the Global Calorimeter Trigger (GCT) are regularly taking place. Pattern tests have successfully captured data from HCAL through RCT to the GCT Source Cards. HB/HE trigger data are being compared with emulator results to track down the very few remaining hardware problems. The treatment of hot and dead cells, including their recording in the database, has been defined. For the GCT, excellent agreement between the emulator and data has been achieved for jets and HF ET sums. There is still som...

  3. TRIGGER

    CERN Multimedia

    W. Smith

    Level-1 Trigger Hardware and Software The trigger system has been constantly in use in cosmic and commissioning data taking periods. During CRAFT running it delivered 300 million muon and calorimeter triggers to CMS. It has performed stably and reliably. During the abort gaps it has also provided laser and other calibration triggers. Timing issues, namely synchronization and latency issues, have been solved. About half of the Trigger Concentrator Cards for the ECAL Endcap (TCC-EE) are installed, and the firmware is being worked on. The production of the other half has started. The HCAL Trigger and Readout (HTR) card firmware has been updated, and new features such as fast parallel zero-suppression have been included. Repairs of drift tube (DT) trigger mini-crates, optical links and receivers of sector collectors are under way and have been completed on YB0. New firmware for the optical receivers of the theta links to the drift tube track finder is being installed. In parallel, tests with new eta track finde...

  4. TRIGGER

    CERN Multimedia

    W. Smith

    At the December meeting, the CMS trigger group reported on progress in production, tests in the Electronics Integration Center (EIC) in Prevessin 904, progress on trigger installation in the underground counting room at point 5, USC55, and results from the Magnet Test and Cosmic Challenge (MTCC) phase II. The trigger group is engaged in the final stages of production testing, systems integration, and software and firmware development. Most systems are delivering final tested electronics to CERN. The installation in USC55 is underway and moving towards integration testing. A program of orderly connection and checkout with subsystems and central systems has been developed. This program includes a series of vertical subsystem slice tests providing validation of a portion of each subsystem from front-end electronics through the trigger and DAQ to data captured and stored. This is combined with operations and testing without beam that will continue until startup. The plans for start-up, pilot and early running tri...

  5. TRIGGER

    CERN Multimedia

    W. Smith from contributions of C. Leonidopoulos, I. Mikulec, J. Varela and C. Wulz.

    Level-1 Trigger Hardware and Software Over the past few months, the Level-1 trigger has successfully recorded data with cosmic rays over long continuous stretches as well as LHC splash events, beam halo, and collision events. The L1 trigger hardware, firmware, synchronization, performance and readiness for beam operation were reviewed in October. All L1 trigger hardware is now installed at Point 5, and most of it is completely commissioned. While the barrel ECAL Trigger Concentrator Cards are fully operational, the recently delivered endcap ECAL TCC system is still being commissioned. For most systems there is a sufficient number of spares available, but for a few systems additional reserve modules are needed. It was decided to increase the overall L1 latency by three bunch crossings to increase the safety margin for trigger timing adjustments. In order for CMS to continue data taking during LHC frequency ramps, the clock distribution tree needs to be reset. The procedures for this have been tested. A repl...

  6. TRIGGER

    CERN Multimedia

    R. Arcidiacono

    2013-01-01

      In 2013 the Trigger Studies Group (TSG) has been restructured in three sub-groups: STEAM, for the development of new HLT menus and monitoring their performance; STORM, for the development of HLT tools, code and actual configurations; and FOG, responsible for the online operations of the High Level Trigger. The Strategy for Trigger Evolution And Monitoring (STEAM) group is responsible for Trigger Menu development, path timing, trigger performance studies coordination, HLT offline DQM as well as HLT release, menu and conditions validation – in collaboration and with the technical support of the PdmV group. Since the end of proton-proton data taking, the group has started preparing for 2015 data taking, with collisions at 13 TeV and 25 ns bunch spacing. The reliability of the extrapolation to higher energy is being evaluated comparing the trigger rates on 7 and 8 TeV Monte Carlo samples with the data taken in the past two years. The effect of 25 ns bunch spacing is being studied on the d...

  7. TRIGGER

    CERN Multimedia

    W. Smith, from contributions of D. Acosta

    2012-01-01

      The L1 Trigger group deployed several major improvements this year. Compared to 2011, the single-muon trigger rate has been reduced by a factor of 2 and the η coverage has been restored to 2.4, with high efficiency. During the current technical stop, a higher jet seed threshold will be applied in the Global Calorimeter Trigger in order to significantly reduce the strong pile-up dependence of the HT and multi-jet triggers. The currently deployed L1 menu, with the “6E33” prescales, has a total rate of less than 100 kHz and operates with detector readout dead time of less than 3% for luminosities up to 6.5 × 1033 cm–2s–1. Further prescale sets have been created for 7 and 8 × 1033 cm–2s–1 luminosities. The L1 DPG is evaluating the performance of the Trigger for upcoming conferences and publication. Progress on the Trigger upgrade was reviewed during the May Upgrade Week. We are investigating scenarios for stagin...

  8. TRIGGER

    CERN Multimedia

    Wesley Smith

    2011-01-01

    Level-1 Trigger Hardware and Software New Forward Scintillating Counters (FSC) for rapidity gap measurements have been installed and integrated into the Trigger recently. For the Global Muon Trigger, tuning of quality criteria has led to improvements in muon trigger efficiencies. Several subsystems have started campaigns to increase spares by recovering boards or producing new ones. The barrel muon sector collector test system has been reactivated, new η track finder boards are in production, and φ track finder boards are under revision. In the CSC track finder, an η asymmetry problem has been corrected. New pT look-up tables have also improved efficiency. RPC patterns were changed from four out of six coincident layers to three out of six in the barrel, which led to a significant increase in efficiency. A new PAC firmware to trigger on heavy stable charged particles allows looking for chamber hit coincidences in two consecutive bunch-crossings. The redesign of the L1 Trigger Emulator...

  9. TRIGGER

    CERN Multimedia

    W. Smith

    Level-1 Trigger Hardware and Software The road map for the final commissioning of the level-1 trigger system has been set. The software for the trigger subsystems is being upgraded to run under CERN Scientific Linux 4 (SLC4). There is also a new release for the Trigger Supervisor (TS 1.4), which implies upgrade work by the subsystems. As reported by the CERN group, a campaign to tidy the Trigger Timing and Control (TTC) racks has begun. The machine interface was upgraded by installing the new RF2TTC module, which receives RF signals from LHC Point 4. Two Beam Synchronous Timing (BST) signals, one for each beam, can now be received in CMS. The machine group will define the exact format of the information content shortly. The margin on the locking range of the CMS QPLL is planned for study for different subsystems in the next Global Runs, using a function generator. The TTC software has been successfully tested on SLC4. Some TTC subsystems have already been upgraded to SLC4. The TTCci Trigger Supervisor ...

  10. Formic acid triggers the "Acid Crash" of acetone-butanol-ethanol fermentation by Clostridium acetobutylicum.

    Science.gov (United States)

    Wang, Shaohua; Zhang, Yanping; Dong, Hongjun; Mao, Shaoming; Zhu, Yan; Wang, Runjiang; Luan, Guodong; Li, Yin

    2011-03-01

    Solvent production by Clostridium acetobutylicum collapses when cells are grown in pH-uncontrolled glucose medium, the so-called "acid crash" phenomenon. It is generally accepted that the fast accumulation of acetic acid and butyric acid triggers the acid crash. We found that addition of 1 mM formic acid into corn mash medium could trigger acid crash, suggesting that formic acid might be related to acid crash. When it was grown in pH-uncontrolled glucose medium or glucose-rich medium, C. acetobutylicum DSM 1731 containing the empty plasmid pIMP1 failed to produce solvents and was found to accumulate 0.5 to 1.24 mM formic acid intracellularly. In contrast, recombinant strain DSM 1731 with formate dehydrogenase activity did not accumulate formic acid intracellularly and could produce solvent as usual. We therefore conclude that the accumulation of formic acid, rather than acetic acid and butyric acid, is responsible for the acid crash of acetone-butanol-ethanol fermentation.

  11. TRIGGER

    CERN Multimedia

    W. Smith

    2011-01-01

    Level-1 Trigger Hardware and Software Overall the L1 trigger hardware has been running very smoothly during the last months of proton running. Modifications for the heavy-ion run have been made where necessary. The maximal design rate of 100 kHz can be sustained without problems. All L1 latencies have been rechecked. The recently installed Forward Scintillating Counters (FSC) are being used in the heavy ion run. The ZDC scintillators have been dismantled, but the calorimeter itself remains. We now send the L1 accept signal and other control signals to TOTEM. Trigger cables from TOTEM to CMS will be installed during the Christmas shutdown, so that the TOTEM data can be fully integrated within the CMS readout. New beam gas triggers have been developed, since the BSC-based trigger is no longer usable at high luminosities. In particular, a special BPTX signal is used after a quiet period with no collisions. There is an ongoing campaign to provide enough spare modules for the different subsystems. For example...

  12. TRIGGER

    CERN Multimedia

    J. Alimena

    2013-01-01

    Trigger Strategy Group The Strategy for Trigger Evolution And Monitoring (STEAM) group is responsible for the development of future High-Level Trigger menus, as well as of its DQM and validation, in collaboration and with the technical support of the PdmV group. Taking into account the beam energy and luminosity expected in 2015, a rough estimate of the trigger rates indicates a factor four increase with respect to 2012 conditions. Assuming that a factor two can be tolerated thanks to the increase in offline storage and processing capabilities, a toy menu has been developed using the new OpenHLT workflow to estimate the transverse energy/momentum thresholds that would halve the current trigger rates. The CPU time needed to run the HLT has been compared between data taken with 25 ns and 50 ns bunch spacing, for equivalent pile-up: no significant difference was observed on the global time per event distribution at the only available data point, corresponding to a pile-up of about 10 interactions. Using th...

  13. TRIGGER

    CERN Multimedia

    by Wesley Smith

    2011-01-01

    Level-1 Trigger Hardware and Software After the winter shutdown minor hardware problems in several subsystems appeared and were corrected. A reassessment of the overall latency has been made. In the TTC system shorter cables between TTCci and TTCex have been installed, which saved one bunch crossing, but which may have required an adjustment of the RPC timing. In order to tackle Pixel out-of-syncs without influencing other subsystems, a special hardware/firmware re-sync protocol has been introduced in the Global Trigger. The link between the Global Calorimeter Trigger and the Global Trigger with the new optical Global Trigger Interface and optical receiver daughterboards has been successfully tested in the Electronics Integration Centre in building 904. New firmware in the GCT now allows a setting to remove the HF towers from energy sums. The HF sleeves have been replaced, which should lead to reduced rates of anomalous signals, which may allow their inclusion after this is validated. For ECAL, improvements i...

  14. Saturated fatty acids trigger TLR4-mediated inflammatory response.

    Science.gov (United States)

    Rocha, D M; Caldas, A P; Oliveira, L L; Bressan, J; Hermsdorff, H H

    2016-01-01

    Toll-like receptors (TLR) mediate infection-induced inflammation and sterile inflammation by endogenous molecules. Among the TLR family, TLR4 is the best understood. However, while its downstream signaling pathways have been well defined, not all ligands of TLR4 are currently known. Current evidence suggests that saturated fatty acids (SFA) act as non-microbial TLR4 agonists, and trigger its inflammatory response. Thus, our present review provides a new perspective on the potential mechanism by which SFAs could modulate TLR4-induced inflammatory responses: (1) SFAs can be recognized by CD14-TLR4-MD2 complex and trigger inflammatory pathways, similar to lipopolysaccharide (LPS). (2) SFAs lead to modification of gut microbiota with an overproduction of LPS after a high-fat intake, enhancing this natural TLR4 ligand. (3) In addition, this metabolic endotoxemia leads to an oxidative stress thereby producing atherogenic lipids - oxLDL and oxidized phospholipids - which trigger CD36-TLR4-TLR6 inflammatory response. (4) Also, the high SFA consumption increases the lipemia and the mmLDL and oxLDL formation through oxidative modifications of LDL. The mmLDL, unlike oxLDL, is involved in activation of the CD14-TLR4-MD2 inflammatory pathway. Those molecules can induce TLR4 inflammatory response by MyD88-dependent and/or MyD88-independent pathways that, in turn, promotes the expression of proinflammatory transcript factors such as factor nuclear kappa B (NF-κB), which plays a crucial role in the induction of inflammatory mediators (cytokines, chemokines, or costimulatory molecules) implicated in the development and progression of many chronic diseases.

  15. TRIGGER

    CERN Multimedia

    W. Smith

    Level-1 Trigger Hardware The CERN group is working on the TTC system. Seven out of nine sub-detector TTC VME crates with all fibers cabled are installed in USC55. 17 Local Trigger Controller (LTC) boards have been received from production and are in the process of being tested. The RF2TTC module replacing the TTCmi machine interface has been delivered and will replace the TTCci module used to mimic the LHC clock. 11 out of 12 crates housing the barrel ECAL off-detector electronics have been installed in USC55 after commissioning at the Electronics Integration Centre in building 904. The cabling to the Regional Calorimeter Trigger (RCT) is terminated. The Lisbon group has completed the Synchronization and Link mezzanine board (SLB) production. The Palaiseau group has fully tested and installed 33 out of 40 Trigger Concentrator Cards (TCC). The seven remaining boards are being remade. The barrel TCC boards have been tested at the H4 test beam, and good agreement with emulator predictions were found. The cons...

  16. Integration of Metabolomics and Subcellular Organelle Expression Microarray to Increase Understanding the Organic Acid Changes in Post-harvest Citrus Fruit

    Institute of Scientific and Technical Information of China (English)

    Xiaohua Sun; Zhaocheng Ma; Yunjiang Cheng; Xiuxin Deng; Andan Zhu; Shuzhen Liu; Ling Sheng; Qiaoli Ma; Li Zhang; Elsayed Mohamed Elsayed Nishawy; Yunliu Zeng; Juan Xu

    2013-01-01

    Citric acid plays an important role in fresh fruit flavor and its adaptability to post-harvest storage conditions. In order to explore organic acid regulatory mechanisms in post-harvest citrus fruit, systematic biological analyses were conducted on stored Hirado Buntan Pummelo (HBP; Citrus grandis) fruits. High-performance capillary electrophoresis, subcellular organelle expression microarray, real-time quantitative reverse transcription polymerase chain reaction, gas chromatography mass spectrometry (GC-MS), and conventional physiological and biochemical analyses were undertaken. The results showed that the concentration of organic acids in HBP underwent a regular fluctuation. GC-MS-based metabolic profiling indicated that succinic acid, g-aminobutyric acid (GABA), and glutamine contents increased, but 2-oxoglutaric acid content declined, which further confirmed that the GABA shunt may have some regulatory roles in organic acid catabolism processes. In addition, the concentration of organic acids was significantly correlated with senescence-related physiological processes, such as hydrogen peroxide content as well as superoxide dismutase and peroxidase activities, which showed that organic acids could be regarded as important parameters for measuring citrus fruit post-harvest senescence processes.

  17. New application of a subcellular fractionation method to kidney and testis for the determination of conjugated linoleic acid in selected cell organelles of healthy and cancerous human tissues.

    Science.gov (United States)

    Hoffmann, Kristina; Blaudszun, Jörg; Brunken, Claus; Höpker, Wilhelm-Wolfgang; Tauber, Roland; Steinhart, Hans

    2005-03-01

    To clarify the mechanism of the anticarcinogenic effect of conjugated linoleic acid (CLA), its intracellular distribution needs to be determined. Subcellular fractionation using centrifugation techniques is a method that is frequently used for isolation of cell organelles from different tissues. But as the size and density of the organelles differ, the method needs to be optimised for every type of tissue. The novelty of this study is the application of a subcellular fractionation method to human healthy and cancerous renal and testicular tissue. Separation of total tissue homogenate into nuclei, cytosol, and a mixture of mitochondria and plasma membranes was achieved by differential centrifugation. As mitochondria and plasma membranes seemed to be too similar in size and weight to be separated by differential centrifugation, discontinuous density-gradient centrifugation was carried out successfully. The purity of the subcellular fractions was checked by measuring the activity of marker enzymes. All fractions were highly enriched in their corresponding marker enzyme. However, the nuclear fractions of kidney and renal cell carcinoma were slightly contaminated with mitochondria and plasma membrane fractions of all tissues with lysosomes. The fraction designated the cytosolic fraction contained not only cytosol, but also microsomes and lysosomes. The CLA contents of the subcellular fractions were in the range 0.13-0.37% of total fatty acids and were lowest in the plasma membrane fractions of all types of tissue studied. C16:0, C18:0, C18:1 c9, C18:2 n-6, and C20:4 n-6 were found to be the major fatty acids in all the subcellular fractions studied. However, marked variations in fatty acid content between subcellular fractions and between types of tissue were detectable. Because of these differences between tissues, no general statement on characteristic fatty acid profiles of single subcellular fractions is possible.

  18. Germination of Aspergillus niger conidia is triggered by nitrogen compounds related to L-amino acids.

    Science.gov (United States)

    Hayer, Kimran; Stratford, Malcolm; Archer, David B

    2014-10-01

    Conidial germination is fundamentally important to the growth and dissemination of most fungi. It has been previously shown (K. Hayer, M. Stratford, and D. B. Archer, Appl. Environ. Microbiol. 79:6924-6931, 2013, http://dx.doi.org/10.1128/AEM.02061-13), using sugar analogs, that germination is a 2-stage process involving triggering of germination and then nutrient uptake for hyphal outgrowth. In the present study, we tested this 2-stage germination process using a series of nitrogen-containing compounds for the ability to trigger the breaking of dormancy of Aspergillus niger conidia and then to support the formation of hyphae by acting as nitrogen sources. Triggering and germination were also compared between A. niger and Aspergillus nidulans using 2-deoxy-D-glucose (trigger), D-galactose (nontrigger in A. niger but trigger in A. nidulans), and an N source (required in A. niger but not in A. nidulans). Although most of the nitrogen compounds studied served as nitrogen sources for growth, only some nitrogen compounds could trigger germination of A. niger conidia, and all were related to L-amino acids. Using L-amino acid analogs without either the amine or the carboxylic acid group revealed that both the amine and carboxylic acid groups were essential for an L-amino acid to serve as a trigger molecule. Generally, conidia were able to sense and recognize nitrogen compounds that fitted into a specific size range. There was no evidence of uptake of either triggering or nontriggering compounds over the first 90 min of A. niger conidial germination, suggesting that the germination trigger sensors are not located within the spore.

  19. Acid sphingomyelinase activity triggers microparticle release from glial cells.

    Science.gov (United States)

    Bianco, Fabio; Perrotta, Cristiana; Novellino, Luisa; Francolini, Maura; Riganti, Loredana; Menna, Elisabetta; Saglietti, Laura; Schuchman, Edward H; Furlan, Roberto; Clementi, Emilio; Matteoli, Michela; Verderio, Claudia

    2009-04-22

    We have earlier shown that microglia, the immune cells of the CNS, release microparticles from cell plasma membrane after ATP stimulation. These vesicles contain and release IL-1beta, a crucial cytokine in CNS inflammatory events. In this study, we show that microparticles are also released by astrocytes and we get insights into the mechanism of their shedding. We show that, on activation of the ATP receptor P2X7, microparticle shedding is associated with rapid activation of acid sphingomyelinase, which moves to plasma membrane outer leaflet. ATP-induced shedding and IL-1beta release are markedly reduced by the inhibition of acid sphingomyelinase, and completely blocked in glial cultures from acid sphingomyelinase knockout mice. We also show that p38 MAPK cascade is relevant for the whole process, as specific kinase inhibitors strongly reduce acid sphingomyelinase activation, microparticle shedding and IL-1beta release. Our results represent the first demonstration that activation of acid sphingomyelinase is necessary and sufficient for microparticle release from glial cells and define key molecular effectors of microparticle formation and IL-1beta release, thus, opening new strategies for the treatment of neuroinflammatory diseases.

  20. Formic Acid Triggers the “Acid Crash” of Acetone-Butanol-Ethanol Fermentation by Clostridium acetobutylicum▿

    Science.gov (United States)

    Wang, Shaohua; Zhang, Yanping; Dong, Hongjun; Mao, Shaoming; Zhu, Yan; Wang, Runjiang; Luan, Guodong; Li, Yin

    2011-01-01

    Solvent production by Clostridium acetobutylicum collapses when cells are grown in pH-uncontrolled glucose medium, the so-called “acid crash” phenomenon. It is generally accepted that the fast accumulation of acetic acid and butyric acid triggers the acid crash. We found that addition of 1 mM formic acid into corn mash medium could trigger acid crash, suggesting that formic acid might be related to acid crash. When it was grown in pH-uncontrolled glucose medium or glucose-rich medium, C. acetobutylicum DSM 1731 containing the empty plasmid pIMP1 failed to produce solvents and was found to accumulate 0.5 to 1.24 mM formic acid intracellularly. In contrast, recombinant strain DSM 1731 with formate dehydrogenase activity did not accumulate formic acid intracellularly and could produce solvent as usual. We therefore conclude that the accumulation of formic acid, rather than acetic acid and butyric acid, is responsible for the acid crash of acetone-butanol-ethanol fermentation. PMID:21216898

  1. Enhanced fatty acid flux triggered by adiponectin overexpression.

    Science.gov (United States)

    Shetty, Shoba; Ramos-Roman, Maria A; Cho, You-Ree; Brown, Jonathan; Plutzky, Jorge; Muise, Eric S; Horton, Jay D; Scherer, Philipp E; Parks, Elizabeth J

    2012-01-01

    Adiponectin overexpression in mice increases insulin sensitivity independent of adiposity. Here, we combined stable isotope infusion and in vivo measurements of lipid flux with transcriptomic analysis to characterize fatty acid metabolism in transgenic mice that overexpress adiponectin via the aP2-promoter (ADNTg). Compared with controls, fasted ADNTg mice demonstrated a 31% reduction in plasma free fatty acid concentrations (P = 0.008), a doubling of ketones (P = 0.028), and a 68% increase in free fatty acid turnover in plasma (15.1 ± 1.5 vs. 25.3 ± 6.8 mg/kg · min, P = 0.011). ADNTg mice had 2-fold more brown adipose tissue mass, and triglyceride synthesis and turnover were 5-fold greater in this organ (P = 0.046). Epididymal white adipose tissue was slightly reduced, possibly due to the approximately 1.5-fold increase in the expression of genes involved in oxidation (peroxisome proliferator-activated receptor α, peroxisome proliferator-activated receptor-γ coactivator 1α, and uncoupling protein 3). In ADNTg liver, lipogenic gene expression was reduced, but there was an unexpected increase in the expression of retinoid pathway genes (hepatic retinol binding protein 1 and retinoic acid receptor beta and adipose Cyp26A1) and liver retinyl ester content (64% higher, P < 0.02). Combined, these data support a physiological link between adiponectin signaling and increased efficiency of triglyceride synthesis and hydrolysis, a process that can be controlled by retinoids. Interactions between adiponectin and retinoids may underlie adiponectin's effects on intermediary metabolism.

  2. Evolving a photosynthetic organelle

    Directory of Open Access Journals (Sweden)

    Nakayama Takuro

    2012-04-01

    Full Text Available Abstract The evolution of plastids from cyanobacteria is believed to represent a singularity in the history of life. The enigmatic amoeba Paulinella and its 'recently' acquired photosynthetic inclusions provide a fascinating system through which to gain fresh insight into how endosymbionts become organelles. The plastids, or chloroplasts, of algae and plants evolved from cyanobacteria by endosymbiosis. This landmark event conferred on eukaryotes the benefits of photosynthesis - the conversion of solar energy into chemical energy - and in so doing had a huge impact on the course of evolution and the climate of Earth 1. From the present state of plastids, however, it is difficult to trace the evolutionary steps involved in this momentous development, because all modern-day plastids have fully integrated into their hosts. Paulinella chromatophora is a unicellular eukaryote that bears photosynthetic entities called chromatophores that are derived from cyanobacteria and has thus received much attention as a possible example of an organism in the early stages of organellogenesis. Recent studies have unlocked the genomic secrets of its chromatophore 23 and provided concrete evidence that the Paulinella chromatophore is a bona fide photosynthetic organelle 4. The question is how Paulinella can help us to understand the process by which an endosymbiont is converted into an organelle.

  3. Enzymatically triggered multifunctional delivery system based on hyaluronic acid micelles

    KAUST Repository

    Deng, Lin

    2012-01-01

    Tumor targetability and stimuli responsivity of drug delivery systems (DDS) are key factors in cancer therapy. Implementation of multifunctional DDS can afford targetability and responsivity at the same time. Herein, cholesterol molecules (Ch) were coupled to hyaluronic acid (HA) backbones to afford amphiphilic conjugates that can self-assemble into stable micelles. Doxorubicin (DOX), an anticancer drug, and superparamagnetic iron oxide (SPIO) nanoparticles (NPs), magnetic resonance imaging (MRI) contrast agents, were encapsulated by Ch-HA micelles and were selectively released in the presence of hyaluronidase (Hyals) enzyme. Cytotoxicity and cell uptake studies were done using three cancer cell lines (HeLa, HepG2 and MCF7) and one normal cell line (WI38). Higher Ch-HA micelles uptake was seen in cancer cells versus normal cells. Consequently, DOX release was elevated in cancer cells causing higher cytotoxicity and enhanced cell death. © 2012 The Royal Society of Chemistry.

  4. Perfluorooctanoic acid exposure triggers oxidative stress in the mouse pancreas

    Directory of Open Access Journals (Sweden)

    Lisa M. Kamendulis

    2014-01-01

    Full Text Available Perfluorooctanoic acid (PFOA is used in the manufacture of many industrial and commercial products. PFOA does not readily decompose in the environment, and is biologically persistent. Human epidemiologic and animal studies suggest that PFOA exposure elicits adverse effects on the pancreas. While multiple animal studies have examined PFOA-mediated toxicity in the liver, little is known about the potential adverse effects of PFOA on the pancreas. To address this, we treated C57Bl/6 mice with vehicle, or PFOA at doses of 0.5, 2.5 or 5.0 mg/kg BW/day for 7 days. Significant accumulation of PFOA was found in the serum, liver and pancreas of PFOA-treated animals. Histopathologic examination of the pancreas revealed focal ductal hyperplasia in mice treated with 2.5 and 5.0 mg/kg BW/day PFOA, while inflammation was observed only in the high dose group. Elevated serum levels of amylase and lipase were observed in the 2.5 mg/kg BW/day PFOA treatment group. In addition, PFOA exposure resulted in a dose-dependent increase in the level of the lipid peroxidation product 8-iso-PGF2α and induction of the antioxidant response genes Sod1, Sod2, Gpx2 and Nqo1. Our findings provide additional evidence that the pancreas is a target organ for PFOA-mediated toxicity and suggest that oxidative stress may be a mechanism through which PFOA induces histopathological changes in the pancreas.

  5. Butyric acid released during milk lipolysis triggers biofilm formation of Bacillus species.

    Science.gov (United States)

    Pasvolsky, Ronit; Zakin, Varda; Ostrova, Ievgeniia; Shemesh, Moshe

    2014-07-02

    Bacillus species form biofilms within milking pipelines and on surfaces of equipment in the dairy industry which represent a continuous hygiene problem and can lead to serious economic losses due to food spoilage and equipment impairment. Although much is known about the mechanism by which the model organism Bacillus subtilis forms biofilms in laboratory mediums in vitro, little is known of how these biofilms are formed in natural environments such as milk. Besides, little is known of the signaling pathways leading to biofilm formation in other Bacillus species, such as Bacillus cereus and Bacillus licheniformis, both of which are known to contaminate milk. In this study, we report that milk triggers the formation of biofilm-related structures, termed bundles. We show this to be a conserved phenomenon among all Bacillus members tested. Moreover, we demonstrate that the tasA gene, which encodes a major portion of the matrix which holds the biofilm together, is vital for this process. Furthermore, we show that the free fatty acid (FFA) - butyric acid (BA), which is released during lipolysis of milk fat and demonstrates antimicrobial activity, is the potent trigger for biofilm bundle formation. We finally show that BA-triggered biofilm bundle formation is mediated by the histidine kinase, KinD. Taken together, these observations indicate that BA, which is a major FFA within milk triggers biofilm formation in a conserved mechanism among members of the Bacillus genus.

  6. Optogenetic control of organelle transport and positioning

    NARCIS (Netherlands)

    van Bergeijk, Petra; Adrian, Max; Hoogenraad, Casper C; Kapitein, Lukas C

    2015-01-01

    Proper positioning of organelles by cytoskeleton-based motor proteins underlies cellular events such as signalling, polarization and growth. For many organelles, however, the precise connection between position and function has remained unclear, because strategies to control intracellular organelle

  7. Transient domain formation in membrane-bound organelles undergoing maturation

    Science.gov (United States)

    Dmitrieff, Serge; Sens, Pierre

    2013-12-01

    The membrane components of cellular organelles have been shown to segregate into domains as the result of biochemical maturation. We propose that the dynamical competition between maturation and lateral segregation of membrane components regulates domain formation. We study a two-component fluid membrane in which enzymatic reaction irreversibly converts one component into another and phase separation triggers the formation of transient membrane domains. The maximum domain size is shown to depend on the maturation rate as a power law similar to the one observed for domain growth with time in the absence of maturation, despite this time dependence not being verified in the case of irreversible maturation. This control of domain size by enzymatic activity could play a critical role in regulating exchange between organelles or within compartmentalized organelles such as the Golgi apparatus.

  8. Cell biology of prokaryotic organelles.

    Science.gov (United States)

    Murat, Dorothee; Byrne, Meghan; Komeili, Arash

    2010-10-01

    Mounting evidence in recent years has challenged the dogma that prokaryotes are simple and undefined cells devoid of an organized subcellular architecture. In fact, proteins once thought to be the purely eukaryotic inventions, including relatives of actin and tubulin control prokaryotic cell shape, DNA segregation, and cytokinesis. Similarly, compartmentalization, commonly noted as a distinguishing feature of eukaryotic cells, is also prevalent in the prokaryotic world in the form of protein-bounded and lipid-bounded organelles. In this article we highlight some of these prokaryotic organelles and discuss the current knowledge on their ultrastructure and the molecular mechanisms of their biogenesis and maintenance.

  9. Organelle morphogenesis by active remodeling

    CERN Document Server

    Ramakrishnan, N; Rao, Madan; Kumar, P B Sunil

    2014-01-01

    Intracellular organelles are subject to a steady flux of lipids and proteins through active, energy consuming transport processes. Active fission and fusion are promoted by GTPases, e.g., Arf-Coatamer and the Rab-Snare complexes, which both sense and generate local membrane curvature. Here we investigate through Dynamical Triangulation Monte Carlo simulations, the role that these active processes play in determining the morphology and compositional segregation in closed membranes. Our results suggest that the ramified morphologies of organelles observed in-vivo are a consequence of driven nonequilibrium processes rather than equilibrium forces.

  10. Basal Organelles of Bacterial Flagella

    Science.gov (United States)

    Cohen-Bazire, Germaine; London, Jack

    1967-01-01

    Liberated by enzymatic lysis of the cells, the flagella of Rhodospirillum rubrum, R. molischianum, and R. fulvum all have a similar structure. The hook at the base of the flagellum is connected by a short, narrow collar to a paired disc in the basal organelle. This paired disc is in turn connected to a second paired disc. The disposition of flagella to which fragments of the cell membrane still adhere suggests that the narrow collar at the base of the hook traverses both the wall and the membrane, and that the upper pair of discs in the basal organelle lies just beneath the surface of the membrane. Images PMID:6039362

  11. Decidual Stromal Cell Necroptosis Contributes to Polyinosinic-Polycytidylic Acid-Triggered Abnormal Murine Pregnancy

    Directory of Open Access Journals (Sweden)

    Shui-Xing Yu

    2017-08-01

    Full Text Available Infectious agents can reach the placenta either via the maternal blood or by ascending the genito-urinary tract, and then initially colonizing the maternal decidua. Decidual stromal cells (DSCs are the major cellular component of the decidua. Although DSCs at the maternal–fetal interface contribute to the regulation of immunity in pregnancy in the face of immunological and physiological challenges, the roles of these DSCs during viral infection remain ill defined. Here, we characterized the response of DSCs to a synthetic double-stranded RNA molecule, polyinosinic-polycytidylic acid [poly(I:C], which is a mimic of viral infection. We demonstrated that both transfection of cells with poly(I:C and addition of extracellular (non-transfected poly(I:C trigger the necroptosis of DSCs and that this response is dependent on RIG-I-like receptor/IPS-1 signaling and the toll-like receptor 3/TIR-domain-containing adapter-inducing interferon-β pathway, respectively. Furthermore, following poly(I:C challenge, pregnant mixed lineage kinase domain-like protein-deficient mice had fewer necrotic cells in the mesometrial decidual layer, as well as milder pathological changes in the uterine unit, than did wild-type mice. Collectively, our results establish that necroptosis is a contributing factor in poly(I:C-triggered abnormal pregnancy and thereby indicate a novel therapeutic strategy for reducing the severity of the adverse effects of viral infections in pregnancy.

  12. Deficient plastidic fatty acid synthesis triggers cell death by modulating mitochondrial reactive oxygen species.

    Science.gov (United States)

    Wu, Jian; Sun, Yuefeng; Zhao, Yannan; Zhang, Jian; Luo, Lilan; Li, Meng; Wang, Jinlong; Yu, Hong; Liu, Guifu; Yang, Liusha; Xiong, Guosheng; Zhou, Jian-Min; Zuo, Jianru; Wang, Yonghong; Li, Jiayang

    2015-05-01

    Programmed cell death (PCD) is of fundamental importance to development and defense in animals and plants. In plants, a well-recognized form of PCD is hypersensitive response (HR) triggered by pathogens, which involves the generation of reactive oxygen species (ROS) and other signaling molecules. While the mitochondrion is a master regulator of PCD in animals, the chloroplast is known to regulate PCD in plants. Arabidopsis Mosaic Death 1 (MOD1), an enoyl-acyl carrier protein (ACP) reductase essential for fatty acid biosynthesis in chloroplasts, negatively regulates PCD in Arabidopsis. Here we report that PCD in mod1 results from accumulated ROS and can be suppressed by mutations in mitochondrial complex I components, and that the suppression is confirmed by pharmaceutical inhibition of the complex I-generated ROS. We further show that intact mitochondria are required for full HR and optimum disease resistance to the Pseudomonas syringae bacteria. These findings strongly indicate that the ROS generated in the electron transport chain in mitochondria plays a key role in triggering plant PCD and highlight an important role of the communication between chloroplast and mitochondrion in the control of PCD in plants.

  13. Disulfide bond reduction-triggered molecular hydrogels of folic acid-Taxol conjugates.

    Science.gov (United States)

    Yang, Chengbiao; Li, Dongxia; Fengzhao, Qianqi; Wang, Lianyong; Wang, Ling; Yang, Zhimou

    2013-09-25

    Molecular hydrogels of therapeutic agents are a novel kind of self-delivery system that can sustain release of drugs or pro-drugs. We have previously developed a molecular hydrogelator of folic acid (FA)-Taxol conjugate triggered by phosphatase. In this paper, we report a novel molecular hydrogelator system of FA-Taxol conjugates with improved synthetic strategy. The hydrogels are formed by the reduction of disulfide bond by glutathione (GSH). These hydrogels could sustain release of Taxol through ester bond hydrolysis. Compared with intravenous (i.v.) injection of clinically used Taxol® with four times the dosage, our hydrogel could inhibit tumor growth more efficiently by a single dose of intra-tumor (i.t.) administration. These observations suggested the big potential of this novel gelation system of Taxol for cancer therapy.

  14. Laser-triggered release of encapsulated molecules from polylactic-co-glycolic acid microcapsules

    Science.gov (United States)

    Ariyasu, Kazumasa; Ishii, Atsuhiro; Umemoto, Taiga; Terakawa, Mitsuhiro

    2016-08-01

    The controlled release of encapsulated molecules from a microcapsule is a promising method of targeted drug delivery. Laser-triggered methods for the release of encapsulated molecules have the advantage of spatial and temporal controllability. In this study, we demonstrated the release of encapsulated molecules from biodegradable polymer-based microcapsules using near-infrared femtosecond laser pulses. The polylactic-co-glycolic acid microcapsules encapsulating fluorescein isothiocyanate-dextran molecules were fabricated using a dual-coaxial nozzle system. Irradiation of femtosecond laser pulses enhanced the release of the molecules from the microcapsules, which was accompanied by a decrease in the residual ratio of the microcapsules. The laser-induced modification of the surface of the shell of the microcapsules indicated the potential for sustained release as well as burst release.

  15. Evolution of organelle-associated protein profiling.

    Science.gov (United States)

    Yan, Wei; Aebersold, Ruedi; Raines, Elaine W

    2009-02-15

    Identification of the protein constituents of cell organelles forms the basis for studies to define the roles of specific proteins in organelle structure and functions. Over the past decade, the use of mass spectrometry-based proteomics has dissected various organelles and allowed the association of many novel proteins with particular organelles. This review chronicles the evolution of organelle proteomics technology, and discusses how many limitations, such as organelle heterogeneity and purity, can be avoided with recently developed quantitative profiling approaches. Although many challenges remain, quantitative profiling of organelles holds the promise to begin to address the complex and dynamic shuttling of proteins among organelles that will be critical for application of this advanced technology to disease-based changes in organelle function.

  16. Proteomics of Saccharomyces cerevisiae Organelles

    NARCIS (Netherlands)

    Wiederhold, Elena; Veenhoff, Liesbeth M.; Poolman, Bert; Slotboom, Dirk Jan

    2010-01-01

    Knowledge of the subcellular localization of proteins is indispensable to understand their physiological roles. In the past decade, 18 studies have been performed to analyze the protein content of isolated organelles from Saccharomyces cerevisiae. Here, we integrate the data sets and compare them wi

  17. Organelle Extensions in Plant Cells

    Institute of Scientific and Technical Information of China (English)

    Jaideep Mathur; Alena Mammone; Kiah A.Barton

    2012-01-01

    Cell walls lock each cell in a specific position within the supraorganization of a plant.Despite its fixed location,each cell must be able to sense alterations in its immediate environment and respond rapidly to ensure the optimal functioning,continued growth and development,and eventual long-term survival of the plant.The ultra-structural detail that underlies our present understanding of the plant cell has largely been acquired from fixed and processed material that does not allow an appreciation of the dynamic nature of sub-cellular events in the cell.In recent years,fluorescent proteinaided imaging of living plant cells has added to our understanding of the dynamic nature of the plant cell.One of the major outcomes of live imaging of plant cells is the growing appreciation that organelle shapes are not fixed,and many organelles extend their surface transiently in rapid response to environmental stimuli.In many cases,the extensions appear as tubules extending from the main organelle.Specific terms such as stromules from plastids,matrixules from mitochondria,and peroxules from peroxisomes have been coined to describe the extensions.Here,we review our present understanding of organelle extensions and discuss how they may play potential roles in maintaining cellular homeostasis in plant cells.

  18. Salicylic acid receptors activate jasmonic acid signalling through a non-canonical pathway to promote effector-triggered immunity

    Science.gov (United States)

    Liu, Lijing; Sonbol, Fathi-Mohamed; Huot, Bethany; Gu, Yangnan; Withers, John; Mwimba, Musoki; Yao, Jian; He, Sheng Yang; Dong, Xinnian

    2016-01-01

    It is an apparent conundrum how plants evolved effector-triggered immunity (ETI), involving programmed cell death (PCD), as a major defence mechanism against biotrophic pathogens, because ETI-associated PCD could leave them vulnerable to necrotrophic pathogens that thrive on dead host cells. Interestingly, during ETI, the normally antagonistic defence hormones, salicylic acid (SA) and jasmonic acid (JA) associated with defence against biotrophs and necrotrophs respectively, both accumulate to high levels. In this study, we made the surprising finding that JA is a positive regulator of RPS2-mediated ETI. Early induction of JA-responsive genes and de novo JA synthesis following SA accumulation is activated through the SA receptors NPR3 and NPR4, instead of the JA receptor COI1. We provide evidence that NPR3 and NPR4 may mediate this effect by promoting degradation of the JA transcriptional repressor JAZs. This unique interplay between SA and JA offers a possible explanation of how plants can mount defence against a biotrophic pathogen without becoming vulnerable to necrotrophic pathogens. PMID:27725643

  19. Acid-catalysed thermal cycloreversion of a diarylethene: a potential way for triggered release of stored light energy?

    Science.gov (United States)

    Gurke, J; Quick, M; Ernsting, N P; Hecht, S

    2017-02-09

    Upon addition of catalytic amounts of acid, a closed diarylethene derivative carrying a fluorenol moiety undergoes facile thermal ring opening. The underlying thermodynamics and kinetics of the entire system have been analysed experimentally as well as computationally. Our work suggests that general acid catalysis provides a useful tool to bypass thermal barriers, by opening new reaction pathways, and to efficiently trigger the release of light energy stored in photoswitches.

  20. Regulation of basal and oxidative stress-triggered jasmonic acid-related gene expression by glutathione.

    Science.gov (United States)

    Han, Yi; Mhamdi, Amna; Chaouch, Sejir; Noctor, Graham

    2013-06-01

    Glutathione is a determinant of cellular redox state with roles in defence and detoxification. Emerging concepts suggest that this compound also has functions in cellular signalling. Here, we report evidence that glutathione plays potentially important roles in setting signalling strength through the jasmonic acid (JA) pathway. Firstly, we show that basal expression of JA-related genes is correlated with leaf glutathione content when the latter is manipulated either genetically or pharmacologically. Secondly, analyses of an oxidative stress signalling mutant, cat2, reveal that up-regulation of the JA pathway triggered by intracellular oxidation requires accompanying glutathione accumulation. Genetically blocking this accumulation in a cat2 cad2 line largely annuls H2 O2 -induced expression of JA-linked genes, and this effect can be rescued by exogenously supplying glutathione. While most attention on glutathione functions in biotic stress responses has been focused on the thiol-regulated protein NPR1, a comparison of JA-linked gene expression in cat2 cad2 and cat2 npr1 double mutants provides evidence that glutathione acts through other components to regulate the response of this pathway to oxidative stress. Our study provides new information implicating glutathione as a factor determining basal JA gene expression and suggests novel glutathione-dependent control points that regulate JA signalling in response to intracellular oxidation.

  1. Dormant 5-lipoxygenase in inflammatory macrophages is triggered by exogenous arachidonic acid.

    Science.gov (United States)

    Sorgi, Carlos A; Zarini, Simona; Martin, Sarah A; Sanchez, Raphael L; Scandiuzzi, Rodrigo F; Gijón, Miguel A; Guijas, Carlos; Flamand, Nicolas; Murphy, Robert C; Faccioli, Lucia H

    2017-09-08

    The differentiation of resident tissue macrophages from embryonic precursors and that of inflammatory macrophages from bone marrow cells leads to macrophage heterogeneity. Further plasticity is displayed through their ability to be polarized as subtypes M1 and M2 in a cell culture microenvironment. However, the detailed regulation of eicosanoid production and its involvement in macrophage biology remains unclear. Using a lipidomics approach, we demonstrated that eicosanoid production profiles between bone marrow-derived (BMDM) and peritoneal macrophages differed drastically. In polarized BMDMs, M1 and M2 phenotypes were distinguished by thromboxane B2, prostaglandin (PG) E2, and PGD2 production, in addition to lysophospholipid acyltransferase activity. Although Alox5 expression and the presence of 5-lipoxygenase (5-LO) protein in BMDMs was observed, the absence of leukotrienes production reflected an impairment in 5-LO activity, which could be triggered by addition of exogenous arachidonic acid (AA). The BMDM 5-LO regulatory mechanism was not responsive to PGE2/cAMP pathway modulation; however, treatment to reduce glutathione peroxidase activity increased 5-LO metabolite production after AA stimulation. Understanding the relationship between the eicosanoids pathway and macrophage biology may offer novel strategies for macrophage-associated disease therapy.

  2. Hybrid pigment organelles in an invertebrate.

    Science.gov (United States)

    Schliwa, M; Euteneuer, U

    1979-02-28

    Observations of a number of vertebrate chromatophores have revealed the presence of more than one type of pigment organelles, suggesting that the different types are all derived from an equipotential organelle able to differentiate into any of the major pigment-containing organelles (Bagnara, 1972). Observations are presented concerning the occurrence of hybrid pigment inclusions, i.e., all kinds of intergrades between melanosomes, pterinosomes, and reflecting platelets in pigment cells of the daddy-long-legs. It therefore seems possible that pigment organelles in some invertebrates may also be derived from a common pluripotential primordial organelle.

  3. Evolution of apicomplexan secretory organelles

    Science.gov (United States)

    Gubbels, Marc-Jan; Duraisingh, Manoj T.

    2013-01-01

    The alveolate superphylum includes many free-living and parasitic organisms, which are united by the presence of alveolar sacs lying proximal to the plasma membrane, providing cell structure. All species comprising the apicomplexan group of alveolates are parasites and have adapted to the unique requirements of the parasitic lifestyle. Here the evolution of apicomplexan secretory organelles that are involved in the critical process of egress from one cell and invasion of another is explored. The variations within the Apicomplexa and how these relate to species-specific biology will be discussed. In addition, recent studies have identified specific calcium-sensitive molecules that coordinate the various events and regulate the release of these secretory organelles within apicomplexan parasites. Some aspects of this machinery are conserved outside the Apicomplexa, and are beginning to elucidate the conserved nature of the machinery. Briefly, the relationship of this secretion machinery within the Apicomplexa will be discussed, compared with free-living and predatory alveolates, and how these might have evolved from a common ancestor. PMID:23068912

  4. Water-Dispersible Silica-Polyelectrolyte Nanocomposites Prepared via Acid-Triggered Polycondensation of Silicic Acid and Directed by Polycations

    Directory of Open Access Journals (Sweden)

    Philip Overton

    2016-03-01

    Full Text Available The present work describes the acid-triggered condensation of silicic acid, Si(OH4, as directed by selected polycations in aqueous solution in the pH range of 6.5–8.0 at room temperature, without the use of additional solvents or surfactants. This process results in the formation of silica-polyelectrolyte (S-PE nanocomposites in the form of precipitate or water-dispersible particles. The mean hydrodynamic diameter (dh of size distributions of the prepared water-dispersible S-PE composites is presented as a function of the solution pH at which the composite formation was achieved. Poly(2-(dimethylaminoethyl methacrylate (PDMAEMA and block copolymers of DMAEMA and oligo(ethylene glycol methyl ether methacrylate (OEGMA were used as weak polyelectrolytes in S-PE composite formation. The activity of the strong polyelectrolytes poly(methacryloxyethyl trimethylammonium iodide (PMOTAI and PMOTAI-b-POEGMA in S-PE formation is also examined. The effect of polyelectrolyte strength and the OEGMA block on the formation of the S-PE composites is assessed with respect to the S-PE composites prepared using the PDMAEMA homopolymer. In the presence of the PDMAEMA60 homopolymer (Mw = 9400 g/mol, the size of the dispersible S-PE composites increases with solution pH in the range pH 6.6–8.1, from dh = 30 nm to dh = 800 nm. S-PDMAEMA60 prepared at pH 7.8 contained 66% silica by mass (TGA. The increase in dispersible S-PE particle size is diminished when directed by PDMAEMA300 (Mw = 47,000 g/mol, reaching a maximum of dh = 75 nm. S-PE composites formed using PDMAEMA-b-POEGMA remain in the range dh = 20–30 nm across this same pH regime. Precipitated S-PE composites were obtained as spheres of up to 200 nm in diameter (SEM and up to 65% mass content of silica (TGA. The conditions of pH for the preparation of dispersible and precipitate S-PE nanocomposites, as directed by the five selected polyelectrolytes PDMAEMA60, PDMAEMA300, PMOTAI60, PDMAEMA60-b-POEGMA38 and

  5. Structural conversion and intramolecular electron transfer in ferrocenylanthraquinones triggered by Keggin type of heteropoly acid serving as proton source

    Institute of Scientific and Technical Information of China (English)

    LIU Shuxia; LI Dehui; SU Zhongmin; WANG Enbo

    2004-01-01

    Intramolecular electron transfer triggered by proton and the mechanism of structural conversion in a ethynylene-bridged ferrocene-anthraquinone organic electron donor(D)-acceptor(A) g-conjugated system (1-FcAq) in the presence of a Keggin type heteropoly acid as proton source are discussed. Heteropoly acids can stabilize the protonated ethynylene-bridged ferrocene-anthraquinone conjugated complex, and the stable protonated complex has been isolated in air and characterized by elemental analyses, IR,1H NMR, and CV. Upon the inducement of proton, electron transfer from ferrocene moiety (Fc) to anthraquinone moiety (Aq) causes the rearrangement of the conjugated system to create a fulvene-cumulene structuere.

  6. Organelles in Blastocystis that blur the distinction between mitochondria and hydrogenosomes.

    Science.gov (United States)

    Stechmann, Alexandra; Hamblin, Karleigh; Pérez-Brocal, Vicente; Gaston, Daniel; Richmond, Gregory S; van der Giezen, Mark; Clark, C Graham; Roger, Andrew J

    2008-04-22

    Blastocystis is a unicellular stramenopile of controversial pathogenicity in humans. Although it is a strict anaerobe, Blastocystis has mitochondrion-like organelles with cristae, a transmembrane potential and DNA. An apparent lack of several typical mitochondrial pathways has led some to suggest that these organelles might be hydrogenosomes, anaerobic organelles related to mitochondria. We generated 12,767 expressed sequence tags (ESTs) from Blastocystis and identified 115 clusters that encode putative mitochondrial and hydrogenosomal proteins. Among these is the canonical hydrogenosomal protein iron-only [FeFe] hydrogenase that we show localizes to the organelles. The organelles also have mitochondrial characteristics, including pathways for amino acid metabolism, iron-sulfur cluster biogenesis, and an incomplete tricarboxylic acid cycle as well as a mitochondrial genome. Although complexes I and II of the electron transport chain (ETC) are present, we found no evidence for complexes III and IV or F1Fo ATPases. The Blastocystis organelles have metabolic properties of aerobic and anaerobic mitochondria and of hydrogenosomes. They are convergently similar to organelles recently described in the unrelated ciliate Nyctotherus ovalis. These findings blur the boundaries between mitochondria, hydrogenosomes, and mitosomes, as currently defined, underscoring the disparate selective forces that shape these organelles in eukaryotes.

  7. Acid-triggered core cross-linked nanomicelles for targeted drug delivery and magnetic resonance imaging in liver cancer cells

    Directory of Open Access Journals (Sweden)

    Li X

    2013-08-01

    Full Text Available Xian Li,1,* Hao Li,2,4,* Wei Yi,3 Jianyu Chen,1 Biling Liang1 1Radiology Department, The Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China; 2Center of Biomedical Engineering, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou, People's Republic of China; 3Radiotherapy Department, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China; 4School of Engineering, Sun Yat-Sen University, Guangzhou, People's Republic of China *These authors contributed equally to this work Purpose: To research the acid-triggered core cross-linked folate-poly(ethylene glycol-b-poly[N-(N',N'-diisopropylaminoethyl glutamine] (folated-PEG-P[GA-DIP] amphiphilic block copolymer for targeted drug delivery and magnetic resonance imaging (MRI in liver cancer cells. Methods: As an appropriate receptor of protons, the N,N-diisopropyl tertiary amine group (DIP was chosen to conjugate with the side carboxyl groups of poly(ethylene glycol-b-poly (L-glutamic acid to obtain PEG-P(GA-DIP amphiphilic block copolymers. By ultrasonic emulsification, PEG-P(GA-DIP could be self-assembled to form nanosized micelles loading doxorubicin (DOX and superparamagnetic iron oxide nanoparticles (SPIONs in aqueous solution. When PEG-P(GA-DIP nanomicelles were combined with folic acid, the targeted effect of folated-PEG-P(GA-DIP nanomicelles was evident in the fluorescence and MRI results. Results: To further increase the loading efficiency and the cell-uptake of encapsulated drugs (DOX and SPIONs, DIP (pKa≈6.3 groups were linked with ~50% of the side carboxyl groups of poly(L-glutamic acid (PGA, to generate the core cross-linking under neutral or weakly acidic conditions. Under the acidic condition (eg, endosome/lysosome, the carboxyl groups were neutralized to facilitate disassembly of the P(GA-DIP blocks' cross-linking, for duly accelerating the encapsulated drug release. Combined

  8. Lipid droplets as ubiquitous fat storage organelles in C. elegans

    Directory of Open Access Journals (Sweden)

    Guo Fengli

    2010-12-01

    Full Text Available Abstract Background Lipid droplets are a class of eukaryotic cell organelles for storage of neutral fat such as triacylglycerol (TAG and cholesterol ester (CE. We and others have recently reported that lysosome-related organelles (LROs are not fat storage structures in the nematode C. elegans. We also reported the formation of enlarged lipid droplets in a class of peroxisomal fatty acid β-oxidation mutants. In the present study, we seek to provide further evidence on the organelle nature and biophysical properties of fat storage structures in wild-type and mutant C. elegans. Results In this study, we provide biochemical, histological and ultrastructural evidence of lipid droplets in wild-type and mutant C. elegans that lack lysosome related organelles (LROs. The formation of lipid droplets and the targeting of BODIPY fatty acid analogs to lipid droplets in live animals are not dependent on lysosomal trafficking or peroxisome dysfunction. However, the targeting of Nile Red to lipid droplets in live animals occurs only in mutants with defective peroxisomes. Nile Red labelled-lipid droplets are characterized by a fluorescence emission spectrum distinct from that of Nile Red labelled-LROs. Moreover, we show that the recently developed post-fix Nile Red staining method labels lipid droplets exclusively. Conclusions Our results demonstrate lipid droplets as ubiquitous fat storage organelles and provide a unified explanation for previous studies on fat labelling methods in C. elegans. These results have important applications to the studies of fat storage and lipid droplet regulation in the powerful genetic system, C. elegans.

  9. Mitochondrial swelling impairs the transport of organelles in cerebellar granule neurons.

    Science.gov (United States)

    Kaasik, Allen; Safiulina, Dzhamilja; Choubey, Vinay; Kuum, Malle; Zharkovsky, Alexander; Veksler, Vladimir

    2007-11-09

    Organelle transport in neuronal processes is central to the organization, developmental fate, and functions of neurons. Organelles must be transported through the slender, highly branched neuronal processes, making the axonal transport vulnerable to any perturbation. However, some intracellular structures like mitochondria are able to considerably modify their volume. We therefore hypothesized that swollen mitochondria could impair the traffic of other organelles in neurite shafts. To test this hypothesis, we have investigated the effects of mitochondrial swellers on the organelle traffic. Our data demonstrate that treatment of neurons with potassium ionophore valinomycin led to the fast time-dependent inhibition of organelle movement in cerebellar granule neurons. Similar inhibition was observed in neurons treated with the inhibitors of the mitochondrial respiratory chain, sodium azide and antimycin, which also induced swelling. No decrease in the motility of organelles was observed in cultures treated with inhibitors of ATP production or transport, oligomycin or bongkrekic acid, suggesting that inhibition of the ATP-generating activity itself without swelling does not affect the motility of organelles. The effect of swellers on the traffic was more important in thin processes, thus indicating the role of steric hindrance of swollen mitochondria. We propose that the size and morphology of the transported cargo is also relevant for seamless axonal transport and speculate that mitochondrial swelling could be one of the reasons for impaired organelle transport in neuronal processes.

  10. Omega-3 Polyunsaturated Fatty Acids Trigger Cell Cycle Arrest and Induce Apoptosis in Human Neuroblastoma LA-N-1 Cells

    Directory of Open Access Journals (Sweden)

    Wai Wing So

    2015-08-01

    Full Text Available Omega-3 (n-3 fatty acids are dietary long-chain fatty acids with an array of health benefits. Previous research has demonstrated the growth-inhibitory effect of n-3 fatty acids on different cancer cell lines in vitro, yet their anti-tumor effects and underlying action mechanisms on human neuroblastoma LA-N-1 cells have not yet been reported. In this study, we showed that docosahexaenoic acid (DHA and eicosapentaenoic acid (EPA exhibited time- and concentration-dependent anti-proliferative effect on the human neuroblastoma LA-N-1 cells, but had minimal cytotoxicity on the normal or non-tumorigenic cells, as measured by MTT reduction assay. Mechanistic studies indicated that DHA and EPA triggered G0/G1 cell cycle arrest in LA-N-1 cells, as detected by flow cytometry, which was accompanied by a decrease in the expression of CDK2 and cyclin E proteins. Moreover, DHA and EPA could also induce apoptosis in LA-N-1 cells as revealed by an increase in DNA fragmentation, phosphatidylserine externalization and mitochondrial membrane depolarization. Up-regulation of Bax, activated caspase-3 and caspase-9 proteins, and down-regulation of Bcl-XL protein, might account for the occurrence of apoptotic events. Collectively, our results suggest that the growth-inhibitory effect of DHA and EPA on LA-N-1 cells might be mediated, at least in part, via triggering of cell cycle arrest and apoptosis. Therefore, DHA and EPA are potential anti-cancer agents which might be used for the adjuvant therapy or combination therapy with the conventional anti-cancer drugs for the treatment of some forms of human neuroblastoma with minimal toxicity.

  11. Immunobiotic lactic acid bacteria beneficially regulate immune response triggered by poly(I:C in porcine intestinal epithelial cells

    Directory of Open Access Journals (Sweden)

    Hosoya Shoichi

    2011-11-01

    Full Text Available Abstract This study analyzed the functional expression of TLR3 in various gastrointestinal tissues from adult swine and shows that TLR3 is expressed preferentially in intestinal epithelial cells (IEC, CD172a+CD11R1high and CD4+ cells from ileal Peyer's patches. We characterized the inflammatory immune response triggered by TLR3 activation in a clonal porcine intestinal epitheliocyte cell line (PIE cells and in PIE-immune cell co-cultures, and demonstrated that these systems are valuable tools to study in vitro the immune response triggered by TLR3 on IEC and the interaction between IEC and immune cells. In addition, we selected an immunobiotic lactic acid bacteria strain, Lactobacillus casei MEP221106, able to beneficially regulate the anti-viral immune response triggered by poly(I:C stimulation in PIE cells. Moreover, we deepened our understanding of the possible mechanisms of immunobiotic action by demonstrating that L. casei MEP221106 modulates the interaction between IEC and immune cells during the generation of a TLR3-mediated immune response.

  12. Bile Acids Trigger GLP-1 Release Predominantly by Accessing Basolaterally Located G Protein-Coupled Bile Acid Receptors

    DEFF Research Database (Denmark)

    Brighton, Cheryl A.; Rievaj, Juraj; Kuhre, Rune E.;

    2015-01-01

    Bile acids are well-recognized stimuli of glucagon-like peptide-1 (GLP-1) secretion. This action has been attributed to activation of the G protein-coupled bile acid receptor GPBAR1 (TGR5), although other potential bile acid sensors include the nuclear farnesoid receptor and the apical sodium......-coupled bile acid transporter ASBT. The aim of this study was to identify pathways important for GLP-1 release and to determine whether bile acids target their receptors on GLP-1-secreting L-cells from the apical or basolateral compartment. Using transgenic mice expressing fluorescent sensors specifically in L...... to either TLCA or TDCA. We conclude that the action of bile acids on GLP-1 secretion is predominantly mediated by GPBAR1 located on the basolateral L-cell membrane, suggesting that stimulation of gut hormone secretion may include postabsorptive mechanisms....

  13. Evidence for a trigger function of valproic acid in xenobiotic-induced hepatotoxicity.

    Science.gov (United States)

    Klee, S; Johanssen, S; Ungemach, F R

    2000-08-01

    The influence of the antiepileptic drug, valproic acid (2-n-propylpentanoic acid), on the hepatocellular capacity, to cope with an extrinsic oxidative stress was investigated. Freshly isolated rat hepatocytes exposed to therapeutic concentrations of valproic acid (0.25-1.0 mmol/l) were less resistant than controls, as evidenced by a significant cytotoxic response after challenge of the cells with a non-toxic dose of allyl alcohol (2-propen-1-ol). Valproic acid alone was not toxic to hepatocytes even at ten times higher concentrations (10 mmol/l), suggesting that cell damage was not a mere additive effect. Incubation with valproic acid plus allyl alcohol induced an irreversible depletion of hepatocellular glutathione, in contrast to allyl alcohol alone which induced a transient loss. Hepatocytes treated with valproic acid plus allyl alcohol were protected by N-acetylcysteine, a precursor of glutathione. These findings indicate that valproic acid affects hepatocellular defence mechanisms and suggest that a predisposition of hepatocytes to oxidative stress may play a role in the fatal hepatotoxicity of valproic acid in epileptic patients.

  14. Review on recent advances in the analysis of isolated organelles

    Energy Technology Data Exchange (ETDEWEB)

    Satori, Chad P. [Department of Chemistry, University of Minnesota, Minneapolis, MN 55455 (United States); Kostal, Vratislav [Department of Chemistry, University of Minnesota, Minneapolis, MN 55455 (United States); Institute of Analytical Chemistry, Academy of Sciences of the Czech Republic, Brno 616 00 (Czech Republic); Arriaga, Edgar A., E-mail: arriaga@umn.edu [Department of Chemistry, University of Minnesota, Minneapolis, MN 55455 (United States)

    2012-11-13

    Highlights: Black-Right-Pointing-Pointer Advancements in organelle release. Black-Right-Pointing-Pointer New approaches to fractionate organelles. Black-Right-Pointing-Pointer Updates on new techniques to characterize isolated organelles. - Abstract: The analysis of isolated organelles is one of the pillars of modern bioanalytical chemistry. This review describes recent developments on the isolation and characterization of isolated organelles both from living organisms and cell cultures. Salient reports on methods to release organelles focused on reproducibility and yield, membrane isolation, and integrated devices for organelle release. New developments on organelle fractionation after their isolation were on the topics of centrifugation, immunocapture, free flow electrophoresis, flow field-flow fractionation, fluorescence activated organelle sorting, laser capture microdissection, and dielectrophoresis. New concepts on characterization of isolated organelles included atomic force microscopy, optical tweezers combined with Raman spectroscopy, organelle sensors, flow cytometry, capillary electrophoresis, and microfluidic devices.

  15. Bile Acids in Polycystic Liver Diseases: Triggers of Disease Progression and Potential Solution for Treatment.

    Science.gov (United States)

    Perugorria, Maria J; Labiano, Ibone; Esparza-Baquer, Aitor; Marzioni, Marco; Marin, Jose J G; Bujanda, Luis; Banales, Jesús M

    2017-01-01

    Polycystic liver diseases (PLDs) are a group of genetic hereditary cholangiopathies characterized by the development and progressive growth of cysts in the liver, which are the main cause of morbidity. Current therapies are based on surgical procedures and pharmacological strategies, which show short-term and modest beneficial effects. Therefore, the determination of the molecular mechanisms of pathogenesis appears to be crucial in order to find new potential targets for pharmacological therapy. Ductal plate malformation during embryogenesis and abnormal cystic cholangiocyte growth and secretion are some of the key mechanisms involved in the pathogenesis of PLDs. However, the discovery of the presence of bile acids in the fluid collected from human cysts and the intrahepatic accumulation of cytotoxic bile acids in an animal model of PLD (i.e. polycystic kidney (PCK) rat) suggest a potential role of impaired bile acid homeostasis in the pathogenesis of these diseases. On the other hand, ursodeoxycholic acid (UDCA) has emerged as a new potential therapeutic tool for PLDs by promoting the inhibition of cystic cholangiocyte growth in both PCK rats and highly symptomatic patients with autosomal dominant polycystic kidney disease (ADPKD: most common type of PLD), and improving symptoms. Chronic treatment with UDCA normalizes the decreased intracellular calcium levels in ADPKD human cholangiocytes in vitro, which results in the reduction of their baseline-stimulated proliferation. Moreover, UDCA decreases the liver concentration of cytotoxic bile acids in PCK rats and the bile acid-dependent enhanced proliferation of cystic cholangiocytes. Here, the role of bile acids in the pathogenesis of PLDs and the potential therapeutic value of UDCA for the treatment of these diseases are reviewed and future lines of investigation in this field are proposed.

  16. Arginine-responsive terbium luminescent hybrid sensors triggered by two crown ether carboxylic acids

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Lasheng [Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); Tang, Ke; Ding, Xiaoping [School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); Wang, Qianming, E-mail: qmwang@scnu.edu.cn [Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); Zhou, Zhan; Xiao, Rui [School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China)

    2013-12-01

    Crown ether carboxylic acids constitute main building blocks for the synthesis of terbium containing covalent cross-linked luminescent materials. Both the complexes and the hybrid nanomaterials could exhibit remarkable green emissions in pure water. More importantly, they were found to have a profound effect on the luminescence responses to arginine compared with glutamic acid, histidine, tryptophan, threonine, tyrosine and phenylalanine in aqueous environment. The present study provided the possibility of using a host–guest mechanism as a way of signal transduction based on lanthanide supramolecular hybrid materials. - Highlights: • Crown ether carboxylic acids were found to sensitize terbium ions among a group of ethers. • The complexes and silica hybrid materials were both prepared and characterized. • They could exhibit remarkable green emissions in pure water.

  17. Lewis Acid Triggered Regioselective Magnesiation and Zincation of Uracils, Uridines, and Cytidines.

    Science.gov (United States)

    Klier, Lydia; Aranzamendi, Eider; Ziegler, Dorothée; Nickel, Johannes; Karaghiosoff, Konstantin; Carell, Thomas; Knochel, Paul

    2016-03-04

    The Lewis acid MgCl2 allows control of the metalation regioselectivity of uracils and uridines. In the absence of the Lewis acid, metalation of uracil and uridine derivatives with TMPMgCl·LiCl occurs at the position C(5). In the presence of MgCl2, zincation using TMP2Zn·2LiCl·2MgCl2 occurs at the position C(6). This metalation method provides easy access to functionalized uracils and uridines. Using TMP2Zn·2LiCl·2MgCl2 also allows to functionalize cytidine derivatives at the position C(6).

  18. Stimuli-Triggered Sol-Gel Transitions of Polypeptides Derived from α-Amino Acid N-Carboxyanhydride (NCA) Polymerizations.

    Science.gov (United States)

    He, Xun; Fan, Jingwei; Wooley, Karen L

    2016-02-18

    The past decade has witnessed significantly increased interest in the development of smart polypeptide-based organo- and hydrogel systems with stimuli responsiveness, especially those that exhibit sol-gel phase-transition properties, with an anticipation of their utility in the construction of adaptive materials, sensor designs, and controlled release systems, among other applications. Such developments have been facilitated by dramatic progress in controlled polymerizations of α-amino acid N-carboxyanhydrides (NCAs), together with advanced orthogonal functionalization techniques, which have enabled economical and practical syntheses of well-defined polypeptides and peptide hybrid polymeric materials. One-dimensional stacking of polypeptides or peptide aggregations in the forms of certain ordered conformations, such as α helices and β sheets, in combination with further physical or chemical cross-linking, result in the construction of three-dimensional matrices of polypeptide gel systems. The macroscopic sol-gel transitions, resulting from the construction or deconstruction of gel networks and the conformational changes between secondary structures, can be triggered by external stimuli, including environmental factors, electromagnetic fields, and (bio)chemical species. Herein, the most recent advances in polypeptide gel systems are described, covering synthetic strategies, gelation mechanisms, and stimuli-triggered sol-gel transitions, with the aim of demonstrating the relationships between chemical compositions, supramolecular structures, and responsive properties of polypeptide-based organo- and hydrogels.

  19. Dissecting the chemical interactions and substrate structural signatures governing RNA polymerase II trigger loop closure by synthetic nucleic acid analogues

    DEFF Research Database (Denmark)

    Xu, Liang; Butler, Kyle Vincent; Chong, Jenny

    2014-01-01

    The trigger loop (TL) of RNA polymerase II (Pol II) is a conserved structural motif that is crucial for Pol II catalytic activity and transcriptional fidelity. The TL remains in an inactive open conformation when the mismatched substrate is bound. In contrast, TL switches from an inactive open...... II. This study reveals novel insights into understanding the molecular basis of TL conformational transition upon substrate binding during Pol II transcription. This synthetic chemical biology approach may be extended to understand the mechanisms of other RNA polymerases as well as other nucleic acid...... state to a closed active state to facilitate nucleotide addition upon the binding of the cognate substrate to the Pol II active site. However, a comprehensive understanding of the specific chemical interactions and substrate structural signatures that are essential to this TL conformational change...

  20. Karrikins discovered in smoke trigger Arabidopsis seed germination by a mechanism requiring gibberellic acid synthesis and light.

    Science.gov (United States)

    Nelson, David C; Riseborough, Julie-Anne; Flematti, Gavin R; Stevens, Jason; Ghisalberti, Emilio L; Dixon, Kingsley W; Smith, Steven M

    2009-02-01

    Discovery of the primary seed germination stimulant in smoke, 3-methyl-2H-furo[2,3-c]pyran-2-one (KAR1), has resulted in identification of a family of structurally related plant growth regulators, karrikins. KAR1 acts as a key germination trigger for many species from fire-prone, Mediterranean climates, but a molecular mechanism for this response remains unknown. We demonstrate that Arabidopsis (Arabidopsis thaliana), an ephemeral of the temperate northern hemisphere that has never, to our knowledge, been reported to be responsive to fire or smoke, rapidly and sensitively perceives karrikins. Thus, these signaling molecules may have greater significance among angiosperms than previously realized. Karrikins can trigger germination of primary dormant Arabidopsis seeds far more effectively than known phytohormones or the structurally related strigolactone GR-24. Natural variation and depth of seed dormancy affect the degree of KAR1 stimulation. Analysis of phytohormone mutant germination reveals suppression of KAR1 responses by abscisic acid and a requirement for gibberellin (GA) synthesis. The reduced germination of sleepy1 mutants is partially recovered by KAR1, which suggests that germination enhancement by karrikin is only partly DELLA dependent. While KAR1 has little effect on sensitivity to exogenous GA, it enhances expression of the GA biosynthetic genes GA3ox1 and GA3ox2 during seed imbibition. Neither abscisic acid nor GA levels in seed are appreciably affected by KAR1 treatment prior to radicle emergence, despite marked differences in germination outcome. KAR1 stimulation of Arabidopsis germination is light-dependent and reversible by far-red exposure, although limited induction of GA3ox1 still occurs in the dark. The observed requirements for light and GA biosynthesis provide the first insights into the karrikin mode of action.

  1. Tetanus toxin production is triggered by the transition from amino acid consumption to peptides.

    Science.gov (United States)

    Licona-Cassani, Cuauhtemoc; Steen, Jennifer A; Zaragoza, Nicolas E; Moonen, Glenn; Moutafis, George; Hodson, Mark P; Power, John; Nielsen, Lars K; Marcellin, Esteban

    2016-10-01

    Bacteria produce some of the most potent biomolecules known, of which many cause serious diseases such as tetanus. For prevention, billions of people and countless animals are immunised with the highly effective vaccine, industrially produced by large-scale fermentation. However, toxin production is often hampered by low yields and batch-to-batch variability. Improved productivity has been constrained by a lack of understanding of the molecular mechanisms controlling toxin production. Here we have developed a reproducible experimental framework for screening phenotypic determinants in Clostridium tetani under a process that mimics an industrial setting. We show that amino acid depletion induces production of the tetanus toxin. Using time-course transcriptomics and extracellular metabolomics to generate a 'fermentation atlas' that ascribe growth behaviour, nutrient consumption and gene expression to the fermentation phases, we found a subset of preferred amino acids. Exponential growth is characterised by the consumption of those amino acids followed by a slower exponential growth phase where peptides are consumed, and toxin is produced. The results aim at assisting in fermentation medium design towards the improvement of vaccine production yields and reproducibility. In conclusion, our work not only provides deep fermentation dynamics but represents the foundation for bioprocess design based on C. tetani physiological behaviour under industrial settings.

  2. Cysteinyl-leukotriene production during limbic seizures triggered by kainic acid.

    Science.gov (United States)

    Simmet, T; Tippler, B

    1990-05-07

    In rats kainic acid-induced seizures were accompanied by time-dependent cerebral cysteinyl-leukotriene (LT) and prostaglandin (PG) F2 alpha formation. Cysteinyl-LT were identified in the rat brain tissue extracts by their immunoreactive properties and their retention times upon reversed phase HPLC profiling. In perfused blood-free brain tissue contents of LTC4-like material were significantly elevated in cortex, hippocampus, midbrain and hypothalamus at 3 h after kainic acid injection. PGF2 alpha tissue contents were significantly elevated in all brain areas studied with very large amounts in the hippocampus and smaller amounts in the cortex. The cyclooxygenase inhibitor indomethacin significantly inhibited formation of PGF2 alpha in whole brain tissue while leaving unaffected the production of cysteinyl-LT. A dose of indomethacin which nearly completely inhibited cyclooxygenase activity as monitored by cerebral PGF2 alpha contents also tended to aggravate behavioral changes and significantly increased the mortality. Phenidone, a lipoxygenase inhibitor, significantly and dose-dependently inhibited formation of cysteinyl-LT but did not significantly affect PGF2 alpha formation. Seizure activity tended to be attenuated by a higher dose of this compound. Dexamethasone which supposedly inhibits phospholipase A2 activity by induction of lipocortins, did not significantly reduce either cysteinyl-LT or PGF2 alpha biosynthesis. Flunarizine, trifluoperazine and diazepines protected a certain percentage of animals from kainic acid-induced seizures. In rats in which seizures occurred in spite of pretreatment with these compounds, the eicosanoid formation was not inhibited but in the case of flunarizine was even found to be somewhat enhanced.(ABSTRACT TRUNCATED AT 250 WORDS)

  3. Unsaturated amino acids derived from isoleucine trigger early membrane effects on plant cells.

    Science.gov (United States)

    Roblin, Gabriel; Laduranty, Joëlle; Bonmort, Janine; Aidene, Mohand; Chollet, Jean-François

    2016-10-01

    Unsaturated amino acids (UnsAA) have been shown to affect the activity of various biological processes. However, their mode of action has been investigated poorly thus far. We show in this work that 2-amino-3-methyl-4-pentenoic acid (C2) and 2-amino-3-methyl-4-pentynoic acid (C3) structurally derived from isoleucine (Ile) exhibited a multisite action on plant cells. For one, C2 and C3 induced early modifications at the plasma membrane level, as shown by the hyperpolarization monitored by microelectrode implantation in the pulvinar cells of Mimosa pudica, indicating that these compounds are able to modify ionic fluxes. In particular, proton (H(+)) fluxes were modified, as shown by the pH rise monitored in the bathing medium of pulvinar tissues. A component of this effect may be linked to the inhibitory effect observed on the proton pumping and the vanadate-sensitive activity of the plasma membrane H(+)-ATPase monitored in plasma membrane vesicles (PMVs) purified from pulvinar tissues of M. pudica and leaf tissues of Beta vulgaris. This effect may explain, in part, the inhibitory effect of the compounds on the uptake capacity of sucrose and valine by B. vulgaris leaf tissues. In contrast, an unexpected action was observed in cell reactions, implicating ion fluxes and water movement. Indeed, the osmocontractile reactions of pulvini induced either by a mechanical shock in M. pudica or by dark and light signals in Cassia fasciculata were increased, indicating that, compared to Ile, these compounds may modify in a specific way the plasma membrane permeability to water and ions. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  4. Calcium regulation in endosymbiotic organelles of plants.

    Science.gov (United States)

    Bussemer, Johanna; Vothknecht, Ute C; Chigri, Fatima

    2009-09-01

    In plant cells calcium-dependent signaling pathways are involved in a large array of biological processes in response to hormones, biotic/abiotic stress signals and a variety of developmental cues. This is generally achieved through binding of calcium to diverse calcium-sensing proteins, which subsequently control downstream events by activating or inhibiting biochemical reactions. Regulation by calcium is considered as a eukaryotic trait and has not been described for prokaryotes. Nevertheless, there is increasing evidence indicating that organelles of prokaryotic origin, such as chloroplasts and mitochondria, are integrated into the calcium-signaling network of the cell. An important transducer of calcium in these organelles appears to be calmodulin. In this review we want to give an overview over present data showing that endosymbiotic organelles harbour calcium-dependent biological processes with a focus on calmodulin-regulation.

  5. Harnessing yeast organelles for metabolic engineering.

    Science.gov (United States)

    Hammer, Sarah K; Avalos, José L

    2017-08-01

    Each subcellular compartment in yeast offers a unique physiochemical environment and metabolite, enzyme, and cofactor composition. While yeast metabolic engineering has focused on assembling pathways in the cell cytosol, there is growing interest in embracing subcellular compartmentalization. Beyond harnessing distinct organelle properties, physical separation of organelles from the cytosol has the potential to eliminate metabolic crosstalk and enhance compartmentalized pathway efficiency. In this Perspective we review the state of the art in yeast subcellular engineering, highlighting the benefits of targeting biosynthetic pathways to subcellular compartments, including mitochondria, peroxisomes, the ER and/or Golgi, vacuoles, and the cell wall, in different yeast species. We compare the performances of strains developed with subcellular engineering to those of native producers or yeast strains previously engineered with cytosolic pathways. We also identify important challenges that lie ahead, which need to be addressed for organelle engineering to become as mainstream as cytosolic engineering in academia and industry.

  6. On the move: organelle dynamics during mitosis.

    Science.gov (United States)

    Jongsma, Marlieke L M; Berlin, Ilana; Neefjes, Jacques

    2015-03-01

    A cell constitutes the minimal self-replicating unit of all organisms, programmed to propagate its genome as it proceeds through mitotic cell division. The molecular processes entrusted with ensuring high fidelity of DNA replication and subsequent segregation of chromosomes between daughter cells have therefore been studied extensively. However, to process the information encoded in its genome a cell must also pass on its non-genomic identity to future generations. To achieve productive sharing of intracellular organelles, cells have evolved complex mechanisms of organelle inheritance. Many membranous compartments undergo vast spatiotemporal rearrangements throughout mitosis. These controlled organizational changes are crucial to enabling completion of the division cycle and ensuring successful progeny. Herein we review current understanding of intracellular organelle segregation during mitotic division in mammalian cells, with a focus on compartment organization and integrity throughout the inheritance process.

  7. Blockade of fatty acid synthase triggers significant apoptosis in mantle cell lymphoma.

    Directory of Open Access Journals (Sweden)

    Pascal Gelebart

    Full Text Available Fatty acid synthase (FASN, a key player in the de novo synthetic pathway of long-chain fatty acids, has been shown to contribute to the tumorigenesis in various types of solid tumors. We here report that FASN is highly and consistently expressed in mantle cell lymphoma (MCL, an aggressive form of B-cell lymphoid malignancy. Specifically, the expression of FASN was detectable in all four MCL cell lines and 15 tumors examined. In contrast, benign lymphoid tissues and peripheral blood mononuclear cells from normal donors were negative. Treatment of MCL cell lines with orlistat, a FASN inhibitor, resulted in significant apoptosis. Knockdown of FASN expression using siRNA, which also significantly decreased the growth of MCL cells, led to a dramatic decrease in the cyclin D1 level. β-catenin, which has been previously reported to be upregulated in a subset of MCL tumors, contributed to the high level of FASN in MCL cells, Interesting, siRNA knock-down of FASN in turn down-regulated β-catenin. In conclusion, our data supports the concept that FASN contributes to the pathogenesis of MCL, by collaborating with β-catenin. In view of its high and consistent expression in MCL, FASN inhibitors may hold promises for treating MCL.

  8. Saturated fatty acids activate caspase-4/5 in human monocytes, triggering IL-1β and IL-18 release.

    Science.gov (United States)

    Pillon, Nicolas J; Chan, Kenny L; Zhang, Shitian; Mejdani, Marios; Jacobson, Maya R; Ducos, Alexandre; Bilan, Philip J; Niu, Wenyan; Klip, Amira

    2016-11-01

    Obesity is associated with metabolic tissue infiltration by monocyte-derived macrophages. Saturated fatty acids contribute to proinflammatory gene induction in tissue-embedded immune cells. However, it is unknown how circulating monocytes, the macrophage precursors, react to high-fat environments. In macrophages, saturated fatty acids activate inflammatory pathways and, notably, prime caspase-associated inflammasomes. Inflammasome-activated IL-1β contributes to type 2 diabetes. We hypothesized that 1) human monocytes from obese patients show caspase activation, and 2) fatty acids trigger this response and consequent release of IL-1β/IL-18. Human peripheral blood monocytes were sorted by flow cytometry, and caspase activity was measured with a FLICA dye-based assay. Blood monocytes from obese individuals exhibited elevated caspase activity. To explore the nature and consequence of this activity, human THP1 monocytes were exposed to saturated or unsaturated fatty acids. Caspase activity was revealed by isoform-specific cleavage and enzymatic activity; cytokine expression/release was measured by qPCR and ELISA. Palmitate, but not palmitoleate, increased caspase activity in parallel to the release of IL-1β and IL-18. Palmitate induced eventual monocyte cell death with features of pyroptosis (an inflammation-linked cell death program involving caspase-4/5), scored through LDH release, vital dye influx, cell volume changes, and nuclear morphology. Notably, selective gene silencing or inhibition of caspase-4/5 reduced palmitate-induced release of IL-1β and IL-18. In summary, monocytes from obese individuals present elevated caspase activity. Mechanistically, palmitate activates a pyroptotic program in monocytes through caspase-4/5, causing inflammatory cytokine release, additional to inflammasomes. These caspases represent potential, novel, therapeutic targets to taper obesity-associated inflammation.

  9. All-trans retinoic acid-triggered antimicrobial activity against Mycobacterium tuberculosis is dependent on NPC2.

    Science.gov (United States)

    Wheelwright, Matthew; Kim, Elliot W; Inkeles, Megan S; De Leon, Avelino; Pellegrini, Matteo; Krutzik, Stephan R; Liu, Philip T

    2014-03-01

    A role for vitamin A in host defense against Mycobacterium tuberculosis has been suggested through epidemiological and in vitro studies; however, the mechanism is unclear. In this study, we demonstrate that vitamin A-triggered antimicrobial activity against M. tuberculosis requires expression of NPC2. Comparison of monocytes stimulated with all-trans retinoic acid (ATRA) or 1,25-dihydroxyvitamin D3 (1,25D3), the biologically active forms of vitamin A and vitamin D, respectively, indicates that ATRA and 1,25D3 induce mechanistically distinct antimicrobial activities. Stimulation of primary human monocytes with ATRA did not result in expression of the antimicrobial peptide cathelicidin, which is required for 1,25D3 antimicrobial activity. In contrast, ATRA triggered a reduction in the total cellular cholesterol concentration, whereas 1,25D3 did not. Blocking ATRA-induced cellular cholesterol reduction inhibits antimicrobial activity as well. Bioinformatic analysis of ATRA- and 1,25D3-induced gene profiles suggests that NPC2 is a key gene in ATRA-induced cholesterol regulation. Knockdown experiments demonstrate that ATRA-mediated decrease in total cellular cholesterol content and increase in lysosomal acidification are both dependent upon expression of NPC2. Expression of NPC2 was lower in caseous tuberculosis granulomas and M. tuberculosis-infected monocytes compared with normal lung and uninfected cells, respectively. Loss of NPC2 expression ablated ATRA-induced antimicrobial activity. Taken together, these results suggest that the vitamin A-mediated antimicrobial mechanism against M. tuberculosis requires NPC2-dependent expression and function, indicating a key role for cellular cholesterol regulation in the innate immune response.

  10. Mechanisms of Organelle Inheritance in Dividing Plant Cells

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Organelles form essential compartments of all eukaryotic cells. Mechanisms that ensure the unbiased inheritance of organelles during cell division are therefore necessary to maintain the viability of future cell generations. Although inheritance of organelles represents a fundamental component of the cell cycle, surprisingly little is known about the underlying mechanisms that facilitate unbiased organelle inheritance. Evidence from a select number of studies, however,indicates that ordered organelle inheritance strategies exist in dividing cells of higher plants. The basic requirement for unbiased organelle inheritance is the duplication of organelle volume and distribution of the resulting organelle populations in a manner that facilitates unbiased partitioning of the organelle population to each daughter cell. Often, partitioning strategies are specific to the organelle, being influenced by the functional requirements of the organelle and whether the cells are mitotically active or re-entering into the cell cycle. Organelle partitioning mechanisms frequently depend on interactions with either the actin or microtubule cytoskeleton. In this focused review, we attempt to summarize key findings regarding organelle partitioning strategies in dividing cells of higher plants. We particularly concentrate on the role of the cytoskeleton in mediating unbiased organelle partitioning.

  11. Novel mitochondrion-related organelles in the anaerobic amoeba Mastigamoeba balamuthi.

    Science.gov (United States)

    Gill, Erin E; Diaz-Triviño, Sara; Barberà, Maria José; Silberman, Jeffrey D; Stechmann, Alexandra; Gaston, Daniel; Tamas, Ivica; Roger, Andrew J

    2007-12-01

    Unicellular eukaryotes that lack mitochondria typically contain related organelles such as hydrogenosomes or mitosomes. To characterize the evolutionary diversity of these organelles, we conducted an expressed sequence tag (EST) survey on the free-living amoeba Mastigamoeba balamuthi, a relative of the human parasite Entamoeba histolytica. From 19 182 ESTs, we identified 21 putative mitochondrial proteins implicated in protein import, amino acid interconversion and carbohydrate metabolism, two components of the iron-sulphur cluster (Fe-S) assembly apparatus as well as two enzymes characteristic of hydrogenosomes. By immunofluorescence microscopy and subcellular fractionation, we show that mitochondrial chaperonin 60 is targeted to small abundant organelles within Mastigamoeba. In transmission electron micrographs, we identified double-membraned compartments that likely correspond to these mitochondrion-derived organelles, The predicted organellar proteome of the Mastigamoeba organelle indicates a unique spectrum of functions that collectively have never been observed in mitochondrion-related organelles. However, like Entamoeba, the Fe-S cluster assembly proteins in Mastigamoeba were acquired by lateral gene transfer from epsilon-proteobacteria and do not possess obvious organellar targeting peptides. These data indicate that the loss of classical aerobic mitochondrial functions and acquisition of anaerobic enzymes and Fe-S cluster assembly proteins occurred in a free-living member of the eukaryote super-kingdom Amoebozoa.

  12. Immunoregulatory Effects Triggered by Lactic Acid Bacteria Exopolysaccharides: New Insights into Molecular Interactions with Host Cells

    Directory of Open Access Journals (Sweden)

    Jonathan Laiño

    2016-08-01

    Full Text Available Researchers have demonstrated that lactic acid bacteria (LAB with immunomodulatory capabilities (immunobiotics exert their beneficial effects through several molecules, including cell wall, peptidoglycan, and exopolysaccharides (EPS, that are able to interact with specific host cell receptors. EPS from LAB show a wide heterogeneity in its composition, meaning that biological properties depend on the strain and. therefore, only a part of the mechanism of action has been elucidated for these molecules. In this review, we summarize the current knowledge of the health-promoting actions of EPS from LAB with special focus on their immunoregulatory actions. In addition, we describe our studies using porcine intestinal epithelial cells (PIE cells as a model to evaluate the molecular interactions of EPS from two immunobiotic LAB strains and the host cells. Our studies showed that EPS from immunobiotic LAB have anti-inflammatory capacities in PIE cells since they are able to reduce the production of inflammatory cytokines in cells challenged with the Toll-like receptor (TLR-4-agonist lipopolysaccharide. The effects of EPS were dependent on TLR2, TLR4, and negative regulators of TLR signaling. We also reported that the radioprotective 105 (RP105/MD1 complex, a member of the TLR family, is partially involved in the immunoregulatory effects of the EPS from LAB. Our work described, for the first time, that LAB and their EPS reduce inflammation in intestinal epithelial cells in a RP105/MD1-dependent manner. A continuing challenge for the future is to reveal more effector-receptor relationships in immunobiotic-host interactions that contribute to the beneficial effects of these bacteria on mucosal immune homeostasis. A detailed molecular understanding should lead to a more rational use of immunobiotics in general, and their EPS in particular, as efficient prevention and therapies for specific immune-related disorders in humans and animals.

  13. Pareto optimality in organelle energy metabolism analysis.

    Science.gov (United States)

    Angione, Claudio; Carapezza, Giovanni; Costanza, Jole; Lió, Pietro; Nicosia, Giuseppe

    2013-01-01

    In low and high eukaryotes, energy is collected or transformed in compartments, the organelles. The rich variety of size, characteristics, and density of the organelles makes it difficult to build a general picture. In this paper, we make use of the Pareto-front analysis to investigate the optimization of energy metabolism in mitochondria and chloroplasts. Using the Pareto optimality principle, we compare models of organelle metabolism on the basis of single- and multiobjective optimization, approximation techniques (the Bayesian Automatic Relevance Determination), robustness, and pathway sensitivity analysis. Finally, we report the first analysis of the metabolic model for the hydrogenosome of Trichomonas vaginalis, which is found in several protozoan parasites. Our analysis has shown the importance of the Pareto optimality for such comparison and for insights into the evolution of the metabolism from cytoplasmic to organelle bound, involving a model order reduction. We report that Pareto fronts represent an asymptotic analysis useful to describe the metabolism of an organism aimed at maximizing concurrently two or more metabolite concentrations.

  14. Plant organelle proteomics: collaborating for optimal cell function.

    Science.gov (United States)

    Agrawal, Ganesh Kumar; Bourguignon, Jacques; Rolland, Norbert; Ephritikhine, Geneviève; Ferro, Myriam; Jaquinod, Michel; Alexiou, Konstantinos G; Chardot, Thierry; Chakraborty, Niranjan; Jolivet, Pascale; Doonan, John H; Rakwal, Randeep

    2011-01-01

    Organelle proteomics describes the study of proteins present in organelle at a particular instance during the whole period of their life cycle in a cell. Organelles are specialized membrane bound structures within a cell that function by interacting with cytosolic and luminal soluble proteins making the protein composition of each organelle dynamic. Depending on organism, the total number of organelles within a cell varies, indicating their evolution with respect to protein number and function. For example, one of the striking differences between plant and animal cells is the plastids in plants. Organelles have their own proteins, and few organelles like mitochondria and chloroplast have their own genome to synthesize proteins for specific function and also require nuclear-encoded proteins. Enormous work has been performed on animal organelle proteomics. However, plant organelle proteomics has seen limited work mainly due to: (i) inter-plant and inter-tissue complexity, (ii) difficulties in isolation of subcellular compartments, and (iii) their enrichment and purity. Despite these concerns, the field of organelle proteomics is growing in plants, such as Arabidopsis, rice and maize. The available data are beginning to help better understand organelles and their distinct and/or overlapping functions in different plant tissues, organs or cell types, and more importantly, how protein components of organelles behave during development and with surrounding environments. Studies on organelles have provided a few good reviews, but none of them are comprehensive. Here, we present a comprehensive review on plant organelle proteomics starting from the significance of organelle in cells, to organelle isolation, to protein identification and to biology and beyond. To put together such a systematic, in-depth review and to translate acquired knowledge in a proper and adequate form, we join minds to provide discussion and viewpoints on the collaborative nature of organelles in

  15. The Xanthomonas effector XopJ triggers a conditional hypersensitive response upon treatment of N. benthamiana leaves with salicylic acid

    Directory of Open Access Journals (Sweden)

    Suayib eÜstün

    2015-08-01

    Full Text Available XopJ is a Xanthomonas type III effector protein that promotes bacterial virulence on susceptible pepper plants through the inhibition of the host cell proteasome and a resultant suppression of salicylic acid (SA – dependent defense responses. We show here that Nicotiana benthamiana leaves transiently expressing XopJ display hypersensitive response (HR –like symptoms when exogenously treated with SA. This apparent avirulence function of XopJ was further dependent on effector myristoylation as well as on an intact catalytic triad, suggesting a requirement of its enzymatic activity for HR-like symptom elicitation. The ability of XopJ to cause a HR-like symptom development upon SA treatment was lost upon silencing of SGT1 and NDR1, respectively, but was independent of EDS1 silencing, suggesting that XopJ is recognized by an R protein of the CC-NBS-LRR class. Furthermore, silencing of NPR1 abolished the elicitation of HR-like symptoms in XopJ expressing leaves after SA application. Measurement of the proteasome activity indicated that proteasome inhibition by XopJ was alleviated in the presence of SA, an effect that was not observed in NPR1 silenced plants. Our results suggest that XopJ - triggered HR-like symptoms are closely related to the virulence function of the effector and that XopJ follows a two-signal model in order to elicit a response in the non-host plant N. benthamiana.

  16. The Xanthomonas effector XopJ triggers a conditional hypersensitive response upon treatment of N. benthamiana leaves with salicylic acid.

    Science.gov (United States)

    Üstün, Suayib; Bartetzko, Verena; Börnke, Frederik

    2015-01-01

    XopJ is a Xanthomonas type III effector protein that promotes bacterial virulence on susceptible pepper plants through the inhibition of the host cell proteasome and a resultant suppression of salicylic acid (SA) - dependent defense responses. We show here that Nicotiana benthamiana leaves transiently expressing XopJ display hypersensitive response (HR) -like symptoms when exogenously treated with SA. This apparent avirulence function of XopJ was further dependent on effector myristoylation as well as on an intact catalytic triad, suggesting a requirement of its enzymatic activity for HR-like symptom elicitation. The ability of XopJ to cause a HR-like symptom development upon SA treatment was lost upon silencing of SGT1 and NDR1, respectively, but was independent of EDS1 silencing, suggesting that XopJ is recognized by an R protein of the CC-NBS-LRR class. Furthermore, silencing of NPR1 abolished the elicitation of HR-like symptoms in XopJ expressing leaves after SA application. Measurement of the proteasome activity indicated that proteasome inhibition by XopJ was alleviated in the presence of SA, an effect that was not observed in NPR1 silenced plants. Our results suggest that XopJ - triggered HR-like symptoms are closely related to the virulence function of the effector and that XopJ follows a two-signal model in order to elicit a response in the non-host plant N. benthamiana.

  17. Right Time, Right Place : Probing the Functions of Organelle Positioning

    NARCIS (Netherlands)

    van Bergeijk, Petra; Hoogenraad, Casper C; Kapitein, Lukas C

    2016-01-01

    The proper spatial arrangement of organelles underlies many cellular processes including signaling, polarization, and growth. Despite the importance of local positioning, the precise connection between subcellular localization and organelle function is often not fully understood. To address this, re

  18. Proteomics of a fuzzy organelle: interphase chromatin

    Science.gov (United States)

    Kustatscher, Georg; Hégarat, Nadia; Wills, Karen L H; Furlan, Cristina; Bukowski-Wills, Jimi-Carlo; Hochegger, Helfrid; Rappsilber, Juri

    2014-01-01

    Chromatin proteins mediate replication, regulate expression, and ensure integrity of the genome. So far, a comprehensive inventory of interphase chromatin has not been determined. This is largely due to its heterogeneous and dynamic composition, which makes conclusive biochemical purification difficult, if not impossible. As a fuzzy organelle, it defies classical organellar proteomics and cannot be described by a single and ultimate list of protein components. Instead, we propose a new approach that provides a quantitative assessment of a protein's probability to function in chromatin. We integrate chromatin composition over a range of different biochemical and biological conditions. This resulted in interphase chromatin probabilities for 7635 human proteins, including 1840 previously uncharacterized proteins. We demonstrate the power of our large-scale data-driven annotation during the analysis of cyclin-dependent kinase (CDK) regulation in chromatin. Quantitative protein ontologies may provide a general alternative to list-based investigations of organelles and complement Gene Ontology. PMID:24534090

  19. Eukaryotic protein production in designed storage organelles

    Directory of Open Access Journals (Sweden)

    Saloheimo Markku

    2009-01-01

    Full Text Available Abstract Background Protein bodies (PBs are natural endoplasmic reticulum (ER or vacuole plant-derived organelles that stably accumulate large amounts of storage proteins in seeds. The proline-rich N-terminal domain derived from the maize storage protein γ zein (Zera is sufficient to induce PBs in non-seed tissues of Arabidopsis and tobacco. This Zera property opens up new routes for high-level accumulation of recombinant proteins by fusion of Zera with proteins of interest. In this work we extend the advantageous properties of plant seed PBs to recombinant protein production in useful non-plant eukaryotic hosts including cultured fungal, mammalian and insect cells. Results Various Zera fusions with fluorescent and therapeutic proteins accumulate in induced PB-like organelles in all eukaryotic systems tested: tobacco leaves, Trichoderma reesei, several mammalian cultured cells and Sf9 insect cells. This accumulation in membranous organelles insulates both recombinant protein and host from undesirable activities of either. Recombinant protein encapsulation in these PBs facilitates stable accumulation of proteins in a protected sub-cellular compartment which results in an enhancement of protein production without affecting the viability and development of stably transformed hosts. The induced PBs also retain the high-density properties of native seed PBs which facilitate the recovery and purification of the recombinant proteins they contain. Conclusion The Zera sequence provides an efficient and universal means to produce recombinant proteins by accumulation in ER-derived organelles. The remarkable cross-kingdom conservation of PB formation and their biophysical properties should have broad application in the manufacture of non-secreted recombinant proteins and suggests the existence of universal ER pathways for protein insulation.

  20. Dynamic triggering

    Science.gov (United States)

    Hill, David P.; Prejean, Stephanie; Schubert, Gerald

    2015-01-01

    Dynamic stresses propagating as seismic waves from large earthquakes trigger a spectrum of responses at global distances. In addition to locally triggered earthquakes in a variety of tectonic environments, dynamic stresses trigger tectonic (nonvolcanic) tremor in the brittle–plastic transition zone along major plate-boundary faults, activity changes in hydrothermal and volcanic systems, and, in hydrologic domains, changes in spring discharge, water well levels, soil liquefaction, and the eruption of mud volcanoes. Surface waves with periods of 15–200 s are the most effective triggering agents; body-wave trigger is less frequent. Triggering dynamic stresses can be < 1 kPa.

  1. The mitochondrion-like organelle of Trimastix pyriformis contains the complete glycine cleavage system.

    Directory of Open Access Journals (Sweden)

    Zuzana Zubáčová

    Full Text Available All eukaryotic organisms contain mitochondria or organelles that evolved from the same endosymbiotic event like classical mitochondria. Organisms inhabiting low oxygen environments often contain mitochondrial derivates known as hydrogenosomes, mitosomes or neutrally as mitochondrion-like organelles. The detailed investigation has shown unexpected evolutionary plasticity in the biochemistry and protein composition of these organelles in various protists. We investigated the mitochondrion-like organelle in Trimastix pyriformis, a free-living member of one of the three lineages of anaerobic group Metamonada. Using 454 sequencing we have obtained 7 037 contigs from its transcriptome and on the basis of sequence homology and presence of N-terminal extensions we have selected contigs coding for proteins that putatively function in the organelle. Together with the results of a previous transcriptome survey, the list now consists of 23 proteins - mostly enzymes involved in amino acid metabolism, transporters and maturases of proteins and transporters of metabolites. We have no evidence of the production of ATP in the mitochondrion-like organelle of Trimastix but we have obtained experimental evidence for the presence of enzymes of the glycine cleavage system (GCS, which is part of amino acid metabolism. Using homologous antibody we have shown that H-protein of GCS localizes into vesicles in the cell of Trimastix. When overexpressed in yeast, H- and P-protein of GCS and cpn60 were transported into mitochondrion. In case of H-protein we have demonstrated that the first 16 amino acids are necessary for this transport. Glycine cleavage system is at the moment the only experimentally localized pathway in the mitochondrial derivate of Trimastix pyriformis.

  2. Organelle communication: signaling crossroads between homeostasis and disease.

    Science.gov (United States)

    Bravo-Sagua, Roberto; Torrealba, Natalia; Paredes, Felipe; Morales, Pablo E; Pennanen, Christian; López-Crisosto, Camila; Troncoso, Rodrigo; Criollo, Alfredo; Chiong, Mario; Hill, Joseph A; Simmen, Thomas; Quest, Andrew F; Lavandero, Sergio

    2014-05-01

    Cellular organelles do not function as isolated or static units, but rather form dynamic contacts between one another that can be modulated according to cellular needs. The physical interfaces between organelles are important for Ca2+ and lipid homeostasis, and serve as platforms for the control of many essential functions including metabolism, signaling, organelle integrity and execution of the apoptotic program. Emerging evidence also highlights the importance of organelle communication in disorders such as Alzheimer's disease, pulmonary arterial hypertension, cancer, skeletal and cardiac muscle dysfunction. Here, we provide an overview of the current literature on organelle communication and the link to human pathologies. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Stochastic Model of Maturation and Vesicular Exchange in Cellular Organelles

    CERN Document Server

    Vagne, Quentin

    2016-01-01

    The dynamical organization of membrane-bound organelles along intracellular transport pathways relies on vesicular exchange between organelles and on biochemical maturation of the organelle content by specific enzymes. The relative importance of each mechanism in controlling organelle dynamics remains controversial, in particular for transport through the Golgi apparatus. Using a stochastic model, we show that full maturation of membrane-bound compartments can be seen as the stochastic escape from a steady-state in which export is dominated by vesicular exchange. We show that full maturation can contribute a significant fraction of the total out-flux for small organelles such as endosomes and Golgi cisternae.

  4. Analyzing Lysosome-Related Organelles by Electron Microscopy

    KAUST Repository

    Hurbain, Ilse

    2017-04-29

    Intracellular organelles have a particular morphological signature that can only be appreciated by ultrastructural analysis at the electron microscopy level. Optical imaging and associated methodologies allow to explore organelle localization and their dynamics at the cellular level. Deciphering the biogenesis and functions of lysosomes and lysosome-related organelles (LROs) and their dysfunctions requires their visualization and detailed characterization at high resolution by electron microscopy. Here, we provide detailed protocols for studying LROs by transmission electron microscopy. While conventional electron microscopy and its recent improvements is the method of choice to investigate organelle morphology, immunoelectron microscopy allows to localize organelle components and description of their molecular make up qualitatively and quantitatively.

  5. Multicompartment Artificial Organelles Conducting Enzymatic Cascade Reactions inside Cells

    DEFF Research Database (Denmark)

    Gallardo, Maria Godoy; Labay, Cédric Pierre; Trikalitis, Vasileios

    2017-01-01

    Cell organelles are subcellular structures entrapping a set of enzymes to achieve a specific functionality. The incorporation of artificial organelles into cells is a novel medical paradigm which might contribute to the treatment of various cell disorders by replacing malfunctioning organelles....... In particular, artificial organelles are expected to be a powerful solution in the context of enzyme replacement therapy since enzymatic malfunction is the primary cause of organelle dysfunction. Although several attempts have been made to encapsulate enzymes within a carrier vehicle, only few intracellularly...... active artificial organelles have been reported to date and they all consist of single-compartment carriers. However, it is noted that biological organelles consist of multicompartment architectures where enzymatic reactions are executed within distinct subcompartments. Compartmentalization allows...

  6. Widespread occurrence of organelle genome-encoded 5S rRNAs including permuted molecules.

    Science.gov (United States)

    Valach, Matus; Burger, Gertraud; Gray, Michael W; Lang, B Franz

    2014-12-16

    5S Ribosomal RNA (5S rRNA) is a universal component of ribosomes, and the corresponding gene is easily identified in archaeal, bacterial and nuclear genome sequences. However, organelle gene homologs (rrn5) appear to be absent from most mitochondrial and several chloroplast genomes. Here, we re-examine the distribution of organelle rrn5 by building mitochondrion- and plastid-specific covariance models (CMs) with which we screened organelle genome sequences. We not only recover all organelle rrn5 genes annotated in GenBank records, but also identify more than 50 previously unrecognized homologs in mitochondrial genomes of various stramenopiles, red algae, cryptomonads, malawimonads and apusozoans, and surprisingly, in the apicoplast (highly derived plastid) genomes of the coccidian pathogens Toxoplasma gondii and Eimeria tenella. Comparative modeling of RNA secondary structure reveals that mitochondrial 5S rRNAs from brown algae adopt a permuted triskelion shape that has not been seen elsewhere. Expression of the newly predicted rrn5 genes is confirmed experimentally in 10 instances, based on our own and published RNA-Seq data. This study establishes that particularly mitochondrial 5S rRNA has a much broader taxonomic distribution and a much larger structural variability than previously thought. The newly developed CMs will be made available via the Rfam database and the MFannot organelle genome annotator. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  7. Physiological role of taurine--from organism to organelle.

    Science.gov (United States)

    Lambert, I H; Kristensen, D M; Holm, J B; Mortensen, O H

    2015-01-01

    Taurine is often referred to as a semi-essential amino acid as newborn mammals have a limited ability to synthesize taurine and have to rely on dietary supply. Taurine is not thought to be incorporated into proteins as no aminoacyl tRNA synthetase has yet been identified and is not oxidized in mammalian cells. However, taurine contributes significantly to the cellular pool of organic osmolytes and has accordingly been acknowledged for its role in cell volume restoration following osmotic perturbation. This review describes taurine homeostasis in cells and organelles with emphasis on taurine biophysics/membrane dynamics, regulation of transport proteins involved in active taurine uptake and passive taurine release as well as physiological processes, for example, development, lung function, mitochondrial function, antioxidative defence and apoptosis which seem to be affected by a shift in the expression of the taurine transporters and/or the cellular taurine content. © 2014 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  8. The influence of nanotopography on organelle organization and communication

    Institute of Scientific and Technical Information of China (English)

    Wen Song; Mengqi Shi; Bei Chang; Mingdong Dong; Yumei Zhang

    2016-01-01

    Cellular differentiation can be affected by the extracellular environment,particularly extracellular substrates.The nanotopography of the substrate may be involved in the mechanisms of cellular differentiation in vivo.Organelles are major players in various cellular functions;however,the influence of nanotopography on organelles has not yet been elucidated.In the present study,a micropit-nanotube topography (MNT) was fabricated on the titanium surface,and organelle-specific fluorescent probes were used to detect the intracellular organelle organization of MG63 cells.Communication between organelles,identified by organelle-specific GTPase expression,was evaluated by quantitative polymerase chain reaction and western blotting.Transmission electron microscopy was performed to evaluate the organelle structure.There were no significant differences in organelle distribution or number between the MNT and flat surface.However,organelle-specific GTPases on the MNT were dramatically downregulated.In addition,obvious endoplasmic reticulum lumen dilation was observed on the MNT surface,and the unfolded protein response (UPR)was also initiated.Regarding the relationships among organelle trafficking,UPR,and osteogenic differentiation,our findings may provide important insights into the signal transduction induced by nanotopography.

  9. Lipid composition of organelles from germinating castor bean endosperm

    Energy Technology Data Exchange (ETDEWEB)

    Donaldson, R.P.; Beevers, H.

    1977-02-01

    Glyoxysome, endoplasmic reticulum, mitochondria, and proplastid fractions were isolated from endosperm of castor beans (Ricinus communis) germinated for 5 days at 30 C. Samples from sucrose density gradients were diluted with 0.15 M KCl and the membranes pelleted. Lipid extracts of these membranes were analyzed for phosphoglyceride, acyl lipid, and sterol content. The endoplasmic reticulum contains 1.24 ..mu..mol of phosphoglyceride per mg of protein; the mitochondria, 0.65 ..mu..mol/mg; and the glyoxysome membranes, 0.55 ..mu..mol/mg. Phosphatidyl choline and phosphatidyl ethanolamine are the most abundant lipids in all membranes studied, accounting for 70% or more of the lipid phosphorus and 50% or more of the fatty acid. Glyoxysome membranes and endoplasmic reticulum also contain phosphatidyl inositol (respectively, 9 and 17% of the lipid phosphorus) and free fatty acids (13% of the total fatty acid in each). Compared with other organelles, mitochondrial membranes have more phosphatidyl ethanolamine relative to phosphatidyl choline and are characterized by the presence of cardiolipin, in which 80% of the fatty acid is linoleate. The relative amounts of linoleate, palmitate, oleate, stearate, and linolenate in each of the phosphotoglycerides are constant regardless of the membrane source. Stimasgasterol and ..beta..-sitosterol are present in the membranes (1 to 9 nmol each/mg protein). The data provide further evidence that glyoxysome membranes are derived from the endoplasmic reticulum but at the same time indicate some differentiation.

  10. The evolution of per-cell organelle number

    Directory of Open Access Journals (Sweden)

    Logan W. Cole

    2016-08-01

    Full Text Available Organelles with their own distinct genomes, such as plastids and mitochondria, are found in most eukaryotic cells. As these organelles and their host cells have evolved, the partitioning of metabolic processes and the encoding of interacting gene products have created an obligate codependence. This relationship has played a role in shaping the number of organelles in cells through evolution. Factors such as stochastic evolutionary forces acting on genes involved in organelle biogenesis, organelle-nuclear gene interactions, and physical limitations may, to varying degrees, dictate the selective constraint that per-cell organelle number is under. In particular, coordination between nuclear and organellar gene expression may be important in maintaining gene product stoichiometry, which may have a significant role in constraining the evolution of this trait.

  11. Reversible conformational change in herpes simplex virus glycoprotein B with fusion-from-without activity is triggered by mildly acidic pH

    Directory of Open Access Journals (Sweden)

    Nicola Anthony V

    2010-12-01

    Full Text Available Abstract Background The pre-fusion form of the herpes simplex virus (HSV fusion protein gB undergoes pH-triggered conformational change in vitro and during viral entry (Dollery et al., J. Virol. 84:3759-3766, 2010. The antigenic structure of gB from the fusion-from-without (FFWO strain of HSV-1, ANG path, resembles wild type gB that has undergone pH-triggered changes. Together, changes in the antigenic and oligomeric conformation of gB correlate with fusion activity. We tested whether the pre-fusion form of FFWO gB undergoes altered conformational change in response to low pH. Results A pH of 5.5 - 6.0 altered the conformation of Domains I and V of FFWO gB, which together comprise the functional region containing the hydrophobic fusion loops. The ANG path gB oligomer was altered at a similar pH. All changes were reversible. In wild type HSV lacking the UL45 protein, which has been implicated in gB-mediated fusion, gB still underwent pH-triggered changes. ANG path entry was inactivated by pretreatment of virions with low pH. Conclusion The pre-fusion conformation of gB with enhanced fusion activity undergoes alteration in antigenic structure and oligomeric conformation in response to acidic pH. We propose that endosomal pH triggers conformational change in mutant gB with FFWO activity in a manner similar to wild type. Differences apart from this trigger may account for the increased fusion activity of FFWO gB.

  12. Requirements and standards for organelle genome databases

    Energy Technology Data Exchange (ETDEWEB)

    Boore, Jeffrey L.

    2006-01-09

    Mitochondria and plastids (collectively called organelles)descended from prokaryotes that adopted an intracellular, endosymbioticlifestyle within early eukaryotes. Comparisons of their remnant genomesaddress a wide variety of biological questions, especially when includingthe genomes of their prokaryotic relatives and the many genes transferredto the eukaryotic nucleus during the transitions from endosymbiont toorganelle. The pace of producing complete organellar genome sequences nowmakes it unfeasible to do broad comparisons using the primary literatureand, even if it were feasible, it is now becoming uncommon for journalsto accept detailed descriptions of genome-level features. Unfortunatelyno database is currently useful for this task, since they have littlestandardization and are riddled with error. Here I outline what iscurrently wrong and what must be done to make this data useful to thescientific community.

  13. Apoptotic death sensor: an organelle's alter ego?

    Science.gov (United States)

    Bratton, S B; Cohen, G M

    2001-06-01

    Caspases are intracellular cysteine proteases that are primarily responsible for the stereotypic morphological and biochemical changes that are associated with apoptosis. Caspases are often activated by the apoptotic protease-activating factor 1 (APAF-1) apoptosome, a complex that is formed following mitochondrial release of cytochrome c in response to many death-inducing stimuli. Both pro- and anti-apoptotic BCL-2 family members regulate apoptosis, primarily by their effects on mitochondria, whereas many inhibitor of apoptosis proteins (IAPs) regulate apoptosis by directly inhibiting distinct caspases. Exposure of cells to chemicals and radiation, as well as loss of trophic stimuli, perturb cellular homeostasis and, depending on the type of cellular stress, particular or multiple organelles appear to 'sense' the damage and signal the cell to undergo apoptosis by stimulating the formation of unique and/or common caspase-activating complexes.

  14. Omega-3 Polyunsaturated Fatty Acids Trigger Cell Cycle Arrest and Induce Apoptosis in Human Neuroblastoma LA-N-1 Cells

    OpenAIRE

    Wai Wing So; Wai Nam Liu; Kwok Nam Leung

    2015-01-01

    Omega-3 (n-3) fatty acids are dietary long-chain fatty acids with an array of health benefits. Previous research has demonstrated the growth-inhibitory effect of n-3 fatty acids on different cancer cell lines in vitro, yet their anti-tumor effects and underlying action mechanisms on human neuroblastoma LA-N-1 cells have not yet been reported. In this study, we showed that docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) exhibited time- and concentration-dependent anti-proliferative ...

  15. Mechanisms of organelle division and inheritance and their implications regarding the origin of eukaryotic cells

    OpenAIRE

    Kuroiwa, Tsuneyoshi

    2010-01-01

    Mitochondria and plastids have their own DNAs and are regarded as descendants of endosymbiotic prokaryotes. Organellar DNAs are not naked in vivo but are associated with basic proteins to form DNA-protein complexes (called organelle nuclei). The concept of organelle nuclei provides a new approach to explain the origin, division, and inheritance of organelles. Organelles divide using organelle division rings (machineries) after organelle-nuclear division. Organelle division machineries are a c...

  16. Comamonas testosteroni uses a chemoreceptor for tricarboxylic acid cycle intermediates to trigger chemotactic responses towards aromatic compounds.

    Science.gov (United States)

    Ni, Bin; Huang, Zhou; Fan, Zheng; Jiang, Cheng-Ying; Liu, Shuang-Jiang

    2013-11-01

    Bacterial chemotaxis towards aromatic compounds has been frequently observed; however, knowledge of how bacteria sense aromatic compounds is limited. Comamonas testosteroni CNB-1 is able to grow on a range of aromatic compounds. This study investigated the chemotactic responses of CNB-1 to 10 aromatic compounds. We constructed a chemoreceptor-free, non-chemotactic mutant, CNB-1Δ20, by disruption of all 19 putative methyl-accepting chemotaxis proteins (MCPs) and the atypical chemoreceptor in strain CNB-1. Individual complementation revealed that a putative MCP (tagged MCP2201) was involved in triggering chemotaxis towards all 10 aromatic compounds. The recombinant sensory domain of MCP2201 did not bind to 3- or 4-hydroxybenzoate, protocatechuate, catechol, benzoate, vanillate and gentisate, but bound oxaloacetate, citrate, cis-aconitate, isocitrate, α-ketoglutarate, succinate, fumarate and malate. The mutant CNB-1ΔpmdF that lost the ability to metabolize 4-hydroxybenzoate and protocatechuate also lost its chemotactic response to these compounds, suggesting that taxis towards aromatic compounds is metabolism-dependent. Based on the ligand profile, we proposed that MCP2201 triggers taxis towards aromatic compounds by sensing TCA cycle intermediates. Our hypothesis was further supported by the finding that introduction of the previously characterized pseudomonad chemoreceptor (McpS) for TCA cycle intermediates into CNB-1Δ20 likewise triggered chemotaxis towards aromatic compounds.

  17. Peroxisomes as dynamic organelles : peroxisome abundance in yeast

    NARCIS (Netherlands)

    Saraya, Ruchi; Veenhuis, Marten; van der Klei, Ida J.

    2010-01-01

    Peroxisomes are cell organelles that are present in almost all eukaryotic cells and involved in a large range of metabolic pathways. The organelles are highly dynamic in nature: their number and enzyme content is highly variable and continuously adapts to prevailing environmental conditions. This re

  18. Lipid Bodies: Inflammatory Organelles Implicated in Host-Trypanosoma cruzi Interplay during Innate Immune Responses

    Directory of Open Access Journals (Sweden)

    Heloisa D'Avila

    2012-01-01

    Full Text Available The flagellated protozoa Trypanosoma cruzi is the causal agent of Chagas' disease, a significant public health issue and still a major cause of morbidity and mortality in Latin America. Acute Chagas' disease elicits a strong inflammatory response. In order to control the parasite multiplication, cells of the monocytic lineage are highly mobilized. Monocyte differentiation leads to the formation of phagocytosing macrophages, which are strongly activated and direct host defense. A distinguishing feature of Chagas' disease-triggered macrophages is the presence of increased numbers of distinct cytoplasmic organelles termed lipid bodies or lipid droplets. These organelles are actively formed in response to the parasite and are sites for synthesis and storage of inflammatory mediators. This review covers current knowledge on lipid bodies elicited by the acute Chagas' disease within inflammatory macrophages and discusses the role of these organelles in inflammation. The increased knowledge of lipid bodies in pathogenic mechanisms of infections may not only contribute to the understanding of pathogen-host interactions but may also identify new targets for intervention.

  19. Acidic pH-Triggered Drug-Eluting Nanocomposites for Magnetic Resonance Imaging-Monitored Intra-arterial Drug Delivery to Hepatocellular Carcinoma.

    Science.gov (United States)

    Park, Wooram; Chen, Jeane; Cho, Soojeong; Park, Sin-Jung; Larson, Andrew C; Na, Kun; Kim, Dong-Hyun

    2016-05-25

    Transcatheter hepatic intra-arterial (IA) injection has been considered as an effective targeted delivery technique for hepatocellular carcinoma (HCC). Recently, drug-eluting beads (DEB) were developed for transcatheter IA delivery to HCC. However, the conventional DEB has offered relatively modest survival benefits. It can be difficult to control drug loading/release from DEB and to monitor selective delivery to the targeted tumors. Embolized DEBs in hepatic arteries frequently induce hypoxic and low pH conditions, promoting cancer cell growth. In this study, an acidic pH-triggered drug-eluting nanocomposite (pH-DEN) including superparamagnetic iron oxide nanocubes and pH-responsive synthetic peptides with lipid tails [octadecylamine-p(API-l-Asp)10] was developed for magnetic resonance imaging (MRI)-monitored transcatheter delivery of sorafenib (the only FDA-approved systemic therapy for liver cancer) to HCC. The synthesized sorafenib-loaded pH-DENs exhibited distinct pH-triggered drug release behavior at acidic pH levels and highly sensitive MR contrast effects. In an orthotopic HCC rat model, successful hepatic IA delivery and distribution of sorafenib-loaded pH-DEN was confirmed with MRI. IA-delivered sorafenib-loaded pH-DENs elicited significant tumor growth inhibition in a rodent HCC model. These results indicate that the sorafenib-pH-DENs platform has the potential to be used as an advanced tool for liver-directed IA treatment of unresectable HCC.

  20. Mitochondria: Target organelles for estrogen action

    Directory of Open Access Journals (Sweden)

    Małgorzata Chmielewska

    2017-06-01

    Full Text Available Estrogens belong to a group of sex hormones, which have been shown to act in multidirectional way. Estrogenic effects are mediated by two types of intracellular receptors: estrogen receptor 1 (ESR1 and estrogen receptor 2 (ESR2. There are two basic mechanisms of estrogen action: 1 classical-genomic, in which the ligand-receptor complex acts as a transcriptional factor and 2 a nongenomic one, which is still not fully understood, but has been seen to lead to distinct biological effects, depending on tissue and ligand type. It is postulated that nongenomic effects may be associated with membrane signaling and the presence of classical nuclear receptors within the cell membrane. Estrogens act in a multidirectional way also within cell organelles. It is assumed that there is a mechanism which manages the migration of ESR into the mitochondrial membrane, wherein the exogenous estrogen affect the morphology of mitochondria. Estrogen, through its receptor, can directly modulate mitochondrial gene expression. Moreover, by regulating the level of reactive oxygen species, estrogens affect the biology of mitochondria. The considerations presented in this paper indicate the pleiotropic effects of estrogens, which represent a multidirectional pathway of signal transduction.

  1. Environmentally triggered genomic plasticity and capsular polysaccharide formation are involved in increased ethanol and acetic acid tolerance in Kozakia baliensis NBRC 16680.

    Science.gov (United States)

    Brandt, Julia U; Born, Friederike-Leonie; Jakob, Frank; Vogel, Rudi F

    2017-08-10

    Kozakia baliensis NBRC 16680 secretes a gum-cluster derived heteropolysaccharide and forms a surface pellicle composed of polysaccharides during static cultivation. Furthermore, this strain exhibits two colony types on agar plates; smooth wild-type (S) and rough mutant colonies (R). This switch is caused by a spontaneous transposon insertion into the gumD gene of the gum-cluster, resulting in a heteropolysaccharide secretion deficient, rough phenotype. To elucidate, whether this is a directed switch triggered by environmental factors, we checked the number of R and S colonies under different growth conditions including ethanol and acetic acid supplementation. Furthermore, we investigated the tolerance of R and S strains against ethanol and acetic acid in shaking and static growth experiments. To get new insights into the composition and function of the pellicle polysaccharide, the polE gene of the R strain was additionally deleted, as it was reported to be involved in pellicle formation in other acetic acid bacteria. The number of R colonies was significantly increased upon growth on acetic acid and especially ethanol. The morphological change from K. baliensis NBRC 16680 S to R strain was accompanied by changes in the sugar contents of the produced pellicle EPS. The R:ΔpolE mutant strain was not able to form a regular pellicle anymore, but secreted an EPS into the medium, which exhibited a similar sugar monomer composition as the pellicle polysaccharide isolated from the R strain. The R strain had a markedly increased tolerance towards acetic acid and ethanol compared to the other NBRC 16680 strains (S, R:ΔpolE). A relatively high intrinsic acetic acid tolerance was also observable for K. baliensis DSM 14400(T), which might indicate diverse adaptation mechanisms of different K. baliensis strains in altering natural habitats. The results suggest that the genetically triggered R phenotype formation is directly related to increased acetic acid and ethanol

  2. Hsp60 is targeted to a cryptic mitochondrion-derived organelle ("crypton") in the microaerophilic protozoan parasite Entamoeba histolytica.

    Science.gov (United States)

    Mai, Z; Ghosh, S; Frisardi, M; Rosenthal, B; Rogers, R; Samuelson, J

    1999-03-01

    Entamoeba histolytica is a microaerophilic protozoan parasite in which neither mitochondria nor mitochondrion-derived organelles have been previously observed. Recently, a segment of an E. histolytica gene was identified that encoded a protein similar to the mitochondrial 60-kDa heat shock protein (Hsp60 or chaperonin 60), which refolds nuclear-encoded proteins after passage through organellar membranes. The possible function and localization of the amebic Hsp60 were explored here. Like Hsp60 of mitochondria, amebic Hsp60 RNA and protein were both strongly induced by incubating parasites at 42 degreesC. 5' and 3' rapid amplifications of cDNA ends were used to obtain the entire E. histolytica hsp60 coding region, which predicted a 536-amino-acid Hsp60. The E. histolytica hsp60 gene protected from heat shock Escherichia coli groEL mutants, demonstrating the chaperonin function of the amebic Hsp60. The E. histolytica Hsp60, which lacked characteristic carboxy-terminal Gly-Met repeats, had a 21-amino-acid amino-terminal, organelle-targeting presequence that was cleaved in vivo. This presequence was necessary to target Hsp60 to one (and occasionally two or three) short, cylindrical organelle(s). In contrast, amebic alcohol dehydrogenase 1 and ferredoxin, which are bacteria-like enzymes, were diffusely distributed throughout the cytosol. We suggest that the Hsp60-associated, mitochondrion-derived organelle identified here be named "crypton," as its structure was previously hidden and its function is still cryptic.

  3. Triggering Klystrons

    Energy Technology Data Exchange (ETDEWEB)

    Stefan, Kelton D.; /Purdue U. /SLAC

    2010-08-25

    To determine if klystrons will perform to the specifications of the LCLS (Linac Coherent Light Source) project, a new digital trigger controller is needed for the Klystron/Microwave Department Test Laboratory. The controller needed to be programmed and Windows based user interface software needed to be written to interface with the device over a USB (Universal Serial Bus). Programming the device consisted of writing logic in VHDL (VHSIC (Very High Speed Integrated Circuits) hardware description language), and the Windows interface software was written in C++. Xilinx ISE (Integrated Software Environment) was used to compile the VHDL code and program the device, and Microsoft Visual Studio 2005 was used to compile the C++ based Windows software. The device was programmed in such a way as to easily allow read/write operations to it using a simple addressing model, and Windows software was developed to interface with the device over a USB connection. A method of setting configuration registers in the trigger device is absolutely necessary to the development of a new triggering system, and the method developed will fulfill this need adequately. More work is needed before the new trigger system is ready for use. The configuration registers in the device need to be fully integrated with the logic that will generate the RF signals, and this system will need to be tested extensively to determine if it meets the requirements for low noise trigger outputs.

  4. Are kinesins required for organelle trafficking in plant cells?

    Directory of Open Access Journals (Sweden)

    Giampiero eCai

    2012-07-01

    Full Text Available Plant cells exhibit active movement of membrane-bounded materials, which is more pronounced in large cells but is also appreciable in medium-sized cells and in tip-growing cells (such as pollen tubes and root hairs. Trafficking of organelles (such as Golgi bodies, endoplasmic reticulum, peroxisomes, and mitochondria and vesicles is essential for plant cell physiology and allows a more or less homogeneous distribution of the cell content. It is well established that the long-range trafficking of organelles is dependent essentially on the network of actin filaments and is powered by the enzyme activity of myosins. However, some lines of evidence suggest that microtubules and members of the kinesin microtubule-based motor superfamily might have a role in the positioning and/or short-range movement of cell organelles and vesicles. Data collected in different cells (such as trichomes and pollen tubes, in specific stages of the plant cell life cycle (for example during phragmoplast development and for different organelle classes (mitochondria, Golgi bodies and chloroplasts encourage the hypothesis that microtubule-based motors might play subtle yet unclarified roles in organelle trafficking. In some cases, this function could be carried out in cooperation with actin filaments according to the model of functional cooperation by which motors of different families are associated with the organelle surface. Since available data did not provide an unambiguous conclusion with regard to the role of kinesins in organelle transport, here we want to debate such hypothesis.

  5. The bacterial magnetosome: a unique prokaryotic organelle.

    Science.gov (United States)

    Lower, Brian H; Bazylinski, Dennis A

    2013-01-01

    The bacterial magnetosome is a unique prokaryotic organelle comprising magnetic mineral crystals surrounded by a phospholipid bilayer. These inclusions are biomineralized by the magnetotactic bacteria which are ubiquitous, aquatic, motile microorganisms. Magnetosomes cause cells of magnetotactic bacteria to passively align and swim along the Earth's magnetic field lines, as miniature motile compass needles. These specialized compartments consist of a phospholipid bilayer membrane surrounding magnetic crystals of magnetite (Fe3O4) or greigite (Fe3S4). The morphology of these membrane-bound crystals varies by species with a nominal magnetic domain size between 35 and 120 nm. Almost all magnetotactic bacteria arrange their magnetosomes in a chain within the cell there by maximizing the magnetic dipole moment of the cell. It is presumed that magnetotactic bacteria use magnetotaxis in conjunction with chemotaxis to locate and maintain an optimum position for growth and survival based on chemistry, redox and physiology in aquatic habitats with vertical chemical concentration and redox gradients. The biosynthesis of magnetosomes is a complex process that involves several distinct steps including cytoplasmic membrane modifications, iron uptake and transport, initiation of crystallization, crystal maturation and magnetosome chain formation. While many mechanistic details remain unresolved, magnetotactic bacteria appear to contain the genetic determinants for magnetosome biomineralization within their genomes in clusters of genes that make up what is referred to as the magnetosome gene island in some species. In addition, magnetosomes contain a unique set of proteins, not present in other cellular fractions, which control the biomineralization process. Through the development of genetic systems, proteomic and genomic work, and the use of molecular and biochemical tools, the functions of a number of magnetosome membrane proteins have been demonstrated and the molecular

  6. Putting On The Breaks: Regulating Organelle Movements in Plant Cells

    Institute of Scientific and Technical Information of China (English)

    Julianna K.Vick; Andreas Nebenführ

    2012-01-01

    A striking characteristic of plant cells is that their organelles can move rapidly through the cell.This movement,commonly referred to as cytoplasmic streaming,has been observed for over 200 years,but we are only now beginning to decipher the mechanisms responsible for it.The identification of the myosin motor proteins responsible for these movements allows us to probe the regulatory events that coordinate organelle displacement with normal cell physiology.This review will highlight several recent developments that have provided new insight into the regulation of organelle movement,both at the cellular level and at the molecular level.

  7. The intracellular cyanobacteria of Paulinella chromatophora: endosymbionts or organelles?

    Science.gov (United States)

    Bodył, Andrzej; Mackiewicz, Paweł; Stiller, John W

    2007-07-01

    Endosymbiotic relationships are common across the tree of life and have had profound impacts on cellular evolution and diversity. Recent molecular investigations of the amoeba Paulinella chromatophora have raised a timely and important question: should obligatory intracellular cyanobacteria in Paulinella be considered new organelles, or do plastids and mitochondria hold a unique stature in the history of endosymbiotic events? We argue that drawing a sharp distinction between these two organelles and all other endosymbionts is not supported by accumulating data, neither is it a productive framework for investigating organelle evolution.

  8. Novel pH-sensitive polysialic acid based polymeric micelles for triggered intracellular release of hydrophobic drug.

    Science.gov (United States)

    Zhang, Wuxia; Dong, Dongqi; Li, Peng; Wang, Dongdong; Mu, Haibo; Niu, Hong; Duan, Jinyou

    2016-03-30

    Polysialic acid (PSA), a non-immunogenic and biodegradable natural polymer, is prone to hydrolysis under endo-lysosomal pH conditions. Here, we synthesized an intracellular pH-sensitive polysialic acid-ursolic acid conjugate by a condensation reaction. To further test the drug loading capability, we prepared paclitaxel-loaded polysialic acid-based amphiphilic copolymer micelle (PTX-loaded-PSAU) by a nanoprecipitation method. Results showed PTX-loaded-PSAU exhibited well-defined spherical shape and homogeneous distribution. The drug-loading was 4.5% with an entrapment efficiency of 67.5%. PTX released from PTX-loaded-PSAU was 15% and 42% in 72 h under simulated physiological condition (pH 7.4) and mild acidic conditions (pH 5.0), respectively. In addition, In vitro cytotoxicity assay showed that PTX-loaded-PSAU retained anti-tumor (SGC-7901) activity with a cell viability of 53.8% following 72 h incubation, indicating PTX-loaded-PSAU could efficiently release PTX into the tumor cells. These results indicated that the pH-responsive biodegradable PTX-loaded-PSAU possess superior extracellular stability and intracellular drug release ability. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Sensitive electrochemical detection of telomerase activity using spherical nucleic acids gold nanoparticles triggered mimic-hybridization chain reaction enzyme-free dual signal amplification.

    Science.gov (United States)

    Wang, Wen-Jing; Li, Jing-Jing; Rui, Kai; Gai, Pan-Pan; Zhang, Jian-Rong; Zhu, Jun-Jie

    2015-03-03

    We report an electrochemical sensor for telomerase activity detection based on spherical nucleic acids gold nanoparticles (SNAs AuNPs) triggered mimic-hybridization chain reaction (mimic-HCR) enzyme-free dual signal amplification. In the detection strategy, SNAs AuNPs and two hairpin probes were employed. SNAs AuNPs as the primary amplification element, not only hybridized with the telomeric repeats on the electrode to amplify signal but also initiated the subsequent secondary amplification, mimic-hybridization chain reaction of two hairpin probes. If the cells' extracts were positive for telomerase activity, SNAs AuNPs could be captured on the electrode. The carried initiators could trigger an alternative hybridization reaction of two hairpin probes that yielded nicked double helices. The signal was further amplified enzyme-free by numerous hexaammineruthenium(III) chloride ([Ru(NH3)6](3+), RuHex) inserting into double-helix DNA long chain by electrostatic interaction, each of which could generate an electrochemical signal at appropriate potential. With this method, a detection limit of down to 2 HeLa cells and a dynamic range of 10-10,000 cells were achieved. Telomerase activities of different cell lines were also successfully evaluated.

  10. Organelle-Specific Activity-Based Protein Profiling in Living Cells

    Energy Technology Data Exchange (ETDEWEB)

    Wiedner, Susan D.; Anderson, Lindsey N.; Sadler, Natalie C.; Chrisler, William B.; Kodali, Vamsi K.; Smith, Richard D.; Wright, Aaron T.

    2014-02-06

    A multimodal acidic organelle targeting activity-based probe was developed for analysis of subcellular native enzymatic activity of cells by fluorescent microscopy and mass spectrometry. A cathepsin reactive warhead was conjugated to an acidotropic amine, and a clickable alkyne for appendage of AlexaFluor 488 or biotin reporter tags. This probe accumulated in punctate vesicles surrounded by LAMP1, a lysosome marker, as observed by Structured Illumination Microscopy (SIM) in J774 mouse macrophage cells. Biotin conjugation, affinity purification, and analysis of in vivo labeled J774 by mass spectrometry showed that the probe was very selective for Cathepsins B and Z, two lysosomal cysteine proteases. Analysis of starvation induced autophagy, which is an increase in cell component catabolism involving lysosomes, showed a large increase in tagged protein number and an increase in cathepsin activity. Organelle targeting activity-based probes and subsequent analysis of resident proteins by mass spectrometry is enabled by tuning the physicochemical properties of the probe.

  11. Does L to D-amino acid substitution trigger helix→sheet conformations in collagen like peptides adsorbed to surfaces?

    Science.gov (United States)

    Velmurugan, Punitha; Jonnalagadda, Raghava Rao; Sankaranarayanan, Kamatchi; Dhathathreyan, Aruna

    2015-12-01

    The present work reports on the structural order, self assembling behaviour and the role in adsorption to hydrophilic or hydrophobic solid surfaces of modified sequence from the triple helical peptide model of the collagenase cleavage site in type I collagen (Uniprot accession number P02452 residues from 935 to 970) using (D)Ala and (D)Ile substitutions as given in the models below: Model-1: GSOGADGPAGAOGTOGPQGIAGQRGVV GLOGQRGER. Model-2: GSOGADGP(D)AGAOGTOGPQGIAGQRGVVGLOGQRGER. Model-3: GSOGADGPAGAOGTOGPQG(D)IAGQRGVVGLOGQRGER. Collagenase is an important enzyme that plays an important role in degrading collagen in wound healing, cancer metastasis and even in embryonic development. However, the mechanism by which this degradation occurs is not completely understood. Our results show that adsorption of the peptides to the solid surfaces, specifically hydrophobic triggers a helix to beta transition with order increasing in peptide models 2 and 3. This restricts the collagenolytic behaviour of collagenase and may find application in design of peptides and peptidomimetics for enzyme-substrate interaction, specifically with reference to collagen and other extra cellular matrix proteins.

  12. The Role of Microtubule Movement in Bidirectional Organelle Transport

    National Research Council Canada - National Science Library

    Igor M. Kulić; André E. X. Brown; Hwajin Kim; Comert Kural; Benjamin Blehm; Paul R. Selvin; Philip C. Nelson; Vladimir I. Gelfand

    2008-01-01

    We study the role of microtubule movement in bidirectional organelle transport in Drosophila S2 cells and show that EGFP-tagged peroxisomes in cells serve as sensitive probes of motor induced, noisy cytoskeletal motions...

  13. Induction of Mitochondria-Mediated Apoptosis in Ca Ski Human Cervical Cancer Cells Triggered by Mollic Acid Arabinoside Isolated from Leea indica

    Directory of Open Access Journals (Sweden)

    Yau Hsiung Wong

    2012-01-01

    Full Text Available Leea indica is a medicinal plant traditionally used to treat cancer. Through bioassay-guided approach, we isolated mollic acid arabinoside (MAA, for the first time from Leea indica. Here, we present the apoptosis-inducing effect of MAA on Ca Ski cervical cancer cells. Based on DAPI staining, MAA-treated cells manifested nuclear shrinkage, condensation, and fragmentation. We further confirmed the fragmentation of DNA using TUNEL assay. During early apoptosis, MAA caused the perturbation of plasma membrane through externalization of PS, followed by the formation of apoptotic blebs. Prior to these events, MAA triggered rapid dissipation of the mitochondrial membrane potential. In the upstream, MAA increased the expression of Bax, decreased the expression of Bcl-2, and augmented the Bax/Bcl-2 ratio. These findings suggested that MAA induced mitochondrial-mediated apoptosis in Ca Ski cells and thus provide the scientific explanation for the traditional application of this herbal medicine in cancer treatment.

  14. Anion Recognition Triggered Nanoribbon-Like Self-Assembly: A Fluorescent Chemosensor for Nitrate in Acidic Aqueous Solution and Living Cells.

    Science.gov (United States)

    Yang, Yaping; Chen, Shiyan; Ni, Xin-Long

    2015-07-21

    A water-soluble π-conjugated bispyridinium phenylenevinylene-based fluorogenic probe has been developed as a novel fluorescent chemosensor for highly selective, sensitive, and rapid detection of NO3(-) anion in acidic aqueous media. This system self-assembles to a nanoribbon as a result of ionic interaction. The positively charged chemosensor generates a nearly instantaneous significant fluorescence signal (475 vs 605 nm) in response to NO3(-) in the green/yellow spectral region, with a large Stokes shift (130 nm). The fluorescence changes can be attributed to the self-aggregation of the sensor triggered by ionic interaction, which occurs as a consequence of the subtle cooperation of electrostatic ionic bonding, van der Waals forces, and π-stacking of the π-conjugated aromatic moieties. Importantly, this chemosensor has been employed for the first time for the fluorescence detection of intracellular NO3(-) anion in cultured cells.

  15. FTSZ AND THE DIVISION OF PROKARYOTIC CELLS AND ORGANELLES

    OpenAIRE

    Margolin, William

    2005-01-01

    Binary fission of many prokaryotes as well as some eukaryotic organelles depends on the FtsZ protein, which self-assembles into a membrane-associated ring structure early in the division process. FtsZ is homologous to tubulin, the building block of the microtubule cytoskeleton in eukaryotes. Recent advances in genomics and cell-imaging techniques have paved the way for the remarkable progress in our understanding of fission in bacteria and organelles.

  16. Proteomics of secretory and endocytic organelles in Giardia lamblia.

    Science.gov (United States)

    Wampfler, Petra B; Tosevski, Vinko; Nanni, Paolo; Spycher, Cornelia; Hehl, Adrian B

    2014-01-01

    Giardia lamblia is a flagellated protozoan enteroparasite transmitted as an environmentally resistant cyst. Trophozoites attach to the small intestine of vertebrate hosts and proliferate by binary fission. They access nutrients directly via uptake of bulk fluid phase material into specialized endocytic organelles termed peripheral vesicles (PVs), mainly on the exposed dorsal side. When trophozoites reach the G2/M restriction point in the cell cycle they can begin another round of cell division or encyst if they encounter specific environmental cues. They induce neogenesis of Golgi-like organelles, encystation-specific vesicles (ESVs), for regulated secretion of cyst wall material. PVs and ESVs are highly simplified and thus evolutionary diverged endocytic and exocytic organelle systems with key roles in proliferation and transmission to a new host, respectively. Both organelle systems physically and functionally intersect at the endoplasmic reticulum (ER) which has catabolic as well as anabolic functions. However, the unusually high degree of sequence divergence in Giardia rapidly exhausts phylogenomic strategies to identify and characterize the molecular underpinnings of these streamlined organelles. To define the first proteome of ESVs and PVs we used a novel strategy combining flow cytometry-based organelle sorting with in silico filtration of mass spectrometry data. From the limited size datasets we retrieved many hypothetical but also known organelle-specific factors. In contrast to PVs, ESVs appear to maintain a strong physical and functional link to the ER including recruitment of ribosomes to organelle membranes. Overall the data provide further evidence for the formation of a cyst extracellular matrix with minimal complexity. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium with the dataset identifier PXD000694.

  17. Proteomics of secretory and endocytic organelles in Giardia lamblia.

    Directory of Open Access Journals (Sweden)

    Petra B Wampfler

    Full Text Available Giardia lamblia is a flagellated protozoan enteroparasite transmitted as an environmentally resistant cyst. Trophozoites attach to the small intestine of vertebrate hosts and proliferate by binary fission. They access nutrients directly via uptake of bulk fluid phase material into specialized endocytic organelles termed peripheral vesicles (PVs, mainly on the exposed dorsal side. When trophozoites reach the G2/M restriction point in the cell cycle they can begin another round of cell division or encyst if they encounter specific environmental cues. They induce neogenesis of Golgi-like organelles, encystation-specific vesicles (ESVs, for regulated secretion of cyst wall material. PVs and ESVs are highly simplified and thus evolutionary diverged endocytic and exocytic organelle systems with key roles in proliferation and transmission to a new host, respectively. Both organelle systems physically and functionally intersect at the endoplasmic reticulum (ER which has catabolic as well as anabolic functions. However, the unusually high degree of sequence divergence in Giardia rapidly exhausts phylogenomic strategies to identify and characterize the molecular underpinnings of these streamlined organelles. To define the first proteome of ESVs and PVs we used a novel strategy combining flow cytometry-based organelle sorting with in silico filtration of mass spectrometry data. From the limited size datasets we retrieved many hypothetical but also known organelle-specific factors. In contrast to PVs, ESVs appear to maintain a strong physical and functional link to the ER including recruitment of ribosomes to organelle membranes. Overall the data provide further evidence for the formation of a cyst extracellular matrix with minimal complexity. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium with the dataset identifier PXD000694.

  18. Proteomics of Secretory and Endocytic Organelles in Giardia lamblia

    Science.gov (United States)

    Wampfler, Petra B.; Tosevski, Vinko; Nanni, Paolo; Spycher, Cornelia; Hehl, Adrian B.

    2014-01-01

    Giardia lamblia is a flagellated protozoan enteroparasite transmitted as an environmentally resistant cyst. Trophozoites attach to the small intestine of vertebrate hosts and proliferate by binary fission. They access nutrients directly via uptake of bulk fluid phase material into specialized endocytic organelles termed peripheral vesicles (PVs), mainly on the exposed dorsal side. When trophozoites reach the G2/M restriction point in the cell cycle they can begin another round of cell division or encyst if they encounter specific environmental cues. They induce neogenesis of Golgi-like organelles, encystation-specific vesicles (ESVs), for regulated secretion of cyst wall material. PVs and ESVs are highly simplified and thus evolutionary diverged endocytic and exocytic organelle systems with key roles in proliferation and transmission to a new host, respectively. Both organelle systems physically and functionally intersect at the endoplasmic reticulum (ER) which has catabolic as well as anabolic functions. However, the unusually high degree of sequence divergence in Giardia rapidly exhausts phylogenomic strategies to identify and characterize the molecular underpinnings of these streamlined organelles. To define the first proteome of ESVs and PVs we used a novel strategy combining flow cytometry-based organelle sorting with in silico filtration of mass spectrometry data. From the limited size datasets we retrieved many hypothetical but also known organelle-specific factors. In contrast to PVs, ESVs appear to maintain a strong physical and functional link to the ER including recruitment of ribosomes to organelle membranes. Overall the data provide further evidence for the formation of a cyst extracellular matrix with minimal complexity. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium with the dataset identifier PXD000694. PMID:24732305

  19. Role of JWA in acute promyelocytic leukemia cell differentiation and apoptosis triggered by retinoic acid, 12-tetradecanoylphorbol-13-acetate and arsenic trioxide

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    JWA, a cytoskeleton associated gene, was primarily found to be regulated by all trans-retinoic acid (ATRA), 13 cis-retinoic acid (13 cis-RA) and 12-tetradecano- ylphorbol-13-acetate (TPA). Our previous data showed that JWA might be involved in both cellular differentiation and apoptosis induced by several chemicals. In this study, we addressed the possible mechanism of JWA in the regulation of cell differentiation and apoptosis in NB4, a human acute promyelocytic leukemia cell line. CD11b/CD33 expression and cell cycle were analyzed for detecting of cell differentiation and apoptosis. Both reverse-transcription polymerase chain reaction (RT-PCR) and Western blot assays were used for understanding the expressions of JWA. The results showed that under the indicated concentrations ATRA (10?6 mol/L) and As2O3 (10?6 mol/L) induced cell differentiation and apoptosis separately; while both 4HPR (10?6 mol/L) and TPA (10?7 mol/L) showed dual-directional effects on NB4 cells, they not only trigger cells' differentiation but also induce cells apoptosis at the same time. All chemicals up-regulated JWA expression whatever they trigger cells either differentiation or apoptosis; however, it seems that the chemicals have no effect on PML/RAR? in the treated NB4 cells. Anti-sense JWA oligonucleotide could partially block the ability of TPA in inducing cell differentiation and apoptosis via direct signal pathway. Interestingly, a high molecular weight JWA protein (JWAF) was identified only in de novo primary APL cells and it was also responsible for ATRA treatment. It raises questions of whether the JWAF is a novel APL specific marker and, how it was involved in the known mechanism of APL.

  20. Recent developments in capillary and chip electrophoresis of bioparticles: Viruses, organelles, and cells.

    Science.gov (United States)

    Subirats, Xavier; Blaas, Dieter; Kenndler, Ernst

    2011-06-01

    In appropriate aqueous buffer solutions, biological particles usually exhibit a particular electric surface charge due to exposed charged or chargeable functional groups (amino acid residues, acidic carbohydrate moieties, etc.). Consequently, these bioparticles can migrate in solution under the influence of an electric field allowing separation according to their electrophoretic mobilities or their pI values. Based on these properties, electromigration methods are of eminent interest for the characterization, separation, and detection of such particles. The present review discusses the research papers published between 2008 and 2010 dealing with isoelectric focusing and zone electrophoresis of viruses, organelles and microorganisms (bacteria and yeast cells) in the capillary and the chip format.

  1. pH-responsive biodegradable micelles based on acid-labile polycarbonate hydrophobe: synthesis and triggered drug release.

    Science.gov (United States)

    Chen, Wei; Meng, Fenghua; Li, Feng; Ji, Shun-Jun; Zhong, Zhiyuan

    2009-07-13

    pH-responsive biodegradable micelles were prepared from block copolymers comprising of a novel acid-labile polycarbonate hydrophobe and poly(ethylene glycol) (PEG). Two new cyclic aliphatic carbonate monomers, mono-2,4,6-trimethoxybenzylidene-pentaerythritol carbonate (TMBPEC, 2a) and mono-4-methoxybenzylidene-pentaerythritol carbonate (MBPEC, 2b) were designed and successfully synthesized via a two-step procedure. The ring-opening polymerization of 2a or 2b in the presence of methoxy PEG in dichloromethane at 50 °C using zinc bis[bis(trimethylsilyl)amide] as a catalyst yielded the corresponding block copolymers PEG-PTMBPEC (3a) or PEG-PMBPEC (3b) with low polydispersities (PDI 1.03-1.04). The copolymerization of D,L-lactide (DLLA) and 2a under otherwise the same conditions could also proceed smoothly to afford PEG-P(TMBPEC-co-DLLA) (3c) block copolymer. These block copolymers readily formed micelles in water with sizes of about 120 nm as determined by dynamic light scattering (DLS). The hydrolysis of the acetals of the polycarbonate was investigated using UV/vis spectroscopy. The results showed that the acetals of micelles 3a, while stable at pH 7.4 are prone to rapid hydrolysis at mildly acidic pH of 4.0 and 5.0, with a half-life of 1 and 6.5 h, respectively. The acetal hydrolysis resulted in significant swelling of micelles, as a result of change of hydrophobic polycarbonate to hydrophilic polycarbonate. In comparison, the acetals of PMBPEC of micelles 3b displayed obviously slower hydrolysis at the same pH. Both paclitaxel and doxorubicin could be efficiently encapsulated into micelles 3a achieving high drug loading content (13.0 and 11.7 wt %, respectively). The in vitro release studies showed clearly a pH dependent release behavior, that is, significantly faster drug release at mildly acidic pH of 4.0 and 5.0 compared to physiological pH. These pH-responsive biodegradable micelles are promising as smart nanovehicles for targeted delivery of anticancer drugs.

  2. Stevens-Johnson Syndrome triggered by a combination of clobazam, lamotrigine and valproic acid in a 7-year-old child.

    Science.gov (United States)

    Yapici, A K; Fidanci, M K; Kilic, S; Balamtekin, N; Mutluay Arslan, M; Yavuz, S T; Kalman, S

    2014-09-30

    Stevens-Johnson Syndrome (SJS) and toxic epidermal necrolysis (TEN) are diseases within the spectrum of severe cutaneous adverse reactions affecting skin and mucous membranes. Antiepileptic drugs (AEDs) are used in combination, leading to potential pharmacokinetic or pharmacodynamic interactions, causing more adverse effects than might occur when the AED is taken as monotherapy. Here, we report a rare case of SJS triggered by a combination of clobazam, lamotrigine and valproic acid in a 7-year-old boy. Because of inadequate seizure control, lorazepam was replaced with clobazam. Four weeks after the addition of clobazam, the patient developed SJS with a generalized rash, fever, with liver and kidney involvement, and eosinophilia one week after the initiation of treatment. All antiepileptic drugs were discontinued, and intravenous methylprednisolone, prophylactic systemic antibiotics, intravenous fluid supplement, antipyretic, special wound care, and supportive medical care for SJS were administered. He was discharged in a stable condition on the 18th day. Our case suggests that a drug-drug interaction between valproate, lamotrigine and clobazam contributed to the development of SJS. When the clobazam was added to valproic acid and lamotrigine co-medication, the lamotrigine dose should have been decreased.

  3. Arachidonic acid triggers [Ca2+]i increases in rat round spermatids by a likely GPR activation, ERK signalling and ER/acidic compartments Ca2+ release

    Science.gov (United States)

    Paillamanque, Joaquin; Sanchez-Tusie, Ana; Carmona, Emerson M.; Treviño, Claudia L.; Sandoval, Carolina; Nualart, Francisco; Osses, Nelson

    2017-01-01

    Arachidonic acid (AA), a compound secreted by Sertoli cells (SC) in a FSH-dependent manner, is able to induce the release of Ca2+ from internal stores in round spermatids and pachytene spermatocytes. In this study, the possible site(s) of action of AA in round spermatids, the signalling pathways associated and the intracellular Ca2+ stores targeted by AA-induced signalling were pharmacologically characterized by measuring intracellular Ca2+ using fluorescent Ca2+ probes. Our results suggest that AA acts by interacting with a fatty acid G protein coupled receptor, initiating a G protein signalling cascade that may involve PLA2 and ERK activation, which in turn opens intracellular ryanodine-sensitive channels as well as NAADP-sensitive channels in acidic intracellular Ca2+ stores. The results presented here also suggest that AMPK and PKA modulate this AA-induced Ca2+ release from intracellular Ca2+ stores in round spermatids. We propose that unsaturated free fatty acid lipid signalling in the seminiferous tubule is a novel regulatory component of rat spermatogenesis. PMID:28192519

  4. Shape memory nanocomposite of poly(L-lactic acid/graphene nanoplatelets triggered by infrared light and thermal heating

    Directory of Open Access Journals (Sweden)

    S. Lashgari

    2016-04-01

    Full Text Available In this study, the effect of graphene nanoplatelets (GNPs on the shape memory properties of poly(L-lactic acid (PLLA was studied. In addition to thermal activation, the possibility of infrared actuating of thermo-responsive shape memory PLLA/GNPs nanocomposite was investigated. The incorporated GNPs were expected to absorb infrared wave’s energy and activate shape memory PLLA/GNPs. Different techniques such as differential scanning calorimetry (DSC, wide-angle X-ray diffraction (WAXD, field emission gun scanning electron microscope (FEG-SEM and dynamic mechanical thermal analysis (DMTA were used to characterize samples. DSC and WAXD results indicated that GNPs augmented crystallinity due to nucleating effect of graphene particles. GNPs improved both thermal and infrared activating shape memory properties along with faster response. Pure shape memory PLLA was slightly responsive to infrared light and its infrared actuated shape recovery ratio was 86% which increased to more than 95% with loading of GNPs. Drastic improvement in the crystallinity was obtained in nanocomposites with lower GNPs contents (0.5 and 1 wt% due to finer dispersion of graphene which resulted in more prominent mechanical and shape memory properties enhancement. Infrared activated shape memory PLLA/GNPs nanocomposites can be developed for wireless remote shape control of smart medical and bio-systems.

  5. Catechins and Sialic Acid Attenuate Helicobacter pylori-Triggered Epithelial Caspase-1 Activity and Eradicate Helicobacter pylori Infection

    Directory of Open Access Journals (Sweden)

    Jyh-Chin Yang

    2013-01-01

    Full Text Available The inflammasome/caspase-1 signaling pathway in immune cells plays a critical role in bacterial pathogenesis; however, the regulation of this pathway in the gastric epithelium during Helicobacter pylori infection is yet to be elucidated. Here, we investigated the effect of catechins (CAs, sialic acid (SA, or combination of CA and SA (CASA on H. pylori-induced caspase-1-mediated epithelial damage, as well as H. pylori colonization in vitro (AGS cells and in vivo (BALB/c mice. Our results indicate that the activity of caspase-1 and the expression of its downstream substrate IL-1β were upregulated in H. pylori-infected AGS cells. In addition, we observed increased oxidative stress, NADPH oxidase gp91phox, CD68, caspase-1/IL-1β, and apoptosis, but decreased autophagy, in the gastric mucosa of H. pylori-infected mice. We have further demonstrated that treatment with CASA led to synergistic anti-H. pylori activity and was more effective than treatment with CA or SA alone. In particular, treatment with CASA for 10 days eradicated H. pylori infection in up to 95% of H. pylori-infected mice. Taken together, we suggest that the pathogenesis of H. pylori involves a gastric epithelial inflammasome/caspase-1 signaling pathway, and our results show that CASA was able to attenuate this pathway and effectively eradicate H. pylori infection.

  6. Constitutively active Arabidopsis MAP Kinase 3 triggers defense responses involving salicylic acid and SUMM2 resistance protein

    KAUST Repository

    Genot, Baptiste

    2017-04-12

    Mitogen-activated protein kinases (MAPKs) are important regulators of plant immunity. Most of the knowledge about the function of these pathways is derived from loss-of-function approaches. Using a gain-of-function approach, we investigated the responses controlled by a constitutively active (CA) MPK3 in Arabidopsis thaliana. CA-MPK3 plants are dwarfed and display a massive de-repression of defense genes associated with spontaneous cell death as well as accumulation of reactive oxygen species (ROS), phytoalexins and the stress-related hormones ethylene and salicylic acid (SA). Remarkably CA-MPK3/sid2 and CA-MPK3/ein2-50 lines which are impaired in SA synthesis and ethylene signaling, respectively, retain most of the CA-MPK3-associated phenotypes, indicating that constitutive activity of MPK3 can bypass SA and ethylene signaling to activate defense responses. A comparative analysis of the molecular phenotypes of CA-MPK3 and mpk4 autoimmunity suggested convergence between the MPK3 and MPK4-guarding modules. In support of this model, CA-MPK3 crosses with summ1 and summ2, two known suppressors of mpk4, resulted in a partial reversion of the CA-MPK3 phenotypes. Overall, our data unravel a novel mechanism by which the MAPK signaling network contributes to a robust defense response system.

  7. Lam6 Regulates the Extent of Contacts between Organelles

    Directory of Open Access Journals (Sweden)

    Yael Elbaz-Alon

    2015-07-01

    Full Text Available Communication between organelles is crucial for eukaryotic cells to function as one coherent unit. An important means of communication is through membrane contact sites, where two organelles come into close proximity allowing the transport of lipids and small solutes between them. Contact sites are dynamic in size and can change in response to environmental or cellular stimuli; however, how this is regulated has been unclear. Here, we show that Saccharomyces cerevisiae Lam6 resides in several central contact sites: ERMES (ER/mitochondria encounter structure, vCLAMP (vacuole and mitochondria patch, and NVJ (nuclear vacuolar junction. We show that Lam6 is sufficient for expansion of contact sites under physiological conditions and necessary for coordination of contact site size. Given that Lam6 is part of a large protein family and is conserved in vertebrates, our work opens avenues for investigating the underlying principles of organelle communication.

  8. Lam6 Regulates the Extent of Contacts between Organelles

    Science.gov (United States)

    Elbaz-Alon, Yael; Eisenberg-Bord, Michal; Shinder, Vera; Stiller, Sebastian Berthold; Shimoni, Eyal; Wiedemann, Nils; Geiger, Tamar; Schuldiner, Maya

    2015-01-01

    Summary Communication between organelles is crucial for eukaryotic cells to function as one coherent unit. An important means of communication is through membrane contact sites, where two organelles come into close proximity allowing the transport of lipids and small solutes between them. Contact sites are dynamic in size and can change in response to environmental or cellular stimuli; however, how this is regulated has been unclear. Here, we show that Saccharomyces cerevisiae Lam6 resides in several central contact sites: ERMES (ER/mitochondria encounter structure), vCLAMP (vacuole and mitochondria patch), and NVJ (nuclear vacuolar junction). We show that Lam6 is sufficient for expansion of contact sites under physiological conditions and necessary for coordination of contact site size. Given that Lam6 is part of a large protein family and is conserved in vertebrates, our work opens avenues for investigating the underlying principles of organelle communication. PMID:26119743

  9. Poles apart: prokaryotic polar organelles and their spatial regulation.

    Science.gov (United States)

    Kirkpatrick, Clare L; Viollier, Patrick H

    2011-03-01

    While polar organelles hold the key to understanding the fundamentals of cell polarity and cell biological principles in general, they have served in the past merely for taxonomical purposes. Here, we highlight recent efforts in unraveling the molecular basis of polar organelle positioning in bacterial cells. Specifically, we detail the role of members of the Ras-like GTPase superfamily and coiled-coil-rich scaffolding proteins in modulating bacterial cell polarity and in recruiting effector proteins to polar sites. Such roles are well established for eukaryotic cells, but not for bacterial cells that are generally considered diffusion-limited. Studies on spatial regulation of protein positioning in bacterial cells, though still in their infancy, will undoubtedly experience a surge of interest, as comprehensive localization screens have yielded an extensive list of (polarly) localized proteins, potentially reflecting subcellular sites of functional specialization predicted for organelles.

  10. Imaging trace element distributions in single organelles and subcellular features

    Science.gov (United States)

    Kashiv, Yoav; Austin, Jotham R.; Lai, Barry; Rose, Volker; Vogt, Stefan; El-Muayed, Malek

    2016-02-01

    The distributions of chemical elements within cells are of prime importance in a wide range of basic and applied biochemical research. An example is the role of the subcellular Zn distribution in Zn homeostasis in insulin producing pancreatic beta cells and the development of type 2 diabetes mellitus. We combined transmission electron microscopy with micro- and nano-synchrotron X-ray fluorescence to image unequivocally for the first time, to the best of our knowledge, the natural elemental distributions, including those of trace elements, in single organelles and other subcellular features. Detected elements include Cl, K, Ca, Co, Ni, Cu, Zn and Cd (which some cells were supplemented with). Cell samples were prepared by a technique that minimally affects the natural elemental concentrations and distributions, and without using fluorescent indicators. It could likely be applied to all cell types and provide new biochemical insights at the single organelle level not available from organelle population level studies.

  11. Organelle-localized potassium transport systems in plants.

    Science.gov (United States)

    Hamamoto, Shin; Uozumi, Nobuyuki

    2014-05-15

    Some intracellular organelles found in eukaryotes such as plants have arisen through the endocytotic engulfment of prokaryotic cells. This accounts for the presence of plant membrane intrinsic proteins that have homologs in prokaryotic cells. Other organelles, such as those of the endomembrane system, are thought to have evolved through infolding of the plasma membrane. Acquisition of intracellular components (organelles) in the cells supplied additional functions for survival in various natural environments. The organelles are surrounded by biological membranes, which contain membrane-embedded K(+) transport systems allowing K(+) to move across the membrane. K(+) transport systems in plant organelles act coordinately with the plasma membrane intrinsic K(+) transport systems to maintain cytosolic K(+) concentrations. Since it is sometimes difficult to perform direct studies of organellar membrane proteins in plant cells, heterologous expression in yeast and Escherichia coli has been used to elucidate the function of plant vacuole K(+) channels and other membrane transporters. The vacuole is the largest organelle in plant cells; it has an important task in the K(+) homeostasis of the cytoplasm. The initial electrophysiological measurements of K(+) transport have categorized three classes of plant vacuolar cation channels, and since then molecular cloning approaches have led to the isolation of genes for a number of K(+) transport systems. Plants contain chloroplasts, derived from photoautotrophic cyanobacteria. A novel K(+) transport system has been isolated from cyanobacteria, which may add to our understanding of K(+) flux across the thylakoid membrane and the inner membrane of the chloroplast. This chapter will provide an overview of recent findings regarding plant organellar K(+) transport proteins.

  12. The contribution of specific organelles to side scatter

    Science.gov (United States)

    Mourant, Judith R.; Marina, Oana C.; Sanders, Claire K.

    2013-02-01

    Knowledge of which cellular structures scatter light is needed to fully utilize the information available from light scattering measurements of cells and tissues. To determine how specific organelles contribute to light scattering, wide angle side scattering was imaged simultaneously with fluorescence from specific organelles for thousands of cells using flow cytometry. Images were obtained with different depth of field conditions and analyzed with different assumptions. Both sets of data demonstrated that mitochondria and lysosomes, contribute similarly to side scatter. The nucleus contributes as much or more light scatter than either the mitochondria or the lysosomes.

  13. Lipoic acid inhibits the DNA repair protein O 6-methylguanine-DNA methyltransferase (MGMT) and triggers its depletion in colorectal cancer cells with concomitant autophagy induction.

    Science.gov (United States)

    Göder, Anja; Nagel, Georg; Kraus, Alexander; Dörsam, Bastian; Seiwert, Nina; Kaina, Bernd; Fahrer, Jörg

    2015-08-01

    Alkylating agents are present in food and tobacco smoke, but are also used in cancer chemotherapy, inducing the DNA lesion O (6)-methylguanine. This critical adduct is repaired by O (6)-methylguanine-DNA methyltransferase (MGMT), resulting in MGMT inactivation and degradation. In the present study, we analyzed the effects of the natural disulfide compound lipoic acid (LA) on MGMT in vitro and in colorectal cancer cells. We show that LA, but not its reduced form dihydrolipoic acid, potently inhibits the activity of recombinant MGMT by interfering with its catalytic Cys-145 residue, which was partially reversible by N-acetyl cysteine. Incubation of HCT116 colorectal cancer cells with LA altered their glutathione pool and caused a decline in MGMT activity. This was mirrored by LA-induced depletion of MGMT protein, which was not attributable to changes in MGMT messenger RNA levels. Loss of MGMT protein coincided with LA-induced autophagy, a process resulting in lysosomal degradation of proteins, including presumably MGMT. LA-stimulated autophagy in a p53-independent manner as revealed by the response of isogenic HCT116 cell lines. Knockdown of the crucial autophagy component beclin-1 and chemical inhibitors blocked LA-induced autophagy, but did not abrogate LA-triggered MGMT degradation. Concomitant with MGMT depletion, LA pretreatment resulted in enhanced O (6)-methylguanine levels in DNA. It also increased the cytotoxicity of the alkylating anticancer drug temozolomide in temozolomide-resistant colorectal cancer cells. Taken together, our study showed that the natural compound LA inhibits MGMT and induces autophagy. Furthermore, LA enhanced the cytotoxic effects of temozolomide, which makes it a candidate for a supplement in cancer therapy.

  14. Nitro radical anions from megazol and related nitroimidazoles in aprotic media. A father-son type reaction triggered by an acidic proton

    Energy Technology Data Exchange (ETDEWEB)

    Bonta, M.; Chauviere, G.; Perie, J.; Nunez-Vergara, L.J.; Squella, J.A

    2002-09-25

    We have studied the electrochemical reduction of some nitroimidazoles such as megazol(2-amino-5-(1-methyl-5-nitro-2-imidazolyl)-1,3,4-thiadiazol, CAS 19622-55-0) and two related derivatives in aprotic media (100% DMF, 0.1 M TBAP). All the studied compounds were easily reducible in aprotic media generating the corresponding nitro radical anions as products of the one electron reduction of the parent compound. The nitro radical anions decay by a dimerization reaction and the dimerization rate constants were obtained according to the Olmstead's approach by obtaining values of 150{+-}24, 1690{+-}42 and 640{+-}32 M{sup -1} s{sup -1} for megazol, GC-361 and GC-284, respectively. The existence of an acidic proton on the acetamide group in the GC-361 molecule triggered the appearance of father-son type reactions between the nitro radical anion from GC-361 (son compound) and GC-361 (father compound) generating the neutral radical and the conjugate base of GC-361. Thus the nitro radical anion from GC-361 acts as a Broensted base abstracting the proton of the acetamide group in the GC-361 derivative of megazol.

  15. Endocytosis of the Aspartic Acid/Glutamic Acid Transporter Dip5 Is Triggered by Substrate-Dependent Recruitment of the Rsp5 Ubiquitin Ligase via the Arrestin-Like Protein Aly2 ▿

    Science.gov (United States)

    Hatakeyama, Riko; Kamiya, Masao; Takahara, Terunao; Maeda, Tatsuya

    2010-01-01

    Endocytosis of nutrient transporters is stimulated under various conditions, such as elevated nutrient availability. In Saccharomyces cerevisiae, endocytosis is triggered by ubiquitination of transporters catalyzed by the E3 ubiquitin ligase Rsp5. However, how the ubiquitination is accelerated under certain conditions remains obscure. Here we demonstrate that closely related proteins Aly2/Art3 and Aly1/Art6, which are poorly characterized members of the arrestin-like protein family, mediate endocytosis of the aspartic acid/glutamic acid transporter Dip5. In aly2Δ cells, Dip5 is stabilized at the plasma membrane and is not endocytosed efficiently. Efficient ubiquitination of Dip5 is dependent on Aly2. aly1Δ cells also show deficiency in Dip5 endocytosis, although less remarkably than aly2Δ cells. Aly2 physically interacts in vivo with Rsp5 at its PY motif and also with Dip5, thus serving as an adaptor linking Rsp5 with Dip5 to achieve Dip5 ubiquitination. Importantly, the interaction between Aly2 and Dip5 is accelerated in response to elevated aspartic acid availability. This result indicates that the regulation of Dip5 endocytosis is accomplished by dynamic recruitment of Rsp5 via Aly2. PMID:20956561

  16. Quantitative analysis of organelle abundance, morphology and dynamics

    NARCIS (Netherlands)

    van Zutphen, Tim; van der Klei, Ida J.

    2011-01-01

    Recent data indicate that morphological characteristics of cell organelles are important for their function in the cell. These characteristics include not only their shape, number and size, but also their distribution in the cell. Moreover, the dynamics of processes that result in changes in these c

  17. Physiological role of taurine - from organism to organelle

    DEFF Research Database (Denmark)

    Lambert, Ian Henry; Kristensen, David Møbjerg Boslev; Holm, Jacob Bak

    2015-01-01

    in mammalian cells. However, taurine contributes significantly to the cellular pool of organic osmolytes and has accordingly been acknowledged for its role in cell volume restoration following osmotic perturbation. This review describes taurine homeostasis in cells and organelles with emphasis on taurine...

  18. C. elegans major fats are stored in vesicles distinct from lysosome-related organelles.

    Science.gov (United States)

    O'Rourke, Eyleen J; Soukas, Alexander A; Carr, Christopher E; Ruvkun, Gary

    2009-11-01

    Genetic conservation allows ancient features of fat storage endocrine pathways to be explored in C. elegans. Multiple studies have used Nile red or BODIPY-labeled fatty acids to identify regulators of fat mass. When mixed with their food, E. coli bacteria, Nile red, and BODIPY-labeled fatty acids stain multiple spherical cellular structures in the C. elegans major fat storage organ, the intestine. However, here we demonstrate that, in the conditions previously reported, the lysosome-related organelles stained by Nile red and BODIPY-labeled fatty acids are not the C. elegans major fat storage compartment. We show that the major fat stores are contained in a distinct cellular compartment that is not stained by Nile red. Using biochemical assays, we validate oil red O staining as a method to assess major fat stores in C. elegans, allowing for efficient and accurate genetic and functional genomic screens for genes that control fat accumulation at the organismal level.

  19. Genome-wide transcriptome analysis revealed organelle specific responses to temperature variations in algae

    Science.gov (United States)

    Shin, HyeonSeok; Hong, Seong-Joo; Yoo, Chan; Han, Mi-Ae; Lee, Hookeun; Choi, Hyung-Kyoon; Cho, Suhyung; Lee, Choul-Gyun; Cho, Byung-Kwan

    2016-01-01

    Temperature is a critical environmental factor that affects microalgal growth. However, microalgal coping mechanisms for temperature variations are unclear. Here, we determined changes in transcriptome, total carbohydrate, total fatty acid methyl ester, and fatty acid composition of Tetraselmis sp. KCTC12432BP, a strain with a broad temperature tolerance range, to elucidate the tolerance mechanisms in response to large temperature variations. Owing to unavailability of genome sequence information, de novo transcriptome assembly coupled with BLAST analysis was performed using strand specific RNA-seq data. This resulted in 26,245 protein-coding transcripts, of which 83.7% could be annotated to putative functions. We identified more than 681 genes differentially expressed, suggesting an organelle-specific response to temperature variation. Among these, the genes related to the photosynthetic electron transfer chain, which are localized in the plastid thylakoid membrane, were upregulated at low temperature. However, the transcripts related to the electron transport chain and biosynthesis of phosphatidylethanolamine localized in mitochondria were upregulated at high temperature. These results show that the low energy uptake by repressed photosynthesis under low and high temperature conditions is compensated by different mechanisms, including photosystem I and mitochondrial oxidative phosphorylation, respectively. This study illustrates that microalgae tolerate different temperature conditions through organelle specific mechanisms. PMID:27883062

  20. Segregation of prokaryotic magnetosomes organelles is driven by treadmilling of a dynamic actin-like MamK filament.

    Science.gov (United States)

    Toro-Nahuelpan, Mauricio; Müller, Frank D; Klumpp, Stefan; Plitzko, Jürgen M; Bramkamp, Marc; Schüler, Dirk

    2016-10-12

    The navigation of magnetotactic bacteria relies on specific intracellular organelles, the magnetosomes, which are membrane-enclosed crystals of magnetite aligned into a linear chain. The magnetosome chain acts as a cellular compass, aligning the cells in the geomagnetic field in order to search for suitable environmental conditions in chemically stratified water columns and sediments. During cytokinesis, magnetosome chains have to be properly positioned, cleaved and separated in order to be evenly passed into daughter cells. In Magnetospirillum gryphiswaldense, the assembly of the magnetosome chain is controlled by the actin-like MamK, which polymerizes into cytoskeletal filaments that are connected to magnetosomes through the acidic MamJ protein. MamK filaments were speculated to recruit the magnetosome chain to cellular division sites, thus ensuring equal organelle inheritance. However, the underlying mechanism of magnetic organelle segregation has remained largely unknown. Here, we performed in vivo time-lapse fluorescence imaging to directly track the intracellular movement and dynamics of magnetosome chains as well as photokinetic and ultrastructural analyses of the actin-like cytoskeletal MamK filament. We show that magnetosome chains undergo rapid intracellular repositioning from the new poles towards midcell into the newborn daughter cells, and the driving force for magnetosomes movement is likely provided by the pole-to-midcell treadmilling growth of MamK filaments. We further discovered that splitting and equipartitioning of magnetosome chains occurs with unexpectedly high accuracy, which depends directly on the dynamics of MamK filaments. We propose a novel mechanism for prokaryotic organelle segregation that, similar to the type-II bacterial partitioning system of plasmids, relies on the action of cytomotive actin-like filaments together with specific connectors, which transport the magnetosome cargo in a fashion reminiscent of eukaryotic actin-organelle

  1. Stochastic Models of Vesicular Sorting in Cellular Organelles

    CERN Document Server

    Vagne, Quentin

    2016-01-01

    The proper sorting of membrane components by regulated exchange between cellular organelles is crucial to intra-cellular organization. This process relies on the budding and fusion of transport vesicles, and should be strongly influenced by stochastic fluctuations considering the relatively small size of many organelles. We identify the perfect sorting of two membrane components initially mixed in a single compartment as a first passage process, and we show that the mean sorting time exhibits two distinct regimes as a function of the ratio of vesicle fusion to budding rates. Low ratio values leads to fast sorting, but results in a broad size distribution of sorted compartments dominated by small entities. High ratio values result in two well defined sorted compartments but is exponentially slow. Our results suggests an optimal balance between vesicle budding and fusion for the rapid and efficient sorting of membrane components, and highlight the importance of stochastic effects for the steady-state organizati...

  2. Prokaryotic cells: structural organisation of the cytoskeleton and organelles

    OpenAIRE

    Wanderley de Souza

    2012-01-01

    For many years, prokaryotic cells were distinguished from eukaryotic cells based on the simplicity of their cytoplasm, in which the presence of organelles and cytoskeletal structures had not been discovered. Based on current knowledge, this review describes the complex components of the prokaryotic cell cytoskeleton, including (i) tubulin homologues composed of FtsZ, BtuA, BtuB and several associated proteins, which play a fundamental role in cell division, (ii) actin-like homologues, such as...

  3. Common Asthma Triggers

    Science.gov (United States)

    ... Film Asthma Clinical Guidelines Air Pollution & Respiratory Health Common Asthma Triggers Recommend on Facebook Tweet Share Compartir ... t avoid the triggers. Some of the most common triggers are: Tobacco Smoke Tobacco smoke is unhealthy ...

  4. Toward noninvasive microspectrofluorometry of skin lesions for diagnostic and prognostic evaluation of cell metabolism and organelle interactions

    Science.gov (United States)

    Hirschberg, Joseph G.; Schachtschabel, Astrid; Kohen, Elli; Kohen, Cahide; Schachtschabel, Dietrich O.

    1995-02-01

    The basic principle of this approach relies on microspectrofluorometric observations of upheavals in the cell's energy metabolism and cell-to-cell metabolic communication in human and mouse melanoma cells. A striking feature is the definition of a highly active nuclear energy metabolism in M8255 human melanoma cells which is characterized by an intense fluorescence response associated with NAD(P) reduction by substrates of glycolysis or the hexose monophosphate shunt. Changes are also expected in the steady state levels of reduced/oxidized NAD(P) in the nuclear, cytoplasmic and mitochondrial compartments, which are probably dependent on ATP levels and distribution (as determined by cell metabolism and eventually the presence of ATP traps). A topographic scanning of skin lesions, either under metabolic steady state conditions or in the presence of permeating substrates, can lead to the recognition of characteristic patterns associated with pigmented and nonpigmented, malignant and nonmalignant skin lesions. The method is, in a way, an extension of microscopic transillumination techniques which have led to the identification of specific patterns associated with such lesions. However, here, a new dimension is added by introduction of fluorescence evaluations. This can represent the first step in a multiparameter approach to the non-invasive in situ fluorescence scan of dermatological lesions by inclusion of: (1) fluorescence excitation and emission spectra; (2) new fluorescence probes of cytoplasmic organelles and nuclear components. Primary emphasis should be placed on the highly active nuclear energy metabolism, which can be triggered to maximum levels when the role of mitochondria as the `cells's policeman' with regard to metabolic control is suppressed by use of topically cytotoxic agents such as the `antipsoriatic' anthralin and dicarboxylic acids used in the local treatment of melanoma. Fluorescence excitation spectroscopy may be of particular advantage in

  5. Connection of Protein Transport and Organelle Contact Sites in Mitochondria.

    Science.gov (United States)

    Ellenrieder, Lars; Rampelt, Heike; Becker, Thomas

    2017-07-07

    Mitochondrial biogenesis and function depend on the intensive exchange of molecules with other cellular compartments. The mitochondrial outer membrane plays a central role in this communication process. It is equipped with a number of specific protein machineries that enable the transport of proteins and metabolites. Furthermore, the outer membrane forms molecular contact sites with other cell organelles like the endoplasmic reticulum (ER), thus integrating mitochondrial function in cellular physiology. The best-studied mitochondrial organelle contact site, the ER-mitochondria encounter structure (ERMES) has been linked to many vital processes including mitochondrial division, inheritance, mitophagy, and phospholipid transport. Strikingly, ER-mitochondria contact sites are closely connected to outer membrane protein translocases. The translocase of the outer mitochondrial membrane (TOM) represents the general mitochondrial entry gate for precursor proteins that are synthesized on cytosolic ribosomes. The outer membrane also harbors the sorting and assembly machinery (SAM) that mediates membrane insertion of β-barrel proteins. Both of these essential protein translocases are functionally linked to ER-mitochondria contact sites. First, the SAM complex associates with an ERMES core component to promote assembly of the TOM complex. Second, several TOM components have been co-opted as ER-mitochondria tethers. We propose that protein import and organelle contact sites are linked to coordinate processes important for mitochondrial biogenesis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Mildly Acidic pH Triggers an Irreversible Conformational Change in the Fusion Domain of Herpes Simplex Virus 1 Glycoprotein B and Inactivation of Viral Entry.

    Science.gov (United States)

    Weed, Darin J; Pritchard, Suzanne M; Gonzalez, Floricel; Aguilar, Hector C; Nicola, Anthony V

    2017-03-01

    Herpes simplex virus (HSV) entry into a subset of cells requires endocytosis and endosomal low pH. Preexposure of isolated virions to mildly acidic pH of 5 to 6 partially inactivates HSV infectivity in an irreversible manner. Acid inactivation is a hallmark of viruses that enter via low-pH pathways; this occurs by pretriggering conformational changes essential for fusion. The target and mechanism(s) of low-pH inactivation of HSV are unclear. Here, low-pH-treated HSV-1 was defective in fusion activity and yet retained normal levels of attachment to cell surface heparan sulfate and binding to nectin-1 receptor. Low-pH-triggered conformational changes in gB reported to date are reversible, despite irreversible low-pH inactivation. gB conformational changes and their reversibility were measured by antigenic analysis with a panel of monoclonal antibodies and by detecting changes in oligomeric conformation. Three-hour treatment of HSV-1 virions with pH 5 or multiple sequential treatments at pH 5 followed by neutral pH caused an irreversible >2.5 log infectivity reduction. While changes in several gB antigenic sites were reversible, alteration of the H126 epitope was irreversible. gB oligomeric conformational change remained reversible under all conditions tested. Altogether, our results reveal that oligomeric alterations and fusion domain changes represent distinct conformational changes in gB, and the latter correlates with irreversible low-pH inactivation of HSV. We propose that conformational change in the gB fusion domain is important for activation of membrane fusion during viral entry and that in the absence of a host target membrane, this change results in irreversible inactivation of virions.IMPORTANCE HSV-1 is an important pathogen with a high seroprevalence throughout the human population. HSV infects cells via multiple pathways, including a low-pH route into epithelial cells, the primary portal into the host. HSV is inactivated by low-pH preexposure, and gB, a

  7. Identifying asthma triggers.

    Science.gov (United States)

    McCarty, Justin C; Ferguson, Berrylin J

    2014-02-01

    Asthma has many triggers including rhinosinusitis; allergy; irritants; medications (aspirin in aspirin-exacerbated respiratory disease); and obesity. Paradoxic vocal fold dysfunction mimics asthma and may be present along with asthma. This article reviews each of these triggers, outlining methods of recognizing the trigger and then its management. In many patients more than one trigger may be present. Full appreciation of the complexity of these relationships and targeted therapy to the trigger is needed to best care for the patient with asthma.

  8. Biosynthetic pathways of plastid-derived organelles as potential drug targets against parasitic apicomplexa.

    Science.gov (United States)

    Seeber, Frank

    2003-06-01

    Apicomplexan parasites are a large phylum of unicellular and obligate intracellular organisms of great medical importance. They include the human pathogens Plasmodium spp., the causative agent of malaria, and Toxoplasma gondii, an opportunistic parasite of immunosuppressed individuals and a common cause of congenital disease, together affecting several hundred million people worldwide. The search for new and effective drugs against these pathogens has been boosted during the last years by an unexpected finding. Through molecular and cell biological analysis it was realized that probably most members of this phylum harbor a plastid-like organelle, called the apicoplast, which probably is derived from the engulfment of a red alga in ancient times. Although the apicoplast itself contains a small circular genome, most of the proteome of this organelle is encoded in the nuclear genome, and the proteins are subsequently transported to the apicoplast. It is assumed to contain a number of unique metabolic pathways not found in the vertebrate host, making it an ideal "playground" for those interested in drug targets. Recent reports have shown that the rationale of this approach is valid and that new drugs which are urgently needed especially for plasmodial infections, might be developed in the near future based on these targets. Amongst them are three enzymes of the plant-like fatty acid synthesis machinery and enzymes of the non-mevalonat isoprenoid biosynthesis pathway. From their presence in the apicoplast it can be concluded that fatty acid and lipid biosynthesis seems to be a major function of the apicoplast. Another recently described apicoplast enzyme, ferredoxin-NADP(+)-reductase and its redox partner, ferredoxin, points to another interesting organelle-specific biosynthetic pathway, namely [Fe-S] cluster biosynthesis. In the present review, the fundamental aspects of the apicoplast as drug target will be described, together with the specific pathways and their

  9. Prokaryotic cells: structural organisation of the cytoskeleton and organelles

    Directory of Open Access Journals (Sweden)

    Wanderley de Souza

    2012-05-01

    Full Text Available For many years, prokaryotic cells were distinguished from eukaryotic cells based on the simplicity of their cytoplasm, in which the presence of organelles and cytoskeletal structures had not been discovered. Based on current knowledge, this review describes the complex components of the prokaryotic cell cytoskeleton, including (i tubulin homologues composed of FtsZ, BtuA, BtuB and several associated proteins, which play a fundamental role in cell division, (ii actin-like homologues, such as MreB and Mb1, which are involved in controlling cell width and cell length, and (iii intermediate filament homologues, including crescentin and CfpA, which localise on the concave side of a bacterium and along its inner curvature and associate with its membrane. Some prokaryotes exhibit specialised membrane-bound organelles in the cytoplasm, such as magnetosomes and acidocalcisomes, as well as protein complexes, such as carboxysomes. This review also examines recent data on the presence of nanotubes, which are structures that are well characterised in mammalian cells that allow direct contact and communication between cells.

  10. Prokaryotic cells: structural organisation of the cytoskeleton and organelles.

    Science.gov (United States)

    Souza, Wanderley de

    2012-05-01

    For many years, prokaryotic cells were distinguished from eukaryotic cells based on the simplicity of their cytoplasm, in which the presence of organelles and cytoskeletal structures had not been discovered. Based on current knowledge, this review describes the complex components of the prokaryotic cell cytoskeleton, including (i) tubulin homologues composed of FtsZ, BtuA, BtuB and several associated proteins, which play a fundamental role in cell division, (ii) actin-like homologues, such as MreB and Mb1, which are involved in controlling cell width and cell length, and (iii) intermediate filament homologues, including crescentin and CfpA, which localise on the concave side of a bacterium and along its inner curvature and associate with its membrane. Some prokaryotes exhibit specialised membrane-bound organelles in the cytoplasm, such as magnetosomes and acidocalcisomes, as well as protein complexes, such as carboxysomes. This review also examines recent data on the presence of nanotubes, which are structures that are well characterised in mammalian cells that allow direct contact and communication between cells.

  11. Geometric modeling of subcellular structures, organelles, and multiprotein complexes

    Science.gov (United States)

    Feng, Xin; Xia, Kelin; Tong, Yiying; Wei, Guo-Wei

    2013-01-01

    SUMMARY Recently, the structure, function, stability, and dynamics of subcellular structures, organelles, and multi-protein complexes have emerged as a leading interest in structural biology. Geometric modeling not only provides visualizations of shapes for large biomolecular complexes but also fills the gap between structural information and theoretical modeling, and enables the understanding of function, stability, and dynamics. This paper introduces a suite of computational tools for volumetric data processing, information extraction, surface mesh rendering, geometric measurement, and curvature estimation of biomolecular complexes. Particular emphasis is given to the modeling of cryo-electron microscopy data. Lagrangian-triangle meshes are employed for the surface presentation. On the basis of this representation, algorithms are developed for surface area and surface-enclosed volume calculation, and curvature estimation. Methods for volumetric meshing have also been presented. Because the technological development in computer science and mathematics has led to multiple choices at each stage of the geometric modeling, we discuss the rationales in the design and selection of various algorithms. Analytical models are designed to test the computational accuracy and convergence of proposed algorithms. Finally, we select a set of six cryo-electron microscopy data representing typical subcellular complexes to demonstrate the efficacy of the proposed algorithms in handling biomolecular surfaces and explore their capability of geometric characterization of binding targets. This paper offers a comprehensive protocol for the geometric modeling of subcellular structures, organelles, and multiprotein complexes. PMID:23212797

  12. Unraveling the complexity of lipid body organelles in human eosinophils.

    Science.gov (United States)

    Melo, Rossana C N; Weller, Peter F

    2014-11-01

    Lipid-rich organelles are common in many cell types. In cells, such as adipocytes, these organelles are termed LDs, whereas in other cells, such as leukocytes, they are called LBs. The study of leukocyte LBs has attracted attention as a result of their association with human diseases. In leukocytes, such as eosinophils, LB accumulation has been documented extensively during inflammatory conditions. In these cells, LBs are linked to the regulation of immune responses by compartmentalization of several proteins and lipids involved in the control and biosynthesis of inflammatory mediators (eicosanoids). However, it has been unclear how diverse proteins, including membrane-associated enzymes involved in eicosanoid formation, incorporate into LBs, especially if the internal content of LBs is assumed to consist solely of stores of neutral lipids, as present within adipocyte LDs. Studies of the formation, function, and ultrastructure of LBs in eosinophils have been providing insights pertinent to LBs in other leukocytes. Here, we review current knowledge of the composition and function of leukocyte LBs as provided by studies of human eosinophil LBs, including recognitions of the internal architecture of eosinophil LBs based on 3D electron tomographic analyses.

  13. The Central Trigger Processor (CTP)

    CERN Multimedia

    Franchini, Matteo

    2016-01-01

    The Central Trigger Processor (CTP) receives trigger information from the calorimeter and muon trigger processors, as well as from other sources of trigger. It makes the Level-1 decision (L1A) based on a trigger menu.

  14. Advances and New Concepts in Alcohol-Induced Organelle Stress, Unfolded Protein Responses and Organ Damage

    Directory of Open Access Journals (Sweden)

    Cheng Ji

    2015-06-01

    Full Text Available Alcohol is a simple and consumable biomolecule yet its excessive consumption disturbs numerous biological pathways damaging nearly all organs of the human body. One of the essential biological processes affected by the harmful effects of alcohol is proteostasis, which regulates the balance between biogenesis and turnover of proteins within and outside the cell. A significant amount of published evidence indicates that alcohol and its metabolites directly or indirectly interfere with protein homeostasis in the endoplasmic reticulum (ER causing an accumulation of unfolded or misfolded proteins, which triggers the unfolded protein response (UPR leading to either restoration of homeostasis or cell death, inflammation and other pathologies under severe and chronic alcohol conditions. The UPR senses the abnormal protein accumulation and activates transcription factors that regulate nuclear transcription of genes related to ER function. Similarly, this kind of protein stress response can occur in other cellular organelles, which is an evolving field of interest. Here, I review recent advances in the alcohol-induced ER stress response as well as discuss new concepts on alcohol-induced mitochondrial, Golgi and lysosomal stress responses and injuries.

  15. Capture and release of partially zipped trans-SNARE complexes on intact organelles.

    Science.gov (United States)

    Schwartz, Matthew L; Merz, Alexey J

    2009-05-04

    Soluble N-ethyl-maleimide sensitive fusion protein attachment protein receptors (SNAREs) are hypothesized to trigger membrane fusion by complexing in trans through their membrane-distal N termini and zippering toward their membrane-embedded C termini, which in turn drives the two membranes together. In this study, we use a set of truncated SNAREs to trap kinetically stable, partially zipped trans-SNARE complexes on intact organelles in the absence of hemifusion and content mixing. We show that the C-terminal zippering of SNARE cytoplasmic domains controls the onset of lipid mixing but not the subsequent transition from hemifusion to full fusion. Moreover, we find that a partially zipped nonfusogenic trans-complex is rescued by Sec17, a universal SNARE cochaperone. Rescue occurs independently of the Sec17-binding partner Sec18, and it exhibits steep cooperativity, indicating that Sec17 engages multiple stalled trans-complexes to drive fusion. These experiments delineate distinct functions within the trans-complex, provide a straightforward method to trap and study prefusion complexes on native membranes, and reveal that Sec17 can rescue a stalled, partially zipped trans-complex.

  16. Asthma triggers (image)

    Science.gov (United States)

    ... things make your asthma worse. These are called asthma "triggers". Avoiding them is your first step toward feeling better. The most common asthma triggers are mold, pets, dust, grasses, pollen, cockroaches, odors ...

  17. Asthma Triggers: Gain Control

    Science.gov (United States)

    ... Search Asthma Contact Us Share Asthma Triggers: Gain Control Breathing Freely: Controlling Asthma Triggers This video features ... Air Quality: Biological Pollutants Help Your Child Gain Control Over Asthma Top of Page Molds About Molds ...

  18. The KLOE trigger system

    Energy Technology Data Exchange (ETDEWEB)

    Adinolfi, M.; Aloisio, A.; Ambrosino, F.; Andryakov, A.; Antonelli, A.; Antonelli, M.; Anulli, F.; Bacci, C.; Bankamp, A.; Barbiellini, G.; Bellini, F.; Bencivenni, G.; Bertolucci, S.; Bini, C.; Bloise, C.; Bocci, V.; Bossi, F.; Branchini, P.; Bulychjov, S.A.; Cabibbo, G.; Calcaterra, A.; Caloi, R.; Campana, P.; Capon, G.; Carboni, G.; Cardini, A.; Casarsa, M.; Cataldi, G.; Ceradini, F.; Cervelli, F.; Cevenini, F.; Chiefari, G.; Ciambrone, P.; Conetti, S.; Conticelli, S.; De Lucia, E.; De Robertis, G.; De Sangro, R.; De Simone, P.; De Zorzi, G.; Dell' Agnello, S.; Denig, E.; Di Domenico, A.; Di Donato, C.; Di Falco, S.; Doria, A.; Drago, E.; Elia, V.; Erriquez, O.; Farilla, A.; Felici, G.; Ferrari, A.; Ferrer, M.L.; Finocchiaro, G.; Forti, C.; Franceschi, A.; Franzini, P.; Gao, M.L.; Gatti, C.; Gauzzi, P.; Giovannella, S.; Golovatyuk, V.; Gorini, E.; Grancagnolo, F.; Grandegger, W.; Graziani, E.; Guarnaccia, P.; Hagel, U. von; Han, H.G.; Han, S.W.; Huang, X.; Incagli, M.; Ingrosso, L.; Jang, Y.Y.; Kim, W.; Kluge, W.; Kulikov, V.; Lacava, F.; Lanfranchi, G.; Lee-Franzini, J.; Lomtadze, F.; Luisi, C.; Mao, C.S.; Martemianov, M.; Matsyuk, M.; Mei, W.; Merola, L.; Messi, R.; Miscetti, S.; Moalem, A.; Moccia, S.; Moulson, M.; Mueller, S.; Murtas, F.; Napolitano, M.; Nedosekin, A.; Panareo, M.; Pacciani, L.; Pages, P.; Palutan, M.; Paoluzi, L.; Pasqualucci, E.; Passalacqua, L.; Passaseo, M.; Passeri, A.; Patera, V.; Petrolo, E.; Petrucci, G.; Picca, D.; Pirozzi, G.; Pistillo, C.; Pollack, M.; Pontecorvo, L.; Primavera, M.; Ruggieri, F.; Santangelo, P.; Santovetti, E.; Saracino, G.; Schamberger, R.D.; Schwick, C.; Sciascia, B. E-mail: barbara.sciascia@romal.infn.it; Sciubba, A.; Scuri, F.; Sfiligoi, I.; Shan, J.; Silano, P.; Spadaro, T.; Spagnolo, S.; Spiriti, E.; Stanescu, C.; Tong, G.L.; Tortora, L.; Valente, E.; Valente, P.; Valeriani, B.; Venanzoni, G.; Veneziano, S.; Wu, Y.; Xie, Y.G.; Zhao, P.P.; Zhou, Y

    2001-04-01

    A double-level trigger system has been developed for the KLOE experiment. Custom electronics asserts a trigger in a 2 {mu}s decision time. The decision is based on the combined information of the electromagnetic calorimeter and the drift chamber. The entire trigger system is continuously monitored, and data flowing from the trigger system have allowed both an efficient online monitoring of the detector and an online luminosity measurement.

  19. Organelles in Blastocystis that Blur the Distinction between Mitochondria and Hydrogenosomes.

    OpenAIRE

    Stechmann, A; Hamblin, K; Perez-Brocal, V; Gaston, D; Richmond, GS; Giezen, M.; Clark, CG; Roger, AJ

    2008-01-01

    Summary Blastocystis is a unicellular stramenopile of controversial pathogenicity in humans [1, 2]. Although it is a strict anaerobe, Blastocystis has mitochondrion-like organelles with cristae, a transmembrane potential and DNA [2–4]. An apparent lack of several typical mitochondrial pathways has led some to suggest that these organelles might be hydrogenosomes, anaerobic organelles related to mitochondria [5, 6]. We generated 12,767 expressed sequence tags (ESTs) from Blastocystis and ident...

  20. Inflammation-associated autophagy-related programmed necrotic death of human neutrophils characterized by organelle fusion events.

    Science.gov (United States)

    Mihalache, Cristina C; Yousefi, Shida; Conus, Sébastien; Villiger, Peter M; Schneider, E Marion; Simon, Hans-Uwe

    2011-06-01

    The most common form of neutrophil death, under both physiological and inflammatory conditions, is apoptosis. In this study, we report a novel form of programmed necrotic cell death, associated with cytoplasmic organelle fusion events, that occurs in neutrophils exposed to GM-CSF and other inflammatory cytokines upon ligation of CD44. Strikingly, this type of neutrophil death requires PI3K activation, a signaling event usually involved in cellular survival pathways. In the death pathway reported in this study, PI3K is required for the generation of reactive oxygen species, which somehow trigger the generation of large cytoplasmic vacuoles, generated by the fusion of CD44-containing endosomes with autophagosomes and secondary, but not primary, granules. Neutrophils demonstrating vacuolization undergo rapid cell death that depends on receptor-interacting protein 1 kinase activity and papain family protease(s), but not caspases, that are most likely activated and released, respectively, during or as a consequence of organelle fusion. Vacuolized neutrophils are present in infectious and autoimmune diseases under in vivo conditions. Moreover, isolated neutrophils from such patients are highly sensitive toward CD44-mediated PI3K activation, reactive oxygen species production, and cell death, suggesting that the newly described autophagy-related form of programmed neutrophil necrosis plays an important role in inflammatory responses.

  1. Seeing is believing: on the use of image databases for visually exploring plant organelle dynamics.

    Science.gov (United States)

    Mano, Shoji; Miwa, Tomoki; Nishikawa, Shuh-ichi; Mimura, Tetsuro; Nishimura, Mikio

    2009-12-01

    Organelle dynamics vary dramatically depending on cell type, developmental stage and environmental stimuli, so that various parameters, such as size, number and behavior, are required for the description of the dynamics of each organelle. Imaging techniques are superior to other techniques for describing organelle dynamics because these parameters are visually exhibited. Therefore, as the results can be seen immediately, investigators can more easily grasp organelle dynamics. At present, imaging techniques are emerging as fundamental tools in plant organelle research, and the development of new methodologies to visualize organelles and the improvement of analytical tools and equipment have allowed the large-scale generation of image and movie data. Accordingly, image databases that accumulate information on organelle dynamics are an increasingly indispensable part of modern plant organelle research. In addition, image databases are potentially rich data sources for computational analyses, as image and movie data reposited in the databases contain valuable and significant information, such as size, number, length and velocity. Computational analytical tools support image-based data mining, such as segmentation, quantification and statistical analyses, to extract biologically meaningful information from each database and combine them to construct models. In this review, we outline the image databases that are dedicated to plant organelle research and present their potential as resources for image-based computational analyses.

  2. Organelle targeting during bacterial infection: insights from Listeria.

    Science.gov (United States)

    Lebreton, Alice; Stavru, Fabrizia; Cossart, Pascale

    2015-06-01

    Listeria monocytogenes, a facultative intracellular bacterium responsible for severe foodborne infections, is now recognized as a multifaceted model in infection biology. Comprehensive studies of the molecular and cellular basis of the infection have unraveled how the bacterium crosses the intestinal and feto-placental barriers, invades several cell types in which it multiplies and moves, and spreads from cell to cell. Interestingly, although Listeria does not actively invade host cell organelles, it can interfere with their function. We discuss the effect of Listeria on the endoplasmic reticulum (ER) and the mechanisms leading to the fragmentation of the mitochondrial network and its consequences, and review the strategies used by Listeria to subvert nuclear functions, more precisely to control host gene expression at the chromatin level.

  3. Following mitochondria dynamism: confocal analysis of the organelle morphology.

    Science.gov (United States)

    Mariotti, Francesca R; Corrado, Mauro; Campello, Silvia

    2015-01-01

    Mitochondria are highly dynamic organelles, whose morphology can vary from an elongated and interconnected network to fragmented units. In recent years, outstanding discoveries have linked mitochondrial morphology to the regulation of an increasing number of biological processes, such as biosynthetic pathways, oxidative phosphorylation and ATP production, calcium buffering, and cell death. Here we describe two of the main methods used to analyze the mitochondrial length in fixed cells and the mitochondrial fusion rate in live cells. Moreover, we focus one of the protocols on T cells, as an example of non-adherent cells, which present some particularities and difficulties in the analysis of mitochondrial shape. We also discuss the main mouse models carrying a mitochondrial targeted fluorescent protein, an invaluable tool to deeply investigate in vivo mitochondrial morphology.

  4. Artificial Organelles: Reactions inside Protein-Polymer Supramolecular Assemblies.

    Science.gov (United States)

    Garni, Martina; Einfalt, TomaŽ; Lomora, Mihai; Car, Anja; Meier, Wolfgang; Palivan, Cornelia G

    2016-01-01

    Reactions inside confined compartments at the nanoscale represent an essential step in the development of complex multifunctional systems to serve as molecular factories. In this respect, the biomimetic approach of combining biomolecules (proteins, enzymes, mimics) with synthetic membranes is an elegant way to create functional nanoreactors, or even simple artificial organelles, that function inside cells after uptake. Functionality is provided by the specificity of the biomolecule(s), whilst the synthetic compartment provides mechanical stability and robustness. The availability of a large variety of biomolecules and synthetic membranes allows the properties and functionality of these reaction spaces to be tailored and adjusted for building complex self-organized systems as the basis for molecular factories.

  5. A gain-of-function mutation in Msl10 triggers cell death and wound-induced hyperaccumulation of jasmonic acid in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    Yan Zou; Jian-Min Zhou; Satya Chintamanani; Ping He; Hirotada Fukushige; Liping Yu; Meiyu Shao; Lihuang Zhu; David F Hildebrand; Xiaoyan Tang

    2016-01-01

    Jasmonates (JAs) are rapidly induced after wound-ing and act as key regulators for wound induced signaling pathway. However, what perceives the wound signal and how that triggers JA biosynthesis remains poorly understood. To identify components involved in Arabidopsis wound and JA signaling pathway, we screened for mutants with abnormal expression of a luciferase reporter, which is under the control of a wound-responsive promoter of an ethylene response factor (ERF) transcription factor gene, RAP2.6 (Related to APetala 2.6). The rea1 (RAP2.6 expresser in shoot apex) mutant constitutively expressed the RAP2.6-LUC reporter gene in young leaves. Along with the typical JA phenotypes including shorter petioles, loss of apical dominance, accumulation of anthocyanin pig-ments and constitutive expression of JA response gene, rea1 plants also displayed cell death and accumulated high levels of JA in response to wounding. The phenotype of rea1 mutant is caused by a gain-of-function mutation in the C-terminus of a mechanosensitive ion channel MscS-like 10 (MSL10). MSL10 is localized in the plasma membrane and is expressed predom-inantly in root tip, shoot apex and vascular tissues. These results suggest that MSL10 is involved in the wound-triggered early signal transduction pathway and possibly in regulating the positive feedback synthesis of JA.

  6. Cough in asthma triggered by reflux episodes.

    Science.gov (United States)

    Mehta, Devendra; He, Zhaoping; Padman, Raj

    2014-05-01

    With combined pH and impedance monitoring, non-acid, as well as acid reflux episodes, are more commonly detected immediately prior to cough in asthma in children. Gastroesophageal reflux should be evaluated as a trigger for cough in difficult childhood asthma.

  7. Triggering trigeminal neuralgia.

    Science.gov (United States)

    Di Stefano, Giulia; Maarbjerg, Stine; Nurmikko, Turo; Truini, Andrea; Cruccu, Giorgio

    2017-01-01

    Introduction Although it is widely accepted that facial pain paroxysms triggered by innocuous stimuli constitute a hallmark sign of trigeminal neuralgia, very few studies to date have systematically investigated the role of the triggers involved. In the recently published diagnostic classification, triggered pain is an essential criterion for the diagnosis of trigeminal neuralgia but no study to date has been designed to address this issue directly. In this study, we set out to determine, in patients with trigeminal neuralgia, how frequently triggers are present, which manoeuvres activate them and where cutaneous and mucosal trigger zones are located. Methods Clinical characteristics focusing on trigger factors were collected from 140 patients with trigeminal neuralgia, in a cross-sectional study design. Results Provocation of paroxysmal pain by various trigger manoeuvres was reported by 136 of the 140 patients. The most frequent manoeuvres were gentle touching of the face (79%) and talking (54%). Trigger zones were predominantly reported in the perioral and nasal region. Conclusion This study confirms that in trigeminal neuralgia, paroxysmal pain is associated with triggers in virtually all patients and supports the use of triggers as an essential diagnostic feature of trigeminal neuralgia.

  8. Acidic pH triggers conformational changes at the NH2-terminal propeptide of the precursor of pulmonary surfactant protein B to form a coiled coil structure.

    Science.gov (United States)

    Bañares-Hidalgo, A; Pérez-Gil, J; Estrada, P

    2014-07-01

    Pulmonary surfactant protein SP-B is synthesized as a larger precursor, proSP-B. We report that a recombinant form of human SP-BN forms a coiled coil structure at acidic pH. The protonation of a residue with pK=4.8±0.06 is the responsible of conformational changes detected by circular dichroism and intrinsic fluorescence emission. Sedimentation velocity analysis showed protein oligomerisation at any pH condition, with an enrichment of the species compatible with a tetramer at acidic pH. Low 2,2,2,-trifluoroethanol concentration promoted β-sheet structures in SP-BN, which bind Thioflavin T, at acidic pH, whereas it promoted coiled coil structures at neutral pH. The amino acid stretch predicted to form β-sheet parallel association in SP-BN overlaps with the sequence predicted by several programs to form coiled coil structure. A synthetic peptide ((60)W-E(85)) designed from the sequence of the amino acid stretch of SP-BN predicted to form coiled coil structure showed random coil conformation at neutral pH but concentration-dependent helical structure at acidic pH. Sedimentation velocity analysis of the peptide indicated monomeric state at neutral pH (s20, w=0.55S; Mr~3kDa) and peptide association (s20, w=1.735S; Mr=~14kDa) at acidic pH, with sedimentation equilibrium fitting to a Monomer-Nmer-Mmer model with N=6 and M=4 (Mr=14692Da). We propose that protein oligomerisation through coiled-coil motifs could then be a general feature in the assembly of functional units in saposin-like proteins in general and in the organization of SP-B in a functional surfactant, in particular. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. From Endosymbiont to Host-Controlled Organelle: The Hijacking of Mitochondrial Protein Synthesis and Metabolism

    NARCIS (Netherlands)

    Gabaldon, T.; Huynen, M.A.

    2007-01-01

    Mitochondria are eukaryotic organelles that originated from the endosymbiosis of an alpha-proteobacterium. To gain insight into the evolution of the mitochondrial proteome as it proceeded through the transition from a free-living cell to a specialized organelle, we compared a reconstructed ancestral

  10. From endosymbiont to host-controlled organelle: the hijacking of mitochondrial protein synthesis and metabolism.

    NARCIS (Netherlands)

    Gabaldon, T.; Huynen, M.A.

    2007-01-01

    Mitochondria are eukaryotic organelles that originated from the endosymbiosis of an alpha-proteobacterium. To gain insight into the evolution of the mitochondrial proteome as it proceeded through the transition from a free-living cell to a specialized organelle, we compared a reconstructed ancestral

  11. From Endosymbiont to Host-Controlled Organelle: The Hijacking of Mitochondrial Protein Synthesis and Metabolism

    NARCIS (Netherlands)

    Gabaldon, T.; Huynen, M.A.

    2007-01-01

    Mitochondria are eukaryotic organelles that originated from the endosymbiosis of an alpha-proteobacterium. To gain insight into the evolution of the mitochondrial proteome as it proceeded through the transition from a free-living cell to a specialized organelle, we compared a reconstructed ancestral

  12. From endosymbiont to host-controlled organelle: the hijacking of mitochondrial protein synthesis and metabolism.

    NARCIS (Netherlands)

    Gabaldon, T.; Huynen, M.A.

    2007-01-01

    Mitochondria are eukaryotic organelles that originated from the endosymbiosis of an alpha-proteobacterium. To gain insight into the evolution of the mitochondrial proteome as it proceeded through the transition from a free-living cell to a specialized organelle, we compared a reconstructed ancestral

  13. A conceptual mathematical model of the dynamic self-organisation of distinct cellular organelles.

    Directory of Open Access Journals (Sweden)

    Bernd Binder

    Full Text Available Formation, degradation and renewal of cellular organelles is a dynamic process based on permanent budding, fusion and inter-organelle traffic of vesicles. These processes include many regulatory proteins such as SNAREs, Rabs and coats. Given this complex machinery, a controversially debated issue is the definition of a minimal set of generic mechanisms necessary to enable the self-organization of organelles differing in number, size and chemical composition. We present a conceptual mathematical model of dynamic organelle formation based on interacting vesicles which carry different types of fusogenic proteins (FP playing the role of characteristic marker proteins. Our simulations (ODEs show that a de novo formation of non-identical organelles, each accumulating a different type of FP, requires a certain degree of disproportionation of FPs during budding. More importantly however, the fusion kinetics must indispensably exhibit positive cooperativity among these FPs, particularly for the formation of larger organelles. We compared different types of cooperativity: sequential alignment of corresponding FPs on opposite vesicle/organelles during fusion and pre-formation of FP-aggregates (equivalent, e.g., to SNARE clusters prior to fusion described by Hill kinetics. This showed that the average organelle size in the system is much more sensitive to the disproportionation strength of FPs during budding if the vesicular transport system gets along with a fusion mechanism based on sequential alignments of FPs. Therefore, pre-formation of FP aggregates within the membranes prior to fusion introduce robustness with respect to organelle size. Our findings provide a plausible explanation for the evolution of a relatively large number of molecules to confer specificity on the fusion machinery compared to the relatively small number involved in the budding process. Moreover, we could speculate that a specific cooperativity which may be described by Hill

  14. Fast and Living Ring-Opening Polymerization of α-Amino Acid N-Carboxyanhydrides Triggered by an "Alliance" of Primary and Secondary Amines at Room Temperature

    KAUST Repository

    Zhao, Wei

    2015-04-13

    A novel highly efficient strategy, based on an "alliance" of primary and secondary amine initiators, was successfully developed allowing the fast and living ring-opening polymerization (ROP) of α-amino acid N-carboxyanhydrides (NCAs) at room temperature. (Chemical Equation Presented). © 2015 American Chemical Society.

  15. The protective effect of myo-inositol on hippocamal cell loss and structural alterations in neurons and synapses triggered by kainic acid-induced status epilepticus.

    Science.gov (United States)

    Kotaria, Nato; Kiladze, Maia; Zhvania, Mzia G; Japaridze, Nadezhda J; Bikashvili, Tamar; Solomonia, Revaz O; Bolkvadze, Tamar

    2013-07-01

    It is known that myo-inositol pretreatment attenuates the seizure severity and several biochemical changes provoked by experimentally induced status epilepticus. However, it remains unidentified whether such properties of myo-inositol influence the structure of epileptic brain. In the present light and electron microscopic research we elucidate if pretreatment with myo-inositol has positive effect on hippocampal cell loss, and cell and synapses damage provoked by kainic acid-induced status epilepticus. Adult male Wistar rats were treated with (i) saline, (ii) saline + kainic acid, (iii) myo-inositol + kainic acid. Assessment of cell loss at 2, 14, and 30 days after treatment demonstrate cytoprotective effect of myo-inositol in CA1 and CA3 areas. It was strongly expressed in pyramidal layer of CA1, radial and oriental layers of CA3 and in less degree-in other layers of both fields. Ultrastructural alterations were described in CA1, 14 days after treatment. The structure of neurons, synapses, and porosomes are well preserved in the rats pretreated with myo-inositol in comparing with rats treated with only kainic acid.

  16. The promiscuous enzyme medium-chain 3-keto-acyl-CoA thiolase triggers a vicious cycle in fatty-acid beta-oxidation

    NARCIS (Netherlands)

    Martines, Anne-Claire M. F.; van Eunen, Karen; Reijngoud, Dirk-Jan; Bakker, Barbara M.

    2017-01-01

    Mitochondrial fatty-acid beta-oxidation (mFAO) plays a central role in mammalian energy metabolism. Multiple severe diseases are associated with defects in this pathway. Its kinetic structure is characterized by a complex wiring of which the functional implications have hardly been explored. Repetit

  17. The mitochondrial genome, a growing interest inside an organelle

    Directory of Open Access Journals (Sweden)

    Marco Crimi

    2008-03-01

    Full Text Available Marco Crimi1, Roberta Rigolio21National Institute of Molecular Genetics (INGM, Functional Genomics Unit, Milan, Italy; 2Department of Neurosciences and Biomedical Technologies, University of Milan Bicocca, Monza, ItalyAbstract: Mitochondria are semi-autonomously reproductive organelles within eukaryotic cells carrying their own genetic material, called the mitochondrial genome (mtDNA. Until some years ago, mtDNA had primarily been used as a tool in population genetics. As scientists began associating mtDNA mutations with dozens of mysterious disorders, as well as the aging process and a variety of chronic degenerative diseases, it became increasingly evident that the information contained in this genome had substantial potential applications to improve human health. Today, mitochondria research covers a wide range of disciplines, including clinical medicine, biochemistry, genetics, molecular cell biology, bioinformatics, plant sciences and physiology. The present review intends to present a summary of the most exiting fields of the mitochondrial research bringing together several contributes in terms of original prospective and future applications.Keywords: mtDNA, heteroplasmy, molecular diagnostics, mitochondriopathies, nanogenomics

  18. Cell shape and organelle modification in apoptotic U937 cells

    Directory of Open Access Journals (Sweden)

    MR Montinari

    2009-12-01

    Full Text Available U937 cells induced to apoptosis, progressively and dramatically modified their cell shape by intense blebbing formation, leading to the production of apoptotic bodies. The blebs evolved with time; milder forms of blebbing involving only a region or just the cortical part of the cytoplasm were observed within the first hour of incubation with puromycin; blebbing involving the whole cell body with very deep constrictions is the most frequent event observed during late times of incubation. The ultrastructural analysis of apoptotic cells revealed characteristic features of nuclear fragmentation (budding and cleavage mode and cytoplasmatic modifications. The cytoplasm of blebs does not contain organelles, such as ribosomes or mitochondria. Scarce presence of endoplasmic reticulum can be observed at the site of bleb detachment. However, blebbing is a dispensable event as evaluated by using inhibitor of actin polymerization. In the present study, the progressive modifications of the nucleus, mitochondria, nuclear fragmentation, cytoplasmic blebs formation and production of apoptotic bodies in U937 monocytic cells induced to apoptosis by puromycin (an inhibitor of protein synthesis were simultaneously analyzed.

  19. Recent advances in yeast organelle and membrane proteomics.

    Science.gov (United States)

    Premsler, Thomas; Zahedi, René Peiman; Lewandrowski, Urs; Sickmann, Albert

    2009-10-01

    Yeast proteome research comprises two different aspects: with respect to systemic fungal infections (fungemias), invasive candidiasis, for instance by Candida albicans, is among the most common causes of morbidity and mortality particularly in the expanding population of immunocompromised patients, which rises a high medical and pharmaceutical interest in this facultative pathogenic organism. Apart from its clinical relevance, yeast research moreover provides an indispensable source of knowledge regarding fundamental biochemical processes of eukaryotic cells. In this context, the budding yeast Saccharomyces cerevisiae is, in addition to its multiple industrial applications, one of the most extensively used microorganisms and serves as the best understood eukaryotic model system so far. Consequently, numerous studies have focused on gaining insight into the yeast proteome, with protein MS providing a very efficient technology to cope with this task since it enables both protein identification and differential quantification of cellular material. In this review we present an overview of recent advances in yeast organelle and membrane proteomics focusing on the cell wall, plasma membrane, mitochondria and vacuole.

  20. The selective target of capsaicin on FASN expression and de novo fatty acid synthesis mediated through ROS generation triggers apoptosis in HepG2 cells.

    Directory of Open Access Journals (Sweden)

    Hathaichanok Impheng

    Full Text Available The inhibition of the mammalian de novo synthesis of long-chain saturated fatty acids (LCFAs by blocking the fatty acid synthase (FASN enzyme activity in tumor cells that overexpress FASN can promote apoptosis, without apparent cytotoxic to non-tumor cells. The present study aimed to focus on the potent inhibitory effect of capsaicin on the fatty acid synthesis pathway inducing apoptosis of capsaicin in HepG2 cells. The use of capsaicin as a source for a new FASN inhibitor will provide new insight into its possible application as a selective anti-cancer therapy. The present findings showed that capsaicin promoted apoptosis as well as cell cycle arrest in the G0/G1 phase. The onset of apoptosis was correlated with a dissipation of mitochondrial membrane potential (ΔΨm. Apoptotic induction by capsaicin was mediated by inhibition of FASN protein expression which was accompanied by decreasing its activity on the de novo fatty acid synthesis. The expression of FASN was higher in HepG2 cells than in normal hepatocytes that were resistant to undergoing apoptosis following capsaicin administration. Moreover, the inhibitory effect of capsaicin on FASN expression and activity was found to be mediated by an increase of intracellular reactive oxygen species (ROS generation. Treatment of HepG2 cells with capsaicin failed to alter ACC and ACLY protein expression, suggesting ACC and ACLY might not be the specific targets of capsaicin to induce apoptosis. An accumulation of malonyl-CoA level following FASN inhibition represented a major cause of mitochondrial-dependent apoptotic induction instead of deprivation of fatty acid per se. Here, we also obtained similar results with C75 that exhibited apoptosis induction by reducing the levels of fatty acid without any change in the abundance of FASN expression along with increasing ROS production. Collectively, our results provide novel evidence that capsaicin exhibits a potent anti-cancer property by targeting

  1. The Selective Target of Capsaicin on FASN Expression and De Novo Fatty Acid Synthesis Mediated through ROS Generation Triggers Apoptosis in HepG2 Cells

    Science.gov (United States)

    Impheng, Hathaichanok; Pongcharoen, Sutatip; Richert, Lysiane; Pekthong, Dumrongsak; Srisawang, Piyarat

    2014-01-01

    The inhibition of the mammalian de novo synthesis of long-chain saturated fatty acids (LCFAs) by blocking the fatty acid synthase (FASN) enzyme activity in tumor cells that overexpress FASN can promote apoptosis, without apparent cytotoxic to non-tumor cells. The present study aimed to focus on the potent inhibitory effect of capsaicin on the fatty acid synthesis pathway inducing apoptosis of capsaicin in HepG2 cells. The use of capsaicin as a source for a new FASN inhibitor will provide new insight into its possible application as a selective anti-cancer therapy. The present findings showed that capsaicin promoted apoptosis as well as cell cycle arrest in the G0/G1 phase. The onset of apoptosis was correlated with a dissipation of mitochondrial membrane potential (ΔΨm). Apoptotic induction by capsaicin was mediated by inhibition of FASN protein expression which was accompanied by decreasing its activity on the de novo fatty acid synthesis. The expression of FASN was higher in HepG2 cells than in normal hepatocytes that were resistant to undergoing apoptosis following capsaicin administration. Moreover, the inhibitory effect of capsaicin on FASN expression and activity was found to be mediated by an increase of intracellular reactive oxygen species (ROS) generation. Treatment of HepG2 cells with capsaicin failed to alter ACC and ACLY protein expression, suggesting ACC and ACLY might not be the specific targets of capsaicin to induce apoptosis. An accumulation of malonyl-CoA level following FASN inhibition represented a major cause of mitochondrial-dependent apoptotic induction instead of deprivation of fatty acid per se. Here, we also obtained similar results with C75 that exhibited apoptosis induction by reducing the levels of fatty acid without any change in the abundance of FASN expression along with increasing ROS production. Collectively, our results provide novel evidence that capsaicin exhibits a potent anti-cancer property by targeting FASN protein in Hep

  2. AMY trigger system

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, Yoshihide [National Laboratory for High Energy Physics, Tsukuba, Ibaraki (Japan)

    1989-04-01

    A trigger system of the AMY detector at TRISTAN e{sup +}e{sup -} collider is described briefly. The system uses simple track segment and shower cluster counting scheme to classify events to be triggered. It has been operating successfully since 1987.

  3. O2-triggered changes of membrane fatty acid composition have no effect on Arrhenius discontinuities of respiration in sycamore (Acer pseudoplatanus L.) cells.

    Science.gov (United States)

    Bligny, R; Rebeillé, F; Douce, R

    1985-08-01

    Sycamore cells (Acer pseudoplatanus L.) in suspension culture were grown at 25 degrees C in culture medium containing two oxygen concentrations: 250 microM O2 (standard conditions) and 10 microM O2 (O2-limiting conditions). The decrease of O2 concentration in the culture medium did not modify significantly the relative proportion of each phospholipid. In contrast, the molar proportion of fatty acids was dramatically changed in all lipid classes of the cell membranes; the average percentage of oleate increased from 3 to 45% whereas that of linoleate decreased from 49 to 22%. When normal culture conditions were restored (250 microM O2), oleate underwent a rapid desaturation process; the loss of oleic acid was associated with a stoichiometric appearance of linoleic acid at a rate of about 4 nmol of oleate desaturated/h/10(6) cells. Under these conditions, no change in the Arrhenius-type plots of the rate of sycamore cell respiration was observed; the values of the transition temperature and of the Arrhenius activation energy (Ea) associated with the cell respiration as well as with the respiration-associated enzymes remained unchanged. Thus it was concluded that the fact that a strong decrease in the fraction of unsaturated fatty acid residues present in the mitochondria had no effect on electron transport rates and Arrhenius plot discontinuities casts doubt on the significance of such changes in terms of chilling injury. Finally it is suggested that some of the Arrhenius discontinuities observed at the level of membrane enzyme could be the consequence of intrinsic thermotropic changes in protein arrangement independent of lipid fluidity.

  4. The big and intricate dreams of little organelles: Embracing complexity in the study of membrane traffic.

    Science.gov (United States)

    Liu, Allen P; Botelho, Roberto J; Antonescu, Costin N

    2017-09-01

    Compartmentalization of eukaryotic cells into dynamic organelles that exchange material through regulated membrane traffic governs virtually every aspect of cellular physiology including signal transduction, metabolism and transcription. Much has been revealed about the molecular mechanisms that control organelle dynamics and membrane traffic and how these processes are regulated by metabolic, physical and chemical cues. From this emerges the understanding of the integration of specific organellar phenomena within complex, multiscale and nonlinear regulatory networks. In this review, we discuss systematic approaches that revealed remarkable insight into the complexity of these phenomena, including the use of proximity-based proteomics, high-throughput imaging, transcriptomics and computational modeling. We discuss how these methods offer insights to further understand molecular versatility and organelle heterogeneity, phenomena that allow a single organelle population to serve a range of physiological functions. We also detail on how transcriptional circuits drive organelle adaptation, such that organelles may shift their function to better serve distinct differentiation and stress conditions. Thus, organelle dynamics and membrane traffic are functionally heterogeneous and adaptable processes that coordinate with higher-order system behavior to optimize cell function under a range of contexts. Obtaining a comprehensive understanding of organellar phenomena will increasingly require combined use of reductionist and system-based approaches. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Nuclearly encoded splicing factors implicated in RNA splicing in higher plant organelles.

    Science.gov (United States)

    de Longevialle, Andéol Falcon; Small, Ian D; Lurin, Claire

    2010-07-01

    Plant organelles arose from two independent endosymbiosis events. Throughout evolutionary history, tight control of chloroplasts and mitochondria has been gained by the nucleus, which regulates most steps of organelle genome expression and metabolism. In particular, RNA maturation, including RNA splicing, is highly dependent on nuclearly encoded splicing factors. Most introns in organelles are group II introns, whose catalytic mechanism closely resembles that of the nuclear spliceosome. Plant group II introns have lost the ability to self-splice in vivo and require nuclearly encoded proteins as cofactors. Since the first splicing factor was identified in chloroplasts more than 10 years ago, many other proteins have been shown to be involved in splicing of one or more introns in chloroplasts or mitochondria. These new proteins belong to a variety of different families of RNA binding proteins and provide new insights into ribonucleo-protein complexes and RNA splicing machineries in organelles. In this review, we describe how splicing factors, encoded by the nucleus and targeted to the organelles, take part in post-transcriptional steps in higher plant organelle gene expression. We go on to discuss the potential for these factors to regulate organelle gene expression.

  6. Research on seismic stress triggering

    Institute of Scientific and Technical Information of China (English)

    万永革; 吴忠良; 周公威; 黄静; 秦立新

    2002-01-01

    This paper briefly reviews basic theory of seismic stress triggering. Recent development on seismic stress triggering has been reviewed in the views of seismic static and dynamic stress triggering, application of viscoelastic model in seismic stress triggering, the relation between earthquake triggering and volcanic eruption or explosion, other explanation of earthquake triggering, etc. And some suggestions for further study on seismic stress triggering in near future are given.

  7. pH-Triggered Controllable Release of Silver-Indole-3 Acetic Acid Complexes from Mesoporous Silica Nanoparticles (IBN-4) for Effectively Killing Malignant Bacteria.

    Science.gov (United States)

    Kuthati, Yaswanth; Kankala, Ranjith Kumar; Lin, Shi-Xiang; Weng, Ching-Feng; Lee, Chia-Hung

    2015-07-06

    An efficient approach for the antimicrobial agent delivery specifically at acidic pH has been proposed. At the outset, functionalized mesoporous nanoparticles (NPs) were examined to verify the success of synthesis while considering the structural properties by various characterizations. The NPs were immobilized with silver-indole-3 acetic acid hydrazide (IAAH-Ag) complexes via a pH-sensitive hydrazone bond, which functioned as a model drug. When the transitional metal complexes with IBN-4-IAAH-Ag were exposed to acidic pH (near pH 5.0), the silver ions were preferentially released (70%) in a controlled manner up to 12 h by pH-sensitive denial of hydrazone bonds. In contrary, a low drug release (about 25%) was seen in physiological buffer (pH 7.4) demonstrating the pH sensitive release of this drug. Furthermore, the antibacterial efficacy of this unique structured sample was tested against the planktonic cells and biofilms of Gram-positive and Gram-negative bacteria with field emission scanning electron microscope in turn measuring the growth curves, formation of lethal reactive oxygen species, protein leakage, and DNA damage. The synthesized pH-sensitive IAAH-Ag complex was found to have high antimicrobial efficacy against multidrug resistant clinical isolates both in planktonic and biofilm states. Going forward, the synthesized nanoconjugates proved a good in vivo efficacy in treating the bacterial infection of mice. These new metal complex-conjugated NPs through a pH-sensitive hydrazone bond opened up a new avenue for the design and synthesis of the next generation antibacterial agents, which would act as an alternative to antibiotics.

  8. Overexpression of fatty acid synthase in human gliomas correlates with the WHO tumor grade and inhibition with Orlistat reduces cell viability and triggers apoptosis.

    Science.gov (United States)

    Grube, Susanne; Dünisch, Pedro; Freitag, Diana; Klausnitzer, Maren; Sakr, Yasser; Walter, Jan; Kalff, Rolf; Ewald, Christian

    2014-06-01

    Fatty acid synthase (FASN), catalyzing the de novo synthesis of fatty acids, is known to be deregulated in several cancers. Inhibition of this enzyme reduces tumor cell proliferation. Unfortunately, adverse effects and chemical instability prevent the in vivo use of the best-known inhibitors, Cerulenin and C75. Orlistat, a drug used for obesity treatment, is also considered as a potential FASN inhibitor, but its impact on glioma cell biology has not yet been described. In this study, we analyzed FASN expression in human glioma samples and primary glioblastoma cell cultures and the effects of FASN inhibition with Orlistat, Cerulenin and C75. Immunohistochemistry followed by densitometric analysis of 20 glioma samples revealed overexpression of FASN that correlated with the WHO tumor grade. Treatment of glioblastoma cells with these inhibitors resulted in a significant, dose-dependent reduction in tumor cell viability and fatty acid synthesis. Compared to Cerulenin and C75, Orlistat was a more potent inhibitor in cell cultures and cell lines. In LN229, cell-growth was reduced by 63.9 ± 8.7 % after 48 h and 200 µM Orlistat compared to controls; in LT68, the reduction in cell growth was 76.3 ± 23.7 %. Nuclear fragmentation assay and Western blotting analysis after targeting FASN with Orlistat demonstrated autophagy and apoptosis. Organotypic slice cultures treated with Orlistat showed reduced proliferation after Ki67 staining and increased caspase-3 cleavage. Our results suggest that FASN may be a therapeutic target in malignant gliomas and identify Orlistat as a possible anti-tumor drug in this setting.

  9. Effects of organelle shape on fluorescence recovery after photobleaching.

    Science.gov (United States)

    Sbalzarini, Ivo F; Mezzacasa, Anna; Helenius, Ari; Koumoutsakos, Petros

    2005-09-01

    The determination of diffusion coefficients from fluorescence recovery data is often complicated by geometric constraints imposed by the complex shapes of intracellular compartments. To address this issue, diffusion of proteins in the lumen of the endoplasmic reticulum (ER) is studied using cell biological and computational methods. Fluorescence recovery after photobleaching (FRAP) experiments are performed in tissue culture cells expressing GFP-KDEL, a soluble, fluorescent protein, in the ER lumen. The three-dimensional (3D) shape of the ER is determined by confocal microscopy and computationally reconstructed. Within these ER geometries diffusion of solutes is simulated using the method of particle strength exchange. The simulations are compared to experimental FRAP curves of GFP-KDEL in the same ER region. Comparisons of simulations in the 3D ER shapes to simulations in open 3D space show that the constraints imposed by the spatial confinement result in two- to fourfold underestimation of the molecular diffusion constant in the ER if the geometry is not taken into account. Using the same molecular diffusion constant in different simulations, the observed speed of fluorescence recovery varies by a factor of 2.5, depending on the particular ER geometry and the location of the bleached area. Organelle shape considerably influences diffusive transport and must be taken into account when relating experimental photobleaching data to molecular diffusion coefficients. This novel methodology combines experimental FRAP curves with high accuracy computer simulations of diffusion in the same ER geometry to determine the molecular diffusion constant of the solute in the particular ER lumen.

  10. Just three water molecules can trigger the undesired nonenzymatic reactions of aspartic acid residues: new insight from a quantum-chemical study

    Science.gov (United States)

    Takahashi, O.

    2014-03-01

    Aspartic acid (Asp) residues in peptides and proteins (L-Asp) can undergo spontaneous, nonenzymatic reactions under physiological conditions by which abnormal L-β-Asp, D-Asp, and/or D-β-Asp residues are formed. These altered Asp residues may affect the three-dimensional structures of the peptides and proteins and hence their properties and functions. In fact, the altered Asp residues are relevant to age-related diseases such as cataract and Alzheimer's disease. Most of the above reactions of the L-Asp residue proceed via a cyclic succinimide intermediate. In this paper, I propose a detailed mechanism of cyclization of an Asp residue (forming a precursor of the succinimide) by the B3LYP/6-31+G(d,p) density functional theory calculations carried out for a small Asp-containing model compound complexed with three water molecules which act as general acid-base catalysts in proton transfers. In the proposed mechanism, the amide group on the C-terminal side of the Asp residue is first converted to the tautomeric iminol form. Then, successive reorientation of a water molecule and conformational change occur followed by the nucleophilic attack of the iminol nitrogen atom on the carboxyl carbon atom of the Asp side chain to form a five-membered ring. A satisfactory agreement was obtained between the calculated and experimental energetics.

  11. Isoaspartic acid is present at specific sites in myelin basic protein from multiple sclerosis patients: could this represent a trigger for disease onset?

    Science.gov (United States)

    Friedrich, Michael G; Hancock, Sarah E; Raftery, Mark J; Truscott, Roger J W

    2016-08-12

    Multiple sclerosis (MS) is associated with breakdown of the myelin sheath that coats neurons in the central nervous system. The cause of MS is not known, although the pathogenesis involves destruction of myelin by the immune system. It was the aim of this study to examine the abundant myelin protein, myelin basic protein (MBP), to determine if there are sites of modification that may be characteristic for MS. MBP from the cerebellum was examined from controls and MS patients across the age range using mass spectrometry and amino acid analysis. Amino acid racemization data indicated that myelin basic protein is long-lived and proteomic analysis of MBP showed it to be highly modified. A common modification of MBP was racemization of Asp and this was significantly greater in MS patients. In long-lived proteins, L-Asp and L-Asn can racemize to three other isomers, D-isoAsp, L-isoAsp and D-Asp and this is significant because isoAsp formation in peptides renders them immunogenic.Proteomic analysis revealed widespread modifications of MBP with two surface regions that are altered in MS. In particular, isoAsp was significantly elevated at these sites in MS patients. The generation of isoAsp could be responsible for eliciting an immune response to modified MBP and therefore be implicated in the etiology of MS.

  12. Exosomes as Intercellular Signaling Organelles Involved in Health and Disease: Basic Science and Clinical Applications

    Directory of Open Access Journals (Sweden)

    Francesco Ciccia

    2013-03-01

    Full Text Available Cell to cell communication is essential for the coordination and proper organization of different cell types in multicellular systems. Cells exchange information through a multitude of mechanisms such as secreted growth factors and chemokines, small molecules (peptides, ions, bioactive lipids and nucleotides, cell-cell contact and the secretion of extracellular matrix components. Over the last few years, however, a considerable amount of experimental evidence has demonstrated the occurrence of a sophisticated method of cell communication based on the release of specialized membranous nano-sized vesicles termed exosomes. Exosome biogenesis involves the endosomal compartment, the multivesicular bodies (MVB, which contain internal vesicles packed with an extraordinary set of molecules including enzymes, cytokines, nucleic acids and different bioactive compounds. In response to stimuli, MVB fuse with the plasma membrane and vesicles are released in the extracellular space where they can interact with neighboring cells and directly induce a signaling pathway or affect the cellular phenotype through the transfer of new receptors or even genetic material. This review will focus on exosomes as intercellular signaling organelles involved in a number of physiological as well as pathological processes and their potential use in clinical diagnostics and therapeutics.

  13. Calo trigger acquisition system

    CERN Multimedia

    Franchini, Matteo

    2016-01-01

    Calo trigger acquisition system - Evolution of the acquisition system from a multiple boards system (upper, orange cables) to a single board one (below, light blue cables) where all the channels are collected in a single board.

  14. Aspartame-Triggered Migraine

    OpenAIRE

    J Gordon Millichap

    2001-01-01

    Two patients with known aspartame-triggered and rizatriptan-responsive migraine had their headaches worsened following use of an aspartame-containing formulation of rizatriptan (Maxalt-MLT), in a report from Albert Einstein College of Medicine, Bronx, NY.

  15. Calorimetry triggering in ATLAS

    CERN Document Server

    Igonkina, O; Adragna, P; Aharrouche, M; Alexandre, G; Andrei, V; Anduaga, X; Aracena, I; Backlund, S; Baines, J; Barnett, B M; Bauss, B; Bee, C; Behera, P; Bell, P; Bendel, M; Benslama, K; Berry, T; Bogaerts, A; Bohm, C; Bold, T; Booth, J R A; Bosman, M; Boyd, J; Bracinik, J; Brawn, I, P; Brelier, B; Brooks, W; Brunet, S; Bucci, F; Casadei, D; Casado, P; Cerri, A; Charlton, D G; Childers, J T; Collins, N J; Conde Muino, P; Coura Torres, R; Cranmer, K; Curtis, C J; Czyczula, Z; Dam, M; Damazio, D; Davis, A O; De Santo, A; Degenhardt, J; Delsart, P A; Demers, S; Demirkoz, B; Di Mattia, A; Diaz, M; Djilkibaev, R; Dobson, E; Dova, M, T; Dufour, M A; Eckweiler, S; Ehrenfeld, W; Eifert, T; Eisenhandler, E; Ellis, N; Emeliyanov, D; Enoque Ferreira de Lima, D; Faulkner, P J W; Ferland, J; Flacher, H; Fleckner, J E; Flowerdew, M; Fonseca-Martin, T; Fratina, S; Fhlisch, F; Gadomski, S; Gallacher, M P; Garitaonandia Elejabarrieta, H; Gee, C N P; George, S; Gillman, A R; Goncalo, R; Grabowska-Bold, I; Groll, M; Gringer, C; Hadley, D R; Haller, J; Hamilton, A; Hanke, P; Hauser, R; Hellman, S; Hidvgi, A; Hillier, S J; Hryn'ova, T; Idarraga, J; Johansen, M; Johns, K; Kalinowski, A; Khoriauli, G; Kirk, J; Klous, S; Kluge, E-E; Koeneke, K; Konoplich, R; Konstantinidis, N; Kwee, R; Landon, M; LeCompte, T; Ledroit, F; Lei, X; Lendermann, V; Lilley, J N; Losada, M; Maettig, S; Mahboubi, K; Mahout, G; Maltrana, D; Marino, C; Masik, J; Meier, K; Middleton, R P; Mincer, A; Moa, T; Monticelli, F; Moreno, D; Morris, J D; Mller, F; Navarro, G A; Negri, A; Nemethy, P; Neusiedl, A; Oltmann, B; Olvito, D; Osuna, C; Padilla, C; Panes, B; Parodi, F; Perera, V J O; Perez, E; Perez Reale, V; Petersen, B; Pinzon, G; Potter, C; Prieur, D P F; Prokishin, F; Qian, W; Quinonez, F; Rajagopalan, S; Reinsch, A; Rieke, S; Riu, I; Robertson, S; Rodriguez, D; Rogriquez, Y; Rhr, F; Saavedra, A; Sankey, D P C; Santamarina, C; Santamarina Rios, C; Scannicchio, D; Schiavi, C; Schmitt, K; Schultz-Coulon, H C; Schfer, U; Segura, E; Silverstein, D; Silverstein, S; Sivoklokov, S; Sjlin, J; Staley, R J; Stamen, R; Stelzer, J; Stockton, M C; Straessner, A; Strom, D; Sushkov, S; Sutton, M; Tamsett, M; Tan, C L A; Tapprogge, S; Thomas, J P; Thompson, P D; Torrence, E; Tripiana, M; Urquijo, P; Urrejola, P; Vachon, B; Vercesi, V; Vorwerk, V; Wang, M; Watkins, P M; Watson, A; Weber, P; Weidberg, T; Werner, P; Wessels, M; Wheeler-Ellis, S; Whiteson, D; Wiedenmann, W; Wielers, M; Wildt, M; Winklmeier, F; Wu, X; Xella, S; Zhao, L; Zobernig, H; de Seixas, J M; dos Anjos, A; Asman, B; Özcan, E

    2009-01-01

    The ATLAS experiment is preparing for data taking at 14 TeV collision energy. A rich discovery physics program is being prepared in addition to the detailed study of Standard Model processes which will be produced in abundance. The ATLAS multi-level trigger system is designed to accept one event in 2 105 to enable the selection of rare and unusual physics events. The ATLAS calorimeter system is a precise instrument, which includes liquid Argon electro-magnetic and hadronic components as well as a scintillator-tile hadronic calorimeter. All these components are used in the various levels of the trigger system. A wide physics coverage is ensured by inclusively selecting events with candidate electrons, photons, taus, jets or those with large missing transverse energy. The commissioning of the trigger system is being performed with cosmic ray events and by replaying simulated Monte Carlo events through the trigger and data acquisition system.

  16. Towards understanding the evolution and functional diversification of DNA-containing plant organelles

    DEFF Research Database (Denmark)

    Leister, Dario Michael

    2016-01-01

    direct way to reconstruct the evolutionary history of plastids and mitochondria is to sequence and analyze their relatively small genomes. However, understanding the functional diversification of these organelles requires the identification of their complete protein repertoires - which is the ultimate...

  17. Integrated regulation of motor-driven organelle transport by scaffolding proteins.

    Science.gov (United States)

    Fu, Meng-meng; Holzbaur, Erika L F

    2014-10-01

    Intracellular trafficking pathways, including endocytosis, autophagy, and secretion, rely on directed organelle transport driven by the opposing microtubule motor proteins kinesin and dynein. Precise spatial and temporal targeting of vesicles and organelles requires the integrated regulation of these opposing motors, which are often bound simultaneously to the same cargo. Recent progress demonstrates that organelle-associated scaffolding proteins, including Milton/TRAKs (trafficking kinesin-binding protein), JIP1, JIP3 (JNK-interacting proteins), huntingtin, and Hook1, interact with molecular motors to coordinate activity and sustain unidirectional transport. Scaffolding proteins also bind to upstream regulatory proteins, including kinases and GTPases, to modulate transport in the cell. This integration of regulatory control with motor activity allows for cargo-specific changes in the transport or targeting of organelles in response to cues from the complex cellular environment.

  18. Inter-organelle ER-endolysosomal contact sites in metabolism and disease across evolution.

    Science.gov (United States)

    Hariri, Hanaa; Ugrankar, Rupali; Liu, Yang; Henne, W Mike

    2016-01-01

    Since their initial observation, contact sites formed between different organelles have transitioned from ignored curiosities to recognized centers for the exchange of metabolites and lipids. Contact formed between the ER and endomembrane system (eg. the plasma membrane, endosomes, and lysosomes) is of particular biomedical interest, as it governs aspects of lipid metabolism, organelle identity, and cell signaling. Here, we review the field of ER-endolysosomal communication from the perspective of three model systems: budding yeast, the fruit fly D. melanogaster, and mammals. From this broad perspective, inter-organelle communication displays a consistent role in metabolic regulation that was differentially tuned during the development of complex metazoan life. We also examine the current state of understanding of lipid exchange between organelles, and discuss molecular mechanisms by which this occurs.

  19. The promiscuous enzyme medium-chain 3-keto-acyl-CoA thiolase triggers a vicious cycle in fatty-acid beta-oxidation.

    Science.gov (United States)

    Martines, Anne-Claire M F; van Eunen, Karen; Reijngoud, Dirk-Jan; Bakker, Barbara M

    2017-04-01

    Mitochondrial fatty-acid beta-oxidation (mFAO) plays a central role in mammalian energy metabolism. Multiple severe diseases are associated with defects in this pathway. Its kinetic structure is characterized by a complex wiring of which the functional implications have hardly been explored. Repetitive cycles of reversible reactions, each cycle shortening the fatty acid by two carbon atoms, evoke competition between intermediates of different chain lengths for a common set of 'promiscuous' enzymes (enzymes with activity towards multiple substrates). In our validated kinetic model of the pathway, substrate overload causes a steep and detrimental flux decline. Here, we unravel the underlying mechanism and the role of enzyme promiscuity in it. Comparison of alternative model versions elucidated the role of promiscuity of individual enzymes. Promiscuity of the last enzyme of the pathway, medium-chain ketoacyl-CoA thiolase (MCKAT), was both necessary and sufficient to elicit the flux decline. Subsequently, Metabolic Control Analysis revealed that MCKAT had insufficient capacity to cope with high substrate influx. Next, we quantified the internal metabolic regulation, revealing a vicious cycle around MCKAT. Upon substrate overload, MCKAT's ketoacyl-CoA substrates started to accumulate. The unfavourable equilibrium constant of the preceding enzyme, medium/short-chain hydroxyacyl-CoA dehydrogenase, worked as an amplifier, leading to accumulation of upstream CoA esters, including acyl-CoA esters. These acyl-CoA esters are at the same time products of MCKAT and inhibited its already low activity further. Finally, the accumulation of CoA esters led to a sequestration of free CoA. CoA being a cofactor for MCKAT, its sequestration limited the MCKAT activity even further, thus completing the vicious cycle. Since CoA is also a substrate for distant enzymes, it efficiently communicated the 'traffic jam' at MCKAT to the entire pathway. This novel mechanism provides a basis to

  20. Topological Trigger Developments

    CERN Document Server

    Likhomanenko, Tatiana

    2015-01-01

    The main b-physics trigger algorithm used by the LHCb experiment is the so-called topological trigger. The topological trigger selects vertices which are a) detached from the primary proton-proton collision and b) compatible with coming from the decay of a b-hadron. In the LHC Run 1, this trigger utilized a custom boosted decision tree algorithm, selected an almost 100% pure sample of b-hadrons with a typical efficiency of 60-70%, and its output was used in about 60% of LHCb papers. This talk presents studies carried out to optimize the topological trigger for LHC Run 2. In particular, we have carried out a detailed comparison of various machine learning classifier algorithms, e.g., AdaBoost, MatrixNet and uBoost. The topological trigger algorithm is designed to select all "interesting" decays of b-hadrons, but cannot be trained on every such decay. Studies have therefore been performed to determine how to optimize the performance of the classification algorithm on decays not used in the training. These inclu...

  1. LHCb Topological Trigger Reoptimization

    CERN Document Server

    Likhomanenko, Tatiana; Khairullin, Egor; Rogozhnikov, Alex; Ustyuzhanin, Andrey; Williams, Michael

    2015-01-01

    The main b-physics trigger algorithm used by the LHCb experiment is the so-called topological trigger. The topological trigger selects vertices which are a) detached from the primary proton-proton collision and b) compatible with coming from the decay of a b-hadron. In the LHC Run 1, this trigger, which utilized a custom boosted decision tree algorithm, selected a nearly 100% pure sample of b-hadrons with a typical efficiency of 60-70%; its output was used in about 60% of LHCb papers. This talk presents studies carried out to optimize the topological trigger for LHC Run 2. In particular, we have carried out a detailed comparison of various machine learning classifier algorithms, e.g., AdaBoost, MatrixNet and neural networks. The topological trigger algorithm is designed to select all "interesting" decays of b-hadrons, but cannot be trained on every such decay. Studies have therefore been performed to determine how to optimize the performance of the classification algorithm on decays not used in the training. ...

  2. FtsZ and the division of prokaryotic cells and organelles.

    Science.gov (United States)

    Margolin, William

    2005-11-01

    Binary fission of many prokaryotes as well as some eukaryotic organelles depends on the FtsZ protein, which self-assembles into a membrane-associated ring structure early in the division process. FtsZ is homologous to tubulin, the building block of the microtubule cytoskeleton in eukaryotes. Recent advances in genomics and cell-imaging techniques have paved the way for the remarkable progress in our understanding of fission in bacteria and organelles.

  3. Limited Efficiency of Drug Delivery to Specific Intracellular Organelles Using Subcellularly "Targeted" Drug Delivery Systems.

    Science.gov (United States)

    Maity, Amit Ranjan; Stepensky, David

    2016-01-01

    Many drugs have been designed to act on intracellular targets and to affect intracellular processes inside target cells. For the desired effects to be exerted, these drugs should permeate target cells and reach specific intracellular organelles. This subcellular drug targeting approach has been proposed for enhancement of accumulation of these drugs in target organelles and improved efficiency. This approach is based on drug encapsulation in drug delivery systems (DDSs) and/or their decoration with specific targeting moieties that are intended to enhance the drug/DDS accumulation in the intracellular organelle of interest. During recent years, there has been a constant increase in interest in DDSs targeted to specific intracellular organelles, and many different approaches have been proposed for attaining efficient drug delivery to specific organelles of interest. However, it appears that in many studies insufficient efforts have been devoted to quantitative analysis of the major formulation parameters of the DDSs disposition (efficiency of DDS endocytosis and endosomal escape, intracellular trafficking, and efficiency of DDS delivery to the target organelle) and of the resulting pharmacological effects. Thus, in many cases, claims regarding efficient delivery of drug/DDS to a specific organelle and efficient subcellular targeting appear to be exaggerated. On the basis of the available experimental data, it appears that drugs/DDS decoration with specific targeting residues can affect their intracellular fate and result in preferential drug accumulation within an organelle of interest. However, it is not clear whether these approaches will be efficient in in vivo settings and be translated into preclinical and clinical applications. Studies that quantitatively assess the mechanisms, barriers, and efficiencies of subcellular drug delivery and of the associated toxic effects are required to determine the therapeutic potential of subcellular DDS targeting.

  4. A basic study of the radiation effects on the cytoplasmic organelles in the rabbit platelets

    Energy Technology Data Exchange (ETDEWEB)

    Mori, Shigeru; Okumura, Koichi; Nasu, Masanori; Furumoto, Keiichi (Nippon Dental Univ., Tokyo (Japan))

    1991-02-01

    Mature peripheral platelets of rabbits were irradiated with {sup 60}Co-{gamma}-rays, and the effects on organelle in the platelets were examined by discontinuous density gradient centrifugation using the {sup 3}H-serotonin uptake in each fraction layer as an indicator. In platelets irradiated with {gamma}-rays, no destruction of the organelle was found in fraction 1 (mainly membrane fragments), fraction 2 (mainly mitochondria), fraction 3 (mainly {alpha}-granules) or fraction 4 (mainly dense granules). Saturation of {sup 3}H-serotonin uptake in the organelle of non-irradiated platelets was examined in terms of incubation time. Each fraction layer showed continuous {sup 3}H-serotonin uptake for up to 10 minutes of incubation. During incubation from 10 to 30 minutes, fractions 2 and 4 reached saturation, while uptake continued in fractions 1 and 3. After 30 minutes, both fractions 1 and 3 reached saturation, showing that the organelle require about 30 minutes' incubation for saturation. {sup 3}H-serotonin uptake in the organelle of 10 Gy-irradiated platelets with 1 minute's incubation was markedly accelerated in fraction 3 compared with the non-irradiated group, whereas fraction 4 showed a reduced rate of uptake. The rate of {sup 3}H-serotonin uptake in the organelle of 200 Gy-irradiated platelets with 1 minute's incubation fluctuated slightly in each fraction layer as compared with the non-irradiated group, but the difference was not significant. In the organelle of 10 Gy- or 200 Gy-irradiated platelets with 30 minutes' incubation, the rate of {sup 3}H-serotonin uptake in each fraction layer was not significantly different from that in the non-irradiated group. The above results indicate that irradiation to the platelets also affects the organelle. (author).

  5. Inter-organelle ER-endolysosomal contact sites in metabolism and disease across evolution

    OpenAIRE

    Hariri, Hanaa; Ugrankar, Rupali; Yang LIU; Henne, W Mike

    2016-01-01

    ABSTRACT Since their initial observation, contact sites formed between different organelles have transitioned from ignored curiosities to recognized centers for the exchange of metabolites and lipids. Contact formed between the ER and endomembrane system (eg. the plasma membrane, endosomes, and lysosomes) is of particular biomedical interest, as it governs aspects of lipid metabolism, organelle identity, and cell signaling. Here, we review the field of ER-endolysosomal communication from the ...

  6. Triggering apoptotic death of human epidermal keratinocytes by malic Acid: involvement of endoplasmic reticulum stress- and mitochondria-dependent signaling pathways.

    Science.gov (United States)

    Hsiao, Yu-Ping; Lai, Wan-Wen; Wu, Shi-Bei; Tsai, Chung-Hung; Tang, Sheau-Chung; Chung, Jing-Gung; Yang, Jen-Hung

    2015-01-09

    Malic acid (MA) has been commonly used in cosmetic products, but the safety reports in skin are sparse. To investigate the biological effects of MA in human skin keratinocytes, we investigated the potential cytotoxicity and apoptotic effects of MA in human keratinocyte cell lines (HaCaT). The data showed that MA induced apoptosis based on the observations of DAPI staining, DNA fragmentation, and sub-G1 phase in HaCaT cells and normal human epidermal keratinocytes (NHEKs). Flow cytometric assays also showed that MA increased the production of mitochondrial superoxide (mito-SOX) but decreased the mitochondrial membrane potential. Analysis of bioenergetics function with the XF 24 analyzer Seahorse extracellular flux analyzer demonstrated that oxygen consumption rate (OCR) was significantly decreased whereas extracellular acidification rate (ECAR) was increased in MA-treated keratinocytes. The occurrence of apoptosis was proved by the increased expressions of FasL, Fas, Bax, Bid, caspases-3, -8, -9, cytochrome c, and the declined expressions of Bcl-2, PARP. MA also induced endoplasmic reticulum stress associated protein expression such as GRP78, GADD153, and ATF6α. We demonstrated that MA had anti-proliferative effect in HaCaT cell through the inhibition of cell cycle progression at G0/G1, and the induction of programmed cell death through endoplasmic reticulum stress- and mitochondria-dependent pathways.

  7. Triggering Apoptotic Death of Human Epidermal Keratinocytes by Malic Acid: Involvement of Endoplasmic Reticulum Stress- and Mitochondria-Dependent Signaling Pathways

    Directory of Open Access Journals (Sweden)

    Yu-Ping Hsiao

    2015-01-01

    Full Text Available Malic acid (MA has been commonly used in cosmetic products, but the safety reports in skin are sparse. To investigate the biological effects of MA in human skin keratinocytes, we investigated the potential cytotoxicity and apoptotic effects of MA in human keratinocyte cell lines (HaCaT. The data showed that MA induced apoptosis based on the observations of DAPI staining, DNA fragmentation, and sub-G1 phase in HaCaT cells and normal human epidermal keratinocytes (NHEKs. Flow cytometric assays also showed that MA increased the production of mitochondrial superoxide (mito-SOX but decreased the mitochondrial membrane potential. Analysis of bioenergetics function with the XF 24 analyzer Seahorse extracellular flux analyzer demonstrated that oxygen consumption rate (OCR was significantly decreased whereas extracellular acidification rate (ECAR was increased in MA-treated keratinocytes. The occurrence of apoptosis was proved by the increased expressions of FasL, Fas, Bax, Bid, caspases-3, -8, -9, cytochrome c, and the declined expressions of Bcl-2, PARP. MA also induced endoplasmic reticulum stress associated protein expression such as GRP78, GADD153, and ATF6α. We demonstrated that MA had anti-proliferative effect in HaCaT cell through the inhibition of cell cycle progression at G0/G1, and the induction of programmed cell death through endoplasmic reticulum stress- and mitochondria-dependent pathways.

  8. Beware of Cocktails: Chain-Length Bidispersity Triggers Explosive Self-Assembly of Poly-L-Glutamic Acid β2-Fibrils.

    Science.gov (United States)

    Hernik-Magoń, Agnieszka; Puławski, Wojciech; Fedorczyk, Bartłomiej; Tymecka, Dagmara; Misicka, Aleksandra; Szymczak, Piotr; Dzwolak, Wojciech

    2016-04-11

    Chain-length polydispersity is among the least understood factors governing the fibrillation propensity of homopolypeptides. For monodisperse poly-L-glutamic acid (PLGA), the tendency to form fibrils depends of the main-chain length. Long-chained PLGA, so-called (Glu)200, fibrillates more readily than short (Glu)5 fragments. Here we show that conversion of α-helical (Glu)200 into amyloid-like β-fibrils is dramatically accelerated in the presence of intrinsically disordered (Glu)5. While separately self-assembled fibrils of (Glu)200 and (Glu)5 reveal distinct morphological and infrared characteristics, accelerated fibrillation in mixed (Glu)200 and (Glu)5 leads to aggregates similar to neat (Glu)200 fibrils, even in excess of (Glu)5. According to molecular dynamics simulations and circular dichroism measurements, local events of "misfolding transfer" from (Glu)5 to (Glu)200 may play a key role in the initial stages of conformational dynamics underlying the observed phenomenon. Our results highlight chain-length polydispersity as a potent, although so-far unrecognized factor profoundly affecting the fibrillation propensity of homopolypeptides.

  9. Mechanical properties of organelles driven by microtubule-dependent molecular motors in living cells.

    Directory of Open Access Journals (Sweden)

    Luciana Bruno

    Full Text Available The organization of the cytoplasm is regulated by molecular motors which transport organelles and other cargoes along cytoskeleton tracks. Melanophores have pigment organelles or melanosomes that move along microtubules toward their minus and plus end by the action of cytoplasmic dynein and kinesin-2, respectively. In this work, we used single particle tracking to characterize the mechanical properties of motor-driven organelles during transport along microtubules. We tracked organelles with high temporal and spatial resolutions and characterized their dynamics perpendicular to the cytoskeleton track. The quantitative analysis of these data showed that the dynamics is due to a spring-like interaction between melanosomes and microtubules in a viscoelastic microenvironment. A model based on a generalized Langevin equation explained these observations and predicted that the stiffness measured for the motor complex acting as a linker between organelles and microtubules is ∼ one order smaller than that determined for motor proteins in vitro. This result suggests that other biomolecules involved in the interaction between motors and organelles contribute to the mechanical properties of the motor complex. We hypothesise that the high flexibility observed for the motor linker may be required to improve the efficiency of the transport driven by multiple copies of motor molecules.

  10. Granulation in amine-storage organelles of mouse megakaryocytes: X-ray microprobe analysis and radioautography.

    Science.gov (United States)

    Daimon, T; Kawai, K; Uchida, K

    1995-02-01

    The mechanisms and the processes of the storage of bivalent cations, ATP and 5-hydroxytryptamine (5HT) in the precursors of the amine-storage organelles of megakaryocytes were studied at the electron microscopic level. Although the precursors of the amine-storage organelles in the megakaryocytes fixed with glutaraldehyde and osmium tetroxide were empty, the electron opaque granules were observed in these organelles of the freeze-substituted megakaryocytes cut onto ethylene glycol. X-ray microprobe analysis demonstrated that they contained P, Mg and Ca. Quantitative differences in bivalent cations in the granules were not observed between megakaryocytes and blood platelets. Electron opaque uranaffin-reaction products were observed in the precursors of the amine-storage organelles of the megakaryocytes after treatment with the uranaffin reaction for ATP. However, few chromaffin positive granules were observed in the precursors of the amine-storage organelles after the chromaffin reaction for monoamines. Radioautographic analysis demonstrated that blood platelets avidly took up 3H-5HT but megakaryocytes were not able to accumulate 3H-5HT in vivo. These results indicate that megakaryocytes do not yet acquire the well developed uptake system of 5HT in vivo, while they readily accumulate cations and ATP in the precursors of the amine-storage organelles.

  11. Mitochondrial fission factor Drp1 maintains oocyte quality via dynamic rearrangement of multiple organelles.

    Science.gov (United States)

    Udagawa, Osamu; Ishihara, Takaya; Maeda, Maki; Matsunaga, Yui; Tsukamoto, Satoshi; Kawano, Natsuko; Miyado, Kenji; Shitara, Hiroshi; Yokota, Sadaki; Nomura, Masatoshi; Mihara, Katsuyoshi; Mizushima, Noboru; Ishihara, Naotada

    2014-10-20

    Mitochondria are dynamic organelles that change their morphology by active fusion and fission in response to cellular signaling and differentiation. The in vivo role of mitochondrial fission in mammals has been examined by using tissue-specific knockout (KO) mice of the mitochondria fission-regulating GTPase Drp1, as well as analyzing a human patient harboring a point mutation in Drp1, showing that Drp1 is essential for embryonic and neonatal development and neuronal function. During oocyte maturation and aging, structures of various membrane organelles including mitochondria and the endoplasmic reticulum (ER) are changed dynamically, and their organelle aggregation is related to germ cell formation and epigenetic regulation. However, the underlying molecular mechanisms of organelle dynamics during the development and aging of oocytes have not been well understood. Here, we analyzed oocyte-specific mitochondrial fission factor Drp1-deficient mice and found that mitochondrial fission is essential for follicular maturation and ovulation in an age-dependent manner. Mitochondria were highly aggregated with other organelles, such as the ER and secretory vesicles, in KO oocyte, which resulted in impaired Ca(2+) signaling, intercellular communication via secretion, and meiotic resumption. We further found that oocytes from aged mice displayed reduced Drp1-dependent mitochondrial fission and defective organelle morphogenesis, similar to Drp1 KO oocytes. On the basis of these findings, it appears that mitochondrial fission maintains the competency of oocytes via multiorganelle rearrangement.

  12. A workflow for the automatic segmentation of organelles in electron microscopy image stacks.

    Science.gov (United States)

    Perez, Alex J; Seyedhosseini, Mojtaba; Deerinck, Thomas J; Bushong, Eric A; Panda, Satchidananda; Tasdizen, Tolga; Ellisman, Mark H

    2014-01-01

    Electron microscopy (EM) facilitates analysis of the form, distribution, and functional status of key organelle systems in various pathological processes, including those associated with neurodegenerative disease. Such EM data often provide important new insights into the underlying disease mechanisms. The development of more accurate and efficient methods to quantify changes in subcellular microanatomy has already proven key to understanding the pathogenesis of Parkinson's and Alzheimer's diseases, as well as glaucoma. While our ability to acquire large volumes of 3D EM data is progressing rapidly, more advanced analysis tools are needed to assist in measuring precise three-dimensional morphologies of organelles within data sets that can include hundreds to thousands of whole cells. Although new imaging instrument throughputs can exceed teravoxels of data per day, image segmentation and analysis remain significant bottlenecks to achieving quantitative descriptions of whole cell structural organellomes. Here, we present a novel method for the automatic segmentation of organelles in 3D EM image stacks. Segmentations are generated using only 2D image information, making the method suitable for anisotropic imaging techniques such as serial block-face scanning electron microscopy (SBEM). Additionally, no assumptions about 3D organelle morphology are made, ensuring the method can be easily expanded to any number of structurally and functionally diverse organelles. Following the presentation of our algorithm, we validate its performance by assessing the segmentation accuracy of different organelle targets in an example SBEM dataset and demonstrate that it can be efficiently parallelized on supercomputing resources, resulting in a dramatic reduction in runtime.

  13. Electromagnetic calorimeter trigger at Belle

    CERN Document Server

    Cheon, B G; Lee, S H; Won, E; Park, I C; Hur, T W; Park, C S; Kim, S K; Kim, H J; Kim, H O; Chu, T H; Usov, Y V; Aulchenko, V M; Kuzmin, A S; Bondar, A E; Shwartz, B A; Eidelman, S; Krokovnyi, P P; Hayashii, H; Sagawa, H; Fukushima, M

    2002-01-01

    The performance of CsI(Tl) electromagnetic calorimeter trigger system in the Belle experiment is described. Two kinds of trigger schemes have been taken into account, namely a total energy trigger and a cluster counting trigger which are complementary to each other. In addition, the system has provided the online/offline luminosity information using the Bhabha event trigger scheme. An upgrade of the trigger is discussed.

  14. Platycodon grandiflorum extract represses up-regulated adipocyte fatty acid binding protein triggered by a high fat feeding in obese rats

    Institute of Scientific and Technical Information of China (English)

    Yoon Shin Park; Yoosik Yoon; Hong Seok Ahn

    2007-01-01

    AIM: To investigate the effect of Platycodon grandiflorum extract (PGE) on lipid metabolism and FABP mRNA expression in subcutaneous adipose tissue of high fat diet-induced obese rats.METHODS: PGE was treated to investigate the inhibitory effect on the pre-adipocyte 3T3-L1 differentiation and pancreatic lipase activity. Male Sprague-Dawley rats with an average weight of 439.03 ± 7.61 g were divided into four groups: the control groups that fed an experimental diet alone (C and H group) and PGE treatment groups that administered PGE along with a control diet or HFD at a concentration of 150 mg/kg body weight (C + PGE and H + PGE group, respectively) for 7 wk. Plasma total cholesterol (TC) and triglycerol (TG) concentrations were measured from the tail vein of rats. Adipocyte cell area was measured from subcutaneous adipose tissue and the fatty acid binding protein (FABP) mRNA expression was analyzed by northern blot analysis.RESULTS: PGE treatment inhibited 3T3-L1 pre-adipocyte differentiation and fat accumulation, and also decreased pancreatic lipase activity. In this experiment, PGE significantly reduced plasma TC and TG concentrations as well as body weight and subcutaneous adipose tissue weight. PGE also significantly decreased the size of subcutaneous adipocytes. Furthermore, it significantly repressed the up-regulation of FABP mRNA expression induced by a high-fat feeding in subcutaneous adipose tissue.CONCLUSION: PGE has a plasma lipid lowering-effect and anti-obesity effect in obese rats fed a high fat diet.From these results, we can suggest the possibility that PGE can be used as a food ingredient or drug component to therapeutically control obesity.

  15. Lactic acid and thermal treatments trigger the hydrolysis of myo-inositol hexakisphosphate and modify the abundance of lower myo-inositol phosphates in barley (Hordeum vulgare L..

    Directory of Open Access Journals (Sweden)

    Barbara U Metzler-Zebeli

    Full Text Available Barley is an important source of dietary minerals, but it also contains myo-inositol hexakisphosphate (InsP6 that lowers their absorption. This study evaluated the effects of increasing concentrations (0.5, 1, and 5%, vol/vol of lactic acid (LA, without or with an additional thermal treatment at 55°C (LA-H, on InsP6 hydrolysis, formation of lower phosphorylated myo-inositol phosphates, and changes in chemical composition of barley grain. Increasing LA concentrations and thermal treatment linearly reduced (P<0.001 InsP6-phosphate (InsP6-P by 0.5 to 1 g compared to the native barley. In particular, treating barley with 5% LA-H was the most efficient treatment to reduce the concentrations of InsP6-P, and stimulate the formation of lower phosphorylated myo-inositol phosphates such as myo-inositol tetraphosphate (InsP4 and myo-inositol pentaphosphates (InsP5. Also, LA and thermal treatment changed the abundance of InsP4 and InsP5 isomers with Ins(1,2,5,6P4 and Ins(1,2,3,4,5P5 as the dominating isomers with 5% LA, 1% LA-H and 5% LA-H treatment of barley, resembling to profiles found when microbial 6-phytase is applied. Treating barley with LA at room temperature (22°C increased the concentration of resistant starch and dietary fiber but lowered those of total starch and crude ash. Interestingly, total phosphorus (P was only reduced (P<0.05 in barley treated with LA-H but not after processing of barley with LA at room temperature. In conclusion, LA and LA-H treatment may be effective processing techniques to reduce InsP6 in cereals used in animal feeding with the highest degradation of InsP6 at 5% LA-H. Further in vivo studies are warranted to determine the actual intestinal P availability and to assess the impact of changes in nutrient composition of LA treated barley on animal performance.

  16. The CMS trigger system

    Energy Technology Data Exchange (ETDEWEB)

    Khachatryan, Vardan; et al.

    2016-09-08

    This paper describes the CMS trigger system and its performance during Run 1 of the LHC. The trigger system consists of two levels designed to select events of potential physics interest from a GHz (MHz) interaction rate of proton-proton (heavy ion) collisions. The first level of the trigger is implemented in hardware, and selects events containing detector signals consistent with an electron, photon, muon, tau lepton, jet, or missing transverse energy. A programmable menu of up to 128 object-based algorithms is used to select events for subsequent processing. The trigger thresholds are adjusted to the LHC instantaneous luminosity during data taking in order to restrict the output rate to 100 kHz, the upper limit imposed by the CMS readout electronics. The second level, implemented in software, further refines the purity of the output stream, selecting an average rate of 400 Hz for offline event storage. The objectives, strategy and performance of the trigger system during the LHC Run 1 are described.

  17. The CMS trigger system

    CERN Document Server

    Khachatryan, Vardan; Tumasyan, Armen; Adam, Wolfgang; Aşılar, Ece; Bergauer, Thomas; Brandstetter, Johannes; Brondolin, Erica; Dragicevic, Marko; Erö, Janos; Flechl, Martin; Friedl, Markus; Fruehwirth, Rudolf; Ghete, Vasile Mihai; Hartl, Christian; Hörmann, Natascha; Hrubec, Josef; Jeitler, Manfred; Knünz, Valentin; König, Axel; Krammer, Manfred; Krätschmer, Ilse; Liko, Dietrich; Matsushita, Takashi; Mikulec, Ivan; Rabady, Dinyar; Rahbaran, Babak; Rohringer, Herbert; Schieck, Jochen; Schöfbeck, Robert; Strauss, Josef; Treberer-Treberspurg, Wolfgang; Waltenberger, Wolfgang; Wulz, Claudia-Elisabeth; Mossolov, Vladimir; Shumeiko, Nikolai; Suarez Gonzalez, Juan; Alderweireldt, Sara; Cornelis, Tom; De Wolf, Eddi A; Janssen, Xavier; Knutsson, Albert; Lauwers, Jasper; Luyckx, Sten; Van De Klundert, Merijn; Van Haevermaet, Hans; Van Mechelen, Pierre; Van Remortel, Nick; Van Spilbeeck, Alex; Abu Zeid, Shimaa; Blekman, Freya; D'Hondt, Jorgen; Daci, Nadir; De Bruyn, Isabelle; Deroover, Kevin; Heracleous, Natalie; Keaveney, James; Lowette, Steven; Moreels, Lieselotte; Olbrechts, Annik; Python, Quentin; Strom, Derek; Tavernier, Stefaan; Van Doninck, Walter; Van Mulders, Petra; Van Onsem, Gerrit Patrick; Van Parijs, Isis; Barria, Patrizia; Brun, Hugues; Caillol, Cécile; Clerbaux, Barbara; De Lentdecker, Gilles; Fasanella, Giuseppe; Favart, Laurent; Grebenyuk, Anastasia; Karapostoli, Georgia; Lenzi, Thomas; Léonard, Alexandre; Maerschalk, Thierry; Marinov, Andrey; Perniè, Luca; Randle-conde, Aidan; Reis, Thomas; Seva, Tomislav; Vander Velde, Catherine; Vanlaer, Pascal; Yonamine, Ryo; Zenoni, Florian; Zhang, Fengwangdong; Beernaert, Kelly; Benucci, Leonardo; Cimmino, Anna; Crucy, Shannon; Dobur, Didar; Fagot, Alexis; Garcia, Guillaume; Gul, Muhammad; Mccartin, Joseph; Ocampo Rios, Alberto Andres; Poyraz, Deniz; Ryckbosch, Dirk; Salva Diblen, Sinem; Sigamani, Michael; Strobbe, Nadja; Tytgat, Michael; Van Driessche, Ward; Yazgan, Efe; Zaganidis, Nicolas; Basegmez, Suzan; Beluffi, Camille; Bondu, Olivier; Brochet, Sébastien; Bruno, Giacomo; Caudron, Adrien; Ceard, Ludivine; Da Silveira, Gustavo Gil; Delaere, Christophe; Favart, Denis; Forthomme, Laurent; Giammanco, Andrea; Hollar, Jonathan; Jafari, Abideh; Jez, Pavel; Komm, Matthias; Lemaitre, Vincent; Mertens, Alexandre; Musich, Marco; Nuttens, Claude; Perrini, Lucia; Pin, Arnaud; Piotrzkowski, Krzysztof; Popov, Andrey; Quertenmont, Loic; Selvaggi, Michele; Vidal Marono, Miguel; Beliy, Nikita; Hammad, Gregory Habib; Aldá Júnior, Walter Luiz; Alves, Fábio Lúcio; Alves, Gilvan; Brito, Lucas; Correa Martins Junior, Marcos; Hamer, Matthias; Hensel, Carsten; Mora Herrera, Clemencia; Moraes, Arthur; Pol, Maria Elena; Rebello Teles, Patricia; Belchior Batista Das Chagas, Ewerton; Carvalho, Wagner; Chinellato, Jose; Custódio, Analu; Melo Da Costa, Eliza; De Jesus Damiao, Dilson; De Oliveira Martins, Carley; Fonseca De Souza, Sandro; Huertas Guativa, Lina Milena; Malbouisson, Helena; Matos Figueiredo, Diego; Mundim, Luiz; Nogima, Helio; Prado Da Silva, Wanda Lucia; Santoro, Alberto; Sznajder, Andre; Tonelli Manganote, Edmilson José; Vilela Pereira, Antonio; Ahuja, Sudha; Bernardes, Cesar Augusto; De Souza Santos, Angelo; Dogra, Sunil; Tomei, Thiago; De Moraes Gregores, Eduardo; Mercadante, Pedro G; Moon, Chang-Seong; Novaes, Sergio F; Padula, Sandra; Romero Abad, David; Ruiz Vargas, José Cupertino; Aleksandrov, Aleksandar; Hadjiiska, Roumyana; Iaydjiev, Plamen; Rodozov, Mircho; Stoykova, Stefka; Sultanov, Georgi; Vutova, Mariana; Dimitrov, Anton; Glushkov, Ivan; Litov, Leander; Pavlov, Borislav; Petkov, Peicho; Ahmad, Muhammad; Bian, Jian-Guo; Chen, Guo-Ming; Chen, He-Sheng; Chen, Mingshui; Cheng, Tongguang; Du, Ran; Jiang, Chun-Hua; Plestina, Roko; Romeo, Francesco; Shaheen, Sarmad Masood; Spiezia, Aniello; Tao, Junquan; Wang, Chunjie; Wang, Zheng; Zhang, Huaqiao; Asawatangtrakuldee, Chayanit; Ban, Yong; Li, Qiang; Liu, Shuai; Mao, Yajun; Qian, Si-Jin; Wang, Dayong; Xu, Zijun; Avila, Carlos; Cabrera, Andrés; Chaparro Sierra, Luisa Fernanda; Florez, Carlos; Gomez, Juan Pablo; Gomez Moreno, Bernardo; Sanabria, Juan Carlos; Godinovic, Nikola; Lelas, Damir; Puljak, Ivica; Ribeiro Cipriano, Pedro M; Antunovic, Zeljko; Kovac, Marko; Brigljevic, Vuko; Kadija, Kreso; Luetic, Jelena; Micanovic, Sasa; Sudic, Lucija; Attikis, Alexandros; Mavromanolakis, Georgios; Mousa, Jehad; Nicolaou, Charalambos; Ptochos, Fotios; Razis, Panos A; Rykaczewski, Hans; Bodlak, Martin; Finger, Miroslav; Finger Jr, Michael; Assran, Yasser; El Sawy, Mai; Elgammal, Sherif; Ellithi Kamel, Ali; Mahmoud, Mohammed; Calpas, Betty; Kadastik, Mario; Murumaa, Marion; Raidal, Martti; Tiko, Andres; Veelken, Christian; Eerola, Paula; Pekkanen, Juska; Voutilainen, Mikko; Härkönen, Jaakko; Karimäki, Veikko; Kinnunen, Ritva; Lampén, Tapio; Lassila-Perini, Kati; Lehti, Sami; Lindén, Tomas; Luukka, Panja-Riina; Mäenpää, Teppo; Peltola, Timo; Tuominen, Eija; Tuominiemi, Jorma; Tuovinen, Esa; Wendland, Lauri; Talvitie, Joonas; Tuuva, Tuure; Besancon, Marc; Couderc, Fabrice; Dejardin, Marc; Denegri, Daniel; Fabbro, Bernard; Faure, Jean-Louis; Favaro, Carlotta; Ferri, Federico; Ganjour, Serguei; Givernaud, Alain; Gras, Philippe; Hamel de Monchenault, Gautier; Jarry, Patrick; Locci, Elizabeth; Machet, Martina; Malcles, Julie; Rander, John; Rosowsky, André; Titov, Maksym; Zghiche, Amina; Antropov, Iurii; Baffioni, Stephanie; Beaudette, Florian; Busson, Philippe; Cadamuro, Luca; Chapon, Emilien; Charlot, Claude; Dahms, Torsten; Davignon, Olivier; Filipovic, Nicolas; Florent, Alice; Granier de Cassagnac, Raphael; Lisniak, Stanislav; Mastrolorenzo, Luca; Miné, Philippe; Naranjo, Ivo Nicolas; Nguyen, Matthew; Ochando, Christophe; Ortona, Giacomo; Paganini, Pascal; Pigard, Philipp; Regnard, Simon; Salerno, Roberto; Sauvan, Jean-Baptiste; Sirois, Yves; Strebler, Thomas; Yilmaz, Yetkin; Zabi, Alexandre; Agram, Jean-Laurent; Andrea, Jeremy; Aubin, Alexandre; Bloch, Daniel; Brom, Jean-Marie; Buttignol, Michael; Chabert, Eric Christian; Chanon, Nicolas; Collard, Caroline; Conte, Eric; Coubez, Xavier; Fontaine, Jean-Charles; Gelé, Denis; Goerlach, Ulrich; Goetzmann, Christophe; Le Bihan, Anne-Catherine; Merlin, Jeremie Alexandre; Skovpen, Kirill; Van Hove, Pierre; Gadrat, Sébastien; Beauceron, Stephanie; Bernet, Colin; Boudoul, Gaelle; Bouvier, Elvire; Carrillo Montoya, Camilo Andres; Chierici, Roberto; Contardo, Didier; Courbon, Benoit; Depasse, Pierre; El Mamouni, Houmani; Fan, Jiawei; Fay, Jean; Gascon, Susan; Gouzevitch, Maxime; Ille, Bernard; Lagarde, Francois; Laktineh, Imad Baptiste; Lethuillier, Morgan; Mirabito, Laurent; Pequegnot, Anne-Laure; Perries, Stephane; Ruiz Alvarez, José David; Sabes, David; Sgandurra, Louis; Sordini, Viola; Vander Donckt, Muriel; Verdier, Patrice; Viret, Sébastien; Toriashvili, Tengizi; Tsamalaidze, Zviad; Autermann, Christian; Beranek, Sarah; Edelhoff, Matthias; Feld, Lutz; Heister, Arno; Kiesel, Maximilian Knut; Klein, Katja; Lipinski, Martin; Ostapchuk, Andrey; Preuten, Marius; Raupach, Frank; Schael, Stefan; Schulte, Jan-Frederik; Verlage, Tobias; Weber, Hendrik; Wittmer, Bruno; Zhukov, Valery; Ata, Metin; Brodski, Michael; Dietz-Laursonn, Erik; Duchardt, Deborah; Endres, Matthias; Erdmann, Martin; Erdweg, Sören; Esch, Thomas; Fischer, Robert; Güth, Andreas; Hebbeker, Thomas; Heidemann, Carsten; Hoepfner, Kerstin; Klingebiel, Dennis; Knutzen, Simon; Kreuzer, Peter; Merschmeyer, Markus; Meyer, Arnd; Millet, Philipp; Olschewski, Mark; Padeken, Klaas; Papacz, Paul; Pook, Tobias; Radziej, Markus; Reithler, Hans; Rieger, Marcel; Scheuch, Florian; Sonnenschein, Lars; Teyssier, Daniel; Thüer, Sebastian; Cherepanov, Vladimir; Erdogan, Yusuf; Flügge, Günter; Geenen, Heiko; Geisler, Matthias; Hoehle, Felix; Kargoll, Bastian; Kress, Thomas; Kuessel, Yvonne; Künsken, Andreas; Lingemann, Joschka; Nehrkorn, Alexander; Nowack, Andreas; Nugent, Ian Michael; Pistone, Claudia; Pooth, Oliver; Stahl, Achim; Aldaya Martin, Maria; Asin, Ivan; Bartosik, Nazar; Behnke, Olaf; Behrens, Ulf; Bell, Alan James; Borras, Kerstin; Burgmeier, Armin; Campbell, Alan; Choudhury, Somnath; Costanza, Francesco; Diez Pardos, Carmen; Dolinska, Ganna; Dooling, Samantha; Dorland, Tyler; Eckerlin, Guenter; Eckstein, Doris; Eichhorn, Thomas; Flucke, Gero; Gallo, Elisabetta; Garay Garcia, Jasone; Geiser, Achim; Gizhko, Andrii; Gunnellini, Paolo; Hauk, Johannes; Hempel, Maria; Jung, Hannes; Kalogeropoulos, Alexis; Karacheban, Olena; Kasemann, Matthias; Katsas, Panagiotis; Kieseler, Jan; Kleinwort, Claus; Korol, Ievgen; Lange, Wolfgang; Leonard, Jessica; Lipka, Katerina; Lobanov, Artur; Lohmann, Wolfgang; Mankel, Rainer; Marfin, Ihar; Melzer-Pellmann, Isabell-Alissandra; Meyer, Andreas Bernhard; Mittag, Gregor; Mnich, Joachim; Mussgiller, Andreas; Naumann-Emme, Sebastian; Nayak, Aruna; Ntomari, Eleni; Perrey, Hanno; Pitzl, Daniel; Placakyte, Ringaile; Raspereza, Alexei; Roland, Benoit; Sahin, Mehmet Özgür; Saxena, Pooja; Schoerner-Sadenius, Thomas; Schröder, Matthias; Seitz, Claudia; Spannagel, Simon; Trippkewitz, Karim Damun; Walsh, Roberval; Wissing, Christoph; Blobel, Volker; Centis Vignali, Matteo; Draeger, Arne-Rasmus; Erfle, Joachim; Garutti, Erika; Goebel, Kristin; Gonzalez, Daniel; Görner, Martin; Haller, Johannes; Hoffmann, Malte; Höing, Rebekka Sophie; Junkes, Alexandra; Klanner, Robert; Kogler, Roman; Kovalchuk, Nataliia; Lapsien, Tobias; Lenz, Teresa; Marchesini, Ivan; Marconi, Daniele; Meyer, Mareike; Nowatschin, Dominik; Ott, Jochen; Pantaleo, Felice; Peiffer, Thomas; Perieanu, Adrian; Pietsch, Niklas; Poehlsen, Jennifer; Rathjens, Denis; Sander, Christian; Scharf, Christian; Schettler, Hannes; Schleper, Peter; Schlieckau, Eike; Schmidt, Alexander; Schwandt, Joern; Sola, Valentina; Stadie, Hartmut; Steinbrück, Georg; Tholen, Heiner; Troendle, Daniel; Usai, Emanuele; Vanelderen, Lukas; Vanhoefer, Annika; Vormwald, Benedikt; Akbiyik, Melike; Barth, Christian; Baus, Colin; Berger, Joram; Böser, Christian; Butz, Erik; Chwalek, Thorsten; Colombo, Fabio; De Boer, Wim; Descroix, Alexis; Dierlamm, Alexander; Fink, Simon; Frensch, Felix; Friese, Raphael; Giffels, Manuel; Gilbert, Andrew; Haitz, Dominik; Hartmann, Frank; Heindl, Stefan Michael; Husemann, Ulrich; Katkov, Igor; Kornmayer, Andreas; Lobelle Pardo, Patricia; Maier, Benedikt; Mildner, Hannes; Mozer, Matthias Ulrich; Müller, Thomas; Müller, Thomas; Plagge, Michael; Quast, Gunter; Rabbertz, Klaus; Röcker, Steffen; Roscher, Frank; Sieber, Georg; Simonis, Hans-Jürgen; Stober, Fred-Markus Helmut; Ulrich, Ralf; Wagner-Kuhr, Jeannine; Wayand, Stefan; Weber, Marc; Weiler, Thomas; Wöhrmann, Clemens; Wolf, Roger; Anagnostou, Georgios; Daskalakis, Georgios; Geralis, Theodoros; Giakoumopoulou, Viktoria Athina; Kyriakis, Aristotelis; Loukas, Demetrios; Psallidas, Andreas; Topsis-Giotis, Iasonas; Agapitos, Antonis; Kesisoglou, Stilianos; Panagiotou, Apostolos; Saoulidou, Niki; Tziaferi, Eirini; Evangelou, Ioannis; Flouris, Giannis; Foudas, Costas; Kokkas, Panagiotis; Loukas, Nikitas; Manthos, Nikolaos; Papadopoulos, Ioannis; Paradas, Evangelos; Strologas, John; Bencze, Gyorgy; Hajdu, Csaba; Hazi, Andras; Hidas, Pàl; Horvath, Dezso; Sikler, Ferenc; Veszpremi, Viktor; Vesztergombi, Gyorgy; Zsigmond, Anna Julia; Beni, Noemi; Czellar, Sandor; Karancsi, János; Molnar, Jozsef; Szillasi, Zoltan; Bartók, Márton; Makovec, Alajos; Raics, Peter; Trocsanyi, Zoltan Laszlo; Ujvari, Balazs; Mal, Prolay; Mandal, Koushik; Sahoo, Deepak Kumar; Sahoo, Niladribihari; Swain, Sanjay Kumar; Bansal, Sunil; Beri, Suman Bala; Bhatnagar, Vipin; Chawla, Ridhi; Gupta, Ruchi; Bhawandeep, Bhawandeep; Kalsi, Amandeep Kaur; Kaur, Anterpreet; Kaur, Manjit; Kumar, Ramandeep; Mehta, Ankita; Mittal, Monika; Singh, Jasbir; Walia, Genius; Kumar, Ashok; Bhardwaj, Ashutosh; Choudhary, Brajesh C; Garg, Rocky Bala; Kumar, Ajay; Malhotra, Shivali; Naimuddin, Md; Nishu, Nishu; Ranjan, Kirti; Sharma, Ramkrishna; Sharma, Varun; Bhattacharya, Satyaki; Chatterjee, Kalyanmoy; Dey, Sourav; Dutta, Suchandra; Jain, Sandhya; Majumdar, Nayana; Modak, Atanu; Mondal, Kuntal; Mukherjee, Swagata; Mukhopadhyay, Supratik; Roy, Ashim; Roy, Debarati; Roy Chowdhury, Suvankar; Sarkar, Subir; Sharan, Manoj; Abdulsalam, Abdulla; Chudasama, Ruchi; Dutta, Dipanwita; Jha, Vishwajeet; Kumar, Vineet; Mohanty, Ajit Kumar; Pant, Lalit Mohan; Shukla, Prashant; Topkar, Anita; Aziz, Tariq; Banerjee, Sudeshna; Bhowmik, Sandeep; Chatterjee, Rajdeep Mohan; Dewanjee, Ram Krishna; Dugad, Shashikant; Ganguly, Sanmay; Ghosh, Saranya; Guchait, Monoranjan; Gurtu, Atul; Kole, Gouranga; Kumar, Sanjeev; Mahakud, Bibhuprasad; Maity, Manas; Majumder, Gobinda; Mazumdar, Kajari; Mitra, Soureek; Mohanty, Gagan Bihari; Parida, Bibhuti; Sarkar, Tanmay; Sur, Nairit; Sutar, Bajrang; Wickramage, Nadeesha; Chauhan, Shubhanshu; Dube, Sourabh; Kothekar, Kunal; Sharma, Seema; Bakhshiansohi, Hamed; Behnamian, Hadi; Etesami, Seyed Mohsen; Fahim, Ali; Goldouzian, Reza; Khakzad, Mohsen; Mohammadi Najafabadi, Mojtaba; Naseri, Mohsen; Paktinat Mehdiabadi, Saeid; Rezaei Hosseinabadi, Ferdos; Safarzadeh, Batool; Zeinali, Maryam; Felcini, Marta; Grunewald, Martin; Abbrescia, Marcello; Calabria, Cesare; Caputo, Claudio; Colaleo, Anna; Creanza, Donato; Cristella, Leonardo; De Filippis, Nicola; De Palma, Mauro; Fiore, Luigi; Iaselli, Giuseppe; Maggi, Giorgio; Maggi, Marcello; Miniello, Giorgia; My, Salvatore; Nuzzo, Salvatore; Pompili, Alexis; Pugliese, Gabriella; Radogna, Raffaella; Ranieri, Antonio; Selvaggi, Giovanna; Silvestris, Lucia; Venditti, Rosamaria; Verwilligen, Piet; Abbiendi, Giovanni; Battilana, Carlo; Benvenuti, Alberto; Bonacorsi, Daniele; Braibant-Giacomelli, Sylvie; Brigliadori, Luca; Campanini, Renato; Capiluppi, Paolo; Castro, Andrea; Cavallo, Francesca Romana; Chhibra, Simranjit Singh; Codispoti, Giuseppe; Cuffiani, Marco; Dallavalle, Gaetano-Marco; Fabbri, Fabrizio; Fanfani, Alessandra; Fasanella, Daniele; Giacomelli, Paolo; Grandi, Claudio; Guiducci, Luigi; Marcellini, Stefano; Masetti, Gianni; Montanari, Alessandro; Navarria, Francesco; Perrotta, Andrea; Rossi, Antonio; Rovelli, Tiziano; Siroli, Gian Piero; Tosi, Nicolò; Travaglini, Riccardo; Cappello, Gigi; Chiorboli, Massimiliano; Costa, Salvatore; Di Mattia, Alessandro; Giordano, Ferdinando; Potenza, Renato; Tricomi, Alessia; Tuve, Cristina; Barbagli, Giuseppe; Ciulli, Vitaliano; Civinini, Carlo; D'Alessandro, Raffaello; Focardi, Ettore; Gonzi, Sandro; Gori, Valentina; Lenzi, Piergiulio; Meschini, Marco; Paoletti, Simone; Sguazzoni, Giacomo; Tropiano, Antonio; Viliani, Lorenzo; Benussi, Luigi; Bianco, Stefano; Fabbri, Franco; Piccolo, Davide; Primavera, Federica; Calvelli, Valerio; Ferro, Fabrizio; Lo Vetere, Maurizio; Monge, Maria Roberta; Robutti, Enrico; Tosi, Silvano; Brianza, Luca; Dinardo, Mauro Emanuele; Fiorendi, Sara; Gennai, Simone; Gerosa, Raffaele; Ghezzi, Alessio; Govoni, Pietro; Malvezzi, Sandra; Manzoni, Riccardo Andrea; Marzocchi, Badder; Menasce, Dario; Moroni, Luigi; Paganoni, Marco; Pedrini, Daniele; Ragazzi, Stefano; Redaelli, Nicola; Tabarelli de Fatis, Tommaso; Buontempo, Salvatore; Cavallo, Nicola; Di Guida, Salvatore; Esposito, Marco; Fabozzi, Francesco; Iorio, Alberto Orso Maria; Lanza, Giuseppe; Lista, Luca; Meola, Sabino; Merola, Mario; Paolucci, Pierluigi; Sciacca, Crisostomo; Thyssen, Filip; Bacchetta, Nicola; Bellato, Marco; Benato, Lisa; Bisello, Dario; Boletti, Alessio; Carlin, Roberto; Checchia, Paolo; Dall'Osso, Martino; Dosselli, Umberto; Gasparini, Fabrizio; Gasparini, Ugo; Gozzelino, Andrea; Lacaprara, Stefano; Margoni, Martino; Meneguzzo, Anna Teresa; Montecassiano, Fabio; Passaseo, Marina; Pazzini, Jacopo; Pegoraro, Matteo; Pozzobon, Nicola; Simonetto, Franco; Torassa, Ezio; Tosi, Mia; Vanini, Sara; Ventura, Sandro; Zanetti, Marco; Zotto, Pierluigi; Zucchetta, Alberto; Zumerle, Gianni; Braghieri, Alessandro; Magnani, Alice; Montagna, Paolo; Ratti, Sergio P; Re, Valerio; Riccardi, Cristina; Salvini, Paola; Vai, Ilaria; Vitulo, Paolo; Alunni Solestizi, Luisa; Biasini, Maurizio; Bilei, Gian Mario; Ciangottini, Diego; Fanò, Livio; Lariccia, Paolo; Mantovani, Giancarlo; Menichelli, Mauro; Saha, Anirban; Santocchia, Attilio; Androsov, Konstantin; Azzurri, Paolo; Bagliesi, Giuseppe; Bernardini, Jacopo; Boccali, Tommaso; Castaldi, Rino; Ciocci, Maria Agnese; Dell'Orso, Roberto; Donato, Silvio; Fedi, Giacomo; Foà, Lorenzo; Giassi, Alessandro; Grippo, Maria Teresa; Ligabue, Franco; Lomtadze, Teimuraz; Martini, Luca; Messineo, Alberto; Palla, Fabrizio; Rizzi, Andrea; Savoy-Navarro, Aurore; Serban, Alin Titus; Spagnolo, Paolo; Tenchini, Roberto; Tonelli, Guido; Venturi, Andrea; Verdini, Piero Giorgio; Barone, Luciano; Cavallari, Francesca; D'imperio, Giulia; Del Re, Daniele; Diemoz, Marcella; Gelli, Simone; Jorda, Clara; Longo, Egidio; Margaroli, Fabrizio; Meridiani, Paolo; Organtini, Giovanni; Paramatti, Riccardo; Preiato, Federico; Rahatlou, Shahram; Rovelli, Chiara; Santanastasio, Francesco; Traczyk, Piotr; Amapane, Nicola; Arcidiacono, Roberta; Argiro, Stefano; Arneodo, Michele; Bellan, Riccardo; Biino, Cristina; Cartiglia, Nicolo; Costa, Marco; Covarelli, Roberto; Degano, Alessandro; Demaria, Natale; Finco, Linda; Kiani, Bilal; Mariotti, Chiara; Maselli, Silvia; Migliore, Ernesto; Monaco, Vincenzo; Monteil, Ennio; Obertino, Maria Margherita; Pacher, Luca; Pastrone, Nadia; Pelliccioni, Mario; Pinna Angioni, Gian Luca; Ravera, Fabio; Romero, Alessandra; Ruspa, Marta; Sacchi, Roberto; Solano, Ada; Staiano, Amedeo; Tamponi, Umberto; Belforte, Stefano; Candelise, Vieri; Casarsa, Massimo; Cossutti, Fabio; Della Ricca, Giuseppe; Gobbo, Benigno; La Licata, Chiara; Marone, Matteo; Schizzi, Andrea; Zanetti, Anna; Kropivnitskaya, Anna; Nam, Soon-Kwon; Kim, Dong Hee; Kim, Gui Nyun; Kim, Min Suk; Kong, Dae Jung; Lee, Sangeun; Oh, Young Do; Sakharov, Alexandre; Son, Dong-Chul; Brochero Cifuentes, Javier Andres; Kim, Hyunsoo; Kim, Tae Jeong; Song, Sanghyeon; Choi, Suyong; Go, Yeonju; Gyun, Dooyeon; Hong, Byung-Sik; Jo, Mihee; Kim, Hyunchul; Kim, Yongsun; Lee, Byounghoon; Lee, Kisoo; Lee, Kyong Sei; Lee, Songkyo; Park, Sung Keun; Roh, Youn; Yoo, Hwi Dong; Choi, Minkyoo; Kim, Hyunyong; Kim, Ji Hyun; Lee, Jason Sang Hun; Park, Inkyu; Ryu, Geonmo; Ryu, Min Sang; Choi, Young-Il; Goh, Junghwan; Kim, Donghyun; Kwon, Eunhyang; Lee, Jongseok; Yu, Intae; Dudenas, Vytautas; Juodagalvis, Andrius; Vaitkus, Juozas; Ahmed, Ijaz; Ibrahim, Zainol Abidin; Komaragiri, Jyothsna Rani; Md Ali, Mohd Adli Bin; Mohamad Idris, Faridah; Wan Abdullah, Wan Ahmad Tajuddin; Yusli, Mohd Nizam; Casimiro Linares, Edgar; Castilla-Valdez, Heriberto; De La Cruz-Burelo, Eduard; Heredia-De La Cruz, Ivan; Hernandez-Almada, Alberto; Lopez-Fernandez, Ricardo; Sánchez Hernández, Alberto; Carrillo Moreno, Salvador; Vazquez Valencia, Fabiola; Pedraza, Isabel; Salazar Ibarguen, Humberto Antonio; Morelos Pineda, Antonio; Krofcheck, David; Butler, Philip H; Ahmad, Ashfaq; Ahmad, Muhammad; Hassan, Qamar; Hoorani, Hafeez R; Khan, Wajid Ali; Khurshid, Taimoor; Shoaib, Muhammad; Bialkowska, Helena; Bluj, Michal; Boimska, Bożena; Frueboes, Tomasz; Górski, Maciej; Kazana, Malgorzata; Nawrocki, Krzysztof; Romanowska-Rybinska, Katarzyna; Szleper, Michal; Zalewski, Piotr; Brona, Grzegorz; Bunkowski, Karol; Byszuk, Adrian; Doroba, Krzysztof; Kalinowski, Artur; Konecki, Marcin; Krolikowski, Jan; Misiura, Maciej; Olszewski, Michal; Pozniak, Krzysztof; Walczak, Marek; Bargassa, Pedrame; Beirão Da Cruz E Silva, Cristóvão; Di Francesco, Agostino; Faccioli, Pietro; Ferreira Parracho, Pedro Guilherme; Gallinaro, Michele; Leonardo, Nuno; Lloret Iglesias, Lara; Nguyen, Federico; Rodrigues Antunes, Joao; Seixas, Joao; Toldaiev, Oleksii; Vadruccio, Daniele; Varela, Joao; Vischia, Pietro; Afanasiev, Serguei; Bunin, Pavel; Gavrilenko, Mikhail; Golutvin, Igor; Gorbunov, Ilya; Kamenev, Alexey; Karjavin, Vladimir; Konoplyanikov, Viktor; Lanev, Alexander; Malakhov, Alexander; Matveev, Viktor; Moisenz, Petr; Palichik, Vladimir; Perelygin, Victor; Shmatov, Sergey; Shulha, Siarhei; Skatchkov, Nikolai; Smirnov, Vitaly; Zarubin, Anatoli; Golovtsov, Victor; Ivanov, Yury; Kim, Victor; Kuznetsova, Ekaterina; Levchenko, Petr; Murzin, Victor; Oreshkin, Vadim; Smirnov, Igor; Sulimov, Valentin; Uvarov, Lev; Vavilov, Sergey; Vorobyev, Alexey; Andreev, Yuri; Dermenev, Alexander; Gninenko, Sergei; Golubev, Nikolai; Karneyeu, Anton; Kirsanov, Mikhail; Krasnikov, Nikolai; Pashenkov, Anatoli; Tlisov, Danila; Toropin, Alexander; Epshteyn, Vladimir; Gavrilov, Vladimir; Lychkovskaya, Natalia; Popov, Vladimir; Pozdnyakov, Ivan; Safronov, Grigory; Spiridonov, Alexander; Vlasov, Evgueni; Zhokin, Alexander; Bylinkin, Alexander; Andreev, Vladimir; Azarkin, Maksim; Dremin, Igor; Kirakosyan, Martin; Leonidov, Andrey; Mesyats, Gennady; Rusakov, Sergey V; Baskakov, Alexey; Belyaev, Andrey; Boos, Edouard; Dubinin, Mikhail; Dudko, Lev; Ershov, Alexander; Gribushin, Andrey; Kaminskiy, Alexandre; Klyukhin, Vyacheslav; Kodolova, Olga; Lokhtin, Igor; Miagkov, Igor; Obraztsov, Stepan; Petrushanko, Sergey; Savrin, Viktor; Azhgirey, Igor; Bayshev, Igor; Bitioukov, Sergei; Kachanov, Vassili; Kalinin, Alexey; Konstantinov, Dmitri; Krychkine, Victor; Petrov, Vladimir; Ryutin, Roman; Sobol, Andrei; Tourtchanovitch, Leonid; Troshin, Sergey; Tyurin, Nikolay; Uzunian, Andrey; Volkov, Alexey; Adzic, Petar; Milosevic, Jovan; Rekovic, Vladimir; Alcaraz Maestre, Juan; Calvo, Enrique; Cerrada, Marcos; Chamizo Llatas, Maria; Colino, Nicanor; De La Cruz, Begona; Delgado Peris, Antonio; Domínguez Vázquez, Daniel; Escalante Del Valle, Alberto; Fernandez Bedoya, Cristina; Fernández Ramos, Juan Pablo; Flix, Jose; Fouz, Maria Cruz; Garcia-Abia, Pablo; Gonzalez Lopez, Oscar; Goy Lopez, Silvia; Hernandez, Jose M; Josa, Maria Isabel; Navarro De Martino, Eduardo; Pérez-Calero Yzquierdo, Antonio María; Puerta Pelayo, Jesus; Quintario Olmeda, Adrián; Redondo, Ignacio; Romero, Luciano; Santaolalla, Javier; Senghi Soares, Mara; Albajar, Carmen; de Trocóniz, Jorge F; Missiroli, Marino; Moran, Dermot; Cuevas, Javier; Fernandez Menendez, Javier; Folgueras, Santiago; Gonzalez Caballero, Isidro; Palencia Cortezon, Enrique; Vizan Garcia, Jesus Manuel; Cabrillo, Iban Jose; Calderon, Alicia; Castiñeiras De Saa, Juan Ramon; De Castro Manzano, Pablo; Duarte Campderros, Jordi; Fernandez, Marcos; Garcia-Ferrero, Juan; Gomez, Gervasio; Lopez Virto, Amparo; Marco, Jesus; Marco, Rafael; Martinez Rivero, Celso; Matorras, Francisco; Munoz Sanchez, Francisca Javiela; Piedra Gomez, Jonatan; Rodrigo, Teresa; Rodríguez-Marrero, Ana Yaiza; Ruiz-Jimeno, Alberto; Scodellaro, Luca; Trevisani, Nicolò; Vila, Ivan; Vilar Cortabitarte, Rocio; Abbaneo, Duccio; Auffray, Etiennette; Auzinger, Georg; Bachtis, Michail; Baillon, Paul; Ball, Austin; Barney, David; Benaglia, Andrea; Bendavid, Joshua; Benhabib, Lamia; Benitez, Jose F; Berruti, Gaia Maria; Bloch, Philippe; Bocci, Andrea; Bonato, Alessio; Botta, Cristina; Breuker, Horst; Camporesi, Tiziano; Castello, Roberto; Cerminara, Gianluca; D'Alfonso, Mariarosaria; D'Enterria, David; Dabrowski, Anne; Daponte, Vincenzo; David Tinoco Mendes, Andre; De Gruttola, Michele; De Guio, Federico; De Roeck, Albert; De Visscher, Simon; Di Marco, Emanuele; Dobson, Marc; Dordevic, Milos; Dorney, Brian; Du Pree, Tristan; Dünser, Marc; Dupont, Niels; Elliott-Peisert, Anna; Franzoni, Giovanni; Funk, Wolfgang; Gigi, Dominique; Gill, Karl; Giordano, Domenico; Girone, Maria; Glege, Frank; Guida, Roberto; Gundacker, Stefan; Guthoff, Moritz; Hammer, Josef; Harris, Philip; Hegeman, Jeroen; Innocente, Vincenzo; Janot, Patrick; Kirschenmann, Henning; Kortelainen, Matti J; Kousouris, Konstantinos; Krajczar, Krisztian; Lecoq, Paul; Lourenco, Carlos; Lucchini, Marco Toliman; Magini, Nicolo; Malgeri, Luca; Mannelli, Marcello; Martelli, Arabella; Masetti, Lorenzo; Meijers, Frans; Mersi, Stefano; Meschi, Emilio; Moortgat, Filip; Morovic, Srecko; Mulders, Martijn; Nemallapudi, Mythra Varun; Neugebauer, Hannes; Orfanelli, Styliani; Orsini, Luciano; Pape, Luc; Perez, Emmanuelle; Peruzzi, Marco; Petrilli, Achille; Petrucciani, Giovanni; Pfeiffer, Andreas; Piparo, Danilo; Racz, Attila; Rolandi, Gigi; Rovere, Marco; Ruan, Manqi; Sakulin, Hannes; Schäfer, Christoph; Schwick, Christoph; Seidel, Markus; Sharma, Archana; Silva, Pedro; Simon, Michal; Sphicas, Paraskevas; Steggemann, Jan; Stieger, Benjamin; Stoye, Markus; Takahashi, Yuta; Treille, Daniel; Triossi, Andrea; Tsirou, Andromachi; Veres, Gabor Istvan; Wardle, Nicholas; Wöhri, Hermine Katharina; Zagoździńska, Agnieszka; Zeuner, Wolfram Dietrich; Bertl, Willi; Deiters, Konrad; Erdmann, Wolfram; Horisberger, Roland; Ingram, Quentin; Kaestli, Hans-Christian; Kotlinski, Danek; Langenegger, Urs; Renker, Dieter; Rohe, Tilman; Bachmair, Felix; Bäni, Lukas; Bianchini, Lorenzo; Casal, Bruno; Dissertori, Günther; Dittmar, Michael; Donegà, Mauro; Eller, Philipp; Grab, Christoph; Heidegger, Constantin; Hits, Dmitry; Hoss, Jan; Kasieczka, Gregor; Lustermann, Werner; Mangano, Boris; Marionneau, Matthieu; Martinez Ruiz del Arbol, Pablo; Masciovecchio, Mario; Meister, Daniel; Micheli, Francesco; Musella, Pasquale; Nessi-Tedaldi, Francesca; Pandolfi, Francesco; Pata, Joosep; Pauss, Felicitas; Perrozzi, Luca; Quittnat, Milena; Rossini, Marco; Starodumov, Andrei; Takahashi, Maiko; Tavolaro, Vittorio Raoul; Theofilatos, Konstantinos; Wallny, Rainer; Aarrestad, Thea Klaeboe; Amsler, Claude; Caminada, Lea; Canelli, Maria Florencia; Chiochia, Vincenzo; De Cosa, Annapaola; Galloni, Camilla; Hinzmann, Andreas; Hreus, Tomas; Kilminster, Benjamin; Lange, Clemens; Ngadiuba, Jennifer; Pinna, Deborah; Robmann, Peter; Ronga, Frederic Jean; Salerno, Daniel; Yang, Yong; Cardaci, Marco; Chen, Kuan-Hsin; Doan, Thi Hien; Jain, Shilpi; Khurana, Raman; Konyushikhin, Maxim; Kuo, Chia-Ming; Lin, Willis; Lu, Yun-Ju; Yu, Shin-Shan; Kumar, Arun; Bartek, Rachel; Chang, Paoti; Chang, You-Hao; Chang, Yu-Wei; Chao, Yuan; Chen, Kai-Feng; Chen, Po-Hsun; Dietz, Charles; Fiori, Francesco; Grundler, Ulysses; Hou, George Wei-Shu; Hsiung, Yee; Liu, Yueh-Feng; Lu, Rong-Shyang; Miñano Moya, Mercedes; Petrakou, Eleni; Tsai, Jui-fa; Tzeng, Yeng-Ming; Asavapibhop, Burin; Kovitanggoon, Kittikul; Singh, Gurpreet; Srimanobhas, Norraphat; Suwonjandee, Narumon; Adiguzel, Aytul; Bakirci, Mustafa Numan; Demiroglu, Zuhal Seyma; Dozen, Candan; Eskut, Eda; Girgis, Semiray; Gokbulut, Gul; Guler, Yalcin; Gurpinar, Emine; Hos, Ilknur; Kangal, Evrim Ersin; Onengut, Gulsen; Ozdemir, Kadri; Polatoz, Ayse; Sunar Cerci, Deniz; Tali, Bayram; Topakli, Huseyin; Vergili, Mehmet; Zorbilmez, Caglar; Akin, Ilina Vasileva; Bilin, Bugra; Bilmis, Selcuk; Isildak, Bora; Karapinar, Guler; Yalvac, Metin; Zeyrek, Mehmet; Gülmez, Erhan; Kaya, Mithat; Kaya, Ozlem; Yetkin, Elif Asli; Yetkin, Taylan; Cakir, Altan; Cankocak, Kerem; Sen, Sercan; Vardarlı, Fuat Ilkehan; Grynyov, Boris; Levchuk, Leonid; Sorokin, Pavel; Aggleton, Robin; Ball, Fionn; Beck, Lana; Brooke, James John; Clement, Emyr; Cussans, David; Flacher, Henning; Goldstein, Joel; Grimes, Mark; Heath, Greg P; Heath, Helen F; Jacob, Jeson; Kreczko, Lukasz; Lucas, Chris; Meng, Zhaoxia; Newbold, Dave M; Paramesvaran, Sudarshan; Poll, Anthony; Sakuma, Tai; Seif El Nasr-storey, Sarah; Senkin, Sergey; Smith, Dominic; Smith, Vincent J; Bell, Ken W; Belyaev, Alexander; Brew, Christopher; Brown, Robert M; Calligaris, Luigi; Cieri, Davide; Cockerill, David JA; Coughlan, John A; Harder, Kristian; Harper, Sam; Olaiya, Emmanuel; Petyt, David; Shepherd-Themistocleous, Claire; Thea, Alessandro; Tomalin, Ian R; Williams, Thomas; Womersley, William John; Worm, Steven; Baber, Mark; Bainbridge, Robert; Buchmuller, Oliver; Bundock, Aaron; Burton, Darren; Casasso, Stefano; Citron, Matthew; Colling, David; Corpe, Louie; Cripps, Nicholas; Dauncey, Paul; Davies, Gavin; De Wit, Adinda; Della Negra, Michel; Dunne, Patrick; Elwood, Adam; Ferguson, William; Fulcher, Jonathan; Futyan, David; Hall, Geoffrey; Iles, Gregory; Kenzie, Matthew; Lane, Rebecca; Lucas, Robyn; Lyons, Louis; Magnan, Anne-Marie; Malik, Sarah; Nash, Jordan; Nikitenko, Alexander; Pela, Joao; Pesaresi, Mark; Petridis, Konstantinos; Raymond, David Mark; Richards, Alexander; Rose, Andrew; Seez, Christopher; Tapper, Alexander; Uchida, Kirika; Vazquez Acosta, Monica; Virdee, Tejinder; Zenz, Seth Conrad; Cole, Joanne; Hobson, Peter R; Khan, Akram; Kyberd, Paul; Leggat, Duncan; Leslie, Dawn; Reid, Ivan; Symonds, Philip; Teodorescu, Liliana; Turner, Mark; Borzou, Ahmad; Call, Kenneth; Dittmann, Jay; Hatakeyama, Kenichi; Liu, Hongxuan; Pastika, Nathaniel; Charaf, Otman; Cooper, Seth; Henderson, Conor; Rumerio, Paolo; Arcaro, Daniel; Avetisyan, Aram; Bose, Tulika; Fantasia, Cory; Gastler, Daniel; Lawson, Philip; Rankin, Dylan; Richardson, Clint; Rohlf, James; St John, Jason; Sulak, Lawrence; Zou, David; Alimena, Juliette; Berry, Edmund; Bhattacharya, Saptaparna; Cutts, David; Dhingra, Nitish; Ferapontov, Alexey; Garabedian, Alex; Hakala, John; Heintz, Ulrich; Laird, Edward; Landsberg, Greg; Mao, Zaixing; Narain, Meenakshi; Piperov, Stefan; Sagir, Sinan; Syarif, Rizki; Breedon, Richard; Breto, Guillermo; Calderon De La Barca Sanchez, Manuel; Chauhan, Sushil; Chertok, Maxwell; Conway, John; Conway, Rylan; Cox, Peter Timothy; Erbacher, Robin; Gardner, Michael; Ko, Winston; Lander, Richard; Mulhearn, Michael; Pellett, Dave; Pilot, Justin; Ricci-Tam, Francesca; Shalhout, Shalhout; Smith, John; Squires, Michael; Stolp, Dustin; Tripathi, Mani; Wilbur, Scott; Yohay, Rachel; Cousins, Robert; Everaerts, Pieter; Farrell, Chris; Hauser, Jay; Ignatenko, Mikhail; Saltzberg, David; Takasugi, Eric; Valuev, Vyacheslav; Weber, Matthias; Burt, Kira; Clare, Robert; Ellison, John Anthony; Gary, J William; Hanson, Gail; Heilman, Jesse; Paneva, Mirena Ivova; Jandir, Pawandeep; Kennedy, Elizabeth; Lacroix, Florent; Long, Owen Rosser; Luthra, Arun; Malberti, Martina; Olmedo Negrete, Manuel; Shrinivas, Amithabh; Wei, Hua; Wimpenny, Stephen; Yates, Brent; Branson, James G; Cerati, Giuseppe Benedetto; Cittolin, Sergio; D'Agnolo, Raffaele Tito; Derdzinski, Mark; Holzner, André; Kelley, Ryan; Klein, Daniel; Letts, James; Macneill, Ian; Olivito, Dominick; Padhi, Sanjay; Pieri, Marco; Sani, Matteo; Sharma, Vivek; Simon, Sean; Tadel, Matevz; Vartak, Adish; Wasserbaech, Steven; Welke, Charles; Würthwein, Frank; Yagil, Avraham; Zevi Della Porta, Giovanni; Bradmiller-Feld, John; Campagnari, Claudio; Dishaw, Adam; Dutta, Valentina; Flowers, Kristen; Franco Sevilla, Manuel; Geffert, Paul; George, Christopher; Golf, Frank; Gouskos, Loukas; Gran, Jason; Incandela, Joe; Mccoll, Nickolas; Mullin, Sam Daniel; Richman, Jeffrey; Stuart, David; Suarez, Indara; West, Christopher; Yoo, Jaehyeok; Anderson, Dustin; Apresyan, Artur; Bornheim, Adolf; Bunn, Julian; Chen, Yi; Duarte, Javier; Mott, Alexander; Newman, Harvey B; Pena, Cristian; Pierini, Maurizio; Spiropulu, Maria; Vlimant, Jean-Roch; Xie, Si; Zhu, Ren-Yuan; Andrews, Michael Benjamin; Azzolini, Virginia; Calamba, Aristotle; Carlson, Benjamin; Ferguson, Thomas; Paulini, Manfred; Russ, James; Sun, Menglei; Vogel, Helmut; Vorobiev, Igor; Cumalat, John Perry; Ford, William T; Gaz, Alessandro; Jensen, Frank; Johnson, Andrew; Krohn, Michael; Mulholland, Troy; Nauenberg, Uriel; Stenson, Kevin; Wagner, Stephen Robert; Alexander, James; Chatterjee, Avishek; Chaves, Jorge; Chu, Jennifer; Dittmer, Susan; Eggert, Nicholas; Mirman, Nathan; Nicolas Kaufman, Gala; Patterson, Juliet Ritchie; Rinkevicius, Aurelijus; Ryd, Anders; Skinnari, Louise; Soffi, Livia; Sun, Werner; Tan, Shao Min; Teo, Wee Don; Thom, Julia; Thompson, Joshua; Tucker, Jordan; Weng, Yao; Wittich, Peter; Abdullin, Salavat; Albrow, Michael; Anderson, Jacob; Apollinari, Giorgio; Banerjee, Sunanda; Bauerdick, Lothar AT; Beretvas, Andrew; Berryhill, Jeffrey; Bhat, Pushpalatha C; Bolla, Gino; Burkett, Kevin; Butler, Joel Nathan; Cheung, Harry; Chlebana, Frank; Cihangir, Selcuk; Elvira, Victor Daniel; Fisk, Ian; Freeman, Jim; Gottschalk, Erik; Gray, Lindsey; Green, Dan; Grünendahl, Stefan; Gutsche, Oliver; Hanlon, Jim; Hare, Daryl; Harris, Robert M; Hasegawa, Satoshi; Hirschauer, James; Hu, Zhen; Jayatilaka, Bodhitha; Jindariani, Sergo; Johnson, Marvin; Joshi, Umesh; Jung, Andreas Werner; Klima, Boaz; Kreis, Benjamin; Kwan, Simon; Lammel, Stephan; Linacre, Jacob; Lincoln, Don; Lipton, Ron; Liu, Tiehui; Lopes De Sá, Rafael; Lykken, Joseph; Maeshima, Kaori; Marraffino, John Michael; Martinez Outschoorn, Verena Ingrid; Maruyama, Sho; Mason, David; McBride, Patricia; Merkel, Petra; Mishra, Kalanand; Mrenna, Stephen; Nahn, Steve; Newman-Holmes, Catherine; O'Dell, Vivian; Pedro, Kevin; Prokofyev, Oleg; Rakness, Gregory; Sexton-Kennedy, Elizabeth; Soha, Aron; Spalding, William J; Spiegel, Leonard; Taylor, Lucas; Tkaczyk, Slawek; Tran, Nhan Viet; Uplegger, Lorenzo; Vaandering, Eric Wayne; Vernieri, Caterina; Verzocchi, Marco; Vidal, Richard; Weber, Hannsjoerg Artur; Whitbeck, Andrew; Yang, Fan; Acosta, Darin; Avery, Paul; Bortignon, Pierluigi; Bourilkov, Dimitri; Carnes, Andrew; Carver, Matthew; Curry, David; Das, Souvik; Di Giovanni, Gian Piero; Field, Richard D; Furic, Ivan-Kresimir; Gleyzer, Sergei V; Hugon, Justin; Konigsberg, Jacobo; Korytov, Andrey; Low, Jia Fu; Ma, Peisen; Matchev, Konstantin; Mei, Hualin; Milenovic, Predrag; Mitselmakher, Guenakh; Rank, Douglas; Rossin, Roberto; Shchutska, Lesya; Snowball, Matthew; Sperka, David; Terentyev, Nikolay; Thomas, Laurent; Wang, Jian; Wang, Sean-Jiun; Yelton, John; Hewamanage, Samantha; Linn, Stephan; Markowitz, Pete; Martinez, German; Rodriguez, Jorge Luis; Ackert, Andrew; Adams, Jordon Rowe; Adams, Todd; Askew, Andrew; Bochenek, Joseph; Diamond, Brendan; Haas, Jeff; Hagopian, Sharon; Hagopian, Vasken; Johnson, Kurtis F; Khatiwada, Ajeeta; Prosper, Harrison; Weinberg, Marc; Baarmand, Marc M; Bhopatkar, Vallary; Colafranceschi, Stefano; Hohlmann, Marcus; Kalakhety, Himali; Noonan, Daniel; Roy, Titas; Yumiceva, Francisco; Adams, Mark Raymond; Apanasevich, Leonard; Berry, Douglas; Betts, Russell Richard; Bucinskaite, Inga; Cavanaugh, Richard; Evdokimov, Olga; Gauthier, Lucie; Gerber, Cecilia Elena; Hofman, David Jonathan; Kurt, Pelin; O'Brien, Christine; Sandoval Gonzalez, Irving Daniel; Silkworth, Christopher; Turner, Paul; Varelas, Nikos; Wu, Zhenbin; Zakaria, Mohammed; Bilki, Burak; Clarida, Warren; Dilsiz, Kamuran; Durgut, Süleyman; Gandrajula, Reddy Pratap; Haytmyradov, Maksat; Khristenko, Viktor; Merlo, Jean-Pierre; Mermerkaya, Hamit; Mestvirishvili, Alexi; Moeller, Anthony; Nachtman, Jane; Ogul, Hasan; Onel, Yasar; Ozok, Ferhat; Penzo, Aldo; Snyder, Christina; Tiras, Emrah; Wetzel, James; Yi, Kai; Anderson, Ian; Barnett, Bruce Arnold; Blumenfeld, Barry; Eminizer, Nicholas; Fehling, David; Feng, Lei; Gritsan, Andrei; Maksimovic, Petar; Martin, Christopher; Osherson, Marc; Roskes, Jeffrey; Cocoros, Alice; Sarica, Ulascan; Swartz, Morris; Xiao, Meng; Xin, Yongjie; You, Can; Baringer, Philip; Bean, Alice; Benelli, Gabriele; Bruner, Christopher; Kenny III, Raymond Patrick; Majumder, Devdatta; Malek, Magdalena; Murray, Michael; Sanders, Stephen; Stringer, Robert; Wang, Quan; Ivanov, Andrew; Kaadze, Ketino; Khalil, Sadia; Makouski, Mikhail; Maravin, Yurii; Mohammadi, Abdollah; Saini, Lovedeep Kaur; Skhirtladze, Nikoloz; Toda, Sachiko; Lange, David; Rebassoo, Finn; Wright, Douglas; Anelli, Christopher; Baden, Drew; Baron, Owen; Belloni, Alberto; Calvert, Brian; Eno, Sarah Catherine; Ferraioli, Charles; Gomez, Jaime; Hadley, Nicholas John; Jabeen, Shabnam; Kellogg, Richard G; Kolberg, Ted; Kunkle, Joshua; Lu, Ying; Mignerey, Alice; Shin, Young Ho; Skuja, Andris; Tonjes, Marguerite; Tonwar, Suresh C; Apyan, Aram; Barbieri, Richard; Baty, Austin; Bierwagen, Katharina; Brandt, Stephanie; Busza, Wit; Cali, Ivan Amos; Demiragli, Zeynep; Di Matteo, Leonardo; Gomez Ceballos, Guillelmo; Goncharov, Maxim; Gulhan, Doga; Iiyama, Yutaro; Innocenti, Gian Michele; Klute, Markus; Kovalskyi, Dmytro; Lai, Yue Shi; Lee, Yen-Jie; Levin, Andrew; Luckey, Paul David; Marini, Andrea Carlo; Mcginn, Christopher; Mironov, Camelia; Narayanan, Siddharth; Niu, Xinmei; Paus, Christoph; Ralph, Duncan; Roland, Christof; Roland, Gunther; Salfeld-Nebgen, Jakob; Stephans, George; Sumorok, Konstanty; Varma, Mukund; Velicanu, Dragos; Veverka, Jan; Wang, Jing; Wang, Ta-Wei; Wyslouch, Bolek; Yang, Mingming; Zhukova, Victoria; Dahmes, Bryan; Evans, Andrew; Finkel, Alexey; Gude, Alexander; Hansen, Peter; Kalafut, Sean; Kao, Shih-Chuan; Klapoetke, Kevin; Kubota, Yuichi; Lesko, Zachary; Mans, Jeremy; Nourbakhsh, Shervin; Ruckstuhl, Nicole; Rusack, Roger; Tambe, Norbert; Turkewitz, Jared; Acosta, John Gabriel; Oliveros, Sandra; Avdeeva, Ekaterina; Bloom, Kenneth; Bose, Suvadeep; Claes, Daniel R; Dominguez, Aaron; Fangmeier, Caleb; Gonzalez Suarez, Rebeca; Kamalieddin, Rami; Keller, Jason; Knowlton, Dan; Kravchenko, Ilya; Meier, Frank; Monroy, Jose; Ratnikov, Fedor; Siado, Joaquin Emilo; Snow, Gregory R; Alyari, Maral; Dolen, James; George, Jimin; Godshalk, Andrew; Harrington, Charles; Iashvili, Ia; Kaisen, Josh; Kharchilava, Avto; Kumar, Ashish; Rappoccio, Salvatore; Roozbahani, Bahareh; Alverson, George; Barberis, Emanuela; Baumgartel, Darin; Chasco, Matthew; Hortiangtham, Apichart; Massironi, Andrea; Morse, David Michael; Nash, David; Orimoto, Toyoko; Teixeira De Lima, Rafael; Trocino, Daniele; Wang, Ren-Jie; Wood, Darien; Zhang, Jinzhong; Hahn, Kristan Allan; Kubik, Andrew; Mucia, Nicholas; Odell, Nathaniel; Pollack, Brian; Pozdnyakov, Andrey; Schmitt, Michael Henry; Stoynev, Stoyan; Sung, Kevin; Trovato, Marco; Velasco, Mayda; Brinkerhoff, Andrew; Dev, Nabarun; Hildreth, Michael; Jessop, Colin; Karmgard, Daniel John; Kellams, Nathan; Lannon, Kevin; Lynch, Sean; Marinelli, Nancy; Meng, Fanbo; Mueller, Charles; Musienko, Yuri; Pearson, Tessa; Planer, Michael; Reinsvold, Allison; Ruchti, Randy; Smith, Geoffrey; Taroni, Silvia; Valls, Nil; Wayne, Mitchell; Wolf, Matthias; Woodard, Anna; Antonelli, Louis; Brinson, Jessica; Bylsma, Ben; Durkin, Lloyd Stanley; Flowers, Sean; Hart, Andrew; Hill, Christopher; Hughes, Richard; Ji, Weifeng; Kotov, Khristian; Ling, Ta-Yung; Liu, Bingxuan; Luo, Wuming; Puigh, Darren; Rodenburg, Marissa; Winer, Brian L; Wulsin, Howard Wells; Driga, Olga; Elmer, Peter; Hardenbrook, Joshua; Hebda, Philip; Koay, Sue Ann; Lujan, Paul; Marlow, Daniel; Medvedeva, Tatiana; Mooney, Michael; Olsen, James; Palmer, Christopher; Piroué, Pierre; Saka, Halil; Stickland, David; Tully, Christopher; Zuranski, Andrzej; Malik, Sudhir; Barnes, Virgil E; Benedetti, Daniele; Bortoletto, Daniela; Gutay, Laszlo; Jha, Manoj; Jones, Matthew; Jung, Kurt; Miller, David Harry; Neumeister, Norbert; Radburn-Smith, Benjamin Charles; Shi, Xin; Shipsey, Ian; Silvers, David; Sun, Jian; Svyatkovskiy, Alexey; Wang, Fuqiang; Xie, Wei; Xu, Lingshan; Parashar, Neeti; Stupak, John; Adair, Antony; Akgun, Bora; Chen, Zhenyu; Ecklund, Karl Matthew; Geurts, Frank JM; Guilbaud, Maxime; Li, Wei; Michlin, Benjamin; Northup, Michael; Padley, Brian Paul; Redjimi, Radia; Roberts, Jay; Rorie, Jamal; Tu, Zhoudunming; Zabel, James; Betchart, Burton; Bodek, Arie; de Barbaro, Pawel; Demina, Regina; Eshaq, Yossof; Ferbel, Thomas; Galanti, Mario; Garcia-Bellido, Aran; Han, Jiyeon; Harel, Amnon; Hindrichs, Otto; Khukhunaishvili, Aleko; Petrillo, Gianluca; Tan, Ping; Verzetti, Mauro; Arora, Sanjay; Barker, Anthony; Chou, John Paul; Contreras-Campana, Christian; Contreras-Campana, Emmanuel; Duggan, Daniel; Ferencek, Dinko; Gershtein, Yuri; Gray, Richard; Halkiadakis, Eva; Hidas, Dean; Hughes, Elliot; Kaplan, Steven; Kunnawalkam Elayavalli, Raghav; Lath, Amitabh; Nash, Kevin; Panwalkar, Shruti; Park, Michael; Salur, Sevil; Schnetzer, Steve; Sheffield, David; Somalwar, Sunil; Stone, Robert; Thomas, Scott; Thomassen, Peter; Walker, Matthew; Foerster, Mark; Riley, Grant; Rose, Keith; Spanier, Stefan; York, Andrew; Bouhali, Othmane; Castaneda Hernandez, Alfredo; Dalchenko, Mykhailo; De Mattia, Marco; Delgado, Andrea; Dildick, Sven; Eusebi, Ricardo; Gilmore, Jason; Kamon, Teruki; Krutelyov, Vyacheslav; Mueller, Ryan; Osipenkov, Ilya; Pakhotin, Yuriy; Patel, Rishi; Perloff, Alexx; Rose, Anthony; Safonov, Alexei; Tatarinov, Aysen; Ulmer, Keith; Akchurin, Nural; Cowden, Christopher; Damgov, Jordan; Dragoiu, Cosmin; Dudero, Phillip Russell; Faulkner, James; Kunori, Shuichi; Lamichhane, Kamal; Lee, Sung Won; Libeiro, Terence; Undleeb, Sonaina; Volobouev, Igor; Appelt, Eric; Delannoy, Andrés G; Greene, Senta; Gurrola, Alfredo; Janjam, Ravi; Johns, Willard; Maguire, Charles; Mao, Yaxian; Melo, Andrew; Ni, Hong; Sheldon, Paul; Snook, Benjamin; Tuo, Shengquan; Velkovska, Julia; Xu, Qiao; Arenton, Michael Wayne; Cox, Bradley; Francis, Brian; Goodell, Joseph; Hirosky, Robert; Ledovskoy, Alexander; Li, Hengne; Lin, Chuanzhe; Neu, Christopher; Sinthuprasith, Tutanon; Sun, Xin; Wang, Yanchu; Wolfe, Evan; Wood, John; Xia, Fan; Clarke, Christopher; Harr, Robert; Karchin, Paul Edmund; Kottachchi Kankanamge Don, Chamath; Lamichhane, Pramod; Sturdy, Jared; Belknap, Donald; Carlsmith, Duncan; Cepeda, Maria; Dasu, Sridhara; Dodd, Laura; Duric, Senka; Gomber, Bhawna; Grothe, Monika; Hall-Wilton, Richard; Herndon, Matthew; Hervé, Alain; Klabbers, Pamela; Lanaro, Armando; Levine, Aaron; Long, Kenneth; Loveless, Richard; Mohapatra, Ajit; Ojalvo, Isabel; Perry, Thomas; Pierro, Giuseppe Antonio; Polese, Giovanni; Ruggles, Tyler; Sarangi, Tapas; Savin, Alexander; Sharma, Archana; Smith, Nicholas; Smith, Wesley H; Taylor, Devin; Woods, Nathaniel

    2017-01-01

    This paper describes the CMS trigger system and its performance during Run 1 of the LHC. The trigger system consists of two levels designed to select events of potential physics interest from a GHz (MHz) interaction rate of proton-proton (heavy ion) collisions. The first level of the trigger is implemented in hardware, and selects events containing detector signals consistent with an electron, photon, muon, $\\tau$ lepton, jet, or missing transverse energy. A programmable menu of up to 128 object-based algorithms is used to select events for subsequent processing. The trigger thresholds are adjusted to the LHC instantaneous luminosity during data taking in order to restrict the output rate to 100 kHz, the upper limit imposed by the CMS readout electronics. The second level, implemented in software, further refines the purity of the output stream, selecting an average rate of 400 Hz for offline event storage. The objectives, strategy and performance of the trigger system during the LHC Run 1 are described.

  18. Cygnus Trigger System

    Energy Technology Data Exchange (ETDEWEB)

    G. Corrow, M. Hansen, D. Henderson, C. Mitton

    2008-02-01

    The Cygnus Dual Beam Radiographic Facility consists of two radiographic sources (Cygnus 1, Cygnus 2) each with a dose rating of 4 rads at 1 m, and a 1-mm diameter spot size. The electrical specifications are: 2.25 MV, 60 kA, 60 ns. This facility is located in an underground environment at the Nevada Test Site (NTS). These sources were developed as a primary diagnostic for subcritical tests, which are single-shot, high-value events. In such an application there is an emphasis on reliability and reproducibility. A robust, low-jitter trigger system is a key element for meeting these goals. The trigger system was developed with both commercial and project-specific equipment. In addition to the traditional functions of a trigger system there are novel features added to protect the investment of a high-value shot. Details of the trigger system, including elements designed specifically for a subcritical test application, will be presented. The individual electronic components have their nominal throughput, and when assembled have a system throughput with a measured range of jitter. The shot-to-shot jitter will be assessed both individually and in combination. Trigger reliability and reproducibility results will be presented for a substantial number of shots executed at the NTS.

  19. The ATLAS Tau Trigger

    CERN Document Server

    Rados, PK; The ATLAS collaboration

    2014-01-01

    Physics processes involving tau leptons play a crucial role in understanding particle physics at the high energy frontier. The ability to efficiently trigger on events containing hadronic tau decays is therefore of particular importance to the ATLAS experiment. During the 2012 run, the Large Hadronic Collder (LHC) reached instantaneous luminosities of nearly $10^{34} cm^{-2}s^{-1}$ with bunch crossings occurring every $50 ns$. This resulted in a huge event rate and a high probability of overlapping interactions per bunch crossing (pile-up). With this in mind it was necessary to design an ATLAS tau trigger system that could reduce the event rate to a manageable level, while efficiently extracting the most interesting physics events in a pile-up robust manner. In this poster the ATLAS tau trigger is described, its performance during 2012 is presented, and the outlook for the LHC Run II is briefly summarized.

  20. Microfabricated triggered vacuum switch

    Science.gov (United States)

    Roesler, Alexander W.; Schare, Joshua M.; Bunch, Kyle

    2010-05-11

    A microfabricated vacuum switch is disclosed which includes a substrate upon which an anode, cathode and trigger electrode are located. A cover is sealed over the substrate under vacuum to complete the vacuum switch. In some embodiments of the present invention, a metal cover can be used in place of the trigger electrode on the substrate. Materials used for the vacuum switch are compatible with high vacuum, relatively high temperature processing. These materials include molybdenum, niobium, copper, tungsten, aluminum and alloys thereof for the anode and cathode. Carbon in the form of graphitic carbon, a diamond-like material, or carbon nanotubes can be used in the trigger electrode. Channels can be optionally formed in the substrate to mitigate against surface breakdown.

  1. Intracellular organelles mediate cytoplasmic pulling force for centrosome centration in the Caenorhabditis elegans early embryo

    Science.gov (United States)

    Kimura, Akatsuki

    2010-01-01

    The centrosome is generally maintained at the center of the cell. In animal cells, centrosome centration is powered by the pulling force of microtubules, which is dependent on cytoplasmic dynein. However, it is unclear how dynein brings the centrosome to the cell center, i.e., which structure inside the cell functions as a substrate to anchor dynein. Here, we provide evidence that a population of dynein, which is located on intracellular organelles and is responsible for organelle transport toward the centrosome, generates the force required for centrosome centration in Caenorhabditis elegans embryos. By using the database of full-genome RNAi in C. elegans, we identified dyrb-1, a dynein light chain subunit, as a potential subunit involved in dynein anchoring for centrosome centration. DYRB-1 is required for organelle movement toward the minus end of the microtubules. The temporal correlation between centrosome centration and the net movement of organelle transport was found to be significant. Centrosome centration was impaired when Rab7 and RILP, which mediate the association between organelles and dynein in mammalian cells, were knocked down. These results indicate that minus end-directed transport of intracellular organelles along the microtubules is required for centrosome centration in C. elegans embryos. On the basis of this finding, we propose a model in which the reaction forces of organelle transport generated along microtubules act as a driving force that pulls the centrosomes toward the cell center. This is the first model, to our knowledge, providing a mechanical basis for cytoplasmic pulling force for centrosome centration. PMID:21173218

  2. ChloroMitoCU: Codon patterns across organelle genomes for functional genomics and evolutionary applications.

    Science.gov (United States)

    Sablok, Gaurav; Chen, Ting-Wen; Lee, Chi-Ching; Yang, Chi; Gan, Ruei-Chi; Wegrzyn, Jill L; Porta, Nicola L; Nayak, Kinshuk C; Huang, Po-Jung; Varotto, Claudio; Tang, Petrus

    2017-06-01

    Organelle genomes are widely thought to have arisen from reduction events involving cyanobacterial and archaeal genomes, in the case of chloroplasts, or α-proteobacterial genomes, in the case of mitochondria. Heterogeneity in base composition and codon preference has long been the subject of investigation of topics ranging from phylogenetic distortion to the design of overexpression cassettes for transgenic expression. From the overexpression point of view, it is critical to systematically analyze the codon usage patterns of the organelle genomes. In light of the importance of codon usage patterns in the development of hyper-expression organelle transgenics, we present ChloroMitoCU, the first-ever curated, web-based reference catalog of the codon usage patterns in organelle genomes. ChloroMitoCU contains the pre-compiled codon usage patterns of 328 chloroplast genomes (29,960 CDS) and 3,502 mitochondrial genomes (49,066 CDS), enabling genome-wide exploration and comparative analysis of codon usage patterns across species. ChloroMitoCU allows the phylogenetic comparison of codon usage patterns across organelle genomes, the prediction of codon usage patterns based on user-submitted transcripts or assembled organelle genes, and comparative analysis with the pre-compiled patterns across species of interest. ChloroMitoCU can increase our understanding of the biased patterns of codon usage in organelle genomes across multiple clades. ChloroMitoCU can be accessed at: http://chloromitocu.cgu.edu.tw/. © The Author 2017. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  3. ALICE High Level Trigger

    CERN Multimedia

    Alt, T

    2013-01-01

    The ALICE High Level Trigger (HLT) is a computing farm designed and build for the real-time, online processing of the raw data produced by the ALICE detectors. Events are fully reconstructed from the raw data, analyzed and compressed. The analysis summary together with the compressed data and a trigger decision is sent to the DAQ. In addition the reconstruction of the events allows for on-line monitoring of physical observables and this information is provided to the Data Quality Monitor (DQM). The HLT can process event rates of up to 2 kHz for proton-proton and 200 Hz for Pb-Pb central collisions.

  4. A new role for an old drug: Ambroxol triggers lysosomal exocytosis via pH-dependent Ca²⁺ release from acidic Ca²⁺ stores.

    Science.gov (United States)

    Fois, Giorgio; Hobi, Nina; Felder, Edward; Ziegler, Andreas; Miklavc, Pika; Walther, Paul; Radermacher, Peter; Haller, Thomas; Dietl, Paul

    2015-12-01

    Ambroxol (Ax) is a frequently prescribed drug used to facilitate mucociliary clearance, but its mode of action is yet poorly understood. Here we show by X-ray spectroscopy that Ax accumulates in lamellar bodies (LBs), the surfactant storing, secretory lysosomes of type II pneumocytes. Using lyso- and acidotropic substances in combination with fluorescence imaging we confirm that these vesicles belong to the class of acidic Ca(2+) stores. Ax lead to a significant neutralization of LB pH, followed by intracellular Ca(2+) release, and to a dose-dependent surfactant exocytosis. Ax-induced Ca(2+) release was significantly reduced and slowed down by pretreatment of the cells with bafilomycin A1 (Baf A1), an inhibitor of the vesicular H(+) ATPase. These results could be nearly reproduced with NH3/NH4(+). The findings suggest that Ax accumulates within LBs and severely affects their H(+) and Ca(2+) homeostasis. This is further supported by an Ax-induced change of nanostructural assembly of surfactant layers. We conclude that Ax profoundly affects LBs presumably by disordering lipid bilayers and by acting as a weak base. The pH change triggers - at least in part - Ca(2+) release from stores and secretion of surfactant from type II cells. This novel mechanism of Ax as a lysosomal secretagogue may also play a role for its recently discussed use for lysosomal storage and other degenerative diseases.

  5. Modeling Yeast Organelle Membranes and How Lipid Diversity Influences Bilayer Properties.

    Science.gov (United States)

    Monje-Galvan, Viviana; Klauda, Jeffery B

    2015-11-17

    Membrane lipids are important for the health and proper function of cell membranes. We have improved computational membrane models for specific organelles in yeast Saccharomyces cerevisiae to study the effect of lipid diversity on membrane structure and dynamics. Previous molecular dynamics simulations were performed by Jo et al. [(2009) Biophys J. 97, 50-58] on yeast membrane models having six lipid types with compositions averaged between the endoplasmic reticulum (ER) and the plasma membrane (PM). We incorporated ergosterol, phosphatidic acid, phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, and phosphatidylinositol lipids in our models to better describe the unique composition of the PM, ER, and trans-Golgi network (TGN) bilayers of yeast. Our results describe membrane structure based on order parameters (SCD), electron density profiles (EDPs), and lipid packing. The average surface area per lipid decreased from 63.8 ± 0.4 Å(2) in the ER to 47.1 ± 0.3 Å(2) in the PM, while the compressibility modulus (KA) varied in the opposite direction. The high SCD values for the PM lipids indicated a more ordered bilayer core, while the corresponding lipids in the ER and TGN models had lower parameters by a factor of at least 0.7. The hydrophobic core thickness (2DC) as estimated from EDPs is the thickest for PM, which is in agreement with estimates of hydrophobic regions of transmembrane proteins from the Orientation of Proteins in Membranes database. Our results show the importance of lipid diversity and composition on a bilayer's structural and mechanical properties, which in turn influences interactions with the proteins and membrane-bound molecules.

  6. Disambiguating Syntactic Triggers

    Science.gov (United States)

    Sakas, William Gregory; Fodor, Janet Dean

    2012-01-01

    We present data from an artificial language domain that suggest new contributions to the theory of syntactic triggers. Whether a learning algorithm is capable of matching the achievements of child learners depends in part on how much parametric ambiguity there is in the input. For practical reasons this cannot be established for the domain of all…

  7. Dealing with Asthma Triggers

    Science.gov (United States)

    ... irritants include perfumes and aerosol (say: AIR-uh-sol) sprays, such as hair spray and cleaners. Other irritants include wood and tobacco smoke, the smell given off by paint or gas, and air pollution. If you notice that an irritant triggers your ...

  8. The ALFA Trigger Simulator

    CERN Document Server

    Dziedzic B

    2015-01-01

    The paper presents basic information about ALFA detectors used in the ATLAS experiment, and the structure of currently developed device used to test a new ALFA trigger interface. It discusses the block diagram of the device, principle of its operation, implementation details and future plans for developing the Simulator.

  9. Antennal and cephalic organelles in the social wasp Paravespula germanica (Hymenoptera, Vespinae): form and possible function.

    Science.gov (United States)

    Agmon, Ifaat; Plotkin, Marian; Ermakov, Natalya Y; Barkay, Zahava; Ishay, Jacob S

    2006-01-01

    This paper deals with hairs and organelles present on the head and antennae of the German wasp, Paravespula germanica, and their possible role in sensing the physical and chemical ambience, as well as in intercommunicating both while in flight outside or in the nest. Via scanning electron microscope photography, we detected on the frons plate of the wasp's head, hairs that were about 300 microm long and comprised the longest hairs on the body of the wasps. Additionally, the two antennae bore along their entire length photoreceptors, placoids, campaniforms, trichoids, and agmons. These organelles are located at high but variable density along the antennal segments. The paper provides the dimensions of each of the mentioned organelles, and discusses the possible functions of the organelles as well as of the hairs on the frons. Photographs taken via atomic force microscope reveal that the epicuticle of the antenna is of two typical shapes; one, bearing both longitudinal stripes as well as transverse bands that are about 1 mum in width, and a second granulated form. Conceivably, the wasp uses the various organelles mentioned to communicate with its mates that are some distance away, somewhat like the use of radar by humans.

  10. New organelles by gene duplication in a biophysical model of eukaryote endomembrane evolution.

    Science.gov (United States)

    Ramadas, Rohini; Thattai, Mukund

    2013-06-04

    Extant eukaryotic cells have a dynamic traffic network that consists of diverse membrane-bound organelles exchanging matter via vesicles. This endomembrane system arose and diversified during a period characterized by massive expansions of gene families involved in trafficking after the acquisition of a mitochondrial endosymbiont by a prokaryotic host cell >1.8 billion years ago. Here we investigate the mechanistic link between gene duplication and the emergence of new nonendosymbiotic organelles, using a minimal biophysical model of traffic. Our model incorporates membrane-bound compartments, coat proteins and adaptors that drive vesicles to bud and segregate cargo from source compartments, and SNARE proteins and associated factors that cause vesicles to fuse into specific destination compartments. In simulations, arbitrary numbers of compartments with heterogeneous initial compositions segregate into a few compositionally distinct subsets that we term organelles. The global structure of the traffic system (i.e., the number, composition, and connectivity of organelles) is determined completely by local molecular interactions. On evolutionary timescales, duplication of the budding and fusion machinery followed by loss of cross-interactions leads to the emergence of new organelles, with increased molecular specificity being necessary to maintain larger organellar repertoires. These results clarify potential modes of early eukaryotic evolution as well as more recent eukaryotic diversification. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  11. A nanobuffer reporter library for fine-scale imaging and perturbation of endocytic organelles | Office of Cancer Genomics

    Science.gov (United States)

    Endosomes, lysosomes and related catabolic organelles are a dynamic continuum of vacuolar structures that impact a number of cell physiological processes such as protein/lipid metabolism, nutrient sensing and cell survival. Here we develop a library of ultra-pH-sensitive fluorescent nanoparticles with chemical properties that allow fine-scale, multiplexed, spatio-temporal perturbation and quantification of catabolic organelle maturation at single organelle resolution to support quantitative investigation of these processes in living cells.

  12. Organelle DNA variation and systematic relationships in the genus Zea: Teosinte.

    Science.gov (United States)

    Timothy, D H; Levings, C S; Pring, D R; Conde, M F; Kermicle, J L

    1979-09-01

    Chloroplast and mitochondrial DNAs from six races of annual teosinte (Guatemala, Huehuetenango, Balsas, Central Plateau, Chalco, and Nobogame), perennial teosinte, and maize were compared and grouped by restriction endonuclease fragment analyses. Three groups of chloroplast DNAs were detected: (i) perennial teosinte and Guatemala; (ii) Balsas and Huehuetenango; and (iii) all other teosintes. Four groups of mitochondrial DNAs were separated: (i) perennial teosinte; (ii) Guatemala; (iii) Nobogame; and (iv) all other teosintes. Separation of the teosinte and maize organelle DNAs into five groups (Guatemala; perennial teosinte; Balsas and Huehuetenango; Central Plateau and Chalco; Nobogame and maize) approximated the biosystematic relationships of the taxa. It was suggested that the evolutions of the chloroplast and mitochondrial DNAs may be independent of each other, that variation of organelle DNA within a species complex of an organism may be the common condition, and that the DNAs of the organelle and nuclear systems evolve in reasonable harmony.

  13. Protein kinase Darkener of apricot and its substrate EF1γ regulate organelle transport along microtubules.

    Science.gov (United States)

    Serpinskaya, Anna S; Tuphile, Karine; Rabinow, Leonard; Gelfand, Vladimir I

    2014-01-01

    Regulation of organelle transport along microtubules is important for proper distribution of membrane organelles and protein complexes in the cytoplasm. RNAi-mediated knockdown in cultured Drosophila S2 cells demonstrates that two microtubule-binding proteins, a unique isoform of Darkener of apricot (DOA) protein kinase, and its substrate, translational elongation factor EF1γ, negatively regulate transport of several classes of membrane organelles along microtubules. Inhibition of transport by EF1γ requires its phosphorylation by DOA on serine 294. Together, our results indicate a new role for two proteins that have not previously been implicated in regulation of the cytoskeleton. These results further suggest that the biological role of some of the proteins binding to the microtubule track is to regulate cargo transport along these tracks.

  14. A workflow for the automatic segmentation of organelles in electron microscopy image stacks

    Directory of Open Access Journals (Sweden)

    Alex Joseph Perez

    2014-11-01

    Full Text Available Electron microscopy (EM facilitates analysis of the form, distribution, and functional status of key organelle systems in various pathological processes, including those associated with neurodegenerative disease. Such EM data often provide important new insights into the underlying disease mechanisms. The development of more accurate and efficient methods to quantify changes in subcellular microanatomy has already proven key to understanding the pathogenesis of Parkinson’s and Alzheimer’s diseases, as well as glaucoma. While our ability to acquire large volumes of 3D EM data is progressing rapidly, more advanced analysis tools are needed to assist in measuring precise three-dimensional morphologies of organelles within data sets that can include hundreds to thousands of whole cells. Although new imaging instrument throughputs can exceed teravoxels of data per day, image segmentation and analysis remain significant bottlenecks to achieving quantitative descriptions of whole cell structural organellomes. Here, we present a novel method for the automatic segmentation of organelles in 3D EM image stacks. Segmentations are generated using only 2D image information, making the method suitable for anisotropic imaging techniques such as serial block-face scanning electron microscopy (SBEM. Additionally, no assumptions about 3D organelle morphology are made, ensuring the method can be easily expanded to any number of structurally and functionally diverse organelles. Following the presentation of our algorithm, we validate its performance by assessing the segmentation accuracy of different organelle targets in an example SBEM dataset and demonstrate that it can be efficiently parallelized on supercomputing resources, resulting in a dramatic reduction in runtime.

  15. The acquisition of phototrophy: adaptive strategies of hosting endosymbionts and organelles.

    Science.gov (United States)

    Johnson, Matthew D

    2011-01-01

    Many non-photosynthetic species of protists and metazoans are capable of hosting viable algal endosymbionts or their organelles through adaptations of phagocytic pathways. A form of mixotrophy combining phototrophy and heterotrophy, acquired phototrophy (AcPh) encompasses a suite of endosymbiotic and organelle retention interactions, that range from facultative to obligate. AcPh is a common phenomenon in aquatic ecosystems, with endosymbiotic associations generally more prevalent in nutrient poor environments, and organelle retention typically associated with more productive ones. All AcPhs benefit from enhanced growth due to access to photosynthetic products; however, the degree of metabolic integration and dependency in the host varies widely. AcPh is found in at least four of the major eukaryotic supergroups, and is the driving force in the evolution of secondary and tertiary plastid acquisitions. Mutualistic resource partitioning characterizes most algal endosymbiotic interactions, while organelle retention is a form of predation, characterized by nutrient flow (i.e., growth) in one direction. AcPh involves adaptations to recognize specific prey or endosymbionts and to house organelles or endosymbionts within the endomembrane system but free from digestion. In many cases, hosts depend upon AcPh for the production of essential nutrients, many of which remain obscure. The practice of AcPh has led to multiple independent secondary and tertiary plastid acquisition events among several eukaryote lineages, giving rise to the diverse array of algae found in modern aquatic ecosystems. This article highlights those AcPhs that are model research organisms for both metazoans and protists. Much of the basic biology of AcPhs remains enigmatic, particularly (1) which essential nutrients or factors make certain forms of AcPh obligatory, (2) how hosts regulate and manipulate endosymbionts or sequestered organelles, and (3) what genomic imprint, if any, AcPh leaves on non

  16. Cytoplasmic illuminations: in planta targeting of fluorescent proteins to cellular organelles.

    Science.gov (United States)

    Hawes, C; Saint-Jore, C M; Brandizzi, F; Zheng, H; Andreeva, A V; Boevink, P

    2001-01-01

    Use of the jellyfish green-fluorescent protein as an in vivo reporter is in the process of revolutionising plant cell biology. By fusing the protein to specific targeting peptides or to sequences of complete proteins, it is now possible to observe the location, structure, and dynamics of a number of intracellular organelles over extended periods of time. In this review we discuss the most recent developments and unexpected results originating from the targeting of this unique protein and its derivatives to elements of the cytoskeleton and to membrane-bounded organelles in a range of plant cell types.

  17. Nanobiotechnology meets plant cell biology: Carbon nanotubes as organelle targeting nanocarriers

    KAUST Repository

    Bayoumi, Maged Fouad

    2013-01-01

    For years, nanotechnology has shown great promise in the fields of biomedical and biotechnological sciences and medical research. In this review, we demonstrate its versatility and applicability in plant cell biology studies. Specifically, we discuss the ability of functionalized carbon nanotubes to penetrate the plant cell wall, target specific organelles, probe protein-carrier activity and induce organelle recycling in plant cells. We also, shed light on prospective applications of carbon nanomaterials in cell biology and plant cell transformation. © 2013 The Royal Society of Chemistry.

  18. Optically triggered infrared photodetector.

    Science.gov (United States)

    Ramiro, Íñigo; Martí, Antonio; Antolín, Elisa; López, Esther; Datas, Alejandro; Luque, Antonio; Ripalda, José M; González, Yolanda

    2015-01-14

    We demonstrate a new class of semiconductor device: the optically triggered infrared photodetector (OTIP). This photodetector is based on a new physical principle that allows the detection of infrared light to be switched ON and OFF by means of an external light. Our experimental device, fabricated using InAs/AlGaAs quantum-dot technology, demonstrates normal incidence infrared detection in the 2-6 μm range. The detection is optically triggered by a 590 nm light-emitting diode. Furthermore, the detection gain is achieved in our device without an increase of the noise level. The novel characteristics of OTIPs open up new possibilities for third generation infrared imaging systems ( Rogalski, A.; Antoszewski, J.; Faraone, L. J. Appl. Phys. 2009, 105 (9), 091101).

  19. The ATLAS Tau Trigger

    CERN Document Server

    Rados, PK; The ATLAS collaboration

    2013-01-01

    The tau lepton plays a crucial role in understanding particle physics at the Tera scale. One of the most promising probes of the Higgs boson coupling to fermions is with detector signatures involving taus. In addition, many theories beyond the Standard Model, such as supersymmetry and exotic particles (Wʹ′ and Zʹ′), predict new physics with large couplings to taus. The ability to trigger on hadronic tau decays is therefore critical to achieving the physics goals of the ATLAS experiment. The higher instantaneous luminosities of proton-proton collisions achieved by the Large Hadron Collider (LHC) in 2012 resulted in a larger probability of overlap (pile-up) between bunch crossings, and so it was critical for ATLAS to have an effective tau trigger strategy. The details of this strategy are summarized in this poster, and the latest performance measurements are presented.

  20. The ATLAS Tau Trigger

    CERN Document Server

    Rados, PK; The ATLAS collaboration

    2013-01-01

    The tau lepton plays a crucial role in understanding particle physics at the Tera scale. One of the most promising probes of the Higgs boson coupling to fermions is with detector signatures involving taus. In addition, many theories beyond the Standard Model, such as supersymmetry and exotic particles (Wʹ and Zʹ), predict new physics with large couplings to taus. The ability to trigger on hadronic tau decays is therefore critical to achieving the physics goals of the ATLAS experiment. The higher instantaneous luminosities of proton-proton collisions achieved by the Large Hadron Collider (LHC) in 2012 resulted in a larger probability of overlap (pile-up) between bunch crossings, and so it was critical for ATLAS to have an effective tau trigger strategy. The details of this strategy are summarized in this paper, and the results of the latest performance measurements are presented.

  1. Neural networks for triggering

    Energy Technology Data Exchange (ETDEWEB)

    Denby, B. (Fermi National Accelerator Lab., Batavia, IL (USA)); Campbell, M. (Michigan Univ., Ann Arbor, MI (USA)); Bedeschi, F. (Istituto Nazionale di Fisica Nucleare, Pisa (Italy)); Chriss, N.; Bowers, C. (Chicago Univ., IL (USA)); Nesti, F. (Scuola Normale Superiore, Pisa (Italy))

    1990-01-01

    Two types of neural network beauty trigger architectures, based on identification of electrons in jets and recognition of secondary vertices, have been simulated in the environment of the Fermilab CDF experiment. The efficiencies for B's and rejection of background obtained are encouraging. If hardware tests are successful, the electron identification architecture will be tested in the 1991 run of CDF. 10 refs., 5 figs., 1 tab.

  2. The ARGUS vertex trigger

    CERN Document Server

    Koch, N; Kolanoski, H; Siegmund, T; Bergter, J; Eckstein, P; Schubert, Klaus R; Waldi, R; Imhof, M; Ressing, D; Weiss, U; Weseler, S

    1995-01-01

    A fast second level trigger has been developed for the ARGUS experiment which recognizes tracks originating from the interaction region. The processor compares the hits in the ARGUS Micro Vertex Drift Chamber to 245760 masks stored in random access memories. The masks which are fully defined in three dimensions are able to reject tracks originating in the wall of the narrow beampipe of 10.5\\,mm radius.

  3. Nitro-oleic acid ameliorates oxygen and glucose deprivation/re-oxygenation triggered oxidative stress in renal tubular cells via activation of Nrf2 and suppression of NADPH oxidase.

    Science.gov (United States)

    Nie, Huibin; Xue, Xia; Liu, Gang; Guan, Guangju; Liu, Haiying; Sun, Lina; Zhao, Long; Wang, Xueling; Chen, Zhixin

    2016-01-01

    Nitroalkene derivative of oleic acid (OA-NO2), due to its ability to mediate revisable Michael addition, has been demonstrated to have various biological properties and become a therapeutic agent in various diseases. Though its antioxidant properties have been reported in different models of acute kidney injury (AKI), the mechanism by which OA-NO2 attenuates intracellular oxidative stress is not well investigated. Here, we elucidated the anti-oxidative mechanism of OA-NO2 in an in vitro model of renal ischemia/reperfusion (I/R) injury. Human tubular epithelial cells were subjected to oxygen and glucose deprivation/re-oxygenation (OGD/R) injury. Pretreatment with OA-NO2 (1.25 μM, 45 min) attenuated OGD/R triggered reactive oxygen species (ROS) generation and subsequent mitochondrial membrane potential disruption. This action was mediated via up-regulating endogenous antioxidant defense components including superoxide dismutase (SOD1), heme oxygenase 1 (HO-1), and γ-glutamyl cysteine ligase modulatory subunits (GCLM). Moreover, subcellular fractionation analyses demonstrated that OA-NO2 promoted nuclear translocation of nuclear factor-E2- related factor-2 (Nrf2) and Nrf2 siRNA partially abrogated these protective effects. In addition, OA-NO2 inhibited NADPH oxidase activation and NADPH oxidase 4 (NOX4), NADPH oxidase 2 (NOX2) and p22(phox) up-regulation after OGD/R injury, which was not relevant to Nrf2. These results contribute to clarify that the mechanism of OA-NO2 reno-protection involves both inhibition of NADPH oxidase activity and induction of SOD1, Nrf2-dependent HO-1, and GCLM.

  4. Identification of regions within the Legionella pneumophila VipA effector protein involved in actin binding and polymerization and in interference with eukaryotic organelle trafficking.

    Science.gov (United States)

    Bugalhão, Joana N; Mota, Luís Jaime; Franco, Irina S

    2016-02-01

    The Legionella pneumophila effector protein VipA is an actin nucleator that co-localizes with actin filaments and early endosomes in infected macrophages and which interferes with organelle trafficking when expressed in yeast. To identify the regions of VipA involved in its subcellular localization and functions, we ectopically expressed specific VipA mutant proteins in eukaryotic cells. This indicated that the characteristic punctate distribution of VipA depends on its NH2 -terminal (amino acid residues 1-133) and central coiled-coil (amino acid residues 133-206) regions, and suggested a role for the COOH-terminal (amino acid residues 206-339) region in association with actin filaments and for the NH2 -terminal in co-localization with early endosomes. Co-immunoprecipitation and in vitro assays showed that the COOH-terminal region of VipA is necessary and sufficient to mediate actin binding, and is essential but insufficient to induce microfilament formation. Assays in yeast revealed that the NH2 and the COOH-terminal regions, and possibly an NPY motif within the NH2 region of VipA, are necessary for interference with organelle trafficking. Overall, this suggests that subversion of eukaryotic vesicular trafficking by VipA involves both its ability to associate with early endosomes via its NH2 -terminal region and its capacity to bind and polymerize actin through its COOH-terminal region.

  5. Isolating Triggered Star Formation

    Energy Technology Data Exchange (ETDEWEB)

    Barton, Elizabeth J.; Arnold, Jacob A.; /UC, Irvine; Zentner, Andrew R.; /KICP, Chicago /Chicago U., EFI; Bullock, James S.; /UC, Irvine; Wechsler, Risa H.; /KIPAC, Menlo

    2007-09-12

    Galaxy pairs provide a potentially powerful means of studying triggered star formation from galaxy interactions. We use a large cosmological N-body simulation coupled with a well-tested semi-analytic substructure model to demonstrate that the majority of galaxies in close pairs reside within cluster or group-size halos and therefore represent a biased population, poorly suited for direct comparison to 'field' galaxies. Thus, the frequent observation that some types of galaxies in pairs have redder colors than 'field' galaxies is primarily a selection effect. We use our simulations to devise a means to select galaxy pairs that are isolated in their dark matter halos with respect to other massive subhalos (N= 2 halos) and to select a control sample of isolated galaxies (N= 1 halos) for comparison. We then apply these selection criteria to a volume-limited subset of the 2dF Galaxy Redshift Survey with M{sub B,j} {le} -19 and obtain the first clean measure of the typical fraction of galaxies affected by triggered star formation and the average elevation in the star formation rate. We find that 24% (30.5 %) of these L* and sub-L* galaxies in isolated 50 (30) h{sup -1} kpc pairs exhibit star formation that is boosted by a factor of {approx}> 5 above their average past value, while only 10% of isolated galaxies in the control sample show this level of enhancement. Thus, 14% (20 %) of the galaxies in these close pairs show clear triggered star formation. Our orbit models suggest that 12% (16%) of 50 (30) h{sup -1} kpc close pairs that are isolated according to our definition have had a close ({le} 30 h{sup -1} kpc) pass within the last Gyr. Thus, the data are broadly consistent with a scenario in which most or all close passes of isolated pairs result in triggered star formation. The isolation criteria we develop provide a means to constrain star formation and feedback prescriptions in hydrodynamic simulations and a very general method of understanding

  6. Castor bean organelle genome sequencing and worldwide genetic diversity analysis.

    Directory of Open Access Journals (Sweden)

    Maximo Rivarola

    Full Text Available Castor bean is an important oil-producing plant in the Euphorbiaceae family. Its high-quality oil contains up to 90% of the unusual fatty acid ricinoleate, which has many industrial and medical applications. Castor bean seeds also contain ricin, a highly toxic Type 2 ribosome-inactivating protein, which has gained relevance in recent years due to biosafety concerns. In order to gain knowledge on global genetic diversity in castor bean and to ultimately help the development of breeding and forensic tools, we carried out an extensive chloroplast sequence diversity analysis. Taking advantage of the recently published genome sequence of castor bean, we assembled the chloroplast and mitochondrion genomes extracting selected reads from the available whole genome shotgun reads. Using the chloroplast reference genome we used the methylation filtration technique to readily obtain draft genome sequences of 7 geographically and genetically diverse castor bean accessions. These sequence data were used to identify single nucleotide polymorphism markers and phylogenetic analysis resulted in the identification of two major clades that were not apparent in previous population genetic studies using genetic markers derived from nuclear DNA. Two distinct sub-clades could be defined within each major clade and large-scale genotyping of castor bean populations worldwide confirmed previously observed low levels of genetic diversity and showed a broad geographic distribution of each sub-clade.

  7. Castor bean organelle genome sequencing and worldwide genetic diversity analysis.

    Science.gov (United States)

    Rivarola, Maximo; Foster, Jeffrey T; Chan, Agnes P; Williams, Amber L; Rice, Danny W; Liu, Xinyue; Melake-Berhan, Admasu; Huot Creasy, Heather; Puiu, Daniela; Rosovitz, M J; Khouri, Hoda M; Beckstrom-Sternberg, Stephen M; Allan, Gerard J; Keim, Paul; Ravel, Jacques; Rabinowicz, Pablo D

    2011-01-01

    Castor bean is an important oil-producing plant in the Euphorbiaceae family. Its high-quality oil contains up to 90% of the unusual fatty acid ricinoleate, which has many industrial and medical applications. Castor bean seeds also contain ricin, a highly toxic Type 2 ribosome-inactivating protein, which has gained relevance in recent years due to biosafety concerns. In order to gain knowledge on global genetic diversity in castor bean and to ultimately help the development of breeding and forensic tools, we carried out an extensive chloroplast sequence diversity analysis. Taking advantage of the recently published genome sequence of castor bean, we assembled the chloroplast and mitochondrion genomes extracting selected reads from the available whole genome shotgun reads. Using the chloroplast reference genome we used the methylation filtration technique to readily obtain draft genome sequences of 7 geographically and genetically diverse castor bean accessions. These sequence data were used to identify single nucleotide polymorphism markers and phylogenetic analysis resulted in the identification of two major clades that were not apparent in previous population genetic studies using genetic markers derived from nuclear DNA. Two distinct sub-clades could be defined within each major clade and large-scale genotyping of castor bean populations worldwide confirmed previously observed low levels of genetic diversity and showed a broad geographic distribution of each sub-clade.

  8. Castor Bean Organelle Genome Sequencing and Worldwide Genetic Diversity Analysis

    Science.gov (United States)

    Chan, Agnes P.; Williams, Amber L.; Rice, Danny W.; Liu, Xinyue; Melake-Berhan, Admasu; Huot Creasy, Heather; Puiu, Daniela; Rosovitz, M. J.; Khouri, Hoda M.; Beckstrom-Sternberg, Stephen M.; Allan, Gerard J.; Keim, Paul; Ravel, Jacques; Rabinowicz, Pablo D.

    2011-01-01

    Castor bean is an important oil-producing plant in the Euphorbiaceae family. Its high-quality oil contains up to 90% of the unusual fatty acid ricinoleate, which has many industrial and medical applications. Castor bean seeds also contain ricin, a highly toxic Type 2 ribosome-inactivating protein, which has gained relevance in recent years due to biosafety concerns. In order to gain knowledge on global genetic diversity in castor bean and to ultimately help the development of breeding and forensic tools, we carried out an extensive chloroplast sequence diversity analysis. Taking advantage of the recently published genome sequence of castor bean, we assembled the chloroplast and mitochondrion genomes extracting selected reads from the available whole genome shotgun reads. Using the chloroplast reference genome we used the methylation filtration technique to readily obtain draft genome sequences of 7 geographically and genetically diverse castor bean accessions. These sequence data were used to identify single nucleotide polymorphism markers and phylogenetic analysis resulted in the identification of two major clades that were not apparent in previous population genetic studies using genetic markers derived from nuclear DNA. Two distinct sub-clades could be defined within each major clade and large-scale genotyping of castor bean populations worldwide confirmed previously observed low levels of genetic diversity and showed a broad geographic distribution of each sub-clade. PMID:21750729

  9. Organelle acidification negatively regulates vacuole membrane fusion in vivo

    Science.gov (United States)

    Desfougères, Yann; Vavassori, Stefano; Rompf, Maria; Gerasimaite, Ruta; Mayer, Andreas

    2016-01-01

    The V-ATPase is a proton pump consisting of a membrane-integral V0 sector and a peripheral V1 sector, which carries the ATPase activity. In vitro studies of yeast vacuole fusion and evidence from worms, flies, zebrafish and mice suggested that V0 interacts with the SNARE machinery for membrane fusion, that it promotes the induction of hemifusion and that this activity requires physical presence of V0 rather than its proton pump activity. A recent in vivo study in yeast has challenged these interpretations, concluding that fusion required solely lumenal acidification but not the V0 sector itself. Here, we identify the reasons for this discrepancy and reconcile it. We find that acute pharmacological or physiological inhibition of V-ATPase pump activity de-acidifies the vacuole lumen in living yeast cells within minutes. Time-lapse microscopy revealed that de-acidification induces vacuole fusion rather than inhibiting it. Cells expressing mutated V0 subunits that maintain vacuolar acidity were blocked in this fusion. Thus, proton pump activity of the V-ATPase negatively regulates vacuole fusion in vivo. Vacuole fusion in vivo does, however, require physical presence of a fusion-competent V0 sector. PMID:27363625

  10. TIG3 tumor suppressor-dependent organelle redistribution and apoptosis in skin cancer cells.

    Directory of Open Access Journals (Sweden)

    Tiffany M Scharadin

    Full Text Available TIG3 is a tumor suppressor protein that limits keratinocyte survival during normal differentiation. It is also important in cancer, as TIG3 level is reduced in tumors and in skin cancer cell lines, suggesting that loss of expression may be required for cancer cell survival. An important goal is identifying how TIG3 limits cell survival. In the present study we show that TIG3 expression in epidermal squamous cell carcinoma SCC-13 cells reduces cell proliferation and promotes morphological and biochemical apoptosis. To identify the mechanism that drives these changes, we demonstrate that TIG3 localizes near the centrosome and that pericentrosomal accumulation of TIG3 alters microtubule and microfilament organization and organelle distribution. Organelle accumulation at the centrosome is a hallmark of apoptosis and we demonstrate that TIG3 promotes pericentrosomal organelle accumulation. These changes are associated with reduced cyclin D1, cyclin E and cyclin A, and increased p21 level. In addition, Bax level is increased and Bcl-XL level is reduced, and cleavage of procaspase 3, procaspase 9 and PARP is enhanced. We propose that pericentrosomal localization of TIG3 is a key event that results in microtubule and microfilament redistribution and pericentrosomal organelle clustering and that leads to cancer cell apoptosis.

  11. Fat(al) attraction : Picornaviruses Usurp Lipid Transfer at Membrane Contact Sites to Create Replication Organelles

    NARCIS (Netherlands)

    van der Schaar, Hilde M; Dorobantu, Cristina M; Albulescu, Lucian; Strating, Jeroen R P M; van Kuppeveld, Frank J M

    All viruses that carry a positive-sense RNA genome (+RNA), such as picornaviruses, hepatitis C virus, dengue virus, and SARS- and MERS-coronavirus, confiscate intracellular membranes of the host cell to generate new compartments (i.e., replication organelles) for amplification of their genome.

  12. Cell cycle regulation of dynein association with membranes modulates microtubule-based organelle transport.

    Science.gov (United States)

    Niclas, J; Allan, V J; Vale, R D

    1996-05-01

    Cytoplasmic dynein is a minus end-directed microtubule motor that performs distinct functions in interphase and mitosis. In interphase, dynein transports organelles along microtubules, whereas in metaphase this motor has been implicated in mitotic spindle formation and orientation as well as chromosome segregation. The manner in which dynein activity is regulated during the cell cycle, however, has not been resolved. In this study, we have examined the mechanism by which organelle transport is controlled by the cell cycle in extracts of Xenopus laevis eggs. Here, we show that photocleavage of the dynein heavy chain dramatically inhibits minus end-directed organelle transport and that purified dynein restores this motility, indicating that dynein is the predominant minus end-directed membrane motor in Xenopus egg extracts. By measuring the amount of dynein associated with isolated membranes, we find that cytoplasmic dynein and its activator dynactin detach from the membrane surface in metaphase extracts. The sevenfold decrease in membrane-associated dynein correlated well with the eightfold reduction in minus end-directed membrane transport observed in metaphase versus interphase extracts. Although dynein heavy or intermediate chain phosphorylation did not change in a cell cycle-dependent manner, the dynein light intermediate chain incorporated approximately 12-fold more radiolabeled phosphate in metaphase than in interphase extracts. These studies suggest that cell cycle-dependent phosphorylation of cytoplasmic dynein may regulate organelle transport by modulating the association of this motor with membranes.

  13. Phosphorylation of αSNAP is Required for Secretory Organelle Biogenesis in Toxoplasma gondii.

    Science.gov (United States)

    Stewart, Rebecca J; Ferguson, David J P; Whitehead, Lachlan; Bradin, Clare H; Wu, Hong J; Tonkin, Christopher J

    2016-02-01

    Upon infection, apicomplexan parasites quickly invade host cells and begin a replicative cycle rapidly increasing in number over a short period of time, leading to tissue lysis and disease. The secretory pathway of these highly polarized protozoan parasites tightly controls, in time and space, the biogenesis of specialized structures and organelles required for invasion and intracellular survival. In other systems, regulation of protein trafficking can occur by phosphorylation of vesicle fusion machinery. Previously, we have shown that Toxoplasma gondii αSNAP - a protein that controls the disassembly of cis-SNARE complexes--is phosphorylated. Here, we show that this post-translational modification is required for the correct function of αSNAP in controlling secretory traffic. We demonstrate that during intracellular development conditional expression of a non-phosphorylatable form of αSNAP results in Golgi fragmentation and vesiculation of all downstream secretory organelles. In addition, we show that the vestigial plastid (termed apicoplast), although reported not to be reliant on Golgi trafficking for biogenesis, is also affected upon overexpression of αSNAP and is much more sensitive to the levels of this protein than targeting to other organelles. This work highlights the importance of αSNAP and its phosphorylation in Toxoplasma organelle biogenesis and exposes a hereto fore-unexplored mechanism of regulation of vesicle fusion during secretory pathway trafficking in apicomplexan parasites.

  14. Organelle proteomics by label-free and SILAC-based protein correlation profiling

    DEFF Research Database (Denmark)

    Dengjel, Joern; Jakobsen, Lis; Andersen, Jens S.

    2010-01-01

    to identify bona fide organelle components from a background of co-purifying contaminants because none of the available biochemical purification protocols afford pure preparations. Since this situation is unlikely to change alternative strategies have been devised to meet this challenge by making use...

  15. Biochemical characterization of a mitochondrial-like organelle from Blastocystis sp. subtype 7.

    Science.gov (United States)

    Lantsman, Yelena; Tan, Kevin S W; Morada, Mary; Yarlett, Nigel

    2008-09-01

    A mitochondrion-like organelle (MLO) was isolated from isotonic homogenates of Blastocystis. The organelle sedimented at 5000 g for 10 min, and had an isopycnic density in sucrose of 1.2 g ml(-1). Biochemical characterization enabled the demonstration of several key enzymes that allowed the construction of a metabolic pathway consisting of an incomplete Krebs cycle linked to the oxygen-sensitive enzymes pyruvate : NADP(+) oxidoreductase (PNO), acetate : succinate CoA transferase (ASCT) and succinate thiokinase (STK), which cumulatively are responsible for recycling CoA and generating ATP. The organelle differs from typical aerobic mitochondria in possessing an oxygen-sensitive PNO that can use FAD(+) or FMN(+) as electron acceptor but is inactive with NAD(+), Spinacia oleracea ferredoxin or Clostridium pasteurianum ferredoxin. A gene with 77 % sequence similarity to the PNO mitochondrion precursor cluster from Euglena gracilis sp[Q941N5] was identified in the Blastocystis genome database. A second cluster with 56 % sequence similarity to the pyruvate : ferredoxin oxidoreductase (PFOR) from Trichomonas vaginalis was also identified, which is in agreement with the concept that the PNO gene arose through the fusion of a eubacterial gene for PFOR with the gene for NADPH : cytochrome p450 reductase. Hydrogenase activity was not detected under the conditions used in this study. The Blastocystis oranelle therefore demonstrates significant biochemical differences from traditional mitochondria and hydrogenosomes, but possesses features of both. Based upon the results of this study, the Blastocystis organelle falls into the category of a MLO.

  16. Intracellular Microreactors as Artificial Organelles to Conduct Multiple Enzymatic Reactions Simultaneously

    DEFF Research Database (Denmark)

    Gallardo, Maria Godoy; Labay, Cédric Pierre; Jansman, Michelle M. T.

    2017-01-01

    of artificial organelles is advanced by reporting the assembly of a microreactor consisting of polymer capsules entrapping gold nanoclusters (AuNCs) and liposomes as sub-compartments. The fluorescence properties of AuNCs are employed to monitor the microreactors uptake by macrophages. Encapsulation...

  17. Mitochondrial remnant organelles of Giardia function in iron-sulphur protein maturation.

    Science.gov (United States)

    Tovar, Jorge; León-Avila, Gloria; Sánchez, Lidya B; Sutak, Robert; Tachezy, Jan; van der Giezen, Mark; Hernández, Manuel; Müller, Miklós; Lucocq, John M

    2003-11-13

    Giardia intestinalis (syn. lamblia) is one of the most widespread intestinal protozoan pathogens worldwide, causing hundreds of thousands of cases of diarrhoea each year. Giardia is a member of the diplomonads, often described as an ancient protist group whose primitive nature is suggested by the lack of typical eukaryotic organelles (for example, mitochondria, peroxisomes), the presence of a poorly developed endomembrane system and by their early branching in a number of gene phylogenies. The discovery of nuclear genes of putative mitochondrial ancestry in Giardia and the recent identification of mitochondrial remnant organelles in amitochondrial protists such as Entamoeba histolytica and Trachipleistophora hominis suggest that the eukaryotic amitochondrial state is not a primitive condition but is rather the result of reductive evolution. Using an in vitro protein reconstitution assay and specific antibodies against IscS and IscU--two mitochondrial marker proteins involved in iron-sulphur cluster biosynthesis--here we demonstrate that Giardia contains mitochondrial remnant organelles (mitosomes) bounded by double membranes that function in iron-sulphur protein maturation. Our results indicate that Giardia is not primitively amitochondrial and that it has retained a functional organelle derived from the original mitochondrial endosymbiont.

  18. Association of six YFP-myosin XI-tail fusions with mobile plant cell organelles

    Directory of Open Access Journals (Sweden)

    Hanson Maureen R

    2007-02-01

    Full Text Available Abstract Background Myosins are molecular motors that carry cargo on actin filaments in eukaryotic cells. Seventeen myosin genes have been identified in the nuclear genome of Arabidopsis. The myosin genes can be divided into two plant-specific subfamilies, class VIII with four members and class XI with 13 members. Class XI myosins are related to animal and fungal myosin class V that are responsible for movement of particular vesicles and organelles. Organelle localization of only one of the 13 Arabidopsis myosin XI (myosin XI-6; At MYA2, which is found on peroxisomes, has so far been reported. Little information is available concerning the remaining 12 class XI myosins. Results We investigated 6 of the 13 class XI Arabidopsis myosins. cDNAs corresponding to the tail region of 6 myosin genes were generated and incorporated into a vector to encode YFP-myosin tail fusion proteins lacking the motor domain. Chimeric genes incorporating tail regions of myosin XI-5 (At MYA1, myosin XI-6 (At MYA2, myosin XI-8 (At XI-B, myosin XI-15 (At XI-I, myosin XI-16 (At XI-J and myosin XI-17 (At XI-K were expressed transiently. All YFP-myosin-tail fusion proteins were targeted to small organelles ranging in size from 0.5 to 3.0 μm. Despite the absence of a motor domain, the fluorescently-labeled organelles were motile in most cells. Tail cropping experiments demonstrated that the coiled-coil region was required for specific localization and shorter tail regions were inadequate for targeting. Myosin XI-6 (At MYA2, previously reported to localize to peroxisomes by immunofluorescence, labeled both peroxisomes and vesicles when expressed as a YFP-tail fusion. None of the 6 YFP-myosin tail fusions interacted with chloroplasts, and only one YFP-tail fusion appeared to sometimes co-localize with fluorescent proteins targeted to Golgi and mitochondria. Conclusion 6 myosin XI tails, extending from the coiled-coil region to the C-terminus, label specific vesicles and

  19. Quantitative analysis of organelle distribution and dynamics in Physcomitrella patens protonemal cells

    Directory of Open Access Journals (Sweden)

    Furt Fabienne

    2012-05-01

    Full Text Available Abstract Background In the last decade, the moss Physcomitrella patens has emerged as a powerful plant model system, amenable for genetic manipulations not possible in any other plant. This moss is particularly well suited for plant polarized cell growth studies, as in its protonemal phase, expansion is restricted to the tip of its cells. Based on pollen tube and root hair studies, it is well known that tip growth requires active secretion and high polarization of the cellular components. However, such information is still missing in Physcomitrella patens. To gain insight into the mechanisms underlying the participation of organelle organization in tip growth, it is essential to determine the distribution and the dynamics of the organelles in moss cells. Results We used fluorescent protein fusions to visualize and track Golgi dictyosomes, mitochondria, and peroxisomes in live protonemal cells. We also visualized and tracked chloroplasts based on chlorophyll auto-fluorescence. We showed that in protonemata all four organelles are distributed in a gradient from the tip of the apical cell to the base of the sub-apical cell. For example, the density of Golgi dictyosomes is 4.7 and 3.4 times higher at the tip than at the base in caulonemata and chloronemata respectively. While Golgi stacks are concentrated at the extreme tip of the caulonemata, chloroplasts and peroxisomes are totally excluded. Interestingly, caulonemata, which grow faster than chloronemata, also contain significantly more Golgi dictyosomes and fewer chloroplasts than chloronemata. Moreover, the motility analysis revealed that organelles in protonemata move with low persistency and average instantaneous speeds ranging from 29 to 75 nm/s, which are at least three orders of magnitude slower than those of pollen tube or root hair organelles. Conclusions To our knowledge, this study reports the first quantitative analysis of organelles in Physcomitrella patens and will make possible

  20. Triggering filamentation using turbulence

    CERN Document Server

    Eeltink, D; Marchiando, N; Hermelin, S; Gateau, J; Brunetti, M; Wolf, J P; Kasparian, J

    2016-01-01

    We study the triggering of single filaments due to turbulence in the beam path for a laser of power below the filamenting threshold. Turbulence can act as a switch between the beam not filamenting and producing single filaments. This 'positive' effect of turbulence on the filament probability, combined with our observation of off-axis filaments suggests the underlying mechanism is modulation instability caused by transverse perturbations. We hereby experimentally explore the interaction of modulation instability and turbulence, commonly associated with multiple-filaments, in the single-filament regime.

  1. Analysis of Organelle Targeting by DIL Domains of the Arabidopsis Myosin XI Family

    Science.gov (United States)

    Sattarzadeh, Amirali; Schmelzer, Elmon; Hanson, Maureen R.

    2011-01-01

    The Arabidopsis thaliana genome encodes 13 myosin XI motor proteins. Previous insertional mutant analysis has implicated substantial redundancy of function of plant myosin XIs in transport of intracellular organelles. Considerable information is available about the interaction of cargo with the myosin XI-homologous yeast myosin V protein myo2p. We identified a region in each of 12 myosin XI sequences that correspond to the yeast myo2p secretory-vesicle binding domain (the “DIL” domain). Structural modeling of the myosin DIL domain region of plant myosin XIs revealed significant similarity to the yeast myo2p and myo4p DIL domains. Transient expression of YFP fusions with the Arabidopsis myosin XI DIL domain resulted in fluorescent labeling of a variety of organelles, including the endoplasmic reticulum, peroxisomes, Golgi, and nuclear envelope. With the exception of the YFP::MYA1 DIL fusion, expression of the DIL–YFP fusions resulted in loss of motility of labeled organelles, consistent with a dominant-negative effect. Certain fusions resulted in localization to the cytoplasm, plasma membrane, or to unidentified vesicles. The same YFP-domain fusion sometimes labeled more than one organelle. Expression of a YFP fusion to a yeast myo2p DIL domain resulted in labeling of plant peroxisomes. Fusions with some of the myosin XI domains resulted in labeling of known cargoes of the particular myosin XI; however, certain myosin XI YFP fusions labeled organelles that had not previously been found to be detectably affected by mutations nor by expression of dominant-negative constructs. PMID:22645548

  2. Mitochondria-derived organelles in the diplomonad fish parasite Spironucleus vortens.

    Science.gov (United States)

    Millet, Coralie O M; Williams, Catrin F; Hayes, Anthony J; Hann, Anthony C; Cable, Joanne; Lloyd, David

    2013-10-01

    In some eukaryotes, mitochondria have become modified during evolution to yield derived organelles (MDOs) of a similar size (hydrogenosomes), or extremely reduced to produce tiny cellular vesicles (mitosomes). The current study provides evidence for the presence of MDOs in the highly infectious fish pathogen Spironucleus vortens, an organism that produces H₂ and is shown here to have no detectable cytochromes. Transmission electron microscopy (TEM) reveals that S. vortens trophozoites contain electron-dense, membranous structures sometimes with an electron-dense core (200 nm-1 μm), resembling the hydrogenosomes previously described in other protists from habitats deficient in O₂. Confocal microscopy establishes that these organelles exhibit autofluorescence emission spectra similar to flavoprotein constituents previously described for mitochondria and also present in hydrogenosomes. These organelles possess a membrane potential and are labelled by a fluorescently labeled antibody against Fe-hydrogenase from Blastocystis hominis. Heterologous antibodies raised to mitochondrial proteins frataxin and Isu1, also exhibit a discrete punctate pattern of localization in S. vortens; however these labelled structures are distinctly smaller (90-150 nm) than hydrogenosomes as observed previously in other organisms. TEM confirms the presence of double-membrane bounded organelles of this smaller size. In addition, strong background immunostaining occurs in the cytosol for frataxin and Isu1, and labelling by anti-ferredoxin antibody is generally distributed and not specifically localized except for at the anterior polar region. This suggests that some of the functions traditionally attributed to such MDOs may also occur elsewhere. The specialized parasitic life-style of S. vortens may necessitate more complex intracellular compartmentation of redox reactions than previously recognized. Control of infection requires biochemical characterization of redox-related organelles.

  3. Organelle Size Scaling of the Budding Yeast Vacuole by Relative Growth and Inheritance.

    Science.gov (United States)

    Chan, Yee-Hung M; Reyes, Lorena; Sohail, Saba M; Tran, Nancy K; Marshall, Wallace F

    2016-05-09

    It has long been noted that larger animals have larger organs compared to smaller animals of the same species, a phenomenon termed scaling [1]. Julian Huxley proposed an appealingly simple model of "relative growth"-in which an organ and the whole body grow with their own intrinsic rates [2]-that was invoked to explain scaling in organs from fiddler crab claws to human brains. Because organ size is regulated by complex, unpredictable pathways [3], it remains unclear whether scaling requires feedback mechanisms to regulate organ growth in response to organ or body size. The molecular pathways governing organelle biogenesis are simpler than organogenesis, and therefore organelle size scaling in the cell provides a more tractable case for testing Huxley's model. We ask the question: is it possible for organelle size scaling to arise if organelle growth is independent of organelle or cell size? Using the yeast vacuole as a model, we tested whether mutants defective in vacuole inheritance, vac8Δ and vac17Δ, tune vacuole biogenesis in response to perturbations in vacuole size. In vac8Δ/vac17Δ, vacuole scaling increases with the replicative age of the cell. Furthermore, vac8Δ/vac17Δ cells continued generating vacuole at roughly constant rates even when they had significantly larger vacuoles compared to wild-type. With support from computational modeling, these results suggest there is no feedback between vacuole biogenesis rates and vacuole or cell size. Rather, size scaling is determined by the relative growth rates of the vacuole and the cell, thus representing a cellular version of Huxley's model.

  4. Phylogeny of endocytic components yields insight into the process of nonendosymbiotic organelle evolution.

    Science.gov (United States)

    Dacks, Joel B; Poon, Pak P; Field, Mark C

    2008-01-15

    The process by which some eukaryotic organelles, for example the endomembrane system, evolved without endosymbiotic input remains poorly understood. This problem largely arises because many major cellular systems predate the last common eukaryotic ancestor (LCEA) and thus do not provide examples of organellogenesis in progress. A model is emerging whereby gene duplication and divergence of multiple "specificity-" or "identity-" encoding proteins for the various endomembranous organelles produced the diversity of nonendosymbiotically derived cellular compartments present in modern eukaryotes. To address this possibility, we analyzed three molecular components of the endocytic membrane-trafficking machinery. Phylogenetic analyses of the endocytic syntaxins, Rab 5, and the beta-adaptins each reveal a pattern of ancestral, undifferentiated endocytic homologues in the LCEA. Subsequently, these undifferentiated progenitors independently duplicated in widely divergent lineages, convergently producing components with similar endocytic roles, e.g., beta1 and beta2-adaptin. In contrast, beta3, beta4, and all other adaptin complex subunits, as well as paralogues of the syntaxins and Rabs specific for the other membrane-trafficking organelles, all evolved before the LCEA. Thus, the process giving rise to the differentiated organelles of the endocytic system appears to have been interrupted by the major speciation event that produced the extant eukaryotic lineages. These results suggest that although many endocytic components evolved before the LCEA, other major features evolved independently and convergently after diversification into the primary eukaryotic supergroups. This finding provides an example of a basic cellular system that was simpler in the LCEA than in many extant eukaryotes and yields insight into nonendosymbiotic organelle evolution.

  5. The NA48 trigger supervisor

    CERN Document Server

    Arcidiacono, R; Berotto, F; Bertolino, F; Govi, G; Menichetti, E; Sozzi, M

    2000-01-01

    The NA48 experiment aims to measure direct CP violation in the K/sub L//sup 0/ decays system with an accuracy of 2*10/sup -4/. High performances are required to the trigger and acquisition systems. This paper describes the NA48 Trigger Supervisor, a 40 MHz pipelined hardware system which correlates and processes trigger informations from local trigger sources, searching for interesting patterns. The trigger packet include a timestamp information used by the readout systems to retrieve detector data. The design architecture and functionality during 98 data taking are described. (5 refs).

  6. Rhinovirus-induced calcium flux triggers NLRP3 and NLRC5 activation in bronchial cells.

    Science.gov (United States)

    Triantafilou, Kathy; Kar, Satwik; van Kuppeveld, Frank J M; Triantafilou, Martha

    2013-12-01

    Human rhinoviruses have been linked with underlying lung disorders, such as asthma and chronic obstructive pulmonary disease, in children and adults. However, the mechanism of virus-induced airway inflammation is poorly understood. In this study, using virus deletion mutants and silencing for nucleotide-binding oligomerization domain-like receptors (NLRs), we show that the rhinovirus ion channel protein 2B triggers NLRP3 and NLRC5 inflammasome activation and IL-1β secretion in bronchial cells. 2B protein targets the endoplasmic reticulum and Golgi and induces Ca(2+) reduction in these organelles, thereby disturbing the intracellular calcium homeostasis. NLRP3 and NLRC5 act in a cooperative manner during the inflammasome assembly by sensing intracellular Ca(2+) fluxes and trigger IL-1β secretion. These results reveal for the first time that human rhinovirus infection in primary bronchial cells triggers inflammasome activation.

  7. The ATLAS tau trigger

    CERN Document Server

    Tsuno, S; The ATLAS collaboration

    2009-01-01

    The ATLAS tau trigger has three levels: the first one (L1) is hardware based and uses FPGAs, while the second (L2) and third levels (EF -Event Filter-) are software based and use commodity computers (2 x Intel Harpertown quad-core 2.5 GHz), running scientific linux 4. In this contribution we discuss both the physics characteristics of tau leptons and the technical solutions to quick data access and fast algorithms. We show that L1 selects narrow jets in the calorimeter with an overall rejection against QCD jets of 300, whilst L2 and EF (referred together as High Level Trigger -HLT-) use all the detectors with full granularity and apply a typical rejection of 15 within the stringent timing requirements of the LHC. In the HLT there are two complementary approaches: specialized, fast algorithms are used at L2, while more refined and sophisticated algorithms, imported from the offline, are utilized in the EF.

  8. ATLAS Tau Trigger

    CERN Document Server

    Belanger-Champagne, C; Bosman, M; Brenner, R; Casado, MP; Czyczula, Z; Dam, M; Demers, S; Farrington, S; Igonkina, O; Kalinowski, A; Kanaya, N; Osuna, C; Pérez, E; Ptacek, E; Reinsch, A; Saavedra, A; Sopczak, A; Strom, D; Torrence, E; Tsuno, S; Vorwerk, V; Watson, A; Xella, S

    2008-01-01

    Moving to the high energy scale of the LHC, the identification of tau leptons will become a necessary and very powerful tool, allowing a discovery of physics beyond Standard Model. Many models, among them light SM Higgs and various SUSY models, predict an abundant production of taus with respect to other leptons. The reconstruction of hadronic tau decays, although a very challenging task in hadronic enviroments, allows to increase a signal efficiency by at least of factor 2, and provides an independent control sample to disantangle lepton tau decays from prompt electrons and muons. Thanks to the advanced calorimetry and tracking, the ATLAS experiment has developed tools to efficiently identify hadronic taus at the trigger level. In this presentation we will review the characteristics of taus and the methods to suppress low-multiplicity, low-energy jets contributions as well as we will address the tau trigger chain which provide a rejection rate of 10^5. We will further present plans for commissioning the ATLA...

  9. Minimum Bias Trigger in ATLAS

    CERN Document Server

    Kwee, R E; The ATLAS collaboration

    2010-01-01

    Since the restart of the LHC in November 2009, ATLAS has collected inelastic pp-collisions to perform first measurements on charged particle densities. These measurements will help to constrain various models describing phenomenologically soft parton interactions. Understanding the trigger efficiencies for different event types are therefore crucial to minimize any possible bias in the event selection. ATLAS uses two main minimum bias triggers, featuring complementary detector components and trigger levels. While a hardware based first trigger level situated in the forward regions with 2.09 < |eta| < 3.8 has been proven to select pp-collisions very efficiently, the Inner Detector based minimum bias trigger uses a random seed on filled bunches and central tracking detectors for the event selection. Both triggers were essential for the analysis of kinematic spectra of charged particles. Their performance and trigger efficiency measurements as well as studies on possible bias sources will be presen...

  10. Latent myofascial trigger points.

    Science.gov (United States)

    Ge, Hong-You; Arendt-Nielsen, Lars

    2011-10-01

    A latent myofascial trigger point (MTP) is defined as a focus of hyperirritability in a muscle taut band that is clinically associated with local twitch response and tenderness and/or referred pain upon manual examination. Current evidence suggests that the temporal profile of the spontaneous electrical activity at an MTP is similar to focal muscle fiber contraction and/or muscle cramp potentials, which contribute significantly to the induction of local tenderness and pain and motor dysfunctions. This review highlights the potential mechanisms underlying the sensory-motor dysfunctions associated with latent MTPs and discusses the contribution of central sensitization associated with latent MTPs and the MTP network to the spatial propagation of pain and motor dysfunctions. Treating latent MTPs in patients with musculoskeletal pain may not only decrease pain sensitivity and improve motor functions, but also prevent latent MTPs from transforming into active MTPs, and hence, prevent the development of myofascial pain syndrome.

  11. The Dunaliella salina organelle genomes: large sequences, inflated with intronic and intergenic DNA

    Directory of Open Access Journals (Sweden)

    Tran Duc

    2010-05-01

    Full Text Available Abstract Background Dunaliella salina Teodoresco, a unicellular, halophilic green alga belonging to the Chlorophyceae, is among the most industrially important microalgae. This is because D. salina can produce massive amounts of β-carotene, which can be collected for commercial purposes, and because of its potential as a feedstock for biofuels production. Although the biochemistry and physiology of D. salina have been studied in great detail, virtually nothing is known about the genomes it carries, especially those within its mitochondrion and plastid. This study presents the complete mitochondrial and plastid genome sequences of D. salina and compares them with those of the model green algae Chlamydomonas reinhardtii and Volvox carteri. Results The D. salina organelle genomes are large, circular-mapping molecules with ~60% noncoding DNA, placing them among the most inflated organelle DNAs sampled from the Chlorophyta. In fact, the D. salina plastid genome, at 269 kb, is the largest complete plastid DNA (ptDNA sequence currently deposited in GenBank, and both the mitochondrial and plastid genomes have unprecedentedly high intron densities for organelle DNA: ~1.5 and ~0.4 introns per gene, respectively. Moreover, what appear to be the relics of genes, introns, and intronic open reading frames are found scattered throughout the intergenic ptDNA regions -- a trait without parallel in other characterized organelle genomes and one that gives insight into the mechanisms and modes of expansion of the D. salina ptDNA. Conclusions These findings confirm the notion that chlamydomonadalean algae have some of the most extreme organelle genomes of all eukaryotes. They also suggest that the events giving rise to the expanded ptDNA architecture of D. salina and other Chlamydomonadales may have occurred early in the evolution of this lineage. Although interesting from a genome evolution standpoint, the D. salina organelle DNA sequences will aid in the

  12. The Dunaliella salina organelle genomes: large sequences, inflated with intronic and intergenic DNA

    Energy Technology Data Exchange (ETDEWEB)

    Smith, David R.; Lee, Robert W.; Cushman, John C.; Magnuson, Jon K.; Tran, Duc; Polle, Juergen E.

    2010-05-07

    Abstract Background: Dunaliella salina Teodoresco, a unicellular, halophilic green alga belonging to the Chlorophyceae, is among the most industrially important microalgae. This is because D. salina can produce massive amounts of β-carotene, which can be collected for commercial purposes, and because of its potential as a feedstock for biofuels production. Although the biochemistry and physiology of D. salina have been studied in great detail, virtually nothing is known about the genomes it carries, especially those within its mitochondrion and plastid. This study presents the complete mitochondrial and plastid genome sequences of D. salina and compares them with those of the model green algae Chlamydomonas reinhardtii and Volvox carteri. Results: The D. salina organelle genomes are large, circular-mapping molecules with ~60% noncoding DNA, placing them among the most inflated organelle DNAs sampled from the Chlorophyta. In fact, the D. salina plastid genome, at 269 kb, is the largest complete plastid DNA (ptDNA) sequence currently deposited in GenBank, and both the mitochondrial and plastid genomes have unprecedentedly high intron densities for organelle DNA: ~1.5 and ~0.4 introns per gene, respectively. Moreover, what appear to be the relics of genes, introns, and intronic open reading frames are found scattered throughout the intergenic ptDNA regions -- a trait without parallel in other characterized organelle genomes and one that gives insight into the mechanisms and modes of expansion of the D. salina ptDNA. Conclusions: These findings confirm the notion that chlamydomonadalean algae have some of the most extreme organelle genomes of all eukaryotes. They also suggest that the events giving rise to the expanded ptDNA architecture of D. salina and other Chlamydomonadales may have occurred early in the evolution of this lineage. Although interesting from a genome evolution standpoint, the D. salina organelle DNA sequences will aid in the development of a viable

  13. The Study of TVS Trigger Geometry and Triggered Vacuum Conditions

    CERN Document Server

    Park, Wung-Hoa; Son, Yoon-Kyoo; Frank, Klaus; Lee, Byung-Joon

    2016-01-01

    This presentation focuses on the optimization of the trigger unit of a six-rod TVS. The different configurations of the trigger pin and of the trigger electrode have been considered to study the electric field distribution at the triple points of the unit embedded in the cathode. To optimize the field enhancement, electric field simulations with a planar and a circular heads of the trigger pin in combinations with a convex and a concave shaped trigger electrodes have been done. The simulations were done with an applied trigger pulse voltage of Utrigger = 5 kV and with a discharge voltage the main switch of Uswitch = 20 kV. The experimental values had been Utrigger = 40 kV and Uswitch = 5 kV. The simulation results show that the combination of a circular trigger pin head and a concave trigger electrode yields the highest electric field of 9.6 .106 V/m at the triple point. In-parallel experiments have been performed with those four trigger configurations. The results of the experiments however cannot yet clearl...

  14. Arabidopsis myosin XI sub-domains homologous to the yeast myo2p organelle inheritance sub-domain target subcellular structures in plant cells

    Science.gov (United States)

    Sattarzadeh, Amirali; Schmelzer, Elmon; Hanson, Maureen R.

    2013-01-01

    Myosin XI motor proteins transport plant organelles on the actin cytoskeleton. The Arabidopsis gene family that encodes myosin XI has 13 members, 12 of which have sub-domains within the tail region that are homologous to well-characterized cargo-binding domains in the yeast myosin V myo2p. Little is presently known about the cargo-binding domains of plant myosin XIs. Prior experiments in which most or all of the tail regions of myosin XIs have been fused to yellow fluorescent protein (YFP) and transiently expressed have often not resulted in fluorescent labeling of plant organelles. We identified 42 amino-acid regions within 12 Arabidopsis myosin XIs that are homologous to the yeast myo2p tail region known to be essential for vacuole and mitochondrial inheritance. A YFP fusion of the yeast region expressed in plants did not label tonoplasts or mitochondria. We investigated whether the homologous Arabidopsis regions, termed by us the “PAL” sub-domain, could associate with subcellular structures following transient expression of fusions with YFP in Nicotiana benthamiana. Seven YFP::PAL sub-domain fusions decorated Golgi and six were localized to mitochondria. In general, the myosin XI PAL sub-domains labeled organelles whose motility had previously been observed to be affected by mutagenesis or dominant negative assays with the respective myosins. Simultaneous transient expression of the PAL sub-domains of myosin XI-H, XI-I, and XI-K resulted in inhibition of movement of mitochondria and Golgi. PMID:24187546

  15. Arabidopsis myosin XI sub-domains homologous to the yeast myo2p organelle inheritance sub-domain target subcellular structures in plant cells

    Directory of Open Access Journals (Sweden)

    Amirali eSattarzadeh

    2013-10-01

    Full Text Available Myosin XI motor proteins transport plant organelles on the actin cytoskeleton. The Arabidopsis gene family that encodes myosin XI has 13 members, 12 of which have sub-domains within the tail region that are homologous to well-characterized cargo-binding domains in the yeast myosin V myo2p. Little is presently known about the cargo-binding domains of plant myosin XIs. Prior experiments in which most or all of the tail regions of myosin XIs have been fused to yellow fluorescent protein (YFP and transiently expressed have often not resulted in fluorescent labeling of plant organelles. We identified 42 amino-acid regions within 12 Arabidopsis myosin XIs that are homologous to the yeast myo2p tail region known to be essential for vacuole and mitochondrial inheritance. A YFP fusion of the yeast region expressed in plants did not label tonoplasts or mitochondria. We investigated whether the homologous Arabidopsis regions, termed by us the PAL sub-domain, could associate with subcellular structures following transient expression of fusions with YFP in Nicotiana benthamiana. Seven YFP::PAL sub-domain fusions decorated Golgi and six were localized to mitochondria. In general, the myosin XI PAL sub-domains labeled organelles whose motility had previously been observed to be affected by mutagenesis or dominant negative assays with the respective myosins. Simultaneous transient expression of the PAL sub-domains of myosin XI-H, XI-I, and XI-K resulted in inhibition of movement of mitochondria and Golgi.

  16. Myelin peroxisomes - essential organelles for the maintenance of white matter in the nervous system.

    Science.gov (United States)

    Kassmann, Celia M

    2014-03-01

    Peroxisomes are cellular compartments primarily associated with lipid metabolism. Most cell types, including nervous system cells, harbor several hundred of these organelles. The importance of peroxisomes for central nervous system white matter is evidenced by a variety of human peroxisomal disorders with neurological impairment frequently involving the white matter. Moreover, the most frequent childhood white matter disease, X-linked adrenoleukodystrophy, is a peroxisomal disorder. During the past decade advances in imaging techniques have enabled the identification of peroxisomes within the myelin sheath, especially close to nodes of Ranvier. Although the function of myelin peroxisomes is not solved yet on molecular level, recently acquired knowledge suggests a central role for these organelles in axo-glial metabolism. This review focuses on the biology of myelin peroxisomes as well as on the pathology of myelin and myelinated axons that is observed as a consequence of partial or complete peroxisomal dysfunction in the brain.

  17. Maternal inheritance of mitochondrial DNA: degradation of paternal mitochondria by allogeneic organelle autophagy, allophagy.

    Science.gov (United States)

    Sato, Miyuki; Sato, Ken

    2012-03-01

    Maternal inheritance of mitochondrial DNA (mtDNA) is generally observed in many eukaryotes. Sperm-derived paternal mitochondria and their mtDNA enter the oocyte cytoplasm upon fertilization and then normally disappear during early embryogenesis. However, the mechanism underlying this clearance of paternal mitochondria has remained largely unknown. Recently, we showed that autophagy is required for the elimination of paternal mitochondria in Caenorhabditis elegans embryos. Shortly after fertilization, autophagosomes are induced locally around the penetrated sperm components. These autophagosomes engulf paternal mitochondria, resulting in their lysosomal degradation during early embryogenesis. In autophagy-defective zygotes, paternal mitochondria and their genomes remain even in the larval stage. Therefore, maternal inheritance of mtDNA is accomplished by autophagic degradation of paternal mitochondria. We also found that another kind of sperm-derived structure, called the membranous organelle, is degraded by zygotic autophagy as well. We thus propose to term this allogeneic (nonself) organelle autophagy as allophagy.

  18. Organelle-based biofuel cells: Immobilized mitochondria on carbon paper electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Arechederra, Robert; Minteer, Shelley D. [Saint Louis University, Department of Chemistry, 3501 Laclede Avenue, Saint Louis, MO 63103 (United States)

    2008-10-01

    This paper details the development of a mitochondria-based biofuel cell. We show that mitochondria can be immobilized at a carbon electrode surface and remain intact and viable. The electrode-bound mitochondria drive complete oxidation of pyruvate as shown by Carbon-13 NMR and serve as the anode of the biofuel cell where they convert the chemical energy in a biofuel (such as pyruvate) into electrical energy. These are the first organelle-based fuel cells. Researchers have previously used isolated enzymes and complete microbes for fuel cells, but this is the first evidence that organelles can support fuel cell-based energy conversion. These biofuel cells provide power densities of 0.203 {+-} 0.014 mW/cm{sup 2}, which is in between the latest immobilized enzyme-based biofuel cells and microbial biofuel cells, while providing the efficiency of microbial biofuel cells. (author)

  19. Active diffusion and microtubule-based transport oppose myosin forces to position organelles in cells

    Science.gov (United States)

    Lin, Congping; Schuster, Martin; Guimaraes, Sofia Cunha; Ashwin, Peter; Schrader, Michael; Metz, Jeremy; Hacker, Christian; Gurr, Sarah Jane; Steinberg, Gero

    2016-06-01

    Even distribution of peroxisomes (POs) and lipid droplets (LDs) is critical to their role in lipid and reactive oxygen species homeostasis. How even distribution is achieved remains elusive, but diffusive motion and directed motility may play a role. Here we show that in the fungus Ustilago maydis ~95% of POs and LDs undergo diffusive motions. These movements require ATP and involve bidirectional early endosome motility, indicating that microtubule-associated membrane trafficking enhances diffusion of organelles. When early endosome transport is abolished, POs and LDs drift slowly towards the growing cell end. This pole-ward drift is facilitated by anterograde delivery of secretory cargo to the cell tip by myosin-5. Modelling reveals that microtubule-based directed transport and active diffusion support distribution, mobility and mixing of POs. In mammalian COS-7 cells, microtubules and F-actin also counteract each other to distribute POs. This highlights the importance of opposing cytoskeletal forces in organelle positioning in eukaryotes.

  20. Effects of Cisplatin in Neuroblastoma Rat Cells: Damage to Cellular Organelles

    Science.gov (United States)

    Santin, Giada; Scietti, Luigi; Veneroni, Paola; Barni, Sergio; Bernocchi, Graziella; Bottone, Maria Grazia

    2012-01-01

    Cisplatin (cisPt) is a chemotherapy agent used as a treatment for several types of cancer. The main cytotoxic effect of cisplatin is generally accepted to be DNA damage. Recently, the mechanism by which cisPt generates the cascade of events involved in the apoptotic process has been demonstrated. In particular it has been shown that some organelles are cisPt target and are involved in cell death. This paper aims to describe the morphological and functional changes of the Golgi apparatus and lysosomes during apoptosis induced in neuronal rat cells (B50) by cisplatin. The results obtained show that the cellular organelles are the target of cisPt, so their damage can induce cell death. PMID:22505928

  1. Resonance Raman Probes for Organelle-Specific Labeling in Live Cells

    Science.gov (United States)

    Kuzmin, Andrey N.; Pliss, Artem; Lim, Chang-Keun; Heo, Jeongyun; Kim, Sehoon; Rzhevskii, Alexander; Gu, Bobo; Yong, Ken-Tye; Wen, Shangchun; Prasad, Paras N.

    2016-06-01

    Raman microspectroscopy provides for high-resolution non-invasive molecular analysis of biological samples and has a breakthrough potential for dissection of cellular molecular composition at a single organelle level. However, the potential of Raman microspectroscopy can be fully realized only when novel types of molecular probes distinguishable in the Raman spectroscopy modality are developed for labeling of specific cellular domains to guide spectrochemical spatial imaging. Here we report on the design of a next generation Raman probe, based on BlackBerry Quencher 650 compound, which provides unprecedentedly high signal intensity through the Resonance Raman (RR) enhancement mechanism. Remarkably, RR enhancement occurs with low-toxic red light, which is close to maximum transparency in the biological optical window. The utility of proposed RR probes was validated for targeting lysosomes in live cultured cells, which enabled identification and subsequent monitoring of dynamic changes in this organelle by Raman imaging.

  2. Quantitatively Mapping Cellular Viscosity with Detailed Organelle Information via a Designed PET Fluorescent Probe

    Science.gov (United States)

    Liu, Tianyu; Liu, Xiaogang; Spring, David R.; Qian, Xuhong; Cui, Jingnan; Xu, Zhaochao

    2014-06-01

    Viscosity is a fundamental physical parameter that influences diffusion in biological processes. The distribution of intracellular viscosity is highly heterogeneous, and it is challenging to obtain a full map of cellular viscosity with detailed organelle information. In this work, we report 1 as the first fluorescent viscosity probe which is able to quantitatively map cellular viscosity with detailed organelle information based on the PET mechanism. This probe exhibited a significant ratiometric fluorescence intensity enhancement as solvent viscosity increases. The emission intensity increase was attributed to combined effects of the inhibition of PET due to restricted conformational access (favorable for FRET, but not for PET), and the decreased PET efficiency caused by viscosity-dependent twisted intramolecular charge transfer (TICT). A full map of subcellular viscosity was successfully constructed via fluorescent ratiometric detection and fluorescence lifetime imaging; it was found that lysosomal regions in a cell possess the highest viscosity, followed by mitochondrial regions.

  3. Effects of the uncoupling agents FCCP and CCCP on the saltatory movements of cytoplasmic organelles.

    Science.gov (United States)

    Hollenbeck, P J; Bray, D; Adams, R J

    1985-02-01

    Two potent uncoupling agents, carbonylcyanide-4-trifluoromethoxyphenylhydrazone (FCCP) and carbonylcyanide-3-chlorophenylhydrazone (CCCP) inhibit the movement of organelles in neurites of chick sensory neurones in culture. FCCP applied for 30 minutes at 10 microM reduces the number of moving organelles by 78% and a similar treatment with CCCP causes a reduction of 47%. At 100 microM either compound abolishes all directed movements both in neurites and in cultured 3T3 cells. These effects are probably not due to the discharge of proton gradients since 2,4-dinitrophenol (DNP), at concentrations shown to uncouple mitochondria by the discharge of the permeant cationic fluorescent probe rhodamine 123, fails to inhibit cytoplasmic movements. The inhibition of cytoplasmic movements by FCCP and CCCP is likely to be a consequence of their inhibitory action on a variety of enzymes, including dynein and myosin ATPases, through a reaction with sulfhydryl groups.

  4. Effects of Cisplatin in Neuroblastoma Rat Cells: Damage to Cellular Organelles

    Directory of Open Access Journals (Sweden)

    Giada Santin

    2012-01-01

    Full Text Available Cisplatin (cisPt is a chemotherapy agent used as a treatment for several types of cancer. The main cytotoxic effect of cisplatin is generally accepted to be DNA damage. Recently, the mechanism by which cisPt generates the cascade of events involved in the apoptotic process has been demonstrated. In particular it has been shown that some organelles are cisPt target and are involved in cell death. This paper aims to describe the morphological and functional changes of the Golgi apparatus and lysosomes during apoptosis induced in neuronal rat cells (B50 by cisplatin. The results obtained show that the cellular organelles are the target of cisPt, so their damage can induce cell death.

  5. Active diffusion and microtubule-based transport oppose myosin forces to position organelles in cells

    Science.gov (United States)

    Lin, Congping; Schuster, Martin; Guimaraes, Sofia Cunha; Ashwin, Peter; Schrader, Michael; Metz, Jeremy; Hacker, Christian; Gurr, Sarah Jane; Steinberg, Gero

    2016-01-01

    Even distribution of peroxisomes (POs) and lipid droplets (LDs) is critical to their role in lipid and reactive oxygen species homeostasis. How even distribution is achieved remains elusive, but diffusive motion and directed motility may play a role. Here we show that in the fungus Ustilago maydis ∼95% of POs and LDs undergo diffusive motions. These movements require ATP and involve bidirectional early endosome motility, indicating that microtubule-associated membrane trafficking enhances diffusion of organelles. When early endosome transport is abolished, POs and LDs drift slowly towards the growing cell end. This pole-ward drift is facilitated by anterograde delivery of secretory cargo to the cell tip by myosin-5. Modelling reveals that microtubule-based directed transport and active diffusion support distribution, mobility and mixing of POs. In mammalian COS-7 cells, microtubules and F-actin also counteract each other to distribute POs. This highlights the importance of opposing cytoskeletal forces in organelle positioning in eukaryotes. PMID:27251117

  6. Compartmentation of metals in foliage of Populus tremula grown on soils with mixed contamination. II. Zinc binding inside leaf cell organelles

    Energy Technology Data Exchange (ETDEWEB)

    Vollenweider, Pierre, E-mail: pierre.vollenweider@wsl.c [Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Zuercherstrasse 111, 8903 Birmensdorf (Switzerland); Bernasconi, Petra [Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Zuercherstrasse 111, 8903 Birmensdorf (Switzerland); Environmental Protection Office (AfU), Aabachstrasse 5, 6300 Zug (Switzerland); Gautschi, Hans-Peter [Centre for Microscopy and Image Analysis (CMI), University of Zurich, Gloriastrasse 30, 8006 Zuerich (Switzerland); Menard, Terry; Frey, Beat; Guenthardt-Goerg, Madeleine S. [Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Zuercherstrasse 111, 8903 Birmensdorf (Switzerland)

    2011-01-15

    The phytoextraction potential of plants for removing heavy metals from polluted soils is determined by their capacity to store contaminants in aboveground organs and complex them safely. In this study, the metal compartmentation, elemental composition of zinc deposits and zinc complexation within leaves from poplars grown on soil with mixed metal contamination was analysed combining several histochemical and microanalytical approaches. Zinc was the only heavy metal detected and was stored in several organelles in the form of globoid deposits showing {beta}-metachromasy. It was associated to oxygen anions and different cations, noteworthy phosphorous. The deposit structure, elemental composition and element ratios indicated that zinc was chelated by phytic acid ligands. Maturation processes in vacuolar vs. cytoplasmic deposits were suggested by differences in size and amounts of complexed zinc. Hence, zinc complexation by phytate contributed to metal detoxification and accumulation in foliage but could not prevent toxicity reactions therein. - Zinc contaminants translocated to symplast of aged leaves were detoxified by phytic acid ligands.

  7. The CMS High Level Trigger

    CERN Document Server

    Adam, W; Deldicque, C; Ero, J; Frühwirth, R; Jeitler, Manfred; Kastner, K; Köstner, S; Neumeister, N; Porth, M; Padrta P; Rohringer, H; Sakulinb, H; Strauss, J; Taurok, A; Walzel, G; Wulz, C E; Lowette, S; Van De Vyver, B; De Lentdecker, G; Vanlaer, P; Delaere, C; Lemaître, V; Ninane, A; van der Aa, O; Damgov, J; Karimäki, V; Kinnunen, R; Lampen, T; Lassila-Perini, K M; Lehti, S; Nysten, J; Tuominiemi, J; Busson, P; Todorov, T; Schwering, G; Gras, P; Daskalakis, G; Sfyrla, A; Barone, M; Geralis, T; Markou, C; Zachariadou, K; Hidas, P; Banerjee, S; Mazumdara, K; Abbrescia, M; Colaleoa, A; D'Amato, N; De Filippis, N; Giordano, D; Loddo, F; Maggi, M; Silvestris, L; Zito, G; Arcelli, S; Bonacorsi, D; Capiluppi, P; Dallavalle, G M; Fanfani, A; Grandi, C; Marcellini, S; Montanari, A; Odorici, F; Travaglini, R; Costa, S; Tricomi, A; Ciulli, a V; Magini, N; Ranieri, R; Berti, L; Biasotto, M; Gulminia, M; Maron, G; Toniolo, N; Zangrando, L; Bellato, M; Gasparini, U; Lacaprara, S; Parenti, A; Ronchese, P; Vanini, S; Zotto, S; Ventura P L; Perugia; Benedetti, D; Biasini, M; Fano, L; Servoli, L; Bagliesi, a G; Boccali, T; Dutta, S; Gennai, S; Giassi, A; Palla, F; Segneri, G; Starodumov, A; Tenchini, R; Meridiani, P; Organtini, G; Amapane, a N; Bertolino, F; Cirio, R; Kim, J Y; Lim, I T; Pac, Y; Joo, K; Kim, S B; Suwon; Choi, Y I; Yu, I T; Cho, K; Chung, J; Ham, S W; Kim, D H; Kim, G N; Kim, W; CKim, J; Oh, S K; Park, H; Ro, S R; Son, D C; Suh, J S; Aftab, Z; Hoorani, H; Osmana, A; Bunkowski, K; Cwiok, M; Dominik, Wojciech; Doroba, K; Kazana, M; Królikowski, J; Kudla, I; Pietrusinski, M; Pozniak, Krzysztof T; Zabolotny, W M; Zalipska, J; Zych, P; Goscilo, L; Górski, M; Wrochna, G; Zalewski, P; Alemany-Fernandez, R; Almeida, C; Almeida, N; Da Silva, J C; Santos, M; Teixeira, I; Teixeira, J P; Varelaa, J; Vaz-Cardoso, N; Konoplyanikov, V F; Urkinbaev, A R; Toropin, A; Gavrilov, V; Kolosov, V; Krokhotin, A; Oulianov, A; Stepanov, N; Kodolova, O L; Vardanyan, I; Ilic, J; Skoro, G P; Albajar, C; De Troconiz, J F; Calderón, A; López-Virto, M A; Marco, R; Martínez-Rivero, C; Matorras, F; Vila, I; Cucciarelli, S; Konecki, M; Ashby, S; Barney, D; Bartalini, P; Benetta, R; Brigljevic, V; Bruno, G; Cano, E; Cittolin, S; Della Negra, M; de Roeck, A; Favre, P; Frey, A; Funk, W; Futyan, D; Gigi, D; Glege, F; Gutleber, J; Hansen, M; Innocente, V; Jacobs, C; Jank, W; Kozlovszky, Miklos; Larsen, H; Lenzi, M; Magrans, I; Mannelli, M; Meijers, F; Meschi, E; Mirabito, L; Murray, S J; Oh, A; Orsini, L; Palomares-Espiga, C; Pollet, L; Rácz, A; Reynaud, S; Samyn, D; Scharff-Hansen, P; Schwick, C; Sguazzoni, G; Sinanis, N; Sphicas, P; Spiropulu, M; Strandlie, A; Taylor, B G; Van Vulpen, I; Wellisch, J P; Winkler, M; Villigen; Kotlinski, D; Zurich; Prokofiev, K; Speer, T; Dumanoglu, I; Bristol; Bailey, S; Brooke, J J; Cussans, D; Heath, G P; Machin, D; Nash, S J; Newbold, D; Didcot; Coughlan, A; Halsall, R; Haynes, W J; Tomalin, I R; Marinelli, N; Nikitenko, A; Rutherford, S; Seeza, C; Sharif, O; Antchev, G; Hazen, E; Rohlf, J; Wu, S; Breedon, R; Cox, P T; Murray, P; Tripathi, M; Cousins, R; Erhan, S; Hauser, J; Kreuzer, P; Lindgren, M; Mumford, J; Schlein, P E; Shi, Y; Tannenbaum, B; Valuev, V; Von der Mey, M; Andreevaa, I; Clare, R; Villa, S; Bhattacharya, S; Branson, J G; Fisk, I; Letts, J; Mojaver, M; Paar, H P; Trepagnier, E; Litvine, V; Shevchenko, S; Singh, S; Wilkinson, R; Aziz, S; Bowden, M; Elias, J E; Graham, G; Green, D; Litmaath, M; Los, S; O'Dell, V; Ratnikova, N; Suzuki, I; Wenzel, H; Acosta, D; Bourilkov, D; Korytov, A; Madorsky, A; Mitselmakher, G; Rodríguez, J L; Scurlock, B; Abdullin, S; Baden, D; Eno, S; Grassi, T; Kunori, S; Pavlon, S; Sumorok, K; Tether, S; Cremaldi, L M; Sanders, D; Summers, D; Osborne, I; Taylor, L; Tuura, L; Fisher,W C; Mans6, J; Stickland, D P; Tully, C; Wildish, T; Wynhoff, S; Padley, B P; Chumney, P; Dasu, S; Smith, W H; CMS Trigger Data Acquisition Group

    2006-01-01

    At the Large Hadron Collider at CERN the proton bunches cross at a rate of 40MHz. At the Compact Muon Solenoid experiment the original collision rate is reduced by a factor of O (1000) using a Level-1 hardware trigger. A subsequent factor of O(1000) data reduction is obtained by a software-implemented High Level Trigger (HLT) selection that is executed on a multi-processor farm. In this review we present in detail prototype CMS HLT physics selection algorithms, expected trigger rates and trigger performance in terms of both physics efficiency and timing.

  8. Organization of cytoskeletal elements and organelles preceding growth cone emergence from an identified neuron in situ

    OpenAIRE

    1989-01-01

    The purpose of this study was to investigate the arrangement of cytoskeletal elements and organelles in an identified neuron in situ at the site of emergence of its growth cone just before and concurrent with the onset of axonogenesis. The Ti1 pioneer neurons are the first pair of afferent neurons to differentiate in embryonic grasshopper limbs. They arise at the distal tip of the limb bud epithelium, the daughter cells of a single precursor cell, the Pioneer Mother Cell (PMC). Using immunohi...

  9. New Organelles by Gene Duplication in a Biophysical Model of Eukaryote Endomembrane Evolution

    OpenAIRE

    Ramadas, Rohini; Thattai, Mukund

    2013-01-01

    Extant eukaryotic cells have a dynamic traffic network that consists of diverse membrane-bound organelles exchanging matter via vesicles. This endomembrane system arose and diversified during a period characterized by massive expansions of gene families involved in trafficking after the acquisition of a mitochondrial endosymbiont by a prokaryotic host cell >1.8 billion years ago. Here we investigate the mechanistic link between gene duplication and the emergence of new nonendosymbiotic organe...

  10. The PHENIX Muon Trigger Upgrade Level-1 Trigger System

    Science.gov (United States)

    Lajoie, John; Kempel, Todd

    2010-02-01

    The PHENIX Muon Trigger Upgrade adds a set of Level-1 trigger detectors to the existing muon spectrometers and will enhance the ability of the experiment to pursue a rich program of spin physics in polarized proton collisions. The upgrade will allow the experiment to select high momentum muons from the decay of W bosons and reject both beam-associated and low-momentum collision background, enabling the study of quark and antiquark polarization in the proton. The Muon Trigger Upgrade will add momentum and timing information to the present muon Level-1 trigger, which only makes use of tracking in the PHENIX muon identifier (MuID) panels. Signals from new Resistive Plate Chambers (RPCs) and re-instrumented planes in the existing muon tracking (MuTr) chambers will provide momentum and timing information for the new Level-1 trigger. An RPC timing resolution of ˜2 ns will permit rejection of beam related backgrounds while tracking information from the RPCs and MuTr station will be used by the trigger to select events with high momentum muon candidates. The RPC and MuTr hit information will be sent by optical fibers to a set of Level-1 trigger processors that will make use of cutting edge FPGA technology to provide very high data densities in a compact form factor. The layout of the upgrade, details of the Level-1 electronics and trigger algorithm development will be presented. )

  11. Organization of organelles and VAMP-associated vesicular transport systems in differentiating skeletal muscle cells.

    Science.gov (United States)

    Tajika, Yuki; Takahashi, Maiko; Ueno, Hitoshi; Murakami, Tohru; Yorifuji, Hiroshi

    2015-01-01

    Vesicular transport plays an important role in the regulation of cellular function and differentiation of the cell, and intracellular vesicles play a role in the delivery of membrane components and in sorting membrane proteins to appropriate domains in organelles and the plasma membrane. Research on vesicular transport in differentiating cells has mostly focused on neurons and epithelial cells, and few such studies have been carried out on skeletal muscle cells. Skeletal muscle cells have specialized organelles and plasma membrane domains, including T-tubules, sarcoplasmic reticulum, neuromuscular junctions, and myotendinous junctions. The differentiation of skeletal muscle cells is achieved by multiple steps, i.e., proliferation of myoblasts, formation of myotubes by cell-cell fusion, and maturation of myotubes into myofibers. Systematic vesicular transport is expected to play a role in the maintenance and development of skeletal muscle cells. Here, we review a map of the vesicular transport system during the differentiation of skeletal muscle cells. The characteristics of organelle arrangement in myotubes are described according to morphological studies. Vesicular transport in myotubes is explained by the expression profiles of soluble N-ethylmaleimide-sensitive factor attachment protein receptor proteins.

  12. Curvature of double-membrane organelles generated by changes in membrane size and composition.

    Directory of Open Access Journals (Sweden)

    Roland L Knorr

    Full Text Available Transient double-membrane organelles are key players in cellular processes such as autophagy, reproduction, and viral infection. These organelles are formed by the bending and closure of flat, double-membrane sheets. Proteins are believed to be important in these morphological transitions but the underlying mechanism of curvature generation is poorly understood. Here, we describe a novel mechanism for this curvature generation which depends primarily on three membrane properties: the lateral size of the double-membrane sheets, the molecular composition of their highly curved rims, and a possible asymmetry between the two flat faces of the sheets. This mechanism is evolutionary advantageous since it does not require active processes and is readily available even when resources within the cell are restricted as during starvation, which can induce autophagy and sporulation. We identify pathways for protein-assisted regulation of curvature generation, organelle size, direction of bending, and morphology. Our theory also provides a mechanism for the stabilization of large double-membrane sheet-like structures found in the endoplasmic reticulum and in the Golgi cisternae.

  13. Crystal Structures of DNA-Whirly Complexes and Their Role in Arabidopsis Organelle Genome Repair

    Energy Technology Data Exchange (ETDEWEB)

    Cappadocia, Laurent; Maréchal, Alexandre; Parent, Jean-Sébastien; Lepage, Étienne; Sygusch, Jurgen; Brisson, Normand (Montreal)

    2010-09-07

    DNA double-strand breaks are highly detrimental to all organisms and need to be quickly and accurately repaired. Although several proteins are known to maintain plastid and mitochondrial genome stability in plants, little is known about the mechanisms of DNA repair in these organelles and the roles of specific proteins. Here, using ciprofloxacin as a DNA damaging agent specific to the organelles, we show that plastids and mitochondria can repair DNA double-strand breaks through an error-prone pathway similar to the microhomology-mediated break-induced replication observed in humans, yeast, and bacteria. This pathway is negatively regulated by the single-stranded DNA (ssDNA) binding proteins from the Whirly family, thus indicating that these proteins could contribute to the accurate repair of plant organelle genomes. To understand the role of Whirly proteins in this process, we solved the crystal structures of several Whirly-DNA complexes. These reveal a nonsequence-specific ssDNA binding mechanism in which DNA is stabilized between domains of adjacent subunits and rendered unavailable for duplex formation and/or protein interactions. Our results suggest a model in which the binding of Whirly proteins to ssDNA would favor accurate repair of DNA double-strand breaks over an error-prone microhomology-mediated break-induced replication repair pathway.

  14. Novel quantitative autophagy analysis by organelle flow cytometry after cell sonication.

    Directory of Open Access Journals (Sweden)

    Michael Degtyarev

    Full Text Available Autophagy is a dynamic process of bulk degradation of cellular proteins and organelles in lysosomes. Current methods of autophagy measurement include microscopy-based counting of autophagic vacuoles (AVs in cells. We have developed a novel method to quantitatively analyze individual AVs using flow cytometry. This method, OFACS (organelle flow after cell sonication, takes advantage of efficient cell disruption with a brief sonication, generating cell homogenates with fluorescently labeled AVs that retain their integrity as confirmed with light and electron microscopy analysis. These AVs could be detected directly in the sonicated cell homogenates on a flow cytometer as a distinct population of expected organelle size on a cytometry plot. Treatment of cells with inhibitors of autophagic flux, such as chloroquine or lysosomal protease inhibitors, increased the number of particles in this population under autophagy inducing conditions, while inhibition of autophagy induction with 3-methyladenine or knockdown of ATG proteins prevented this accumulation. This assay can be easily performed in a high-throughput format and opens up previously unexplored avenues for autophagy analysis.

  15. Genetic modifiers of abnormal organelle biogenesis in a Drosophila model of BLOC-1 deficiency.

    Science.gov (United States)

    Cheli, Verónica T; Daniels, Richard W; Godoy, Ruth; Hoyle, Diego J; Kandachar, Vasundhara; Starcevic, Marta; Martinez-Agosto, Julian A; Poole, Stephen; DiAntonio, Aaron; Lloyd, Vett K; Chang, Henry C; Krantz, David E; Dell'Angelica, Esteban C

    2010-03-01

    Biogenesis of lysosome-related organelles complex 1 (BLOC-1) is a protein complex formed by the products of eight distinct genes. Loss-of-function mutations in two of these genes, DTNBP1 and BLOC1S3, cause Hermansky-Pudlak syndrome, a human disorder characterized by defective biogenesis of lysosome-related organelles. In addition, haplotype variants within the same two genes have been postulated to increase the risk of developing schizophrenia. However, the molecular function of BLOC-1 remains unknown. Here, we have generated a fly model of BLOC-1 deficiency. Mutant flies lacking the conserved Blos1 subunit displayed eye pigmentation defects due to abnormal pigment granules, which are lysosome-related organelles, as well as abnormal glutamatergic transmission and behavior. Epistatic analyses revealed that BLOC-1 function in pigment granule biogenesis requires the activities of BLOC-2 and a putative Rab guanine-nucleotide-exchange factor named Claret. The eye pigmentation phenotype was modified by misexpression of proteins involved in intracellular protein trafficking; in particular, the phenotype was partially ameliorated by Rab11 and strongly enhanced by the clathrin-disassembly factor, Auxilin. These observations validate Drosophila melanogaster as a powerful model for the study of BLOC-1 function and its interactions with modifier genes.

  16. DNA-Mediated Self-Organization of Polymeric Nanocompartments Leads to Interconnected Artificial Organelles.

    Science.gov (United States)

    Liu, Juan; Postupalenko, Viktoriia; Lörcher, Samuel; Wu, Dalin; Chami, Mohamed; Meier, Wolfgang; Palivan, Cornelia G

    2016-11-09

    Self-organization of nanocomponents was mainly focused on solid nanoparticles, quantum dots, or liposomes to generate complex architectures with specific properties, but intrinsically limited or not developed enough, to mimic sophisticated structures with biological functions in cells. Here, we present a biomimetic strategy to self-organize synthetic nanocompartments (polymersomes) into clusters with controlled properties and topology by exploiting DNA hybridization to interconnect polymersomes. Molecular and external factors affecting the self-organization served to design clusters mimicking the connection of natural organelles: fine-tune of the distance between tethered polymersomes, different topologies, no fusion of clustered polymersomes, and no aggregation. Unexpected, extended DNA bridges that result from migration of the DNA strands inside the thick polymer membrane (about 12 nm) represent a key stability and control factor, not yet exploited for other synthetic nano-object networks. The replacement of the empty polymersomes with artificial organelles, already reported for single polymersome architecture, will provide an excellent platform for the development of artificial systems mimicking natural organelles or cells and represents a fundamental step in the engineering of molecular factories.

  17. Bacterial microcompartments: widespread prokaryotic organelles for isolation and optimization of metabolic pathways

    Science.gov (United States)

    Bobik, Thomas A.; Lehman, Brent P.; Yeates, Todd O.

    2016-01-01

    Summary Prokaryotes use subcellular compartments for a variety of purposes. An intriguing example is a family of complex subcellular organelles known as bacterial microcompartments (MCPs). MCPs are widely distributed among bacteria and impact processes ranging global carbon fixation and enteric pathogenesis. Overall, MCPs consist of metabolic enzymes encased within a protein shell, and their function is to optimize biochemical pathways by confining toxic or volatile metabolic intermediates. MCPs are fundamentally different from other organelles in having a complex protein shell rather than a lipid-based membrane as an outer barrier. This unusual feature raises basic questions about organelle assembly, protein targeting and metabolite transport. In this review, we discuss the three best-studied MCPs highlighting atomic-level models for shell assembly, targeting sequences that direct enzyme encapsulation, multivalent proteins that organize the lumen enzymes, the principles of metabolite movement across the shell, internal cofactor recycling, a potential system of allosteric regulation of metabolite transport and the mechanism and rationale behind the functional diversification of the proteins that form the shell. We also touch on some potential biotechnology applications an unusual compartment designed by nature to optimize metabolic processes within a cellular context. PMID:26148529

  18. Isolating Triggered Star Formation

    CERN Document Server

    Barton, Elizabeth J; Zentner, Andrew R; Bullock, James S; Wechsler, Risa H

    2007-01-01

    Galaxy pairs provide a potentially powerful means of studying triggered star formation from galaxy interactions. We use a large cosmological N-body simulation coupled with a well-tested semi-analytic substructure model to demonstrate that the majority of galaxies in close pairs reside within cluster or group-size halos and therefore represent a biased population, poorly suited for direct comparison to ``field'' galaxies. Thus, the frequent observation that some types of galaxies in pairs have redder colors than ``field'' galaxies is primarily a selection effect. We select galaxy pairs that are isolated in their dark matter halos with respect to other massive subhalos (N=2 halos) and a control sample of isolated galaxies (N=1 halos) for comparison. We then apply these selection criteria to a volume-limited subset of the 2dF Galaxy Redshift Survey with M_Bj ~ 5 above their average past value, while only 10% of isolated galaxies in the control sample show this level of enhancement. Thus, 14% (20 %) of the galaxi...

  19. F-actin cytoskeleton and the fate of organelles in chromaffin cells.

    Science.gov (United States)

    Villanueva, José; Gimenez-Molina, Yolanda; Viniegra, Salvador; Gutiérrez, Luis M

    2016-06-01

    In addition to playing a fundamental structural role, the F-actin cytoskeleton in neuroendocrine chromaffin cells has a prominent influence on governing the molecular mechanism and regulating the secretory process. Performing such roles, the F-actin network might be essential to first transport, and later locate the cellular organelles participating in the secretory cycle. Chromaffin granules are transported from the internal cytosolic regions to the cell periphery along microtubular and F-actin structures. Once in the cortical region, they are embedded in the F-actin network where these vesicles experience restrictions in motility. Similarly, mitochondria transport is affected by both microtubule and F-actin inhibitors and suffers increasing motion restrictions when they are located in the cortical region. Therefore, the F-actin cortex is a key factor in defining the existence of two populations of cortical and perinuclear granules and mitochondria which could be distinguished by their different location and mobility. Interestingly, other important organelles for controlling intracellular calcium levels, such as the endoplasmic reticulum network, present clear differences in distribution and much lower mobility than chromaffin vesicles and mitochondria. Nevertheless, both mitochondria and the endoplasmic reticulum appear to distribute in the proximity of secretory sites to fulfill a pivotal role, forming triads with calcium channels ensuring the fine tuning of the secretory response. This review presents the contributions that provide the basis for our current view regarding the influence that F-actin has on the distribution of organelles participating in the release of catecholamines in chromaffin cells, and summarizes this knowledge in simple models. In chromaffin cells, organelles such as granules and mitochondria distribute forming cortical and perinuclear populations whereas others like the ER present homogenous distributions. In the present review we discuss

  20. Effect of the antioxidant ionol (BHT) on growth and development of etiolated wheat seedlings: control of apoptosis, cell division, organelle ultrastructure, and plastid differentiation.

    Science.gov (United States)

    Bakeeva, L E; Zamyatnina, V A; Shorning, B Y; Aleksandrushkina, N I; Vanyushin, B F

    2001-08-01

    Ionol (BHT), a compound having antioxidant activity, at concentrations in the range 1-50 mg/liter (0.45 x 10(-5)-2.27 x 10(-4) M), inhibits growth of etiolated wheat seedlings, changes the morphology of their organs, prolongs the coleoptile life span, and prevents the appearance of specific features of aging and apoptosis in plants. In particular, BHT prevents the age-dependent decrease in total DNA content, apoptotic internucleosomal fragmentation of nuclear DNA, appearance in the cell vacuole of specific vesicles with active mitochondria intensively producing mtDNA, and formation of heavy mitochondrial DNA rho = 1.718 g/cm3) in coleoptiles of etiolated wheat seedlings. BHT induces large structural changes in the organization of all cellular organelles (nucleus, mitochondria, plastids, Golgi apparatus, endocytoplasmic reticulum) and the formation of new unusual membrane structures in the cytoplasm. BHT distorts the division of nuclei and cells, and this results in the appearance of multi-bladed polyploid nuclei and multinuclear cells. In roots of etiolated wheat seedlings, BHT induces intensive synthesis of pigments, presumably carotenoids, and the differentiation of plastids with formation of chloro- or chromoplasts. The observed multiple effects of BHT are due to its antioxidative properties (the structural BHT analog 3,5-di-tert-butyltoluene is physiologically inert; it has no effect similar to that of BHT). Therefore, the reactive oxygen species (ROS) controlled by BHT seem to trigger apoptosis and the structural reorganization of the cytoplasm in the apoptotic cell with formation of specific vacuolar vesicles that contain active mitochondria intensively producing mtDNA. Thus, the inactivation of ROS by BHT may be responsible for the observed changes in the structure of all the mentioned cellular organelles. This corresponds to the idea that ROS control apoptosis and mitosis including formation of cell wall, and they are powerful secondary messengers that

  1. Upgrade trigger: Biannual performance update

    CERN Document Server

    Aaij, Roel; Couturier, Ben; Esen, Sevda; De Cian, Michel; De Vries, Jacco Andreas; Dziurda, Agnieszka; Fitzpatrick, Conor; Fontana, Marianna; Grillo, Lucia; Hasse, Christoph; Jones, Christopher Rob; Le Gac, Renaud; Matev, Rosen; Neufeld, Niko; Nikodem, Thomas; Polci, Francesco; Del Buono, Luigi; Quagliani, Renato; Schwemmer, Rainer; Seyfert, Paul; Stahl, Sascha; Szumlak, Tomasz; Vesterinen, Mika Anton; Wanczyk, Joanna; Williams, Mark Richard James; Yin, Hang; Zacharjasz, Emilia Anna

    2017-01-01

    This document presents the performance of the LHCb Upgrade trigger reconstruction sequence, incorporating changes to the underlying reconstruction algorithms and detector description since the Trigger and Online Upgrade TDR. An updated extrapolation is presented using the most recent example of an Event Filter Farm node.

  2. A Ribbon-like Structure in the Ejective Organelle of the Green Microalga Pyramimonas parkeae (Prasinophyceae) Consists of Core Histones and Polymers Containing N-acetyl-glucosamine.

    Science.gov (United States)

    Yamagishi, Takahiro; Kurihara, Akira; Kawai, Hiroshi

    2015-11-01

    The green microalga, Pyramimonas parkeae (Prasinophyceae) has an ejective organelle containing a coiled ribbon structure resembling the ejectisome in Cryptophyta. This structure is discharged from the cell by a stimulus and extends to form a tube-like structure, but the molecular components of the structure have not been identified. Tricine-SDS-PAGE analysis indicated that the ribbon-like structure of P. parkeae contains some proteins and low molecular acidic polymers. Edman degradation, LC/MS/MS analyses and immunological studies demonstrated that their proteins are core histones (H3, H2A, H2B and H4). In addition, monosaccharide composition analysis of the ribbon-like structures and degradation by lysozyme strongly indicated that the ribbon-like structure consist of β (1-4) linked polymers containing N-acetyl-glucosamine. Purified polymers and recombinant histones formed glob-like or filamentous structures. Therefore we conclude that the ribbon-like structure of P. parkeae mainly consists of a complex of core histones (H3, H2A, H2B and H4) and polymers containing N-acetyl-glucosamine, and suggest to name the ejective organelle in P. parkeae the "histrosome" to distinguish it from the ejectisome in Cryptophyta. Copyright © 2015 Elsevier GmbH. All rights reserved.

  3. The lumen-facing domain is important for the biological function and organelle-to-organelle movement of bZIP28 during ER stress in Arabidopsis.

    Science.gov (United States)

    Sun, Le; Lu, Sun-Jie; Zhang, Shuang-Shuang; Zhou, Shun-Fan; Sun, Ling; Liu, Jian-Xiang

    2013-09-01

    The membrane-associated transcription factor, bZIP28, is relocated from the endoplasmic reticulum (ER) to the Golgi and proteolytically released from the membrane mediated by two proteases, S1P and S2P, in response to ER stress in Arabidopsis. The activated N-terminal domain recruits nuclear factor Y (NF-Y) subunits in the nucleus to regulate ER stress downstream genes. Little is known about the functions of the bZIP28 C-terminal lumen-facing domain. Here, we provide novel insights into how the ER lumen-facing domain affects the biological function and organelle-to-organelle movement of bZIP28 in the ER stress response. First, we demonstrated the functional redundancy of bZIP28 and bZIP60 by generation and analysis of the bZIP28 and bZIP60 double mutant zip28zip60. Subsequent genetic complementation experiments in zip28zip60 background with deletions on bZIP28 lumen-facing domain highlighted the importance of lumen-facing domain for its in vivo function of bZIP28 in the ER stress response. The protein subcellular localization and Western blotting results further revealed that the bZIP28 lumen-facing domain contains ER retention signal which is important for the proteolytic activation of bZIP28. Thus, the bZIP28 lumen-facing C-terminus plays important roles in the ER-to-Golgi movement of bZIP28, which may contribute to the sensing of the ER stress.

  4. GnRH agonist triggering

    DEFF Research Database (Denmark)

    Kol, Shahar; Humaidan, Peter; Al Humaidan, Peter Samir Heskjær

    2013-01-01

    The concept that a bolus of gonadotrophin-releasing hormone agonist (GnRHa) can replace human chorionic gonadotrophin (HCG) as a trigger of final oocyte maturation was introduced several years ago. Recent developments in the area strengthen this premise. GnRHa trigger offers important advantages...... triggering concept should be challenged and that the GnRHa trigger is the way to move forward with thoughtful consideration of the needs, safety and comfort of our patients. Routinely, human chorionic gonadotrophin (HCG) is used to induce ovulation in fertility treatments. This approach deviates...... significantly from physiology and often results in insufficient hormonal support in early pregnancy and in ovarian hyperstimulation syndrome (OHSS). An alternative approach is to use a gonadotrophin-releasing hormone (GnRH) agonist which allows a more physiological trigger of ovulation and, most importantly...

  5. Triggering requirements for SSC physics

    Energy Technology Data Exchange (ETDEWEB)

    Gilchriese, M.G.D. [Lawrence Berkeley Lab., CA (United States)

    1989-04-01

    Some aspects of triggering requirements for high P{sub T} physics processes at the Superconducting Super Collider (SSC) are described. A very wide range of trigger types will be required to enable detection of the large number of potential physics signatures possible at the SSC. Although in many cases trigger rates are not now well understood, it is possible to conclude that the ability to trigger on transverse energy, number and energy of jets, number and energy of leptons (electrons and muons), missing energy and combinations of these will be required. An SSC trigger system must be both highly flexible and redundant to ensure reliable detection of many new physics processes at the SSC.

  6. Organelle_PBA, a pipeline for assembling chloroplast and mitochondrial genomes from PacBio DNA sequencing data.

    Science.gov (United States)

    Soorni, Aboozar; Haak, David; Zaitlin, David; Bombarely, Aureliano

    2017-01-07

    The development of long-read sequencing technologies, such as single-molecule real-time (SMRT) sequencing by PacBio, has produced a revolution in the sequencing of small genomes. Sequencing organelle genomes using PacBio long-read data is a cost effective, straightforward approach. Nevertheless, the availability of simple-to-use software to perform the assembly from raw reads is limited at present. We present Organelle-PBA, a Perl program designed specifically for the assembly of chloroplast and mitochondrial genomes. For chloroplast genomes, the program selects the chloroplast reads from a whole genome sequencing pool, maps the reads to a reference sequence from a closely related species, and then performs read correction and de novo assembly using Sprai. Organelle-PBA completes the assembly process with the additional step of scaffolding by SSPACE-LongRead. The program then detects the chloroplast inverted repeats and reassembles and re-orients the assembly based on the organelle origin of the reference. We have evaluated the performance of the software using PacBio reads from different species, read coverage, and reference genomes. Finally, we present the assembly of two novel chloroplast genomes from the species Picea glauca (Pinaceae) and Sinningia speciosa (Gesneriaceae). Organelle-PBA is an easy-to-use Perl-based software pipeline that was written specifically to assemble mitochondrial and chloroplast genomes from whole genome PacBio reads. The program is available at https://github.com/aubombarely/Organelle_PBA .

  7. Review of cytological studies on cellular and molecular mechanisms of uniparental (maternal or paternal) inheritance of plastid and mitochondrial genomes induced by active digestion of organelle nuclei (nucleoids).

    Science.gov (United States)

    Kuroiwa, Tsuneyoshi

    2010-03-01

    In most sexual organisms, including isogamous, anisogamous and oogamous organisms, uniparental transmission is a striking and universal characteristic of the transmission of organelle (plastid and mitochondrial) genomes (DNA). Using genetic, biochemical and molecular biological techniques, mechanisms of uniparental (maternal and parental) and biparental transmission of organelle genomes have been studied and reviewed. Although to date there has been no cytological review of the transmission of organelle genomes, cytology offers advantages in terms of direct evidence and can enhance global studies of the transmission of organelle genomes. In this review, I focus on the cytological mechanism of uniparental inheritance by "active digestion of male or female organelle nuclei (nucleoids, DNA)" which is universal among isogamous, anisogamous, and oogamous organisms. The global existence of uniparental transmission since the evolution of sexual eukaryotes may imply that the cell nuclear genome continues to inhibit quantitative evolution of organelles by organelle recombination.

  8. Ciprofloxacin triggered glutamate production by Corynebacterium glutamicum.

    Science.gov (United States)

    Lubitz, Dorit; Wendisch, Volker F

    2016-10-07

    Corynebacterium glutamicum is a well-studied bacterium which naturally overproduces glutamate when induced by an elicitor. Glutamate production is accompanied by decreased 2-oxoglutatate dehydrogenase activity. Elicitors of glutamate production by C. glutamicum analyzed to molecular detail target the cell envelope. Ciprofloxacin, an inhibitor of bacterial DNA gyrase and topoisomerase IV, was shown to inhibit growth of C. glutamicum wild type with concomitant excretion of glutamate. Enzyme assays showed that 2-oxoglutarate dehydrogenase activity was decreased due to ciprofloxacin addition. Transcriptome analysis revealed that this inhibitor of DNA gyrase increased RNA levels of genes involved in DNA synthesis, repair and modification. Glutamate production triggered by ciprofloxacin led to glutamate titers of up to 37 ± 1 mM and a substrate specific glutamate yield of 0.13 g/g. Even in the absence of the putative glutamate exporter gene yggB, ciprofloxacin effectively triggered glutamate production. When C. glutamicum wild type was cultivated under nitrogen-limiting conditions, 2-oxoglutarate rather than glutamate was produced as consequence of exposure to ciprofloxacin. Recombinant C. glutamicum strains overproducing lysine, arginine, ornithine, and putrescine, respectively, secreted glutamate instead of the desired amino acid when exposed to ciprofloxacin. Ciprofloxacin induced DNA synthesis and repair genes, reduced 2-oxoglutarate dehydrogenase activity and elicited glutamate production by C. glutamicum. Production of 2-oxoglutarate could be triggered by ciprofloxacin under nitrogen-limiting conditions.

  9. Triggered Release from Polymer Capsules

    Energy Technology Data Exchange (ETDEWEB)

    Esser-Kahn, Aaron P. [Univ. of Illinois, Urbana, IL (United States). Beckman Inst. for Advanced Science and Technology and Dept. of Chemistry; Odom, Susan A. [Univ. of Illinois, Urbana, IL (United States). Beckman Inst. for Advanced Science and Technology and Dept. of Chemistry; Sottos, Nancy R. [Univ. of Illinois, Urbana, IL (United States). Beckman Inst. for Advanced Science and Technology and Dept. of Materials Science and Engineering; White, Scott R. [Univ. of Illinois, Urbana, IL (United States). Beckman Inst. for Advanced Science and Technology and Dept. of Aerospace Engineering; Moore, Jeffrey S. [Univ. of Illinois, Urbana, IL (United States). Beckman Inst. for Advanced Science and Technology and Dept. of Chemistry

    2011-07-06

    Stimuli-responsive capsules are of interest in drug delivery, fragrance release, food preservation, and self-healing materials. Many methods are used to trigger the release of encapsulated contents. Here we highlight mechanisms for the controlled release of encapsulated cargo that utilize chemical reactions occurring in solid polymeric shell walls. Triggering mechanisms responsible for covalent bond cleavage that result in the release of capsule contents include chemical, biological, light, thermal, magnetic, and electrical stimuli. We present methods for encapsulation and release, triggering methods, and mechanisms and conclude with our opinions on interesting obstacles for chemically induced activation with relevance for controlled release.

  10. Cisplatin triggers platelet activation.

    Science.gov (United States)

    Togna, G I; Togna, A R; Franconi, M; Caprino, L

    2000-09-01

    Clinical observations suggest that anticancer drugs could contribute to the thrombotic complications of malignancy in treated patients. Thrombotic microangiopathy, myocardial infarction, and cerebrovascular thrombotic events have been reported for cisplatin, a drug widely used in the treatment of many solid tumours. The aim of this study is to explore in vitro cisplatin effect on human platelet reactivity in order to define the potentially active role of platelets in the pathogenesis of cisplatin-induced thrombotic complications. Our results demonstrate that cisplatin increases human platelet reactivity (onset of platelet aggregation wave and thromboxane production) to non-aggregating concentrations of the agonists involving arachidonic acid metabolism. Direct or indirect activation of platelet phospholipase A(2) appears to be implicated. This finding contributes to a better understanding of the pathogenesis of thrombotic complications occurring during cisplatin-based chemotherapy.

  11. Threshold-free method for three-dimensional segmentation of organelles

    Science.gov (United States)

    Chan, Yee-Hung M.; Marshall, Wallace F.

    2012-03-01

    An ongoing challenge in the field of cell biology is to how to quantify the size and shape of organelles within cells. Automated image analysis methods often utilize thresholding for segmentation, but the calculated surface of objects depends sensitively on the exact threshold value chosen, and this problem is generally worse at the upper and lower zboundaries because of the anisotropy of the point spread function. We present here a threshold-independent method for extracting the three-dimensional surface of vacuoles in budding yeast whose limiting membranes are labeled with a fluorescent fusion protein. These organelles typically exist as a clustered set of 1-10 sphere-like compartments. Vacuole compartments and center points are identified manually within z-stacks taken using a spinning disk confocal microscope. A set of rays is defined originating from each center point and radiating outwards in random directions. Intensity profiles are calculated at coordinates along these rays, and intensity maxima are taken as the points the rays cross the limiting membrane of the vacuole. These points are then fit with a weighted sum of basis functions to define the surface of the vacuole, and then parameters such as volume and surface area are calculated. This method is able to determine the volume and surface area of spherical beads (0.96 to 2 micron diameter) with less than 10% error, and validation using model convolution methods produce similar results. Thus, this method provides an accurate, automated method for measuring the size and morphology of organelles and can be generalized to measure cells and other objects on biologically relevant length-scales.

  12. Neospora caninum Recruits Host Cell Structures to Its Parasitophorous Vacuole and Salvages Lipids from Organelles.

    Science.gov (United States)

    Nolan, Sabrina J; Romano, Julia D; Luechtefeld, Thomas; Coppens, Isabelle

    2015-05-01

    Toxoplasma gondii and Neospora caninum, which cause the diseases toxoplasmosis and neosporosis, respectively, are two closely related apicomplexan parasites. They have similar heteroxenous life cycles and conserved genomes and share many metabolic features. Despite these similarities, T. gondii and N. caninum differ in their transmission strategies and zoonotic potential. Comparative analyses of the two parasites are important to identify the unique biological features that underlie the basis of host preference and pathogenicity. T. gondii and N. caninum are obligate intravacuolar parasites; in contrast to T. gondii, events that occur during N. caninum infection remain largely uncharacterized. We examined the capability of N. caninum (Liverpool isolate) to interact with host organelles and scavenge nutrients in comparison to that of T. gondii (RH strain). N. caninum reorganizes the host microtubular cytoskeleton and attracts endoplasmic reticulum (ER), mitochondria, lysosomes, multivesicular bodies, and Golgi vesicles to its vacuole though with some notable differences from T. gondii. For example, the host ER gathers around the N. caninum parasitophorous vacuole (PV) but does not physically associate with the vacuolar membrane; the host Golgi apparatus surrounds the N. caninum PV but does not fragment into ministacks. N. caninum relies on plasma lipoproteins and scavenges cholesterol from NPC1-containing endocytic organelles. This parasite salvages sphingolipids from host Golgi Rab14 vesicles that it sequesters into its vacuole. Our data highlight a remarkable degree of conservation in the intracellular infection program of N. caninum and T. gondii. The minor differences between the two parasites related to the recruitment and rearrangement of host organelles around their vacuoles likely reflect divergent evolutionary paths.

  13. Detailed interrogation of trypanosome cell biology via differential organelle staining and automated image analysis

    Directory of Open Access Journals (Sweden)

    Wheeler Richard J

    2012-01-01

    Full Text Available Abstract Background Many trypanosomatid protozoa are important human or animal pathogens. The well defined morphology and precisely choreographed division of trypanosomatid cells makes morphological analysis a powerful tool for analyzing the effect of mutations, chemical insults and changes between lifecycle stages. High-throughput image analysis of micrographs has the potential to accelerate collection of quantitative morphological data. Trypanosomatid cells have two large DNA-containing organelles, the kinetoplast (mitochondrial DNA and nucleus, which provide useful markers for morphometric analysis; however they need to be accurately identified and often lie in close proximity. This presents a technical challenge. Accurate identification and quantitation of the DNA content of these organelles is a central requirement of any automated analysis method. Results We have developed a technique based on double staining of the DNA with a minor groove binding (4'', 6-diamidino-2-phenylindole (DAPI and a base pair intercalating (propidium iodide (PI or SYBR green fluorescent stain and color deconvolution. This allows the identification of kinetoplast and nuclear DNA in the micrograph based on whether the organelle has DNA with a more A-T or G-C rich composition. Following unambiguous identification of the kinetoplasts and nuclei the resulting images are amenable to quantitative automated analysis of kinetoplast and nucleus number and DNA content. On this foundation we have developed a demonstrative analysis tool capable of measuring kinetoplast and nucleus DNA content, size and position and cell body shape, length and width automatically. Conclusions Our approach to DNA staining and automated quantitative analysis of trypanosomatid morphology accelerated analysis of trypanosomatid protozoa. We have validated this approach using Leishmania mexicana, Crithidia fasciculata and wild-type and mutant Trypanosoma brucei. Automated analysis of T. brucei

  14. Optical tweezers for single molecule force spectroscopy on bacterial adhesion organelles

    Science.gov (United States)

    Andersson, Magnus; Axner, Ove; Uhlin, Bernt Eric; Fällman, Erik

    2006-08-01

    Instrumentation and methodologies for single molecule force spectroscopy on bacterial adhesion organelles by the use of force measuring optical tweezers have been developed. A thorough study of the biomechanical properties of fimbrial adhesion organelles expressed by uropathogenic E. coli, so-called pili, is presented. Steady-state as well as dynamic force measurements on P pili, expressed by E. coli causing pyelonephritis, have revealed, among other things, various unfolding and refolding properties of the helical structure of P pili, the PapA rod. Based on these properties an energy landscape model has been constructed by which specific biophysical properties of the PapA rod have been extracted, e.g. the number of subunits, the length of a single pilus, bond lengths and activation energies for bond opening and closure. Moreover, long time repetitive measurements have shown that the rod can be unfolded and refolded repetitive times without losing its intrinsic properties. These properties are believed to be of importance for the bacteria's ability to maintain close contact with host cells during initial infections. The results presented are considered to be of importance for the field of biopolymers in general and the development of new pharmaceuticals towards urinary tract infections in particular. The results show furthermore that the methodology can be used to gain knowledge of the intrinsic biomechanical function of adhesion organelles. The instrumentation is currently used for characterization of type 1 pili, expressed by E. coli causing cystitis, i.e. infections in the bladder. The first force spectrometry investigations of these pili will be presented.

  15. The internal architecture of leukocyte lipid body organelles captured by three-dimensional electron microscopy tomography.

    Directory of Open Access Journals (Sweden)

    Rossana C N Melo

    Full Text Available Lipid bodies (LBs, also known as lipid droplets, are complex organelles of all eukaryotic cells linked to a variety of biological functions as well as to the development of human diseases. In cells from the immune system, such as eosinophils, neutrophils and macrophages, LBs are rapidly formed in the cytoplasm in response to inflammatory and infectious diseases and are sites of synthesis of eicosanoid lipid mediators. However, little is known about the structural organization of these organelles. It is unclear whether leukocyte LBs contain a hydrophobic core of neutral lipids as found in lipid droplets from adipocytes and how diverse proteins, including enzymes involved in eicosanoid formation, incorporate into LBs. Here, leukocyte LB ultrastructure was studied in detail by conventional transmission electron microscopy (TEM, immunogold EM and electron tomography. By careful analysis of the two-dimensional ultrastructure of LBs from human blood eosinophils under different conditions, we identified membranous structures within LBs in both resting and activated cells. Cyclooxygenase, a membrane inserted protein that catalyzes the first step in prostaglandin synthesis, was localized throughout the internum of LBs. We used fully automated dual-axis electron tomography to study the three-dimensional architecture of LBs in high resolution. By tracking 4 nm-thick serial digital sections we found that leukocyte LBs enclose an intricate system of membranes within their "cores". After computational reconstruction, we showed that these membranes are organized as a network of tubules which resemble the endoplasmic reticulum (ER. Our findings explain how membrane-bound proteins interact and are spatially arranged within LB "cores" and support a model for LB formation by incorporating cytoplasmic membranes of the ER, instead of the conventional view that LBs emerge from the ER leaflets. This is important to understand the functional capabilities of leukocyte

  16. The internal architecture of leukocyte lipid body organelles captured by three-dimensional electron microscopy tomography.

    Science.gov (United States)

    Melo, Rossana C N; Paganoti, Guillherme F; Dvorak, Ann M; Weller, Peter F

    2013-01-01

    Lipid bodies (LBs), also known as lipid droplets, are complex organelles of all eukaryotic cells linked to a variety of biological functions as well as to the development of human diseases. In cells from the immune system, such as eosinophils, neutrophils and macrophages, LBs are rapidly formed in the cytoplasm in response to inflammatory and infectious diseases and are sites of synthesis of eicosanoid lipid mediators. However, little is known about the structural organization of these organelles. It is unclear whether leukocyte LBs contain a hydrophobic core of neutral lipids as found in lipid droplets from adipocytes and how diverse proteins, including enzymes involved in eicosanoid formation, incorporate into LBs. Here, leukocyte LB ultrastructure was studied in detail by conventional transmission electron microscopy (TEM), immunogold EM and electron tomography. By careful analysis of the two-dimensional ultrastructure of LBs from human blood eosinophils under different conditions, we identified membranous structures within LBs in both resting and activated cells. Cyclooxygenase, a membrane inserted protein that catalyzes the first step in prostaglandin synthesis, was localized throughout the internum of LBs. We used fully automated dual-axis electron tomography to study the three-dimensional architecture of LBs in high resolution. By tracking 4 nm-thick serial digital sections we found that leukocyte LBs enclose an intricate system of membranes within their "cores". After computational reconstruction, we showed that these membranes are organized as a network of tubules which resemble the endoplasmic reticulum (ER). Our findings explain how membrane-bound proteins interact and are spatially arranged within LB "cores" and support a model for LB formation by incorporating cytoplasmic membranes of the ER, instead of the conventional view that LBs emerge from the ER leaflets. This is important to understand the functional capabilities of leukocyte LBs in health and

  17. Modular electron-transport chains from eukaryotic organelles function to support nitrogenase activity.

    Science.gov (United States)

    Yang, Jianguo; Xie, Xiaqing; Yang, Mingxuan; Dixon, Ray; Wang, Yi-Ping

    2017-03-21

    A large number of genes are necessary for the biosynthesis and activity of the enzyme nitrogenase to carry out the process of biological nitrogen fixation (BNF), which requires large amounts of ATP and reducing power. The multiplicity of the genes involved, the oxygen sensitivity of nitrogenase, plus the demand for energy and reducing power, are thought to be major obstacles to engineering BNF into cereal crops. Genes required for nitrogen fixation can be considered as three functional modules encoding electron-transport components (ETCs), proteins required for metal cluster biosynthesis, and the "core" nitrogenase apoenzyme, respectively. Among these modules, the ETC is important for the supply of reducing power. In this work, we have used Escherichia coli as a chassis to study the compatibility between molybdenum and the iron-only nitrogenases with ETC modules from target plant organelles, including chloroplasts, root plastids, and mitochondria. We have replaced an ETC module present in diazotrophic bacteria with genes encoding ferredoxin-NADPH oxidoreductases (FNRs) and their cognate ferredoxin counterparts from plant organelles. We observe that the FNR-ferredoxin module from chloroplasts and root plastids can support the activities of both types of nitrogenase. In contrast, an analogous ETC module from mitochondria could not function in electron transfer to nitrogenase. However, this incompatibility could be overcome with hybrid modules comprising mitochondrial NADPH-dependent adrenodoxin oxidoreductase and the Anabaena ferredoxins FdxH or FdxB. We pinpoint endogenous ETCs from plant organelles as power supplies to support nitrogenase for future engineering of diazotrophy in cereal crops.

  18. The endoplasmic reticulum exerts control over organelle streaming during cell expansion.

    Science.gov (United States)

    Stefano, Giovanni; Renna, Luciana; Brandizzi, Federica

    2014-03-01

    Cytoplasmic streaming is crucial for cell homeostasis and expansion but the precise driving forces are largely unknown. In plants, partial loss of cytoplasmic streaming due to chemical and genetic ablation of myosins supports the existence of yet-unknown motors for organelle movement. Here we tested a role of the endoplasmic reticulum (ER) as propelling force for cytoplasmic streaming during cell expansion. Through quantitative live-cell analyses in wild-type Arabidopsis thaliana cells and mutants with compromised ER structure and streaming, we demonstrate that cytoplasmic streaming undergoes profound changes during cell expansion and that it depends on motor forces co-exerted by the ER and the cytoskeleton.

  19. FERMIGTRIG - Fermi GBM Trigger Catalog

    Data.gov (United States)

    National Aeronautics and Space Administration — This table lists all of the triggers observed by one or more of the 14 GBM detectors (12 NaI and 2 BGO). Note that there are two Browse catalogs resulting from GBM...

  20. The ATLAS Trigger Muon "Vertical Slice"

    CERN Document Server

    Sidoti, A; Biglietti, M; Carlino, G; Cataldi, G; Conventi, F; Del Prete, T; Di Mattia, A; Falciano, S; Gorini, S; Kanaya, N; Kohno, T; Krasznahorkay, A; Lagouri, T; Luci, C; Luminari, L; Marzano, F; Nagano, K; Nisati, A; Panikashvili, N; Pasqualucci, E; Primavera, M; Scannicchio, D A; Spagnolo, S; Tarem, S; Tarem, Z; Tokushuku, K; Usai, G; Ventura, A; Vercesi, V; Yamazaki, Y; 10th Pisa Meeting on Advanced Detectors : Frontier Detectors For Frontier Physics

    2007-01-01

    The muon trigger system is a fundamental component of the ATLAS detector at the LHC collider. In this paper we describe the ATLAS multi-level trigger selecting events with muons: the Muon Trigger Slice.

  1. Isolation and characterization of a prokaryotic cell organelle from the anammox bacterium Kuenenia stuttgartiensis.

    Science.gov (United States)

    Neumann, Sarah; Wessels, Hans J C T; Rijpstra, W Irene C; Sinninghe Damsté, Jaap S; Kartal, Boran; Jetten, Mike S M; van Niftrik, Laura

    2014-11-01

    Anaerobic ammonium oxidizing (anammox) bacteria oxidize ammonium with nitrite to nitrogen gas in the absence of oxygen. These microorganisms form a significant sink for fixed nitrogen in the oceans and the anammox process is applied as a cost-effective and environment-friendly nitrogen removal system from wastewater. Anammox bacteria have a compartmentalized cell plan that consists of three separate compartments. Here we report the fractionation of the anammox bacterium Kuenenia stuttgartiensis in order to isolate and analyze the innermost cell compartment called the anammoxosome. The subcellular fractions were microscopically characterized and all membranes in the anammox cell were shown to contain ladderane lipids which are unique for anammox bacteria. Proteome analyses and activity assays with the isolated anammoxosomes showed that these organelles harbor the energy metabolism in anammox cells. Together the experimental data provide the first thorough characterization of a respiratory cell organelle from a bacterium and demonstrate the essential role of the anammoxosome in the production of a major portion of the nitrogen gas in our atmosphere.

  2. Changes in organelle position and epithelial architecture associated with loss of CrebA

    Directory of Open Access Journals (Sweden)

    Rebecca M. Fox

    2015-02-01

    Full Text Available Drosophila CrebA facilitates high-level secretion by transcriptional upregulation of the protein components of the core secretory machinery. In CrebA mutant embryos, both salivary gland (SG morphology and epidermal cuticle secretion are abnormal, phenotypes similar to those observed with mutations in core secretory pathway component genes. Here, we examine the cellular defects associated with CrebA loss in the SG epithelium. Apically localized secretory vesicles are smaller and less abundant, consistent with overall reductions in secretion. Unexpectedly, global mislocalization of cellular organelles and excess membrane accumulation in the septate junctions (SJs are also observed. Whereas mutations in core secretory pathway genes lead to organelle localization defects similar to those of CrebA mutants, they have no effect on SJ-associated membrane. Mutations in tetraspanin genes, which are normally repressed by CrebA, have mild defects in SJ morphology that are rescued by simultaneous CrebA loss. Correspondingly, removal of several tetraspanins gives partial rescue of the CrebA SJ phenotype, supporting a role for tetraspanins in SJ organization.

  3. An organelle-exclusion envelope assists mitosis and underlies distinct molecular crowding in the spindle region.

    Science.gov (United States)

    Schweizer, Nina; Pawar, Nisha; Weiss, Matthias; Maiato, Helder

    2015-08-31

    The mitotic spindle is a microtubular assembly required for chromosome segregation during mitosis. Additionally, a spindle matrix has long been proposed to assist this process, but its nature has remained elusive. By combining live-cell imaging with laser microsurgery, fluorescence recovery after photobleaching, and fluorescence correlation spectroscopy in Drosophila melanogaster S2 cells, we uncovered a microtubule-independent mechanism that underlies the accumulation of molecules in the spindle region. This mechanism relies on a membranous system surrounding the mitotic spindle that defines an organelle-exclusion zone that is conserved in human cells. Supported by mathematical modeling, we demonstrate that organelle exclusion by a membrane system causes spatio-temporal differences in molecular crowding states that are sufficient to drive accumulation of mitotic regulators, such as Mad2 and Megator/Tpr, as well as soluble tubulin, in the spindle region. This membranous "spindle envelope" confined spindle assembly, and its mechanical disruption compromised faithful chromosome segregation. Thus, cytoplasmic compartmentalization persists during early mitosis to promote spindle assembly and function.

  4. Detection, imaging, and kinetics of sub-micron organelles of chondrocytes by multiple beam interference microscopy

    Science.gov (United States)

    Joshi, Narahari V.; Medina, Honorio; Barboza, J. M.; Colantuoni, Gladys; Quintero, Maritza

    2004-07-01

    Chondrocytes, obtained from testosterone treated human articular cartilage, were examined by a recently developed Multiple Beam Interference Microscopy (MBIM) attached to a confocal set up, Video-enhanced differential interference microphotography and also by cinematography. In the MBIM, the intensity of the transmitted pattern is given by the Airy function which increases the contrast dramatically as the coefficient of the reflectance of the parallel plates increases. Moreover, in this configuration, the beam passes several times through a specific organelle and increases its optical path difference both because of the increase in the trajectory and refractive index (high density) of the organelle. The improved contrast enhances the resolving power of the system and makes visible several structural details of sub micron dimensions like nucleolus, retraction fibers, podia, etc. which are not possible to reveal with such a clarity by conventional techniques such as bright field, phase contrast or DIC. This technique permits to detect the oscillatory and rotational motions of unstained cilia for the first time. The frequency of oscillations was found to be 0.8 Hz.

  5. The anammoxosome organelle is crucial for the energy metabolism of anaerobic ammonium oxidizing bacteria.

    Science.gov (United States)

    van Teeseling, Muriel C F; Neumann, Sarah; van Niftrik, Laura

    2013-01-01

    Anammox bacteria convert ammonium and nitrite to dinitrogen gas under anaerobic conditions to obtain their energy for growth. The anammox reaction was deemed impossible until its discovery in the early 1990s. Now, anammox bacteria are recognized as major players in the global nitrogen cycle and estimated to be responsible for up to 50% of the nitrogen in the air that we breathe. In addition, anammox bacteria are extremely valuable for wastewater treatment where they are applied for the removal of ammonium. Besides their importance in industry and the environment, anammox bacteria defy some basic biological concepts. Whereas most other bacteria have only one cell compartment, the cytoplasm, anammox bacteria have three independent cell compartments bounded by bilayer membranes, from out- to inside; the paryphoplasm, riboplasm and anammoxosome. The anammoxosome is the largest compartment of the anammox cell and is proposed to be dedicated to energy conservation. As such it would be analogous to the mitochondria of eukaryotes. This review will discuss the anammox cell plan in detail, with the main focus on the anammoxosome. The identity of the anammoxosome as a prokaryotic organelle and the importance of this organelle for anammox bacteria are discussed as well as challenges these bacteria face by having three independent cell compartments.

  6. The presence of gonadotropin binding sites in the intracellular organelles of human ovaries.

    Science.gov (United States)

    Rao, C V; Mitra, S; Sanfilippo, J; Carman, F R

    1981-03-15

    The nuclei (N), plasma membranes (PM), mitochondria-lysosomes, rough endoplasmic reticulum, and combined (light, medium, and heavy) Golgi (G) fractions were isolated from human ovaries. The purities of these fractions were evaluated by assays of appropriate marker enzymes, which revealed that some fractions were very pure but that others had minor contamination. When tested, all of the fractions exhibited 125I-labeled human chorionic gonadotropin (125I-hCG)-specific binding. This intracellular 125I-hCG binding was not due to PM contamination because: (1) N, which had no detectable 5'-nucleotidase (5'-NE) activity, a marker for PM, exhibited 125I-hCG-specific binding; (2) the G, which had only a fraction of the 5'-NE activity of PM, exhibited as much binding as PM; and (3) the ratios between specific 125I-hCG binding and 5'-NE activity in other fractions were not the same as for PM. They should have been the same if PM contamination was responsible for the 125I-hCG binding observed in other organelles. In conclusion, our results demonstrate that gonadotropin-binding sites are present in various intracellular organelles as well as in PM of human ovaries.

  7. Function of metabolic and organelle networks in crowded and organized media

    Directory of Open Access Journals (Sweden)

    Miguel A Aon

    2015-01-01

    Full Text Available (Macromolecular crowding and the ability of the ubiquitous cytoskeleton to dynamically polymerize-depolymerize are prevalent cytoplasmic conditions in prokaryotic and eukaryotic cells. Protein interactions, enzymatic or signaling reactions - single, sequential or in complexes - whole metabolic pathways and organelles can be affected by crowding, the type and polymeric status of cytoskeletal proteins (e.g. tubulin, actin, and their imparted organization. The self-organizing capability of the cytoskeleton can orchestrate metabolic fluxes through entire pathways while its fractal organization can frame the scaling of activities in several levels of organization. The intracellular environment dynamics (e.g. biochemical reactions is dominated by the orderly cytoskeleton and the intrinsic randomness of molecular crowding. Existing evidence underscores the inherent capacity of intracellular organization to generate emergent global behavior. Yet unknown is the relative impact on cell function provided by organelle or functional compartmentation based on transient proteins association driven by weak interactions (quinary structures under specific environmental challenges or functional conditions (e.g. hypoxia, division, differentiation. We propose a qualitative, integrated structural-functional model of cytoplasmic organization based on a modified version of the Sierspinsky-Menger-Mandelbrot sponge, a 3D representation of a percolation cluster, and examine its capacity to accommodate established experimental facts.

  8. Flexible trigger menu implementation on the Global Trigger for the CMS Level-1 trigger upgrade

    CERN Document Server

    Matsushita, Takashi

    2017-01-01

    The CMS experiment at the Large Hadron Collider (LHC) has continued to explore physics at the high-energy frontier in 2016. The integrated luminosity delivered by the LHC in 2016 was 41~fb$^{-1}$ with a peak luminosity of 1.5 $\\times$ 10$^{34}$ cm$^{-2}$s$^{-1}$ and peak mean pile-up of about 50, all exceeding the initial estimations for 2016. The CMS experiment has upgraded its hardware-based Level-1 trigger system to maintain its performance for new physics searches and precision measurements at high luminosities. The Global Trigger is the final step of the CMS \\mbox{Level-1} trigger and implements a trigger menu, a set of selection requirements applied to the final list of objects from calorimeter and muon triggers, for reducing the 40 MHz collision rate to 100 kHz. The Global Trigger has been upgraded with state-of-the-art FPGA processors on Advanced Mezzanine Cards with optical links running at 10 GHz in a MicroTCA crate. The powerful processing resources of the upgraded system enable implemen...

  9. Ultrastructure of the intercalated body, a novel organelle associated with fluid forming cells in the organ of Corti.

    Science.gov (United States)

    Sobkowicz, H M; Holy, J; Scott, G L

    1990-07-01

    The intercalated body is a newly discovered organelle in the inner and outer spiral sulcus cells of the mouse organ of Corti. The organelle was found in the cochleas of 14-day and older intact mice and in organs in culture of corresponding ages. The organelle consists of a stack of interconnected cisternae of endoplasmic reticulum and of membrane bound rodlets that are intercalated between, and run parallel to, the cisternae. The cisternal membranes are predominantly smooth, but some may display ribosomes. Most rodlets are from 1 to 2 microns long, about 0.1 micron wide, and contain electron dense material. Mitochondria are commonly associated with or incorporated into the organelle. Some electron micrographs suggest that the rodlets may originate from modified mitochondria. It is our impression that the formation of the organelle begins with the apposition of cisternae and mitochondria. Cisternal-associated mitochondria appear to constrict, elongate, and lose their inner membranes. In both the intact animal and in culture, the cells of the inner and outer spiral sulci display microvilli, apical junctional complexes, lateral intercellular spaces containing interdigitating cell processes, and appear to be involved in fluid formation. Moreover, in culture, the cells of inner and outer spiral sulci as well as some cells proliferating in the outgrowth zone participate in fluid formation, producing large fluid pockets. All these cells commonly contain intercalated bodies. It is possible that in the intact animal, as in culture, intercalated bodies may play a role in fluid regulation in the immediate vicinity of the hair cells.

  10. Anthropogenic triggering of large earthquakes.

    Science.gov (United States)

    Mulargia, Francesco; Bizzarri, Andrea

    2014-08-26

    The physical mechanism of the anthropogenic triggering of large earthquakes on active faults is studied on the basis of experimental phenomenology, i.e., that earthquakes occur on active tectonic faults, that crustal stress values are those measured in situ and, on active faults, comply to the values of the stress drop measured for real earthquakes, that the static friction coefficients are those inferred on faults, and that the effective triggering stresses are those inferred for real earthquakes. Deriving the conditions for earthquake nucleation as a time-dependent solution of the Tresca-Von Mises criterion applied in the framework of poroelasticity yields that active faults can be triggered by fluid overpressures oil and gas production and storage may trigger destructive earthquakes on active faults at a few tens of kilometers. Fluid pressure propagates as slow stress waves along geometric paths operating in a drained condition and can advance the natural occurrence of earthquakes by a substantial amount of time. Furthermore, it is illusory to control earthquake triggering by close monitoring of minor "foreshocks", since the induction may occur with a delay up to several years.

  11. Review Document: Full Software Trigger

    CERN Document Server

    Albrecht, J; Raven, G

    2014-01-01

    This document presents a trigger system for the upgraded LHCb detector, scheduled to begin operation in 2020. This document serves as input for the internal review towards the "DAQ, online and trigger TDR". The proposed trigger system is implemented entirely in software. In this document we show that track reconstruction of a similar quality to that available in the offline algorithms can be performed on the full inelastic $pp$-collision rate, without prior event selections implemented in custom hardware and without relying upon a partial event reconstruction. A track nding eciency of 98.8 % relative to oine can be achieved for tracks with $p_T >$ 500 MeV/$c$. The CPU time required for this reconstruction is about 40 % of the available budget. Proof-of-principle selections are presented which demonstrate that excellent performance is achievable using an inclusive beauty trigger, in addition to exclusive beauty and charm triggers. Finally, it is shown that exclusive beauty and charm selections that do not intr...

  12. Chromophore-assisted laser inactivation--towards a spatiotemporal-functional analysis of proteins, and the ablation of chromatin, organelle and cell function.

    Science.gov (United States)

    Sano, Yukimi; Watanabe, Wataru; Matsunaga, Sachihiro

    2014-04-15

    Chromophore-assisted laser or light inactivation (CALI) has been employed as a promising technique to achieve spatiotemporal knockdown or loss-of-function of target molecules in situ. CALI is performed using photosensitizers as generators of reactive oxygen species (ROS). There are two CALI approaches that use either transgenic tags with chemical photosensitizers, or genetically encoded fluorescent protein fusions. Using spatially restricted microscopy illumination, CALI can address questions regarding, for example, protein isoforms, subcellular localization or phase-specific analyses of multifunctional proteins that other knockdown approaches, such as RNA interference or treatment with chemicals, cannot. Furthermore, rescue experiments can clarify the phenotypic capabilities of CALI after the depletion of endogenous targets. CALI can also provide information about individual events that are involved in the function of a target protein and highlight them in multifactorial events. Beyond functional analysis of proteins, CALI of nuclear proteins can be performed to induce cell cycle arrest, chromatin- or locus-specific DNA damage. Even at organelle level - such as in mitochondria, the plasma membrane or lysosomes - CALI can trigger cell death. Moreover, CALI has emerged as an optogenetic tool to switch off signaling pathways, including the optical depletion of individual neurons. In this Commentary, we review recent applications of CALI and discuss the utility and effective use of CALI to address open questions in cell biology.

  13. Industrial accidents triggered by lightning.

    Science.gov (United States)

    Renni, Elisabetta; Krausmann, Elisabeth; Cozzani, Valerio

    2010-12-15

    Natural disasters can cause major accidents in chemical facilities where they can lead to the release of hazardous materials which in turn can result in fires, explosions or toxic dispersion. Lightning strikes are the most frequent cause of major accidents triggered by natural events. In order to contribute towards the development of a quantitative approach for assessing lightning risk at industrial facilities, lightning-triggered accident case histories were retrieved from the major industrial accident databases and analysed to extract information on types of vulnerable equipment, failure dynamics and damage states, as well as on the final consequences of the event. The most vulnerable category of equipment is storage tanks. Lightning damage is incurred by immediate ignition, electrical and electronic systems failure or structural damage with subsequent release. Toxic releases and tank fires tend to be the most common scenarios associated with lightning strikes. Oil, diesel and gasoline are the substances most frequently released during lightning-triggered Natech accidents.

  14. A Breast Cell Atlas: Organelle analysis of the MDA-MB-231 cell line by density-gradient fractionation using isotopic marking and label-free analysis

    Directory of Open Access Journals (Sweden)

    Marianne Sandin

    2015-09-01

    Full Text Available Protein translocation between organelles in the cell is an important process that regulates many cellular functions. However, organelles can rarely be isolated to purity so several methods have been developed to analyse the fractions obtained by density gradient centrifugation. We present an analysis of the distribution of proteins amongst organelles in the human breast cell line, MDA-MB-231 using two approaches: an isotopic labelling and a label-free approach.

  15. Upgrade trigger: Bandwidth strategy proposal

    CERN Document Server

    Boettcher, Thomas Julian; Meloni, Simone; Whitehead, Mark Peter; Williams, Mark Richard James

    2017-01-01

    This document describes a proposed selection strategy for the upgrade trigger using charm signals as a benchmark. The Upgrade trigger uses a 'Run2-like' sequence consisting of a first and second stage, in between which the calibration and alignment is performed. The first stage, HLT1, uses an inclusive strategy to select beauty and charm, while the second stage uses offline-quality exclusive selections. A novel genetic algorithm-based bandwidth division is performed at the second stage to maximise the output of useful physics events, and a range of possible signal efficiencies are presented as a function of the available bandwidth.

  16. ATLAS FTK Fast Track Trigger

    CERN Document Server

    Iizawa, T; The ATLAS collaboration

    2014-01-01

    The Fast TracKer (FTK) will perform global track reconstruction after each Level-1 trigger accept signal to enable the software-based higher level trigger to have early access to tracking information. FTK is a dedicated processor based on a mixture of advanced technologies. Modern, powerful Field Programmable Gate Arrays (FPGAs) form an important part of the system architecture, and the large level of computing power required for pattern recognition is provided by incorporating standard-cell ASICs named Associative Memory (AM). Motivation and the architecture of the FTK system will be presented, and the status of hardware and simulation will be following.

  17. Upgrade trigger: Bandwidth strategy proposal

    CERN Document Server

    Fitzpatrick, Conor; Meloni, Simone; Boettcher, Thomas Julian; Whitehead, Mark Peter; Dziurda, Agnieszka; Vesterinen, Mika Anton

    2017-01-01

    This document describes a selection strategy for the upgrade trigger using charm signals as a benchmark. The Upgrade trigger uses a 'Run 2-like' sequence consisting of a first and second stage, in between which the calibration and alignment is performed. The first stage, HLT1, uses an inclusive strategy to select beauty and charm decays, while the second stage uses offline-quality exclusive selections. A novel genetic algorithm-based bandwidth division is performed at the second stage to distribute the output bandwidth among different physics channels, maximising the efficiency for useful physics events. The performance is then studied as a function of the available output bandwidth.

  18. LHCb Run 2 Trigger Performance

    CERN Document Server

    Sciascia, Barbara

    2016-01-01

    During the first long shutdown of the LHC (2013-2014, LS1), the LHCb detector remained essentially unchanged, while the trigger system has been completely revisited. Upgrades to the LHCb computing infrastructure have allowed for high quality decay information to be calculated by the software trigger making a separate offline event reconstruction unnecessary. Reaching the ultimate precision of the LHCb experiment already in real time as the data arrive has the power to transform the experimental approach to processing large quantities of data

  19. New insights into an old organelle: meeting report on biology of cilia and flagella.

    Science.gov (United States)

    Sengupta, Piali; Barr, Maureen M

    2014-06-01

    The rising interest of the scientific community in cilia biology was evident from the fact that registration for the third FASEB conference on 'The Biology of Cilia and Flagella' closed out before the early bird deadline. Cilia and flagella are organelles of profound medical importance; defects in their structure or function result in a plethora of human diseases called ciliopathies. 240 clinicians and basic scientists from around the world gathered from 23 June 2013 to 28 June 2013 at Sheraton at the Falls, Niagara Falls, NY to present and discuss their research on this intensely studied subcellular structure. The meeting was organized by Gregory Pazour (University of Massachusetts Medical School), Bradley Yoder (University of Alabama-Birmingham), and Maureen Barr (Rutgers University) and was sponsored by the Federation of American Societies for Experimental Biology (FASEB). Here, we report highlights, points of discussion, and emerging themes from this exciting meeting.

  20. Confinement to Organelle-Associated Inclusion Structures Mediates Asymmetric Inheritance of Aggregated Protein in Budding Yeast

    Directory of Open Access Journals (Sweden)

    Rachel Spokoini

    2012-10-01

    Full Text Available The division of the S. cerevisiae budding yeast, which produces one mother cell and one daughter cell, is asymmetric with respect to aging. Remarkably, the asymmetry of yeast aging coincides with asymmetric inheritance of damaged and aggregated proteins by the mother cell. Here, we show that misfolded proteins are retained in the mother cell by being sequestered in juxtanuclear quality control compartment (JUNQ and insoluble protein deposit (IPOD inclusions, which are attached to organelles. Upon exposure to stress, misfolded proteins accumulate in stress foci that must be disaggregated by Hsp104 in order to be degraded or processed to JUNQ and IPOD. Cells that fail to deliver aggregates to an inclusion pass on aggregates to subsequent generations.

  1. Calcium Homeostasis and Organelle Function in the Pathogenesis of Obesity and Diabetes.

    Science.gov (United States)

    Arruda, Ana Paula; Hotamisligil, Gökhan S

    2015-09-01

    A number of chronic metabolic pathologies, including obesity, diabetes, cardiovascular disease, asthma, and cancer, cluster together to present the greatest threat to human health. As research in this field has advanced, it has become clear that unresolved metabolic inflammation, organelle dysfunction, and other cellular and metabolic stresses underlie the development of these chronic metabolic diseases. However, the relationship between these systems and pathological mechanisms is poorly understood. Here we discuss the role of cellular Ca(2+) homeostasis as a critical mechanism integrating the myriad of cellular and subcellular dysfunctional networks found in metabolic tissues such as liver and adipose tissue in the context of metabolic disease, particularly in obesity and diabetes. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Behavior of DNA-lacking mitochondria in Entamoeba histolytica revealed by organelle transplant

    Science.gov (United States)

    Kazama, Makoto; Ogiwara, Sanae; Makiuchi, Takashi; Yoshida, Kazuhiro; Nakada-Tsukui, Kumiko; Nozaki, Tomoyoshi; Tachibana, Hiroshi

    2017-01-01

    The anaerobic protozoan parasite Entamoeba histolytica has mitosomes that are mitochondria lacking some canonical functions and organelle DNA. Mitosomes play an important role in the life cycle of the parasite. The distribution of proteins in mitosomes is not uniform, and how mitosomes are maintained and retained is unknown. To answer these questions, we developed a transplant method for mitosomes with hemagglutinin-tagged protein into recipient cells containing mitosomes with Myc-tagged protein. Immunofluorescence staining showed that the two protein tags colocalized in single mitosomes in some recipient cells. These results suggest that our transplant method can be used in anaerobic protozoa and that donor mitosomes may obtain recipient proteins through fusion with other mitosomes or through de novo synthesis of proteins in recipient cells. PMID:28287148

  3. Muscle intermediate filaments and their links to membranes and membranous organelles.

    Science.gov (United States)

    Capetanaki, Yassemi; Bloch, Robert J; Kouloumenta, Asimina; Mavroidis, Manolis; Psarras, Stelios

    2007-06-10

    Intermediate filaments (IFs) play a key role in the integration of structure and function of striated muscle, primarily by mediating mechanochemical links between the contractile apparatus and mitochondria, myonuclei, the sarcolemma and potentially the vesicle trafficking apparatus. Linkage of all these membranous structures to the contractile apparatus, mainly through the Z-disks, supports the integration and coordination of growth and energy demands of the working myocyte, not only with force transmission, but also with de novo gene expression, energy production and efficient protein and lipid trafficking and targeting. Desmin, the most abundant and intensively studied muscle intermediate filament protein, is linked to proper costamere organization, myoblast and stem cell fusion and differentiation, nuclear shape and positioning, as well as mitochondrial shape, structure, positioning and function. Similar links have been established for lysosomes and lysosome-related organelles, consistent with the presence of widespread links between IFs and membranous structures and the regulation of their fusion, morphology and stabilization necessary for cell survival.

  4. Construction of force measuring optical tweezers instrumentation and investigations of biophysical properties of bacterial adhesion organelles

    CERN Document Server

    Andersson, Magnus

    2015-01-01

    Optical tweezers are a technique in which microscopic-sized particles, including living cells and bacteria, can be non-intrusively trapped with high accuracy solely using focused light. The technique has therefore become a powerful tool in the field of biophysics. Optical tweezers thereby provide outstanding manipulation possibilities of cells as well as semi-transparent materials, both non-invasively and non-destructively, in biological systems. In addition, optical tweezers can measure minute forces (< 10-12 N), probe molecular interactions and their energy landscapes, and apply both static and dynamic forces in biological systems in a controlled manner. The assessment of intermolecular forces with force measuring optical tweezers, and thereby the biomechanical structure of biological objects, has therefore considerably facilitated our understanding of interactions and structures of biological systems. Adhesive bacterial organelles, so called pili, mediate adhesion to host cells and are therefore crucial...

  5. B chromosomes of Aegilops speltoides are enriched in organelle genome-derived sequences.

    Directory of Open Access Journals (Sweden)

    Alevtina Ruban

    Full Text Available B chromosomes (Bs are dispensable components of the genome exhibiting non-Mendelian inheritance. Chromosome counts and flow cytometric analysis of the grass species Aegilops speltoides revealed a tissue-type specific distribution of the roughly 570 Mbp large B chromosomes. To address the question whether organelle-to-nucleus DNA transfer is a mechanism that drives the evolution of Bs, in situ hybridization was performed with labelled organellar DNA. The observed B-specific accumulation of chloroplast- and mitochondria-derived sequences suggests a reduced selection against the insertion of organellar DNA in supernumerary chromosomes. The distribution of B-localised organellar-derived sequences and other sequences differs between genotypes of different geographical origins.

  6. Organelles contribute differentially to reactive oxygen species-related events during extended darkness.

    Science.gov (United States)

    Rosenwasser, Shilo; Rot, Ilona; Sollner, Evelyn; Meyer, Andreas J; Smith, Yoav; Leviatan, Noam; Fluhr, Robert; Friedman, Haya

    2011-05-01

    Treatment of Arabidopsis (Arabidopsis thaliana) leaves by extended darkness generates a genetically activated senescence program that culminates in cell death. The transcriptome of leaves subjected to extended darkness was found to contain a variety of reactive oxygen species (ROS)-specific signatures. The levels of transcripts constituting the transcriptome footprints of chloroplasts and cytoplasm ROS stresses decreased in leaves, as early as the second day of darkness. In contrast, an increase was detected in transcripts associated with mitochondrial and peroxisomal ROS stresses. The sequential changes in the redox state of the organelles during darkness were examined by redox-sensitive green fluorescent protein probes (roGFP) that were targeted to specific organelles. In plastids, roGFP showed a decreased level of oxidation as early as the first day of darkness, followed by a gradual increase to starting levels. However, in mitochondria, the level of oxidation of roGFP rapidly increased as early as the first day of darkness, followed by an increase in the peroxisomal level of oxidation of roGFP on the second day. No changes in the probe oxidation were observed in the cytoplasm until the third day. The increase in mitochondrial roGFP degree of oxidation was abolished by sucrose treatment, implying that oxidation is caused by energy deprivation. The dynamic redox state visualized by roGFP probes and the analysis of microarray results are consistent with a scenario in which ROS stresses emanating from the mitochondria and peroxisomes occur early during darkness at a presymptomatic stage and jointly contribute to the senescence program.

  7. Regulation of chlamydial infection by host autophagy and vacuolar ATPase-bearing organelles.

    Science.gov (United States)

    Yasir, Muhammad; Pachikara, Niseema D; Bao, Xiaofeng; Pan, Zui; Fan, Huizhou

    2011-10-01

    As arguably the most successful parasite, Chlamydia is an obligate intracellular bacterium replicating inside a vacuole of eukaryotic host cells. The chlamydial vacuole does not fuse with the defense cell organelle lysosome. We previously showed that chlamydial infection increases markers of autophagy, an innate antimicrobial activity requiring lysosomal function. However, the work presented here demonstrates that p62, an autophagy protein that is degraded in lysosomes, either remained unchanged or increased in chlamydia-infected human epithelial, mouse fibroblast, and mouse macrophage cell lines. In addition, the activities of three lysosomal enzymes analyzed were diminished in chlamydia-infected macrophages. Bafilomycin A1 (BafA), a specific inhibitor of vacuolar ATPase (vATPase) required for lysosomal function, increased the growth of the human pathogen Chlamydia trachomatis (L2) in wild-type murine fibroblasts and macrophages but inhibited growth in the autophagy-deficient ATG5(-/-) fibroblasts. BafA exhibited only slight inhibition or no effect on L2 growth in multiple human genital epithelial cell lines. In contrast to L2, the mouse pathogen Chlamydia muridarum (MoPn) was consistently inhibited by BafA in all cell lines examined, regardless of species origin and autophagy status. Finally, L2 but not MoPn grew more efficiently in the ATG5(-/-) cells than in wild-type cells. These results suggest that there are two types of vATPase-bearing organelles that regulate chlamydial infection: one supports chlamydial infection, while the other plays a defensive role through autophagy when cells are artificially infected with certain chlamydiae that have not been adapted to the host species.

  8. The core components of organelle biogenesis and membrane transport in the hydrogenosomes of Trichomonas vaginalis.

    Directory of Open Access Journals (Sweden)

    Petr Rada

    Full Text Available Trichomonas vaginalis is a parasitic protist of the Excavata group. It contains an anaerobic form of mitochondria called hydrogenosomes, which produce hydrogen and ATP; the majority of mitochondrial pathways and the organellar genome were lost during the mitochondrion-to-hydrogenosome transition. Consequently, all hydrogenosomal proteins are encoded in the nucleus and imported into the organelles. However, little is known about the membrane machineries required for biogenesis of the organelle and metabolite exchange. Using a combination of mass spectrometry, immunofluorescence microscopy, in vitro import assays and reverse genetics, we characterized the membrane proteins of the hydrogenosome. We identified components of the outer membrane (TOM and inner membrane (TIM protein translocases include multiple paralogs of the core Tom40-type porins and Tim17/22/23 channel proteins, respectively, and uniquely modified small Tim chaperones. The inner membrane proteins TvTim17/22/23-1 and Pam18 were shown to possess conserved information for targeting to mitochondrial inner membranes, but too divergent in sequence to support the growth of yeast strains lacking Tim17, Tim22, Tim23 or Pam18. Full complementation was seen only when the J-domain of hydrogenosomal Pam18 was fused with N-terminal region and transmembrane segment of the yeast homolog. Candidates for metabolite exchange across the outer membrane were identified including multiple isoforms of the β-barrel proteins, Hmp35 and Hmp36; inner membrane MCF-type metabolite carriers were limited to five homologs of the ATP/ADP carrier, Hmp31. Lastly, hydrogenosomes possess a pathway for the assembly of C-tail-anchored proteins into their outer membrane with several new tail-anchored proteins being identified. These results show that hydrogenosomes and mitochondria share common core membrane components required for protein import and metabolite exchange; however, they also reveal remarkable differences

  9. The ATLAS Hadronic Tau Trigger

    CERN Document Server

    Brost, E; The ATLAS collaboration

    2014-01-01

    As proton-proton collisions at the LHC reach luminosities close to 10$^{\\mathrm{34}}$ cm$^{\\mathrm{-2}}$ s $^{\\mathrm{-1}}$, the strategies for triggering have become more important than ever for physics analyses. Simplistic single tau lepton triggers suffer from severe rate limitation, despite the sophisticated algorithms used in the tau identification. The development of further fast algorithms and the design of topological selections are the main challenges to allow a large program of physics analysis. The tau triggers provide many opportunities to study new physics beyond the Standard Model, and to get precise measurements of the properties of the Higgs boson decaying to tau-leptons. We present the performance of the hadronic tau trigger taken in Run 1 data with the ATLAS detector at $\\sqrt{s}$ = 8 TeV pp collision. One of the major challenges is to sustain high efficiencies in events with multiple interactions. To do this we introduced faster tracking methods, multivariate selection techniques, and new t...

  10. Etiology of myofascial trigger points

    NARCIS (Netherlands)

    Bron, C.; Dommerholt, J.D.

    2012-01-01

    Myofascial pain syndrome (MPS) is described as the sensory, motor, and autonomic symptoms caused by myofascial trigger points (TrPs). Knowing the potential causes of TrPs is important to prevent their development and recurrence, but also to inactivate and eliminate existing TrPs. There is general

  11. Etiology of myofascial trigger points

    NARCIS (Netherlands)

    Bron, C.; Dommerholt, J.D.

    2012-01-01

    Myofascial pain syndrome (MPS) is described as the sensory, motor, and autonomic symptoms caused by myofascial trigger points (TrPs). Knowing the potential causes of TrPs is important to prevent their development and recurrence, but also to inactivate and eliminate existing TrPs. There is general ag

  12. Suicide Triggers Described by Herodotus

    Science.gov (United States)

    Auchincloss, Stephane; Ahmadi, Jamshid

    2016-01-01

    Objective: The aim of this study was to better understand the triggers of suicide, particularly among the ancient Greek and Persian soldiers and commanders. Method: ‘Herodotus:TheHistories’ is a history of the rulers and soldiery who participated in the Greco-Persian wars (492-449 BCE). A new translation (2013) of this manuscript was studied. Accounts of suicide were collected and collated, with descriptions of circumstances, methods, and probable triggers. Results: Nine accounts of suicide were identified. Eight of these were named individuals (4 Greeks and 4 Persians); of whom, seven were male. Only one (not the female) appeared to act in response to a mental disorder. Other triggers of suicide included guilt, avoidance of dishonour/punishment and altruism. Cutting/ stabbing was the most common method; others included hanging, jumping, poison, and burning (the single female). Conclusion: While soldiers at a time of war do not reflect the general community, they are nevertheless members of their society. Thus, this evidence demonstrates that suicide triggered by burdensome circumstances (in addition to mental disorder) was known to the Greek and Persian people more than two millennia ago. PMID:27437010

  13. Triggering of dendritic cell apoptosis by xanthohumol.

    Science.gov (United States)

    Xuan, Nguyen Thi; Shumilina, Ekaterina; Gulbins, Erich; Gu, Shuchen; Götz, Friedrich; Lang, Florian

    2010-07-01

    Xanthohumol, a flavonoid from beer with anticancer activity is known to trigger apoptosis in a variety of tumor cells. Xanthohumol further has anti-inflammatory activity. However, little is known about the effect of xanthohumol on survival and function of immune cells. The present study thus addressed the effect of xanthohumol on dendritic cells (DCs), key players in the regulation of innate and adaptive immunity. To this end, mouse bone marrow-derived DCs were treated with xanthohumol with subsequent assessment of enzymatic activity of acid sphingomyelinase (Asm), ceramide formation determined with anti-ceramide antibodies in FACS and immunohistochemical analysis, caspase activity utilizing FITC conjugated anti-active caspase 8 or caspase 3 antibodies in FACS and by Western blotting, DNA fragmentation by determining the percentage of cells in the sub-G1 phase and cell membrane scrambling by annexin V binding in FACS analysis. As a result, xanthohumol stimulated Asm, enhanced ceramide formation, activated caspases 8 and 3, triggered DNA fragmentation and led to cell membrane scrambling, all effects virtually absent in DCs from gene targeted mice lacking functional Asm or in wild-type cells treated with sphingomyelinase inhibitor amitriptyline. In conclusion, xanthohumol stimulated Asm leading to caspase activation and apoptosis of bone marrow-derived DCs.

  14. Lutzomyia longipalpis saliva triggers lipid body formation and prostaglandin E₂ production in murine macrophages.

    Directory of Open Access Journals (Sweden)

    Théo Araújo-Santos

    Full Text Available BACKGROUND: Sand fly saliva contains molecules that modify the host's hemostasis and immune responses. Nevertheless, the role played by this saliva in the induction of key elements of inflammatory responses, such as lipid bodies (LB, also known as lipid droplets and eicosanoids, has been poorly investigated. LBs are cytoplasmic organelles involved in arachidonic acid metabolism that form eicosanoids in response to inflammatory stimuli. In this study, we assessed the role of salivary gland sonicate (SGS from Lutzomyia (L. longipalpis, a Leishmania infantum chagasi vector, in the induction of LBs and eicosanoid production by macrophages in vitro and ex vivo. METHODOLOGY/PRINCIPAL FINDINGS: Different doses of L. longipalpis SGS were injected into peritoneal cavities of C57BL/6 mice. SGS induced increased macrophage and neutrophil recruitment into the peritoneal cavity at different time points. Sand fly saliva enhanced PGE₂ and LTB₄ production by harvested peritoneal leukocytes after ex vivo stimulation with a calcium ionophore. At three and six hours post-injection, L. longipalpis SGS induced more intense LB staining in macrophages, but not in neutrophils, compared with mice injected with saline. Moreover, macrophages harvested by peritoneal lavage and stimulated with SGS in vitro presented a dose- and time-dependent increase in LB numbers, which was correlated with increased PGE₂ production. Furthermore, COX-2 and PGE-synthase co-localized within the LBs induced by L. longipalpis saliva. PGE₂ production by macrophages induced by SGS was abrogated by treatment with NS-398, a COX-2 inhibitor. Strikingly, SGS triggered ERK-1/2 and PKC-α phosphorylation, and blockage of the ERK-1/2 and PKC-α pathways inhibited the SGS effect on PGE₂ production by macrophages. CONCLUSION: In sum, our results show that L. longipalpis saliva induces lipid body formation and PGE₂ production by macrophages ex vivo and in vitro via the ERK-1/2 and PKC

  15. Ca2+ dialogue between acidic vesicles and ER.

    Science.gov (United States)

    Morgan, Anthony J

    2016-04-15

    Extracellular stimuli evoke the synthesis of intracellular second messengers, several of which couple to the release of Ca(2+)from Ca(2+)-storing organelles via activation of cognate organellar Ca(2+)-channel complexes. The archetype is the inositol 1,4,5-trisphosphate (IP3) and IP3receptor (IP3R) on the endoplasmic reticulum (ER). A less understood, parallel Ca(2+)signalling cascade is that involving the messenger nicotinic acid adenine dinucleotide phosphate (NAADP) that couples to Ca(2+)release from acidic Ca(2+)stores [e.g. endo-lysosomes, secretory vesicles, lysosome-related organelles (LROs)]. NAADP-induced Ca(2+)release absolutely requires organellar TPCs (two-pore channels). This review discusses how ER and acidic Ca(2+)stores physically and functionally interact to generate and shape global and local Ca(2+)signals, with particular emphasis on the two-way dialogue between these two organelles.

  16. Trigger electronics for the ALICE PHOS detector

    CERN Document Server

    Müller, H; Musa, L; Yin, Z; Röhrich, D; Skaali, B; Sibiryak, Yu; Budnikov, D L

    2004-01-01

    The Photon Spectrometer of ALICE consists of 5 identical modules of 56 multiplied by 64 PWO crystals with a total of 100 degree azimuthal coverage of the barrel. The electronics required for implementing both the L0 trigger for high luminosity p-p physics and the L1 trigger for high p//T Pb+Pb physics has been studied. A full integration of the trigger logic into the detector's enclosure is based on analog transmission of fast trigger sums between stacks of front-end boards and trigger-router units. The latter contain 112 digitizer channels of 10bit, which are mapped into a single FPGA per trigger unit, covering areas of 24 multiplied by 16 crystals. The running modes allow for Level-0 trigger at 800ns and Level-1 at 6200ns trigger latencies. The design and status of the PHOS trigger electronics are outlined.

  17. In silico identification of specialized secretory-organelle proteins in apicomplexan parasites and in vivo validation in Toxoplasma gondii.

    Directory of Open Access Journals (Sweden)

    Zhongqiang Chen

    Full Text Available Apicomplexan parasites, including the human pathogens Toxoplasma gondii and Plasmodium falciparum, employ specialized secretory organelles (micronemes, rhoptries, dense granules to invade and survive within host cells. Because molecules secreted from these organelles function at the host/parasite interface, their identification is important for understanding invasion mechanisms, and central to the development of therapeutic strategies. Using a computational approach based on predicted functional domains, we have identified more than 600 candidate secretory organelle proteins in twelve apicomplexan parasites. Expression in transgenic T. gondii of eight proteins identified in silico confirms that all enter into the secretory pathway, and seven target to apical organelles associated with invasion. An in silico approach intended to identify possible host interacting proteins yields a dataset enriched in secretory/transmembrane proteins, including most of the antigens known to be engaged by apicomplexan parasites during infection. These domain pattern and projected interactome approaches significantly expand the repertoire of proteins that may be involved in host parasite interactions.

  18. Not All the Organelles of Living Cells Are Equal! Or Are They? Engaging Students in Deep Learning and Conceptual Change

    Science.gov (United States)

    Cherif, Abour H.; Siuda, JoElla Eaglin; Jedlicka, Dianne M.; Bondoc, Jasper Marc; Movahedzadeh, Farahnaz

    2016-01-01

    The cell is the fundamental basis for understanding biology much like the atom is the fundamental basis for understanding physics. Understanding biology requires the understanding of the fundamental functions performed by components within each cell. These components, or organelles, responsible for both maintenance and functioning of the cell…

  19. Formation of organelle-like N2-fixing symbiosomes in legume root nodules is controlled by DMI2

    NARCIS (Netherlands)

    Limpens, E.H.M.; Mirabella, R.; Fedorova, E.; Franken, C.; Franssen, H.; Bisseling, T.; Geurts, R.

    2005-01-01

    In most legume nodules, the N2-fixing rhizobia are present as organelle-like structures inside their host cells. These structures, named symbiosomes, contain one or a few rhizobia surrounded by a plant membrane. Symbiosome formation requires the release of bacteria from cell-wall-bound infection thr

  20. Leading-process actomyosin coordinates organelle positioning and adhesion receptor dynamics in radially migrating cerebellar granule neurons.

    Science.gov (United States)

    Trivedi, Niraj; Ramahi, Joseph S; Karakaya, Mahmut; Howell, Danielle; Kerekes, Ryan A; Solecki, David J

    2014-12-02

    During brain development, neurons migrate from germinal zones to their final positions to assemble neural circuits. A unique saltatory cadence involving cyclical organelle movement (e.g., centrosome motility) and leading-process actomyosin enrichment prior to nucleokinesis organizes neuronal migration. While functional evidence suggests that leading-process actomyosin is essential for centrosome motility, the role of the actin-enriched leading process in globally organizing organelle transport or traction forces remains unexplored. We show that myosin ii motors and F-actin dynamics are required for Golgi apparatus positioning before nucleokinesis in cerebellar granule neurons (CGNs) migrating along glial fibers. Moreover, we show that primary cilia are motile organelles, localized to the leading-process F-actin-rich domain and immobilized by pharmacological inhibition of myosin ii and F-actin dynamics. Finally, leading process adhesion dynamics are dependent on myosin ii and F-actin. We propose that actomyosin coordinates the overall polarity of migrating CGNs by controlling asymmetric organelle positioning and cell-cell contacts as these cells move along their glial guides.

  1. Dual Targeting of a Processing Peptidase into Both Endosymbiotic Organelles Mediated by a Transport Signal of Unusual Architecture

    Institute of Scientific and Technical Information of China (English)

    Bianca Baudisch; Ralf Bernd Kl(o)sgen

    2012-01-01

    As a result of the endosymbiotic gene transfer,the majority of proteins of mitochondria and chloroplasts are encoded in the nucleus and synthesized in the cytosol as precursor proteins carrying N-terminal transport signals for the 're-import' into the respective target organelle.Most of these transport signals are monospecific,although some of them have dual targeting properties,that is,they are recognized both by mitochondria and by chloroplasts as target organelles.We have identified alpha-MPP2,one of the two isoforms of the substrate binding subunit of mitochondrial processing peptidase ofArabidopsis thaliana,as a novel member of this class of nuclear-encoded organelle proteins.As demonstrated by in organello transport experiments with isolated organelles and by in vivo localization studies employing fluorescent chimeric reporter proteins,the N-terminal region of the alpha-MPP2 precursor comprises transport signals for the import into mitochondria as well as into chloroplasts.Both signals are found within the N-terminal 79 residues of the precursor protein,where they occupy partly separated and partly overlapping regions.Deletion mapping combined with in organello and in vivo protein transport studies demonstrate an unusual architecture of this transport signal,suggesting a composition of three functionally separated domains.

  2. A divergent ADP/ATP carrier in the hydrogenosomes of Trichomonas gallinae argues for an independent origin of these organelles.

    NARCIS (Netherlands)

    Tjaden, J.; Haferkamp, I.; Boxma, B.; Tielens, A.G.; Huynen, M.A.; Hackstein, J.H.P.

    2004-01-01

    The evolution of mitochondrial ADP and ATP exchanging proteins (AACs) highlights a key event in the evolution of the eukaryotic cell, as ATP exporting carriers were indispensable in establishing the role of mitochondria as ATP-generating cellular organelles. Hydrogenosomes, i.e. ATP- and hydrogen-ge

  3. Characterization of gonadotropin binding sites in the intracellular organelles of bovine corpora lutea and comparison with plasma membrane sites.

    Science.gov (United States)

    Rao, C V; Mitra, S; Carman, F R

    1981-03-25

    The specific binding of 125I-human choriogonadotropin (hCG) to plasma membranes, nuclear membranes, lysosomes, rough endoplasmic reticulum, heavy golgi, and medium and light golgi of bovine corpora lutea was dependent on the amount of protein, 125I-hCG concentration and incubation time. The bound hormone in all the organelles was able to rebind to fresh corresponding organelles. Scatchard analysis revealed a homogenous population of gonadotropin binding sites in plasma membrane, rough endoplasmic reticulum, heavy golgi, and medium and light golgi, whose binding affinities (Kd = 8.6-11.0 X 10(-11) M) were similar but whose number of available gonadotropin binding sites varied. Scatchard analyses of nuclear membranes and lysosome binding, on the other hand, were heterogenous (Nuclear membranes, 11 and 23 X 10(-11) M lysosomes, 3.4 and 130 X 10(-11) M). The rate constants for association (5.9 to 12.1 X 10(6) M-1 S-1) and dissociation (7.4 to 9.0 X 10(-4) S-1) were similar among different subcellular organelles except for nuclear membranes and lysosomes, where rate constants for association were significantly lower. The ligand binding specificity, lower effectiveness of human luteinizing hormone as compared to hCG in competition, the optimal pH, the lack of ionic requirements for binding, and the molecular size of 125I-hCG-gonadotropin binding site complexes solubilized from various intracellular organelles were similar to those observed for plasma membranes. Numerous differences were also observed between intracellular organelles and plasma membranes as well as among intracellular organelles themselves with respect to binding losses due to exposure to low and high pH values, di- and monovalent cations, increasing preincubation temperatures, and a variety of enzymes and protein reagents. The possible reasons for these similarities as well as differences observed are discussed. The differences are viewed as an additional indication that contamination cannot solely

  4. The trigger system of the NOMAD experiment

    CERN Document Server

    Altegoer, J; Boyd, S; Cardini, A; Farthouat, Philippe; Ferrari, R; Geppert, D; Gössling, C; Huta, W; Hyett, N; Koch, N; Lanza, A; Long, J; Moorhead, G F; Poolmann, D; Poulsen, C; Rubbia, André; Schmidt, B; Soler, F J P; Steele, D; Varvell, K E; Weisse, T; Winton, L J; Yabsley, B D; Voullieme, A

    1999-01-01

    The NOMAD trigger system is described in the present paper. It is made up of a largearea plastic scintillator veto system, two trigger scintillator planes inside a 0.4~Tmagnetic field and their associated trigger electronics. Special features of the systemconsist of the use of proximity mesh photomultipliers which allow the trigger scintillators to operate in the magnetic field, and the use of custom-built VME moduleswhich perform the trigger logic decisions, the signal synchronisation and gate generation,event counting and livetime calculations. This paper also includes a description of each of the NOMAD triggers, with their calculated and measured rates, efficiencies and livetimes.

  5. The ALICE high level trigger

    Science.gov (United States)

    Alt, T.; Grastveit, G.; Helstrup, H.; Lindenstruth, V.; Loizides, C.; Röhrich, D.; Skaali, B.; Steinbeck, T.; Stock, R.; Tilsner, H.; Ullaland, K.; Vestbø, A.; Vik, T.; Wiebalck, A.; the ALICE Collaboration

    2004-08-01

    The ALICE experiment at LHC will implement a high-level trigger system for online event selection and/or data compression. The largest computing challenge is posed by the TPC detector, which requires real-time pattern recognition. The system entails a very large processing farm that is designed for an anticipated input data stream of 25 GB s-1. In this paper, we present the architecture of the system and the current state of the tracking methods and data compression applications.

  6. HomBlocks: A multiple-alignment construction pipeline for organelle phylogenomics based on locally collinear block searching.

    Science.gov (United States)

    Bi, Guiqi; Mao, Yunxiang; Xing, Qikun; Cao, Min

    2017-08-03

    Organelle phylogenomic analysis requires precisely constructed multi-gene alignment matrices concatenated by pre-aligned single gene datasets. For non-bioinformaticians, it can take days to weeks to manually create high-quality multi-gene alignments comprising tens or hundreds of homologous genes. Here, we describe a new and highly efficient pipeline, HomBlocks, which uses a homologous block searching method to construct multiple sequence alignment. This approach can automatically recognize locally collinear blocks among organelle genomes and excavate phylogenetically informative regions to construct multiple sequence alignment in a few hours. In addition, HomBlocks supports organelle genomes without annotation and makes adjustment to different taxon datasets, thereby enabling the inclusion of as many common genes as possible. Topology comparison of trees built by conventional multi-gene and HomBlocks alignments implemented in different taxon categories shows that the same efficiency can be achieved by HomBlocks as when using the traditional method. The availability of Homblocks makes organelle phylogenetic analyses more accessible to non-bioinformaticians, thereby promising to lead to a better understanding of phylogenic relationships at an organelle genome level. HomBlocks is implemented in Perl and is supported by Unix-like operative systems, including Linux and macOS. The Perl source code is freely available for download from https://github.com/fenghen360/HomBlocks.git, and documentation and tutorials are available at https://github.com/fenghen360/HomBlocks. yxmao@ouc.edu.cn or fenghen360@126.com. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. ATLAS FTK: Fast Track Trigger

    CERN Document Server

    Volpi, Guido; The ATLAS collaboration

    2015-01-01

    An overview of the ATLAS Fast Tracker processor is presented, reporting the design of the system, its expected performance, and the integration status. The next LHC runs, with a significant increase in instantaneous luminosity, will provide a big challenge to the trigger and data acquisition systems of all the experiments. An intensive use of the tracking information at the trigger level will be important to keep high efficiency in interesting events, despite the increase in multiple p-p collisions per bunch crossing (pile-up). In order to increase the use of tracks within the High Level Trigger (HLT), the ATLAS experiment planned the installation of an hardware processor dedicated to tracking: the Fast TracKer (FTK) processor. The FTK is designed to perform full scan track reconstruction at every Level-1 accept. To achieve this goal, the FTK uses a fully parallel architecture, with algorithms designed to exploit the computing power of custom VLSI chips, the Associative Memory, as well as modern FPGAs. The FT...

  8. Development of autonomous triggering instrumentation

    Science.gov (United States)

    Watkins, Steve E.; Swift, Theresa M.; Fonda, James W.

    2008-03-01

    Triggering instrumentation for autonomous monitoring of load-induced strain is described for economical, fast bridge inspection. The development addresses one aspect for the management of transportation infrastructure - bridge monitoring and inspection. The objectives are to provide quantitative performance information from a load test, to minimize the setup time at the bridge, and to minimize the closure time to traffic. Multiple or networked measurements can be made for a prescribed loading sequence. The proposed smart system consists of in-situ strain sensors, an embedded data acquisition module, and a measurement triggering system. A companion control unit is mounted on the truck serving as the load. As the truck moves to the proper position, the desired measurement is automatically relayed back to the control unit. In this work, the testing protocol is developed and the performance parameters for the triggering and data acquisition are measured. The test system uses a dedicated wireless sensor mote and an infrared positioning system. The electronic procedure offers improvements in available information and economics.

  9. Stimulus conflict triggers behavioral avoidance.

    Science.gov (United States)

    Dignath, David; Eder, Andreas B

    2015-12-01

    According to a recent extension of the conflict-monitoring theory, conflict between two competing response tendencies is registered as an aversive event and triggers a motivation to avoid the source of conflict. In the present study, we tested this assumption. Over five experiments, we examined whether conflict is associated with an avoidance motivation and whether stimulus conflict or response conflict triggers an avoidance tendency. Participants first performed a color Stroop task. In a subsequent motivation test, participants responded to Stroop stimuli with approach- and avoidance-related lever movements. These results showed that Stroop-conflict stimuli increased the frequency of avoidance responses in a free-choice motivation test, and also increased the speed of avoidance relative to approach responses in a forced-choice test. High and low proportions of response conflict in the Stroop task had no effect on avoidance in the motivation test. Avoidance of conflict was, however, obtained even with new conflict stimuli that had not been presented before in a Stroop task, and when the Stroop task was replaced with an unrelated filler task. Taken together, these results suggest that stimulus conflict is sufficient to trigger avoidance.

  10. The autophagoproteasome a novel cell clearing organelle in baseline and stimulated conditions

    Directory of Open Access Journals (Sweden)

    Paola Lenzi

    2016-07-01

    Full Text Available Protein clearing pathways named autophagy (ATG and ubiquitin proteasome (UP control homeostasis within eukaryotic cells, while their dysfunction produces neurodegeneration. These pathways are viewed as distinct biochemical cascades occurring within specific cytosolic compartments owing pathway-specific enzymatic activity.Recent data strongly challenged the concept of two morphologically distinct and functionally segregated compartments. In fact, preliminary evidence suggests the convergence of these pathways to form a novel organelle named autophagoproteasome. This is characterized in the present study by using a cell line where, mTOR activity is upregulated and autophagy is suppressed. This was reversed dose-dependently by administering the mTOR inhibitor rapamycin. Thus, we could study autophagoproteasomes when autophagy was either suppressed or stimulated. The occurrence of autophagoproteasome was shown also in non-human cell lines. Ultrastructural morphometry, based on the stochiometric binding of immunogold particles allowed the quantitative evaluation of ATG and UP component within autophagoproteasomes. The number of autophagoproteasomes increases following mTOR inhibition. Similarly, mTOR inhibition produces overexpression of both LC3 and P20S particles. This is confirmed by the fact that the ratio of free vs autophagosome-bound LC3 is similar to that measured for P20S, both in baseline conditions and following mTOR inhibition. Remarkably, within autophagoproteasomes there is a slight prevalence of ATG compared with UP components for low rapamycin doses, whereas for higher rapamycin doses UP increases more than ATG. While LC3 is widely present within cytosol, UP is strongly polarized within autophagoproteasomes. These fine details were evident at electron microscopy but could not be deciphered by using confocal microscopy. Despite its morphological novelty autophagoproteasomes appear the natural site where clearing pathways (once believed

  11. The Autophagoproteasome a Novel Cell Clearing Organelle in Baseline and Stimulated Conditions.

    Science.gov (United States)

    Lenzi, Paola; Lazzeri, Gloria; Biagioni, Francesca; Busceti, Carla L; Gambardella, Stefano; Salvetti, Alessandra; Fornai, Francesco

    2016-01-01

    Protein clearing pathways named autophagy (ATG) and ubiquitin proteasome (UP) control homeostasis within eukaryotic cells, while their dysfunction produces neurodegeneration. These pathways are viewed as distinct biochemical cascades occurring within specific cytosolic compartments owing pathway-specific enzymatic activity. Recent data strongly challenged the concept of two morphologically distinct and functionally segregated compartments. In fact, preliminary evidence suggests the convergence of these pathways to form a novel organelle named autophagoproteasome. This is characterized in the present study by using a cell line where, mTOR activity is upregulated and autophagy is suppressed. This was reversed dose-dependently by administering the mTOR inhibitor rapamycin. Thus, we could study autophagoproteasomes when autophagy was either suppressed or stimulated. The occurrence of autophagoproteasome was shown also in non-human cell lines. Ultrastructural morphometry, based on the stochiometric binding of immunogold particles allowed the quantitative evaluation of ATG and UP component within autophagoproteasomes. The number of autophagoproteasomes increases following mTOR inhibition. Similarly, mTOR inhibition produces overexpression of both LC3 and P20S particles. This is confirmed by the fact that the ratio of free vs. autophagosome-bound LC3 is similar to that measured for P20S, both in baseline conditions and following mTOR inhibition. Remarkably, within autophagoproteasomes there is a slight prevalence of ATG compared with UP components for low rapamycin doses, whereas for higher rapamycin doses UP increases more than ATG. While LC3 is widely present within cytosol, UP is strongly polarized within autophagoproteasomes. These fine details were evident at electron microscopy but could not be deciphered by using confocal microscopy. Despite its morphological novelty autophagoproteasomes appear in the natural site where clearing pathways (once believed to be

  12. The Autophagoproteasome a Novel Cell Clearing Organelle in Baseline and Stimulated Conditions

    Science.gov (United States)

    Lenzi, Paola; Lazzeri, Gloria; Biagioni, Francesca; Busceti, Carla L.; Gambardella, Stefano; Salvetti, Alessandra; Fornai, Francesco

    2016-01-01

    Protein clearing pathways named autophagy (ATG) and ubiquitin proteasome (UP) control homeostasis within eukaryotic cells, while their dysfunction produces neurodegeneration. These pathways are viewed as distinct biochemical cascades occurring within specific cytosolic compartments owing pathway-specific enzymatic activity. Recent data strongly challenged the concept of two morphologically distinct and functionally segregated compartments. In fact, preliminary evidence suggests the convergence of these pathways to form a novel organelle named autophagoproteasome. This is characterized in the present study by using a cell line where, mTOR activity is upregulated and autophagy is suppressed. This was reversed dose-dependently by administering the mTOR inhibitor rapamycin. Thus, we could study autophagoproteasomes when autophagy was either suppressed or stimulated. The occurrence of autophagoproteasome was shown also in non-human cell lines. Ultrastructural morphometry, based on the stochiometric binding of immunogold particles allowed the quantitative evaluation of ATG and UP component within autophagoproteasomes. The number of autophagoproteasomes increases following mTOR inhibition. Similarly, mTOR inhibition produces overexpression of both LC3 and P20S particles. This is confirmed by the fact that the ratio of free vs. autophagosome-bound LC3 is similar to that measured for P20S, both in baseline conditions and following mTOR inhibition. Remarkably, within autophagoproteasomes there is a slight prevalence of ATG compared with UP components for low rapamycin doses, whereas for higher rapamycin doses UP increases more than ATG. While LC3 is widely present within cytosol, UP is strongly polarized within autophagoproteasomes. These fine details were evident at electron microscopy but could not be deciphered by using confocal microscopy. Despite its morphological novelty autophagoproteasomes appear in the natural site where clearing pathways (once believed to be

  13. Novel Proresolving Aspirin-Triggered DHA Pathway

    National Research Council Canada - National Science Library

    Serhan, Charles N; Fredman, Gabrielle; Yang, Rong; Karamnov, Sergey; Belayev, Ludmila S; Bazan, Nicolas G; Zhu, Min; Winkler, Jeremy W; Petasis, Nicos A

    2011-01-01

    .... We report an aspirin-triggered DHA metabolome that biosynthesizes a potent product in inflammatory exudates and human leukocytes, namely aspirin-triggered Neuroprotectin D1/Protectin D1 [AT-(NPD1/PD1...

  14. Comb-like amphiphilic copolymers bearing acetal-functionalized backbones with the ability of acid-triggered hydrophobic-to-hydrophilic transition as effective nanocarriers for intracellular release of curcumin.

    Science.gov (United States)

    Zhao, Junqiang; Wang, Haiyang; Liu, Jinjian; Deng, Liandong; Liu, Jianfeng; Dong, Anjie; Zhang, Jianhua

    2013-11-11

    The pH-responsive micelles have enormous potential as nanosized drug carriers for cancer therapy due to their physicochemical changes in response to the tumor intracellular acidic microenvironment. Herein, a series of comb-like amphiphilic copolymers bearing acetal-functionalized backbone were developed based on poly[(2,4,6-trimethoxybenzylidene-1,1,1-tris(hydroxymethyl) ethane methacrylate-co-poly(ethylene glycol) methyl ether methacrylate] [P(TTMA-co-mPEGMA)] as effective nanocarriers for intracellular curcumin (CUR) release. P(TTMA-co-mPEGMA) copolymers with different hydrophobic-hydrophilic ratios were prepared by one-step reversible addition fragmentation chain transfer (RAFT) copolymerization of TTMA and mPEGMA. Their molecular structures and chemical compositions were confirmed by (1)H NMR, Fourier transform infrared spectroscopy (FT-IR) and gel permeation chromatography (GPC). P(TTMA-co-mPEGMA) copolymers could self-assemble into nanosized micelles in aqueous solution and displayed low critical micelle concentration (CMC). All P(TTMA-co-mPEGMA) micelles displayed excellent drug loading capacity, due to the strong π-π conjugate action and hydrophobic interaction between the PTTMA and CUR. Moreover, the hydrophobic PTTMA chain could be selectively hydrolyzed into a hydrophilic backbone in the mildly acidic environment, leading to significant swelling and final disassembly of the micelles. These morphological changes of P(TTMA-co-mPEGMA) micelles with time at pH 5.0 were determined by DLS and TEM. The in vitro CUR release from the micelles exhibited a pH-dependent behavior. The release rate of CUR was significantly accelerated at mildly acidic pH of 4.0 and 5.0 compared to that at pH 7.4. Toxicity test revealed that the P(TTMA-co-mPEGMA) copolymers exhibited low cytotoxicity, whereas the CUR-loaded micelles maintained high cytotoxicity for HepG-2 and EC-109 cells. The results indicated that the novel P(TTMA-co-mPEGMA) micelles with low CMC, small and tunable

  15. Dengue virus induces mitochondrial elongation through impairment of Drp1-triggered mitochondrial fission.

    Science.gov (United States)

    Barbier, Vincent; Lang, Diane; Valois, Sierra; Rothman, Alan L; Medin, Carey L

    2017-01-01

    Mitochondria are highly dynamic organelles that undergo continuous cycles of fission and fusion to maintain essential cellular functions. An imbalance between these two processes can result in many pathophysiological outcomes. Dengue virus (DENV) interacts with cellular organelles, including mitochondria, to successfully replicate in cells. This study used live-cell imaging and found an increase in mitochondrial length and respiration during DENV infection. The level of mitochondrial fission protein, Dynamin-related protein 1 (Drp1), was decreased on mitochondria during DENV infection, as well as Drp1 phosphorylated on serine 616, which is important for mitochondrial fission. DENV proteins NS4b and NS3 were also associated with subcellular fractions of mitochondria. Induction of fission through uncoupling of mitochondria or overexpression of Drp1 wild-type and Drp1 with a phosphomimetic mutation (S616D) significantly reduced viral replication. These results demonstrate that DENV infection causes an imbalance in mitochondrial dynamics by inhibiting Drp1-triggered mitochondrial fission, which promotes viral replication. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Triggers for a high sensitivity charm experiment

    Energy Technology Data Exchange (ETDEWEB)

    Christian, D.C.

    1994-07-01

    Any future charm experiment clearly should implement an E{sub T} trigger and a {mu} trigger. In order to reach the 10{sup 8} reconstructed charm level for hadronic final states, a high quality vertex trigger will almost certainly also be necessary. The best hope for the development of an offline quality vertex trigger lies in further development of the ideas of data-driven processing pioneered by the Nevis/U. Mass. group.

  17. Wiring through tunneling nanotubes--from electrical signals to organelle transfer.

    Science.gov (United States)

    Abounit, Saïda; Zurzolo, Chiara

    2012-03-01

    Tunneling nanotubes (TNTs) represent a subset of F-actin-based transient tubular connections that allow direct communication between distant cells. Recent studies have provided new insights into the existence of TNTs in vivo, and this novel mechanism of intercellular communication is implicated in various essential processes, such as development, immunity, tissue regeneration and transmission of electrical signals. TNTs are versatile structures known to facilitate the transfer of various cargos, such as organelles, plasma membrane components, pathogens and Ca(2+). Recently, a new function of TNTs in the long-range transfer of electrical signals that involves gap junctions has been suggested. This indicates that different types of TNTs might exist, and supports the notion that TNTs might not be just passive open conduits but rather are regulated by gating mechanisms. Furthermore, TNTs have been found in different cell lines and are characterized by their diversity in terms of morphology. Here we discuss these novel findings in the context of the two models that have been proposed for TNT formation, and focus on putative proteins that could represent TNT specific markers. We also shed some light on the molecular mechanisms used by TNTs to transfer cargos, as well as chemical and electrical signals.

  18. Identification of novel proteins in Neospora caninum using an organelle purification and monoclonal antibody approach.

    Science.gov (United States)

    Sohn, Catherine S; Cheng, Tim T; Drummond, Michael L; Peng, Eric D; Vermont, Sarah J; Xia, Dong; Cheng, Stephen J; Wastling, Jonathan M; Bradley, Peter J

    2011-04-04

    Neospora caninum is an important veterinary pathogen that causes abortion in cattle and neuromuscular disease in dogs. Neospora has also generated substantial interest because it is an extremely close relative of the human pathogen Toxoplasma gondii, yet does not appear to infect humans. While for Toxoplasma there are a wide array of molecular tools and reagents available for experimental investigation, relatively few reagents exist for Neospora. To investigate the unique biological features of this parasite and exploit the recent sequencing of its genome, we have used an organelle isolation and monoclonal antibody approach to identify novel organellar proteins and develop a wide array of probes for subcellular localization. We raised a panel of forty-six monoclonal antibodies that detect proteins from the rhoptries, micronemes, dense granules, inner membrane complex, apicoplast, mitochondrion and parasite surface. A subset of the proteins was identified by immunoprecipitation and mass spectrometry and reveal that we have identified and localized many of the key proteins involved in invasion and host interaction in Neospora. In addition, we identified novel secretory proteins not previously studied in any apicomplexan parasite. Thus, this organellar monoclonal antibody approach not only greatly enhances the tools available for Neospora cell biology, but also identifies novel components of the unique biological characteristics of this important veterinary pathogen.

  19. Doubly uniparental inheritance: two mitochondrial genomes, one precious model for organelle DNA inheritance and evolution.

    Science.gov (United States)

    Passamonti, Marco; Ghiselli, Fabrizio

    2009-02-01

    Eukaryotes have exploited several mechanisms for organelle uniparental inheritance, so this feature arose and evolved independently many times in their history. Metazoans' mitochondria commonly experience strict maternal inheritance; that is, they are only transmitted by females. However, the most noteworthy exception comes from some bivalve mollusks, in which two mitochondrial lineages (together with their genomes) are inherited: one through females (F) and the other through males (M). M and F genomes show up to 30% sequence divergence. This inheritance mechanism is known as doubly uniparental inheritance (DUI), because both sexes inherit uniparentally their mitochondria. Here, we review what we know about this unusual system, and we propose a model for evolution of DUI that might account for its origin as sex determination mechanism. Moreover, we propose DUI as a choice model to address many aspects that should be of interest to a wide range of biological subfields, such as mitochondrial inheritance, mtDNA evolution and recombination, genomic conflicts, evolution of sex, and developmental biology. Actually, as research proceeds, mitochondria appear to have acquired a central role in many fundamental processes of life, which are not only in their metabolic activity as cellular power plants, such as cell signaling, fertilization, development, differentiation, ageing, apoptosis, and sex determination. A function of mitochondria in the origin and maintenance of sex has been also proposed.

  20. Shifts in oxidation states of cerium oxide nanoparticles detected inside intact hydrated cells and organelles

    Energy Technology Data Exchange (ETDEWEB)

    Szymanski, Craig J.; Munusamy, Prabhakaran; Mihai, Cosmin; Xie, Yumei; Hu, Dehong; Gilles, Marry K.; Tyliszczak, T.; Thevuthasan, Suntharampillai; Baer, Donald R.; Orr, Galya

    2015-09-01

    Cerium oxide nanoparticles (CNPs) have been shown to induce diverse biological effects, ranging from toxic to beneficial. The beneficial effects have been attributed to the potential antioxidant activity of CNPs via certain redox reactions, depending on their oxidation state or Ce3+/Ce4+ ratio. However, this ratio is strongly dependent on the environment and age of the nanoparticles and it is unclear whether and how the complex intracellular environment impacts this ratio and the possible redox reactions of CNPs. To identify any changes in the oxidation state of CNPs in the intracellular environment and better understand their intracellular reactions, we directly quantified the oxidation states of CNPs outside and inside intact hydrated cells and organelles using correlated scanning transmission x-ray and super resolution fluorescence microscopies. By analyzing hundreds of small CNP aggregates, we detected a shift to a higher Ce3+/Ce4+ ratio in CNPs inside versus outside the cells, indicating a net reduction of CNPs in the intracellular environment. We further found a similar ratio in the cytoplasm and in the lysosomes, indicating that the net reduction occurs earlier in the internalization pathway. Together with oxidative stress and toxicity measurements, our observations identify a net reduction of CNPs in the intracellular environment, which is consistent with their involvement in potentially beneficial oxidation reactions, but also point to interactions that can negatively impact the health of cells.

  1. Compartmentalization Approaches in Soft Matter Science: From Nanoreactor Development to Organelle Mimics.

    Science.gov (United States)

    Schoonen, Lise; van Hest, Jan C M

    2016-02-10

    Compartmentalization is an essential feature found in living cells to ensure that biological processes occur without being affected by undesired external influences. Over the years many scientists have designed self-assembled soft matter structures that mimic these natural catalytic compartments. The rationale behind this research is threefold. First of all, compartmentalization leads to the creation of a secluded environment for the catalytic species, which solves compatibility issues and which can improve catalyst efficiency and selectivity. Secondly, nano- and micro-compartments are constructed with the aim to obtain microenvironments that more closely mimic the cellular architecture. These biomimetic platforms are used to attain a better understanding of how cellular processes are executed. Thirdly, natural design rules are applied to create biomolecular assemblies with unusual functionality, which for example are used as artificial organelles. Here, recent developments will be discussed regarding these compartmentalized catalytic systems, with a selected number of illustrative examples to demonstrate which strategies have been followed, and to show to what extent the ambitious goals of this field of science have been reached. The focus here is on the field of soft matter science, covering the wide spectrum from polymeric assemblies to protein nanocages.

  2. Biogenesis of the trypanosome endo-exocytotic organelle is cytoskeleton mediated.

    Directory of Open Access Journals (Sweden)

    Mélanie Bonhivers

    2008-05-01

    Full Text Available Trypanosoma brucei is a protozoan parasite that is used as a model organism to study such biological phenomena as gene expression, protein trafficking, and cytoskeletal biogenesis. In T. brucei, endocytosis and exocytosis occur exclusively through a sequestered organelle called the flagellar pocket (FP, an invagination of the pellicular membrane. The pocket is the sole site for specific receptors thus maintaining them inaccessible to components of the innate immune system of the mammalian host. The FP is also responsible for the sorting of protective parasite glycoproteins targeted to, or recycling from, the pellicular membrane, and for the removal of host antibodies from the cell surface. Here, we describe the first characterisation of a flagellar pocket cytoskeletal protein, BILBO1. BILBO1 functions to form a cytoskeleton framework upon which the FP is made and which is also required and essential for FP biogenesis and cell survival. Remarkably, RNA interference (RNAi-mediated ablation of BILBO1 in insect procyclic-form parasites prevents FP biogenesis and induces vesicle accumulation, Golgi swelling, the aberrant repositioning of the new flagellum, and cell death. Cultured bloodstream-form parasites are also nonviable when subjected to BILBO1 RNAi. These results provide the first molecular evidence for cytoskeletally mediated FP biogenesis.

  3. Identification of novel proteins in Neospora caninum using an organelle purification and monoclonal antibody approach.

    Directory of Open Access Journals (Sweden)

    Catherine S Sohn

    Full Text Available Neospora caninum is an important veterinary pathogen that causes abortion in cattle and neuromuscular disease in dogs. Neospora has also generated substantial interest because it is an extremely close relative of the human pathogen Toxoplasma gondii, yet does not appear to infect humans. While for Toxoplasma there are a wide array of molecular tools and reagents available for experimental investigation, relatively few reagents exist for Neospora. To investigate the unique biological features of this parasite and exploit the recent sequencing of its genome, we have used an organelle isolation and monoclonal antibody approach to identify novel organellar proteins and develop a wide array of probes for subcellular localization. We raised a panel of forty-six monoclonal antibodies that detect proteins from the rhoptries, micronemes, dense granules, inner membrane complex, apicoplast, mitochondrion and parasite surface. A subset of the proteins was identified by immunoprecipitation and mass spectrometry and reveal that we have identified and localized many of the key proteins involved in invasion and host interaction in Neospora. In addition, we identified novel secretory proteins not previously studied in any apicomplexan parasite. Thus, this organellar monoclonal antibody approach not only greatly enhances the tools available for Neospora cell biology, but also identifies novel components of the unique biological characteristics of this important veterinary pathogen.

  4. Increase number of mitochondrion-like organelle in symptomatic Blastocystis subtype 3 due to metronidazole treatment.

    Science.gov (United States)

    Raman, Kalyani; Kumar, Suresh; Chye, Tan Tian

    2016-01-01

    Blastocystis sp., an intestinal organism is known to cause diarrhea with metronidazole regarded as the first line of treatment despite reports of its resistance. The conflicting reports of variation in drug treatment have been ascribed to subtype differences. The present study evaluated in vitro responses due to metronidazole on ST3 isolated from three symptomatic and asymptomatic patients, respectively. Symptomatic isolates were obtained from clinical patients who showed symptoms such as diarrhea and abdominal bloating. Asymptomatic isolates from a stool survey carried out in a rural area. These patients had no other pathogens other than Blastocystis. Ultrastructural studies using transmission electron microscopy (TEM) and scanning electron microscopy (SEM) revealed drug-treated ST3 from symptomatic patients were irregular and amoebic with surface showing high-convoluted folding when treated with metronidazole. These organisms had higher number of mitochondrion-like organelle (MLO) with prominent cristae. However, the drug-treated ST3 from asymptomatic persons remained spherical in shape. Asymptomatic ST3 showed increase in the size of its central body with the MLO located at the periphery.

  5. Chemical modification and organelle-specific localization of orlistat-like natural-product-based probes.

    Science.gov (United States)

    Yang, Peng-Yu; Liu, Kai; Zhang, Chongjing; Chen, Grace Y J; Shen, Yuan; Ngai, Mun Hong; Lear, Martin J; Yao, Shao Q

    2011-10-04

    Orlistat, also known as tetrahydrolipstatin (THL), is an FDA-approved anti-obesity drug with potential anti-cancer activity. Previously, we developed a chemical proteomic approach, based on the Orlistat-like probe (1a) for large-scale identification of unknown cellular targets of Orlistat in human hepatocytes. In this article, we report the chemical synthesis and biological evaluation of an expanded set of Orlistat-like compounds, with the intention to further dissect and manipulate potential cellular targets of Orlistat. In doing so, we carried out proteome-wide activity-based profiling and large-scale pull-down/LCMS analysis of these compounds in live HepG2 cells, and successfully identified many putative cellular targets for Orlistat and its structural analogues. By qualitatively assessing the spectra counts of potential protein hits against each of the seventeen Orlistat analogues, we obtained both common and unique targets of these probes. Our results revealed that subtle structural modifications of Orlistat led to noticeable changes in both the cellular potency and target profiles of the drug. In order to further improve the cellular activity of Orlistat, we successfully applied the well-established AGT/SNAP-tag technology to our cell-permeable, benzylguanine (BG)-containing Orlistat variant (4). We showed that the drug could be delivered and effectively retained in different sub-cellular organelles of living cells. This strategy may provide a general and highly effective chemical tool for the potential sub-cellular targeting of small molecule drugs.

  6. Differential expression of nuclear- and organelle-encoded genes during tomato fruit development.

    Science.gov (United States)

    Piechulla, B

    1988-12-01

    Steady-state mRNA levels of nuclear-and organelle-encoded genes were determined during fruit development and ripening. Transcripts specific for subunits of the mitochondrial and chloroplast ATPase complexes appear simultaneously and reach high levels two to three weeks after anthesis, but follow a different expression pattern during the ripening period. While the chloroplast-specific mRNA levels continuously decrease to low levels in ripe tomato fruits, the transcripts specific for two mitochondrial ATPase subunits continue to be present at relative high levels in red fruits. Transcript levels for the fructose-1,6-bisphosphate aldolase increase significantly during ripening. Structural proteins such as the alpha-subunit of tubulin and the hydroxyproline-rich glycoprotein extensin are expressed during maximal fruit growth. In addition, comparisons of mRNA levels of different genes in several plant organs (leaf, fruit, stem, and root) show characteristic differences. The results presented in this paper demonstrate that changes at the transcriptional or post-transcriptional level during fruit development can be correlated with morphological and physiological alterations.

  7. Unraveling the Secrets of Bacterial Adhesion Organelles Using Single-Molecule Force Spectroscopy

    Science.gov (United States)

    Axner, Ove; Björnham, Oscar; Castelain, Mickaël; Koutris, Efstratios; Schedin, Staffan; Fällman, Erik; Andersson, Magnus

    Many types of bacterium express micrometer-long attachment organelles (so-called pili) whose role is to mediate adhesion to host tissue. Until recently, little was known about their function in the adhesion process. Force-measuring optical tweezers (FMOT) have since then been used to unravel the biomechanical properties of various types of pili, primarily those from uropathogenic E. coli, in particular their force-vs.-elongation response, but lately also some properties of the adhesin are situated at the distal end of the pilus. This knowledge provides an understanding of how piliated bacteria can sustain external shear forces caused by rinsing processes, e.g., urine flow. It has been found that many types of pilus exhibit unique and complex force-vs.-elongation responses. It has been conjectured that their dissimilar properties impose significant differences in their ability to sustain external forces and that different types of pilus therefore have dissimilar predisposition to withstand different types of rinsing conditions. An understanding of these properties is of high importance since it can serve as a basis for finding new means to combat bacterial adhesion, including that caused by antibiotic-resistance bacteria. This work presents a review of the current status of the assessment of biophysical properties of individual pili on single bacteria exposed to strain/stress, primarily by the FMOT technique. It also addresses, for the first time, how the elongation and retraction properties of the rod couple to the adhesive properties of the tip adhesin.

  8. An organelle K+ channel is required for osmoregulation in Chlamydomonas reinhardtii.

    Science.gov (United States)

    Xu, Feifei; Wu, Xiaoan; Jiang, Lin-Hua; Zhao, Hucheng; Pan, Junmin

    2016-08-01

    Fresh water protozoa and algae face hypotonic challenges in their living environment. Many of them employ a contractile vacuole system to uptake excessive water from the cytoplasm and expel it to the environment to achieve cellular homeostasis. K(+), a major osmolyte in contractile vacuole, is predicted to create higher osmolarity for water influx. Molecular mechanisms for K(+) permeation through the plasma membrane have been well studied. However, how K(+) permeates organelles such as the contractile vacuole is not clear. Here, we show that the six-transmembrane K(+) channel KCN11 in Chlamydomonas is exclusively localized to contractile vacuole. Ectopic expression of KCN11 in HEK293T cells results in voltage-gated K(+) channel activity. Disruption of the gene or mutation of key residues for K(+) permeability of the channel leads to dysfunction of cell osmoregulation in very hypotonic conditions. The contractile cycle is inhibited in the mutant cells with a slower rate of contractile vacuole swelling, leading to cell death. These data demonstrate a new role for six-transmembrane K(+) channels in contractile vacuole functioning and provide further insights into osmoregulation mediated by the contractile vacuole.

  9. Molecular mechanisms regulating secretory organelles and endosomes in neutrophils and their implications for inflammation.

    Science.gov (United States)

    Ramadass, Mahalakshmi; Catz, Sergio D

    2016-09-01

    Neutrophils constitute the first line of cellular defense against invading microorganisms and modulate the subsequent innate and adaptive immune responses. In order to execute a rapid and precise response to infections, neutrophils rely on preformed effector molecules stored in a variety of intracellular granules. Neutrophil granules contain microbicidal factors, the membrane-bound components of the respiratory burst oxidase, membrane-bound adhesion molecules, and receptors that facilitate the execution of all neutrophil functions including adhesion, transmigration, phagocytosis, degranulation, and neutrophil extracellular trap formation. The rapid mobilization of intracellular organelles is regulated by vesicular trafficking mechanisms controlled by effector molecules that include small GTPases and their interacting proteins. In this review, we focus on recent discoveries of mechanistic processes that are at center stage of the regulation of neutrophil function, highlighting the discrete and selective pathways controlled by trafficking modulators. In particular, we describe novel pathways controlled by the Rab27a effectors JFC1 and Munc13-4 in the regulation of degranulation, reactive oxygen species and neutrophil extracellular trap production, and endolysosomal signaling. Finally, we discuss the importance of understanding these molecular mechanisms in order to design novel approaches to modulate neutrophil-mediated inflammatory processes in a targeted fashion.

  10. Mitochondrial redox and pH signaling occurs in axonal and synaptic organelle clusters.

    Science.gov (United States)

    Breckwoldt, Michael O; Armoundas, Antonis A; Aon, Miguel A; Bendszus, Martin; O'Rourke, Brian; Schwarzländer, Markus; Dick, Tobias P; Kurz, Felix T

    2016-03-22

    Redox switches are important mediators in neoplastic, cardiovascular and neurological disorders. We recently identified spontaneous redox signals in neurons at the single mitochondrion level where transients of glutathione oxidation go along with shortening and re-elongation of the organelle. We now have developed advanced image and signal-processing methods to re-assess and extend previously obtained data. Here we analyze redox and pH signals of entire mitochondrial populations. In total, we quantified the effects of 628 redox and pH events in 1797 mitochondria from intercostal axons and neuromuscular synapses using optical sensors (mito-Grx1-roGFP2; mito-SypHer). We show that neuronal mitochondria can undergo multiple redox cycles exhibiting markedly different signal characteristics compared to single redox events. Redox and pH events occur more often in mitochondrial clusters (medium cluster size: 34.1 ± 4.8 μm(2)). Local clusters possess higher mitochondrial densities than the rest of the axon, suggesting morphological and functional inter-mitochondrial coupling. We find that cluster formation is redox sensitive and can be blocked by the antioxidant MitoQ. In a nerve crush paradigm, mitochondrial clusters form sequentially adjacent to the lesion site and oxidation spreads between mitochondria. Our methodology combines optical bioenergetics and advanced signal processing and allows quantitative assessment of entire mitochondrial populations.

  11. Plectin isoform 1b mediates mitochondrion-intermediate filament network linkage and controls organelle shape.

    Science.gov (United States)

    Winter, Lilli; Abrahamsberg, Christina; Wiche, Gerhard

    2008-06-16

    Plectin is a versatile intermediate filament (IF)-bound cytolinker protein with a variety of differentially spliced isoforms accounting for its multiple functions. One particular isoform, plectin 1b (P1b), remains associated with mitochondria after biochemical fractionation of fibroblasts and cells expressing exogenous P1b. Here, we determined that P1b is inserted into the outer mitochondrial membrane with the exon 1b-encoded N-terminal sequence serving as a mitochondrial targeting and anchoring signal. To study P1b-related mitochondrial functions, we generated mice that selectively lack this isoform but express all others. In primary fibroblasts and myoblasts derived from these mice, we observe a substantial elongation of mitochondrial networks, whereas other mitochondrial properties remain largely unaffected. Normal morphology of mitochondria could be restored by isoform-specific overexpression of P1b in P1b-deficient as well as plectin-null cells. We propose a model where P1b both forms a mitochondrial signaling platform and affects organelle shape and network formation by tethering mitochondria to IFs.

  12. Investigation of Horseradish Peroxidase Kinetics in an "Organelle-Like" Environment.

    Science.gov (United States)

    Baumann, Patric; Spulber, Mariana; Fischer, Ozana; Car, Anja; Meier, Wolfgang

    2017-05-01

    In order to mimic cell organelles, artificial nanoreactors have been investigated based on polymeric vesicles with reconstituted channel proteins (outer membrane protein F) and coencapsulated enzymes horseradish peroxidase (HRP) along with a crowding agent (Ficoll or polyethylene glycol) inside the cavity. Importantly, the presence of macromolecules has a strong impact on the enzyme kinetics, but no influence on the integrity of vesicles up to certain concentrations. This particular design allows for the first time the determination of HRP kinetics inside nanoreactors with crowded milieu. The values of the Michaelis-Menten constant (K m ) measured for HRP in a confined space (encapsulated in nanoreactors) in the absence of macromolecules are ≈50% lower than in free conditions, and the presence of a crowding agent results in a further pronounced decrease. These results clearly suggest that activities of enzymes in confined spaces can be tuned by varying the concentrations of crowding compounds. The present investigation represents an advance in nanoreactor design by considering the influence of environmental factors on enzymatic performance, and it demonstrates that both encapsulation and the presence of a crowding environment increase the enzyme-substrate affinity. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Infrasonic Observations from Triggered Lightning

    Science.gov (United States)

    Arechiga, R. O.; Johnson, J. B.; Edens, H. E.; Rison, W.; Thomas, R. J.; Eack, K.; Eastvedt, E. M.

    2009-12-01

    We measured acoustic signals during both triggered and natural lightning. A comparative analysis of simultaneous data from the Lightning Mapping Array (LMA), acoustic measurements and digital high-speed photography operating in the same area was made. Acoustic emissions, providing quantitative estimates of acoustic power and spectral content, will complement coincident investigations, such as X-ray emissions. Most cloud-to-ground lightning flashes lower negative charge to ground, but flashes that lower positive charge to ground are often unusually destructive and are less understood. The New Mexico Tech Lightning Mapping Array (LMA) locates the sources of impulsive RF radiation produced by lightning flashes in three spatial dimensions and time, operating in the 60 - 66 MHz television band. However, positive breakdown is rarely detected by the LMA and positive leader channels are outlined only by recoil events. Positive cloud-to-ground (CG) channels are usually not mapped (or partially mapped because they may have recoil events). Acoustic and electric field instruments are a good complement to the LMA, since they can detect both negative and positive leaders. An array of five stations was deployed during the Summer of 2009 (July 20 to August 13) in the Magdalena mountains of New Mexico, to monitor infrasound (below 20 Hz) and audio range sources due to natural and triggered lightning. The stations were located at close (57 m), medium (303 and 537 m) and far (1403 and 2556 m) distances surrounding the triggering site. Each station consisted of five sensors, one infrasonic and one in the audio range at the center, and three infrasonic in a triangular configuration. This research will provide a more complete picture, and provide further insight into the nature of lightning.

  14. The ALICE high level trigger

    Energy Technology Data Exchange (ETDEWEB)

    Alt, T [Kirchhoff Institute for Physics, University of Heidelberg (Germany); Grastveit, G [Department of Physics and Technology, University of Bergen (Norway); Helstrup, H [Faculty of Engineering, Bergen University College (Norway); Lindenstruth, V [Kirchhoff Institute for Physics, University of Heidelberg (Germany); Loizides, C [Institute for Nuclear Physics, University of Frankfurt (Germany); Roehrich, D [Department of Physics and Technology, University of Bergen (Norway); Skaali, B [Department of Physics, University of Oslo (Norway); Steinbeck, T [Kirchhoff Institute for Physics, University of Heidelberg (Germany); Stock, R [Institute for Nuclear Physics, University of Frankfurt (Germany); Tilsner, H [Kirchhoff Institute for Physics, University of Heidelberg (Germany); Ullaland, K [Department of Physics and Technology, University of Bergen (Norway); Vestboe, A [Faculty of Engineering, Bergen University College (Norway); Vik, T [Department of Physics, University of Oslo (Norway); Wiebalck, A [Kirchhoff Institute for Physics, University of Heidelberg (Germany)

    2004-08-01

    The ALICE experiment at LHC will implement a high-level trigger system for online event selection and/or data compression. The largest computing challenge is posed by the TPC detector, which requires real-time pattern recognition. The system entails a very large processing farm that is designed for an anticipated input data stream of 25 GB s{sup -1}. In this paper, we present the architecture of the system and the current state of the tracking methods and data compression applications.

  15. Trigger efficiencies at BES III

    CERN Document Server

    Berger, N; Liu, Z A; Jin, D P; Xu, H; Gong, W X; Wang, K; Cao, G F

    2010-01-01

    Trigger efficiencies at BES III were determined for both the J/psi and psi' data taking of 2009. Both dedicated runs and physics datasets are used; efficiencies are presented for Bhabha-scattering events, generic hadronic decay events involving charged tracks, dimuon events and psi' -> pi+pi-J/psi, J/psi -> l+l- events (l an electron or muon). The efficiencies are found to lie well above 99% for all relevant physics cases, thus fulfilling the BES III design specifications.

  16. Golgi Fragmentation in Amyotrophic Lateral Sclerosis, an Overview of Possible Triggers and Consequences

    Directory of Open Access Journals (Sweden)

    Vinod eSundaramoorthy

    2015-10-01

    Full Text Available Amyotrophic Lateral Sclerosis (ALS is an invariably fatal neurodegenerative disorder, which specifically targets motor neurons in the brain, brain stem and spinal cord. Whilst the etiology of ALS remains unknown, fragmentation of the Golgi apparatus is detected in ALS patient motor neurons and in animal/cellular disease models. The Golgi is a highly dynamic organelle that acts as a dispatching station for the vesicular transport of secretory/transmembrane proteins. It also mediates autophagy and maintains endoplasmic reticulum (ER and axonal homeostasis. Both the trigger for Golgi fragmentation and the functional consequences of a fragmented Golgi apparatus in ALS remain unclear. However recent evidence has highlighted defects in vesicular trafficking as a pathogenic mechanism in ALS. This review summarises the evidence describing Golgi fragmentation in ALS, with possible links to other disease processes including cellular trafficking, ER stress, defective autophagy and axonal degeneration.

  17. Mitochondrial and plastid genomes of the colonial green alga Gonium pectorale give insights into the origins of organelle DNA architecture within the volvocales.

    Directory of Open Access Journals (Sweden)

    Takashi Hamaji

    Full Text Available Volvocalean green algae have among the most diverse mitochondrial and plastid DNAs (mtDNAs and ptDNAs from the eukaryotic domain. However, nearly all of the organelle genome data from this group are restricted to unicellular species, like Chlamydomonas reinhardtii, and presently only one multicellular species, the ∼4,000-celled Volvox carteri, has had its organelle DNAs sequenced. The V. carteri organelle genomes are repeat rich, and the ptDNA is the largest plastome ever sequenced. Here, we present the complete mtDNA and ptDNA of the colonial volvocalean Gonium pectorale, which is comprised of ∼16 cells and occupies a phylogenetic position closer to that of V. carteri than C. reinhardtii within the volvocine line. The mtDNA and ptDNA of G. pectorale are circular-mapping AT-rich molecules with respective lengths and coding densities of 16 and 222.6 kilobases and 73 and 44%. They share some features with the organelle DNAs of V. carteri, including palindromic repeats within the plastid compartment, but show more similarities with those of C. reinhardtii, such as a compact mtDNA architecture and relatively low organelle DNA intron contents. Overall, the G. pectorale organelle genomes raise several interesting questions about the origin of linear mitochondrial chromosomes within the Volvocales and the relationship between multicellularity and organelle genome expansion.

  18. The Database Driven ATLAS Trigger Configuration System

    CERN Document Server

    Martyniuk, Alex; The ATLAS collaboration

    2015-01-01

    This contribution describes the trigger selection configuration system of the ATLAS low- and high-level trigger (HLT) and the upgrades it received in preparation for LHC Run 2. The ATLAS trigger configuration system is responsible for applying the physics selection parameters for the online data taking at both trigger levels and the proper connection of the trigger lines across those levels. Here the low-level trigger consists of the already existing central trigger (CT) and the new Level-1 Topological trigger (L1Topo), which has been added for Run 2. In detail the tasks of the configuration system during the online data taking are Application of the selection criteria, e.g. energy cuts, minimum multiplicities, trigger object correlation, at the three trigger components L1Topo, CT, and HLT On-the-fly, e.g. rate-dependent, generation and application of prescale factors to the CT and HLT to adjust the trigger rates to the data taking conditions, such as falling luminosity or rate spikes in the detector readout ...

  19. Triggering with the ALICE TRD

    CERN Document Server

    Klein, Jochen

    2011-01-01

    We discuss how a level-1 trigger, about 8 us after a hadron-hadron collision, can be derived from the Transition Radiation Detector (TRD) in A Large Ion Collider Experiment (ALICE) at the LHC. Chamber-wise track segments from fast on-detector reconstruction are read out with position, angle and electron likelihood. In the Global Tracking Unit up to 6 tracklets from a particle traversing the detector layers are matched and used for the reconstruction of transverse momentum and electron identification. Such tracks form the basis for versatile and flexible trigger conditions, e.g. single high-pt hadron, single high-pt electron, di-electron (J/Psi, Upsilon) and at least n close high-pt tracks (jet). The need for low-latency on-line reconstruction poses challenges on the detector operation. The calibration for gain (pad-by-pad) and drift velocity must be applied already in the front-end electronics. Due to changes in pressure and gas composition an on-line monitoring and feedback loop for these parameters is requi...

  20. The UA1 trigger processor

    CERN Document Server

    Grayer, G H

    1981-01-01

    Experiment UA1 is a large multipurpose spectrometer at the CERN proton-antiproton collider. The principal trigger is formed on the basis of the energy deposition in calorimeters. A trigger decision taken in under 2.4 microseconds can avoid dead-time losses due to the bunched nature of the beam. To achieve this fast 8-bit charge to digital converters have been built followed by two identical digital processors tailored to the experiment. The outputs of groups of the 2440 photomultipliers in the calorimeters are summed to form a total of 288 input channels to the ADCs. A look-up table in RAM is used to convert the digitised photomultiplier signals to energy in one processor, and to transverse energy in the other. Each processor forms four sums from a chosen combination of input channels, and also counts the number of clusters with electromagnetic or hadronic energy above pre-determined levels. Up to twelve combinations of these conditions, together with external information, may be combined in coincidence or in...

  1. Ent-11α-Hydroxy-15-oxo-kaur-16-en-19-oic-acid Inhibits Growth of Human Lung Cancer A549 Cells by Arresting Cell Cycle and Triggering Apoptosis

    Institute of Scientific and Technical Information of China (English)

    Li Li; George G Chen; Ying-nian Lu; Yi Liu; Ke-feng Wu; Xian-ling Gong; Zhan-ping Gou; Ming-yue Li; Nian-ci Liang

    2012-01-01

    Objective:To examine the apoptotic effect of ent-11α-hydroxy-15-oxo-kaur-16-en-19-oic-acid (5F),a compound isolated from Pteris semipinnata L(PsL),in human lung cancer A549 cells.Methods:A549 cells were treated with 5F (0-80 μg/ml) for different time periods.Cytotoxicity was examined using a MTT method.Cell cycle was examined using propidium iodide staining.Apoptosis was examined using Hoechst 33258 staining,enzyme-linked immunosorbent assay (ELISA) and caspase-3 activity analysis.Expression of representative apoptosis-related proteins was evaluated by Western blot analysis.Reactive oxygen species (ROS) level was measured using standard protocols.Potential interaction of 5F with cisplatin was also examined.Results:5F inhibited the proliferation of A549 cells in a concentration- and time-dependent manner.5F increased the accumulation of cells in sub-G1 phase and arrested the cells in the G2 phase.Exposure to 5F induced morphological changes and DNA fragmentation that are characteristic of apoptosis.The expression of p21 was increased.5F exposure also increased Bax expression,release of cytochrome c and apoptosis inducing factor (AIF),and activation of caspase-3.5F significantly sensitized the cells to cisplatin toxicity Interestingly,treatment with 5F did not increase ROS,but reduced ROS production induced by cisplatin.Conclusion:SF could inhibit the proliferation of A549 cells by arresting the cells in G2 phase and by inducing mitochondrial-mediated apoptosis.

  2. The abnormal isoform of the prion protein accumulates in late-endosome-like organelles in scrapie-infected mouse brain.

    Science.gov (United States)

    Arnold, J E; Tipler, C; Laszlo, L; Hope, J; Landon, M; Mayer, R J

    1995-08-01

    The prion encephalopathies are characterized by accumulation in the brain of the abnormal form PrPsc of a normal host gene product PrPc. The mechanism and site of formation of PrPsc from PrPc are currently unknown. In this study, ME7 scrapie-infected mouse brain was used to show, both biochemically and by double-labelled immunogold electron microscopy, that proteinase K-resistant PrPsc is enriched in subcellular structures which contain the cation-independent mannose 6-phosphate receptor, ubiquitin-protein conjugates, beta-glucuronidase, and cathepsin B, termed late endosome-like organelles. The glycosylinositol phospholipid membrane-anchored PrPc will enter such compartment for normal degradation and the organelles may therefore act as chambers for the conversion of PrPc into infectious PrPsc in this murine model of scrapie.

  3. Hadronic triggers and trigger object-level analysis at ATLAS

    CERN Document Server

    Zaripovas, Donatas Ramilas; The ATLAS collaboration

    2017-01-01

    Hadronic signatures are critical to the high energy physics analysis program at the Large Hadron Collider (LHC), and are broadly used for both Standard Model measurements and searches for new physics. These signatures include generic quark and gluon jets, as well as jets originating from b-quarks or the decay of massive particles (such as electroweak bosons or top quarks). Additionally missing transverse momentum from non-interacting particles provides an interesting probe in the search for new physics beyond the Standard Model. Developing trigger selections that target these events is a huge challenge at the LHC due to the enormous event rates associated with these signatures. This challenge is exacerbated by the amount of pile-up activity, which continues to grow. In order to address these challenges, several new techniques have been developed during the past year in order to significantly improve the potential of the 2017 dataset and overcome the limiting factors, such as storage and computing requirements...

  4. Hadronic Triggers and trigger-object level analysis at ATLAS

    CERN Document Server

    Zaripovas, Donatas Ramilas; The ATLAS collaboration

    2017-01-01

    Hadronic signatures are critical to the high energy physics analysis program, and are broadly used for both Standard Model measurements and searches for new physics. These signatures include generic quark and gluon jets, as well as jets originating from b-quarks or the decay of massive particles (such as electroweak bosons or top quarks). Additionally missing transverse momentum from non-interacting particles provides an interesting probe in the search for new physics beyond the Standard Model. Developing trigger selections that target these events is a huge challenge at the LHC due to the enormous rates associated with these signatures. This challenge is exacerbated by the amount of pile-up activity, which continues to grow. In order to address these challenges, several new techniques have been developed during the past year in order to significantly improve the potential of the 2017 dataset and overcome the limiting factors to more deeply probing for new physics, such as storage and computing requirements f...

  5. Organelle-cytoskeleton relationships in fibroblasts: mitochondria, Golgi apparatus, and endoplasmic reticulum in phases of movement and growth

    DEFF Research Database (Denmark)

    Couchman, J R; Rees, D A

    1982-01-01

    previously - including the development of pronounced microfilament bundles and of stable and well-defined focal adhesions - and appears to be related to changes in the motility status of the cells rather than to alterations in growth or synthetic capability. Mitochondrial mobility is strongly reduced...... to have direct functional associations with the centriolar region. The relative distributions of the three types of organelle during the phases of cell movements and cell growth, are consistent with their biochemical functions in cellular activity....

  6. Novel Organelles with Elements of Bacterial and Eukaryotic Secretion Systems Weaponize Parasites of Drosophila.

    Science.gov (United States)

    Heavner, Mary Ellen; Ramroop, Johnny; Gueguen, Gwenaelle; Ramrattan, Girish; Dolios, Georgia; Scarpati, Michael; Kwiat, Jonathan; Bhattacharya, Sharmila; Wang, Rong; Singh, Shaneen; Govind, Shubha

    2017-09-06

    The evolutionary success of parasitoid wasps, a highly diverse group of insects widely used in biocontrol, depends on a variety of life history strategies in conflict with those of their hosts [1]. Drosophila melanogaster is a natural host of parasitic wasps of the genus Leptopilina. Attack by L. boulardi (Lb), a specialist wasp to flies of the melanogaster group, activates NF-κB-mediated humoral and cellular immunity. Inflammatory blood cells mobilize and encapsulate Lb eggs and embryos [2-5]. L. heterotoma (Lh), a generalist wasp, kills larval blood cells and actively suppresses immune responses. Spiked virus-like particles (VLPs) in wasp venom have clearly been linked to wasps' successful parasitism of Drosophila [6], but the composition of VLPs and their biotic nature have remained mysterious. Our proteomics studies reveal that VLPs lack viral coat proteins but possess a pharmacopoeia of (1) the eukaryotic vesicular transport system, (2) immunity, and (3) previously unknown proteins. These novel proteins distinguish Lh from Lb VLPs; notably, some proteins specific to Lh VLPs possess sequence similarities with bacterial secretion system proteins. Structure-informed analyses of an abundant Lh VLP surface and spike-tip protein, p40, reveal similarities to the needle-tip invasin proteins SipD and IpaD of Gram-negative bacterial type-3 secretion systems that breach immune barriers and deliver virulence factors into mammalian cells. Our studies suggest that Lh VLPs represent a new class of extracellular organelles and share pathways for protein delivery with both eukaryotic microvesicles and bacterial surface secretion systems. Given their mixed prokaryotic and eukaryotic properties, we propose the term mixed-strategy extracellular vesicle (MSEV) to replace VLP. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Biogenesis of actin-like bacterial cytoskeletal filaments destined for positioning prokaryotic magnetic organelles.

    Science.gov (United States)

    Pradel, Nathalie; Santini, Claire-Lise; Bernadac, Alain; Fukumori, Yoshihiro; Wu, Long-Fei

    2006-11-14

    Magnetosomes comprise a magnetic nanocrystal surrounded by a lipid bilayer membrane. These unique prokaryotic organelles align inside magnetotactic bacterial cells and serve as an intracellular compass allowing the bacteria to navigate along the geomagnetic field in aquatic environments. Cryoelectron tomography of Magnetospirillum strains has revealed that the magnetosome chain is surrounded by a network of filaments that may be composed of MamK given that the filaments are absent in the mamK mutant cells. The process of the MamK filament assembly is unknown. Here we prove the authenticity of the MamK filaments and show that MamK exhibits linear distribution inside Magnetospirillum sp. cells even in the area without magnetosomes. The mamK gene alone is sufficient to direct the synthesis of straight filaments in Escherichia coli, and one extremity of the MamK filaments is located at the cellular pole. By using dual fluorescent labeling of MamK, we found that MamK nucleates at multiple sites and assembles into mosaic filaments. Time-lapse experiments reveal that the assembly of the MamK filaments is a highly dynamic and kinetically asymmetrical process. MamK bundles might initiate the formation of a new filament or associate to one preexistent filament. Our results demonstrate the mechanism of biogenesis of prokaryotic cytoskeletal filaments that are structurally and functionally distinct from the known MreB and ParM filaments. In addition to positioning magnetosomes, other hypothetical functions of the MamK filaments in magnetotaxis might include anchoring magnetosomes and being involved in magnetic reception.

  8. Ceramide transfer protein deficiency compromises organelle function and leads to senescence in primary cells.

    Directory of Open Access Journals (Sweden)

    Raghavendra Pralhada Rao

    Full Text Available Ceramide transfer protein (CERT transfers ceramide from the endoplasmic reticulum (ER to the Golgi complex. Its deficiency in mouse leads to embryonic death at E11.5. CERT deficient embryos die from cardiac failure due to defective organogenesis, but not due to ceramide induced apoptotic or necrotic cell death. In the current study we examined the effect of CERT deficiency in a primary cell line, namely, mouse embryonic fibroblasts (MEFs. We show that in MEFs, unlike in mutant embryos, lack of CERT does not lead to increased ceramide but causes an accumulation of hexosylceramides. Nevertheless, the defects due to defective sphingolipid metabolism that ensue, when ceramide fails to be trafficked from ER to the Golgi complex, compromise the viability of the cell. Therefore, MEFs display an incipient ER stress. While we observe that ceramide trafficking from ER to the Golgi complex is compromised, the forward transport of VSVG-GFP protein is unhindered from ER to Golgi complex to the plasma membrane. However, retrograde trafficking of the plasma membrane-associated cholera toxin B to the Golgi complex is reduced. The dysregulated sphingolipid metabolism also leads to increased mitochondrial hexosylceramide. The mitochondrial functions are also compromised in mutant MEFs since they have reduced ATP levels, have increased reactive oxygen species, and show increased glutathione reductase activity. Live-cell imaging shows that the mutant mitochondria exhibit reduced fission and fusion events. The mitochondrial dysfunction leads to an increased mitophagy in the CERT mutant MEFs. The compromised organelle function compromise cell viability and results in premature senescence of these MEFs.

  9. Paraphyly of organelle DNAs in Cycas Sect. Asiorientales due to ancient ancestral polymorphisms

    Directory of Open Access Journals (Sweden)

    Hsu Tsai-Wen

    2009-07-01

    Full Text Available Abstract Background This study addresses the apportionment of genetic diversity between Cycas revoluta and C. taitungensis, species that constitute the section Asiorientales and represent a unique, basal lineage of the Laurasian genus Cycas. Fossil evidence indicates divergence of the section from the rest of Cycas at least 30 million years ago. Geographically, C. taitungensis is limited to Taiwan whereas C. revoluta is found in the Ryukyu Archipelago and on mainland China. Results The phylogenies of ribosomal ITS region of mtDNA and the intergenic spacer between atpB and rbcL genes of cpDNA were reconstructed. Phylogenetic analyses revealed paraphyly of both loci in the two species and also in the section Asiorientales. The lack of reciprocal monophyly between these long isolated sections is likely due to persistent shared ancestral polymorphisms. Molecular dating estimated that mt- and cp DNA lineages coalesced to the most recent common ancestors (TMRCA about 327 (mt and 204 MYA (cp, corresponding with the divergence of cycad sections in the Mesozoic. Conclusion Fates of newly derived mutations of cycads follow Klopfstein et al.'s surfing model where the majority of new mutations do not spread geographically and remain at low frequencies or are eventually lost by genetic drift. Only successful 'surfing mutations' reach very high frequencies and occupy a large portion of a species range. These mutations exist as dominant cytotypes across populations and species. Geographical subdivision is lacking in both species, even though recurrent gene flow by both pollen and seed is severely limited. In total, the contrasting levels between historical and ongoing gene flow, large population sizes, a long lifespan, and slow mutation rates in both organelle DNAs have all likely contributed to the unusually long duration of paraphyly in cycads.

  10. Ricinosomes: an organelle for developmentally regulated programmed cell death in senescing plant tissues

    Science.gov (United States)

    Gietl, C.; Schmid, M.

    2001-02-01

    This review describes aspects of programmed cell death (PCD). Present research maps the enzymes involved and explores the signal transduction pathways involved in their synthesis. A special organelle (the ricinosome) has been discovered in the senescing endosperm of germinating castor beans (Ricinus communis) that develops at the beginning of PCD and delivers large amounts of a papain-type cysteine endopeptidase (CysEP) in the final stages of cellular disintegration. Castor beans store oil and proteins in a living endosperm surrounding the cotyledons. These stores are mobilized during germination and transferred into the cotyledons. PCD is initiated after this transfer is complete. The CysEP is synthesized in the lumen of the endoplasmic reticulum (ER) where it is retained by its C-terminal KDEL peptide as a rather inactive pro-enzyme. Large number of ricinosomes bud from the ER at the same time as the nuclear DNA is characteristically fragmented during PCD. The mitochondria, glyoxysomes and ribosomes are degraded in autophagic vacuoles, while the endopeptidase is activated by removal of the propeptide and the KDEL tail and enters the cytosol. The endosperm dries and detaches from the cotyledons. A homologous KDEL-tailed cysteine endopeptidase has been found in several senescing tissues; it has been localized in ricinosomes of withering day-lily petals and dying seed coats. Three genes for a KDEL-tailed cysteine endopeptidase have been identified in Arabidopsis. One is expressed in senescing ovules, the second in the vascular vessels and the third in maturing siliques. These genes open the way to exploring PCD in plants.

  11. A morphometric analysis of the redistribution of organelles in columella cells of horizontally-oriented roots of Zea mays

    Science.gov (United States)

    Moore, R.

    1986-01-01

    In order to determine what structural changes in graviperceptive cells are associated with onset of root gravicurvature, the redistribution of organelles in columella cells of horizontally-oriented, graviresponding roots of Zea mays has been quantified. Root gravicurvature began by 15 min after reorientation, and did not involve significant changes in the (i) volume of individual columella cells or amyloplasts, (ii) relative volume of any cellular organelle, (iii) number of amyloplasts per columella cell, or (iv) surface area of cellular location of endoplasmic reticulum. Sedimentation of amyloplasts began within 1 to 2 min after reorientation, and was characterized by an intensely staining area of cytoplasm adjacent to the sedimenting amyloplasts. By 5 min after reorientation, amyloplasts were located in the lower distal corner of columella cells, and, by 15 min after reorientation, overlaid the entire length of the lower cell wall. No consistent contact between amyloplasts and any cellular structure was detected at any stage of gravicurvature. Centrally-located nuclei initially migrated upward in columella cells of horizontally-oriented roots, after which they moved to the proximal ends of the cells by 15 min after reorientation. No significant pattern of redistribution of vacuoles, mitochondria, dictyosomes, or hyaloplasm was detected that correlated with the onset of gravicurvature. These results indicate that amyloplasts and nuclei are the only organelles whose movements correlate positively with the onset of gravicurvature by primary roots of this cultivar of Zea mays.

  12. Fifty years of Weibel-Palade bodies: the discovery and early history of an enigmatic organelle of endothelial cells.

    Science.gov (United States)

    Weibel, E R

    2012-06-01

    In 1962, a rod-shaped cytoplasmic organelle of endothelial cells, later called the Weibel-Palade body, was serendipitously discovered by electron microscopy. It contains a set of parallel tubules and is wrapped in a membrane. Subsequent studies in the following decades established the unique localization of this organelle in endothelial cells of all vertebrates studied, meaning that it could serve as a marker of endothelial cells in tissue cultures. However, these studies did not reveal its functional significance, except for an indication that it could be related to an undefined thromboplastic substance. Twenty years after its discovery as a structural entity, it was shown by others that it houses von Willebrand factor and is thus clearly related to the coagulation system. In this review, I provide a personal historical account of the discovery and the subsequent limited work that I carried out on the organelle, putting it in the perspective of the current state of knowledge after half a century of research by many scientists.

  13. Infectious triggers of pediatric asthma.

    Science.gov (United States)

    Gern, James E; Lemanske, Robert F

    2003-06-01

    Respiratory infections can cause wheezing illnesses in children of all ages and also can influence the causation and disease activity of asthma. For years it has been recognized that respiratory syncytial virus infections often produce the first episode of wheezing in children who go on to develop chronic asthma. More recently, it has been proposed that repeated infections with other common childhood viral pathogens might help the immune system develop in such a way as to prevent the onset of allergic diseases and possibly asthma. In addition to the effects of viral infections, infections with certain intracellular pathogens, such as chlamydia and mycoplasma, may cause acute and chronic wheezing in some individuals, whereas common cold and acute sinus infections can trigger acute symptoms of asthma. In this article, the epidemiologic, mechanistic, and treatment implications of the association between respiratory infections and asthma are discussed.

  14. Infectious Agents Trigger Trophic Cascades.

    Science.gov (United States)

    Buck, Julia C; Ripple, William J

    2017-09-01

    Most demonstrated trophic cascades originate with predators, but infectious agents can also cause top-down indirect effects in ecosystems. Here we synthesize the literature on trophic cascades initiated by infectious agents including parasitoids, pathogens, parasitic castrators, macroparasites, and trophically transmitted parasites. Like predators, infectious agents can cause density-mediated and trait-mediated indirect effects through their direct consumptive and nonconsumptive effects respectively. Unlike most predators, however, infectious agents are not fully and immediately lethal to their victims, so their consumptive effects can also trigger trait-mediated indirect effects. We find that the frequency of trophic cascades reported for different consumer types scales with consumer lethality. Furthermore, we emphasize the value of uniting predator-prey and parasite-host theory under a general consumer-resource framework. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Episodic tremor triggers small earthquakes

    Science.gov (United States)

    Balcerak, Ernie

    2011-08-01

    It has been suggested that episodic tremor and slip (ETS), the weak shaking not associated with measurable earthquakes, could trigger nearby earthquakes. However, this had not been confirmed until recently. Vidale et al. monitored seismicity in the 4-month period around a 16-day episode of episodic tremor and slip in March 2010 in the Cascadia region. They observed five small earthquakes within the subducting slab during the ETS episode. They found that the timing and locations of earthquakes near the tremor suggest that the tremor and earthquakes are related. Furthermore, they observed that the rate of earthquakes across the area was several times higher within 2 days of tremor activity than at other times, adding to evidence of a connection between tremor and earthquakes. (Geochemistry, Geophysics, Geosystems, doi:10.1029/2011GC003559, 2011)

  16. Landslide triggering by rain infiltration

    Science.gov (United States)

    Iverson, Richard M.

    2000-01-01

    Landsliding in response to rainfall involves physical processes that operate on disparate timescales. Relationships between these timescales guide development of a mathematical model that uses reduced forms of Richards equation to evaluate effects of rainfall infiltration on landslide occurrence, timing, depth, and acceleration in diverse situations. The longest pertinent timescale is A/D0, where D0 is the maximum hydraulic diffusivity of the soil and A is the catchment area that potentially affects groundwater pressures at a prospective landslide slip surface location with areal coordinates x, y and depth H. Times greater than A/D0 are necessary for establishment of steady background water pressures that develop at (x, y, H) in response to rainfall averaged over periods that commonly range from days to many decades. These steady groundwater pressures influence the propensity for landsliding at (x, y, H), but they do not trigger slope failure. Failure results from rainfall over a typically shorter timescale H2/D0 associated with transient pore pressure transmission during and following storms. Commonly, this timescale ranges from minutes to months. The shortest timescale affecting landslide responses to rainfall is √(H/g), where g is the magnitude of gravitational acceleration. Postfailure landslide motion occurs on this timescale, which indicates that the thinnest landslides accelerate most quickly if all other factors are constant. Effects of hydrologic processes on landslide processes across these diverse timescales are encapsulated by a response function, R(t*) = √(t*/π) exp (-1/t*) - erfc (1/√t*), which depends only on normalized time, t*. Use of R(t*) in conjunction with topographic data, rainfall intensity and duration information, an infinite-slope failure criterion, and Newton's second law predicts the timing, depth, and acceleration of rainfall-triggered landslides. Data from contrasting landslides that exhibit rapid, shallow motion and slow, deep

  17. Understanding of myofascial trigger points

    Institute of Scientific and Technical Information of China (English)

    Zhuang Xiaoqiang; Tan Shusheng; Huang Qiangmin

    2014-01-01

    Objective To investigate the current practice of myofascial pain syndrome (MPS) including current epidemiology,pathology,diagnosis and treatment.Data sources The data analyzed in this review were mainly from relevant articles without restriction on the publication date reported in PubMed,MedSci,Google scholar.The terms "myofasial trigger points" and "myofacial pain syndrome" were used for the literature search.Study selection Original articles with no limitation of research design and critical reviews containing data relevant to myofascial trigger points (MTrPs) and MPS were retrieved,reviewed,analyzed and summarized.Results Myofascial pain syndrome (MPS) is characterized by painful taut band,referred pain,and local response twitch with a prevalence of 85% to 95% of incidence.Several factors link to the etiology of MTrPs,such as the chronic injury and overload of muscles.Other factors,such as certain nutrient and hormone insufficiency,comorbidities,and muscle imbalance may also maintain the MTrP in an active status and induce recurrent pain.The current pathology is that an extra leakage acetylcholine at the neuromuscular junction induces persistent contracture knots,relative to some hypotheses of integration,muscle spindle discharges,spinal segment sensitization,ect.MTrPs can be diagnosed and localized based on a few subjective criteria.Several approaches,including both direct and supplementary treatments,can inactivate MTrPs.Direct treatments are categorized into invasive and conservative.Conclusion This review provides a clear understanding of MTrP pain and introduces the most useful treatment approaches in China.

  18. Disaster triggers disaster: Earthquake triggering by tropical cyclones

    Science.gov (United States)

    Wdowinski, S.; Tsukanov, I.

    2011-12-01

    Three recent devastating earthquakes, the 1999 M=7.6 Chi-Chi (Taiwan), 2010 M=7.0 Leogane (Haiti), 2010 M=6.4 Kaohsiung (Taiwan), and additional three moderate size earthquakes (6cyclones (hurricane or typhoon) hit the very same area. The most familiar example is Haiti, which was hit during the late summer of 2008 by two hurricanes and two tropical storms (Fay, Gustav, Hanna and Ike) within 25 days. A year an a half after this very wet hurricane season, the 2010 Leogane earthquake occurred in the mountainous Haiti's southern peninsula and caused the death of more than 300,000 people. The other cases are from Taiwan, which is characterized by a high seismicity level and frequent typhoon landfall. The three wettest typhoons in Taiwan's past 50 years were Morakot (in 2009, with 2885 mm or rain), Flossie (1969, 2162 mm) and Herb (1996, 1987 mm)[Lin et al., 2010]. Each of this three very wet storms was followed by one or two main-shock M>6 earthquake that occurred in the central mountainous area of Taiwan within three years after the typhoon. The 2009 Morakot typhoon was followed by 2009 M=6.2 Nantou and 2010 M=6.4 Kaohsiung earthquakes; the 1969 Flossie typhoon was followed by an M=6.3 earthquake in 1972; and the 1996 Herb typhoon by the 1998 M=6.2 Rueyli and 1999 M=7.6 Chi-Chi earthquakes. The earthquake catalog of Taiwan lists only two other M>6 main-shocks that occurred in Taiwan's central mountainous belt, one of them was in 1964 only four months after the wet Typhoon Gloria poured heavy rain in the same area. We suggest that the close proximity in time and space between wet tropical cyclones and earthquakes reflects a physical link between the two hazard types in which these earthquakes were triggered by rapid erosion induced by tropical cyclone's heavy rain. Based on remote sensing observations, meshfree finite element modeling, and Coulomb failure stress analysis, we show that the erosion induced by very wet cyclones increased the failure stresses at the

  19. Smart trigger logic for focal plane arrays

    Science.gov (United States)

    Levy, James E; Campbell, David V; Holmes, Michael L; Lovejoy, Robert; Wojciechowski, Kenneth; Kay, Randolph R; Cavanaugh, William S; Gurrieri, Thomas M

    2014-03-25

    An electronic device includes a memory configured to receive data representing light intensity values from pixels in a focal plane array and a processor that analyzes the received data to determine which light values correspond to triggered pixels, where the triggered pixels are those pixels that meet a predefined set of criteria, and determines, for each triggered pixel, a set of neighbor pixels for which light intensity values are to be stored. The electronic device also includes a buffer that temporarily stores light intensity values for at least one previously processed row of pixels, so that when a triggered pixel is identified in a current row, light intensity values for the neighbor pixels in the previously processed row and for the triggered pixel are persistently stored, as well as a data transmitter that transmits the persistently stored light intensity values for the triggered and neighbor pixels to a data receiver.

  20. Tracking triggers for the upgraded DOe detector

    Energy Technology Data Exchange (ETDEWEB)

    Glenn, S. [California Univ., Davis (United States); Bloom, P. [California Univ., Davis (United States); Mani, S. [California Univ., Davis (United States); Pellett, D. [California Univ., Davis (United States); Costa, J. [CBPF/LAFEX, Rio de Janeiro (Brazil); Moreira, L. [CBPF/LAFEX, Rio de Janeiro (Brazil); Baumbaugh, A. [Fermi National Accelerator Laboratory, Batavia, IL (United States); Blazey, G. [Fermi National Accelerator Laboratory, Batavia, IL (United States); Borcherding, F. [Fermi National Accelerator Laboratory, Batavia, IL (United States); Johnson, M. [Fermi National Accelerator Laboratory, Batavia, IL (United States); Wilcox, J. [Northeastern University, Boston, MA (United States)

    1995-06-01

    The high luminosity environment of the upgraded Tevatron will require not only the upgrade of various DOe subdetectors, but the trigger system as well. With respect to the present system, the upgraded trigger system must operate faster and provide a higher degree of background rejection while extending the physics acceptance beyond that of the current system. This will be accomplished in part by incorporating the scintillating fiber tracker and the preshower detector into the Level 1 trigger. Track logic, implemented in commercial FPGAs, will be used to identify tracks in the scintillating fiber tracker with P{sub T}>1.5 GeV/c and electron candidates in the preshower detector. Integration of the trigger logic and readout electronics permits the identification of all tracks in a few hundred nanoseconds. Here, preliminary designs for the readout and trigger electronics are presented along with simulation results for trigger efficiencies and rejection factors. (orig.).

  1. Importance of direct and indirect triggered seismicity

    CERN Document Server

    Helmstetter, A; Helmstetter, Agnes; Sornette, Didier

    2003-01-01

    Using the simple ETAS branching model of seismicity, which assumes that each earthquake can trigger other earthquakes, we quantify the role played by the cascade of triggered seismicity in controlling the rate of aftershock decay as well as in the overall level of seismicity in the presence of a constant external seismicity source. We show that, in this model, the proportion of triggered seismicity is equal to the proportion of secondary plus later-generation aftershocks, and is given by the average number of triggered events per earthquake. Based on these results and on the observation that a large fraction of seismicity are triggered earthquakes, we conclude that similarly a large fraction of aftershocks occurring a few hours or days after a mainshock are triggered indirectly by the mainshock.

  2. The ATLAS b-jet Trigger

    CERN Document Server

    Ferreira de Lima, D E; The ATLAS collaboration

    2011-01-01

    The ATLAS b-jet Trigger The online event selection is crucial to reject most of the events containing uninteresting background collisions while preserving as much as possible the interesting physical signals. The b-jet selection is part of the trigger strategy of the ATLAS experiment and a set of dedicated triggers is presently contributing to the event selection for the 2011 running. The b-jets acceptance is increased and the background reduced by lowering jet transverse energy thresholds at the first trigger level and applying b-tagging techniques at the subsequent levels. Different physics channels, especially topologies containing more than one b-jet where higher rejection factors are achieved, benefit from requesting this trigger to be fired. An overview of the status-of-art of the b-jet trigger menu and performance on real data is presented in this poster.

  3. Online software trigger at PANDA/FAIR

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Donghee [Mainz Univ. (Germany). Inst. fuer Kernphysik; Collaboration: PANDA-Collaboration

    2013-07-01

    The PANDA experiment at the FAIR facility will employ a novel trigger-less readout concept. PANDA will have no first level hardware trigger and apply a high level software trigger to do fast event selection based on the physics properties of reconstructed events. A trigger-less data stream implies that an event selection requires track reconstruction and pattern recognition to be performed online, analysing data under real time condition at the event rates up to 40 MHz. A significant event rate reduction is required to reject effectively background events, while retaining the interesting events at the same time. The projected reduction factor is 10{sup -3}. Real time event selection in this environment is very challenging and rely on sophisticated algorithms in the software trigger. This presentation shows the implementation and performance tests of the online high level physics trigger algorithms. The impact of parameters such as momentum, mass resolution, and PID probability for the event filtering are presented.

  4. The GC-Rich Mitochondrial and Plastid Genomes of the Green Alga Coccomyxa Give Insight into the Evolution of Organelle DNA Nucleotide Landscape

    Energy Technology Data Exchange (ETDEWEB)

    Smith, David Roy; Burki, Fabien; Yamada, Takashi; Grimwood, Jane; Grigoriev, Igor V.; Van Etten, James L.; Keeling, Patrick J.

    2011-05-13

    Most of the available mitochondrial and plastid genome sequences are biased towards adenine and thymine (AT) over guanine and cytosine (GC). Examples of GC-rich organelle DNAs are limited to a small but eclectic list of species, including certain green algae. Here, to gain insight in the evolution of organelle nucleotide landscape, we present the GC-rich mitochondrial and plastid DNAs from the trebouxiophyte green alga Coccomyxa sp. C-169. We compare these sequences with other GC-rich organelle DNAs and argue that the forces biasing them towards G and C are nonadaptive and linked to the metabolic and/or life history features of this species. The Coccomyxa organelle genomes are also used for phylogenetic analyses, which highlight the complexities in trying to resolve the interrelationships among the core chlorophyte green algae, but ultimately favour a sister relationship between the Ulvophyceae and Chlorophyceae, with the Trebouxiophyceae branching at the base of the chlorophyte crown.

  5. Efficient Distribution of Triggered Synchronous Block Diagrams

    Science.gov (United States)

    2011-10-21

    called a trigger. At a given synchronous step, if the trigger is true , the block fires normally; otherwise, the block stutters , that is, keeps its...outputs have the same value as in the previous step, but they are still transmitted to downstream blocks. In this paper we present an implementation...optimizations that apply to general Triggered SBDs, we also present further optimizations for the case of Timed SBDs. 1.1 Motivating Examples Fig. 1

  6. A single origin of the photosynthetic organelle in different Paulinella lineages

    Directory of Open Access Journals (Sweden)

    Ishida Ken-ichiro

    2009-05-01

    Full Text Available Abstract Background Gaining the ability to photosynthesize was a key event in eukaryotic evolution because algae and plants form the base of the food chain on our planet. The eukaryotic machines of photosynthesis are plastids (e.g., chloroplast in plants that evolved from cyanobacteria through primary endosymbiosis. Our knowledge of plastid evolution, however, remains limited because the primary endosymbiosis occurred more than a billion years ago. In this context, the thecate "green amoeba" Paulinella chromatophora is remarkable because it very recently (i.e., minimum age of ≈ 60 million years ago acquired a photosynthetic organelle (termed a "chromatophore"; i.e., plastid via an independent primary endosymbiosis involving a Prochlorococcus or Synechococcus-like cyanobacterium. All data regarding P. chromatophora stem from a single isolate from Germany (strain M0880/a. Here we brought into culture a novel photosynthetic Paulinella strain (FK01 and generated molecular sequence data from these cells and from four different cell samples, all isolated from freshwater habitats in Japan. Our study had two aims. The first was to compare and contrast cell ultrastructure of the M0880/a and FK01 strains using scanning electron microscopy. The second was to assess the phylogenetic diversity of photosynthetic Paulinella to test the hypothesis they share a vertically inherited plastid that originated in their common ancestor. Results Comparative morphological analyses show that Paulinella FK01 cells are smaller than M0880/a and differ with respect to the number of scales per column. There are more distinctive, multiple fine pores on the external surface of FK01 than in M0880/a. Molecular phylogenetic analyses using multiple gene markers demonstrate these strains are genetically distinct and likely comprise separate species. The well-supported monophyly of the Paulinella chromatophora strains analyzed here using plastid-encoded 16S rRNA suggests strongly

  7. Nonlinear electromagnetic responses of active membrane protein complexes in live cells and organelles

    Science.gov (United States)

    Nawarathna, Dharmakirthi

    observed, possibly due to the F0 domain of ATP synthase. Finally, harmonics generated by chloroplasts, the plant organelles responsible for photosynthesis, were measured, which are similar in structure and function to mitochondria, depend dramatically on incident light, and vanish in the absence of light. Using spinach chloroplasts, light sensitive peaks were detected in the range of 0--12 kHz, again suggesting that these harmonics are indicative of electron processes in the light harvesting complexes, reaction center, and/or photosynthetic electron transport chain.

  8. Efficacy of the motile sperm organelle morphology examination (MSOME in predicting pregnancy after intrauterine insemination

    Directory of Open Access Journals (Sweden)

    Mauri Ana L

    2011-08-01

    Full Text Available Abstract Background Although the motile sperm organelle morphology examination (MSOME was developed merely as a selection criterion, its application as a method for classifying sperm morphology may represent an improvement in the evaluation of semen quality. The aim of this study was to determine the prognostic value of normal sperm morphology using MSOME with regard to clinical pregnancy (CP after intrauterine insemination (IUI. Methods A total of 156 IUI cycles that were performed in 111 couples were prospectively analysed. Each subject received 75 IU of recombinant FSH every second day from the third day of the cycle. Beginning on the 10th day of the cycle, follicular development was monitored by vaginal ultrasound. When one or two follicles measuring at least 17 mm were observed, recombinant hCG was administered, and IUI was performed 12-14 h and 36-40 h after hCG treatment. Prior to the IUI procedure, sperm samples were analysed by MSOME at 8400× magnification using an inverted microscope that was equipped with DIC/Nomarski differential interference contrast optics. A minimum of 200 motile spermatozoa per semen sample were evaluated, and the percentage of normal spermatozoa in each sample was determined. Results Pregnancy occurred in 34 IUI cycles (CP rate per cycle: 21.8%, per patient: 30.6%. Based on the MSOME criteria, a significantly higher percentage of normal spermatozoa was found in the group of men in which the IUI cycles resulted in pregnancy (2.6+/-3.1% compared to the group that did not achieve pregnancy (1.2+/-1.7%; P = 0.019. Logistic regression showed that the percentage of normal cells in the MSOME was a determining factor for the likelihood of clinical pregnancy (OR: 1.28; 95% CI: 1.08 to 1.51; P = 0.003. The ROC curve revealed an area under the curve of 0.63 and an optimum cut-off point of 2% of normal sperm morphology. At this cut-off threshold, using the percentage of normal sperm morphology by MSOME to predict pregnancy

  9. The first-level trigger of ATLAS

    CERN Document Server

    Haller, J; Aielli, G; Aloisio, A; Alviggi, M G; Aprodu, V; Ask, S; Barnett, B M; Bartos, D; Bauss, B; Belkin, A; Benhammou, Ya; Bocci, V; Booth, J R A; Brambilla, Elena; Brawn, I P; Bressler, S; Buda, S; Bohm, C; Canale, V; Caracinha, D; Cardarelli, R; Carlino, G; Cataldi, G; Charlton, D G; Chiodi, G; Ciapetti, G; Constantin, S; Conventi, F; Davis, A O; De Asmundis, R; De Pedis, D; De Seixas, J M; Della Pietra, M; Della Volpe, D; Di Ciaccio, A; Di Girolamo, A; Di Mattia, A; Di Simone, A; Distante, L; Dogaru, M; Edwards, J; Eisenhandler, E F; Ellis, Nick; Etzion, E; Farthouat, P; Fukunaga, C; Föhlisch, F; Gee, C N P; Gennari, E; Geweniger, C; Gillman, A R; Gorini, E; Grancagnolo, F; Gällnö, P; Haas, S; Hanke, P; Harel, A; Hasegawa, Y; Hellman, S; Hidvegi, A; Hillier, S J; Ichimiya, R; Iengo, P; Ikeno, M; Ishino, M; Iwasaki, H; Izzo, V; Kagawa, S; Kanaya, N; Kawagoe, K; Kawamoto, T; Kiyamura, H; Kluge, E -E; Kobayashi, T; Krasznahorkay, A; Kurashige, H; Kuwabara, T; Landon, M; Lellouch, D; Levinson, L; Lifshitz, R; Luci, C; Lupu, N; Magureanu, C; Mahboubi, K; Mahout, G; Meier, K; Migliaccio, A; Mikenberg, G; Mirea, A; Moye, T H; Nagano, K; Nisati, A; Nomachi, M; Nomoto, H; Nozaki, M; Ochi, A; Ogata, T; Omachi, C; Oshita, H; Pasqualucci, E; Pastore, F; Patricelli, S; Pauly, T; Pectu, M; Perantoni, M; Perera, V J O; Perrino, R; Pessoa-Lima, H; Petrolo, E; Primavera, M; Prodan, L; Qian, W; Rieke, S; Rusu, A; Rühr, F; Sakamoto, H; Salamon, A; Sankey, D P C; Santonico, R; Sasaki, O; Schmitt, K; Schuler, G; Schultz-Coulon, H C; Schäfer, U; Sekhniaidze, G; Silverstein, S; Spagnolo, S; Spila, F; Spiwoks, R; Staley, R J; Sugaya, Y; Sugimoto, T; Takeda, H; Takeshita, T; Tanaka, S; Tapprogge, S; Tarem, S; Thomas, J P; Trefzger, T; Typaldos, D; Uroseviteanu, C; Vari, R; Veneziano, Stefano; Watkins, P M; Watson, A; Weber, G A; Weber, P; Wengler, T; Woerling, E E; Yamaguchi, Y; Yasu, Y; Zanello, L

    2006-01-01

    Due to the huge interaction rates and the tough experimental environment of pp collisions at a centre-of-mass energy sqrt(s)=14 TeV and luminosities of up to 10^34cm^-2s^-1, one of the experimental challenges at the LHC is the triggering of interesting events. In the ATLAS experiment a three-level trigger system is foreseen for this purpose. The first-level trigger is implemented in custom hardware and has been designed to reduce the data rate from the initial bunch-crossing rate of 40MHz to around 75 kHz. Its event selection is based on information from the calorimeters and dedicated muon detectors. This article gives an overview over the full first-level trigger system including the Calorimeter Trigger, the Muon Trigger and the Central Trigger Processor. In addition, recent results are reported that have been obtained from test-beam studies performed at CERN where the full first-level trigger chain was established successfully for the first time and used to trigger the read-out of up to nine ATLAS sub-detec...

  10. Data analysis at Level-1 Trigger level

    CERN Document Server

    Wittmann, Johannes; Aradi, Gregor; Bergauer, Herbert; Jeitler, Manfred; Wulz, Claudia; Apanasevich, Leonard; Winer, Brian; Puigh, Darren Michael

    2017-01-01

    With ever increasing luminosity at the LHC, optimum online data selection is getting more and more important. While in the case of some experiments (LHCb and ALICE) this task is being completely transferred to computer farms, the others - ATLAS and CMS - will not be able to do this in the medium-term future for technological, detector-related reasons. Therefore, these experiments pursue the complementary approach of migrating more and more of the offline and High-Level Trigger intelligence into the trigger electronics. This paper illustrates how the Level-1 Trigger of the CMS experiment and in particular its concluding stage, the Global Trigger, take up this challenge.

  11. The Run-2 ATLAS Trigger System

    Science.gov (United States)

    Ruiz Martínez, A.; ATLAS Collaboration

    2016-10-01

    The ATLAS trigger successfully collected collision data during the first run of the LHC between 2009-2013 at different centre-of-mass energies between 900 GeV and 8TeV. The trigger system consists of a hardware Level-1 and a software-based high level trigger (HLT) that reduces the event rate from the design bunch-crossing rate of 40 MHz to an average recording rate of a few hundred Hz. In Run-2, the LHC will operate at centre-of-mass energies of 13 and 14 TeV and higher luminosity, resulting in up to five times higher rates of processes of interest. A brief review of the ATLAS trigger system upgrades that were implemented between Run-1 and Run-2, allowing to cope with the increased trigger rates while maintaining or even improving the efficiency to select physics processes of interest, will be given. This includes changes to the Level-1 calorimeter and muon trigger systems, the introduction of a new Level-1 topological trigger module and the merging of the previously two-level HLT system into a single event processing farm. A few examples will be shown, such as the impressive performance improvements in the HLT trigger algorithms used to identify leptons, hadrons and global event quantities like missing transverse energy. Finally, the status of the commissioning of the trigger system and its performance during the 2015 run will be presented.

  12. CSC Trigger Primitive Rates in ORCA

    CERN Document Server

    Cousins, Robert; Valuev, S

    2002-01-01

    Recent work in ORCA has prompted us to make a new estimate of the background rates in the Level-1 CSC Trigger Primitives. We report our findings for SimHit, digi, and LCT rates, as well as the input LCT rates in the Muon Port Cards. We compare our estimates with two earlier results (Level-1 Trigger TDR, and ``Background LCT Rates by CSC Type Using the Forward Muon Trigger Simulation in CMS100'' by Breedon, Fisyak, Ko and Rowe), and observe some differences attributed to geometry changes, improved shielding, and improved CSC and Level-1 Trigger simulation. % and larger statistics in the present study.

  13. PREPACT 2.0: Predicting C-to-U and U-to-C RNA Editing in Organelle Genome Sequences with Multiple References and Curated RNA Editing Annotation

    OpenAIRE

    2013-01-01

    RNA editing is vast in some genetic systems, with up to thousands of targeted C-to-U and U-to-C substitutions in mitochondria and chloroplasts of certain plants. Efficient prognoses of RNA editing in organelle genomes will help to reveal overlooked cases of editing. We present PREPACT 2.0 (http://www.prepact.de) with numerous enhancements of our previously developed Plant RNA Editing Prediction & Analysis Computer Tool. Reference organelle transcriptomes for editing prediction have been exten...

  14. Nonlinear dynamical triggering of slow slip

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Paul A [Los Alamos National Laboratory; Knuth, Matthew W [WISCONSIN; Kaproth, Bryan M [PENN STATE; Carpenter, Brett [PENN STATE; Guyer, Robert A [Los Alamos National Laboratory; Le Bas, Pierre - Yves [Los Alamos National Laboratory; Daub, Eric G [Los Alamos National Laboratory; Marone, Chris [PENN STATE

    2010-12-10

    Among the most fascinating, recent discoveries in seismology have been the phenomena of triggered slip, including triggered earthquakes and triggered-tremor, as well as triggered slow, silent-slip during which no seismic energy is radiated. Because fault nucleation depths cannot be probed directly, the physical regimes in which these phenomena occur are poorly understood. Thus determining physical properties that control diverse types of triggered fault sliding and what frictional constitutive laws govern triggered faulting variability is challenging. We are characterizing the physical controls of triggered faulting with the goal of developing constitutive relations by conducting laboratory and numerical modeling experiments in sheared granular media at varying load conditions. In order to simulate granular fault zone gouge in the laboratory, glass beads are sheared in a double-direct configuration under constant normal stress, while subject to transient perturbation by acoustic waves. We find that triggered, slow, silent-slip occurs at very small confining loads ({approx}1-3 MPa) that are smaller than those where dynamic earthquake triggering takes place (4-7 MPa), and that triggered slow-slip is associated with bursts of LFE-like acoustic emission. Experimental evidence suggests that the nonlinear dynamical response of the gouge material induced by dynamic waves may be responsible for the triggered slip behavior: the slip-duration, stress-drop and along-strike slip displacement are proportional to the triggering wave amplitude. Further, we observe a shear-modulus decrease corresponding to dynamic-wave triggering relative to the shear modulus of stick-slips. Modulus decrease in response to dynamical wave amplitudes of roughly a microstrain and above is a hallmark of elastic nonlinear behavior. We believe that the dynamical waves increase the material non-affine elastic deformation during shearing, simultaneously leading to instability and slow-slip. The inferred

  15. Intrasaccadic perception triggers pupillary constriction

    Directory of Open Access Journals (Sweden)

    Sebastiaan Mathôt

    2015-08-01

    Full Text Available It is commonly believed that vision is impaired during saccadic eye movements. However, here we report that some visual stimuli are clearly visible during saccades, and trigger a constriction of the eye’s pupil. Participants viewed sinusoid gratings that changed polarity 150 times per second (every 6.67 ms. At this rate of flicker, the gratings were perceived as homogeneous surfaces while participants fixated. However, the flickering gratings contained ambiguous motion: rightward and leftward motion for vertical gratings; upward and downward motion for horizontal gratings. When participants made a saccade perpendicular to the gratings’ orientation (e.g., a leftward saccade for a vertical grating, the eye’s peak velocity matched the gratings’ motion. As a result, the retinal image was approximately stable for a brief moment during the saccade, and this gave rise to an intrasaccadic percept: A normally invisible stimulus became visible when eye velocity was maximal. Our results confirm and extend previous studies by demonstrating intrasaccadic perception using a reflexive measure (pupillometry that does not rely on subjective report. Our results further show that intrasaccadic perception affects all stages of visual processing, from the pupillary response to visual awareness.

  16. C. elegans Major Fats Are Stored in Vesicles Distinct from Lysosome-Related Organelles

    OpenAIRE

    O’Rourke, Eyleen J.; Soukas, Alexander A.; Carr, Christopher E.; Ruvkun, Gary

    2009-01-01

    Genetic conservation allows ancient features of fat storage endocrine pathways to be explored in C. elegans. Multiple studies have used Nile red or BODIPY-labeled fatty acids to identify regulators of fat mass. When mixed with their food, E. coli bacteria, Nile red, and BODIPY-labeled fatty acids stain multiple spherical cellular structures in the C. elegans major fat storage organ, the intestine. However, here we demonstrate that, in the conditions previously reported, the lysosome-related o...

  17. Intelligent trigger processor for the crystal box

    CERN Document Server

    Sanders, G H; Cooper, M D; Hart, G W; Hoffman, C M; Hogan, G E; Hughes, E B; Matis, H S; Rolfe, J; Sandberg, V D; Williams, R A; Wilson, S; Zeman, H

    1981-01-01

    A large solid angle angular modular NaI(Tl) detector with 432 phototubes and 88 trigger scintillators is being used to search simultaneously for three lepton flavor-changing decays of the muon. A beam of up to 10/sup 6/ muons stopping per second with a 6% duty factor would yield up to 1000 triggers per second from random triple coincidences. A reduction of the trigger rate to 10 Hz is required from a hardwired primary trigger processor. Further reduction to <1 Hz is achieved by a microprocessor-based secondary trigger processor. The primary trigger hardware imposes voter coincidence logic, stringent timing requirements, and a non-adjacency requirement in the trigger scintillators defined by hardwired circuits. Sophisticated geometric requirements are imposed by a PROM-based matrix logic, and energy and vector-momentum cuts are imposed by a hardwired processor using LSI flash ADC's and digital arithmetic logic. The secondary trigger employs four satellite microprocessors to do a sparse data scan, multiplex ...

  18. The LVL2 trigger goes online

    CERN Document Server

    David Berge

    On Friday, the 9th of February, the ATLAS TDAQ community reached an important milestone. In a successful integration test, cosmic-ray muons were recorded with parts of the muon spectrometer, the central-trigger system and a second-level trigger algorithm. This was actually the first time that a full trigger slice all the way from the first-level trigger muon chambers up to event building after event selection by the second-level trigger ran online with cosmic rays. The ATLAS trigger and data acquisition system has a three-tier structure that is designed to cope with the enormous demands of proton-proton collisions at a bunch-crossing frequency of 40 MHz, with a typical event size of 1-2 MB. The online event selection has to reduce the incoming rate by a factor of roughly 200,000 to 200 Hz, a rate digestible by the archival-storage and offline-processing facilities. ATLAS has a mixed system: the first-level trigger (LVL1) is in hardware, while the other two consecutive levels, the second-level trigger (LVL2)...

  19. The ATLAS Level-1 Topological Trigger Performance

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00371751; The ATLAS collaboration

    2016-01-01

    The LHC will collide protons in the ATLAS detector with increasing luminosity through 2016, placing stringent operational and physical requirements to the ATLAS trigger system in order to reduce the 40 MHz collision rate to a manageable event storage rate of 1 kHz, while not rejecting interesting physics events. The Level-1 trigger is the first rate-reducing step in the ATLAS trigger system with an output rate of 100 kHz and decision latency smaller than 2.5 μs. It consists of a calorimeter trigger, muon trigger and a central trigger processor. During the LHC shutdown after the Run 1 finished in 2013, the Level-1 trigger system was upgraded including hardware, firmware and software updates. In particular, new electronics modules were introduced in the real-time data processing path: the Topological Processor System (L1Topo). It consists of a single AdvancedCTA shelf equipped with two Level-1 topological processor blades. They receive real-time information from the Level-1 calorimeter and muon triggers, which...

  20. The Run-2 ATLAS Trigger System

    CERN Document Server

    Ruiz-Martinez, Aranzazu; The ATLAS collaboration

    2016-01-01

    The ATLAS trigger has been successfully collecting collision data during the first run of the LHC between 2009-2013 at a centre-of-mass energy between 900 GeV and 8 TeV. The trigger system consists of a hardware Level-1 (L1) and a software based high-level trigger (HLT) that reduces the event rate from the design bunch-crossing rate of 40 MHz to an average recording rate of a few hundred Hz. In Run-2, the LHC will operate at centre-of-mass energies of 13 and 14 TeV resulting in roughly five times higher trigger rates. We will briefly review the ATLAS trigger system upgrades that were implemented during the shutdown, allowing us to cope with the increased trigger rates while maintaining or even improving our efficiency to select relevant physics processes. This includes changes to the L1 calorimeter and muon trigger systems, the introduction of a new L1 topological trigger module and the merging of the previously two-level HLT system into a single event filter farm. At hand of a few examples, we will show the ...

  1. Trigger factors for familial hemiplegic migraine

    DEFF Research Database (Denmark)

    Hansen, Jakob Møller; Hauge, Anne Werner; Ashina, Messoud

    2011-01-01

    The aim was to identify and describe migraine trigger factors in patients with familial hemiplegic migraine (FHM) from a population-based sample.......The aim was to identify and describe migraine trigger factors in patients with familial hemiplegic migraine (FHM) from a population-based sample....

  2. The ATLAS Level-1 Central Trigger Processor

    CERN Document Server

    Pauly, T; Ellis, Nick; Farthouat, P; Gällnö, P; Haller, J; Krasznahorkay, A; Maeno, T; Pessoa-Lima, H; Resurreccion-Arcas, I; Schuler, G; De Seixas, J M; Spiwoks, R; Torga-Teixeira, R; Wengler, T; 14th IEEE-NPSS Real Time Conference 2005

    2005-01-01

    ATLAS is a multi-purpose particle physics detector at CERN’s Large Hadron Collider where two pulsed beams of protons are brought to collision at very high energy. There are collisions every 25 ns, corresponding to a rate of 40 MHz. A three-level trigger system reduces this rate to about 200 Hz while keeping bunch crossings which potentially contain interesting processes. The Level-1 trigger, implemented in electronics and firmware, makes an initial selection in under 2.5 us with an output rate of less than 100 kHz. A key element of this is the Central Trigger Processor (CTP) which combines trigger information from the calorimeter and muon trigger processors to make the final Level-1 accept decision in under 100 ns on the basis of lists of selection criteria, implemented as a trigger menu. Timing and trigger signals are fanned out to all sub-detectors, while busy signals from all sub-detector read-out systems are collected and fed into the CTP in order to throttle the generation of Level-1 triggers.

  3. Do episodes of anger trigger myocardial infarction?

    DEFF Research Database (Denmark)

    Möller, J; Hallqvist, J; Diderichsen, Finn

    1999-01-01

    Our objectives were to study anger as a trigger of acute myocardial infarction (MI) and to explore potential effect modification by usual behavioral patterns related to hostility.......Our objectives were to study anger as a trigger of acute myocardial infarction (MI) and to explore potential effect modification by usual behavioral patterns related to hostility....

  4. Trigger factors for familial hemiplegic migraine

    DEFF Research Database (Denmark)

    Hansen, Jakob Møller; Hauge, Anne Werner; Ashina, Messoud

    2011-01-01

    The aim was to identify and describe migraine trigger factors in patients with familial hemiplegic migraine (FHM) from a population-based sample.......The aim was to identify and describe migraine trigger factors in patients with familial hemiplegic migraine (FHM) from a population-based sample....

  5. The Run-2 ATLAS Trigger System

    CERN Document Server

    Ruiz-Martinez, Aranzazu; The ATLAS collaboration

    2016-01-01

    The ATLAS trigger successfully collected collision data during the first run of the LHC between 2009-2013 at different centre-of-mass energies between 900 GeV and 8 TeV. The trigger system consists of a hardware Level-1 and a software-based high level trigger (HLT) that reduces the event rate from the design bunch-crossing rate of 40 MHz to an average recording rate of a few hundred Hz. In Run-2, the LHC will operate at centre-of-mass energies of 13 and 14 TeV and higher luminosity, resulting in roughly five times higher trigger rates. A brief review of the ATLAS trigger system upgrades that were implemented between Run-1 and Run-2, allowing to cope with the increased trigger rates while maintaining or even improving the efficiency to select physics processes of interest, will be given. This includes changes to the Level-1 calorimeter and muon trigger systems, the introduction of a new Level-1 topological trigger module and the merging of the previously two-level HLT system into a single event filter farm. A ...

  6. Corticosteroid injection for trigger finger in adults

    NARCIS (Netherlands)

    Peters-Veluthamaningal, Cyriac; van der Windt, Danielle A. W. M.; Winters, Jan C.; Meyboom-de Jong, Betty

    2009-01-01

    Background Trigger finger is a disease of the tendons of the hand leading to triggering (locking) of affected fingers, dysfunction and pain. Available treatments include local injection with corticosteroids, surgery, or splinting. Objectives To summarize the evidence on the efficacy and safety of

  7. Reconceptualizing the chlamydial inclusion as a pathogen-specified parasitic organelle: an expanded role for Inc proteins.

    Science.gov (United States)

    Moore, Elizabeth R; Ouellette, Scot P

    2014-01-01

    Chlamydia is an obligate intracellular pathogen that develops in the host cell in a vacuole termed the chlamydial inclusion. The prevailing concept of the chlamydial inclusion is of a parasitophorous vacuole. Here, the inclusion is the recipient of one-way host-pathogen interactions thus draining nutrients from the cell and negatively impacting it. While Chlamydia orchestrates some aspects of cell function, recent data indicate host cells remain healthy up until, and even after, chlamydial egress. Thus, while Chlamydia relies on the host cell for necessary metabolites, the overall function of the host cell, during chlamydial growth and development, is not grossly disturbed. This is consistent with the obligate intracellular organism's interest to maintain viability of its host. To this end, Chlamydia expresses inclusion membrane proteins, Incs, which serve as molecular markers for the inclusion membrane. Incs also contribute to the physical structure of the inclusion membrane and facilitate host-pathogen interactions across it. Given the function of Incs and the dynamic interactions that occur at the inclusion membrane, we propose that the inclusion behaves similarly to an organelle-albeit one that benefits the pathogen. We present the hypothesis that the chlamydial inclusion acts as a pathogen-specified parasitic organelle. This representation integrates the inclusion within existing subcellular trafficking pathways to divert a subset of host-derived metabolites thus maintaining host cell homeostasis. We review the known interactions of the chlamydial inclusion with the host cell and discuss the role of Inc proteins in the context of this model and how this perspective can impact the study of these proteins. Lessons learnt from the chlamydial pathogen-specified parasitic organelle can be applied to other intracellular pathogens. This will increase our understanding of how intracellular pathogens engage the host cell to establish their unique developmental niches.

  8. Melanoregulin, product of the dsu locus, links the BLOC-pathway and OA1 in organelle biogenesis.

    Directory of Open Access Journals (Sweden)

    Rivka A Rachel

    Full Text Available Humans with Hermansky-Pudlak Syndrome (HPS or ocular albinism (OA1 display abnormal aspects of organelle biogenesis. The multigenic disorder HPS displays broad defects in biogenesis of lysosome-related organelles including melanosomes, platelet dense granules, and lysosomes. A phenotype of ocular pigmentation in OA1 is a smaller number of macromelanosomes, in contrast to HPS, where in many cases the melanosomes are smaller than normal. In these studies we define the role of the Mreg(dsu gene, which suppresses the coat color dilution of Myo5a, melanophilin, and Rab27a mutant mice in maintaining melanosome size and distribution. We show that the product of the Mreg(dsu locus, melanoregulin (MREG, interacts both with members of the HPS BLOC-2 complex and with Oa1 in regulating melanosome size. Loss of MREG function facilitates increase in the size of micromelanosomes in the choroid of the HPS BLOC-2 mutants ruby, ruby2, and cocoa, while a transgenic mouse overexpressing melanoregulin corrects the size of retinal pigment epithelium (RPE macromelanosomes in Oa1(ko/ko mice. Collectively, these results suggest that MREG levels regulate pigment incorporation into melanosomes. Immunohistochemical analysis localizes melanoregulin not to melanosomes, but to small vesicles in the cytoplasm of the RPE, consistent with a role for this protein in regulating membrane interactions during melanosome biogenesis. These results provide the first link between the BLOC pathway and Oa1 in melanosome biogenesis, thus supporting the hypothesis that intracellular G-protein coupled receptors may be involved in the biogenesis of other organelles. Furthermore these studies provide the foundation for therapeutic approaches to correct the pigment defects in the RPE of HPS and OA1.

  9. Evidence for Lateral gene Transfer (LGT in the evolution of eubacteria-derived small GTPases in plant organelles

    Directory of Open Access Journals (Sweden)

    I Nengah Suwastika

    2014-12-01

    Full Text Available The genomes of free-living bacteria frequently exchange genes via lateral gene transfer (LGT, which has played a major role in bacterial evolution. LGT also played a significant role in the acquisition of genes from non-cyanobacterial bacteria to the lineage of ‘primary’ algae and land plants. Small GTPases are widely distributed among prokaryotes and eukaryotes. In this study, we inferred the evolutionary history of organelle-targeted small GTPases in plants. Arabidopsis thaliana contains at least one ortholog in seven subfamilies of OBG-HflX-like and TrmE-Era-EngA-YihA-Septin-like GTPase superfamilies (together referred to as Era-like GTPases. Subcellular localization analysis of all Era-like GTPases in Arabidopsis revealed that all thirteen eubacteria-related GTPases are localized to chloroplasts and/or mitochondria, whereas archaea-related DRG and NOG1 are localized to the cytoplasm and nucleus, respectively, suggesting that chloroplast- and mitochondrion-localized GTPases are derived from the ancestral cyanobacterium and α-proteobacterium, respectively, through endosymbiotic gene transfer (EGT. However, phylogenetic analyses revealed that plant organelle GTPase evolution is rather complex. Among the eubacterium-related GTPases, only four localized to chloroplasts (including one dual targeting GTPase and two localized to mitochondria were derived from cyanobacteria and α-proteobacteria, respectively. Three other chloroplast-targeted GTPases were related to α-proteobacterial proteins, rather than to cyanobacterial GTPases. Furthermore, we found that four other GTPases showed neither cyanobacterial nor α-proteobacterial affiliation. Instead, these GTPases were closely related to clades from other eubacteria, such as Bacteroides (Era1, EngB-1, and EngB-2 and green non-sulfur bacteria (HflX. This study thus provides novel evidence that LGT significantly contributed to the evolution of organelle-targeted Era-like GTPases in plants.

  10. A Novel in situ Trigger Combination Method

    CERN Document Server

    Buzatu, Adrian; Krumnack, Nils; Yao, Wei-Ming

    2012-01-01

    Searches for rare physics processes using particle detectors in high-luminosity colliding hadronic beam environments require the use of multi-level trigger systems to reject colossal background rates in real time. In analyses like the search for the Higgs boson, there is a need to maximize the signal acceptance by combining multiple different trigger chains when forming the offline data sample. In such statistically limited searches, datasets are often amassed over periods of several years, during which the trigger characteristics evolve and their performance can vary significantly. Reliable production cross-section measurements and upper limits must take into account a detailed understanding of the effective trigger inefficiency for every selected candidate event. We present as an example the complex situation of three trigger chains, based on missing energy and jet energy, to be combined in the context of the search for the Higgs (H) boson produced in association with a W boson at the Collider Detector at F...

  11. The LHCb trigger and its upgrade

    Science.gov (United States)

    Dziurda, A.

    2016-07-01

    The current LHCb trigger system consists of a hardware level, which reduces the LHC inelastic collision rate of 30 MHz, at which the entire detector is read out. In a second level, implemented in a farm of 20 k parallel-processing CPUs, the event rate is reduced to about 5 kHz. We review the performance of the LHCb trigger system during Run I of the LHC. Special attention is given to the use of multivariate analyses in the High Level Trigger. The major bottleneck for hadronic decays is the hardware trigger. LHCb plans a major upgrade of the detector and DAQ system in the LHC shutdown of 2018, enabling a purely software based trigger to process the full 30 MHz of inelastic collisions delivered by the LHC. We demonstrate that the planned architecture will be able to meet this challenge.

  12. MR imaging findings of trigger thumb

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Eric Y.; Chen, Karen C.; Chung, Christine B. [VA San Diego Healthcare System, Radiology Service, San Diego, CA (United States); University of California, San Diego Medical Center, Department of Radiology, San Diego, CA (United States)

    2015-08-15

    Trigger finger (or trigger thumb), also known as sclerosing tenosynovitis, is a common clinical diagnosis that rarely presents for imaging. Because of this selection bias, many radiologists may not be familiar with the process. Furthermore, patients who do present for imaging frequently have misleading examination indications. To our knowledge, magnetic resonance (MR) imaging findings of trigger thumb have not been previously reported in the literature. In this article, we review the entity of trigger thumb, the anatomy involved, and associated imaging findings, which include flexor pollicis longus tendinosis with a distinct nodule, A1 pulley thickening, and tenosynovitis. In addition, in some cases, an abnormal Av pulley is apparent. In the rare cases of trigger finger that present for MR imaging, accurate diagnosis by the radiologist can allow initiation of treatment and avoid further unnecessary workup. (orig.)

  13. Concept of the CMS Trigger Supervisor

    CERN Document Server

    Magrans de Abril, Ildefons; Varela, Joao

    2006-01-01

    The Trigger Supervisor is an online software system designed for the CMS experiment at CERN. Its purpose is to provide a framework to set up, test, operate and monitor the trigger components on one hand and to manage their interplay and the information exchange with the run control part of the data acquisition system on the other. The Trigger Supervisor is conceived to provide a simple and homogeneous client interface to the online software infrastructure of the trigger subsystems. This document specifies the functional and non-functional requirements, design and operational details, and the components that will be delivered in order to facilitate a smooth integration of the trigger software in the context of CMS.

  14. The ATLAS b-Jet Trigger

    CERN Document Server

    Hansson Adrian, Per

    2011-01-01

    The online event selection is crucial to reject most of the events containing uninteresting background collisions while preserving as much as possible the interesting physical signals. The b-jet selection is part of the trigger strategy of the ATLAS experiment and a set of dedicated triggers was contributing to the event selection for the 2011 running. The b-jets acceptance is increased and the background reduced by lowering jet transverse energy thresholds at the first trigger level and applying b-tagging techniques at the subsequent levels. Different physics channels, especially topologies containing more than one b-jet where higher rejection factors are achieved, benefit from using the b-jet trigger. An overview of the b-jet trigger menu and performance on data is presented.

  15. The ATLAS b-jet Trigger

    CERN Document Server

    Hansson Adrian, P; The ATLAS collaboration

    2011-01-01

    The online event selection is crucial to reject most of the events containing uninteresting background collisions while preserving as much as possible the interesting physical signals. The b-jet selection is part of the trigger strategy of the ATLAS experiment and a set of dedicated triggers is presently contributing to the event selection for the 2011 running. The b-jets acceptance is increased and the background reduced by lowering jet transverse energy thresholds at the first trigger level and applying b-tagging techniques at the subsequent levels. Different physics channels, especially topologies containing more than one b-jet where higher rejection factors are achieved, benefit from requesting this trigger to be fired. An overview of the status-of-art of the b-jet trigger menu and performance on real data is presented in this contribution.

  16. The LHCb Trigger: Present and Future

    CERN Document Server

    Aaij, R

    2012-01-01

    LHCb is a single arm spectrometer covering the pseudo-rapidity range between 1.9 and 4.9, and has been optimised to perform flavour physics measurements at the LHC. The present two stage trigger system is able to select charm and beauty decay products with high efficiency due the highly inclusive approach of triggering on partially reconstructed decays and the use of a novel multivariate classifier at the second stage. The trigger can select both leptonic and purely hadronic decays. The performance of the trigger is determined from the data itself without having to rely on Monte-Carlo simulation and is presented. LHCb has recently submitted their upgrade LOI, which mainly aims at profiting from much larger luminosities by moving towards a single fully software based trigger. The upgrade strategy and expected performance are presented.

  17. ATLAS jet trigger performance in 2015 data

    CERN Document Server

    Herwig, Theodor Christian; The ATLAS collaboration

    2016-01-01

    The ATLAS experiment at the LHC uses a two-level trigger system to preferentially select events with a predefined topology of interest for future analysis. The hadronic jet trigger is used to select several different topologies containing different types and multiplicities of hadronic jets, thus supporting many different physics searches and measurements. The hadronic jet trigger efficiency for proton-proton collision data at a centre-of-mass energy of 13 TeV is presented. The efficient selection of events containing hadronic jets requires the characteristics of trigger-level jets and offline jets to be very similar. A comparison of relevant characteristics demonstrates that trigger-level jets and offline jets are in excellent agreement.

  18. ATLAS jet trigger performance in 2016 data

    CERN Document Server

    Herwig, Theodor Christian; The ATLAS collaboration

    2016-01-01

    The ATLAS experiment at the LHC uses a two-level trigger system to preferentially select events with a predefined topology of interest for future analysis. The hadronic jet trigger is used to select several different topologies containing different types and multiplicities of hadronic jets, thus supporting many different physics searches and measurements. The hadronic jet trigger efficiency for proton-proton collision data at a centre-of-mass energy of 13 TeV is presented. The efficient selection of events containing hadronic jets requires the characteristics of trigger-level jets and offline jets to be very similar. A comparison of relevant characteristics demonstrates that trigger-level jets and offline jets are in excellent agreement.

  19. Designing signal-enriched triggers for boosted jets.

    CERN Document Server

    Toumazou, Marina

    2017-01-01

    Triggers designed to favour the selection of hadronically decaying massive particles have been studied. Both triggers using solely ET and mass cuts (similar to new 2017 triggers) and triggers exploiting polarization information have been studied. The mass cut triggers show substantial gains in rate reduction, while the benefits of polarization triggers are less obvious. The final conclusion is that it is more useful to identify and trigger on generic boosted decays, irrespective of the polarization of the decaying particle

  20. GnRHa trigger for final oocyte maturation: is HCG trigger history?

    DEFF Research Database (Denmark)

    Humaidan, Peter; Alsbjerg, Birgit

    2014-01-01

    gonadotrophin (HCG) trigger. Early trials showed a severe luteal phase insufficiency after GnRHa trigger despite the application of standard luteal phase support protocols. Subsequent research has led to modifications of the luteal phase support, resulting in reproductive outcome comparable to that seen after...... HCG trigger in normal- and high-responders. GnRHa trigger facilitates a tailored approach to subsequent luteal phase support, taking into account the ovarian response to stimulation. In the future, GnRHa is likely to be used for trigger in all women co-treated with GnRH antagonists....

  1. Climatic triggers for peatland initiation

    Science.gov (United States)

    Morris, Paul J.; Swindles, Graeme T.; Valdes, Paul J.; Ivanovic, Ruza F.; Gregoire, Lauren J.; Smith, Mark W.; Tarasov, Lev; Haywood, Alan M.; Bacon, Karen L.

    2017-04-01

    Peatlands are carbon-dense wetlands characterised by waterlogged, organic-rich soils. Modern-day peatlands have formed mainly since the Last Glacial Maximum (LGM), and despite covering only 3 % of the Earth's land surface are thought to store more than a third of all global soil carbon in the form of poorly decomposed plant detritus. Concern exists that this globally important carbon store may be vulnerable to near-future warming and changes in precipitation patterns, although the links between peatland development and climate are contested. The climatic and other environmental conditions that facilitate the initiation of peat are particularly poorly understood. We present the results of a novel, global study into the climate space of peat initiation since the LGM. We compiled a catalogue of radiocarbon dates of peat initiation from 942 sites that span a range of latitudes and biomes. We used the locations and ages of these peatlands to interrogate downscaled climate hindcasts at 500-yr intervals from a coupled atmosphere-ocean-vegetation general circulation model, HadCM3. This powerful combination of modelling and observational data provides a globally-consistent, temporally-extensive estimate of the climate spaces of peat initiation. In particular, it allows us to identify local and regional climatic changes that may have acted as triggers for peat formation. Peatlands in mid- and high-latitudes of both hemispheres, particularly in maritime locations, developed shortly after local increases in the time integral of growing season temperatures, and were seemingly not influenced by rainfall regime. Peat initiation at such sites appears to have been stimulated by temperature-driven increases in plant productivity in cold, postglacial landscapes, and was not water limited. The exception is the large peatland complex of the Western Siberian Lowlands, which was not glaciated during the last glacial period, and which appears to have been prompted instead by a strong

  2. Upgrade of the CMS Global Muon Trigger

    CERN Document Server

    Lingemann, Joschka; Sakulin, Hannes; Jeitler, Manfred; Stahl, Achim

    2015-01-01

    The increase in center-of-mass energy and luminosity for Run 2 of the Large Hadron Collider pose new challenges for the trigger systems of the experiments. To keep triggering with a similar performance as in Run 1, the CMS muon trigger is currently being upgraded. The new algorithms will provide higher resolution, especially for the muon transverse momentum and will make use of isolation criteria that combine calorimeter with muon information already in the level-1 trigger. The demands of the new algorithms can only be met by upgrading the level-1 trigger system to new powerful FPGAs with high bandwidth I/O. The processing boards will be based on the new microTCA standard. We report on the planned algorithms for the upgraded Global Muon Trigger (GMT) which combines information from the muon trigger sub-systems and assigns the isolation variable. The upgraded GMT will be implemented using a Master Processor 7 card, built by Imperial College, that features a large Xilinx Virtex 7 FPGA. Up to 72 optical links at...

  3. The Uses of Dynamic Earthquake Triggering

    Science.gov (United States)

    Brodsky, Emily E.; van der Elst, Nicholas J.

    2014-05-01

    Dynamic triggering of earthquakes by seismic waves is a robustly observed phenomenon with well-documented examples from over 30 major earthquakes. We are now in a position to use dynamic triggering as a natural experiment to probe the reaction of faults to the known stresses from seismic waves. We show here that dynamic triggering can be used to investigate the distribution of stresses required for failure on faults. In some regions, faults appear to be uniformly distributed over their loading cycles with equal numbers at all possible stresses from failure. Regions under tectonic extension, at the interface between locked and creeping faults, or subject to anthropogenic forcing are most prone to triggered failure. Predictions of future seismicity rates based on seismic wave amplitudes are theoretically possible and may provide similar results to purely stochastic prediction schemes. The underlying mechanisms of dynamic triggering are still unknown. The prolonged triggered sequences require a multistage process such as shear failure from rate-state friction coupled to aseismic creep or continued triggering through a secondary cascade. Permeability enhancement leading to drainage or pore pressure redistribution on faults is an alternative possibility.

  4. The ATLAS Trigger Menu: Design and Performance

    CERN Document Server

    Bernius, C; The ATLAS collaboration

    2012-01-01

    The ATLAS trigger is a three-tiered system designed to select events of interest for the diverse ATLAS physics program such as Higgs Boson decays. At the same time the rate of events has to be reduced in order to stay within the limitations of available resources such as the output bandwidth, processing power and recording rate. At design capacity, the LHC has a bunch-crossing rate of 40 MHz whereas ATLAS detector has an average recording rate of about 300Hz. The decision to record an event is based on physics signatures found in the event such as energetic jets, leptons or large missing energy. The ATLAS trigger menu consists of several hundred trigger chains which are used during data taking. Each chain defines the selection criteria at each of the three trigger levels for a single physics signature. Additionally, the trigger menu specifies, depending on the physics purpose of the trigger, at which given rate the trigger is running. The continuously increasing luminosities together with optimisations of alg...

  5. Upgrade of the CMS Global Muon Trigger

    CERN Document Server

    Jeitler, Manfred; Rabady, Dinyar; Sakulin, Hannes; Stahl, Achim

    2015-01-01

    The increase in center-of-mass energy and luminosity for Run-II of the Large Hadron Collider poses new challenges for the trigger systems of the experiments. To keep triggering with a similar performance as in Run-I, the CMS muon trigger is currently being upgraded. The new algorithms will provide higher resolution, especially for the muon transverse momentum and will make use of isolation criteria that combine calorimeter with muon information already in the level-1 trigger. The demands of the new algorithms can only be met by upgrading the level-1 trigger system to new powerful FPGAs with high bandwidth I/O. The processing boards will be based on the new μTCA standard. We report on the planned algorithms for the upgraded Global Muon Trigger (μGMT) which sorts and removes duplicates from boundaries of the muon trigger sub-systems. Furthermore, it determines how isolated the muon candidates are based on calorimetric energy deposits. The μGMT will be implemented using a processing board that features a larg...

  6. Periodicity in Attachment Organelle Revealed by Electron Cryotomography Suggests Conformational Changes in Gliding Mechanism of Mycoplasma pneumoniae

    Directory of Open Access Journals (Sweden)

    Akihiro Kawamoto

    2016-04-01

    Full Text Available Mycoplasma pneumoniae, a pathogenic bacterium, glides on host surfaces using a unique mechanism. It forms an attachment organelle at a cell pole as a protrusion comprised of knoblike surface structures and an internal core. Here, we analyzed the three-dimensional structure of the organelle in detail by electron cryotomography. On the surface, knoblike particles formed a two-dimensional array, albeit with limited regularity. Analyses using a nonbinding mutant and an antibody showed that the knoblike particles correspond to a naplike structure that has been observed by negative-staining electron microscopy and is likely to be formed as a complex of P1 adhesin, the key protein for binding and gliding. The paired thin and thick plates feature a rigid hexagonal lattice and striations with highly variable repeat distances, respectively. The combination of variable and invariant structures in the internal core and the P1 adhesin array on the surface suggest a model in which axial extension and compression of the thick plate along a rigid thin plate is coupled with attachment to and detachment from the substrate during gliding.

  7. Non-coding RNA identification based on topology secondary structure and reading frame in organelle genome level.

    Science.gov (United States)

    Wu, Cheng-Yan; Li, Qian-Zhong; Feng, Zhen-Xing

    2016-01-01

    Non-coding RNA (ncRNA) genes make transcripts as same as the encoding genes, and ncRNAs directly function as RNAs rather than serve as blueprints for proteins. As the function of ncRNA is closely related to organelle genomes, it is desirable to explore ncRNA function by confirming its provenance. In this paper, the topology secondary structure, motif and the triplets under three reading frames are considered as parameters of ncRNAs. A method of SVM combining the increment of diversity (ID) algorithm is applied to construct the classifier. When the method is applied to the ncRNA dataset less than 80% sequence identity, the overall accuracies reach 95.57%, 96.40% in the five-fold cross-validation and the jackknife test, respectively. Further, for the independent testing dataset, the average prediction success rate of our method achieved 93.24%. The higher predictive success rates indicate that our method is very helpful for distinguishing ncRNAs from various organelle genomes.

  8. Effects of Fcj1-Mos1 and mitochondrial division on aggregation of mitochondrial DNA nucleoids and organelle morphology.

    Science.gov (United States)

    Itoh, Kie; Tamura, Yasushi; Iijima, Miho; Sesaki, Hiromi

    2013-06-01

    Mitochondrial DNA (mtDNA) is packaged into DNA-protein complexes called nucleoids, which are distributed as many small foci in mitochondria. Nucleoids are crucial for the biogenesis and function of mtDNA. Here, using a yeast genetic screen for components that control nucleoid distribution and size, we identify Fcj1 and Mos1, two evolutionarily conserved mitochondrial proteins that maintain the connection between the cristae and boundary membranes. These two proteins are also important for establishing tubular morphology of mitochondria, as mitochondria lacking Fcj1 and Mos1 form lamellar sheets. We find that nucleoids aggregate, increase in size, and decrease in number in fcj1 and mos1 cells. In addition, Fcj1 form punctate structures and localized adjacent to nucleoids. Moreover, connecting mitochondria by deleting the DNM1 gene required for organelle division enhances aggregation of mtDNA nucleoids in fcj1 and mos1 cells, whereas single deletion of DNM1 does not affect nucleoids. Conversely, deleting F1Fo-ATP synthase dimerization factors generates concentric ring-like cristae, restores tubular mitochondrial morphology, and suppresses nucleoid aggregation in these mutants. Our findings suggest an unexpected role of Fcj1-Mos1 and organelle division in maintaining the distribution and size of mtDNA nucleoids.

  9. Assembly of the Biogenesis of Lysosome-related Organelles Complex-3 (BLOC-3) and Its Interaction with Rab9*

    Science.gov (United States)

    Kloer, Daniel P.; Rojas, Raul; Ivan, Viorica; Moriyama, Kengo; van Vlijmen, Thijs; Murthy, Namita; Ghirlando, Rodolfo; van der Sluijs, Peter; Hurley, James H.; Bonifacino, Juan S.

    2010-01-01

    The Hermansky-Pudlak syndrome (HPS) is a genetic hypopigmentation and bleeding disorder caused by defective biogenesis of lysosome-related organelles (LROs) such as melanosomes and platelet dense bodies. HPS arises from mutations in any of 8 genes in humans and 16 genes in mice. Two of these genes, HPS1 and HPS4, encode components of the biogenesis of lysosome-related organelles complex-3 (BLOC-3). Herein we show that recombinant HPS1-HPS4 produced in insect cells can be efficiently isolated as a 1:1 heterodimer. Analytical ultracentrifugation reveals that this complex has a molecular mass of 146 kD