WorldWideScience

Sample records for acidic multimetallic catalytic

  1. Hydrocarbon conversion with an attenuated superactive multimetallic catalytic composite

    International Nuclear Information System (INIS)

    Antos, G.J.

    1981-01-01

    Hydrocarbons are converted by contacting them at hydrocarbon conversion conditions with a novel attenuated superactive multimetallic catalytic composite comprising a combination of a catalytically effective amount of a pyrolyzed rhenium carbonyl component with a porous carrier material containing a uniform dispersion of catalytically effective amounts of a platinum group component, which is maintained in the elemental metallic state during the incorporation and pyrolysis of the rhenium carbonyl component, and of an iron component. In a highly preferred embodiment, this novel catalytic composite also contains a catalytically effective amount of a halogen component. The platinum group component, pyrolyzed rhenium carbonyl component, iron component and optional halogen component are preferably present in the multimetallic catalytic composite in amounts, calculated on an elemental basis, corresponding to about 0.01 to about 2 wt. % platinum group metal, about 0.01 to about 5 wt. % rhenium, about 0.005 to about 4 wt. % iron and about 0.1 to about 5 wt. % halogen. A key feature associated with the preparation of the subject catalytic composite is reaction of a rhenium carbonyl complex with a porous carrier material containing a uniform dispersion of an iron component and of a platinum group component maintained in the elemental state, whereby the interaction of the rhenium moiety with the platinum group moiety is maximized due to the platinophilic (i.e., platinum-seeking) propensities of the carbon monoxide ligands associated with the rhenium reagent. A specific example of the type of hydrocarbon conversion process disclosed herein is a process for the catalytic reforming of a low octane gasoline fraction wherein the gasoline fraction and a hydrogen stream are contacted with the attenuated superactive multimetallic catalytic composite at reforming conditions

  2. Strain-controlled electrocatalysis on multimetallic nanomaterials

    Science.gov (United States)

    Luo, Mingchuan; Guo, Shaojun

    2017-11-01

    Electrocatalysis is crucial for the development of clean and renewable energy technologies, which may reduce our reliance on fossil fuels. Multimetallic nanomaterials serve as state-of-the-art electrocatalysts as a consequence of their unique physico-chemical properties. One method of enhancing the electrocatalytic performance of multimetallic nanomaterials is to tune or control the surface strain of the nanomaterials, and tremendous progress has been made in this area in the past decade. In this Review, we summarize advances in the introduction, tuning and quantification of strain in multimetallic nanocrystals to achieve more efficient energy conversion by electrocatalysis. First, we introduce the concept of strain and its correlation with other key physico-chemical properties. Then, using the electrocatalytic reduction of oxygen as a model reaction, we discuss the underlying mechanisms behind the strain-adsorption-reactivity relationship based on combined classical theories and models. We describe how this knowledge can be harnessed to design multimetallic nanocrystals with optimized strain to increase the efficiency of oxygen reduction. In particular, we highlight the unexpectedly beneficial (and previously overlooked) role of tensile strain from multimetallic nanocrystals in improving electrocatalysis. We conclude by outlining the challenges and offering our perspectives on the research directions in this burgeoning field.

  3. Multimetallic nanosheets: synthesis and applications in fuel cells.

    Science.gov (United States)

    Zeb Gul Sial, Muhammad Aurang; Ud Din, Muhammad Aizaz; Wang, Xun

    2018-04-03

    Two-dimensional nanomaterials, particularly multimetallic nanosheets with single or few atoms thickness, are attracting extensive research attention because they display remarkable advantages over their bulk counterparts, including high electron mobility, unsaturated surface coordination, a high aspect ratio, and distinctive physical, chemical, and electronic properties. In particular, their ultrathin thickness endows them with ultrahigh specific surface areas and a relatively high surface energy, making them highly favorable for surface active applications; for example, they have great potential for a broad range of fuel cell applications. First, the state-of-the-art research on the synthesis of nanosheets with a controlled size, thickness, shape, and composition is described and special emphasis is placed on the rational design of multimetallic nanosheets. Then, a correlation is performed with the performance of multimetallic nanosheets with modified and improved electrochemical properties and high stability, including for the oxygen reduction reaction (ORR), hydrogen evolution reaction (HER), formic acid oxidation (FAO), methanol oxidation reaction (MOR), ethanol oxidation reaction (EOR), and methanol tolerance are outlined. Finally, some perspectives and advantages offered by this class of materials are highlighted for the development of highly efficient fuel cell electrocatalysts, featuring low cost, enhanced performance, and high stability, which are the key factors for accelerating the commercialization of future promising fuel cells.

  4. Nitrogen reduction and functionalization by a multimetallic uranium nitride complex

    Science.gov (United States)

    Falcone, Marta; Chatelain, Lucile; Scopelliti, Rosario; Živković, Ivica; Mazzanti, Marinella

    2017-07-01

    Molecular nitrogen (N2) is cheap and widely available, but its unreactive nature is a challenge when attempting to functionalize it under mild conditions with other widely available substrates (such as carbon monoxide, CO) to produce value-added compounds. Biological N2 fixation can do this, but the industrial Haber-Bosch process for ammonia production operates under harsh conditions (450 degrees Celsius and 300 bar), even though both processes are thought to involve multimetallic catalytic sites. And although molecular complexes capable of binding and even reducing N2 under mild conditions are known, with co-operativity between metal centres considered crucial for the N2 reduction step, the multimetallic species involved are usually not well defined, and further transformation of N2-binding complexes to achieve N-H or N-C bond formation is rare. Haber noted, before an iron-based catalyst was adopted for the industrial Haber-Bosch process, that uranium and uranium nitride materials are very effective heterogeneous catalysts for ammonia production from N2. However, few examples of uranium complexes binding N2 are known, and soluble uranium complexes capable of transforming N2 into ammonia or organonitrogen compounds have not yet been identified. Here we report the four-electron reduction of N2 under ambient conditions by a fully characterized complex with two UIII ions and three K+ centres held together by a nitride group and a flexible metalloligand framework. The addition of H2 and/or protons, or CO to the resulting complex results in the complete cleavage of N2 with concomitant N2 functionalization through N-H or N-C bond-forming reactions. These observations establish that a molecular uranium complex can promote the stoichiometric transformation of N2 into NH3 or cyanate, and that a flexible, electron-rich, multimetallic, nitride-bridged core unit is a promising starting point for the design of molecular complexes capable of cleaving and functionalizing N2 under

  5. Synthesis and Growth Mechanism of Multimetallic Core-Shell and Hollow-Like Nanoparticles

    Science.gov (United States)

    Londono-Calderon, Alejandra

    A thorough control of nanoscale systems is crucial for developing and improving their activity in a variety of application fields. These range from nanocatalysis, plasmonics, nanosensors, nanomedicine, communications, and others. Controlling and understanding the growth and spatial distribution of multi metallic systems allow us to explore the correlation between the characteristics of the nanoparticle (composition, surface chemistry, crystallinity, etc.) and their properties (mechanical, optical, structural, etc.). In this dissertation bimetallic and multi-metallic nanoparticles were obtained by a seed mediated method and galvanic replacement. Combinations of the type core shell of Au Ag, Au Pd and Au Pd-Au Au multi-metallic systems were studied. A galvanic replacement method was used to obtain hollow-like Au/Pt nanoboxes and Au AgM (M = Au, Pd or Pt) yolk-shell structures with voids in the middle shell. Characterization regarding composition, morphology, optical properties and atomic structures was performed. The mechanical properties of Au Pd nanocubes were studied in situ by the use of a TEM-AFM nanomechanical holder. The nanoparticles strengthening mechanism relies on the Au core resistance to the motion of partial dislocations. The catalytic efficiency of core-shell and nanorattles structures were tested with a model reaction for the decomposition of 4-ntp to 4-amp. Yolk-shell systems exhibit an enhancement in the catalytic decomposition rate in comparison with solid and bimetallic system. Finally, the development of an Electrospray assisted Langmuir Blodgett technique was successfully employed for the deposition of nanoparticles monolayer on a substrate. High particle density and coverage of the substrate makes this a promising technique to finely tune nanoparticles self-assembly.

  6. Multimetallic catalysed cross-coupling of aryl bromides with aryl triflates

    Science.gov (United States)

    Ackerman, Laura K. G.; Lovell, Matthew M.; Weix, Daniel J.

    2015-08-01

    The advent of transition-metal catalysed strategies for forming new carbon-carbon bonds has revolutionized the field of organic chemistry, enabling the efficient synthesis of ligands, materials, and biologically active molecules. In cases where a single metal fails to promote a selective or efficient transformation, the synergistic cooperation of two distinct catalysts--multimetallic catalysis--can be used instead. Many important reactions rely on multimetallic catalysis, such as the Wacker oxidation of olefins and the Sonogashira coupling of alkynes with aryl halides, but this approach has largely been limited to the use of metals with distinct reactivities, with only one metal catalyst undergoing oxidative addition. Here, we demonstrate that cooperativity between two group 10 metal catalysts--(bipyridine)nickel and (1,3-bis(diphenylphosphino)propane)palladium--enables a general cross-Ullmann reaction (the cross-coupling of two different aryl electrophiles). Our method couples aryl bromides with aryl triflates directly, eliminating the use of arylmetal reagents and avoiding the challenge of differentiating between multiple carbon-hydrogen bonds that is required for direct arylation methods. Selectivity can be achieved without an excess of either substrate and originates from the orthogonal reactivity of the two catalysts and the relative stability of the two arylmetal intermediates. While (1,3-bis(diphenylphosphino)propane)palladium reacts preferentially with aryl triflates to afford a persistent intermediate, (bipyridine)nickel reacts preferentially with aryl bromides to form a transient, reactive intermediate. Although each catalyst forms less than 5 per cent cross-coupled product in isolation, together they are able to achieve a yield of up to 94 per cent. Our results reveal a new method for the synthesis of biaryls, heteroaryls, and dienes, as well as a general mechanism for the selective transfer of ligands between two metal catalysts. We anticipate that this

  7. Catalytic Ethanol Dehydration over Different Acid-activated Montmorillonite Clays.

    Science.gov (United States)

    Krutpijit, Chadaporn; Jongsomjit, Bunjerd

    2016-01-01

    In the present study, the catalytic dehydration of ethanol to obtain ethylene over montmorillonite clays (MMT) with mineral acid activation including H2SO4 (SA-MMT), HCl (HA-MMT) and HNO3 (NA-MMT) was investigated at temperature range of 200 to 400°C. It revealed that HA-MMT exhibited the highest catalytic activity. Ethanol conversion and ethylene selectivity were found to increase with increased reaction temperature. At 400°C, the HA-MMT yielded 82% of ethanol conversion having 78% of ethylene yield. At lower temperature (i.e. 200 to 300°C), diethyl ether (DEE) was a major product. The highest activity obtained from HA-MMT can be attributed to an increase of weak acid sites and acid density by the activation of MMT with HCl. It can be also proven by various characterization techniques that in most case, the main structure of MMT did not alter by acid activation (excepted for NA-MMT). Upon the stability test for 72 h during the reaction, the MMT and HA-MMT showed only slight deactivation due to carbon deposition. Hence, the acid activation of MMT by HCl is promising to enhance the catalytic dehydration of ethanol.

  8. CO Cleavage and CO2 Functionalization under Mild Conditions by a Multimetallic CsU2 Nitride Complex.

    Science.gov (United States)

    Falcone, Marta; Chatelain, Lucile; Scopelliti, Rosario; Mazzanti, Marinella

    2017-04-26

    Novel efficient chemical processes involving cheap and widely accessible carbon dioxide or carbon monoxide under mild conditions for the production of valuable chemical products are highly desirable in the current energetic context. Uranium nitride materials act as high activity catalysts in the Haber-Bosch process but the reactivity of molecular nitride compounds remains unexplored. Here we review recent results obtained in our group showing that a multimetallic nitride complex [Cs{[U(OSi(OtBu)3)3]2(μ-N)}] (1) with a CsUIV-N-UIV core, is able to promote N-C bond formation due to its strong nucleophile behaviour. In particular, complex 1, in the presence of excess CO2 leads to a remarkable dicarbamate product. The multimetallic CsUIV-N-UIV nitride also readily cleaves the C≡O bond under mild conditions.

  9. Catalytic ozonation of fenofibric acid over alumina-supported manganese oxide

    Energy Technology Data Exchange (ETDEWEB)

    Rosal, Roberto, E-mail: roberto.rosal@uah.es [Departamento de Quimica Analitica e Ingenieria Quimica, Universidad de Alcala, E-28771 Alcala de Henares (Spain); Gonzalo, Maria S.; Rodriguez, Antonio; Garcia-Calvo, Eloy [Departamento de Quimica Analitica e Ingenieria Quimica, Universidad de Alcala, E-28771 Alcala de Henares (Spain)

    2010-11-15

    The catalytic ozonation of fenofibric acid was studied using activated alumina and alumina-supported manganese oxide in a semicontinuous reactor. The rate constants at 20 deg. C for the non-catalytic reaction of fenofibric acid with ozone and hydroxyl radicals were 3.43 {+-} 0.20 M{sup -1} s{sup -1} and (6.55 {+-} 0.33) x 10{sup 9} M{sup -1} s{sup -1}, respectively. The kinetic constant for the catalytic reaction between fenofibric acid and hydroxyl radicals did not differ significantly from that of homogeneous ozonation, either using Al{sub 2}O{sub 3} or MnO{sub x}/Al{sub 2}O{sub 3}. The results showed a considerable increase in the generation of hydroxyl radicals due to the use of catalysts even in the case of catalytic runs performed using a real wastewater matrix. Both catalysts promoted the decomposition of ozone in homogeneous phase, but the higher production of hydroxyl radicals corresponded to the catalyst with more activity in terms of ozone decomposition. We did not find evidence of the catalysts having any effect on rate constants, which suggests that the reaction may not involve the adsorption of organics on catalyst surface.

  10. Catalytic Conversion of Glucose into 5-Hydroxymethylfurfural by Hf(OTf4 Lewis Acid in Water

    Directory of Open Access Journals (Sweden)

    Junjie Li

    2015-12-01

    Full Text Available A series of Lewis acidic metal salts were used for glucose dehydration to 5-hydroymethylfurfural (HMF in water. Effect of valence state, ionic radii of Lewis acidic cation, and the type of anions on the catalytic performance have been studied systematically. The experimental results showed that the valence state played an important role in determining catalytic activity and selectivity. It was found that a higher glucose conversion rate and HMF selectivity could be obtained over high valent Lewis acid salts, where the ionic radii of these Lewis acidic metal salts are usually relatively small. Analysis on the effect of the anions of Lewis acid salts on the catalytic activity and the selectivity suggested that a higher glucose conversion and HMF selectivity could be readily obtained with Cl−. Furthermore, the recyclability of high valence state Lewis acid salt was also studied, however, inferior catalytic performance was observed. The deactivation mechanism was speculated to be the fact that high valence state Lewis acid salt was comparatively easier to undergo hydrolysis to yield complicated metal aqua ions with less catalytic activity. The Lewis acidic activity could be recovered by introducing a stoichiometric amount of hydrochloric acid (HCl to the catalytic before the reaction.

  11. Direct catalytic conversion of brown seaweed-derived alginic acid to furfural using 12-tungstophosphoric acid catalyst in tetrahydrofuran/water co-solvent

    International Nuclear Information System (INIS)

    Park, Geonu; Jeon, Wonjin; Ban, Chunghyeon; Woo, Hee Chul; Kim, Do Heui

    2016-01-01

    Highlights: • Furfural was produced by catalytic conversion of macroalgae-derived alginic acid. • 12-Tungstophosphoric acid (H_3PW_1_2O_4_0) showed remarkable catalytic performance. • Tetrahydrofuran (THF) as a reaction medium significantly enhanced production of furfural. - Abstract: Furfural, a biomass-derived platform chemical, was produced by acid-catalyzed reaction of alginic acid extracted from brown seaweed. Three acid catalysts, H_2SO_4, Amberlyst15 and 12-tungstophosphoric acid (H_3PW_1_2O_4_0), were compared to evaluate their catalytic performance for the alginic acid conversion. The H_3PW_1_2O_4_0 catalyst showed the highest catalytic activity, yielding the maximum furfural yield (33.8%) at 180 °C for 30 min in tetrahydrofuran/water co-solvent. Higher reaction temperature promoted the conversion of alginic acid to furfural, but the transformation of furfural to humin was also accelerated. To our knowledge, this is the highest furfural yield among studies about the direct catalytic conversion of alginic acid. Furthermore, products distribution with time-on-stream was investigated in detail, which led us to propose a reaction pathway.

  12. Catalytic Conversion of Cellulose to Levulinic Acid by Metal Chlorides

    Directory of Open Access Journals (Sweden)

    Beixiao Zhang

    2010-08-01

    Full Text Available The catalytic performance of various metal chlorides in the conversion of cellulose to levulinic acid in liquid water at high temperatures was investigated. The effects of reaction parameters on the yield of levulinic acid were also explored. The results showed that alkali and alkaline earth metal chlorides were not effective in conversion of cellulose, while transition metal chlorides, especially CrCl3, FeCl3 and CuCl2 and a group IIIA metal chloride (AlCl3, exhibited high catalytic activity. The catalytic performance was correlated with the acidity of the reaction system due to the addition of the metal chlorides, but more dependent on the type of metal chloride. Among those metal chlorides, chromium chloride was found to be exceptionally effective for the conversion of cellulose to levulinic acid, affording an optimum yield of 67 mol % after a reaction time of 180 min, at 200 °C, with a catalyst dosage of 0.02 M and substrate concentration of 50 wt %. Chromium metal, most of which was present in its oxide form in the solid sample and only a small part in solution as Cr3+ ion, can be easily separated from the resulting product mixture and recycled. Finally, a plausible reaction scheme for the chromium chloride catalyzed conversion of cellulose in water was proposed.

  13. Catalytic Cracking of Lactide and Poly(Lactic Acid) to Acrylic Acid at Low Temperatures.

    Science.gov (United States)

    Terrade, Frédéric G; van Krieken, Jan; Verkuijl, Bastiaan J V; Bouwman, Elisabeth

    2017-05-09

    Despite being a simple dehydration reaction, the industrially relevant conversion of lactic acid to acrylic acid is particularly challenging. For the first time, the catalytic cracking of lactide and poly(lactic acid) to acrylic acid under mild conditions is reported with up to 58 % yield. This transformation is catalyzed by strong acids in the presence of bromide or chloride salts and proceeds through simple S N 2 and elimination reactions. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  14. Human acid β-glucosidase: isolation and amino acid sequence of a peptide containing the catalytic site

    International Nuclear Information System (INIS)

    Dinur, T.; Osiecki, K.M.; Legler, G.; Gatt, S.; Desnick, R.J.; Grabowski, G.A.

    1986-01-01

    Human acid β-glucosidase (D-glucosyl-N-acylsphingosine glucohydrolase, EC 3.2.1.45) cleaves the glucosidic bonds of glucosylceramide and synthetic β-glucosides. The deficient activity of this hydrolase is the enzymatic defect in the subtypes and variants of Gaucher disease, the most prevalent lysosomal storage disease. To isolate and characterize the catalytic site of the normal enzyme, brominated 3 H-labeled conduritol B epoxide ( 3 H-Br-CBE), which inhibits the enzyme by binding covalently to this site, was used as an affinity label. Under optimal conditions 1 mol of 3 H-Br-CBE bound to 1 mol of pure enzyme protein, indicating the presence of a single catalytic site per enzyme subunit. After V 8 protease digestion of the 3 H-Br-CBE-labeled homogeneous enzyme, three radiolabeled peptides, designated peptide A, B, or C, were resolved by reverse-phase HPLC. The partial amino acid sequence (37 residues) of peptide A (M/sub r/, 5000) was determined. The sequence of this peptide, which contained the catalytic site, had exact homology to the sequence near the carboxyl terminus of the protein, as predicted from the nucleotide sequence of the full-length cDNA encoding acid β-glucosidase

  15. Catalytic conversion of carboxylic acids in bio-oil for liquid hydrocarbons production

    International Nuclear Information System (INIS)

    Wang, Shurong; Guo, Zuogang; Cai, Qinjie; Guo, Long

    2012-01-01

    Bio-oil must be upgraded to be suitable for use as a high-grade transport fuel. Crude bio-oil has a high content of carboxylic acids which can cause corrosion, and the high oxygen content of these acids also reduces the oil’s heating value. In this paper, acetic acid and propanoic acid were chosen as the model carboxylic acids in bio-oil. Their behavior in the production of liquid hydrocarbons during a catalytic conversion process was investigated in a micro-fixed bed reactor. The liquid organic phase from this catalytic conversion process mainly consisted of liquid hydrocarbons and phenol derivatives. Under the condition of low Liquid Hourly Space Velocity (LHSV), the liquid organic phase from acetic acid cracking had a selectivity of 22% for liquid hydrocarbons and a selectivity of 65% for phenol derivatives. The composition of the organic products changed considerably with the LHSV increasing to 3 h −1 . The selectivity for liquid hydrocarbons increased up to 52% while that for phenol derivatives decreased to 32%. Propanoic acid performed much better in producing liquid hydrocarbons than acetic acid. Its selectivity for liquid hydrocarbons was as high as 80% at LHSV = 3 h −1 . A mechanism for this catalytic conversion process was proposed according to the analysis of the components in the liquid organic phases. The pathways of the main compounds formation in the liquid organic phases were proposed, and the reason why liquid hydrocarbons were more effectively produced when using propanoic acid rather than acetic acid was also successfully explained. In addition, BET and SEM characterization were used to analyze the catalyst coke deposition. -- Graphical abstract: Display Omitted Highlights: ► High content of carboxylic acids in bio-oil causes its corrosiveness. ► Acetic acid and propanoic acid are two dominant acids in bio-oil. ► Liquid hydrocarbons were produced by cracking of these two dominant acids. ► A mechanism model was proposed to explain

  16. Liquid-Phase Catalytic Transfer Hydrogenation of Furfural over Homogeneous Lewis Acid-Ru/C Catalysts.

    Science.gov (United States)

    Panagiotopoulou, Paraskevi; Martin, Nickolas; Vlachos, Dionisios G

    2015-06-22

    The catalytic performance of homogeneous Lewis acid catalysts and their interaction with Ru/C catalyst are studied in the catalytic transfer hydrogenation of furfural by using 2-propanol as a solvent and hydrogen donor. We find that Lewis acid catalysts hydrogenate the furfural to furfuryl alcohol, which is then etherified with 2-propanol. The catalytic activity is correlated with an empirical scale of Lewis acid strength and exhibits a volcano behavior. Lanthanides are the most active, with DyCl3 giving complete furfural conversion and a 97 % yield of furfuryl alcohol at 180 °C after 3 h. The combination of Lewis acid and Ru/C catalysts results in synergy for the stronger Lewis acid catalysts, with a significant increase in the furfural conversion and methyl furan yield. Optimum results are obtained by using Ru/C combined with VCl3 , AlCl3 , SnCl4 , YbCl3 , and RuCl3 . Our results indicate that the combination of Lewis acid/metal catalysts is a general strategy for performing tandem reactions in the upgrade of furans. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Mechanism for enhanced degradation of clofibric acid in aqueous by catalytic ozonation over MnOx/SBA-15.

    Science.gov (United States)

    Sun, Qiangqiang; Wang, Yu; Li, Laisheng; Bing, Jishuai; Wang, Yingxin; Yan, Huihua

    2015-04-09

    Comparative experiments were conducted to investigate the catalytic ability of MnO(x)/SBA-15 for the ozonation of clofibric acid (CA) and its reaction mechanism. Compared with ozonation alone, the degradation of CA was barely enhanced, while the removal of TOC was significantly improved by catalytic ozonation (O3/MnO(x)/SBA-15). Adsorption of CA and its intermediates by MnO(x)/SBA-15 was proved unimportant in O3/MnO(x)/SBA-15 due to the insignificant adsorption of CA and little TOC variation after ceasing ozone in stopped-flow experiment. The more remarkably inhibition effect of sodium bisulfite (NaHSO3) on the removal of TOC in catalytic ozonation than in ozonation alone elucidated that MnO(x)/SBA-15 facilitated the generation of hydroxyl radicals (OH), which was further verified by electron spin-resonance spectroscopy (ESR). Highly dispersed MnO(x) on SBA-15 were believed to be the main active component in MnO(x)/SBA-15. Some intermediates were indentified and different degradation routes of CA were proposed in both ozonation alone and catalytic ozonation. The amounts of small molecular carboxylic acids (i.e., formic acid (FA), acetic acid (AA) and oxalic acid (OA)) generated in catalytic ozonation were lower than in ozonation alone, resulting from the generation of more OH. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Catalytic Hydrodeoxygenation of Fatty Acids for Biodiesel Production

    Directory of Open Access Journals (Sweden)

    Аntonina A. Stepacheva

    2016-08-01

    Full Text Available This paper is devoted to the production of second generation biodiesel via catalytic hydrodeoxygenation of fatty acids. Pd/C catalysts with different metal loading were used. The palladium catalysts were characterized using low-temperature nitrogen physisorption and X-ray photoelectron spectroscopy. It was revealed that the most active and selective catalyst was 1%-Pd/C which allowed reaching up 97.5% of selectivity (regarding to n-heptadecane at 100% conversion of substrate. Moreover, the chosen catalyst is more preferable according to lower metal content that leads the decrease of the process cost. The analysis of the catalysts showed that 1%-Pd/C had the highest specific surface area compared with 5%-Pd/C. Copyright © 2016 BCREC GROUP. All rights reserved Received: 31st July 2015; Revised: 9th December 2015; Accepted: 30th December 2015 How to Cite: Stepacheva, A.A., Sapunov, V.N., Sulman, E.M., Nikoshvili, L.Z., Sulman, M.G., Sidorov, A.I., Demidenko, G.N., Matveeva, V.G. (2016. Catalytic Hydrodeoxygenation of Fatty Acids for Biodiesel Production. Bulletin of Chemical Reaction Engineering & Catalysis, 11 (2: 125-132 (doi:10.9767/bcrec.11.2.538.125-132 Permalink/DOI: http://dx.doi.org/10.9767/bcrec.11.2.538.125-132

  19. Superior acidic catalytic activity and stability of Fe-doped HTaWO6 nanotubes

    KAUST Repository

    Liu, He

    2017-07-26

    Fe-doped HTaWO6 (H1-3xFexTaWO6, x = 0.23) nanotubes as highly active solid acid catalysts were prepared via an exfoliation-scrolling-exchange process. The specific surface area and pore volume of undoped nanotubes (20.8 m2 g-1, 0.057 cm3 g-1) were remarkably enhanced through Fe3+ ion-exchange (>100 m2 g-1, 0.547 cm3 g-1). Doping Fe ions into the nanotubes endowed them with improved thermal stability due to the stronger interaction between the intercalated Fe3+ ions and the host layers. This interaction also facilitated the preservation of effective Brønsted acid sites and the generation of new acid sites. The integration of these functional roles resulted in Fe-doped nanotubes with high acidic catalytic activities in the Friedel-Crafts alkylation of anisole and the esterification of acetic acid. Facile accessibility to active sites, generation of effective Brønsted acid sites, high stability of the tubular structure and strong acid sites were found to synergistically contribute to the excellent acidic catalytic efficiency. Additionally, the activity of cycled nanocatalysts can be easily recovered through annealing treatment.

  20. Superior acidic catalytic activity and stability of Fe-doped HTaWO6 nanotubes

    KAUST Repository

    Liu, He; Zhang, Haitao; Fei, Linfeng; Ma, Hongbin; Zhao, Guoying; Mak, CheeLeung; Zhang, Xixiang; Zhang, Suojiang

    2017-01-01

    Fe-doped HTaWO6 (H1-3xFexTaWO6, x = 0.23) nanotubes as highly active solid acid catalysts were prepared via an exfoliation-scrolling-exchange process. The specific surface area and pore volume of undoped nanotubes (20.8 m2 g-1, 0.057 cm3 g-1) were remarkably enhanced through Fe3+ ion-exchange (>100 m2 g-1, 0.547 cm3 g-1). Doping Fe ions into the nanotubes endowed them with improved thermal stability due to the stronger interaction between the intercalated Fe3+ ions and the host layers. This interaction also facilitated the preservation of effective Brønsted acid sites and the generation of new acid sites. The integration of these functional roles resulted in Fe-doped nanotubes with high acidic catalytic activities in the Friedel-Crafts alkylation of anisole and the esterification of acetic acid. Facile accessibility to active sites, generation of effective Brønsted acid sites, high stability of the tubular structure and strong acid sites were found to synergistically contribute to the excellent acidic catalytic efficiency. Additionally, the activity of cycled nanocatalysts can be easily recovered through annealing treatment.

  1. Catalytic Deoxygenation of Fatty Acids: Elucidation of the Inhibition Process

    NARCIS (Netherlands)

    Hollak, S.A.W.; Jong, de K.P.; Es, van D.S.

    2014-01-01

    Catalytic deoxygenation of unsaturated fatty acids in the absence of H2 is known to suffer from significant catalyst inhibition. Thus far, no conclusive results have been reported on the cause of deactivation. Here we show that CC double bonds present in the feed or the products dramatically reduce

  2. Mechanism for enhanced degradation of clofibric acid in aqueous by catalytic ozonation over MnOx/SBA-15

    International Nuclear Information System (INIS)

    Sun, Qiangqiang; Wang, Yu; Li, Laisheng; Bing, Jishuai; Wang, Yingxin; Yan, Huihua

    2015-01-01

    Highlights: • Clofibric acid (CA) is efficiently mineralized by O 3 /MnO x /SBA-15. • Adsorption of CA and its intermediates on MnO x /SBA-15 is proved unimportant. • Initiation of hydroxyl radicals (·OH) is enhanced in O 3 /MnO x /SBA-15. • Uniformly distributed MnO x accounts for the high activity of MnO x /SBA-15. • Degradation routes of CA in ozonation alone and catalytic ozonation are proposed. - Abstract: Comparative experiments were conducted to investigate the catalytic ability of MnO x /SBA-15 for the ozonation of clofibric acid (CA) and its reaction mechanism. Compared with ozonation alone, the degradation of CA was barely enhanced, while the removal of TOC was significantly improved by catalytic ozonation (O 3 /MnO x /SBA-15). Adsorption of CA and its intermediates by MnO x /SBA-15 was proved unimportant in O 3 /MnO x /SBA-15 due to the insignificant adsorption of CA and little TOC variation after ceasing ozone in stopped-flow experiment. The more remarkably inhibition effect of sodium bisulfite (NaHSO 3 ) on the removal of TOC in catalytic ozonation than in ozonation alone elucidated that MnO x /SBA-15 facilitated the generation of hydroxyl radicals (·OH), which was further verified by electron spin-resonance spectroscopy (ESR). Highly dispersed MnO x on SBA-15 were believed to be the main active component in MnO x /SBA-15. Some intermediates were indentified and different degradation routes of CA were proposed in both ozonation alone and catalytic ozonation. The amounts of small molecular carboxylic acids (i.e., formic acid (FA), acetic acid (AA) and oxalic acid (OA)) generated in catalytic ozonation were lower than in ozonation alone, resulting from the generation of more ·OH

  3. Reactivity of nanoaggregations of platinum on supports of different nature in reactions of catalytic decomposition of hydrazine in acid media

    International Nuclear Information System (INIS)

    Anan'ev, A.V.; Boltoeva, M.Yu.; Grigor'ev, M.S.; Shilov, V.P.; Sharygin, L.M.

    2006-01-01

    Platinized catalysts on the basis of supports of different chemical nature are tested in reactions of catalytic hydrazine decomposition in perchloric and nitric acid solutions. In perchloric acid catalytic activity of catalysts on the basis of ceramic materials of Termoksid brand is higher of activity of catalysts on the basis of amorphous silica gel. In nitric acid solutions opposite dependence is observed. Tendency of ceramic supports to peptization in acid solutions is pointed out. Results obtained are interpreted using conceptions of energetic heterogeneity of surface atoms and hydrazine catalytic decomposition mechanisms in different media [ru

  4. Voltage-dependent motion of the catalytic region of voltage-sensing phosphatase monitored by a fluorescent amino acid.

    Science.gov (United States)

    Sakata, Souhei; Jinno, Yuka; Kawanabe, Akira; Okamura, Yasushi

    2016-07-05

    The cytoplasmic region of voltage-sensing phosphatase (VSP) derives the voltage dependence of its catalytic activity from coupling to a voltage sensor homologous to that of voltage-gated ion channels. To assess the conformational changes in the cytoplasmic region upon activation of the voltage sensor, we genetically incorporated a fluorescent unnatural amino acid, 3-(6-acetylnaphthalen-2-ylamino)-2-aminopropanoic acid (Anap), into the catalytic region of Ciona intestinalis VSP (Ci-VSP). Measurements of Anap fluorescence under voltage clamp in Xenopus oocytes revealed that the catalytic region assumes distinct conformations dependent on the degree of voltage-sensor activation. FRET analysis showed that the catalytic region remains situated beneath the plasma membrane, irrespective of the voltage level. Moreover, Anap fluorescence from a membrane-facing loop in the C2 domain showed a pattern reflecting substrate turnover. These results indicate that the voltage sensor regulates Ci-VSP catalytic activity by causing conformational changes in the entire catalytic region, without changing their distance from the plasma membrane.

  5. Voltage-dependent motion of the catalytic region of voltage-sensing phosphatase monitored by a fluorescent amino acid

    Science.gov (United States)

    Sakata, Souhei; Jinno, Yuka; Kawanabe, Akira; Okamura, Yasushi

    2016-01-01

    The cytoplasmic region of voltage-sensing phosphatase (VSP) derives the voltage dependence of its catalytic activity from coupling to a voltage sensor homologous to that of voltage-gated ion channels. To assess the conformational changes in the cytoplasmic region upon activation of the voltage sensor, we genetically incorporated a fluorescent unnatural amino acid, 3-(6-acetylnaphthalen-2-ylamino)-2-aminopropanoic acid (Anap), into the catalytic region of Ciona intestinalis VSP (Ci-VSP). Measurements of Anap fluorescence under voltage clamp in Xenopus oocytes revealed that the catalytic region assumes distinct conformations dependent on the degree of voltage-sensor activation. FRET analysis showed that the catalytic region remains situated beneath the plasma membrane, irrespective of the voltage level. Moreover, Anap fluorescence from a membrane-facing loop in the C2 domain showed a pattern reflecting substrate turnover. These results indicate that the voltage sensor regulates Ci-VSP catalytic activity by causing conformational changes in the entire catalytic region, without changing their distance from the plasma membrane. PMID:27330112

  6. Synthesis of a nano-crystalline solid acid catalyst from fly ash and its catalytic performance

    Energy Technology Data Exchange (ETDEWEB)

    Chitralekha Khatri; Ashu Rani [Government P.G. College, Kota (India). Environmental Chemistry Laboratory

    2008-10-15

    The synthesis of nano-crystalline activated fly ash catalyst (AFAC) with crystallite size of 12 nm was carried out by chemical and thermal treatment of fly ash, a waste material generated from coal-burning power plants. Fly ash was chemically activated using sulfuric acid followed by thermal activation at 600{sup o}C. The variation of surface and physico-chemical properties of the fly ash by activation methods resulted in improved acidity and therefore, catalytic activity for acid catalyzed reactions. The AFAC was characterized by X-ray diffraction, FT-IR spectroscopy, N{sub 2}-adsorption-desorption isotherm, scanning electron microscopy, flame atomic absorption spectrophotometry and sulfur content by CHNS/O elemental analysis. It showed amorphous nature due to high silica content (81%) and possessed high BET surface area (120 m{sup 2}/g). The catalyst was found to be highly active solid acid catalyst for liquid phase esterification of salicylic acid with acetic anhydride and methanol giving acetylsalicylic acid and methyl salicylate respectively. A maximum yield of 97% with high purity of acetylsalicylic acid (aspirin) and a very high conversion 87% of salicylic acid to methyl salicylate (oil of wintergreen) was obtained with AFAC. The surface acidity and therefore, catalytic activity in AFAC was originated by increased silica content, hydroxyl content and higher surface area as compared to fly ash. The study shows that coal generated fly ash can be converted into potential solid acid catalyst for acid catalyzed reactions. Furthermore, this catalyst may replace conventional environmentally hazardous homogeneous liquid acids making an ecofriendly; solvent free, atom efficient, solid acid based catalytic process. 27 refs., 5 figs., 2 tabs.

  7. New URJC-1 Material with Remarkable Stability and Acid-Base Catalytic Properties

    Directory of Open Access Journals (Sweden)

    Pedro Leo

    2016-02-01

    Full Text Available Emerging new metal-organic structures with tunable physicochemical properties is an exciting research field for diverse applications. In this work, a novel metal-organic framework Cu(HIT(DMF0.5, named URJC-1, with a three-dimensional non-interpenetrated utp topological network, has been synthesized. This material exhibits a microporous structure with unsaturated copper centers and imidazole–tetrazole linkages that provide accessible Lewis acid/base sites. These features make URJC-1 an exceptional candidate for catalytic application in acid and base reactions of interest in fine chemistry. The URJC-1 material also displays a noteworthy thermal and chemical stability in different organic solvents of different polarity and boiling water. Its catalytic activity was evaluated in acid-catalyzed Friedel–Crafts acylation of anisole with acetyl chloride and base-catalyzed Knoevenagel condensation of benzaldehyde with malononitrile. In both cases, URJC-1 material showed very good performance, better than other metal organic frameworks and conventional catalysts. In addition, a remarkable structural stability was proven after several consecutive reaction cycles.

  8. Catalytic decomposition of nitrous oxide from nitric acid production tail gases. Investigation of inhibition effects. Executive summary

    International Nuclear Information System (INIS)

    Mul, G.; Perez-Ramirez, J.; Xu, Xiaoding; Oonk, H.; Yakovlev, A.

    2001-06-01

    Nitric acid production is an important source of nitrous oxide, one of the green-house gases. Catalytic decomposition of N2O in nitric acid tail-gases might be a possibility for emission reduction, but technology is not yet available. As a part of development of suitable catalytic systems, research was performed, aiming at: gaining an improved understanding of catalytic decomposition of N2O and the inhibiting effects of NO, NO2, H2O and O2; and preparing a 'go-no go' decision whether or not to proceed with subsequent re-search and development and if yes, to indicate what technology further development should aim for. Due to the presence of NOx and water in the nitric acid tail gases, catalytic decomposition proves not to be feasible at temperatures below 350C. At higher temperatures possibilities do exist and a number of promising catalysts are identified. These are active (80 - 100 % conversion) in the temperature range of 400 - 500C and under simulated tail gas conditions. Considering process conditions only (temperatures and composition of the tail-gases), the catalysts studied (pref. the Rh/Al2O3 types) could be in principle applied successfully in all Dutch nitric acid plants

  9. Catalytic amino acid production from biomass-derived intermediates

    KAUST Repository

    Deng, Weiping

    2018-04-30

    Amino acids are the building blocks for protein biosynthesis and find use in myriad industrial applications including in food for humans, in animal feed, and as precursors for bio-based plastics, among others. However, the development of efficient chemical methods to convert abundant and renewable feedstocks into amino acids has been largely unsuccessful to date. To that end, here we report a heterogeneous catalyst that directly transforms lignocellulosic biomass-derived α-hydroxyl acids into α-amino acids, including alanine, leucine, valine, aspartic acid, and phenylalanine in high yields. The reaction follows a dehydrogenation-reductive amination pathway, with dehydrogenation as the rate-determining step. Ruthenium nanoparticles supported on carbon nanotubes (Ru/CNT) exhibit exceptional efficiency compared with catalysts based on other metals, due to the unique, reversible enhancement effect of NH3 on Ru in dehydrogenation. Based on the catalytic system, a two-step chemical process was designed to convert glucose into alanine in 43% yield, comparable with the well-established microbial cultivation process, and therefore, the present strategy enables a route for the production of amino acids from renewable feedstocks. Moreover, a conceptual process design employing membrane distillation to facilitate product purification is proposed and validated. Overall, this study offers a rapid and potentially more efficient chemical method to produce amino acids from woody biomass components.

  10. Silica Sulphuric Acid as an Efficient Catalyst for the Catalytic and ...

    African Journals Online (AJOL)

    NJD

    presence of a catalytic amount of silica sulphuric acid under micellar media in moderate to good yields. KEYWORDS. Sodium ... Production of aromatic nitro compounds is an important industrial process and involves the unsolved problems of ... V7 and Re9) and titanium and chromium silicates.10 Some of the procedures ...

  11. Facile CO cleavage by a multimetallic CsU2 nitride complex

    International Nuclear Information System (INIS)

    Falcone, Marta; Scopelliti, Rosario; Mazzanti, Marinella; Kefalidis, Christos E.; Maron, Laurent

    2016-01-01

    Uranium nitrides are important materials with potential for application as fuels for nuclear power generation, and as highly active catalysts. Molecular nitride compounds could provide important insight into the nature of the uranium-nitride bond, but currently little is known about their reactivity. In this study, we found that a complex containing a nitride bridging two uranium centers and a cesium cation readily cleaved the C≡O bond (one of the strongest bonds in nature) under ambient conditions. The product formed has a [CsU 2 (μ-CN)(μ-O)] core, thus indicating that the three cations cooperate to cleave CO. Moreover, the addition of MeOTf to the nitride complex led to an exceptional valence disproportionation of the CsU IV -N-U IV core to yield CsU III (OTf) and [MeN=U V ] fragments. The important role of multimetallic cooperativity in both reactions is illustrated by the computed reaction mechanisms.

  12. Facile CO Cleavage by a Multimetallic CsU2 Nitride Complex.

    Science.gov (United States)

    Falcone, Marta; Kefalidis, Christos E; Scopelliti, Rosario; Maron, Laurent; Mazzanti, Marinella

    2016-09-26

    Uranium nitrides are important materials with potential for application as fuels for nuclear power generation, and as highly active catalysts. Molecular nitride compounds could provide important insight into the nature of the uranium-nitride bond, but currently little is known about their reactivity. In this study, we found that a complex containing a nitride bridging two uranium centers and a cesium cation readily cleaved the C≡O bond (one of the strongest bonds in nature) under ambient conditions. The product formed has a [CsU2 (μ-CN)(μ-O)] core, thus indicating that the three cations cooperate to cleave CO. Moreover, the addition of MeOTf to the nitride complex led to an exceptional valence disproportionation of the CsU(IV) -N-U(IV) core to yield CsU(III) (OTf) and [MeN=U(V) ] fragments. The important role of multimetallic cooperativity in both reactions is illustrated by the computed reaction mechanisms. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Catalytic oxidative conversion of cellulosic biomass to formic acid and acetic acid with exceptionally high yields

    KAUST Repository

    Zhang, Jizhe

    2014-09-01

    Direct conversion of raw biomass materials to fine chemicals is of great significance from both economic and ecological perspectives. In this paper, we report that a Keggin-type vanadium-substituted phosphomolybdic acid catalyst, namely H4PVMo11O40, is capable of converting various biomass-derived substrates to formic acid and acetic acid with high selectivity in a water medium and oxygen atmosphere. Under optimized reaction conditions, H4PVMo11O40 gave an exceptionally high yield of formic acid (67.8%) from cellulose, far exceeding the values achieved in previous catalytic systems. Our study demonstrates that heteropoly acids are generally effective catalysts for biomass conversion due to their strong acidities, whereas the composition of metal addenda atoms in the catalysts has crucial influence on the reaction pathway and the product selectivity. © 2013 Elsevier B.V.

  14. Formic Acid Free Flowsheet Development To Eliminate Catalytic Hydrogen Generation In The Defense Waste Processing

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, Dan P.; Stone, Michael E.; Newell, J. David; Fellinger, Terri L.; Bricker, Jonathan M.

    2012-09-14

    The Defense Waste Processing Facility (DWPF) processes legacy nuclear waste generated at the Savannah River Site (SRS) during production of plutonium and tritium demanded by the Cold War. The nuclear waste is first treated via a complex sequence of controlled chemical reactions and then vitrified into a borosilicate glass form and poured into stainless steel canisters. Converting the nuclear waste into borosilicate glass canisters is a safe, effective way to reduce the volume of the waste and stabilize the radionuclides. Testing was initiated to determine whether the elimination of formic acid from the DWPF's chemical processing flowsheet would eliminate catalytic hydrogen generation. Historically, hydrogen is generated in chemical processing of alkaline High Level Waste sludge in DWPF. In current processing, sludge is combined with nitric and formic acid to neutralize the waste, reduce mercury and manganese, destroy nitrite, and modify (thin) the slurry rheology. The noble metal catalyzed formic acid decomposition produces hydrogen and carbon dioxide. Elimination of formic acid by replacement with glycolic acid has the potential to eliminate the production of catalytic hydrogen. Flowsheet testing was performed to develop the nitric-glycolic acid flowsheet as an alternative to the nitric-formic flowsheet currently being processed at the DWPF. This new flowsheet has shown that mercury can be reduced and removed by steam stripping in DWPF with no catalytic hydrogen generation. All processing objectives were also met, including greatly reducing the Slurry Mix Evaporator (SME) product yield stress as compared to the baseline nitric/formic flowsheet. Ten DWPF tests were performed with nonradioactive simulants designed to cover a broad compositional range. No hydrogen was generated in testing without formic acid.

  15. Biochar as porous media for thermally-induced non-catalytic transesterification to synthesize fatty acid ethyl esters from coconut oil

    International Nuclear Information System (INIS)

    Jung, Jong-Min; Lee, Jechan; Choi, Dongho; Oh, Jeong-Ik; Lee, Sang-Ryong; Kim, Jae-Kon; Kwon, Eilhann E.

    2017-01-01

    Highlights: • Biodiesel production using renewable resources. • Thermally-induced non-catalytic transesterification. • Synthesis of fatty acid ethyl esters without conventional catalysts. • Using biochar as porous medium in the non-catalytic transesterification. - Abstract: This study put great emphasis on evaluating biochar as porous media for the thermally-induced non-catalytic transesterification reaction to synthesize fatty acid ethyl esters (FAEE) from coconut oil. Thermogravimetric analysis (TGA) of coconut oil experimentally justified that the bond dissociation of fatty acid from the backbone of triglycerides (TGs) could be achieved, which finding could be applied to the non-catalytic transesterification reaction. To use biochar as porous medium, the surficial morphology of maize residue biochar (MRB) was characterized, revealing that biochar possessed the wider pore size distribution ranging from meso- to macro-pores than SiO 2 . The highest yield of FAEE from non-catalytic transesterification of coconut oil in the presence of MRB was 87% at 380 °C. To further enhance the FAEE yield, further studies associated with the production of FAEE with biochar made from different biomasses and various pyrolytic conditions should be performed.

  16. Separation and purification of lactic acid. Thermal catalytic depolymerization of poly-lactic acid into lactide; Hakkoho nyusan no bunri seisei ni kansuru kenkyu. Pori nyusan no rakuchido eno sesshokuteki netsukai jugo

    Energy Technology Data Exchange (ETDEWEB)

    Morita, M.; Hirama, Y.; Liew, M. [Hokkaido National Industrial Research Institute, Sapporo (Japan)

    1996-05-10

    A new separation and purification method for lactic acid from fermentation broth is proposed by which poly-lactic acid produced from unpurified lactic acid is catalytically depolymerized into lactide fractions then further purified into lactide. In the present study, thermal depolymerization catalysts were investigated for commercial use. Iron catalysts, especially metallic iron, and ferrous oxide and lactate, were found to provide almost the same catalytic activity and lactide composition in depolymerization products and those in tin octoate and antimony oxide catalysts. Ferrous oxide was also applied to depolymerize poly-lactic acid derived form unpurified lactic acid to compare catalytic activity and lactide composition and was confirmed to show results similar to those of pure polymer. Based on these findings, it is concluded that iron catalysts can be used commercially. Furthermore, catalytic depolymerization of poly-lactic acids with different molecular weights were studied. Polymers with Mw 5,000-10,000 were found to be better for production of lactide, based on the behavior of depolymerization and lactide content in the product. 5 refs., 9 figs., 1 tab.

  17. Mechanism for enhanced degradation of clofibric acid in aqueous by catalytic ozonation over MnO{sub x}/SBA-15

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Qiangqiang; Wang, Yu [School of Chemistry & Environment, South China Normal University, Guangzhou 510006 (China); Li, Laisheng, E-mail: llsh@scnu.edu.cn [School of Chemistry & Environment, South China Normal University, Guangzhou 510006 (China); Bing, Jishuai [Key Laboratory of Aquatic Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China); Wang, Yingxin; Yan, Huihua [School of Chemistry & Environment, South China Normal University, Guangzhou 510006 (China)

    2015-04-09

    Highlights: • Clofibric acid (CA) is efficiently mineralized by O{sub 3}/MnO{sub x}/SBA-15. • Adsorption of CA and its intermediates on MnO{sub x}/SBA-15 is proved unimportant. • Initiation of hydroxyl radicals (·OH) is enhanced in O{sub 3}/MnO{sub x}/SBA-15. • Uniformly distributed MnO{sub x} accounts for the high activity of MnO{sub x}/SBA-15. • Degradation routes of CA in ozonation alone and catalytic ozonation are proposed. - Abstract: Comparative experiments were conducted to investigate the catalytic ability of MnO{sub x}/SBA-15 for the ozonation of clofibric acid (CA) and its reaction mechanism. Compared with ozonation alone, the degradation of CA was barely enhanced, while the removal of TOC was significantly improved by catalytic ozonation (O{sub 3}/MnO{sub x}/SBA-15). Adsorption of CA and its intermediates by MnO{sub x}/SBA-15 was proved unimportant in O{sub 3}/MnO{sub x}/SBA-15 due to the insignificant adsorption of CA and little TOC variation after ceasing ozone in stopped-flow experiment. The more remarkably inhibition effect of sodium bisulfite (NaHSO{sub 3}) on the removal of TOC in catalytic ozonation than in ozonation alone elucidated that MnO{sub x}/SBA-15 facilitated the generation of hydroxyl radicals (·OH), which was further verified by electron spin-resonance spectroscopy (ESR). Highly dispersed MnO{sub x} on SBA-15 were believed to be the main active component in MnO{sub x}/SBA-15. Some intermediates were indentified and different degradation routes of CA were proposed in both ozonation alone and catalytic ozonation. The amounts of small molecular carboxylic acids (i.e., formic acid (FA), acetic acid (AA) and oxalic acid (OA)) generated in catalytic ozonation were lower than in ozonation alone, resulting from the generation of more ·OH.

  18. Catalytic effects of inorganic acids on the decomposition of ammonium nitrate.

    Science.gov (United States)

    Sun, Jinhua; Sun, Zhanhui; Wang, Qingsong; Ding, Hui; Wang, Tong; Jiang, Chuansheng

    2005-12-09

    In order to evaluate the catalytic effects of inorganic acids on the decomposition of ammonium nitrate (AN), the heat releases of decomposition or reaction of pure AN and its mixtures with inorganic acids were analyzed by a heat flux calorimeter C80. Through the experiments, the different reaction mechanisms of AN and its mixtures were analyzed. The chemical reaction kinetic parameters such as reaction order, activation energy and frequency factor were calculated with the C80 experimental results for different samples. Based on these parameters and the thermal runaway models (Semenov and Frank-Kamenestkii model), the self-accelerating decomposition temperatures (SADTs) of AN and its mixtures were calculated and compared. The results show that the mixtures of AN with acid are more unsteady than pure AN. The AN decomposition reaction is catalyzed by acid. The calculated SADTs of AN mixtures with acid are much lower than that of pure AN.

  19. Facile CO cleavage by a multimetallic CsU{sub 2} nitride complex

    Energy Technology Data Exchange (ETDEWEB)

    Falcone, Marta; Scopelliti, Rosario; Mazzanti, Marinella [Ecole Polytechnique de Federale de Lausanne (EPFL) (Switzerland). Inst. des Sciences et Ingenierie Chimiques; Kefalidis, Christos E.; Maron, Laurent [Toulouse Univ. (France). LPCNO, CNRS et INSA, UPS

    2016-09-26

    Uranium nitrides are important materials with potential for application as fuels for nuclear power generation, and as highly active catalysts. Molecular nitride compounds could provide important insight into the nature of the uranium-nitride bond, but currently little is known about their reactivity. In this study, we found that a complex containing a nitride bridging two uranium centers and a cesium cation readily cleaved the C≡O bond (one of the strongest bonds in nature) under ambient conditions. The product formed has a [CsU{sub 2}(μ-CN)(μ-O)] core, thus indicating that the three cations cooperate to cleave CO. Moreover, the addition of MeOTf to the nitride complex led to an exceptional valence disproportionation of the CsU{sup IV}-N-U{sup IV} core to yield CsU{sup III}(OTf) and [MeN=U{sup V}] fragments. The important role of multimetallic cooperativity in both reactions is illustrated by the computed reaction mechanisms.

  20. A recyclable Au(I) catalyst for selective homocoupling of arylboronic acids: significant enhancement of nano-surface binding for stability and catalytic activity.

    Science.gov (United States)

    Zhang, Xin; Zhao, Haitao; Wang, Jianhui

    2010-08-01

    Au nanoparticles stabilized by polystyrene-co-polymethacrylic acid microspheres (PS-co-PMAA) were prepared and characterized via X-ray diffraction (XRD), and transmission electron microscope (TEM). The Au nanoparticles supported on the microspheres showed highly selective catalytic activity for homo-coupling reactions of arylboronic acids in a system of aryl-halides and arylboronic acids. X-ray photoelectron spectroscopy (XPS) spectra of the catalyst shows large amounts of Au(I) complexes band to the surface of the Au nanoparticles, which contributes to the selective homocoupling of the arylboronic acids. More importantly, this supported Au complex is a highly recyclable catalyst. The supported Au catalyst can be recycled and reused at least 6 times for a phenylboronic acid reactant, whereas the parent complex shows very low catalytic activity for this compound. The high catalytic activity of this material is attributed to: (1) the high surface to volume ratio which leads to more active sites being exposed to reactants; (2) the strong surface binding of the Au nanoparticle to the Au(I) complexes, which enhances both the stability and the catalytic activity of these complexes.

  1. Staining of fluid-catalytic cracking catalysts: Localising Brønsted acidity within a single catalyst particle

    NARCIS (Netherlands)

    Buurmans, I.L.C.; Ruiz Martinez, J.; van Leeuwen, S.L.; van der Beek, D.; Bergwerff, J.A.; Knowles, W.V.; Vogt, Eelco; Weckhuysen, B.M.

    2012-01-01

    A time-resolved in situ micro-spectroscopic approach has been used to investigate the Brønsted acidic properties of fluid-catalytic-cracking (FCC) catalysts at the single particle level by applying the acid-catalysed styrene oligomerisation probe reaction. The reactivity of individual FCC components

  2. Ruthenium-catalysed decomposition of formic acid: Fuel cell and catalytic applications

    KAUST Repository

    Piola, Lorenzo

    2017-08-08

    The decomposition of formic acid into H2 and CO2 was successfully performed using a ruthenium hydride catalyst, without any concomitant CO evolution. The reaction mechanism is investigated by means of density functional theory calculations (DFT). The generated H2 was further exploited in a fuel cell to produce electricity. The catalytic hydrogenation of conjugated olefins, using this dihydrogen generation procedure, is also reported.

  3. Ruthenium-catalysed decomposition of formic acid: Fuel cell and catalytic applications

    KAUST Repository

    Piola, Lorenzo; Ferná ndez-Salas, José A.; Nahra, Fady; Poater, Albert; Cavallo, Luigi; Nolan, Steven P.

    2017-01-01

    The decomposition of formic acid into H2 and CO2 was successfully performed using a ruthenium hydride catalyst, without any concomitant CO evolution. The reaction mechanism is investigated by means of density functional theory calculations (DFT). The generated H2 was further exploited in a fuel cell to produce electricity. The catalytic hydrogenation of conjugated olefins, using this dihydrogen generation procedure, is also reported.

  4. Magnetic Vinylphenyl Boronic Acid Microparticles for Surface Catalytic Performance in Esterification of Propionic Acid with Methanol

    Directory of Open Access Journals (Sweden)

    Ali Kara

    2016-12-01

    Full Text Available Magnetic vinylphenyl boronic acid microparticles, poly(ethylene glycol dimethacrylate-vinylphenyl boronic acid [m-poly(EGDMA-VPBA], produced by suspension polymerization, was found to be efficient solid acid catalyst for the esterification of methanol and propionic acid. Characterization techniques such as FT-IR, Elemental analyses, ICP-AES, ESR, SEM and N2 sorption showed that both of Fe3O4 and H2SO4 are bonded to the polymer successfully. Esterification was studied for different molar percentages of H2SO4 at temperature range of 50-70 oC. The apparent activation energy was found to be 27.7 kj.mol-1 for 10% H2SO4 doped m-poly(EGDMA-VPBA. Combining of strong acid H2SO4 with m-poly(EGDMA-VPBA, leads to materials with different functional properties. In addition, H2SO4 species could be introduced into the structure as acid centers, therefore this micro-dimensional catalyst has potential candidate for applications in the catalytic esterifications such as propionic acid with methanol.

  5. Low Temperature Selective Catalytic Reduction of Nitrogen Oxides in Production of Nitric Acid by the Use of Liquid

    Directory of Open Access Journals (Sweden)

    Kabljanac, Ž.

    2011-11-01

    Full Text Available This paper presents the application of low-temperature selective catalytic reduction of nitrous oxides in the tail gas of the dual-pressure process of nitric acid production. The process of selective catalytic reduction is carried out using the TiO2/WO3 heterogeneous catalyst applied on a ceramic honeycomb structure with a high geometric surface area per volume. The process design parameters for nitric acid production by the dual-pressure procedure in a capacity range from 75 to 100 % in comparison with designed capacity for one production line is shown in the Table 1. Shown is the effectiveness of selective catalytic reduction in the temperature range of the tail gas from 180 to 230 °C with direct application of liquid ammonia, without prior evaporation to gaseous state. The results of inlet and outlet concentrations of nitrous oxides in the tail gas of the nitric acid production process are shown in Figures 1 and 2. Figure 3 shows the temperature dependence of the selective catalytic reduction of nitrous oxides expressed as NO2in the tail gas of nitric acid production with the application of a constant mass flow of liquid ammonia of 13,0 kg h-1 and average inlet mass concentration of the nitrous oxides expressed as NO2of 800,0 mgm-3 during 100 % production capacity. The specially designed liquid-ammonia direct-dosing system along with the effective homogenization of the tail gas resulted in emission levels of nitrous oxides expressed as NO2 in tail gas ranging from 100,0 to 185,0 mg m-3. The applied low-temperature selective catalytic reduction of the nitrous oxides in the tail gases by direct use of liquid ammonia is shown in Figure 4. It is shown that low-temperature selective catalytic reduction with direct application of liquid ammonia opens a new opportunity in the reduction of nitrous oxide emissions during nitric acid production without the risk of dangerous ammonium nitrate occurring in the process of subsequent energy utilization of

  6. Development of nitric oxide catalytic coatings by conjugating 3,3-disulfodipropionic acid and 3,3-diselenodipropionic acid for improving hemocompatibility.

    Science.gov (United States)

    Yang, Ying; Li, Yalong; Li, Xiangyang; Qi, Pengkai; Tu, Qiufen; Yang, Zhilu; Huang, Nan

    2015-12-02

    Nitric oxide (NO), discovered as an endothelium-derived relaxing factor, has been found to have multiple intracellular effects in vascular diseases including vasorelaxation regulation, endothelial regeneration, inhibition of leukocyte chemotaxis, and platelet activation. In the work described here, the authors have developed a NO-catalytic bioactive coating for improving hemocompatibility. The authors first prepared a dopamine and hexamethylendiamine (PDAM/HD) amine-rich adherent copolymer coating to introduce amine groups onto 316L stainless steel, followed by covalently conjugating 3,3-disulfodipropionic acid (S-S) and 3,3-diselenodipropionic acid (Se-Se), which mimic glutathione peroxidase-like catalytic production of NO. S-S and Se-Se were immobilized on the PDAM/HD surface via carbodiimide coupling chemistry. X-ray photoelectron spectroscopy analysis revealed clear S2p and Se3d signals, confirming the immobilization of S-S and Se-Se on the PDAM/HD surface. The NO release behavior of different samples was investigated. In detail, two species of thionitrites (RSNO), S-nitrosoglutathione (GSNO, endogenous NO donors) and S-nitrosoacetylpenicillamine (SNAP) were chosen as NO donors to investigate the NO catalytic properties of S-S and Se-Se modified PDAM/HD surfaces. Not only Se-Se@PDAM/HD but also S-S@PDAM/HD coatings showed the ability to continuously catalyze RSNO to generate NO in the presence of proper thiol reducing agent. For the Se-Se@PDAM/HD coating, the NO release amount and rate were greater than S-S@PDAM/HD in both GSNO and SNAP conditions. The results showed that organosulfide species possesses NO catalytic ability as well as organoselenium species. The authors demonstrated that both S-S@PDAM/HD and Se-Se@PDAM/HD coatings exhibited outstanding inhibition effect on platelet adhesion, aggregation and activation via the cyclic guanylate monophosphate signal pathway. Thus these results suggested that NO catalytic coatings based on organoselenium and

  7. Efficient Diethylzinc/Gallic Acid and Diethylzinc/Gallic Acid Ester Catalytic Systems for the Ring-Opening Polymerization of rac-Lactide

    Directory of Open Access Journals (Sweden)

    Karolina Żółtowska

    2015-12-01

    Full Text Available Polylactide (PLA represents one of the most promising biomedical polymers due to its biodegradability, bioresorbability and good biocompatibility. This work highlights the synthesis and characterization of PLAs using novel diethylzinc/gallic acid (ZnEt2/GAc and diethylzinc/propyl gallate (ZnEt2/PGAc catalytic systems that are safe for human body. The results of the ring-opening polymerization (ROP of rac-lactide (rac-LA in the presence of zinc-based catalytic systems have shown that, depending on the reaction conditions, “predominantly isotactic”, disyndiotactic or atactic PLA can be obtained. Therefore, the controlled and stereoselective ROP of rac-LA is discussed in detail in this paper.

  8. Simple and rapid hydrogenation of p-nitrophenol with aqueous formic acid in catalytic flow reactors

    Directory of Open Access Journals (Sweden)

    Rahat Javaid

    2013-06-01

    Full Text Available The inner surface of a metallic tube (i.d. 0.5 mm was coated with a palladium (Pd-based thin metallic layer by flow electroless plating. Simultaneous plating of Pd and silver (Ag from their electroless-plating solution produced a mixed distributed bimetallic layer. Preferential acid leaching of Ag from the Pd–Ag layer produced a porous Pd surface. Hydrogenation of p-nitrophenol was examined in the presence of formic acid simply by passing the reaction solution through the catalytic tubular reactors. p-Aminophenol was the sole product of hydrogenation. No side reaction occurred. Reaction conversion with respect to p-nitrophenol was dependent on the catalyst layer type, the temperature, pH, amount of formic acid, and the residence time. A porous and oxidized Pd (PdO surface gave the best reaction conversion among the catalytic reactors examined. p-Nitrophenol was converted quantitatively to p-aminophenol within 15 s of residence time in the porous PdO reactor at 40 °C. Evolution of carbon dioxide (CO2 was observed during the reaction, although hydrogen (H2 was not found in the gas phase. Dehydrogenation of formic acid did not occur to any practical degree in the absence of p-nitrophenol. Consequently, the nitro group was reduced via hydrogen transfer from formic acid to p-nitrophenol and not by hydrogen generated by dehydrogenation of formic acid.

  9. Catalytic Ozonation of Toluene Using Chilean Natural Zeolite: The Key Role of Brønsted and Lewis Acid Sites

    Directory of Open Access Journals (Sweden)

    Serguei Alejandro-Martín

    2018-05-01

    Full Text Available The influence of surface physical-chemical characteristics of Chilean natural zeolite on the catalytic ozonation of toluene is presented in this article. Surface characteristics of natural zeolite were modified by acid treatment with hydrochloric acid and ion-exchange with ammonium sulphate. Prior to catalytic ozonation assays, natural and chemically modified zeolite samples were thermally treated at 623 and 823 K in order to enhance Brønsted and Lewis acid sites formation, respectively. Natural and modified zeolite samples were characterised by N2 adsorption at 77 K, elemental analysis, X-ray fluorescence, and Fourier transform infrared (FTIR spectroscopy, using pyridine as a probe molecule. The highest values of the reaction rate of toluene oxidation were observed when NH4Z1 and 2NH4Z1 zeolite samples were used. Those samples registered the highest density values of Lewis acid sites compared to other samples used here. Results indicate that the presence of strong Lewis acid sites at the 2NH4Z1 zeolite surface causes an increase in the reaction rate of toluene oxidation, confirming the role of Lewis acid sites during the catalytic ozonation of toluene at room temperature. Lewis acid sites decompose gaseous ozone into atomic oxygen, which reacts with the adsorbed toluene at Brønsted acid sites. On the other hand, no significant contribution of Brønsted acid sites on the reaction rate was registered when NH4Z1 and 2NH4Z1 zeolite samples were used.

  10. Boosted surface acidity in TiO{sub 2} and Al{sub 2}O{sub 3}-TiO{sub 2} nanotubes as catalytic supports

    Energy Technology Data Exchange (ETDEWEB)

    Camposeco, R. [Molecular Engineering Program, Mexican Institute of Petroleum, 07730, México, D.F. (Mexico); Department of Chemistry, UAM-A, 55534, México, D.F. (Mexico); Castillo, S., E-mail: scastill@imp.mx [Molecular Engineering Program, Mexican Institute of Petroleum, 07730, México, D.F. (Mexico); Department of Chemical Engineering, ESIQIE-IPN, 75876, México, D.F. (Mexico); Mejía-Centeno, Isidro; Navarrete, J.; Nava, N. [Molecular Engineering Program, Mexican Institute of Petroleum, 07730, México, D.F. (Mexico)

    2015-11-30

    Graphical abstract: - Highlights: • Surface acidity of NTs was modified by adding alumina. • Brönsted acid sites remain constant but Lewis acid sites are increased remarkably. • IR characterization by lutidine and pyridine confirms the surface acidity of NTs. • 98% of NO conversion was reached between 380 and 480 °C on NT-5Al. • The boosted surface acidity of NT-Al improves the catalytic activity for SCR-NO. - Abstract: In this study, titanate nanotubes (NT) and titanate nanotubes with alumina (NT-Al) were studied as solid acid catalytic supports to show the relationship between the kind of acidity and catalytic activity. The supports were characterized by XRD, TEM, FTIR, XPS, and tested in the SCR-NO with NH{sub 3}. It was found that the amount of Brönsted acid sites was maintained and the Lewis acid sites were significantly affected by the addition of alumina (1, 3, 5 and 10 wt.%); such acidity was higher than that of the titanate nanotubes (NT) by two-fold. To confirm the formation of titanate nanotubes and titanate nanotubes with alumina, transmission electron microscopy (TEM) was used. X-ray diffraction (XRD) revealed the formation of the H{sub 2}Ti{sub 4}O{sub 9}·H{sub 2}O phase. All NT and NT-Al supports presented catalytic activity to remove NO with NH{sub 3} under lean conditions, confirming the presence of an important amount of Brönsted and Lewis acid sites in both NT and NT-Al supports.

  11. Characterization of 12-molybdophosphoric acid supported on mesoporous silica MCM-41 and its catalytic performance in the synthesis of hydroquinone diacetate

    International Nuclear Information System (INIS)

    Ahmed, Awad I.; Samra, S.E.; El-Hakam, S.A.; Khder, A.S.; El-Shenawy, H.Z.; El-Yazeed, W.S. Abo

    2013-01-01

    12-molybdophosphoric acid (PMA) was supported on mesoporous molecular sieves MCM-41 by impregnation of 12-molybdophosphoric acid followed by calcination. The nanochannels of MCM-41 provide a large surface area for the solid state dispersion of 12-molybdophosphoric acid. The samples have been characterized by N 2 adsorption–desorption at −196 °C, transmission electron microscopy (TEM), powder X-ray diffraction (PXRD), and FT-IR measurements. The acidity and catalytic activity have been, respectively, examined by nonaqueous titration of n-butylamine in acetonitrile and synthesis of hydroquinone diacetate. The results showed that ordered hexagonal pore structure was observed in the synthesized MCM-41. Also the results indicate that PMA are highly dispersed on mesoporous silica MCM-41 spherical nanoparticles while PMA retains its Keggin structure. On the other hand, with increasing the introduced PMA amount, the specific surface area decreases, and the mesoporous ordering of the samples become poor. Both the surface acidity and the catalytic activity sharply increase with the modification of MCM-41 by PMA but decrease by increasing the calcination temperature. The sample with 55 wt% PMA/MCM-41 calcined at 350 °C shows the highest acidity and catalytic activity.

  12. The graphene nanopowder for electro-catalytic oxidation of dopamine and uric acid in the presence of ascorbic acid

    Institute of Scientific and Technical Information of China (English)

    Yuan; Bu; Wenle; Dai; Nan; Li; Xinran; Zhao; Xia; Zuo

    2013-01-01

    The graphene nanopowder for electro-catalytic oxidation of dopamine and uric acid in the presence of ascorbic acid has been investigated by cyclic voltammetry,linear polarization and chronoamperometry.The graphene nanopowder modified electrode was prepared using the drop coating method,which displayed excellent electrocatalytic activity towards the oxidation of dopamine and uric acid compared with the bare glassy carbon electrode in phosphate buffer solution at pH=7.0.Linear responses for dopamine and uric acid were obtained in the ranges of3.3μmol/L to 249.1μmol/L and 6.7μmol/L to 386.3μmol/L with detection limits of 1.5μmol/L and 2.7μmol/L(S/N=3),respectively.The response time was less than 2 s in case of dopamine and 3 s in case of uric acid,respectively.The results demonstrated that the graphene nanopowder had potential for detecting dopamine and uric acid.

  13. Adsorbent catalytic nanoparticles and methods of using the same

    Energy Technology Data Exchange (ETDEWEB)

    Slowing, Igor Ivan; Kandel, Kapil

    2017-01-31

    The present invention provides an adsorbent catalytic nanoparticle including a mesoporous silica nanoparticle having at least one adsorbent functional group bound thereto. The adsorbent catalytic nanoparticle also includes at least one catalytic material. In various embodiments, the present invention provides methods of using and making the adsorbent catalytic nanoparticles. In some examples, the adsorbent catalytic nanoparticles can be used to selectively remove fatty acids from feedstocks for biodiesel, and to hydrotreat the separated fatty acids.

  14. Relation Between Acid and Catalytic Properties of Chlorinated Gamma-Alumina. a 31p Mas Nmr and Ftir Investigation

    Directory of Open Access Journals (Sweden)

    Guillaume D.

    1999-07-01

    Full Text Available In this paper, we have studied the effect of chlorine on the surface properties of gamma-alumina, especially on their acid properties. The use of FTIR spectroscopy and 31P MAS NMR of adsorbed trimethylphosphine allows to propose a chlorination mechanism. To correlate the surface properties of these chlorinated gamma-alumina with their catalytic properties, we have used a model reaction, the cracking of n-heptane under reforming conditions. The analysis of the correlation between acid properties determined by 31P MAS NMR and the catalytic results (in terms of activities and selectivities allows to identify which sites are involved in the cracking reaction.

  15. Catalytic modification of cellulose and hemicellulose - Sugarefine

    Energy Technology Data Exchange (ETDEWEB)

    Repo, T. [Helsinki Univ. (Finland),Laboratory of Inorganic Chemistry], email: timo.repo@helsinki.fi

    2012-07-01

    The main goal of the project is to develop catalytic methods for the modification of lignocellulose-based saccharides in the biorefineries. The products of these reactions could be used for example as biofuel components, raw materials for the chemical industry, solvents and precursors for biopolymers. The catalyst development aims at creating efficient, selective and green catalytic methods for profitable use in biorefineries. The project is divided in three work packages: In WP1 (Catalytic dehydration of cellulose) the aim is at developing non-toxic, efficient methods for the catalytic dehydration of cellulose the target molecule being here 5-hydroxymethylfurfural (5-HMF). 5-HMF is an interesting platform chemical for the production of fuel additives, solvents and polymers. In WP2 (Catalytic reduction), the objective of the catalytic reduction studies is to produce commercially interesting monofunctional chemicals, such as 1-butanol or 2-methyltetrahydrofuran (2-MeTHF). In WP3 (Catalytic oxidation), the research focuses on developing a green and efficient oxidation method for producing acids. Whereas acetic and formic acids are bulk chemicals, diacids such as glucaric and xylaric acids are valuable specialty chemicals for detergent, polymer and food production.

  16. Acidity-Reactivity Relationships in Catalytic Esterification over Ammonium Sulfate-Derived Sulfated Zirconia

    Directory of Open Access Journals (Sweden)

    Abdallah I. M. Rabee

    2017-07-01

    Full Text Available New insight was gained into the acidity-reactivity relationships of sulfated zirconia (SZ catalysts prepared via (NH42SO4 impregnation of Zr(OH4 for propanoic acid esterification with methanol. A family of systematically related SZs was characterized by bulk and surface analyses including XRD, XPS, TGA-MS, N2 porosimetry, temperature-programmed propylamine decomposition, and FTIR of adsorbed pyridine, as well as methylbutynol (MBOH as a reactive probe molecule. Increasing surface sulfation induces a transition from amphoteric character for the parent zirconia and low S loadings <1.7 wt %, evidenced by MBOH conversion to 3-hydroxy-3-methyl-2-butanone, methylbutyne and acetone, with higher S loadings resulting in strong Brønsted-Lewis acid pairs upon completion of the sulfate monolayer, which favored MBOH conversion to prenal. Catalytic activity for propanoic acid esterification directly correlated with acid strength determined from propylamine decomposition, coincident with the formation of Brønsted-Lewis acid pairs identified by MBOH reactive titration. Monodispersed bisulfate species are likely responsible for superacidity at intermediate sulfur loadings.

  17. Catalytic activity of supported silver and potassium salts of tungstophosphoric acid in dehydration of ethanol

    International Nuclear Information System (INIS)

    Haber, J.; Matachowski, L.; Pamin, K.; Napruszewska, B.

    2002-01-01

    Potassium and silver salts of tungstophosphoric acid (HPW) have been supported on silica. Two series of potassium and silver salts of tungstophosphoric acid K x H 3-x PW 12 O 40 and Ag x H 3-x PW 12 O 40 where x = 1;2;3 supported on silica were prepared using incipient wetness method. In a typical synthesis, the heteropolyacid which after deposition on silica was washed with water to remove the part of heteropolyacid not bound to the support was reacted with silver or potassium salt. The vapor-phase dehydration of ethanol was employed as a test reaction. All the catalytic tests were carried out in a conventional flow type reactor, under atmospheric pressure, in the temperature range 125-500 o C. The results of these studies were used to explain the differences between the catalytic activities of heteropolysalts of potassium and silver supported on silica. (author)

  18. Contributions to the theory of catalytic titrations-III Neutralization catalytic titrations.

    Science.gov (United States)

    Gaál, F F; Abramović, B F

    1985-07-01

    Neutralization catalytic titrations of weak monoprotic adds and bases with both volumetric and coulometric addition of the titrant (strong base/acid) have been simulated by taking into account the equilibrium concentration of the catalyst during the titration. The influence of several factors on the shape of the simulated catalytic titration curve has been investigated and is discussed.

  19. Highly Atom Economic Synthesis of d?2?Aminobutyric Acid through an In?Vitro Tri?enzymatic Catalytic System

    OpenAIRE

    Chen, Xi; Cui, Yunfeng; Cheng, Xinkuan; Feng, Jinhui; Wu, Qiaqing; Zhu, Dunming

    2017-01-01

    Abstract d?2?Aminobutyric acid is an unnatural amino acid serving as an important intermediate in pharmaceutical production. Developing a synthetic method that uses cheaper starting materials and produces less by?product is a pressing demand. A tri?enzymatic catalytic system, which is composed of l?threonine ammonia lyase (l?TAL), d?amino acid dehydrogenase (d?AADH), and formate dehydrogenase (FDH), has thus been developed for the synthesis of d?2?aminobutyric acid with high optical purity. I...

  20. Catalytic biofilms on structured packing for the production of glycolic acid.

    Science.gov (United States)

    Li, Xuan Zhong; Hauer, Bernhard; Rosche, Bettina

    2013-02-01

    While structured packing modules are known to be efficient for surface wetting and gas-liquid exchange in abiotic surface catalysis, this model study explores structured packing as a growth surface for catalytic biofilms. Microbial biofilms have been proposed as self-immobilized and self-regenerating catalysts for the production of chemicals. A concern is that the complex and dynamic nature of biofilms may cause fluctuations in their catalytic performance over time or may affect process reproducibility. An aerated continuous trickle-bed biofilm reactor system was designed with a 3 L structured packing, liquid recycling and pH control. Pseudomonas diminuta established a biofilm on the stainless steel structured packing with a specific surface area of 500 m2 m-3 and catalyzed the oxidation of ethylene glycol to glycolic acid for over two months of continuous operation. A steady-state productivity of up to 1.6 gl-1h-1 was achieved at a dilution rate of 0.33 h-1. Process reproducibility between three independent runs was excellent, despite process interruptions and activity variations in cultures grown from biofilm effluent cells. The results demonstrate the robustness of a catalytic biofilm on structured packing, despite its dynamic nature. Implementation is recommended for whole-cell processes that require efficient gas-liquid exchange, catalyst retention for continuous operation, or improved catalyst stability.

  1. Ultra-fast catalytic reduction of dyes by ionic liquid recoverable and reusable mefenamic acid derived gold nanoparticles

    International Nuclear Information System (INIS)

    Hassan, Syeda Sara; Sirajuddin; Solangi, Amber Rehana; Agheem, Mohammad Hassan; Junejo, Yasmeen; Kalwar, Nazar Hussain; Tagar, Zulfiqar Ali

    2011-01-01

    Highlights: → Gold nanoparticles (AuNps) have been fabricated by a simple chemical method. → AuNps were capped successfully in one step by mefenamic acid (MA). → MA capped AuNps catalytically reduced the mixture of 3 dyes in just 15 s. → AuNps were recovered by ionic liquid and reused for dye(s) reduction effectively. - Abstract: We synthesized mefenamic acid (MA) derived gold nanoparticles (MA-AuNps) in aqueous solution (MA-Au sol). Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) of the sol at 1, 5, 15 and 60 min showed changes in size and shape of formed AuNps. Fourier Transform Infrared (FTIR) Spectroscopy revealed the interaction between AuNps and MA. Each Au sol exhibited exceptional catalytic activity for the reduction of Methylene Blue (MB), Rose Bengal (RB) and Eosin B (EB) dye individually as well as collectively. However, complete reduction of dye(s) was accomplished by Au sol of 5 min in just 15 s. The catalytic performance of Ma-Au sol was far superior to that adsorbed on glass. AuNps were recovered with the help of water insoluble room temperature ionic liquid and reused with enhanced catalytic potential. This finding is a novel, rapid and highly economical alternative for environmental safety against pollution by dyes and extendable for control of other reducible contaminants as well.

  2. Ultra-fast catalytic reduction of dyes by ionic liquid recoverable and reusable mefenamic acid derived gold nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Hassan, Syeda Sara [National Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080 (Pakistan); Sirajuddin, E-mail: drsiraj03@yahoo.com [National Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080 (Pakistan); Solangi, Amber Rehana [National Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080 (Pakistan); Agheem, Mohammad Hassan [Center for Pure and Applied Geology, University of Sindh, Jamshoro 76080 (Pakistan); Junejo, Yasmeen; Kalwar, Nazar Hussain; Tagar, Zulfiqar Ali [National Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080 (Pakistan)

    2011-06-15

    Highlights: {yields} Gold nanoparticles (AuNps) have been fabricated by a simple chemical method. {yields} AuNps were capped successfully in one step by mefenamic acid (MA). {yields} MA capped AuNps catalytically reduced the mixture of 3 dyes in just 15 s. {yields} AuNps were recovered by ionic liquid and reused for dye(s) reduction effectively. - Abstract: We synthesized mefenamic acid (MA) derived gold nanoparticles (MA-AuNps) in aqueous solution (MA-Au sol). Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) of the sol at 1, 5, 15 and 60 min showed changes in size and shape of formed AuNps. Fourier Transform Infrared (FTIR) Spectroscopy revealed the interaction between AuNps and MA. Each Au sol exhibited exceptional catalytic activity for the reduction of Methylene Blue (MB), Rose Bengal (RB) and Eosin B (EB) dye individually as well as collectively. However, complete reduction of dye(s) was accomplished by Au sol of 5 min in just 15 s. The catalytic performance of Ma-Au sol was far superior to that adsorbed on glass. AuNps were recovered with the help of water insoluble room temperature ionic liquid and reused with enhanced catalytic potential. This finding is a novel, rapid and highly economical alternative for environmental safety against pollution by dyes and extendable for control of other reducible contaminants as well.

  3. MESOPOROUS ACID SOLID AS A CARRIER FOR METALLOCENE CATALYST IN ETHYLENE POLYMERIZATION AND A CATALYST IN CATALYTIC DEGRADATION OF POLYETHYLENE

    Institute of Scientific and Technical Information of China (English)

    Wen-xi Cheng; Li-ya Shi; Shi-yun Li; Hui Chen; Tao Tang

    2007-01-01

    The possibility of mesoporous acid solid as a carrier for metallocene catalyst in ethylene polymerization and catalyst for polyethylene(PE)catalytic degradation was investigated.Here,HMCM-41 and AlMCM-41.and mesoporous silicoaluminophosphate molecular sieves(SAPO1 and SAPO2)were synthesized and used as acid solid.Much more gases were produced during catalytic degradation in PE/acid solid mixtures via in situ polymerization than those via physical mixing.The particle size distribution results exhibited that the particle size of SAPO1 in the PE/SAO1 mixture via in situ polymerization was about 1/14 times of that of the original SAPO1 or SAPO1.supported metallocene catalyst.This work shows a novel technology for chemical recycling of polyolefin.

  4. Directed evolution of a β-mannanase from Rhizomucor miehei to improve catalytic activity in acidic and thermophilic conditions.

    Science.gov (United States)

    Li, Yan-Xiao; Yi, Ping; Yan, Qiao-Juan; Qin, Zhen; Liu, Xue-Qiang; Jiang, Zheng-Qiang

    2017-01-01

    β-Mannanase randomly cleaves the β-1,4-linked mannan backbone of hemicellulose, which plays the most important role in the enzymatic degradation of mannan. Although the industrial applications of β-mannanase have tremendously expanded in recent years, the wild-type β-mannanases are still defective for some industries. The glycoside hydrolase (GH) family 5 β-mannanase ( Rm Man5A) from Rhizomucor miehei shows many outstanding properties, such as high specific activity and hydrolysis property. However, owing to the low catalytic activity in acidic and thermophilic conditions, the application of Rm Man5A to the biorefinery of mannan biomasses is severely limited. To overcome the limitation, Rm Man5A was successfully engineered by directed evolution. Through two rounds of screening, a mutated β-mannanase (m Rm Man5A) with high catalytic activity in acidic and thermophilic conditions was obtained, and then characterized. The mutant displayed maximal activity at pH 4.5 and 65 °C, corresponding to acidic shift of 2.5 units in optimal pH and increase by 10 °C in optimal temperature. The catalytic efficiencies ( k cat / K m ) of m Rm Man5A towards many mannan substrates were enhanced more than threefold in acidic and thermophilic conditions. Meanwhile, the high specific activity and excellent hydrolysis property of Rm Man5A were inherited by the mutant m Rm Man5A after directed evolution. According to the result of sequence analysis, three amino acid residues were substituted in m Rm Man5A, namely Tyr233His, Lys264Met, and Asn343Ser. To identify the function of each substitution, four site-directed mutations (Tyr233His, Lys264Met, Asn343Ser, and Tyr233His/Lys264Met) were subsequently generated, and the substitutions at Tyr233 and Lys264 were found to be the main reason for the changes of m Rm Man5A. Through directed evolution of Rm Man5A, two key amino acid residues that controlled its catalytic efficiency under acidic and thermophilic conditions were identified

  5. H3PO4/Al2O3 catalysts: characterization and catalytic evaluation of oleic acid conversion to biofuels and biolubricant

    Directory of Open Access Journals (Sweden)

    Lucia Regina Raddi de Araujo

    2006-06-01

    Full Text Available Al2O3 and H3PO4/Al2O3 catalysts were investigated in the conversion of oleic acid to biofuels and biolubricant at 1 atm and at 623 K. The catalytic tests were performed in a fixed bed and continuous flow reactor, using an oleic acid-catalyst ratio of 4 and N2 as the carrier gas. The reaction products were analyzed by gas chromatography and acidity measurements. N2 adsorption-desorption, X ray diffraction, 31P nuclear magnetic resonance and FT-IR spectroscopy were also employed to evaluate the textural, structural and acidic properties of the catalysts. The results showed that phosphoric acid impregnation improved the alumina decarboxylation activities, generating hydrocarbons in the range of gasoline, diesel oil and lubricant oil. The best catalytic performance was achieved with the highest surface area alumina impregnated with H3PO4, which was the solid that allied high total acidity with a large quantity of mesopores.

  6. Catalytic Aminohalogenation of Alkenes and Alkynes.

    Science.gov (United States)

    Chemler, Sherry R; Bovino, Michael T

    2013-06-07

    Catalytic aminohalogenation methods enable the regio- and stereoselective vicinal difunctionalization of alkynes, allenes and alkenes with amine and halogen moieties. A range of protocols and reaction mechanisms including organometallic, Lewis base, Lewis acid and Brønsted acid catalysis have been disclosed, enabling the regio- and stereoselective synthesis of halogen-functionalized acyclic amines and nitrogen heterocycles. Recent advances including aminofluorination and catalytic enantioselective aminohalogenation reactions are summarized in this review.

  7. A Green Protocol for Catalytic Conversion of Epoxides to 1,2-Diacetoxy Esters with Phosphomolybdic Acid Alone or Its Supported on Silica Gel

    International Nuclear Information System (INIS)

    Zeynizadeh, Behzad; Sadighnia, Leila

    2010-01-01

    Catalytic conversion of structurally different epoxides to the corresponding 1,2-diacetoxy esters was carried out readily with phosphomolybdic acid alone or its supported on SiO 2 . The reactions were carried out under solvolytic or solvent free conditions within 5-15 min at room temperature. The product 1,2-diacetates were obtained in high to excellent yields. Supporting of phosphomolybdic acid on SiO 2 showed the better catalytic activity than Al 2 O 3 . Conversion of optically pure R-(+)-styrene oxide to S-(+)-1,2-diacetoxy-1-phenylethane was carried with phosphomolybdic acid in high yield and stereospecificity

  8. Phosphotungstic acid encapsulated in the mesocages of amine-functionalized metal-organic frameworks for catalytic oxidative desulfurization.

    Science.gov (United States)

    Wang, Xu-Sheng; Huang, Yuan-Biao; Lin, Zu-Jin; Cao, Rong

    2014-08-21

    Highly dispersed Keggin-type phosphotungstic acid (H3PW12O40, PTA) encapsulated in the mesocages of amine-functionalized metal-organic frameworks MIL-101(Cr)-NH2 has been prepared by an anion-exchange method. PTA anions (PW12O40(3-)) are stabilized in the mesocages via the electrostatic interaction with amino groups of the MIL-101(Cr)-NH2. The obtained catalyst (denoted PTA@MIL-101(Cr)-NH2) exhibits high catalytic activity in the extractive and catalytic oxidative desulfurization (ECODS) system under mild conditions. Moreover, it can be easily recovered and recycled several times without leaching and loss of activity.

  9. A Green Protocol for Catalytic Conversion of Epoxides to 1,2-Diacetoxy Esters with Phosphomolybdic Acid Alone or Its Supported on Silica Gel

    Energy Technology Data Exchange (ETDEWEB)

    Zeynizadeh, Behzad; Sadighnia, Leila [Urmia University, Urmia (Iran, Islamic Republic of)

    2010-09-15

    Catalytic conversion of structurally different epoxides to the corresponding 1,2-diacetoxy esters was carried out readily with phosphomolybdic acid alone or its supported on SiO{sub 2}. The reactions were carried out under solvolytic or solvent free conditions within 5-15 min at room temperature. The product 1,2-diacetates were obtained in high to excellent yields. Supporting of phosphomolybdic acid on SiO{sub 2} showed the better catalytic activity than Al{sub 2}O{sub 3}. Conversion of optically pure R-(+)-styrene oxide to S-(+)-1,2-diacetoxy-1-phenylethane was carried with phosphomolybdic acid in high yield and stereospecificity.

  10. Structure and acidity of individual Fluid Catalytic Cracking catalyst particles studied by synchrotron-based infrared micro-spectroscopy

    NARCIS (Netherlands)

    Buurmans, I.L.C.; Soulimani, F.; Ruiz Martinez, J.; van der Bij, H.E.; Weckhuysen, B.M.

    2013-01-01

    A synchrotron-based infrared micro-spectroscopy study has been conducted to investigate the structure as well as the Brønsted and Lewis acidity of Fluid Catalytic Cracking (FCC) catalyst particles at the individual particle level. Both fresh and laboratory-deactivated catalyst particles have been

  11. Enhancement of chitosan-graphene oxide SPR sensor with a multi-metallic layers of Au–Ag–Au nanostructure for lead(II) ion detection

    Energy Technology Data Exchange (ETDEWEB)

    Kamaruddin, Nur Hasiba [Department of Electric, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor (Malaysia); Bakar, Ahmad Ashrif A., E-mail: ashrif@ukm.edu.my [Department of Electric, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor (Malaysia); Yaacob, Mohd Hanif; Mahdi, Mohd Adzir [Wireless and Photonic Network Research Centre, Faculty of Engineering, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Zan, Mohd Saiful Dzulkefly [Department of Electric, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor (Malaysia); Shaari, Sahbudin [Institute of Microengineering and Nanoelectronics, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor (Malaysia)

    2016-01-15

    Highlights: • Tri-metallic Au–Ag–Au CS-GO SPR sensor was fabricated for the first time. • The tri-metallic nanostructure provided an enhanced evanescent field. • Successful functionalization of the CS-GO sensing layer. • Superior performance for lead(II) ion detection. - Abstract: We demonstrate the enhancement of surface plasmon resonance (SPR) technique by implementing a multi-metallic layers of Au–Ag–Au nanostructure in the chitosan-graphene oxide (CS-GO) SPR sensor for lead(II) ion detection. The performance of the sensor is analyzed via SPR measurements, from which the sensitivity, signal-to-noise ratio and repeatability are determined. The nanostructure layers are characterized using field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), X-ray diffraction (XRD), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). We showed that the proposed structure has increased the shift in the SPR angle up to 3.5° within the range of 0.1–1 ppm due to the enhanced evanescent field at the sensing layer-analyte interface. This sensor also exhibits great repeatability which benefits from the stable multi-metallic nanostructure. The SNR value of 0.92 for 5 ppm lead(II) ion solution and reasonable linearity range up to that concentration shows that the tri-metallic CS-GO SPR sensor gives a good response towards the lead(II) ion solution. The CS-GO SPR sensor is also sensitive to at least a 10{sup −5} change in the refractive index. The results prove that our proposed tri-metallic CS-GO SPR sensor demonstrates a strong performance and reliability for lead(II) ion detection in accordance with the standardized lead safety level for wastewater.

  12. Poly(N-isopropylacrylamide-co-methacrylic acid microgel stabilized copper nanoparticles for catalytic reduction of nitrobenzene

    Directory of Open Access Journals (Sweden)

    Farooqi Zahoor H.

    2015-09-01

    Full Text Available Poly(N-isopropylacrylamide-co-methacrylic acid microgels [p(NIPAM-co-MAAc] were synthesized by precipitation polymerization of N-isopropylacrylamide and methacrylic acid in aqueous medium. These microgels were characterized by dynamic light scattering and Fourier transform infrared spectroscopy. These microgels were used as micro-reactors for in situ synthesis of copper nanoparticles using sodium borohydride (NaBH4 as reducing agent. The hybrid microgels were used as catalysts for the reduction of nitrobenzene in aqueous media. The reaction was performed with different concentrations of cat­alyst and reducing agent. A linear relationship was found between apparent rate constant (kapp and amount of catalyst. When the amount of catalyst was increased from 0.13 to 0.76 mg/mL then kapp was increased from 0.03 to 0.14 min-1. Activation parameters were also determined by performing reaction at two different temperatures. The catalytic process has been discussed in terms of energy of activation, enthalpy of activation and entropy of activation. The synthesized particles were found to be stable even after 14 weeks and showed catalytic activity for the reduction of nitrobenzene.

  13. Preparation of H3-labelled methyl ethers of saturated fatty acids by heterogeneous catalytic isotope exchange in solution with gaseous tritium

    International Nuclear Information System (INIS)

    Shevchenko, V.P.; Myasoedov, N.F.

    1980-01-01

    A simple method of preparing 3 H-labelled methyl ethers of saturated fatty acids in the dioxane solution using the method of isotopic heterogenous catalytic exchange with gaseous tritium, is suggested. 3 H-labelled natural fatty acids (C 12 -C 18 ) are prepared by alkaline hydrolysis [ru

  14. Determination of the positions of aluminum atoms introduced into SSZ-35 and the catalytic properties of the generated Brønsted acid sites.

    Science.gov (United States)

    Miyaji, Akimitsu; Kimura, Nobuhiro; Shiga, Akinobu; Hayashi, Yoshihiro; Nishitoba, Toshiki; Motokura, Ken; Baba, Toshihide

    2017-03-01

    The positions of aluminum (Al) atoms in SSZ-35 together with the characteristics of the generated protons were investigated by 27 Al multiple quantum magic-angle spinning (MQ-MAS), 29 Si MAS, and 1 H MAS NMR data analyses accompanied by a variable temperature 1 H MAS NMR analysis. The origin of the acidic -OH groups (Brønsted acid sites) generated by introducing Al atoms into the T sites was investigated and the T sites introduced into the Al atoms were revealed. To further determine the catalytic properties of the acidic protons generated in SSZ-35, the influence of the concentration of the Al atoms on the catalytic activity and selectivity during the transformation of toluene was examined.

  15. Catalytic Asymmetric Piancatelli Rearrangement: Brønsted Acid Catalyzed 4π Electrocyclization for the Synthesis of Multisubstituted Cyclopentenones

    KAUST Repository

    Cai, Yunfei; Tang, Yurong; Atodiresei, Iuliana; Rueping, Magnus

    2016-01-01

    The first catalytic asymmetric Piancatelli reaction is reported. Catalyzed by a chiral Brønsted acid, the rearrangement of a wide range of furylcarbinols with a series of aniline derivatives provides valuable aminocyclopentenones in high yields

  16. Enhancement of the catalytic activity of ferulic acid decarboxylase from Enterobacter sp. Px6-4 through random and site-directed mutagenesis.

    Science.gov (United States)

    Lee, Hyunji; Park, Jiyoung; Jung, Chaewon; Han, Dongfei; Seo, Jiyoung; Ahn, Joong-Hoon; Chong, Youhoon; Hur, Hor-Gil

    2015-11-01

    The enzyme ferulic acid decarboxylase (FADase) from Enterobacter sp. Px6-4 catalyzes the decarboxylation reaction of lignin monomers and phenolic compounds such as p-coumaric acid, caffeic acid, and ferulic acid into their corresponding 4-vinyl derivatives, that is, 4-vinylphenol, 4-vinylcatechol, and 4-vinylguaiacol, respectively. Among various ferulic acid decarboxylase enzymes, we chose the FADase from Enterobacter sp. Px6-4, whose crystal structure is known, and produced mutants to enhance its catalytic activity by random and site-directed mutagenesis. After three rounds of sequential mutations, FADase(F95L/D112N/V151I) showed approximately 34-fold higher catalytic activity than wild-type for the production of 4-vinylguaiacol from ferulic acid. Docking analyses suggested that the increased activity of FADase(F95L/D112N/V151I) could be due to formation of compact active site compared with that of the wild-type FADase. Considering the amount of phenolic compounds such as lignin monomers in the biomass components, successfully bioengineered FADase(F95L/D112N/V151I) from Enterobacter sp. Px6-4 could provide an ecofriendly biocatalytic tool for producing diverse styrene derivatives from biomass.

  17. High catalytic activity of ultrafine nanoporous palladium for electro-oxidation of methanol, ethanol, and formic acid

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaoguang; Wang, Weimin; Qi, Zhen; Zhao, Changchun; Ji, Hong; Zhang, Zhonghua [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (MOE), School of Materials Science and Engineering, Shandong University, Jingshi Road 73, Jinan 250061 (China)

    2009-10-15

    Nanoporous palladium (NPPd) with ultrafine ligament size of 3-6 nm was fabricated by dealloying of an Al-Pd alloy in an alkaline solution. Electrochemical measurements indicate that NPPd exhibits significantly high electrochemical active specific surface area (23 m{sup 2} g{sup -1}), and high catalytic activity for electro-oxidation of methanol, ethanol, and formic acid. Mass activities can reach 149, 148, 262 mA mg{sup -1} for the oxidation of methanol, ethanol and formic acid, respectively. Moreover, superior steady-state activities can be observed for all the electro-oxidation processes. NPPd will be a promising candidate for the anode catalyst for direct alcohol or formic acid fuel cells. (author)

  18. Preparation of acid-base bifunctional mesoporous KIT-6 (KIT: Korea Advanced Institute of Science and Technology) and its catalytic performance in Knoevenagel reaction

    International Nuclear Information System (INIS)

    Xu, Ling; Wang, Chunhua; Guan, Jingqi

    2014-01-01

    Acid-base bifunctional mesoporous catalysts Al-KIT-6-NH 2 containing different aluminum content have been synthesized through post synthetic grafting method. The materials were characterized by X-ray diffraction (XRD), scanning electron micrographs (SEM), transmission electron micrographs (TEM), Fourier-transform infrared spectroscopy (FTIR), IR spectra of pyridine adsorption, NH 3 -TPD and TG analysis. The characterization results indicated that the pore structure of KIT-6 was well kept after the addition of aluminum and grafting of aminopropyl groups. The acid amount of Al-KIT-6 increased with enhancing aluminum content. Catalytic results showed that weak acid and weak base favor the Knoevenagel reaction, while catalysts with strong acid and weak base exhibited worse catalytic behavior. - Graphical abstract: The postulated steps of mechanism for the acid-base catalyzed process are as follows: (1) the aldehyde gets activated by the surface acidic sites which allow the amine undergoes nucleophilic to attack the carbonyl carbon of benzaldehyde. (2) Water is released in the formation of imine intermediate. (3) The ethyl cyanoacetate reacts with the intermediate. (4) The benzylidene ethyl cyanoacetate is formed and the amine is regenerated. - Highlights: • KIT-6 and Al-KIT-6-NH 2 with different Si/Al ratios has been successfully prepared. • 79.4% Yield was obtained over 46-Al-KIT-6-NH 2 within 20 min in Knoevenagel reaction. • Low Al-content Al-KIT-6-NH 2 shows better catalytic stability than high Al-content catalysts. • There is acid-base synergistic effect in Knoevenagel reaction

  19. Preparation of acid-base bifunctional mesoporous KIT-6 (KIT: Korea Advanced Institute of Science and Technology) and its catalytic performance in Knoevenagel reaction

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Ling [College of Chemistry and Chemical Engineering, Inner Mongolia University for Nationalities, Tongliao 028000 (China); Wang, Chunhua [Key Laboratory of Surface and Interface Chemistry of Jilin Province, College of Chemistry, Jilin University, Changchun 130023 (China); Guan, Jingqi, E-mail: guanjq@jlu.edu.cn [Key Laboratory of Surface and Interface Chemistry of Jilin Province, College of Chemistry, Jilin University, Changchun 130023 (China)

    2014-05-01

    Acid-base bifunctional mesoporous catalysts Al-KIT-6-NH{sub 2} containing different aluminum content have been synthesized through post synthetic grafting method. The materials were characterized by X-ray diffraction (XRD), scanning electron micrographs (SEM), transmission electron micrographs (TEM), Fourier-transform infrared spectroscopy (FTIR), IR spectra of pyridine adsorption, NH{sub 3}-TPD and TG analysis. The characterization results indicated that the pore structure of KIT-6 was well kept after the addition of aluminum and grafting of aminopropyl groups. The acid amount of Al-KIT-6 increased with enhancing aluminum content. Catalytic results showed that weak acid and weak base favor the Knoevenagel reaction, while catalysts with strong acid and weak base exhibited worse catalytic behavior. - Graphical abstract: The postulated steps of mechanism for the acid-base catalyzed process are as follows: (1) the aldehyde gets activated by the surface acidic sites which allow the amine undergoes nucleophilic to attack the carbonyl carbon of benzaldehyde. (2) Water is released in the formation of imine intermediate. (3) The ethyl cyanoacetate reacts with the intermediate. (4) The benzylidene ethyl cyanoacetate is formed and the amine is regenerated. - Highlights: • KIT-6 and Al-KIT-6-NH{sub 2} with different Si/Al ratios has been successfully prepared. • 79.4% Yield was obtained over 46-Al-KIT-6-NH{sub 2} within 20 min in Knoevenagel reaction. • Low Al-content Al-KIT-6-NH{sub 2} shows better catalytic stability than high Al-content catalysts. • There is acid-base synergistic effect in Knoevenagel reaction.

  20. Influence of peracetic acid modification on the physicochemical properties of activated carbon and its performance in the ozone-catalytic oxidation of gaseous benzene

    Science.gov (United States)

    Fang, Ruimei; Huang, Haibao; Huang, Wenjun; Ji, Jian; Feng, Qiuyu; Shu, Yajie; Zhan, Yujie; Liu, Gaoyuan; Xie, Ruijie

    2017-10-01

    Coal based activated carbon (AC) was pretreated by peracetic acid solution and used for supporting Mn catalyst towards oxidation of gaseous benzene by catalytic ozonation. The as-obtained activated carbon was characterized by XPS, BET, SEM, and TG technologies. It indicates that peracetic acid solution modification not only raised the quantity of chemisorbed oxygen or water, and hydroxyl group on activated carbon material surface, but also increased the specific surface area and benzene adsorption capacity of activated carbon. Benzene could be completely removed in 300 min and CO2 selectivity reached to 61.9% over Mn/AC-modified catalyst. A possible catalytic ozonation mechanism of activated carbon which was treated by peracetic acid solution supported Mn catalyst for oxidation of benzene was proposed.

  1. Heterogeneous-catalytic redox reactions in nitrate - formate systems

    International Nuclear Information System (INIS)

    Ananiev, A.V.; Shilov, V.P.; Tananaev, I.G.; Brossard, Ph.; Broudic, J.Ch.

    2000-01-01

    It was found that an intensive destruction of various organic and mineral substances - usual components of aqueous waste solutions (oxalic acid, complexones, urea, hydrazine, ammonium nitrate, etc.) takes place under the conditions of catalytic denitration. Kinetics and mechanisms of urea and ammonium nitrate decomposition in the system HNO 3 - HCOOH - Pt/SiO 2 are comprehensively investigated. The behaviour of uranium, neptunium and plutonium under the conditions of catalytic denitration is studied. It is shown, that under the certain conditions the formic acid is an effective reducer of the uranium (VI), neptunium (VI, V) and plutonium (VI, IV) ions. Kinetics of heterogeneous-catalytic red-ox reactions of uranium (VI), neptunium (VI, V) and plutonium (VI, IV) with formic acid are investigated. The mechanisms of the appropriate reactions are evaluated. (authors)

  2. A Ta/W mixed addenda heteropolyacid with excellent acid catalytic activity and proton-conducting property

    Energy Technology Data Exchange (ETDEWEB)

    Li, Shujun; Peng, Qingpo [School of Chemistry and Chemical Engineering, Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Henan Normal University, Xinxiang, Henan 453007 (China); Chen, Xuenian, E-mail: xnchen@htu.edu.cn [School of Chemistry and Chemical Engineering, Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Henan Normal University, Xinxiang, Henan 453007 (China); Wang, Ruoya; Zhai, Jianxin; Hu, Weihua [School of Chemistry and Chemical Engineering, Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Henan Normal University, Xinxiang, Henan 453007 (China); Ma, Fengji, E-mail: fengji.ma@yahoo.com [College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 453000 (China); Zhang, Jie, E-mail: jie.zhang@htu.edu.cn [School of Chemistry and Chemical Engineering, Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Henan Normal University, Xinxiang, Henan 453007 (China); Liu, Shuxia [Key Laboratory of Polyoxometalates Science of Ministry of Education, College of Chemistry, Northeast Normal University, Changchun City, Jilin 130024 (China)

    2016-11-15

    A new HPAs H{sub 20}[P{sub 8}W{sub 60}Ta{sub 12}(H{sub 2}O){sub 4}(OH){sub 8}O{sub 236}]·125H{sub 2}O (H-1) which comprises a Ta/W mixed addenda heteropolyanion, 20 protons, and 125 crystalline water molecules has been prepared through ion-exchange method. The structure and properties of H-1 have been explored in detail. AC impedance measurements indicate that H-1 is a good solid state proton conducting material at room temperature with a conductivity value of 7.2×10{sup −3} S cm{sup −1} (25 °C, 30% RH). Cyclic voltammograms of H-1 indicate the electrocatalytic activity towards the reduction of nitrite. Hammett acidity constant H{sub 0} of H-1 in CH{sub 3}CN is −2.91, which is the strongest among the present known HPAs. Relatively, H-1 exhibits excellent catalytic activities toward acetal reaction. - Highlights: • A Ta/W mixed addenda Heteropolyacid (H-1) was isolated. • Hammett acidity constant H{sub 0} of H-1 is the strongest among the present known HPAs. • H-1 exhibits excellent catalytic activities toward acetal reaction. • H-1 is a good solid state proton conducting material at room temperature.

  3. Catalytic properties and acidity of modified MCM-41 mesoporous materials with low Si/Al ratio: heptane isomerisation

    Directory of Open Access Journals (Sweden)

    Ahmed Belhakem

    2006-06-01

    Full Text Available The catalytic properties and acidity of modified MCM-41 with a low Si/Al ratio and 0-95% NH4+ exchange were investigated. The samples were characterised by X-ray diffraction, scanning and transmission electron microscopy, and nitrogen adsorption. The acidity was studied by pyridine adsorption, temperature programmed desorption (TPD of ammonia, and infrared (IR spectroscopy. Adsorption of pyridine and IR spectroscopy indicated various types of Lewis and Brönsted acid sites. The density distribution of acid sites was determined by TPD. Both Lewis and Brönsted acid sites were found to be active in the heptane isomerisation. The presence of aluminium (low Si/Al combined to the ionic exchange between Na+ and NH4+ increases the acidity of MCM-41 materials. A close correlation between acidity and isomerisation was observed. Coke deposition, which reduces the activity, was also studied.

  4. Optimizing anti-coking abilities of zeolites by ethylene diamine tetraacetie acid modification on catalytic fast pyrolysis of corn stalk

    Science.gov (United States)

    Zhang, Bo; Zhong, Zhaoping; Song, Zuwei; Ding, Kuan; Chen, Paul; Ruan, Roger

    2015-12-01

    In order to minimize coke yield during biomass catalytic fast pyrolysis (CFP) process, ethylene diamine tetraacetie acid (EDTA) chemical modification method is carried out to selectively remove the external framework aluminum of HZSM-5 catalyst. X-ray diffraction (XRD), nitrogen (N2)-adsorption and ammonia-temperature programmed desorption (NH3-TPD) techniques are employed to investigate the porosity and acidity characteristics of original and modified HZSM-5 samples. Py-GC/MS and thermo-gravimetric analyzer (TGA) experiments are further conducted to explore the catalytic effect of modified HZSM-5 samples on biomass CFP and to verify the positive effect on coke reduction. Results show that EDTA treatment does not damage the crystal structure of HZSM-5 zeolites, but leads to a slight increase of pore volume and pore size. Meanwhile, the elimination of the strong acid peak indicates the dealumination of outer surface of HZSM-5 zeolites. Treatment time of 2 h (labeled EDTA-2H) is optimal for acid removal and hydrocarbon formation. Among all modified catalysts, EDTA-2H performs the best for deacidification and can obviously increase the yields of positive chemical compositions in pyrolysis products. Besides, EDTA modification can improve the anti-coking properties of HZSM-5 zeolites, and EDTA-2H gives rise to the lowest coke yield.

  5. Synthesis, Structural Characterization and Catalytic Activity of A Cu(II Coordination Polymer Constructed from 1,4-Phenylenediacetic Acid and 2,2’-Bipyridine

    Directory of Open Access Journals (Sweden)

    Wang Li-Hua

    2017-04-01

    Full Text Available In order to study the catalytic activity of Cu(II coordination polymer material, a novel 1D chained Cu(II coordination polymer material, [CuL(bipy(H2O5]n (A1 (H2L = 1,4-phenylenediacetic acid, bipy = 2,2’-bipyridine, has been prepared by the reaction of 1,4-phenylenediacetic acid, 2,2’-bipyridine, Cu(CH3COO2·H2O and NaOH. The composition of A1 was determined by elemental analysis, IR spectra and single crystal X-ray diffraction. The results of characterization show that each Cu(II atom adopts six-coordination and forms a distorted octahedral configuration. The catalytic activity and reusability of A1 catalyst for A3 coupling reaction of benzaldehyde, piperidine, and phenylacetylene have been investigated. And the results show that the Cu(II complex catalyst has good catalytic activity with a maximum yield of 54.3% and stability. Copyright © 2017 BCREC GROUP. All rights reserved Received: 21st October 2016; Revised: 17th November 2016; Accepted: 22nd November 2016 How to Cite: Li-Hua, W., Lei, L., Xin, W. (2017. Synthesis, Structural Characterization and Catalytic Activity of A Cu(II Coordination Polymer Constructed from 1,4-Phenylenediacetic Acid and 2,2’-Bipyridine. Bulletin of Chemical Reaction Engineering & Catalysis, 12 (1: 113-118 (doi:10.9767/bcrec.12.1.735.113-118 Permalink/DOI: http://dx.doi.org/10.9767/bcrec.12.1.735.113-118

  6. Determination of organic bases in non-aqueous solvents by catalytic thermometric titration.

    Science.gov (United States)

    Vajgand, V J; Kiss, T A; Gaál, F F; Zsigrai, I J

    1968-07-01

    Catalytic thermometric titrations have been developed for bases (brucine, diethylaniline, potassium acetate and triethylamine) in acetic acid by continuous and discontinuous addition of the standard solution and automatic temperature recording. The determination of weak bases, e.g., antipyrine, unsuccessful in acetic acid by catalytic thermometric titration, has been achieved by using nitromethane or acetic anhydride as solvent. Catalytic thermometric titrations were also performed by coulometric generation of hydrogen ions for the determination of micro amounts of weak bases in a mixture of acetic anhyride and acetic acid.

  7. CATALYTIC KINETIC SPECTROPHOTOMETRIC DETERMINATION ...

    African Journals Online (AJOL)

    Preferred Customer

    acetylchlorophosphonazo(CPApA) by hydrogen peroxide in 0.10 M phosphoric acid. A novel catalytic kinetic-spectrophotometric method is proposed for the determination of copper based on this principle. Copper(II) can be determined spectrophotometrically ...

  8. Ultra-fast catalytic reduction of dyes by ionic liquid recoverable and reusable mefenamic acid derived gold nanoparticles.

    Science.gov (United States)

    Hassan, Syeda Sara; Sirajuddin; Solangi, Amber Rehana; Agheem, Mohammad Hassan; Junejo, Yasmeen; Kalwar, Nazar Hussain; Tagar, Zulfiqar Ali

    2011-06-15

    We synthesized mefenamic acid (MA) derived gold nanoparticles (MA-AuNps) in aqueous solution (MA-Au sol). Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) of the sol at 1, 5, 15 and 60 min showed changes in size and shape of formed AuNps. Fourier Transform Infrared (FTIR) Spectroscopy revealed the interaction between AuNps and MA. Each Au sol exhibited exceptional catalytic activity for the reduction of Methylene Blue (MB), Rose Bengal (RB) and Eosin B (EB) dye individually as well as collectively. However, complete reduction of dye(s) was accomplished by Au sol of 5 min in just 15s. The catalytic performance of Ma-Au sol was far superior to that adsorbed on glass. AuNps were recovered with the help of water insoluble room temperature ionic liquid and reused with enhanced catalytic potential. This finding is a novel, rapid and highly economical alternative for environmental safety against pollution by dyes and extendable for control of other reducible contaminants as well. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. In situ synthesis, characterization, and catalytic performance of tungstophosphoric acid encapsulated into the framework of mesoporous silica pillared clay.

    Science.gov (United States)

    Li, Baoshan; Liu, Zhenxing; Han, Chunying; Ma, Wei; Zhao, Songjie

    2012-07-01

    Mesoporous silica pillared clay (SPC) incorporated with tungstophosphoric acid (HPW) has been synthesized via in situ introducing P and W source in the acidic suspension of the clay interlayer template during the formation of the silica pillared clay. The samples were characterized by XRD, XRF, FT-IR, TG-DTA, N(2) adsorption-desorption, and SEM techniques. The results showed that the HPW formed by in situ method has been effectively introduced into the framework of mesoporous silica pillared clay and its Keggin structure remained perfectly after formation of the materials. In addition, samples with similar HPW loadings were also prepared by impregnation method using SPC as the support. HPW in the incorporated samples was better dispersed into the silica pillared clay than in the impregnated samples. The results of catalytic tests indicated that the encapsulated materials demonstrated better catalytic performance than the impregnated samples in oxidative desulfurization (ODS) of dibenzothiophene (DBT). Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Catalytic transformation of functionalized carboxylic acids using multifunctional rhenium complexes.

    Science.gov (United States)

    Naruto, Masayuki; Agrawal, Santosh; Toda, Katsuaki; Saito, Susumu

    2017-06-13

    Carboxylic acids (CAs) are one of the most ubiquitous and important chemical feedstocks available from biorenewable resources, CO 2 , and the petrochemical industry. Unfortunately, chemoselective catalytic transformations of CH n CO 2 H (n = 1-3) groups into other functionalities remain a significant challenge. Herein, we report rhenium V complexes as extremely effective precatalysts for this purpose. Compared to previously reported heterogeneous and homogeneous catalysts derived from high- or low-valent metals, the present method involves a α-C-H bond functionalization, a hydrogenation, and a hydrogenolysis, which affords functionalized alcohols with a wide substrate scope and high chemoselectivity under relatively mild reaction conditions. The results represent an important step toward a paradigm shift from 'low-valent' to 'high-valent' metal complexes by exploring a new portfolio of selective functional group transformations of highly oxygenated organic substrates, as well as toward the exploitation of CAs as a valuable biorenewable feedstock.

  11. Human liver phosphatase 2A: cDNA and amino acid sequence of two catalytic subunit isotypes

    International Nuclear Information System (INIS)

    Arino, J.; Woon, Chee Wai; Brautigan, D.L.; Miller, T.B. Jr.; Johnson, G.L.

    1988-01-01

    Two cDNA clones were isolated from a human liver library that encode two phosphatase 2A catalytic subunits. The two cDNAs differed in eight amino acids (97% identity) with three nonconservative substitutions. All of the amino acid substitutions were clustered in the amino-terminal domain of the protein. Amino acid sequence of one human liver clone (HL-14) was identical to the rabbit skeletal muscle phosphatase 2A cDNA (with 97% nucleotide identity). The second human liver clone (HL-1) is encoded by a separate gene, and RNA gel blot analysis indicates that both mRNAs are expressed similarly in several human clonal cell lines. Sequence comparison with phosphatase 1 and 2A indicates highly divergent amino acid sequences at the amino and carboxyl termini of the proteins and identifies six highly conserved regions between the two proteins that are predicted to be important for phosphatase enzymatic activity

  12. synthesis, characterization, electrical and catalytic studies of some

    African Journals Online (AJOL)

    B. S. Chandravanshi

    catalytic activity of the VO(IV) and Mn(III) complexes have been tested in the epoxidation reaction of styrene ... Vanadyl sulfate pentahydrate, chromium chloride hexahydrate, anhydrous ferric ..... The catalytic oxidation of styrene gives the products styrene oxide, benzaldehyde, benzoic acid, ... bond via a radical mechanism.

  13. Catalytic characterization of bi-functional catalysts derived from Pd ...

    Indian Academy of Sciences (India)

    Unknown

    1995; Lyubovsky and Pfefferle 1999; Sales et al 1999;. Hill et al 2000). ... For a catalytic system, whose activity ... catalytic systems containing Pd, supported on various acid- ..... Further studies are needed to optimize a balance between.

  14. A bio-based ‘green’ process for catalytic adipic acid production from lignocellulosic biomass using cellulose and hemicellulose derived γ-valerolactone

    International Nuclear Information System (INIS)

    Han, Jeehoon

    2016-01-01

    Highlights: • A bio-based ‘green’ process for catalytic conversion of corn stover to adipic acid (ADA) is studied. • New separations for effective recovery of biomass derivatives are developed. • Separations are integrated with cellulose/hemicellulose-to-ADA conversions. • Proposed process can compete economically with the current petro-based process. - Abstract: A bio-based ‘green’ process is presented for the catalytic conversion of corn stover to adipic acid (ADA) based on experimental studies. ADA is used for biobased nylon 6.6 manufacturing from lignocellulosics as carbon and energy source. In this process, the cellulose and hemicellulose fractions are catalytically converted to γ-valerolactone (GVL), using cellulose and hemicellulose-derived GVL as a solvent, and subsequently upgrading to ADA. Experimental studies showed maximal carbon yields (biomass-to-GVL: 41% and GVL-to-ADA: 46%) at low concentrations (below 16 wt% solids) using large volumes of GVL solvents while requiring efficient interstage separations and product recovery. This work presents an integrated process, including catalytic conversion and separation subsystems for GVL and ADA production and recovery, and designs a heat exchanger network to satisfy the total energy requirements of the integrated process via combustion of biomass residues (lignin and humins). Finally, an economic analysis shows that 2000 metric tonnes (Mt) per day of corn stover feedstock processing results in a minimum selling price of $633 per Mt if using the best possible parameters.

  15. Modification of Titanium Dioxide Nanoparticles With Copper Oxide Co-Catalyst for Photo catalytic Degradation of 2,4-Dichlorophenoxyacetic Acid

    International Nuclear Information System (INIS)

    Leny Yuliati; Siah, W.R.; Nur Azmina Roslan; Mustaffa Shamsuddin

    2016-01-01

    2,4-dichlorophenoxyacetic acid (2,4-D) is a common herbicide that has been used widely. Due to its excessive usage, the 2,4-D herbicides can cause contamination over agricultural land and water bodies. In the present work, a simple impregnation method was used to modify the commercial titanium dioxide (P25 TiO_2) nanoparticles with the copper oxide. The prepared samples were characterized by X-ray Diffraction (XRD), reflectance UV-visible and fluorescence spectroscopies. It was observed that the incorporation of copper oxide did not significantly affect the crystal structure of P25 TiO_2. On the other hand, the presence of copper oxide was confirmed by reflectance UV-visible and fluorescence spectroscopies. The activity of the prepared sample was evaluated for photo catalytic removal of the 2,4-D. The photo catalytic activity of the TiO_2 increased with the increase of copper oxide loading up to 0.5 mol %. Unfortunately, the higher loading amount of copper oxide resulted in the lower photo catalytic activity. This study suggested that the higher photo catalytic activities obtained on the low loading samples were due to the lower electron-hole recombination. (author)

  16. Catalytic hydrodeoxygenation and hydrocracking of Alcell (R) lignin in alcohol/formic acid mixtures using a Ru/C catalyst

    NARCIS (Netherlands)

    Kloekhorst, Arjan; Shen, Yu; Yie, Yao; Fang, Ma; Heeres, Hero Jan

    The catalytic conversion of Alcell (R) lignin in iso-propanol/formic acid mixtures (1: 1 mass ratio) was explored in a batch set-up using Ru/C as the catalyst (673 K, 4 h, 28% mass lignin intake on solvent). Lignin oils were obtained in good yields (71% mass yields on lignin input) and shown to

  17. Size effects in electronic and catalytic properties of unsupported palladium nanoparticles in electrooxidation of formic acid.

    Science.gov (United States)

    Zhou, Wei Ping; Lewera, Adam; Larsen, Robert; Masel, Rich I; Bagus, Paul S; Wieckowski, Andrzej

    2006-07-13

    We report a combined X-ray photoelectron spectroscopy (XPS), cyclic voltammetry (CV), and chronoamperometry (CA) study of formic acid electrooxidation on unsupported palladium nanoparticle catalysts in the particle size range from 9 to 40 nm. The CV and CA measurements show that the most active catalyst is made of the smallest (9 and 11 nm) Pd nanoparticles. Besides the high reactivity, XPS data show that such nanoparticles display the highest core-level binding energy (BE) shift and the highest valence band (VB) center downshift with respect to the Fermi level. We believe therefore that we found a correlation between formic acid oxidation current and BE and VB center shifts, which, in turn, can directly be related to the electronic structure of palladium nanoparticles of different particle sizes. Clearly, such a trend using unsupported catalysts has never been reported. According to the density functional theory of heterogeneous catalysis, and mechanistic considerations, the observed shifts are caused by a weakening of the bond strength of the COOH intermediate adsorption on the catalyst surface. This, in turn, results in the increase in the formic acid oxidation rate to CO2 (and in the associated oxidation current). Overall, our measurements demonstrate the particle size effect on the electronic properties of palladium that yields different catalytic activity in the HCOOH oxidation reaction. Our work highlights the significance of the core-level binding energy and center of the d-band shifts in electrocatalysis and underlines the value of the theory that connects the center of the d-band shifts to catalytic reactivity.

  18. Catalytic pyrolysis of microalgae to high-quality liquid bio-fuels

    International Nuclear Information System (INIS)

    Babich, I.V.; Hulst, M. van der; Lefferts, L.; Moulijn, J.A.; O'Connor, P.; Seshan, K.

    2011-01-01

    The pyrolytic conversion of chlorella algae to liquid fuel precursor in presence of a catalyst (Na 2 CO 3 ) has been studied. Thermal decomposition studies of the algae samples were performed using TGA coupled with MS. Liquid oil samples were collected from pyrolysis experiments in a fixed-bed reactor and characterized for water content and heating value. The oil composition was analyzed by GC-MS. Pretreatment of chlorella with Na 2 CO 3 influences the primary conversion of chlorella by shifting the decomposition temperature to a lower value. In the presence of Na 2 CO 3 , gas yield increased and liquid yield decreased when compared with non-catalytic pyrolysis at the same temperatures. However, pyrolysis oil from catalytic runs carries higher heating value and lower acidity. Lower content of acids in the bio-oil, higher aromatics, combined with higher heating value show promise for production of high-quality bio-oil from algae via catalytic pyrolysis, resulting in energy recovery in bio-oil of 40%. -- Highlights: → The pyrolytic catalytic conversion of chlorella algae to liquid fuel precursor. → Na 2 CO 3 as a catalyst for the primary conversion of chlorella. → Pyrolysis oil from catalytic runs carries higher heating value and lower acidity. → High-quality bio-oil from algae via catalytic pyrolysis with energy recovery in bio-oil of 40%.

  19. Catalytic dehydration of ethanol using transition metal oxide catalysts.

    Science.gov (United States)

    Zaki, T

    2005-04-15

    The aim of this work is to study catalytic ethanol dehydration using different prepared catalysts, which include Fe(2)O(3), Mn(2)O(3), and calcined physical mixtures of both ferric and manganese oxides with alumina and/or silica gel. The physicochemical properties of these catalysts were investigated via X-ray powder diffraction (XRD), acidity measurement, and nitrogen adsorption-desorption at -196 degrees C. The catalytic activities of such catalysts were tested through conversion of ethanol at 200-500 degrees C using a catalytic flow system operated under atmospheric pressure. The results obtained indicated that the dehydration reaction on the catalyst relies on surface acidity, whereas the ethylene production selectivity depends on the catalyst chemical constituents.

  20. Effect of the method for rhenium neptasulfide preparation on its catalytic properties in hydrogenation of nitrobenzene and m-nitrobenzoic acid

    International Nuclear Information System (INIS)

    Pal'chevskaya, T.A.; Bogutskaya, L.V.; Belousov, V.M.

    1988-01-01

    The effect of conditions of rhenium heptasulfide synthesis by thiosulfate method on its physicochemical and catalytic properties during hydrogenation of nitrobenzene and m-nitrobenzoic acid has been studied. It is shown that the maximum yield of m-aminobenzoic acid can be attained on insoluble sulfide rhenium contacts, containing excessive amount of sulfur (3.5 %). Under certain conditions of catalyst synthesis particles of Re 2 S 7 soluble in dimethylformamide are formed, which possess selectivity towards amine

  1. Syntheses, characterizations, and catalytic activities of mesostructured aluminophosphates with tailorable acidity assembled with various preformed zeolite nanoclusters

    KAUST Repository

    Suo, Hongri

    2015-02-25

    © 2015, Springer Science+Business Media New York. A series of ordered hexagonal mesoporous zeolites have been successfully synthesized by the assembly of various preformed aluminosilicates zeolite (MFI, FAU, BEA etc.) with surfactants (cetyltrimethylammonium chloride) under hydrothermal conditions. These unique samples were further characterized by X-ray diffraction, transmission electron microscopy, N2 adsorption, infrared spectroscopy. Characterization results showed that these samples contain primary and secondary structural building units of various zeolites, which may be responsible for their distinguished acidic strength, suggesting that the acidic strength of these mesoporous silicoaluminophosphates could be tailored and controlled. Furthermore, the prepared samples were catalytically active in the cracking of cumene.

  2. Development of biomimetic catalytic oxidation methods and non-salt methods using transition metal-based acid and base ambiphilic catalysts

    Science.gov (United States)

    MURAHASHI, Shun-Ichi

    2011-01-01

    This review focuses on the development of ruthenium and flavin catalysts for environmentally benign oxidation reactions based on mimicking the functions of cytochrome P-450 and flavoenzymes, and low valent transition-metal catalysts that replace conventional acids and bases. Several new concepts and new types of catalytic reactions based on these concepts are described. PMID:21558760

  3. Investigating the Synthesis, Structure, and Catalytic Properties of Versatile Gold-Based Nanocatalvsts

    Science.gov (United States)

    Pretzer, Lori A.

    thermophilic-enzyme complexes responsive to near infrared electromagnetic radiation, which is absorbed minimally by biological tissues. When enzyme-Au nanorod complexes are illuminated with a near-infrared laser, thermal energy is generated which activates the thermophilic enzyme. Enzyme-Au nanorod complexes encapsulated in calcium alginate are reusable and stable for several days, making them viable for industrial applications. Lastly, highly versatile Au nanoparticles with diameters of ~3-12 nm were prepared using carbon monoxide (CO) to reduce a Au salt precursor onto preformed catalytic Au particles. Compared to other reducing agents used to generate metallic NPs, CO can be used at room temperature and its oxidized form does not interfere with the colloidal stability of NPs suspended in water. Controlled synthesis of different sized particles was verified through detailed ultraviolet-visible spectroscopy, small angle X-ray scattering, and transmission electron microscopy measurements. This synthesis method should be extendable to other monometallic and multimetallic compositions and shapes, and can be improved by using preformed particles with a narrower size distribution.

  4. Effects of Weight Hourly Space Velocity and Catalyst Diameter on Performance of Hybrid Catalytic-Plasma Reactor for Biodiesel Synthesis over Sulphated Zinc Oxide Acid Catalyst

    Directory of Open Access Journals (Sweden)

    Luqman Buchori

    2017-05-01

    Full Text Available Biodiesel synthesis through transesterification of soybean oil with methanol on hybrid catalytic-plasma reactor over sulphated zinc oxide (SO42-/ZnO active acid catalyst was investigated. This research was aimed to study effects of Weight Hourly Space Velocity (WHSV and the catalyst diameter on performance of the hybrid catalytic-plasma reactor for biodiesel synthesis. The amount (20.2 g of active sulphated zinc oxide solid acid catalysts was loaded into discharge zone of the reactor. The WHSV and the catalyst diameter were varied between 0.89 to 1.55 min-1 and 3, 5, and 7 mm, respectively. The molar ratio of methanol to oil as reactants of 15:1 is fed to the reactor, while operating condition of the reactor was kept at reaction temperature of 65 oC and ambient pressure. The fatty acid methyl ester (FAME component in biodiesel product was identified by Gas Chromatography - Mass Spectrometry (GC-MS. The results showed that the FAME yield decreases with increasing WHSV. It was found that the optimum FAME yield was achieved of 56.91 % at WHSV of 0.89 min-1 and catalyst diameter of 5 mm and reaction time of 1.25 min. It can be concluded that the biodiesel synthesis using the hybrid catalytic-plasma reactor system exhibited promising the FAME yield. Copyright © 2017 BCREC Group. All rights reserved Received: 15th November 2016; Revised: 24th December 2016; Accepted: 16th February 2017 How to Cite: Buchori, L., Istadi, I., Purwanto, P. (2017. Effects of Weight Hourly Space Velocity and Catalyst Diameter on Performance of Hybrid Catalytic-Plasma Reactor for Biodiesel Synthesis over Sulphated Zinc Oxide Acid Catalyst. Bulletin of Chemical Reaction Engineering & Catalysis, 12 (2: 227-234 (doi:10.9767/bcrec.12.2.775.227-234 Permalink/DOI: http://dx.doi.org/10.9767/bcrec.12.2.775.227-234

  5. Development of biomimetic catalytic oxidation methods and non-salt methods using transition metal-based acid and base ambiphilic catalysts.

    Science.gov (United States)

    Murahashi, Shun-Ichi

    2011-01-01

    This review focuses on the development of ruthenium and flavin catalysts for environmentally benign oxidation reactions based on mimicking the functions of cytochrome P-450 and flavoenzymes, and low valent transition-metal catalysts that replace conventional acids and bases. Several new concepts and new types of catalytic reactions based on these concepts are described. (Communicated by Ryoji Noyori, M.J.A.).

  6. Multicatalyst system in asymmetric catalysis

    CERN Document Server

    Zhou, Jian

    2014-01-01

    This book introduces multi-catalyst systems by describing their mechanism and advantages in asymmetric catalysis.  Helps organic chemists perform more efficient catalysis with step-by-step methods  Overviews new concepts and progress for greener and economic catalytic reactions  Covers topics of interest in asymmetric catalysis including bifunctional catalysis, cooperative catalysis, multimetallic catalysis, and novel tandem reactions   Has applications for pharmaceuticals, agrochemicals, materials, and flavour and fragrance

  7. Catalytic Stereoinversion of L-Alanine to Deuterated D-Alanine.

    Science.gov (United States)

    Moozeh, Kimia; So, Soon Mog; Chin, Jik

    2015-08-03

    A combination of an achiral pyridoxal analogue and a chiral base has been developed for catalytic deuteration of L-alanine with inversion of stereochemistry to give deuterated D-alanine under mild conditions (neutral pD and 25 °C) without the use of any protecting groups. This system can also be used for catalytic deuteration of D-alanine with retention of stereochemistry to give deuterated D-alanine. Thus a racemic mixture of alanine can be catalytically deuterated to give an enantiomeric excess of deuterated D-alanine. While catalytic deracemization of alanine is forbidden by the second law of thermodynamics, this system can be used for catalytic deracemization of alanine with deuteration. Such green and biomimetic approach to catalytic stereocontrol provides insights into efficient amino acid transformations. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Catalytic conversion of ethanol on H-Y zeolite

    Directory of Open Access Journals (Sweden)

    Čegar Nedeljko

    2005-01-01

    Full Text Available The catalytic activity of the H-form of synthetic zeolite NaY was examined in this study. The catalytic activity was determined according to the rate of ethanol conversion in a gas phase in the static system. In the conversion of ethanol on synthetic NaY zeolite at 585, 595, and 610 K, on which the reaction develops at an optimal rate, ethene and diethyl ether are evolved in approximately the same quantity. After transforming the NaY zeolite into the H-form, its catalytic activity was extremely increases so, the reaction develops at a significantly lower temperature with a very large increase in the reaction rate. The distribution of the products also changes, so that at lower temperatures diethyl ether is elvolved in most cases, and the development of ethene is favored at higher ones, and after a certain period of time there is almost complete conversion of ethanol into ethene. The increase in catalytic activity, as well as the change of selectivity of conversion of ethanol on the H-form of zeolite, is the result of removing Na+ cations in the NaY zeolite, so that more acidic catalyst is obtained which contains a number of acidic catalytically active centers, as well as a more powerful one compared to the original NaY zeolite.

  9. Catalytic Asymmetric Piancatelli Rearrangement: Brønsted Acid Catalyzed 4π Electrocyclization for the Synthesis of Multisubstituted Cyclopentenones

    KAUST Repository

    Cai, Yunfei

    2016-10-13

    The first catalytic asymmetric Piancatelli reaction is reported. Catalyzed by a chiral Brønsted acid, the rearrangement of a wide range of furylcarbinols with a series of aniline derivatives provides valuable aminocyclopentenones in high yields as well as excellent enantioselectivities and diastereoselectivities. The high value of the aza-Piancatelli rearrangement was demonstrated by the synthesis of a cyclopentane-based hNK1 antagonist analogue.

  10. A non-acid-assisted and non-hydroxyl-radical-related catalytic ozonation with ceria supported copper oxide in efficient oxalate degradation in water

    KAUST Repository

    Zhang, Tao; Li, Weiwei; Croue, Jean-Philippe

    2012-01-01

    with ozone. The optimum CuO loading amount was 12%. The molar ratio of oxalate removed/ozone consumption reached 0.84. The catalytic ozonation was most effective in a neutral pH range (6.7-7.9) and became ineffective when the water solution was acidic

  11. Catalytic activity of laminated compounds of graphite with transitions metals in decomposition of alcohols and formic acid

    International Nuclear Information System (INIS)

    Novikov, Yu.N.; Lapkina, N.D.; Vol'pin, M.E.

    1976-01-01

    The catalytic activity is studied of laminated graphite compounds with Fe, Co, Ni, Cu, Mo, W and Mn both in the reduced and oxidized forms in gas phase decomposition reactions of isopropyl, n-butyl, cyclohexyl, and 4-tret-butylcyclohexyl alcohols, and also formic acid. All the catalysts are shown to be active in the reactions where isopropyl and n-butyl alcohols undergo decomposition. The laminated compounds of graphite with Co and Ni both in the oxidized and reduction form are the most active catalysts of the selective decomposition of alcohols to aldehydes and ketones, and also formic acid to CO 2 and H 2 . The kinetics of a number of reactions is found to obey the second order equation with allowance made for the system volume

  12. Lamellar zirconium phosphates to host metals for catalytic purposes.

    Science.gov (United States)

    Ballesteros-Plata, Daniel; Infantes-Molina, Antonia; Rodríguez-Aguado, Elena; Braos-García, Pilar; Rodríguez-Castellón, Enrique

    2018-02-27

    In the present study a porous lamellar zirconium phosphate heterostructure (PPH) formed from zirconium(iv) phosphate expanded with silica galleries (P/Zr molar ratio equal to 2 and (Si + Zr)/P equal to 3) was prepared to host noble metals. Textural and structural characterization of PPH-noble metal materials was carried out in order to elucidate the location and dispersion of the metallic particles and the properties of the resulting material to be used in catalytic processes. In the present paper, their activity in the catalytic hydrodeoxygenation (HDO) reaction of dibenzofuran (DBF) was evaluated. X-ray diffraction (XRD), solid state nuclear magnetic resonance (NMR) and X-ray photoelectron spectroscopy (XPS) evidenced that the structure of the pillared zirconium phosphate material was not modified by the incorporation of Pt and Pd. Moreover, transmission electron microscopy (TEM) showed a different dispersion of the noble metal. The acidity of the resulting PPH-noble metal materials also changed, although in all cases the acidity was of weak nature, and the incorporation of noble metals affected Brønsted acid sites as observed from 31 P NMR spectra. In general, the textural, structural and acidic properties of the resulting materials suggest that PPH can be considered a good candidate to be used as a catalytic support. Thus, the catalytic results of the PPH-noble metal samples indicated that the Pd sample showed a stable behavior probably ascribed to a high dispersion of the active phase. However, the Pt sample suffered from fast deactivation. The selectivity to the reaction products was strongly dependent on the noble metal employed.

  13. Enhanced Heterogeneous Catalytic Conversion of Furfuryl Alcohol into Butyl Levulinate

    NARCIS (Netherlands)

    Carà, P.D..; Ciriminna, R.; Shiju, N.R.; Rothenberg, G.; Pagliaro, M.

    2014-01-01

    We study the catalytic condensation of furfuryl alcohol with 1-butanol to butyl levulinate. A screening of several commercial and as-synthesized solid acid catalysts shows that propylsulfonic acid-functionalized mesoporous silica outperforms the state-of-the-art phosphotungstate acid catalysts. The

  14. Catalytic Conversion of Bio-Oil to Oxygen-Containing Fuels by Acid-Catalyzed Reaction with Olefins and Alcohols over Silica Sulfuric Acid

    Directory of Open Access Journals (Sweden)

    Qingwen Wang

    2013-09-01

    Full Text Available Crude bio-oil from pine chip fast pyrolysis was upgraded with olefins (1-octene, cyclohexene, 1,7-octadiene, and 2,4,4-trimethylpentene plus 1-butanol (iso-butanol, t-butanol and ethanol at 120 °C using a silica sulfuric acid (SSA catalyst that possesses a good catalytic activity and stability. Gas chromatography-mass spectrometry (GC-MS, Fourier transform infrared spectroscopy (FT-IR and proton nuclear magnetic resonance (1H-NMR analysis showed that upgrading sharply increased ester content and decreased the amounts of levoglucosan, phenols, polyhydric alcohols and carboxylic acids. Upgrading lowered acidity (pH value rose from 2.5 to >3.5, removed the unpleasant odor and increased hydrocarbon solubility. Water content dramatically decreased from 37.2% to about 7.0% and the heating value increased from 12.6 MJ·kg−1 to about 31.9 MJ·kg−1. This work has proved that bio-oil upgrading with a primary olefin plus 1-butanol is a feasible route where all the original heating value of the bio-oil plus the added olefin and alcohol are present in the resulting fuel.

  15. Liquid-phase chemical hydrogen storage: catalytic hydrogen generation under ambient conditions.

    Science.gov (United States)

    Jiang, Hai-Long; Singh, Sanjay Kumar; Yan, Jun-Min; Zhang, Xin-Bo; Xu, Qiang

    2010-05-25

    There is a demand for a sufficient and sustainable energy supply. Hence, the search for applicable hydrogen storage materials is extremely important owing to the diversified merits of hydrogen energy. Lithium and sodium borohydride, ammonia borane, hydrazine, and formic acid have been extensively investigated as promising hydrogen storage materials based on their relatively high hydrogen content. Significant advances, such as hydrogen generation temperatures and reaction kinetics, have been made in the catalytic hydrolysis of aqueous lithium and sodium borohydride and ammonia borane as well as in the catalytic decomposition of hydrous hydrazine and formic acid. In this Minireview we briefly survey the research progresses in catalytic hydrogen generation from these liquid-phase chemical hydrogen storage materials.

  16. Preparation, characterization and application in deep catalytic ODS of the mesoporous silica pillared clay incorporated with phosphotungstic acid.

    Science.gov (United States)

    Li, Baoshan; Liu, Zhenxing; Liu, Jianjun; Zhou, Zhiyuan; Gao, Xiaohui; Pang, Xinmei; Sheng, Huiting

    2011-10-15

    Mesoporous silica pillared clay (SPC) materials with different contents of H(3)PW(12)O(40) (HPW) heteropoly acid were synthesized by introducing HPW into clay interlayer template in an acidic suspension using sol-gel method. Samples with similar HPW loadings were also prepared by impregnation method using SPC as the support. The results of the characterizations showed that HPW was dispersed more homogeneously in the encapsulated samples than in the impregnated samples. The encapsulated materials exhibited better catalytic performance than the impregnated samples in oxidative desulfurization of dibenzothiophene-containing model oil. The sulfur removal reached up to 98.6% for the model oil under the experiential conditions. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. A non-acid-assisted and non-hydroxyl-radical-related catalytic ozonation with ceria supported copper oxide in efficient oxalate degradation in water

    KAUST Repository

    Zhang, Tao

    2012-06-01

    Oxalate is usually used as a refractory model compound that cannot be effectively removed by ozone and hydroxyl radical oxidation in water. In this study, we found that ceria supported CuO significantly improved oxalate degradation in reaction with ozone. The optimum CuO loading amount was 12%. The molar ratio of oxalate removed/ozone consumption reached 0.84. The catalytic ozonation was most effective in a neutral pH range (6.7-7.9) and became ineffective when the water solution was acidic or alkaline. Moreover, bicarbonate, a ubiquitous hydroxyl radical scavenger in natural waters, significantly improved the catalytic degradation of oxalate. Therefore, the degradation relies on neither hydroxyl radical oxidation nor acid assistance, two pathways usually proposed for catalytic ozonation. These special characters of the catalyst make it suitable to be potentially used for practical degradation of refractory hydrophilic organic matter and compounds in water and wastewater. With in situ characterization, the new surface Cu(II) formed from ozone oxidation of the trace Cu(I) of the catalyst was found to be an active site in coordination with oxalate forming multi-dentate surface complex. It is proposed that the complex can be further oxidized by molecular ozone and then decomposes through intra-molecular electron transfer. The ceria support enhanced the activity of the surface Cu(I)/Cu(II) in this process. © 2012 Elsevier B.V.

  18. Continuous multistep synthesis of perillic acid from limonene by catalytic biofilms under segmented flow.

    Science.gov (United States)

    Willrodt, Christian; Halan, Babu; Karthaus, Lisa; Rehdorf, Jessica; Julsing, Mattijs K; Buehler, Katja; Schmid, Andreas

    2017-02-01

    The efficiency of biocatalytic reactions involving industrially interesting reactants is often constrained by toxification of the applied biocatalyst. Here, we evaluated the combination of biologically and technologically inspired strategies to overcome toxicity-related issues during the multistep oxyfunctionalization of (R)-(+)-limonene to (R)-(+)-perillic acid. Pseudomonas putida GS1 catalyzing selective limonene oxidation via the p-cymene degradation pathway and recombinant Pseudomonas taiwanensis VLB120 were evaluated for continuous perillic acid production. A tubular segmented-flow biofilm reactor was used in order to relieve oxygen limitations and to enable membrane mediated substrate supply as well as efficient in situ product removal. Both P. putida GS1 and P. taiwanensis VLB120 developed a catalytic biofilm in this system. The productivity of wild-type P. putida GS1 encoding the enzymes for limonene bioconversion was highly dependent on the carbon source and reached 34 g L tube -1  day -1 when glycerol was supplied. More than 10-fold lower productivities were reached irrespective of the applied carbon source when the recombinant P. taiwanensis VLB120 harboring p-cymene monooxygenase and p-cumic alcohol dehydrogenase was used as biocatalyst. The technical applicability for preparative perillic acid synthesis in the applied system was verified by purification of perillic acid from the outlet stream using an anion exchanger resin. This concept enabled the multistep production of perillic acid and which might be transferred to other reactions involving volatile reactants and toxic end-products. Biotechnol. Bioeng. 2017;114: 281-290. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  19. CATALYTIC PROPERTIES AND ACIDITY OF MODIFIED MCM-41 ...

    African Journals Online (AJOL)

    a

    obtain H-form catalysts, samples were heated to remove the NH3 gas. Catalytic tests .... Chem. Soc. Ethiop. 2006, 20(1). 102. 0. 50. 100. 150. 200. 250. 300. 350. 400. 450. 0. 0.2 ..... Zhao, X.S.; Lu, G.Q.; Millar, G.J.; Li, X.S. Catal. Lett. 1996, 38 ...

  20. Effect of Number of Various-Type Acid Sites Located on 20 % Co/ZrO2 • SiO2 Sample Surface on Parameters of Catalytic Process in Synthesis of High-Octane Motor Fuel Components

    Directory of Open Access Journals (Sweden)

    A. P. Nesenchouk

    2011-01-01

    Full Text Available The paper considers an effect of ZrO2 content in 20%Co/xZrO2∙(100 – xSiO2 (x = 0, 10, 15, 25, 30, 40 and 100 mass percent catalyst carriers on their catalytic properties. Temperature programmed desorption of NH3 has made it possible to determine relations between their acid and catalytic properties. The paper reveals the TPD spectrum is the result of 4 overlapping peaks originating during NH3 desorption from the respective groups of acid sites. Total acidity of samples and contribution of separate acid site groups into the given acidity have been have been determined in the paper. The paper contains graphical dependences of a various-type acid site number on  content of zirconium oxide in the carrier. Correlations between change in various-type acid site number and catalytic process parameters (CO conversion, C5+ hydrocarbon output and  C5+ isoparaffin output have been found in the paper. The paper shows that the highest values of CO conversion and C5+ hydrocarbon output correspond to maximum number of acid sites, and that number accounts for a peak of desorbed ammonia at Tmax = 122 °C, while the lowest isoparaffin output corresponds to minimum number of acid sites, which characterizes a peak of desorbed ammonia at Tmax = 224–257 °C. 

  1. Cross-catalytic peptide nucleic acid (PNA) replication based on templated ligation

    DEFF Research Database (Denmark)

    Singhal, Abhishek; Nielsen, Peter E

    2014-01-01

    We report the first PNA self-replicating system based on template directed cross-catalytic ligation, a process analogous to biological replication. Using two template PNAs and four pentameric precursor PNAs, all four possible carbodiimide assisted amide ligation products were detected...... precursors. Cross-catalytic product formation followed product inhibited kinetics, but approximately two replication rounds were observed. Analogous but less efficient replication was found for a similar tetrameric system. These results demonstrate that simpler nucleobase replication systems than natural...

  2. Catalytic abatement of nitrous oxide from nitric and production

    NARCIS (Netherlands)

    Oonk, J.

    1998-01-01

    Nitric acid production is identified as a main source of nitrous oxide. Options for emission reduction however are not available. TNO and Hydro Agri studied the technological and economic feasibility of catalytic decomposition of nitrous oxide in nitric acid tail-gases. Although in literature

  3. Ultrasound-assisted catalytic synthesis of acyclic imides in the presence of p-toluenesulfonic acid under solvent free conditions

    Directory of Open Access Journals (Sweden)

    Nasr-Esfahani Masoud

    2012-01-01

    Full Text Available A rapid and convenient preparation of acyclic imides by the reaction of aliphatic and aromatic nitriles with acyclic carboxylic anhydride in the presence of catalytic amounts of p-toluenesulfonic acid under thermal or ultrasonic conditions is reported. The advantages of this procedure are moderate reaction times, good to excellent yields, use of inexpensive and ecofriendly catalyst. The reaction of nitriles with aliphatic anhydrides proceeds in thermal conditions, while by the use of ultrasound irradiations these reactions get accelerated.

  4. Structure–acidity correlation of supported tungsten(VI)-oxo-species: FT-IR and TPD studies of adsorbed pyridine and catalytic decomposition of 2-propanol

    Energy Technology Data Exchange (ETDEWEB)

    Zaki, M.I., E-mail: mizaki@mu.edu.eg; Mekhemer, G.A.H.; Fouad, N.E.; Rabee, A.I.M.

    2014-07-01

    The amount of 10 wt%-WO{sub 3} was supported on alumina, titania or silica by impregnation with aqueous solution of ammonium paratungstate and subsequent calcination at 500 °C for 10 h. Tungstate-related chemical and physical changes in the calcination products were resolved by ex-situ infrared (IR) spectroscopy. Nature of exposed surface acid sites were probed by in-situ IR spectroscopy of adsorbed pyridine (Py) molecules at room temperature (RT). The relative strength of the acid sites thus probed was gauged by combining results of temperature-programmed desorption (TPD) measurements of the RT-adsorbed Py with those communicated by in-situ IR spectra of residual Py on the surface after a brief thermoevacuation at high temperatures (100–300 °C). Reactivity of the surface acid sites was tested toward 2-propanal catalytic decomposition, and observed by in-situ IR gas phase spectra. Results obtained were correlated with predominant structures assumed by the supported tungstate species. Accordingly, polymerization of the supported tungstate into 2-/3-dimensional structures, was found to be relatively most advanced on favorable locations of titania surfaces as compared to the case on alumina or silica surfaces. Consequently, the Lewis acidity was strengthened, and strong Bronsted acidity was evolved, leading to a 2-propanol dehydration catalyst (tungstate/titania) of optimal activity and selectivity. Strong tungstate/support interfacial interactions were found to hamper the formation of the strongly acidic and catalytically active polymeric structures of the supported tungstate (i.e., the case on alumina or silica).

  5. Structure–acidity correlation of supported tungsten(VI)-oxo-species: FT-IR and TPD studies of adsorbed pyridine and catalytic decomposition of 2-propanol

    International Nuclear Information System (INIS)

    Zaki, M.I.; Mekhemer, G.A.H.; Fouad, N.E.; Rabee, A.I.M.

    2014-01-01

    The amount of 10 wt%-WO 3 was supported on alumina, titania or silica by impregnation with aqueous solution of ammonium paratungstate and subsequent calcination at 500 °C for 10 h. Tungstate-related chemical and physical changes in the calcination products were resolved by ex-situ infrared (IR) spectroscopy. Nature of exposed surface acid sites were probed by in-situ IR spectroscopy of adsorbed pyridine (Py) molecules at room temperature (RT). The relative strength of the acid sites thus probed was gauged by combining results of temperature-programmed desorption (TPD) measurements of the RT-adsorbed Py with those communicated by in-situ IR spectra of residual Py on the surface after a brief thermoevacuation at high temperatures (100–300 °C). Reactivity of the surface acid sites was tested toward 2-propanal catalytic decomposition, and observed by in-situ IR gas phase spectra. Results obtained were correlated with predominant structures assumed by the supported tungstate species. Accordingly, polymerization of the supported tungstate into 2-/3-dimensional structures, was found to be relatively most advanced on favorable locations of titania surfaces as compared to the case on alumina or silica surfaces. Consequently, the Lewis acidity was strengthened, and strong Bronsted acidity was evolved, leading to a 2-propanol dehydration catalyst (tungstate/titania) of optimal activity and selectivity. Strong tungstate/support interfacial interactions were found to hamper the formation of the strongly acidic and catalytically active polymeric structures of the supported tungstate (i.e., the case on alumina or silica).

  6. Effects of metal composition and ratio on peptide-templated multimetallic PdPt nanomaterials

    International Nuclear Information System (INIS)

    Merrill, Nicholas A.; Nitka, Tadeusz T.; McKee, Erik M.; Merino, Kyle C.; Drummy, Lawrence F.

    2017-01-01

    It can be difficult to simultaneously control the size, composition, and morphology of metal nanomaterials under benign aqueous conditions. For this, bioinspired approaches have become increasingly popular due to their ability to stabilize a wide array of metal catalysts under ambient conditions. In this regard, we used the R5 peptide as a three-dimensional template for formation of PdPt bimetallic nanomaterials. Monometallic Pd and Pt nanomaterials have been shown to be highly reactive toward a variety of catalytic processes, but by forming bimetallic species, increased catalytic activity may be realized. The optimal metal-to-metal ratio was determined by varying the Pd:Pt ratio to obtain the largest increase in catalytic activity. To better understand the morphology and the local atomic structure of the materials, the bimetallic PdPt nanomaterials were extensively studied by transmission electron microscopy, extended X-ray absorption fine structure spectroscopy, X-ray photoelectron spectroscopy, and pair distribution function analysis. The resulting PdPt materials were determined to form multicomponent nanostructures where the Pt component demonstrated varying degrees of oxidation based upon the Pd:Pt ratio. To test the catalytic reactivity of the materials, olefin hydrogenation was conducted, which indicated a slight catalytic enhancement for the multicomponent materials. Finally, these results suggest a strong correlation between the metal ratio and the stabilizing biotemplate in controlling the final materials morphology, composition, and the interactions between the two metal species.

  7. Effects of Metal Composition and Ratio on Peptide-Templated Multimetallic PdPt Nanomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Merrill, Nicholas A.; Nitka, Tadeusz T.; McKee, Erik M.; Merino, Kyle C.; Drummy, Lawrence F.; Lee, Sungsik; Reinhart, Benjamin; Ren, Yang; Munro, Catherine J.; Pylypenko, Svitlana; Frenkel, Anatoly I.; Bedford, Nicholas M.; Knecht, Marc R.

    2017-02-22

    It can be difficult to simultaneously control the size, composition, and morphology of metal nanomaterials under benign aqueous conditions. For this, bio-inspired approaches have become increasing popular due to their ability to stabilize a wide array of metal catalysts under ambient conditions. In this regard, we used the R5 peptide as a 3D template for the formation of PdPt bimetallic nanomaterials. Monometallic Pd and Pt nanomaterials have been shown to be highly reactive towards a variety of catalytic processes, but by forming bimetallic species, increased catalytic activity may be realized. The optimal metal-to-metal ratio was determined by varying the Pd:Pt ratio to obtain the largest increase in catalytic activity. To better understand the morphology and the local atomic structure of the materials, the bimetallic PdPt nanomaterials were extensively studied using transmission electron microscopy, extended X-ray absorption fine structure spectroscopy, X-ray photoelectron spectroscopy, and pair distribution function analysis. The resulting PdPt materials were determined to form multicomponent nanostructures where the Pt component demonstrated varying degrees of oxidation based upon the Pd:Pt ratio. To test the catalytic reactivity of the materials, olefin hydrogenation was conducted which indicated a slight catalytic enhancement for the multicomponent materials. These results suggest a strong correlation between the metal ratio and the stabilizing biotemplate in controlling the final materials morphology, composition, and the interactions between the two metal species.

  8. THE INFLUENCE OF THIOSEMICARBAZONE 2,3-DIHYDROXYBENZALDEHYDE ON CATALYTIC CURRENTS IN THE SYSTEM MOLYBDENUM (VI – POTASSIUM CHLORATE IN ACID SULFATE SOLUTIONS

    Directory of Open Access Journals (Sweden)

    Ludmila Chiriac

    2011-06-01

    Full Text Available The polarographic catalytic current in acid solutions of Mo(VI, thiosemicarbazone 2,3-dihydroxybenzaldehyde (TSC 2,3-DHBA and chlorate ions has been investigated. The scheme of reactions, taking place in the solutions and on the electrode, has been proposed. The increase of the catalytic current is explained by the formation of an active intermediate complex [Mo(V×TSC 2,3-DHBA (ClO-3]. The rate constant of this complex formation K = 2.56 × 106 mol-1×dm3×s-1, the activation energy Ea = 15.9 kcal×mol-1 and the reaction activation entropy ∆Sa¹ = -23.5 e.u. have been calculated.

  9. Molecular Design of a Chiral Brønsted Acid with Two Different Acidic Sites: Regio-, Diastereo-, and Enantioselective Hetero-Diels-Alder Reaction of Azopyridinecarboxylate with Amidodienes Catalyzed by Chiral Carboxylic Acid-Monophosphoric Acid.

    Science.gov (United States)

    Momiyama, Norie; Tabuse, Hideaki; Noda, Hirofumi; Yamanaka, Masahiro; Fujinami, Takeshi; Yamanishi, Katsunori; Izumiseki, Atsuto; Funayama, Kosuke; Egawa, Fuyuki; Okada, Shino; Adachi, Hiroaki; Terada, Masahiro

    2016-09-07

    A chiral Brønsted acid containing two different acidic sites, chiral carboxylic acid-monophosphoric acid 1a, was designed to be a new and effective concept in catalytic asymmetric hetero-Diels-Alder reactions of azopyridinecarboxylate with amidodienes. The multipoint hydrogen-bonding interactions among the carboxylic acid, monophosphoric acid, azopyridinecarboxylate, and amidodiene achieved high catalytic and chiral efficiency, producing substituted 1,2,3,6-tetrahydropyridazines with excellent stereocontrol in a single step. This constitutes the first example of regio-, diastereo-, and enantioselective azo-hetero-Diels-Alder reactions by chiral Brønsted acid catalysis.

  10. Reconstitution of Vanadium Haloperoxidase's Catalytic Activity by Boric Acid-Towards a Potential Biocatalytic Role of Boron.

    Science.gov (United States)

    Natalio, Filipe; Wiese, Stefanie; Brandt, Wolfgang; Wessjohann, Ludger

    2017-04-11

    Boron's unusual properties inspired major advances in chemistry. In nature, the existence and importance of boron has been fairly explored (e.g. bacterial signaling, plant development) but its role as biological catalyst was never reported. Here, we show that boric acid [B(OH) 3 ] can restore chloroperoxidase activity of Curvularia inaequalis recombinant apo-haloperoxidase's (HPO) in the presence of hydrogen peroxide and chloride ions. Molecular modeling and semi-empirical PM7 calculations support a thermodynamically highly favored (bio)catalytic mechanism similarly to vanadium haloperoxidases (V-HPO) in which [B(OH) 3 ] is assumedly located in apo-HPO's active site and a monoperoxyborate [B(OH) 3 (OOH) - ] intermediate is formed and stabilized by interaction with specific active site amino acids leading ultimately to the formation of HOCl. Thus, B(OH) 3 -HPO provides the first evidence towards the future exploitation of boron's role in biological systems. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Kinetic Studies of Catalytic Oxidation of Cyclohexene Using ...

    African Journals Online (AJOL)

    acer

    Kinetic Studies of Catalytic Oxidation of Cyclohexene Using Chromium VI Oxide in. Acetic Acid ... respect to the oxidant using pseudo-order approximation method. .... making the concentration of the cyclohexene in ..... on Titanium Silicate.

  12. Biodiesel from waste cooking oil via base-catalytic and supercritical methanol transesterification

    International Nuclear Information System (INIS)

    Demirbas, Ayhan

    2009-01-01

    In this study, waste cooking oil has subjected to transesterification reaction by potassium hydroxide (KOH) catalytic and supercritical methanol methods obtaining for biodiesel. In catalyzed methods, the presence of water has negative effects on the yields of methyl esters. In the catalytic transesterification free fatty acids and water always produce negative effects since the presence of free fatty acids and water causes soap formation, consumes catalyst, and reduces catalyst effectiveness. Free fatty acids in the waste cooking oil are transesterified simultaneously in supercritical methanol method. Since waste cooking oil contains water and free fatty acids, supercritical transesterification offers great advantage to eliminate the pre-treatment and operating costs. The effects of methanol/waste cooking oils ratio, potassium hydroxide concentration and temperature on the biodiesel conversion were investigated

  13. Process Design and Economics for the Conversion of Lignocellulosic Biomass to Hydrocarbons: Dilute-Acid and Enzymatic Deconstruction of Biomass to Sugars and Catalytic Conversion of Sugars to Hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Davis, R. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Tao, L. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Scarlata, C. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Tan, E. C. D. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Ross, J. [Harris Group Inc., New York, NY (United States); Lukas, J. [Harris Group Inc., New York, NY (United States); Sexton, D. [Harris Group Inc., New York, NY (United States)

    2015-03-01

    This report describes one potential conversion process to hydrocarbon products by way of catalytic conversion of lignocellulosic-derived hydrolysate. This model leverages expertise established over time in biomass deconstruction and process integration research at NREL, while adding in new technology areas for sugar purification and catalysis. The overarching process design converts biomass to die die diesel- and naphtha-range fuels using dilute-acid pretreatment, enzymatic saccharification, purifications, and catalytic conversion focused on deoxygenating and oligomerizing biomass hydrolysates.

  14. Effect of hierarchical porosity and phosphorus modification on the catalytic properties of zeolite Y

    Energy Technology Data Exchange (ETDEWEB)

    Li, Wenlin; Zheng, Jinyu; Luo, Yibin; Da, Zhijian, E-mail: dazhijian.ripp@sinopec.com

    2016-09-30

    Highlights: • Hierarchical zeolite Y was prepared by citric acid treatment and alkaline treatment with NaOH&TBPH. • The addition of TBPH during desilication process transferred the bridge bonded OH− to the terminal P−OH group. • Moderate Brønsted acid sites could be created with phosphorus modification. • Zeolite with hierarchical porosity and appropriated acidities favored high conversion of 1,3,5-TIPB. - Abstract: The zeolite Y is considered as a leading catalyst for FCC industry. The acidity and porosity modification play important roles in determining the final catalytic properties of zeolite Y. The alkaline treatment of zeolite Y by dealumination and alkaline treatment with NaOH and NaOH&TBPH was investigated. The zeolites were characterized by X-ray diffraction, low-temperature adsorption of nitrogen, transmission electron microscope, NMR, NH{sub 3}-TPD and IR study of acidity. Accordingly, the hierarchical porosity and acidity property were discussed systematically. Finally, the catalytic performance of the zeolites Y was evaluated in the cracking of 1,3,5-TIPB. It was found that desilication with NaOH&TBPH ensured the more uniform intracrystalline mesoporosity with higher microporosity, while preserving higher B/L ratio and moderate Brønsted acidities resulting in catalysts with the most appropriated acidity and then with better catalytic performance.

  15. Catalytical Properties of Free and Immobilized Aspergillus niger Tannase

    OpenAIRE

    Abril Flores-Maltos; Luis V. Rodríguez-Durán; Jacqueline Renovato; Juan C. Contreras; Raúl Rodríguez; Cristóbal N. Aguilar

    2011-01-01

    A fungal tannase was produced, recovered, and immobilized by entrapment in calcium alginate beads. Catalytical properties of the immobilized enzyme were compared with those of the free one. Tannase was produced intracellularly by the xerophilic fungus Aspergillus niger GH1 in a submerged fermentation system. Enzyme was recovered by cell disruption and the crude extract was partially purified. The catalytical properties of free and immobilized tannase were evaluated using tannic acid and methy...

  16. Catalytic effect of different reactor materials under subcritical water conditions: decarboxylation of cysteic acid into taurine

    Science.gov (United States)

    Faisal, M.

    2018-03-01

    In order to understand the influence of reactor materials on the catalytic effect for a particular reaction, the decomposition of cysteic acid from Ni/Fe-based alloy reactors under subcritical water conditions was examined. Experiments were carried out in three batch reactors made of Inconel 625, Hastelloy C-22 and SUS 316 over temperatures of 200 to 300 °C. The highest amount of eluted metals was found for SUS 316. The results demonstrated that reactor materials contribute to the resulting product. Under the tested conditions, cysteic acid decomposes readily with SUS 316. However, the Ni-based materials (Inconel 625 and Hastelloy C-22) show better resistance to metal elution. It was found that among the materials used in this work, SUS 316 gave the highest reaction rate constant of 0.1934 s‑1. The same results were obtained at temperatures of 260 and 300 °C. Investigation of the Arrhenius activation energy revealed that the highest activation energy was for Hastelloy C-22 (109 kJ/mol), followed by Inconel 625 (90 kJ/mol) and SUS 316 (70 kJ/mol). The decomposition rate of cysteic acid was found to follow the results for the trend of the eluted metals. Therefore, it can be concluded that the decomposition of cysteic acid was catalyzed by the elution of heavy metals from the surface of the reactor. The highest amount of taurine from the decarboxylation of cysteic acid was obtained from SUS 316.

  17. A comparative study of alumina-supported Ni catalysts prepared by photodeposition and impregnation methods on the catalytic ozonation of 2,4-dichlorophenoxyacetic acid

    International Nuclear Information System (INIS)

    Rodríguez, Julia L.; Valenzuela, Miguel A.; Tiznado, Hugo; Poznyak, Tatiana; Chairez, Isaac; Magallanes, Diana

    2017-01-01

    The heterogeneous catalytic ozonation on unsupported and supported oxides has been successfully tested for the removal of several refractory compounds in aqueous solution. In this work, alumina-supported nickel catalysts prepared by photodeposition and impregnation methods were compared in the catalytic ozonation of 2,4-dichlorophenoxyacetic acid (2,4-D). The catalysts were characterized by high-resolution electron microscopy and X-ray photoelectron spectroscopy. The photochemical decomposition of Ni acetylacetonate to produce Ni(OH) 2 , NiO, and traces of Ni° deposited on alumina was achieved in the presence of benzophenone as a sensitizer. A similar surface composition was found with the impregnated catalyst after its reduction with hydrogen at 500 °C and exposed to ambient air. Results indicated a higher initial activity and maleic acid (byproduct) concentration with the photodeposited catalyst (1 wt% Ni) compared to the impregnated catalyst (3 wt% Ni). These findings suggest the use of the photodeposition method as a simple and reliable procedure for the preparation of supported metal oxide/metal catalysts under mild operating conditions.

  18. A comparative study of alumina-supported Ni catalysts prepared by photodeposition and impregnation methods on the catalytic ozonation of 2,4-dichlorophenoxyacetic acid

    Energy Technology Data Exchange (ETDEWEB)

    Rodríguez, Julia L., E-mail: ozliliana@yahoo.com.mx [Lab. Ing. Química Ambiental. ESIQIE–Instituto Politécnico Nacional (Mexico); Valenzuela, Miguel A. [Lab.Catálisis y Materiales. ESIQIE–Instituto Politécnico Nacional. Zacatenco (Mexico); Tiznado, Hugo [Centro de Nanociencias y Nanotecnología. CNyN Universidad Nacional Autónoma de México (Mexico); Poznyak, Tatiana [Lab. Ing. Química Ambiental. ESIQIE–Instituto Politécnico Nacional (Mexico); Chairez, Isaac [Departamento de Bioprocesos, UPIBI- Instituto Politécnico Nacional (Mexico); Magallanes, Diana [Lab. Ing. Química Ambiental. ESIQIE–Instituto Politécnico Nacional (Mexico)

    2017-02-15

    The heterogeneous catalytic ozonation on unsupported and supported oxides has been successfully tested for the removal of several refractory compounds in aqueous solution. In this work, alumina-supported nickel catalysts prepared by photodeposition and impregnation methods were compared in the catalytic ozonation of 2,4-dichlorophenoxyacetic acid (2,4-D). The catalysts were characterized by high-resolution electron microscopy and X-ray photoelectron spectroscopy. The photochemical decomposition of Ni acetylacetonate to produce Ni(OH){sub 2}, NiO, and traces of Ni° deposited on alumina was achieved in the presence of benzophenone as a sensitizer. A similar surface composition was found with the impregnated catalyst after its reduction with hydrogen at 500 °C and exposed to ambient air. Results indicated a higher initial activity and maleic acid (byproduct) concentration with the photodeposited catalyst (1 wt% Ni) compared to the impregnated catalyst (3 wt% Ni). These findings suggest the use of the photodeposition method as a simple and reliable procedure for the preparation of supported metal oxide/metal catalysts under mild operating conditions.

  19. Enhanced catalytic performance of Pd catalyst for formic acid electrooxidation in ionic liquid aqueous solution

    Science.gov (United States)

    Feng, Yuan-Yuan; Yin, Qian-Ying; Lu, Guo-Ping; Yang, Hai-Fang; Zhu, Xiao; Kong, De-Sheng; You, Jin-Mao

    2014-12-01

    A protic ionic liquid (IL), n-butylammonium nitrate (N4NO3), is prepared and employed as the electrolyte for formic acid electrooxidation reaction (FAOR) on Pd catalysts. The oxidation peak potential of FAOR in the IL solution shows about a 200 mV negative shift as compared with those in traditional H2SO4/HClO4 electrolytes, suggesting that FAOR can be more easily carried out on Pd catalysts in IL media. The catalytic properties of Pd toward FAOR are not only dependent on the concentration of IL, as a consequence of the varied electronic conductivity of the IL solution, but also on the high potential limit of the cyclic voltammograms. When the Pd catalyst is cycled up to 1.0 V (vs. SCE), which induces a significant oxidation of Pd, it shows ca. 4.0 times higher activity than that not subjected to the Pd oxidation (up to 0.6 V). The Pd oxides, which are more easily formed in IL solution than in traditional H2SO4/HClO4 electrolytes, may play a crucial role in increasing the catalytic activities of Pd toward FAOR. Our work would shed new light on the mechanism of FAOR and highlight the potential applications of IL as green and environment-friendly electrolytes in fuel cells and other technologies.

  20. Plasma-activated core-shell gold nanoparticle films with enhanced catalytic properties

    Energy Technology Data Exchange (ETDEWEB)

    Llorca, Jordi, E-mail: jordi.llorca@upc.edu; Casanovas, Albert; Dominguez, Montserrat; Casanova, Ignasi [Universitat Politecnica de Catalunya, Institut de Tecniques Energetiques (Spain); Angurell, Inmaculada; Seco, Miquel; Rossell, Oriol [Universitat de Barcelona, Departament de Quimica Inorganica (Spain)

    2008-03-15

    Catalytically active gold nanoparticle films have been prepared from core-shell nanoparticles by plasma-activation and characterized by high-resolution transmission electron microscopy, atomic force microscopy, and X-ray photoelectron spectroscopy. Methane can be selectively oxidized into formic acid with an O{sub 2}-H{sub 2} mixture in a catalytic wall reactor functionalized with plasma-activated gold nanoparticle films containing well-defined Au particles of about 3.5 nm in diameter. No catalytic activity was recorded over gold nanoparticle films prepared by thermal decomposition of core-shell nanoparticles due to particle agglomeration.

  1. Plasma-activated core-shell gold nanoparticle films with enhanced catalytic properties

    International Nuclear Information System (INIS)

    Llorca, Jordi; Casanovas, Albert; Dominguez, Montserrat; Casanova, Ignasi; Angurell, Inmaculada; Seco, Miquel; Rossell, Oriol

    2008-01-01

    Catalytically active gold nanoparticle films have been prepared from core-shell nanoparticles by plasma-activation and characterized by high-resolution transmission electron microscopy, atomic force microscopy, and X-ray photoelectron spectroscopy. Methane can be selectively oxidized into formic acid with an O 2 -H 2 mixture in a catalytic wall reactor functionalized with plasma-activated gold nanoparticle films containing well-defined Au particles of about 3.5 nm in diameter. No catalytic activity was recorded over gold nanoparticle films prepared by thermal decomposition of core-shell nanoparticles due to particle agglomeration

  2. Catalytic production of biodiesel

    Energy Technology Data Exchange (ETDEWEB)

    Theilgaard Madsen, A.

    2011-07-01

    The focus of this thesis is the catalytic production of diesel from biomass, especially emphasising catalytic conversion of waste vegetable oils and fats. In chapter 1 an introduction to biofuels and a review on different catalytic methods for diesel production from biomass is given. Two of these methods have been used industrially for a number of years already, namely the transesterification (and esterification) of oils and fats with methanol to form fatty acid methyl esters (FAME), and the hydrodeoxygenation (HDO) of fats and oils to form straight-chain alkanes. Other possible routes to diesel include upgrading and deoxygenation of pyrolysis oils or aqueous sludge wastes, condensations and reductions of sugars in aqueous phase (aqueous-phase reforming, APR) for monofunctional hydrocarbons, and gasification of any type of biomass followed by Fischer-Tropsch-synthesis for alkane biofuels. These methods have not yet been industrialised, but may be more promising due to the larger abundance of their potential feedstocks, especially waste feedstocks. Chapter 2 deals with formation of FAME from waste fats and oils. A range of acidic catalysts were tested in a model fat mixture of methanol, lauric acid and trioctanoin. Sulphonic acid-functionalised ionic liquids showed extremely fast convertion of lauric acid to methyl laurate, and trioctanoate was converted to methyl octanoate within 24 h. A catalyst based on a sulphonated carbon-matrix made by pyrolysing (or carbonising) carbohydrates, so-called sulphonated pyrolysed sucrose (SPS), was optimised further. No systematic dependency on pyrolysis and sulphonation conditions could be obtained, however, with respect to esterification activity, but high activity was obtained in the model fat mixture. SPS impregnated on opel-cell Al{sub 2}O{sub 3} and microporous SiO{sub 2} (ISPS) was much less active in the esterification than the original SPS powder due to low loading and thereby low number of strongly acidic sites on the

  3. Lewis base activation of Lewis acids: catalytic, enantioselective addition of glycolate-derived silyl ketene acetals to aldehydes.

    Science.gov (United States)

    Denmark, Scott E; Chung, Won-Jin

    2008-06-20

    A catalytic system involving silicon tetrachloride and a chiral, Lewis basic bisphosphoramide catalyst is effective for the addition of glycolate-derived silyl ketene acetals to aldehydes. It was found that the sense of diastereoselectivity could be modulated by changing the size of the substituents on the silyl ketene acetals. In general, the trimethylsilyl ketene acetals derived from methyl glycolates with a large protecting group on the alpha-oxygen provide enantiomerically enriched alpha,beta-dihydroxy esters with high syn-diastereoselectivity, whereas the tert-butyldimethylsilyl ketene acetals derived from bulky esters of alpha-methoxyacetic acid provide enantiomerically enriched alpha,beta-dihydroxy esters with high anti-diastereoselecitvity.

  4. Carboxylic acid-grafted mesoporous material and its high catalytic activity in one-pot three-component coupling reaction

    Directory of Open Access Journals (Sweden)

    Ruth Gomes

    2014-11-01

    Full Text Available A new carboxylic acid functionalized mesoporous organic polymer has been synthesized via in situ radical polymerization of divinylbenzene and acrylic acid using a mesoporous silica as a seed during the polymerization process under solvothermal conditions. The mesoporous material MPDVAA-1 has been thoroughly characterized employing powder XRD, solid state 13C cross polarization magic angle spinning-nuclear magnetic resonance, FT-IR spectroscopy, N2 sorption, HR-TEM, and NH3 temperature programmed desorption-thermal conductivity detector (TPD-TCD analysis to understand its porosity, chemical environment, bonding, and surface properties. The mesoporous polymer was used as a catalyst for a three comp onent Biginelli condensation between various aldehydes, β-keto esters, and urea/thioureas to give 3,4-dihydropyrimidine-2(1H-ones. The reactions were carried out under conventional heating as well as solvent-free microwave irradiation of solid components, and in both the cases, the mesoporous polymer MPDVAA-1 proved to be a powerful, robust, and reusable catalyst with high catalytic efficiency.

  5. Catalytic Isomerization of Dihydroxyacetone to Lactic Acid and Alkyl Lactates over Hierarchical Zeolites Containing Tin

    Directory of Open Access Journals (Sweden)

    Agnieszka Feliczak-Guzik

    2018-01-01

    Full Text Available Hierarchical zeolites containing tin were obtained, characterized and used in a reaction of catalytic isomerization of dihydroxyacetone (DHA to lactic acid and alkyl lactates. These catalysts are characterized by preserved crystallinity and primary microporosity with the simultaneous existence of secondary porosity regarding mesopores, which facilitates access of large molecules of reagents to active centers. Creation of additional porosity was confirmed by X-ray diffraction and low-temperature nitrogen adsorption/desorption studies. The reaction of dihydroxyacetone isomerization was conducted in different reaction media such as methanol, ethanol or water with the use of two heating methods: microwave radiation and conventional heating. The application of microwave radiation enabled to reduce the reaction time to 1 h and achieve dihydroxyacetone conversion of >90% and high yields of the desired reaction products.

  6. Application of Zeolitic Additives in the Fluid Catalytic Cracking (FCC

    Directory of Open Access Journals (Sweden)

    A. Nemati Kharat

    2013-06-01

    Full Text Available Current article describes application of zeolites in fluid catalytic cracking (FCC. The use of several zeolitic additives for the production light olefins and reduction of pollutants is described. Application of zeolites as fluid catalytic cracking (FCC catalysts and additives due to the presence of active acid sites in the zeolite framework  increase the formation of desired cracking products (i.e., olefin and branched products  in the FCC unit.

  7. Catalytic Pyrolysis of Chilean Oak: Influence of Brønsted Acid Sites of Chilean Natural Zeolite

    Directory of Open Access Journals (Sweden)

    Serguei Alejandro Martín

    2017-11-01

    Full Text Available This paper proposes the Chilean natural zeolite as catalyst on bio-oil upgrade processes. The aim of this study was to analyze chemical composition of bio-oil samples obtained from catalytic pyrolysis of Chilean native oak in order to increase bio-oil stability during storage. In order to identify chemical compounds before and after storage, biomass pyrolysis was carried out in a fixed bed reactor at 623 K and bio-oil samples were characterized by gas chromatography/mass spectrophotometry (GC/MS. A bio-oil fractionation method was successfully applied here. Results indicate that bio-oil viscosity decreases due to active sites on the zeolite framework. Active acids sites were associated with an increment of alcohols, aldehydes, and hydrocarbon content during storage. Higher composition on aldehydes and alcohols after storage could be attributed to the occurrence of carbonyl reduction reactions that promotes them. These reactions are influenced by zeolite surface characteristics and could be achieved via the direct contribution of Brønsted acid sites to Chilean natural zeolite.

  8. Catalytic transformations of fatty acids derivatives for food, oleochemicals and fuels over carbon supported platinum group metals

    Energy Technology Data Exchange (ETDEWEB)

    Simakova, I.

    2010-07-01

    The main focus of the research is in the development of an alternative harmless Pd-based hydrogenation technology compared to the traditional one based on Ni. Pd counterparts could be recycled, is more active and resistant to acids and form less trans isomers. In order to be economically viable and competitive this technology has to be based on the best catalyst that means an optimized combination of high activity, high life-time and high selectivity. Therefore, the engineering aspects were closely taken into account and much effort was directed into the design of Pd on a mesoporous carbon support as well as in establishing the correlation between catalyst characteristics and its activity in the C=C hydrogenation and isomerization. Detailed characterization (TEM, XRD, XPS, TPR, CO TPD, physisorption and CO chemisorption) of the tested catalysts was carried out. In addition, the influence of temperature, hydrogen pressure, catalytic concentration on the fatty-acid and isomeric composition of hydrogenated oils were determined in the absence of mass transfer limitations. Deoxygenation by full decarboxylation of -COOH function of fatty acid is the best way to make green diesel because paraffins are produced and utilization of expensive hydrogen is not required. Deoxygenation was systematically investigated over Pd/C (Sibunit) using saturated fatty acids C16 - C20 and C22, as feeds, producing one less carbon containing, diesel-like hydrocarbons. The same decarboxylation rates were obtained for pure saturated fatty acids. Comparison of deoxygenation rate for stearic, oleic or linoleic acids as a feedstock at 300 deg C under 1 vol% hydrogen over mesoporous Pd/C (Sibunit) catalyst revealed that catalyst activity and selectivity increased with less unsaturated feedstock. The main products in the case of stearic acid were desired C17 hydrocarbons, whereas the amounts of C17 aromatic compounds increased in case of oleic and linoleic acids. Catalyst deactivation was relatively

  9. Catalytic role of Cu(II) in the reduction of Cr(VI) by citric acid under an irradiation of simulated solar light.

    Science.gov (United States)

    Li, Ying; Chen, Cheng; Zhang, Jing; Lan, Yeqing

    2015-05-01

    The catalytic role of Cu(II) in the reduction of Cr(VI) by citric acid with simulated solar light was investigated. The results demonstrated that Cu(II) could significantly accelerate Cr(VI) reduction and the reaction obeyed to pseudo zero-order kinetics with respect to Cr(VI). The removal of Cr(VI) was related to the initial concentrations of Cu(II), citric acid, and the types of organic acids. The optimal removal of Cr(VI) was achieved at pH 4, and the rates of Cu(II) photocatalytic reduction of Cr(VI) by organic acids were in the order: tartaric acid (two α-OH groups, two -COOH groups)>citric acid (one α-OH group, three -COOH groups)>malic acid (one α-OH group, two -COOH groups)>lactic acid (one α-OH group, one -COOH group)≫succinic acid (two -COOH groups), suggesting that the number of α-OH was the key factor for the reaction, followed by the number of -COOH. The formation of Cu(II)-citric acid complex could generate Cu(I) and radicals through a pathway of metal-ligand-electron transfer, promoting the reduction of Cr(VI). This study is helpful to fully understanding the conversion of Cr(VI) in the existence of both organic acids and Cu(II) with solar light in aquatic environments. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Catalytic pyrolysis of recalcitrant, insoluble humin byproducts from C6 sugar biorefineries

    NARCIS (Netherlands)

    Agarwal, Shilpa; van Es, Daan; Heeres, Hero Jan

    Humins are solid by-products formed during the acid-catalysed conversions of C-6 sugars to platform chemicals like hydroxymethylfurfural and levulinic acid. We here report an experimental study on the liquefaction/depolymerisation of humins using catalytic pyrolysis. Synthetic humins (SH) and crude

  11. Single-Atom Mn Active Site in a Triol-Stabilized β-Anderson Manganohexamolybdate for Enhanced Catalytic Activity towards Adipic Acid Production

    Directory of Open Access Journals (Sweden)

    Jianhui Luo

    2018-03-01

    Full Text Available Adipic acid is an important raw chemical for the commercial production of polyamides and polyesters. The traditional industrial adipic acid production utilizes nitric acid to oxidize KA oil (mixtures of cyclohexanone and cyclohexanol, leading to the emission of N2O and thus causing ozone depletion, global warming, and acid rain. Herein, we reported an organically functionalized β-isomer of Anderson polyoxometalates (POMs nanocluster with single-atom Mn, β-{[H3NC(CH2O3]2MnMo6O18}− (1, as a highly active catalyst to selectively catalyze the oxidation of cyclohexanone, cyclohexanol, or KA oil with atom economy use of 30% H2O2 for the eco-friendly synthesis of adipic acid. The catalyst has been characterized by single crystal and powder XRD, XPS, ESI-MS, FT-IR, and NMR. A cyclohexanone (cyclohexanol conversion of >99.9% with an adipic acid selectivity of ~97.1% (~85.3% could be achieved over catalyst 1 with high turnover frequency of 2427.5 h−1 (2132.5 h−1. It has been demonstrated that the existence of Mn3+ atom active site in catalyst 1 and the special butterfly-shaped topology of POMs both play vital roles in the enhancement of catalytic activity.

  12. Catalytic dehydrogenation of alcohol over solid-state molybdenum sulfide clusters with an octahedral metal framework

    Energy Technology Data Exchange (ETDEWEB)

    Kamiguchi, Satoshi, E-mail: kamigu@riken.jp [Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako City, Saitama 351-0198 (Japan); Organometallic Chemistry Laboratory, RIKEN, 2-1 Hirosawa, Wako City, Saitama 351-0198 (Japan); Okumura, Kazu [School of Advanced Engineering, Kogakuin University, Nakano-machi, Hachioji City, Tokyo 192-0015 (Japan); Nagashima, Sayoko; Chihara, Teiji [Graduate School of Science and Engineering, Saitama University, Shimo-Okubo, Sakura-ku, Saitama City, Saitama 338-8570 (Japan)

    2015-12-15

    Graphical abstract: - Highlights: • Solid-state molybdenum sulfide clusters catalyzed the dehydrogenation of alcohol. • The dehydrogenation proceeded without the addition of any oxidants. • The catalytic activity developed when the cluster was activated at 300–500 °C in H{sub 2}. • The Lewis-acidic molybdenum atom and basic sulfur ligand were catalytically active. • The clusters function as bifunctional acid–base catalysts. - Abstract: Solid-state molybdenum sulfide clusters with an octahedral metal framework, the superconducting Chevrel phases, are applied to catalysis. A copper salt of a nonstoichiometric sulfur-deficient cluster, Cu{sub x}Mo{sub 6}S{sub 8–δ} (x = 2.94 and δ ≈ 0.3), is stored in air for more than 90 days. When the oxygenated cluster is thermally activated in a hydrogen stream above 300 °C, catalytic activity for the dehydrogenation of primary alcohols to aldehydes and secondary alcohols to ketones develops. The addition of pyridine or benzoic acid decreases the dehydrogenation activity, indicating that both a Lewis-acidic coordinatively unsaturated molybdenum atom and a basic sulfur ligand synergistically act as the catalytic active sites.

  13. Catalytic Upgrading of Biomass-Derived Furfuryl Alcohol to Butyl Levulinate Biofuel over Common Metal Salts

    Directory of Open Access Journals (Sweden)

    Lincai Peng

    2016-09-01

    Full Text Available Levulinate ester has been identified as a promising renewable fuel additive and platform chemical. Here, the use of a wide range of common metal salts as acid catalysts for catalytic upgrading of biomass-derived furfuryl alcohol to butyl levulinate was explored by conventional heating. Both alkali and alkaline earth metal chlorides did not lead effectively to the conversion of furfuryl alcohol, while several transition metal chlorides (CrCl3, FeCl3, and CuCl2 and AlCl3 exhibited catalytic activity for the synthesis of butyl levulinate. For their sulfates (Cr(III, Fe(III, Cu(II, and Al(III, the catalytic activity was low. The reaction performance was correlated with the Brønsted acidity of the reaction system derived from the hydrolysis/alcoholysis of cations, but was more dependent on the Lewis acidity from the metal salts. Among these investigated metal salts, CuCl2 was found to be uniquely effective, leading to the conversion of furfuryl alcohol to butyl levulinate with an optimized yield of 95%. Moreover, CuCl2 could be recovered efficiently from the resulting reaction mixture and remained with almost unchanged catalytic activity in multiple recycling runs.

  14. Further investigation on boric acid catalytic graphitization of polyacrylonitrile carbon fibers: Mechanism and mechanical properties

    International Nuclear Information System (INIS)

    Wen, Ya; Lu, Yonggen; Xiao, Hao; Qin, Xianying

    2012-01-01

    Highlights: ► The modulus of carbon fiber was improved by boric acid at the temperature range of 1500–2900 °C. ► 2300 °C is a key temperature degree from which the boron began to benefit fiber strength. ► The fiber strength was affected by the boron reaction and related to the boron states. -- Abstract: Catalytic graphitization of polyacrylonitrile based carbon fibers by boric acid doping was studied and the dependence of fiber tensile strength on the boron content and temperature was discussed. It was found that there existed a key temperature point for the boron to take effect. When the fibers were modified with 7.0 wt.% boric acid solution, with increasing temperature, the tensile strength was lower than that of the unmodified ones below 2300 °C, but a reverse thing happened above 2300 °C. Moreover, when being heated at 2500 °C, the modified fibers showed an increasing tensile modulus and strength with increasing boron content till maximums of 404 GPa and 2.46 GPa, 26% and 16% higher than those of unmodified ones. The mechanical properties of the fibers were affected by the interaction of carbon and boron, and also related with boron states. The decomposition of boron acid and its interaction with carbon brought defects on fiber surface, degrading the mechanical properties below 1300 °C. With further heat treatment, the boron diffused into the fibers and divided into two states: substitutional and interstitial. At a temperature over 2300 °C with an appreciate boron content, the substitutional would be formed predominantly, which removed the structural defects and relaxed the distortions, so as to benefit the mechanical properties.

  15. Effect of Mo-Doped Mesoporous Al-SSP Catalysts for the Catalytic Dehydration of Ethanol to Ethylene

    Directory of Open Access Journals (Sweden)

    Titinan Chanchuey

    2016-01-01

    Full Text Available The catalytic dehydration of ethanol to ethylene over the mesoporous Al-SSP and Mo-doped Al-SSP catalysts was investigated. The Al-SSP catalyst was first synthesized by the modified sol-gel method and then doped with Mo by impregnation to obtain 1% Mo/Al-SSP and 5% Mo/Al-SSP catalysts (1 and 5 wt% of Mo. The final catalysts were characterized using various techniques such as XRD, N2 physisorption, SEM/EDX, TEM, and NH3-TPD. The catalytic activity for all catalysts in gas-phase ethanol dehydration reaction was determined at temperature range of 200°C to 400°C. It was found that the most crucial factor influencing the catalytic activities appears to be the acidity. The acid property of catalysts depended on the amount of Mo loading. Increased Mo loading in Al-SSP resulted in increased weak acid sites, which enhanced the catalytic activity. Besides acidity, the high concentration of Al at surface of catalyst is also essential to obtain high activity. Based on the results, the most suitable catalyst in this study is 1% Mo/Al-SSP catalyst, which can produce ethylene yield of ca. 90% at 300°C with slight amounts of diethyl ether (DEE and acetaldehyde.

  16. Catalytic Flash Pyrolysis of Biomass Using Different Types of Zeolite and Online Vapor Fractionation

    KAUST Repository

    Imran, Ali

    2016-03-11

    Bio-oil produced from conventional flash pyrolysis has poor quality and requires expensive upgrading before it can be used as a transportation fuel. In this work, a high quality bio-oil has been produced using a novel approach where flash pyrolysis, catalysis and fractionation of pyrolysis vapors using two stage condensation are combined in a single process unit. A bench scale unit of 1 kg/h feedstock capacity is used for catalytic pyrolysis in an entrained down-flow reactor system equipped with two-staged condensation of the pyrolysis vapor. Zeolite-based catalysts are investigated to study the effect of varying acidities of faujasite Y zeolites, zeolite structures (ZSM5), different catalyst to biomass ratios and different catalytic pyrolysis temperatures. Low catalyst/biomass ratios did not show any significant improvements in the bio-oil quality, while high catalyst/biomass ratios showed an effective deoxygenation of the bio-oil. The application of zeolites decreased the organic liquid yield due to the increased production of non-condensables, primarily hydrocarbons. The catalytically produced bio-oil was less viscous and zeolites were effective at cracking heavy molecular weight compounds in the bio-oil. Acidic zeolites, H-Y and H-ZSM5, increased the desirable chemical compounds in the bio-oil such as phenols, furans and hydrocarbon, and reduced the undesired compounds such as acids. On the other hand reducing the acidity of zeolites reduced some of the undesired compounds in the bio-oil such as ketones and aldehydes. The performance of H-Y was superior to that of the rest of zeolites studied: bio-oil of high chemical and calorific value was produced with a high organic liquid yield and low oxygen content. H-ZSM5 was a close competitor to H-Y in performance but with a lower yield of bio-oil. Online fractionation of catalytic pyrolysis vapors was employed by controlling the condenser temperature and proved to be a successful process parameter to tailor the

  17. The activity of catalytic systems based on zero-valent nickel complexes in propene dimerization

    Energy Technology Data Exchange (ETDEWEB)

    Shmidt, F.K.; Mironova, L.V.; Proidakov, A.G.; Kalabin, G.A.; Ratovskii, G.V.; Dmitrieva, T.V.

    1978-01-01

    Catalytic systems consisting of Ni(PPh/sub 3/) or Ni(P(OEt)/sub 3/)/sub 4/, Lewis acids BF/sub 3/ or BF/sub 3/.OEt/sub 2/, and Broensted acids HF, H/sub 2/SO/sub 4/, EtOH, or H/sub 2/O (even in trace amounts), but not HCl, showed high catalytic activities (i.e., hexene yields of 1200-1600 g-mole per g-atom Ni per hour) with 67-84% methylpentenes. In the absence of Lewis acids, the catalytic activity decreased and linear hexenes were favored (up to 65%). The activity of the systems containing no Broensted additives (i.e., when the solvents were thoroughly dehydrated and evacuated) was very low (50 g-mole hexene per g-atom Ni per hour). Proton, phosphorus-31, and fluorine-19 NMR studies identified nickel hydride complexes (NHC) with PF(OEt)/sub 2/ ligands in the Ni(P(OC/sub 2/H/sub 5/)/sub 3/)/sub 4// BF/sub 3/(OC/sub 2/H/sub 5/)/sub 2//C/sub 2/H/sub 5/OH system, and a UV spectroscopic study showed that the catalytic activity was proportional to the concentration of NHC in the system. Tables, spectra, and 16 references.

  18. Catalytical Properties of Free and Immobilized Aspergillus niger Tannase

    Directory of Open Access Journals (Sweden)

    Abril Flores-Maltos

    2011-01-01

    Full Text Available A fungal tannase was produced, recovered, and immobilized by entrapment in calcium alginate beads. Catalytical properties of the immobilized enzyme were compared with those of the free one. Tannase was produced intracellularly by the xerophilic fungus Aspergillus niger GH1 in a submerged fermentation system. Enzyme was recovered by cell disruption and the crude extract was partially purified. The catalytical properties of free and immobilized tannase were evaluated using tannic acid and methyl gallate as substrates. KM and Vmax values for free enzyme were very similar for both substrates. But, after immobilization, KM and Vmax values increased drastically using tannic acid as substrate. These results indicated that immobilized tannase is a better biocatalyst than free enzyme for applications on liquid systems with high tannin content, such as bioremediation of tannery or olive-mill wastewater.

  19. Catalytical Properties of Free and Immobilized Aspergillus niger Tannase.

    Science.gov (United States)

    Flores-Maltos, Abril; Rodríguez-Durán, Luis V; Renovato, Jacqueline; Contreras, Juan C; Rodríguez, Raúl; Aguilar, Cristóbal N

    2011-01-01

    A fungal tannase was produced, recovered, and immobilized by entrapment in calcium alginate beads. Catalytical properties of the immobilized enzyme were compared with those of the free one. Tannase was produced intracellularly by the xerophilic fungus Aspergillus niger GH1 in a submerged fermentation system. Enzyme was recovered by cell disruption and the crude extract was partially purified. The catalytical properties of free and immobilized tannase were evaluated using tannic acid and methyl gallate as substrates. K(M) and V(max) values for free enzyme were very similar for both substrates. But, after immobilization, K(M) and V(max) values increased drastically using tannic acid as substrate. These results indicated that immobilized tannase is a better biocatalyst than free enzyme for applications on liquid systems with high tannin content, such as bioremediation of tannery or olive-mill wastewater.

  20. Multi-metallic Nanomaterials From Ni, Ag, Pd With Pt's Catalytic Activity

    KAUST Repository

    Huang, Kuo-Wei

    2015-06-04

    A trimetallic catalyst that is a combination of nickel, silver and palladium metal is described. The trimetallic catalyst can be used to produce hydrogen and is useful as a replacement for platinum in hydrogenation reactions.

  1. Multi-metallic Nanomaterials From Ni, Ag, Pd With Pt's Catalytic Activity

    KAUST Repository

    Huang, Kuo-Wei; Lai, Zhiping; Hu, Lei

    2015-01-01

    A trimetallic catalyst that is a combination of nickel, silver and palladium metal is described. The trimetallic catalyst can be used to produce hydrogen and is useful as a replacement for platinum in hydrogenation reactions.

  2. The Effect of Acidic and Redox Properties of V2O5/CeO2-ZrO2 Catalysts in Selective Catalytic Reduction of NO by NH3

    DEFF Research Database (Denmark)

    Putluru, Siva Sankar Reddy; Riisager, Anders; Fehrmann, Rasmus

    2009-01-01

    V2O5 supported ZrO2 and CeO2–ZrO2 catalysts were prepared and characterized by N2 physisorption, XRPD, TPR, and NH3-TPD methods. The influence of calcination temperature from 400 to 600 °C on crystallinity, acidic and redox properties were studied and compared with the catalytic activity...... in the selective catalytic reduction (SCR) of NO with ammonia. The surface area of the catalysts decreased gradually with increasing calcination temperature. The SCR activity of V2O5/ZrO2 catalysts was found to be related with the support crystallinity, whereas V2O5/CeO2–ZrO2 catalysts were also dependent...... on acidic and redox properties of the catalyst. The V2O5/CeO2–ZrO2 catalysts showed high activity and selectivity for reduction of NO with NH3....

  3. Green synthesis of gold and silver nanoparticles using gallic acid: catalytic activity and conversion yield toward the 4-nitrophenol reduction reaction

    Science.gov (United States)

    Park, Jisu; Cha, Song-Hyun; Cho, Seonho; Park, Youmie

    2016-06-01

    In the present report, gallic acid was used as both a reducing and stabilizing agent to synthesize gold and silver nanoparticles. The synthesized gold and silver nanoparticles exhibited characteristic surface plasmon resonance bands at 536 and 392 nm, respectively. Nanoparticles that were approximately spherical in shape were observed in high-resolution transmission electron microscopy and atomic force microscopy images. The hydrodynamic radius was determined to be 54.4 nm for gold nanoparticles and 33.7 nm for silver nanoparticles in aqueous medium. X-ray diffraction analyses confirmed that the synthesized nanoparticles possessed a face-centered cubic structure. FT-IR spectra demonstrated that the carboxylic acid functional groups of gallic acid contributed to the electrostatic binding onto the surface of the nanoparticles. Zeta potential values of -41.98 mV for the gold nanoparticles and -53.47 mV for the silver nanoparticles indicated that the synthesized nanoparticles possess excellent stability. On-the-shelf stability for 4 weeks also confirmed that the synthesized nanoparticles were quite stable without significant changes in their UV-visible spectra. The synthesized nanoparticles exhibited catalytic activity toward the reduction reaction of 4-nitrophenol to 4-aminophenol in the presence of sodium borohydride. The rate constant of the silver nanoparticles was higher than that of the gold nanoparticles in the catalytic reaction. Furthermore, the conversion yield (%) of 4-nitrophenol to 4-aminophenol was determined using reversed-phase high-performance liquid chromatography with UV detection at 254 nm. The silver nanoparticles exhibited an excellent conversion yield (96.7-99.9 %), suggesting that the synthesized silver nanoparticles are highly efficient catalysts for the 4-nitrophenol reduction reaction.

  4. Green synthesis of gold and silver nanoparticles using gallic acid: catalytic activity and conversion yield toward the 4-nitrophenol reduction reaction

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jisu [Inje University, College of Pharmacy (Korea, Republic of); Cha, Song-Hyun; Cho, Seonho [Seoul National University, Department of Naval Architecture and Ocean Engineering (Korea, Republic of); Park, Youmie, E-mail: youmiep@inje.ac.kr [Inje University, College of Pharmacy (Korea, Republic of)

    2016-06-15

    In the present report, gallic acid was used as both a reducing and stabilizing agent to synthesize gold and silver nanoparticles. The synthesized gold and silver nanoparticles exhibited characteristic surface plasmon resonance bands at 536 and 392 nm, respectively. Nanoparticles that were approximately spherical in shape were observed in high-resolution transmission electron microscopy and atomic force microscopy images. The hydrodynamic radius was determined to be 54.4 nm for gold nanoparticles and 33.7 nm for silver nanoparticles in aqueous medium. X-ray diffraction analyses confirmed that the synthesized nanoparticles possessed a face-centered cubic structure. FT-IR spectra demonstrated that the carboxylic acid functional groups of gallic acid contributed to the electrostatic binding onto the surface of the nanoparticles. Zeta potential values of −41.98 mV for the gold nanoparticles and −53.47 mV for the silver nanoparticles indicated that the synthesized nanoparticles possess excellent stability. On-the-shelf stability for 4 weeks also confirmed that the synthesized nanoparticles were quite stable without significant changes in their UV–visible spectra. The synthesized nanoparticles exhibited catalytic activity toward the reduction reaction of 4-nitrophenol to 4-aminophenol in the presence of sodium borohydride. The rate constant of the silver nanoparticles was higher than that of the gold nanoparticles in the catalytic reaction. Furthermore, the conversion yield (%) of 4-nitrophenol to 4-aminophenol was determined using reversed-phase high-performance liquid chromatography with UV detection at 254 nm. The silver nanoparticles exhibited an excellent conversion yield (96.7–99.9 %), suggesting that the synthesized silver nanoparticles are highly efficient catalysts for the 4-nitrophenol reduction reaction.

  5. Green synthesis of gold and silver nanoparticles using gallic acid: catalytic activity and conversion yield toward the 4-nitrophenol reduction reaction

    International Nuclear Information System (INIS)

    Park, Jisu; Cha, Song-Hyun; Cho, Seonho; Park, Youmie

    2016-01-01

    In the present report, gallic acid was used as both a reducing and stabilizing agent to synthesize gold and silver nanoparticles. The synthesized gold and silver nanoparticles exhibited characteristic surface plasmon resonance bands at 536 and 392 nm, respectively. Nanoparticles that were approximately spherical in shape were observed in high-resolution transmission electron microscopy and atomic force microscopy images. The hydrodynamic radius was determined to be 54.4 nm for gold nanoparticles and 33.7 nm for silver nanoparticles in aqueous medium. X-ray diffraction analyses confirmed that the synthesized nanoparticles possessed a face-centered cubic structure. FT-IR spectra demonstrated that the carboxylic acid functional groups of gallic acid contributed to the electrostatic binding onto the surface of the nanoparticles. Zeta potential values of −41.98 mV for the gold nanoparticles and −53.47 mV for the silver nanoparticles indicated that the synthesized nanoparticles possess excellent stability. On-the-shelf stability for 4 weeks also confirmed that the synthesized nanoparticles were quite stable without significant changes in their UV–visible spectra. The synthesized nanoparticles exhibited catalytic activity toward the reduction reaction of 4-nitrophenol to 4-aminophenol in the presence of sodium borohydride. The rate constant of the silver nanoparticles was higher than that of the gold nanoparticles in the catalytic reaction. Furthermore, the conversion yield (%) of 4-nitrophenol to 4-aminophenol was determined using reversed-phase high-performance liquid chromatography with UV detection at 254 nm. The silver nanoparticles exhibited an excellent conversion yield (96.7–99.9 %), suggesting that the synthesized silver nanoparticles are highly efficient catalysts for the 4-nitrophenol reduction reaction.

  6. Mutational analysis of amino acid residues involved in catalytic activity of a family 18 chitinase from tulip bulbs.

    Science.gov (United States)

    Suzukawa, Keisuke; Yamagami, Takeshi; Ohnuma, Takayuki; Hirakawa, Hideki; Kuhara, Satoru; Aso, Yoichi; Ishiguro, Masatsune

    2003-02-01

    We expressed chitinase-1 (TBC-1) from tulip bulbs (Tulipa bakeri) in E. coli cells and used site-directed mutagenesis to identify amino acid residues essential for catalytic activity. Mutations at Glu-125 and Trp-251 completely abolished enzyme activity, and activity decreased with mutations at Asp-123 and Trp-172 when glycolchitin was the substrate. Activity changed with the mutations of Trp-251 to one of several amino acids with side-chains of little hydrophobicity, suggesting that hydrophobic interaction of Trp-251 is important for the activity. Molecular dynamics (MD) simulation analysis with hevamine as the model compound showed that the distance between Asp-123 and Glu-125 was extended by mutation of Trp-251. Kinetic studies of Trp-251-mutated chitinases confirmed these various phenomena. The results suggested that Glu-125 and Trp-251 are essential for enzyme activity and that Trp-251 had a direct role in ligand binding.

  7. Catalytic pyrolysis of Laminaria japonica over nanoporous catalysts using Py-GC/MS

    Directory of Open Access Journals (Sweden)

    Jeon Jong-Ki

    2011-01-01

    Full Text Available Abstract The catalytic pyrolysis of Laminaria japonica was carried out over a hierarchical meso-MFI zeolite (Meso-MFI and nanoporous Al-MCM-48 using pyrolysis gas chromatography/mass spectrometry (Py-GC/MS. The effect of the catalyst type on the product distribution and chemical composition of the bio-oil was examined using Py-GC/MS. The Meso-MFI exhibited a higher activity in deoxygenation and aromatization during the catalytic pyrolysis of L. japonica. Meanwhile, the catalytic activity of Al-MCM-48 was lower than that of Meso-MFI due to its weak acidity.

  8. Fundamental study of manganese dioxide for catalytic recombustion of exhaust gas of motor car

    Energy Technology Data Exchange (ETDEWEB)

    Shimoyamada, T

    1974-01-01

    The catalytic activities of five manganese dioxide preparations were tested in a pulse reactor to assess their carbon monoxide-oxidizing capability in relation to the catalytic afterburning of automobile exhaust gases. Catalysts prepared from manganese sulfate showed diminished catalytic activity as a result of sulfate poisoning. Higher oxidation activity was obtained with a catalyst prepared by precipitating the permanganate salt in acidic solution. Two forms of carbon monoxide adsorption were demonstrated, each with a characteristic activation energy and reaction temperature.

  9. Catalytic Decomposition of Hydroxylammonium Nitrate Ionic Liquid: Enhancement of NO Formation

    Science.gov (United States)

    2017-04-24

    decomposition due to reduction in the acidity (i.e., [HNO3]) in the mixture. Reaction 2 has an activation barrier of Ea = 105 kJ/mol and is dominant at low...Propellants. Appl . Catal., B 2006, 62, 217−225. (15) Amariei, D.; Courtheóux, L.; Rossignol, S.; Kappenstein, C. Catalytic and Thermal Decomposition...Monopropellants: Thermal and Catalytic Decom- position Processes. Appl . Catal., B 2012, 127, 121−128. (19) Amrousse, R.; Katsumi, T.; Itouyama, N.; Azuma

  10. Exploration of alternate catalytic mechanisms and optimization strategies for retroaldolase design.

    Science.gov (United States)

    Bjelic, Sinisa; Kipnis, Yakov; Wang, Ling; Pianowski, Zbigniew; Vorobiev, Sergey; Su, Min; Seetharaman, Jayaraman; Xiao, Rong; Kornhaber, Gregory; Hunt, John F; Tong, Liang; Hilvert, Donald; Baker, David

    2014-01-09

    Designed retroaldolases have utilized a nucleophilic lysine to promote carbon-carbon bond cleavage of β-hydroxy-ketones via a covalent Schiff base intermediate. Previous computational designs have incorporated a water molecule to facilitate formation and breakdown of the carbinolamine intermediate to give the Schiff base and to function as a general acid/base. Here we investigate an alternative active-site design in which the catalytic water molecule was replaced by the side chain of a glutamic acid. Five out of seven designs expressed solubly and exhibited catalytic efficiencies similar to previously designed retroaldolases for the conversion of 4-hydroxy-4-(6-methoxy-2-naphthyl)-2-butanone to 6-methoxy-2-naphthaldehyde and acetone. After one round of site-directed saturation mutagenesis, improved variants of the two best designs, RA114 and RA117, exhibited among the highest kcat (>10(-3)s(-1)) and kcat/KM (11-25M(-1)s(-1)) values observed for retroaldolase designs prior to comprehensive directed evolution. In both cases, the >10(5)-fold rate accelerations that were achieved are within 1-3 orders of magnitude of the rate enhancements reported for the best catalysts for related reactions, including catalytic antibodies (kcat/kuncat=10(6) to 10(8)) and an extensively evolved computational design (kcat/kuncat>10(7)). The catalytic sites, revealed by X-ray structures of optimized versions of the two active designs, are in close agreement with the design models except for the catalytic lysine in RA114. We further improved the variants by computational remodeling of the loops and yeast display selection for reactivity of the catalytic lysine with a diketone probe, obtaining an additional order of magnitude enhancement in activity with both approaches. © 2013.

  11. Directed modification of L-LcLDH1, an L-lactate dehydrogenase from Lactobacillus casei, to improve its specific activity and catalytic efficiency towards phenylpyruvic acid.

    Science.gov (United States)

    Li, Jian-Fang; Li, Xue-Qing; Liu, Yan; Yuan, Feng-Jiao; Zhang, Ting; Wu, Min-Chen; Zhang, Ji-Ru

    2018-05-22

    To improve the specific activity and catalytic efficiency of L-LcLDH1, an NADH-dependent allosteric L-lactate dehydrogenase from L. casei, towards phenylpyruvic acid (PPA), its directed modification was conducted based on the semi-rational design. The three variant genes, Lcldh1 Q88R , Lcldh1 I229A and Lcldh1 T235G , were constructed by whole-plasmid PCR as designed theoretically, and expressed in E. coli BL21(DE3), respectively. The purified mutant, L-LcLDH1 Q88R or L-LcLDH1 I229A , displayed the specific activity of 451.5 or 512.4 U/mg towards PPA, by which the asymmetric reduction of PPA afforded L-phenyllactic acid (PLA) with an enantiomeric excess (ee p ) more than 99%. Their catalytic efficiencies (k cat /K m ) without D-fructose-1,6-diphosphate (D-FDP) were 4.8- and 5.2-fold that of L-LcLDH1. Additionally, the k cat /K m values of L-LcLDH1 Q88R and L-LcLDH1 I229A with D-FDP were 168.4- and 8.5-fold higher than those of the same enzymes without D-FDP, respectively. The analysis of catalytic mechanisms by molecular docking (MD) simulation indicated that substituting I229 in L-LcLDH1 with Ala enlarges the space of substrate-binding pocket, and that the replacement of Q88 with Arg makes the inlet of pocket larger than that of L-LcLDH1. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Catalytic acetoxylation of lactic acid to 2-acetoxypropionic acid, en route to acrylic acid

    NARCIS (Netherlands)

    Beerthuis, R.; Granollers, M.; Brown, D.R.; Salavagione, H.J.; Rothenberg, G.; Shiju, N.R.

    2015-01-01

    We present an alternative synthetic route to acrylic acid, starting from the platform chemical lactic acid and using heterogeneous catalysis. To improve selectivity, we designed an indirect dehydration reaction that proceeds via acetoxylation of lactic acid to 2-acetoxypropionic acid. This

  13. Enhanced catalytic properties of mesoporous mordenite for benzylation of benzene with benzyl alcohol

    Energy Technology Data Exchange (ETDEWEB)

    Saxena, Sandeep K.; Viswanadham, Nagabhatla, E-mail: nagabhatla.viswanadham@gmail.com

    2017-01-15

    Graphical abstract: The nano size pores (∼10 nm) created in the microporous mordenite zeolite facilitated enhanced catalytic activity to produce as high as 97 wt.% yield of di-phenyl methane in the benzylation of benzene with benzyl alcohol at solvent-free liquid phase reaction conditions. - Highlights: • Nano pores of ∼10 nm size have been created in microporous mordenite. • Dealumination at optimized conditions resulted in enhanced properties of mordenite. • Hierarchically porous mordenite enhanced bulky catalytic reactions. • As high as 97% selectivity to Di-phenyl methane obtained. • Solvent-free, liquid phase alkylation catalyst with stable activity for reusability. - Abstract: Zeolite mordenite has been treated with nitric acid at different severities so as to facilitate the framework dealumination and optimization of the textural properties such as acidity and porosity. The samples obtained have been characterized by X-ray diffraction, FTIR, SEM, TEM, surface area, porosity by N{sub 2} adsorption and ammonia TPD. The resultant samples have been evaluated towards the bulky alkylation reaction of benzylation of benzene with benzyl alcohol. The studies indicated the improvement in the textural properties such as surface area, pore volume and acidity of the samples after the acid treatment. While, the phenomenon of enhancement in properties was exhibited by all the acid treated mordenite samples, the highest improvement in properties was observed at a particular condition of acid treatment (SM-2 sample). This particular sample also exhibited highest acidity and the presence of ∼10 nm size pores that resulted in the effective catalytic activity towards the bulky alkylation reaction of benzene with benzyl alcohol to produce high yields of di-phenyl methane.

  14. Biodiesel by catalytic reactive distillation powered by metal oxides

    NARCIS (Netherlands)

    Kiss, A.A.; Dimian, A.C.; Rothenberg, G.

    2008-01-01

    The properties and use of biodiesel as a renewable fuel as well as the problems associated with its current production processes are outlined. A novel sustainable esterification process based on catalytic reactive distillation is proposed. The pros and cons of manufacturing biodiesel via fatty acid

  15. The platinum catalysed decomposition of hydrazine in acidic media

    International Nuclear Information System (INIS)

    Ananiev, A.V.; Tananaev, I.G.; Brossard, Ph.; Broudic, J.C.

    2000-01-01

    Kinetic study of the hydrazine decomposition in the solutions of HClO 4 , H 2 SO 4 and HNO 3 in the presence of Pt/SiO 2 catalyst has been undertaken. It was shown that the kinetics of the hydrazine catalytic decomposition in HClO 4 and H 2 SO 4 are identical. The process is determined by the heterogeneous catalytic auto-decomposition of N 2 H 4 on the catalyst's surface. The platinum catalysed hydrazine decomposition in the nitric acid solutions is a complex process, including heterogeneous catalytic auto-decomposition of N 2 H 4 , reaction of hydrazine with catalytically generated nitrous acid and the catalytic oxidation of hydrazine by nitric acid. The kinetic parameters of these reactions have been determined. The contribution of each reaction in the total process is determined by the liquid phase composition and by the temperature. (authors)

  16. Identification of olivetolic acid cyclase from Cannabis sativa reveals a unique catalytic route to plant polyketides.

    Science.gov (United States)

    Gagne, Steve J; Stout, Jake M; Liu, Enwu; Boubakir, Zakia; Clark, Shawn M; Page, Jonathan E

    2012-07-31

    Δ(9)-Tetrahydrocannabinol (THC) and other cannabinoids are responsible for the psychoactive and medicinal properties of Cannabis sativa L. (marijuana). The first intermediate in the cannabinoid biosynthetic pathway is proposed to be olivetolic acid (OA), an alkylresorcinolic acid that forms the polyketide nucleus of the cannabinoids. OA has been postulated to be synthesized by a type III polyketide synthase (PKS) enzyme, but so far type III PKSs from cannabis have been shown to produce catalytic byproducts instead of OA. We analyzed the transcriptome of glandular trichomes from female cannabis flowers, which are the primary site of cannabinoid biosynthesis, and searched for polyketide cyclase-like enzymes that could assist in OA cyclization. Here, we show that a type III PKS (tetraketide synthase) from cannabis trichomes requires the presence of a polyketide cyclase enzyme, olivetolic acid cyclase (OAC), which catalyzes a C2-C7 intramolecular aldol condensation with carboxylate retention to form OA. OAC is a dimeric α+β barrel (DABB) protein that is structurally similar to polyketide cyclases from Streptomyces species. OAC transcript is present at high levels in glandular trichomes, an expression profile that parallels other cannabinoid pathway enzymes. Our identification of OAC both clarifies the cannabinoid pathway and demonstrates unexpected evolutionary parallels between polyketide biosynthesis in plants and bacteria. In addition, the widespread occurrence of DABB proteins in plants suggests that polyketide cyclases may play an overlooked role in generating plant chemical diversity.

  17. Catalytic copyrolysis of cork oak and bio-oil distillation residue

    Science.gov (United States)

    Lee, Yejin; Oh, Daejun; Kim, Young-Min; Jae, Jungho; Jung, Sang-Chul; Jeon, Jong-Ki; Kim, Sang Chai; Park, Young-Kwon

    2018-01-01

    The atmospheric distillation residue (ADR) of cork oak (CO) pyrolysis oil was used as the co-feeding material for the catalytic pyrolysis of CO over HZSM-5 catalysts to improve the formation of aromatic hydrocarbons. Although the non-catalytic copyrolysis of CO and ADR did not improve the formation of aromatic hydrocarbons, the catalytic copyrolysis of CO and ADR promoted the synergistic formation of aromatic hydrocarbons. HZSM-5(30), having a lower SiO2/Al2O3(30), showed better performance for the formation of aromatic hydrocarbons than HZSM-5(80) because of its higher acidity. The catalytic copyrolysis of CO and ADR also decreased the formation of coke. The largest quantity of aromatic hydrocarbons was obtained from the catalytic copyrolysis of CO and ADR over HZSM-5 (30) at 600 °C, whereas the lowest coke yield was achieved at 700 °C. When the catalyst to sample ratio was increased from 2:1 to 5:1, the synergistic formation of aromatic hydrocarbons was limited, resulting in a lower experimental yield of aromatic hydrocarbons than the theoretical yield. A lower coke yield was also achieved at a high catalyst to sample ratio (5:1).

  18. Modeling the active site of [FeFe]-hydrogenase: Electro-catalytic ...

    Indian Academy of Sciences (India)

    The mechanistic aspects of relevant electro–catalytic proton reductions have been discussed in detail. ... in the presence of a weak acid.4 This prompted us to investigate whether .... shifted to lower magnetic field strengths than those in parent ...

  19. Sustainable production of acetaldehyde from lactic acid over the carbon catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Congming; Peng, Jiansheng; Li, Xinli; Zhai, Zhanjie; Gao, Hejun; Liao, Yunwen [China West Normal University, Nanchong (China); Bai, Wei; Jiang, Ning [Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu (China)

    2016-01-15

    The synthesis of acetaldehyde from lactic acid over the carbon material catalysts was investigated. The carbon materials were characterized by scanning electron microscopy for morphologic features, by X-ray diffraction for crystal phases, by Fourier transform infrared spectroscopy for functional group structures, by N2 sorption for specific surface area and by ammonia temperature-programed desorption for acidity, respectively. Among the tested carbon catalysts, mesoporous carbon displayed the most excellent catalytic performance. By acidity analysis, the medium acidity is a crucial factor for catalytic performance: more medium acidity favored the formation of acetaldehyde from lactic acid. To verify, we compared the catalytic performance of fresh activated carbon with that of the activated carbon treated by nitric acid. Similarly, the modified activated carbon also displayed better activity due to a drastic increase of medium acidity amount. However, in contrast to fresh carbon nanotube, the treated sample displayed worse activity due to decrease of medium acidity amount. The effect of reaction temperature and time on stream on the catalytic performance was also investigated. Under the optimal reaction conditions, 100% lactic acid conversion and 91.6% acetaldehyde selectivity were achieved over the mesoporous carbon catalyst.

  20. Degradation of paracetamol by catalytic wet air oxidation and sequential adsorption – Catalytic wet air oxidation on activated carbons

    International Nuclear Information System (INIS)

    Quesada-Peñate, I.; Julcour-Lebigue, C.; Jáuregui-Haza, U.J.; Wilhelm, A.M.; Delmas, H.

    2012-01-01

    Highlights: ► Three activated carbons (AC) compared as adsorbents and oxidation catalysts. ► Similar evolution for catalytic and adsorptive properties of AC over reuses. ► Acidic and mesoporous AC to be preferred, despite lower initial efficiency. ► Oxidative degradation of paracetamol improves biodegradability. ► Convenient hybrid adsorption–regenerative oxidation process for continuous treatment. - Abstract: The concern about the fate of pharmaceutical products has raised owing to the increasing contamination of rivers, lakes and groundwater. The aim of this paper is to evaluate two different processes for paracetamol removal. The catalytic wet air oxidation (CWAO) of paracetamol on activated carbon was investigated both as a water treatment technique using an autoclave reactor and as a regenerative treatment of the carbon after adsorption in a sequential fixed bed process. Three activated carbons (ACs) from different source materials were used as catalysts: two microporous basic ACs (S23 and C1) and a meso- and micro-porous acidic one (L27). During the first CWAO experiment the adsorption capacity and catalytic performance of fresh S23 and C1 were higher than those of fresh L27 despite its higher surface area. This situation changed after AC reuse, as finally L27 gave the best results after five CWAO cycles. Respirometry tests with activated sludge revealed that in the studied conditions the use of CWAO enhanced the aerobic biodegradability of the effluent. In the ADOX process L27 also showed better oxidation performances and regeneration efficiency. This different ageing was examined through AC physico-chemical properties.

  1. Networks of high mutual information define the structural proximity of catalytic sites: implications for catalytic residue identification.

    Directory of Open Access Journals (Sweden)

    Cristina Marino Buslje

    Full Text Available Identification of catalytic residues (CR is essential for the characterization of enzyme function. CR are, in general, conserved and located in the functional site of a protein in order to attain their function. However, many non-catalytic residues are highly conserved and not all CR are conserved throughout a given protein family making identification of CR a challenging task. Here, we put forward the hypothesis that CR carry a particular signature defined by networks of close proximity residues with high mutual information (MI, and that this signature can be applied to distinguish functional from other non-functional conserved residues. Using a data set of 434 Pfam families included in the catalytic site atlas (CSA database, we tested this hypothesis and demonstrated that MI can complement amino acid conservation scores to detect CR. The Kullback-Leibler (KL conservation measurement was shown to significantly outperform both the Shannon entropy and maximal frequency measurements. Residues in the proximity of catalytic sites were shown to be rich in shared MI. A structural proximity MI average score (termed pMI was demonstrated to be a strong predictor for CR, thus confirming the proposed hypothesis. A structural proximity conservation average score (termed pC was also calculated and demonstrated to carry distinct information from pMI. A catalytic likeliness score (Cls, combining the KL, pC and pMI measures, was shown to lead to significantly improved prediction accuracy. At a specificity of 0.90, the Cls method was found to have a sensitivity of 0.816. In summary, we demonstrate that networks of residues with high MI provide a distinct signature on CR and propose that such a signature should be present in other classes of functional residues where the requirement to maintain a particular function places limitations on the diversification of the structural environment along the course of evolution.

  2. Networks of high mutual information define the structural proximity of catalytic sites: implications for catalytic residue identification.

    Science.gov (United States)

    Marino Buslje, Cristina; Teppa, Elin; Di Doménico, Tomas; Delfino, José María; Nielsen, Morten

    2010-11-04

    Identification of catalytic residues (CR) is essential for the characterization of enzyme function. CR are, in general, conserved and located in the functional site of a protein in order to attain their function. However, many non-catalytic residues are highly conserved and not all CR are conserved throughout a given protein family making identification of CR a challenging task. Here, we put forward the hypothesis that CR carry a particular signature defined by networks of close proximity residues with high mutual information (MI), and that this signature can be applied to distinguish functional from other non-functional conserved residues. Using a data set of 434 Pfam families included in the catalytic site atlas (CSA) database, we tested this hypothesis and demonstrated that MI can complement amino acid conservation scores to detect CR. The Kullback-Leibler (KL) conservation measurement was shown to significantly outperform both the Shannon entropy and maximal frequency measurements. Residues in the proximity of catalytic sites were shown to be rich in shared MI. A structural proximity MI average score (termed pMI) was demonstrated to be a strong predictor for CR, thus confirming the proposed hypothesis. A structural proximity conservation average score (termed pC) was also calculated and demonstrated to carry distinct information from pMI. A catalytic likeliness score (Cls), combining the KL, pC and pMI measures, was shown to lead to significantly improved prediction accuracy. At a specificity of 0.90, the Cls method was found to have a sensitivity of 0.816. In summary, we demonstrate that networks of residues with high MI provide a distinct signature on CR and propose that such a signature should be present in other classes of functional residues where the requirement to maintain a particular function places limitations on the diversification of the structural environment along the course of evolution.

  3. Synthesis and catalytic performance of ZSM-5/MCM-41 composite molecular sieve from palygorskite

    Science.gov (United States)

    Jiang, Jinlong; Wu, Mei; Yang, Yong; Duanmu, Chuansong; Chen, Jing; Gu, Xu

    2017-10-01

    ZSM-5/MCM-41 composite molecular sieve has been hydrothermally synthesized through a two-step crystallization process using palygorskite (PAL) as silicon and aluminum source. The products were characterized by various means and their catalytic properties for acetalization of cyclohexanone and esterification of acetic acid and n-butanol were also investigated. In the first step ZSM-5 zeolite could be formed from the acid-treated PAL after hydrothermal treatment using tetrapropylammonium bromide as template. XRD patterns, N2 adsorption and desorption data, and TEM images show that the composite obtained in the secondary step had a well-ordered mesoporous MCM-41 phase and a microporous ZSM-5 zeolite phase. Compared with ZSM-5, ZSM-5/MCM-41 composite possessed more total acid amount, weak acid sites and large pore structure due to the formation of MCM-41 and exhibited higher catalytic activity for the acetalization and esterification reaction.

  4. Preparation of Pd-Diimine@SBA-15 and Its Catalytic Performance for the Suzuki Coupling Reaction

    Directory of Open Access Journals (Sweden)

    Jiahuan Yu

    2016-11-01

    Full Text Available A highly efficient and stable Pd-diimine@SBA-15 catalyst was successfully prepared by immobilizing Pd onto diimine-functionalized mesoporous silica SBA-15. With the help of diimine functional groups grafted onto the SBA-15, Pd could be anchored on a support with high dispersion. Pd-diimine@SBA-15 catalyst exhibited excellent catalytic performance for the Suzuki coupling reaction of electronically diverse aryl halides and phenylboronic acid under mild conditions with an ultralow amount of Pd (0.05 mol % Pd. When the catalyst amount was increased, it could catalyze the coupling reaction of chlorinated aromatics with phenylboronic acid. Compared with the catalytic performances of Pd/SBA-15 and Pd-diimine@SiO2 catalysts, the Pd-diimine@SBA-15 catalyst exhibited higher hydrothermal stability and could be repeatedly used four times without a significant decrease of its catalytic activity.

  5. Degradation of paracetamol by catalytic wet air oxidation and sequential adsorption - Catalytic wet air oxidation on activated carbons

    Energy Technology Data Exchange (ETDEWEB)

    Quesada-Penate, I. [Universite de Toulouse, INPT, UPS, Laboratoire de Genie Chimique, 4, Allee Emile Monso, F-31432 Toulouse (France); CNRS, Laboratoire de Genie Chimique, F-31432 Toulouse (France); Julcour-Lebigue, C., E-mail: carine.julcour@ensiacet.fr [Universite de Toulouse, INPT, UPS, Laboratoire de Genie Chimique, 4, Allee Emile Monso, F-31432 Toulouse (France); CNRS, Laboratoire de Genie Chimique, F-31432 Toulouse (France); Jauregui-Haza, U. J. [Instituto Superior de Tecnologias y Ciencias Aplicadas, Ave. Salvador Allende y Luaces, Habana (Cuba); Wilhelm, A. M.; Delmas, H. [Universite de Toulouse, INPT, UPS, Laboratoire de Genie Chimique, 4, Allee Emile Monso, F-31432 Toulouse (France); CNRS, Laboratoire de Genie Chimique, F-31432 Toulouse (France)

    2012-06-30

    Highlights: Black-Right-Pointing-Pointer Three activated carbons (AC) compared as adsorbents and oxidation catalysts. Black-Right-Pointing-Pointer Similar evolution for catalytic and adsorptive properties of AC over reuses. Black-Right-Pointing-Pointer Acidic and mesoporous AC to be preferred, despite lower initial efficiency. Black-Right-Pointing-Pointer Oxidative degradation of paracetamol improves biodegradability. Black-Right-Pointing-Pointer Convenient hybrid adsorption-regenerative oxidation process for continuous treatment. - Abstract: The concern about the fate of pharmaceutical products has raised owing to the increasing contamination of rivers, lakes and groundwater. The aim of this paper is to evaluate two different processes for paracetamol removal. The catalytic wet air oxidation (CWAO) of paracetamol on activated carbon was investigated both as a water treatment technique using an autoclave reactor and as a regenerative treatment of the carbon after adsorption in a sequential fixed bed process. Three activated carbons (ACs) from different source materials were used as catalysts: two microporous basic ACs (S23 and C1) and a meso- and micro-porous acidic one (L27). During the first CWAO experiment the adsorption capacity and catalytic performance of fresh S23 and C1 were higher than those of fresh L27 despite its higher surface area. This situation changed after AC reuse, as finally L27 gave the best results after five CWAO cycles. Respirometry tests with activated sludge revealed that in the studied conditions the use of CWAO enhanced the aerobic biodegradability of the effluent. In the ADOX process L27 also showed better oxidation performances and regeneration efficiency. This different ageing was examined through AC physico-chemical properties.

  6. Cycloaddition of CO 2 to challenging N -tosyl aziridines using a halogen-free niobium complex: Catalytic activity and mechanistic insights

    KAUST Repository

    Arayachukiat, Sunatda

    2017-11-06

    An efficient and facile approach to the regioselective synthesis of N-tosyloxazolidinones from the corresponding N-tosylaziridines and CO2 was developed using dual catalytic systems involving an early transition metal coordination compound as a Lewis acid and a nucleophilic cocatalyst. Among the screened Lewis acids, halogen-free niobium pentaethoxide (Nb(OEt)5) displayed the best catalytic activity when used in the presence of tetrabutylammonium iodide (TBAI). Systematic DFT calculations, supported by catalytic experiments, demonstrate that CO2 insertion is the rate determining step for this process and it is highly dependent on the steric hindrance at the niobium center.

  7. Cycloaddition of CO 2 to challenging N -tosyl aziridines using a halogen-free niobium complex: Catalytic activity and mechanistic insights

    KAUST Repository

    Arayachukiat, Sunatda; Yingcharoen, Prapussorn; Vummaleti, Sai V. C.; Cavallo, Luigi; Poater, Albert; D’ Elia, Valerio

    2017-01-01

    An efficient and facile approach to the regioselective synthesis of N-tosyloxazolidinones from the corresponding N-tosylaziridines and CO2 was developed using dual catalytic systems involving an early transition metal coordination compound as a Lewis acid and a nucleophilic cocatalyst. Among the screened Lewis acids, halogen-free niobium pentaethoxide (Nb(OEt)5) displayed the best catalytic activity when used in the presence of tetrabutylammonium iodide (TBAI). Systematic DFT calculations, supported by catalytic experiments, demonstrate that CO2 insertion is the rate determining step for this process and it is highly dependent on the steric hindrance at the niobium center.

  8. Catalytic copyrolysis of particle board and polypropylene over Al-MCM-48

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hannah; Choi, Suek Ju [School of Environmental Engineering, University of Seoul, Seoul 02504 (Korea, Republic of); Kim, Ji Man [Department of Chemistry, Sungkyunkwan University, Suwon 16419 (Korea, Republic of); Jeon, Jong-Ki [Department of Chemical Engineering, Kongju National University, Cheonan 31080 (Korea, Republic of); Park, Sung Hoon; Jung, Sang-Chul [Department of Environmental Engineering, Sunchon National University, Suncheon 57922 (Korea, Republic of); Kim, Sang Chai [Department of Environmental Education, Mokpo National University, Muan 58554 (Korea, Republic of); Park, Young-Kwon, E-mail: catalica@uos.ac.kr [School of Environmental Engineering, University of Seoul, Seoul 02504 (Korea, Republic of)

    2016-10-15

    Highlights: • Al-MCM-48 was used for catalytic copyrolysis of particle board and polypropylene. • Catalytic produced mainly hydrocarbons. • The hydrocarbons produced were mainly in the diesel range. - Abstract: Particle board and polypropylene (PP) at a mixing ratio of 1:1 were copyrolyzed over two Al-MCM-48 catalysts with Si/Al ratios of 20 and 80. The catalyst characteristics were examined by measuring the Brunauer-Emmett-Teller surface area, temperature programmed desorption of ammonia, and X-ray diffraction. The main pyrolysis products of particle board were oxygenates, acids, and phenolics, whereas a large quantity of hydrocarbons within the diesel fuel range was produced from copyrolysis with polypropylene. The catalytic copyrolysis of particle board and PP over the Al-MCM-48 catalysts produced bio-oil with a much larger hydrocarbon content than that from the catalytic pyrolysis of particle board only. The hydrocarbons produced were mainly in the diesel range, highlighting the potential for the production of high-quality fuel.

  9. Application of novel catalytic-ceramic-filler in a coupled system for long-chain dicarboxylic acids manufacturing wastewater treatment.

    Science.gov (United States)

    Wu, Suqing; Qi, Yuanfeng; Fan, Chunzhen; He, Shengbing; Dai, Bibo; Huang, Jungchen; Zhou, Weili; Gao, Lei

    2016-02-01

    To gain systematic technology for long-chain dicarboxylic acids (LDCA) manufacturing wastewater treatment, catalytic micro-electrolysis (CME) coupling with adsorption-biodegradation sludge (AB) process was studied. Firstly, novel catalytic-ceramic-filler was prepared from scrap iron, clay and copper sulfate solution and packed in the CME reactor. To remove residual n-alkane and LDCA, the CME reactor was utilized for LDCA wastewater pretreatment. The results revealed that about 94% of n-alkane, 98% of LDCA and 84% of chemical oxygen demand (COD) were removed by the aerated CME reactor at the optimum hydraulic retention time (HRT) of 3.0 h. In this process, catalysis from Cu and montmorillonites played an important role in improving the contaminants removal. Secondly, to remove residual COD in the wastewater, AB process was designed for the secondary biological treatment, about 90% of the influent COD could be removed by biosorption, bio-flocculation and biodegradation effects. Finally, the effluent COD (about 150 mg L(-1)) discharged from the coupled CME-AB system met the requirement of the national discharged standard (COD ≤ 300 mg L(-1)). All of these results suggest that the coupled CME-AB system is a promising technology due to its high-efficient performance, and has the potential to be applied for the real LDCA wastewater treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Tuning the acidity of niobia: Characterization and catalytic activity of Nb2O5–MeO2 (Me = Ti, Zr, Ce) mesoporous mixed oxides

    International Nuclear Information System (INIS)

    Stošić, Dušan; Bennici, Simona; Pavlović, Vladimir; Rakić, Vesna; Auroux, Aline

    2014-01-01

    Mesoporous Nb 2 O 5 –MeO 2 (Me = Ti, Zr, Ce) mixed oxides were successfully prepared using evaporation-induced self-assembly (EISA) method. The structural and textural properties of these materials have been fully characterized using appropriate techniques (low-temperature adsorption–desorption of nitrogen, thermogravimetric analysis, X-ray diffraction analysis (XRD) transmission electron microscopy (TEM), scanning electron microscopy (SEM) and Raman spectroscopy). Acid–base properties were estimated by adsorption microcalorimetry of NH 3 and SO 2 molecules in order to determine the population, strength and strength distribution of acidic or basic sites. Formation of mesoporous structure was confirmed by the results of XRD, TEM and BET techniques. Results of adsorption microcalorimetry technique showed that the type of transition metal oxide added to niobia has a decisive role for acidic-basic character of investigated mixed oxides. Among the investigated mixed oxide formulations only Nb 2 O 5 –CeO 2 was amphoteric, while the other samples showed prominent acidic character. All the investigated materials are catalytically active in fructose dehydration; conversion of fructose and selectivity to 5-hydroxymethylfurfural (5-HMF) and levulinic acid (LA) are proved to be dependant on the number of acidic sites on the surface of catalysts. Furthermore, presence of the basic sites on the surface of the catalyst decreases the activity in the fructose dehydration reaction, as in the case of Nb 2 O 5 –CeO 2 sample. - Highlights: • Mesoporous Nb 2 O 5 –MeO 2 mixed oxides were successfully prepared by EISA method. • Acidic–basic properties depend on the nature of the oxide that was mixed with niobia. • Catalytic activity was tested in fructose dehydration in aqueous phase. • Selectivity and conversion in reaction are correlated to the number of acid sites

  11. Statistical evaluation of mature landfill leachate treatment by homogeneous catalytic ozonation

    Directory of Open Access Journals (Sweden)

    A. L. C. Peixoto

    2010-12-01

    Full Text Available This study presents the results of a mature landfill leachate treated by a homogeneous catalytic ozonation process with ions Fe2+ and Fe3+ at acidic pH. Quality assessments were performed using Taguchi's method (L8 design. Strong synergism was observed statistically between molecular ozone and ferric ions, pointing to their catalytic effect on •OH generation. The achievement of better organic matter depollution rates requires an ozone flow of 5 L h-1 (590 mg h-1 O3 and a ferric ion concentration of 5 mg L-1.

  12. Enantioselective catalytic fluorinative aza-semipinacol rearrangement.

    Science.gov (United States)

    Romanov-Michailidis, Fedor; Pupier, Marion; Besnard, Céline; Bürgi, Thomas; Alexakis, Alexandre

    2014-10-03

    An efficient and highly stereoselective fluorinative aza-semipinacol rearrangement is described. The catalytic reaction requires use of Selectfluor in combination with the chiral, enantiopure phosphate anion derived from acid L3. Under optimized conditions, cyclopropylamines A were transformed into β-fluoro cyclobutylimines B in good yields and high levels of diastereo- and enantiocontrol. Furthermore, the optically active cyclobutylimines were reduced diastereoselectively with L-Selectride in the corresponding fluorinated amines C, compounds of significant interest in the pharmacological industry.

  13. The Comparison of Hydrochloric Acid and Phosphoric Acid Treatments in the Preparation of Montmorillonite Catalysts for RNA Synthesis

    Science.gov (United States)

    Aldersley, Michael Frank; Joshi, Prakash C.; Huang, Yixing

    2017-09-01

    The treatment of clay minerals with a preliminary acid wash and titration to pH 7 has proven to generate catalysts for the most interesting of oligomerization reactions in which activated RNA-nucleotides generate oligomers up to 40-mers. Significantly, not all clay minerals become catalytic following this treatment and none are catalytic in the absence of such treatment. The washing procedure has been modified and explored further using phosphoric acid and the outcomes are compared to those obtained when clay samples are prepared following a hydrochloric acid wash.

  14. The influence of calcination temperatures on the acid-based properties and catalytic activity for the 1,3-butadiene synthesis from ethanol/acetaldehyde mixture

    Science.gov (United States)

    Gao, Meixiang; Jiang, Haoxi; Zhang, Minhua

    2018-05-01

    The influences of the calcination temperature on the catalysts' acid-based properties and catalytic activity for the 1,3-butadiene synthesis from ethanol are investigated. The results show that the 2 wt% ZrO2/Nano-SiO2 calcined at 773 K shows the best performance with the selectivity of 93.18% and conversion of 58.52% when reacted at 593 K, a WHSV of 1.8 h-1 and 3.5:1 volume ratio ethanol-to-acetaldehyde in an atmospheric fixed-bed reactor. Prepared catalysts were characterized by N2 adsorption-desorption, XRD, temperature-programmed desorption of NH3 and CO2, FTIR spectroscopy of adsorbed pyridine and CO2. Based on the relationship between the catalyst activity and its properties, the fact can be presumed that the formation and strength of Zrsbnd Osbnd Si bond determines the acid-based properties of the catalyst. In addition, moderate-intensity weak acid-basic sites are more suitable for ethanol conversion to BD with the amount of acid and basic sites as close as possible.

  15. Mechanisms of mono- and poly-ubiquitination: Ubiquitination specificity depends on compatibility between the E2 catalytic core and amino acid residues proximal to the lysine

    Directory of Open Access Journals (Sweden)

    Sadowski Martin

    2010-08-01

    Full Text Available Abstract Ubiquitination involves the attachment of ubiquitin to lysine residues on substrate proteins or itself, which can result in protein monoubiquitination or polyubiquitination. Ubiquitin attachment to different lysine residues can generate diverse substrate-ubiquitin structures, targeting proteins to different fates. The mechanisms of lysine selection are not well understood. Ubiquitination by the largest group of E3 ligases, the RING-family E3 s, is catalyzed through co-operation between the non-catalytic ubiquitin-ligase (E3 and the ubiquitin-conjugating enzyme (E2, where the RING E3 binds the substrate and the E2 catalyzes ubiquitin transfer. Previous studies suggest that ubiquitination sites are selected by E3-mediated positioning of the lysine toward the E2 active site. Ultimately, at a catalytic level, ubiquitination of lysine residues within the substrate or ubiquitin occurs by nucleophilic attack of the lysine residue on the thioester bond linking the E2 catalytic cysteine to ubiquitin. One of the best studied RING E3/E2 complexes is the Skp1/Cul1/F box protein complex, SCFCdc4, and its cognate E2, Cdc34, which target the CDK inhibitor Sic1 for K48-linked polyubiquitination, leading to its proteasomal degradation. Our recent studies of this model system demonstrated that residues surrounding Sic1 lysines or lysine 48 in ubiquitin are critical for ubiquitination. This sequence-dependence is linked to evolutionarily conserved key residues in the catalytic region of Cdc34 and can determine if Sic1 is mono- or poly-ubiquitinated. Our studies indicate that amino acid determinants in the Cdc34 catalytic region and their compatibility to those surrounding acceptor lysine residues play important roles in lysine selection. This may represent a general mechanism in directing the mode of ubiquitination in E2 s.

  16. Citric acid induced promoted dispersion of Pt on the support and enhanced catalytic activities for a Pt-based catalyst

    Science.gov (United States)

    Cheng, Tianqiong; Wang, Jianli; Wang, Suning; Cui, Yajuan; Zhang, Hailong; Yan, Shuang; Yuan, Shandong; Chen, Yaoqiang

    2017-12-01

    Citric acid (CA), as the chelating agent, was introduced to obtain the enhanced Pt dispersion and catalytic activities for the Pt-based catalysts supported on oxygen-storage material. The role and content of CA were investigated systematically. It was found that the citric acid-assisted catalysts showed better Pt dispersion and smaller nanoparticle size of Pt. Thus, the catalyst had lower reduction temperature, preferable thermostability and possessed more oxidation state of Pt species under the oxidation atmosphere. The citric acid-induced fresh catalysts were excellent to convert CO and the corresponding aged ones exhibited higher activities for the elimination of all the target pollutants. Among the aged catalysts, P2-a (the mole ratio of Pt/CA is 2:1) presented the best performance. Particularly, compared with the reference sample (Pc-a), the light-off temperatures (T50) of NO, HC and CO for P2-a decreased by 39 °C, 42 °C and 72 °C, respectively, and the full-conversion temperatures (T90) of NO, HC and CO for P2-a decreased by 44 °C, 44 °C and 48 °C, respectively. Therefore, this work provides a facile and valid method to manufacture advanced catalysts for purification of the vehicle exhaust in the future.

  17. Indium triflate in 1-isobutyl-3-methylimidazolium dihydrogenphosphate: an efficient and green catalytic system for Friedel-Crafts acylation

    DEFF Research Database (Denmark)

    Tran, Phuong Hoang; Hoang, Huy Manh; Chau, Duy-Khiem Nguyen

    2015-01-01

    Indium triflate in the ionic liquid, 1-isobutyl-3-methylimidazolium dihydrogen phosphate ([i-BMIM]H2PO4), was found to show enhanced catalytic activity in the Friedel–Crafts acylation of various aromatic compounds with acid anhydrides. The catalytic system was easily recovered and reused without...

  18. Preparation, Characterization, and Catalytic Activity of MoCo/USY Catalyst on Hydrodeoxygenation Reaction of Anisole

    Science.gov (United States)

    Nugrahaningtyas, K. D.; Suharbiansah, R. S. R.; Rahmawati, F.

    2018-03-01

    This research aims to prepare, characterize, and study the catalytic activity of Molybdenum (Mo) and Cobalt (Co) metal with supporting material Ultra Stable Y-Zeolite (USY), to produce catalysts with activity in hydrotreatment reaction and in order to eliminate impurities compounds that containing unwanted groups heteroatoms. The bimetallic catalysts MoCo/USY were prepared by wet impregnation method with weight variation of Co metal 0%, 2%, 4%, 6%, 8%, and Mo metal 8% (w/w), respectively. Activation method of the catalyst included calcination, oxidation, reduction and the crystallinity was characterized using X-ray diffraction (XRD), the acidity of the catalyst was analyzed using Fourier Transform Infrared Spectroscopy (FT-IR) and gravimetry method, minerals present in the catalyst was analyzed using X-Ray Fluorescence (XRF), and surface of the catalyst was analyzed using Surface Area Analyzer (SAA). Catalytic activity test (benzene yield product) of MoCo/USY on hydrodeoxigenation reaction of anisole aimed to determine the effect of Mo-Co/USY for catalytic activity in the reaction hydrodeoxigenation (HDO) anisole. Based on characterization and test of catalytic activity, it is known that catalytic of MoCo/USY 2% (catalyst B) shows best activities with acidity of 10.209 mmol/g, specific area of catalyst of 426.295 m2/g, pore average of 14.135 Å, total pore volume 0.318 cc/g, and total yield of HDO products 6.06%.

  19. Transition state analogue imprinted polymers as artificial amidases for amino acid p-nitroanilides: morphological effects of polymer network on catalytic efficiency.

    Science.gov (United States)

    Mathew, Divya; Thomas, Benny; Devaky, K S

    2017-11-13

    The morphology of the polymer network - porous/less porous - plays predominant role in the amidase activities of the polymer catalysts in the hydrolytic reactions of amino acid p-nitroanilides. Polymers with the imprints of stable phosphonate analogue of the intermediate of hydrolytic reactions were synthesized as enzyme mimics. Molecular imprinting was carried out in thermodynamically stable porogen dimethyl sulphoxide and unstable porogen chloroform, to investigate the morphological effects of polymers on catalytic amidolysis. It was found that the medium of polymerization has vital influence in the amidase activities of the enzyme mimics. The morphological studies of the polymer catalysts were carried out by scanning electron microscopy and Bruner-Emmett-Teller analysis. The morphology of the polymer catalysts and their amidase activities are found to be dependent on the composition of reaction medium. The polymer catalyst prepared in dimethyl sulphoxide is observed to be efficient in 1:9 acetonitrile (ACN)-Tris HCl buffer and that prepared in chloroform is noticed to be stereo specifically and shape-selectively effective in 9:1 ACN-Tris HCl buffer. The solvent memory effect in catalytic amidolysis was investigated using the polymer prepared in acetonitrile.

  20. New Frontiers in the Catalytic Synthesis of Levulinic Acid: From Sugars to Raw and Waste Biomass as Starting Feedstock

    Directory of Open Access Journals (Sweden)

    Claudia Antonetti

    2016-12-01

    Full Text Available Levulinic acid (LA is one of the top bio-based platform molecules that can be converted into many valuable chemicals. It can be produced by acid catalysis from renewable resources, such as sugars, lignocellulosic biomass and waste materials, attractive candidates due to their abundance and environmentally benign nature. The LA transition from niche product to mass-produced chemical, however, requires its production from sustainable biomass feedstocks at low costs, adopting environment-friendly techniques. This review is an up-to-date discussion of the literature on the several catalytic systems that have been developed to produce LA from the different substrates. Special attention has been paid to the recent advancements on starting materials, moving from simple sugars to raw and waste biomasses. This aspect is of paramount importance from a sustainability point of view, transforming wastes needing to be disposed into starting materials for value-added products. This review also discusses the strategies to exploit the solid residues always obtained in the LA production processes, in order to attain a circular economy approach.

  1. A QM/MM study of the catalytic mechanism of nicotinamidase.

    Science.gov (United States)

    Sheng, Xiang; Liu, Yongjun

    2014-02-28

    Nicotinamidase (Pnc1) is a member of Zn-dependent amidohydrolases that hydrolyzes nicotinamide (NAM) to nicotinic acid (NA), which is a key step in the salvage pathway of NAD(+) biosynthesis. In this paper, the catalytic mechanism of Pnc1 has been investigated by using a combined quantum-mechanical/molecular-mechanical (QM/MM) approach based on the recently obtained crystal structure of Pnc1. The reaction pathway, the detail of each elementary step, the energetics of the whole catalytic cycle, and the roles of key residues and Zn-binding site are illuminated. Our calculation results indicate that the catalytic water molecule comes from the bulk solvent, which is then deprotonated by residue D8. D8 functions as a proton transfer station between C167 and NAM, while the activated C167 serves as the nucleophile. The residue K122 only plays a role in stabilizing intermediates and transition states. The oxyanion hole formed by the amide backbone nitrogen atoms of A163 and C167 has the function to stabilize the hydroxyl anion of nicotinamide. The Zn-binding site rather than a single Zn(2+) ion acts as a Lewis acid to influence the reaction. Two elementary steps, the activation of C167 in the deamination process and the decomposition of catalytic water in the hydrolysis process, correspond to the large energy barriers of 25.7 and 28.1 kcal mol(-1), respectively, meaning that both of them contribute a lot to the overall reaction barrier. Our results may provide useful information for the design of novel and efficient Pnc1 inhibitors and related biocatalytic applications.

  2. The Comparison of Hydrochloric Acid and Phosphoric Acid Treatments in the Preparation of Montmorillonite Catalysts for RNA Synthesis.

    Science.gov (United States)

    Aldersley, Michael Frank; Joshi, Prakash C; Huang, Yixing

    2017-09-01

    The treatment of clay minerals with a preliminary acid wash and titration to pH 7 has proven to generate catalysts for the most interesting of oligomerization reactions in which activated RNA-nucleotides generate oligomers up to 40-mers. Significantly, not all clay minerals become catalytic following this treatment and none are catalytic in the absence of such treatment. The washing procedure has been modified and explored further using phosphoric acid and the outcomes are compared to those obtained when clay samples are prepared following a hydrochloric acid wash.

  3. Investigation into catalytic activity of chelates of transition elements with azomethine in connection with their bacteriostatic action

    Energy Technology Data Exchange (ETDEWEB)

    Aptekar' , M D; Gordeev, Yu M [Voroshilovgradskij Mashinostroitel' nyj Inst. (USSR)

    1975-07-01

    By gas-volumimetric methods catalytic activity of VKS Co(2), Ni(2), Cu(2), Zn(2) and Cd(2) on the o-oxyarylazometine basis in the hydroperoxide decomposition and ascorbic acid oxidation reactions was studied. Dependence of catalytic activity of VKS on nature of central atom, aldehyde and amine fragments structure of ligands, complex stability was determined. It was shown that some similarity exist between catalytic activity of studied VKS and their bacteriostatic influence on E.coli,Staph. aureus,B.subtilis.

  4. A low-barrier hydrogen bond mediates antibiotic resistance in a noncanonical catalytic triad

    Science.gov (United States)

    2018-01-01

    One group of enzymes that confer resistance to aminoglycoside antibiotics through covalent modification belongs to the GCN5-related N-acetyltransferase (GNAT) superfamily. We show how a unique GNAT subfamily member uses a previously unidentified noncanonical catalytic triad, consisting of a glutamic acid, a histidine, and the antibiotic substrate itself, which acts as a nucleophile and attacks the acetyl donor molecule. Neutron diffraction studies allow for unambiguous identification of a low-barrier hydrogen bond, predicted in canonical catalytic triads to increase basicity of the histidine. This work highlights the role of this unique catalytic triad in mediating antibiotic resistance while providing new insights into the design of the next generation of aminoglycosides. PMID:29632894

  5. Catalytic Upgrading of Bio-Oil by Reacting with Olefins and Alcohols over Solid Acids: Reaction Paths via Model Compound Studies

    Directory of Open Access Journals (Sweden)

    Qingwen Wang

    2013-03-01

    Full Text Available Catalytic refining of bio-oil by reacting with olefin/alcohol over solid acids can convert bio-oil to oxygen-containing fuels. Reactivities of groups of compounds typically present in bio-oil with 1-octene (or 1-butanol were studied at 120 °C/3 h over Dowex50WX2, Amberlyst15, Amberlyst36, silica sulfuric acid (SSA and Cs2.5H0.5PW12O40 supported on K10 clay (Cs2.5/K10, 30 wt. %. These compounds include phenol, water, acetic acid, acetaldehyde, hydroxyacetone, d-glucose and 2-hydroxymethylfuran. Mechanisms for the overall conversions were proposed. Other olefins (1,7-octadiene, cyclohexene, and 2,4,4-trimethylpentene and alcohols (iso-butanol with different activities were also investigated. All the olefins and alcohols used were effective but produced varying product selectivities. A complex model bio-oil, synthesized by mixing all the above-stated model compounds, was refined under similar conditions to test the catalyst’s activity. SSA shows the highest hydrothermal stability. Cs2.5/K10 lost most of its activity. A global reaction pathway is outlined. Simultaneous and competing esterification, etherfication, acetal formation, hydration, isomerization and other equilibria were involved. Synergistic interactions among reactants and products were determined. Acid-catalyzed olefin hydration removed water and drove the esterification and acetal formation equilibria toward ester and acetal products.

  6. Influence of alumina binder content on catalytic performance of Ni/HZSM-5 for hydrodeoxygenation of cyclohexanone.

    Directory of Open Access Journals (Sweden)

    Xiangjin Kong

    Full Text Available The influence of the amount of alumina binders on the catalytic performance of Ni/HZSM-5 for hydrodeoxygenation of cyclohexanone was investigated in a fixed-bed reactor. N2 sorption, X-ray diffraction, H2-chemisorption and temperature-programmed desorption of ammonia were used to characterize the catalysts. It can be observed that the Ni/HZSM-5 catalyst bound with 30 wt.% alumina binder exhibited the best catalytic performance. The high catalytic performance may be due to relatively good Ni metal dispersion, moderate mesoporosity, and proper acidity of the catalyst.

  7. Influence of alumina binder content on catalytic performance of Ni/HZSM-5 for hydrodeoxygenation of cyclohexanone.

    Science.gov (United States)

    Kong, Xiangjin; Liu, Junhai

    2014-01-01

    The influence of the amount of alumina binders on the catalytic performance of Ni/HZSM-5 for hydrodeoxygenation of cyclohexanone was investigated in a fixed-bed reactor. N2 sorption, X-ray diffraction, H2-chemisorption and temperature-programmed desorption of ammonia were used to characterize the catalysts. It can be observed that the Ni/HZSM-5 catalyst bound with 30 wt.% alumina binder exhibited the best catalytic performance. The high catalytic performance may be due to relatively good Ni metal dispersion, moderate mesoporosity, and proper acidity of the catalyst.

  8. A Mesopore-Dependent Catalytic Cracking of n-Hexane Over Mesoporous Nanostructured ZSM-5.

    Science.gov (United States)

    Qamar, M; Ahmed, M I; Qamaruddin, M; Asif, M; Sanhoob, M; Muraza, O; Khan, M Y

    2018-08-01

    Herein, pore size, crystalinity, and Si/Al ratio of mesoporous ZSM-5 (MFI) nanocrystals was controlled by synthesis parameters, such as surfactant concentration ([3-(trimethoxysilyl)propyl] hexa-decyl dimethyl ammonium chloride), sodium hydroxide concentrations, synthesis temperature and time. The morphology, surface structure and composition of the MFI particles was systematically investigated. More notably, the mesopore-dependent catalytic activity of ZSM-5 was evaluated by studying the cracking of n-hexane. The findings suggest the porosity has pronounced impact on the catalytic activity, selectivity and stability of ZSM-5 nanocrystals. Critical surface attributes such as nature of acid sites (Brønsted and Lewis), concentration, and strength are obtained by the infrared study of adsorbed probe molecules (pyridine) and the temperature programmed desorption. In spite of being weaker in Si/Al ratio or acidic strength, mesoporous catalysts showed more stable and efficient cracking of n-hexane suggesting that acidity seems not the predominant factor operative in the activity, selectivity and stability.

  9. Studies of Catalytic Properties of Inorganic Rock Matrices in Redox Reactions

    Directory of Open Access Journals (Sweden)

    Nikolay M. Dobrynkin

    2017-09-01

    Full Text Available Intrinsic catalytic properties of mineral matrices of various kinds (basalts, clays, sandstones were studied, which are of interest for in-situ heavy oil upgrading (i.e., underground to create advanced technologies for enhanced oil recovery. The elemental, surface and phase composition and matrix particle morphology, surface and acidic properties were studied using elemental analysis, X-ray diffraction, adsorption and desorption of nitrogen and ammonia. The data on the catalytic activity of inorganic matrices in ammonium nitrate decomposition (reaction with a large gassing, oxidation of hydrocarbons and carbon monoxide, and hydrocracking of asphaltenes into maltenes (the conversion of heavy hydrocarbons into more valuable light hydrocarbons were discussed. In order to check their applicability for the asphaltenes hydrocracking catalytic systems development, basalt and clay matrices were used as supports for iron/basalt, nickel/basalt and iron/clay catalysts. The catalytic activity of the matrices in the reactions of the decomposition of ammonium nitrate, oxidation of hydrocarbons and carbon monoxide, and hydrocracking of asphaltens was observed for the first time.

  10. Catalytic partial oxidation of pyrolysis oils

    Science.gov (United States)

    Rennard, David Carl

    2009-12-01

    This thesis explores the catalytic partial oxidation (CPO) of pyrolysis oils to syngas and chemicals. First, an exploration of model compounds and their chemistries under CPO conditions is considered. Then CPO experiments of raw pyrolysis oils are detailed. Finally, plans for future development in this field are discussed. In Chapter 2, organic acids such as propionic acid and lactic acid are oxidized to syngas over Pt catalysts. Equilibrium production of syngas can be achieved over Rh-Ce catalysts; alternatively mechanistic evidence is derived using Pt catalysts in a fuel rich mixture. These experiments show that organic acids, present in pyrolysis oils up to 25%, can undergo CPO to syngas or for the production of chemicals. As the fossil fuels industry also provides organic chemicals such as monomers for plastics, the possibility of deriving such species from pyrolysis oils allows for a greater application of the CPO of biomass. However, chemical production is highly dependent on the originating molecular species. As bio oil comprises up to 400 chemicals, it is essential to understand how difficult it would be to develop a pure product stream. Chapter 3 continues the experimentation from Chapter 2, exploring the CPO of another organic functionality: the ester group. These experiments demonstrate that equilibrium syngas production is possible for esters as well as acids in autothermal operation with contact times as low as tau = 10 ms over Rh-based catalysts. Conversion for these experiments and those with organic acids is >98%, demonstrating the high reactivity of oxygenated compounds on noble metal catalysts. Under CPO conditions, esters decompose in a predictable manner: over Pt and with high fuel to oxygen, non-equilibrium products show a similarity to those from related acids. A mechanism is proposed in which ethyl esters thermally decompose to ethylene and an acid, which decarbonylates homogeneously, driven by heat produced at the catalyst surface. Chapter 4

  11. The tritium labeling of Butibufen by heterogeneous catalytic exchange

    International Nuclear Information System (INIS)

    Santamaria, J.; Rebollo, D.

    1986-01-01

    The labeling of a new non-steroidal antiinflammatory agent, Butibufen (2-(4-isobutylphenyl) butyric acid) was studied. The method used was heterogeneous catalytic exchange between Butibufen and tritiated water, obtained in situ. Purification was accomplished through thin layer chromatography. Concentration, purity and specific activity of the labeled drug were determined by ultraviolet and liquid scintillation techniques. (Author) 7 refs

  12. Catalytic Synthesis of Ethyl Ester From Some Common Oils ...

    African Journals Online (AJOL)

    Catalytic conversion of ethanol to fatty acid ethyl esters (FAEE) was carried out by homogeneous and heterogeneous transesterification of melon seed, shea butter and neem seed oils using NaOH, KOH and 5wt%CaO/Al2O3 catalyst systems respectively. Oil content of the seeds from n-hexane or hot water extract ranged ...

  13. Organo-bridged silsesquioxane titanates for heterogeneous catalytic epoxidation with aqueous hydrogen peroxide

    NARCIS (Netherlands)

    Wang, Y.M.; Magusin, P.C.M.M.; Santen, van R.A.; Abbenhuis, H.C.L.

    2007-01-01

    Organo-bridged silsesquioxane titanates for heterogeneous catalytic epoxidation with aqueous hydrogen peroxide were synthesized through the acid-catalyzed hydrolysis and co-condensation of organotrialkoxysilane monomers and a,¿-bis(trialkoxysilyl) alkane cross-linkers in ethanol–water solution, with

  14. Protein structure based prediction of catalytic residues.

    Science.gov (United States)

    Fajardo, J Eduardo; Fiser, Andras

    2013-02-22

    Worldwide structural genomics projects continue to release new protein structures at an unprecedented pace, so far nearly 6000, but only about 60% of these proteins have any sort of functional annotation. We explored a range of features that can be used for the prediction of functional residues given a known three-dimensional structure. These features include various centrality measures of nodes in graphs of interacting residues: closeness, betweenness and page-rank centrality. We also analyzed the distance of functional amino acids to the general center of mass (GCM) of the structure, relative solvent accessibility (RSA), and the use of relative entropy as a measure of sequence conservation. From the selected features, neural networks were trained to identify catalytic residues. We found that using distance to the GCM together with amino acid type provide a good discriminant function, when combined independently with sequence conservation. Using an independent test set of 29 annotated protein structures, the method returned 411 of the initial 9262 residues as the most likely to be involved in function. The output 411 residues contain 70 of the annotated 111 catalytic residues. This represents an approximately 14-fold enrichment of catalytic residues on the entire input set (corresponding to a sensitivity of 63% and a precision of 17%), a performance competitive with that of other state-of-the-art methods. We found that several of the graph based measures utilize the same underlying feature of protein structures, which can be simply and more effectively captured with the distance to GCM definition. This also has the added the advantage of simplicity and easy implementation. Meanwhile sequence conservation remains by far the most influential feature in identifying functional residues. We also found that due the rapid changes in size and composition of sequence databases, conservation calculations must be recalibrated for specific reference databases.

  15. CATALYTIC PROPERTIES AND ACIDITY OF MODIFIED MCM-41 ...

    African Journals Online (AJOL)

    Adsorption of pyridine and IR spectroscopy indicated various types of Lewis and Brönsted acid sites. The density distribution of acid sites was determined by TPD. Both Lewis and Brönsted acid sites were found to be active in the heptane isomerisation. The presence of aluminium (low Si/Al) combined to the ionic exchange ...

  16. Investigation of the Origin of Catalytic Activity in Oxide-Supported Nanoparticle Gold

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, Ian [Univ. of Virginia, Charlottesville, VA (United States)

    2017-05-26

    Since Haruta’s discovery in 1987 of the surprising catalytic activity of supported Au nanoparticles, we have seen a very large number of experimental and theoretical efforts to explain this activity and to fully understand the nature of the behavior of the responsible active sites. In 2011, we discovered that a dual catalytic site at the perimeter of ~3nm diameter Au particles supported on TiO2 is responsible for oxidative catalytic activity. O2 molecules bind with Au atoms and Ti4+ ions in the TiO2 support and the weakened O-O bond dissociates at low temperatures, proceeding to produce O atoms which act as oxidizing agents for the test molecule, CO. The papers supported by DOE have built on this finding and have been concerned with two aspects of the behavior of Au/TiO2 catalysts: (1). Mechanistic behavior of dual catalytic sites in the oxidation of organic molecules such as ethylene and acetic acid; (2). Studies of the electronic properties of the TiO2 (110) single crystal in relation to its participation in charge transfer at the occupied dual catalytic site. A total of 20 papers have been produced through DOE support of this work. The papers combine IR spectroscopic investigations of Au/TiO2 catalysts with surface science on the TiO2(110) and TiO2 nanoparticle surfaces with modern density functional modeling. The primary goals of the work were to investigate the behavior of the dual Au/Ti4+ site for the partial oxidation of alcohols to acids, the hydrogenation of aldehydes and ketones to alcohols, and the condensation of oxygenate intermediates- all processes related to the utilization of biomass in the production of useful chemical energy sources.

  17. Expediting the chemistry of hematite nanocatalyst for catalytic aquathermolysis of heavy crude oil

    Science.gov (United States)

    Khalil, Munawar

    In upstream exploration and production of heavy and extra heavy oil, catalytic aquathermolysis is a process where steam (along with catalyst) is injected into the reservoir to improve oil production. The improvement of oil production has been associated with the reduction of heavy oil's viscosity due to the degradation of large hydrocarbon molecules (resin and asphaltene fractions) which mostly the result of desulphurization of organosulphur compounds. In this work, the potential of hematite (alpha-Fe2O3) nanoparticles, a nontoxic, inexpensive and the most stable phase of iron oxide, was investigated for aquathermolysis application. This dissertation encompasses the synthesis, surface modification, catalytic activity, and catalysis mechanism of hematite nanoparticles in aquathermolysis. In the first part of this study, a simple hydrothermal method was successfully developed to synthesize hematite nanoparticles with high purity and good crystallinity. Using this method, the size, crystal's growth rate, shape, and dispersity of the nanoparticles can be controlled by the amount of iron precursor, precipitation agent, temperature and reaction time. Furthermore, the surface chemistry of hematite nanoparticle was modified in order to improve particle dispersibility in hydrocarbon phase. Based on the result, oleic acid (OA) was successfully grafted on the surface of hematite nanoparticles by forming a monodentate interaction and changed the surface property of the nanoparticles from hydrophilic to hydrophobic. As the result, nanoparticles were able to be transferred from aqueous phase to non-polar phase, vice versa, depending on the amount of oleic acid used for modification. In the third part of this work, the catalytic activity and catalytic mechanism of hematite nanoparticles to catalyze desulphurization reaction were studied. It is found that hematite nanoparticles have a good catalytic activity to decompose a highly stable aromatic organosulphur compound, i

  18. Effect of Calcination Temperatures and Mo Modification on Nanocrystalline (γ-χ-Al2O3 Catalysts for Catalytic Ethanol Dehydration

    Directory of Open Access Journals (Sweden)

    Tharmmanoon Inmanee

    2017-01-01

    Full Text Available The mixed gamma and chi crystalline phase alumina (M-Al catalysts prepared by the solvothermal method were investigated for catalytic ethanol dehydration. The effects of calcination temperatures and Mo modification were elucidated. The catalysts were characterized by X-ray diffraction (XRD, N2 physisorption, transmission electron microscopy (TEM, and NH3-temperature programmed desorption (NH3-TPD. The catalytic activity was tested for ethylene production by dehydration reaction of ethanol in gas phase at atmospheric pressure and temperature between 200°C and 400°C. It was found that the calcination temperatures and Mo modification have effects on acidity of the catalysts. The increase in calcination temperature resulted in decreased acidity, while the Mo modification on the mixed phase alumina catalyst yielded increased acidity, especially in medium to strong acids. In this study, the catalytic activity of ethanol dehydration to ethylene apparently depends on the medium to strong acid. The mixed phase alumina catalyst calcined at 600°C (M-Al-600 exhibits the complete ethanol conversion having ethylene yield of 98.8% (at 350°C and the Mo-modified catalysts promoted dehydrogenation reaction to acetaldehyde. This can be attributed to the enhancement of medium to strong acid with metal sites of catalyst.

  19. Catalytic Oxidation of Benzophenone Hydrazone with Alumina-supported KMnO4 under Oxygen Atmosphere

    International Nuclear Information System (INIS)

    Lee, Kang Hyeok; Ko, Kwang Youn

    2006-01-01

    KMnO 4 /alumina reagent, which is cheap and environmentally safe, can serve as a catalytic oxidant under O 2 atmosphere for the oxidation of benzophenone hydrazone. To the best of our knowledge, the present works are the first example where KMnO 4 /alumina reagent acts as a catalytic oxidant under O 2 atmosphere. Diphenyldiazomethane (Ph 2 CN 2 ) is widely used for the protection of carboxylic acids by conversion to their diphenylmethyl (dpm) esters since dpm group can be easily deprotected by mild acidic condition or hydrogenolysis, especially in the field of b-lactams and peptides. Diphenyldiazomethane has been prepared by the oxidation of benzophenone hydrazone with reagents such as active manganese dioxide, mercuric oxide, peracetic acid, iodosobenzene diacetate or OXONE. However, some methods suffer from a disadvantage such as toxic nature of reagent, strong oxidative conditions or incompatibility with certain functional groups. For example, OXONE may not be employed for the in situ protection of carboxylic acid containing sulfide group due to the possibility of the concomitant oxidation of sulfide group

  20. Novel Zinc-Catalytic Systems for Ring-Opening Polymerization of ε-Caprolactone

    Directory of Open Access Journals (Sweden)

    Karolina Żółtowska

    2015-02-01

    Full Text Available Polycaprolactone (PCL is a biodegradable synthetic polymer that is currently widely used in many pharmaceutical and medical applications. In this paper we describe the coordination ring-opening polymerization of ε-caprolactone in the presence of two newly synthesized catalytic systems: diethylzinc/gallic acid and diethylzinc/propyl gallate. The chemical structures of the obtained PCLs were characterized by 1H- or 13C-NMR, FTIR spectroscopy and MALDI TOF mass spectrometry. The average molecular weight of the resulting polyesters was analysed by gel permeation chromatography and a viscosity method. The effects of temperature, reaction time and type of catalytic system on the polymerization process were examined. Linear PCLs with defined average molecular weight were successfully obtained. Importantly, in some cases the presence of macrocyclic products was not observed during the polymerization process. This study provides an effective method for the synthesis of biodegradable polyesters for medical and pharmaceutical applications due to the fact that gallic acid/propyl gallate are commonly used in the pharmaceutical industry.

  1. Modifications induced by potassium addition on chromia/alumina catalysts and their influence on the catalytic activity for the oxidative dehydrogenation of propane

    International Nuclear Information System (INIS)

    Rombi, E.; Gazzoli, D.; Cutrufello, M.G.; De Rossi, S.; Ferino, I.

    2010-01-01

    The oxidative dehydrogenation of propane was investigated on K-containing chromia/alumina catalysts, with nominal Cr and K loadings of 10 and 0-2 wt%, respectively. Their chemical composition, structure, texture, nature of surface species, redox features and surface acidity were determined. Catalytic behaviour was investigated in a continuous-flow micro-reactor under different conditions. Besides the nature and concentration of the chromium species, potassium addition was found to affect the reducibility of the catalysts as well as their acid surface features. Such modifications were found to condition the catalytic behaviour, which appeared somewhat peculiar in comparison with that of the catalytic systems reported in literature.

  2. Fluorine-doped carbon nanotubes as an efficient metal-free catalyst for destruction of organic pollutants in catalytic ozonation.

    Science.gov (United States)

    Wang, Jing; Chen, Shuo; Quan, Xie; Yu, Hongtao

    2018-01-01

    Metal-free carbon materials have been presented to be potential alternatives to metal-based catalysts for heterogeneous catalytic ozonation, yet the catalytic performance still needs to be enhanced. Doping carbon with non-metallic heteroatoms (e.g., N, B, and F) could alter the electronic structure and electrochemical properties of original carbon materials, has been considered to be an effective method for improving the catalytic activity of carbon materials. Herein, fluorine-doped carbon nanotubes (F-CNTs) were synthesized via a facile method and characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy. The as-synthesized F-CNTs exhibited notably enhanced catalytic activity towards catalytic ozonation for the degradation of organic pollutants. The oxalic acid removal efficiency of optimized F-CNTs was approximately two times as much as that of pristine CNTs, and even exceeded those of four conventional metal-based catalysts (ZnO, Al 2 O 3 , Fe 2 O 3 , and MnO 2 ). The XPS and Raman studies confirmed that the covalent CF bonds were formed at the sp 3 C sites instead of sp 2 C sites on CNTs, not only resulting in high positive charge density of C atoms adjacent to F atoms, but remaining the delocalized π-system with intact carbon structure of F-CNTs, which then favored the conversion of ozone molecules (O 3 ) into reactive oxygen species (ROS) and contributed to the high oxalic acid removal efficiency. Furthermore, electron spin resonance (ESR) studies revealed that superoxide radicals (O 2 - ) and singlet oxygen ( 1 O 2 ) might be the dominant ROS that responsible for the degradation of oxalic acid in these catalytic systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Heterogeneous catalysis contribution for the denitration of aqueous nuclear radioactive waste with formic acid

    International Nuclear Information System (INIS)

    Guenais, S.

    2001-01-01

    The chemical denitration aims to reduce the nitric acid concentration in nuclear fuel reprocessing aqueous wastes by adding formic acid as a reducing agent. The denitration reaction exhibits an induction period, which duration is related to the time needed by the key intermediate of the reaction, i.e. nitrous acid, to reach a threshold concentration in the reaction medium. The addition of a Pt/SiO 2 catalyst in the reaction mixture suppresses the induction period of the chemical denitration. The aim of the present work is to identify the role of Pt/SiO 2 in the catalytic denitration mechanism. The experimental work is based on the comparison of catalytic tests performed with various catalysts, in order to identify the intrinsic characteristics of Pt/SiO 2 that might influence its activity for the reaction. Catalytic denitration results show that Pt/SiO 2 acts only by speeding up the nitrous acid generation in the solution until its concentration reaches the threshold level of 0,01 mol L -1 in the experimental conditions. Catalysts activity is evaluated by quantifying the nitrous acid generated on the platinum surface during the induction period of the homogeneous denitration reaction. The large platinum aggregates reactivity is greater than the one of nano-sized particles. The study of the key step of the catalytic denitration reaction, the catalytic generation of nitrous acid, clarifies the role of Pt/SiO 2 . The homogeneous denitration is initiated thanks to a redox cycle on the catalyst surface: an initial oxidation of Pt 0 by nitric acid, which is reduced into nitrous acid, followed by the reduction of the passivated 'Pt ox ' by formic acid. Furthermore, a platinum reduction by formic acid prior to the catalytic test prevents any platinum leaching from the catalyst into the nitric solution, being all the more significant as platinum dispersion is high. (author)

  4. Influence of nitrogen surface functionalities on the catalytic activity of activated carbon in low temperature SCR of NOx with NH3

    International Nuclear Information System (INIS)

    Szymanski, Grzegorz S.; Grzybek, Teresa; Papp, Helmut

    2004-01-01

    The reduction of nitrogen oxide with ammonia was studied using carbon catalysts with chemically modified surfaces. Carbon samples with different surface chemistry were obtained from commercial activated carbon D43/1 (CarboTech, Essen, Germany) by chemical modification involving oxidation with conc. nitric acid (DOx) (1); high temperature treatment (=1000K) under vacuum (DHT) (2); or in ammonia (DHTN, DOxN) (3). Additionally, a portion of the DOx sample was promoted with iron(III) ions (DOxFe). The catalytic tests were performed in a microreactor at a temperature range of 413-573K. The carbon sample annealed under vacuum (DHT) showed the lowest activity. The formation of surface acidic surface oxides by nitric acid treatment (DOx) enhanced the catalytic activity only slightly. However, as can be expected, subsequent promotion of the DOx sample with iron(III) ions increased drastically its catalytic activity. However, this was accompanied by some loss of selectivity, i.e. formation of N 2 O as side product. This effect can be avoided using ammonia-treated carbons which demonstrated reasonable activity with simultaneous high selectivity. The most active and selective among them was the sample that was first oxidized with nitric acid and then heated in an ammonia stream (DOxN). A correlation between catalytic activity and surface nitrogen content was observed. Surface nitrogen species seem to play an important role in catalytic selective reduction of nitrogen oxide with ammonia, possibly facilitating NO 2 formation (a reaction intermediate) as a result of easier chemisorption of oxygen and nitrogen oxide

  5. Characterization of nicotinamidases: steady state kinetic parameters, classwide inhibition by nicotinaldehydes, and catalytic mechanism.

    Science.gov (United States)

    French, Jarrod B; Cen, Yana; Vrablik, Tracy L; Xu, Ping; Allen, Eleanor; Hanna-Rose, Wendy; Sauve, Anthony A

    2010-12-14

    Nicotinamidases are metabolic enzymes that hydrolyze nicotinamide to nicotinic acid. These enzymes are widely distributed across biology, with examples found encoded in the genomes of Mycobacteria, Archaea, Eubacteria, Protozoa, yeast, and invertebrates, but there are none found in mammals. Although recent structural work has improved our understanding of these enzymes, their catalytic mechanism is still not well understood. Recent data show that nicotinamidases are required for the growth and virulence of several pathogenic microbes. The enzymes of Saccharomyces cerevisiae, Drosophila melanogaster, and Caenorhabditis elegans regulate life span in their respective organisms, consistent with proposed roles in the regulation of NAD(+) metabolism and organismal aging. In this work, the steady state kinetic parameters of nicotinamidase enzymes from C. elegans, Sa. cerevisiae, Streptococcus pneumoniae (a pathogen responsible for human pneumonia), Borrelia burgdorferi (the pathogen that causes Lyme disease), and Plasmodium falciparum (responsible for most human malaria) are reported. Nicotinamidases are generally efficient catalysts with steady state k(cat) values typically exceeding 1 s(-1). The K(m) values for nicotinamide are low and in the range of 2 -110 μM. Nicotinaldehyde was determined to be a potent competitive inhibitor of these enzymes, binding in the low micromolar to low nanomolar range for all nicotinamidases tested. A variety of nicotinaldehyde derivatives were synthesized and evaluated as inhibitors in kinetic assays. Inhibitions are consistent with reaction of the universally conserved catalytic Cys on each enzyme with the aldehyde carbonyl carbon to form a thiohemiacetal complex that is stabilized by a conserved oxyanion hole. The S. pneumoniae nicotinamidase can catalyze exchange of (18)O into the carboxy oxygens of nicotinic acid with H(2)(18)O. The collected data, along with kinetic analysis of several mutants, allowed us to propose a catalytic

  6. Ozonation of clofibric acid catalyzed by titanium dioxide.

    Science.gov (United States)

    Rosal, Roberto; Gonzalo, María S; Rodríguez, Antonio; García-Calvo, Eloy

    2009-09-30

    The removal of clofibric acid from aqueous solution has been investigated in catalytic and non-catalytic semicontinuous ozonation runs. Kinetic data were analyzed using second order expressions for the reaction between organics and ozone or hydroxyl radicals. Catalytic runs used a commercial titanium dioxide catalyst consisting of fumed colloidal particles. The kinetic constant of the non-catalytic ozonation of clofibric acid at pH 3 was 8.16 x 10(-3)+/-3.4 x 10(-4)L mmol(-1)s(-1). The extent of mineralization during non-catalytic runs ranged from 50% at pH 7 to 20% at pH 3 in a reaction that essentially took place during the first 10-20 min. The catalyst increased the total extent of mineralization, its effect being more important during the first part of the reaction. The pseudo-homogeneous catalytic rate constant was 2.17 x 10(-2) L mmol(-1)s(-1) at pH 3 and 6.80 x 10(-1)L mmol(-1)s(-1) at pH 5, with up to a threefold increase with respect to non-catalytic constants using catalyst load of 1g/L. A set of stopped-flow experiments were designed to elucidate the role of catalyst, whose effect was probably due to the adsorption of organics on catalytic sites rather than to the promotion of ozone decomposition.

  7. Synthesis and characterization of type silicoaluminophosphates catalytic support

    International Nuclear Information System (INIS)

    Leite, C.E.T.; Carvalho, M.W.N.C.; Pereira, K.R.O.

    2010-01-01

    The refining processes, the catalytic hydrocracking is the future of diesel oil in Brazil and the first units are already scheduled to be inaugurated. Among the catalysts used in this process, silicoaluminophosphates (SAPO's) have considerable potential for use as they have been effective in the isomerization of n-alkanes, the isomerization of olefins and alkylation of aromatics. Because of this, the objective is to develop catalysts that will be used in hydrocracking reactions. The media like SAPO-5 were synthesized with different ratios silicon/aluminum, which is used as a catalytic support and have the function of crack organic molecules, since it has acidic character. The materials were characterized by techniques: X-ray diffraction, chemical analysis and textural by BET. After summarizing the media found that they had agreements with the crystalline phases presented in the literature.(author)

  8. Study of catalytic phenomena in radiation chemistry

    International Nuclear Information System (INIS)

    Dran, J.C.

    1965-01-01

    Two phenomena have been studied: the action of γ rays from radio-cobalt on the adsorption and catalytic properties of ZnO and NiO in. relationship with the heterogeneous oxidation of CO, and the homogeneous catalysis by OsO 4 of the oxidation of various aqueous phase solutes by the same radiation. The prior irradiation of ZnO and of NiO does not modify their catalytic activity but generally increases the adsorption energy of -the gases CO and O 2 . The influence of the radiations appears to be connected with the presence of traces of water on ZnO and of an excess of oxygen on NiO. Osmium tetroxide which is not degraded by irradiation in acid solution, accelerates the radiolytic oxidation of certain compounds (Te IV , Pt 11 , As 111 ) in the presence of oxygen, as a result of its sensitizing effect on the oxidation by H 2 O 2 . In the case of phosphites on the other hand, OsO 4 has a protecting action under certain conditions of acidity and may suppress entirely the chain reaction which characterizes the oxidation of this solute byγ rays. A general mechanism is proposed for these phenomena. The rate constant for the OsO 4 + HO 2 reaction is calculated to be 5.7 x 10 5 l.mol -1 . sec -1 . (author) [fr

  9. Catalytic hydrodeoxygenation of 2-methoxy phenol and dibenzofuran over Pt/mesoporous zeolites

    International Nuclear Information System (INIS)

    Lee, Hyung Won; Jun, Bo Ram; Kim, Hannah; Kim, Do Heui; Jeon, Jong-Ki; Park, Sung Hoon; Ko, Chang Hyun; Kim, Tae-Wan; Park, Young-Kwon

    2015-01-01

    The hydrodeoxygenation of 2-methoxy phenol and dibenzofuran, which are representative model compounds of bio-oil, was performed using two different Pt/mesoporous zeolite catalysts, Pt/mesoporous Y and Pt/mesoporous MFI. The reforming of 2-methoxy phenol and dibenzofuran via catalytic hydrodeoxygenation was investigated using a batch reactor at 40 bar and 250 °C. The characteristics of the catalysts were analyzed by N 2 adsorption-desorption, X-ray diffraction, and NH 3 temperature programmed desorption. Pt/mesoporous zeolite catalysts containing both strong acid sites and mesopores showed the higher conversion of 2-methoxy phenol than Pt/SiO 2 and Pt/Si-MCM-48 with no acid sites, Pt/γ-Al 2 O 3 , and a mixture of mesoporous Y and Pt/SiO 2 , indicating the importance of both Pt and strong acid sites for high catalytic activity. Among the two Pt/mesoporous zeolite catalysts tested, the conversion of 2-methoxy phenol to cyclohexane over Pt/mesoporous Y was much higher than that over the Pt/mesoporous MFI. This was attributed to the better textural properties, such as surface area, pore volume and micropore size, compared to those of Pt/mesoporous MFI. The catalytic conversions of dibenzofuran obtained using two Pt/mesoporous zeolite catalysts were similar and the main products were 1,1′-bicyclohexyl, cyclopentylmethyl-cyclohexane and cyclohexane. In addition, the reaction mechanisms of 2-methoxy phenol and dibenzofuran over Pt/mesoporous zeolite were suggested. - Highlights: • HDO of 2-methoxy phenol and dibenzofuran was performed over Pt/mesoporous zeolites. • Pt/mesoporous zeolites have mesopores and strong acid sites. • Main product of HDO of 2-methoxy phenol was cyclohexane. • Main products of HDO of dibenzofuran were bicyclohexyl (BCH), i-BCH, and cyclohexane

  10. The development of catalytic nucleophilic additions of terminal alkynes in water.

    Science.gov (United States)

    Li, Chao-Jun

    2010-04-20

    One of the major research endeavors in synthetic chemistry over the past two decades is the exploration of synthetic methods that work under ambient atmosphere with benign solvents, that maximize atom utilization, and that directly transform natural resources, such as renewable biomass, from their native states into useful chemical products, thus avoiding the need for protecting groups. The nucleophilic addition of terminal alkynes to various unsaturated electrophiles is a classical (textbook) reaction in organic chemistry, allowing the formation of a C-C bond while simultaneously introducing the alkyne functionality. A prerequisite of this classical reaction is the stoichiometric generation of highly reactive metal acetylides. Over the past decade, our laboratory and others have been exploring an alternative, the catalytic and direct nucleophilic addition of terminal alkynes to unsaturated electrophiles in water. We found that various terminal alkynes can react efficiently with a wide range of such electrophiles in water (or organic solvent) in the presence of simple and readily available catalysts, such as copper, silver, gold, iron, palladium, and others. In this Account, we describe the development of these synthetic methods, focusing primarily on results from our laboratory. Our studies include the following: (i) catalytic reaction of terminal alkynes with acid chloride, (ii) catalytic addition of terminal alkynes to aldehydes and ketones, (iii) catalytic addition of alkynes to C=N bonds, and (iv) catalytic conjugate additions. Most importantly, these reactions can tolerate various functional groups and, in many cases, perform better in water than in organic solvents, clearly defying classical reactivities predicated on the relative acidities of water, alcohols, and terminal alkynes. We further discuss multicomponent and enantioselective reactions that were developed. These methods provide an alternative to the traditional requirement of separate steps in

  11. New separation technique. Catalytically functionated separation membrane

    Energy Technology Data Exchange (ETDEWEB)

    Urgami, Tadashi [Kansai Univ., Osaka (Japan)

    1989-02-01

    This report introduces research examples, showing the fundamental principle of the membrane by separating the catalytically functionated separation membrane into enzyme fixing separation membrane, polymerized metal complex separation membrane and polymer catalyst separation membrane. This membrane can achieve both functions of separation and catalytic reaction simultaneously and has sufficient possibility to combine powerful functions. Enzyme fixing separation membrane is prepared by carrier combination method, bridging method or covering method and the enzyme fixing method with polymerized complex in which enzyme is controlled to prevent the activity lowering as much as possible and enzyme is fixed from an aqueous solution into polymer membrane. This membrane is applied to the continuous manufacturing of invert sugar from cane sugar and adsorption and removing of harmful substances from blood by utilizing both micro-capsuled urease and active carbon. Alginic acid-copper (II) complex membrane is used for the polymerized metal complex membrane and polystyrene sulfonate membrane is used for the polymer catalyst separation membrane. 28 refs., 4 figs., 1 tabs.

  12. Structural and catalytic characterization of a thermally stable and acid-stable variant of human carbonic anhydrase II containing an engineered disulfide bond

    Energy Technology Data Exchange (ETDEWEB)

    Boone, Christopher D.; Habibzadegan, Andrew [University of Florida, PO Box 100245, Gainesville, FL 32610 (United States); Tu, Chingkuang; Silverman, David N. [University of Florida, PO Box 100267, Gainesville, FL 32610 (United States); McKenna, Robert, E-mail: rmckenna@ufl.edu [University of Florida, PO Box 100245, Gainesville, FL 32610 (United States)

    2013-08-01

    The X-ray crystallographic structure of the disulfide-containing HCAII (dsHCAII) has been solved to 1.77 Å resolution and revealed that successful oxidation of the cysteine bond was achieved while also retaining desirable active-site geometry. The carbonic anhydrases (CAs) are a family of mostly zinc metalloenzymes that catalyze the reversible hydration of CO{sub 2} to bicarbonate and a proton. Recently, there has been industrial interest in utilizing CAs as biocatalysts for carbon sequestration and biofuel production. The conditions used in these processes, however, result in high temperatures and acidic pH. This unfavorable environment results in rapid destabilization and loss of catalytic activity in CAs, ultimately resulting in cost-inefficient high-maintenance operation of the system. In order to negate these detrimental industrial conditions, cysteines at residues 23 (Ala23Cys) and 203 (Leu203Cys) were engineered into a wild-type variant of human CA II (HCAII) containing the mutation Cys206Ser. The X-ray crystallographic structure of the disulfide-containing HCAII (dsHCAII) was solved to 1.77 Å resolution and revealed that successful oxidation of the cysteine bond was achieved while also retaining desirable active-site geometry. Kinetic studies utilizing the measurement of {sup 18}O-labeled CO{sub 2} by mass spectrometry revealed that dsHCAII retained high catalytic efficiency, and differential scanning calorimetry showed acid stability and thermal stability that was enhanced by up to 14 K compared with native HCAII. Together, these studies have shown that dsHCAII has properties that could be used in an industrial setting to help to lower costs and improve the overall reaction efficiency.

  13. Multimetallic nanoparticle catalysts with enhanced electrooxidation

    Science.gov (United States)

    Sun, Shouheng; Zhang, Sen; Zhu, Huiyuan; Guo, Shaojun

    2015-07-28

    A new structure-control strategy to optimize nanoparticle catalysis is provided. The presence of Au in FePtAu facilitates FePt structure transformation from chemically disordered face centered cubic (fcc) structure to chemically ordered face centered tetragonal (fct) structure, and further promotes formic acid oxidation reaction (FAOR). The fct-FePtAu nanoparticles show high CO poisoning resistance, achieve mass activity as high as about 2810 mA/mg Pt, and retain greater than 90% activity after a 13 hour stability test.

  14. The tritium labelling of organic molecules by heterogeneous catalytic exchange

    International Nuclear Information System (INIS)

    Angoso, M.; Kaiser, F.

    1977-01-01

    The influence of the temperature at 65degC and 120degC on the labelling of three organic molecules with tritium was studied. The compounds were: benzoic acid, diphenyl glioxal and 2,3-tetramethylene-4-phenylthien-7-oxodiacetin. The method employed was the heterogeneous catalytic exchange between tritiaded water and the organic compound. The purification was made by thin-layer chromatography and the concentration, purity and specific activity of the products were determined by counting and ultraviolet techniques. The thermal stability and the radiolitic effects on labelled benzoic acid were also considered. (author) [es

  15. Steam reformer with catalytic combustor

    Science.gov (United States)

    Voecks, Gerald E. (Inventor)

    1990-01-01

    A steam reformer is disclosed having an annular steam reforming catalyst bed formed by concentric cylinders and having a catalytic combustor located at the center of the innermost cylinder. Fuel is fed into the interior of the catalytic combustor and air is directed at the top of the combustor, creating a catalytic reaction which provides sufficient heat so as to maintain the catalytic reaction in the steam reforming catalyst bed. Alternatively, air is fed into the interior of the catalytic combustor and a fuel mixture is directed at the top. The catalytic combustor provides enhanced radiant and convective heat transfer to the reformer catalyst bed.

  16. The tritium labelling of ibuprofen by heterogeneous catalytic exchange

    International Nuclear Information System (INIS)

    Santamaria, J.; Rebollo, D.V.; Rivera, P.; Estaban, M.

    1986-01-01

    The tritium labelling of 2-(4-isobutylphenyl) propionic acid (ibuprofen) was performed. The method employed was heterogeneous catalytic exchange between ibuprofen and tritiated water. Prior to labelling, thermic stability of ibuprofen was studied. Purification was accomplished through thin layer chromatography (TLC) and high performance liquid chromatography (HPLC). Concentration, purity and specific activity of the labelled compound were determined by ultraviolet, HPLC and liquid scintillation techniques. (author)

  17. Catalytic Oxidation of Benzophenone Hydrazone with Alumina-supported KMnO{sub 4} under Oxygen Atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kang Hyeok; Ko, Kwang Youn [Ajou University, Suwon (Korea, Republic of)

    2006-02-15

    KMnO{sub 4}/alumina reagent, which is cheap and environmentally safe, can serve as a catalytic oxidant under O{sub 2} atmosphere for the oxidation of benzophenone hydrazone. To the best of our knowledge, the present works are the first example where KMnO{sub 4}/alumina reagent acts as a catalytic oxidant under O{sub 2} atmosphere. Diphenyldiazomethane (Ph{sub 2}CN{sub 2}) is widely used for the protection of carboxylic acids by conversion to their diphenylmethyl (dpm) esters since dpm group can be easily deprotected by mild acidic condition or hydrogenolysis, especially in the field of b-lactams and peptides. Diphenyldiazomethane has been prepared by the oxidation of benzophenone hydrazone with reagents such as active manganese dioxide, mercuric oxide, peracetic acid, iodosobenzene diacetate or OXONE. However, some methods suffer from a disadvantage such as toxic nature of reagent, strong oxidative conditions or incompatibility with certain functional groups. For example, OXONE may not be employed for the in situ protection of carboxylic acid containing sulfide group due to the possibility of the concomitant oxidation of sulfide group.

  18. Picolinic acid promoted oxidative decarboxylation of ...

    African Journals Online (AJOL)

    The kinetics and mechanism of picolinic acid promoted reaction of phenylsulfinylacetic acid (PSAA) with Cr(VI) was carried out in aqueous acetonitrile medium under pseudo first order conditions. The reaction follows Michaelis-Menten type of kinetics with respect to PSAA. The catalytic activity by picolinic acid can be ...

  19. Bio-based methacrylic acid via catalytic decarboxylation of itaconic and citric acids

    Science.gov (United States)

    Methacrylic acid is an important commodity monomer for the plastics industry that is produced industrially from acetone, hydrogen cyanide and concentrated sulfuric acid via the acetone cyanohydrin (ACH) process. Disadvantages to the ACH process include nonrenewable starting materials, stoichiometric...

  20. Catalytic Activity of a Bifunctional Catalyst for Hydrotreatment of Jatropha curcas L. Seed Oil

    Directory of Open Access Journals (Sweden)

    J. García-Dávila

    2018-01-01

    Full Text Available The hydrotreating process of vegetable oils (HPVO involves the transformation of vegetable oil triglycerides into straight chain alkanes, which are carried out by deoxygenation reactions, generating multiple hydrocarbon compounds, cuts similar to heavy vacuum oil. The HPVO is applied to Jatropha curcas oil on USY zeolite supported with gamma alumina and platinum deposition on the catalytic as hydrogenation component. The acid of additional activity of the supports allows the development of catalytic routes that the intervention of catalytic centers of different nature reaches the desired product. The products of the hydrotreating reaction with Jatropha curcas seed oil triglycerides were identified by Fourier transform infrared spectroscopy and by mass spectroscopy to identify and analyze the generated intermediate and final hydrocarbon compounds.

  1. Multimetallic Systems for the Photocatalytic Production of Fuels from Abundant Sources

    Energy Technology Data Exchange (ETDEWEB)

    Dunbar, Kim; Turro, Claudia [The Ohio State University

    2018-04-01

    The reported findings herein are a result of a collaboration between the groups of Claudia Turro at The Ohio State University (DE-SC0010542) and Kim R. Dunbar at Texas A&M University (DE-SC0010721). The Turro and Dunbar groups jointly discovered that cationic d7–d7 Rh2(II,II) complexes bridged by electron-donating formamidinate (form) ligands possess redox-active excited states that are relatively long-lived and can engage in charge transfer reactions. As part of the present grant we designed new complexes that exhibit strong absorption from the UV to ~800 nm. The Rh2(II,II) complexes under investigation are poised to undergo catalytic reduction of substrates because they are robust to changes in metal oxidation state, the two metals and the two diimine ligands, together with the non-innocent bridges, can be used to store redox equivalents, making these complexes capable of coupling one-electron events with multi-electron transformations. We discovered the electrocatalytic reduction of H+ and CO2 by complexes that are able to electrocatalytically reduce H+ to H2 with high turnover frequencies (TOFs) and overpotentials, η, of ~0.5 V,8 as well as to reduce CO2 to HCOOH. We now have experimental evidence that both the production of H2 from H+ and HCOOH. The molecular catalysts are stable after the acid and/or CO2 is consumed since electrocatalysis is restored at the same rate upon the addition of substrate to the cell.8,9 Moreover, we showed that the catalysis is not a result of a decomposition product deposited on the electrode, since placing an electrode from an active electrocatalytic solution into one that does not contain catalyst completely shuts down the reactivity. We are currently exploring the reactivity of these complexes in hydride transfer reactions with other substrates and in the presence of CO2 and reducing agents, as well as attempting to grow single crystals for x-ray diffraction.

  2. Catalytic chemical amide synthesis at room temperature: one more step toward peptide synthesis.

    Science.gov (United States)

    Mohy El Dine, Tharwat; Erb, William; Berhault, Yohann; Rouden, Jacques; Blanchet, Jérôme

    2015-05-01

    An efficient method has been developed for direct amide bond synthesis between carboxylic acids and amines via (2-(thiophen-2-ylmethyl)phenyl)boronic acid as a highly active bench-stable catalyst. This catalyst was found to be very effective at room temperature for a large range of substrates with slightly higher temperatures required for challenging ones. This methodology can be applied to aliphatic, α-hydroxyl, aromatic, and heteroaromatic acids as well as primary, secondary, heterocyclic, and even functionalized amines. Notably, N-Boc-protected amino acids were successfully coupled in good yields with very little racemization. An example of catalytic dipeptide synthesis is reported.

  3. Characterization of Nicotinamidases: Steady-State Kinetic Parameters, Class-wide Inhibition by Nicotinaldehydes and Catalytic Mechanism†

    Science.gov (United States)

    French, Jarrod B.; Cen, Yana; Vrablik, Tracy L.; Xu, Ping; Allen, Eleanor; Hanna-Rose, Wendy; Sauve, Anthony A.

    2010-01-01

    Nicotinamidases are metabolic enzymes that hydrolyze nicotinamide to nicotinic acid. These enzymes are widely distributed across biology, with examples found encoded in the genomes of Mycobacteria, Archaea, Eubacteria, Protozoa, yeast and invertebrates but there are none found in mammals. Although recent structural work has improved understanding of these enzymes, their catalytic mechanism is still not well understood. Recent data shows that nicotinamidases are required for growth and virulence of several pathogenic microbes. The enzymes of Saccharomyces cerevisiae, Drosophila melanogaster and Caenorhabditis elegans regulate lifespan in their respective organisms, consistent with proposed roles in the regulation of NAD+ metabolism and organismal aging. In this manuscript, the steady state kinetic parameters of nicotinamidase enzymes from C. elegans, S. cerevisiae, Streptococcus pneumoniae (a pathogen responsible for human pneumonia), Borrelia burgdorferi (the pathogen that causes Lyme Disease) and Plasmodium falciparum (responsible for most human malaria) are reported. Nicotinamidases are generally efficient catalysts with steady state kcat values typically exceeding 1 s−1. The Km values for nicotinamide are low and are in the range from 2 – 110 µM. Nicotinaldehyde was determined to be a potent competitive inhibitor of these enzymes, binding in the low µM to low nM range for all nicotinamidases tested. A variety of nicotinaldehyde derivatives were synthesized and evaluated as inhibitors in kinetic assays. Inhibitions are consistent with reaction of the universally conserved catalytic Cys on each enzyme with the aldehyde carbonyl carbon to form a thiohemiacetal complex which is stabilized by a conserved oxyanion hole. The S. pneumoniae nicotinamidase can catalyse exchange of 18O into the carboxy oxygens of nicotinic acid with 18O-water. The collected data, along with kinetic analysis of several mutants, allowed us to propose a catalytic mechanism that explains

  4. Simulated solarlight catalytic reduction of Cr(VI) on microwave–ultrasonication synthesized flower-like CuO in the presence of tartaric acid

    International Nuclear Information System (INIS)

    Xu, Zhihui; Yu, Yaqun; Fang, Di; Liang, Jianru; Zhou, Lixiang

    2016-01-01

    In this study, flower-like CuO was successfully synthesized by a microwave–ultrasound assisted method and well characterized by X-ray diffractions, Fourier transform infrared spectrum, scanning electron microscopy, transmission electron microscopy, specific surface area, UV–vis diffused reflection spectra, X-ray photoelectron spectroscopy and point of zero charge. The photocatalytic performance of the as-prepared CuO was examined on the Cr(VI) reduction in the presence of tartaric acid under simulated solarlight irradiation. The results show that the developed CuO catalyst exhibited good photocatalytic activity with 100% reduction of Cr(VI) after irradiation of 30 min under the test condition of c(Cr(VI)) = 100 μM, catalyst loading = 400 mg/L, c(tartaric acid) = 4 mM and initial pH = 3. The reaction mechanism was proposed. The effects of test parameters, such as catalyst loading, tartaric acid concentration and initial pH, on Cr(VI) reduction efficiency were also investigated. It is worth mentioning that the developed catalyst can work at a relatively wide range of pH with quite high catalytic performance. - Highlights: • Flower-like CuO microstructure was prepared by MW-US assisted method. • The prepared CuO can catalyze the reduction Cr(VI) by tartaric acid under simulated solarlight. • The formation of ≡Cu(II)-tartaric acid complex play a key role in the reduction of Cr(VI). • The catalyst can operate effectively at a relatively wide range of pH.

  5. Catalytic Ethanol Dehydration to Ethylene over Nanocrystalline χ- and γ-Al2O3 Catalysts.

    Science.gov (United States)

    Janlamool, Jakrapan; Jongsomjit, Bunjerd

    2017-01-01

    The study is aimed to investigate the combination of nanocrystalline γ- and χ- alumina that displays the attractive chemical and physical properties for the catalytic dehydration of ethanol. The correlation between the acid density and ethanol conversion was observed. The high acid density apparently results in high catalytic activity, especially for the equally mixed γ- and χ- phase alumina (G50C50). In order to obtain a better understanding on how different catalysts would affect the ethylene yield, one of the most powerful techniques such as X-ray photoelectron spectroscopy (XPS) was performed. Hence, the different O 1s surface atoms can be identified and divided into three types including lattice oxygen (O, 530.7 eV), surface hydroxyl (OH, 532.1 eV) and lattice water (H 2 O, 532.9 eV). It was remarkably found that the large amount of O 1s surface atoms in lattice water can result in increased ethylene yield. In summary, the appearance of metastable χ-alumina structure exhibited better catalytic activity and ethylene yield than γ- alumina. Thus, the introduction of metastable χ- alumina structure into γ- alumina enhanced catalytic activity and ethylene yield. As the result, it was found that the G50C50 catalyst exhibits the ethylene yield (80%) at the lowest reaction temperature ca. 250°C among other catalysts.

  6. cis,cis-Muconic acid: separation and catalysis to bio-adipic acid for nylon-6,6 polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Vardon, Derek R.; Rorrer, Nicholas A.; Salvachúa, Davinia; Settle, Amy E.; Johnson, Christopher W.; Menart, Martin J.; Cleveland, Nicholas S.; Ciesielski, Peter N.; Steirer, K. Xerxes; Dorgan, John R.; Beckham, Gregg T.

    2016-01-01

    cis,cis-Muconic acid is a polyunsaturated dicarboxylic acid that can be produced renewably via the biological conversion of sugars and lignin-derived aromatic compounds. Subsequently, muconic acid can be catalytically converted to adipic acid -- the most commercially significant dicarboxylic acid manufactured from petroleum. Nylon-6,6 is the major industrial application for adipic acid, consuming 85% of market demand; however, high purity adipic acid (99.8%) is required for polymer synthesis. As such, process technologies are needed to effectively separate and catalytically transform biologically derived muconic acid to adipic acid in high purity over stable catalytic materials. To that end, this study: (1) demonstrates bioreactor production of muconate at 34.5 g L-1 in an engineered strain of Pseudomonas putida KT2440, (2) examines the staged recovery of muconic acid from culture media, (3) screens platinum group metals (e.g., Pd, Pt, Rh, Ru) for activity and leaching stability on activated carbon (AC) and silica supports, (4) evaluates the time-on-stream performance of Rh/AC in a trickle bed reactor, and (5) demonstrates the polymerization of bio-adipic acid to nylon-6,6. Separation experiments confirmed AC effectively removed broth color compounds, but subsequent pH/temperature shift crystallization resulted in significant levels of Na, P, K, S and N in the crystallized product. Ethanol dissolution of muconic acid precipitated bulk salts, achieving a purity of 99.8%. Batch catalysis screening reactions determined that Rh and Pd were both highly active compared to Pt and Ru, but Pd leached significantly (1-9%) from both AC and silica supports. Testing of Rh/AC in a continuous trickle bed reactor for 100 h confirmed stable performance after 24 h, although organic adsorption resulted in reduced steady-state activity. Lastly, polymerization of bio-adipic acid with hexamethyldiamine produced nylon-6,6 with comparable properties to its petrochemical counterpart

  7. Catalytic nanoporous membranes

    Science.gov (United States)

    Pellin, Michael J; Hryn, John N; Elam, Jeffrey W

    2013-08-27

    A nanoporous catalytic membrane which displays several unique features Including pores which can go through the entire thickness of the membrane. The membrane has a higher catalytic and product selectivity than conventional catalysts. Anodic aluminum oxide (AAO) membranes serve as the catalyst substrate. This substrate is then subjected to Atomic Layer Deposition (ALD), which allows the controlled narrowing of the pores from 40 nm to 10 nm in the substrate by deposition of a preparatory material. Subsequent deposition of a catalytic layer on the inner surfaces of the pores reduces pore sizes to less than 10 nm and allows for a higher degree of reaction selectivity. The small pore sizes allow control over which molecules enter the pores, and the flow-through feature can allow for partial oxidation of reactant species as opposed to complete oxidation. A nanoporous separation membrane, produced by ALD is also provided for use in gaseous and liquid separations. The membrane has a high flow rate of material with 100% selectivity. Also provided is a method for producing a catalytic membrane having flow-through pores and discreet catalytic clusters adhering to the inside surfaces of the pores.

  8. Catalytic Flash Pyrolysis of Biomass Using Different Types of Zeolite and Online Vapor Fractionation

    KAUST Repository

    Imran, Ali; Bramer, Eddy; Seshan, Kulathuiyer; Brem, Gerrit

    2016-01-01

    -staged condensation of the pyrolysis vapor. Zeolite-based catalysts are investigated to study the effect of varying acidities of faujasite Y zeolites, zeolite structures (ZSM5), different catalyst to biomass ratios and different catalytic pyrolysis temperatures. Low

  9. Moving to Sustainable Metals. Multifunctional Ligands in Catalytic, Outer Sphere C-H, N-H and O-H Activation

    Energy Technology Data Exchange (ETDEWEB)

    Crabtree, Robert [Yale Univ., New Haven, CT (United States)

    2015-03-03

    Much of our work during this grant period has emphasized green chemistry and sustainability. For example, we were able to convert glycerine, a waste byproduct of biodiesel production, into lactic acid, a compound with numerous applications, notably in the food and cosmetics industry, as well as being a source material for a biodegradable plastic. This work required a catalyst, that ceases to work after a certain lapse of time. We were able to identify the way in which this deactivation occurs by identifying some of the metal catalyst deactivation products. These proved to be multimetallic clusters containing up to six metals and up to 14 hydrogen atoms. Both the catalytic reaction itself and the deactivation structures are novel and unexpected. We have previously proposed that nitrogen heterocycles could be good energy carriers in a low CO2 future world. In another part of our study, we found catalysts for introduction of hydrogen, an energy carrier that is hard to store, into nitrogen heterocycles. The mechanism of this process proved to be unusual in that the catalyst transfers the H2 to the heterocycle in the form of H+ and H-, first transferring the H+ and only then the H-. In a third area of study, some of our compounds, originally prepared for DOE catalysis purposes, also proved useful in hydrocarbon oxidation and in water oxidation. The latter is important in solar-to-fuel work, because, by analogy with natural photosynthesis, the goal of the Yale Solar Group of four PIs is to convert sunlight to hydrogen and oxygen, which requires water splitting catalysts. The catalysts that proved useful mediate the latter reaction: water oxidation to oxygen. In a more technical study, we developed methods for distinguishing the case where catalysis is mediated by a soluble catalyst from cases where catalysis arises from a deposit of finely divided solid. One particular application involved electrocatalysis

  10. Effect of pH value and delayed-action time on catalytic activity of tartrate niobium(5) complexes

    International Nuclear Information System (INIS)

    Alekseeva, I.I.; Chernysheva, L.M.; Bobkova, M.V.; Solomonov, V.A.

    1987-01-01

    Results of thermokinetic study of catalytic activity of niobium (5) tartrate solutions in the oxidation of ascorbic acid with hydrogen peroxide are presented. Addition of tartrate-ions to a concentration of 1x10 -2 M and higher in niobium (5) diluted solution enhances the catalytic activity of Nb(5). Alkaline tartrate solutions of niobium (5) may be used as standard solutions in determination of niobium microquantities by kinetic method

  11. Selenium utilization in thioredoxin and catalytic advantage provided by selenocysteine

    International Nuclear Information System (INIS)

    Kim, Moon-Jung; Lee, Byung Cheon; Hwang, Kwang Yeon; Gladyshev, Vadim N.; Kim, Hwa-Young

    2015-01-01

    Thioredoxin (Trx) is a major thiol-disulfide reductase that plays a role in many biological processes, including DNA replication and redox signaling. Although selenocysteine (Sec)-containing Trxs have been identified in certain bacteria, their enzymatic properties have not been characterized. In this study, we expressed a selenoprotein Trx from Treponema denticola, an oral spirochete, in Escherichia coli and characterized this selenoenzyme and its natural cysteine (Cys) homologue using E. coli Trx1 as a positive control. 75 Se metabolic labeling and mutation analyses showed that the SECIS (Sec insertion sequence) of T. denticola selenoprotein Trx is functional in the E. coli Sec insertion system with specific selenium incorporation into the Sec residue. The selenoprotein Trx exhibited approximately 10-fold higher catalytic activity than the Sec-to-Cys version and natural Cys homologue and E. coli Trx1, suggesting that Sec confers higher catalytic activity on this thiol-disulfide reductase. Kinetic analysis also showed that the selenoprotein Trx had a 30-fold higher K m than Cys-containing homologues, suggesting that this selenoenzyme is adapted to work efficiently with high concentrations of substrate. Collectively, the results of this study support the hypothesis that selenium utilization in oxidoreductase systems is primarily due to the catalytic advantage provided by the rare amino acid, Sec. - Highlights: • The first characterization of a selenoprotein Trx is presented. • The selenoenzyme Trx exhibits 10-fold higher catalytic activity than Cys homologues. • Se utilization in Trx is primarily due to the catalytic advantage provided by Sec residue

  12. Selenium utilization in thioredoxin and catalytic advantage provided by selenocysteine

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Moon-Jung [Department of Biochemistry and Molecular Biology, Yeungnam University College of Medicine, Daegu 705-717 (Korea, Republic of); Lee, Byung Cheon [Division of Genetics, Department of Medicine, Brigham and Women' s Hospital, Harvard Medical School, Boston, MA 02115 (United States); Division of Biotechnology, College of Life Sciences & Biotechnology, Korea University, Seoul 136-701 (Korea, Republic of); Hwang, Kwang Yeon [Division of Biotechnology, College of Life Sciences & Biotechnology, Korea University, Seoul 136-701 (Korea, Republic of); Gladyshev, Vadim N. [Division of Genetics, Department of Medicine, Brigham and Women' s Hospital, Harvard Medical School, Boston, MA 02115 (United States); Kim, Hwa-Young, E-mail: hykim@ynu.ac.kr [Department of Biochemistry and Molecular Biology, Yeungnam University College of Medicine, Daegu 705-717 (Korea, Republic of)

    2015-06-12

    Thioredoxin (Trx) is a major thiol-disulfide reductase that plays a role in many biological processes, including DNA replication and redox signaling. Although selenocysteine (Sec)-containing Trxs have been identified in certain bacteria, their enzymatic properties have not been characterized. In this study, we expressed a selenoprotein Trx from Treponema denticola, an oral spirochete, in Escherichia coli and characterized this selenoenzyme and its natural cysteine (Cys) homologue using E. coli Trx1 as a positive control. {sup 75}Se metabolic labeling and mutation analyses showed that the SECIS (Sec insertion sequence) of T. denticola selenoprotein Trx is functional in the E. coli Sec insertion system with specific selenium incorporation into the Sec residue. The selenoprotein Trx exhibited approximately 10-fold higher catalytic activity than the Sec-to-Cys version and natural Cys homologue and E. coli Trx1, suggesting that Sec confers higher catalytic activity on this thiol-disulfide reductase. Kinetic analysis also showed that the selenoprotein Trx had a 30-fold higher K{sub m} than Cys-containing homologues, suggesting that this selenoenzyme is adapted to work efficiently with high concentrations of substrate. Collectively, the results of this study support the hypothesis that selenium utilization in oxidoreductase systems is primarily due to the catalytic advantage provided by the rare amino acid, Sec. - Highlights: • The first characterization of a selenoprotein Trx is presented. • The selenoenzyme Trx exhibits 10-fold higher catalytic activity than Cys homologues. • Se utilization in Trx is primarily due to the catalytic advantage provided by Sec residue.

  13. Synthesis and Catalytic Hydrogen Transfer Reaction of Ruthenium(II) Complex

    Energy Technology Data Exchange (ETDEWEB)

    Son, Jung Ik; Kim, Aram; Noh, Hui Bog; Lee, Hyun Ju; Shim, Yoon Bo; Park, Kang Hyun [Pusan National University, Busan (Korea, Republic of)

    2012-01-15

    The ruthenium(II) complex [Ru(bpy){sub 2}-(PhenTPy)] was synthesized, and used for the transfer hydrogenation of ketones and the desired products were obtained in good yield. Based on the presented results, transition-metal complexes can be used as catalysts for a wide range of organic transformations. The relationship between the electro-reduction current density and temperature are being examined in this laboratory. Attempts to improve the catalytic activity and determine the transfer hydrogenation mechanism are currently in progress. The catalytic hydrogenation of a ketone is a basic and critical process for making many types of alcohols used as the final products and precursors in the pharmaceutical, agrochemical, flavor, fragrance, materials, and fine chemicals industries. The catalytic hydrogenation process developed by Noyori is a very attractive process. Formic acid and 2-propanol have been used extensively as hydrogenation sources. The advantage of using 2-propanol as a hydrogen source is that the only side product will be acetone, which can be removed easily during the workup process. Hydrogen transfer (HT) catalysis, which generates alcohols through the reduction of ketones, is an attractive protocol that is used widely. Ruthenium(II) complexes are the most useful catalysts for the hydrogen transfer (HT) of ketones. In this method, a highly active catalytic system employs a transition metal as a catalyst to synthesize alcohols, and is a replacement for the hydrogen-using hydrogenation process. The most active system is based on Ru, Rh and Ir, which includes a nitrogen ligand that facilitates the formation of a catalytically active hydride and phosphorus.

  14. Synthesis and Catalytic Hydrogen Transfer Reaction of Ruthenium(II) Complex

    International Nuclear Information System (INIS)

    Son, Jung Ik; Kim, Aram; Noh, Hui Bog; Lee, Hyun Ju; Shim, Yoon Bo; Park, Kang Hyun

    2012-01-01

    The ruthenium(II) complex [Ru(bpy) 2 -(PhenTPy)] was synthesized, and used for the transfer hydrogenation of ketones and the desired products were obtained in good yield. Based on the presented results, transition-metal complexes can be used as catalysts for a wide range of organic transformations. The relationship between the electro-reduction current density and temperature are being examined in this laboratory. Attempts to improve the catalytic activity and determine the transfer hydrogenation mechanism are currently in progress. The catalytic hydrogenation of a ketone is a basic and critical process for making many types of alcohols used as the final products and precursors in the pharmaceutical, agrochemical, flavor, fragrance, materials, and fine chemicals industries. The catalytic hydrogenation process developed by Noyori is a very attractive process. Formic acid and 2-propanol have been used extensively as hydrogenation sources. The advantage of using 2-propanol as a hydrogen source is that the only side product will be acetone, which can be removed easily during the workup process. Hydrogen transfer (HT) catalysis, which generates alcohols through the reduction of ketones, is an attractive protocol that is used widely. Ruthenium(II) complexes are the most useful catalysts for the hydrogen transfer (HT) of ketones. In this method, a highly active catalytic system employs a transition metal as a catalyst to synthesize alcohols, and is a replacement for the hydrogen-using hydrogenation process. The most active system is based on Ru, Rh and Ir, which includes a nitrogen ligand that facilitates the formation of a catalytically active hydride and phosphorus

  15. Catalytic conversion of 11C-labeled methanol over Cs-ZSM-5 zeolite

    International Nuclear Information System (INIS)

    Sarkadi-Priboczki, E.; Kovacs, Z.; Kumar, N.; Salmi, T.; Murzin, D.Yu.

    2004-01-01

    Reaction mechanism of the conversion of 11 C labeled methanol over basic Cs-ZSM-5 zeolite catalyst was investigated and the reaction products obtained were compared with that of H-ZSM-5 acidic catalyst. The catalytic experiments were carried out by passing 11 C-labeled methanol with He as a carrier gas over Cs-ZSM-5 packed in a micro reactor. After adsorption of the radio methanol, the catalyst was heated up to 330 deg C. The products of the catalytic conversion of the 11 C-labeled methanol were analyzed by radio-gas chromatography (gas chromatograph with thermal conductivity detector on-line coupled with a radioactivity detector). (N.T.)

  16. Catalytic aerobic oxidation of bio-renewable chemicals

    DEFF Research Database (Denmark)

    Gorbanev, Yury

    , EDS, XRF and other methods. Supported gold and ruthenium hydroxide catalyst systems were explored for the aerobic oxidation of 5-hydroxymethylfurfural (HMF) to 2,5-furandicarboxylic acid (FDA), a potential polymer building block for the plastic industry, or its dimethyl ester (FDMC). High product......-free conditions. Moreover, a detailed study on the performance and stability of the ruthenium hydroxide catalysts on magnesium-containing supports under reaction conditions was conducted. The aerobic oxidation of HMF to form another value-added chemical, 2,5-diformylfuran (DFF), was also investigated......Ox deposited on various metal oxides. Furthermore, this thesis presents the results of the catalytic aerobic oxidative degradation of higher alcohols over supported ruthenium hydroxide catalysts. A very efficient oxidative cleavage of vic-diols to form respective acids was also shown under examined conditions...

  17. Catalytic Transformation of Ethylbenzene over Y-Zeolite-based Catalysts

    KAUST Repository

    Al-Khattaf, Sulaiman

    2008-11-19

    Catalytic transformation of ethylbenzene (EB) has been investigated over ultrastable Y (USY)-zeolite-based catalysts in a novel riser simulator at different operating conditions. The effect of reaction conditions on EB conversion is reported. The USY catalyst (FCC-Y) was modified by steaming to form a significantly lower acidity catalyst (FCC-SY). The current study shows that the FCC-SY catalyst favors EB disproportionation more than cracking. A comparison has been made between the results of EB conversion over the lowly acidic catalyst (FCC-SY) and the highly acidic catalyst (FCC-Y) under identical conditions. It was observed that increase in catalyst acidity favored cracking of EB at the expense of disproportionation. Kinetic parameters for EB disappearance during disproportionation reaction over the FCC-SY catalyst were calculated using the catalyst activity decay function based on time on stream (TOS). © 2008 American Chemical Society.

  18. Naphthenic acid removal from HVGO by alkaline earth metal catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Ding, L.; Rahimi, P.; Hawkins, R.; Bhatt, S.; Shi, Y. [National Centre for Upgrading Technology, Devon, AB (Canada); Natural Resources Canada, Devon, AB (Canada). CanmetENERGY

    2009-07-01

    This poster highlighted a study that investigated naphthenic acid removal from bitumen-derived heavy vacuum gas oil (HVGO) by thermal cracking and catalytic decarboxylation over alkaline earth-metal oxides and ZnO catalysts in a batch reactor and a continuous fixed-bed reactor. X-ray diffraction (XRD), thermogravimetric-differential thermal analysis (TG-DTA) temperature-programmed desorption (TPD) of carbon dioxide (CO{sub 2}-TPD), and scanning electron microscopy were used to characterize the fresh and spent catalysts. With MgO and ZnO, naphthenic acid removal proceeded via catalytic decarboxylation. No crystalline phase changes were observed after reaction. With CaO, multiple pathways such as catalytic decarboxylation, neutralization, and thermal cracking were responsible for naphthenic acid conversion. The spent catalysts contained Ca(OH){sub 2} and CaCO{sub 3}. With BaO, naphthenic acid conversion occurred through neutralization. All BaO was converted to Ba(OH){sub 2} during the reaction. tabs., figs.

  19. Networks of High Mutual Information Define the Structural Proximity of Catalytic Sites: Implications for Catalytic Residue Identification

    DEFF Research Database (Denmark)

    Buslje, Cristina Marino; Teppa, Elin; Di Doménico, Tomas

    2010-01-01

    other non-functional conserved residues. Using a data set of 434 Pfam families included in the catalytic site atlas (CSA) database, we tested this hypothesis and demonstrated that MI can complement amino acid conservation scores to detect CR. The Kullback-Leibler (KL) conservation measurement was shown.......90, the Cls method was found to have a sensitivity of 0.816. In summary, we demonstrate that networks of residues with high MI provide a distinct signature on CR and propose that such a signature should be present in other classes of functional residues where the requirement to maintain a particular function...

  20. The tritium labelling of organic molecules by heterogeneous catalytic exchange

    International Nuclear Information System (INIS)

    Angoso Marina, M.; Kaiser Ruiz del Olmo, F.

    1977-01-01

    The influence of the temperature at 65 degree centigree and 120 degree centigree on the labelling of three organic molecules with tritium was studied. The compounds were: benzoic acid, de phenyl glyoxal and 2,3-tetramethylene-4-pantothenyl-7-oxo diacetin.The method employed was the heterogeneous catalytic exchange between tritiated water and the organic compound. The purification was made by thin-layer chromatography and the concentration, purity and specific activity of the products were determined by counting and ultraviolet techniques. The thermal stability and the radiolytic effects on labelled benzoic acid were also considered. (Author) 9 refs

  1. Structural, morphological and catalytic characterization of neutral Ag salt of 12-tungstophosphoric acid: Influence of preparation conditions

    Energy Technology Data Exchange (ETDEWEB)

    Holclajtner-Antunović, Ivanka; Bajuk-Bogdanović, Danica [Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11158 Belgrade (Serbia); Popa, Alexandru [Institute of Chemistry Timişoara, Bl. Mihail Viteazul 24, 300223 Timişoara (Romania); Nedić Vasiljević, Bojana [Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11158 Belgrade (Serbia); Krstić, Jugoslav [Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Njegoševa 12, 11001 Belgrade (Serbia); Mentus, Slavko [Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11158 Belgrade (Serbia); Uskoković-Marković, Snežana, E-mail: snezaum@pharmacy.bg.ac.rs [Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade (Serbia)

    2015-02-15

    Graphical abstract: - Highlights: • Preparation conditions influence to self-assembly of nanocrystallites of Ag{sub 3}PW{sub 12}O{sub 40}. • Ag{sub 3}PW{sub 12}O{sub 40} obtained by filtration is microporous, Ag{sub 3}PW{sub 12}O{sub 40} obtained by evaporation is non-porous. • Thermal properties of Ag{sub 3}PW{sub 12}O{sub 40}, H{sub 3}PW{sub 12}O{sub 40} and its soluble salts are similar. - Abstract: The objective of this study is the structural and morphological characterization of the Ag{sub 3}PW{sub 12}O{sub 40} salts (AgWPA) of 12-tungstophosphoric acid (WPA) obtained under different preparation conditions and testing of their acid catalytic activity in dehydration of ethanol. The structure, morphology and physicochemical characteristics were determined by Fourier transform infrared (FT-IR) and Raman spectroscopy, X-ray diffraction (XRD), nitrogen physisorption at −196 °C, scanning electron microscopy (SEM) and differential thermal (DTA) and thermogravimetric analysis (TGA). It is shown that the preparation process has a significant influence on the morphological properties of the obtained materials which may be explained by the supposed mechanism of the formation of nanocrystallite′s aggregates with more or less epitaxial connection. Neutral AgWPA obtained by filtration from supernatant forms porous aggregates of a symmetric dodecahedral shape, having average sizes about 2 μm. This sample shows higher specific area in comparison with the salt obtained by evaporation due to the higher micropore volume, while mesopore volumes are the same for both salts. Thus conversion of ethanol and selectivities of the main products, ethylene and diethyl ether, are almost the same and constant for both prepared salts, while their values are changed over the reaction time for the parent WPA acid.

  2. Structural and mechanistic analysis of trans-3-chloroacrylic acid dehalogenase activity

    Energy Technology Data Exchange (ETDEWEB)

    Pegan, Scott D., E-mail: pegan@uic.edu [Center of Pharmaceutical Biotechnology and the Department of Medicinal Chemistry and Pharmacognosy, University of Illinois, Chicago (United States); Serrano, Hector; Whitman, Christian P. [Division of Medicinal Chemistry, College of Pharmacy, The University of Texas, Austin (United States); Mesecar, Andrew D., E-mail: pegan@uic.edu [Center of Pharmaceutical Biotechnology and the Department of Medicinal Chemistry and Pharmacognosy, University of Illinois, Chicago (United States)

    2008-12-01

    The X-ray structure of a noncovalently modified trans-3-chloroacrylic acid dehalogenase with a substrate-homolog acetate bound in the active site has been determined to 1.7 Å resolution. Elucidation of catalytically important water is reported and multiple conformations of the catalytic residue αGlu52 are observed. Trans-3-chloroacrylic acid dehalogenase (CaaD) is a critical enzyme in the trans-1, 3-dichloropropene (DCP) degradation pathway in Pseudomonas pavonaceae 170. This enzyme allows bacteria to use trans-DCP, a common component in commercially produced fumigants, as a carbon source. CaaD specifically catalyzes the fourth step of the pathway by cofactor-independent dehalogenation of a vinyl carbon–halogen bond. Previous studies have reported an X-ray structure of CaaD under acidic conditions with a covalent modification of the catalytic βPro1 residue. Here, the 1.7 Å resolution X-ray structure of CaaD under neutral (pH 6.5) conditions is reported without the presence of the covalent adduct. In this new structure, a substrate-like acetate molecule is bound within the active site in a position analogous to the putative substrate-binding site. Additionally, a catalytically important water molecule was identified, consistent with previously proposed reaction schemes. Finally, flexibility of the catalytically relevant side chain αGlu52 is observed in the structure, supporting its role in the catalytic mechanism.

  3. Characterization of catalytic supports based in mixed oxides for control reactions of NO and N2O

    International Nuclear Information System (INIS)

    Garcia C, M.A.; Perez H, R.; Gomez C, A.; Diaz, G.

    1999-01-01

    The catalytic supports Al 2 O 3 , La 2 O 3 and Al 2 O 3 -La 2 O 3 were prepared by the Precipitation and Coprecipitation techniques. The catalytic supports Al 2 O 3 , La 2 O 3 and Al 2 O 3 -La 2 O 3 were characterized by several techniques to determine: texture (Bet), crystallinity (XRD), chemical composition (Sem)(Ftir) and it was evaluated their total acidity by reaction with 2-propanol. The investigation will be continued with the cobalt addition and this will be evaluated for its catalytic activity in control reactions of N O and N 2 O. (Author)

  4. Reducing NO(x) emissions from a nitric acid plant of domestic petrochemical complex: enhanced conversion in conventional radial-flow reactor of selective catalytic reduction process.

    Science.gov (United States)

    Abbasfard, Hamed; Hashemi, Seyed Hamid; Rahimpour, Mohammad Reza; Jokar, Seyyed Mohammad; Ghader, Sattar

    2013-01-01

    The nitric acid plant of a domestic petrochemical complex is designed to annually produce 56,400 metric tons (based on 100% nitric acid). In the present work, radial-flow spherical bed reactor (RFSBR) for selective catalytic reduction of nitric oxides (NO(x)) from the stack of this plant was modelled and compared with the conventional radial-flow reactor (CRFR). Moreover, the proficiency of a radial-flow (water or nitrogen) membrane reactor was also compared with the CRFR which was found to be inefficient at identical process conditions. In the RFSBR, the space between the two concentric spheres is filled by a catalyst. A mathematical model, including conservation of mass has been developed to investigate the performance of the configurations. The model was checked against the CRFR in a nitric acid plant located at the domestic petrochemical complex. A good agreement was observed between the modelling results and the plant data. The effects of some important parameters such as pressure and temperature on NO(x) conversion were analysed. Results show 14% decrease in NO(x) emission annually in RFSBR compared with the CRFR, which is beneficial for the prevention of NO(x) emission, global warming and acid rain.

  5. Non-thermal plasmas for non-catalytic and catalytic VOC abatement

    International Nuclear Information System (INIS)

    Vandenbroucke, Arne M.; Morent, Rino; De Geyter, Nathalie; Leys, Christophe

    2011-01-01

    Highlights: → We review the current status of catalytic and non-catalytic VOC abatement based on a vast number of research papers. → The underlying mechanisms of plasma-catalysis for VOC abatement are discussed. → Critical process parameters that determine the influent are discussed and compared. - Abstract: This paper reviews recent achievements and the current status of non-thermal plasma (NTP) technology for the abatement of volatile organic compounds (VOCs). Many reactor configurations have been developed to generate a NTP at atmospheric pressure. Therefore in this review article, the principles of generating NTPs are outlined. Further on, this paper is divided in two equally important parts: plasma-alone and plasma-catalytic systems. Combination of NTP with heterogeneous catalysis has attracted increased attention in order to overcome the weaknesses of plasma-alone systems. An overview is given of the present understanding of the mechanisms involved in plasma-catalytic processes. In both parts (plasma-alone systems and plasma-catalysis), literature on the abatement of VOCs is reviewed in close detail. Special attention is given to the influence of critical process parameters on the removal process.

  6. Catalytic and non-catalytic wet air oxidation of sodium dodecylbenzene sulfonate: kinetics and biodegradability enhancement.

    Science.gov (United States)

    Suárez-Ojeda, María Eugenia; Kim, Jungkwon; Carrera, Julián; Metcalfe, Ian S; Font, Josep

    2007-06-18

    Wet air oxidation (WAO) and catalytic wet air oxidation (CWAO) were investigated as suitable precursors for the biological treatment of industrial wastewater containing sodium dodecylbenzene sulfonate (DBS). Two hours WAO semi-batch experiments were conducted at 15 bar of oxygen partial pressure (P(O2)) and at 180, 200 and 220 degrees C. It was found that the highest temperature provides appreciable total organic carbon (TOC) and chemical oxygen demand (COD) abatement of about 42 and 47%, correspondingly. Based on the main identified intermediates (acetic acid and sulfobenzoic acid) a reaction pathway for DBS and a kinetic model in WAO were proposed. In the case of CWAO experiments, seventy-two hours tests were done in a fixed bed reactor in continuous trickle flow regime, using a commercial activated carbon (AC) as catalyst. The temperature and P(O2) were 140-160 degrees C and 2-9 bar, respectively. The influence of the operating conditions on the DBS oxidation, the occurrence of oxidative coupling reactions over the AC, and the catalytic activity (in terms of substrate removal) were established. The results show that the AC without any supported active metal behaves bi-functional as adsorbent and catalyst, giving TOC conversions up to 52% at 160 degrees C and 2 bar of P(O2), which were comparable to those obtained in WAO experiments. Respirometric tests were completed before and after CWAO and to the main intermediates identified through the WAO and CWAO oxidation route. Then, the readily biodegradable COD (COD(RB)) of the CWAO and WAO effluents were found. Taking into account these results it was possible to compare whether or not the CWAO or WAO effluents were suitable for a conventional activated sludge plant inoculated with non adapted culture.

  7. Catalytic and non-catalytic wet air oxidation of sodium dodecylbenzene sulfonate: Kinetics and biodegradability enhancement

    Energy Technology Data Exchange (ETDEWEB)

    Suarez-Ojeda, Maria Eugenia [Departament d' Enginyeria Quimica, Escola Tecnica Superior d' Enginyeria Quimica, Universitat Rovira i Virgili, Av. Paisos Catalans 26, 43007 Tarragona, Catalonia (Spain); Departament d' Enginyeria Quimica, Edifici Q-ETSE, Universitat Autonoma de Barcelona, 08193 Bellaterra, Barcelona, Catalonia (Spain); Kim, Jungkwon [Chemical Engineering and Analytical Sciences Department, University of Manchester, Manchester (United Kingdom); Carrera, Julian [Departament d' Enginyeria Quimica, Edifici Q-ETSE, Universitat Autonoma de Barcelona, 08193 Bellaterra, Barcelona, Catalonia (Spain); Metcalfe, Ian S. [Chemical Engineering and Advanced Materials Department, University of Newcastle upon Tyne, Newcastle upon Tyne (United Kingdom); Font, Josep [Departament d' Enginyeria Quimica, Escola Tecnica Superior d' Enginyeria Quimica, Universitat Rovira i Virgili, Av. Paisos Catalans 26, 43007 Tarragona, Catalonia (Spain)]. E-mail: jose.font@urv.cat

    2007-06-18

    Wet air oxidation (WAO) and catalytic wet air oxidation (CWAO) were investigated as suitable precursors for the biological treatment of industrial wastewater containing sodium dodecylbenzene sulfonate (DBS). Two hours WAO semi-batch experiments were conducted at 15bar of oxygen partial pressure (P{sub O{sub 2}}) and at 180, 200 and 220deg. C. It was found that the highest temperature provides appreciable total organic carbon (TOC) and chemical oxygen demand (COD) abatement of about 42 and 47%, correspondingly. Based on the main identified intermediates (acetic acid and sulfobenzoic acid) a reaction pathway for DBS and a kinetic model in WAO were proposed. In the case of CWAO experiments, seventy-two hours tests were done in a fixed bed reactor in continuous trickle flow regime, using a commercial activated carbon (AC) as catalyst. The temperature and P{sub O{sub 2}} were 140-160deg. C and 2-9bar, respectively. The influence of the operating conditions on the DBS oxidation, the occurrence of oxidative coupling reactions over the AC, and the catalytic activity (in terms of substrate removal) were established. The results show that the AC without any supported active metal behaves bi-functional as adsorbent and catalyst, giving TOC conversions up to 52% at 160deg. C and 2 bar of P{sub O{sub 2}}, which were comparable to those obtained in WAO experiments. Respirometric tests were completed before and after CWAO and to the main intermediates identified through the WAO and CWAO oxidation route. Then, the readily biodegradable COD (COD{sub RB}) of the CWAO and WAO effluents were found. Taking into account these results it was possible to compare whether or not the CWAO or WAO effluents were suitable for a conventional activated sludge plant inoculated with non adapted culture.

  8. Catalytic and non-catalytic wet air oxidation of sodium dodecylbenzene sulfonate: Kinetics and biodegradability enhancement

    International Nuclear Information System (INIS)

    Suarez-Ojeda, Maria Eugenia; Kim, Jungkwon; Carrera, Julian; Metcalfe, Ian S.; Font, Josep

    2007-01-01

    Wet air oxidation (WAO) and catalytic wet air oxidation (CWAO) were investigated as suitable precursors for the biological treatment of industrial wastewater containing sodium dodecylbenzene sulfonate (DBS). Two hours WAO semi-batch experiments were conducted at 15bar of oxygen partial pressure (P O 2 ) and at 180, 200 and 220deg. C. It was found that the highest temperature provides appreciable total organic carbon (TOC) and chemical oxygen demand (COD) abatement of about 42 and 47%, correspondingly. Based on the main identified intermediates (acetic acid and sulfobenzoic acid) a reaction pathway for DBS and a kinetic model in WAO were proposed. In the case of CWAO experiments, seventy-two hours tests were done in a fixed bed reactor in continuous trickle flow regime, using a commercial activated carbon (AC) as catalyst. The temperature and P O 2 were 140-160deg. C and 2-9bar, respectively. The influence of the operating conditions on the DBS oxidation, the occurrence of oxidative coupling reactions over the AC, and the catalytic activity (in terms of substrate removal) were established. The results show that the AC without any supported active metal behaves bi-functional as adsorbent and catalyst, giving TOC conversions up to 52% at 160deg. C and 2 bar of P O 2 , which were comparable to those obtained in WAO experiments. Respirometric tests were completed before and after CWAO and to the main intermediates identified through the WAO and CWAO oxidation route. Then, the readily biodegradable COD (COD RB ) of the CWAO and WAO effluents were found. Taking into account these results it was possible to compare whether or not the CWAO or WAO effluents were suitable for a conventional activated sludge plant inoculated with non adapted culture

  9. Mechanistic and kinetic study on the catalytic hydrolysis of COS in small clusters of sulfuric acid.

    Science.gov (United States)

    Li, Kai; Song, Xin; Zhu, Tingting; Wang, Chi; Sun, Xin; Ning, Ping; Tang, Lihong

    2018-01-01

    The catalytic hydrolysis of carbonyl sulfide (COS) and the effect of small clusters of H 2 O and H 2 SO 4 have been studied by theoretical calculations. The addition of H 2 SO 4 could increase the enthalpy change (ΔHhydrolysis reaction changed from an endothermic reaction to an exothermic reaction. Further, H 2 SO 4 decreases the energy barrier by 5.25 kcal/mol, and it enhances the catalytic hydrolysis through the hydrogen transfer effect. The (COS + H 2 SO 4 -H 2 O) reaction has the lowest energy barrier of 29.97 kcal/mol. Although an excess addition of H 2 O and H 2 SO 4 increases the energy barrier, decreases the catalytic hydrolysis, which is consistent with experimental observations. The order of the energy barriers for the three reactions from low to high are as follows: COS + H 2 SO 4 -H 2 O hydrolysis of COS both kinetically and thermodynamically. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Catalytic distillation process

    Science.gov (United States)

    Smith, L.A. Jr.

    1982-06-22

    A method is described for conducting chemical reactions and fractionation of the reaction mixture comprising feeding reactants to a distillation column reactor into a feed zone and concurrently contacting the reactants with a fixed bed catalytic packing to concurrently carry out the reaction and fractionate the reaction mixture. For example, a method for preparing methyl tertiary butyl ether in high purity from a mixed feed stream of isobutene and normal butene comprising feeding the mixed feed stream to a distillation column reactor into a feed zone at the lower end of a distillation reaction zone, and methanol into the upper end of said distillation reaction zone, which is packed with a properly supported cationic ion exchange resin, contacting the C[sub 4] feed and methanol with the catalytic distillation packing to react methanol and isobutene, and concurrently fractionating the ether from the column below the catalytic zone and removing normal butene overhead above the catalytic zone.

  11. Influence of nitrogen surface functionalities on the catalytic activity of activated carbon in low temperature SCR of NO{sub x} with NH{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Szymanski, Grzegorz S. [Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7, 87-100 Torun (Poland); Grzybek, Teresa [Faculty of Fuels and Energy, AGH, University of Science and Technology, Al. Mickiewicza 30, 30-059 Krakow (Poland); Papp, Helmut [Faculty of Chemistry and Mineralogy, Institute of Technical Chemistry, University of Leipzig, Linnerstrasse 3, 04103 Leipzig (Germany)

    2004-06-15

    The reduction of nitrogen oxide with ammonia was studied using carbon catalysts with chemically modified surfaces. Carbon samples with different surface chemistry were obtained from commercial activated carbon D43/1 (CarboTech, Essen, Germany) by chemical modification involving oxidation with conc. nitric acid (DOx) (1); high temperature treatment (=1000K) under vacuum (DHT) (2); or in ammonia (DHTN, DOxN) (3). Additionally, a portion of the DOx sample was promoted with iron(III) ions (DOxFe). The catalytic tests were performed in a microreactor at a temperature range of 413-573K. The carbon sample annealed under vacuum (DHT) showed the lowest activity. The formation of surface acidic surface oxides by nitric acid treatment (DOx) enhanced the catalytic activity only slightly. However, as can be expected, subsequent promotion of the DOx sample with iron(III) ions increased drastically its catalytic activity. However, this was accompanied by some loss of selectivity, i.e. formation of N{sub 2}O as side product. This effect can be avoided using ammonia-treated carbons which demonstrated reasonable activity with simultaneous high selectivity. The most active and selective among them was the sample that was first oxidized with nitric acid and then heated in an ammonia stream (DOxN). A correlation between catalytic activity and surface nitrogen content was observed. Surface nitrogen species seem to play an important role in catalytic selective reduction of nitrogen oxide with ammonia, possibly facilitating NO{sub 2} formation (a reaction intermediate) as a result of easier chemisorption of oxygen and nitrogen oxide.

  12. An isozyme of acid alpha-glucosidase with reduced catalytic activity for glycogen.

    Science.gov (United States)

    Beratis, N G; LaBadie, G U; Hirschhorn, K

    1980-03-01

    Both the common and a variant isozyme of acid alpha-glucosidase have been purified from a heterozygous placenta with CM-Sephadex, ammonium sulfate precipitation, dialysis, Amicon filtration, affinity chromatography by Sephadex G-100, and DEAE-cellulose chromatography. Three and two activity peaks, from the common and variant isozymes, respectively, were obtained by DEAE-cellulose chromatography using a linear NaCl gradient. The three peaks of activity of the common isozyme were eluted with 0.08, 0.12, and 0.17 M NaCl, whereas the two peaks of the variant, with 0.01 and 0.06 M NaCl. The pH optimum and thermal denaturation at 57 degrees C were the same in all enzyme peaks of both isozymes. Rabbit antiacid alpha-glucosidase antibodies produced against the common isozyme were found to cross-react with both peaks of the variant isozyme. The two isozymes shared antigenic identity and had similar Km's with maltose as substrate. Normal substrate saturation kinetics were observed with the common isozyme when glycogen was the substrate, but the variant produced an S-shaped saturation curve indicating a phase of negative and positive cooperativity at low and high glycogen concentrations, respectively. The activity of the variant was only 8.6% and 19.2% of the common isozyme when assayed with nonsaturating and saturating concentrations of glycogen, respectively. A similar rate of hydrolysis of isomaltose by both isozymes was found indicating that the reduced catalytic activity of the variant isozyme toward glycogen is not the result of a reduced ability of this enzyme to cleave the alpha-1,6 linkages of glycogen.

  13. Catalytic pyrolysis of olive mill wastewater sludge

    Science.gov (United States)

    Abdellaoui, Hamza

    From 2008 to 2013, an average of 2,821.4 kilotons/year of olive oil were produced around the world. The waste product of the olive mill industry consists of solid residue (pomace) and wastewater (OMW). Annually, around 30 million m3 of OMW are produced in the Mediterranean area, 700,000 m3 year?1 in Tunisia alone. OMW is an aqueous effluent characterized by an offensive smell and high organic matter content, including high molecular weight phenolic compounds and long-chain fatty acids. These compounds are highly toxic to micro-organisms and plants, which makes the OMW a serious threat to the environment if not managed properly. The OMW is disposed of in open air evaporation ponds. After evaporation of most of the water, OMWS is left in the bottom of the ponds. In this thesis, the effort has been made to evaluate the catalytic pyrolysis process as a technology to valorize the OMWS. The first section of this research showed that 41.12 wt. % of the OMWS is mostly lipids, which are a good source of energy. The second section proved that catalytic pyrolysis of the OMWS over red mud and HZSM-5 can produce green diesel, and 450 °C is the optimal reaction temperature to maximize the organic yields. The last section revealed that the HSF was behind the good fuel-like properties of the OMWS catalytic oils, whereas the SR hindered the bio-oil yields and quality.

  14. Catalytic Combustion of Gasified Waste

    Energy Technology Data Exchange (ETDEWEB)

    Kusar, Henrik

    2003-09-01

    This thesis concerns catalytic combustion for gas turbine application using a low heating-value (LHV) gas, derived from gasified waste. The main research in catalytic combustion focuses on methane as fuel, but an increasing interest is directed towards catalytic combustion of LHV fuels. This thesis shows that it is possible to catalytically combust a LHV gas and to oxidize fuel-bound nitrogen (NH{sub 3}) directly into N{sub 2} without forming NO{sub x} The first part of the thesis gives a background to the system. It defines waste, shortly describes gasification and more thoroughly catalytic combustion. The second part of the present thesis, paper I, concerns the development and testing of potential catalysts for catalytic combustion of LHV gases. The objective of this work was to investigate the possibility to use a stable metal oxide instead of noble metals as ignition catalyst and at the same time reduce the formation of NO{sub x} In paper II pilot-scale tests were carried out to prove the potential of catalytic combustion using real gasified waste and to compare with the results obtained in laboratory scale using a synthetic gas simulating gasified waste. In paper III, selective catalytic oxidation for decreasing the NO{sub x} formation from fuel-bound nitrogen was examined using two different approaches: fuel-lean and fuel-rich conditions. Finally, the last part of the thesis deals with deactivation of catalysts. The various deactivation processes which may affect high-temperature catalytic combustion are reviewed in paper IV. In paper V the poisoning effect of low amounts of sulfur was studied; various metal oxides as well as supported palladium and platinum catalysts were used as catalysts for combustion of a synthetic gas. In conclusion, with the results obtained in this thesis it would be possible to compose a working catalytic system for gas turbine application using a LHV gas.

  15. Long-Range Electrostatics-Induced Two-Proton Transfer Captured by Neutron Crystallography in an Enzyme Catalytic Site.

    Science.gov (United States)

    Gerlits, Oksana; Wymore, Troy; Das, Amit; Shen, Chen-Hsiang; Parks, Jerry M; Smith, Jeremy C; Weiss, Kevin L; Keen, David A; Blakeley, Matthew P; Louis, John M; Langan, Paul; Weber, Irene T; Kovalevsky, Andrey

    2016-04-11

    Neutron crystallography was used to directly locate two protons before and after a pH-induced two-proton transfer between catalytic aspartic acid residues and the hydroxy group of the bound clinical drug darunavir, located in the catalytic site of enzyme HIV-1 protease. The two-proton transfer is triggered by electrostatic effects arising from protonation state changes of surface residues far from the active site. The mechanism and pH effect are supported by quantum mechanics/molecular mechanics (QM/MM) calculations. The low-pH proton configuration in the catalytic site is deemed critical for the catalytic action of this enzyme and may apply more generally to other aspartic proteases. Neutrons therefore represent a superb probe to obtain structural details for proton transfer reactions in biological systems at a truly atomic level. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Structural stability of human protein tyrosine phosphatase ρ catalytic domain: effect of point mutations.

    Directory of Open Access Journals (Sweden)

    Alessandra Pasquo

    Full Text Available Protein tyrosine phosphatase ρ (PTPρ belongs to the classical receptor type IIB family of protein tyrosine phosphatase, the most frequently mutated tyrosine phosphatase in human cancer. There are evidences to suggest that PTPρ may act as a tumor suppressor gene and dysregulation of Tyr phosphorylation can be observed in diverse diseases, such as diabetes, immune deficiencies and cancer. PTPρ variants in the catalytic domain have been identified in cancer tissues. These natural variants are nonsynonymous single nucleotide polymorphisms, variations of a single nucleotide occurring in the coding region and leading to amino acid substitutions. In this study we investigated the effect of amino acid substitution on the structural stability and on the activity of the membrane-proximal catalytic domain of PTPρ. We expressed and purified as soluble recombinant proteins some of the mutants of the membrane-proximal catalytic domain of PTPρ identified in colorectal cancer and in the single nucleotide polymorphisms database. The mutants show a decreased thermal and thermodynamic stability and decreased activation energy relative to phosphatase activity, when compared to wild- type. All the variants show three-state equilibrium unfolding transitions similar to that of the wild- type, with the accumulation of a folding intermediate populated at ~4.0 M urea.

  17. Maleic acid and aluminum chloride catalyzed conversion of glucose to 5-(hydroxymethyl) furfural and levulinic acid in aqueous media

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ximing [Laboratory of Renewable Resources Engineering and Department of Agricultural and Biological Engineering; Purdue University; West Lafayette; USA; The Center for Direct Catalytic Conversion of Biomass to Biofuels (C3Bio); Murria, Priya [The Center for Direct Catalytic Conversion of Biomass to Biofuels (C3Bio); Discovery Park; Purdue University; West Lafayette; USA; Jiang, Yuan [The Center for Direct Catalytic Conversion of Biomass to Biofuels (C3Bio); Discovery Park; Purdue University; West Lafayette; USA; Xiao, Weihua [Laboratory of Renewable Resources Engineering and Department of Agricultural and Biological Engineering; Purdue University; West Lafayette; USA; College of Engineering; Kenttämaa, Hilkka I. [The Center for Direct Catalytic Conversion of Biomass to Biofuels (C3Bio); Discovery Park; Purdue University; West Lafayette; USA; Abu-Omar, Mahdi M. [The Center for Direct Catalytic Conversion of Biomass to Biofuels (C3Bio); Discovery Park; Purdue University; West Lafayette; USA; Mosier, Nathan S. [Laboratory of Renewable Resources Engineering and Department of Agricultural and Biological Engineering; Purdue University; West Lafayette; USA; The Center for Direct Catalytic Conversion of Biomass to Biofuels (C3Bio)

    2016-01-01

    Maleic acid (MA) and AlCl3self-assemble into catalytic complexes (Al–(MA)2–(OH)2(aq)) with improved selectivity for converting glucose to HMF, and levulinic acid.

  18. Fluidized bed catalytic pyrolysis of eucalyptus over hzsm-5: effect of acid density and gallium modification on catalyst deactivation

    Science.gov (United States)

    Catalytic fast pyrolysis of eucalyptus wood was performed on a continuous laboratory scale fluidized bed fast pyrolysis system. Catalytic activity was monitored from use of fresh catalyst up to a cumulative biomass to catalyst ratio (B/C) of 4/1 over extruded pellets of three different ZSM-5 catalys...

  19. Enhancement in the Catalytic Activity of Pd/USY in the Heck Reaction Induced by H2 Bubbling

    Directory of Open Access Journals (Sweden)

    Miki Niwa

    2010-12-01

    Full Text Available Pd was loaded on ultra stable Y (USY zeolites prepared by steaming NH4-Y zeolite under different conditions. Heck reactions were carried out over the prepared Pd/USY. We found that H2 bubbling was effective in improving not only the catalytic activity of Pd/USY, but also that of other supported Pd catalysts and Pd(OAc2. Moreover, the catalytic activity of Pd/USY could be optimized by choosing appropriate steaming conditions for the preparation of the USY zeolites; Pd loaded on USY prepared at 873 K with 100% H2O gave the highest activity (TOF = 61,000 h−1, which was higher than that of Pd loaded on other kinds of supports. The prepared Pd/USY catalysts were applicable to the Heck reactions using various kinds of substrates including bromo- and chloro-substituted aromatic and heteroaromatic compounds. Characterization of the acid properties of the USY zeolites revealed that the strong acid site (OHstrong generated as a result of steaming had a profound effect on the catalytic activity of Pd.

  20. Enhancement in the catalytic activity of Pd/USY in the heck reaction induced by H2 bubbling.

    Science.gov (United States)

    Okumura, Kazu; Tomiyama, Takuya; Moriyama, Sayaka; Nakamichi, Ayaka; Niwa, Miki

    2010-12-24

    Pd was loaded on ultra stable Y (USY) zeolites prepared by steaming NH(4)-Y zeolite under different conditions. Heck reactions were carried out over the prepared Pd/USY. We found that H₂ bubbling was effective in improving not only the catalytic activity of Pd/USY, but also that of other supported Pd catalysts and Pd(OAc)₂. Moreover, the catalytic activity of Pd/USY could be optimized by choosing appropriate steaming conditions for the preparation of the USY zeolites; Pd loaded on USY prepared at 873 K with 100% H₂O gave the highest activity (TOF = 61,000 h⁻¹), which was higher than that of Pd loaded on other kinds of supports. The prepared Pd/USY catalysts were applicable to the Heck reactions using various kinds of substrates including bromo- and chloro-substituted aromatic and heteroaromatic compounds. Characterization of the acid properties of the USY zeolites revealed that the strong acid site (OH(strong)) generated as a result of steaming had a profound effect on the catalytic activity of Pd.

  1. Tuning the acidity of niobia: Characterization and catalytic activity of Nb{sub 2}O{sub 5}–MeO{sub 2} (Me = Ti, Zr, Ce) mesoporous mixed oxides

    Energy Technology Data Exchange (ETDEWEB)

    Stošić, Dušan; Bennici, Simona [Université Lyon 1, CNRS, UMR 5256, IRCELYON, Institut de recherches sur la catalyse et l' environnement de Lyon, 2 avenue Albert Einstein, F-69626 Villeurbanne (France); Pavlović, Vladimir; Rakić, Vesna [Faculty of Agriculture, Department of Chemistry, University of Belgrade, Nemanjina 6, 11080 Zemun (Serbia); Auroux, Aline, E-mail: aline.auroux@ircelyon.univ-lyon1.fr [Université Lyon 1, CNRS, UMR 5256, IRCELYON, Institut de recherches sur la catalyse et l' environnement de Lyon, 2 avenue Albert Einstein, F-69626 Villeurbanne (France)

    2014-08-01

    Mesoporous Nb{sub 2}O{sub 5}–MeO{sub 2} (Me = Ti, Zr, Ce) mixed oxides were successfully prepared using evaporation-induced self-assembly (EISA) method. The structural and textural properties of these materials have been fully characterized using appropriate techniques (low-temperature adsorption–desorption of nitrogen, thermogravimetric analysis, X-ray diffraction analysis (XRD) transmission electron microscopy (TEM), scanning electron microscopy (SEM) and Raman spectroscopy). Acid–base properties were estimated by adsorption microcalorimetry of NH{sub 3} and SO{sub 2} molecules in order to determine the population, strength and strength distribution of acidic or basic sites. Formation of mesoporous structure was confirmed by the results of XRD, TEM and BET techniques. Results of adsorption microcalorimetry technique showed that the type of transition metal oxide added to niobia has a decisive role for acidic-basic character of investigated mixed oxides. Among the investigated mixed oxide formulations only Nb{sub 2}O{sub 5}–CeO{sub 2} was amphoteric, while the other samples showed prominent acidic character. All the investigated materials are catalytically active in fructose dehydration; conversion of fructose and selectivity to 5-hydroxymethylfurfural (5-HMF) and levulinic acid (LA) are proved to be dependant on the number of acidic sites on the surface of catalysts. Furthermore, presence of the basic sites on the surface of the catalyst decreases the activity in the fructose dehydration reaction, as in the case of Nb{sub 2}O{sub 5}–CeO{sub 2} sample. - Highlights: • Mesoporous Nb{sub 2}O{sub 5}–MeO{sub 2} mixed oxides were successfully prepared by EISA method. • Acidic–basic properties depend on the nature of the oxide that was mixed with niobia. • Catalytic activity was tested in fructose dehydration in aqueous phase. • Selectivity and conversion in reaction are correlated to the number of acid sites.

  2. Direct catalytic transformation of carbohydrates into 5-ethoxymethylfurfural with acid–base bifunctional hybrid nanospheres

    International Nuclear Information System (INIS)

    Li, Hu; Govind, Khokarale Santosh; Kotni, Ramakrishna; Shunmugavel, Saravanamurugan; Riisager, Anders; Yang, Song

    2014-01-01

    Graphical abstract: Catalytic conversion of carbohydrates into HMF and EMF in ethanol/DMSO with acid–base bifunctional hybrid nanospheres prepared from self-assembly of corresponding basic amino acids and HPA. - Highlights: • Acid–base bifunctional nanospheres were efficient for production of EMF from sugars. • Synthesis of EMF in a high yield of 76.6% was realized from fructose. • Fructose based biopolymers could also be converted into EMF with good yields. • Ethyl glucopyranoside was produced in good yields from glucose in ethanol. - Abstract: A series of acid–base bifunctional hybrid nanospheres prepared from the self-assembly of basic amino acids and phosphotungstic acid (HPA) with different molar ratios were employed as efficient and recyclable catalysts for synthesis of liquid biofuel 5-ethoxymethylfurfural (EMF) from various carbohydrates. A high EMF yield of 76.6%, 58.5%, 42.4%, and 36.5% could be achieved, when fructose, inulin, sorbose, and sucrose were used as starting materials, respectively. Although, the acid–base bifunctional nanocatalysts were inert for synthesis of EMF from glucose based carbohydrates, ethyl glucopyranoside in good yields could be obtained from glucose in ethanol. Moreover, the nanocatalyst functionalized with acid and basic sites was able to be reused several times with no significant loss in catalytic activity

  3. Catalytic polarographic currents of platinum metal complexes and their application to determination of trace concentrations of the elements

    International Nuclear Information System (INIS)

    Ezerskaya, N.A.; Kiseleva, I.N.

    1984-01-01

    Several types of catalytic electrode processes with the participation of platinum metal complexes and used for the determination of the element microconcentrations have been considered in the review. It is pointed out that to measure catalytic currents of hydrogen solutions nitroso compounds, which are prepared by heating chloride complexes of Ru(3) and (4) with NaNO 2 are used. The method is applicable for ruthenium determination in commercial nitric acid solutions. Ru determination in solution of ruthenium (4) dimeric chloride complex on graphite electrode, using catalytic currents of hydrogen, surpasses in sensitivity the determination of the element, using the method of inversion voltammetry. Certain other complexes of Ru and determination methods of ruthenium in them are considered. Hydrogen catalytic currents in the complexes solutions with organic ligands are the most perspective for analysis

  4. Optimizing the Production of Renewable Aromatics via Crop Oil Catalytic Cracking

    Directory of Open Access Journals (Sweden)

    Clancy Kadrmas

    2015-04-01

    Full Text Available While HZSM-5 catalytic cracking of crop oil toward aromatics have been well documented, this work adds to this body of knowledge with a full acid byproduct analysis that provides improved mass balance closure along with a design of experiment optimization of reaction conditions. Fatty acids are an inevitable byproduct when converting any triglyceride oil, but are most often overlooked; despite the impact fatty acids have on downstream processing. Acid analysis verified that only short chain fatty acids, mainly acetic acid, were present in low quantities when all feed oil was reacted. When relatively high fatty acid amounts were present, these were mainly uncracked C16 and C18 fatty acids. Optimization is a balance of aromatics formation vs. unwanted gas products, coke and residual fatty acids. A design of experiments approach was used to provide insight into where the optimal reaction conditions reside for HZSM-5 facilitated reactions. These conditions can then form the basis for further development into a commercially viable process for the production of renewable aromatics and other byproducts.

  5. Catalytic bioreactors and methods of using same

    Science.gov (United States)

    Worden, Robert Mark; Liu, Yangmu Chloe

    2017-07-25

    Various embodiments provide a bioreactor for producing a bioproduct comprising one or more catalytically active zones located in a housing and adapted to keep two incompatible gaseous reactants separated when in a gas phase, wherein each of the one or more catalytically active zones may comprise a catalytic component retainer and a catalytic component retained within and/or thereon. Each of the catalytically active zones may additionally or alternatively comprise a liquid medium located on either side of the catalytic component retainer. Catalytic component may include a microbial cell culture located within and/or on the catalytic component retainer, a suspended catalytic component suspended in the liquid medium, or a combination thereof. Methods of using various embodiments of the bioreactor to produce a bioproduct, such as isobutanol, are also provided.

  6. Hydrogenation of Lactic Acid to 1,2-propanediol over Ru-based catalysts

    NARCIS (Netherlands)

    Liu, K.; Huang, X.; Pidko, E.A.; Hensen, E.J.M.

    2018-01-01

    The catalytic hydrogenation of lactic acid to 1,2-propanediol with supported Ru catalysts in water was investigated. The influence of catalyst support (activated carbon, γ-Al2O3, SiO2, TiO2, and CeO2) and promoters (Pd, Au, Mo, Re, Sn) on the catalytic performance was evaluated. Catalytic tests

  7. Catalytic pyrolysis of woody biomass in a fluidized bed reactor: influence of the zeolite structure

    Energy Technology Data Exchange (ETDEWEB)

    A. Aho; N. Kumar; K. Eranen; T. Salmi; M. Hupa; D.Yu. Murzin [Aabo Akademi University, Aabo/Turku (Finland). Process Chemistry Centre, Laboratory of Industrial Chemistry and Reaction Engineering

    2008-09-15

    Catalytic pyrolysis of biomass from pine wood was carried out in a fluidized bed reactor at 450{sup o}C. Different structures of acidic zeolite catalysts were used as bed material in the reactor. Proton forms of Beta, Y, ZSM-5, and Mordenite were tested as catalysts in the pyrolysis of pine, while quartz sand was used as a reference material in the non-catalytic pyrolysis experiments. The yield of the pyrolysis product phases was only slightly influenced by the structures, at the same time the chemical composition of the bio-oil was dependent on the structure of acidic zeolite catalysts. Ketones and phenols were the dominating groups of compounds in the bio-oil. The formation of ketones was higher over ZSM-5 and the amount of acids and alcohols lower than over the other bed materials tested. Mordenite and quartz sand produced smaller quantities of polyaromatic hydrocarbons than the other materials tested. It was possible to successfully regenerate the spent zeolites without changing the structure of the zeolite. 12 refs., 9 figs., 5 tabs.

  8. Natural clinoptilolite exchanged with iron: characterization and catalytic activity in nitrogen monoxide reduction

    Directory of Open Access Journals (Sweden)

    Daria Tito-Ferro

    2016-12-01

    Full Text Available The aim of this work was to characterize the natural clinoptilolite from Tasajeras deposit, Cuba, modified by hydrothermal ion-exchange with solutions of iron (II sulfate and iron (III nitrate in acid medium. Besides this, its catalytic activity to reduce nitrogen monoxide with carbon monoxide/propene in the presence of oxygen was evaluated. The characterization was performed by Mössbauer and UV-Vis diffuse reflectance spectroscopies and adsorption measurements. The obtained results lead to conclude that in exchanged samples, incorporated divalent and trivalent irons are found in octahedral coordination. Both irons should be mainly in cationic extra-framework positions inside clinoptilolite channels as charge compensating cations, and also as iron oxy-hydroxides resulting from limited hydrolysis of these cations. The iron (III exchanged samples has a larger amount of iron oxy-hydroxides agglomerates. The iron (II exchanged samples have additionally iron (II sulfate adsorbed. The catalytic activity in the nitrogen monoxide reduction is higher in the exchanged zeolites than starting. Among all samples, those exchanged of iron (II has the higher catalytic activity. This lead to outline that, main catalytically active centers are associated with divalent iron.

  9. Water oxidation catalyzed by mononuclear ruthenium complexes with a 2,2'-bipyridine-6,6'-dicarboxylate (bda) ligand: how ligand environment influences the catalytic behavior.

    Science.gov (United States)

    Staehle, Robert; Tong, Lianpeng; Wang, Lei; Duan, Lele; Fischer, Andreas; Ahlquist, Mårten S G; Sun, Licheng; Rau, Sven

    2014-02-03

    A new water oxidation catalyst [Ru(III)(bda)(mmi)(OH2)](CF3SO3) (2, H2bda = 2,2'-bipyridine-6,6'-dicarboxylic acid; mmi = 1,3-dimethylimidazolium-2-ylidene) containing an axial N-heterocyclic carbene ligand and one aqua ligand was synthesized and fully characterized. The kinetics of catalytic water oxidation by 2 were measured using stopped-flow technique, and key intermediates in the catalytic cycle were probed by density functional theory calculations. While analogous Ru-bda water oxidation catalysts [Ru(bda)L2] (L = pyridyl ligands) are supposed to catalyze water oxidation through a bimolecular coupling pathway, our study points out that 2, surprisingly, undergoes a single-site water nucleophilic attack (acid-base) pathway. The diversion of catalytic mechanisms is mainly ascribed to the different ligand environments, from nonaqua ligands to an aqua ligand. Findings in this work provide some critical proof for our previous hypothesis about how alternation of ancillary ligands of water oxidation catalysts influences their catalytic efficiency.

  10. Catalytic Gas-Phase Production of Lactide from Renewable Alkyl Lactates.

    Science.gov (United States)

    De Clercq, Rik; Dusselier, Michiel; Makshina, Ekaterina; Sels, Bert F

    2018-03-12

    A new route to lactide, which is a key building block of the bioplastic polylactic acid, is proposed involving a continuous catalytic gas-phase transesterification of renewable alkyl lactates in a scalable fixed-bed setup. Supported TiO 2 /SiO 2 catalysts are highly selective to lactide, with only minimal lactide racemization. The solvent-free process allows for easy product separation and recycling of unconverted alkyl lactates and recyclable lactyl intermediates. The catalytic activity of TiO 2 /SiO 2 catalysts was strongly correlated to their optical properties by DR UV/Vis spectroscopy. Catalysts with high band-gap energy of the supported TiO 2 phase, indicative of a high surface spreading of isolated Ti centers, show the highest turnover frequency per Ti site. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Catalytic process for tritium exchange reaction

    International Nuclear Information System (INIS)

    Hansoo Lee; Kang, H.S.; Paek, S.W.; Hongsuk Chung; Yang Geun Chung; Sook Kyung Lee

    2001-01-01

    The catalytic activities for a hydrogen isotope exchange were measured through the reaction of a vapor and gas mixture. The catalytic activity showed to be comparable with the published data. Since the gas velocity is relatively low, the deactivation was not found clearly during the 5-hour experiment. Hydrogen isotope transfer experiments were also conducted through the liquid phase catalytic exchange reaction column that consisted of a catalytic bed and a hydrophilic bed. The efficiencies of both the catalytic and hydrophilic beds were higher than 0.9, implying that the column performance was excellent. (author)

  12. Piv site-specific invertase requires a DEDD motif analogous to the catalytic center of the RuvC Holliday junction resolvases.

    Science.gov (United States)

    Buchner, John M; Robertson, Anne E; Poynter, David J; Denniston, Shelby S; Karls, Anna C

    2005-05-01

    Piv, a unique prokaryotic site-specific DNA invertase, is related to transposases of the insertion elements from the IS110/IS492 family and shows no similarity to the site-specific recombinases of the tyrosine- or serine-recombinase families. Piv tertiary structure is predicted to include the RNase H-like fold that typically encompasses the catalytic site of the recombinases or nucleases of the retroviral integrase superfamily, including transposases and RuvC-like Holliday junction resolvases. Analogous to the DDE and DEDD catalytic motifs of transposases and RuvC, respectively, four Piv acidic residues D9, E59, D101, and D104 appear to be positioned appropriately within the RNase H fold to coordinate two divalent metal cations. This suggests mechanistic similarity between site-specific inversion mediated by Piv and transposition or endonucleolytic reactions catalyzed by enzymes of the retroviral integrase superfamily. The role of the DEDD motif in Piv catalytic activity was addressed using Piv variants that are substituted individually or multiply at these acidic residues and assaying for in vivo inversion, intermolecular recombination, and DNA binding activities. The results indicate that all four residues of the DEDD motif are required for Piv catalytic activity. The DEDD residues are not essential for inv recombination site recognition and binding, but this acidic tetrad does appear to contribute to the stability of Piv-inv interactions. On the basis of these results, a working model for Piv-mediated inversion that includes resolution of a Holliday junction is presented.

  13. The role of salicylic acid, L-ascorbic acid and oxalic acid in promoting the oxidation of alkenes with H(2)O(2) catalysed by [Mn(IV) (2)(O)(3)(tmtacn)(2)](2+)

    NARCIS (Netherlands)

    de Boer, Johannes W.; Alsters, Paul L.; Meetsma, Auke; Hage, Ronald; Browne, Wesley R.; Feringa, Ben L.

    2008-01-01

    The role played by the additives salicylic acid, L-ascorbic acid and oxalic acid in promoting the catalytic activity of [Mn(IV) (2)(O)(3)(tmtacn)(2)](PF(6))(2) {1(PF(6))(2), where tmtacn = N, N ', N ''-trimethyl-1,4,7-triazacyclononane} in the epoxidation and cis-dihydroxylation of alkenes with

  14. Upgrading of bio-oil to boiler fuel by catalytic hydrotreatment and esterification in an efficient process

    International Nuclear Information System (INIS)

    Zhang, Xinghua; Chen, Lungang; Kong, Wei; Wang, Tiejun; Zhang, Qi; Long, Jinxing; Xu, Ying; Ma, Longlong

    2015-01-01

    Bio-oil can't be directly used as fuel due to its deteriorate properties. Here, an efficient catalytic upgrading process for the bio-oil, including esterification, hydrogenation, hydrodeoxygenation and depolymerization, is proposed with multifunctional catalyst Ni/SiO 2 –ZrO 2 and biomass-derived solvent ethanol. Results showed that esters, alcohols, phenolics, and cyclo-ketones were the main components in the upgraded bio-oil while aldehydes were removed completely via catalytic hydrogenation and acids were removed by catalytic esterification with supercritical ethanol. The pH value of upgraded bio-oil rose drastically from 2.38 to 5.24, and the high heating value increased to 24.4 MJ kg −1 . Comparison characterization on the upgraded and crude bio-oil using FT-IR, GPC (Gel permeation chromatography) and 13 C NMR (Nuclear Magnetic Resonance) demonstrated that lignin-derived oligomers contained in crude bio-oil were further depolymerized over Ni/SiO 2 –ZrO 2 catalyst. The improved properties suggest that the upgraded bio-oil is more suitable to be used as boiler fuel. Furthermore, the loss of carbon is negligible because formation of coke is suppressed during the upgrading process. - Highlights: • Acid can be converted via catalytic esterification in supercritical ethanol. • Aldehydes can be removed completely during the upgrading process. • Lignin-derived oligomers were further depolymerized during the upgrading process. • Formation of coke is effectively inhibited during the upgrading process

  15. Catalytic Reforming of Lignin-Derived Bio-Oil Over a Nanoporous Molecular Sieve Silicoaluminophosphate-11.

    Science.gov (United States)

    Park, Y K; Kang, Hyeon Koo; Jang, Hansaem; Suh, Dong Jin; Park, Sung Hoon

    2016-05-01

    Catalytic pyrolysis of lignin, a major constituent of biomass, was performed. A nanoporous molecular sieve silicoaluminophosphate-11 (SAPO-11) was selected as catalyst. Thermogravimetric analysis showed that 500 degrees C was the optimal pyrolysis temperature. Pyrolyzer-gas chromatography/mass spectroscopy was used to investigate the pyrolysis product distribution. Production of phenolics, the dominant product from the pyrolysis of lignin, was promoted by the increase in the catalyst dose. In particular, low-molecular-mass phenolics were produced more over SAPO-11, while high-molecular-mass phenolics and double-bond-containing phenolics were produced less. The fraction of aromatic compounds, including benzene, toluene, xylene, and ethylbenzene, was also increased by catalytic reforming. The catalytic effects were more pronounced when the catalyst/biomass ratio was increased. The enhanced production of aromatic compounds by an acidic catalyst obtained in this study is in good agreement with the results of previous studies.

  16. Efficient catalytic system for the direct transformation of lignocellulosic biomass to furfural and 5-hydroxymethylfurfural.

    Science.gov (United States)

    Zhang, Luxin; Xi, Guoyun; Zhang, Jiaxin; Yu, Hongbing; Wang, Xiaochang

    2017-01-01

    A feasible approach was developed for the co-production of 5-hydroxymethylfurfural (5-HMF) and furfural from corncob via a new porous polytriphenylamine-SO 3 H (SPTPA) solid acid catalyst in lactone solvents. XRD, SEM, XPS, N 2 adsorption-desorption, elemental analysis, TG-DTA, acid-base titration and FTIR spectroscopy techniques were used to characterize the catalyst. This study demonstrates and optimizes the catalytic performance of SPTPA and solvent selection. SPTPA was found to exhibit superior catalytic ability in γ-valerolactone (GVL). Under the optimum reaction conditions, simultaneously encouraging yields of furfural (73.9%) and 5-HMF (32.3%) were achieved at 448K. The main advantages of this process include reasonable yields of both 5-HMF and furfural in the same reaction system, practical simplicity for the raw biomass utilization, and the use of a safe and environmentally benign solvent. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. The Use of Supported Acidic Ionic Liquids in Organic Synthesis

    Directory of Open Access Journals (Sweden)

    Rita Skoda-Földes

    2014-06-01

    Full Text Available Catalysts obtained by the immobilisation of acidic ionic liquids (ILs on solid supports offer several advantages compared to the use of catalytically active ILs themselves. Immobilisation may result in an increase in the number of accessible active sites of the catalyst and a reduction of the amount of the IL required. The ionic liquid films on the carrier surfaces provide a homogeneous environment for catalytic reactions but the catalyst appears macroscopically as a dry solid, so it can simply be separated from the reaction mixture. As another advantage, it can easily be applied in a continuous fixed bed reactor. In the present review the main synthetic strategies towards the preparation of supported Lewis acidic and Brønsted acidic ILs are summarised. The most important characterisation methods and structural features of the supported ionic liquids are presented. Their efficiency in catalytic reactions is discussed with special emphasis on their recyclability.

  18. Free-standing hierarchical α-MnO2@CuO membrane for catalytic filtration degradation of organic pollutants.

    Science.gov (United States)

    Luo, Xinsheng; Liang, Heng; Qu, Fangshu; Ding, An; Cheng, Xiaoxiang; Tang, Chuyang Y; Li, Guibai

    2018-06-01

    Catalytic membrane, due to its compact reactor assembling, high catalytic performance as well as low energy consumption, has proved to be more attractive for wastewater treatment. In this work, a free-standing α-MnO 2 @CuO membrane with hierarchical nanostructures was prepared and evaluated as the catalytic membrane to generate radicals from peroxymonosulfate (PMS) for the oxidative degradation of organic dyes in aqueous solution. Benefiting from the high mass transport efficiency and the hierarchical nanostructures, a superior catalytic activity of the membrane was observed for organic dyes degradation. As a typical organic dye, more than 99% of methylene blue (MB) was degraded within 0.23 s using dead-end filtration cell. The effects of flow rate, PMS concentration and buffer solution on MB degradation were further investigated. Besides MB, the catalytic membrane also showed excellent performance for the removal of other dyes, such as congo red, methyl orange, rhodamine B, acid chrome blue K and malachite green. Moreover, the mechanism study indicated that OH and SO 4 - generated from the interaction between PMS and Mn/Cu species with different oxidation states mainly accounted for the dyes degradation. The catalytic filtration process using α-MnO 2 @CuO catalytic membrane could provide a novel method for wastewater purification with high efficiency and low energy consumption. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Catalytic degradation of Acid Orange 7 by manganese oxide octahedral molecular sieves with peroxymonosulfate under visible light irradiation.

    Science.gov (United States)

    Duan, Lian; Sun, Binzhe; Wei, Mingyu; Luo, Shilu; Pan, Fei; Xu, Aihua; Li, Xiaoxia

    2015-03-21

    In this paper, the photodegradation of Acid Orange 7 (AO7) in aqueous solutions with peroxymonosulfate (PMS) was studied with manganese oxide octahedral molecular sieves (OMS-2) as the catalyst. The activities of different systems including OMS-2 under visible light irradiation (OMS-2/Vis), OMS-2/PMS and OMS-2/PMS/Vis were evaluated. It was found that the efficiency of OMS-2/PMS was much higher than that of OMS-2/Vis and could be further enhanced by visible light irradiation. The catalyst also exhibited stable performance for multiple runs. Results from ESR and XPS analyses suggested that the highly catalytic activity of the OMS-2/PMS/Vis system possible involved the activation of PMS to sulfate radicals meditated by the redox pair of Mn(IV)/Mn(III) and Mn(III)/Mn(II), while in the OMS-2/PMS system, only the redox reaction between Mn(IV)/Mn(III) occurred. Several operational parameters, such as dye concentration, catalyst load, PMS concentration and solution pH, affected the degradation of AO7. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Catalytic Liquefaction of Humin Substances from Sugar Biorefineries with Pt/C in 2-Propanol

    NARCIS (Netherlands)

    Wang, Y.; Agarwal, S.; Heeres, H. J.

    The catalytic liquefaction of humins, the solid byproduct from the conversion of C6 sugars (glucose, fructose) to S-hydroxymethylfurfural (HMF) and levulinic acid (LA), using a supported Pt/C catalyst in isopropanol (IPA) as the solvent was investigated. At bench mark conditions (400 degrees C, 7 h,

  1. Catalytic residues Lys197 and Arg199 of Bacillus subtilis phosphoribosyl diphosphate synthase. Alanine-scanning mutagenesis of the flexible catalytic loop

    DEFF Research Database (Denmark)

    Hove-Jensen, Bjarne; Bentsen, Ann-Kristin K; Harlow, Kenneth W

    2005-01-01

    Eleven of the codons specifying the amino acids of the flexible catalytic loop [KRRPRPNVAEVM(197-208)] of Bacillus subtilis phosphoribosyl diphosphate synthase have been changed individually to specify alanine. The resulting variant enzyme forms, as well as the wildtype enzyme, were produced...... in an Escherichia coli strain lacking endogenous phosphoribosyl diphosphate synthase activity and purified to near homogeneity. The B. subtilis phosphoribosyl diphosphate synthase mutant variants K197A and R199A were studied in detail. The physical properties of the two enzymes were similar to those of the wildtype...

  2. Catalytic distillation structure

    Science.gov (United States)

    Smith, L.A. Jr.

    1984-04-17

    Catalytic distillation structure is described for use in reaction distillation columns, and provides reaction sites and distillation structure consisting of a catalyst component and a resilient component intimately associated therewith. The resilient component has at least about 70 volume % open space and is present with the catalyst component in an amount such that the catalytic distillation structure consists of at least 10 volume % open space. 10 figs.

  3. The template-assisted electrodeposition of platinum nanowires for catalytic applications

    Directory of Open Access Journals (Sweden)

    Soha Mohajeri

    2018-05-01

    Full Text Available Template-assisted electrodeposition technique was applied to synthesize platinum nanowires (Pt NWs on polycarbonate templates (PCT with pore diameters of 15, 50, and 100 nm for catalytic applications. Influences of sulfuric acid added to the electrolyte, different potential scanning rates and different pore diameters of templates on the electrodeposition process of Pt NWs were investigated by electrochemical techniques, including voltammetry and chronoamperometry methods. It was confirmed that at lower scan rates and in acidic solutions, electrodeposition of platinum on templates with larger pores is controlled by diffusion. The potential range for deposition of Pt NWs was determined and the potentiostatic technique was utilized by applying various potentials of different durations to fabricate the NWs. The morphological characteristics of Pt NWs were examined using the scanning electron microscopy (SEM. It was shown that the growth of Pt NWs on PCT 50 nm followed a pine-tree pattern, while the Pt NWs grew spherically on PCT 100 nm. The uniform and compact shape of Pt NWs was verified by the transmission electron microscopy (TEM. The catalytic activities of the prepared Pt NWs with the same exchanged charge density for hydrogen adsorption/desorption and methanol oxidation reactions were determined by the cyclic voltammetry (CV testing, and the superior electrocatalytic performance was detected for Pt NWs prepared on PCT 50 nm. This enhanced catalytic activity was attributed to the higher surface-to-volume ratio, larger electrochemical active surface area and higher density of exposed active sites accessible on the pine-tree morphology of these Pt NWs compared to the spherical structure of Pt NWs fabricated on PCT 100 nm. This makes Pt NWs prepared on PCT 50 nm to be a promising catalyst for direct methanol fuel cells (DMFCs.

  4. Supported zirconium sulfate on carbon nanotubes as water-tolerant solid acid catalyst

    International Nuclear Information System (INIS)

    Juan, Joon Ching; Jiang Yajie; Meng Xiujuan; Cao Weiliang; Yarmo, Mohd Ambar; Zhang Jingchang

    2007-01-01

    A new solid acid of zirconium sulfate (CZ) was successfully supported on carbon nanotube (CNT) for esterification reaction. Preparation conditions of the supported CZ have been investigated, to obtain highest catalytic activity for esterification reaction. XRD, TEM, BET, X-ray photoelectron spectra (XPS) and in situ FTIR analysis has also been carried out to understand the characteristics of the catalyst. In the esterification of acrylic acid with n-octanol, the supported CZ exhibited high catalytic activity and stability. The catalytic activity was nearly unchanged during four times of reuse. XRD and TEM analysis indicated that CZ was finely dispersed on CNT. XPS analysis shows that the CZ species was preserved and the chemical environment of the CZ has changed after loaded on CNT. This finding show that CNT as CZ support is an efficient water-tolerant solid acid

  5. A new green process for biodiesel production from waste oils via catalytic distillation using a solid acid catalyst – Modeling, economic and environmental analysis

    Directory of Open Access Journals (Sweden)

    Aashish Gaurav

    2016-04-01

    Full Text Available The challenges in the chemical processing industry today are environmental concerns, energy and capital costs. Catalytic distillation (CD is a green reactor technology which combines a catalytic reaction and separation via distillation in the same distillation column. Utilization of CD in chemical process development could result in capital and energy savings, and the reduction of greenhouse gases. The efficacy of CD and the economic merits, in terms of energy and equipment savings, brought by CD for the production of biodiesel from waste oil such as yellow grease is quantified. Process flow sheets for industrial routes for an annual production of 10 million gallon ASTM purity biodiesel in a conventional process (reactor followed by distillation and CD configurations are modeled in Aspen Plus. Material and energy flows, as well as sized unit operation blocks, are used to conduct an economic assessment of each process. Total capital investment, total operating and utility costs are calculated for each process. The waste oil feedstock is yellow grease containing both triglyceride and free fatty acid. Both transesterification and esterification reactions are considered in the process simulations. Results show a significant advantage of CD compared to a conventional biodiesel processes due to the reduction of distillation columns, waste streams and greenhouse gas emissions. The significant savings in capital and energy costs together with the reduction of greenhouse gases demonstrate that process intensification via CD is a feasible and new green process for the biodiesel production from waste oils. Keywords: Yellow grease, Catalytic distillation, Aspen plus economic analyzer, Process intensification

  6. Study on Pt-structured anodic alumina catalysts for catalytic combustion of toluene: Effects of competitive adsorbents and competitive impregnation methods

    Science.gov (United States)

    Zhang, Qi; Luan, Hongjuan; Li, Tao; Wu, Yongqiang; Ni, Yanhui

    2016-01-01

    Novel competitive impregnation methods were used to prepare high dispersion Pt-structured anodic alumina catalysts. It is found that competitive adsorbents owning different acidity result in different Pt loading amount and also exert great effects on Pt distribution, particle size and redox ability. The suitable adsorption ability of lactic acid led to its best activity for catalytic combustion of toluene. Co-competitive and pre-competitive impregnation methods were also compared and the mechanisms of two competitive methods were proposed. Co-competitive impregnation made Pt distribute more uniformly through pore channels and resulted in better catalytic activity, because of the weaker spatial constraint effect of lactic acid. Furthermore, the optimized Pt-structured anodic alumina catalyst also showed a good chlorine-resistance under moisture atmosphere, because water could promote the reaction of dichloromethane (DCM) transformation and clean chloride by-products to release more active sites.

  7. Degradation pathway of malachite green in a novel dual-tank photoelectrochemical catalytic reactor

    International Nuclear Information System (INIS)

    Diao, Zenghui; Li, Mingyu; Zeng, Fanyin; Song, Lin; Qiu, Rongliang

    2013-01-01

    Highlights: • A novel dual-tank photoelectrochemical catalytic reactor was designed. • Malachite green degraded in bipolar double-effect mode. • Salt bridge replaced by a cation exchange membrane in the reactor. • Degradation pathways of malachite green in the cathode and anode tanks were similar. -- Abstract: A novel dual-tank photoelectrochemical catalytic reactor was designed to investigate the degradation pathway of malachite green. A thermally formed TiO 2 /Ti thin film electrode was used as photoanode, graphite was used as cathode, and a saturated calomel electrode was employed as the reference electrode in the reactor. In the reactor, the anode and cathode tanks were connected by a cation exchange membrane. Results showed that the decolorization ratio of malachite green in the anode and cathode was 98.5 and 96.5% after 120 min, respectively. Malachite green in the two anode and cathode tanks was oxidized, achieving the bipolar double effect. Malachite green in both the anode and cathode tanks exhibited similar catalytic degradation pathways. The double bond of the malachite green molecule was attacked by strong oxidative hydroxyl radicals, after which the organic compound was degraded by the two pathways into 4,4-bis(dimethylamino) benzophenone, 4-(dimethylamino) benzophenone, 4-(dimethylamino) phenol, and other intermediate products. Eventually, malachite green was degraded into oxalic acid as a small molecular organic acid, which was degraded by processes such as demethylation, deamination, nitration, substitution, addition, and other reactions

  8. Catalytic site identification—a web server to identify catalytic site structural matches throughout PDB

    Science.gov (United States)

    Kirshner, Daniel A.; Nilmeier, Jerome P.; Lightstone, Felice C.

    2013-01-01

    The catalytic site identification web server provides the innovative capability to find structural matches to a user-specified catalytic site among all Protein Data Bank proteins rapidly (in less than a minute). The server also can examine a user-specified protein structure or model to identify structural matches to a library of catalytic sites. Finally, the server provides a database of pre-calculated matches between all Protein Data Bank proteins and the library of catalytic sites. The database has been used to derive a set of hypothesized novel enzymatic function annotations. In all cases, matches and putative binding sites (protein structure and surfaces) can be visualized interactively online. The website can be accessed at http://catsid.llnl.gov. PMID:23680785

  9. Catalytic Reactive Distillation for the Esterification Process: Experimental and Simulation

    Directory of Open Access Journals (Sweden)

    M. Mallaiah

    2017-10-01

    Full Text Available In the present study, methyl acetate has been synthesized using esterification of acetic acid with methanol in a continuous packed bed catalytic reactive distillation col- umn in the presence of novel Indion 180 ion exchange resin solid catalyst. The experiments were conducted at various operating conditions like reboiler temperature, reflux ratio, and different feed flow rates of the acetic acid and methanol. The non-ideal pseudo-homogeneous kinetic model has been developed for esterification of acetic acid with methanol in the presence of Indion 180 catalyst. The developed kinetic model was used for the simulation of the reactive distillation column for the synthesis of methyl acetate using equilibrium stage model in Aspen Plus version 7.3. The simulation results were compared with experimental results, and found that there is a good agreement between them. The sensitivity analyses were also carried out for the different parameters of bot- tom flow rate, feed temperatures of acetic acid and methanol, and feed flow rate of acetic acid and methanol.

  10. Dimerization interface of 3-hydroxyacyl-CoA dehydrogenase tunes the formation of its catalytic intermediate.

    Directory of Open Access Journals (Sweden)

    Yingzhi Xu

    Full Text Available 3-Hydroxyacyl-CoA dehydrogenase (HAD, EC 1.1.1.35 is a homodimeric enzyme localized in the mitochondrial matrix, which catalyzes the third step in fatty acid β-oxidation. The crystal structures of human HAD and subsequent complexes with cofactor/substrate enabled better understanding of HAD catalytic mechanism. However, numerous human diseases were found related to mutations at HAD dimerization interface that is away from the catalytic pocket. The role of HAD dimerization in its catalytic activity needs to be elucidated. Here, we solved the crystal structure of Caenorhabditis elegans HAD (cHAD that is highly conserved to human HAD. Even though the cHAD mutants (R204A, Y209A and R204A/Y209A with attenuated interactions on the dimerization interface still maintain a dimerization form, their enzymatic activities significantly decrease compared to that of the wild type. Such reduced activities are in consistency with the reduced ratios of the catalytic intermediate formation. Further molecular dynamics simulations results reveal that the alteration of the dimerization interface will increase the fluctuation of a distal region (a.a. 60-80 that plays an important role in the substrate binding. The increased fluctuation decreases the stability of the catalytic intermediate formation, and therefore the enzymatic activity is attenuated. Our study reveals the molecular mechanism about the essential role of the HAD dimerization interface in its catalytic activity via allosteric effects.

  11. Nd(III) and Dy(III) coordination compounds based on 1H-tetrazolate-5-acetic acid ligands: Synthesis, crystal structures and catalytic properties

    Energy Technology Data Exchange (ETDEWEB)

    Li Qiaoyun; Chen Dianyu; He Minghua [Jiangsu Laboratory of Advanced Functional Materials, Department of Chemistry and Materials Engineering, Changshu Institute of Technology, Changshu 215500, Jiangsu (China); Yang Gaowen, E-mail: ygwsx@126.com [Jiangsu Laboratory of Advanced Functional Materials, Department of Chemistry and Materials Engineering, Changshu Institute of Technology, Changshu 215500, Jiangsu (China); Shen Lei; Zhai Chun; Shen Wei; Gu Kun; Zhao Jingjing [Jiangsu Laboratory of Advanced Functional Materials, Department of Chemistry and Materials Engineering, Changshu Institute of Technology, Changshu 215500, Jiangsu (China)

    2012-06-15

    Reactions of 1H-tetrazolate-5-acetic acid(H{sub 2}tza) with Nd(NO{sub 3}){sub 3}{center_dot}6H{sub 2}O or Dy(NO{sub 3}){sub 3}{center_dot}6H{sub 2}O with the presence of KOH under solvothermal conditions, produced two new coordination compounds, [M{sub 2}(tza){sub 3}(H{sub 2}O){sub 6}]{center_dot}2H{sub 2}O [M=Nd(1), Dy(2)]. Both compounds were structurally characterized by elemental analysis, IR spectroscopy and single-crystal X-ray diffraction. Compounds 1 and 2 reveal 1D structures via bridging tza as linker. Furthermore, the compounds 1 and 2 showed a specific and good catalytic behavior for the polymerization of styrene, and the polymerization showed controlled characteristics. - Graphical Abstract: Two new coordination compounds, [M{sub 2}(tza){sub 3}(H{sub 2}O){sub 6}]{center_dot}2H{sub 2}O [M=Nd(1), Dy(2)] have been synthesis. 1 and 2 reveal 1D structures via bridging tza as linker, and showed a specific and good catalytic behavior for the polymerization of styrene. Highlights: Black-Right-Pointing-Pointer we have reported two novel compounds formed by H{sub 2}tza and Nd(III) or Dy(III). Black-Right-Pointing-Pointer Compounds 1 and 2 were found to have catalysis property for the photo-polymerization of styrene. Black-Right-Pointing-Pointer The high molecular weight polymers with narrow molecular weight distributions were obtained.

  12. Catalyst Particles for Fluid Catalytic Cracking Visualized at the Individual Particle Level by Micro-Spectroscopy

    NARCIS (Netherlands)

    Buurmans, I.L.C.

    2011-01-01

    In this PhD research the investigation of the reactivity and acidity of Fluid Catalytic Cracking (FCC) catalysts at the level of an individual catalyst particles is described. A range of micro-spectroscopic techniques has been applied to visualize both the active zeolite component within the

  13. Sulfated Zirconia as Alkali-Resistant Support for Catalytic NOx Removal

    DEFF Research Database (Denmark)

    The use of bio-fuels as alternatives to traditional fossil fuels has attracted much attention recent years since bio-fuels belong to a family of renewable types of energy sources and do not contribute to the green-house effect. Selective catalytic reduction (SCR) of NOx with ammonia as reductant ...... interact with potassium stronger than active metal species. Among potential carriers, sulfated zirconia is of high interest because its acidic and textural properties can be modified by varying preparation conditions....

  14. Hydrogen production via catalytic steam reforming of fast pyrolysis oil fractions

    International Nuclear Information System (INIS)

    Wang, D.; Czernik, S.; Montane, D.; Mann, M.; Chornet, E.

    1997-01-01

    Hydrogen is the prototype of the environmentally cleanest fuel of interest for power generation using fuel cells, and as a co-adjuvant or autonomous transportation fuel in internal combustion engines. The conversion of biomass to hydrogen can be carried out through two distinct thermochemical strategies: (a) gasification followed by shift conversion; (b) catalytic steam reforming and shift conversion of specific fractions derived from fast pyrolysis and aqueous/steam processes of biomass. This paper shows that fast pyrolysis of biomass results in a bio-oil that can be adequately fractionated into valuable co-products leaving as by-product an aqueous fraction containing soluble organics (a mixture of alcohols, aldehydes and acids). This fraction can be converted to hydrogen by catalytic steam reforming followed by a shift conversion step. The methods used, the yields obtained and their economic significance will be discussed. (author)

  15. H2CAP - Hydrogen assisted catalytic biomass pyrolysis for green fuels

    DEFF Research Database (Denmark)

    Arndal, Trine Marie Hartmann; Høj, Martin; Jensen, Peter Arendt

    2014-01-01

    Pyrolysis of biomass produces a high yield of condensable oil at moderate temperature and low pressure.This bio-oil has adverse properties such as high oxygen and water contents, high acidity and immiscibility with fossil hydrocarbons. Catalytic hydrodeoxygenation (HDO) is a promising technology...... that can be used to upgrade the crude bio-oil to fuel-grade oil. The development of the HDO process is challenged by rapid catalyst deactivation, instability of the pyrolysis oil, poorly investigated reaction conditions and a high complexity and variability of the input oil composition. However, continuous...... catalytic hydropyrolysis coupled with downstream HDO of the pyrolysis vapors before condensation shows promise (Figure 1). A bench scale experimental setup will be constructed for the continuous conversion of solid biomass (100g /h) to low oxygen, fuel-grade bio-oil. The aim is to provide a proof...

  16. Catalytic Transfer Hydrogenation of Furfural to Furfuryl Alcohol with Recyclable Al-Zr@Fe Mixed Oxides

    DEFF Research Database (Denmark)

    He, Jian; Li, Hu; Riisager, Anders

    2017-01-01

    A series of magnetic, acid/base bifunctional Al–Zr@Fe3O4 catalysts were successfully prepared by a facile coprecipitation method and utilized in the catalytic transfer hydrogenation (CTH) of furfural to furfuryl alcohol with 2-propanol as hydrogen source. The physicochemical properties and morpho......A series of magnetic, acid/base bifunctional Al–Zr@Fe3O4 catalysts were successfully prepared by a facile coprecipitation method and utilized in the catalytic transfer hydrogenation (CTH) of furfural to furfuryl alcohol with 2-propanol as hydrogen source. The physicochemical properties...... with a Al3+/Zr4+/Fe3O4 molar ratio of 21:9:3 was found to exhibit a high furfuryl alcohol yield of 90.5 % in the CTH from furfural at 180 °C after 4 h with a comparatively low activation energy of 45.3 kJ mol−1, as calculated from the Arrhenius equation. Moreover, leaching and recyclability tests confirmed...

  17. Simultaneous pore enlargement and introduction of highly dispersed Fe active sites in MSNs for enhanced catalytic activity

    International Nuclear Information System (INIS)

    Gu Jinlou; Dong Xu; Elangovan, S.P.; Li Yongsheng; Zhao Wenru; Iijima, Toshio; Yamazaki, Yasuo; Shi Jianlin

    2012-01-01

    An effective post-hydrothermal treatment strategy has been developed to dope highly dispersed iron catalytical centers into the framework of mesoporous silica, to keep the particle size in nanometric scale, and in the meanwhile, to expand the pore size of the synthesized mesoporous silica nanoparticles (MSNs). Characterization techniques such as XRD, BET, SEM and TEM support that the synthesized samples are long period ordered with particles size about 100 nm and a relatively large pore size of ca. 3.5 nm. UV–vis, XPS and EPR measurements demonstrate that the introduced iron active centers are highly dispersed in a coordinatively unsaturated status. NH 3 -TPD verifies that the acid amount of iron-doped MSNs is quite high. The synthesized nanocatalysts show an excellent catalytic performance for benzylation of benzene by benzyl chloride, and they present relatively higher yield and selectivity to diphenylmethane with a lower iron content and much shorter reaction time. - Graphical abstract: Uniform MSNs with iron active centers and large pore size have been prepared by a newly developed strategy, which demonstrates enhanced catalytic performance for benzylation of benzene by benzyl chloride. Highlights: ► Iron species were introduced into the framework of mesoporous silica nanoparticles with uniform dispersion. ► The pore sizes of the synthesized nanocatalysts were expanded. ► The acidic site quantities were quite high and the acidic centers were accessible. ► The nanocatalysts presented higher yield and selectivity to diphenylmethane with significantly lower Fe content.

  18. Enhanced catalytic and dopamine sensing properties of electrochemically reduced conducting polymer nanocomposite doped with pure graphene oxide.

    Science.gov (United States)

    Wang, Wenting; Xu, Guiyun; Cui, Xinyan Tracy; Sheng, Ge; Luo, Xiliang

    2014-08-15

    Significantly enhanced catalytic activity of a nanocomposite composed of conducting polymer poly (3,4-ethylenedioxythiophene) (PEDOT) doped with graphene oxide (GO) was achieved through a simple electrochemical reduction process. The nanocomposite (PEDOT/GO) was electrodeposited on an electrode and followed by electrochemical reduction, and the obtained reduced nanocomposite (PEDOT/RGO) modified electrode exhibited lowered electrochemical impedance and excellent electrocatalytic activity towards the oxidation of dopamine. Based on the excellent catalytic property of PEDOT/RGO, an electrochemical sensor capable of sensitive and selective detection of DA was developed. The fabricated sensor can detect DA in a wide linear range from 0.1 to 175μM, with a detection limit of 39nM, and it is free from common interferences such as uric acid and ascorbic acid. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Oxidation of aromatic alcohols on zeolite-encapsulated copper amino acid complexes

    Energy Technology Data Exchange (ETDEWEB)

    Ernst, S.; Teixeira Florencio, J.M. [Kaiserslautern Univ. (Germany). Dept. of Chemistry, Chemical Technology

    1998-12-31

    Copper complexes of the amino acids histidine, arginine and lysine have been introduced into the supercages of zeolite Y and, for the first time, into the large intracrystalline cavities of zeolites EMT and MCM-22. The resulting host/guest compounds are characterized by X-ray powder diffraction, UV/VIS-spectroscopy in the diffuse reflectance mode and by catalytic tests in the liquid-phase oxidation of aromatic alcohols (viz. benzyl alcohol, 2- and 3-methylbenzyl alcohol and 2,5-dimethylbenzyl alcohol) with tertiary-butylhydroperoxide as oxidant. It was observed that intracrystalline copper-amino acid complexes possess remarkable catalytic activity, yielding the corresponding aromatic aldehydes and acids. (orig.)

  20. Method of fabricating a catalytic structure

    Science.gov (United States)

    Rollins, Harry W [Idaho Falls, ID; Petkovic, Lucia M [Idaho Falls, ID; Ginosar, Daniel M [Idaho Falls, ID

    2009-09-22

    A precursor to a catalytic structure comprising zinc oxide and copper oxide. The zinc oxide has a sheet-like morphology or a spherical morphology and the copper oxide comprises particles of copper oxide. The copper oxide is reduced to copper, producing the catalytic structure. The catalytic structure is fabricated by a hydrothermal process. A reaction mixture comprising a zinc salt, a copper salt, a hydroxyl ion source, and a structure-directing agent is formed. The reaction mixture is heated under confined volume conditions to produce the precursor. The copper oxide in the precursor is reduced to copper. A method of hydrogenating a carbon oxide using the catalytic structure is also disclosed, as is a system that includes the catalytic structure.

  1. Degradation of paracetamol by catalytic wet air oxidation and sequential adsorption - Catalytic wet air oxidation on activated carbons.

    Science.gov (United States)

    Quesada-Peñate, I; Julcour-Lebigue, C; Jáuregui-Haza, U J; Wilhelm, A M; Delmas, H

    2012-06-30

    The concern about the fate of pharmaceutical products has raised owing to the increasing contamination of rivers, lakes and groundwater. The aim of this paper is to evaluate two different processes for paracetamol removal. The catalytic wet air oxidation (CWAO) of paracetamol on activated carbon was investigated both as a water treatment technique using an autoclave reactor and as a regenerative treatment of the carbon after adsorption in a sequential fixed bed process. Three activated carbons (ACs) from different source materials were used as catalysts: two microporous basic ACs (S23 and C1) and a meso- and micro-porous acidic one (L27). During the first CWAO experiment the adsorption capacity and catalytic performance of fresh S23 and C1 were higher than those of fresh L27 despite its higher surface area. This situation changed after AC reuse, as finally L27 gave the best results after five CWAO cycles. Respirometry tests with activated sludge revealed that in the studied conditions the use of CWAO enhanced the aerobic biodegradability of the effluent. In the ADOX process L27 also showed better oxidation performances and regeneration efficiency. This different ageing was examined through AC physico-chemical properties. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Graphene oxide for acid catalyzed-reactions: Effect of drying process

    Science.gov (United States)

    Gong, H. P.; Hua, W. M.; Yue, Y. H.; Gao, Z.

    2017-03-01

    Graphene oxides (GOs) were prepared by Hummers method through various drying processes, and characterized by XRD, SEM, FTIR, XPS and N2 adsorption. Their acidities were measured using potentiometric titration and acid-base titration. The catalytic properties were investigated in the alkylation of anisole with benzyl alcohol and transesterification of triacetin with methanol. GOs are active catalysts for both reaction, whose activity is greatly affected by their drying processes. Vacuum drying GO exhibits the best performance in transesterification while freezing drying GO is most active for alkylation. The excellent catalytic behavior comes from abundant surface acid sites as well as proper surface functional groups, which can be obtained by selecting appropriate drying process.

  3. Effect of support on the catalytic activity of manganese oxide catalyts for toluene combustion

    International Nuclear Information System (INIS)

    Pozan, Gulin Selda

    2012-01-01

    Highlights: ► α-Al 2 O 3 , obtained from Bohmite, as a support for enhancing of the activity. ► The support material for catalytic oxidation. ► The manganese state and oxygen species effect on the catalytic combustion reaction. - Abstract: The aim of this work was to study combustion of toluene (1000 ppm) over MnO 2 modified with different supports. α-Al 2 O 3 and γ-Al 2 O 3 obtained from Boehmite, γ-Al 2 O 3 (commercial), SiO 2 , TiO 2 and ZrO 2 were used as commercial support materials. In view of potential interest of this process, the influence of support material on the catalytic performance was discussed. The deposition of 9.5MnO 2 was performed by impregnation over support. The catalysts were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), temperature programmed reduction and oxidation (TPR/TPO) and thermogravimetric analysis (TGA). The catalytic tests were carried out at atmospheric pressure in a fixed-bed flow reactor. 9.5MnO 2 /α-Al 2 O 3 (B) (synthesized from Boehmite) catalyst exhibits the highest catalytic activity, over which the toluene conversion was up to 90% at a temperature of 289 °C. Considering all the characterization and reaction data reported in this study, it was concluded that the manganese state and oxygen species played an important role in the catalytic activity.

  4. Catalytic Mechanism of Nitrile Hydratase Proposed by Time-resolved X-ray Crystallography Using a Novel Substrate, tert-Butylisonitrile*S⃞

    Science.gov (United States)

    Hashimoto, Koichi; Suzuki, Hiroyuki; Taniguchi, Kayoko; Noguchi, Takumi; Yohda, Masafumi; Odaka, Masafumi

    2008-01-01

    Nitrile hydratases (NHases) have an unusual iron or cobalt catalytic center with two oxidized cysteine ligands, cysteine-sulfinic acid and cysteine-sulfenic acid, catalyzing the hydration of nitriles to amides. Recently, we found that the NHase of Rhodococcus erythropolis N771 exhibited an additional catalytic activity, converting tert-butylisonitrile (tBuNC) to tert-butylamine. Taking advantage of the slow reactivity of tBuNC and the photoreactivity of nitrosylated NHase, we present the first structural evidence for the catalytic mechanism of NHase with time-resolved x-ray crystallography. By monitoring the reaction with attenuated total reflectance-Fourier transform infrared spectroscopy, the product from the isonitrile carbon was identified as a CO molecule. Crystals of nitrosylated inactive NHase were soaked with tBuNC. The catalytic reaction was initiated by photo-induced denitrosylation and stopped by flash cooling. tBuNC was first trapped at the hydrophobic pocket above the iron center and then coordinated to the iron ion at 120 min. At 440 min, the electron density of tBuNC was significantly altered, and a new electron density was observed near the isonitrile carbon as well as the sulfenate oxygen of αCys114. These results demonstrate that the substrate was coordinated to the iron and then attacked by a solvent molecule activated by αCys114-SOH. PMID:18948265

  5. Catalytic Activity of Sulfated and Phosphated Catalysts towards the Synthesis of Substituted Coumarin

    Directory of Open Access Journals (Sweden)

    Nagi R. E. Radwan

    2018-01-01

    Full Text Available New modified acidic catalysts were prepared from the treatment of silica, titania and silica prepared from hydrolyzed tetraethyl orthosilicate (TEOS with sulfuric and phosphoric acid. The sulfated and phosphated silica synthesized from TEOS were calcined at 450 and 650 °C. These catalysts were characterized by X-ray diffraction (XRD, Fourier-transform infrared spectroscopy (FTIR, transmission electron microscope (TEM, and scanning electron microscope (SEM. The surface areas, total pore volume, and mean pore radius of the acidic catalysts were investigated, while the pore size distribution was determined by the Barrett, Joyner and Halenda (BJH method. The catalytic activity of the sulfated and phosphated silica and/or titania were examined with the Pechmann condensation reaction, in which different phenols reacted with ethyl acetoacetate as a neat reaction to obtain the corresponding coumarin derivatives. The results indicated that the treatment of the catalysts with sulfuric or phosphoric acid led to a decrease in the phases’ crystallinity to a certain degree. The morphology and the structure of the acidified catalysts were examined and their particle size was calculated. Furthermore, the amount of the used catalysts played a vital role in controlling the formation of the products as well as their performance was manipulated by the number and nature of the active acidic sites on their surfaces. The obtained results suggested that the highest catalytic conversion of the reaction was attained at 20 wt % of the catalyst and no further increase in the product yield was detected when the amount of catalyst exceeded this value. Meanwhile the phenol molecules were a key feature in obtaining the final product.

  6. Preparation of carbon nanotube-neodymium oxide composite and research on its catalytic performance

    International Nuclear Information System (INIS)

    Zhao Lei; Wang Zhihua; Han Dongmei; Tao Dongliang; Guo Guangsheng

    2009-01-01

    Carbon Nanotube-Neodymium Oxide (CNT-Nd 2 O 3 ) composite was prepared by using acid treated carbon nanotubes (CNTs) and neodymium nitrate in the presence of sodium dodecyl sulfate and ammonia liquid. Techniques of transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and differential thermal analysis (DTA) are used to characterize the morphology, structure, composition and catalytic property of the CNT-Nd 2 O 3 composite. The experimental results show that the Nd 2 O 3 nanoparticles, which have an average diameter of about 30-40 nm, are loaded on the surface of carbon nanotube. Compared with pure Nd 2 O 3 nanorods, the CNT-Nd 2 O 3 composite can catalyze the thermal decomposition of ammonium perchlorate more effectively. The sampling methods of the experimental samples made a difference on the catalytic experiment results, and the best catalytic result was obtained when de-ionized water served as the solvent of ammonium perchlorate

  7. 31PHOSPHO-NMR DEMONSTRATION OF PHOSPHOCYSTEINE AS A CATALYTIC INTERMEDIATE ON THE ESCHERICHIA-COLI PHOSPHOTRANSFERASE SYSTEM EIIMTL

    NARCIS (Netherlands)

    MEYER, GH; KRUIZINGA, WH; TAMMINGA, KS; VANWEEGHEL, RP; ROBILLARD, GT; Pas, Hendrikus

    1991-01-01

    The mannitol-specific phosphotransferase system transport protein, Enzyme II(Mtl), contains two catalytically important phosphorylated amino acid residues, both present on the cytoplasmic part of the enzyme. Recently, this portion has been subcloned, purified, and shown to be an enzymatically active

  8. Peanut Shell-Derived Carbon Solid Acid with Large Surface Area and Its Application for the Catalytic Hydrolysis of Cyclohexyl Acetate

    Directory of Open Access Journals (Sweden)

    Wei Xue

    2016-10-01

    Full Text Available A carbon solid acid with large surface area (CSALA was prepared by partial carbonization of H3PO4 pre-treated peanut shells followed by sulfonation with concentrated H2SO4. The structure and acidity of CSALA were characterized by N2 adsorption–desorption, scanning electron microscopy (SEM, X-ray powder diffraction (XRD, 13C cross polarization (CP/magic angle spinning (MAS nuclear magnetic resonance (NMR, X-ray photoelectron spectroscopy (XPS, Fourier transform-infrared spectroscopy (FT-IR, titration, and elemental analysis. The results demonstrated that the CSALA was an amorphous carbon material with a surface area of 387.4 m2/g. SO3H groups formed on the surface with a density of 0.46 mmol/g, with 1.11 mmol/g of COOH and 0.39 mmol/g of phenolic OH. Densities of the latter two groups were notably greater than those observed on a carbon solid acid (CSA with a surface area of 10.1 m2/g. The CSALA catalyst showed better performance than the CSA for the hydrolysis of cyclohexyl acetate to cyclohexanol. Under optimal reaction conditions, cyclohexyl acetate conversion was 86.6% with 97.3% selectivity for cyclohexanol, while the results were 25.0% and 99.4%, respectively, catalyzed by CSA. The high activity of the CSALA could be attributed to its high density of COOH and large surface area. Moreover, the CSALA showed good reusability. Its catalytic activity decreased slightly during the first two cycles due to the leaching of polycyclic aromatic hydrocarbon-containing SO3H groups, and then remained constant during following uses.

  9. Liquid lipases for enzymatic concentration of n-3 polyunsaturated fatty acids in monoacylglycerols via ethanolysis: Catalytic specificity and parameterization.

    Science.gov (United States)

    He, Yongjin; Li, Jingbo; Kodali, Sitharam; Balle, Thomas; Chen, Bilian; Guo, Zheng

    2017-01-01

    This work examined catalytic specificity and fatty acid selectivity of five liquid lipases C. antarctica lipase A and B (CAL-A/B), and lipase TL (T. lanuginosus), Eversa Transfrom and NS in ethanolysis of fish oil with the aim to concentrate n-3 PUFAs into monoacylglycerols (MAGs) products. Lipase TL, Eversa Transform & NS entail a much faster reaction and produce higher MAGs yield (>30%); whereas CAL-A obtains the highest concentration of n-3 PUFAs/DHA/EPA into MAGs products (88.30%); followed by lipase NS (81.02%). 13 C NMR analysis indicates that CAL-B and lipase TL are sn-1,3 specific; but CAL-A and lipase Eversa Transform are non-regiospecific or weak sn-2 specific; which plausibly explains high enrichment effect of the latter two lipases. All liquid lipases are observed reusable for a certain times (lipase Eversa Transform up to 12 times), demonstrating their competitive advantage over immobilized form for industrial application because of their higher activity and cheaper operation cost. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Synthesis and characterization of 12-phosphotungstic acid supported on BEA zeolite

    Energy Technology Data Exchange (ETDEWEB)

    Jović, A.; Bajuk-Bogdanović, D.; Nedić Vasiljević, B. [Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade (Serbia); Milojević-Rakić, M., E-mail: maja@ffh.bg.ac.rs [Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade (Serbia); Krajišnik, D. [Department of Pharmaceutical Technology and Cosmetology, University of Belgrade-Faculty of Pharmacy, Vojvode Stepe 450, 11000 Belgrade (Serbia); Dondur, V. [Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade (Serbia); Popa, A. [Institute of Chemistry Timisoara, Bl. Mihai Viteazul 24, 300223 Timisoara (Romania); Uskoković-Marković, S. [Department of Analytical Chemistry, University of Belgrade-Faculty of Pharmacy, Vojvode Stepe 450, 11000 Belgrade (Serbia); Holclajtner-Antunović, I. [Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade (Serbia)

    2017-01-15

    An optimized synthetic route for obtaining heteropoly acid (HPA) species supported on BEA zeolite was applied, and different samples, comprising 20 to 50 wt% of 12-phosphotungstic acid (HPW) were prepared. The as-synthesized supported HPW were subjected to different post-synthesis routes, which involved calcination and ultrasound treatment. Characterization of these materials was performed by means of Scanning Electron Microscopy, zeta potential measurements, Infrared Spectroscopy and X-ray Powder Diffraction analysis. Results suggest strong interaction of HPW with the support and revealed that ultrasound treatment resulted in better dispersion of active phase and thus homogeneous morphology of the samples. The zeta potential was found to be dependent on the preparation procedure and HPW content in these materials, while higher HPW loadings induced its agglomeration. Catalytic activity of the synthesized materials was investigated in an ethanol dehydration reaction, where lower HPW loadings induced higher ethanol conversion. Acid sites distribution and accessibility for ethanol molecules were found to be more essential for catalytic activity than HPW loadings, i.e., amount of active sites present in these hybrid materials. - Highlights: • An optimized route for supporting heteropoly acid on beta zeolite is applied. • Ultrasound treatment of the composites gives dispersed morphology. • Lower heteropoly acid amount induces higher conversion in ethanol dehydration. • Acid sites distribution and accessibility for ethanol are essential for catalytic activity.

  11. Synthesis and characterization of 12-phosphotungstic acid supported on BEA zeolite

    International Nuclear Information System (INIS)

    Jović, A.; Bajuk-Bogdanović, D.; Nedić Vasiljević, B.; Milojević-Rakić, M.; Krajišnik, D.; Dondur, V.; Popa, A.; Uskoković-Marković, S.; Holclajtner-Antunović, I.

    2017-01-01

    An optimized synthetic route for obtaining heteropoly acid (HPA) species supported on BEA zeolite was applied, and different samples, comprising 20 to 50 wt% of 12-phosphotungstic acid (HPW) were prepared. The as-synthesized supported HPW were subjected to different post-synthesis routes, which involved calcination and ultrasound treatment. Characterization of these materials was performed by means of Scanning Electron Microscopy, zeta potential measurements, Infrared Spectroscopy and X-ray Powder Diffraction analysis. Results suggest strong interaction of HPW with the support and revealed that ultrasound treatment resulted in better dispersion of active phase and thus homogeneous morphology of the samples. The zeta potential was found to be dependent on the preparation procedure and HPW content in these materials, while higher HPW loadings induced its agglomeration. Catalytic activity of the synthesized materials was investigated in an ethanol dehydration reaction, where lower HPW loadings induced higher ethanol conversion. Acid sites distribution and accessibility for ethanol molecules were found to be more essential for catalytic activity than HPW loadings, i.e., amount of active sites present in these hybrid materials. - Highlights: • An optimized route for supporting heteropoly acid on beta zeolite is applied. • Ultrasound treatment of the composites gives dispersed morphology. • Lower heteropoly acid amount induces higher conversion in ethanol dehydration. • Acid sites distribution and accessibility for ethanol are essential for catalytic activity.

  12. Preparation, characterization and catalytic effects of copper oxalate nanocrystals

    International Nuclear Information System (INIS)

    Singh, Gurdip; Kapoor, Inder Pal Singh; Dubey, Reena; Srivastava, Pratibha

    2012-01-01

    Graphical abstract: Prepared copper oxalate nanocrystals were characterized by FE-SEM and bright field TEM micrographs. Its catalytic activity was evaluated on the thermal decomposition of ammonium perchlorate using TG and TG-DSC techniques. Highlights: ► Preparation of nanocrystals (∼9.0 nm) of copper oxalate using Cu(NO 3 ) 2 ·2H 2 O, oxalic acid and acetone under thermal conditions. ► Method is simple and novel. ► Characterization using XRD, SEM, TEM, HRTEM and ED pattern. ► Catalytic activity of copper oxalate nanocrystals on AP thermal decomposition using thermal techniques (TG, TG-DSC and ignition delay). ► Kinetics of thermal decomposition of AP + CONs using isoconversional and model fitting kinetic approaches. - Abstract: Recent work has described the preparation and characterization of copper oxalate nanocrystals (CONs). It was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM) and electron diffraction pattern (ED). The catalytic activity of CONs on the thermal decomposition of ammonium perchlorate (AP) and composite solid propellants (CSPs) has been done by thermogravimetry (TG), differential scanning calorimetry (DSC) and ignition delay measurements. Burning rate of CSPs was also found to be enhanced in presence of copper oxalate nanocrystals. Kinetics of thermal decomposition of AP with and without CONs has also been investigated. The model free (isoconversional) and model-fitting kinetic approaches have been applied to data for isothermal TG decomposition.

  13. Oxidative decarboxylation of glycolic and phenylacetic acids with cerium(4) catalyzed by silver ions in the sulfuric acid media

    International Nuclear Information System (INIS)

    Venkatesvar Rao, G.; Nagardzhun Rao, Ch.; Sajprakash, P.K.

    1981-01-01

    Oxidative decarboxylation of glycolic and phenylacetic acids by cerium (4) in the presence of Ag + ions is studied. The Ce(4) order equals 1, glycolic acid order in the absence of a catalyst also equals 1 and is fractional (0.5) for a catalytic reaction. The phenylacetic acid order is fractional (0.75). The Ag + ion reaction order is fractional and constitutes 0.32 for glycolic and 0.36 for phenylacetic acids. The reaction mechanism is proposed [ru

  14. Preparation of a novel carbon-based solid acid from cassava stillage residue and its use for the esterification of free fatty acids in waste cooking oil.

    Science.gov (United States)

    Wang, Lingtao; Dong, Xiuqin; Jiang, Haoxi; Li, Guiming; Zhang, Minhua

    2014-04-01

    A novel carbon-based solid acid catalyst was prepared by the sulfonation of incompletely carbonized cassava stillage residue (CSR) with concentrated sulfuric acid, and employed to catalyze the esterification of methanol and free fatty acids (FFAs) in waste cooking oil (WCO). The effects of the carbonization and the sulfonation temperatures on the pore structure, acid density and catalytic activity of the CSR-derived catalysts were systematically investigated. Low temperature carbonization and high temperature sulfonation can cause the collapse of the carbon framework, while high temperature carbonization is not conducive to the attachment of SO3H groups on the surface. The catalyst showed high catalytic activity for esterification, and the acid value for WCO is reduced to below 2mg KOH/g after reaction. The activity of catalyst can be well maintained after five cycles. CSR can be considered a promising raw material for the production of a new eco-friendly solid acid catalyst. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Catalytic N{sub 2}O decomposition in a model tail gas from nitric acid plants; Decomposition catalytique du protoxyde d'azote dans un modele de gaz de queue produits par un atelier d'acide nitrique

    Energy Technology Data Exchange (ETDEWEB)

    Mul, G.; Xu, X.; Perez Ramirez, J.; Vaccaro, A.R.; Kapteijn, F.; Moulijn, J.A. [Delft University of Technology, Faculty of Chemical Technology and Materials Sciences, Delft (Netherlands)

    2001-07-01

    In this study direct catalytic decomposition of N{sub 2}O in simulated tail-gas from nitric acid plants, containing water, oxygen, NO{sub x}, was investigated. Three groups of catalysts were prepared: oxide-supported catalysts; zeolite-based catalysts; mixed oxides derived from hydrotalcites-like (HTLc) materials. The activity of these types of catalysts was tested in an advanced automated six-flow reactor system. Nobel metal (Ru, Rh) based catalysts, either supported on zeolites or ex-hydrotalcite compositions (Mg-Al or Co-Al mixed oxides), and Fe-ZSM-5 effectively decompose N{sub 2}O in tail-gas conditions at temperatures of about 400-450 deg C, typical for certain nitric acid plants. Catalysts active for tail gas temperatures of 230-250 deg C, typical for other nitric acid plants, were not found. This is mainly due to the dramatic negative effect of especially water and NO{sub x} on the conversion of N{sub 2}O. The negative effect of NO{sub x} observed for many catalysts might be related to the formation of surface nitrites and nitrates, blocking active sites for N{sub 2}O decomposition in the 200-300 deg C temperature range. (authors)

  16. HD-PTP is a catalytically inactive tyrosine phosphatase due to a conserved divergence in its phosphatase domain.

    Directory of Open Access Journals (Sweden)

    Marie-Claude Gingras

    Full Text Available The HD-PTP protein has been described as a tumor suppressor candidate and based on its amino acid sequence, categorized as a classical non-transmembrane protein tyrosine phosphatase (PTP. To date, no HD-PTP phosphorylated substrate has been identified and controversial results concerning its catalytic activity have been recently reported.Here we report a rigorous enzymatic analysis demonstrating that the HD-PTP protein does not harbor tyrosine phosphatase or lipid phosphatase activity using the highly sensitive DiFMUP substrate and a panel of different phosphatidylinositol phosphates. We found that HD-PTP tyrosine phosphatase inactivity is caused by an evolutionary conserved amino acid divergence of a key residue located in the HD-PTP phosphatase domain since its back mutation is sufficient to restore the HD-PTP tyrosine phosphatase activity. Moreover, in agreement with a tumor suppressor activity, HD-PTP expression leads to colony growth reduction in human cancer cell lines, independently of its catalytic PTP activity status.In summary, we demonstrate that HD-PTP is a catalytically inactive protein tyrosine phosphatase. As such, we identify one residue involved in its inactivation and show that its colony growth reduction activity is independent of its PTP activity status in human cancer cell lines.

  17. Differences in the catalytic mechanisms of mesophilic and thermophilic indole-3-glycerol phosphate synthase enzymes at their adaptive temperatures

    International Nuclear Information System (INIS)

    Zaccardi, Margot J.; Mannweiler, Olga; Boehr, David D.

    2012-01-01

    Highlights: ► Catalytic mechanisms of thermophilic–mesophilic enzymes may differ. ► Product release is rate-determining for thermophilic IGPS at low temperatures. ► But at higher temperatures, proton transfer from the general acid is rate-limiting. ► Rate-determining step is different still for mesophilic IGPS. ► Both chemical and physical steps of catalysis are important for temperature adaptation. -- Abstract: Thermophilic enzymes tend to be less catalytically-active at lower temperatures relative to their mesophilic counterparts, despite having very similar crystal structures. An often cited hypothesis for this general observation is that thermostable enzymes have evolved a more rigid tertiary structure in order to cope with their more extreme, natural environment, but they are also less flexible at lower temperatures, leading to their lower catalytic activity under mesophilic conditions. An alternative hypothesis, however, is that complementary thermophilic–mesophilic enzyme pairs simply operate through different evolutionary-optimized catalytic mechanisms. In this communication, we present evidence that while the steps of the catalytic mechanisms for mesophilic and thermophilic indole-3-glycerol phosphate synthase (IGPS) enzymes are fundamentally similar, the identity of the rate-determining step changes as a function of temperature. Our findings indicate that while product release is rate-determining at 25 °C for thermophilic IGPS, near its adaptive temperature (75 °C), a proton transfer event, involving a general acid, becomes rate-determining. The rate-determining steps for thermophilic and mesophilic IGPS enzymes are also different at their respective, adaptive temperatures with the mesophilic IGPS-catalyzed reaction being rate-limited before irreversible CO 2 release, and the thermophilic IGPS-catalyzed reaction being rate limited afterwards.

  18. Meso- and macroporous sulfonated starch solid acid catalyst for esterification of palm fatty acid

    Directory of Open Access Journals (Sweden)

    Ibrahim M. Lokman

    2016-03-01

    Full Text Available In the present work, a heterogeneous solid acid catalyst was successfully developed from starch. The catalyst was prepared by a significant two-step process; the initial step was incomplete carbonization of starch (ICS at 400 °C for 12 h and consequently followed by sulfonation process using concentrated H2SO4 to produce sulfonated-incomplete carbonized starch (ICS-SO3H. The characterization of the ICS-SO3H catalyst was done for chemical and physical properties such as X-ray diffraction (XRD, ammonia-temperature programmed desorption (NH3-TPD, surface area analysis, thermal gravimetric analysis (TGA, elemental analysis and morphology analysis by scanning electron microscope (SEM. BET results showed the structure of ICS-SO3H consists of meso- and macro-porous properties, which allowed high density of the SO3H group attached on its carbon networks. The catalytic activity of ICS-SO3H catalyst was determined by analyzing the catalyst performance to esterify palm fatty acid distillate (PFAD and sequentially produced methyl ester. The maximum free fatty acid (FFA conversion and FAME yield were as high as 94.6% and 90.4%, respectively, at 75 °C using 10:1 methanol-to-PFAD molar ratio and 2 wt.% of catalyst within 3 h. The catalyst has sufficient potential to recycle up to 6 reactions without reactivation step and any remarkable loss of catalytic activity. It revealed that the heterogeneous ICS-SO3H catalyst exhibits high stability, reusability and catalytic activity.

  19. Palladium Nanoparticle-Loaded Cellulose Paper: A Highly Efficient, Robust, and Recyclable Self-Assembled Composite Catalytic System.

    Science.gov (United States)

    Zheng, Guangchao; Kaefer, Katharina; Mourdikoudis, Stefanos; Polavarapu, Lakshminarayana; Vaz, Belén; Cartmell, Samantha E; Bouleghlimat, Azzedine; Buurma, Niklaas J; Yate, Luis; de Lera, Ángel R; Liz-Marzán, Luis M; Pastoriza-Santos, Isabel; Pérez-Juste, Jorge

    2015-01-15

    We present a novel strategy based on the immobilization of palladium nanoparticles (Pd NPs) on filter paper for development of a catalytic system with high efficiency and recyclability. Oleylamine-capped Pd nanoparticles, dispersed in an organic solvent, strongly adsorb on cellulose filter paper, which shows a great ability to wick fluids due to its microfiber structure. Strong van der Waals forces and hydrophobic interactions between the particles and the substrate lead to nanoparticle immobilization, with no desorption upon further immersion in any solvent. The prepared Pd NP-loaded paper substrates were tested for several model reactions such as the oxidative homocoupling of arylboronic acids, the Suzuki cross-coupling reaction, and nitro-to-amine reduction, and they display efficient catalytic activity and excellent recyclability and reusability. This approach of using NP-loaded paper substrates as reusable catalysts is expected to open doors for new types of catalytic support for practical applications.

  20. Degradation pathway of malachite green in a novel dual-tank photoelectrochemical catalytic reactor.

    Science.gov (United States)

    Diao, Zenghui; Li, Mingyu; Zeng, Fanyin; Song, Lin; Qiu, Rongliang

    2013-09-15

    A novel dual-tank photoelectrochemical catalytic reactor was designed to investigate the degradation pathway of malachite green. A thermally formed TiO₂/Ti thin film electrode was used as photoanode, graphite was used as cathode, and a saturated calomel electrode was employed as the reference electrode in the reactor. In the reactor, the anode and cathode tanks were connected by a cation exchange membrane. Results showed that the decolorization ratio of malachite green in the anode and cathode was 98.5 and 96.5% after 120 min, respectively. Malachite green in the two anode and cathode tanks was oxidized, achieving the bipolar double effect. Malachite green in both the anode and cathode tanks exhibited similar catalytic degradation pathways. The double bond of the malachite green molecule was attacked by strong oxidative hydroxyl radicals, after which the organic compound was degraded by the two pathways into 4,4-bis(dimethylamino) benzophenone, 4-(dimethylamino) benzophenone, 4-(dimethylamino) phenol, and other intermediate products. Eventually, malachite green was degraded into oxalic acid as a small molecular organic acid, which was degraded by processes such as demethylation, deamination, nitration, substitution, addition, and other reactions. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Communication: Towards catalytic nitric oxide reduction via oligomerization on boron doped graphene

    Energy Technology Data Exchange (ETDEWEB)

    Cantatore, Valentina, E-mail: valcan@chalmers.se; Panas, Itai [Department of Chemistry and Chemical Engineering, Energy & Materials, Chalmers University of Technology, Gothenburg (Sweden)

    2016-04-21

    We use density functional theory to describe a novel way for metal free catalytic reduction of nitric oxide NO utilizing boron doped graphene. The present study is based on the observation that boron doped graphene and O—N=N—O{sup −} act as Lewis acid-base pair allowing the graphene surface to act as a catalyst. The process implies electron assisted N=N bond formation prior to N—O dissociation. Two N{sub 2} + O{sub 2} product channels, one of which favoring N{sub 2}O formation, are envisaged as outcome of the catalytic process. Besides, we show also that the N{sub 2} + O{sub 2} formation pathways are contrasted by a side reaction that brings to N{sub 3}O{sub 3}{sup −} formation and decomposition into N{sub 2}O + NO{sub 2}{sup −}.

  2. Polyvinylpolypyrrolidone Supported Brønsted Acidic Catalyst for Esterification

    Directory of Open Access Journals (Sweden)

    Song Wang

    2016-01-01

    Full Text Available A polyvinylpolypyrrolidone (PVPP supported Brønsted acidic catalyst ([PVPP-BS]HSO4 was prepared by coupling SO3H-functionalized polyvinylpolypyrrolidone with H2SO4 in this work. After the characterization through FT-IR, FESEM, TG, BET, and elemental analysis, it was found that 1,4-butane sultone (BS and sulfuric acid reacted with PVPP and were immobilized on PVPP surface. The prepared [PVPP-BS]HSO4 catalyst shows high catalytic activity for a series of esterification reactions and could be separated from the reacted mixture easily. Moreover, this catalyst could be recycled and reused for six times without significant loss of catalytic performance.

  3. Catalytic amino acid production from biomass-derived intermediates

    KAUST Repository

    Deng, Weiping; Wang, Yunzhu; Zhang, Sui; Gupta, Krishna M.; Hü lsey, Max J.; Asakura, Hiroyuki; Liu, Lingmei; Han, Yu; Karp, Eric M.; Beckham, Gregg T.; Dyson, Paul J.; Jiang, Jianwen; Tanaka, Tsunehiro; Wang, Ye; Yan, Ning

    2018-01-01

    Amino acids are the building blocks for protein biosynthesis and find use in myriad industrial applications including in food for humans, in animal feed, and as precursors for bio-based plastics, among others. However, the development of efficient

  4. Efficient Lewis Acid Ionic Liquid-Catalyzed Synthesis of the Key Intermediate of Coenzyme Q10 under Microwave Irradiation

    Directory of Open Access Journals (Sweden)

    Thomas Efferth

    2010-12-01

    Full Text Available An efficient synthesis of a valuable intermediate of coenzyme Q10 by microwave-assisted Lewis acidic ionic liquid (IL-catalyzed Friedel-Crafts alkylation is reported. The acidity of six [Etpy]BF4-based ionic liquids was characterized by means of the FT-IR technique using acetonitrile as a molecular probe. The catalytic activities of these ionic liquids were correlated with their Lewis acidity. With increasing Lewis acid strength of the ionic liquids, their catalytic activity in the Friedel-Crafts reaction increased, except for [Etpy]BF4-AlCl3. The effects of the reaction system, the molar fraction of Lewis acid in the Lewis acid ILs and heating techniques were also investigated. Among the six Lewis acid ionic liquids tested [Etpy]BF4-ZnCl2 showed the best catalytic activity, with a yield of 89% after a very short reaction time (150 seconds. This procedure has the advantages of higher efficiency, better reusability of ILs, energy conservation and eco-friendliness. The method has practical value for preparation of CoQ10 on an industrial scale.

  5. Formation of hollow nanoshells in solution-based reactions via collision coalescence of nanobubble-particle systems

    Science.gov (United States)

    Vongehr, Sascha; Tang, Shaochun

    2016-06-01

    Research on hollow nanoshells has, for years, claimed to involve free, pre-existing nanobubbles as soft templates. It is a challenge to demonstrate this due to the difficulty of in situ observation during solution-based reactions. We show that no available free-bubble theory can describe the mysterious behavior of the bubble number density n. A new mechanism of collision coalescence of bubble-particle systems is suggested to form hollow nanoshells. By approximating relative velocity as ˜R -z (R is bubble radius), numerical simulations can reproduce the counterintuitive observations in the regime 1 synthesis of grain-monolayer thin, fractal-like incomplete, multi-metallic nanoshells with superior catalytic activity. The behaviors of n, R, and shell thickness h are closely reproduced by z = 1.6.

  6. Improved Processes to Remove Naphthenic Acids

    Energy Technology Data Exchange (ETDEWEB)

    Aihua Zhang; Qisheng Ma; Kangshi Wang; Yongchun Tang; William A. Goddard

    2005-12-09

    In the past three years, we followed the work plan as we suggested in the proposal and made every efforts to fulfill the project objectives. Based on our large amount of creative and productive work, including both of experimental and theoretic aspects, we received important technical breakthrough on naphthenic acid removal process and obtained deep insight on catalytic decarboxylation chemistry. In detail, we established an integrated methodology to serve for all of the experimental and theoretical work. Our experimental investigation results in discovery of four type effective catalysts to the reaction of decarboxylation of model carboxylic acid compounds. The adsorption experiment revealed the effectiveness of several solid materials to naphthenic acid adsorption and acidity reduction of crude oil, which can be either natural minerals or synthesized materials. The test with crude oil also received promising results, which can be potentially developed into a practical process for oil industry. The theoretical work predicted several possible catalytic decarboxylation mechanisms that would govern the decarboxylation pathways depending on the type of catalysts being used. The calculation for reaction activation energy was in good agreement with our experimental measurements.

  7. Photo catalytic reduction of benzophenone on TiO2: Effect of preparation method and reaction conditions

    International Nuclear Information System (INIS)

    Albiter E, E.; Valenzuela Z, M. A.; Alfaro H, S.; Flores V, S. O.; Rios B, O.; Gonzalez A, V. J.; Cordova R, I.

    2010-01-01

    The photo catalytic reduction of benzophenone was studied focussing on improving the yield to benzhydrol. TiO 2 was synthesized by means of a hydrothermal technique. TiO 2 (Degussa TiO 2 -P25) was used as a reference. Catalysts were characterized by X-ray diffraction and nitrogen physisorption. The photo catalytic reduction was carried out in a batch reactor at 25 C under nitrogen atmosphere, acetonitrile as solvent and isopropanol as electron donor. A 200 W Xe-Hg lamp (λ= 360 nm) was employed as irradiation source. The chemical composition of the reaction system was determined by HPLC. Structural and textural properties of the synthesized TiO 2 depended on the type of acid used during sol formation step. Using HCl, a higher specific surface area and narrower pore size distribution of TiO 2 was obtained in comparison with acetic acid. As expected, the photochemical reduction of benzophenone yielded benzopinacol as main product, whereas, benzhydrol is only produced in presence of TiO 2 (i.e. photo catalytic route). In general, the hydrothermally synthesized catalysts were less active and with a lower yield to benzhydrol. The optimal reaction conditions to highest values of benzhydrol yield (70-80%) were found at 2 g/L (catalyst loading) and 0.5 m M of initial concentration of benzophenone, using commercial TiO 2 -P25. (Author)

  8. Electro-catalytic oxidation of ethanol on platinum-iridium mixtures supported on glassy carbon

    International Nuclear Information System (INIS)

    Rodriguez, Henry; Hoyos Bibian

    2004-01-01

    Electro-catalytic oxidation of ethanol on platinum-iridium mixtures supported on glassy carbon was studied, in acid media at different temperatures and concentrations. During the maturation time of deposited iridium, the surface is covered by an irreversible oxide formation, which affects the behavior of the catalytic mixture. The Pt 7 0 Ir 3 0 and Pt 9 0 Ir 1 0 mixtures seem to be a little more active than the Pt/C electrode at potentials below 800 mV (vs. HRE). In all electrodes appears two reactions: partial ethanol oxidation to produce acetaldehyde (main path of reaction at low temperatures and high electrode coverage with ethanol adsorption residues) and the total oxidation to carbon dioxide which is considerable at potential above 800 mV and it is increased with increasing temperature

  9. Heterogeneous catalytic materials solid state chemistry, surface chemistry and catalytic behaviour

    CERN Document Server

    Busca, Guido

    2014-01-01

    Heterogeneous Catalytic Materials discusses experimental methods and the latest developments in three areas of research: heterogeneous catalysis; surface chemistry; and the chemistry of catalysts. Catalytic materials are those solids that allow the chemical reaction to occur efficiently and cost-effectively. This book provides you with all necessary information to synthesize, characterize, and relate the properties of a catalyst to its behavior, enabling you to select the appropriate catalyst for the process and reactor system. Oxides (used both as catalysts and as supports for cata

  10. Ultra-low Pt decorated PdFe Alloy Nanoparticles for Formic Acid Electro-oxidation

    International Nuclear Information System (INIS)

    Zhou, Yawei; Du, Chunyu; Han, Guokang; Gao, Yunzhi; Yin, Geping

    2016-01-01

    Highlights: • A cost-efficient way is used to prepare transition-noble metal alloy nanoparticles. • The Pd 50 Fe 50 /C catalyst shows excellent activity for formic acid oxidation (FAO). • Much activity enhancement of FAO is acquired by ultra-low Pt decorated Pd 50 Fe 50 . • A synergistic mechanism between Pt clusters and PdFe is proposed during the FAO. - Abstract: Palladium (Pd), has demonstrated promising electro-catalytic activity for formic acid oxidation, but suffers from extremely low abundance. Recently alloying with a transition metal has been considered as an effective approach to reducing the loading of Pd and enhancing the activity of Pd-based catalysts simultaneously. Herein, carbon supported PdFe nanoparticles (NPs) are synthesized at room temperature by using sodium borohydride as reducing agent and potassium ferrocyanide as Fe precursor. The Pd 50 Fe 50 alloy sample annealed at 900 °C for 1 h shows the best catalytic activity among Pd x Fe 1-x (x = 0.2, 0.4, 0.5, 0.6, and 0.8) towards formic acid oxidation. To further improve both catalytic activity and stability, the ultra-low Pt (0.09 wt %) decorated Pd 50 Fe 50 NPs (PtPd/PdFe) are prepared via the galvanic replacement reaction. Compared with Pd 50 Fe 50 /C, the PtPd/PdFe/C Exhibits 1.52 times higher catalytic activity and lower onset potential (−0.12 V). The significant enhancements of formic acid oxidation can be attributed to the accelerated dehydrogenation reaction of formic acid by Pt atomic clusters. Moreover, the PtPd/PdFe/C also demonstrates better tolerance to poisons during formic acid oxidation.

  11. Kinetic and catalytic performance of a BI-porous composite material in catalytic cracking and isomerisation reactions

    KAUST Repository

    Al-Khattaf, S.

    2012-01-10

    Catalytic behaviour of pure zeolite ZSM-5 and a bi-porous composite material (BCM) were investigated in transformation of m-xylene, while zeolite HY and the bi-porous composite were used in the cracking of 1,3,5-triisopropylbenzene (TIPB). The micro/mesoporous material was used to understand the effect of the presence of mesopores on these reactions. Various characterisation techniques, that is, XRD, SEM, TGA, FT-IR and nitrogen sorption measurements were applied for complete characterisation of the catalysts. Catalytic tests using CREC riser simulator showed that the micro/mesoporous composite catalyst exhibited higher catalytic activity as compared with the conventional microporous ZSM-5 and HY zeolite for transformation of m-xylene and for the catalytic cracking of TIPB, respectively. The outstanding catalytic reactivity of m-xylene and TIPB molecules were mainly attributed to the easier access of active sites provided by the mesopores. Apparent activation energies for the disappearance of m-xylene and TIPB over all catalysts were found to decrease in the order: EBCM>EZSM-5 and EBCM>EHY, respectively. © 2012 Canadian Society for Chemical Engineering.

  12. Facile syntheses of bioactive 5-arylidenethiobarbituric acids

    International Nuclear Information System (INIS)

    Sharif, A.; Ahmed, E.; Munawar, M.A.; Jabeen, S.; Khan, Misbah-ul-Ain; Begum, R.; Farrukh, A.; Ashraf, M.; Arshad, S.; Afza, N.

    2011-01-01

    A simple and green chemistry route for the preparation of 5- arylidenethiobarbituric acids has been developed by Knoevenagel condensation of thiobarbituric acid with different aromatic and heteroaromatic aldehydes using catalytic amount of acetic acid by grinding in mortar and pestle. The title compounds were obtained in good to high yields (50-89%) and characterized by IR, NMR, mass spectroscopy and elemental analysis. All compounds exhibited DPPH radical scavenging and antibacterial activities, respectively. (author)

  13. Catalytic Hydrogenation of Levulinic Acid in Water into g-Valerolactone over Bulk Structure of Inexpensive Intermetallic Ni-Sn Alloy Catalysts

    Directory of Open Access Journals (Sweden)

    Rodiansono Rodiansono

    2015-07-01

    Full Text Available A bulk structure of inexpensive intermetallic nickel-tin (Ni-Sn alloys catalysts demonstrated highly selective in the hydrogenation of levulinic acid in water into g-valerolactone. The intermetallic Ni-Sn catalysts were synthesized via a very simple thermochemical method from non-organometallic precursor at low temperature followed by hydrogen treatment at 673 K for 90 min. The molar ratio of nickel salt and tin salt was varied to obtain the corresponding Ni/Sn ratio of 4.0, 3.0, 2.0, 1.5, and 0.75. The formation of Ni-Sn alloy species was mainly depended on the composition and temperature of H2 treatment. Intermetallics Ni-Sn that contain Ni3Sn, Ni3Sn2, and Ni3Sn4 alloy phases are known to be effective heterogeneous catalysts for levulinic acid hydrogenation giving very excellence g-valerolactone yield of >99% at 433 K, initial H2 pressure of 4.0 MPa within 6 h. The effective hydrogenation was obtained in H2O without the formation of by-product. Intermetallic Ni-Sn(1.5 that contains Ni3Sn2 alloy species demonstrated very stable and reusable catalyst without any significant loss of its selectivity. © 2015 BCREC UNDIP. All rights reserved. Received: 26th February 2015; Revised: 16th April 2015; Accepted: 22nd April 2015  How to Cite: Rodiansono, R., Astuti, M.D., Ghofur, A., Sembiring, K.C. (2015. Catalytic Hydrogenation of Levulinic Acid in Water into g-Valerolactone over Bulk Structure of Inexpensive Intermetallic Ni-Sn Alloy Catalysts. Bulletin of Chemical Reaction Engineering & Catalysis, 10 (2: 192-200. (doi:10.9767/bcrec.10.2.8284.192-200Permalink/DOI: http://dx.doi.org/10.9767/bcrec.10.2.8284.192-200  

  14. Catalytic performance of heterogeneous Rh/C3N4 for the carbonylation of methanol

    Science.gov (United States)

    Budiman, Anatta Wahyu; Choi, Myoung Jae; Nur, Adrian

    2018-02-01

    The excess of water in homogeneous the carbonylation of methanol system could increase the amount of by-products formed through water-gas shift reaction and could accelerate the rusting of equipment. Many scientists tried to decrease the content of water in the carbonylation of methanol system by using lithium and iodide promoter that results a moderate catalytic activity in the water content at 2wt%. The heterogenized catalyst offers several distinct advantages such as it was enables increased catalyst concentration in the reaction mixture, which is directly proportional to acetic acid production rate, without the addition of an alkali iodide salt promoter. The heterogeneous catalyst also results in reduced by-product formation. This study is aimed to produce a novel catalyst (Rh/C3N4) with a high selectivity of acetic acid in a relatively lower water and halide content. This novel catalyst performs high conversion and selectivity of acetic acid as the result of the strong ionic bonding of melamine and rhodium complex species that was caused by the presence of methyl iodide species. The CO2 in feed gas significantly decreases the catalytic activity of Rh-melamine because of its inert characteristics. The kinetic test was performed as that the first order kinetic equation. The kinetic tests revealed the reaction route of the the carbonylation of methanol in this system was performed trough the methyl acetate.

  15. Engineering reactors for catalytic reactions

    Indian Academy of Sciences (India)

    Extensive studies have been conducted to establish sound basis for design and engineering of reactors for practising such catalytic reactions and for realizing improvements in reactor performance. In this article, application of recent (and not so recent) developments in engineering reactors for catalytic reactions is ...

  16. Catalytic Upgrading of Biomass Fast Pyrolysis Vapors with Nano Metal Oxides: An Analytical Py-GC/MS Study

    Energy Technology Data Exchange (ETDEWEB)

    Qiang Lu [National Engineering Laboratory for Biomass Power Generation Equipment, North China Electric Power University, Beijing (China); Zhi-Fei Zhang [National Engineering Laboratory for Biomass Power Generation Equipment, North China Electric Power University, Beijing (China); Chang-Qing Dong [National Engineering Laboratory for Biomass Power Generation Equipment, North China Electric Power University, Beijing (China); Xi-Feng Zhu [Key Laboratory for Biomass Clean Energy of Anhui Province, University of Science and Technology of China, Hefei (China)

    2010-10-15

    Fast pyrolysis of poplar wood followed with catalytic cracking of the pyrolysis vapors was performed using analytical pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS). The catalysts applied in this study were nano MgO, CaO, TiO2, Fe2O3, NiO and ZnO. These catalysts displayed different catalytic capabilities towards the pyrolytic products. The catalysis by CaO significantly reduced the levels of phenols and anhydrosugars, and eliminated the acids, while it increased the formation of cyclopentanones, hydrocarbons and several light compounds. ZnO was a mild catalyst, as it only slightly altered the pyrolytic products. The other four catalysts all decreased the linear aldehydes dramatically, while the increased the ketones and cyclopentanones. They also reduced the anhydrosugars, except for NiO. Moreover, the catalysis by Fe2O3 resulted in the formation of various hydrocarbons. However, none of these catalysts except CaO were able to greatly reduce the acids.

  17. Reaction pathways for catalytic gas-phase oxidation of glycerol over mixed metal oxides

    Energy Technology Data Exchange (ETDEWEB)

    Suprun, W.; Glaeser, R.; Papp, H. [Leipzig Univ. (Germany). Inst. of Chemical Technology

    2011-07-01

    Glycerol as a main by-product from bio-diesel manufacture is a cheap raw material with large potential for chemical or biochemical transformations to value-added C3-chemicals. One possible way of glycerol utilization involves its catalytic oxidation to acrylic acid as an alternative to petrochemical routes. However, this catalytic conversion exhibits various problems such as harsh reaction conditions, severe catalyst coking and large amounts of undesired by-products. In this study, the reaction pathways for gas-phase conversion of glycerol over transition metal oxides (Mo, V und W) supported on TiO{sub 2} and SiO{sub 2} were investigated by two methods: (i) steady state experiments of glycerol oxidation and possible reactions intermediates, i.e., acrolein, 3-hydroxy propionaldehyde and acetaldehyde, and (ii) temperature-programmed surface reaction (TPSR) studies of glycerol conversion in the presence and in the absence of gas-phase oxygen. It is shown that the supported W-, V and Mo-oxides possess an ability to catalyze the oxidation of glycerol to acrylic acid. These investigations allowed us to gain a deeper insight into the reaction mechanism. Thus, based on the obtained results, three possible reactions pathways for the selective oxidation of glycerol to acrylic acid on the transition metal-containing catalysts are proposed. The major pathways in presence of molecular oxygen are a fast successive destructive oxidation of glycerol to CO{sub x} and the dehydration of glycerol to acrolein which is a rate-limiting step. (orig.)

  18. Structural Evidence of a Major Conformational Change Triggered by Substrate Binding in DapE Enzymes: Impact on the Catalytic Mechanism.

    Science.gov (United States)

    Nocek, Boguslaw; Reidl, Cory; Starus, Anna; Heath, Tahirah; Bienvenue, David; Osipiuk, Jerzy; Jedrzejczak, Robert; Joachimiak, Andrzej; Becker, Daniel P; Holz, Richard C

    2018-02-06

    The X-ray crystal structure of the dapE-encoded N-succinyl-l,l-diaminopimelic acid desuccinylase from Haemophilus influenzae (HiDapE) bound by the products of hydrolysis, succinic acid and l,l-DAP, was determined at 1.95 Å. Surprisingly, the structure bound to the products revealed that HiDapE undergoes a significant conformational change in which the catalytic domain rotates ∼50° and shifts ∼10.1 Å (as measured at the position of the Zn atoms) relative to the dimerization domain. This heretofore unobserved closed conformation revealed significant movements within the catalytic domain compared to that of wild-type HiDapE, which results in effectively closing off access to the dinuclear Zn(II) active site with the succinate carboxylate moiety bridging the dinculear Zn(II) cluster in a μ-1,3 fashion forming a bis(μ-carboxylato)dizinc(II) core with a Zn-Zn distance of 3.8 Å. Surprisingly, His194.B, which is located on the dimerization domain of the opposing chain ∼10.1 Å from the dinuclear Zn(II) active site, forms a hydrogen bond (2.9 Å) with the oxygen atom of succinic acid bound to Zn2, forming an oxyanion hole. As the closed structure forms upon substrate binding, the movement of His194.B by more than ∼10 Å is critical, based on site-directed mutagenesis data, for activation of the scissile carbonyl carbon of the substrate for nucleophilic attack by a hydroxide nucleophile. Employing the HiDapE product-bound structure as the starting point, a reverse engineering approach called product-based transition-state modeling provided structural models for each major catalytic step. These data provide insight into the catalytic reaction mechanism and also the future design of new, potent inhibitors of DapE enzymes.

  19. Physical and combustion characterization of pyrolytic oils derived from biomass material upgraded by catalytic hydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    Vitolo, S.; Ghetti, P. (Universita di Pisa, Pisa (Italy). Dipartimento di Ingegneria Chimica)

    1994-11-01

    Physical and combustion properties of a pyrolytic bio-oil are determined both as-obtained and after catalytic hydrodeoxygenation. The tests demonstrate that the hydrogenation treatment improves the oil as regards combustibility, viscosity and acidity. Combustion properties of the oil have been characterized by evaporation and temperature programmed combustion profiles. Short communication. 21 refs., 4 figs., 2 tabs.

  20. Synthesis and Investigation the Catalytic Behavior of Cr2O3 Nanoparticles

    Directory of Open Access Journals (Sweden)

    R. Karimian

    2013-03-01

    Full Text Available The use of an inorganic phase in water-in-oil (w/o microemulsion has recently received considerable attention for preparing metal oxide nanoparticles. This is a technique, which allows preparation of ultrafine metal oxide nanoparticles within the size range 40 to 80 nm. Preparation of nano chromium (III oxide studied investigated in the inverse microemulsion system. Therefore the nucleation of metal particles proceeds in the water capsules of the microemulsion. the main advantage of this method is easily controllable conditions with using low cost chromium source is merit to be considered for scaling up by industrial researchers. Besides we mainly focus on the catalytic property nano chromium (III oxide. Oxidation of aromatic aldehyde/alcohol to the corresponding carboxylic acids can be performed highly efficiently in the presence of a catalytic amount of nano chromium (III oxide in THF as solvent under mild conditions.

  1. [Mechanism of catalytic ozonation for the degradation of paracetamol by activated carbon].

    Science.gov (United States)

    Wang, Jia-Yu; Dai, Qi-Zhou; Yu, Jie; Yan, Yi-Zhou; Chen, Jian-Meng

    2013-04-01

    The degradation of paracetamol (APAP) in aqueous solution was studied with ozonation integrated with activated carbon (AC). The synergistic effect of ozonation/AC process was explored by comparing the degradation efficiency of APAP in three processes (ozonation alone, activated carbon alone and ozonation integrated with activated carbon). The operational parameters that affected the reaction rate were carefully optimized. Based on the intermediates detected, the possible pathway for catalytic degradation was discussed and the reaction mechanism was also investigated. The results showed that the TOC removal reached 55.11% at 60 min in the AC/O3 system, and was significantly better than the sum of ozonation alone (20.22%) and activated carbon alone (27.39%), showing the great synergistic effect. And the BOD5/COD ratio increased from 0.086 (before reaction) to 0.543 (after reaction), indicating that the biodegradability was also greatly improved. The effects of the initial concentration of APAP, pH value, ozone dosage and AC dosage on the variation of reaction rate were carefully discussed. The catalytic reaction mechanism was different at different pH values: the organic pollutions were removed by adsorption and direct ozone oxidation at acidic pH, and mainly by catalytic ozonation at alkaline pH.

  2. Immbolization of uricase enzyme in Langmuir and Langmuir-Blodgett films of fatty acids: possible use as a uric acid sensor.

    Science.gov (United States)

    Zanon, Nathaly C M; Oliveira, Osvaldo N; Caseli, Luciano

    2012-05-01

    Preserving the enzyme structure in solid films is key for producing various bioelectronic devices, including biosensors, which has normally been performed with nanostructured films that allow for control of molecular architectures. In this paper, we investigate the adsorption of uricase onto Langmuir monolayers of stearic acid (SA), and their transfer to solid supports as Langmuir-Blodgett (LB) films. Structuring of the enzyme in β-sheets was preserved in the form of 1-layer LB film, which was corroborated with a higher catalytic activity than for other uricase-containing LB film architectures where the β-sheets structuring was not preserved. The optimized architecture was also used to detect uric acid within a range covering typical concentrations in the human blood. The approach presented here not only allows for an optimized catalytic activity toward uric acid but also permits one to explain why some film architectures exhibit a superior performance. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Steam Reforming of Acetic Acid over Co-Supported Catalysts: Coupling Ketonization for Greater Stability

    Energy Technology Data Exchange (ETDEWEB)

    Davidson, Stephen D. [Energy and Environmental; Spies, Kurt A. [Energy and Environmental; Mei, Donghai [Energy and Environmental; Kovarik, Libor [Energy and Environmental; Kutnyakov, Igor [Energy and Environmental; Li, Xiaohong S. [Energy and Environmental; Lebarbier Dagle, Vanessa [Energy and Environmental; Albrecht, Karl O. [Energy and Environmental; Dagle, Robert A. [Energy and Environmental

    2017-09-11

    We report on the markedly improved stability of a novel 2-bed catalytic system, as compared to a conventional 1-bed steam reforming catalyst, for the production of H2 from acetic acid. The 2-bed catalytic system comprises of i) a basic oxide ketonization catalyst for the conversion of acetic acid to acetone, and a ii) Co-based steam reforming catalyst, both catalytic beds placed in sequence within the same unit operation. Steam reforming catalysts are particularly prone to catalytic deactivation when steam reforming acetic acid, used here as a model compound for the aqueous fraction of bio-oil. Catalysts comprising MgAl2O4, ZnO, CeO2, and activated carbon (AC) both with and without Co-addition were evaluated for conversion of acetic acid and acetone, its ketonization product, in the presence of steam. It was found that over the bare oxide support only ketonization activity was observed and coke deposition was minimal. With addition of Co to the oxide support steam reforming activity was facilitated and coke deposition was significantly increased. Acetone steam reforming over the same Co-supported catalysts demonstrated more stable performance and with less coke deposition than with acetic acid feedstock. DFT analysis suggests that over Co surface CHxCOO species are more favorably formed from acetic acid versus acetone. These CHxCOO species are strongly bound to the Co catalyst surface and could explain the higher propensity for coke formation from acetic acid. Based on these findings, in order to enhance stability of the steam reforming catalyst a dual-bed (2-bed) catalyst system was implemented. Comparing the 2-bed and 1-bed (Co-supported catalyst only) systems under otherwise identical reaction conditions the 2-bed demonstrated significantly improved stability and coke deposition was decreased by a factor of 4.

  4. Aminomethylation of enals through carbene and acid cooperative catalysis: concise access to β(2)-amino acids.

    Science.gov (United States)

    Xu, Jianfeng; Chen, Xingkuan; Wang, Ming; Zheng, Pengcheng; Song, Bao-An; Chi, Yonggui Robin

    2015-04-20

    A convergent, organocatalytic asymmetric aminomethylation of α,β-unsaturated aldehydes by N-heterocyclic carbene (NHC) and (in situ generated) Brønsted acid cooperative catalysis is disclosed. The catalytically generated conjugated acid from the base plays dual roles in promoting the formation of azolium enolate intermediate, formaldehyde-derived iminium ion (as an electrophilic reactant), and methanol (as a nucleophilic reactant). This redox-neutral strategy is suitable for the scalable synthesis of enantiomerically enriched β(2) -amino acids bearing various substituents. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. 31P NMR Chemical Shifts of Phosphorus Probes as Reliable and Practical Acidity Scales for Solid and Liquid Catalysts.

    Science.gov (United States)

    Zheng, Anmin; Liu, Shang-Bin; Deng, Feng

    2017-10-11

    Acid-base catalytic reaction, either in heterogeneous or homogeneous systems, is one of the most important chemical reactions that has provoked a wide variety of industrial catalytic processes for production of chemicals and petrochemicals over the past few decades. In view of the fact that the catalytic performances (e.g., activity, selectivity, and reaction mechanism) of acid-catalyzed reactions over acidic catalysts are mostly dictated by detailed acidic features, viz. type (Brønsted vs Lewis acidity), amount (concentration), strength, and local environments (location) of acid sites, information on and manipulation of their structure-activity correlation are crucial for optimization of catalytic performances as well as innovative design of novel effective catalysts. This review aims to summarize recent developments on acidity characterization of solid and liquid catalysts by means of experimental 31 P nuclear magnetic resonance (NMR) spectroscopy using phosphorus probe molecules such as trialkylphosphine (TMP) and trialkylphosphine oxides (R 3 PO). In particular, correlations between the observed 31 P chemical shifts (δ 31 P) of phosphorus (P)-containing probes and acidic strengths have been established in conjuction with density functional theory (DFT) calculations, rendering practical and reliable acidity scales for Brønsted and Lewis acidities at the atomic level. As illustrated for a variety of different solid and liquid acid systems, such as microporous zeolites, mesoporous molecular sieves, and metal oxides, the 31 P NMR probe approaches were shown to provide important acid features of various catalysts, surpassing most conventional methods such as titration, pH measurement, Hammett acidity function, and some other commonly used physicochemical techniques, such as calorimetry, temperature-programmed desorption of ammonia (NH 3 -TPD), Fourier transformed infrared (FT-IR), and 1 H NMR spectroscopies.

  6. Tackling Critical Catalytic Residues in Helicobacter pylori L-Asparaginase

    Directory of Open Access Journals (Sweden)

    Maristella Maggi

    2015-03-01

    Full Text Available Bacterial asparaginases (amidohydrolases, EC 3.5.1.1 are important enzymes in cancer therapy, especially for Acute Lymphoblastic Leukemia. They are tetrameric enzymes able to catalyze the deamination of L-ASN and, to a variable extent, of L-GLN, on which leukemia cells are dependent for survival. In contrast to other known L-asparaginases, Helicobacter pylori CCUG 17874 type II enzyme (HpASNase is cooperative and has a low affinity towards L-GLN. In this study, some critical amino acids forming the active site of HpASNase (T16, T95 and E289 have been tackled by rational engineering in the attempt to better define their role in catalysis and to achieve a deeper understanding of the peculiar cooperative behavior of this enzyme. Mutations T16E, T95D and T95H led to a complete loss of enzymatic activity. Mutation E289A dramatically reduced the catalytic activity of the enzyme, but increased its thermostability. Interestingly, E289 belongs to a loop that is very variable in L-asparaginases from the structure, sequence and length point of view, and which could be a main determinant of their different catalytic features.

  7. CATALYTIC WAVE OF CHLORATE IONS IN THE PREZENCE OF THE MOLYBDENUM (VI - 2,3-DIHYDROXYBENZALDEHYDE COMPLEX

    Directory of Open Access Journals (Sweden)

    Ludmila Kiriyak

    2010-12-01

    Full Text Available The polarographic catalytic current in acid solutions of Mo(VI, 2,3-dihydroxybenzaldehyde (2,3-DHBA and chlorate ions has been investigated. The scheme of reactions taking place in the solutions and on the electrode has been elaborated. The increase of the catalytic current is explained by the formation of the active intermediate complex [Mo(V×2,3-DHBA (ClO3-]. The rate constant of formation for the active intermediate complex K = 2.5 × 106 mol-1 × dm3 × s-1, the activation energy of reaction Ea=14.0 kcal×mol-1 and the activation entropy ∆Sa¹= -28.3 e.u. have also been determined.

  8. Synthesis, spectroscopic characterization and catalytic oxidation ...

    Indian Academy of Sciences (India)

    were characterized by infrared, electronic, electron paramagnetic resonance ... The catalytic oxidation property of ruthenium(III) complexes were also ... cies at room temperature. ..... aldehyde part of Schiff base ligands, catalytic activ- ity of new ...

  9. Computer assisted optimization of sensitivity of the catalytic polarography wave of uranly/nitrate system

    International Nuclear Information System (INIS)

    Betteridge, D.; Wade, A.P.; Neves, E.A.; Gutz, I.

    1982-01-01

    The utilization of 'Simplex' optimization program, writes in Basic language, used to the study of catalytic polarographic wave procedure the reaction of uranium (III) with nitrate in acidic medium at the mercury electrode/solution interface is described. This 'Simplex' optimization requires a much smaller number of experiments to reach an improved condition without increase of the number of trial and error experiments. (C.G.C.) [pt

  10. Catalytic mechanism of the dehydrogenation of ethylbenzene over Fe–Co/Mg(Al)O derived from hydrotalcites

    KAUST Repository

    Tope, Balkrishna B.

    2011-11-01

    Catalytic mechanism of ethylbenzene dehydrogenation over Fe-Co/Mg(Al)O derived from hydrotalcites has been studied based on the XAFS and XPS catalyst characterization and the FTIR measurements of adsorbed species. Fe-Co/Mg(Al)O showed synergy, whereas Fe-Ni/Mg(Al)O showed no synergy, in the dehydrogenation of ethylbenzene. Ni species were stably incorporated as Ni2+ in the regular sites in periclase and spinel structure in the Fe-Ni/Mg(Al)O. Contrarily, Co species exists as a mixture of Co3+/Co2+ in the Fe-Co/Mg(Al)O and was partially isolated from the regular sites in the structures with increasing the Co content. Co addition enhanced Lewis acidity of Fe3+ active sites by forming Fe3+-O-Co 3+/2+(1/1) bond, resulting in an increase in the activity. FTIR of ethylbenzene adsorbed on the Fe-Co/Mg(Al)O clearly showed formations of C-O bond and π-adsorbed aromatic ring. This suggests that ethylbenzene was strongly adsorbed on the Fe3+ acid sites via π-bonding and the dehydrogenation was initiated by α-H+ abstraction from ethyl group on Mg2+-O2- basic sites, followed by C-O-Mg bond formation. The α-H+ abstraction by O2-(-Mg 2+) was likely followed by β-H abstraction, leading to the formations of styrene and H2. Such catalytic mechanism by the Fe 3+ acid-O2-(-Mg2+) base couple and the Fe 3+/Fe2+ reduction-oxidation cycle was further assisted by Co3+/Co2+, leading to a good catalytic activity for the dehydrogenation of ethylbenzene. © 2011 Elsevier B.V. All rights reserved.

  11. The catalytic ozonization of model lignin compounds in the presence of Fe(III) ions

    Science.gov (United States)

    Ben'ko, E. M.; Mukovnya, A. V.; Lunin, V. V.

    2007-05-01

    The ozonization of several model lignin compounds (guaiacol, 2,6-dimethoxyphenol, phenol, and vanillin) was studied in acid media in the presence of iron(III) ions. It was found that Fe3+ did not influence the initial rate of the reactions between model phenols and ozone but accelerated the oxidation of intermediate ozonolysis products. The metal concentration dependences of the total ozone consumption and effective rate constants of catalytic reaction stages were determined. Data on reactions in the presence of oxalic acid as a competing chelate ligand showed that complex formation with Fe3+ was the principal factor that accelerated the ozonolysis of model phenols at the stage of the oxidation of carboxylic dibasic acids and C2 aldehydes formed as intermediate products.

  12. Pd and polyaniline nanocomposite on carbon fiber paper as an efficient direct formic acid fuel cell anode

    Science.gov (United States)

    Pandey, Rakesh K.

    2018-03-01

    Direct formic acid fuel cells are advantageous as portable power generating devices. In the present work, an anode catalyst for direct formic acid fuel cell (DFAFC) is presented which has good catalytic activity for formic acid oxidation. The catalyst is composed of Pd and conducting polymer polyaniline (Pd-PANI) nanocomposite. The catalyst was prepared by using a single step galvanostatic electrochemical deposition method. The Pd-PANI catalyst was electrodeposited at different time durations and a comparison of the catalytic activity at each deposition time was carried out and optimized.

  13. Catalytic mechanism of the dehydrogenation of ethylbenzene over Fe–Co/Mg(Al)O derived from hydrotalcites

    KAUST Repository

    Tope, Balkrishna B.; Balasamy, Rabindran J.; Khurshid, Alam; Atanda, Luqman A.; Yahiro, Hidenori; Shishido, Tetsuya; Takehira, Katsuomi; Al-Khattaf, Sulaiman S.

    2011-01-01

    -H+ abstraction from ethyl group on Mg2+-O2- basic sites, followed by C-O-Mg bond formation. The α-H+ abstraction by O2-(-Mg 2+) was likely followed by β-H abstraction, leading to the formations of styrene and H2. Such catalytic mechanism by the Fe 3+ acid-O2-(-Mg

  14. Investigations on the heterogenous catalytic hydrogenation using isotope effect and gamma- and neutron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Kudlacek, R; Cabicar, J [Ceske Vysoke Uceni Technicke, Prague (Czechoslovakia). Katedra Jaderne Chemie

    1976-01-01

    The kinetic and solvent isotope effects during the maleic acid heterogeneous catalytic hydrogenation and deuteration in light and heavy water have been studied. Also the effect of the gamma and neutron irradiation on the Ni-ZnO catalysts (with various ratios of components) on the reaction kinetics and mechanism has been measured, as well as the effect of pH on the adsorption behaviour of maleic acid and the temperature dependence of the reaction rate. Existence of different adsorption centers for hydrogen and maleic acid could be deduced from these experiments. A reaction mechanism based on the two-dimensional diffusion of components in the surface is proposed. The catalyst is formed from Ni and ZnO-microspheres. Hydrogen is bound to nickel and maleic acid is adsorbed on the ZnO-microspheres. The reaction takes place on the boundary layers of these microspheres.

  15. Biodiesel production with continuous supercritical process: non-catalytic transesterification and esterification with or without carbon dioxide.

    Science.gov (United States)

    Tsai, Yu-Ting; Lin, Ho-mu; Lee, Ming-Jer

    2013-10-01

    The non-catalytic transesterification of refined sunflower oil with supercritical methanol, in the presence of carbon dioxide, was conducted in a tubular reactor at temperatures from 553.2 to 593.2K and pressures up to 25.0 MPa. The FAME yield can be achieved up to about 0.70 at 593.2 K and 10.0 MPa in 23 min with methanol:oil of 25:1 in molar ratio. The effect of adding CO2 on the FAME yield is insignificant. The kinetic behavior of the non-catalytic esterification and transesterification of oleic acid or waste cooking oil (WCO) with supercritical methanol was also investigated. By using the supercritical process, the presence of free fatty acid (FFA) in WCO gives positive contribution to FAME production. The FAME yield of 0.90 from WCO can be achieved in 13 min at 573.2K. The kinetic data of supercritical transesterification and esterifaication were correlated well with a power-law model. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Catalytic exhaust control

    Energy Technology Data Exchange (ETDEWEB)

    Heinemann, H

    1973-09-01

    Recent achievements and problems in the development of exhaust control devices in the USA are reviewed. To meet the 1976 emission standards, catalytic systems for the oxidation of carbon monoxide and hydrocarbons and for the reduction of nitrogen oxides to nitrogen and water are needed. While oxidizing catalysts using platinum, palladium, copper, vanadium, and chromium appplied on alumina or ceramic materials are more or less effective in emission control, there are no catalytic devices for the reduction of nitrogen oxides with the required useful life of 25,000 to 50,000 miles as yet available. In the case of platinum catalysts on monolithic supports, the operating temperature of 650 to 750/sup 0/C as required for the oxidation process may cause inactivation of the catalysts and fusion of the support material. The oxidation of CO and hydrocarbons is inhibited by high concentrations of CO, nitric oxide, and hydrocarbons. The use of catalytic converters requires the use of lead-free or low-lead gasoline. The nitrogen oxides conversion efficiency is considerably influenced by the oxygen-to-CO ratio of the exhaust gas, which makes limitation of this ratio necessary.

  17. THE INFLUENCE OF Pd IMPREGNATION INTO Al-MCM-41 ON THE CHARACTERS AND ACTIVITY FOR BIOGASOLINE PRODUCTION BY CATALYTIC HYDROCRACKING OF FAMEs FROM NYAMPLUNG SEED OIL (Calophyllum Inophyllum

    Directory of Open Access Journals (Sweden)

    Hendro Juwono

    2013-08-01

    Full Text Available Biogasoline have been synthesized through catalytic hydrocracking reaction against FAMEs compounds (fatty acid methyl esters obtained from the transesterification of Nyamplung seed oil. The performance of Al-MCM-41 and Pd/Al-MCM-41 as the catalytic hydrocracking was compared. In this research, the influence of Pd impregnation into Al-MCM-41 catalyst on the characters and catalytic activity has been evaluated. The characters determined were crystallinity by using X-Ray Diffractometer (XRD, Si/Al ratio by Inductively Coupled Plasma (ICP, the acidity by pyridine adsorption, the surface area and pore volume by surface area analyzer and the morphology by Scanning Electron Microscopy (SEM. Catalytic activity was examined for hydrocracking of free fatty acid methyl esters (FAMEs produced from the transesterification of Nyamplung seed oil, by Hydrogen flowing. The research result showed that impregnation of Pd into Al-MCM-41 has been successfully carried out, which did not destroy the structural morphology of the catalyst. It was also discovered that the Pd impregnation could increase Si/Al ratio and the acidity but it leads to decrease in the catalyst surface area and the volume. Furthermore, Pd impregnated Al-MCM-41 showed superior activity compared to Al-MCM-41 for FAMEs hydrocracking. The superiority was indicated by higher effectiveness and yields selectiveness, that were 100% hydrocarbon composed of C9-C18 that was dominated by C12 emerging the gasoline fraction, compared of that by the results used Al-MCM-41 catalyst that were 97% hydrocarbon consisted of C8-C20 with equal abundance.

  18. Acid-base synergistic flame retardant wood pulp paper with high thermal stability.

    Science.gov (United States)

    Wang, Ning; Liu, Yuansen; Xu, Changan; Liu, Yuan; Wang, Qi

    2017-12-15

    Acid-catalytic degradation caused by acid source flame retardants is the main reason for a decline in thermal stability of flame-retarded lignocellulosic materials. In the present research, a guanidine phosphate (GP)/borax (BX) flame retardant system based on acid-base synergistic interaction was designed and used in wood pulp paper (WPP) to solve this problem. Results showed that the treated WPP obtained good flame retardancy with a limiting oxygen index (LOI) value of 35.7%. As a basic flame retardant, borax could chemically combine with the acids released by guanidine phosphate, thus decreasing the acidity of the system in the initial heating stage. In this way, acid-catalytic degradation is greatly retarded on the lignocelluloses to improve thermal stability (the temperature of maximum degradation peak from 286°C to 314°C). Meanwhile, borax was also advantageous to form a denser and firmer condensed phase through reinforcement of the acid-base reaction product, borophosphates, allowing it to provide a protective barrier with higher quality. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Catalytic Wittig and aza-Wittig reactions

    Directory of Open Access Journals (Sweden)

    Zhiqi Lao

    2016-11-01

    Full Text Available This review surveys the literature regarding the development of catalytic versions of the Wittig and aza-Wittig reactions. The first section summarizes how arsenic and tellurium-based catalytic Wittig-type reaction systems were developed first due to the relatively easy reduction of the oxides involved. This is followed by a presentation of the current state of the art regarding phosphine-catalyzed Wittig reactions. The second section covers the field of related catalytic aza-Wittig reactions that are catalyzed by both phosphine oxides and phosphines.

  20. Efficient catalytic combustion in integrated micropellistors

    International Nuclear Information System (INIS)

    Bársony, I; Ádám, M; Fürjes, P; Dücső, Cs; Lucklum, R; Hirschfelder, M; Kulinyi, S

    2009-01-01

    This paper analyses two of the key issues of the development of catalytic combustion-type sensors: the selection and production of active catalytic particles on the micropellistor surface as well as the realization of a reliable thermal conduction between heater element and catalytic surface, for the sensing of temperature increase produced by the combustion. The report also demonstrates that chemical sensor product development by a MEMS process is a continuous struggle for elimination of all uncertainties influencing reliability and sensitivity of the final product

  1. Some physico-chemical properties and catalytic activity of sulfate ion supported on WO3/SnO2 catalyst

    Directory of Open Access Journals (Sweden)

    M.N. Alaya

    2017-02-01

    Full Text Available Solid acid catalyst 15 wt%WO3/SnO2 was synthesized and loaded with 15 wt%SO4. The obtained catalyst was calcined at 400, 500, 650 and 800 °C. The prepared catalysts were characterized by TG-DTA, XRD, FTIR and N2 adsorption at −196 °C. The surface acidity was measured by non aqueous potentiometric titration and FT-IR spectra of chemisorbed pyridine. The catalytic performance was evaluated on the esterification of propionic acid with n-butanol in liquid phase. The TG-DTA analysis shows that the decomposition of sulfate species occurred at >500 °C. XRD measurements showed that WO3 dispersed completely on the surface of SnO2 and that the sulfating of WO3/SnO2 tends to hinder the crystallization of SnO2. The specific surface area, total pore volume and micropore volume are increased with increasing thermal treatment up to 500 °C, and then decreased gradually with a further increase in calcination temperature. The prepared catalysts possess very strong acid sites and contain both Brønsted and Lewis acid sites. The total surface acidity decreased with raising of the calcination temperature. The highest conversion of propionic acid was for 400 °C product, and decreased with an increase in calcination temperature. The effect of the reaction parameters, i.e., time of reaction, reaction temperature, and reactant molar ratio and the weight of the catalyst were also studied. The reaction obeys the second order kinetic equation with respect to propionic acid concentration. Brønsted and Lewis acid sites appeared to be needed for catalytic activity in n-butyl propionate formation.

  2. Synthesis of acetic acid by catalytic oxidation of butenes-2. Synthesis of acetic acid from sec. -butyl alcohol and methyl ethyl ketone in vapor-phase catalytic oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Yamashita, T.; Matsuzawa, Y.; Ninagawa, S.

    1977-11-01

    Eleven binary catalysts containing vanadium pentoxide (V/sub 2/O/sub 5/), 17 binary catalysts containing cobalt oxide (Co/sub 3/O/sub 4/), and 18 ternary catalysts containing both V/sub 2/O/sub 5/ and Co/sub 3/O/sub 4/ were screened for the stepwise conversion of sec.-butanol to methyl ethyl ketone (MEK) and acetic acid. Of the binary catalysts, 4:1 Rh/V and Co/V binary oxides gave the best acetic acid yields. With the Co/V catalyst, the selectivity for MEK increased rapidly as the cobalt content of the catalyst increased above 50%, reaching 81% at 226/sup 0/C and 90% conversion on 9:1 Co/V oxide. The 9:1 Co/V catalyst also yielded acetaldehyde from ethanol with 98% selectivity at 210/sup 0/C and acetone from isopropanol with 98% selectivity at 200/sup 0/C, but dehydrated tert.-butanol to isobutene. V/Cr and V/Sb binary oxides were the most effective catalysts for the oxidation of MEK to acetic acid, with 78-88% selectivities at 100% conversion at 260/sup 0/C. Of the ternary oxides tested for the one-step conversion of sec.-butanol to acetic acid, a 6:2:2 Co/V/Al catalyst gave best results, (i.e., 34% selectivity for acetic acid (45% for total acids) at 100% conversion and 68% selectivity (90% for total acids) at 50Vertical Bar3< conversion). Graphs, tables, and 21 references.

  3. Catalytic pyrolysis of hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Vail' eva, N A; Buyanov, R A

    1979-01-01

    Catalytic pyrolysis of petroleum fractions (undecane) was performed with the object of clarifying such questions as the mechanism of action of the catalyst, the concepts of activity and selectivity of the catalyst, the role of transport processes, the temperature ranges and limitations of the catalytic process, the effect of the catalyst on secondary processes, and others. Catalysts such as quartz, MgO, Al/sub 2/O/sub 3/, were used. Analysis of the experimental findings and the fact that the distribution of products is independent of the nature of the surface, demonstrate that the pyrolysis of hydrocarbons in the presence of catalysts is based on the heterogeneous-homogeneous radical-chain mechanism of action, and that the role of the catalysts reduces to increasing the concentration of free radicals. The concept of selectivity cannot be applied to catalysts here, since they do not affect the mechanism of the unfolding of the process of pyrolysis and their role consists solely in initiating the process. In catalytic pyrolysis the concepts of kinetic and diffusive domains of unfolding of the catalytic reaction do not apply, and only the outer surface of the catalyst is engaged, whereas the inner surface merely promotes deletorious secondary processes reducing the selectivity of the process and the activity of the catalyst. 6 references, 2 figures.

  4. Advances in solid-catalytic and non-catalytic technologies for biodiesel production

    International Nuclear Information System (INIS)

    Islam, Aminul; Taufiq-Yap, Yun Hin; Chan, Eng-Seng; Moniruzzaman, M.; Islam, Saiful; Nabi, Md. Nurun

    2014-01-01

    Highlights: • The recent technologies for promoting biodiesel synthesis were elucidated. • The design of catalyst consideration of biodiesel production was proposed. • The recent advances and remaining difficulties in biodiesel synthesis were outlined. • The future research trend in biodiesel synthesis was highlighted. - Abstract: The insecure supply of fossil fuel coerces the scientific society to keep a vision to boost investments in the renewable energy sector. Among the many renewable fuels currently available around the world, biodiesel offers an immediate impact in our energy. In fact, a huge interest in related research indicates a promising future for the biodiesel technology. Heterogeneous catalyzed production of biodiesel has emerged as a preferred route as it is environmentally benign needs no water washing and product separation is much easier. The number of well-defined catalyst complexes that are able to catalyze transesterification reactions efficiently has been significantly expanded in recent years. The activity of catalysts, specifically in application to solid acid/base catalyst in transesterification reaction depends on their structure, strength of basicity/acidity, surface area as well as the stability of catalyst. There are various process intensification technologies based on the use of alternate energy sources such as ultrasound and microwave. The latest advances in research and development related to biodiesel production is represented by non-catalytic supercritical method and focussed exclusively on these processes as forthcoming transesterification processes. The latest developments in this field featuring highly active catalyst complexes are outlined in this review. The knowledge of more extensive research on advances in biofuels will allow a deeper insight into the mechanism of these technologies toward meeting the critical energy challenges in future

  5. Characterization and Catalytic Performance of Niobic Acid Dispersed over Titanium Silicalite

    Directory of Open Access Journals (Sweden)

    Didik Prasetyoko

    2008-01-01

    Full Text Available Niobic acid, Nb2O5⋅nH2O, has been supported on the titanium silicalite by impregnation method. The obtained materials were characterized by X-ray diffraction, infrared, and ultra-violet—visible diffuse reflectance spectroscopy, temperature programmed reduction, pyridine adsorption, and field emission scanning electron microscopy techniques. It was demonstrated that the tetrahedral titanium species still retained after impregnation of niobic acid. The results revealed that niobium species interacted with hydroxyl groups on the surface of TS-1. The niobium species in the catalysts are predominantly polymerized niobium oxides species or bulk niobium oxide with the octahedral structure. All catalysts showed both Brønsted and Lewis acid sites. The catalysts have been tested for epoxidation of 1-octene with aqueous hydrogen peroxide. It was found that the presence of niobic acid in the catalysts enhanced the rate of the formation of epoxide at the initial reaction time. Diol as a side product was also observed due to the acidic properties of the catalysts.

  6. Transformation of Unsaturated Fatty Acids/Esters to Corresponding Keto Fatty Acids/Esters by Aerobic Oxidation with Pd(II)/Lewis Acid Catalyst.

    Science.gov (United States)

    Senan, Ahmed M; Zhang, Sicheng; Zeng, Miao; Chen, Zhuqi; Yin, Guochuan

    2017-08-16

    Utilization of renewable biomass to partly replace the fossil resources in industrial applications has attracted attention due to the limited fossil feedstock with the increased environmental concerns. This work introduced a modified Wacker-type oxidation for transformation of unsaturated fatty acids/esters to the corresponding keto fatty acids/esters, in which Cu 2+ cation was replaced with common nonredox metal ions, that is, a novel Pd(II)/Lewis acid (LA) catalyst. It was found that adding nonredox metal ions can effectively promote Pd(II)-catalyzed oxidation of unsaturated fatty acids/esters to the corresponding keto fatty acids/esters, even much better than Cu 2+ , and the promotional effect is highly dependent on the Lewis acidity of added nonredox metal ions. The improved catalytic efficiency is attributed to the formation of heterobimetallic Pd(II)/LA species, and the oxidation mechanism of this Pd(II)/LA catalyst is also briefly discussed.

  7. Development of wet-proofed catalyst and catalytic exchange process for tritium extraction

    Energy Technology Data Exchange (ETDEWEB)

    Song, Myung Jae; Son, Soon Hwan; Chung, Yang Gun; Lee, Gab Bock [Korea Electric Power Corp. (KEPCO), Taejon (Korea, Republic of). Research Center

    1996-12-31

    To apply a liquid phase catalytic exchange(LPCE) process for the tritium extraction from tritiated heavy water, the wet proofed catalyst to allow the hydrogen isotopic exchange reaction between liquid water and hydrogen gas was developed. A styrene divinyl benzene copolymer was selected as am effective catalyst support and prepared by suspension copolymerization. After post-treatment, final catalyst supports were dipped in chloroplatinic acid solution. The catalyst support had a good physical properties at a particular preparation condition. The catalytic performance was successfully verified through hydrogen isotopic exchange reaction in the exchange column. A mathematical model for the tritium removal process consisted of LPCE front-ended process and cryogenic distillation process was established using the NTU-HTU method for LPCE column and the FUG method for cryogenic distillation column, respectively. A computer program was developed using the model and then used to investigate optimum design variables which affect the size of columns and tritium inventory (author). 84 refs., 113 figs.

  8. Catalytic Conversion of Carbohydrates to Initial Platform Chemicals: Chemistry and Sustainability.

    Science.gov (United States)

    Mika, László T; Cséfalvay, Edit; Németh, Áron

    2018-01-24

    The replacement of fossil resources that currently provide more than 90% of our energy needs and feedstocks of the chemical industry in combination with reduced emission of carbon dioxide is one of the most pressing challenges of mankind. Biomass as a globally available resource has been proposed as an alternative feedstock for production of basic building blocks, which could partially or even fully replace the currently utilized fossil-based ones in well-established chemical processes. The destruction of lignocellulosic feed followed by oxygen removal from its cellulose and hemicellulose content by catalytic processes results in the formation of initial platform chemicals (IPCs). However, their sustainable production strongly depends on the availability of resources, their efficient or even industrially viable conversion processes, and replenishment time of feedstocks. Herein, we overview recent advances and developments in catalytic transformations of the carbohydrate content of lignocellulosic biomass to IPCs (i.e., ethanol, 3-hydroxypropionic acid, isoprene, succinic and levulinic acids, furfural, and 5-hydroxymethylfurfural). The mechanistic aspects, development of new catalysts, different efficiency indicators (yield and selectivity), and conversion conditions of their production are presented and compared. The potential biochemical production routes utilizing recently engineered microorganisms are reviewed, as well. The sustainability metrics that could be applied to the chemical industry (individual set of sustainability indicators, composite indices methods, material and energy flow analysis-based metrics, and ethanol equivalents) are also overviewed as well as an outlook is provided to highlight challenges and opportunities associated with this huge research area.

  9. Catalytic cracking models developed for predictive control purposes

    Directory of Open Access Journals (Sweden)

    Dag Ljungqvist

    1993-04-01

    Full Text Available The paper deals with state-space modeling issues in the context of model-predictive control, with application to catalytic cracking. Emphasis is placed on model establishment, verification and online adjustment. Both the Fluid Catalytic Cracking (FCC and the Residual Catalytic Cracking (RCC units are discussed. Catalytic cracking units involve complex interactive processes which are difficult to operate and control in an economically optimal way. The strong nonlinearities of the FCC process mean that the control calculation should be based on a nonlinear model with the relevant constraints included. However, the model can be simple compared to the complexity of the catalytic cracking plant. Model validity is ensured by a robust online model adjustment strategy. Model-predictive control schemes based on linear convolution models have been successfully applied to the supervisory dynamic control of catalytic cracking units, and the control can be further improved by the SSPC scheme.

  10. Sulfuric acid functional zirconium (or aluminum) incorporated mesoporous MCM-48 solid acid catalysts for alkylation of phenol with tert-butyl alcohol

    International Nuclear Information System (INIS)

    Jiang, Tingshun; Cheng, Jinlian; Liu, Wangping; Fu, Lie; Zhou, Xuping; Zhao, Qian; Yin, Hengbo

    2014-01-01

    Several zirconium (or aluminum) incorporated mesoporous MCM-48 solid acid catalysts (SO 4 2− /Zr-MCM-48 and SO 4 2− /Al-MCM-48) were prepared by the impregnation method and their physicochemical properties were characterized by means of XRD, FT-IR, TEM, NH 3 -TPD and N 2 physical adsorption. Also, the catalytic activities of these solid acid catalysts were evaluated by the alkylation of phenol with tert-butyl alcohol. The effect of weight hour space velocity (WHSV), reaction time and reaction temperature on catalytic properties was also studied. The results show that the SO 4 2− /Zr-MCM-48 and SO 4 2− /Al-MCM-48 still have good mesoporous structure and long range ordering. Compared with the Zr (or Al)–MCM-48 samples, SO 4 2− /Zr-MCM-48 and SO 4 2− /Al-MCM-48 solid acid catalysts have strong acidity and exhibit high activities in alkylation reaction of phenol with tert-butyl alcohol. The SO 4 2− /Zr-MCM-48-25 (molar ratio of Si/Zr=0.04) catalyst was found to be the most promising and gave the highest phenol conversion among all catalysts. A maximum phenol conversion of 91.6% with 4-tert-butyl phenol (4-TBP) selectivity of 81.8% was achieved when the molar ratio of tert-butyl alcohol:phenol is 2:1, reaction time is 2 h, the WHSV is 2 h −1 and the reaction temperature is 140 °C. - Highlights: • Sulfuric acid functional mesoporous solid acid catalysts were prepared via impregnation method. • The alkylation of phenol with tert-butyl alcohol was carried out over these solid acid catalysts. • The catalytic activity of SO 4 2− /Zr-MCM-48-25 catalyst is much higher than that of the others. • A maximum phenol conversion of 91.6% was achieved under optimum reaction conditions for SO 4 2− /Zr-MCM-48-25

  11. Design of an effective bifunctional catalyst organotriphosphonic acid-functionalized ferric alginate (ATMP-FA) and optimization by Box-Behnken model for biodiesel esterification synthesis of oleic acid over ATMP-FA.

    Science.gov (United States)

    Liu, Wei; Yin, Ping; Liu, Xiguang; Qu, Rongjun

    2014-12-01

    Biodiesel production has become an intense research area because of rapidly depleting energy reserves and increasing petroleum prices together with environmental concerns. This paper focused on the optimization of the catalytic performance in the esterification reaction of oleic acid for biodiesel production over the bifunctional catalyst organotriphosphonic acid-functionalized ferric alginate ATMP-FA. The reaction parameters including catalyst amount, ethanol to oleic acid molar ratio and reaction temperature have been optimized by response surface methodology (RSM) using the Box-Behnken model. It was found that the reaction temperature was the most significant factor, and the best conversion ratio of oleic acid could reach 93.17% under the reaction conditions with 9.53% of catalyst amount and 8.62:1 of ethanol to oleic acid molar ratio at 91.0 °C. The research results show that two catalytic species could work cooperatively to promote the esterification reaction, and the bifunctional ATMP-FA is a potential catalyst for biodiesel production. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Effect of inlet cone pipe angle in catalytic converter

    Science.gov (United States)

    Amira Zainal, Nurul; Farhain Azmi, Ezzatul; Arifin Samad, Mohd

    2018-03-01

    The catalytic converter shows significant consequence to improve the performance of the vehicle start from it launched into production. Nowadays, the geometric design of the catalytic converter has become critical to avoid the behavior of backpressure in the exhaust system. The backpressure essentially reduced the performance of vehicles and increased the fuel consumption gradually. Consequently, this study aims to design various models of catalytic converter and optimize the volume of fluid flow inside the catalytic converter by changing the inlet cone pipe angles. Three different geometry angles of the inlet cone pipe of the catalytic converter were assessed. The model is simulated in Solidworks software to determine the optimum geometric design of the catalytic converter. The result showed that by decreasing the divergence angle of inlet cone pipe will upsurge the performance of the catalytic converter.

  13. Application of titanium oxide nanotube films containing gold nanoparticles for the electroanalytical determination of ascorbic acid

    Energy Technology Data Exchange (ETDEWEB)

    Hosseini, Mir Ghasem, E-mail: mg-hosseini@tabrizu.ac.ir; Faraji, Masoud; Momeni, Mohamad Mohsen

    2011-03-31

    Au/TiO{sub 2}/Ti electrodes have been prepared by galvanic deposition of gold particles on TiO{sub 2} nanotube substrates. Titanium oxide nanotubes are fabricated by anodizing titanium foil in a Dimethyl Sulfoxide electrolyte containing fluoride. The scanning electron microscopy results indicated that gold particles are homogeneously deposited on the surface of TiO{sub 2} nanotubes. The TiO{sub 2} layers consist of individual tubes of about 40-80 nm diameters. The electro-catalytic behavior of Au/TiO{sub 2}/Ti and flat gold electrodes for the ascorbic acid electro-oxidation was studied by cyclic voltammetry. The results showed that the flat gold electrode is not suitable for the oxidation of ascorbic acid. However, the Au/TiO{sub 2}/Ti electrodes are shown to possess catalytic activity toward the oxidation reaction. Catalytic oxidation peak current showed a linear dependence on the ascorbic acid concentration and a linear calibration curve is obtained in the concentration range of 1-5 mM of ascorbic acid. Also, determination of ascorbic acid in real samples was evaluated. The obtained results were found to be satisfactory. Finally the effects of interference on the detection of ascorbic acid were investigated.

  14. Catalytic burners in larger boiler appliances

    Energy Technology Data Exchange (ETDEWEB)

    Silversand, Fredrik; Persson, Mikael (Catator AB, Lund (Sweden))

    2009-02-15

    This project focuses on the scale up of a Catator's catalytic burner technology to enable retrofit installation in existing boilers and the design of new innovative combinations of catalytic burners and boilers. Different design approaches are discussed and evaluated in the report and suggestions are made concerning scale-up. Preliminary test data, extracted from a large boiler installation are discussed together with an accurate analysis of technical possibilities following an optimization of the boiler design to benefit from the advantages of catalytic combustion. The experimental work was conducted in close collaboration with ICI Caldaie (ICI), located in Verona, Italy. ICI is a leading European boiler manufacturer in the effect segment ranging from about 20 kWt to several MWt. The study shows that it is possibly to scale up the burner technology and to maintain low emissions. The boilers used in the study were designed around conventional combustion and were consequently not optimized for implementation of catalytic burners. From previous experiences it stands clear that the furnace volume can be dramatically decreased when applying catalytic combustion. In flame combustion, this volume is normally dimensioned to avoid flame impingement on cold surfaces and to facilitate completion of the gas-phase reactions. The emissions of nitrogen oxides can be reduced by decreasing the residence time in the furnace. Even with the over-dimensioned furnace used in this study, we easily reached emission values close to 35 mg/kWh. The emissions of carbon monoxide and unburned hydrocarbons were negligible (less than 5 ppmv). It is possible to decrease the emissions of nitrogen oxides further by designing the furnace/boiler around the catalytic burner, as suggested in the report. Simultaneously, the size of the boiler installation can be reduced greatly, which also will result in material savings, i.e. the production cost can be reduced. It is suggested to optimize the

  15. Detection of Intracellular Reduced (Catalytically Active) SHP-1 and Analyses of Catalytically Inactive SHP-1 after Oxidation by Pervanadate or H2O2.

    Science.gov (United States)

    Choi, Seeyoung; Love, Paul E

    2018-01-05

    Oxidative inactivation of cysteine-dependent Protein Tyrosine Phosphatases (PTPs) by cellular reactive oxygen species (ROS) plays a critical role in regulating signal transduction in multiple cell types. The phosphatase activity of most PTPs depends upon a 'signature' cysteine residue within the catalytic domain that is maintained in the de-protonated state at physiological pH rendering it susceptible to ROS-mediated oxidation. Direct and indirect techniques for detection of PTP oxidation have been developed (Karisch and Neel, 2013). To detect catalytically active PTPs, cell lysates are treated with iodoacetyl-polyethylene glycol-biotin (IAP-biotin), which irreversibly binds to reduced (S - ) cysteine thiols. Irreversible oxidation of SHP-1 after treatment of cells with pervanadate or H 2 O 2 is detected with antibodies specific for the sulfonic acid (SO 3 H) form of the conserved active site cysteine of PTPs. In this protocol, we describe a method for the detection of the reduced (S - ; active) or irreversibly oxidized (SO 3 H; inactive) form of the hematopoietic PTP SHP-1 in thymocytes, although this method is applicable to any cysteine-dependent PTP in any cell type.

  16. A QM/MM–Based Computational Investigation on the Catalytic Mechanism of Saccharopine Reductase

    Directory of Open Access Journals (Sweden)

    James W. Gauld

    2011-10-01

    Full Text Available Saccharopine reductase from Magnaporthe grisea, an NADPH-containing enzyme in the α-aminoadipate pathway, catalyses the formation of saccharopine, a precursor to L-lysine, from the substrates glutamate and α-aminoadipate-δ-semialdehyde. Its catalytic mechanism has been investigated using quantum mechanics/molecular mechanics (QM/MM ONIOM-based approaches. In particular, the overall catalytic pathway has been elucidated and the effects of electron correlation and the anisotropic polar protein environment have been examined via the use of the ONIOM(HF/6-31G(d:AMBER94 and ONIOM(MP2/6-31G(d//HF/6-31G(d:AMBER94 methods within the mechanical embedding formulism and ONIOM(MP2/6-31G(d//HF/6-31G(d:AMBER94 and ONIOM(MP2/6-311G(d,p//HF/6-31G(d:AMBER94 within the electronic embedding formulism. The results of the present study suggest that saccharopine reductase utilises a substrate-assisted catalytic pathway in which acid/base groups within the cosubstrates themselves facilitate the mechanistically required proton transfers. Thus, the enzyme appears to act most likely by binding the three required reactant molecules glutamate, α-aminoadipate-δ-semialdehyde and NADPH in a manner and polar environment conducive to reaction.

  17. A novel 3D Ag(I)-MOF: Surfactant-directed syntheses and catalytic degradation of o/m/p-Nitrophenol

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Xue-Qian [College of Materials and Chemical Engineering, Hubei Provincial Collaborative Innovation Center for New Energy Microgrid, China Three Gorges University, Yichang 443002 (China); Wen, Guo-Xuan [College of Science, China Three Gorges University, Yichang 443002 (China); Wu, Ya-Pan; Dong, Wen-Wen; Zhao, Jun [College of Materials and Chemical Engineering, Hubei Provincial Collaborative Innovation Center for New Energy Microgrid, China Three Gorges University, Yichang 443002 (China); Li, Dong-Sheng, E-mail: lidongsheng1@126.com [College of Materials and Chemical Engineering, Hubei Provincial Collaborative Innovation Center for New Energy Microgrid, China Three Gorges University, Yichang 443002 (China)

    2016-10-15

    For the first time, sodium caprylate has been investigated to direct the crystal growth of 3D Ag-MOF, [Ag{sub 2}(ddcba)(4,4′-bipy){sub 2}] (1), constructing from 3,5-(di(2′,5′-dicarboxylphenyl)benozoic acid and 4,4′-bipy. The single crystal diffraction analyses shows that complex 1 possess 3D neutral framework with a three-connected ThSi{sub 2} (10{sup 3}-b) topology. Compound 1 exhibits predominant catalytic activity towards the degradation of o-Nitrophenol (ONP), m-Nitrophenol (MNP) and p-Nitrophenol (PNP) in aqueous solution. The kinetics of such catalytic degradation reactions was also studied. - Graphical abstract: A novel 3D Ag(I)-MOF with ThSi{sub 2} (10{sup 3}-b) topology exhibits predominant catalytic activity towards the degradation of o-Nitrophenol (ONP), m-Nitrophenol (MNP) and p-Nitrophenol (PNP) in aqueous solution. - Highlights: • A novel 3D Ag(I)-MOF with ThSi{sub 2} (10{sup 3}-b) topology. • Surfactant as additive for directing the crystal growth. • Predominant catalytic activities for the degradation of o/m/p-nitrophenol.

  18. Levulinic Acid Biorefineries: New Challenges for Efficient Utilization of Biomass.

    Science.gov (United States)

    Pileidis, Filoklis D; Titirici, Maria-Magdalena

    2016-03-21

    Levulinic acid is a sustainable platform molecule that can be upgraded to valuable chemicals and fuel additives. This article focuses on the catalytic upgrading of levulinic acid into various chemicals such as levulinate esters, δ-aminolevulinic acid, succinic acid, diphenolic acid, γ-valerolactone, and γ-valerolactone derivatives such valeric esters, 5-nonanone, α-methylene-γ valerolactone, and other various molecular-weight alkanes (C9 and C18-C27 olefins). © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Lewis Acid Pairs for the Activation of Biomass-derived Oxygenates in Aqueous Media

    Energy Technology Data Exchange (ETDEWEB)

    Roman, Yuriy [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2015-09-14

    The objective of this project is to understand the mechanistic aspects behind the cooperative activation of oxygenates by catalytic pairs in aqueous media. Specifically, we will investigate how the reactivity of a solid Lewis acid can be modulated by pairing the active site with other catalytic sites at the molecular level, with the ultimate goal of enhancing activation of targeted functional groups. Although unusual catalytic properties have been attributed to the cooperative effects promoted by such catalytic pairs, virtually no studies exist detailing the use heterogeneous water-tolerant Lewis pairs. A main goal of this work is to devise rational pathways for the synthesis of porous heterogeneous catalysts featuring isolated Lewis pairs that are active in the transformation of biomass-derived oxygenates in the presence of bulk water. Achieving this technical goal will require closely linking advanced synthesis techniques; detailed kinetic and mechanistic investigations; strict thermodynamic arguments; and comprehensive characterization studies of both materials and reaction intermediates. For the last performance period (2014-2015), two technical aims were pursued: 1) C-C coupling using Lewis acid and base pairs in Lewis acidic zeolites. Tin-, zirconium-, and hafnium containing zeolites (e.g., Sn-, Zr-, and Hf-Beta) are versatile solid Lewis acids that selectively activate carbonyl functional groups. In this aim, we demonstrate that these zeolites catalyze the cross-aldol condensation of aromatic aldehydes with acetone under mild reaction conditions with near quantitative yields. NMR studies with isotopically labeled molecules confirm that acid-base pairs in the Si-O-M framework ensemble promote soft enolization through α-proton abstraction. The Lewis acidic zeolites maintain activity in the presence of water and, unlike traditional base catalysts, in acidic solutions. 2) One-pot synthesis of MWW zeolite nanosheets for activation of bulky substrates. Through

  20. Concentric catalytic combustor

    Science.gov (United States)

    Bruck, Gerald J [Oviedo, FL; Laster, Walter R [Oviedo, FL

    2009-03-24

    A catalytic combustor (28) includes a tubular pressure boundary element (90) having a longitudinal flow axis (e.g., 56) separating a first portion (94) of a first fluid flow (e.g., 24) from a second portion (95) of the first fluid flow. The pressure boundary element includes a wall (96) having a plurality of separate longitudinally oriented flow paths (98) annularly disposed within the wall and conducting respective portions (100, 101) of a second fluid flow (e.g., 26) therethrough. A catalytic material (32) is disposed on a surface (e.g., 102, 103) of the pressure boundary element exposed to at least one of the first and second portions of the first fluid flow.

  1. Effect of support on the catalytic activity of manganese oxide catalyts for toluene combustion.

    Science.gov (United States)

    Pozan, Gulin Selda

    2012-06-30

    The aim of this work was to study combustion of toluene (1000ppm) over MnO(2) modified with different supports. α-Al(2)O(3) and γ-Al(2)O(3) obtained from Boehmite, γ-Al(2)O(3) (commercial), SiO(2), TiO(2) and ZrO(2) were used as commercial support materials. In view of potential interest of this process, the influence of support material on the catalytic performance was discussed. The deposition of 9.5MnO(2) was performed by impregnation over support. The catalysts were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), temperature programmed reduction and oxidation (TPR/TPO) and thermogravimetric analysis (TGA). The catalytic tests were carried out at atmospheric pressure in a fixed-bed flow reactor. 9.5MnO(2)/α-Al(2)O(3)(B) (synthesized from Boehmite) catalyst exhibits the highest catalytic activity, over which the toluene conversion was up to 90% at a temperature of 289°C. Considering all the characterization and reaction data reported in this study, it was concluded that the manganese state and oxygen species played an important role in the catalytic activity. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Catalytic models developed through social work

    DEFF Research Database (Denmark)

    Jensen, Mogens

    2015-01-01

    of adolescents placed in out-of-home care and is characterised using three situated cases as empirical data. Afterwards the concept of catalytic processes is briefly presented and then applied in an analysis of pedagogical treatment in the three cases. The result is a different conceptualisation of the social......The article develops the concept of catalytic processes in relation to social work with adolescents in an attempt to both reach a more nuanced understanding of social work and at the same time to develop the concept of catalytic processes in psychology. The social work is pedagogical treatment...

  3. Kinetics of liquid-phase catalytic heterogeneous protium-tritium isotope exchange with participation of gaseous hydrogen

    International Nuclear Information System (INIS)

    Akulov, G.P.; Snetkova, E.V.; Kayumov, V.G.; Kaminskij, Yu.L.

    1990-01-01

    Reaction rate constants of catalytic (PdO/BaSO 4 (Al 2 O 3 ) catalyst) heterogeneous protium - tritium isotopic exchange D - [1- 3 H] of carbohydrates and gaseous oxygen have been measured. It is ascertained that the rate of isotopic exchange depends on the nature of carbohydrate, catalyst, buffer and medium acidity. The value of concentration of carbohydrate acyclic forms plays the determining role in the process

  4. Photo catalytic reduction of benzophenone on TiO{sub 2}: Effect of preparation method and reaction conditions

    Energy Technology Data Exchange (ETDEWEB)

    Albiter E, E.; Valenzuela Z, M. A.; Alfaro H, S.; Flores V, S. O.; Rios B, O.; Gonzalez A, V. J.; Cordova R, I., E-mail: mavalenz@ipn.m [IPN, Escuela Superior de Ingenieria Quimica e Industrias Extractivas, Laboratorio de Catalisis y Materiales, Zacatenco, 07738 Mexico D. F. (Mexico)

    2010-07-01

    The photo catalytic reduction of benzophenone was studied focussing on improving the yield to benzhydrol. TiO{sub 2} was synthesized by means of a hydrothermal technique. TiO{sub 2} (Degussa TiO{sub 2}-P25) was used as a reference. Catalysts were characterized by X-ray diffraction and nitrogen physisorption. The photo catalytic reduction was carried out in a batch reactor at 25 C under nitrogen atmosphere, acetonitrile as solvent and isopropanol as electron donor. A 200 W Xe-Hg lamp ({lambda}= 360 nm) was employed as irradiation source. The chemical composition of the reaction system was determined by HPLC. Structural and textural properties of the synthesized TiO{sub 2} depended on the type of acid used during sol formation step. Using HCl, a higher specific surface area and narrower pore size distribution of TiO{sub 2} was obtained in comparison with acetic acid. As expected, the photochemical reduction of benzophenone yielded benzopinacol as main product, whereas, benzhydrol is only produced in presence of TiO{sub 2} (i.e. photo catalytic route). In general, the hydrothermally synthesized catalysts were less active and with a lower yield to benzhydrol. The optimal reaction conditions to highest values of benzhydrol yield (70-80%) were found at 2 g/L (catalyst loading) and 0.5 m M of initial concentration of benzophenone, using commercial TiO{sub 2}-P25. (Author)

  5. A Sustainable Nanocomposite Au(Salen)@CC for Catalytic Degradation of Eosin Y and Chromotrope 2R Dyes.

    Science.gov (United States)

    Mayani, Vishal J; Mayani, Suranjana V; Kim, Sang Wook

    2017-08-03

    Up to now, a very few catalysts have been developed approaching the heterogeneous catalytic degradation of Eosin Y and Chromotrope 2R dyes (Acid Red 29). The present study provides a complete perspective of recyclable nanocomposite Au(Salen)@CC for catalytic degradation of hazardous water pollutant dyes viz., Eosin Y & Chromotrope 2R using mild reaction conditions. New gold Salen complex doped carbon nanocomposite Au(Salen)@CC was developed by easy methodology using nano carbon cage (CC) prepared from low-priced Pyrolysis fuel oil (PFO) residue based Pitch. The UV-Vis adsorption spectroscopy results of Eosin Y and Chromotrope 2R dyes indicated complete degradation into acidic compounds which can be further mineralized to CO 2 and H 2 O under mild reaction conditions. The heterogeneous catalyst recycled and reused successfully for four repeated experiments without loss in its adequate performance. This new sustainable and eco-friendly catalyst delivered significant degradation activity compared to existing reports and it can be further utilized for new multifunctional applications such as, radiopharmaceutical activities, heterogeneous catalysis and chiral resolution.

  6. Catalytic hydrotreating of waste cooking oil for renewable diesel production

    Energy Technology Data Exchange (ETDEWEB)

    Bezergianni, Stella; Dimitriadis, Athanasios [Centre for Research and Technology Hellas (CERTH), Thessaloniki (Greece)

    2013-06-01

    A new technology based on catalytic hydrotreating of Waste Cooking Oil (WCO) for biodiesel production has been developed in the Centre for Research and Technology Hellas (CERTH). The main premise of this process is the conversion of the WCO fatty acids into normal- and iso-paraffins. The technology was evaluated in hydroprocessing pilot plants of CERTH where feedstock origin as well as optimal catalysts and operating parameters where identified. The fractionated diesel product, called ''white'' diesel exhibits excellent fuel properties including higher heating value (over 49 MJ/kg), negligible acidity, higher oxidation stability and higher cetane number ({proportional_to}77) than conventional biodiesel. The overall product yield is {proportional_to}92% v/v. This new suggested technology is extremely appealing as it employs existing refinery infrastructure and expertise, offers feedstock flexibility, leaves no by-product and above all is economically attractive. (orig.)

  7. Oriented Decoration in Metal-Functionalized Ordered Mesoporous Silicas and Their Catalytic Applications in the Oxidation of Aromatic Compounds

    Directory of Open Access Journals (Sweden)

    Shijian Zhou

    2018-02-01

    Full Text Available Ordered mesoporous silicas (OMSs attract considerable attention due to their advanced structural properties. However, for the pristine silica materials, the inert property greatly inhibits their catalytic applications. Thus, to contribute to the versatile surface of OMSs, different metal active sites, including acidic/basic sites and redox sites, have been introduced into specific locations (mesoporous channels and framework of OMSs and the metal-functionalized ordered mesoporous silicas (MOMSs show great potential in the catalytic applications. In this review, we first present the categories of metal active sites. Then, the synthesized processes of MOMSs are thoroughly discussed, in which the metal active sites would be introduced with the assistance of organic groups into the specific locations of OMSs. In addition, the structural morphologies of OMSs are elaborated and the catalytic applications of MOMSs in the oxidation of aromatic compounds are illustrated in detail. Finally, the prospects for the future development in this field are proposed.

  8. Catalytic Cracking of Triglyceride-Rich Biomass toward Lower Olefins over a Nano-ZSM-5/SBA-15 Analog Composite

    Directory of Open Access Journals (Sweden)

    Xuan Hoan Vu

    2015-10-01

    Full Text Available The catalytic cracking of triglyceride-rich biomass toward C2–C4 olefins was evaluated over a hierarchically textured nano-ZSM-5/SBA-15 analog composite (ZSC-24 under fluid catalytic cracking (FCC conditions. The experiments were performed on a fully automated Single-Receiver Short-Contact-Time Microactivity Test unit (SR-SCT-MAT, Grace Davison at 550 °C and different catalyst-to-oil mass ratios (0–1.2 g∙g−1. The ZSC-24 catalyst is very effective for transformation of triglycerides to valuable hydrocarbons, particularly lower olefins. The selectivity to C2–C4 olefins is remarkably high (>90% throughout the investigated catalyst-to-oil ratio range. The superior catalytic performance of the ZSC-24 catalyst can be attributed to the combination of its medium acid site amount and improved molecular transport provided by the bimodal pore system, which effectively suppresses the secondary reactions of primarily formed lower olefins.

  9. Catalytically favorable surface patterns in Pt-Au nanoclusters

    KAUST Repository

    Mokkath, Junais Habeeb

    2013-01-01

    Motivated by recent experimental demonstrations of novel PtAu nanoparticles with highly enhanced catalytic properties, we present a systematic theoretical study that explores principal catalytic indicators as a function of the particle size and composition. We find that Pt electronic states in the vicinity of the Fermi level combined with a modified electron distribution in the nanoparticle due to Pt-to-Au charge transfer are the origin of the outstanding catalytic properties. From our model we deduce the catalytically favorable surface patterns that induce ensemble and ligand effects. © The Royal Society of Chemistry 2013.

  10. Cytochromes P450: History, Classes, Catalytic Mechanism, and Industrial Application.

    Science.gov (United States)

    Cook, D J; Finnigan, J D; Cook, K; Black, G W; Charnock, S J

    Cytochromes P450, a family of heme-containing monooxygenases that catalyze a diverse range of oxidative reactions, are so-called due to their maximum absorbance at 450nm, ie, "Pigment-450nm," when bound to carbon monoxide. They have appeal both academically and commercially due to their high degree of regio- and stereoselectivity, for example, in the area of active pharmaceutical ingredient synthesis. Despite this potential, they often exhibit poor stability, low turnover numbers and typically require electron transport protein(s) for catalysis. P450 systems exist in a variety of functional domain architectures, organized into 10 classes. P450s are also divided into families, each of which is based solely on amino acid sequence homology. Their catalytic mechanism employs a very complex, multistep catalytic cycle involving a range of transient intermediates. Mutagenesis is a powerful tool for the development of improved biocatalysts and has been used extensively with the archetypal Class VIII P450, BM3, from Bacillus megaterium, but with the increasing scale of genomic sequencing, a huge resource is now available for the discovery of novel P450s. © 2016 Elsevier Inc. All rights reserved.

  11. Turning goals into results: the power of catalytic mechanisms.

    Science.gov (United States)

    Collins, J

    1999-01-01

    Most executives have a big, hairy, audacious goal. They write vision statements, formalize procedures, and develop complicated incentive programs--all in pursuit of that goal. In other words, with the best of intentions, they install layers of stultifying bureaucracy. But it doesn't have to be that way. In this article, Jim Collins introduces the catalytic mechanism, a simple yet powerful managerial tool that helps translate lofty aspirations into concrete reality. Catalytic mechanisms are the crucial link between objectives and performance; they are a galvanizing, nonbureaucratic means to turn one into the other. What's the difference between catalytic mechanisms and most traditional managerial controls? Catalytic mechanisms share five characteristics. First, they produce desired results in unpredictable ways. Second, they distribute power for the benefit of the overall system, often to the discomfort of those who traditionally hold power. Third, catalytic mechanisms have teeth. Fourth, they eject "viruses"--those people who don't share the company's core values. Finally, they produce an ongoing effect. Catalytic mechanisms are just as effective for reaching individual goals as they are for corporate ones. To illustrate how catalytic mechanisms work, the author draws on examples of individuals and organizations that have relied on such mechanisms to achieve their goals. The same catalytic mechanism that works in one organization, however, will not necessarily work in another. Catalytic mechanisms must be tailored to specific goals and situations. To help readers get started, the author offers some general principles that support the process of building catalytic mechanisms effectively.

  12. Atomically Precise Metal Nanoclusters for Catalytic Application

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Rongchao [Carnegie Mellon Univ., Pittsburgh, PA (United States)

    2016-11-18

    The central goal of this project is to explore the catalytic application of atomically precise gold nanoclusters. By solving the total structures of ligand-protected nanoclusters, we aim to correlate the catalytic properties of metal nanoclusters with their atomic/electronic structures. Such correlation unravel some fundamental aspects of nanocatalysis, such as the nature of particle size effect, origin of catalytic selectivity, particle-support interactions, the identification of catalytically active centers, etc. The well-defined nanocluster catalysts mediate the knowledge gap between single crystal model catalysts and real-world conventional nanocatalysts. These nanoclusters also hold great promise in catalyzing certain types of reactions with extraordinarily high selectivity. These aims are in line with the overall goals of the catalytic science and technology of DOE and advance the BES mission “to support fundamental research to understand, predict, and ultimately control matter and energy at the level of electrons, atoms, and molecules”. Our group has successfully prepared different sized, robust gold nanoclusters protected by thiolates, such as Au25(SR)18, Au28(SR)20, Au38(SR)24, Au99(SR)42, Au144(SR)60, etc. Some of these nanoclusters have been crystallographically characterized through X-ray crystallography. These ultrasmall nanoclusters (< 2 nm diameter) exhibit discrete electronic structures due to quantum size effect, as opposed to quasicontinuous band structure of conventional metal nanoparticles or bulk metals. The available atomic structures (metal core plus surface ligands) of nanoclusters serve as the basis for structure-property correlations. We have investigated the unique catalytic properties of nanoclusters (i.e. not observed in conventional nanogold catalysts) and revealed the structure-selectivity relationships. Highlights of our

  13. Enhanced Hydrothermal Stability and Catalytic Activity of La x Zr y O z Mixed Oxides for the Ketonization of Acetic Acid in the Aqueous Condensed Phase

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Ruiz, Juan A. [Energy and Environment Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99352, United States; Cooper, Alan R. [Energy and Environment Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99352, United States; Li, Guosheng [Energy and Environment Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99352, United States; Albrecht, Karl O. [Energy and Environment Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99352, United States

    2017-08-24

    Common ketonization catalysts such as ZrO2, CeO2, CexZryOz, and TiO2-based catalysts have been reported to lose surface area, undergo phase-transformation, and lose catalytic activity when utilized in the condensed aqueous phase. In this work, we synthesized and tested a series of LaxZryOz mixed metal oxides with different La:Zr atomic ratios with the goal of enhancing the catalytic activity and stability for the ketonization of acetic acid in condensed aqueous media at 568 K. We synthesized a hydrothermally stable LaxZryOz mixed-metal oxide catalyst with enhanced ketonization activities 360 and 40 times more active than La2O3 and ZrO2, respectively. Catalyst characterization techniques suggest that the formation of a hydrothermally stable catalyst which is isomorphic with tetragonal-ZrO2 under hydrothermal reaction conditions.

  14. Surface chemistry and catalytic properties of VOX/Ti-MCM-41 catalysts for dibenzothiophene oxidation in a biphasic system

    International Nuclear Information System (INIS)

    González, J.; Chen, L.F.; Wang, J.A.; Manríquez, Ma.; Limas, R.; Schachat, P.; Navarrete, J.; Contreras, J.L.

    2016-01-01

    Highlights: • Oxidative desulfurization of model diesel was tested in a biphasic system. • ODS activity was proportional to the V 5+ /(V 4+ + V 5+ ) values of the catalysts. • Lewis acidity was related to vanadium content and catalytic activity. • 99.9% DBT was oxidized using 25%V 2 O 5 /Ti-MCM-41 at 60 °C within 60 min. - Abstract: A series of vanadium oxide supported on Ti-MCM-41 catalysts was synthesized via the incipient impregnation method by varying the vanadia loading from 5 wt% to 10, 15, 20 and 25 wt%. These catalysts were characterized by a variety of advanced techniques for investigating their crystalline structure, textural properties, and surface chemistry information including surface acidity, reducibility, vanadium oxidation states, and morphological features. The catalytic activities of the catalysts were evaluated in a biphasic reaction system for oxidative desulfurization (ODS) of a model diesel containing 300 ppm of dibenzothiophene (DBT) where acetonitrile was used as extraction solvent and H 2 O 2 as oxidant. ODS activity was found to be proportional to the V 5+ /(V 4+ + V 5+ ) values of the catalysts, indicating that the surface vanadium pentoxide (V 2 O 5 ) was the active phase. Reaction temperature would influence significantly the ODS efficiency; high temperature, i.e., 80 °C, would lead to low ODS reaction due to the partial decomposition of oxidant. All the catalysts contained both Lewis and Brønsted acid sites but the former was predominant. The catalysts with low vanadia loading (5 or 10 wt%V 2 O 5 ) had many Lewis acid sites and could strongly adsorb DBT molecule via the electron donation/acceptance action which resulted in an inhibition for the reaction of DBT with the surface peroxometallic species. The catalyst with high vanadia loading (25wt%V 2 O 5 /Ti-MCM-41) showed the highest catalytic activity and could remove 99.9% of DBT at 60 °C within 60 min.

  15. Heterogeneous nanocomposites composed of silver sulfide and hollow structured Pd nanoparticles with enhanced catalytic activity toward formic acid oxidation

    International Nuclear Information System (INIS)

    Chen, Dong; Cui, Penglei; Liu, Hui; Yang, Jun

    2015-01-01

    Highlights: • Core–shell Ag-Ag/Pd nanoparticles with an Ag core and an Ag/Pd alloy shell are prepared via galvanic replacement reaction. • Heterogeneous Ag2S-hollow Pd nanocomposites are fabricated by converting the Ag component into Ag2S using element sulfur. • The heterogeneous Ag2S-hollow Pd nanocomposites display enhanced activity for formic acid oxidation due to electronic coupling effect. • The methodology may find applications to produce the semiconductor-metal nanocomposites with interesting architectures and tailored functionalities. - Abstract: Nanocomposites consisting semiconductor and noble metal domains are of great interest for their synergistic effect-based enhanced properties in a given application. Herein, we demonstrate a facile approach for the synthesis of heterogeneous nanocomposites consisting of silver sulfide (Ag 2 S) and hollow structured Pd nanoparticles (hPd). It begins with the preparation of core–shell nanoparticles with an Ag core and an alloy Ag/Pd shell in an organic solvent via galvanic replacement reaction (GRR) between Ag seed particles pre-synthesized and Pd 2+ ion precursors. The Ag component is then removed from the core and shell regions of core–shell Ag-Ag/Pd nanoparticles, and converted into Ag 2 S by elemental sulfur (S). The Ag 2 S forms the semiconductor domain in the nanocomposite and shares the solid-state interface with the resultant hollow structured Pd nanoparticle. As demonstrated, the Ag 2 S-hPd nanocomposites exhibit superior catalytic activity and durability for formic acid oxidation, compared to the pure Pd nanoparticles prepared by oleylamine reduction of Pd ion precursors and commercial Pd/C catalyst, due to the electronic coupling between semiconductor and noble metal domains in the nanocomposites. In addition, the structural transformation from core–shell to heterogeneous nanocomposites may provide new opportunities to design and fabricate hybrid nanostructures with interesting

  16. Kinetic Parameters of Non-Isothermal Thermogravimetric Non-Catalytic and Catalytic Pyrolysis of Empty Fruit Bunch with Alumina by Kissinger and Ozawa Methods

    Science.gov (United States)

    Rahayu Mohamed, Alina; Li, Nurfahani; Sohaimi, Khairunissa Syairah Ahmad; Izzati Iberahim, Nur; Munirah Rohaizad, Nor; Hamzah, Rosniza

    2018-03-01

    The non-isothermal thermogravimetric non-catalytic and catalytic empty fruit bunch (EFB) pyrolysis with alumina were performed at different heating rates of 10, 15, 20, 25, 30 and 40 K/min under nitrogen atmosphere at a flow rate of 100 ml/min under dynamic conditions from 301 K to 1273 K. The activation energy were calculated based on Kissinger and Ozawa methods. Both reactions followed first order reactions. By Kissinger method, the activation energy and Ln A values for non-catalytic and catalytic EFB pyrolysis with alumina were 188.69 kJ mol-1 and 201.67 kJ/mol respectively. By Ozawa method, the activation energy values for non-catalytic and catalytic EFB pyrolysis with alumina were 189.13 kJ/mol and 201.44 kJ/mol respectively. The presence of catalyst increased the activation energy values for EFB pyrolysis as calculated by Kissinger and Ozawa methods.

  17. An empirical study on the preparation of the modified coke and its catalytic oxidation properties

    Science.gov (United States)

    Liu, Hao; Jiang, Wenqiang

    2017-05-01

    T As a methyl acrylic ester fungicide, pyraclostrobin has the advantages of high activity, wide sterilization spectrum and high safety level comparing with the traditional fungicide. Due to less toxicity and side effects on human and environment, the use of pyraclostrobin and its mixture in agriculture is increasing. The heavy use of pyraclostrobin will inevitably cause pollution to the biological and abiotic environment. Therefore, it is of great significance to do the research on the degradation of pyraclostrobin. In this study, coke, as matrix, was modified by chemical modification. The modified coke was used as the catalyst and the pyraclostrobin was used as the degradation object. The degradation experiment of pyraclostrobin was carried out by using catalytic oxidation. The catalytic oxidation performance of modified coke was studied. The result showed that in the catalytic oxidation system of using modified coke as catalyst and H2O2 as oxidant, the best reaction condition is as following: The modified coke which is modified by using 70% concentration nitric acid is used as catalyst; The dosage of the catalyst is10g; The dosage of H2O2 is 0.6ml; The reaction time is 6 hours.

  18. Selective oxidation of glycerol to formic acid in highly concentrated aqueous solutions with molecular oxygen using V-substituted phosphomolybdic acids

    KAUST Repository

    Zhang, Jizhe

    2014-01-01

    Formic acid is an important commodity chemical as well as a promising medium for hydrogen storage and hydrogen production. In this paper, we report that formic acid can be produced through selective oxidation of glycerol, a low-cost by-product of biodiesel, by using vanadium-substituted phosphomolybdic acids as catalysts and molecular oxygen as the oxidant. Significantly, this catalytic system allows for high-concentration conversions and thus leads to exceptional efficiency. Specifically, 3.64 g of formic acid was produced from 10 g of glycerol/water (50/50 in weight) solution. © 2014 the Partner Organisations.

  19. A Review on Catalytic Membranes Production and Applications

    Directory of Open Access Journals (Sweden)

    Heba Abdallah

    2017-05-01

    Full Text Available The development of the chemical industry regarding reducing the production cost and obtaining a high-quality product with low environmental impact became the essential requirements of the world in these days. The catalytic membrane is considered as one of the new alternative solutions of catalysts problems in the industries, where the reaction and separation can be amalgamated in one unit. The catalytic membrane has numerous advantages such as breaking the thermodynamic equilibrium limitation, increasing conversion rate, reducing the recycle and separation costs. But the limitation or most disadvantages of catalytic membranes related to the high capital costs for fabrication or the fact that manufacturing process is still under development. This review article summarizes the most recent advances and research activities related to preparation, characterization, and applications of catalytic membranes. In this article, various types of catalytic membranes are displayed with different applications and explained the positive impacts of using catalytic membranes in various reactions. Copyright © 2017 BCREC Group. All rights reserved. Received: 1st April 2016; Revised: 14th February 2017; Accepted: 22nd February 2017 How to Cite: Abdallah, H. (2017. A Review on Catalytic Membranes Production and Applications. Bulletin of Chemical Reaction Engineering & Catalysis, 12 (2: 136-156 (doi:10.9767/bcrec.12.2.462.136-156 Permalink/DOI: http://dx.doi.org/10.9767/bcrec.12.2.462.136-156

  20. Silver nanoparticles containing hybrid polymer microgels with tunable surface plasmon resonance and catalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Ajmal, Muhammad; Siddiq, Mohammad [Quaid-I-Azam University, Islamabad (Pakistan); Farooqi, Zahoor Hussain [University of the Punjab, Lahore (Pakistan)

    2013-11-15

    Multi-responsive poly(N-isopropylacrylamide-methacrylic acid-acrylamide) [P(NIPAM-MAA-AAm)] copolymer microgel was prepared by free radical emulsion polymerization. Silver nanoparticles were fabricated inside the microgel network by in-situ reduction of silver nitrate. Swelling and deswelling behavior of the pure microgels was studied under various conditions of pH and temperature using dynamic light scattering. A red shift was observed in surface plasmon resonance wavelength of Ag nanoparticles with pH induced swelling of hybrid microgel. The catalytic activity of the hybrid system was investigated by monitoring the reduction of p-nitrophenol under different conditions of temperature and amount of catalysts. For this catalytic reaction a time delay of 8 to 10min was observed at room temperature, which was reduced to 2 min at high temperature due to swelling of microgels, which facilitated diffusion of reactants to catalyst surface and increased rate of reaction.

  1. Behenic acid pyrolysis to produce diesel-like hydrocarbons

    International Nuclear Information System (INIS)

    Xu, Zhi-Xiang; Liu, Peng; Xu, Gui-Sheng; He, Zhi-Xia; Ji, Heng-Song; Wang, Qian

    2017-01-01

    Highlights: • Behenic acid is a suitable bio-renewable resource to produce bio-fuel oil using catalytic cracking. • Little fraction of aromatic compounds presented in bio-fuel oil. • Carbon chain of fatty acid was cracked to form short carbon chain carboxyl firstly. • ESI FT-ICR MS experiment was an effective method to analyze bio-fuel oil heavy compounds. - Abstract: In order to obtain diesel-like bio-fuel oil, behenic acid was selected to carry out fast pyrolysis. The decomposition temperature of behenic acid was in the range of 250–450 °C at 20 k/min according to TG experiment. The bio-fuel oil mainly contained alkane, alkene and fatty acid. Components of products were C_1_3–C_2_0 hydrocarbon. Little fraction of aromatic compounds was found in bio-fuel oil. According to ESI FT-ICR MS analysis results, the oxygen containing compounds in bio-fuel oil were mainly O_2–O_4 classes, with the O_3 being the major class. According to GC–MS and ESI FT-ICR MS results, it was found that the carbon chain of behenic acid was cracked to form short carbon chain carboxyl firstly. And then decarboxylation reaction carried out. In other means carboxyl groups were more stable than carbon chain of fatty acid. The probable mechanism of O_4 species was free radical reaction. The recommended pyrolysis path was also proposed. Diesel-like bio-fuel oil can be obtained using behenic acid catalytic cracking.

  2. Trapping and partial characterization of an adduct postulated to be the covalent catalytic ternary complex of thymidylate synthetase

    International Nuclear Information System (INIS)

    Ahmed, F.; Moore, M.A.; Dunlap, R.B.

    1986-01-01

    The proposed mechanism of action of thymidylate synthetase envisages the formation of a covalent ternary complex of the enzyme via the active site cysteine with dUMP and 5,10-methylenetetrahydrofolate (CH 2 H 4 folate). The authors recent success in using trichloroacetic acid to trap the covalent enzyme-FdUMP binary and ternary (enzyme-FdUMP-CH 2 H 4 folate) complexes led to the use of this technique in attempts to trap the transient covalent catalytic ternary complex. Experiments performed with [2-C 14 ]dUMP and 3 H-CH 2 H 4 folate show that both these ligands remained bound to the enzyme after trichloroacetic acid precipitation. The trapped covalent catalytic ternary complex was subjected to CNBr fragmentation, and the peptides were fractionated by HPLC. The isolated active-site peptide was shown to retain the two ligands and was subjected to a limited sequence analysis by the dansyl-Edman procedure. The inhibitory ternary complex formed with 14 C-FdUMP and 3 H-CH 2 4 folate served as a control. The active-site peptides isolated from the CNBr treated inhibitory ternary complex and the catalytic complex exhibited identical sequences for the first four N-terminal residues, Ala-Leu-Pro-Pro, and the fifth residue was found to be associated with the labeled ligands. Sequence analysis of the active site peptide derived from the carboxymethylated enzyme confirmed this sequence and the 5th residue was shown to be Cm-Cys

  3. Theophylline-assisted, eco-friendly synthesis of PtAu nanospheres at reduced graphene oxide with enhanced catalytic activity towards Cr(VI) reduction.

    Science.gov (United States)

    Hu, Ling-Ya; Chen, Li-Xian; Liu, Meng-Ting; Wang, Ai-Jun; Wu, Lan-Ju; Feng, Jiu-Ju

    2017-05-01

    Theophylline as a naturally alkaloid is commonly employed to treat asthma and chronic obstructive pulmonary disorder. Herein, a facile theophylline-assisted green approach was firstly developed for synthesis of PtAu nanospheres/reduced graphene oxide (PtAu NSs/rGO), without any surfactant, polymer, or seed involved. The obtained nanocomposites were applied for the catalytic reduction and removal of highly toxic chromium (VI) using formic acid as a model reductant at 50°C, showing the significantly enhanced catalytic activity and improved recyclability when compared with commercial Pt/C (50%) and home-made Au nanocrystals supported rGO (Au NCs/rGO). It demonstrates great potential applications of the catalyst in wastewater treatment and environmental protection. The eco-friendly route provides a new platform to fabricate other catalysts with enhanced catalytic activity. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Transcriptome mining and in silico structural and functional analysis of ascorbic acid and tartaric acid biosynthesis pathway enzymes in rose-scanted geranium.

    Science.gov (United States)

    Narnoliya, Lokesh K; Sangwan, Rajender S; Singh, Sudhir P

    2018-06-01

    Rose-scented geranium (Pelargonium sp.) is widely known as aromatic and medicinal herb, accumulating specialized metabolites of high economic importance, such as essential oils, ascorbic acid, and tartaric acid. Ascorbic acid and tartaric acid are multifunctional metabolites of human value to be used as vital antioxidants and flavor enhancing agents in food products. No information is available related to the structural and functional properties of the enzymes involved in ascorbic acid and tartaric acid biosynthesis in rose-scented geranium. In the present study, transcriptome mining was done to identify full-length genes, followed by their bioinformatic and molecular modeling investigations and understanding of in silico structural and functional properties of these enzymes. Evolutionary conserved domains were identified in the pathway enzymes. In silico physicochemical characterization of the catalytic enzymes revealed isoelectric point (pI), instability index, aliphatic index, and grand average hydropathy (GRAVY) values of the enzymes. Secondary structural prediction revealed abundant proportion of alpha helix and random coil confirmations in the pathway enzymes. Three-dimensional homology models were developed for these enzymes. The predicted structures showed significant structural similarity with their respective templates in root mean square deviation analysis. Ramachandran plot analysis of the modeled enzymes revealed that more than 84% of the amino acid residues were within the favored regions. Further, functionally important residues were identified corresponding to catalytic sites located in the enzymes. To, our best knowledge, this is the first report which provides a foundation on functional annotation and structural determination of ascorbic acid and tartaric acid pathway enzymes in rose-scanted geranium.

  5. Catalytic fast co-pyrolysis of bamboo residual and waste lubricating oil over an ex-situ dual catalytic beds of MgO and HZSM-5: Analytical PY-GC/MS study

    International Nuclear Information System (INIS)

    Wang, Jia; Zhang, Bo; Zhong, Zhaoping; Ding, Kuan; Deng, Aidong; Min, Min; Chen, Paul; Ruan, Roger

    2017-01-01

    Highlights: • Catalytic co-pyrolysis of bamboo residual and waste lubricating oil was conducted. • MgO was beneficial to deacidification via ketonization and aldol condensation. • Dual catalytic bed system exhibited prominent deoxygenation and aromatization. • A HZSM-5/MgO mass ratio of 3:2 largely increased the yield of aromatics. • Waste lubricating oil leads hydrocarbon pool towards the formation of hydrocarbons. - Abstract: Catalytic fast co-pyrolysis (co-CFP) of bamboo residual (BR) and waste lubricating oil (WLO) over dual catalytic beds of MgO and HZSM-5 were carried out in an analytical PY-GC/MS. The effects of pyrolysis temperature, catalyst types, HZSM-5/MgO mass ratio and WLO percentage on products distribution and selectivities of aromatics were investigated. Experimental results revealed that 600 °C promoted the total peak area of volatile matters and accelerated the yields of furans and phenols. Compared to HZSM-5, MgO exhibited pronounced deacidification via ketonization and aldol condensation reactions as the minimum yield of acids (2.116%) and the maximum yield of ketones (28.805%) could be obtained. Furthermore, given the selectivity of phenols, MgO not only spurred the increase of overall phenols yield, but also facilitated the selectivity of light phenols like phenol and 4-methyl-phenol. With respect to the co-CFP of BR and WLO, a HZSM-5/MgO mass ratio of 3:2 largely accelerated the yield of aromatics via Diels-Alder reaction. Simultaneously, the WLO percentage played a vital role in the yield of hydrocarbons (i.e. aromatics + olefins & alkanes), and the maximum yield (70.305%) could be attained at the percentage of 60% as a function of significant activation of hydrocarbon pool.

  6. Utilizing ultrasonic energy for reduction of free fatty acids in crude ...

    African Journals Online (AJOL)

    Ultrasonic energy was used for the reduction of FFA in CPO. FFA content was measured at different sonication intervals, and the optimum time was determined. Hydrochloric acid showed the highest catalytic activity in the reduction of FFA content in CPO, as well as in converting FFA to fatty acid methyl ester (FAME).

  7. Formation of Broensted acids sites in the reaction of cyclohexanol on NaCeY zeolites

    International Nuclear Information System (INIS)

    Vogt, O.; Nattich, M.; Datka, J.; Gil, B.

    2002-01-01

    This study was undertaken to elucidate why the catalytic activity of NaCeY in cyclohexanol reactions carried out in a pulse reactor increases with the pulse number. We studied therefore the effect of cyclohexanol and also of ethanol and water on catalytic activity NaCeY (of exchange degrees 36 and 72%) in cyclohexanol reactions: isomerization and disproportionation. We also studied the reaction of cyclohexanol and water with NaCeY zeolite by IR spectroscopy. Our results evidenced that new Broensted acid sites were formed by the reaction of cyclohexanol and water. This was shown by IR spectroscopy: the increase of Si-O 1 H-Al band 3638 cm -1 and in increase of ammonium ions band (upon ammonia adsorption). The new sites were formed by hydrolysis of Ce 3+ ions with water introduced in a pulse, or produced by dehydration of cyclohexanol catalyzed by acid sites. Formation of new Broensted acid sites resulted in an increase of catalytic activity of NaCeY in cyclohexane reaction as observed in this study and also in cyclohexanol reactions. (author)

  8. Hydrodehalogenation of alkyl iodides with base-mediated hydrogenation and catalytic transfer hydrogenation: application to the asymmetric synthesis of N-protected α-methylamines.

    Science.gov (United States)

    Mandal, Pijus K; Birtwistle, J Sanderson; McMurray, John S

    2014-09-05

    We report a very mild synthesis of N-protected α-methylamines from the corresponding amino acids. Carboxyl groups of amino acids are reduced to iodomethyl groups via hydroxymethyl intermediates. Reductive deiodination to methyl groups is achieved by hydrogenation or catalytic transfer hydrogenation under alkaline conditions. Basic hydrodehalogenation is selective for the iodomethyl group over hydrogenolysis-labile protecting groups, such as benzyloxycarbonyl, benzyl ester, benzyl ether, and 9-fluorenyloxymethyl, thus allowing the conversion of virtually any protected amino acid into the corresponding N-protected α-methylamine.

  9. On the Structural Context and Identification of Enzyme Catalytic Residues

    Directory of Open Access Journals (Sweden)

    Yu-Tung Chien

    2013-01-01

    Full Text Available Enzymes play important roles in most of the biological processes. Although only a small fraction of residues are directly involved in catalytic reactions, these catalytic residues are the most crucial parts in enzymes. The study of the fundamental and unique features of catalytic residues benefits the understanding of enzyme functions and catalytic mechanisms. In this work, we analyze the structural context of catalytic residues based on theoretical and experimental structure flexibility. The results show that catalytic residues have distinct structural features and context. Their neighboring residues, whether sequence or structure neighbors within specific range, are usually structurally more rigid than those of noncatalytic residues. The structural context feature is combined with support vector machine to identify catalytic residues from enzyme structure. The prediction results are better or comparable to those of recent structure-based prediction methods.

  10. Catalytic molecularly imprinted polymer membranes: development of the biomimetic sensor for phenols detection.

    Science.gov (United States)

    Sergeyeva, T A; Slinchenko, O A; Gorbach, L A; Matyushov, V F; Brovko, O O; Piletsky, S A; Sergeeva, L M; Elska, G V

    2010-02-05

    Portable biomimetic sensor devices for the express control of phenols content in water were developed. The synthetic binding sites mimicking active site of the enzyme tyrosinase were formed in the structure of free-standing molecularly imprinted polymer membranes. Molecularly imprinted polymer membranes with the catalytic activity were obtained by co-polymerization of the complex Cu(II)-catechol-urocanic acid ethyl ester with (tri)ethyleneglycoldimethacrylate, and oligourethaneacrylate. Addition of the elastic component oligourethaneacrylate provided formation of the highly cross-linked polymer with the catalytic activity in a form of thin, flexible, and mechanically stable membrane. High accessibility of the artificial catalytic sites for the interaction with the analyzed phenol molecules was achieved due to addition of linear polymer (polyethyleneglycol Mw 20,000) to the initial monomer mixture before the polymerization. As a result, typical semi-interpenetrating polymer networks (semi-IPNs) were formed. The cross-linked component of the semi-IPN was represented by the highly cross-linked catalytic molecularly imprinted polymer, while the linear one was represented by polyethyleneglycol Mw 20,000. Extraction of the linear polymer from the fully formed semi-IPN resulted in formation of large pores in the membranes' structure. Concentration of phenols in the analyzed samples was detected using universal portable device oxymeter with the oxygen electrode in a close contact with the catalytic molecularly imprinted polymer membrane as a transducer. The detection limit of phenols detection using the developed sensor system based on polymers-biomimics with the optimized composition comprised 0.063 mM, while the linear range of the sensor comprised 0.063-1 mM. The working characteristics of the portable sensor devices were investigated. Storage stability of sensor systems at room temperature comprised 12 months (87%). As compared to traditional methods of phenols

  11. Catalytic esterification via silica immobilized p-phenylenediamine and dithiooxamide solid catalysts

    Directory of Open Access Journals (Sweden)

    Thana Jaafar Al-Hasani

    2017-02-01

    Full Text Available The p-phenylenediamine (PDA and dithiooxamide (DTO were immobilized onto silica from rice husk ash (RHA using 3-chloropropyltriethoxyilane (CPTES to form a solid catalyst denoted as RHAPDA and RHADTO, respectively. BET measurements of the catalysts showed the surface area to be 145 and 9.7 m2 g−1 with an average pore diameter of 9.8 and 10.9 nm, respectively. The catalytic performance of RHAPDA and RHADTO was tested in the esterification of ethyl alcohol with acetic acid. A conversion of 48% and 69% was achieved, respectively with 100% selectivity toward ethyl acetate.

  12. Catalytic activity of Au nanoparticles

    DEFF Research Database (Denmark)

    Larsen, Britt Hvolbæk; Janssens, Ton V.W.; Clausen, Bjerne

    2007-01-01

    Au is usually viewed as an inert metal, but surprisingly it has been found that Au nanoparticles less than 3–5 nm in diameter are catalytically active for several chemical reactions. We discuss the origin of this effect, focusing on the way in which the chemical activity of Au may change with par......Au is usually viewed as an inert metal, but surprisingly it has been found that Au nanoparticles less than 3–5 nm in diameter are catalytically active for several chemical reactions. We discuss the origin of this effect, focusing on the way in which the chemical activity of Au may change...... with particle size. We find that the fraction of low-coordinated Au atoms scales approximately with the catalytic activity, suggesting that atoms on the corners and edges of Au nanoparticles are the active sites. This effect is explained using density functional calculations....

  13. Catalytic effect of KF-846 on the reforming of the primary intermediates from the co-pyrolysis of pubescens and LDPE

    International Nuclear Information System (INIS)

    Liu, Wen-wu; Hu, Chang-wei; Tong, Dong-mei; Yang, Yu; Li, Gui-ying; Zhu, Liang-fang; Tang, Jin-Qiang

    2014-01-01

    Highlights: • Reforming reactions were inhibited by H 2 , decrease of acidity and low temperature. • There was a synergistic effect on producing hydrogen between Ni and Mo. • The lattice oxygen over catalyst employed might transfer into the intermediates. • Co-pyrolysis, low temperature and N 2 could restrain oxygen transfer to some extent. - Abstract: Co-pyrolysis is regarded as an effective approach to upgrade the quality of pyrolysis products. In this work the activity of KF-846 was evaluated by co-pyrolysis of pubescens and low density polyethylene under different experimental conditions including catalytic mode, pyrolytic atmosphere and temperature, etc. The results showed that the fresh KF-846 exerted strong effects of cyclization, aromatization, hydrogen transfer and vapor-catalytic reforming reactions on the primary intermediates from the co-pyrolysis. The hydrogen-rich gases indicated a synergistic effect between Ni and Mo over KF-846 on producing hydrogen. More importantly, the reforming reactions might be inhibited to some extent by H 2 atmosphere, the low temperature and the decrease of acidity over catalyst. Furthermore, it was deduced that the oxygen over the lattice of catalyst or some intermediates might transfer into other intermediates, possibly resulting in more products with high oxygen content, but it was presumed that the low temperature, co-pyrolysis process and N 2 atmosphere could repress the trend to a certain degree. The mass and energy balance of co-pyrolysis were analyzed, and the main reaction pathways were also proposed. The interference in pyrolysis by regulating the catalytic mode, pyrolytic atmosphere and temperature, acidity over catalyst might posses a certain guiding significance for the pyrolytic technology and the design/selection of catalysts employed

  14. Sulfuric acid functional zirconium (or aluminum) incorporated mesoporous MCM-48 solid acid catalysts for alkylation of phenol with tert-butyl alcohol

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Tingshun, E-mail: tshjiang@mail.ujs.edu.cn; Cheng, Jinlian; Liu, Wangping; Fu, Lie; Zhou, Xuping; Zhao, Qian; Yin, Hengbo

    2014-10-15

    Several zirconium (or aluminum) incorporated mesoporous MCM-48 solid acid catalysts (SO{sub 4}{sup 2−}/Zr-MCM-48 and SO{sub 4}{sup 2−}/Al-MCM-48) were prepared by the impregnation method and their physicochemical properties were characterized by means of XRD, FT-IR, TEM, NH{sub 3}-TPD and N{sub 2} physical adsorption. Also, the catalytic activities of these solid acid catalysts were evaluated by the alkylation of phenol with tert-butyl alcohol. The effect of weight hour space velocity (WHSV), reaction time and reaction temperature on catalytic properties was also studied. The results show that the SO{sub 4}{sup 2−}/Zr-MCM-48 and SO{sub 4}{sup 2−}/Al-MCM-48 still have good mesoporous structure and long range ordering. Compared with the Zr (or Al)–MCM-48 samples, SO{sub 4}{sup 2−}/Zr-MCM-48 and SO{sub 4}{sup 2−}/Al-MCM-48 solid acid catalysts have strong acidity and exhibit high activities in alkylation reaction of phenol with tert-butyl alcohol. The SO{sub 4}{sup 2−}/Zr-MCM-48-25 (molar ratio of Si/Zr=0.04) catalyst was found to be the most promising and gave the highest phenol conversion among all catalysts. A maximum phenol conversion of 91.6% with 4-tert-butyl phenol (4-TBP) selectivity of 81.8% was achieved when the molar ratio of tert-butyl alcohol:phenol is 2:1, reaction time is 2 h, the WHSV is 2 h{sup −1} and the reaction temperature is 140 °C. - Highlights: • Sulfuric acid functional mesoporous solid acid catalysts were prepared via impregnation method. • The alkylation of phenol with tert-butyl alcohol was carried out over these solid acid catalysts. • The catalytic activity of SO{sub 4}{sup 2−}/Zr-MCM-48-25 catalyst is much higher than that of the others. • A maximum phenol conversion of 91.6% was achieved under optimum reaction conditions for SO{sub 4}{sup 2−}/Zr-MCM-48-25.

  15. Coupling of subcritical methanol with acidic ionic liquids for the acidity reduction of naphthenic acids

    Directory of Open Access Journals (Sweden)

    Zafar Faisal

    2017-09-01

    Full Text Available The presence of naphthenic acids (NAs in crude oil is the major cause of corrosion in the refineries and its processing equipment. The goal of this study is to reduce the total acid number (TAN of NAs by treating them with subcritical methanol in the presence of acidic ionic liquid (AIL catalysts. Experiments were carried out in an autoclave batch reactor and the effect of different reaction parameters was investigated. It was observed that TAN reduction was positively dependent on the temperature and concentration of the AIL whereas excess of methanol has a negative effect. Approximately 90% TAN reduction was achieved under the optimized reaction conditions using [BMIM]HSO4 as catalyst. It was also perceived from the experimental results that the AILs with longer alkyl chain exhibited higher catalytic activity. The activity and stability of AIL showed that they can be promising catalyst to esterify NAs under subcritical methanol.

  16. Rational redesign of glucose oxidase for improved catalytic function and stability.

    Directory of Open Access Journals (Sweden)

    J Todd Holland

    Full Text Available Glucose oxidase (GOx is an enzymatic workhorse used in the food and wine industries to combat microbial contamination, to produce wines with lowered alcohol content, as the recognition element in amperometric glucose sensors, and as an anodic catalyst in biofuel cells. It is naturally produced by several species of fungi, and genetic variants are known to differ considerably in both stability and activity. Two of the more widely studied glucose oxidases come from the species Aspergillus niger (A. niger and Penicillium amagasakiense (P. amag., which have both had their respective genes isolated and sequenced. GOx from A. niger is known to be more stable than GOx from P. amag., while GOx from P. amag. has a six-fold superior substrate affinity (K(M and nearly four-fold greater catalytic rate (k(cat. Here we sought to combine genetic elements from these two varieties to produce an enzyme displaying both superior catalytic capacity and stability. A comparison of the genes from the two organisms revealed 17 residues that differ between their active sites and cofactor binding regions. Fifteen of these residues in a parental A. niger GOx were altered to either mirror the corresponding residues in P. amag. GOx, or mutated into all possible amino acids via saturation mutagenesis. Ultimately, four mutants were identified with significantly improved catalytic activity. A single point mutation from threonine to serine at amino acid 132 (mutant T132S, numbering includes leader peptide led to a three-fold improvement in k(cat at the expense of a 3% loss of substrate affinity (increase in apparent K(M for glucose resulting in a specify constant (k(cat/K(M of 23.8 (mM(-1 · s(-1 compared to 8.39 for the parental (A. niger GOx and 170 for the P. amag. GOx. Three other mutant enzymes were also identified that had improvements in overall catalysis: V42Y, and the double mutants T132S/T56V and T132S/V42Y, with specificity constants of 31.5, 32.2, and 31.8 mM(-1 · s

  17. Engineering Metallic Nanoparticles for Enhancing and Probing Catalytic Reactions.

    Science.gov (United States)

    Collins, Gillian; Holmes, Justin D

    2016-07-01

    Recent developments in tailoring the structural and chemical properties of colloidal metal nanoparticles (NPs) have led to significant enhancements in catalyst performance. Controllable colloidal synthesis has also allowed tailor-made NPs to serve as mechanistic probes for catalytic processes. The innovative use of colloidal NPs to gain fundamental insights into catalytic function will be highlighted across a variety of catalytic and electrocatalytic applications. The engineering of future heterogenous catalysts is also moving beyond size, shape and composition considerations. Advancements in understanding structure-property relationships have enabled incorporation of complex features such as tuning surface strain to influence the behavior of catalytic NPs. Exploiting plasmonic properties and altering colloidal surface chemistry through functionalization are also emerging as important areas for rational design of catalytic NPs. This news article will highlight the key developments and challenges to the future design of catalytic NPs. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Quantitative 3D Fluorescence Imaging of Single Catalytic Turnovers Reveals Spatiotemporal Gradients in Reactivity of Zeolite H-ZSM-5 Crystals upon Steaming

    NARCIS (Netherlands)

    Ristanovic, Zoran|info:eu-repo/dai/nl/328233005; Hofmann, Jan P.|info:eu-repo/dai/nl/355351110; De Cremer, Gert; Kubarev, Alexey V.; Rohnke, Marcus; Meirer, Florian; Hofkens, Johan; Roeffaers, Maarten B. J.; Weckhuysen, Bert M.|info:eu-repo/dai/nl/285484397

    2015-01-01

    Optimizing the number, distribution, and accessibility of Bronsted acid sites in zeolite-based catalysts is of a paramount importance to further improve their catalytic performance. However, it remains challenging to measure real-time changes in reactivity of single zeolite catalyst particles by

  19. Biochemical similarities and differences between the catalytic [4Fe-4S] cluster containing fumarases FumA and FumB from Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Barbara M A van Vugt-Lussenburg

    Full Text Available BACKGROUND: The highly homologous [4Fe-4S] containing fumarases FumA and FumB, sharing 90% amino acid sequence identity, from Escherichia coli are differentially regulated, which suggests a difference in their physiological function. The ratio of FumB over FumA expression levels increases by one to two orders of magnitude upon change from aerobic to anaerobic growth conditions. METHODOLOGY/PRINCIPAL FINDINGS: To understand this difference in terms of structure-function relations, catalytic and thermodynamic properties were determined for the two enzymes obtained from homologous overexpression systems. FumA and FumB are essentially identical in their Michaelis-Menten kinetics of the reversible fumarate to L-malate conversion; however, FumB has a significantly greater catalytic efficiency for the conversion of D-tartrate to oxaloacetate consistent with the requirement of the fumB gene for growth on D-tartrate. Reduction potentials of the [4Fe-4S](2+ Lewis acid active centre were determined in mediated bulk titrations in the presence of added substrate and were found to be approximately -290 mV for both FumA and FumB. CONCLUSIONS/SIGNIFICANCE: This study contradicts previously published claims that FumA and FumB exhibit different catalytic preferences for the natural substrates L-malate and fumarate. FumA and FumB differ significantly only in the catalytic efficiency for the conversion of D-tartrate, a supposedly non-natural substrate. The reduction potential of the substrate-bound [4Fe-4S] active centre is, contrary to previously reported values, close to the cellular redox potential.

  20. A new continuous-flow process for catalytic conversion of glycerol to oxygenated fuel additive: Catalyst screening

    International Nuclear Information System (INIS)

    Nanda, Malaya R.; Yuan, Zhongshun; Qin, Wensheng; Ghaziaskar, Hassan S.; Poirier, Marc-Andre; Xu, Chunbao

    2014-01-01

    Highlights: • A continuous-flow process for catalytic synthesis of solketal from glycerol. • Six different heterogeneous acid catalysts were studied in the process. • Glycerol conversion and solketal yield of 90% and 88% respectively were achieved. • The process has the potential to be scaled-up for industrial applications. - Abstract: A new continuous-flow reactor was designed for the conversion of glycerol to solketal, an oxygenated fuel additive, through ketalization with acetone. Six heterogeneous catalysts were investigated with respect to their catalytic activity and stability in a flow reactor. The acidity of the catalysts positively influences the catalyst’s activity. Among all the solid acid catalysts tested, the maximum solketal yield from experiments at 40 °C, 600 psi and WHSV of 4 h −1 attained 73% and 88% at the acetone/glycerol molar ratio of 2.0 and 6.0, respectively, with Amberlyst Wet. Based on the solketal yield and glycerol conversion results, the activity of all catalysts tested follows the following order of sequence: Amberlyst Wet ≈ Zeolite ≈ Amberlyst Dry > Zirconium Sulfate > Montmorillonite > Polymax. An increase in acetone/glycerol molar ratio or a decrease in WHSV enhanced the glycerol conversion as expected. This process offers an attractive route for converting glycerol, the main by-product of biodiesel, to solketal – a value-added green product with potential industrial applications as a valuable fuel additive or combustion promoter for gasoline engines

  1. Optimization of the nitrous vapors experimental conditions production by nitric acid electrochemical reduction; Optimisation des conditions operatoires de production de vapeurs nitreuses par reduction electrochimique d`acide nitrique

    Energy Technology Data Exchange (ETDEWEB)

    Lemaire, M.

    1996-11-22

    Gaseous nitrogen oxides (NO and NO{sub 2}) involved as oxidizing agents in nuclear fuel reprocessing can be produced by electrochemical reduction of nitric acid. This is an interesting alternative to the existing process because no wastes are generated. voltammetric studies on a platinum electrode show that two reduction potential regions are observed in concentrated nitric acid solutions, between 0,05 V{sub SHE} and between 0,5 V{sub SHE} and 1 V{sub SHE}. The highest potential region reduction mechanism was studied by: classical micro-electrolysis methods, macro-electrolysis methods, infrared spectroscopy coupled to electrochemistry. It was determined that the origin of nitric acid reduction is the electrochemical reduction of nitrous acid in nitric oxide which chemically reduces nitric acid. This reaction produces nitrous acid back which indicate an auto-catalytic behaviour of nitric acid reduction mechanism. Nitrogen dioxide evolution during nitric reduction can also explained by an other chemical reaction. If the potential value of platinum electrode is above 0,8 V{sub SHE}, products of the indirect nitric acid reduction are nitrous acid, nitrogen oxide and nitrogen dioxide. Below this value nitric oxide can be reduced in nitrous oxide. Thus the potential value is the most important parameter for the nitrogen oxides production selectivity. However, owing to the auto-catalytic character of the reduction mechanism, potential value can be controlled during intentiostatic industrial electrolysis. (author). 91 refs.

  2. Catalytic Asymmetric Total Synthesis of (+)- and (-)-Paeoveitol via a Hetero-Diels-Alder Reaction.

    Science.gov (United States)

    Li, Tian-Ze; Geng, Chang-An; Yin, Xiu-Juan; Yang, Tong-Hua; Chen, Xing-Long; Huang, Xiao-Yan; Ma, Yun-Bao; Zhang, Xue-Mei; Chen, Ji-Jun

    2017-02-03

    The first catalytic asymmetric total synthesis of (+)- and (-)-paeoveitol has been accomplished in 42% overall yield via a biomimetic hetero-Diels-Alder reaction. The chiral phosphoric acid catalyzed hetero-Diels-Alder reaction showed excellent diastereo- and enantioselectivity (>99:1 dr and 90% ee); two rings and three stereocenters were constructed in a single step to produce (-)-paeoveitol on a scale of 452 mg. This strategy enabled us to selectively synthesize both paeoveitol enantiomers from the same substrates by simply changing the enantiomer of the catalyst.

  3. Catalytic Cascade Dehydration-Etherification of Fructose into 5-Ethoxymethylfurfural with SO3H-Functionalized Polymers

    Directory of Open Access Journals (Sweden)

    Hu Li

    2014-01-01

    Full Text Available A series of SO3H-functionalized polymers were prepared and employed as heterogeneous catalysts for one-pot transformation of fructose into 5-ethoxymethylfurfural (EMF that is considered to be one of potential liquid biofuels. A high EMF yield of 72.8% could be obtained at 110°C for 10 h, and the polymeric acid catalysts could be recycled for five times without significant loss of catalytic performance.

  4. Green diesel production via catalytic hydrogenation/decarboxylation of triglycerides and fatty acids of vegetable oil and brown grease

    Science.gov (United States)

    Sari, Elvan

    than activated carbon itself for both decarboxylation of oleic acid and hydrogenation of alkenes. In an additional effort to reduce Pd amount in the catalyst, Pd2Co/C catalysts with various Pd content were prepared and the catalytic activity study showed that 0.5 wt% Pd2Co/C catalyst performs even better than a 5 wt% Pd/C catalyst. Pd and Co alloys were very well dispersed and formed fine clusters, which led to a higher active metal surface area and hence favored the decarboxylation of oleic acid. This study showed that an alloy of Pd on carbon with a significantly low Pd content is much more active and selective to diesel hydrocarbons production from an unsaturated fatty acid in super-critical water and may be regarded as a prospective feasible decarboxylation catalyst for the removal of oxygen from vegetable oil/animal fat without the need of additional hydrogen.

  5. Design of ultrathin Pt-Mo-Ni nanowire catalysts for ethanol electrooxidation.

    Science.gov (United States)

    Mao, Junjie; Chen, Wenxing; He, Dongsheng; Wan, Jiawei; Pei, Jiajing; Dong, Juncai; Wang, Yu; An, Pengfei; Jin, Zhao; Xing, Wei; Tang, Haolin; Zhuang, Zhongbin; Liang, Xin; Huang, Yu; Zhou, Gang; Wang, Leyu; Wang, Dingsheng; Li, Yadong

    2017-08-01

    Developing cost-effective, active, and durable electrocatalysts is one of the most important issues for the commercialization of fuel cells. Ultrathin Pt-Mo-Ni nanowires (NWs) with a diameter of ~2.5 nm and lengths of up to several micrometers were synthesized via a H 2 -assisted solution route (HASR). This catalyst was designed on the basis of the following three points: (i) ultrathin NWs with high numbers of surface atoms can increase the atomic efficiency of Pt and thus decrease the catalyst cost; (ii) the incorporation of Ni can isolate Pt atoms on the surface and produce surface defects, leading to high catalytic activity (the unique structure and superior activity were confirmed by spherical aberration-corrected electron microscopy measurements and ethanol oxidation tests, respectively); and (iii) the incorporation of Mo can stabilize both Ni and Pt atoms, leading to high catalytic stability, which was confirmed by experiments and density functional theory calculations. Furthermore, the developed HASR strategy can be extended to synthesize a series of Pt-Mo-M (M = Fe, Co, Mn, Ru, etc.) NWs. These multimetallic NWs would open up new opportunities for practical fuel cell applications.

  6. Catalytic treatment

    Energy Technology Data Exchange (ETDEWEB)

    Bindley, W T.R.

    1931-04-18

    An apparatus is described for the catalytic treatment of liquids, semi-liquids, and gases comprising a vessel into which the liquid, semi-liquid, or gas to be treated is introduced through a common inlet to a chamber within the vessel whence it passes to contact with a catalyst through radially arranged channels or passages to a common outlet chamber.

  7. Solid state synthesis, characterization, surface and catalytic properties of Pr2CoO4 and Pr2NiO4 catalyst

    International Nuclear Information System (INIS)

    Sinha, K.K.; Indu, N.K.; Sinha, S.K.; Pankaj, A.K.

    2008-01-01

    Full text: The most interesting non-stoichiometric oxides are found in transition metal and rare earth oxides at higher temperatures. The role of Solid State properties in the catalysis using mixed metal oxide as catalyst have wide applications in fertilizer, Petro-chemical, Pharmaceutical, cosmetic, paint detergents, plastics and food-stuff industries and these are also resistive towards acids and alkalies. The use of catalyst has opened up new process routes or revolutioned the existing process in terms of economics and efficiency and has radically changed the industrial scenario. The use of catalyst is so pervasive today that nearly 70 % of modern chemical processes are based on it at some stage or other and 90% new processes developed are catalytic nature. A series of non-stoichiometric spinel type of oxide catalyst of Praseodymium with cobalt and nickel were synthesized by their oxalates through Solid State reaction technique at different activation temperatures i.e. 600, 700, 800 and 900 deg C. The characterization of catalyst was done by XRD, FTIR and ESR methods. X-ray powder diffraction study shows that catalysts are made up of well grown crystallinities mostly in single phase crystal and system is of orthorhombic structure. FTIR is related to inadequate decomposition of oxalate ion from the Catalyst. The kinetic decomposition of Urea was employed as a model reaction to study the catalytic potentiality of different catalysts. Surface and Catalytic Properties of catalysts were measured. A relation between activation temperature and surface properties like excess surface oxygen (E.S.O.), surface acidity and surface area was observed. A linear relationship between the surface area of the catalyst and the amount of ammonia gas evolved per gm of the sample was observed also. Nickel containing catalysts were found a bit more catalytic active in comparison to cobalt oxide catalysts. Transition metal ions (i.e. Ni 2+ and Co 2+ ions) are mainly responsible for

  8. Low pressure catalytic co-conversion of biogenic waste (rapeseed cake) and vegetable oil.

    Science.gov (United States)

    Giannakopoulou, Kanellina; Lukas, Michael; Vasiliev, Aleksey; Brunner, Christoph; Schnitzer, Hans

    2010-05-01

    Zeolite catalysts of three types (H-ZSM-5, Fe-ZSM-5 and H-Beta) were tested in the catalytic co-conversion of rapeseed cake and safflower oil into bio-fuel. This low pressure process was carried out at the temperatures of 350 and 400 degrees Celsius. The yields and compositions of the product mixtures depended on the catalyst nature and the process temperatures. The produced organic phases consisted mainly of hydrocarbons, fatty acids and nitriles. This mixture possessed improved characteristics (e.g. heating value, water content, density, viscosity, pH) compared with the bio-oils, making possible its application as a bio-fuel. The most effective catalyst, providing the highest yield of organic liquid phase, was the highly acidic/wide-pore H-Beta zeolite. The products obtained on this catalyst demonstrated the highest degree of deoxygenation and the higher HHV (Higher Heating Value). The aqueous liquid phase contained water-soluble carboxylic acids, phenols and heterocyclic compounds. Copyright 2009 Elsevier Ltd. All rights reserved.

  9. Investigation into catalytic properties of the second group metal molybdates in acrolein oxidation

    International Nuclear Information System (INIS)

    Yakubovich, M.N.; Gorochovatskij, Ya.B.; Alchazov, T.G.; Adzhamov, K.Yu.

    1976-01-01

    The catalytic properties are investigated of magnesium, calcium, strontium, zinc, cadmium, and barium molybdates. Temperature dependence of catalysts activity is studied. At temperature over 370 deg C the activity becomes higher in the series ZnMoO 4 -CaMoO 4 -MgMoO 4 -SrMoO 4 . A sharp fall in the activity is observed for BaMoO 4 , and CdMoO 4 . SrMoO 4 is the most active catalyst. The activity series have been made up with respect to the formation of acrylic acid: MgMoO 4 >ZnMoO 4 >CaMoO 4 , and also with respect to the formation of the deep oxidation products: SrMoO 4 >CaMoO 4 >MgMoO 4 >ZnMoO 4 . The dependence of selectivity with respect to the formation of acrylic acid and the sum of the acids on temperature is provided

  10. New insights into the catalytic mechanism of Bombyx mori prostaglandin E synthase gained from structure–function analysis

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Kohji, E-mail: yamamok@agr.kyushu-u.ac.jp [Faculty of Agriculture, Kyushu University Graduate School, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581 (Japan); Suzuki, Mamoru; Higashiura, Akifumi [Institute for Protein Research, Osaka University, Suita 565-0871 (Japan); Aritake, Kosuke; Urade, Yoshihiro; Uodome, Nobuko [Department of Molecular Behavioral Biology, Osaka Bioscience Institute, 6-2-4 Furuedai, Suita, Osaka 565-0874 (Japan); Hossain, MD. Tofazzal [Faculty of Agriculture, Kyushu University Graduate School, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581 (Japan); Nakagawa, Atsushi [Institute for Protein Research, Osaka University, Suita 565-0871 (Japan)

    2013-11-01

    Highlights: •Structure of Bombyx mori prostaglandin E synthase is determined. •Bound glutathione sulfonic acid is located at the glutathione-binding site. •Electron-sharing network is present in this protein. •This network includes Asn95, Asp96, and Arg98. •Site-directed mutagenesis reveals that the residues contribute to the catalytic activity. -- Abstract: Prostaglandin E synthase (PGES) catalyzes the isomerization of PGH{sub 2} to PGE{sub 2}. We previously reported the identification and structural characterization of Bombyx mori PGES (bmPGES), which belongs to Sigma-class glutathione transferase. Here, we extend these studies by determining the structure of bmPGES in complex with glutathione sulfonic acid (GTS) at a resolution of 1.37 Å using X-ray crystallography. GTS localized to the glutathione-binding site. We found that electron-sharing network of bmPGES includes Asn95, Asp96, and Arg98. Site-directed mutagenesis of these residues to create mutant forms of bmPGES mutants indicate that they contribute to catalytic activity. These results are, to our knowledge, the first to reveal the presence of an electron-sharing network in bmPGES.

  11. Catalyzed oxidation reactions. IV. Picolinic acid catalysis of chromic acid oxidations

    International Nuclear Information System (INIS)

    Rocek, J.; Peng, T.Y.

    1977-01-01

    Picolinic acid and several closely related acids are effective catalysts in the chromic acid oxidation of primary and secondary alcohols; the oxidation of other substrates is accelerated only moderately. The reaction is first order in chromium-(VI), alcohol, and picolinic acid; it is second order in hydrogen ions at low acidity and approaches acidity independence at high perchloric acid concentrations. A primary deuterium kinetic isotope effect is observed at high but not at low acidities. At low acidity the reaction has a considerably lower activation energy and more negative activation entropy than at higher acidities. The reactive intermediate in the proposed mechanism is a negatively charged termolecular complex formed from chromic acid, picolinic acid, and alcohol. The rate-limiting step of the reaction changes with the acidity of the solution. At higher acidities the intermediate termolecular complex is formed reversibly and the overall reaction rate is determined by the rate of its decomposition into reaction products; at low acidities the formation of the complex is irreversible and hence rate limiting. Picolinic acids with a substituent in the 6 position show a greatly reduced catalytic activity. This observation is interpreted as suggesting a square pyramidal or octahedral structure for the reactive chromium (VI) intermediate. The temperature dependence of the deuterium isotope effect has been determined and the significance of the observed large values for E/sub a//sup D/ - E/sub a//sup H/ and A/sup D//A/sup H/ is discussed

  12. Catalytic cleavage activities of 10–23 DNAzyme analogs functionalized with an amino group in its catalytic core

    Directory of Open Access Journals (Sweden)

    Qi Wang

    2012-02-01

    Full Text Available Functionalization of the catalytic loop of 10–23 DNAzyme with an amino group was performed by incorporation of 7-(3-aminopropyl-8-aza-7-deaza-2′-deoxyadenosine in different single positions. Among the nine modified positions in the catalytic loop, A9 is the unique position with positive contribution by such modification. These results indicated that more efficient deoxyribozymes remain to be explored by introduction of exogenous functional groups in an appropriate position in the catalytic loop of 10–23 DNAzyme, such as the combination of 7-functional group substituted 8-aza-7-deaza-2′-deoxyadenosine analogs and A9 position.

  13. Pd/C Synthesized with Citric Acid: An Efficient Catalyst for Hydrogen Generation from Formic Acid/Sodium Formate

    Science.gov (United States)

    Wang, Zhi-Li; Yan, Jun-Min; Wang, Hong-Li; Ping, Yun; Jiang, Qing

    2012-01-01

    A highly efficient hydrogen generation from formic acid/sodium formate aqueous solution catalyzed by in situ synthesized Pd/C with citric acid has been successfully achieved at room temperature. Interestingly, the presence of citric acid during the formation and growth of the Pd nanoparticles on carbon can drastically enhance the catalytic property of the resulted Pd/C, on which the conversion and turnover frequency for decomposition of formic acid/sodium formate system can reach the highest values ever reported of 85% within 160 min and 64 mol H2 mol−1 catalyst h−1, respectively, at room temperature. The present simple, low cost, but highly efficient CO-free hydrogen generation system at room temperature is believed to greatly promote the practical application of formic acid system on fuel cells. PMID:22953041

  14. Catalytic performance of Metal‐Organic‐Frameworks vs. extra‐large pore zeolite UTL incondensation reactions

    Directory of Open Access Journals (Sweden)

    Mariya eShamzhy

    2013-08-01

    Full Text Available Catalytic behavior of isomorphously substituted B‐, Al‐, Ga‐, and Fe‐containing extra‐large pore UTLzeolites was investigated in Knoevenagel condensation involving aldehydes, Pechmann condensationof 1‐naphthol with ethylacetoacetate, and Prins reaction of β‐pinene with formaldehyde andcompared with large‐pore aluminosilicate zeolite BEA and representative Metal‐Organic‐FrameworksCu3(BTC2 and Fe(BTC. The yield of the target product over the investigated catalysts in Knoevenagelcondensation increases in the following sequence: (AlBEA < (AlUTL < (GaUTL < (FeUTL < Fe(BTC <(BUTL < Cu3(BTC2 being mainly related to the improving selectivity with decreasing strength ofactive sites of the individual catalysts. The catalytic performance of Fe(BTC, containing the highestconcentration of Lewis acid sites of the appropriate strength is superior over large‐pore zeolite(AlBEA and B‐, Al‐, Ga‐, Fe‐substituted extra‐large pore zeolites UTL in Prins reaction of β‐pinene withformaldehyde and Pechmann condensation of 1‐naphthol with ethylacetoacetate.

  15. Reduction of inorganics from macroalgae Laminaria digitata and spent mushroom compost (SMC) by acid leaching and selective hydrothermal liquefaction

    DEFF Research Database (Denmark)

    Toor, Saqib Sohail; Jasiunas, Lukas; Xu, Chunbao (Charles)

    2018-01-01

    Hydrothermal liquefaction (HTL) is a promising route for producing bio-crude from various biomass feedstocks. However, high content of inorganic constituents in biomass like macroalgae Laminaria digitata and spent mushroom compost (SMC) affect the conversion process and the resulting fuel products....... This research studied the effects of different acid leaching treatments on such feedstocks, subsequent HTL, and bio-crude properties. Leaching treatments were performed using five different agents: deionized water, acetic acid, citric acid, sulfuric acid, and hydrochloric acid. Performance of leaching...... was evaluated by analyzing both leached biomass and HTL products by elemental analysis, ash content, inductively coupled plasma (ICP) analysis, and X-ray diffraction (XRD) analysis. Catalytic and non-catalytic HTL of both feedstocks before and after treatment were performed in a 10-mL microreactor at 400 °C...

  16. Acid-functionalized nanoparticles for biomass hydrolysis

    Science.gov (United States)

    Pena Duque, Leidy Eugenia

    Cellulosic ethanol is a renewable source of energy. Lignocellulosic biomass is a complex material composed mainly of cellulose, hemicellulose, and lignin. Biomass pretreatment is a required step to make sugar polymers liable to hydrolysis. Mineral acids are commonly used for biomass pretreatment. Using acid catalysts that can be recovered and reused could make the process economically more attractive. The overall goal of this dissertation is the development of a recyclable nanocatalyst for the hydrolysis of biomass sugars. Cobalt iron oxide nanoparticles (CoFe2O4) were synthesized to provide a magnetic core that could be separated from reaction using a magnetic field and modified to carry acid functional groups. X-ray diffraction (XRD) confirmed the crystal structure was that of cobalt spinel ferrite. CoFe2O4 were covered with silica which served as linker for the acid functions. Silica-coated nanoparticles were functionalized with three different acid functions: perfluoropropyl-sulfonic acid, carboxylic acid, and propyl-sulfonic acid. Transmission electron microscope (TEM) images were analyzed to obtain particle size distributions of the nanoparticles. Total carbon, nitrogen, and sulfur were quantified using an elemental analyzer. Fourier transform infra-red spectra confirmed the presence of sulfonic and carboxylic acid functions and ion-exchange titrations accounted for the total amount of catalytic acid sites per nanoparticle mass. These nanoparticles were evaluated for their performance to hydrolyze the beta-1,4 glycosidic bond of the cellobiose molecule. Propyl-sulfonic (PS) and perfluoropropyl-sulfonic (PFS) acid functionalized nanoparticles catalyzed the hydrolysis of cellobiose significantly better than the control. PS and PFS were also evaluated for their capacity to solubilize wheat straw hemicelluloses and performed better than the control. Although PFS nanoparticles were stronger acid catalysts, the acid functions leached out of the nanoparticle during

  17. Electro-oxidation of methanol and formic acid on platinum nanoparticles with different oxidation levels

    International Nuclear Information System (INIS)

    Hsieh, Chien-Te; Hsiao, Han-Tsung; Tzou, Dong-Ying; Yu, Po-Yuan; Chen, Po-Yen; Jang, Bi-Sheng

    2015-01-01

    Herein reported is an atomic layer deposition (ALD) process of platinum (Pt) from (methylcyclopentadienyl) trimethylplatinum (MeCpPtMe 3 ) and oxygen (O 2 ) for synthesizing the Pt electrocatalysts toward methanol and formic acid oxidation. The as-synthesized Pt catalysts are thermally reduced in 5 vol% H 2 within temperature window of 150–450 °C. The reduction treatment induces a decrease in amount of Pt oxide (Pt–O) species, e.g., PtO and PtO 2 . The presence of Pt–O species not only enhances catalytic activity but also improves anti-poisoning ability toward the oxidation of methanol and formic acid. The improved activity originates from the fact that the Pt–O species, formed by the ALD route, creates a large number of active sites (e.g., Pt–O ads and Pt–(OH) ads ) to strip the CO-adsorbed sites, leading to a high-level of CO tolerance. This work also proposes a stepwise reaction steps to shed some lights on how the Pt–O species promote the catalytic activity. - Highlights: • This study adopts atomic layer deposition (ALD) to grow metallic Pt nanoparticles. • The Pt catalysts show catalytic activity toward methanol and formic acid oxidation. • The reduction treatment induces a decrease in amount of Pt oxide (Pt–O) species. • The Pt–O species creates a number of active sites to strip the CO-adsorbed sites. • A stepwise reaction step concerning the promoted catalytic activity is proposed

  18. Preliminary X-ray crystallographic studies of BthTX-II, a myotoxic Asp49-phospholipase A2 with low catalytic activity from Bothrops jararacussu venom

    International Nuclear Information System (INIS)

    Corrêa, L. C.; Marchi-Salvador, D. P.; Cintra, A. C. O.; Soares, A. M.; Fontes, M. R. M.

    2006-01-01

    A myotoxic Asp49-PLA 2 with low catalytic activity from B. jararacussu (BthTX-II) was crystallized in the monoclinic crystal system; a complete X-ray diffraction data set was collected and a molecular-replacement solution was obtained. The oligomeric structure of BthTX-II resembles those of the Asp49-PLA 2 PrTX-III and all bothropic Lys49-PLA 2 s. For the first time, a complete X-ray diffraction data set has been collected from a myotoxic Asp49-phospholipase A 2 (Asp49-PLA 2 ) with low catalytic activity (BthTX-II from Bothrops jararacussu venom) and a molecular-replacement solution has been obtained with a dimer in the asymmetric unit. The quaternary structure of BthTX-II resembles the myotoxin Asp49-PLA 2 PrTX-III (piratoxin III from B. pirajai venom) and all non-catalytic and myotoxic dimeric Lys49-PLA 2 s. In contrast, the oligomeric structure of BthTX-II is different from the highly catalytic and non-myotoxic BthA-I (acidic PLA 2 from B. jararacussu). Thus, comparison between these structures should add insight into the catalytic and myotoxic activities of bothropic PLA 2 s

  19. Preparation of zeolite supported TiO{sub 2}, ZnO and ZrO{sub 2} and the study on their catalytic activity in NO{sub x} reduction and 1-pentanol dehydration

    Energy Technology Data Exchange (ETDEWEB)

    Fatimah, Is [Chemistry Department, Islamic University of Indonesia Kampus Terpadu UII, Jl. Kaliurang Km 14, Sleman, Yogyakarta (Indonesia)

    2016-03-29

    Preparation of zeolite supported TiO{sub 2}, ZnO and ZrO{sub 2} and their catalytic activity was studied. Activated natural zeolite from Indonesia was utilized for the preparation and catalytic activity test on NO{sub x} reduction by NH{sub 3} and also 1-pentanol dehydration were examined. Physicochemical characterization of materials was studied by x-ray diffraction (XRD) measurement, scanning electron microscope, solid acidity determination and also gas sorption analysis. The results confirmed that the preparation gives some improvements on physicochemical characters suitable for catalysis mechanism in those reactions. Solid acidity and specific surface area contributed significantly to the activity.

  20. Catalytically active and hierarchically porous SAPO-11 zeolite synthesized in the presence of polyhexamethylene biguanidine

    KAUST Repository

    Liu, Yan

    2014-03-01

    Hierarchically porous SAPO-11 zeolite (H-SAPO-11) is rationally synthesized from a starting silicoaluminophosphate gel in the presence of polyhexamethylene biguanidine as a mesoscale template. The sample is well characterized by XRD, N2 sorption, SEM, TEM, NMR, XPS, NH3-TPD, and TG techniques. The results show that the sample obtained has good crystallinity, hierarchical porosity (mesopores at ca. 10nm and macropores at ca. 50-200nm), high BET surface area (226m2/g), large pore volume (0.25cm3/g), and abundant medium and strong acidic sites (0.36mmol/g). After loading Pt (0.5wt.%) on H-SAPO-11 by using wet impregnation method, catalytic hydroisomerization tests of n-dodecane show that the hierarchical Pt/SAPO-11 zeolite exhibits high conversion of n-dodecane and enhanced selectivity for branched products as well as reduced selectivity for cracking products, compared with conventional Pt/SAPO-11 zeolite. This phenomenon is reasonably attributed to the presence of hierarchical porosity, which is favorable for access of reactants on catalytically active sites. The improvement in catalytic performance in long-chain paraffin hydroisomerization over Pt/SAPO-11-based catalyst is of great importance for its industrial applications in the future. © 2013 Elsevier Inc.

  1. Direct conversion of cellulose to glycolic acid with a phosphomolybdic acid catalyst in a water medium

    KAUST Repository

    Zhang, Jizhe

    2012-08-03

    Direct conversion of cellulose to fine chemicals has rarely been achieved. We describe here an eco-benign route for directly converting various cellulose-based biomasses to glycolic acid in a water medium and oxygen atmosphere in which heteromolybdic acids act as multifunctional catalysts to catalyze the hydrolysis of cellulose, the fragmentation of monosaccharides, and the selective oxidation of fragmentation products. With commercial α-cellulose powder as the substrate, the yield of glycolic acid reaches 49.3%. This catalytic system is also effective with raw cellulosic biomass, such as bagasse or hay, as the starting materials, giving rise to remarkable glycolic acid yields of ∼30%. Our heteropoly acid-based catalyst can be recovered in solid form after reaction by distilling out the products and solvent for reuse, and it exhibits consistently high performance in multiple reaction runs. © 2012 American Chemical Society.

  2. Differences in the catalytic mechanisms of mesophilic and thermophilic indole-3-glycerol phosphate synthase enzymes at their adaptive temperatures.

    Science.gov (United States)

    Zaccardi, Margot J; Mannweiler, Olga; Boehr, David D

    2012-02-10

    Thermophilic enzymes tend to be less catalytically-active at lower temperatures relative to their mesophilic counterparts, despite having very similar crystal structures. An often cited hypothesis for this general observation is that thermostable enzymes have evolved a more rigid tertiary structure in order to cope with their more extreme, natural environment, but they are also less flexible at lower temperatures, leading to their lower catalytic activity under mesophilic conditions. An alternative hypothesis, however, is that complementary thermophilic-mesophilic enzyme pairs simply operate through different evolutionary-optimized catalytic mechanisms. In this communication, we present evidence that while the steps of the catalytic mechanisms for mesophilic and thermophilic indole-3-glycerol phosphate synthase (IGPS) enzymes are fundamentally similar, the identity of the rate-determining step changes as a function of temperature. Our findings indicate that while product release is rate-determining at 25°C for thermophilic IGPS, near its adaptive temperature (75°C), a proton transfer event, involving a general acid, becomes rate-determining. The rate-determining steps for thermophilic and mesophilic IGPS enzymes are also different at their respective, adaptive temperatures with the mesophilic IGPS-catalyzed reaction being rate-limited before irreversible CO2 release, and the thermophilic IGPS-catalyzed reaction being rate limited afterwards. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Metal thin film growth on multimetallic surfaces: From quaternary metallic glass to binary crystal

    Energy Technology Data Exchange (ETDEWEB)

    Jing, Dapeng [Iowa State Univ., Ames, IA (United States)

    2010-01-01

    The work presented in this thesis mainly focuses on the nucleation and growth of metal thin films on multimetallic surfaces. First, we have investigated the Ag film growth on a bulk metallic glass surface. Next, we have examined the coarsening and decay of bilayer Ag islands on NiAl(110) surface. Third, we have investigated the Ag film growth on NiAl(110) surface using low-energy electron diffraction (LEED). At last, we have reported our investigation on the epitaxial growth of Ni on NiAl(110) surface. Some general conclusions can be drawn as follows. First, Ag, a bulk-crystalline material, initially forms a disordered wetting layer up to 4-5 monolayers on Zr-Ni-Cu-Al metallic glass. Above this coverage, crystalline 3D clusters grow, in parallel with the flatter regions. The cluster density increases with decreasing temperature, indicating that the conditions of island nucleation are far-from-equilibrium. Within a simple model where clusters nucleate whenever two mobile Ag adatoms meet, the temperature-dependence of cluster density yields a (reasonable) upper limit for the value of the Ag diffusion barrier on top of the Ag wetting layer of 0.32 eV. Overall, this prototypical study suggests that it is possible to grow films of a bulk-crystalline metal that adopt the amorphous character of a glassy metal substrate, if film thickness is sufficiently low. Next, the first study of coarsening and decay of bilayer islands has been presented. The system was Ag on NiAl(110) in the temperature range from 185 K to 250 K. The coarsening behavior, has some similarities to that seen in the Ag(110) homoepitaxial system studied by Morgenstern and co-workers. At 185 K and 205 K, coarsening of Ag islands follows a Smoluchowski ripening pathway. At 205 K and 250 K, the terrace diffusion limited Ostwald ripening dominants. The experimental observed temperature for the transition from SR to OR is 205 K. The SR exhibits anisotropic island diffusion and the OR exhibits 1D decay of island

  4. Kinetic Study on Catalytic Cracking of Rubber Seed (Hevea brasiliensis Oil to Liquid Fuels

    Directory of Open Access Journals (Sweden)

    Wara Dyah Pita Rengga

    2015-03-01

    Full Text Available Reaction kinetics of catalytic cracking of rubber seed oil to liquid fuels has been investigated. The reac-tion was performed with sulfuric acid as catalyst at temperatures of 350-450 oC and the ratio of oil-catalyst of 0-2 wt.% for 30-90 minutes. Kinetics was studied using the model of 6-lump parameters. The parameters were rubber seed oil, gasoline, kerosene, diesel, gas, and coke. Analysis of experimen-tal data using regression models to obtain reaction rate constants. Activation energies and pre-exponential factors were then calculated based on the Arrhenius equation. The simulation result illus-trated that the six-lump kinetic model can well predict the product yields of rubber seed oil catalytic cracking. The product has high selectivity for gasoline fraction as liquid fuel and the smallest amount of coke. The constant indicates that secondary reactions occurred in diesel products compared to gaso-line and kerosene. The predicted results indicate that catalytic cracking of rubber seed oil had better be conducted at 450 oC for 90 minutes using 0.5 wt.% catalyst. © 2015 BCREC UNDIP. All rights reservedReceived: 3rd December 2013; Revised: 5th December 2014; Accepted: 7th December 2014How to Cite: Rengga, W.D.P., Handayani, P.A., Kadarwati, S., Feinnudin, A.(2015. Kinetic Study on Catalytic Cracking of Rubber Seed (Hevea brasiliensis Oil  to Liquid Fuels. Bulletin of Chemical Reaction Engineering & Catalysis, 10 (1: 50-60. (doi:10.9767/bcrec.10.1.5852.50-60Permalink/DOI: http://dx.doi.org/10.9767/bcrec.10.1.5852.50-60

  5. Impregnation of 12-tungstophosphoric acid on silica - part II: effect of different solvents on the impregnation and catalytic activity in methyl esterification of stearic acid; Impregnacao do acido 12-tungstofosforico em silica - parte II: efeito de diferentes solventes na impregnacao e atividade catalitica na esterificacao metilica de acido estearico

    Energy Technology Data Exchange (ETDEWEB)

    Scroccaro, Karine Isabel; Yamamoto, Carlos I., E-mail: karineisabel@yahoo.com.br [Universidade Federal do Parana (UFPR), Curitiba, PR (Brazil). Centro Politecnico. Departamento de Engenharia Quimica; Tanobe, Valcineide O. de A.; Oliveira, Alan Antonio de [Universidade Federal do Parana (UFPR), Curitiba, PR (Brazil). Departamento de Engenharia e Tecnologia Florestal; Wypych, Fernando [Universidade Federal do Parana (UFPR), Curitiba, PR (Brazil). Departamento de Quimica

    2014-04-15

    Materials obtained by the immobilization of 12-tungstophosphoric acid (PTA) on silica using the method of impregnation with excess solution in distinct solvents (aqueous HCl, methanol:H{sub 2}O, and acetonitrile) were evaluated for use as catalysts in the methyl esterification of stearic acid. Optimum conditions were established for the impregnation of 0.5 g (w/w) of PTA on amorphous silica, under stirring at 150 rpm for 24 h, using 20 mL of 0.1 mol L{sup -1} HCl as the solvent. After calcination at 200 deg C, high conversions were obtained under mild reaction conditions, resulting in high turnover numbers. The catalyst was evaluated in ten catalytic cycles of use, where the activity was reduced only slightly, attesting its stability and the possibility to apply it to industrial production of methylesters. (author)

  6. Hydrolyses of 2- and 4-fluoro N-heterocycles. 3. Nucleophilic catalysis by buffer bases in the general acid catalyzed hydrolysis of 4-fluoroquinaldine

    International Nuclear Information System (INIS)

    Muscio, O.J. Jr.; Theobald, P.G.; Rutherford, D.R.

    1989-01-01

    Pseudo-first-order rate constants and catalytic rate constants are reported for the buffer-catalyzed hydrolysis of 4-fluoroquinaldine (1) in carboxylic acid and phosphoric acid buffers. The buffer catalysis is consistent with specific acid, general base catalysis. Hydrolyses in 99% 18 O-labeled acetate, indicate that the predominant catalytic mode for the acetic acid/acetate buffer system is nucleophilic catalysis by the acetate anion coupled with specific acid catalysis. The other buffers presumably react in a similar manner. A Broensted-type plot of the catalytic rate constants for hydrolysis of protonated 1 has a slope of 0.57, with formate deviating positively from the line determined by acetate, chloroacetate, monohydrogen phosphate, and water. This Broensted slope is less than that found for hydrolysis of the 2-fluoro-1-methylpyridinium ion, 2, but is still within the range expected for aromatic nucleophilic substitution. Rate constants and 18 O-labeling results for hydrolysis in acetate buffer are also reported for 4-acetoxyquinaldine (3), the proposed intermediate in the acetate-catalyzed hydrolysis of 1. 15 references, 5 figures, 3 tables

  7. Surface chemistry and catalytic properties of VO{sub X}/Ti-MCM-41 catalysts for dibenzothiophene oxidation in a biphasic system

    Energy Technology Data Exchange (ETDEWEB)

    González, J. [ESIQIE, Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional s/n, 07738 Col. Zacatenco, Mexico City (Mexico); Chen, L.F., E-mail: lchen@ipn.mx [ESIQIE, Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional s/n, 07738 Col. Zacatenco, Mexico City (Mexico); Wang, J.A.; Manríquez, Ma.; Limas, R. [ESIQIE, Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional s/n, 07738 Col. Zacatenco, Mexico City (Mexico); Schachat, P.; Navarrete, J. [Dirección de Investigación, Instituto Mexicano del Petróleo, Eje Lázaro Cárdenas 152, 07730 México D.F. (Mexico); Contreras, J.L. [Laboratorio de Catálisis y Polímeros, División de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana-A, Av. San Pablo No. 180, 02200 México D.F. (Mexico)

    2016-08-30

    Highlights: • Oxidative desulfurization of model diesel was tested in a biphasic system. • ODS activity was proportional to the V{sup 5+}/(V{sup 4+} + V{sup 5+}) values of the catalysts. • Lewis acidity was related to vanadium content and catalytic activity. • 99.9% DBT was oxidized using 25%V{sub 2}O{sub 5}/Ti-MCM-41 at 60 °C within 60 min. - Abstract: A series of vanadium oxide supported on Ti-MCM-41 catalysts was synthesized via the incipient impregnation method by varying the vanadia loading from 5 wt% to 10, 15, 20 and 25 wt%. These catalysts were characterized by a variety of advanced techniques for investigating their crystalline structure, textural properties, and surface chemistry information including surface acidity, reducibility, vanadium oxidation states, and morphological features. The catalytic activities of the catalysts were evaluated in a biphasic reaction system for oxidative desulfurization (ODS) of a model diesel containing 300 ppm of dibenzothiophene (DBT) where acetonitrile was used as extraction solvent and H{sub 2}O{sub 2} as oxidant. ODS activity was found to be proportional to the V{sup 5+}/(V{sup 4+} + V{sup 5+}) values of the catalysts, indicating that the surface vanadium pentoxide (V{sub 2}O{sub 5}) was the active phase. Reaction temperature would influence significantly the ODS efficiency; high temperature, i.e., 80 °C, would lead to low ODS reaction due to the partial decomposition of oxidant. All the catalysts contained both Lewis and Brønsted acid sites but the former was predominant. The catalysts with low vanadia loading (5 or 10 wt%V{sub 2}O{sub 5}) had many Lewis acid sites and could strongly adsorb DBT molecule via the electron donation/acceptance action which resulted in an inhibition for the reaction of DBT with the surface peroxometallic species. The catalyst with high vanadia loading (25wt%V{sub 2}O{sub 5}/Ti-MCM-41) showed the highest catalytic activity and could remove 99.9% of DBT at 60 °C within 60 min.

  8. Progress in catalytic naphtha reforming process: A review

    International Nuclear Information System (INIS)

    Rahimpour, Mohammad Reza; Jafari, Mitra; Iranshahi, Davood

    2013-01-01

    Catalytic naphtha reforming process is a vital process for refineries due to the production of high-octane components, which is intensely demanded in our modern life. The significance of this industrial process induced researchers to investigate different aspects of catalytic naphtha reforming process intensively. Some of the investigators try to improve this process by representing more effective catalysts, while others try to elucidate its kinetic and deactivation mechanisms and design more efficient reactor setups. The amount of these established papers is so much that may confuse some of the researchers who want to find collective information about catalytic naphtha reforming process. In the present paper, the published studies from 1949 until now are categorized into three main groups including finding suitable catalyst, revealing appropriate kinetic and deactivation model, and suggesting efficient reactor configuration and mode of operation. These studies are reviewed separately, and a suitable reference is provided for those who want to have access to generalized information about catalytic naphtha reforming process. Finally, various suggestions for revamping the catalytic naphtha reforming process have been proposed as a guideline for further investigations

  9. Combined use of titration calorimetry and spectrofluorimetry for the screening of the acidity of solid catalysts in different liquids

    International Nuclear Information System (INIS)

    Gervasini, Antonella; Auroux, Aline

    2013-01-01

    Graphical abstract: Measurements of acidity of oxides of catalytic importance in various liquids open the possibility to know their effective acidity, which is related with their activity in liquid-heterogeneous catalysis. Titration-calorimetry alone or in connection with spectrofluorimetry is efficient for this scope. - Highlights: • Measurements of acidity of oxides of catalytic importance in various liquids. • Titration-calorimetry alone or in connection with spectrofluorimetry is efficient for this scope. • Effective acidities are expressed by given sample in various liquids. • Nb-containing samples are able to maintain acidity in protic liquids. - Abstract: The effective acid and base surface properties of selected acidic and basic samples of catalytic interest (alumina, titania, zirconia, silica–alumina, niobium oxide, niobium phosphate, boron nitride, and hydrotalcite) were measured by titration with basic and acidic molecular probes (aniline, 2-phenylethylamine, and phenol) in various liquids (cyclohexane, 1,4-dioxane, isopropanol, n-decane, and toluene) with different polar and protic characteristics. The combined use of a reaction calorimeter and a spectrofluorimeter has been performed. The set-up of the coupled technique and the most interesting results are shown here. The study confirmed that the acid–base properties of solids are deeply affected by the nature and properties of the liquid surrounding the samples. Few oxides are able to maintain their surface acidity in highly polar and protic solvents, in particular whose containing niobium. In general, the solvating and coordinative ability of the most polar and protic liquids caused remarkable loss of acidity/basicity of the oxide surfaces

  10. Combined use of titration calorimetry and spectrofluorimetry for the screening of the acidity of solid catalysts in different liquids

    Energy Technology Data Exchange (ETDEWEB)

    Gervasini, Antonella, E-mail: antonella.gervasini@unimi.it [Dipartimento di Chimica, Università degli Studi di Milano, via Camillo Golgi, 19, 20133 Milano (Italy); Auroux, Aline, E-mail: aline.auroux@ircelyon.univ-lyon1.fr [Université Lyon 1, CNRS, UMR 5256, Institut de Recherches sur la Catalyse et l‘Environnement de Lyon (IRCELYON), 2 Avenue A. Einstein, 69626 Villeurbanne (France)

    2013-09-10

    Graphical abstract: Measurements of acidity of oxides of catalytic importance in various liquids open the possibility to know their effective acidity, which is related with their activity in liquid-heterogeneous catalysis. Titration-calorimetry alone or in connection with spectrofluorimetry is efficient for this scope. - Highlights: • Measurements of acidity of oxides of catalytic importance in various liquids. • Titration-calorimetry alone or in connection with spectrofluorimetry is efficient for this scope. • Effective acidities are expressed by given sample in various liquids. • Nb-containing samples are able to maintain acidity in protic liquids. - Abstract: The effective acid and base surface properties of selected acidic and basic samples of catalytic interest (alumina, titania, zirconia, silica–alumina, niobium oxide, niobium phosphate, boron nitride, and hydrotalcite) were measured by titration with basic and acidic molecular probes (aniline, 2-phenylethylamine, and phenol) in various liquids (cyclohexane, 1,4-dioxane, isopropanol, n-decane, and toluene) with different polar and protic characteristics. The combined use of a reaction calorimeter and a spectrofluorimeter has been performed. The set-up of the coupled technique and the most interesting results are shown here. The study confirmed that the acid–base properties of solids are deeply affected by the nature and properties of the liquid surrounding the samples. Few oxides are able to maintain their surface acidity in highly polar and protic solvents, in particular whose containing niobium. In general, the solvating and coordinative ability of the most polar and protic liquids caused remarkable loss of acidity/basicity of the oxide surfaces.

  11. Optimization of conditions to produce nitrous gases by electrochemical reduction of nitric acid; Optimisation des conditions operatoires de production de vapeurs nitreuses par reduction electrochimique d`acide nitrique

    Energy Technology Data Exchange (ETDEWEB)

    Lemaire, M. [CEA Centre d`Etudes Nucleaires de Saclay, 91 -Gif-sur-Yvette (France)]|[CEA Centre d`Etudes de la Vallee du Rhone, 30 -Marcoule (France). Direction du Cycle du Combustible

    1996-11-22

    Gaseous nitrogen oxides (NO and NO{sub 2}) involved as oxidizing agents in nuclear fuel reprocessing can be an produced by electrochemical reduction of nitric acid. This could be an interesting alternative to the usual process because no wastes are generated. Voltammetric studies on a platinum electrode show that two reduction potential regions are observed in concentrated nitric acid solutions, between 0.05 V{sub S}HE and 0.3 V{sub S}HE and O.5 V{sub S}HE and 1 V{sub S}HE. The highest potential region reduction mechanism was studies by: classical micro-electrolysis methods; macro-electrolysis methods; infra-red spectroscopy couplet to electrochemistry. It was determined that the origin of nitric acid reduction is the electrochemical reduction of nitrous acid in nitric oxide which chemically reduces nitric acid. This reaction produces nitrous acid back which indicate an auto-catalytic behaviour of nitric acid reduction mechanism. Nitrogen dioxide evolution during nitric acid reduction can also be explained by an other chemical reaction. In the potential value of platinum electrode is above 0.8 V{sub S}HE, products of the indirect nitric acid reduction are nitrous acid, nitrogen oxide and nitrogen dioxide. Below this value nitric oxide can be reduced in nitrous oxide. Thus the potential value is the most important parameter for the nitrogen oxides production selectivity. However, owing to the auto-catalytic character of the reduction mechanism, potential value can be controlled during intentiostatic industrial electrolysis. (author). 91 refs.

  12. Trapping and partial characterization of an adduct postulated to be the covalent catalytic ternary complex of thymidylate synthetase

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, F.; Moore, M.A.; Dunlap, R.B.

    1986-05-01

    The proposed mechanism of action of thymidylate synthetase envisages the formation of a covalent ternary complex of the enzyme via the active site cysteine with dUMP and 5,10-methylenetetrahydrofolate (CH/sub 2/H/sub 4/folate). The authors recent success in using trichloroacetic acid to trap the covalent enzyme-FdUMP binary and ternary (enzyme-FdUMP-CH/sub 2/H/sub 4/folate) complexes led to the use of this technique in attempts to trap the transient covalent catalytic ternary complex. Experiments performed with (2-C/sup 14/)dUMP and /sup 3/H-CH/sub 2/H/sub 4/folate show that both these ligands remained bound to the enzyme after trichloroacetic acid precipitation. The trapped covalent catalytic ternary complex was subjected to CNBr fragmentation, and the peptides were fractionated by HPLC. The isolated active-site peptide was shown to retain the two ligands and was subjected to a limited sequence analysis by the dansyl-Edman procedure. The inhibitory ternary complex formed with /sup 14/C-FdUMP and /sup 3/H-CH/sub 2/ /sub 4/folate served as a control. The active-site peptides isolated from the CNBr treated inhibitory ternary complex and the catalytic complex exhibited identical sequences for the first four N-terminal residues, Ala-Leu-Pro-Pro, and the fifth residue was found to be associated with the labeled ligands. Sequence analysis of the active site peptide derived from the carboxymethylated enzyme confirmed this sequence and the 5th residue was shown to be Cm-Cys.

  13. Formation of alkanes alkylcycloalkanes and alkylbenzenes during the catalytic hydrocracking of vegetable oils

    Energy Technology Data Exchange (ETDEWEB)

    Filho, G.N. da Rocha; Brodzki, D.; Djega-Mariadassou, G. (Universite Pierre et Marie Curie, Paris (France). Lab. Reactivite de Surface et Structure)

    1993-04-01

    Catalytic hydrocracking of vegetable oils was performed in the presence of a NiMo/[gamma]-Al[sub 2]O[sub 3] catalyst sulfided in situ with elemental sulfur under hydrogen pressure. Various vegetable oils were selected to study the effect of the degree of saturation and lateral chain length: [ital Passiflora edulis] (maracuja), [ital Astrocaryum vulgare] (tucuma), [ital Mauritia flexuosa] (buriti), [ital Orbygnya martiana] (babassu) and soybean. The effects of reaction temperature and hydrogen pressure in cyclization were studied. Carboxylic acids were used as model compounds. 29 refs., 5 figs., 5 tabs.

  14. Catalytically favorable surface patterns in Pt-Au nanoclusters

    KAUST Repository

    Mokkath, Junais Habeeb; Schwingenschlö gl, Udo

    2013-01-01

    Motivated by recent experimental demonstrations of novel PtAu nanoparticles with highly enhanced catalytic properties, we present a systematic theoretical study that explores principal catalytic indicators as a function of the particle size

  15. Halide-Enhanced Catalytic Activity of Palladium Nanoparticles Comes at the Expense of Catalyst Recovery

    Directory of Open Access Journals (Sweden)

    Azzedine Bouleghlimat

    2017-09-01

    Full Text Available In this communication, we present studies of the oxidative homocoupling of arylboronic acids catalyzed by immobilised palladium nanoparticles in aqueous solution. This reaction is of significant interest because it shares a key transmetallation step with the well-known Suzuki-Miyaura cross-coupling reaction. Additives can have significant effects on catalysis, both in terms of reaction mechanism and recovery of catalytic species, and our aim was to study the effect of added halides on catalytic efficiency and catalyst recovery. Using kinetic studies, we have shown that added halides (added as NaCl and NaBr can increase the catalytic activity of the palladium nanoparticles more than 10-fold, allowing reactions to be completed in less than half a day at 30 °C. However, this increased activity comes at the expense of catalyst recovery. The results are in agreement with a reaction mechanism in which, under conditions involving high concentrations of chloride or bromide, palladium leaching plays an important role. Considering the evidence for analogous reactions occurring on the surface of palladium nanoparticles under different reaction conditions, we conclude that additives can exert a significant effect on the mechanism of reactions catalyzed by nanoparticles, including switching from a surface reaction to a solution reaction. The possibility of this switch in mechanism may also be the cause for the disagreement on this topic in the literature.

  16. CFD simulation of fatty acid methyl ester production in bubble column reactor

    Science.gov (United States)

    Salleh, N. S. Mohd; Nasir, N. F.

    2017-09-01

    Non-catalytic transesterification is one of the method that was used to produce the fatty acid methyl ester (FAME) by blowing superheated methanol bubbles continuously into the vegetable oil without using any catalyst. This research aimed to simulate the production of FAME from palm oil in a bubble column reactor. Computational Fluid Dynamic (CFD) simulation was used to predict the distribution of fatty acid methyl ester and other product in the reactor. The fluid flow and component of concentration along the reaction time was investigated and the effects of reaction temperature (523 K and 563 K) on the non-catalytic transesterification process has been examined. The study was carried out using ANSYS CFX 17.1. The finding from the study shows that increasing the temperature leads to higher amount of fatty acid methyl ester can be produced in shorter time. On the other hand, concentration of the component such as triglyceride (TG), glycerol (GL) and fatty acid methyl ester (FAME) can be known when reaching the optimum condition.

  17. Coupling catalytic hydrolysis and oxidation on Mn/TiO2-Al2O3 for HCN removal

    Science.gov (United States)

    Wang, Langlang; Wang, Xueqian; Cheng, Jinhuan; Ning, Ping; Lin, Yilong

    2018-05-01

    The manganese-modified titania-alumina (Mn/TiO2-Al2O3) catalyst synthesized by sol-gol method was used to remove hydrogen cyanide (HCN) from simulated flue gas. Further, effects of the mass ratios of Ti/Al, Mn loading, calcination temperature, and relative humidity on HCN conversion efficiency and catalytic activity were systematically investigated. The results indicated that the Mn/TiO2-Al2O3 catalyst exhibited significantly enhanced HCN removal efficiency, and the maximum yield of N2 increased to 68.02% without the participation of water vapor. When water vapor was added into the flue gas, the yield of N2 decreased and the formation of NOx was also inhibited. The XRD and XPS results indicated that Mn was mainly present in the form of Mn2+, Mn3+, and Mn4+ on the surface of catalyst and chemisorbed oxygen played a major role in the HCN catalytic oxidation process. The results of DSC-TGA analysis and H2-TPR indicated that the catalyst also exhibited a good thermal and chemical stability. NH3-TPD and CO2-TPD indicated that the surface of the catalyst mainly contained acidic sites. During the reaction, part of NH3 was adsorbed by Brönsted and Lewis acid sites. NH3 adsorbed on Lewis acid sites participated in NH3-SCR, which reduced the amount of NOx produced and resulted in a high N2 yield.

  18. Optimization of the nitrous vapors experimental conditions production by nitric acid electrochemical reduction

    International Nuclear Information System (INIS)

    Lemaire, M.

    1996-01-01

    Gaseous nitrogen oxides (NO and NO 2 ) involved as oxidizing agents in nuclear fuel reprocessing can be produced by electrochemical reduction of nitric acid. This is an interesting alternative to the existing process because no wastes are generated. voltammetric studies on a platinum electrode show that two reduction potential regions are observed in concentrated nitric acid solutions, between 0,05 V SHE and between 0,5 V SHE and 1 V SHE . The highest potential region reduction mechanism was studied by: classical micro-electrolysis methods, macro-electrolysis methods, infrared spectroscopy coupled to electrochemistry. It was determined that the origin of nitric acid reduction is the electrochemical reduction of nitrous acid in nitric oxide which chemically reduces nitric acid. This reaction produces nitrous acid back which indicate an auto-catalytic behaviour of nitric acid reduction mechanism. Nitrogen dioxide evolution during nitric reduction can also explained by an other chemical reaction. If the potential value of platinum electrode is above 0,8 V SHE , products of the indirect nitric acid reduction are nitrous acid, nitrogen oxide and nitrogen dioxide. Below this value nitric oxide can be reduced in nitrous oxide. Thus the potential value is the most important parameter for the nitrogen oxides production selectivity. However, owing to the auto-catalytic character of the reduction mechanism, potential value can be controlled during intentiostatic industrial electrolysis. (author)

  19. Preparation of H-mordenite/MCM-48 composite and its catalytic performance in the alkylation of toluene with tert-butanol

    Science.gov (United States)

    Zhou, Zhiwei; Cheng, Fuling; Qin, Juan; Yu, Pengcheng; Xu, Lin; Gu, Zhiqiang; Liu, Xiaoqin; Wu, Wenliang

    2017-09-01

    A series of HM/MCM-48 samples with different SiO2/Al2O3 molar ratio were prepared by sol-gel method. The prepared catalysts were characterized by XRD, N2 adsorption-desorption, NH3-TPD, FT-IR, SEM, and TEM techniques, and their catalytic performance was investigated in alkylation of toluene with tert-butanol. The adsorption capacity and the acid sites amount of HM/MCM-48-4 sample prepared by growing MCM-48 on the surface of HM zeolite are much higher than that of their mechanical mixture (HM/MCM-48(4) sample) due to its biporous structure; it shows higher catalytic performance than other HM/MCM-48 samples. The influence of reaction conditions on the catalytic performance of HM/MCM-48-4 zeolite was discussed. Toluene conversion of 41.4% and p-tert-butyltoluene selectivity of 73.5% were obtained at the weight ratio of toluene to HM/MCM-48-4 of 5, reaction temperature of 453 K, reaction time of 5 h and the molar ratio of toluene to tert-butanol of 0.5.

  20. The utilization of leftover as acid catalyst to catalyse the transesterification and esterification reactions

    Science.gov (United States)

    Leung, K. K.; Yau, Y. H.

    2017-08-01

    Biodiesel (Fatty Acid Methyl Ester, FAME) is a green and renewable energy. It is carbon neutral and produces less air pollutants in combustion. In my project, the selected feedstock of biodiesel production is grease trap oil (GTO). It is extracted from restaurants, and needs pre-treatment. The triglycerides and free fatty acid (FFA) are the main components of GTO. Both triglycerides and free fatty acid can be converted to biodiesel (Fatty Acid Methyl Ester) by transesterification and esterification, through reaction with alcohol (methanol) and catalyst. In the processes, acidic catalyst is chosen to speed up the reactions. The catalyst used In the study, a heterogeneous solid acid is applied. It is waste cooked rice (WCR) collected from leftover. The WCR powder is pyrolysed in 400°C furnace 15 hours and blown with nitrogen gas (incomplete carbonization). The WCR black powder is then mixed with concentrated sulphuric acid and heat in 160°C furnace 15 hours and continuous blown with nitrogen gas (sulphonation). This heterogeneous solid acid is used in the both transesterification and esterification to produce FAME. Moreover, in the optimal reaction conditions, this catalyst offers a stable catalytic effect. After 20 times usage in optimal reaction condition, the catalytic activity remains unchanged.

  1. Cooperative Effects Between Arginine and Glutamic Acid in the Amino Acid-Catalyzed Aldol Reaction.

    Science.gov (United States)

    Valero, Guillem; Moyano, Albert

    2016-08-01

    Catalysis of the aldol reaction between cyclohexanone and 4-nitrobenzaldehyde by mixtures of L-Arg and of L-Glu in wet dimethyl sulfoxide (DMSO) takes place with higher enantioselectivity (up to a 7-fold enhancement in the anti-aldol for the 1:1 mixture) than that observed when either L-Glu or L-Arg alone are used as the catalysts. These results can be explained by the formation of a catalytically active hydrogen-bonded complex between both amino acids, and demonstrate the possibility of positive cooperative effects in catalysis by two different α-amino acids. Chirality 28:599-605, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  2. Studies of molybdenite interaction with nitric acid

    International Nuclear Information System (INIS)

    Potashnikov, Yu.M.; Lutsik, V.I.; Chursanov, Yu.V.

    1984-01-01

    Product composition and their effect on the reaction rate of molybdenite with nitric acid are specified. It is shown that alongside with NO NO 2 is included in the composition of the products of MoS 2 and HNO 3 interaction and it produces catalytic effect on the process considered. Under the conditions studied MoS 2 dissolution proceeds in the mixed regime, conditioned by similar values of molybdenite oxidation rate and reaction product diffusion into solution volume (Esub(act.=28.9 kJ/mol, K 298 =6.3x10 -7 , cmxs -1 ), at that due to catalytic effect of NO 2 the dependence V approximately αsup(-g.37) is observed

  3. Influence of Pt nanoparticles modified by La and Ce oxides on catalytic dehydrocyclization of n-alkanes

    Directory of Open Access Journals (Sweden)

    A.H. Samia

    2015-06-01

    Full Text Available Catalytic reforming accounts for a large share of the world’s gasoline production, it is the most important source of aromatics for the petrochemical industry. In addition, reforming of hydrocarbon on the dual-function catalysts has been found to form fundamentally different products in hydrogen diluents. Typical catalysts employed for this reforming process are Pt/Al2O3 and Pt-M/Al2O3, M being the promoter. These solids are characterized by both acid and metal functions which catalyze dehydrocyclization, dehydrogenation, isomerization and cracking processes. In this regard, information about cerium and lanthanum, as promoters, is hardly revealed. The present work aims to study the performance of Pt/Al2O3 catalysts modified by lanthanum or cerium during the conversion of cyclohexane, n-hexane and n-heptane. Catalytic activities of the prepared catalysts were tested using a micro catalytic pulse technique. Physicochemical characterization of the solid catalysts such as, surface area (SBET, Fourier transform infrared (FTIR, differential scanning calorimetry (DSC, thermogravimetric analysis (TGA, hydrogen-temperature programed reduction (H2-TPR, hydrogen-temperature-programed desorption (H2-TPD, CO2-TPD, NH3-TPD, high resolution transmission electron microscopy (HRTEM and X-ray diffraction (XRD were depicted. Results indicated clearly that Pt/Al2O3 catalyst is selective toward dehydrogenation to benzene which could be explained as due to the decrease in the active acid sites and the comparative segregation of the alumina support especially at 3% load of CeO. The presence of La2O3 in the Pt/Al2O3 catalyst promotes aromatization of n-hexane and n-heptane, also the dehydrocyclization of n-hexane is more difficult than that of n-heptane. Thus, modification of the Pt/Al2O3 catalyst by La, resulted in a more active and selective reforming catalyst.

  4. Reductive Catalytic Fractionation of Corn Stover Lignin

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Eric M.; Katahira, Rui; Reed, Michelle; Resch, Michael G.; Karp, Eric M.; Beckham, Gregg T.; Román-Leshkov, Yuriy

    2016-12-05

    Reductive catalytic fractionation (RCF) has emerged as an effective biomass pretreatment strategy to depolymerize lignin into tractable fragments in high yields. We investigate the RCF of corn stover, a highly abundant herbaceous feedstock, using carbon-supported Ru and Ni catalysts at 200 and 250 degrees C in methanol and, in the presence or absence of an acid cocatalyst (H3PO4 or an acidified carbon support). Three key performance variables were studied: (1) the effectiveness of lignin extraction as measured by the yield of lignin oil, (2) the yield of monomers in the lignin oil, and (3) the carbohydrate retention in the residual solids after RCF. The monomers included methyl coumarate/ferulate, propyl guaiacol/syringol, and ethyl guaiacol/syringol. The Ru and Ni catalysts performed similarly in terms of product distribution and monomer yields. The monomer yields increased monotonically as a function of time for both temperatures. At 6 h, monomer yields of 27.2 and 28.3% were obtained at 250 and 200 degrees C, respectively, with Ni/C. The addition of an acid cocatalysts to the Ni/C system increased monomer yields to 32% for acidified carbon and 38% for phosphoric acid at 200 degrees C. The monomer product distribution was dominated by methyl coumarate regardless of the use of the acid cocatalysts. The use of phosphoric acid at 200 degrees C or the high temperature condition without acid resulted in complete lignin extraction and partial sugar solubilization (up to 50%) thereby generating lignin oil yields that exceeded the theoretical limit. In contrast, using either Ni/C or Ni on acidified carbon at 200 degrees C resulted in moderate lignin oil yields of ca. 55%, with sugar retention values >90%. Notably, these sugars were amenable to enzymatic digestion, reaching conversions >90% at 96 h. Characterization studies on the lignin oils using two-dimensional heteronuclear single quantum coherence nuclear magnetic resonance and gel permeation chromatrography revealed

  5. Single-Step Access to Long-Chain α,ω-Dicarboxylic Acids by Isomerizing Hydroxycarbonylation of Unsaturated Fatty Acids

    KAUST Repository

    Goldbach, Verena

    2016-11-09

    Dicarboxylic acids are compounds of high value, but to date long-chain alpha,omega-dicarboxylic acids have been difficult to access in a direct way. Unsaturated fatty acids are ideal starting materials with their molecular structure of long methylene sequences and a carboxylate functionality, in addition to a double bond that offers itself for functionalization. Within this paper, we established a direct access to alpha,omega-dicarboxylic acids by combining isomerization and selective terminal carbonylation of the internal double bond with water as a nucleophile on unsaturated fatty acids. We identified the key elements of this reaction: a homogeneous reaction mixture ensuring sufficient contact between all reactants and a catalyst system allowing for activation of the Pd precursor under aqueous conditions. Experiments under pressure reactor conditions with [(dtbpx)Pd(OTf)(2)] as catalyst precursor revealed the importance of nucleophile and reactant concentrations and the addition of the diprotonated diphosphine ligand (dtbpxH(2))(OTf)(2) to achieve turnover numbers >120. A variety of unsaturated fatty acids, including a triglyceride, were converted to valuable long-chain dicarboxylic acids with high turnover numbers and selectivities for the linear product of >90%. We unraveled the activation pathway of the Pd-II precursor, which proceeds via a reductive elimination step forming a Pd species and oxidative addition of the diprotonated diphosphine ligand, resulting in the formation of the catalytically active Pd hydride species. Theoretical calculations identified the hydrolysis as the rate-determining step. A low nucleophile concentration in the reaction mixture in combination with this high energetic barrier limits the potential of this reaction. In conclusion, water can be utilized as a nucleophile in isomerizing functionalization reactions and gives access to long-chain dicarboxylic acids from a variety of unsaturated substrates. The activity of the catalytic

  6. Novel Metal Nanomaterials and Their Catalytic Applications

    Directory of Open Access Journals (Sweden)

    Jiaqing Wang

    2015-09-01

    Full Text Available In the rapidly developing areas of nanotechnology, nano-scale materials as heterogeneous catalysts in the synthesis of organic molecules have gotten more and more attention. In this review, we will summarize the synthesis of several new types of noble metal nanostructures (FePt@Cu nanowires, Pt@Fe2O3 nanowires and bimetallic Pt@Ir nanocomplexes; Pt-Au heterostructures, Au-Pt bimetallic nanocomplexes and Pt/Pd bimetallic nanodendrites; Au nanowires, CuO@Ag nanowires and a series of Pd nanocatalysts and their new catalytic applications in our group, to establish heterogeneous catalytic system in “green” environments. Further study shows that these materials have a higher catalytic activity and selectivity than previously reported nanocrystal catalysts in organic reactions, or show a superior electro-catalytic activity for the oxidation of methanol. The whole process might have a great impact to resolve the energy crisis and the environmental crisis that were caused by traditional chemical engineering. Furthermore, we hope that this article will provide a reference point for the noble metal nanomaterials’ development that leads to new opportunities in nanocatalysis.

  7. The conversion of anaerobic digestion waste into biofuels via a novel Thermo-Catalytic Reforming process.

    Science.gov (United States)

    Neumann, Johannes; Meyer, Johannes; Ouadi, Miloud; Apfelbacher, Andreas; Binder, Samir; Hornung, Andreas

    2016-01-01

    Producing energy from biomass and other organic waste residues is essential for sustainable development. Fraunhofer UMSICHT has developed a novel reactor which introduces the Thermo-Catalytic Reforming (TCR®) process. The TCR® is a process which can convert any type of biomass and organic feedstocks into a variety of energy products (char, bio-oil and permanent gases). The aim of this work was to demonstrate this technology using digestate as the feedstock and to quantify the results from the post reforming step. The temperature of a post reformer was varied to achieve optimised fuel products. The hydrogen rich permanent gases produced were maximised at a post reforming temperature of 1023 K. The highly de-oxygenated liquid bio-oil produced contained a calorific value of 35.2 MJ/kg, with significantly improved fuel physical properties, low viscosity and acid number. Overall digestate showed a high potential as feedstock in the Thermo-Catalytic Reforming to produce pyrolysis fuel products of superior quality. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Catalytic Organic Transformations Mediated by Actinide Complexes

    Directory of Open Access Journals (Sweden)

    Isabell S. R. Karmel

    2015-10-01

    Full Text Available This review article presents the development of organoactinides and actinide coordination complexes as catalysts for homogeneous organic transformations. This chapter introduces the basic principles of actinide catalysis and deals with the historic development of actinide complexes in catalytic processes. The application of organoactinides in homogeneous catalysis is exemplified in the hydroelementation reactions, such as the hydroamination, hydrosilylation, hydroalkoxylation and hydrothiolation of alkynes. Additionally, the use of actinide coordination complexes for the catalytic polymerization of α-olefins and the ring opening polymerization of cyclic esters is presented. The last part of this review article highlights novel catalytic transformations mediated by actinide compounds and gives an outlook to the further potential of this field.

  9. Modeling and simulation of heterogeneous catalytic processes

    CERN Document Server

    Dixon, Anthony

    2014-01-01

    Heterogeneous catalysis and mathematical modeling are essential components of the continuing search for better utilization of raw materials and energy, with reduced impact on the environment. Numerical modeling of chemical systems has progressed rapidly due to increases in computer power, and is used extensively for analysis, design and development of catalytic reactors and processes. This book presents reviews of the state-of-the-art in modeling of heterogeneous catalytic reactors and processes. Reviews by leading authorities in the respective areas Up-to-date reviews of latest techniques in modeling of catalytic processes Mix of US and European authors, as well as academic/industrial/research institute perspectives Connections between computation and experimental methods in some of the chapters.

  10. Preparation of Copper (II) Containing Phosphomolybdic Acid Salt as Catalyst for the Synthesis of Biodiesel by Esterification.

    Science.gov (United States)

    Cai, Jie; Zhang, Qiu-Yun; Wei, Fang-Fang; Huang, Jin-Shu; Feng, Yun-Mei; Ma, Hai-Tao; Zhang, Yutao-

    2018-04-01

    Copper (II) containing phosphomolybdic acid (PMA) catalysts were synthesized by ion exchange method and characterization using various physico-chemical techniques such as X-ray diffraction (XRD), fourier transform infrared spectroscopy (FT-IR), thermogravimetric (TG) and scanning electron microscopy (SEM). The characterization results showed that the Keggin ions were retained in the catalysts and possessed well thermal stability. The catalytic esterification of lauric acid with methanol could be easily achieved about 78.7% conversion under optimum condition, the catalyst also contributed to the stability of the catalyst in which it can be reused for a certain time. This study demonstrated an alternative approach to biodiesel production with high efficiency by Cu (II) ion exchanged phosphomolybdic acid catalyst in the esterification catalytic.

  11. Catalytic gasification of oil-shales

    Energy Technology Data Exchange (ETDEWEB)

    Lapidus, A.; Avakyan, T. [I.M. Gubkin Russian State Univ. of Oil and Gas, Moscow (Russian Federation); Strizhakova, Yu. [Samara State Univ. (Russian Federation)

    2012-07-01

    Nowadays, the problem of complex usage of solid fossil fuels as raw materials for obtaining of motor fuels and chemical products is becoming increasingly important. A one of possible solutions of the problem is their gasification with further processing of gaseous and liquid products. In this work we have investigated the process of thermal and catalytic gasification of Baltic and Kashpir oil-shales. We have shown that, as compared with non-catalytic process, using of nickel catalyst in the reaction increases the yield of gas, as well as hydrogen content in it, and decreases the amount of liquid products. (orig.)

  12. Synthesis and characterization of type silicoaluminophosphates catalytic support; Sintese e caracterizacao de suportes cataliticos do tipo silicoaluminofosfatico

    Energy Technology Data Exchange (ETDEWEB)

    Leite, C.E.T.; Carvalho, M.W.N.C.; Pereira, K.R.O., E-mail: carlosedisio@hotmail.co [Universidade Federal de Campina Grande (UFCG), PB (Brazil). Unidade Academica de Engenharia Quimica. Lab. de Catalise, Adsorcao e Biocombustiveis

    2010-07-01

    The refining processes, the catalytic hydrocracking is the future of diesel oil in Brazil and the first units are already scheduled to be inaugurated. Among the catalysts used in this process, silicoaluminophosphates (SAPO's) have considerable potential for use as they have been effective in the isomerization of n-alkanes, the isomerization of olefins and alkylation of aromatics. Because of this, the objective is to develop catalysts that will be used in hydrocracking reactions. The media like SAPO-5 were synthesized with different ratios silicon/aluminum, which is used as a catalytic support and have the function of crack organic molecules, since it has acidic character. The materials were characterized by techniques: X-ray diffraction, chemical analysis and textural by BET. After summarizing the media found that they had agreements with the crystalline phases presented in the literature.(author)

  13. Novel Fast Pyrolysis/Catalytic Technology for the Production of Stable Upgraded Liquids

    Energy Technology Data Exchange (ETDEWEB)

    Oyama, Ted; Agblevor, Foster; Battaglia, Francine; Klein, Michael

    2013-01-18

    The objective of the proposed research is the demonstration and development of a novel biomass pyrolysis technology for the production of a stable bio-oil. The approach is to carry out catalytic hydrodeoxygenation (HDO) and upgrading together with pyrolysis in a single fluidized bed reactor with a unique two-level design that permits the physical separation of the two processes. The hydrogen required for the HDO will be generated in the catalytic section by the water-gas shift reaction employing recycled CO produced from the pyrolysis reaction itself. Thus, the use of a reactive recycle stream is another innovation in this technology. The catalysts will be designed in collaboration with BASF Catalysts LLC (formerly Engelhard Corporation), a leader in the manufacture of attrition-resistant cracking catalysts. The proposed work will include reactor modeling with state-of-the-art computational fluid dynamics in a supercomputer, and advanced kinetic analysis for optimization of bio-oil production. The stability of the bio-oil will be determined by viscosity, oxygen content, and acidity determinations in real and accelerated measurements. A multi-faceted team has been assembled to handle laboratory demonstration studies and computational analysis for optimization and scaleup.

  14. Post-modified acid-base bifunctional MIL-101(Cr) for one-pot deacetalization-Knoevenagel reaction

    Energy Technology Data Exchange (ETDEWEB)

    Mu, Manman [Tianjin University, School of Science (China); Yan, Xilong; Li, Yang; Chen, Ligong, E-mail: lgchen@tju.edu.cn [Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) (China)

    2017-04-15

    A novel and convenient approach for the construction of the bifunctional MIL-101 material bearing sulfonic acid and amino groups was established via the post-synthetic modification. This material possesses high BET surface area (1446 m{sup 2}/g) and large pore volume (0.77 cm{sup 3}/g). Significantly, this material could serve as a bifunctional heterogeneous catalyst and was initially employed for one-pot deacetalization-Knoevenagel reaction, exhibiting excellent catalytic performance (yield 99.74%). More importantly, it can be easily recovered and reused at least three times. Finally, our proposed catalytic mechanism indicated that amino and the sulfonic acid groups played a synergistic effect on this one-pot deacetalization-Knoevenagel reaction.

  15. The tritium labeling of Butibufen by heterogeneous catalytic exchange; Marcado del Butibufen con Tritio por inter- cambio catalitico en disolucion

    Energy Technology Data Exchange (ETDEWEB)

    Santamaria, J; Rebollo, D

    1986-07-01

    The labeling of a new non-steroidal antiinflammatory agent, Butibufen (2-(4-isobutylphenyl) butyric acid) was studied. The method used was heterogeneous catalytic exchange between Butibufen and tritiated water, obtained in situ. Purification was accomplished through thin layer chromatography. Concentration, purity and specific activity of the labeled drug were determined by ultraviolet and liquid scintillation techniques. (Author) 7 refs.

  16. Production of Jet Fuel-Range Hydrocarbons from Hydrodeoxygenation of Lignin over Super Lewis Acid Combined with Metal Catalysts

    International Nuclear Information System (INIS)

    Wang, Hongliang; Wang, Huamin; Kuhn, Eric; Tucker, Melvin P.; Yang, Bin

    2017-01-01

    Super Lewis acids containing the triflate anion [e.g., Hf(OTf) 4 , Ln(OTf) 3 , In(OTf) 3 , Al(OTf) 3 ] and noble metal catalysts (e.g., Ru/C, Ru/Al2O 3 ) formed efficient catalytic systems to generate saturated hydrocarbons from lignin in high yields. In such catalytic systems, the metal triflates mediated rapid ether bond cleavage through selective bonding to etheric oxygens while the noble metal catalyzed subsequent hydrodeoxygenation (HDO) reactions. Near theoretical yields of hydrocarbons were produced from lignin model compounds by the combined catalysis of Hf(OTf)4 and ruthenium-based catalysts. When a technical lignin derived from a pilot-scale biorefinery was used, more than 30 wt % of the hydrocarbons produced with this catalytic system were cyclohexane and alkylcyclohexanes in the jet fuel range. Super Lewis acids are postulated to strongly interact with lignin substrates by protonating hydroxyl groups and ether linkages, forming intermediate species that enhance hydrogenation catalysis by supported noble metal catalysts. Meanwhile, the hydrogenation of aromatic rings by the noble metal catalysts can promote oxygenation reactions catalyzed by super Lewis acids.

  17. Production of Jet Fuel-Range Hydrocarbons from Hydrodeoxygenation of Lignin over Super Lewis Acid Combined with Metal Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hongliang [Department of Biological Systems Engineering, Washington State University, Richland WA 99354 USA; Current address: Center of Biomass Engineering/College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193 PR China; Wang, Huamin [Pacific Northwest National Laboratory, 902 Battelle Boulevard Richland WA 99354 USA; Kuhn, Eric [National Bioenergy Center, National Renewable Energy Laboratory, 15013 Denver West Parkway Golden CO 80401 USA; Tucker, Melvin P. [National Bioenergy Center, National Renewable Energy Laboratory, 15013 Denver West Parkway Golden CO 80401 USA; Yang, Bin [Department of Biological Systems Engineering, Washington State University, Richland WA 99354 USA

    2017-11-14

    Super Lewis acids containing the triflate anion (e.g. Hf(OTf)4, Ln(OTf)3, Al(OTf)3) and noble metal catalysts (e.g. Ru/C, Ru/Al2O3) formed efficient catalytic systems to generate saturated hydrocarbons from lignin in high yields. In such catalytic systems, the metal triflates mediated rapid ether bond cleavage via selective bonding to etheric oxygens while the noble metal catalysed subsequent hydrodeoxygenation (HDO) reactions. Near theoretical yields of hydrocarbons were produced from lignin model compounds by the combined catalysis of Hf(OTf)4 and ruthenium-based catalysts. When a technical lignin derived from a pilot-scale biorefinery was used, more than 30 wt% of the hydrocarbons produced with this catalytic system were cyclohexane and alkylcyclohexanes in the jet fuel range. Super Lewis acids are postulated to strongly interact with lignin substrates via protonating hydroxyls and ether linkages, forming intermediate species that enhance hydrogenation catalysis by supported noble metal catalysts. Meanwhile, the hydrogenation of aromatic rings by the noble metal catalysts can promote oxygenation reactions catalysed by super Lewis acids.

  18. Esterification of Fatty Acids with Short-Chain Alcohols over Commercial Acid Clays in a Semi-Continuous Reactor

    Directory of Open Access Journals (Sweden)

    Mohamed H. Frikha

    2009-11-01

    Full Text Available Production of fatty acid esters from stearic, oleic, and palmitic acids and short-chain alcohols (methanol, ethanol, propanol, and butanol for the production of biodiesel was investigated in this work. A series of montmorillonite-based clays catalysts (KSF, KSF/0, KP10, and K10 were used as acidic catalysts. The influence of the specific surface area and the acidity of the catalysts on the esterification rate were investigated. The best catalytic activities were obtained with KSF/0 catalyst. The esterification reaction has been carried out efficiently in a semi-continuous reactor at 150°C temperature higher than the boiling points of water and alcohol. The reactor used enabled the continuous removal of water and esterification with hydrated alcohol (ethanol 95% without affecting the original activity of the clay.

  19. Electro-oxidation of methanol and formic acid on platinum nanoparticles with different oxidation levels

    Energy Technology Data Exchange (ETDEWEB)

    Hsieh, Chien-Te, E-mail: cthsieh@saturn.yzu.edu.tw [Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan 320, Taiwan (China); Hsiao, Han-Tsung; Tzou, Dong-Ying; Yu, Po-Yuan [Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan 320, Taiwan (China); Chen, Po-Yen; Jang, Bi-Sheng [Materials and Electro-Optics Research Division, National Chung-Shan Institute of Science and Technology, Taoyuan 325, Taiwan (China)

    2015-01-15

    Herein reported is an atomic layer deposition (ALD) process of platinum (Pt) from (methylcyclopentadienyl) trimethylplatinum (MeCpPtMe{sub 3}) and oxygen (O{sub 2}) for synthesizing the Pt electrocatalysts toward methanol and formic acid oxidation. The as-synthesized Pt catalysts are thermally reduced in 5 vol% H{sub 2} within temperature window of 150–450 °C. The reduction treatment induces a decrease in amount of Pt oxide (Pt–O) species, e.g., PtO and PtO{sub 2}. The presence of Pt–O species not only enhances catalytic activity but also improves anti-poisoning ability toward the oxidation of methanol and formic acid. The improved activity originates from the fact that the Pt–O species, formed by the ALD route, creates a large number of active sites (e.g., Pt–O{sub ads} and Pt–(OH){sub ads}) to strip the CO-adsorbed sites, leading to a high-level of CO tolerance. This work also proposes a stepwise reaction steps to shed some lights on how the Pt–O species promote the catalytic activity. - Highlights: • This study adopts atomic layer deposition (ALD) to grow metallic Pt nanoparticles. • The Pt catalysts show catalytic activity toward methanol and formic acid oxidation. • The reduction treatment induces a decrease in amount of Pt oxide (Pt–O) species. • The Pt–O species creates a number of active sites to strip the CO-adsorbed sites. • A stepwise reaction step concerning the promoted catalytic activity is proposed.

  20. Kinetic catalytic studies of scorpion's hemocyanin

    International Nuclear Information System (INIS)

    Queinnec, E.; Vuillaume, M.; Gardes-Albert, M.; Ferradini, C.; Ducancel, F.

    1991-01-01

    Hemocyanins are copper proteins which function as oxygen carriers in the haemolymph of Molluscs and Arthropods. They possess enzymatic properties: peroxidatic and catalatic activities, although they have neither iron nor porphyrin ring at the active site. The kinetics of the catalytic reaction is described. The reaction of superoxide anion with hemocyanin has been studied using pulse radiolysis at pH 9. The catalytic rate constant is 3.5 X 10 7 mol -1 .l.s -1 [fr