WorldWideScience

Sample records for acidic microenvironment synergistically

  1. Targeting Pancreatic Ductal Adenocarcinoma Acidic Microenvironment

    Cruz-Monserrate, Zobeida; Roland, Christina L.; Deng, Defeng; Arumugam, Thiruvengadam; Moshnikova, Anna; Andreev, Oleg A.; Reshetnyak, Yana K.; Logsdon, Craig D.

    2014-03-01

    Pancreatic ductal adenocarcinoma (PDAC) is the fourth leading cause of cancer death in the USA, accounting for ~40,000 deaths annually. The dismal prognosis for PDAC is largely due to its late diagnosis. Currently, the most sensitive diagnosis of PDAC requires invasive procedures, such as endoscopic ultrasonography, which has inherent risks and accuracy that is highly operator dependent. Here we took advantage of a general characteristic of solid tumors, the acidic microenvironment that is generated as a by-product of metabolism, to develop a novel approach of using pH (Low) Insertion Peptides (pHLIPs) for imaging of PDAC. We show that fluorescently labeled pHLIPs can localize and specifically detect PDAC in human xenografts as well as PDAC and PanIN lesions in genetically engineered mouse models. This novel approach may improve detection, differential diagnosis and staging of PDAC.

  2. Synergistic COX2 Induction by IFNγ and TNFα Self-Limits Type-1 Immunity in the Human Tumor Microenvironment.

    Wong, Jeffrey L; Obermajer, Nataša; Odunsi, Kunle; Edwards, Robert P; Kalinski, Pawel

    2016-04-01

    Maintenance of CTL-, Th1-, and NK cell-mediated type-1 immunity is essential for effective antitumor responses. Unexpectedly, we observed that the critical soluble mediators of type-1 immune effector cells, IFNγ and TNFα, synergize in the induction of cyclooxygenase 2 (COX2), the key enzyme in prostaglandin (PG)E2 synthesis, and the subsequent hyperactivation of myeloid-derived suppressor cells (MDSC) within the tumor microenvironment (TME) of ovarian cancer patients. MDSC hyperactivation by type-1 immunity and the resultant overexpression of indoleamine 2,3-dioxygenase (IDO), inducible nitric oxide synthase (iNOS/NOS2), IL10, and additional COX2 result in strong feedback suppression of type-1 immune responses. This paradoxical immune suppression driven by type-1 immune cell activation was found to depend on the synergistic action of IFNγ and TNFα, and could not be reproduced by either of these factors alone. Importantly, from a therapeutic standpoint, these negative feedback limiting type-1 responses could be eliminated by COX2 blockade, allowing amplification of type-1 immunity in the ovarian cancer TME. Our data demonstrate a new mechanism underlying the self-limiting nature of type-1 immunity in the human TME, driven by the synergistic induction of COX2 by IFNγ and TNFα, and provide a rationale for targeting the COX2-PGE2 axis to enhance the effectiveness of cancer immunotherapies.

  3. The Synergistic Effects of Matrix Stiffness and Composition on the Response of Chondroprogenitor Cells in a 3D Precondensation Microenvironment.

    Carrion, Bita; Souzanchi, Mohammad F; Wang, Victor T; Tiruchinapally, Gopinath; Shikanov, Ariella; Putnam, Andrew J; Coleman, Rhima M

    2016-05-01

    Improve functional quality of cartilage tissue engineered from stem cells requires a better understanding of the functional evolution of native cartilage tissue. Therefore, a biosynthetic hydrogel was developed containing RGD, hyaluronic acid and/or type-I collagen conjugated to poly(ethylene glycol) acrylate to recapitulate the precondensation microenvironment of the developing limb. Conjugation of any combination of the three ligands did not alter the shear moduli or diffusion properties of the PEG hydrogels; thus, the influence of ligand composition on chondrogenesis could be investigated in the context of varying matrix stiffness. Gene expression of ligand receptors (CD44 and the b1-integrin) as well as markers of condensation (cell clustering and N-cadherin gene expression) and chondrogenesis (Col2a1 gene expression and sGAG production) by chondroprogenitor cells in this system were modulated by both matrix stiffness and ligand composition, with the highest gene expression occurring in softer hydrogels containing all three ligands. Cell proliferation in these 3D matrices for 7 d prior to chondrogenic induction increased the rate of sGAG production in a stiffness-dependent manner. This biosynthetic hydrogel supports the features of early limb-bud condensation and chondrogenesis and is a novel platform in which the influence of the matrix physicochemical properties on these processes can be elucidated.

  4. Acidic Tumor Microenvironment and pH-Sensing G protein-Coupled Receptors

    Calvin R. Justus

    2013-12-01

    Full Text Available The tumor microenvironment is acidic due to glycolytic cancer cell metabolism, hypoxia, and deficient blood perfusion. It is proposed that acidosis in the tumor microenvironment is an important stress factor and selection force for cancer cell somatic evolution. Acidic pH has pleiotropic effects on the proliferation, migration, invasion, metastasis and therapeutic response of cancer cells and the function of immune cells, vascular cells, and other stromal cells. However, the molecular mechanisms by which cancer cells and stromal cells sense and respond to acidic pH in the tumor microenvironment are poorly understood. In this article the role of a family of pH-sensing G protein-coupled receptors (GPCRs in tumor biology is reviewed. Recent studies show that the pH-sensing GPCRs, including GPR4, GPR65 (TDAG8, GPR68 (OGR1, and GPR132 (G2A, regulate cancer cell metastasis and proliferation, immune cell function, inflammation, and blood vessel formation. Activation of the proton-sensing GPCRs by acidosis transduces multiple downstream G protein signaling pathways. Since GPCRs are major drug targets, small molecule modulators of the pH-sensing GPCRs are being actively developed and evaluated. Research on the pH-sensing GPCRs will continue to provide important insights into the molecular interaction between tumor and its acidic microenvironment and may identify new targets for cancer therapy and chemoprevention.

  5. Fate of the synergistic antioxidant system ascorbic acid, lecithin, and tocopherol in mayonnaise: Partion of ascorbic acid

    Meyer, Anne Merete Boye; Jacobsen, Charlotte Munch

    1996-01-01

    Meyer, A. S. & C. Jacobsen, 1996. Fate of the synergistic antioxidant system ascorbic acid, lecithin, and tocopherol in mayonnaise: Partion of ascorbic acid, J. Food Lipids, 3, 139-147.......Meyer, A. S. & C. Jacobsen, 1996. Fate of the synergistic antioxidant system ascorbic acid, lecithin, and tocopherol in mayonnaise: Partion of ascorbic acid, J. Food Lipids, 3, 139-147....

  6. Modulation of Acid Sphingomyelinase in Melanoma Reprogrammes the Tumour Immune Microenvironment

    Emma Assi

    2015-01-01

    Full Text Available The inflammatory microenvironment induces tumours to acquire an aggressive and immunosuppressive behaviour. Since acid sphingomyelinase (A-SMase downregulation in melanoma was shown to determine a malignant phenotype, we aimed here to elucidate the role of A-SMase in the regulation of tumour immunogenic microenvironment using in vivo melanoma models in which A-SMase was either downregulated or maintained at constitutively high levels. We found high levels of inflammatory factors in low A-SMase expressing tumours, which also displayed an immunosuppressive/protumoural microenvironment: high levels of myeloid-derived suppressor cells (MDSCs and regulatory T lymphocytes (Tregs, as well as low levels of dendritic cells (DCs. In contrast, the restoration of A-SMase in melanoma cells not only reduced tumour growth and immunosuppression, but also induced a high recruitment at tumour site of effector immune cells with an antitumoural function. Indeed, we observed a poor homing of MDSCs and Tregs and the increased recruitment of CD8+ and CD4+ T lymphocytes as well as the infiltration of DCs and CD8+/CD44high T lymphocytes. This study demonstrates that change of A-SMase expression in cancer cells is sufficient per se to tune in vivo melanoma growth and that A-SMase levels modulate immune cells at tumour site. This may be taken into consideration in the setting of therapeutic strategies.

  7. Fumaric acid microenvironment tablet formulation and process development for crystalline cenicriviroc mesylate, a BCS IV compound.

    Menning, Mark M; Dalziel, Sean M

    2013-11-04

    Cenicriviroc mesylate (CVC) is a potent dual antagonist of C-C chemokine receptor type 5 (CCR5) and C-C chemokine receptor type 2 (CCR2) in phase 2b development as an entry inhibitor for HIV-1 infection treatment.1,2 CVC is a weak base exhibiting BCS IV characteristics with a highly pH dependent solubility profile (>100 mg/mL for pH 4) and low Caco-2 cell line permeability. Previous tablet formulations of CVC, including spray-dried dispersion and a wet granulation with citric acid, had been found unacceptable for commercial use due to chemical and physical instability or unacceptably high excipient loading precluding fixed-dose combinability. A high drug loading, 26% (w/w), acidic microenvironment tablet formulation with fumaric acid solubilizer (1:1 CVC/fumaric acid) and a dry granulation process was developed iteratively through a sequence of prototypes characterized by beagle dog absorption studies, focused beam reflectance measurement (FBRM), dynamic vapor sorption (DVS), and accelerated stability testing. The fumaric acid based dry granulated product demonstrated a mean bioavailability comparable to an oral solution dose in a dog model. Stability and moisture sensitivity of the formulation were improved via the dry granulation process technique and the use of fumaric acid. It is hypothesized that the observed slow dissolution kinetics of fumaric acid prolongs an acidic microenvironment around the agglomerated CVC crystals and excipients leading to increased CVC dissolution and thereby absorption. The fumaric acid formulation also demonstrated absorption resilience to gastric pH extremes in a dog model. This optimized formulation and process enables CVC to be a viable candidate for current HIV treatment paradigms of single once daily fixed-dose combination products.

  8. Acidic Microenvironments in Waste Rock Characterized by Neutral Drainage: Bacteria–Mineral Interactions at Sulfide Surfaces

    John W. Dockrey

    2014-03-01

    Full Text Available Microbial populations and microbe-mineral interactions were examined in waste rock characterized by neutral rock drainage (NRD. Samples of three primary sulfide-bearing waste rock types (i.e., marble-hornfels, intrusive, exoskarn were collected from field-scale experiments at the Antamina Cu–Zn–Mo mine, Peru. Microbial communities within all samples were dominated by neutrophilic thiosulfate oxidizing bacteria. However, acidophilic iron and sulfur oxidizers were present within intrusive waste rock characterized by bulk circumneutral pH drainage. The extensive development of microbially colonized porous Fe(III (oxyhydroxide and Fe(III (oxyhydroxysulfate precipitates was observed at sulfide-mineral surfaces during examination by field emission-scanning electron microscopy-energy dispersive X-ray spectroscopy (FE-SEM-EDS. Linear combination fitting of bulk extended X-ray absorption fine structure (EXAFS spectra for these precipitates indicated they were composed of schwertmannite [Fe8O8(OH6–4.5(SO41–1.75], lepidocrocite [γ-FeO(OH] and K-jarosite [KFe3(OH6(SO42]. The presence of schwertmannite and K-jarosite is indicative of the development of localized acidic microenvironments at sulfide-mineral surfaces. Extensive bacterial colonization of this porous layer and pitting of underlying sulfide-mineral surfaces suggests that acidic microenvironments can play an important role in sulfide-mineral oxidation under bulk circumneutral pH conditions. These findings have important implications for water quality management in NRD settings.

  9. Synergistic extraction of praseodymium with 2-ethylhexyl phosphonic acid mono-2-ethylhexyl ester and 8-Hydroxyquinoline

    ZHANG Qian; WU Dong-bei; BAO Bo-rong

    2009-01-01

    The synergistic extraction of Pr3+ from hydrochloric medium using mixture of 2-ethylhexyl phosphonic acid mono-2-ethylhexyl ester (P507, HL) and 8-Hydroxyquinoline (HQ) in heptane was investigated. The effect of equilibrium of aqueous acidity on extraction of Pr3+ was discussed. The effect of extractant concentraction, different diluents, equilibrium time and acetate ion concentration on extraction reaction were also studied. With a method of double-logarithmic slope, composition of the extracted species on 2-ethylhexyl phosphonic acid mono-2-ethylhexyl ester and 8-Hydroxyquinolinc was derived. The result shows that the synergistic extraction system not only overcomes emulsification of 8-Hydroxyquinoline, but also shows perfect capacity of synergistic extraction. The largest synergistic enhancement factor can be calculated to be 5.49 at pH 3.6 for Pr3+.

  10. Chemical microenvironment mediated formation of organicnanostructures from self-assembly of melamine and barbituric acid derivatives

    ZHUANG; Jiaqi; (庄家骐); WANG; Gang; (王刚); Lü; Nan; (吕男); YANG; Wensheng; (杨文胜); JIANG; Yueshun; (姜月顺); LI; Tiejin; (李铁津)

    2002-01-01

    The recent progresses on constructing organic nanostructures from the self-assembly of melamine and barbituric acid derivatives are reviewed. By mediating the chemical microenvironment during the self-assembly, the information contained in the molecular components can be expressed at different levels, thus resulting in the formation of different organic nanostructures. When the assembly is carried out in anhydrous chloroform, a kind of asymmetric layered structure with a d value of 4.1 nm is obtained. When a little amount of polar solvent such as alcohol is contained in the chloroform, organic nanotubes with diameter of 6 nm and length of several hundreds of nanometers are observed. After being treated by appropriate polar solvents, the nanotubes are induced into supercoils with diameter of about 300 nm and length of several tens of microns. The sensitivity of the self-assembly process origins from the weak noncovalent intermolecular interactions between the molecular components. The enthalpy change of such interactions is pretty small, so slight change of the molecular structure or microenvironment could affect the primary equilibrium, resulting in the rearrangement and transformation of the supramolecular structure.

  11. Synergistic action of gastrin and ghrelin on gastric acid secretion in rats.

    Fukumoto, Kaori; Nakahara, Keiko; Katayama, Tetsuro; Miyazatao, Mikiya; Kangawa, Kenji; Murakami, Noboru

    2008-09-12

    Gastrin and ghrelin are secreted from G cells and X/A-like cells in the stomach, respectively, and respective hormones stimulate gastric acid secretion by acting through histamine and the vagus nerve. In this study, we examined the relationship between gastrin, ghrelin and gastric acid secretion in rats. Intravenous (iv) administration of 3 and 10 nmol of gastrin induced transient increases of ghrelin levels within 10 min in a dose-dependent manner. Double immunostaining for ghrelin and gastrin receptor revealed that a proportion of ghrelin cells possess gastrin receptors. Although (iv) administration of gastrin or ghrelin induced significant gastric acid secretion, simultaneous treatment with both hormones resulted in a synergistic, rather than additive, increase of gastric acid secretion. This synergistic increase was not observed in vagotomized rats. These results suggest that gastrin may directly stimulate ghrelin release from the stomach, and that both hormones may increase gastric acid secretion synergistically.

  12. Fate of the synergistic antioxidant system ascorbic acid, lecithin, and tocopherol in mayonnaise : Partition of ascorbic acid

    Meyer, Anne S.; Jacobsen, Charlotte

    1996-01-01

    The distribution of ascorbic acid between the lipid and aqueous phase was investigated in mayonnaises enriched with fish oil containing a synergistic antioxidant mixture of ascorbic acid, lecithin and gamma-tocopherol, i.e., the A/L/T system (Loliger and Saucy 1989). The ascorbic acid was found...... to be located in the aqueous phase indicating that the A/L/T system broke down in mayonnaises. Based on the hypothesis that synergistic antioxidant action between ascorbic acid, lecithin and tocopherol requires that the three components are in close assembly, the results offer an explanation as to why the A...

  13. High Throughput Screening of Valganciclovir in Acidic Microenvironments of Polyester Thin Films

    Teilo Schaller

    2015-04-01

    Full Text Available Ganciclovir and valganciclor are antiviral agents used for the treatment of cytomegalovirus retinitis. The conventional method for administering ganciclovir in cytomegalovirus retinitis patients is repeated intravitreal injections. In order to obviate the possible detrimental effects of repeated intraocular injections, to improve compliance and to eliminate systemic side-effects, we investigated the tuning of the ganciclovir pro-drug valganciclovir and the release from thin films of poly(lactic-co-glycolic acid (PLGA, polycaprolactone (PCL, or mixtures of both, as a step towards prototyping periocular valganciclovir implants. To investigate the drug release, we established and evaluated a high throughput fluorescence-based quantification screening assay for the detection of valganciclovir. Our protocol allows quantifying as little as 20 ng of valganciclovir in 96-well polypropylene plates and a 50× faster analysis compared to traditional HPLC measurements. This improvement can hence be extrapolated to other polyester matrix thin film formulations using a high-throughput approach. The acidic microenvironment within the polyester matrix was found to protect valganciclovir from degradation with resultant increases in the half-life of the drug in the periocular implant to 100 days. Linear release profiles were obtained using the pure polyester polymers for 10 days and 60 days formulations; however, gross phase separations of PCL and acid-terminated PLGA prevented tuning within these timeframes due to the phase separation of the polymer, valganciclovir, or both.

  14. Mechanism of Synergistic Inhibition of Listeria monocytogenes Growth by Lactic Acid, Monolaurin, and Nisin▿

    Tokarskyy, Oleksandr; Marshall, Douglas L.

    2008-01-01

    The combined lactic acid, monolaurin, and nisin effects on time-to-detection (optical density at 600 nm) extension were greater (P < 0.05) than any single or paired combination effect, which demonstrates a synergistic interaction among the antimicrobials. Monolaurin exposure caused C12:0 cell membrane incorporation. Lactic acid caused increased monolaurin C12:0 membrane incorporation, while nisin had no influence. We postulate that lactic acid-enhanced monolaurin C12:0 incorporation into the ...

  15. Synergistic anti-proliferative effects of gambogic acid with docetaxel in gastrointestinal cancer cell lines

    Zou Zhengyun

    2012-04-01

    Full Text Available Summary Background Gambogic acid has a marked anti-tumor effect for gastric and colorectal cancers in vitro and in vivo. However, recent investigations on gambogic acid have focused mainly on mono-drug therapy, and its potential role in cancer therapy has not been comprehensively illustrated. This study aimed to assess the interaction between gambogic acid and docetaxel on human gastrointestinal cancer cells and to investigate the mechanism of gambogic acid plus docetaxel treatment-induced apoptotic cell death. Methods MTT assay was used to determine IC50 values in BGC-823, MKN-28, LOVO and SW-116 cells after gambogic acid and docetaxel administration. Median effect analysis was applied for determination of synergism and antagonism. Synergistic interaction between gambogic acid and docetaxel was evaluated using the combination index (CI method. Furthermore, cellular apoptosis was analyzed by Annexin-V and propidium iodide (PI double staining. Additionally, mRNA expression of drug-associated genes, i.e., β-tublin III and tau, and the apoptosis-related gene survivin, were measured by quantitative reverse transcription polymerase chain reaction (qRT-PCR. Results Gambogic acid provided a synergistic effect on the cytotoxicity induced by docetaxel in all four cell lines. The combined application of gambogic acid and docetaxel enhanced apoptosis in gastrointestinal cancer cells. Moreover, gambogic acid markedly decreased the mRNA expression of docetaxel-related genes, including β-tubulin III, tau and survivin, in BGC-823 cells. Conclusions Gambogic acid plus docetaxel produced a synergistic anti-tumor effect in gastrointestinal cancer cells, suggesting that the drug combination may offer a novel treatment option for patients with gastric and colorectal cancers.

  16. Synergistic Effects of Zinc Oxide Nanoparticles and Fatty Acids on Toxicity to Caco-2 Cells

    Cao, Yi; Roursgaard, Martin; Kermanizadeh, Ali

    2015-01-01

    production of mitochondrial reactive oxygen species (mROS) but not intracellular ROS production, whereas FFAs mixture exposure did not induce mROS and inhibited intracellular ROS. Both ZnO NPs and fatty acids (PA and FFAs mixture) promoted lysosomal destabilization, which was not correlated with cytotoxicity....... These results indicated that PA can enhance ZnO NPs-induced cytotoxicity probably by the augmentation of mROS production, whereas FFAs mixture did not affect ROS production. Synergistic effects between ZnO NPs and fatty acids may be important when considering NPs toxicity via oral exposure....

  17. Synergistic Extraction of Lactic Acid with Tri-n-Octylamine and Try-n-Butylphosphate

    Matsumoto, Michiaki.; Yuba, Seiji.; Kondo, Kazuo. [Doshisha University, Department of Chemical Engineering and Materials Science (Japan)

    1998-12-01

    Synergistic extraction system of lactic acid is examined to develop to in situ extractive fermentation process. The addition of try-n-butyl phosphate(TBP) to the extraction system of lactic acid(HA) with tri-n-actylamine(TOA) diluted by hexane causes a large synergism. Extraction reaction with the mixed extractant is interpreted quite well based on the formation of mixed complex, HA{center_dot}TOA{center_dot}2TBP. Though the addition of hexane solution containing TBP and TOA to the culture of Lactobacillus rhamnosus results in low lactate production, some lactate is produced. (author)

  18. Synergistic Extraction of Lactic Acid with Tri-n-Octylamine and Try-n-Butylphosphate

    Matsumoto, Michiaki.; Yuba, Seiji.; Kondo, Kazuo. (Doshisha University, Department of Chemical Engineering and Materials Science (Japan))

    1998-12-01

    Synergistic extraction system of lactic acid is examined to develop to in situ extractive fermentation process. The addition of try-n-butyl phosphate(TBP) to the extraction system of lactic acid(HA) with tri-n-actylamine(TOA) diluted by hexane causes a large synergism. Extraction reaction with the mixed extractant is interpreted quite well based on the formation of mixed complex, HA[center dot]TOA[center dot]2TBP. Though the addition of hexane solution containing TBP and TOA to the culture of Lactobacillus rhamnosus results in low lactate production, some lactate is produced. (author)

  19. Synergistic inhibition of cancer cell proliferation with a combination of δ-tocotrienol and ferulic acid

    Eitsuka, Takahiro, E-mail: eitsuka@nupals.ac.jp [Faculty of Applied Life Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata 956-8603 (Japan); Tatewaki, Naoto; Nishida, Hiroshi; Kurata, Tadao [Faculty of Applied Life Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata 956-8603 (Japan); Nakagawa, Kiyotaka; Miyazawa, Teruo [Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555 (Japan)

    2014-10-24

    Highlights: • δ-Tocotrienol (δ-T3) and ferulic acid (FA) synergistically inhibit cancer cell growth. • The combination of δ-T3 and FA induces G1 arrest by up-regulating p21. • The synergy is attributed to an increase in the cellular concentration of δ-T3 by FA. - Abstract: Rice bran consists of many functional compounds and thus much attention has been focused on the health benefits of its components. Here, we investigated the synergistic inhibitory effects of its components, particularly δ-tocotrienol (δ-T3) and ferulic acid (FA), against the proliferation of an array of cancer cells, including DU-145 (prostate cancer), MCF-7 (breast cancer), and PANC-1 (pancreatic cancer) cells. The combination of δ-T3 and FA markedly reduced cell proliferation relative to δ-T3 alone, and FA had no effect when used alone. Although δ-T3 induced G1 arrest by up-regulating p21 in PANC-1 cells, more cells accumulated in G1 phase with the combination of δ-T3 and FA. This synergistic effect was attributed to an increase in the cellular concentration of δ-T3 by FA. Our results suggest that the combination of δ-T3 and FA may present a new strategy for cancer prevention and therapy.

  20. Mechanism of Sporicidal Activity for the Synergistic Combination of Peracetic Acid and Hydrogen Peroxide.

    Leggett, Mark J; Schwarz, J Spencer; Burke, Peter A; McDonnell, Gerald; Denyer, Stephen P; Maillard, Jean-Yves

    2015-12-04

    There is still great interest in controlling bacterial endospores. The use of chemical disinfectants and, notably, oxidizing agents to sterilize medical devices is increasing. With this in mind, hydrogen peroxide (H2O2) and peracetic acid (PAA) have been used in combination, but until now there has been no explanation for the observed increase in sporicidal activity. This study provides information on the mechanism of synergistic interaction of PAA and H2O2 against bacterial spores. We performed investigations of the efficacies of different combinations, including pretreatments with the two oxidizers, against wild-type spores and a range of spore mutants deficient in the spore coat or small acid-soluble spore proteins. The concentrations of the two biocides were also measured in the reaction vessels, enabling the assessment of any shift from H2O2 to PAA formation. This study confirmed the synergistic activity of the combination of H2O2 and PAA. However, we observed that the sporicidal activity of the combination is largely due to PAA and not H2O2. Furthermore, we observed that the synergistic combination was based on H2O2 compromising the spore coat, which was the main spore resistance factor, likely allowing better penetration of PAA and resulting in the increased sporicidal activity.

  1. Synergistic inhibitory effect of ascorbic acid and acetylsalicylic acid on prostaglandin E2 release in primary rat microglia.

    Fiebich, Bernd L; Lieb, Klaus; Kammerer, Norbert; Hüll, Michael

    2003-07-01

    Ascorbic acid (vitamin C) has been suggested to protect cerebral tissue in a variety of pathophysiological situations such as head trauma, ischemia or Alzheimer's disease. Most of these protective actions have been attributed to the antioxidative capacity of ascorbic acid. Besides the presence of elevated levels of oxygen radicals, prostaglandins produced by neurones and microglial cells seem to play an important role in prolonged tissue damage. We investigated whether ascorbic acid alone inhibits prostaglandin E2 (PGE2) synthesis and may augment the inhibitory effect of acetylsalicylic acid on prostaglandin synthesis. Ascorbic acid dose-dependently inhibited PGE2 synthesis in lipopolysaccharide-treated primary rat microglial cells (IC50 = 3.70 micro m). In combination with acetylsalicylic acid (IC50 = 1.85 micro m), ascorbic acid augmented the inhibitory effect of acetylsalicylic acid on PGE2 synthesis (IC50 = 0.25 micro m in combination with 100 micro m ascorbic acid). Ascorbic acid alone or in combination with acetylsalicylic acid did not inhibit cyclooxygenase-2 (COX-2) protein synthesis but inhibited COX-2 enzyme activity. Our results show that ascorbic acid and acetylsalicylic acid act synergistically in inhibiting PGE2 synthesis, which may help to explain a possible protective effect of ascorbic acid in various brain diseases.

  2. Kinetic model of water disinfection using peracetic acid including synergistic effects.

    Flores, Marina J; Brandi, Rodolfo J; Cassano, Alberto E; Labas, Marisol D

    2016-01-01

    The disinfection efficiencies of a commercial mixture of peracetic acid against Escherichia coli were studied in laboratory scale experiments. The joint and separate action of two disinfectant agents, hydrogen peroxide and peracetic acid, were evaluated in order to observe synergistic effects. A kinetic model for each component of the mixture and for the commercial mixture was proposed. Through simple mathematical equations, the model describes different stages of attack by disinfectants during the inactivation process. Based on the experiments and the kinetic parameters obtained, it could be established that the efficiency of hydrogen peroxide was much lower than that of peracetic acid alone. However, the contribution of hydrogen peroxide was very important in the commercial mixture. It should be noted that this improvement occurred only after peracetic acid had initiated the attack on the cell. This synergistic effect was successfully explained by the proposed scheme and was verified by experimental results. Besides providing a clearer mechanistic understanding of water disinfection, such models may improve our ability to design reactors.

  3. Characteristic of synergistic extraction of oxalic acid with system from rare earth metallurgical wastewater

    QIU

    2010-01-01

    Large amount of high concentration acidic wastewater would be produced in the conversion process of chloride rare earth into oxide rare earth.It was a mixed solution of oxalic acid and hydrochloric acid,so the recycling use was very difficult.The method of liquid-liquid extraction was proposed in this paper to achieve wastewater treatment and reclamation.The mechanism of extraction of oxalic acid from the wastewater with the systems of 50% TOB+45% kerosene and 5% 2-ethyl hexanol was investigated.The composition and structure of the extracted species and the establishment of the mathematical model of the oxalic acid extraction were determined by the use of saturation method,equimolar series method.The results showed that extraction of oxalic acid by TOB was a neutral association extraction,oxalic acid existed mainly in a molecular form in the organic phase,and the extraction combination ratio was 2:1.The duality extraction system composed of extractant TOB and TOC had synergistic extraction effect on oxalic acid and chlorhydric acid,and the extraction dislribution ratio was improved greatly.The optimum volume fiaction of TOB was 0.6-0.8.

  4. Synergistically killing activity of aspirin and histone deacetylase inhibitor valproic acid (VPA) on hepatocellular cancer cells

    Li, Xiaofei; Zhu, Yanshuang [Department of Infectious Diseases, Yiwu Central Hospita, 519 Nan men Street, Yiwu, Jinhua, Zhejing 322000 (China); He, Huabin [Department of Orthopedics, Yiwu Central Hospita, 519 Nan men Street, Yiwu, Jinhua, Zhejing 322000 (China); Lou, Lianqing; Ye, Weiwei; Chen, Yongxin [Department of Infectious Diseases, Yiwu Central Hospita, 519 Nan men Street, Yiwu, Jinhua, Zhejing 322000 (China); Wang, Jinghe, E-mail: Xiaofeili2000@163.com [Department of Infectious Diseases, Yiwu Central Hospita, 519 Nan men Street, Yiwu, Jinhua, Zhejing 322000 (China)

    2013-06-28

    Highlights: •Novel combination therapy using aspirin and valproic acid (VPA). •Combination of aspirin and VPA elicits synergistic cytotoxic effects. •Combination of aspirin and VPA significantly reduces the drug dosage required alone. •Combination of aspirin and VPA significantly inhibit tumor growth. •Lower dose of aspirin in combination therapy will minimize side effects of aspirin. -- Abstract: Aspirin and valproic acid (VPA) have been extensively studied for inducing various malignancies growth inhibition respectively, despite their severe side effects. Here, we developed a novel combination by aspirin and VPA on hepatocellular cancer cells (HCCs). The viability of HCC lines were analyzed by MTT assay, apoptotic analysis of HepG2 and SMMC-7721 cell was performed. Real time-PCR and Western blotting were performed to determine the expression of apoptosis related genes and proteins such as Survivin, Bcl-2/Bax, Cyclin D1 and p15. Moreover, orthotopic xenograft tumors were challenged in nude mice to establish murine model, and then therapeutic effect was analyzed after drug combination therapy. The viability of HCC lines’ significantly decreased after drug combination treatment, and cancer cell apoptosis in combination group increasingly induced compared with single drug use. Therapeutic effect was significantly enhanced by combination therapy in tumor volume and tumor weight decrease. From the data shown here, aspirin and VPA combination have a synergistic killing effect on hepatocellular cancers cells proliferation and apoptosis.

  5. The anti-oncogenic influence of ellagic acid on colon cancer cells in leptin-enriched microenvironment.

    Yousef, Amany I; El-Masry, Omar S; Yassin, Eman H

    2016-10-01

    Ellagic acid (EA) has been proposed as a promising candidate for therapeutic use in colon cancer. Investigation of the effectiveness of EA in a leptin-enriched model might have been given a little interest. Here in, we investigated the anti-tumor effect of EA in the presence of leptin to reflect on therapeutic use of EA in obesity-linked colon cancer. Proven effective in leptin-enriched microenvironment, EA inhibited cell proliferation of HCT-116 and CaCo-2 cell lines, modulated cell cycle, translocated Bax to the mitochondrial fraction of cells, activated caspase-8, and reduced PCNA expression. The current study findings cast a beam of light on the potential therapeutic use of EA in obesity-related colon carcinogenesis.

  6. Synergistic effect of Brønsted acid and platinum on purification of automobile exhaust gases.

    Fu, Wei; Li, Xin-Hao; Bao, Hong-Liang; Wang, Kai-Xue; Wei, Xiao; Cai, Yi-Yu; Chen, Jie-Sheng

    2013-01-01

    The catalytic purification of automobile exhaust gases (CO, NOx and hydrocarbons) is one of the most practiced conversion processes used to lower the emissions and to reduce the air pollution. Nevertheless, the good performance of exhaust gas purification catalysts often requires the high consumption of noble metals such as platinum. Here we report that the Brønsted acid sites on the external surface of a microporous silicoaluminophosphate (SAPO) act as a promoter for exhaust gas purification, effectively cutting the loading amount of platinum in the catalyst without sacrifice of performance. It is revealed that in the Pt-loaded SAPO-CHA catalyst, there exists a remarkable synergistic effect between the Brønsted acid sites and the Pt nanoparticles, the former helping to adsorb and activate the hydrocarbon molecules for NO reduction during the catalytic process. The thermal stability of SAPO-CHA also makes the composite catalyst stable and reusable without activity decay.

  7. Synergistic extraction of rare earth by mixtures of 2-ethylhexyl phosphoric acid mono-2-ethylhexyl ester and di-(2-ethylhexyl) phosphoric acid from sulfuric acid medium?

    HUANG Xiaowei; LI Jianning; LONG Zhiqi; ZHANG Yongqi; XUE Xiangxin; ZHU Zhaowu

    2008-01-01

    The extraction of Nd3+ and Sm3+, including the extraction and stripping capability as well as the separation effect of Nd3+ or Sm3+, from a sulfuric acid medium, by mixtures of di-(2-ethylhexyl) phosphoric acid (HDEHP, H2A2(0)) and 2-ethylhexyl phosphoric acid mono-2-ethylhexyl ester (HEH/EHP, H2L2(0)) were studied. The distribution ratios and synergistic coefficients of Nd3+ and Sm3+ in different acidities were also determined. A synergistic extractive effect was found when HDEHP and HEH/EHP were used as mixed extractants for Sm3+ or Nd3+. The chemical compositions of the extracted complex were determined as Nd·(HA2)2·HL2 and Sm·(HA2)2·HL2. The extraction equilibrium constants, enthalpy change, and entropy change of the extraction reaction were also determined.

  8. Synergistic Effects of Linderanolide B Combined with Arbutin, PTU or Kojic Acid on Tyrosinase Inhibition.

    Hseu, You-Cheng; Cheng, Kuo-Chen; Lin, Yi-Chieh; Chen, Chung-Yi; Chou, Hsin-Yu; Ma, Dik-Lung; Leung, Chung-Hang; Wen, Zhi-Hong; Wang, Hui-Min D

    2015-01-01

    Melanin uncontrollable accumulation is a serious social problem to not only women, but also men, and causes pigment over-expression disorders such as freckles, melasma or pigmented acne scars. The synergism is used widely in medication, and the effectiveness makes the drug applications more valuable. Within this experiment, three well-known compounds were chosen: kojic acid, 1-phenyl-2-thiourea (PTU) and arbutin, and they were combined individually with our substance linderanolide B, which is purified from Cinnamomum subavenium. Hence, deciphering the synergistic action of possible whitening agents was the goal of this study. The tyrosinase activity, melanin content, and the combination index (CI) values were observed in B16F10 cells, in addition, the consequences were detected by isobologram analysis. We discovered that certain melanin inhibitors showed synergistic properties when they were combined together to suppress tyrosinase activities. As a result, linderanolide B has a potential synergy on tyrosinase inhibition, and it can be used widely in cosmetic and medication industries.

  9. Synergistic Effects of Nucleating Agents and Plasticizers on the Crystallization Behavior of Poly(lactic acid

    Xuetao Shi

    2015-01-01

    Full Text Available The synergistic effect of nucleating agents and plasticizers on the thermal and mechanical performance of PLA nanocomposites was investigated with the objective of increasing the crystallinity and balancing the stiffness and toughness of PLA mechanical properties. Calcium carbonate, halloysite nanotubes, talc and LAK (sulfates were compared with each other as heterogeneous nucleating agents. Both the DSC isothermal and non-isothermal studies indicated that talc and LAK were the more effective nucleating agents among the selected fillers. Poly(D-lactic acid (PDLA acted also as a nucleating agent due to the formation of the PLA stereocomplex. The half crystallization time was reduced by the addition of talc to about 2 min from 37.5 min of pure PLA by the isothermal crystallization study. The dynamic mechanical thermal study (DMTA indicated that nanofillers acted as both reinforcement fillers and nucleating agents in relation to the higher storage modulus. The plasticized PLA studied by DMTA indicated a decreasing glass transition temperature with the increasing of the PEG content. The addition of nanofiller increased the Young’s modulus. PEG had the plasticization effect of increasing the break deformation, while sharply decreasing the stiffness and strength of PLA. The synergistic effect of nanofillers and plasticizer achieved the balance between stiffness and toughness with well-controlled crystallization.

  10. Cyclosporine A and palmitic acid treatment synergistically induce cytotoxicity in HepG2 cells

    Luo, Yi, E-mail: yi.luo@pfizer.com; Rana, Payal; Will, Yvonne

    2012-06-01

    Immunosuppressant cyclosporine A (CsA) treatment can cause severe side effects. Patients taking immunosuppressant after organ transplantation often display hyperlipidemia and obesity. Elevated levels of free fatty acids have been linked to the etiology of metabolic syndromes, nonalcoholic fatty liver and steatohepatitis. The contribution of free fatty acids to CsA-induced toxicity is not known. In this study we explored the effect of palmitic acid on CsA-induced toxicity in HepG2 cells. CsA by itself at therapeutic exposure levels did not induce detectible cytotoxicity in HepG2 cells. Co-treatment of palmitic acid and CsA resulted in a dose dependent increase in cytotoxicity, suggesting that fatty acid could sensitize cells to CsA-induced cytotoxicity at the therapeutic doses of CsA. A synergized induction of caspase-3/7 activity was also observed, indicating that apoptosis may contribute to the cytotoxicity. We demonstrated that CsA reduced cellular oxygen consumption which was further exacerbated by palmitic acid, implicating that impaired mitochondrial respiration might be an underlying mechanism for the enhanced toxicity. Inhibition of c-Jun N-terminal kinase (JNK) attenuated palmitic acid and CsA induced toxicity, suggesting that JNK activation plays an important role in mediating the enhanced palmitic acid/CsA-induced toxicity. Our data suggest that elevated FFA levels, especially saturated FFA such as palmitic acid, may be predisposing factors for CsA toxicity, and patients with underlying diseases that would elevate free fatty acids may be susceptible to CsA-induced toxicity. Furthermore, hyperlipidemia/obesity resulting from immunosuppressive therapy may aggravate CsA-induced toxicity and worsen the outcome in transplant patients. -- Highlights: ► Palmitic acid and cyclosporine (CsA) synergistically increased cytotoxicity. ► The impairment of mitochondrial functions may contribute to the enhanced toxicity. ► Inhibition of JNK activity attenuated

  11. Design, synthesis, and evaluation of caffeic acid amides as synergists to sensitize fluconazole-resistant Candida albicans to fluconazole.

    Dai, Li; Zang, Chengxu; Tian, Shujuan; Liu, Wei; Tan, Shanlun; Cai, Zhan; Ni, Tingjunhong; An, Maomao; Li, Ran; Gao, Yue; Zhang, Dazhi; Jiang, Yuanying

    2015-01-01

    A series of caffeic acid amides were designed, synthesized, and their synergistic activity with fluconazole against fluconazole-resistant Candida albicans was evaluated in vitro. The title caffeic acid amides 3-30 except 26 exhibited potent activity, and the subsequent SAR study was conducted. Compound 3, 5, 21, and 34c, at a concentration of 1.0 μg/ml, decreased the MIC₈₀ of fluconazole from 128.0 μg/ml to 1.0-0.5 μg/ml against the fluconazole-resistant C. albicans. This result suggests that the caffeic acid amides, as synergists, can sensitize drug-resistant fungi to fluconazole. The SAR study indicated that the dihydroxyl groups and the amido groups linking to phenyl or heterocyclic rings are the important pharmacophores of the caffeic acid amides.

  12. Exercise and a High Fat Diet Synergistically Increase the Pantothenic Acid Requirement in Rats.

    Takahashi, Kei; Fukuwatari, Tsutomu; Shibata, Katsumi

    2015-01-01

    It is thought that both exercise and dietary composition increase the utilization of, and thus the requirement for, certain water-soluble vitamins. However, there have been no studies evaluating the combined impacts of exercise and dietary composition on vitamin utilization. In this experiment, rats were fed a pantothenic acid (PaA)-restricted (0.004 g PaA-Ca/kg diet) diet containing 5% (ordinary amount of dietary fat) or 20% fat (high fat), and were forced to swim until exhaustion every other day for 22 d. PaA status was assessed by urinary excretion, which reflects body stores of water-soluble vitamins. The urinary excretion of PaA in rats fed a 5% fat diet was not affected by swimming (5% fat + non-swimming vs. 5% fat + swim; p>0.05). Excretion of PaA was decreased by the high-fat diet (5% fat + non-swim vs. 20% fat + non-swim; pswim vs. 20% fat + swim; p<0.05). There was a significant interaction between exercise and a high-fat diet. Plasma PaA concentrations showed changes similar to those seen for urinary excretion. The experiment was then repeated using rats fed a PaA-sufficient (0.016 g PaA-Ca/kg diet) diet, and PaA excretion was again synergistically decreased by the combination of exercise and a high-fat diet (p<0.05). These results suggest that the combination of exercise and a high-fat diet synergistically increases the requirement for PaA.

  13. Synergistic permeability enhancing effect of lysophospholipids and fatty acids on lipid membranes

    Davidsen, Jesper; Mouritsen, O.G.; Jørgensen, K.

    2002-01-01

    The permeability-enhancing effects of the two surfactants, 1-paltnitoyl-2-lyso-sn-gycero-3-pllosplloclloline (lysoPPC) and palmitic acid (PA), on lipid membranes that at physiological temperatures are in the gel, fluid, and liquid-ordered phases were determined using the concentration-dependent s......The permeability-enhancing effects of the two surfactants, 1-paltnitoyl-2-lyso-sn-gycero-3-pllosplloclloline (lysoPPC) and palmitic acid (PA), on lipid membranes that at physiological temperatures are in the gel, fluid, and liquid-ordered phases were determined using the concentration......-dependent self-quenching properties of the hydrophilic marker, calcein. Adding lysoPPC to lipid membranes in the gel-phase induced a time-dependent calcein release curve that can be described by the sum of two exponentials, whereas RA induces a considerably more complex release curve. However, when lyso......PPC and PA were added simultaneously in equimolar concentrations, a dramatic synergistic permeability-enhancing effect was observed. In contrast, when both lysoPPC and PA are added to liposomal membranes that are in the fluid or liquid-ordered phases, no effect on the transmembrane permeation of calcein...

  14. Effects of Formulated Fertilizer Synergist on Abscisic Acid Accumulation, Proline Content and Photosynthetic Characteristics of Rice under Drought

    WANG Shao-xian; XIA Shi-tou; PENG Ke-qin; KUANG Feng-chun; CAO Yong; XIAO Lang-tao

    2007-01-01

    To investigate the effects of formulated fertilizer synergist on the drought tolerance in rice, pot experiment was conducted to analyze the photosynthetic characteristics and the accumulation of abscisic acid (ABA) and proline in middle-season rice variety Peiliangyou 93. The synergist could improve the net photosynthetic rate, and coordination between the water loss and the CO2 absorption as well as reduce the harmful effect on photosynthetic process under drought conditions. Under drought, the ABA accumulated massively both in roots and leaves, while the ABA content in roots was far higher than that in leaves. The results indicate that synergist could increase the ABA accumulation, but reduce the proline accumulation in rice plant under drought.

  15. Acute effect of lactic acid on tumor-endothelial cell metabolic coupling in the tumor microenvironment

    Zhu, Guanqun; Wang, Degui; Li, Shenqian; Yang, Xuecheng; Cao, Yanwei; Wang, Yonghua; Niu, Haitao

    2016-01-01

    The present study aimed to systematically analyze alterations in the expression of mitochondrial-associated proteins in human bladder cancer T24 cells co-cultured with tumor-associated human umbilical vein endothelial cells (HUVECs), and to investigate the characteristics of bladder cancer cell energy metabolism. The present study used the following techniques: A co-culture system of T24 cells and HUVECs was constructed using a microfluidic chip as a 3D co-culture system; the concentration of lactic acid in the medium of the cells was determined using an automatic microplate reader; a qualitative analysis of mitochondria-associated protein expression was performed by immunofluorescent staining; and a quantitative analysis of mitochondrial-associated protein expression was conducted using western blotting. The present results revealed that between the control groups (monoculture of T24 cells or HUVECs), the mitochondrial-associated protein fluorescence intensity was increased in the HUVECs compared with the T24 cells. The fluorescence intensity of mitochondrial-associated proteins in the HUVEC control group was increased compared with the HUVECs in the experimental co-culture group. In the T24 cells, the protein fluorescence intensity was increased in the experimental co-culture group compared with the control group. In addition, the expression of mitochondria-associated proteins was increased in HUVECs compared with T24 cells in the control groups, while T24 cells in the experimental co-culture group had an increased expression compared with HUVECs in the experimental group (P<0.05). For T24 cells, the expression of mitochondrial-associated proteins was increased in the experimental group compared with the control group, and contrasting results were observed for the HUVECs (P<0.05). Determination of lactic acid concentration demonstrated that lactic acid concentration was highest in the experimental co-culture group, followed by the T24 control group and the HUVEC

  16. Investigation and Manipulation of the Local Microenvironment of Spherical Nucleic Acid Nanoconjugates

    Briley, William Edward

    For the past several decades, tremendous efforts have been made by many to battle cancer,one of the leading causes of death in the United States and around the world. Unfortunately, the diagnosis and treatment of many genetically-based disorders such as cancer remains very difficult to this day. This is due to the fact that current technologies are unable to adequately differentiate between healthy and diseased cells. In many cases, state-of-the-art diagnostic and therapeutics for genetic disorders rely on targeting downstream effects that may be related to, or influenced by aberrations in gene expression, rather than targeting the up- or down-regulated transcripts themselves. This type of targeting can lead to significant off-target effects, which can translate to false positives for diagnostics, and systemic toxicity for therapeutics. This thesis discusses a nanoparticle-based conjugate which aims to increase the specificity of diagnostics, therapeutics, and biological research platforms by targeting RNA transcripts directly. This nanoconjugate, known as the spherical nucleic acid (SNA) is capable of entering live cells with negligible cytotoxicity and immunogenicity, and binding onto targeted RNA transcripts. Chapter one details the properties and synthesis of the SNA, and discusses how the cell entry/transcript binding capabilities of the SNA can be translated into therapeutic and diagnostic platforms. Chapter two then moves into the therapeutic applications of the SNA, discussing a novel platform known as the Sticky-flare, which is capable of detecting and fluorescently labeling target transcripts for real time analysis. Chapter three then investigates the function of the SNA in a therapeutic application. Specifically, the route that topically applied SNAs take to penetrate through skin is elucidated, and is contextualized by comparing the penetration of SNAs with equivalent linear DNA sequences. Linear nucleic acids are typically not capable of effecting gene

  17. Synergistic interactions between grafted hyaluronic acid and lubricin provide enhanced wear protection and lubrication.

    Das, Saurabh; Banquy, Xavier; Zappone, Bruno; Greene, George W; Jay, Gregory D; Israelachvili, Jacob N

    2013-05-13

    Normal (e.g., adhesion) and lateral (friction) forces were measured between physisorbed and chemically grafted layers of hyaluronic acid (HA), an anionic polyelectrolyte in the presence of lubricin (Lub), a mucinous glycoprotein, on mica surfaces using a surface forces apparatus (SFA). This work demonstrates that high friction coefficients between the surfaces do not necessarily correlate with surface damage and that chemically grafted HA acts synergistically with Lub to provide friction reduction and enhanced wear protection to the surfaces. Surface immobilization of HA by grafting is necessary for such wear protection. Increasing the concentration of Lub enhances the threshold load that a chemically grafted HA surface can be subjected to before the onset of wear. Addition of Lub does not have any beneficial effect if HA is physisorbed to the mica surfaces. Damage occurs at loads less than 1 mN regardless of the amount of Lub, indicating that the molecules in the bulk play little or no role in protecting the surfaces from damage. Lub penetrates into the chemically bound HA to form a visco-elastic gel that reduces the coefficient of friction as well as boosts the strength of the surface against abrasive wear (damage).

  18. Antileishmanial activity of semisynthetic lupane triterpenoids betulin and betulinic acid derivatives: synergistic effects with miltefosine.

    Maria C Sousa

    Full Text Available Leishmaniasis is a neglected tropical disease (NTDs, endemic in 88 countries, affecting more than 12 million people. The treatment consists in pentavalent antimony compounds, amphotericin B, pentamidine and miltefosine, among others. However, these current drugs are limited due to their toxicity, development of biological resistance, length of treatment and high cost. Thus, it is important to continue the search for new effective and less toxic treatments. The anti-Leishmania activity of sixteen semisynthetic lupane triterpenoids derivatives of betulin (BT01 to BT09 and betulinic acid (AB10 to AB16 were evaluated. Drug interactions between the active compounds and one current antileishmanial drug, miltefosine, were assessed using the fixed ratio isobologram method. In addition, effects on the cell cycle, apoptosis/necrosis events, morphology and DNA integrity were studied. The derivatives BT06 (3β-Hydroxy-(20R-lupan-29-oxo-28-yl-1H-imidazole-1-carboxylate and AB13 (28-(1H-imidazole-1-yl-3,28-dioxo-lup-1,20(29-dien-2-yl-1H-imidazole-1-carboxylate were found to be the most active, with IC50 values of 50.8 µM and 25.8 µM, respectively. Interactions between these two compounds and miltefosine were classified as synergistic, with the most effective association being between AB13 and miltefosine, where decreases of IC50 values to 6 µM were observed, similar to the miltefosine activity alone. AB13 induced significant morphological changes, while both derivatives produced anti-proliferative activity through cell cycle arrest at the G0/G1 phase. Neither of these derivatives induced significant apoptosis/necrosis, as indicated by phosphatidylserine externalization and DNA fragmentation assays. In addition, neither of the derivatives induced death in macrophage cell lines. Thus, they do not present any potential risk of toxicity for the host cells. This study has identified the betulin derivative BT06 and the betulinic acid derivative AB13 as promising

  19. Synergistic Effect of Schwann Cells and Retinoic Acid on Differentiation and Synaptogenesis of Hippocampal Neural Stem Cells in vitro

    XUE-BAO ZHANG; YUAN-SHAN ZENG; WEI ZHANG; YA-YUN CHEN; WEI ZHANG; YI XIONG; SUI-JUN CHEN

    2006-01-01

    Objective To investigate the synergistic effect of Schwann cells (YCs) and retinoic acid (RA) on differentiation and synaptogenesis of neural stem cells (NSCs) derived from hippocampus of neonatal rats. Methods The classical method for 2×2 factorial analysis experiment was used to assess synergistic action of SCs and RA. NSCs were treated with RA, SCs,and SCs + RA in DMEM/F12 with 0.5% fetal bovine serum for six days, respectively. Double immunofluorescent staining was used to detect the differentiation of NSCs including nestin, glial fibrillary acidic protein (GFAP) and Map2. The expression of PSD95 was used to demonstrate synaptogenesis. Results After NSCs were treated with RA or SCs, the expression of nestin and GFAP was significantly decreased while the expression of Map2 and PSD95 was significantly increased in comparison with the control. Factorial ANOVA showed that interactions between SCs and RA could induce the expression of Map2 and PSD95. Conclusion SCs and RA could promote synergistically the neuronal differentiation and synaptogenesis of hippocampal neural stem cells in vitro while they decreased the astrocytes and nestin positive NSCs.

  20. Synergistic Action between Jasmonic Acid and Nitric Oxide in Inducing Matrine Accumulation of Sophora flavescens Suspension Cells

    2008-01-01

    Secondary metabolites not only play important ecological roles in plants but also are important pharmaceutical and source compounds for derivative synthesis. Production of plant secondary metabolites is believed to be controlled by the endogenous signal network of plants. However, the molecular basis is still largely unknown. Here we show that matrine production of Sophora flavescens Ait. cells treated with low levels of jasmonic acid (JA) and nitric oxide (NO) is significantly increased although treatment with low concentrations of JA or NO alone has no effects on matrine production, showing that JA and NO may act synergistically in triggering matrine production. Moreover, treatment with NO triggers lipoxygenase(LOX) activity and enhances JA levels of the cells, showing that NO may activate the endogenous JA biosynthesis of S.flavescens cells. External application of JA induces nitric oxide synthase-like activities and stimulates NO generation of S. flavescens cells, which suggests that JA may trigger NO generation of the cells. Thus, the results reveal a mutually amplifying reaction between JA and NO in S. flavescens cells. Furthermore, JA and NO inhibitors suppress not only the mutually amplifying reaction between JA and NO but also the synergistic effects of NO and JA on matrine production.Therefore, the data demonstrate that the synergistic action of JA and NO in inducing matrine production might be due to the mutually amplifying reaction between JA and NO in the cells.

  1. Antibacterial study of the medium chain fatty acids and their 1-monoglycerides: individual effects and synergistic relationships.

    Batovska, Daniela I; Todorova, Iva T; Tsvetkova, Iva V; Najdenski, Hristo M

    2009-01-01

    The antibacterial activity of the medium chain fatty acids and their 1-monoglycerides was evaluated towards several Gram-positive strains belonging to the genera Staphylococcus, Corynebacterium, Bacillus, Listeria and Streptococcus. The 1-monoglycerides were more active than the fatty acids with monolaurin being the most active compound. Interesting effects were observed when the streptococcal strain Streptococcus pyogenes was used as a test microorganism. First, blocking of the hydroxyl groups of the glycerol moiety of monolaurin led to a compound with remarkable antibacterial activity (MIC, 3.9 microg/ml). Secondly, synergistic relationships were observed between monolaurin and monocaprin as well as between monolaurin and the poorly active lauric acid when their two component mixtures were examined. The mixtures in which one of the components was 2-fold more predominant than the other one were much more active than the pure components taken individually. Moreover, the presence of the components in ratio 1:1 was disadvantageous. Synergistic relationships were also found between monolaurin and monomyristin towards Staphylococcus aureus 209 when monomyristin was in the same quantity as monolaurin or in shortage.

  2. The Hypoglycemic and Synergistic Effect of Loganin, Morroniside, and Ursolic Acid Isolated from the Fruits of Cornus officinalis.

    He, Kai; Song, Shanghua; Zou, Zongyao; Feng, Min; Wang, Dezhen; Wang, Yanzhi; Li, Xuegang; Ye, Xiaoli

    2016-02-01

    Hypoglycemic activity-guided separation of ethanol extracts from the fruits of Cornus officinalis Sieb. et Zucc (CO) led to the isolation of loganin, morroniside, and ursolic acid. The antidiabetic capacity of CO extracts and related compounds was further investigated in diabetes mellitus mice. The results suggested that both CO extracts and pure compounds could ameliorate diabetes-associated damages and complications. Oral administration of loganin and morroniside decreased fasting blood glucose levels in diabetes mellitus mice. Ursolic acid exhibited the highest reactive oxygen species scavenging activity and α-glucosidase inhibitory activity. Notably, we noticed an interesting synergistic effect between loganin and ursolic acid. Given these favorable hypoglycemic properties, C. officinalis, a food and medicinal plant in China, may be used as a valuable food supplement for the treatment of diabetes mellitus.

  3. Phytic Acid and Sodium Chloride Show Marked Synergistic Bactericidal Effects against Nonadapted and Acid-Adapted Escherichia coli O157:H7 Strains.

    Kim, Nam Hee; Rhee, Min Suk

    2015-12-04

    The synergistic antimicrobial effects of phytic acid (PA), a natural extract from rice bran, plus sodium chloride against Escherichia coli O157:H7 were examined. Exposure to NaCl alone at concentrations up to 36% (wt/wt) for 5 min did not reduce bacterial populations. The bactericidal effects of PA alone were much greater than those of other organic acids (acetic, citric, lactic, and malic acids) under the same experimental conditions (P acid-adapted cells, reducing their numbers to unrecoverable levels (>7-log CFU/ml reduction). Flow cytometry confirmed that PA disrupted the cell membrane to a greater extent than did other organic acids, although the cells remained viable. The combination of PA and NaCl induced complete disintegration of the cell membrane. By comparison, none of the other organic acids acted synergistically with NaCl, and neither did NaCl-HCl solutions at the same pH values as the test solutions of PA plus NaCl. These results suggest that PA has great potential as an effective bacterial membrane-permeabilizing agent, and we show that the combination is a promising alternative to conventional chemical disinfectants. These findings provide new insight into the utility of natural compounds as novel antimicrobial agents and increase our understanding of the mechanisms underlying the antibacterial activity of PA.

  4. Synergistic antitumor efficacy of antibacterial helvolic acid from Cordyceps taii and cyclophosphamide in a tumor mouse model.

    Xiao, Jian-Hui; Zhang, Yao; Liang, Gui-You; Liu, Ru-Ming; Li, Xiao-Gang; Zhang, Ling-Tao; Chen, Dai-Xiong; Zhong, Jian-Jiang

    2017-01-01

    The antibacterial agent helvolic acid, which was isolated from the active antitumor fraction of Cordyceps taii, showed potent cytotoxicity against different human cancer cells. In the present study, the in vivo antitumor effect of helvolic acid was investigated in murine sarcoma S180 tumor-bearing mice. Doses of 10 and 20 mg/kg/day helvolic acid did not exert significant antitumor activity. Interestingly, co-administration of 10 mg/kg/day helvolic acid and 20 mg/kg/day cyclophosphamide (CTX) - a well-known chemotherapy drug - showed promising antitumor activity with a growth inhibitory rate of 70.90%, which was much higher than that of CTX alone (19.5%). Furthermore, the combination markedly prolonged the survival of tumor-bearing mice. In addition, helvolic acid enhanced the immune organ index. The protein expression levels of β-catenin, cyclin D1, and proliferating cell nuclear antigen were significantly suppressed in mice treated with 20 mg/kg/day helvolic acid and in those receiving combination therapy. Taken together, these results indicated that helvolic acid in combination with CTX showed potent in vivo synergistic antitumor efficacy, and its mechanism of action may involve the Wnt/ β-catenin signaling pathway.

  5. Lichenysin-geminal amino acid-based surfactants: Synergistic action of an unconventional antimicrobial mixture.

    Coronel-León, Jonathan; Pinazo, Aurora; Pérez, Lourdes; Espuny, Mª José; Marqués, Ana Mª; Manresa, Angeles

    2017-01-01

    Recently it has been demonstrated that catanionic mixtures of oppositely charged surfactants have improved physicochemical-biological properties compared to the individual components. Isotherms of mixtures of an anionic biosurfactant (lichenysin) and a cationic aminoacid surfactant (C3(LA)2) indicate a strong interaction suggesting the formation of a new "pseudo-surfactant". The antimicrobial properties of the mixture lichenysin and C3(LA)2 M80:20, indicate a synergistic effect of the components. The mechanism of action on the bacterial envelope was assessed by flow cytometry and Transmission Electron Microscopy.

  6. Biomedical-grade, high mannuronic acid content (BioMVM) alginate enhances the proteoglycan production of primary human meniscal fibrochondrocytes in a 3-D microenvironment

    Rey-Rico, Ana; Klich, Angelique; Cucchiarini, Magali; Madry, Henning

    2016-01-01

    Alginates are important hydrogels for meniscus tissue engineering as they support the meniscal fibrochondrocyte phenotype and proteoglycan production, the extracellular matrix (ECM) component chiefly responsible for its viscoelastic properties. Here, we systematically evaluated four biomedical- and two nonbiomedical-grade alginates for their capacity to provide the best three-dimensional (3-D) microenvironment and to support proteoglycan synthesis of encapsulated human meniscal fibrochondrocytes in vitro. Biomedical-grade, high mannuronic acid alginate spheres (BioLVM, BioMVM) were the most uniform in size, indicating an effect of the purity of alginate on the shape of the spheres. Interestingly, the purity of alginates did not affect cell viability. Of note, only fibrochondrocytes encapsulated in BioMVM alginate produced and retained significant amounts of proteoglycans. Following transplantation in an explant culture model, the alginate spheres containing fibrochondrocytes remained in close proximity with the meniscal tissue adjacent to the defect. The results reveal a promising role of BioMVM alginate to enhance the proteoglycan production of primary human meniscal fibrochondrocytes in a 3-D hydrogel microenvironment. These findings have significant implications for cell-based translational studies aiming at restoring lost meniscal tissue in regions containing high amounts of proteoglycans. PMID:27302206

  7. Synergistic Accumulative Effect of Salicylic Acid and Dibutyl Phthalate on Paclitaxel Production in Corylus avellana Cell Culture

    Rezaei, A.

    2013-02-01

    Full Text Available Suspension cell cultures of Corylus avellana were challenged with salicylic acid and its combined use with dibutyl phthalate solvent. Salicylic acid with concentrations of 12.5, 25 and 50 mg L–1 and 10% (v/v dibutyl phthalate were used and added on day 8 and 10 of subculture, respectively. The results showed that growth, viability and protein content of cells were decreased by the treatments, compared to control. In all treatments, hydrogen peroxide content and lipid peroxidation rate of cells increased, compared to those of the control cells. Activity of phenylalanine ammonia-lyase increased by salicylic acid and, dibutyl phthalate exaggerated effect of salicylic acid. While flavonoids content decreased by the treatments, paclitaxel content increased significantly. The extracellular paclitaxel was more affected, compared to cell-associated paclitaxel and all treatments increased paclitaxel release and specific yield compared to that of the control. The most production of paclitaxel and specific yield of it were observed under effect of combined use of salicylic acid (50 mg L–1 and dibutyl phthalate, suggesting a synergistic accumulative effect.

  8. Sequential treatment with ursolic acid chlorophenyl triazole followed by 5-fluorouracil shows synergistic activity in small cell lung cancer cells

    Rui-Xia Zhu

    2015-03-01

    Full Text Available Combination therapy has prolonged the survival of patients with small cell lung cancer (SCLC, an aggressive neoplasm characterized by a high rate of metastasis. In the present study the effect of sequential treatment of ursolic acid chlorophenyl triazole (UACT followed by 5-fluorouracil (5-FU on human small cell lung cancer cells was investigated. The results revealed a synergistic effect of the sequential treatment with UACT and 5-FUcombination on cytotoxic activities, NF-kB protein activation, repression of TNF-induced NF-kB-dependent reporter gene expression, and TNF-induced COX-2, MMP-9 and Cyclin D1 activation in H209 cells. The synergism in apoptotic cell death was observed in H209, H69, 87-5,and Lu135 cells. The synergistic effect of UACT and 5-FU was observed at a concentration of 50 nM of UACT and 20 µM of 5-FU. These results indicate that UACT and 5-FU combination can be a promising chemotherapeutic regimen in the treatment of SCLC.

  9. Fatty acid methyl esters (FAMEs) from castor oil: Production process assessment and synergistic effects in its properties

    Canoira, Laureano; Garcia Galean, Juan; Alcantara, Ramon [Department of Chemical Engineering and Fuels, ETS Ingenieros de Minas, Universidad Politecnica de Madrid, Rios Rosas 21, 28003 Madrid (Spain); Lapuerta, Magin; Garcia-Contreras, Reyes [Maquinas y Motores Termicos, ETS Ingenieros Industriales, Universidad de Castilla La Mancha, Avda. Camilo Jose Cela s/n, 13071 Ciudad Real (Spain)

    2010-01-15

    Fatty acid methyl esters (FAMEs) from castor oil have been synthesized by methanolysis catalyzed by sodium methoxide and the optimal transesterification conditions have been found. However, some properties of the castor FAME render it unsuitable in pure state for its direct use as fuel in internal combustion engines. Thus, blends with reference diesel have been prepared and their properties have been evaluated. Among these properties, the oxidative stability of the blends shows a negative anti-synergistic effect, that is, all the blends have an induction period lower than the pure reference diesel and the pure castor FAME. On the contrary, the lubricity shows a positive synergistic effect, the wear scar of the blends being always lower than those of the pure components. The cold-filter plugging point of the blends shows also a singular effect, since the filterability remains identical to that of the reference diesel until around 50 vol% of castor FAME has been blended with it. The blends of castor FAME and reference diesel until approximately 40 vol% of castor FAME meet most of the specifications of the EN 590 standard. (author)

  10. Synergistic efficacy of salicylic acid with a penetration enhancer on human skin monitored by OCT and diffuse reflectance spectroscopy

    Zhao, Qingliang; Dai, Cuixia; Fan, Shanhui; Lv, Jing; Nie, Liming

    2016-10-01

    Salicylic acid (SA) has been frequently used as a facial chemical peeling agent (FCPA) in various cosmetics for facial rejuvenation and dermatological treatments in the clinic. However, there is a tradeoff between therapeutic effectiveness and possible adverse effects caused by this agent for cosmetologists. To optimize the cosmetic efficacy with minimal concentration, we proposed a chemical permeation enhancer (CPE) azone to synergistically work with SA on human skin in vivo. The optical properties of human skin after being treated with SA alone and SA combined with azone (SA@azone) were successively investigated by diffuse reflectance spectroscopy (DRS) and optical coherence tomography (OCT). Our results revealed that as the SA concentration increased, the light reflectance decreased and the absorption increased. We also found that SA@azone exhibited a synergistic effect on enhancing light penetration and OCT imaging depth. We demonstrated that the combination of DRS and OCT techniques could be used as a noninvasive, rapid and accurate measurement method to monitor the subtle changes of skin tissue after treatment with FCPA and CPE. The approach will greatly benefit the development of clinical cosmetic surgery, dermatosis diagnosis and therapeutic effect inspection in related biomedical studies.

  11. Synergistic efficacy of salicylic acid with a penetration enhancer on human skin monitored by OCT and diffuse reflectance spectroscopy

    Zhao, Qingliang; Dai, Cuixia; Fan, Shanhui; Lv, Jing; Nie, Liming

    2016-01-01

    Salicylic acid (SA) has been frequently used as a facial chemical peeling agent (FCPA) in various cosmetics for facial rejuvenation and dermatological treatments in the clinic. However, there is a tradeoff between therapeutic effectiveness and possible adverse effects caused by this agent for cosmetologists. To optimize the cosmetic efficacy with minimal concentration, we proposed a chemical permeation enhancer (CPE) azone to synergistically work with SA on human skin in vivo. The optical properties of human skin after being treated with SA alone and SA combined with azone (SA@azone) were successively investigated by diffuse reflectance spectroscopy (DRS) and optical coherence tomography (OCT). Our results revealed that as the SA concentration increased, the light reflectance decreased and the absorption increased. We also found that SA@azone exhibited a synergistic effect on enhancing light penetration and OCT imaging depth. We demonstrated that the combination of DRS and OCT techniques could be used as a noninvasive, rapid and accurate measurement method to monitor the subtle changes of skin tissue after treatment with FCPA and CPE. The approach will greatly benefit the development of clinical cosmetic surgery, dermatosis diagnosis and therapeutic effect inspection in related biomedical studies. PMID:27721398

  12. Kinetic analysis of acid orange 7 degradation by pulsed discharge plasma combined with activated carbon and the synergistic mechanism exploration.

    Guo, He; Wang, Huijuan; Wu, Qiangshun; Zhou, Guangshun; Yi, Chengwu

    2016-09-01

    The synergistic technique of pulsed discharge plasma (PDP) and activated carbon (AC) was built to investigate the kinetics of acid orange 7 (AO7) degradation under different conditions of AC addition, electrode gap, initial pH value of solution, gas variety and gas flow rate. Emission spectra of OH and O, UV-vis absorption spectra of the AO7 solution and TOC removal were measured to illustrate the synergistic mechanism of the PDP and the AC. The obtained results indicated that the kinetic constant of AO7 degradation increased from 0.00947 min(-1) to 0.01419 min(-1) when 4 g AC was added into the PDP system; AO7 degradation was higher in the case of alkaline solution when oxygen was used as the flow gas in the PDP/AC system, 2 L/min oxygen flow was more favorable for the degradation. Results of the relative emission intensities of OH and O indicated the catalytic effect of the AC on the active species formation as well as the important role of the two radicals for the AO7 degradation. There was no new peaks appeared by the UV-vis analysis of the AO7 solution after 60 min treatment. The highest TOC removal in the PDP/AC system was 30.3%, which was achieved under the condition of 4 L/min air flow rate and 3 initial pH value.

  13. Synergistic extraction of U(VI) and Th(IV) from nitric acid media with HBMPPT and TBP in toluene

    YUShaoning; BAOBorong

    1999-01-01

    The sysnergistic extraction of U(VI)and Th(IV) from nitric acid solution by HBMPPT(4-benzoyl-2,4-dihydro-5-methyl-2-phenyl-3H-pyrazol-3-thione) and TBP( tributylphosphate)in toluene was studied.The extraction ability of HBMPPT for U(VI) and Th(IV) was not so high.but when a little TBP was added in,the ability to extract U(VI) and Th(IV) was improved.The extracted complexes may be presented as UO2NO3.BMPPT.TBP and UO2(BMPPT)2.TBP for U(VI).and Th(NO3)3.BMPPT.TBP and Th(NO3)2(BMPPT)2.TBP for Th(IV),respectively,in the synergistic extraction system.The synergistic effect of HBMPPT and TBP makes the separation cofeeicient of U(VI)/Th (IV) or U(VI)/Eu(Ⅲ) reach a high value.

  14. Ascorbic acid and a cytostatic inhibitor of glycolysis synergistically induce apoptosis in non-small cell lung cancer cells.

    Saleha B Vuyyuri

    Full Text Available Ascorbic acid (AA exhibits significant anticancer activity at pharmacologic doses achievable by parenteral administration that have minimal effects on normal cells. Thus, AA has potential uses as a chemotherapeutic agent alone or in combination with other therapeutics that specifically target cancer-cell metabolism. We compared the effects of AA and combinations of AA with the glycolysis inhibitor 3-(3-pyridinyl-1-(4-pyridinyl-2-propen-1-one (3-PO on the viability of three non-small cell lung cancer (NSCLC cell lines to the effects on an immortalized lung epithelial cell line. AA concentrations of 0.5 to 5 mM caused a complete loss of viability in all NSCLC lines compared to a <10% loss of viability in the lung epithelial cell line. Combinations of AA and 3-PO synergistically enhanced cell death in all NSCLC cell lines at concentrations well below the IC50 concentrations for each compound alone. A synergistic interaction was not observed in combination treatments of lung epithelial cells and combination treatments that caused a complete loss of viability in NSCLC cells had modest effects on normal lung cell viability and reactive oxygen species (ROS levels. Combination treatments induced dramatically higher ROS levels compared to treatment with AA and 3-PO alone in NSCLC cells and combination-induced cell death was inhibited by addition of catalase to the medium. Analyses of DNA fragmentation, poly (ADP-ribose polymerase cleavage, annexin V-binding, and caspase activity demonstrated that AA-induced cell death is caused via the activation of apoptosis and that the combination treatments caused a synergistic induction of apoptosis. These results demonstrate the effectiveness of AA against NSCLC cells and that combinations of AA with 3-PO synergistically induce apoptosis via a ROS-dependent mechanism. These results support further evaluation of pharmacologic concentrations of AA as an adjuvant treatment for NSCLC and that combination of AA with

  15. Hybrid poly(lactic acid)/nanocellulose/nanoclay composites with synergistically enhanced barrier properties and improved thermomechanical resistance

    Trifol Guzman, Jon; Plackett, David; Sillard, Cecile

    2016-01-01

    Poly(lactic acid) (PLA)‐based hybrid nanocomposites (PLA, nanoclay and nanocellulose) were prepared by reinforcing neat PLA with commercially available nanoclay (Cloisite C30B) and nanocellulose, in the form of either partially acetylated cellulose nanofibres (CNFs) or nanocrystalline cellulose....... Composites with 1 or 5 wt% of nanocellulose, in combination with 1, 3 and 5 wt% of nanoclay, were prepared, and their barrier properties were investigated. It was found that the combination of clay and nanocellulose clearly resulted in synergistic behaviour in terms of the oxygen transmission rate (OTR......) through a reduction of up to 90% in OTR and a further reduction in the water vapour transmission rate of up to 76%. In addition, the nanocomposite films showed improved thermomechanical resistance and improved crystallisation kinetics while maintaining high film transparency. This makes the hybrid PLA...

  16. Corrosion inhibition and adsorption behavior of methionine on mild steel in sulfuric acid and synergistic effect of iodide ion.

    Oguzie, E E; Li, Y; Wang, F H

    2007-06-01

    The corrosion inhibition of mild steel in sulfuric acid by methionine (MTI) was investigated using electrochemical techniques. The effect of KI additives on corrosion inhibition efficiency was also studied. The results reveal that MTI inhibited the corrosion reaction by adsorption onto the metal/solution interface. Inhibition efficiency increased with MTI concentration and synergistically increased in the presence of KI, with an optimum [KI]/[MTI] ratio of 5/5, due to stabilization of adsorbed MTI cations as revealed by AFM surface morphological images. Potentiodynamic polarization data suggest that the compound functioned via a mixed-inhibition mechanism. This observation was further corroborated by the fit of the experimental adsorption data to the Temkin and Langmuir isotherms. The inhibition mechanism has been discussed vis-à-vis the presence of both nitrogen and sulfur atoms in the MTI molecule.

  17. Thermoresponsive Photonic Crystal: Synergistic Effect of Poly(N-isopropylacrylamide)-co-acrylic Acid and Morpho Butterfly Wing.

    Xu, Dongdong; Yu, Huanan; Xu, Qun; Xu, Guiheng; Wang, Kaixi

    2015-04-29

    In this work, we report a simple method to fabricate smart polymers engineered with hierarchical photonic structures of Morpho butterfly wing to present high performance that are capable of color tunability over temperature. The materials were assembled by combining functional temperature responsivity of poly(N-isopropylacrylamide)-co-acrylic acid (PNIPAm-co-AAc) with the biological photonic crystal (PC) structure of Morpho butterfly wing, and then the synergistic effect between the functional polymer and the natural PC structure was created. Their cooperativity is instantiated in the phase transition of PNIPAm-co-AAc (varying with the change of temperature) that can alter the nanostructure of PCs, which further leads to the reversible spectrum response property of the modified hierarchical photonic structures. The cost-effective biomimetic technique presented here highlights the bright prospect of fabrication of more stimuli-responsive functional materials via coassembling smart polymers and biohierarchical structures, and it will be an important platform for the development of nanosmart biomaterials.

  18. Synergistic effect of tartaric acid with 2,6-diaminopyridine on the corrosion inhibition of mild steel in 0.5 M HCl

    Qiang, Yujie; Guo, Lei; Zhang, Shengtao; Li, Wenpo; Yu, Shanshan; Tan, Jianhong

    2016-09-01

    The inhibitive ability of 2,6-diaminopyridine, tartaric acid and their synergistic effect towards mild steel corrosion in 0.5 M HCl solution was evaluated at various concentrations using potentiodynamic polarization measurements, electrochemical impedance spectroscopy (EIS), and weight loss experiments. Corresponding surfaces of mild steel were examined by atomic force microscope (AFM), field emission scanning electron microscope (FE-SEM), energy dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS) analysis. The experimental results are in good agreement and reveal a favorable synergistic effect of 2,6-diaminopyridine with tartaric acid, which could protect mild steel from corrosion effectively. Besides, quantum chemical calculations and Monte Carlo simulation were used to clarify the inhibition mechanism of the synergistic effect.

  19. Mechanism of synergistic inhibition of Listeria monocytogenes growth by lactic acid, monolaurin, and nisin.

    Tokarskyy, Oleksandr; Marshall, Douglas L

    2008-12-01

    The combined lactic acid, monolaurin, and nisin effects on time-to-detection (optical density at 600 nm) extension were greater (P Monolaurin exposure caused C12:0 cell membrane incorporation. Lactic acid caused increased monolaurin C12:0 membrane incorporation, while nisin had no influence. We postulate that lactic acid-enhanced monolaurin C12:0 incorporation into the cell membrane increased membrane fluidity resulting in increased nisin activity.

  20. Mechanism of Synergistic Inhibition of Listeria monocytogenes Growth by Lactic Acid, Monolaurin, and Nisin▿

    Tokarskyy, Oleksandr; Marshall, Douglas L.

    2008-01-01

    The combined lactic acid, monolaurin, and nisin effects on time-to-detection (optical density at 600 nm) extension were greater (P Monolaurin exposure caused C12:0 cell membrane incorporation. Lactic acid caused increased monolaurin C12:0 membrane incorporation, while nisin had no influence. We postulate that lactic acid-enhanced monolaurin C12:0 incorporation into the cell membrane increased membrane fluidity resulting in increased nisin activity. PMID:18820062

  1. Bile Acids Function Synergistically To Repress Invasion Gene Expression in Salmonella by Destabilizing the Invasion Regulator HilD.

    Eade, Colleen R; Hung, Chien-Che; Bullard, Brian; Gonzalez-Escobedo, Geoffrey; Gunn, John S; Altier, Craig

    2016-08-01

    Salmonella spp. are carried by and can acutely infect agricultural animals and humans. After ingestion, salmonellae traverse the upper digestive tract and initiate tissue invasion of the distal ileum, a virulence process carried out by the type III secretion system encoded within Salmonella pathogenicity island 1 (SPI-1). Salmonellae coordinate SPI-1 expression with anatomical location via environmental cues, one of which is bile, a complex digestive fluid that causes potent repression of SPI-1 genes. The individual components of bile responsible for SPI-1 repression have not been previously characterized, nor have the bacterial signaling processes that modulate their effects been determined. Here, we characterize the mechanism by which bile represses SPI-1 expression. Individual bile acids exhibit repressive activity on SPI-1-regulated genes that requires neither passive diffusion nor OmpF-mediated entry. By using genetic methods, the effects of bile and bile acids were shown to require the invasion gene transcriptional activator hilD and to function independently of known upstream signaling pathways. Protein analysis techniques showed that SPI-1 repression by bile acids is mediated by posttranslational destabilization of HilD. Finally, we found that bile acids function synergistically to achieve the overall repressive activity of bile. These studies demonstrate a common mechanism by which diverse environmental cues (e.g., certain short-chain fatty acids and bile acids) inhibit SPI-1 expression. These data provide information relevant to Salmonella pathogenesis during acute infection in the intestine and during chronic infection of the gallbladder and inform the basis for development of therapeutics to inhibit invasion as a means of repressing Salmonella pathogenicity.

  2. Poly(ethylene glycol) (PEG)-lactic acid nanocarrier-based degradable hydrogels for restoring the vaginal microenvironment.

    Sundara Rajan, Sujata; Turovskiy, Yevgeniy; Singh, Yashveer; Chikindas, Michael L; Sinko, Patrick J

    2014-11-28

    Women with bacterial vaginosis (BV) display reduced vaginal acidity, which make them susceptible to associated infections such as HIV. In the current study, poly(ethylene glycol) (PEG) nanocarrier-based degradable hydrogels were developed for the controlled release of lactic acid in the vagina of BV-infected women. PEG-lactic acid (PEG-LA) nanocarriers were prepared by covalently attaching lactic acid to 8-arm PEG-SH via cleavable thioester bonds. PEG-LA nanocarriers with 4 copies of lactic acid per molecule provided controlled release of lactic acid with a maximum release of 23% and 47% bound lactic acid in phosphate buffered saline (PBS, pH7.4) and acetate buffer (AB, pH4.3), respectively. The PEG nanocarrier-based hydrogels were formed by cross-linking the PEG-LA nanocarriers with 4-arm PEG-NHS via degradable thioester bonds. The nanocarrier-based hydrogels formed within 20 min under ambient conditions and exhibited an elastic modulus that was 100-fold higher than the viscous modulus. The nanocarrier-based degradable hydrogels provided controlled release of lactic acid for several hours; however, a maximum release of only 10%-14% bound lactic acid was observed possibly due to steric hindrance of the polymer chains in the cross-linked hydrogel. In contrast, hydrogels with passively entrapped lactic acid showed burst release with complete release within 30 min. Lactic acid showed antimicrobial activity against the primary BV pathogen Gardnerella vaginalis with a minimum inhibitory concentration (MIC) of 3.6 mg/ml. In addition, the hydrogels with passively entrapped lactic acid showed retained antimicrobial activity with complete inhibition G. vaginalis growth within 48 h. The results of the current study collectively demonstrate the potential of PEG nanocarrier-based hydrogels for vaginal administration of lactic acid for preventing and treating BV.

  3. Composition dependence of the synergistic effect of nucleating agent and plasticizer in poly(lactic acid: A Mixture Design study

    M. K. Fehri

    2016-04-01

    Full Text Available Blends consisting of commercial poly(lactic acid (PLA, poly(lactic acid oligomer (OLA8 as plasticizer and a sulfonic salt of a phthalic ester and poly(D-lactic acid as nucleating agents were prepared by melt extrusion, following a Mixture Design approach, in order to systematically study mechanical and thermal properties as a function of composition. The full investigation was carried out by differential scanning calorimetry (DSC, dynamic mechanical thermal analysis (DMTA and tensile tests. The crystallization half-time was also studied at 105 °C as a function of the blends composition. A range of compositions in which the plasticizer and the nucleation agent minimized the crystallization half-time in a synergistic way was clearly identified thanks to the application of the Mixture Design approach. The results allowed also the identification of a composition range to maximize the crystallinity developed during the rapid cooling below glass transition temperature in injection moulding, thus allowing an easier processing of PLA based materials. Moreover the mechanical properties were discussed by correlating them to the chemical structural features and thermal behaviour of blends.

  4. Synergistic effect of iontophoresis and a series of fatty acids on LHRH permeability through porcine skin.

    Bhatia, K S; Singh, J

    1998-04-01

    The effect of chemical penetration enhancers (e.g., fatty acids) in combination with iontophoresis was examined on the in vitro permeability of luteinizing hormone releasing hormone (LHRH) through porcine skin. Porcine epidermis was pretreated with either ethanol (EtOH) or 10% fatty acid/EtOH. The permeability coefficient of LHRH was significantly (p Iontophoresis further enhanced the permeability of LHRH (p permeability. Among saturated fatty acids tested, 10% palmitic acid/iontophoresis showed the highest permeability coefficient [(59.52 +/- 2.40) x 10(-4) cm/h], which was approximately 16-fold higher than that of the control [(3.57 +/- 0.41) x 10(-4) cm/h]. Unsaturated cis-octadecenoic acids were more effective penetration enhancers when compared with octadecanoic acid. Among cis-octadecenoic acids in combination with EtOH, the greater iontophoretic permeability coefficient [(59.18 +/- 12.43) x 10(-4) cm/h] was obtained through linolenic acid treated epidermis, which was significantly greater (p iontophoresis treated epidermis was significantly (p < 0.05) reduced than the prerecovery value but could not completely recover to the baseline flux (i.e., flux of LHRH through untreated epidermis).

  5. Cyclosporine A and palmitic acid treatment synergistically induce cytotoxicity in HepG2 cells.

    Luo, Yi; Rana, Payal; Will, Yvonne

    2012-06-01

    Immunosuppressant cyclosporine A (CsA) treatment can cause severe side effects. Patients taking immunosuppressant after organ transplantation often display hyperlipidemia and obesity. Elevated levels of free fatty acids have been linked to the etiology of metabolic syndromes, nonalcoholic fatty liver and steatohepatitis. The contribution of free fatty acids to CsA-induced toxicity is not known. In this study we explored the effect of palmitic acid on CsA-induced toxicity in HepG2 cells. CsA by itself at therapeutic exposure levels did not induce detectible cytotoxicity in HepG2 cells. Co-treatment of palmitic acid and CsA resulted in a dose dependent increase in cytotoxicity, suggesting that fatty acid could sensitize cells to CsA-induced cytotoxicity at the therapeutic doses of CsA. A synergized induction of caspase-3/7 activity was also observed, indicating that apoptosis may contribute to the cytotoxicity. We demonstrated that CsA reduced cellular oxygen consumption which was further exacerbated by palmitic acid, implicating that impaired mitochondrial respiration might be an underlying mechanism for the enhanced toxicity. Inhibition of c-Jun N-terminal kinase (JNK) attenuated palmitic acid and CsA induced toxicity, suggesting that JNK activation plays an important role in mediating the enhanced palmitic acid/CsA-induced toxicity. Our data suggest that elevated FFA levels, especially saturated FFA such as palmitic acid, may be predisposing factors for CsA toxicity, and patients with underlying diseases that would elevate free fatty acids may be susceptible to CsA-induced toxicity. Furthermore, hyperlipidemia/obesity resulting from immunosuppressive therapy may aggravate CsA-induced toxicity and worsen the outcome in transplant patients.

  6. Synergistic protective effects of ceftriaxone and ascorbic acid against subacute deltamethrin-induced nephrotoxicity in rats.

    Abdel-Daim, Mohamed M; El-Ghoneimy, Ashraf

    2015-03-01

    Deltamethrin (DLM) is a synthetic class II pyrethroid acaricide and insecticide widely used for veterinary and agricultural purposes. However, its animal and human exposure leads to nephrotoxicity. Our experimental objective was to evaluate protective effects of ceftriaxone and/or ascorbic acid against DLM-induced renal injury in male Wistar albino rats. DLM-treated animals revealed significant alterations in serum biochemical parameters related to renal injury; urea, uric acid and creatinine. There was a significant increase in renal lipid peroxidation and a significant inhibition in antioxidant biomarkers. Moreover, DLM significantly reduced serum acetylcholinesterase (AChE) activity. In addition, It induced serum and kidney tumor necrosis factor-α (TNF-α). Both ceftriaxone and ascorbic acid protect against DLM-induced biochemical alterations in serum and renal tissue when used alone or in combination along with DLM-intoxication. Furthermore, both ceftriaxone and ascorbic acid produced synergetic nephroprotective and antioxidant effects. Therefore, it could be concluded that ceftriaxone and/or ascorbic acid administration able to minimize the toxic effects of DLM through their free radical-scavenging and potent antioxidant activity.

  7. Synergistic extraction of rare earths with bis(2,4,4-trimethyl pentyl) dithiophosphinic acid and trialkyl phosphine oxide.

    Reddy, M L; Bosco Bharathi, J R; Peter, S; Ramamohan, T R

    1999-08-23

    Synergistic extraction of trivalent rare earths from nitrate solutions using mixtures of bis(2,4,4-trimethylpentyl)dithiophosphinic acid (Cyanex 301=HX) and trialkyl phosphine oxide (Cyanex 923=TRPO) in xylene has been investigated. The results demonstrate that these trivalent metal ions are extracted into xylene as MX(3).3HX with Cyanex 301 alone. In the presence of Cyanex 923, La(III) and Nd(III) are found to be extracted as MX(2).NO(3).TRPO. On the other hand, Eu(III), Y(III) and heavier rare earths are found to be extracted as MX(3).HX.2TRPO. The addition of a trialkylphosphine oxide to the metal extraction system not only enhances the extraction efficiency of these metal ions but also improves the selectivities significantly, especially between yttrium and heavier lanthanides. The separation factors between these metal ions were calculated and compared with that of commercially important extraction systems like di-2-ethylhexyl phosphoric acid.

  8. Synergistically enhanced selective intracellular uptake of anticancer drug carrier comprising folic acid-conjugated hydrogels containing magnetite nanoparticles

    Kim, Haneul; Jo, Ara; Baek, Seulgi; Lim, Daeun; Park, Soon-Yong; Cho, Soo Kyung; Chung, Jin Woong; Yoon, Jinhwan

    2017-01-01

    Targeted drug delivery has long been extensively researched since drug delivery and release at the diseased site with minimum dosage realizes the effective therapy without adverse side effects. In this work, to achieve enhanced intracellular uptake of anticancer drug carriers for efficient chemo-therapy, we have designed targeted multifunctional anticancer drug carrier hydrogels. Temperature-responsive poly(N-isopropylacrylamide) (PNIPAm) hydrogel core containing superparamagnetic magnetite nanoparticles (MNP) were prepared using precipitation polymerization, and further polymerized with amine-functionalized copolymer shell to facilitate the conjugation of targeting ligand. Then, folic acid, specific targeting ligand for cervical cancer cell line (HeLa), was conjugated on the hydrogel surface, yielding the ligand conjugated hybrid hydrogels. We revealed that enhanced intracellular uptake by HeLa cells in vitro was enabled by both magnetic attraction and receptor-mediated endocytosis, which were contributed by MNP and folic acid, respectively. Furthermore, site-specific uptake of the developed carrier was confirmed by incubating with several other cell lines. Based on synergistically enhanced intracellular uptake, efficient cytotoxicity and apoptotic activity of HeLa cells incubated with anticancer drug loaded hybrid hydrogels were successfully achieved. The developed dual-targeted hybrid hydrogels are expected to provide a platform for the next generation intelligent drug delivery systems.

  9. The highly synergistic, broad spectrum, antibacterial activity of organic acids and transition metals

    Zhitnitsky, Daniel; Rose, Jessica; Lewinson, Oded

    2017-01-01

    For millennia, transition metals have been exploited to inhibit bacterial growth. We report here the potentiation of the anti-bacterial activity of transition metals by organic acids. Strong synergy between low, non-toxic concentrations of transition metals and organic acids was observed with up to ~1000-fold higher inhibitory effect on bacterial growth. We show that organic acids shuttle transition metals through the permeability barrier of the bacterial membrane, leading to increased influx of transition metals into bacterial cells. We demonstrate that this synergy can be effectively used to inhibit the growth of a broad range of plant and human bacterial pathogens, and suggest that a revision of food preservation and crop protection strategies may be in order. These findings bear significant biomedical, agricultural, financial and environmental opportunities. PMID:28294164

  10. Synergistic protective role of ceftriaxone and ascorbic acid against subacute diazinon-induced nephrotoxicity in rats.

    Abdel-Daim, Mohamed M

    2016-03-01

    Diazinon (DZN) is a synthetic organophosphrus acaricide and insecticide widely used for veterinary and agricultural purposes. However, its animal and human exposure leads to nephrotoxicity. Our experimental objective was to evaluate protective effects of ceftriaxone and/or ascorbic acid-vitamin C against DZN-induced renal injury in male Wistar albino rats. DZN-treated animals revealed significant elevation in serum biochemical parameters related to renal injury: urea, uric acid and creatinine. DZN intoxication significantly increased renal lipid peroxidation, and significant inhibition in antioxidant biomarkers including, reduced glutathione, glutathione peroxidase, superoxide dismutase, catalase and total antioxidant capacity. In addition, DZN significantly reduced serum acetylcholinestrase level. Moreover, It induced serum and kidney tumor necrosis factor-α level. Both ceftriaxone and vitamin C protect against DZN-induced serum as well as renal tissue biochemical parameters when used alone or in combination along with DZN-intoxication. Furthermore, both ceftriaxone and vitamin C produced synergetic nephroprotective and antioxidant effects. Therefore, it could be concluded that ceftriaxone and/or vitamin C administration are able to minimize the toxic effects of DZN by its free radical-scavenging and potent antioxidant activity.

  11. Synergistic combination of valproic acid and oncolytic parvovirus H-1PV as a potential therapy against cervical and pancreatic carcinomas.

    Li, Junwei; Bonifati, Serena; Hristov, Georgi; Marttila, Tiina; Valmary-Degano, Séverine; Stanzel, Sven; Schnölzer, Martina; Mougin, Christiane; Aprahamian, Marc; Grekova, Svitlana P; Raykov, Zahari; Rommelaere, Jean; Marchini, Antonio

    2013-10-01

    The rat parvovirus H-1PV has oncolytic and tumour-suppressive properties potentially exploitable in cancer therapy. This possibility is being explored and results are encouraging, but it is necessary to improve the oncotoxicity of the virus. Here we show that this can be achieved by co-treating cancer cells with H-1PV and histone deacetylase inhibitors (HDACIs) such as valproic acid (VPA). We demonstrate that these agents act synergistically to kill a range of human cervical carcinoma and pancreatic carcinoma cell lines by inducing oxidative stress, DNA damage and apoptosis. Strikingly, in rat and mouse xenograft models, H-1PV/VPA co-treatment strongly inhibits tumour growth promoting complete tumour remission in all co-treated animals. At the molecular level, we found acetylation of the parvovirus nonstructural protein NS1 at residues K85 and K257 to modulate NS1-mediated transcription and cytotoxicity, both of which are enhanced by VPA treatment. These results warrant clinical evaluation of H-1PV/VPA co-treatment against cervical and pancreatic ductal carcinomas.

  12. Synergistic effect of electrolyzed water and citric Acid against bacillus cereus cells and spores on cereal grains.

    Park, Young Bae; Guo, Jin Yong; Rahman, S M E; Ahn, Juhee; Oh, Deog-Hwan

    2009-01-01

    The effects of acidic electrolyzed water (AcEW), alkaline electrolyzed water (AlEW), 100 ppm sodium hypochlorite (NaClO), and 1% citric acid (CA) alone, and combinations of AcEW with 1% CA (AcEW + CA) and AlEW with 1% CA (AlEW + CA) against Bacillus cereus vegetative cells and spores was evaluated as a function of temperature (25, 30, 40, 50, or 60 degrees C) and dipping time (3 or 6 h). A 3-strain cocktail of Bacillus cereus cells or spores of approximately 10(7) CFU/g was inoculated in various cereal grains (brown rice, Job's tear rice, glutinous rice, and barley rice). B. cereus vegetative cells and spores were more rapidly inactivated at 40 degrees C than at 25 degrees C. Regardless of the dipping time, all treatments reduced the numbers of B. cereus vegetative cells and spore by more than 1 log CFU/g, except the deionized water (DIW), which showed approximately 0.7 log reduction. The reductions of B. cereus cells increased with increasing dipping temperature (25 to 60 degrees C). B. cereus vegetative cells were much more sensitive to the combined treatments than spores. The effectiveness of the combined electrolyzed water (EW) and 1% CA was considerable in inhibiting B. cereus on cereal grains. The application of combined EW and CA for controlling B. cereus cells and spores on cereal grains has not been previously reported. Therefore, the synergistic effect of EW and CA may provide a valuable insight on reducing foodborne pathogens on fruits, vegetables, and cereal grains.

  13. Short communication: retinoic acid plus prolactin to synergistically increase specific casein gene expression in MAC-T cells.

    Lee, H Y; Heo, Y T; Lee, S E; Hwang, K C; Lee, H G; Choi, S H; Kim, N H

    2013-06-01

    Mammary alveolar (MAC-T) cells, an established bovine mammary epithelial cell line, are frequently used to investigate differentiation. A lactogenic phenotype in these cells is induced by treatment with a combination of hydrocortisone, insulin, and prolactin (PRL). The effect of the vitamin A derivative retinoic acid (RA), which induces differentiation in many cells, has not been studied in MAC-T cells. The objective of this study was to evaluate the differentiation potential of RA (1 μM) in MAC-T cells and to examine the effect of combined treatment with RA (1 μM) and PRL (5 μg/mL). Although RA treatment alone inhibited MAC-T cell proliferation, co-treatment of RA with PRL increased cell growth compared with the control group (treated with 1 μg/mL hydrocortisone and 5 μg/mL insulin). The ratio of Bcl to Bax mRNA was decreased in the RA treatment compared with RA+PRL or control. Retinoic acid-induced differentiation of MAC-T cells was associated with an increase in the mRNA expression of αS1-casein (3.9-fold), αS2-casein (4.5-fold), and β-casein (4.4-fold) compared with the control group. Expression of αS1-casein, αS2-casein, and β-casein was increased 12.9-fold, 11.9-fold, and 19.3-fold, respectively, following treatment with RA and PRL combined compared with the control group. These results demonstrate that RA induces differentiation of MAC-T cells and acts synergistically with PRL to increase specific casein gene expression.

  14. Synergistic anabolic actions of hyaluronic acid and platelet-rich plasma on cartilage regeneration in osteoarthritis therapy.

    Chen, Wei-Hong; Lo, Wen-Cheng; Hsu, Wei-Che; Wei, Hong-Jian; Liu, Hen-Yu; Lee, Chian-Her; Tina Chen, Szu-Yu; Shieh, Ying-Hua; Williams, David F; Deng, Win-Ping

    2014-12-01

    Osteoarthritis (OA) is a common disease associated with tissue inflammation, physical disability and imbalanced homeostasis in cartilage. For advanced treatments, biological approaches are currently focused on tissue regeneration and anti-inflammation. This study was undertaken to evaluate the therapeutic efficacies of hyaluronic acid (HA) and platelet-rich plasma (PRP) (HA+PRP) on OA. Articular chondrocytes were obtained from five OA patients. The optimal HA and PRP concentrations were evaluated by MTT assay. The expressions of chondrogenic and inflammatory genes were analyzed by RT-PCR. Signaling pathway was examined by immunoblotting and the expressions of OA pathology-related chemokines and cytokines was demonstrated by real-time PCR-based SuperArray. The therapeutic efficacies of HA+PRP were then demonstrated in 3D arthritic neo-cartilage and ACLT-OA model. Here we showed that HA+PRP could greatly retrieve pro-inflammatory cytokines-reduced articular chondrocytes proliferation and chondrogenic phenotypes, the mechanism of which involve the sequential activation of specific receptors CD44 and TGF-βRII, downstream mediators Smad2/3 and Erk1/2, and the chondrogenic transcription factor SOX9. The real-time PCR-based SuperArray results also indicated that OA pathology-related chemokines and cytokines could be efficiently suppressed by HA+PRP. Moreover, the cartilaginous ECM could be retrieved from inflammation-induced degradation by HA+PRP in both 2D monolayer and 3D neo-cartilage model. Finally, the intra-articular injection of HA+PRP could strongly rescue the meniscus tear and cartilage breakdown and then decrease OA-related immune cells. The combination of HA+PRP can synergistically promote cartilage regeneration and inhibit OA inflammation. This study might offer an advanced and alternative OA treatment based on detailed regenerative mechanisms.

  15. Synergistic effects of tea polyphenols and ascorbic acid on human lung adenocarcinoma SPC-A-1 cells.

    Li, Wei; Wu, Jian-xiang; Tu, You-ying

    2010-06-01

    Tea polyphenols have been shown to have anticancer activity in many studies. In the present study, we investigated effects of theaflavin-3-3'-digallate (TF(3)), one of the major theaflavin monomers in black tea, in combination with ascorbic acid (AA), a reducing agent, and (-)-epigallocatechin-3-gallate (EGCG), the main polyphenol presented in green tea, in combination with AA on cellular viability and cell cycles of the human lung adenocarcinoma SPC-A-1 cells. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay showed that the 50% inhibition concentrations (IC(50)) of TF(3), EGCG, and AA on SPC-A-1 cells were 4.78, 4.90, and 30.62 micromol/L, respectively. The inhibitory rates of TF(3) combined with AA (TF(3)+AA) and EGCG combined with AA (EGCG+AA) at a molar ratio of 1:6 on SPC-A-1 cells were 54.4% and 45.5%, respectively. Flow cytometry analysis showed that TF(3)+AA and EGCG+AA obviously increased the cell population in the G(0)/G(1) phase of the SPC-A-1 cell cycle from 53.9% to 62.8% and 60.0%, respectively. TF(3)-treated cells exhibited 65.3% of the G(0)/G(1) phase at the concentration of its IC(50). Therefore, TF(3)+AA and EGCG+AA had synergistic inhibition effects on the proliferation of SPC-A-1 cells, and significantly held SPC-A-1 cells in G(0)/G(1) phase. The results suggest that the combination of TF(3) with AA or EGCG with AA enhances their anticancer activity.

  16. Rapid analysis of fatty acid profiles in raw nuts and seeds by microwave-ultrasonic synergistic in situ extraction-derivatisation and gas chromatography-mass spectrometry.

    Liu, Rui-Lin; Song, Shuang-Hong; Wu, Mei; He, Tian; Zhang, Zhi-Qi

    2013-12-15

    Based on microwave-ultrasonic synergistic in situ extraction-derivatisation (MUED), gas chromatography-mass spectrometry was proposed for rapid analysis of fatty acid profiles in raw nut and seed materials. Several critical experimental parameters for MUED, including reaction temperature, microwave power, amounts of catalyst and derivatisation reagent, have been optimised using response surface methodology. The results showed that the chromatographic peak areas of total fatty acids and the content of total unsaturated fatty acids obtained with MUED were markedly higher than those obtained by the conventional method (P<0.05 and P<0.01, respectively). The MUED method simplified the handling steps compared to the conventional procedure, shortened the sample preparation time whilst improving the extraction and derivatisation efficiency of lipids, and reduced oxidisation and decomposition of the unsaturated fatty acids. The simplicity, robustness and practicality of this method highlighted its significant potential for application in the rapid analysis of fatty acids in natural food resource samples.

  17. Synergistic extraction of U(VI) and Th(IV) from nitric acid media withHBMPPT and TBP in toluene

    1999-01-01

    The synergistic extraction of U(VI) and Th(IV) from nitric acid solutionby HBMPPT (4-benzoyl-2,4-dihydro-5-methyl-2-phenyl-3H-pyrazol-3-thione) andTBP (tributylphosphate ) in toluene was studied. The extraction abilityof HBMPPT for U(VI) and Th(IV) was not so high, but when a little TBP was added in, theability to extract U(VI) and Th(IV) was improved. The extracted complexes may be presented as UO2NO3.BMPPT.TBP and UO2(BMPPT)2 .TBP for U(VI), and Th(NO3)3.BMPPT.TBP andTh(NO3)2 (BMPPT)2.TBP for Th(IV),respectively, in the synergisticextraction system. The synergistic effect of HBMPPT and TBP makes the separationcoefficient of U(VI) /Th(IV) or U(VI)/Eu(III) reach a high value.

  18. Synergistic removal of Pb(II, Cd(II and humic acid by Fe3O4@mesoporous silica-graphene oxide composites.

    Yilong Wang

    Full Text Available The synergistic adsorption of heavy metal ions and humic acid can be very challenging. This is largely because of their competitive adsorption onto most adsorbent materials. Hierarchically structured composites containing polyethylenimine-modified magnetic mesoporous silica and graphene oxide (MMSP-GO were here prepared to address this. Magnetic mesoporous silica microspheres were synthesized and functionalized with PEI molecules, providing many amine groups for chemical conjugation with the carboxyl groups on GO sheets and enhanced the affinity between the pollutants and the mesoporous silica. The features of the composites were characterized using TEM, SEM, TGA, DLS, and VSM measurements. Series adsorption results proved that this system was suitable for simultaneous and efficient removal of heavy metal ions and humic acid using MMSP-GO composites as adsorbents. The maximum adsorption capacities of MMSP-GO for Pb(II and Cd (II were 333 and 167 mg g(-1 caculated by Langmuir model, respectively. HA enhances adsorption of heavy metals by MMSP-GO composites due to their interactions in aqueous solutions. The underlying mechanism of synergistic adsorption of heavy metal ions and humic acid were discussed. MMSP-GO composites have shown promise for use as adsorbents in the simultaneous removal of heavy metals and humic acid in wastewater treatment processes.

  19. Synergistic removal of Pb(II), Cd(II) and humic acid by Fe3O4@mesoporous silica-graphene oxide composites.

    Wang, Yilong; Liang, Song; Chen, Bingdi; Guo, Fangfang; Yu, Shuili; Tang, Yulin

    2013-01-01

    The synergistic adsorption of heavy metal ions and humic acid can be very challenging. This is largely because of their competitive adsorption onto most adsorbent materials. Hierarchically structured composites containing polyethylenimine-modified magnetic mesoporous silica and graphene oxide (MMSP-GO) were here prepared to address this. Magnetic mesoporous silica microspheres were synthesized and functionalized with PEI molecules, providing many amine groups for chemical conjugation with the carboxyl groups on GO sheets and enhanced the affinity between the pollutants and the mesoporous silica. The features of the composites were characterized using TEM, SEM, TGA, DLS, and VSM measurements. Series adsorption results proved that this system was suitable for simultaneous and efficient removal of heavy metal ions and humic acid using MMSP-GO composites as adsorbents. The maximum adsorption capacities of MMSP-GO for Pb(II) and Cd (II) were 333 and 167 mg g(-1) caculated by Langmuir model, respectively. HA enhances adsorption of heavy metals by MMSP-GO composites due to their interactions in aqueous solutions. The underlying mechanism of synergistic adsorption of heavy metal ions and humic acid were discussed. MMSP-GO composites have shown promise for use as adsorbents in the simultaneous removal of heavy metals and humic acid in wastewater treatment processes.

  20. Synergistic inhibition effect of L-phenylalanine and rare earth Ce(IV) ion on the corrosion of copper in hydrochloric acid solution

    Zhang Daquan, E-mail: zhangdaquan@shiep.edu.cn [Department of Environmental Engineering, Shanghai University of Electric Power, Shanghai 200090 (China); Wu Huan; Gao Lixin [Department of Environmental Engineering, Shanghai University of Electric Power, Shanghai 200090 (China)

    2012-04-16

    Highlights: Black-Right-Pointing-Pointer Synergistic effect of L-phenylalanine (L-Phe) and Ce(SO{sub 4}){sub 2} on the corrosion of copper on the corrosion inhibition of copper in 0.5 M HCl solution. Black-Right-Pointing-Pointer Structure of the complex film formed by the interaction of L-phenylalanine (L-Phe) and Ce(SO{sub 4}){sub 2} on the copper surface. Black-Right-Pointing-Pointer Mechanism of the improvement of the inhibition property of amino acids by the addition of rare earth compound. - Abstract: The synergistic inhibition effect of L-phenylalanine (L-Phe) and Ce(SO{sub 4}){sub 2} on the corrosion of copper in 0.5 M HCl solution was investigated by weight-loss, electrochemical methods and surface analysis. The electrochemical results showed that L-Phe has definite inhibition effects for copper, while Ce(IV) promoted the anodic process of copper corrosion. The combination L-Phe with Ce(IV) ion produced strong synergistic effect on corrosion inhibition for copper. The maximum inhibition efficiency was 82.7% for 5 mM L-Phe + 2 mM Ce(IV). The results of EIS and potentiodynamic polarization are in good agreement. SEM showed that L-Phe and Ce(IV) can form a dense protective film on the copper surface.

  1. Synergistic inhibition of kale seed germination by coumarin and (2-chloroethyl)-trimethylammonium chloride, and its reversal by kinetin and gibberellic acid.

    Knypl, J S

    1966-09-01

    1. The retarding effect of (2-chloroethyl)trimethylammonium chloride (CCC) on germination of kale seeds is reduced and overcome by either kinetin or gibberellic acid (GA). 2. Coumarin inhibition of germination is reduced by kinetin but not by GA. 3. Germination of seeds treated with coumarin in combination with CCC is blocked; both kinetin and GA reduce the synergistic, inhibitory effect of coumarin and CCC. It is suggested that coumarin and CCC block alternative metabolic pathways which lead to germination in kale seed; these pathways are directly controlled by kinetin.

  2. Effects of laser immunotherapy on tumor microenvironment

    Acquaviva, Joseph T.; Wood, Ethan W.; Hasanjee, Aamr; Chen, Wei R.; Vaughan, Melville B.

    2014-02-01

    The microenvironments of tumors are involved in a complex and reciprocal dialog with surrounding cancer cells. Any novel treatment must consider the impact of the therapy on the microenvironment. Recently, clinical trials with laser immunotherapy (LIT) have proven to effectively treat patients with late-stage, metastatic breast cancer and melanoma. LIT is the synergistic combination of phototherapy (laser irradiation) and immunological stimulation. One prominent cell type found in the tumor stroma is the fibroblast. Fibroblast cells can secrete different growth factors and extracellular matrix modifying molecules. Furthermore, fibroblast cells found in the tumor stroma often express alpha smooth muscle actin. These particular fibroblasts are coined cancer-associated fibroblast cells (CAFs). CAFs are known to facilitate the malignant progression of tumors. A collagen lattice assay with human fibroblast cells is used to elucidate the effects LIT has on the microenvironment of tumors. Changes in the contraction of the lattice, the differentiation of the fibroblast cells, as well as the proliferation of the fibroblast cells will be determined.

  3. Immunosuppressive microenvironment in neuroblastoma

    Vito ePistoia

    2013-06-01

    Full Text Available According to the cancer immunoediting model, the interplay between tumor cells and the host immune system is crucial for the control of tumor growth. NB is a pediatric tumor that presents with metastatic disease at diagnosis in about 50% of the cases, the majority of which have poor prognosis. In this Review article, immune escape pathways adopted by human neuroblastoma (NB cells are reviewed. These include intrinsic defects of tumor cells such impaired expression of the HLA class I related antigen processing machinery and functional alterations of the tumor microenvironment induced by NB cell-derived immunosuppressive molecules as MICA and HLA-G. Finally, examples of therapeutic interventions targeting the tumor microenvironment are discussed to emphasize the concept that successful cancer treatment may be achieved using this strategy.

  4. TNF-alpha and 9-cis-retinoic acid synergistically induce ICAM-1 expression: evidence for interaction of retinoid receptors with NF-kappa B.

    Chadwick, C C; Shaw, L J; Winneker, R C

    1998-03-15

    TNF-alpha and 9-cis-retinoic acid (9-cis-R) synergistically enhance ICAM-1 protein expression in immortalized human aortic endothelial cells (HAECTs). At a TNF-alpha concentration of 0.1 ng/ml, 1 microM 9-cis-R enhanced ICAM-1 protein expression 4-fold. Treatment with 1 microM 9-cis-R alone caused no induction of ICAM-1 expression. Functional analysis of human ICAM-1 promoter-luciferase constructs revealed that the synergism was attributable to transcriptional regulation. Expression of a luciferase reporter vector containing a 311-bp fragment of the ICAM-1 promoter (-252 to + 59 bp relative to the transcriptional start site) was increased 2.9- and 4.9-fold by treatment with 9-cis-R and TNF-alpha, respectively, while cotreatment with 9-cis-R and TNF-alpha induced expression to 19.9-fold. Mutation studies revealed that RARE and NF-kappa B sites located respectively at -226 and -188 bp relative to the transcription start site are essential for the synergistic control of promoter activity. Mutation of either the RARE or the NF-kappa B site eliminated the synergistic enhancement of promoter activity. Moreover, mutation of the RARE abrogated promoter activity induced by treatment with TNF-alpha alone and mutation of the NF-kappa B site eliminated promoter activity induced by treatment with 9-cis-R alone. We conclude that retinoid receptors and NF-kappa B act in concert at the promoter level to facilitate ICAM-1 expression in endothelial cells.

  5. Direct and indirect inactivation of tumor cell protective catalase by salicylic acid and anthocyanidins reactivates intercellular ROS signaling and allows for synergistic effects.

    Scheit, Katrin; Bauer, Georg

    2015-03-01

    Salicylic acid and anthocyanidins are known as plant-derived antioxidants, but also can provoke paradoxically seeming prooxidant effects in vitro. These prooxidant effects are connected to the potential of salicylic acid and anthocyanidins to induce apoptosis selectively in tumor cells in vitro and to inhibit tumor growth in animal models. Several epidemiological studies have shown that salicylic acid and its prodrug acetylsalicylic acid are tumor-preventive for humans. The mechanism of salicylic acid- and anthocyanidin-dependent antitumor effects has remained enigmatic so far. Extracellular apoptosis-inducing reactive oxygen species signaling through the NO/peroxynitrite and the HOCl signaling pathway specifically induces apoptosis in transformed cells. Tumor cells have acquired resistance against intercellular reactive oxygen species signaling through expression of membrane-associated catalase. Here, we show that salicylic acid and anthocyanidins inactivate tumor cell protective catalase and thus reactive apoptosis-inducing intercellular reactive oxygen species signaling of tumor cells and the mitochondrial pathway of apoptosis Salicylic acid inhibits catalase directly through its potential to transform compound I of catalase into the inactive compound II. In contrast, anthocyanidins provoke a complex mechanism for catalase inactivation that is initiated by anthocyanidin-mediated inhibition of NO dioxygenase. This allows the formation of extracellular singlet oxygen through the reaction between H(2)O(2) and peroxynitrite, amplification through a caspase8-dependent step and subsequent singlet oxygen-mediated inactivation of catalase. The combination of salicylic acid and anthocyanidins allows for a remarkable synergistic effect in apoptosis induction. This effect may be potentially useful to elaborate novel therapeutic approaches and crucial for the interpretation of epidemiological results related to the antitumor effects of secondary plant compounds.

  6. Durability and synergistic effects of KI on the acid corrosion inhibition of mild steel by hydroxypropyl methylcellulose.

    Arukalam, I O

    2014-11-04

    The performance of hydroxypropyl methylcellulose (HPMC) as safe corrosion inhibitor for mild steel in aerated 0.5M H2SO4 solution was appraised by weight loss, impedance and polarization measurements. Results indicate that HPMC functions as a good inhibitor in the studied environment and inhibition efficiency increased with increasing concentration of inhibitor and temperature. Time-dependent effect of the inhibition efficiency reveals that inhibition efficiency increased with time up to the fourth day after which it waned, but improved on addition of KI. The synergism parameter evaluated confirmed the synergistic effect of KI and HPMC. Impedance results clearly show that HPMC inhibited the corrosion reaction via adsorption onto the metal/solution interface following Freundlich adsorption isotherm. Polarization results indicate that HPMC acts as a mixed-type inhibitor with predominant cathodic effect. Theoretical study using density functional theory was employed to establish the correlation between the structure (molecular and electronic) and the inhibition efficiency.

  7. Targeting the tumor microenvironment

    Kenny, P.A.; Lee, G.Y.; Bissell, M.J.

    2006-11-07

    Despite some notable successes cancer remains, for the most part, a seemingly intractable problem. There is, however, a growing appreciation that targeting the tumor epithelium in isolation is not sufficient as there is an intricate mutually sustaining synergy between the tumor epithelial cells and their surrounding stroma. As the details of this dialogue emerge, new therapeutic targets have been proposed. The FDA has already approved drugs targeting microenvironmental components such as VEGF and aromatase and many more agents are in the pipeline. In this article, we describe some of the 'druggable' targets and processes within the tumor microenvironment and review the approaches being taken to disrupt these interactions.

  8. Synergistic Effect of Ferulic Acid and Z-Ligustilide, Major Components of A. sinensis, on Regulating Cold-Sensing Protein TRPM8 and TPRA1 In Vitro

    Yuwei Pan

    2016-01-01

    Full Text Available Angelica sinensis has been used to attenuate cold-induced cutaneous vasospasm syndrome, such as Raynaud’s disease and frostbite, in China for many years. Ferulic acid (PubChem CID: 445858 and Z-ligustilide (PubChem CID: 529865, two major components extracted from Angelica sinensis, had been reported to inhibit vasoconstriction induced by vasoconstrictors. In this study, the pharmacological interaction in regulating cold-induced vascular smooth muscle cell contraction via cold-sensing protein TRPM8 and TRPA1 was analyzed between ferulic acid and Z-ligustilide. Pharmacological interaction on inhibiting [Ca2+]i influx evoked by TRPM8 agonist WS-12 or TRPA1 agonist ASP 7663 as well as cold-induced upregulation of TRPM8 was determined using isobolographic analysis. The isobolograms demonstrated that the combinations investigated in this study produced a synergistic interaction. Combination effect of two components in inhibiting RhoA activation and phosphorylation of MLC20 induced by WS-12 or ASP 7663 was also being quantified. These findings suggest that the therapeutic effect of Angelica sinensis on cold-induced vasospasm may be partially attributed to combinational effect, via TRPM8 and TPRA1 way, between ferulic acid and Z-ligustilide.

  9. Synergistic Effect of Ferulic Acid and Z-Ligustilide, Major Components of A. sinensis, on Regulating Cold-Sensing Protein TRPM8 and TPRA1 In Vitro

    Pan, Yuwei; Zhao, Guoping; Cai, Zejian; Chen, Fengguo; Xu, Dandan; Huang, Si; Lan, Hai; Tong, Yi

    2016-01-01

    Angelica sinensis has been used to attenuate cold-induced cutaneous vasospasm syndrome, such as Raynaud's disease and frostbite, in China for many years. Ferulic acid (PubChem CID: 445858) and Z-ligustilide (PubChem CID: 529865), two major components extracted from Angelica sinensis, had been reported to inhibit vasoconstriction induced by vasoconstrictors. In this study, the pharmacological interaction in regulating cold-induced vascular smooth muscle cell contraction via cold-sensing protein TRPM8 and TRPA1 was analyzed between ferulic acid and Z-ligustilide. Pharmacological interaction on inhibiting [Ca2+]i influx evoked by TRPM8 agonist WS-12 or TRPA1 agonist ASP 7663 as well as cold-induced upregulation of TRPM8 was determined using isobolographic analysis. The isobolograms demonstrated that the combinations investigated in this study produced a synergistic interaction. Combination effect of two components in inhibiting RhoA activation and phosphorylation of MLC20 induced by WS-12 or ASP 7663 was also being quantified. These findings suggest that the therapeutic effect of Angelica sinensis on cold-induced vasospasm may be partially attributed to combinational effect, via TRPM8 and TPRA1 way, between ferulic acid and Z-ligustilide. PMID:27413384

  10. In vitro inhibitory effect on pancreatic lipase activity of subfractions from ethanol extracts of fermented Oats (Avena sativa L.) and synergistic effect of three phenolic acids.

    Cai, Shengbao; Wang, Ou; Wang, Mengqian; He, Jianfeng; Wang, Yong; Zhang, Di; Zhou, Feng; Ji, Baoping

    2012-07-25

    The purpose of the present work is to study the pancreatic lipase inhibitory effects of different subfractions (n-hexane, ethyl acetate (EA), n-butanol, and water) from ethanol extracts of nonfermented and fungi-fermented oats and to delineate the interactions of three primary phenolic acids in the EA subfractions. The EA subfraction showed the highest inhibitory effect on pancreatic lipase activity at 1.5 mg/mL compared to the other subfractions, regardless of whether the oats were fermented. Meanwhile, both of the EA subfractions of two fungi-fermented oats demonstrated more effective inhibitory activity than that of nonfermented oats. A positive correlation between the total phenolics content and inhibitory activity was found. The inhibitory ability of the EA subfraction from nonfermented or fermented oats also displayed a dose-dependent effect. The standards of caffeic, ferulic, and p-coumaric acids, mainly included in EA subfractions of fermented oats, also displayed a dose-dependent inhibitory effect. A synergistic effect of each binary combination of p-coumaric, ferulic, and caffeic acids was observed, especially at 150.0 μg/mL. Those results indicate that fungi-fermented oats have a more effective inhibitory ability on pancreatic lipase and polyphenols may be the most effective component and could be potentially used for dietary therapy of obesity.

  11. Synergistic effect of antioxidant system and osmolyte in hydrogen sulfide and salicylic acid crosstalk-induced heat tolerance in maize (Zea mays L.) seedlings.

    Li, Zhong-Guang

    2015-01-01

    Salicylic acid (SA), is a plant hormone with multifunction that is involved in plant growth, development and the acquisition of stress tolerance. Hydrogen sulfide (H2S) is emerging similar functions, but crosstalk between SA and H2S in the acquisition of heat tolerance is not clear. Our recent study firstly reported that SA treatment enhanced the activity of L-cysteine desulfhydrase (L-DES), a key enzyme in H2S biosynthesis, followed by induced endogenous H2S accumulation, which in turn improved the heat tolerance of maize seedlings. (1) In addition, NaHS, a H2S donor, enhanced SA-induced heat tolerance, while its biosynthesis inhibitor DL-propargylglycine (PAG) and scavenger hydroxylamine (HT) weakened SA-induced heat tolerance. Also, NaHS had no significant effect on SA accumulation and its biosynthesis enzymes phenylalanine ammonia lyase (PAL) and benzoic-acid-2-hydroxylase (BA2H) activities, as well as significant difference was not observed in NaHS-induced heat tolerance of maize seedlings by SA biosynthesis inhibitors paclobutrazol (PAC) and 2-aminoindan-2-phosph- onic acid (AIP) treatment. (1) Further study displayed that SA induced osmolytes (proline, betaine and trehalose) accumulation and enhancement in activity of antioxidant system in maize seedlings. These results showed that antioxidant system and osmolyte play a synergistic role in SA and H2S crosstalk-induced heat tolerance of maize seedlings.

  12. A synergistic antiproliferation effect of curcumin and docosahexaenoic acid in SK-BR-3 breast cancer cells: unique signaling not explained by the effects of either compound alone

    Jo Davisson V

    2011-04-01

    Full Text Available Abstract Background Breast cancer is a collection of diseases in which molecular phenotypes can act as both indicators and mediators of therapeutic strategy. Therefore, candidate therapeutics must be assessed in the context of multiple cell lines with known molecular phenotypes. Docosahexaenoic acid (DHA and curcumin (CCM are dietary compounds known to antagonize breast cancer cell proliferation. We report that these compounds in combination exert a variable antiproliferative effect across multiple breast cell lines, which is synergistic in SK-BR-3 cells and triggers cell signaling events not predicted by the activity of either compound alone. Methods Dose response curves for CCM and DHA were generated for five breast cell lines. Effects of the DHA+ CCM combination on cell proliferation were evaluated using varying concentrations, at a fixed ratio, of CCM and DHA based on their individual ED50. Detection of synergy was performed using nonlinear regression of a sigmoid dose response model and Combination Index approaches. Cell molecular network responses were investigated through whole genome microarray analysis of transcript level changes. Gene expression results were validated by RT-PCR, and western blot analysis was performed for potential signaling mediators. Cellular curcumin uptake, with and without DHA, was analyzed via flow cytometry and HPLC. Results CCM+DHA had an antiproliferative effect in SK-BR-3, MDA-MB-231, MDA-MB-361, MCF7 and MCF10AT cells. The effect was synergistic for SK-BR-3 (ER- PR- Her2+ relative to the two compounds individually. A whole genome microarray approach was used to investigate changes in gene expression for the synergistic effects of CCM+DHA in SK-BR-3 cells lines. CCM+DHA triggered transcript-level responses, in disease-relevant functional categories, that were largely non-overlapping with changes caused by CCM or DHA individually. Genes involved in cell cycle arrest, apoptosis, inhibition of metastasis, and

  13. A synergistic combination of tetraethylorthosilicate and multiphosphonic acid offers excellent corrosion protection to AA1100 aluminum alloy

    Dalmoro, Viviane [Instituto de Química, Universidade Federal do Rio Grande do Sul (UFRGS) Av. Bento Gonçalves 9500 - CEP 91501-970, Porto Alegre, RS (Brazil); Departament d’Enginyeria Química, ETSEIB, Universitat Politècnica de Catalunya (UPC), Avda. Diagonal 647, Barcelona E-08028 (Spain); Center for Research in Nano-Engineering (CRnE), Universitat Politècnica de Catalunya (UPC), Campus Sud, Edifici C’, C/Pasqual i Vila s/n, Barcelona E-08028 (Spain); Santos, João H.Z. dos [Instituto de Química, Universidade Federal do Rio Grande do Sul (UFRGS) Av. Bento Gonçalves 9500 - CEP 91501-970, Porto Alegre, RS (Brazil); Armelin, Elaine, E-mail: elaine.armelin@upc.edu [Departament d’Enginyeria Química, ETSEIB, Universitat Politècnica de Catalunya (UPC), Avda. Diagonal 647, Barcelona E-08028 (Spain); Center for Research in Nano-Engineering (CRnE), Universitat Politècnica de Catalunya (UPC), Campus Sud, Edifici C’, C/Pasqual i Vila s/n, Barcelona E-08028 (Spain); Alemán, Carlos, E-mail: carlos.aleman@upc.edu [Departament d’Enginyeria Química, ETSEIB, Universitat Politècnica de Catalunya (UPC), Avda. Diagonal 647, Barcelona E-08028 (Spain); Center for Research in Nano-Engineering (CRnE), Universitat Politècnica de Catalunya (UPC), Campus Sud, Edifici C’, C/Pasqual i Vila s/n, Barcelona E-08028 (Spain); and others

    2013-05-15

    This work describes a new mechanism for the incorporation of organophosphonic acid into silane self-assembly monolayers, which has been used to protect AA1100 aluminum alloy. The protection improvement has been attributed to the fact that phosphonic structures promote the formation of strongly bonded and densely packed monolayer films, which show higher surface coverage and better adhesion than conventional silane systems. In order to evaluate the linking chemistry offered by phosphonic groups, two functionalized organophosphonic groups have been employed, 1,2-diaminoethanetetrakis methylenephosphonic acid (EDTPO) and aminotrimethylenephosphonic acid (ATMP), and combined with tetraethylorthosilicate (TEOS) films prepared by sol–gel synthesis. Results suggest that phosphonic acids may interact with the surface through a monodentate and bidentate coordination mode and, in addition, form one or more strong and stable linkages with silicon through non-hydrolysable bonds. Therefore, the incorporation of a very low concentration of phosphonic acids on TEOS solutions favors the complete coverage of the aluminum substrate during the silanization process, which is not possible using TEOS alone. The linking capacity of phosphonic acid has been investigated by FTIR-RA spectroscopy, SEM and EDX analysis, X-ray photoelectron spectroscopy (XPS), and quantum mechanical calculations. Finally, electrochemical impedance spectroscopy has been used to study the corrosion protection revealing that EDTPO-containing films afforded more protection to the AA1100 substrate than ATMP-containing films.

  14. A synergistic combination of tetraethylorthosilicate and multiphosphonic acid offers excellent corrosion protection to AA1100 aluminum alloy

    Dalmoro, Viviane; dos Santos, João H. Z.; Armelin, Elaine; Alemán, Carlos; Azambuja, Denise S.

    2013-05-01

    This work describes a new mechanism for the incorporation of organophosphonic acid into silane self-assembly monolayers, which has been used to protect AA1100 aluminum alloy. The protection improvement has been attributed to the fact that phosphonic structures promote the formation of strongly bonded and densely packed monolayer films, which show higher surface coverage and better adhesion than conventional silane systems. In order to evaluate the linking chemistry offered by phosphonic groups, two functionalized organophosphonic groups have been employed, 1,2-diaminoethanetetrakis methylenephosphonic acid (EDTPO) and aminotrimethylenephosphonic acid (ATMP), and combined with tetraethylorthosilicate (TEOS) films prepared by sol-gel synthesis. Results suggest that phosphonic acids may interact with the surface through a monodentate and bidentate coordination mode and, in addition, form one or more strong and stable linkages with silicon through non-hydrolysable bonds. Therefore, the incorporation of a very low concentration of phosphonic acids on TEOS solutions favors the complete coverage of the aluminum substrate during the silanization process, which is not possible using TEOS alone. The linking capacity of phosphonic acid has been investigated by FTIR-RA spectroscopy, SEM and EDX analysis, X-ray photoelectron spectroscopy (XPS), and quantum mechanical calculations. Finally, electrochemical impedance spectroscopy has been used to study the corrosion protection revealing that EDTPO-containing films afforded more protection to the AA1100 substrate than ATMP-containing films.

  15. CORROSION INHIBITION AND SYNERGISTIC EFFECT OF GREEN SCALE INHIBITOR POLYEPOXYSUCCINIC ACID%绿色阻垢剂聚环氧琥珀酸的缓蚀协同效应

    熊蓉春; 周庆; 魏刚

    2003-01-01

    The corrosion inhibition of a kind of green scale inhibitor, polyepoxysuccinic acid (PESA) was studied based on dynamic experiments. In addition, the synergistic effect among PESA, Zn2+ and sodium gluconate was also investigated. According to the experimental data, when only PESA is used, it had fairly good effect on steel. The synergy between PESA and Zn2+ or sodium gluconate was poor. However, the synergistic effect of PESA, Zn2+ and sodium gluconate is very good. Further experiments show that the corrosion inhibition of PESA is mainly affected by oxygen atom inserted.

  16. The hypoxic tumour microenvironment and metastatic progression.

    Subarsky, Patrick; Hill, Richard P

    2003-01-01

    The microenvironment of solid tumours contains regions of poor oxygenation and high acidity. Growing evidence from clinical and experimental studies points to a fundamental role for hypoxia in metastatic progression. Prolonged hypoxia increases genomic instability, genomic heterogeneity, and may act as a selective pressure for tumour cell variants. Hypoxia can also act in an epigenetic fashion, altering the expression of genes. Hypoxia-induced changes in gene expression alter non-specific stress responses, anaerobic metabolism, angiogenesis, tissue remodeling, and cell-cell contacts. Experimental studies have demonstrated that inhibition of proteins involved in these processes can modify metastasis formation, suggesting a causal role in metastatic progression. Recent advances in high-throughput screening techniques have allowed identification of many hypoxia-induced genes that are involved in the processes associated with metastasis. Here we review the epigenetic control of gene expression by the hypoxic microenvironment and its potential contribution to metastatic progression.

  17. Calcite Biohybrids as Microenvironment for Stem Cells

    Razi Vago

    2012-04-01

    Full Text Available A new type of composite 3D biomaterial that provides extracellular cues that govern the differentiation processes of mesenchymal stem cells (MSCs has been developed. In the present study, we evaluated the chondrogenecity of a biohybrid composed of a calcium carbonate scaffold in its calcite polymorph and hyaluronic acid (HA. The source of the calcite scaffolding is an exoskeleton of a sea barnacle Tetraclita rifotincta (T. rifotincta, Pilsbry (1916. The combination of a calcium carbonate-based bioactive scaffold with a natural polymeric hydrogel is designed to mimic the organic-mineral composite of developing bone by providing a fine-tuned microenvironment. The results indicate that the calcite-HA interface creates a suitable microenvironment for the chondrogenic differentiation of MSCs, and therefore, the biohybrid may provide a tool for tissue-engineered cartilage.

  18. Pharmacological and small interference RNA-mediated inhibition of breast cancer-associated fatty acid synthase (oncogenic antigen-519) synergistically enhances Taxol (paclitaxel)-induced cytotoxicity.

    Menendez, Javier A; Vellon, Luciano; Colomer, Ramon; Lupu, Ruth

    2005-05-20

    The relationship between breast cancer-associated fatty acid synthase (FAS; oncogenic antigen-519) and chemotherapy-induced cell damage has not been studied. We examined the ability of C75, a synthetic slow-binding inhibitor of FAS activity, to modulate the cytotoxic activity of the microtubule-interfering agent Taxol (paclitaxel) in SK-Br3, MDA-MB-231, MCF-7 and multidrug-resistant MDR-1 (P-Glycoprotein)-overexpressing MCF-7/AdrR breast cancer cells. When the combination of C75 with Taxol in either concurrent (C75 + Taxol 24 hr) or sequential (C75 24 hr --> Taxol 24 hr) schedules were tested for synergism, addition or antagonism using the isobologram and the median-effect plot analyses, co-exposure of C75 and Taxol mostly demonstrated synergistic effects, whereas sequential exposure to C75 followed by Taxol mainly showed additive or antagonistic interactions. Because the nature of the cytotoxic interactions was definitely schedule-dependent in MCF-7 cells, we next evaluated the effects of C75 on Taxol-induced apoptosis as well as Taxol-activated cell death and cell survival-signaling pathways in this breast cancer cell model. An ELISA for histone-associated DNA fragments demonstrated that C75 and Taxol co-exposure caused a synergistic enhancement of apoptotic cell death, whereas C75 pre-treatment did not enhance the apoptosis-inducing activity of Taxol. Co-exposure to C75 and Taxol induced a remarkable nuclear accumulation of activated p38 mitogen-activated protein kinase (p38 MAPK), which was accompanied by a synergistic nuclear accumulation of the p53 tumor-suppressor protein that was phosphorylated at Ser46, a p38 MAPK-regulated pro-apoptotic modification of p53. As single agents, FAS blocker C75 and Taxol induced a significant stimulation of the proliferation and cell survival mitogen-activated protein kinase extracellular signal-regulated kinase (ERK1/ERK2 MAPK) activity, whereas, in combination, they interfered with ERK1/ERK2 activation. Moreover, the

  19. Gallic acid-based indanone derivative interacts synergistically with tetracycline by inhibiting efflux pump in multidrug resistant E. coli.

    Dwivedi, Gaurav Raj; Tiwari, Nimisha; Singh, Aastha; Kumar, Akhil; Roy, Sudeep; Negi, Arvind Singh; Pal, Anirban; Chanda, Debabrata; Sharma, Ashok; Darokar, Mahendra P

    2016-03-01

    The purpose of the present study was to study the synergy potential of gallic acid-based derivatives in combination with conventional antibiotics using multidrug resistant cultures of Escherichia coli. Gallic acid-based derivatives significantly reduced the MIC of tetracycline against multidrug resistant clinical isolate of E. coli. The best representative, 3-(3',4,'5'-trimethoxyphenyl)-4,5,6-trimethoxyindanone-1, an indanone derivative of gallic acid, was observed to inhibit ethidium bromide efflux and ATPase which was also supported by in silico docking. This derivative extended the post-antibiotic effect and decreased the mutation prevention concentration of tetracycline. This derivative in combination with TET was able to reduce the concentration of TNFα up to 18-fold in Swiss albino mice. This derivative was nontoxic and well tolerated up to 300 mg/kg dose in subacute oral toxicity study in mice. This is the first report of gallic acid-based indanone derivative as drug resistance reversal agent acting through ATP-dependent efflux pump inhibition.

  20. Tailoring the Synergistic Bronsted-Lewis acidic effects in Heteropolyacid catalysts: Applied in Esterification and Transesterification Reactions

    Tao, Meilin; Xue, Lifang; Sun, Zhong; Wang, Shengtian; Wang, Xiaohong; Shi, Junyou

    2015-09-01

    In order to investigate the influences of Lewis metals on acidic properties and catalytic activities, a series of Keggin heteropolyacid (HPA) catalysts, HnPW11MO39 (M = TiIV, CuII, AlIII, SnIV, FeIII, CrIII, ZrIV and ZnII; for Ti and Zr, the number of oxygen is 40), were prepared and applied in the esterification and transesterification reactions. Only those cations with moderate Lewis acidity had a higher impact. Ti Substituted HPA, H5PW11TiO40, posse lower acid content compared with TixH3-4xPW12O40 (Ti partial exchanged protons in saturated H3PW12O40), which demonstrated that the Lewis metal as an addenda atom (H5PW11TiO40) was less efficient than those as counter cations (TixH3-4xPW12O40). On the other hand, the highest conversion reached 92.2% in transesterification and 97.4% in esterification. Meanwhile, a good result was achieved by H5PW11TiO40 in which the total selectivity of DAG and TGA was 96.7%. In addition, calcination treatment to H5PW11TiO40 make it insoluble in water which resulted in a heterogeneous catalyst feasible for reuse.

  1. The Synergist Effect of P-Hydroxybenzoic Acid and Propyl-Paraben on The Antibacterial Activity of Enterocin KP

    Zeliha Yıldırım

    2014-01-01

    Full Text Available In this study, the effects of food preservative p-hydroxybenzoic acid and propyl-paraben on the inhibitory activity of enterocin KP produced by Enterococcus faecalis KP were determined. Staphylococcus aureus, Escherichia coli O157:H7 and Salmonella Typhimurium, resistant to enterocin KP bacteriocin, were used as target organisms. The inhibitor activity of enterosin KP (1600 AU/ml alone or in combination with p-hydroxybenzoic acid (%0.1-0.3 and propyl-paraben (%0.008-0.16 on the growth of Staphylococcus aureus, Escherichia coli O157:H7 and Salmonella Typhimurium were determined. The inhibitory activity of enterocin KP was increased when used in combination with p-hydroxybenzoic acid and propyl-paraben at concentrations of 0.1-0.3% and 0.008-0.016%, respectively. Furthermore, Staphylococcus aureus, E. coli O157:H7 and Salmonella Typhimurium became sensitive to enterocin KP. In conclusion, the use of enterocin KP in combination with other food preservatives principles resulted in an increase in its inhibitory activity and spectrum.

  2. Synergistic antimicrobial activity of caprylic acid in combination with citric acid against both Escherichia coli O157:H7 and indigenous microflora in carrot juice.

    Kim, S A; Rhee, M S

    2015-08-01

    The identification of novel, effective, and non-thermal decontamination methods is imperative for the preservation of unpasteurized and fresh vegetable juices. The aim of this study was to examine the bactericidal effects of caprylic acid + citric acid against the virulent pathogen Escherichia coli O157:H7 and the endogenous microflora in unpasteurized fresh carrot juice. Carrot juice was treated with either caprylic acid, citric acid, or a combination of caprylic acid + citric acid at mild heating temperature (45 °C or 50 °C). The color of the treated carrot juice as well as microbial survival was examined over time. Combined treatment was more effective than individual treatment in terms of both color and microbial survival. Caprylic acid + citric acid treatment (each at 5.0 mM) at 50 °C for 5 min resulted in 7.46 and 3.07 log CFU/ml reductions in the E. coli O157:H7 and endogenous microflora populations, respectively. By contrast, there was no apparent reduction in either population following individual treatment. A validation assay using a low-density E. coli O157:H7 inoculum (3.31 log CFU/ml) showed that combined treatment with caprylic acid (5.0 mM) + citric acid (2.5 mM) at 50 °C for >5 min or with caprylic acid + citric acid (both at 5.0 mM) at either 45 °C or 50 °C for >5 min completely destroyed the bacteria. Combined treatment also increased the redness of the juice, which is a perceived indication of quality. Taken together, these results indicate that combined treatment with low concentrations of caprylic acid and citric acid, which are of biotic origin, can eliminate microorganisms from unpasteurized carrot juice.

  3. Co-delivery of all-trans-retinoic acid and doxorubicin for cancer therapy with synergistic inhibition of cancer stem cells.

    Sun, Rong; Liu, Yang; Li, Shi-Yong; Shen, Song; Du, Xiao-Jiao; Xu, Cong-Fei; Cao, Zhi-Ting; Bao, Yan; Zhu, Yan-Hua; Li, Ya-Ping; Yang, Xian-Zhu; Wang, Jun

    2015-01-01

    Combination treatment through simultaneous delivery of two or more drugs with nanoparticles has been demonstrated to be an elegant and efficient approach for cancer therapy. Herein, we employ a combination therapy for eliminating both the bulk tumor cells and the rare cancer stem cells (CSCs) that have a high self-renewal capacity and play a critical role in cancer treatment failure. All-trans-retinoic acid (ATRA), a powerful differentiation agent of cancer stem cells and the clinically widely used chemotherapy agent doxorubicin (DOX) are simultaneously encapsulated in the same nanoparticle by a single emulsion method. It is demonstrated that ATRA and DOX simultaneous delivery-based therapy can efficiently deliver the drugs to both non-CSCs and CSCs to differentiate and kill the cancer cells. Differentiation of CSCs into non-CSCs can reduce their self-renewal capacity and increase their sensitivity to chemotherapy; with the combined therapy, a significantly improved anti-cancer effect is demonstrated. Administration of this combinational drug delivery system can markedly augment the enrichment of drugs both in tumor tissues and cancer stem cells, prodigiously enhancing the suppression of tumor growth while reduce the incidence of CSC in a synergistic manner.

  4. Synergistic ameliorative effects of sesame oil and alpha-lipoic acid against subacute diazinon toxicity in rats: hematological, biochemical, and antioxidant studies.

    Abdel-Daim, Mohamed M; Taha, Ramadan; Ghazy, Emad W; El-Sayed, Yasser S

    2016-01-01

    Diazinon (DZN) is a common organophosphorus insecticide extensively used for agriculture and veterinary purposes. DZN toxicity is not limited to insects; it also induces harmful effects in mammals and birds. Our experiment evaluated the protective and antioxidant potential of sesame oil (SO) and (or) alpha-lipoic acid (ALA) against DZN toxicity in male Wistar albino rats. DZN-treated animals exhibited macrocytic hypochromic anemia and significant increases in serum biochemical parameters related to liver injury, including aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), γ-glutamyl transferase (γGT), cholesterol, and triglycerides. They also had elevated levels of markers related to cardiac injury, such as lactate dehydrogenase (LDH) and creatine phosphokinase (CPK), and increased biomarkers of renal injury, urea and creatinine. DZN also increased hepatic, renal, and cardiac lipid peroxidation and decreased antioxidant biomarker levels. SO and (or) ALA supplementation ameliorated the deleterious effects of DZN intoxication. Treatment improved hematology and serum parameters, enhanced endogenous antioxidant status, and reduced lipid peroxidation. Importantly, they exerted synergistic hepatoprotective, nephroprotective, and cardioprotective effects. Our findings demonstrate that SO and (or) ALA supplementation can alleviate the toxic effects of DZN via their potent antioxidant and free radical-scavenging activities.

  5. Synergistic bactericidal action of phytic acid and sodium chloride against Escherichia coli O157:H7 cells protected by a biofilm.

    Kim, Nam Hee; Rhee, Min Suk

    2016-06-16

    The food industry must prevent the build-up of strong Escherichia coli O157:H7 biofilms in food processing environments. The present study examined the bactericidal action of phytic acid (PA), a natural extract from rice bran and the hulls/peels of legumes, against E. coli O157:H7 biofilms. The synergistic bactericidal effects of PA plus sodium chloride (NaCl) were also examined. E. coli O157:H7 biofilms were allowed for form on stainless steel coupons by culture in both rich (tryptic soy broth, TSB) and minimal (M9) medium at 22°C for 6days. Bacterial cells within biofilms grown in M9 medium were significantly more resistant to PA than those grown in TSB (pbiofilm effect of PA was significantly increased by addition of NaCl (2-4%) (pbiofilms without recovery (a>6.5logCFU/cm(2) reduction). Neither PA nor NaCl alone were this effective (PA, 1.6-2.7logCFU/cm(2) reduction; NaCl, food safety managers who encounter thick biofilm formation in food processing environments.

  6. Synergistic Effect of Mesoporous Silica and Hydroxyapatite in Loaded Poly(DL-lactic-co-glycolic acid) Microspheres on the Regeneration of Bone Defects

    Lin, Kai-Feng; Fan, Jun-Jun; Hu, Gang; Dong, Xin; Zhao, Yi-Nan; Song, Yue; Guo, Zhong-Shang

    2016-01-01

    A microsphere composite made of poly(DL-lactic-co-glycolic acid) (PLGA), mesoporous silica nanoparticle (MSN), and nanohydroxyapatite (nHA) (PLGA-MSN/nHA) was prepared and evaluated as bone tissue engineering materials. The objective of this study was to investigate the synergistic effect of MSN/nHA on biocompatibility as well as its potential ability for bone formation. First, we found that this PLGA-MSN/nHA composite performed good characteristics on microstructure, mechanical strength, and wettability. By cell culture experiments, the adhesion and proliferation rate of the cells seeded on PLGA-MSN/nHA composite was higher than those of the controls and high levels of osteogenetic factors such as ALP and Runx-2 were detected by reverse transcriptase polymerase chain reaction. Finally, this PLGA-MSN/nHA composite was implanted into the femur bone defect in a rabbit model, and its ability to induce bone regeneration was observed by histological examinations. Twelve weeks after implantation, the bone defects had significantly more formation of mature bone and less residual materials than in the controls. These results demonstrate that this PLGA-MSN/nHA composite, introducing both MSN and nHA into PLGA microspheres, can improve the biocompatibility and osteoinductivity of composite in vitro and in vivo and had potential application in bone regeneration. PMID:27652269

  7. Synergistic effect of sodium dodecyl sulfate and cetyltrimethyl ammonium bromide on the corrosion inhibition behavior of l-methionine on mild steel in acidic medium

    M. Mobin

    2017-02-01

    Full Text Available The corrosion inhibition behavior of amino acid l-methionine (LMT separately and in combination with very low concentration of surfactants sodium dodecyl sulfate (SDS and cetyltrimethyl ammonium bromide (CTAB on mild steel in 0.1 M H2SO4 solution was studied, using weight loss and potentiodynamic polarization measurement techniques. The studies were carried out in the temperature range of 30–60 °C. The surface morphology of the corroded steel samples was studied by scanning electron microscopy (SEM and atomic force microscopy (AFM.The results show that LMT is an effective inhibitor for mild steel corrosion in 0.1 M H2SO4 which is synergistically improved in the presence of SDS and CTAB. The mixed LMT and CTAB is more effective as an inhibitor than mixture of LMT and SDS. The SEM and AFM photographs show a clearly different surface morphology in the presence of additives. LMT alone and in combination with surfactants obeys Langmuir adsorption isotherm from the fit of the experimental data of all concentrations and temperatures studied. Phenomenon of physical adsorption is proposed from the trend of the IE with temperature and also the values of activation energy (Ea, standard enthalpy of adsorption (ΔHads, and standard free energy of adsorption (ΔGads obtained. The results obtained by potentiodynamic polarization measurements are consistent with the results of the weight loss measurements. LMT acts as a mixed type inhibitor.

  8. Synergistic Effect of Mesoporous Silica and Hydroxyapatite in Loaded Poly(DL-lactic-co-glycolic acid Microspheres on the Regeneration of Bone Defects

    Shu He

    2016-01-01

    Full Text Available A microsphere composite made of poly(DL-lactic-co-glycolic acid (PLGA, mesoporous silica nanoparticle (MSN, and nanohydroxyapatite (nHA (PLGA-MSN/nHA was prepared and evaluated as bone tissue engineering materials. The objective of this study was to investigate the synergistic effect of MSN/nHA on biocompatibility as well as its potential ability for bone formation. First, we found that this PLGA-MSN/nHA composite performed good characteristics on microstructure, mechanical strength, and wettability. By cell culture experiments, the adhesion and proliferation rate of the cells seeded on PLGA-MSN/nHA composite was higher than those of the controls and high levels of osteogenetic factors such as ALP and Runx-2 were detected by reverse transcriptase polymerase chain reaction. Finally, this PLGA-MSN/nHA composite was implanted into the femur bone defect in a rabbit model, and its ability to induce bone regeneration was observed by histological examinations. Twelve weeks after implantation, the bone defects had significantly more formation of mature bone and less residual materials than in the controls. These results demonstrate that this PLGA-MSN/nHA composite, introducing both MSN and nHA into PLGA microspheres, can improve the biocompatibility and osteoinductivity of composite in vitro and in vivo and had potential application in bone regeneration.

  9. Synergistic Effect of Mesoporous Silica and Hydroxyapatite in Loaded Poly(DL-lactic-co-glycolic acid) Microspheres on the Regeneration of Bone Defects.

    He, Shu; Lin, Kai-Feng; Fan, Jun-Jun; Hu, Gang; Dong, Xin; Zhao, Yi-Nan; Song, Yue; Guo, Zhong-Shang; Bi, Long; Liu, Jian

    2016-01-01

    A microsphere composite made of poly(DL-lactic-co-glycolic acid) (PLGA), mesoporous silica nanoparticle (MSN), and nanohydroxyapatite (nHA) (PLGA-MSN/nHA) was prepared and evaluated as bone tissue engineering materials. The objective of this study was to investigate the synergistic effect of MSN/nHA on biocompatibility as well as its potential ability for bone formation. First, we found that this PLGA-MSN/nHA composite performed good characteristics on microstructure, mechanical strength, and wettability. By cell culture experiments, the adhesion and proliferation rate of the cells seeded on PLGA-MSN/nHA composite was higher than those of the controls and high levels of osteogenetic factors such as ALP and Runx-2 were detected by reverse transcriptase polymerase chain reaction. Finally, this PLGA-MSN/nHA composite was implanted into the femur bone defect in a rabbit model, and its ability to induce bone regeneration was observed by histological examinations. Twelve weeks after implantation, the bone defects had significantly more formation of mature bone and less residual materials than in the controls. These results demonstrate that this PLGA-MSN/nHA composite, introducing both MSN and nHA into PLGA microspheres, can improve the biocompatibility and osteoinductivity of composite in vitro and in vivo and had potential application in bone regeneration.

  10. Large Neutral Amino Acid Supplementation Exerts Its Effect through Three Synergistic Mechanisms: Proof of Principle in Phenylketonuria Mice.

    Danique van Vliet

    Full Text Available Phenylketonuria (PKU was the first disorder in which severe neurocognitive dysfunction could be prevented by dietary treatment. However, despite this effect, neuropsychological outcome in PKU still remains suboptimal and the phenylalanine-restricted diet is very demanding. To improve neuropsychological outcome and relieve the dietary restrictions for PKU patients, supplementation of large neutral amino acids (LNAA is suggested as alternative treatment strategy that might correct all brain biochemical disturbances caused by high blood phenylalanine, and thereby improve neurocognitive functioning.As a proof-of-principle, this study aimed to investigate all hypothesized biochemical treatment objectives of LNAA supplementation (normalizing brain phenylalanine, non-phenylalanine LNAA, and monoaminergic neurotransmitter concentrations in PKU mice.C57Bl/6 Pah-enu2 (PKU mice and wild-type mice received a LNAA supplemented diet, an isonitrogenic/isocaloric high-protein control diet, or normal chow. After six weeks of dietary treatment, blood and brain amino acid and monoaminergic neurotransmitter concentrations were assessed.In PKU mice, the investigated LNAA supplementation regimen significantly reduced blood and brain phenylalanine concentrations by 33% and 26%, respectively, compared to normal chow (p<0.01, while alleviating brain deficiencies of some but not all supplemented LNAA. Moreover, LNAA supplementation in PKU mice significantly increased brain serotonin and norepinephrine concentrations from 35% to 71% and from 57% to 86% of wild-type concentrations (p<0.01, respectively, but not brain dopamine concentrations (p = 0.307.This study shows that LNAA supplementation without dietary phenylalanine restriction in PKU mice improves brain biochemistry through all three hypothesized biochemical mechanisms. Thereby, these data provide proof-of-concept for LNAA supplementation as a valuable alternative dietary treatment strategy in PKU. Based on these

  11. Synergistic effect of all-trans-retinoic acid and arsenic trioxide on growth inhibition and apoptosis in human hepatoma, breast cancer, and lung cancer cells in vitro

    Le-Min Lin; Bao-Xin Li; Jian-Bing Xiao; Dan-Hua Lin; Bao-Feng Yang

    2005-01-01

    AIM: To investigate the effect of all-trans-retinoic acid (ATRA) on arsenic trioxide (As2O3)-induced apoptosis of human hepatoma, breast cancer, and lung cancer cells in an attempt to find a better combination therapy for solid tumors.METHODS: Human hepatoma cell lines HepG2, Hep3B,human breast cancer cell line MCF-7, and human lung adenocarcinoma cell line AGZY-83-a were treated with As2O3 together with ATRA. Cell survival fraction was determined by MTT assay, cell viability and apoptosis were measured by annexin V-fluorescein isothiocyanate (FITC) and PI staining, and intracellular glutathione (GSH)and glutathione-S-transferase (GST) activities were determined using commercial kits.RESULTS: Cytotoxicity of ATRA was low. ATRA (0.1, 1,and 10 μmol/L) could synergistically potentiate As2O3 to exert a dose-dependent inhibition of growth and to induce apoptosis in each of the cell lines. HepG2 and Hep3B with low intracellular GSH or GST activities were remarkably sensitive to As2O3 or As2O3+ATRA, while AGZY-83-a with higher GSH or GST activities was less sensitive to As2O3or As2O3+ATRA. Treatment with 2 μmol/L As2O3 for 72 h significantly decreased intracellular GSH and GST levels in each of the cell lines, and 1 μmol/L ATRA alone reduced minimal intracellular GSH and GST levels. ATRA potentiated the effect of As2O3 on intracellular GSH levels, but intracellular GST levels were not significantly affected by the combination of As2O3 and ATRA for 72 h as compared to As2O3 alone.CONCLUSION: ATRA can strongly potentiate As2O3-induced growth-inhibition and apoptosis in each of the cell lines, and two drugs can produce a significant synergic effect. The sensitivity to As2O3 or As2O3+ATRA is inversely proportional to intracellular GSH or GST levels in each of the cell lines. The GSH redox system may be the possible mechanism by which ATRA synergistically potentiates As2O3 to exert a dose-dependent inhibition of growth and to induce apoptosis.

  12. Synergistic effect of magnetic nanoparticles of Fe3O4 with gambogic acid on apoptosis of K562 leukemia cells

    Baoan Chen

    2009-11-01

    Full Text Available Baoan Chen1,*, Yiqiong Liang1,*, Weiwei Wu1, Jian Cheng1, Guohua Xia1, Feng Gao1, Jiahua Ding1, Chong Gao1, Zeye Shao1, Guohong Li1, Wenji Chen1, Wenlin Xu2, Xinchen Sun3, Lijie Liu4, Xiaomao Li5, Xuemei Wang61Department of Hematology; 3Department of Oncology, The Affiliated Zhongda Hospital, Clinical Medical School, Southeast University, Nanjing, People’s Republic of China; 2Department of Hematology, The Affiliated People’s Hospital, Jiangsu University, Zhenjiang, People’s Republic of China; 4Institution of Physiology, Southeast University, Nanjing, People’s Republic of China; 5Department of Physics, University of Saarland, Saarbruechen, Germany; 6State Key Lab of Bioelectronics (Chien-Shiung Wu Laboratory, Southeast University, Nanjing, Peoples Republic of China; *These authors have contributed equally to this workAbstract: Gambogic acid (GA has a significant anticancer effect on a wide variety of solid tumors. Recently, many nanoparticles have been introduced as drug-delivery systems to enhance the efficiency of anticancer drug delivery. The aim of this study was to investigate the potential benefit of combination therapy with GA and magnetic nanoparticles of Fe3O4 (MNPs-Fe3O4. The proliferation of K562 cells and their cytotoxicity were evaluated by MTT assay. Cell apoptosis was observed and analyzed by microscope and flow cytometry, respectively. Furthermore, realtime polymerase chain reaction and Western blotting analyses were performed to examine gene transcription and protein expression, respectively. The results showed that MNPs-Fe3O4 dramatically enhanced GA-induced cytotoxicity and apoptosis in K562 cells. The typical morphological features of apoptosis treated with GA and MNPs-Fe3O4 were observed under an optical microscope and a fluorescence microscope, respectively. The transcription of caspase-3 and bax gene in the group treated with GA and MNPs-Fe3O4 was higher than that in the GA-alone group or MNPs-Fe3O4-alone group, but

  13. Synergistical neuroprotection of rofecoxib and statins against malonic acid induced Huntington's disease like symptoms and related cognitive dysfunction in rats.

    Kumar, Anil; Sharma, Neha; Mishra, Jitendriya; Kalonia, Harikesh

    2013-06-05

    Malonic acid (MA) is a reversible inhibitor of succinate dehydrogenase (SDH) which induces mitochondrial dysfunction followed by secondary excitotoxicity and apoptosis due to generation of reactive oxygen species. Therapeutic potential of rofecoxib and statins have been well documented in several experimental models of neurodegenerative disorders, however, its exact mechanism of action is not known properly. Therefore, the present study is an attempt to investigate the effect of rofecoxib along with the statins against MA induced behavioural and biochemical alterations in rats. Single intrastriatal MA (6 µmol) significantly caused motor incordination, memory dysfunction and alteration in the antioxidant enzyme levels, mitochondrial enzyme complex (I, II, IV) activities, mitochondrial redox ratio and pro-inflammatory cytokine [tumour necrosis factor-α (TNF-α) and interleukin-6 (IL-6)] levels in the striatum as compared to the naive group. Fourteen days treatment with rofecoxib, atorvastatin, simvastatin significantly attenuated these behavioural, biochemical, and cellular alterations as compared to control (MA treated group). However, the treatment of rofecoxib along with atorvastatin or simvastatin significantly attenuated these behavioural, biochemical, and cellular alterations as compared to their individual effects. The results of the present study demonstrated that rofecoxib modulates the protective effects of statins against MA-induced neurobehavioral and related biochemical and cellular alterations in rats. This further provides evidence toward the involvement of neuroinflammatory cascade in the pathogenesis of Huntington's disease.

  14. Inhibitors of Fatty Acid Synthesis Induce PPAR α -Regulated Fatty Acid β -Oxidative Genes: Synergistic Roles of L-FABP and Glucose.

    Huang, Huan; McIntosh, Avery L; Martin, Gregory G; Petrescu, Anca D; Landrock, Kerstin K; Landrock, Danilo; Kier, Ann B; Schroeder, Friedhelm

    2013-01-01

    While TOFA (acetyl CoA carboxylase inhibitor) and C75 (fatty acid synthase inhibitor) prevent lipid accumulation by inhibiting fatty acid synthesis, the mechanism of action is not simply accounted for by inhibition of the enzymes alone. Liver fatty acid binding protein (L-FABP), a mediator of long chain fatty acid signaling to peroxisome proliferator-activated receptor- α (PPAR α ) in the nucleus, was found to bind TOFA and its activated CoA thioester, TOFyl-CoA, with high affinity while binding C75 and C75-CoA with lower affinity. Binding of TOFA and C75-CoA significantly altered L-FABP secondary structure. High (20 mM) but not physiological (6 mM) glucose conferred on both TOFA and C75 the ability to induce PPAR α transcription of the fatty acid β -oxidative enzymes CPT1A, CPT2, and ACOX1 in cultured primary hepatocytes from wild-type (WT) mice. However, L-FABP gene ablation abolished the effects of TOFA and C75 in the context of high glucose. These effects were not associated with an increased cellular level of unesterified fatty acids but rather by increased intracellular glucose. These findings suggested that L-FABP may function as an intracellular fatty acid synthesis inhibitor binding protein facilitating TOFA and C75-mediated induction of PPAR α in the context of high glucose at levels similar to those in uncontrolled diabetes.

  15. Tumor Microenvironment in the Brain

    Lorger, Mihaela [Leeds Institute of Molecular Medicine, University of Leeds, St. James’s University Hospital, Beckett Street, Leeds, LS9 7TF (United Kingdom)

    2012-02-22

    In addition to malignant cancer cells, tumors contain a variety of different stromal cells that constitute the tumor microenvironment. Some of these cell types provide crucial support for tumor growth, while others have been suggested to actually inhibit tumor progression. The composition of tumor microenvironment varies depending on the tumor site. The brain in particular consists of numerous specialized cell types such as microglia, astrocytes, and brain endothelial cells. In addition to these brain-resident cells, primary and metastatic brain tumors have also been shown to be infiltrated by different populations of bone marrow-derived cells. The role of different cell types that constitute tumor microenvironment in the progression of brain malignancies is only poorly understood. Tumor microenvironment has been shown to be a promising therapeutic target and diagnostic marker in extracranial malignancies. A better understanding of tumor microenvironment in the brain would therefore be expected to contribute to the development of improved therapies for brain tumors that are urgently required due to a poor availability of treatments for these malignancies. This review summarizes some of the known interactions between brain tumors and different stromal cells, and also discusses potential therapeutic approaches within this context.

  16. A Cumulative Spore Killing Approach: Synergistic Sporicidal Activity of Dilute Peracetic Acid and Ethanol at Low pH Against Clostridium difficile and Bacillus subtilis Spores

    Nerandzic, Michelle M.; Sankar C, Thriveen; Setlow, Peter; Donskey, Curtis J.

    2016-01-01

    Background. Alcohol-based hand sanitizers are the primary method of hand hygiene in healthcare settings, but they lack activity against bacterial spores produced by pathogens such as Clostridium difficile and Bacillus anthracis. We previously demonstrated that acidification of ethanol induced rapid sporicidal activity, resulting in ethanol formulations with pH 1.5–2 that were as effective as soap and water washing in reducing levels of C difficile spores on hands. We hypothesized that the addition of dilute peracetic acid (PAA) to acidified ethanol would enhance sporicidal activity while allowing elevation of the pH to a level likely to be well tolerated on skin (ie, >3). Methods. We tested the efficacy of acidified ethanol solutions alone or in combination with PAA against C difficile and Bacillus subtilis spores in vitro and against nontoxigenic C difficile spores on hands of volunteers. Results. Acidification of ethanol induced rapid sporicidal activity against C difficile and to a lesser extent B subtilis. The addition of dilute PAA to acidified ethanol resulted in synergistic enhancement of sporicidal activity in a dose-dependent fashion in vitro. On hands, the addition of 1200–2000 ppm PAA enhanced the effectiveness of acidified ethanol formulations, resulting in formulations with pH >3 that were as effective as soap and water washing. Conclusions. Acidification and the addition of dilute PAA induced rapid sporicidal activity in ethanol. Our findings suggest that it may be feasible to develop effective sporicidal ethanol formulations that are safe and tolerable on skin. PMID:26885539

  17. Glycyrrhetic acid synergistically enhances β₂-adrenergic receptor-Gs signaling by changing the location of Gαs in lipid rafts.

    Qian Shi

    Full Text Available Glycyrrhetic acid (GA exerts synergistic anti-asthmatic effects via a β₂-adrenergic receptor (β₂AR-mediated pathway. Cholesterol is an important component of the structure and function of lipid rafts, which play critical roles in the β₂AR-Gs-adenylate cyclase (AC-mediated signaling pathway. Owing to the structural similarities between GA and cholesterol, we investigated the possibility that GA enhances β₂AR signaling by altering cholesterol distribution. Azide-terminal GA (ATGA was synthesized and applied to human embryonic kidney 293 (HEK293 cells expressing fusion β₂AR, and the electron spin resonance (ESR technique was utilized. GA was determined to be localized predominantly on membrane and decreased their cholesterol contents. Thus, the fluidity of the hydrophobic region increased but not the polar surface of the cell membrane. The conformations of membrane proteins were also changed. GA further changed the localization of Gαs from lipid rafts to non-raft regions, resulting the binding of β₂AR and Gαs, as well as in reduced β₂AR internalization. Co-localization of β₂AR, Gαs, and AC increased isoproterenol-induced cAMP production and cholesterol reloading attenuated this effect. A speculation wherein GA enhances beta-adrenergic activity by increasing the functional linkage between the subcomponents of the membrane β₂AR-protein kinase A (PKA signaling pathway was proposed. The enhanced efficacy of β₂AR agonists by this novel mechanism could prevent tachyphylaxis.

  18. Synergistic effect of steam and lactic acid against Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes biofilms on polyvinyl chloride and stainless steel.

    Ban, Ga-Hee; Park, Sang-Hyun; Kim, Sang-Oh; Ryu, Sangryeol; Kang, Dong-Hyun

    2012-07-01

    This study was designed to investigate the individual and combined effects of steam and lactic acid (LA) on the inactivation of biofilms formed by Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes on polyvinyl chloride (PVC) and stainless steel. Six day old biofilms were developed on PVC and stainless steel coupons by using a mixture of three strains each of three foodborne pathogens at 25°C. After biofilm development, PVC and stainless steel coupons were treated with LA alone (immersed in 0.5% or 2% for 5s, 15s, and 30s), steam alone (on both sides for 5, 10, and 20s), and the combination of steam and LA. The numbers of biofilm cells of the three foodborne pathogens were significantly (p<0.05) reduced as the amount of LA and duration of steam exposure increased. There was a synergistic effect of steam and LA on the viability of biofilm cells of the three pathogens. For all biofilm cells of the three foodborne pathogens, reduction levels of individual treatments ranged from 0.11 to 2.12 log CFU/coupon. The combination treatment of steam and LA achieved an additional 0.2 to 2.11 log reduction compared to the sum of individual treatments. After a combined treatment of immersion in 2% LA for 15s or 30s followed by exposure to steam for 20s, biofilm cells of the three pathogens were reduced to below the detection limit (1.48 log). From the results of this study, bacterial populations of biofilms on PVC coupons did not receive the same thermal effect as on stainless steel coupons. Effectiveness of steam and LA may be attributed to the difference between Gram-negative and Gram-positive characteristics of the bacteria studied. The results of this study suggest that the combination of steam and LA has potential as a biofilm control intervention for food processing facilities.

  19. A Cumulative Spore Killing Approach: Synergistic Sporicidal Activity of Dilute Peracetic Acid and Ethanol at Low pH Against Clostridium difficile and Bacillus subtilis Spores.

    Nerandzic, Michelle M; Sankar C, Thriveen; Setlow, Peter; Donskey, Curtis J

    2016-01-01

    Background.  Alcohol-based hand sanitizers are the primary method of hand hygiene in healthcare settings, but they lack activity against bacterial spores produced by pathogens such as Clostridium difficile and Bacillus anthracis. We previously demonstrated that acidification of ethanol induced rapid sporicidal activity, resulting in ethanol formulations with pH 1.5-2 that were as effective as soap and water washing in reducing levels of C difficile spores on hands. We hypothesized that the addition of dilute peracetic acid (PAA) to acidified ethanol would enhance sporicidal activity while allowing elevation of the pH to a level likely to be well tolerated on skin (ie, >3). Methods.  We tested the efficacy of acidified ethanol solutions alone or in combination with PAA against C difficile and Bacillus subtilis spores in vitro and against nontoxigenic C difficile spores on hands of volunteers. Results.  Acidification of ethanol induced rapid sporicidal activity against C difficile and to a lesser extent B subtilis. The addition of dilute PAA to acidified ethanol resulted in synergistic enhancement of sporicidal activity in a dose-dependent fashion in vitro. On hands, the addition of 1200-2000 ppm PAA enhanced the effectiveness of acidified ethanol formulations, resulting in formulations with pH >3 that were as effective as soap and water washing. Conclusions.  Acidification and the addition of dilute PAA induced rapid sporicidal activity in ethanol. Our findings suggest that it may be feasible to develop effective sporicidal ethanol formulations that are safe and tolerable on skin.

  20. Plant Natural Products Calycosin and Gallic Acid Synergistically Attenuate Neutrophil Infiltration and Subsequent Injury in Isoproterenol-Induced Myocardial Infarction: A Possible Role for Leukotriene B4 12-Hydroxydehydrogenase?

    Yuanyuan Cheng

    2015-01-01

    Full Text Available Leukotriene B4 12-hydroxydehydrogenase (LTB4DH catalyzes the oxidation of proinflammatory LTB4 into less bioactive 12-oxo-LTB4. We recently discovered that LTB4DH was induced by two different natural products in combination. We previously isolated gallic acid from Radix Paeoniae through a bioactivity-guided fractionation procedure. The purpose of this study is to test the hypothesis that LTB4DH inducers may suppress neutrophil-mediated inflammation in myocardial infarction. We first isolated the active compound(s from another plant, Radix Astragali, by the similar strategy. By evaluating LTB4DH induction, we identified calycosin and formononetin from Radix Astragali by HPLC-ESI-MS technique. We confirmed that gallic acid and commercial calycosin or formononetin could synergistically induce LTB4DH expression in HepG2 cells and human neutrophils. Moreover, calycosin and gallic acid attenuated the effects of LTB4 on the survival and chemotaxis of neutrophil cell culture. We further demonstrated that calycosin and gallic acid synergistically suppressed neutrophil infiltration and protected cardiac integrity in the isoproterenol-induced mice model of myocardial infarction. Calycosin and gallic acid dramatically suppressed isoproterenol-induced increase in myeloperoxidase (MPO activity and malondialdehyde (MDA level. Collectively, our results suggest that LTB4DH inducers (i.e., calycosin and gallic acid may be a novel combined therapy for the treatment of neutrophil-mediated myocardial injury.

  1. Plant Natural Products Calycosin and Gallic Acid Synergistically Attenuate Neutrophil Infiltration and Subsequent Injury in Isoproterenol-Induced Myocardial Infarction: A Possible Role for Leukotriene B4 12-Hydroxydehydrogenase?

    Cheng, Yuanyuan; Zhao, Jia; Tse, Hung Fat; Le, X Chris; Rong, Jianhui

    2015-01-01

    Leukotriene B4 12-hydroxydehydrogenase (LTB4DH) catalyzes the oxidation of proinflammatory LTB4 into less bioactive 12-oxo-LTB4. We recently discovered that LTB4DH was induced by two different natural products in combination. We previously isolated gallic acid from Radix Paeoniae through a bioactivity-guided fractionation procedure. The purpose of this study is to test the hypothesis that LTB4DH inducers may suppress neutrophil-mediated inflammation in myocardial infarction. We first isolated the active compound(s) from another plant, Radix Astragali, by the similar strategy. By evaluating LTB4DH induction, we identified calycosin and formononetin from Radix Astragali by HPLC-ESI-MS technique. We confirmed that gallic acid and commercial calycosin or formononetin could synergistically induce LTB4DH expression in HepG2 cells and human neutrophils. Moreover, calycosin and gallic acid attenuated the effects of LTB4 on the survival and chemotaxis of neutrophil cell culture. We further demonstrated that calycosin and gallic acid synergistically suppressed neutrophil infiltration and protected cardiac integrity in the isoproterenol-induced mice model of myocardial infarction. Calycosin and gallic acid dramatically suppressed isoproterenol-induced increase in myeloperoxidase (MPO) activity and malondialdehyde (MDA) level. Collectively, our results suggest that LTB4DH inducers (i.e., calycosin and gallic acid) may be a novel combined therapy for the treatment of neutrophil-mediated myocardial injury.

  2. Dynamic microenvironments: the fourth dimension.

    Tibbitt, Mark W; Anseth, Kristi S

    2012-11-14

    The extracellular space, or cell microenvironment, choreographs cell behavior through myriad controlled signals, and aberrant cues can result in dysfunction and disease. For functional studies of human cell biology or expansion and delivery of cells for therapeutic purposes, scientists must decipher this intricate map of microenvironment biology and develop ways to mimic these functions in vitro. In this Perspective, we describe technologies for four-dimensional (4D) biology: cell-laden matrices engineered to recapitulate tissue and organ function in 3D space and over time.

  3. Ursolic acid inhibits the growth of human pancreatic cancer and enhances the antitumor potential of gemcitabine in an orthotopic mouse model through suppression of the inflammatory microenvironment.

    Prasad, Sahdeo; Yadav, Vivek R; Sung, Bokyung; Gupta, Subash C; Tyagi, Amit K; Aggarwal, Bharat B

    2016-03-15

    The development of chemoresistance in human pancreatic cancer is one reason for the poor survival rate for patients with this cancer. Because multiple gene products are linked with chemoresistance, we investigated the ability of ursolic acid (UA) to sensitize pancreatic cancer cells to gemcitabine, a standard drug used for the treatment of pancreatic cancer. These investigations were done in AsPC-1, MIA PaCa-2, and Panc-28 cells and in nude mice orthotopically implanted with Panc-28 cells. In vitro, UA inhibited proliferation, induced apoptosis, suppressed NF-κB activation and its regulated proliferative, metastatic, and angiogenic proteins. UA (20 μM) also enhanced gemcitabine (200 nM)-induced apoptosis and suppressed the expression of NF-κB-regulated proteins. In the nude mouse model, oral administration of UA (250 mg/kg) suppressed tumor growth and enhanced the effect of gemcitabine (25 mg/kg). Furthermore, the combination of UA and gemcitabine suppressed the metastasis of cancer cells to distant organs such as liver and spleen. Immunohistochemical analysis showed that biomarkers of proliferation (Ki-67) and microvessel density (CD31) were suppressed by the combination of UA and gemcitabine. UA inhibited the activation of NF-κB and STAT3 and the expression of tumorigenic proteins regulated by these inflammatory transcription factors in tumor tissue. Furthermore, the combination of two agents decreased the expression of miR-29a, closely linked with tumorigenesis, in the tumor tissue. UA was found to be bioavailable in animal serum and tumor tissue. These results suggest that UA can inhibit the growth of human pancreatic tumors and sensitize them to gemcitabine by suppressing inflammatory biomarkers linked to proliferation, invasion, angiogenesis, and metastasis.

  4. Silica ecosystem for synergistic biotransformation

    Mutlu, Baris R.; Sakkos, Jonathan K.; Yeom, Sujin; Wackett, Lawrence P.; Aksan, Alptekin

    2016-06-01

    Synergistical bacterial species can perform more varied and complex transformations of chemical substances than either species alone, but this is rarely used commercially because of technical difficulties in maintaining mixed cultures. Typical problems with mixed cultures on scale are unrestrained growth of one bacterium, which leads to suboptimal population ratios, and lack of control over bacterial spatial distribution, which leads to inefficient substrate transport. To address these issues, we designed and produced a synthetic ecosystem by co-encapsulation in a silica gel matrix, which enabled precise control of the microbial populations and their microenvironment. As a case study, two greatly different microorganisms: Pseudomonas sp. NCIB 9816 and Synechococcus elongatus PCC 7942 were encapsulated. NCIB 9816 can aerobically biotransform over 100 aromatic hydrocarbons, a feat useful for synthesis of higher value commodity chemicals or environmental remediation. In our system, NCIB 9816 was used for biotransformation of naphthalene (a model substrate) into CO2 and the cyanobacterium PCC 7942 was used to provide the necessary oxygen for the biotransformation reactions via photosynthesis. A mathematical model was constructed to determine the critical cell density parameter to maximize oxygen production, and was then used to maximize the biotransformation rate of the system.

  5. The external microenvironment of healing skin wounds

    Kruse, Carla R; Nuutila, Kristo; Lee, Cameron Cy

    2015-01-01

    The skin wound microenvironment can be divided into two main components that influence healing: the external wound microenvironment, which is outside the wound surface; and the internal wound microenvironment, underneath the surface, to which the cells within the wound are exposed. Treatment...

  6. The synergistic effect of beta-boswellic acid and Nurr1 overexpression on dopaminergic programming of antioxidant glutathione peroxidase-1-expressing murine embryonic stem cells.

    Abasi, M; Massumi, M; Riazi, G; Amini, H

    2012-10-11

    Parkinson's disease (PD) is a neurodegenerative disorder in which the nigro-striatal dopaminergic (DAergic) neurons have been selectively lost. Due to side effects of levodopa, a dopamine precursor drug, recently cell replacement therapy for PD has been considered. Lack of sufficient amounts of, embryos and ethical problems regarding the use of dopamine-rich embryonic neural cells have limited the application of these cells for PD cell therapy. Therefore, many investigators have focused on using the pluripotent stem cells to generate DAergic neurons. This study is aimed first to establish a mouse embryonic stem (mES) cell line that can stably co-express Nurr1 (Nuclear receptor subfamily 4, group A, member 2) transcription factor in order to efficiently generate DAergic neurons, and glutathione peroxidase-1 (GPX-1) to protect the differentiated DAergic-like cells against oxidative stress. In addition to genetic engineering of ES cells, the effect of Beta-boswellic acid (BBA) on DAergic differentiation course of mES cells was sought in the present study. To that end, the feeder-independent CGR8 mouse embryonic stem cells were transduced by Nurr1- and GPX-1-harboring Lentiviruses and the generated Nurr1/GPX-1-expresssing ES clones were characterized and verified. Gene expression analyses demonstrated that BBA treatment and overexpression of Nurr1 has a synergistic effect on derivation of DAergic neurons from Nurr1/GPX-1-expressing ES cells. The differentiated cells could exclusively synthesize and secrete dopamine in response to stimuli. Overexpression of GPX-1 in genetically engineered Nurr1/GPX-1-ES cells increased the viability of these cells during their differentiation into CNS stem cells. In conclusion, the results demonstrated that Nurr1-overexpressing feeder-independent ES cells like the feeder-dependent ES cells, can be efficiently programmed into functional DAergic neurons and additional treatment of cells by BBA can even augment this efficiency. GPX-1

  7. Synergistic extraction of U(VI) with mixtures of 2-ethyl hexyl phosphonic acid-mono-2-ethyl hexyl ester (PC-88A) and TBP, TOPO or Cyanex 923

    Singh, D.K.; Singh, H. [Rare Earth Development Section, Bhabha Atomic Research Centre, Trombay, Mumbai (India); Mathur, J.N. [Radiochemistry Div., Bhabha Atomic Research Centre, Trombay, Mumbai (India)

    2001-07-01

    The extraction of uranium (VI) from hydrochloric acid medium with PC-88A (H{sub 2}A{sub 2} in dimeric form) and neutral organo phosphorous donors like TBP, TOPO and Cyanex 923 (S) in dodecane is reported. Experiments were performed with PC-88A, TOPO and Cyanex 923 alone and with the mixtures of PC-88A with TBP, TOPO or Cyanex 923. The presence of neutral donors in PC-88A solutions gave synergistic enhancement in the extraction of uranium (VI), the order being Cyanex 923 > TOPO > TBP. The species extracted with PC-88A alone is UO{sub 2}(HA{sub 2}){sub 2}, whereas with TOPO or Cyanex 923 alone, it is UO{sub 2}Cl{sub 2}.2S and with the synergistic mixtures it is UO{sub 2}(HA{sub 2}){sub 2}.S. The power dependencies of S and PC-88A under experimental conditions have also been evaluated using non-linear regression analysis. The equilibrium constants of synergistic extraction have been calculated and the mechanism of the extraction is discussed. The effect of different organic diluents on uranium (VI) extraction with PC-88A has also been examined. (orig.)

  8. Aerobic glycolysis and high level of lactate in cancer metabolism and microenvironment

    Bo Jiang

    2017-03-01

    Full Text Available Metabolic abnormalities is a hallmark of cancer. About 100 years ago, Nobel laureate Otto Heinrich Warburg first described high rate of glycolysis in cancer cells. Recently more and more novel opinions about cancer metabolism supplement to this hypothesis, consist of glucose uptake, lactic acid generation and secretion, acidification of the microenvironment and cancer immune evasion. Here we briefly review metabolic pathways generating lactate, and discuss the function of higher lactic acid in cancer microenvironments.

  9. Biomimetic microenvironments for regenerative endodontics.

    Kaushik, Sagar N; Kim, Bogeun; Walma, Alexander M Cruz; Choi, Sung Chul; Wu, Hui; Mao, Jeremy J; Jun, Ho-Wook; Cheon, Kyounga

    2016-01-01

    Regenerative endodontics has been proposed to replace damaged and underdeveloped tooth structures with normal pulp-dentin tissue by providing a natural extracellular matrix (ECM) mimicking environment; stem cells, signaling molecules, and scaffolds. In addition, clinical success of the regenerative endodontic treatments can be evidenced by absence of signs and symptoms; no bony pathology, a disinfected pulp, and the maturation of root dentin in length and thickness. In spite of the various approaches of regenerative endodontics, there are several major challenges that remain to be improved: a) the endodontic root canal is a strong harbor of the endodontic bacterial biofilm and the fundamental etiologic factors of recurrent endodontic diseases, (b) tooth discolorations are caused by antibiotics and filling materials, (c) cervical root fractures are caused by endodontic medicaments, (d) pulp tissue is not vascularized nor innervated, and (e) the dentin matrix is not developed with adequate root thickness and length. Generally, current clinical protocols and recent studies have shown a limited success of the pulp-dentin tissue regeneration. Throughout the various approaches, the construction of biomimetic microenvironments of pulp-dentin tissue is a key concept of the tissue engineering based regenerative endodontics. The biomimetic microenvironments are composed of a synthetic nano-scaled polymeric fiber structure that mimics native pulp ECM and functions as a scaffold of the pulp-dentin tissue complex. They will provide a framework of the pulp ECM, can deliver selective bioactive molecules, and may recruit pluripotent stem cells from the vicinity of the pulp apex. The polymeric nanofibers are produced by methods of self-assembly, electrospinning, and phase separation. In order to be applied to biomedical use, the polymeric nanofibers require biocompatibility, stability, and biodegradability. Therefore, this review focuses on the development and application of the

  10. Effect of papaya seed extract on microenvironment of cauda epididymis

    R.J. Verma; N.J. Chinoy

    2001-01-01

    Aim: To evaluate the effect of aqueous Carica papaya seed extract on microenvironment of cauda epididymis.Methods: Adult male albino rats were intrauscularly administered with 0 (control) or 0.5 mg papaya seed ex tract/kg body weight for 7 days. Cauda epididymal tubular content was collected by micropuncture technique; epididy real luminal fluid and sperm pellets were separately analyzed. Results: The results revealed that the extract treat ment caused significant reduction, as compared with control, in total protein and sialic acid contents in both epididymal fluid and sperm pellet. As compared with control, significantly lowered acid phosphatase activity was recorded in spermpellet but was higher in epididymal fluid after the treatment. The extract treatment also caused significant reduction in level of inorganic phosphorus in the ePididymal fluid. Conclusion: It is concluded that the aqueous papaya seed ex tract alters cauda epididymal microenvironment.

  11. Some Phthalocyanine and Naphthalocyanine Derivatives as Corrosion Inhibitors for Aluminium in Acidic Medium: Experimental, Quantum Chemical Calculations, QSAR Studies and Synergistic Effect of Iodide Ions.

    Dibetsoe, Masego; Olasunkanmi, Lukman O; Fayemi, Omolola E; Yesudass, Sasikumar; Ramaganthan, Baskar; Bahadur, Indra; Adekunle, Abolanle S; Kabanda, Mwadham M; Ebenso, Eno E

    2015-08-28

    The effects of seven macrocyclic compounds comprising four phthalocyanines (Pcs) namely 1,4,8,11,15,18,22,25-octabutoxy-29H,31H-phthalocyanine (Pc1), 2,3,9,10,16,17,23,24-octakis(octyloxy)-29H,31H-phthalocyanine (Pc2), 2,9,16,23-tetra-tert-butyl-29H,31H-phthalocyanine (Pc3) and 29H,31H-phthalocyanine (Pc4), and three naphthalocyanines namely 5,9,14,18,23,27,32,36-octabutoxy-2,3-naphthalocyanine (nPc1), 2,11,20,29-tetra-tert-butyl-2,3-naphthalocyanine (nPc2) and 2,3-naphthalocyanine (nP3) were investigated on the corrosion of aluminium (Al) in 1 M HCl using a gravimetric method, potentiodynamic polarization technique, quantum chemical calculations and quantitative structure activity relationship (QSAR). Synergistic effects of KI on the corrosion inhibition properties of the compounds were also investigated. All the studied compounds showed appreciable inhibition efficiencies, which decrease with increasing temperature from 30 °C to 70 °C. At each concentration of the inhibitor, addition of 0.1% KI increased the inhibition efficiency compared to the absence of KI indicating the occurrence of synergistic interactions between the studied molecules and I(-) ions. From the potentiodynamic polarization studies, the studied Pcs and nPcs are mixed type corrosion inhibitors both without and with addition of KI. The adsorption of the studied molecules on Al surface obeys the Langmuir adsorption isotherm, while the thermodynamic and kinetic parameters revealed that the adsorption of the studied compounds on Al surface is spontaneous and involves competitive physisorption and chemisorption mechanisms. The experimental results revealed the aggregated interactions between the inhibitor molecules and the results further indicated that the peripheral groups on the compounds affect these interactions. The calculated quantum chemical parameters and the QSAR results revealed the possibility of strong interactions between the studied inhibitors and metal surface. QSAR analysis on the

  12. Some Phthalocyanine and Naphthalocyanine Derivatives as Corrosion Inhibitors for Aluminium in Acidic Medium: Experimental, Quantum Chemical Calculations, QSAR Studies and Synergistic Effect of Iodide Ions

    Masego Dibetsoe

    2015-08-01

    Full Text Available The effects of seven macrocyclic compounds comprising four phthalocyanines (Pcs namely 1,4,8,11,15,18,22,25-octabutoxy-29H,31H-phthalocyanine (Pc1, 2,3,9,10,16,17,23,24-octakis(octyloxy-29H,31H-phthalocyanine (Pc2, 2,9,16,23-tetra-tert-butyl-29H,31H-phthalocyanine (Pc3 and 29H,31H-phthalocyanine (Pc4, and three naphthalocyanines namely 5,9,14,18,23,27,32,36-octabutoxy-2,3-naphthalocyanine (nPc1, 2,11,20,29-tetra-tert-butyl-2,3-naphthalocyanine (nPc2 and 2,3-naphthalocyanine (nP3 were investigated on the corrosion of aluminium (Al in 1 M HCl using a gravimetric method, potentiodynamic polarization technique, quantum chemical calculations and quantitative structure activity relationship (QSAR. Synergistic effects of KI on the corrosion inhibition properties of the compounds were also investigated. All the studied compounds showed appreciable inhibition efficiencies, which decrease with increasing temperature from 30 °C to 70 °C. At each concentration of the inhibitor, addition of 0.1% KI increased the inhibition efficiency compared to the absence of KI indicating the occurrence of synergistic interactions between the studied molecules and I− ions. From the potentiodynamic polarization studies, the studied Pcs and nPcs are mixed type corrosion inhibitors both without and with addition of KI. The adsorption of the studied molecules on Al surface obeys the Langmuir adsorption isotherm, while the thermodynamic and kinetic parameters revealed that the adsorption of the studied compounds on Al surface is spontaneous and involves competitive physisorption and chemisorption mechanisms. The experimental results revealed the aggregated interactions between the inhibitor molecules and the results further indicated that the peripheral groups on the compounds affect these interactions. The calculated quantum chemical parameters and the QSAR results revealed the possibility of strong interactions between the studied inhibitors and metal surface. QSAR

  13. Screeninq on Synergist of Bacillus thuringiensis Wettable Powder

    Donghua GE; Xiaohong ZHANG; Ziyan NANGONG; Ping SONG; Qinying WANG; Keqiang CAO

    2012-01-01

    [Objective] This study aimed to screen the best synergistic material for Bt wettable powder and evaluate their synergistic effect. [Method] The synergism of six different kinds of additives for Bacillus thuringiensis wettable powder (Bt WP) on the 2^nd instar larvae of Plutella xylostella was tested by method of leaf dipping in labora- tory. [Result] The mixtures of Bt with 0.1% ZnCl2, 0.5% ZnCl2, 1.0% ZnCl2, 1.0% MgCI2, 0.5% boric acid, 1.0% boric acid, 0.5% citric acid or 1.0% citric acid all ex- hibited synergistic effect, in which the synergistic effect of mixture containing 0.5% boric acid was the highest, with 17.2 synergistic ratio; followed by the mixture containing 1.0% ZnCl2, with 15.6 synergistic ratio. Moreover, addition of 0.5% boric acid could shorten the median lethal time of Bt wettable powder by about 10 h. After the mixtures of Bt with 0.5% boracic acid or 1.0% ZnCl2 was stored for 15 d at room temperature, toxicities of the two mixtures did not change significantly. [Conclusion] Boracic acid as the synergist of Bt wettable powder could not only increase insecti- cidal effect of Bt, but also accelerate its insecticidal rate. So, boracic acid could improve the disadvantages of Bt wettable powder such as poor insecticidal effect and slow insecticidal speed in a certain degree.

  14. 协效剂对棉杆皮聚乳酸复合材料力学性能的影响%Effect of synergist on mechanical properties of cotton stalk bast fibers reinforced polylactic acid composites materials

    王博; 徐进硕; 魏春艳; 崔永珠; 吕丽华

    2015-01-01

    在废弃棉秆皮纤维增强聚乳酸模压制成的复合材料板中添加阻燃剂后,由于其膨胀体系原理,严重影响了复合材料的力学性能.选用蒙脱土(MMT)和微纤化纤维素(MFC)作为协效剂,利用其特殊的物理结构来提高复合材料的力学性能.同时,蒙脱土也有协效阻燃作用,可以提高材料的阻燃性能.试验结果表明,在加入协效剂后,复合材料的力学性能均有提高,MFC对材料的拉伸强度和冲击强度提高较明显,可分别提高43.74%和41.50%.经XRD测定,加入MMT后,材料的片层间距增加到5.38 nm,说明MMT以片层的形式插入到纤维与基体中,同时极限氧指数增加了6.38%.%The composite boards were moulded by waste cotton stalk bast fibers and polylactic acid (PLA), whose mechanical properties were seriously affected after addition of flame retardants. Montmorillonite (MMT) and micro fiber cellulose (MFC) with special physical structure were utilized as synergists to improve the mechanical properties of composite materials. At the same time, MMT had synergistic flame retardant ef-fect, which could improve the flame retardant properties of materials. The experimental results showed that the mechanical properties of composite materials were increased after synergist addition. The tensile strength and impact strength was obviously increased by MFC addition and increased by 43.74% and 41.50%, respec-tively. XRD result indicated that the interlamellar space of materials increased to 5.38 nm after MMT addition, and also illustrated MMT inserted into the fibers and matrixs in the form of layers, meanwhile limit oxygen in-dex was increased by 6.38%.

  15. Synergistic Trap Response of the False Stable Fly and Little House Fly (Diptera: Muscidae) to Acetic Acid and Ethanol, Two Principal Sugar Fermentation Volatiles.

    Landolt, Peter J; Cha, Dong H; Zack, Richard S

    2015-10-01

    In an initial observation, large numbers of muscoid flies (Diptera) were captured as nontarget insects in traps baited with solutions of acetic acid plus ethanol. In subsequent field experiments, numbers of false stable fly Muscina stabulans (Fallén) and little house fly Fannia canicularis (L.) trapped with the combination of acetic acid plus ethanol were significantly higher than those trapped with either chemical alone, or in unbaited traps. Flies were trapped with acetic acid and ethanol that had been formulated in the water of the drowning solution of the trap, or dispensed from polypropylene vials with holes in the vial lids for diffusion of evaporated chemical. Numbers of both species of fly captured were greater with acetic acid and ethanol in glass McPhail traps, compared to four other similar wet trap designs. This combination of chemicals may be useful as an inexpensive and not unpleasant lure for monitoring or removing these two pest fly species.

  16. The Vascular Microenvironment and Systemic Sclerosis

    Tracy Frech

    2010-01-01

    Full Text Available The role of the vascular microenvironment in the pathogenesis Systemic Sclerosis (SSc is appreciated clinically as Raynaud's syndrome with capillary nail bed change. This manifestation of vasculopathy is used diagnostically in both limited and diffuse cutaneous subsets of SSc, and is thought to precede fibrosis. The degree of subsequent fibrosis may also be determined by the vascular microenvironment. This paper describes why the vascular microenvironment might determine the degree of end-organ damage that occurs in SSc, with a focus on vascular cell senescence, endothelial progenitor cells (EPC including multipotential mesenchymal stem cells (MSC, pericytes, and angiogenic monocytes. An explanation of the role of EPC, pericytes, and angiogenic monocytes is important to an understanding of SSc pathogenesis. An evolving understanding of the vascular microenvironment in SSc may allow directed treatment.

  17. Transcriptomic Microenvironment of Lung Adenocarcinoma.

    Bossé, Yohan; Sazonova, Olga; Gaudreault, Nathalie; Bastien, Nathalie; Conti, Massimo; Pagé, Sylvain; Trahan, Sylvain; Couture, Christian; Joubert, Philippe

    2017-03-01

    Background: Tissues surrounding tumors are increasingly studied to understand the biology of cancer development and identify biomarkers.Methods: A unique geographic tissue sampling collection was obtained from patients that underwent curative lobectomy for stage I pulmonary adenocarcinoma. Tumor and nontumor lung samples located at 0, 2, 4, and 6 cm away from the tumor were collected. Whole-genome gene expression profiling was performed on all samples (n = 5 specimens × 12 patients = 60). Analyses were carried out to identify genes differentially expressed in the tumor compared with adjacent nontumor lung tissues at different distances from the tumor as well as to identify stable and transient genes in nontumor tissues with respect to tumor proximity.Results: The magnitude of gene expression changes between tumor and nontumor sites was similar with increasing distance from the tumor. A total of 482 up- and 843 downregulated genes were found in tumors, including 312 and 566 that were consistently differentially expressed across nontumor sites. Twenty-nine genes induced and 34 knocked-down in tumors were also identified. Tumor proximity analyses revealed 15,700 stable genes in nontumor lung tissues. Gene expression changes across nontumor sites were subtle and not statistically significant.Conclusions: This study describes the transcriptomic microenvironment of lung adenocarcinoma and adjacent nontumor lung tissues collected at standardized distances relative to the tumor.Impact: This study provides further insights about the molecular transitions that occur from normal tissue to lung adenocarcinoma and is an important step to develop biomarkers in nonmalignant lung tissues. Cancer Epidemiol Biomarkers Prev; 26(3); 389-96. ©2016 AACR.

  18. Synergistic effect of a combination of nanoparticulate Fe3O4 and gambogic acid on phosphatidylinositol 3-kinase/Akt/Bad pathway of LOVO cells

    Hu S

    2012-07-01

    Full Text Available Lianghua Fang,1,3 Baoan Chen,2 Shenlin Liu,3 Ruiping Wang,3 Shouyou Hu,3 Guohua Xia,2 Yongli Tian,3 Xiaohui Cai21No 1 Clinical Medical College of Nanjing University of Chinese Medicine, 2Department of Hematology, Zhongda Hospital, Medical School, Southeast University, 3Department of Oncology, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing, People's Republic of ChinaBackground: The present study evaluated whether magnetic nanoparticles containing Fe3O4 could enhance the activity of gambogic acid in human colon cancer cells, and explored the potential mechanisms involved.Methods: Cytotoxicity was evaluated by MTT assay. The percentage of cells undergoing apoptosis was analyzed by flow cytometry, and cell morphology was observed under both an optical microscope and a fluorescence microscope. Reverse transcriptase polymerase chain reaction and Western blot assay were performed to determine the transcription of genes and expression of proteins, respectively.Results: Gambogic acid could inhibit proliferation of LOVO cells in a dose-dependent and time-dependent manner and induce apoptosis, which was dramatically enhanced by magnetic nanoparticles containing Fe3O4. The typical morphological features of apoptosis in LOVO cells were observed after treatment comprising gambogic acid with and without magnetic nanoparticles containing Fe3O4. Transcription of cytochrome c, caspase 9, and caspase 3 genes was higher in the group treated with magnetic nanoparticles containing Fe3O4 and gambogic acid than in the groups that received gambogic acid or magnetic nanoparticles containing Fe3O4, but transcription of phosphatidylinositol 3-kinase, Akt, and Bad genes decreased. Notably, expression of cytochrome c, caspase 9, and caspase 3 proteins in the group treated with gambogic acid and magnetic nanoparticles containing Fe3O4 was higher than in the groups receiving magnetic nanoparticles containing Fe3O4 or gambogic acid, while expression of p-PI3

  19. Quantifying synergistic mutual information

    Griffith, Virgil

    2012-01-01

    Quantifying cooperation among random variables in predicting a single target random variable is an important problem in many biological systems with 10s to 1000s of co-dependent variables. We review the prior literature of information theoretical measures of synergy and introduce a novel synergy measure, entitled *synergistic mutual information* and compare it against the three existing measures of cooperation. We apply all four measures against a suite of binary circuits to demonstrate our measure alone quantifies the intuitive concept of synergy across all examples.

  20. Dysregulated pH in Tumor Microenvironment Checkmates Cancer Therapy

    Jaleh Barar

    2013-12-01

    Full Text Available Introduction: The dysregulation of pH by cancerous cells of solid tumors is able to create a unique milieu that is in favor of progression, invasion and metastasis as well as chemo-/immuno-resistance traits of solid tumors. Bioelements involved in pH dysregulation provide new set of oncotargets, inhibition of which may result in better clinical outcome. Methods: To study the impacts of pH dysregulation, we investigated the tumor development and progression in relation with Warburg effect, glycolysis and formation of aberrant tumor microenvironment. Results: The upregulation of glucose transporter GLUT-1 and several enzymes involve in glycolysis exacerbates this phenomenon. The accumulation of lactic acids in cancer cells provokes upregulation of several transport machineries (MCT-1, NHE-1, CA IX and H+ pump V-ATPase resulting in reinforced efflux of proton into extracellular fluid. This deviant event makes pH to be settled at 7.4 and 6.6 respectively in cancer cells cytoplasm and extracellular fluid within the tumor microenvironment, which in return triggers secretion of lysosomal components (various enzymes in acidic milieu with pH 5 into cytoplasm. All these anomalous phenomena make tumor microenvironment (TME to be exposed to cocktail of various enzymes with acidic pH, upon which extracellular matrix (ECM can be remodeled and even deformed, resulting in emergence of a complex viscose TME with high interstitial fluid pressure. Conclusion: It seems that pH dysregulation is able to remodel various physiologic functions and make solid tumors to become much more invasive and metastatic. It also can cause undesired resistance to chemotherapy and immunotherapy. Hence, cancer therapy needs to be reinforced using specific inhibitors of bioelements involved in pH dysregulation of TME in solid tumors.

  1. 过氧乙酸与物理因子协同杀菌作用的研究%STUDY ON THE SYNERGISTIC BACTERICIDAL EFFECT OF PERACETIC ACID WITH OTHER PHYSICAL FACTORS

    钟昱文; 陈惠珍; 王冰姝; 肖红; 王雅静; 张里君; 邹钦

    2011-01-01

    目的 研究超声波、温度与过氧乙酸的协同杀菌作用,为医疗器械消毒实际应用提供依据.方法 采用载体浸泡定量和定性杀菌试验方法,对超声波等物理因子与过氧乙酸协同杀菌效果进行了试验研究.结果 用过氧乙酸750 mg/L单独浸泡作用4 min,对载体上枯草杆菌黑色变种芽孢的平均杀灭率为99.93%;在超声波水槽内含350 mg/L过氧乙酸水溶液加温50℃超声波的协同作用2 min,对载体上枯草芽孢杆菌黑色变种芽孢的杀灭率达100%.用含1 500 mg/L过氧乙酸单独浸泡作用15 min,对载体上枯草杆菌黑色变种芽孢定性培养达到无菌生长;在超声波水槽内含750 mg/L过氧乙酸水溶液加温50~C超声波的协同作用10 min,对载体上枯草杆菌黑色变种芽孢定性培养达到无菌生长.结论 超声波加温50℃与过氧乙酸协同作用,可明显提高过氧乙酸杀灭细菌芽孢的效果,对其用于临床医疗器械消毒具有参考价值%Objective To study the synergistic bactericidal effect of ultrasonic, heat and peracetic acid, and to provide basis for practical application for medical instrument sterilization. Methods Quantitative carrier test and qualitive bactericidal test were taken to evaluate the synergistic bactericidal effect of ultrasound, heat and peracetic acid. Results The killing rate of Bacillus subtilis var. niger spore in carrier exposed to 750 mg/L peracetic acid alone for 4 min was 99.93%,and the killing rate was 100% by dipping in 350 mg/L peracetic acid combined with ultrasound and heating at 50℃ for 2 min in ultrasonic cistern. In Bacillus subtilis var. niger spore qualitive killing test, there was no bacterial growth in carrier after soaking in 1 500 mg/L peracetic acid alone for4 min, and the same effect can be achieved by using 750 mg/L peracetic acid, cooperating with ultrasound and heating at 50℃ for 10 min. Conclusion The effect of bacterial spores killing can be significantly

  2. The relation between the omega-3 index and arachidonic acid is bell shaped : Synergistic at low EPA plus DHA status and antagonistic at high EPA plus DHA status

    Luxwolda, Martine F.; Kuipers, Remko S.; Smit, Ella N.; Velzing-Aarts, Francien V.; Dijck-Brouwer, D. A. Janneke; Muskiet, Frits A. J.

    2011-01-01

    Introduction: The relation between docosahexaenoic (DHA) and eicosapentaenoic (EPA) vs. arachidonic acid (AA) seems characterized by both synergism and antagonism. Materials and methods: Investigate the relation between EPA + DHA and AA in populations with a wide range of EPA + DHA status and across

  3. Synergistic effect of Aspergillus tubingensis CTM 507 glucose oxidase in presence of ascorbic acid and alpha amylase on dough properties, baking quality and shelf life of bread.

    Kriaa, Mouna; Ouhibi, Rabeb; Graba, Héla; Besbes, Souhail; Jardak, Mohamed; Kammoun, Radhouane

    2016-02-01

    The impact of Aspergillus tubingensis glucose oxidase (GOD) in combination with α-amylase and ascorbic acid on dough properties, qualities and shelf life of bread was investigated. Regression models of alveograph and texture parameters of dough and bread were adjusted. Indeed, the mixture of GOD (44 %) and ascorbic acid (56 %) on flour containing basal improver showed its potential as a corrective action to get better functional and rheological properties of dough and bread texture. Furthermore, wheat flour containing basal additives and enriched with GOD (63.8 %), ascorbic acid (32 %) and α- amylase (4.2 %) led to high technological bread making parameters, to decrease the crumb firmness and chewiness and to improve elasticity, adhesion, cohesion and specific volume of bread. In addition to that, the optimized formulation addition significantly reduced water activity and therefore decreased bread susceptibility to microbial spoilage. These findings demonstrated that GOD could partially substitute not only ascorbic acid but also α-amylase. The generated models allowed to predict the behavior of wheat flour containing additives in the range of values tested and to define the additives formula that led to desired rheological and baking qualities of dough. This fact provides new perspectives to compensate flour quality deficiencies at the moment of selecting raw materials and technological parameters reducing the production costs and facilitating gluten free products development. Graphical abstractᅟ.

  4. PAEs类化合物对雄性小鼠的联合致毒作用%Study on synergistic toxicity of phthalic acid esters chemicals in male mice

    葛建; 胡华军; 林芳; 伍义行; 邓同乐; 张永勇

    2016-01-01

    In order to explore the synergistic toxicity of phthalate acid esters (PAEs), the bone marrow micronucleus formation, sperm deformity, liver and testis damage were carefully observed and determined on male mice , which were exposed to mixed PAEs chemicals with different levels of dose (40, 400, 4 000 mg· kg-1 ) and single dibutyl phthalate (DBP) with the same doses (40, 400, 4 000 mg· kg-1).It was shown that the bone marrow micronucleus formation rate and sperm deformity rate were obviously higher in the mixed group with high -dose (4 000 mg· kg-1 ) PAEs than those in the single DBP treatment .Besides , the damage of liver and testis was also higher in the mixed group with moderate-dose (400 mg· kg-1 ) PAEs than that in the single DBP treatment after 30 d.As mentioned a-bove, the mixed PAEs exhibited more severe toxic effects than single DBP treatment , which suggested that there might be certain synergistic effect among PAEs chemicals .%为了探讨邻苯二甲酸酯( phthalic acid esters , PAEs)类化合物的联合毒性作用,将6种PAEs类化合物配制成等质量比的混合物,以低、中、高剂量(40,400,4000 mg· kg-1)对雄性小鼠灌胃染毒,观察雄性小鼠骨髓微核形成、精子畸形、血清及肝脏、睾丸等指征的变化,并与相同剂量处理的单一邻苯二甲酸二丁酯( DBP )组进行比较,以评价混合PAEs组的联合毒性作用。结果显示:高剂量处理时,混合PAEs组的雄性小鼠骨髓微核率及精子畸形率显著高于单一DBP组;中剂量处理时,混合PAEs组染毒雄性小鼠30 d后的肝损伤及睾丸组织损伤程度也较单一DBP组明显上升,表明混合PAEs组对雄性小鼠的联合致毒作用较单一DBP组显著,不同PAEs类化合物间可能存在一定的协同效应。

  5. Pomegranate Juice Metabolites, Ellagic Acid and Urolithin A, Synergistically Inhibit Androgen-Independent Prostate Cancer Cell Growth via Distinct Effects on Cell Cycle Control and Apoptosis

    Roberto Vicinanza; Yanjun Zhang; Susanne M Henning; David Heber

    2013-01-01

    Ellagitannins (ETs) from pomegranate juice (PJ) are bioactive polyphenols with chemopreventive potential against prostate cancer (PCa). ETs are not absorbed intact but are partially hydrolyzed in the gut to ellagic acid (EA). Colonic microflora can convert EA to urolithin A (UA), and EA and UA enter the circulation after PJ consumption. Here, we studied the effects of EA and UA on cell proliferation, cell cycle, and apoptosis in DU-145 and PC-3 androgen-independent PCa cells and whether combi...

  6. The BH3-mimetic ABT-737 targets the apoptotic machinery in cholangiocarcinoma cell lines resulting in synergistic interactions with zoledronic acid

    ROMANI, ANTONELLO A.; Desenzani, Silvia; Morganti, Marina M.; Baroni, Maria Cristina; Borghetti, Angelo F.; Soliani, Paolo

    2010-01-01

    Abstract Purpose In TFK-1 and EGI-1 cholangiocarcinoma cell lines, zoledronic acid (ZOL) determines an S-phase block without apoptosis. Here, we investigated the occurrence of apoptosis stigmata when ZOL is associated to the BH3-mimetic ABT-737. Methods In EGI-1 and TFK-1 cholangiocarcinoma cell lines untreated or treated with ABT-737 alone or in combination with ZOL, the pro-survival protein?s pattern (BC...

  7. 微波固体酸联合水解棉籽壳制备还原糖的研究%Preparation of reducing sugar via synergistic hydrolysis cotton seed hull with microwave and solid acid

    余先纯; 孙德林; 李湘苏

    2011-01-01

    以棉籽壳为原料,采用微波和固体酸协同水解制备还原糖.探讨了微波功率、固体酸用量、反应时间、反应温度、液固比对还原性糖得卒的影响.采用响应面法建立二次回归模型,并对水解工艺进行了优化.研究结果表明,当 微波功率461.91W,固体酸用量6.46%,反应时间2.99h,反应温度100℃,液固比为18:1时,还原糖的得率可达到62.49%.%Reducing sugar was made from cotton seed hull via synergistic hydrolysis with microwave and solid acid. The effects of microwave power, amount of solid acid, hydrolysis time, temperature and liquid-solid mass ratios on the reducing sugar yield were discussed. A quadratic regression model was founded with response surface methodology,and the process was optimized. The result showed that the reducing sugar yield was 62.49% as the microwave power was 461.91W, amaunt of solid acid was 6.46%,time was 2.99h,temperature was 100℃,liquid-solid mass ratios was 18:1.

  8. Engineering biomolecular microenvironments for cell instructive biomaterials.

    Custódio, Catarina A; Reis, Rui L; Mano, João F

    2014-06-01

    Engineered cell instructive microenvironments with the ability to stimulate specific cellular responses are a topic of high interest in the fabrication and development of biomaterials for application in tissue engineering. Cells are inherently sensitive to the in vivo microenvironment that is often designed as the cell "niche." The cell "niche" comprising the extracellular matrix and adjacent cells, influences not only cell architecture and mechanics, but also cell polarity and function. Extensive research has been performed to establish new tools to fabricate biomimetic advanced materials for tissue engineering that incorporate structural, mechanical, and biochemical signals that interact with cells in a controlled manner and to recapitulate the in vivo dynamic microenvironment. Bioactive tunable microenvironments using micro and nanofabrication have been successfully developed and proven to be extremely powerful to control intracellular signaling and cell function. This Review is focused in the assortment of biochemical signals that have been explored to fabricate bioactive cell microenvironments and the main technologies and chemical strategies to encode them in engineered biomaterials with biological information.

  9. Synergistic effects of fresh frozen plasma and valproic acid treatment in a combined model of traumatic brain injury and hemorrhagic shock

    Imam, Ayesha M; Jin, Guang; Duggan, Michael

    2013-01-01

    Traumatic brain injury (TBI) and hemorrhagic shock (HS) are major causes of trauma-related deaths and are especially lethal as a combined insult. Previously, we showed that early administration of fresh frozen plasma (FFP) decreased the size of the brain lesion and associated swelling in a swine...... model of combined TBI+HS. We have also shown separately that addition of valproic acid (VPA) to the resuscitation protocol attenuates inflammatory markers in the brain as well as the degree of TBI. The current study was performed to determine whether a combined FFP+VPA treatment strategy would exert...

  10. Synergistic extraction of uranium(VI) by bis(2,4,4-trimethylpentyl) phosphinic acid in the presence of neutral oxo-donors

    Meera, R.; Reddy, M.L.P. [Inorganic and Analytical Chemistry Unit, Regional Research Lab. (CSIR), Trivandrum (India)

    2002-07-01

    The extraction behavior of uranium(VI) from nitric acid solutions has been investigated using mixtures of bis(2,4,4-trimethylpentyl)phosphinic acid (HBTMPP) and trialkylphosphine oxide (Cyanex 923 = TRPO), triphenylphosphine oxide (TPhPO) or tributylphosphate (TBP). The results demonstrate that uranium(VI) is extracted into xylene as UO{sub 2}(BTMPP){sub 2} with HBTMPP alone and as UO{sub 2}(BTMPP){sub 2}.S (where S = TRPO, TPhPO or TBP) in the presence of neutral oxo-donors. The extraction equilibrium constants of the above extracted complexes have been deduced by non-linear regression analysis with the aid of suitable chemically based model developed taking into account aqueous phase complexation of metal ion with inorganic ligands and all plausible complexes extracted into the organic phase. The addition of a neutral oxo-donor to the metal chelate system significantly enhances the extraction efficiency of uranium(VI). Complexation strength of uranium(VI) with neutral oxo-donors follows the order: TRPO > TPhPO > TBP, which is also the basicity sequence of these ligands. The IR spectral studies of the extracted complexes were used to further clarify the nature of the extracted complexes. (orig.)

  11. Targeting the Tumor Microenvironment: Focus on Angiogenesis

    Fengjuan Fan

    2012-01-01

    Full Text Available Tumorigenesis is a complex multistep process involving not only genetic and epigenetic changes in the tumor cell but also selective supportive conditions of the deregulated tumor microenvironment. One key compartment of the microenvironment is the vascular niche. The role of angiogenesis in solid tumors but also in hematologic malignancies is now well established. Research on angiogenesis in general, and vascular endothelial growth factor in particular, is a major focus in biomedicine and has led to the clinical approval of several antiangiogenic agents including thalidomide, bevacizumab, sorafenib, sunitinib, pazopanib, temesirolimus, and everolimus. Indeed, antiangiogenic agents have significantly changed treatment strategies in solid tumors (colorectal cancer, renal cell carcinoma, and breast cancer and multiple myeloma. Here we illustrate important aspects in the interrelationship between tumor cells and the microenvironment leading to tumor progression, with focus on angiogenesis, and summarize derived targeted therapies.

  12. Targeting the tumor microenvironment: focus on angiogenesis.

    Fan, Fengjuan; Schimming, Alexander; Jaeger, Dirk; Podar, Klaus

    2012-01-01

    Tumorigenesis is a complex multistep process involving not only genetic and epigenetic changes in the tumor cell but also selective supportive conditions of the deregulated tumor microenvironment. One key compartment of the microenvironment is the vascular niche. The role of angiogenesis in solid tumors but also in hematologic malignancies is now well established. Research on angiogenesis in general, and vascular endothelial growth factor in particular, is a major focus in biomedicine and has led to the clinical approval of several antiangiogenic agents including thalidomide, bevacizumab, sorafenib, sunitinib, pazopanib, temesirolimus, and everolimus. Indeed, antiangiogenic agents have significantly changed treatment strategies in solid tumors (colorectal cancer, renal cell carcinoma, and breast cancer) and multiple myeloma. Here we illustrate important aspects in the interrelationship between tumor cells and the microenvironment leading to tumor progression, with focus on angiogenesis, and summarize derived targeted therapies.

  13. Synergistic and antagonistic effect of lactic acid bacteria on tyramine production by food-borne pathogenic bacteria in tyrosine decarboxylase broth.

    Kuley, Esmeray; Ozogul, Fatih

    2011-08-01

    The effect of lactic acid bacteria (LAB) strains on tyramine (TYR) and also other biogenic amines (BA) production by eight common food-borne pathogen (FBP) in tyrosine decarboxylase broth (TDB) was investigated by using a rapid HPLC method. Significant differences were observed among the FBP strains in ammonia (AMN) and BA production apart from tryptamine, histamine (HIS) and spermine formation (pfood-borne pathogenic bacteria, although the effect of some LAB strains on BA production was strain-dependent. Lactococcus spp. and Streptococcus spp. resulted in significantly higher TYR accumulation by Aeromonas hydrophila and Enterococcus faecalis in TDB. The presence of Lactococcus and/or Lactobacillus in TDB significantly increased HIS production by A. hydrophila, Escherichia coli, Ent. faecalis, Klebsiella pneumoniae and Pseudomonas aeruginosa, whereas HIS accumulation was significantly reduced by Staphylococcus aureus, S. paratyphi A and Listeria monocytogenes.

  14. Pomegranate Juice Metabolites, Ellagic Acid and Urolithin A, Synergistically Inhibit Androgen-Independent Prostate Cancer Cell Growth via Distinct Effects on Cell Cycle Control and Apoptosis

    Roberto Vicinanza

    2013-01-01

    Full Text Available Ellagitannins (ETs from pomegranate juice (PJ are bioactive polyphenols with chemopreventive potential against prostate cancer (PCa. ETs are not absorbed intact but are partially hydrolyzed in the gut to ellagic acid (EA. Colonic microflora can convert EA to urolithin A (UA, and EA and UA enter the circulation after PJ consumption. Here, we studied the effects of EA and UA on cell proliferation, cell cycle, and apoptosis in DU-145 and PC-3 androgen-independent PCa cells and whether combinations of EA and UA affected cell proliferation. EA demonstrated greater dose-dependent antiproliferative effects in both cell lines compared to UA. EA induced cell cycle arrest in S phase associated with decreased cyclin B1 and cyclin D1 levels. UA induced a G2/M arrest and increased cyclin B1 and cdc2 phosphorylation at tyrosine-15, suggesting inactivation of the cyclin B1/cdc2 kinase complex. EA induced apoptosis in both cell lines, while UA had a less pronounced proapoptotic effect only in DU-145. Cotreatment with low concentrations of EA and UA dramatically decreased cell proliferation, exhibiting synergism in PC-3 cells evaluated by isobolographic analysis and combination index. These data provide information on pomegranate metabolites for the prevention of PCa recurrence, supporting the role of gut flora-derived metabolites for cancer prevention.

  15. Pomegranate Juice Metabolites, Ellagic Acid and Urolithin A, Synergistically Inhibit Androgen-Independent Prostate Cancer Cell Growth via Distinct Effects on Cell Cycle Control and Apoptosis.

    Vicinanza, Roberto; Zhang, Yanjun; Henning, Susanne M; Heber, David

    2013-01-01

    Ellagitannins (ETs) from pomegranate juice (PJ) are bioactive polyphenols with chemopreventive potential against prostate cancer (PCa). ETs are not absorbed intact but are partially hydrolyzed in the gut to ellagic acid (EA). Colonic microflora can convert EA to urolithin A (UA), and EA and UA enter the circulation after PJ consumption. Here, we studied the effects of EA and UA on cell proliferation, cell cycle, and apoptosis in DU-145 and PC-3 androgen-independent PCa cells and whether combinations of EA and UA affected cell proliferation. EA demonstrated greater dose-dependent antiproliferative effects in both cell lines compared to UA. EA induced cell cycle arrest in S phase associated with decreased cyclin B1 and cyclin D1 levels. UA induced a G2/M arrest and increased cyclin B1 and cdc2 phosphorylation at tyrosine-15, suggesting inactivation of the cyclin B1/cdc2 kinase complex. EA induced apoptosis in both cell lines, while UA had a less pronounced proapoptotic effect only in DU-145. Cotreatment with low concentrations of EA and UA dramatically decreased cell proliferation, exhibiting synergism in PC-3 cells evaluated by isobolographic analysis and combination index. These data provide information on pomegranate metabolites for the prevention of PCa recurrence, supporting the role of gut flora-derived metabolites for cancer prevention.

  16. Positive synergistic effect of the reuse and the treatment of hazardous waste on pyrometallurgical process of lead recovery from waste lead-acid batteries

    Marija Štulović

    2014-09-01

    Full Text Available Modification and optimization of the pyrometallurgical process of lead recovering from the waste lead-acid batteries have been studied in this paper. The aim of this research is to develop a cleaner production in the field of the secondary lead metallurgy. Lead smelting process with the addition of flux (sodium(I-carbonate and reducing agents (coke, iron has been followed. The modified smelting process with the addition of hazardous waste (activated carbon as alternative reducing agents has shown positive results on the quality of the secondary lead, the generated slag and the process gases. Filtration efficiency of the gases, the return of baghouse dust to the process and use of oxygen burners have positive effect on the environment protection and energy efficiency. Optimization of the recycling process has been based on the properties of the slag. Stabilization of slag is proposed in the furnace with addition of waste dust from the recycling of cathode ray tube (CRT monitors. Phosphorus compounds from dust reduce leachability of toxic elements from the generated slag. Reduction the slag amount and its hazardous character through the elimination of migratory heavy metals and valorization of useful components have been proposed in the patented innovative device - cylindrical rotating washer/separator.

  17. Secreted Ectodomain of Sialic Acid-Binding Ig-Like Lectin-9 and Monocyte Chemoattractant Protein-1 Synergistically Regenerate Transected Rat Peripheral Nerves by Altering Macrophage Polarity.

    Kano, Fumiya; Matsubara, Kohki; Ueda, Minoru; Hibi, Hideharu; Yamamoto, Akihito

    2017-03-01

    Peripheral nerves (PNs) exhibit remarkable self-repairing reparative activity after a simple crush or cut injury. However, the neuronal transection involving a nerve gap overwhelms their repairing activity and causes persistent paralysis. Here, we show that an implantation of the serum-free conditioned medium from stem cells from human exfoliated deciduous teeth (SHED-CM) immersed in a collagen sponge into the nerve gap formed by rat facial nerves transection restored the neurological function. In contrast, SHED-CM specifically depleted of a set of anti-inflammatory M2 macrophage inducers, monocyte chemoattractant protein-1 (MCP-1) and the secreted ectodomain of sialic acid-binding Ig-like lectin-9 (sSiglec-9) lost the ability to restore neurological function in this model. Notably, the combination of MCP-1 and sSiglec-9 induced the polarization of M2 macrophages in vitro, resulting in the expression of multiple trophic factors that enhanced proliferation, migration, and differentiation of Schwann cells, blood vessel formation, and nerve fiber extension. Furthermore, the implantation of a collagen graft containing MCP-1/sSiglec-9 into the nerve gap induced anti-inflammatory M2 macrophage polarization, generated a Schwann-cell bridge instead of fibrotic scar, induced axonal regrowth, and restored nerve function. The specific elimination of M2 macrophages by Mannosylated-Clodrosome suppressed the MCP-1/sSiglec-9-mediated neurological recovery. Taken together, our data suggest that MCP-1/sSiglec-9 regenerates PNs by inducing tissue-repairing M2 macrophages and may provide therapeutic benefits for severe peripheral nerve injuries. Stem Cells 2017;35:641-653.

  18. [Advances in the effects of pH value of micro-environment on wound healing].

    Tian, Ruirui; Li, Na; Wei, Li

    2016-04-01

    Wound healing is a complex regeneration process, which is affected by lots of endogenous and exogenous factors. Researches have confirmed that acid environment could prevent wound infection and accelerate wound healing by inhibiting bacteria proliferation, promoting oxygen release, affecting keratinocyte proliferation and migration, etc. In this article, we review the literature to identify the potential relationship between the pH value of wound micro-environment and the progress of wound healing, and summarize the clinical application of variation of pH value of micro-environment in wound healing, thereby to provide new treatment strategy for wound healing.

  19. Salvianolic acid B protects against myocardial damage caused by nanocarrier TiO2; and synergistic anti-breast carcinoma effect with curcumin via codelivery system of folic acid-targeted and polyethylene glycol-modified TiO2 nanoparticles.

    Ding, Lingling; Li, Jiawei; Huang, Rui; Liu, Zhidong; Li, Chunhua; Yao, Shaozi; Wang, Jinyan; Qi, Dongli; Li, Nan; Pi, Jiaxin

    Targeted delivery by the folate ligand is an effective way to enhance an anti-breast carcinoma effect, due to its high affinity for the folate receptor, which is overexpressed in many tumor cells. In this study, we firstly synthesized a folic acid (FA)-targeted and polyethylene glycol (PEG)-modified TiO2 nanocarrier. Then, an FA-PEG-TiO2 nanoparticle (NP) codelivery system loaded with curcumin and salvianolic acid B were prepared by emulsion evaporation-solidification at low temperature. The obtained folate-targeted NPs (FA-NPs) showed more cytotoxicity on MCF7 cells and MDA-MB-231 cells than a nontargeted NP group. Apart from a synergistic anti-breast cancer effect with curcumin, salvianolic acid B protects the cardiovascular system from oxidative injury by the TiO2 nanocarrier. With coumarin 6 as a fluorescent probe to observe cellular uptake of NPs, the results of in vitro cellular uptake demonstrated FA-NPs exhibited higher cellular uptake and accumulation in MCF7 cells and MDA-MB-231 cells than nontargeted NPs. Then, in vivo biodistribution of NPs was further qualitatively and quantitatively confirmed by in vivo imaging. More importantly, the animal study further suggested that FA-NPs had significantly stronger antitumor effects via receptor-mediated targeted delivery. Consequently, FA-PEG-TiO2 NPs loaded with curcumin and salvianolic acid B could be a promising drug-delivery system to treat breast cancer.

  20. Biological stoichiometry in tumor micro-environments.

    Irina Kareva

    Full Text Available Tumors can be viewed as evolving ecological systems, in which heterogeneous populations of cancer cells compete with each other and somatic cells for space and nutrients within the ecosystem of the human body. According to the growth rate hypothesis (GRH, increased phosphorus availability in an ecosystem, such as the tumor micro-environment, may promote selection within the tumor for a more proliferative and thus potentially more malignant phenotype. The applicability of the GRH to tumor growth is evaluated using a mathematical model, which suggests that limiting phosphorus availability might promote intercellular competition within a tumor, and thereby delay disease progression. It is also shown that a tumor can respond differently to changes in its micro-environment depending on the initial distribution of clones within the tumor, regardless of its initial size. This suggests that composition of the tumor as a whole needs to be evaluated in order to maximize the efficacy of therapy.

  1. Biological stoichiometry in tumor micro-environments.

    Kareva, Irina

    2013-01-01

    Tumors can be viewed as evolving ecological systems, in which heterogeneous populations of cancer cells compete with each other and somatic cells for space and nutrients within the ecosystem of the human body. According to the growth rate hypothesis (GRH), increased phosphorus availability in an ecosystem, such as the tumor micro-environment, may promote selection within the tumor for a more proliferative and thus potentially more malignant phenotype. The applicability of the GRH to tumor growth is evaluated using a mathematical model, which suggests that limiting phosphorus availability might promote intercellular competition within a tumor, and thereby delay disease progression. It is also shown that a tumor can respond differently to changes in its micro-environment depending on the initial distribution of clones within the tumor, regardless of its initial size. This suggests that composition of the tumor as a whole needs to be evaluated in order to maximize the efficacy of therapy.

  2. Characterizing the Microenvironment Surrounding Phosphorylated Protein Sites

    Shi-Cai Fan; Xue-Gong Zhang

    2005-01-01

    Protein phosphorylation plays an important role in various cellular processes. Due to its high complexity, the mechanism needs to be further studied. In the last few years, many methods have been contributed to this field, but almost all of them investigated the mechanism based on protein sequences around protein sites. In this study, we implement an exploration by characterizing the microenvironment surrounding phosphorylated protein sites with a modified shell model, and obtain some significant properties by the rank-sum test, such as the lack of some classes of residues, atoms, and secondary structures. Furthermore, we find that the depletion of some properties affects protein phosphorylation remarkably. Our results suggest that it is a meaningful direction to explore the mechanism of protein phosphorylation from microenvironment and we expect further findings along with the increasing size of phosphorylation and protein structure data.

  3. Cell Interactions within Biomimetic Apatite Microenvironments

    Tsang, Eric

    2014-01-01

    Bioactive ceramics, such as calcium phosphate-based materials, have been studied extensively for the regeneration of bone tissue. Accelerated apatite coatings prepared from biomimetic methods is one approach that has had a history of success in both in vitro and in vivo studies for bone regeneration [1]-[4]. However, how cells interact within the apatite microenvironment remains largely unclear, despite the vast literature available today. In response, this thesis evaluates the in vitro i...

  4. Targeting the tumour microenvironment in ovarian cancer.

    Hansen, Jean M; Coleman, Robert L; Sood, Anil K

    2016-03-01

    The study of cancer initiation, growth, and metastasis has traditionally been focused on cancer cells, and the view that they proliferate due to uncontrolled growth signalling owing to genetic derangements. However, uncontrolled growth in tumours cannot be explained solely by aberrations in cancer cells themselves. To fully understand the biological behaviour of tumours, it is essential to understand the microenvironment in which cancer cells exist, and how they manipulate the surrounding stroma to promote the malignant phenotype. Ovarian cancer is the leading cause of death from gynaecologic cancer worldwide. The majority of patients will have objective responses to standard tumour debulking surgery and platinum-taxane doublet chemotherapy, but most will experience disease recurrence and chemotherapy resistance. As such, a great deal of effort has been put forth to develop therapies that target the tumour microenvironment in ovarian cancer. Herein, we review the key components of the tumour microenvironment as they pertain to this disease, outline targeting opportunities and supporting evidence thus far, and discuss resistance to therapy.

  5. Epithelial-Mesenchymal Transition in tumor microenvironment

    Jing Yingying

    2011-08-01

    Full Text Available Abstract The epithelial to mesenchymal transition (EMT plays crucial roles in the formation of the body plan and also in the tumor invasion process. In addition, EMT also causes disruption of cell-cell adherence, loss of apico-basal polarity, matrix remodeling, increased motility and invasiveness in promoting tumor metastasis. The tumor microenvironment plays an important role in facilitating cancer metastasis and may induce the occurrence of EMT in tumor cells. A large number of inflammatory cells infiltrating the tumor site, as well as hypoxia existing in a large area of tumor, in addition many stem cells present in tumor microenvironment, such as cancer stem cells (CSCs, mesenchymal stem cells (MSCs, all of these may be the inducers of EMT in tumor cells. The signaling pathways involved in EMT are various, including TGF-β, NF-κB, Wnt, Notch, and others. In this review, we discuss the current knowledge about the role of the tumor microenvironment in EMT and the related signaling pathways as well as the interaction between them.

  6. Probing the tumor microenvironment: collection and induction

    Williams, James K.; Padgen, Michael R.; Wang, Yarong; Entenberg, David; Gertler, Frank; Condeelis, John S.; Castracane, James

    2012-03-01

    The Nano Intravital Device, or NANIVID, is under development as an optically transparent, implantable tool to study the tumor microenvironment. Two etched glass substrates are sealed using a thin polymer membrane to create a reservoir with a single outlet. This reservoir is loaded with a hydrogel blend that contains growth factors or other chemicals to be delivered to the tumor microenvironment. When the device is implanted in the tumor, the hydrogel will swell and release these entrapped molecules, forming a gradient. Validation of the device has been performed in vitro using epidermal growth factor (EGF) and MenaINV, a highly invasive, rat mammary adenocarcinoma cell line. In both 2-D and 3-D environments, cells migrated toward the gradient of EGF released from the device. The chorioallantoic membrane (CAM) of White Leghorn chicken eggs is being utilized to grow xenograft tumors that will be used for ex vivo cell collection. Device optimization is being performed for in vivo use as a tool to collect the invasive cell population. Preliminary cell collection experiments in vivo were performed using a mouse model of breast cancer. As a second application, the device is being explored as a delivery vehicle for chemicals that induce controlled changes in the tumor microenvironment. H2O2 was loaded in the device and generated intracellular reactive oxygen species (ROS) in cells near the device outlet. In the future, other induction targets will be explored, including hypoglycemia and the manipulation of extracellular matrix stiffness.

  7. Simultaneous delivery of Paclitaxel and Bcl-2 siRNA via pH-Sensitive liposomal nanocarrier for the synergistic treatment of melanoma

    Reddy, Teegala Lakshminarayan; Garikapati, Koteswara Rao; Reddy, S. Gopal; Reddy, B. V. Subba; Yadav, J. S.; Bhadra, Utpal; Bhadra, Manika Pal

    2016-10-01

    pH-sensitive drug carriers that are sensitive to the acidic (pH = ~6.5) microenvironments of tumor tissues have been primarily used as effective drug/gene/siRNA/microRNA carriers for releasing their payloads to tumor cells/tissues. Resistance to various drugs has become a big hurdle in systemic chemotherapy in cancer. Therefore delivery of chemotherapeutic agents and siRNA’s targeting anti apoptotic genes possess advantages to overcome the efflux pump mediated and anti apoptosis-related drug resistance. Here, we report the development of nanocarrier system prepared from kojic acid backbone-based cationic amphiphile containing endosomal pH-sensitive imidazole ring. This pH-sensitive liposomal nanocarrier effectively delivers anti-cancer drug (Paclitaxel; PTX) and siRNA (Bcl-2), and significantly inhibits cell proliferation and reduces tumor growth. Tumor inhibition response attributes to the synergistic effect of PTX potency and MDR reversing ability of Bcl-2 siRNA in the tumor supporting that kojic acid based liposomal pH-sensitive nanocarrier as efficient vehicle for systemic co-delivery of drugs and siRNA.

  8. Modeling of Sulfide Microenvironments on Mars

    Schwenzer, S. P.; Bridges, J. C.; McAdam, A.; Steer, E. D.; Conrad, P. G.; Kelley, S. P.; Wiens, R. C.; Mangold, N.; Grotzinger, J.; Eigenbrode, J. L.; Franz, H. B.; Sutter, B.

    2016-01-01

    Yellowknife Bay (YKB; sol 124-198) is the second site that the Mars Science Laboratory Rover Curiosity investigated in detail on its mission in Gale Crater. YKB represents lake bed sediments from an overall neutral pH, low salinity environment, with a mineralogical composition which includes Ca-sulfates, Fe oxide/hydroxides, Fe-sulfides, amorphous material, and trioctahedral phyllosilicates. We investigate whether sulfide alteration could be associated with ancient habitable microenvironments in the Gale mudstones. Some textural evidence for such alteration may be pre-sent in the nodules present in the mudstone.

  9. Immune suppressive mechanisms in the tumor microenvironment.

    Munn, David H; Bronte, Vincenzo

    2016-04-01

    Effective immunotherapy, whether by checkpoint blockade or adoptive cell therapy, is limited in most patients by a key barrier: the immunosuppressive tumor microenvironment. Suppression of tumor-specific T cells is orchestrated by the activity of a variety of stromal myeloid and lymphoid cells. These often display inducible suppressive mechanisms that are triggered by the same anti-tumor inflammatory response that the immunotherapy intends to create. Therefore, a more comprehensive understanding of how the immunosuppressive milieu develops and persists is critical in order to harness the full power of immunotherapy of cancer.

  10. Entourage: the immune microenvironment following follicular lymphoma

    2012-01-01

    In follicular lymphoma, nonmalignant immune cells are important. Follicular lymphoma depends on CD4+ cells, but CD8+ cells counteract it. We hypothesized that the presence of follicular lymphoma is associated with higher CD4+ than CD8+ cell numbers in the tumor microenvironment but not in the immune system. Using flow cytometry, pre-treatment and follow-up CD4/CD8 ratios were estimated in the bone marrow, blood and lymph nodes of untreated follicular lymphoma patients in two independent data ...

  11. Optical microassembly platform for constructing reconfigurable microenvironment for biomedical studies

    Rodrigo, Peter John; Kelemen, Lóránd; Palima, Darwin

    2009-01-01

    Cellular development is highly influenced by the surrounding microenvironment. We propose user-reconfigurable microenvironments and bio-compatible scaffolds as an approach for understanding cellular development processes. We demonstrate a model platform for constructing versatile microenvironments...... by fabricating morphologically complex microstructures by two-photon polymerization (2PP) and then assembling these archetypal building blocks into various configurations using multiple, real-time configurable counterpropagating-beam (CB) traps. The demonstrated capacity for handling feature-rich microcomponents...

  12. Cancer Cell Colonisation in the Bone Microenvironment

    Casina Kan

    2016-10-01

    Full Text Available Bone metastases are a common complication of epithelial cancers, of which breast, prostate and lung carcinomas are the most common. The establishment of cancer cells to distant sites such as the bone microenvironment requires multiple steps. Tumour cells can acquire properties to allow epithelial-to-mesenchymal transition, extravasation and migration. Within the bone metastatic niche, disseminated tumour cells may enter a dormancy stage or proliferate to adapt and survive, interacting with bone cells such as hematopoietic stem cells, osteoblasts and osteoclasts. Cross-talk with the bone may alter tumour cell properties and, conversely, tumour cells may also acquire characteristics of the surrounding microenvironment, in a process known as osteomimicry. Alternatively, these cells may also express osteomimetic genes that allow cell survival or favour seeding to the bone marrow. The seeding of tumour cells in the bone disrupts bone-forming and bone-resorbing activities, which can lead to macrometastasis in bone. At present, bone macrometastases are incurable with only palliative treatment available. A better understanding of how these processes influence the early onset of bone metastasis may give insight into potential therapies. This review will focus on the early steps of bone colonisation, once disseminated tumour cells enter the bone marrow.

  13. Cancer Cell Colonisation in the Bone Microenvironment

    Kan, Casina; Vargas, Geoffrey; Le Pape, François; Clézardin, Philippe

    2016-01-01

    Bone metastases are a common complication of epithelial cancers, of which breast, prostate and lung carcinomas are the most common. The establishment of cancer cells to distant sites such as the bone microenvironment requires multiple steps. Tumour cells can acquire properties to allow epithelial-to-mesenchymal transition, extravasation and migration. Within the bone metastatic niche, disseminated tumour cells may enter a dormancy stage or proliferate to adapt and survive, interacting with bone cells such as hematopoietic stem cells, osteoblasts and osteoclasts. Cross-talk with the bone may alter tumour cell properties and, conversely, tumour cells may also acquire characteristics of the surrounding microenvironment, in a process known as osteomimicry. Alternatively, these cells may also express osteomimetic genes that allow cell survival or favour seeding to the bone marrow. The seeding of tumour cells in the bone disrupts bone-forming and bone-resorbing activities, which can lead to macrometastasis in bone. At present, bone macrometastases are incurable with only palliative treatment available. A better understanding of how these processes influence the early onset of bone metastasis may give insight into potential therapies. This review will focus on the early steps of bone colonisation, once disseminated tumour cells enter the bone marrow. PMID:27782035

  14. Human response to an individually controlled microenvironment

    Melikov, Arsen Krikor; Knudsen, G.L.

    2007-01-01

    The response of 48 subjects to an individually controlled microenvironment was studied at room air temperatures of 20 degrees C, 22 degrees C, and 26 degrees C An individually controlled system (ICS) comprising personalized ventilation, an under-desk air terminal device supplying cool air, a chair...... with convectively heated backrest, an under-desk radiant heating panel, and a floor-heating panel were used. The temperature of the air supplied from the personalized ventilation and the under-desk device was 20 degrees C The subjects were provided with control of the flow rate and direction of the personalized air...... at a room temperature of 22 degrees C without ICS. Thus, ICS will increase the number of satisfied occupants when applied in practice. The design and control of the ICS, as well as the background air distribution in a room, should be carefully considered in order to obtain the maximum number of occupants...

  15. Sensitivity of Dendritic Cells to Microenvironment Signals

    Motta, Juliana Maria; Rumjanek, Vivian Mary

    2016-01-01

    Dendritic cells are antigen-presenting cells capable of either activating the immune response or inducing and maintaining immune tolerance. They do this by integrating stimuli from the environment and changing their functional status as a result of plasticity. The modifications suffered by these cells have consequences in the way the organism may respond. In the present work two opposing situations known to affect dendritic cells are analyzed: tumor growth, leading to a microenvironment that favors the induction of a tolerogenic profile, and organ transplantation, which leads to a proinflammatory profile. Lessons learned from these situations may help to understand the mechanisms of modulation resulting not only from the above circumstances, but also from other pathologies. PMID:27088097

  16. Sensitivity of Dendritic Cells to Microenvironment Signals

    Juliana Maria Motta

    2016-01-01

    Full Text Available Dendritic cells are antigen-presenting cells capable of either activating the immune response or inducing and maintaining immune tolerance. They do this by integrating stimuli from the environment and changing their functional status as a result of plasticity. The modifications suffered by these cells have consequences in the way the organism may respond. In the present work two opposing situations known to affect dendritic cells are analyzed: tumor growth, leading to a microenvironment that favors the induction of a tolerogenic profile, and organ transplantation, which leads to a proinflammatory profile. Lessons learned from these situations may help to understand the mechanisms of modulation resulting not only from the above circumstances, but also from other pathologies.

  17. Of Microenvironments and Mammary Stem Cells

    LaBarge, Mark A; Petersen, Ole W; Bissell, Mina J

    2007-06-01

    In most adult tissues there reside pools of stem and progenitor cells inside specialized microenvironments referred to as niches. The niche protects the stem cells from inappropriate expansion and directs their critical functions. Thus guided, stem cells are able to maintain tissue homeostasis throughout the ebb and flow of metabolic and physical demands encountered over a lifetime. Indeed, a pool of stem cells maintains mammary gland structure throughout development, and responds to the physiological demands associated with pregnancy. This review discusses how stem cells were identified in both human and mouse mammary glands; each requiring different techniques that were determined by differing biological needs and ethical constraints. These studies together create a robust portrait of mammary gland biology and identify the location of the stem cell niche, elucidate a developmental hierarchy, and suggest how the niche might be manipulated for therapeutic benefit.

  18. Targeting SDF-1 in multiple myeloma tumor microenvironment.

    Bouyssou, Juliette M C; Ghobrial, Irene M; Roccaro, Aldo M

    2016-09-28

    Multiple myeloma (MM) is a type of B-cell malignancy that remains incurable to date. The bone marrow (BM) microenvironment plays a crucial role in MM progression. The chemokine SDF-1 (CXCL12) is an important actor of the BM microenvironment that has the ability to regulate numerous processes related to its malignant transformation during MM development. The activity of SDF-1 is mainly mediated by its specific receptor CXCR4, which is expressed at the surface of MM cells and various other BM cell types. Current treatments available for MM patients mainly target tumor cells but have limited effects on the BM microenvironment. In this context, SDF-1 and CXCR4 represent ideal targets for the normalization of the MM-supportive BM microenvironment. The present review focuses on the activity of SDF-1 in the MM BM microenvironment and the current efforts carried out to target the SDF-1/CXCR4 axis for treatment of MM.

  19. Salvianolic acid B protects against myocardial damage caused by nanocarrier TiO2; and synergistic anti-breast carcinoma effect with curcumin via codelivery system of folic acid-targeted and polyethylene glycol-modified TiO2 nanoparticles

    Ding L

    2016-11-01

    Full Text Available Lingling Ding,1–3 Jiawei Li,1,2 Rui Huang,1,2 Zhidong Liu,1,2 Chunhua Li,1–3 Shaozi Yao,1,2 Jinyan Wang,1,2 Dongli Qi,1,2 Nan Li,1,2 Jiaxin Pi1,21Tianjin State Key Laboratory of Modern Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 2Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Tianjin University of Traditional Chinese Medicine, 3Tianjin International Joint Academy of Biomedicine, Tianjin, People’s Republic of ChinaAbstract: Targeted delivery by the folate ligand is an effective way to enhance an anti-breast carcinoma effect, due to its high affinity for the folate receptor, which is overexpressed in many tumor cells. In this study, we firstly synthesized a folic acid (FA-targeted and polyethylene glycol (PEG-modified TiO2 nanocarrier. Then, an FA-PEG-TiO2 nanoparticle (NP codelivery system loaded with curcumin and salvianolic acid B were prepared by emulsion evaporation–solidification at low temperature. The obtained folate-targeted NPs (FA-NPs showed more cytotoxicity on MCF7 cells and MDA-MB-231 cells than a nontargeted NP group. Apart from a synergistic anti-breast cancer effect with curcumin, salvianolic acid B protects the cardiovascular system from oxidative injury by the TiO2 nanocarrier. With coumarin 6 as a fluorescent probe to observe cellular uptake of NPs, the results of in vitro cellular uptake demonstrated FA-NPs exhibited higher cellular uptake and accumulation in MCF7 cells and MDA-MB-231 cells than nontargeted NPs. Then, in vivo biodistribution of NPs was further qualitatively and quantitatively confirmed by in vivo imaging. More importantly, the animal study further suggested that FA-NPs had significantly stronger antitumor effects via receptor-mediated targeted delivery. Consequently, FA-PEG-TiO2 NPs loaded with curcumin and salvianolic acid B could be a promising drug-delivery system to treat breast cancer

  20. Influence of microenvironment pH, humidity, and temperature on the stability of polymorphic and amorphous forms of clopidogrel bisulfate

    Raijada, Dhara K; Singh, Saranjit; Bansal, Arvind K

    2010-01-01

    The effect of microenvironment pH, humidity, and temperature was evaluated on the stability of polymorphic and amorphous forms of clopidogrel bisulfate, when present alone or in combinations. Oxalic acid and sodium carbonate were used as solid stressors to create acidic and alkaline pH, respectiv......The effect of microenvironment pH, humidity, and temperature was evaluated on the stability of polymorphic and amorphous forms of clopidogrel bisulfate, when present alone or in combinations. Oxalic acid and sodium carbonate were used as solid stressors to create acidic and alkaline p...... salt to free base. Thermal studies indicated that polymorphic forms of clopidogrel bisulfate and also its glassy amorphous form were highly resistant to temperature, whereas the rubbery state of the drug degraded significantly at temperatures of > or =80 degrees C....

  1. Exosomes: A Promising Factor Involved in Cancer Hypoxic Microenvironments.

    Yang, Y; Yang, X; Yang, Y; Zhu, H; Chen, X; Zhang, H; Wang, F; Qin, Q; Cheng, H; Sun, X

    2015-01-01

    As a significant tumor feature, hypoxia can trigger cancer adaptive processes, induce malignant phenotype development, and promote drug resistance. Previous studies demonstrated that exosomes are critical during these procedures. Exosomes are small vesicles formed in vesicular bodies in the endosomal network. These small vesicles are mainly involved in the transport of bioactive molecules between cells. Exosomes are also involved in the mediation of some cellular communications depending on derived donor cells; thus, recipient cells undergo phenotypic changes. Furthermore, hypoxia can remarkably stimulate exosomal secretion; for instance, nucleic acids and proteins as transmission signals in exosomes in a tumor microenvironment are involved in various functions, such as inducing intratumoral heterogeneity, altering immunological responses, producing cancer-associated fibroblasts, and promoting angiogenesis and metastasis. Moreover, exosome contents resemble those of a donor cell; this finding indicates that exosomes may also be regarded as suitable biomarkers of hypoxia status. Therefore, exosomes can be used to facilitate diagnosis and prognosis with minimal invasive procedures. Further studies on exosomes in cancer may provide new therapeutic strategies.

  2. Crystalline calcium carbonate and hydrogels as microenvironment for stem cells.

    Astachov, Liliana; Nevo, Zvi; Aviv, Moran; Vago, Razi

    2011-01-01

    Stem cell development and fate decisions are dictated by the microenvironment in which the stem cell is embedded. Among the advanced goals of tissue engineering is the creation of a microenvironment that will support the maintenance and differentiation of the stem cell--based on embryonic and adult stem cells as potent, cellular sources--for a variety of clinical applications. This review discusses some of the approaches used to create regulatory and instructive microenvironments for the directed differentiation of mesenchymal stem cells (MSCs) using three-dimensional crystalline calcium carbonate biomaterials of marine origin combined with a hydrated gel based on hyaluronan.

  3. Microenvironment-Centred Dynamics in Aggressive B-Cell Lymphomas

    Matilde Cacciatore

    2012-01-01

    Full Text Available Aggressive B-cell lymphomas share high proliferative and invasive attitudes and dismal prognosis despite heterogeneous biological features. In the interchained sequence of events leading to cancer progression, neoplastic clone-intrinsic molecular events play a major role. Nevertheless, microenvironment-related cues have progressively come into focus as true determinants for this process. The cancer-associated microenvironment is a complex network of nonneoplastic immune and stromal cells embedded in extracellular components, giving rise to a multifarious crosstalk with neoplastic cells towards the induction of a supportive milieu. The immunological and stromal microenvironments have been classically regarded as essential partners of indolent lymphomas, while considered mainly negligible in the setting of aggressive B-cell lymphomas that, by their nature, are less reliant on external stimuli. By this paper we try to delineate the cardinal microenvironment-centred dynamics exerting an influence over lymphoid clone progression in aggressive B-cell lymphomas.

  4. Smart Cu(II)-aptamer complexes based gold nanoplatform for tumor micro-environment triggered programmable intracellular prodrug release, photodynamic treatment and aggregation induced photothermal therapy of hepatocellular carcinoma

    Zhang, Da; Zheng, Aixian; Li, Juan; Wu, Ming; Wu, Lingjie; Wei, Zuwu; Liao, Naishun; Zhang, Xiaolong; Cai, Zhixiong; Yang, Huanghao; Liu, Gang; Liu, Xiaolong; Liu, Jingfeng

    2017-01-01

    This study describes smart Cu(II)-aptamer complexes based gold nanoplatform for tumor micro-environment triggered programmable prodrug release, in demand photodynamic therapy and aggregation induced photothermal ablation of hepatocellular carcinoma. The nanoplatform is consist of monodispersed gold nanoparticle (GNP) that is binding to HCC cell specific targeting aptamers (TLS11a) through Au-S bond; the aptamer is labeled with Ce6 at the 5'end and coordinated with Cu(II) through (GA)10 repeating bases to load AQ4N at the 3' end. In normal physiological conditions, the fluorescence and ROS generation ability of Ce6 are quenched by GNPs via RET; but in cancerous cells, the fluorescence and the ROS generation of Ce6 could be recovered by cleavage of Au-S bond through high level of intracellular GSH for real-time imaging and in demand PDT. Meanwhile, the prodrug AQ4N release could be triggered by acid-cleavage of coordination bonds, then accompanied by a release of Cu(II) that would induce the electrostatic aggregation of GNPs for photo-thermal ablation; furthermore, the significantly enhanced chemotherapy efficiency could be achieved by PDT produced hypoxia to convert AQ4N into AQ4. In summary, here described nanoplatform with tumor cell specific responsive properties and programmable PDT/PTT/chemotherapy functions, might be an interesting synergistic strategy for HCC treatment. PMID:28042325

  5. Dissecting Biology of Solid Tumour: The Microenvironment and Cancer Progression

    2013-01-01

    Focus on cancer therapy is experiencing a major paradigm shift from ways of attacking tumor cells to a strategy for specifically targeting the tumor microenvironment (TME). This approach requires a comprehensive understanding of roles of each component of the tumor environment. A description of the tumor microenvironment and its impact on tumor progression is presented here. Available studies indicate that both tumor/epithelial and stroma characteristics play important roles in cancer progres...

  6. Quantifying synergistic information remains an unsolved problem

    Griffith, Virgil

    2011-01-01

    We review the prior literature of information theoretical measures of synergy or synergistic information. We draw the hereto unnamed conceptual distinction between synergistic and holistic information and analyze six prior measures based on whether they aim to quantify synergy or holism. We apply all measures against a suite of examples to demonstrate no existing measure correctly quantifies synergy under all circumstances.

  7. Synergistic Interactions in Multispecies Biofilms

    Ren, Dawei

    between plasmid host range and composition of the recipient community was investigated in Manuscript 5 by comparing plasmid permissiveness in single populations and in a microbial community composed of 15 soil strains. By use of flow cytometry (FCM) and 16S rRNA gene sequencing, the IncP1 plasmid, pKJK10...... bacterial species, the study to elucidate the impact of interaction networks on the multispecies biofilms in natural ecosystems, especially in soil, is still at an early stage. The diverse patterns of interactions within the mixed communities as well as the predatorprey relationship between protozoa...... interactions in this four-species biofilm model community. Manuscript 2 presents the further application of this developed approach on evaluating the synergistic/antagonistic interactions in multispecies biofilms composed of seven soil isolates. 63% of the four-species biofilms were found to interact...

  8. 活细胞实时成像技术研究抗坏血酸(AA)协同砷剂抗人骨肉瘤MG-63的体外疗效%The synergistic effect of MG-63 cells treated with ascorbic acid (AA) and arsenic trioxide in vitro by using continuous live cell imaging and analysis platform (cell IQ)

    黄晓春; 李泽兵; 陈增淦; 陈统一; 王玲燕

    2012-01-01

    Objective To study the synergistic effect of human osteosarcoma cell line MG-63 treated with ascorbic acid (AA) and arsenic trioxide (As2O3) in vitro. Methods We used continuous live cell imaging and analysis platform (cell IQ) to observe cell proliferation and morphologic change of MG-63 cells which were treated with AA (62. 5 /nmol/L) and As2O3 (1 jumol/L) alone or together . Results MG-63 cell proliferation was depressed observed when treated by A A (62. 5 fimol/L) and As2O3 (1 jumol/L) independently. The effect of AA (62. 5 μmol/L) plus As2O3 (1 /imol/L) was synergistic, which further inhibits MG-63 cell proliferation. Conclusions The treatment of AA combined with As2O3 can induce synergistic effect on the depression of MG-63 cell proliferation. This result provides a new pathway and basic reaserch data of treating osteosarcoma in clinical practice.%目的 研究抗坏血酸(ascorbic acid,AA)和三氧化二砷(arsenic trioxide,As2O3)抗人骨肉瘤细胞MG-63的体外疗效.方法 以MG-63细胞为体外模型,用62.5 μmol/L AA与1μmol/L As2O3单独或联合处理细胞,利用新型连续活细胞图像采集和分析平台(continuous live cell imaging and analysis platform,Cell IQ)实时观察细胞的生长情况和形态学的变化.结果 1 μmol/L As2O3和62.5 μmol/L AA单独处理都可抑制MG-63细胞的生长并诱导细胞死亡.1 μmol/L As2O3和62.5 μmol/L AA联合处理细胞较单独处理组细胞抑制效果更明显.结论 AA和AS2O3抗人骨肉瘤细胞Mg-63可起到协同作用,这一结果为临床治疗骨肉瘤提供了新的思路和实验依据.

  9. Synergistic Extraction of Gallium for Sulfate Solution

    DENGTong; HUANGLijuan; 等

    2002-01-01

    A novel extractant mixture, di-2-ethylhexyl phosphate (DEHPA) plus HX, was propose and tested for recovering gallium from sulfate solution.It was found that the extraction capacity of DEPHA for gallium from sulfate solution could be enhanced significantly due to the synergistic effect of acidix extractant HX. Gallium extraction is negligible below pH 0 and highly sensitive to pH of aqueous phase in the range from 0 to 1, and satisfactory extraction can be gained at pH>1. More than 96% Ga extraction was obtained using 15% DEHPA plus 2% HX. Although Fe(Ⅲ) was found to be extracted preferentially to Ga (Ⅲ), effective extraction of Ga (Ⅲ) was possible by reducing ferric to the ferrous state prior to extraction. A loaded organic phase containing 0.48g·L-1 Ga could be produced from solution of 0.12g·L-1 Ga at A/O ratio of 4:1 via three mixer-settler operation stages. Gallium was stripped quantitatively from the loaded organic phase with 1.5mol·L-1 of sulfuric acid.

  10. Elevated CO2 benefits the soil microenvironment in the rhizosphere of Robinia pseudoacacia L. seedlings in Cd- and Pb-contaminated soils.

    Huang, Shuping; Jia, Xia; Zhao, Yonghua; Bai, Bo; Chang, Yafei

    2017-02-01

    Soil contamination by heavy metals in combination with elevated atmospheric CO2 has important effects on the rhizosphere microenvironment by influencing plant growth. Here, we investigated the response of the R. pseudoacacia rhizosphere microenvironment to elevated CO2 in combination with cadmium (Cd)- and lead (Pb)-contamination. Organic compounds (total soluble sugars, soluble phenolic acids, free amino acids, and organic acids), microbial abundance and activity, and enzyme activity (urease, dehydrogenase, invertase, and β-glucosidase) in rhizosphere soils increased significantly (p soil microbial community in the rhizosphere. Heavy metals alone resulted in an increase in total soluble sugars, free amino acids, and organic acids, a decrease in phenolic acids, microbial populations and biomass, and enzyme activity, and a change in microbial community in rhizosphere soils. Elevated CO2 led to an increase in organic compounds, microbial populations, biomass, and activity, and enzyme activity (except for l-asparaginase), and changes in microbial community under Cd, Pb, or Cd + Pb treatments relative to ambient CO2. In addition, elevated CO2 significantly (p soils. Overall, elevated CO2 benefited the rhizosphere microenvironment of R. pseudoacacia seedlings under heavy metal stress, which suggests that increased atmospheric CO2 concentrations could have positive effects on soil fertility and rhizosphere microenvironment under heavy metals.

  11. Exosome mediated communication within the tumor microenvironment.

    Milane, Lara; Singh, Amit; Mattheolabakis, George; Suresh, Megha; Amiji, Mansoor M

    2015-12-10

    It is clear that exosomes (endosome derived vesicles) serve important roles in cellular communication both locally and distally and that the exosomal process is abnormal in cancer. Cancer cells are not malicious cells; they are cells that represent 'survival of the fittest' at its finest. All of the mutations, abnormalities, and phenomenal adaptations to a hostile microenvironment, such as hypoxia and nutrient depletion, represent the astute ability of cancer cells to adapt to their environment and to intracellular changes to achieve a single goal - survival. The aberrant exosomal process in cancer represents yet another adaptation that promotes survival of cancer. Cancer cells can secrete more exosomes than healthy cells, but more importantly, the content of cancer cells is distinct. An illustrative distinction is that exosomes derived from cancer cells contain more microRNA than healthy cells and unlike exosomes released from healthy cells, this microRNA can be associated with the RNA-induced silencing complex (RISC) which is required for processing mature and biologically active microRNA. Cancer derived exosomes have the ability to transfer metastatic potential to a recipient cell and cancer exosomes function in the physical process of invasion. In this review we conceptualize the aberrant exosomal process (formation, content selection, loading, trafficking, and release) in cancer as being partially attributed to cancer specific differences in the endocytotic process of receptor recycling/degradation and plasma membrane remodeling and the function of the endosome as a signaling entity. We discuss this concept and, to advance comprehension of exosomal function in cancer as mediators of communication, we detail and discuss exosome biology, formation, and communication in health and cancer; exosomal content in cancer; exosomal biomarkers in cancer; exosome mediated communication in cancer metastasis, drug resistance, and interfacing with the immune system; and

  12. Hollow mesoporous silica nanoparticles facilitated drug delivery via cascade pH stimuli in tumor microenvironment for tumor therapy.

    Liu, Junjie; Luo, Zhong; Zhang, Jixi; Luo, Tiantian; Zhou, Jun; Zhao, Xiaojing; Cai, Kaiyong

    2016-03-01

    To efficiently deliver anti-cancer drug to tumor site and reduce its toxic side effects on normal tissues, a polyethylene glycol (PEG) shielding and tumor microenvironment triggering cascade pH-responsive hollow mesoporous silica nanoparticles (HMSNs) drug delivery system was fabricated. 3-(3, 4-dihydroxyphenyl) propionic acid (DHPA) functionalized beta-cyclodextrin (β-CD) was grafted onto the surfaces of HMSNs via boronic acid-catechol ester bonds. Then, PEG conjugated adamantane (Ada) was anchored on HMSNs-β-CD nanocarrier via host-gust interaction. Various techniques proved the successful fabrication of the system. The in vitro tests confirmed that the system was biocompatible. After the system permeating into tumor via enhanced permeability and retention (EPR) effect, the benzoic-imine bonds between the PEG and Ada were cleaved under weak acid condition in tumor microenvironment (pH 6.8), while the dissociated PEG protective layer facilitating cellular uptake of HMSNs system. Subsequently, the boronic acid-catechol ester bonds linkers further hydrolyzed under even low endosomal pH (4.5-6.5) condition for intracellular drug delivery, leading to efficient cell apoptosis. The in vivo results demonstrated that drug loaded HMSNs significantly inhibited tumor growth while only with minimal toxic side effects. The strategy provides new insight into the development of new generation of drug delivery carriers triggering by tumor microenvironment.

  13. Adsorption and Corrosion Inhibition Studies of Some Selected Dyes as Corrosion Inhibitors for Mild Steel in Acidic Medium: Gravimetric, Electrochemical, Quantum Chemical Studies and Synergistic Effect with Iodide Ions

    Thabo Peme

    2015-09-01

    Full Text Available The corrosion inhibition properties of some organic dyes, namely Sunset Yellow (SS, Amaranth (AM, Allura Red (AR, Tartrazine (TZ and Fast Green (FG, for mild steel corrosion in 0.5 M HCl solution, were investigated using gravimetric, potentiodynamic polarization techniques and quantum chemical calculations. The results showed that the studied dyes are good corrosion inhibitors with enhanced inhibition efficiencies. The inhibition efficiency of all the studied dyes increases with increase in concentration, and decreases with increase in temperature. The results showed that the inhibition efficiency of the dyes increases in the presence of KI due to synergistic interactions of the dye molecules with iodide (I− ions. Potentiodynamic polarization results revealed that the studied dyes are mixed-type inhibitors both in the absence and presence of KI. The adsorption of the studied dyes on mild steel surface, with and without KI, obeys the Langmuir adsorption isotherm and involves physical adsorption mechanism. Quantum chemical calculations revealed that the most likely sites in the dye molecules for interactions with mild steel are the S, O, and N heteroatoms.

  14. Adsorption and Corrosion Inhibition Studies of Some Selected Dyes as Corrosion Inhibitors for Mild Steel in Acidic Medium: Gravimetric, Electrochemical, Quantum Chemical Studies and Synergistic Effect with Iodide Ions.

    Peme, Thabo; Olasunkanmi, Lukman O; Bahadur, Indra; Adekunle, Abolanle S; Kabanda, Mwadham M; Ebenso, Eno E

    2015-09-02

    The corrosion inhibition properties of some organic dyes, namely Sunset Yellow (SS), Amaranth (AM), Allura Red (AR), Tartrazine (TZ) and Fast Green (FG), for mild steel corrosion in 0.5 M HCl solution, were investigated using gravimetric, potentiodynamic polarization techniques and quantum chemical calculations. The results showed that the studied dyes are good corrosion inhibitors with enhanced inhibition efficiencies. The inhibition efficiency of all the studied dyes increases with increase in concentration, and decreases with increase in temperature. The results showed that the inhibition efficiency of the dyes increases in the presence of KI due to synergistic interactions of the dye molecules with iodide (I(-)) ions. Potentiodynamic polarization results revealed that the studied dyes are mixed-type inhibitors both in the absence and presence of KI. The adsorption of the studied dyes on mild steel surface, with and without KI, obeys the Langmuir adsorption isotherm and involves physical adsorption mechanism. Quantum chemical calculations revealed that the most likely sites in the dye molecules for interactions with mild steel are the S, O, and N heteroatoms.

  15. Multiparametric classification links tumor microenvironments with tumor cell phenotype.

    Bojana Gligorijevic

    2014-11-01

    Full Text Available While it has been established that a number of microenvironment components can affect the likelihood of metastasis, the link between microenvironment and tumor cell phenotypes is poorly understood. Here we have examined microenvironment control over two different tumor cell motility phenotypes required for metastasis. By high-resolution multiphoton microscopy of mammary carcinoma in mice, we detected two phenotypes of motile tumor cells, different in locomotion speed. Only slower tumor cells exhibited protrusions with molecular, morphological, and functional characteristics associated with invadopodia. Each region in the primary tumor exhibited either fast- or slow-locomotion. To understand how the tumor microenvironment controls invadopodium formation and tumor cell locomotion, we systematically analyzed components of the microenvironment previously associated with cell invasion and migration. No single microenvironmental property was able to predict the locations of tumor cell phenotypes in the tumor if used in isolation or combined linearly. To solve this, we utilized the support vector machine (SVM algorithm to classify phenotypes in a nonlinear fashion. This approach identified conditions that promoted either motility phenotype. We then demonstrated that varying one of the conditions may change tumor cell behavior only in a context-dependent manner. In addition, to establish the link between phenotypes and cell fates, we photoconverted and monitored the fate of tumor cells in different microenvironments, finding that only tumor cells in the invadopodium-rich microenvironments degraded extracellular matrix (ECM and disseminated. The number of invadopodia positively correlated with degradation, while the inhibiting metalloproteases eliminated degradation and lung metastasis, consistent with a direct link among invadopodia, ECM degradation, and metastasis. We have detected and characterized two phenotypes of motile tumor cells in vivo, which

  16. Synergistic anti-Campylobacter jejuni activity of fluoroquinolone and macrolide antibiotics with phenolic compounds.

    Oh, Euna; Jeon, Byeonghwa

    2015-01-01

    The increasing resistance of Campylobacter to clinically important antibiotics, such as fluoroquinolones and macrolides, is a serious public health problem. The objective of this study is to investigate synergistic anti-Campylobacter jejuni activity of fluoroquinolones and macrolides in combination with phenolic compounds. Synergistic antimicrobial activity was measured by performing a checkerboard assay with ciprofloxacin and erythromycin in the presence of 21 phenolic compounds. Membrane permeability changes in C. jejuni by phenolic compounds were determined by measuring the level of intracellular uptake of 1-N-phenylnaphthylamine (NPN). Antibiotic accumulation assays were performed to evaluate the level of ciprofloxacin accumulation in C. jejuni. Six phenolic compounds, including p-coumaric acid, sinapic acid, caffeic acid, vanillic acid, gallic acid, and taxifolin, significantly increased the susceptibility to ciprofloxacin and erythromycin in several human and poultry isolates. The synergistic antimicrobial effect was also observed in ciprofloxacin- and erythromycin-resistant C. jejuni strains. The phenolic compounds also substantially increased membrane permeability and antibiotic accumulation in C. jejuni. Interestingly, some phenolic compounds, such as gallic acid and taxifolin, significantly reduced the expression of the CmeABC multidrug efflux pump. Phenolic compounds increased the NPN accumulation in the cmeB mutant, indicating phenolic compounds may affect the membrane permeability. In this study, we successfully demonstrated that combinational treatment of C. jejuni with antibiotics and phenolic compounds synergistically inhibits C. jejuni by impacting both antimicrobial influx and efflux.

  17. Synergistic anti-Campylobacter jejuni activity of fluoroquinolone and macrolide antibiotics with phenolic compounds

    Euna eOh

    2015-10-01

    Full Text Available The increasing resistance of Campylobacter to clinically-important antibiotics, such as fluoroquinolones and macrolides, is a serious public health problem. The objective of this study is to investigate synergistic anti-Campylobacter jejuni activity of fluoroquinolones and macrolides in combination with phenolic compounds. Synergistic antimicrobial activity was measured by performing a checkerboard assay with ciprofloxacin and erythromycin in the presence of 21 phenolic compounds. Membrane permeability changes in C. jejuni by phenolic compounds were determined by measuring the level of intracellular uptake of 1-N-phenylnaphthylamine (NPN. Antibiotic accumulation assays were performed to evaluate the level of ciprofloxacin accumulation in C. jejuni. Six phenolic compounds, including p-coumaric acid, sinapic acid, caffeic acid, vanillic acid, gallic acid, and taxifolin, significantly increased the susceptibility to ciprofloxacin and erythromycin in several human and poultry isolates. The synergistic antimicrobial effect was also observed in ciprofloxacin- and erythromycin-resistant C. jejuni strains. The phenolic compounds also substantially increased membrane permeability and antibiotic accumulation in C. jejuni. Interestingly, some phenolic compounds, such as gallic acid and taxifolin, significantly reduced the expression of the CmeABC multidrug efflux pump. Phenolic compounds increased the NPN accumulation in the cmeB mutant, indicating phenolic compounds may affect the membrane permeability. In this study, we successfully demonstrated that combinational treatment of C. jejuni with antibiotics and phenolic compounds synergistically inhibits C. jejuni by impacting both antimicrobial influx and efflux.

  18. Liver regeneration microenvironment of hepatocellular carcinoma for prevention and therapy

    Li, Hanmin; Zhang, Lisheng

    2017-01-01

    Research on liver cancer prevention and treatment has mainly focused on the liver cancer cells themselves. Currently, liver cancers are no longer viewed as only collections of genetically altered cells but as aberrant organs with a plastic stroma, matrix, and vasculature. Improving the microenvironment of the liver to promote liver regeneration and repair by affecting immune function, inflammation and vasculature can regulate the dynamic imbalance between normal liver regeneration and repair and abnormal liver regeneration, thus improving the microenvironment of liver regeneration for the prevention and treatment of liver cancer. This review addresses the basic theory of the liver regeneration microenvironment, including the latest findings on immunity, inflammation and vasculature. Attention is given to the potential design of molecular targets in the microenvironment of hepatocellular carcinoma (HCC). In an effort to improve the liver regeneration microenvironment of HCC, researchers have extensively utilized the enhancement of immunity, anti-inflammation and the vasculature niche, which are discussed in detail in this review. In addition, the authors summarize the latest pro-fibrotic transition characteristics of the vascular niche and review potential cell therapies for liver disease. PMID:27655683

  19. Multimodal imaging of lung cancer and its microenvironment (Conference Presentation)

    Hariri, Lida P.; Niederst, Matthew J.; Mulvey, Hillary; Adams, David C.; Hu, Haichuan; Chico Calero, Isabel; Szabari, Margit V.; Vakoc, Benjamin J.; Hasan, Tayyaba; Bouma, Brett E.; Engelman, Jeffrey A.; Suter, Melissa J.

    2016-03-01

    Despite significant advances in targeted therapies for lung cancer, nearly all patients develop drug resistance within 6-12 months and prognosis remains poor. Developing drug resistance is a progressive process that involves tumor cells and their microenvironment. We hypothesize that microenvironment factors alter tumor growth and response to targeted therapy. We conducted in vitro studies in human EGFR-mutant lung carcinoma cells, and demonstrated that factors secreted from lung fibroblasts results in increased tumor cell survival during targeted therapy with EGFR inhibitor, gefitinib. We also demonstrated that increased environment stiffness results in increased tumor survival during gefitinib therapy. In order to test our hypothesis in vivo, we developed a multimodal optical imaging protocol for preclinical intravital imaging in mouse models to assess tumor and its microenvironment over time. We have successfully conducted multimodal imaging of dorsal skinfold chamber (DSC) window mice implanted with GFP-labeled human EGFR mutant lung carcinoma cells and visualized changes in tumor development and microenvironment facets over time. Multimodal imaging included structural OCT to assess tumor viability and necrosis, polarization-sensitive OCT to measure tissue birefringence for collagen/fibroblast detection, and Doppler OCT to assess tumor vasculature. Confocal imaging was also performed for high-resolution visualization of EGFR-mutant lung cancer cells labeled with GFP, and was coregistered with OCT. Our results demonstrated that stromal support and vascular growth are essential to tumor progression. Multimodal imaging is a useful tool to assess tumor and its microenvironment over time.

  20. The First Tianjin, China Forum on Tumor Microenvironment

    Keller, Evan T.; Li, Lu-Yuan

    2010-01-01

    Although it is well recognized that the tumor microenvironment plays a key role in regulating tumor progression the mechanisms through which this occurs need to be defined. Current international research activities towards defining the role of the tumor microenvironment in cancer progression were the subject of the 1st Tianjin Forum on Tumor Microenvironment held at Nankai University in Tianjin, China, July 2 to 4, 2010. The importance of variety of processes, such as inflammation and angiogenesis, in the role of tumor progression were described for multiple tumor types including breast, prostate, and hepatic cancers as well as the process of bone metastasis. Identification of novel signaling pathways that impact both angiogenesis and bone remodeling were presented. Several themes emerged from this meeting including that (1) tumor cells modify the microenvironment to enhance their own survival and progression; (2) targeting host factors, in addition to targeting tumor cells, will have important therapeutic effects; and (3) host cells distribution within the tumor has both prognostic and therapeutic significance. Several priorities for future research were defined including use of a systems biology approach to define the role of host factors in tumor progression; defining the importance of targeting both arms of the bone remodeling process for therapy of bone metastasis and determining how different cell subsets contribute to microenvironment-mediated regulation of tumor progression. PMID:21224351

  1. Nanomedicine as a potent strategy in melanoma tumor microenvironment.

    Pautu, Vincent; Leonetti, Daniela; Lepeltier, Elise; Clere, Nicolas; Passirani, Catherine

    2017-02-20

    Melanoma originated from melanocytes is the most aggressive type of skin cancer. Despite considerable progresses in clinical treatment with the discovery of BRAF or MEK inhibitors and monoclonal antibodies, the durability of response to treatment is often limited to the development of acquired resistance and systemic toxicity. The limited success of conventional treatment highlights the importance of understanding the role of melanoma tumor microenvironment in tumor developement and drug resistance. Nanoparticles represent a promising strategy for the development of new cancer treatments able to improve the bioavailability of drugs and increase their penetration by targeting specifically tumors cells and/or tumor environment. In this review, we will discuss the main influence of tumor microenvironment in melanoma growth and treatment outcome. Furthermore, third generation loaded nanotechnologies represent an exciting tool for detection, treatment, and escape from possible mechanism of resistance mediated by tumor microenvironment, and will be highlighted in this review.

  2. microRNA-mediated regulation of the tumor microenvironment

    Chou, Jonathan; Shahi, Payam; Werb, Zena

    2013-01-01

    The tumor microenvironment includes cells such as fibroblasts, immune cells, endothelial cells, as well as extracellular matrix (ECM), proteases, and cytokines. Together, these components participate in a complex crosstalk with neoplastic tumor cells that affects growth, angiogenesis, and metastasis. MicroRNAs (miRNAs) are small, non-coding RNAs involved in post-transcriptional regulation of gene expression and have recently emerged as important players involved in regulating multiple aspects of cancer biology and the tumor microenvironment. Differential miRNA expression in both the epithelial and stromal compartments of tumors compared with normal tissue suggests that miRNAs are important drivers of tumorigenesis and metastasis. This review article summarizes our current understanding of the diverse roles of miRNAs involved in tumor microenvironment regulation and underscores the importance of miRNAs within multiple cell types that contribute to the hallmarks of cancer. PMID:24036551

  3. SYNERGISTIC WOOD PRESERVATIVES FOR REPLACEMENT OF CCA

    The objective of this project was to evaluate the potential synergistic combinations of environmentally-safe biocides as wood preservatives. These wood preservatives could be potential replacements for the heavy-metal based CCA.Didecyldimethylammonium chloride [DDAC] was...

  4. Microenvironment-derived factors driving metastatic plasticity in melanoma

    Kim, Isabella S; Heilmann, Silja; Kansler, Emily R

    2017-01-01

    Cellular plasticity is a state in which cancer cells exist along a reversible phenotypic spectrum, and underlies key traits such as drug resistance and metastasis. Melanoma plasticity is linked to phenotype switching, where the microenvironment induces switches between invasive/MITF(LO) versus...... proliferative/MITF(HI) states. Since MITF also induces pigmentation, we hypothesize that macrometastatic success should be favoured by microenvironments that induce a MITF(HI)/differentiated/proliferative state. Zebrafish imaging demonstrates that after extravasation, melanoma cells become pigmented and enact...

  5. Combination therapy targeting the tumor microenvironment is effective in a model of human ocular melanoma

    Schafer Peter H

    2007-07-01

    Full Text Available Abstract Background Ocular melanoma is the leading intraocular malignancy. There is no effective treatment for metastatic ocular melanoma. We sought a treatment targeting the tumor microenvironment as well as the tumor cells. Methods Migration of HUVEC cells, the ability of HUVEC cells to form tubes, and proliferative capacity of a human ocular melanoma cell line were tested in the presence of lenalidomide and sorafenib alone and in combination. The compounds were also tested in a rat aortic ring assay and were tested in a highly aggressive human ocular melanoma xenograft model. Results Lenalidomide and Sorafenib inhibit HUVEC ability to migrate and form tubes and when used in combination the inhibition is increased. The agents alone and in combination inhibit outgrowth in the rat aortic ring model. The combination of the agents improved the inhibition over either single agent. In a xenograft model, combination therapy inhibited tumor growth over inhibition by single agent alone in a significant fashion (p Conclusion Lenalidomide and sorafenib are effective at targeting endothelial cells, inhibiting growth of ocular melanoma cells and can inhibit growth of tumors in a xenograft model as well as inhibit development of metastases. Combining these agents works in an additive to synergistic way to inhibit the growth of tumors and development of metastases.

  6. Osteoblasts generate an osteogenic microenvironment when grown on surfaces with rough microtopographies

    Boyan B. D.

    2003-10-01

    Full Text Available Osteoblasts respond to microarchitectural features of their substrate. On smooth surfaces (tissue culture plastic, tissue culture glass, and titanium, the cells attach and proliferate but they exhibit relatively low expression of differentiation markers in monolayer cultures, even when confluent. When grown on microrough Ti surfaces with an average roughness (Ra of 4-7 µm, proliferation is reduced but differentiation is enhanced and in some cases, is synergistic with the effects of surface microtopography. In addition, cells on microrough Ti substrates form hydroxyapatite in a manner that is more typical of bone than do cells cultured on smooth surfaces. Osteoblasts also respond to growth factors and cytokines in a surface-dependent manner. On rougher surfaces, the effects of regulatory factors like 1alpha,25(OH2D3 or 17beta-estradiol are enhanced. The response to the surface is mediated by integrins, which signal to the cell through many of the same mechanisms used by growth factors and hormones. Studies using PEG-modified surfaces indicate that increased differentiation may be related to altered attachment to the surface. When osteoblasts are grown on surfaces with chemistries or microarchitectures that reduce cell attachment and proliferation, and enhance differentiation, the cells tend to increase production of factors like TGF-beta1 that promote osteogenesis while decreasing osteoclastic activity. Thus, on microrough Ti surface, osteoblasts create a microenvironment conducive to new bone formation.

  7. Criterions preparation and characterization of earthworm-composts in view of animal waste recycling: Part II. A synergistic utilization of EPR and {sup 1}H NMR spectroscopies on the characterization of humic acids from vermi composts

    Guimaraes, Elisete [Centro Federal de Educacao Tecnologica, Pato Branco, PR (Brazil); Mangrich, Antonio S.; Machado, Vanderlei G. [Parana Univ., Curitiba, PR (Brazil). Dept. de Quimica]. E-mail: mangrich@quimica.ufpr.br; Traghetta, Dinis G.; Lobo, Maria A. [Centro Universitario Positivo, Curitiba, PR (Brazil)

    2001-12-01

    Humic acids (HA) extracted from sheep (SHHA), cow (COHA), goat (GOHA) and rabbit (RAHA) vermi composted manure were analyzed by electron paramagnetic resonance and hydrogen nuclear magnetic resonance spectroscopies. Carboxylic acids, amine, amide, ester, ether and phenol functions bonded to saturated aliphatic, unsaturated aliphatic conjugated double and single bonds, and aromatic chains constitute the backbone structure of these fresh humic substances (H S). Mn {sup 2+} outer sphere complexes (SHHA, COHA), Fe{sup 3+} axial (COHA, RAHA) or rhombic (SHAHA, COHA, GOHA, RAHA) complexes and Cu{sup 2+} as weak field (COHA, GOHA, RAHA) and strong field (SHAHA, COHA, GOHA, RAHA) complexes were characterized. (author)

  8. Operation of the computer model for microenvironment atomic oxygen exposure

    Bourassa, R. J.; Gillis, J. R.; Gruenbaum, P. E.

    1995-01-01

    A computer model for microenvironment atomic oxygen exposure has been developed to extend atomic oxygen modeling capability to include shadowing and reflections. The model uses average exposure conditions established by the direct exposure model and extends the application of these conditions to treat surfaces of arbitrary shape and orientation.

  9. Tumor-Associated Macrophages and Neutrophils in Tumor Microenvironment

    Jaehong Kim

    2016-01-01

    Full Text Available Distinct tumor microenvironment forms in each progression step of cancer and has diverse capacities to induce both adverse and beneficial consequences for tumorigenesis. It is now known that immune cells can be activated to favor tumor growth and progression, most probably influenced by the tumor microenvironment. Tumor-associated macrophages and tumor-associated neutrophils can exert protumoral functions, enhancing tumor cell invasion and metastasis, angiogenesis, and extracellular matrix remodeling, while inhibiting the antitumoral immune surveillance. Considering that neutrophils in inflammatory environments recruit macrophages and that recruited macrophages affect neutrophil functions, there may be various degrees of interaction between tumor-associated macrophages and tumor-associated neutrophils. Platelets also play an important role in the recruitment and regulation of monocytic and granulocytic cells in the tumor tissues, suggesting that platelet function may be essential for generation of tumor-associated macrophages and tumor-associated neutrophils. In this review, we will explore the biology of tumor-associated macrophages and tumor-associated neutrophils and their possible interactions in the tumor microenvironment. Special attention will be given to the recruitment and activation of these tumor-associated cells and to the roles they play in maintenance of the tumor microenvironment and progression of tumors.

  10. Fundamentals of microfluidic cell culture in controlled microenvironments.

    Young, Edmond W K; Beebe, David J

    2010-03-01

    Microfluidics has the potential to revolutionize the way we approach cell biology research. The dimensions of microfluidic channels are well suited to the physical scale of biological cells, and the many advantages of microfluidics make it an attractive platform for new techniques in biology. One of the key benefits of microfluidics for basic biology is the ability to control parameters of the cell microenvironment at relevant length and time scales. Considerable progress has been made in the design and use of novel microfluidic devices for culturing cells and for subsequent treatment and analysis. With the recent pace of scientific discovery, it is becoming increasingly important to evaluate existing tools and techniques, and to synthesize fundamental concepts that would further improve the efficiency of biological research at the microscale. This tutorial review integrates fundamental principles from cell biology and local microenvironments with cell culture techniques and concepts in microfluidics. Culturing cells in microscale environments requires knowledge of multiple disciplines including physics, biochemistry, and engineering. We discuss basic concepts related to the physical and biochemical microenvironments of the cell, physicochemical properties of that microenvironment, cell culture techniques, and practical knowledge of microfluidic device design and operation. We also discuss the most recent advances in microfluidic cell culture and their implications on the future of the field. The goal is to guide new and interested researchers to the important areas and challenges facing the scientific community as we strive toward full integration of microfluidics with biology.

  11. Tumor microenvironment derived exosomes pleiotropically modulate cancer cell metabolism

    Cancer-associated fibroblasts (CAFs) are a major cellular component of tumor microenvironment in most solid cancers. Altered cellular metabolism is a hallmark of cancer, and much of the published literature has focused on neoplastic cell-autonomous processes for these adaptations. We demonstrate tha...

  12. Immune-suppressive properties of the tumor microenvironment

    Becker, Jürgen C; Andersen, Mads Hald; Schrama, David

    2013-01-01

    Solid tumors are more than an accumulation of cancer cells. Indeed, cancerous cells create a permissive microenvironment by exploiting non-transformed host cells. Thus, solid tumors rather resemble abnormal organs composed of the cancerous cells itself and the stroma providing the supportive...

  13. Functional live cell imaging of the pulmonary neuroepithelial body microenvironment

    De Proost, Ian; Pintelon, Isabel; Brouns, Inge; Kroese, A; Riccardi, Daniela; Kemp, Paul J.; Timmermans, Jean-Pierre; Adriaensen, Dirk

    2008-01-01

    Pulmonary neuroepithelial bodies (NEBs) are densely innervated groups of neuroendocrine cells invariably accompanied by Clara-like cells. Together with NEBs, Clara-like cells form the so-called "NEB microenvironment," which recently has been assigned a potential pulmonary stem cell niche. Conclusive

  14. Microenvironments and microscale productivity of cyanobacterial desert crusts

    Garcia-Pichel, F.; Belnap, Jayne

    1996-01-01

    We used microsensors to characterize physicochemical microenvironments and photosynthesis occurring immediately after water saturation in two desert soil crusts from southeastern Utah, which were formed by the cyanobacteria Microcoleus vaginatus Gomont, Nostoc spp., and Scytonema sp. The light fields within the crusts presented steep vertical gradients in magnitude and spectral composition. Near-surface light-trapping zones were formed due to the scattering nature of the sand particles, but strong light attenuation resulted in euphotic zones only ca. 1 mm deep, which were progressively enriched in longer wavelengths with depth. Rates of gross photosynthesis (3.4a??9.4 mmol O2A?ma??2A?ha??1) and dark respiration (0.81a??3.1 mmol Oa??2A?ma??2A?ha??1) occurring within 1 to several mm from the surface were high enough to drive the formation of marked oxygen microenvironments that ranged from oxygen supersaturation to anoxia. The photosynthetic activity also resulted in localized pH values in excess of 10, 2a??3 units above the soil pH. Differences in metabolic parameters and community structure between two types of crusts were consistent with a successional pattern, which could be partially explained on the basis of the microenvironments. We discuss the significance of high metabolic rates and the formation of microenvironments for the ecology of desert crusts, as well as the advantages and limitations of microsensor-based methods for crust investigation.

  15. Clinical implications of co-inhibitory molecule expression in the tumor microenvironment for DC vaccination: a game of stop and go

    Angela eVasaturo

    2013-12-01

    Full Text Available The aim of therapeutic dendritic cell (DC vaccines in cancer immunotherapy is to activate cytotoxic T cells to recognize and attack the tumor. T cell activation requires the interaction of the T cell receptor with a cognate major histocompatibility complex (MHC-peptide complex. Although initiated by antigen engagement, it is the complex balance between co-stimulatory and co-inhibitory signals on DCs that results in T cell activation or tolerance. Even when already activated, tumor-specific T cells can be neutralized by the expression of co-inhibitory molecules on tumor cells. These and other immunosuppressive cues in the tumor microenvironment are major factors currently hampering the application of DC vaccination. In this review, we discuss recent data regarding the essential and complex role of co-inhibitory molecules in regulating the immune response within the tumor microenvironment. In particular, possible therapeutic intervention strategies aimed at reversing or neutralizing suppressive networks within the tumor microenvironment will be emphasized. Importantly, blocking co-inhibitory molecule signaling, often referred to as immune checkpoint blockade, does not necessarily lead to an effective activation of tumor-specific T cells. Therefore, combination of checkpoint blockade with other immune potentiating therapeutic strategies, such as DC vaccination, might serve as a synergistic combination, capable of reversing effector T cells immunosuppression while at the same time increasing the efficacy of T cell-mediated immunotherapies. This will ultimately result in long-term anti-tumor immunity.

  16. Phenotypic characterization of prostate cancer LNCaP cells cultured within a bioengineered microenvironment.

    Shirly Sieh

    Full Text Available Biophysical and biochemical properties of the microenvironment regulate cellular responses such as growth, differentiation, morphogenesis and migration in normal and cancer cells. Since two-dimensional (2D cultures lack the essential characteristics of the native cellular microenvironment, three-dimensional (3D cultures have been developed to better mimic the natural extracellular matrix. To date, 3D culture systems have relied mostly on collagen and Matrigel™ hydrogels, allowing only limited control over matrix stiffness, proteolytic degradability, and ligand density. In contrast, bioengineered hydrogels allow us to independently tune and systematically investigate the influence of these parameters on cell growth and differentiation. In this study, polyethylene glycol (PEG hydrogels, functionalized with the Arginine-glycine-aspartic acid (RGD motifs, common cell-binding motifs in extracellular matrix proteins, and matrix metalloproteinase (MMP cleavage sites, were characterized regarding their stiffness, diffusive properties, and ability to support growth of androgen-dependent LNCaP prostate cancer cells. We found that the mechanical properties modulated the growth kinetics of LNCaP cells in the PEG hydrogel. At culture periods of 28 days, LNCaP cells underwent morphogenic changes, forming tumor-like structures in 3D culture, with hypoxic and apoptotic cores. We further compared protein and gene expression levels between 3D and 2D cultures upon stimulation with the synthetic androgen R1881. Interestingly, the kinetics of R1881 stimulated androgen receptor (AR nuclear translocation differed between 2D and 3D cultures when observed by immunofluorescent staining. Furthermore, microarray studies revealed that changes in expression levels of androgen responsive genes upon R1881 treatment differed greatly between 2D and 3D cultures. Taken together, culturing LNCaP cells in the tunable PEG hydrogels reveals differences in the cellular responses to

  17. Colorimetric Detection of Creatinine Based on Plasmonic Nanoparticles via Synergistic Coordination Chemistry.

    Du, Jianjun; Zhu, Bowen; Leow, Wan Ru; Chen, Shi; Sum, Tze Chien; Peng, Xiaojun; Chen, Xiaodong

    2015-09-02

    A simple and portable colorimetric assay for creatinine detection is fabricated based on the synergistic coordination of creatinine and uric acid with Hg(2+) on the surface of gold nanoparticles, which exhibits good selectivity and sensitivity. Point-of-care clinical creatinine monitoring can be supported for monitoring renal function and diagnosing corresponding renal diseases at home.

  18. Synergistic Catalytic Action of Cobalt(Ⅱ) Hydroxamates and N-Hydroxyphthalimide in the Aerobic Oxidation of p-Xylene

    Jian LIANG; Jian Zhang LI; Bo ZHOU; Sheng Ying QIN

    2005-01-01

    The catalytic performance of a series of cobalt( Ⅱ ) hydroxamates (CoL2) and the synergistic catalytic action of the cobalt complexes combined with N-hydroxyphthalimide (NHPI) in the aerobic oxidation ofp-xylene to p-toluic acid (PTA) were investigated. The results showed that the existing synergistic action in the catalytic oxidation can shorten the induction period of the radical reaction and improve the yield of PTA.

  19. Synergistic Activities of an Efflux Pump Inhibitor and Iron Chelators against Pseudomonas aeruginosa Growth and Biofilm Formation

    Liu, Yang; Yang, Liang; Molin, Søren

    2010-01-01

    The efflux pump inhibitor phenyl-arginine-beta-naphthylamide (PA beta N) was paired with iron chelators 2,2'-dipyridyl, acetohydroxamic acid, and EDTA to assess synergistic activities against Pseudomonas aeruginosa growth and biofilm formation. All of the tested iron chelators synergistically...... inhibited P. aeruginosa growth and biofilm formation with PA beta N. PA beta N-EDTA showed the most promising activity against P. aeruginosa growth and biofilm formation....

  20. A NEW SYNERGIST FOR INTUMESCENT FLAME RETARDANT POLYPROPYLENE

    Qiang Wu; Bao-jun Qu

    2002-01-01

    The synergistic effects of silicotungstic acid (SiW12) as a catalyst in the phosphorus-nitrogen compounds AM-based intumescent flame-retardant (IFR) polypropylene (PP) were studied using the limiting oxygen index (LOI), the UL-94test, thermogravimetric analysis (TGA), real time Fourier transform infrared (FTIR), laser Raman spectroscopy (LRS). TheLOI data show that SiW12 added to PP/IFR systems has a synergistic FR effect with an IFR additive named AM. The TGAdata show that SiW12 apparently increases the thermal stability of the PP/IFR systems at high temperature (T > 500 ℃). TheFTIR results provide the positive evidence that IFR can improve the thermal stability of PP and SiW12 can induce a higherrate of formation of phosphoric acid and its derivatives. The LRS measurements provide useful information on thecarbonaceous microstructures. In short, a suitable amount of SiW12 (1.5 wt%) exertssynergistic effects with the IFR byincreasing the LOI value and the thermal stability at high temperature and promoting the formation of charred structures onthe burning PP surface.

  1. Stepwise development of thymic microenvironments in vivo is regulated by thymocyte subsets

    W. van Ewijk (Willem); G. Hollander; C. Terhorst; B. Wang (Baoping)

    2000-01-01

    textabstractT-cell development is under the tight control of thymic microenvironments. Conversely, the integrity of thymic microenvironments depends on the physical presence of developing thymocytes, a phenomenon designated as 'thymic crosstalk'. We now show, using thre

  2. Recapitulation of complex transport and action of drugs at the tumor microenvironment using tumor-microenvironment-on-chip.

    Han, Bumsoo; Qu, Chunjing; Park, Kinam; Konieczny, Stephen F; Korc, Murray

    2016-09-28

    Targeted delivery aims to selectively distribute drugs to targeted tumor tissues but not to healthy tissues. This can address many clinical challenges by maximizing the efficacy but minimizing the toxicity of anti-cancer drugs. However, a complex tumor microenvironment poses various barriers hindering the transport of drugs and drug delivery systems. New tumor models that allow for the systematic study of these complex environments are highly desired to provide reliable test beds to develop drug delivery systems for targeted delivery. Recently, research efforts have yielded new in vitro tumor models, the so called tumor-microenvironment-on-chip, that recapitulate certain characteristics of the tumor microenvironment. These new models show benefits over other conventional tumor models, and have the potential to accelerate drug discovery and enable precision medicine. However, further research is warranted to overcome their limitations and to properly interpret the data obtained from these models. In this article, key features of the in vivo tumor microenvironment that are relevant to drug transport processes for targeted delivery were discussed, and the current status and challenges for developing in vitro transport model systems were reviewed.

  3. Study on Extraction Conditions of Ultrasonic Microwave Synergistic Extraction Method of Cichoric Acid%超声微波协同萃取法提取菊苣酸条件研究

    王英超; 王蕾; 金红; 李秋闯; 杨孝丽

    2015-01-01

    Studing on optimum extraction conditions of cichoric acid from Echinacea purpurea with ultrasonic microwave extraction. Using the fresh Echinacea root, exploring the concentration of ethanol,extraction time, microwave power,ratio of material to liquid and other factors on the content of cichoric acid from Echinacea purpurea, and adopting the optimization extraction conditions by orthogonal test. The results showed that the concentration of 50%ethanol,solid-liquid ratio 1∶25 g/mL,microwave power 300 W,one times extraction and extraction times of 660 s as the best extraction conditions. Three groups of parallel test under the optimum condition were conducted, the average content of cichoric acid was 158.4μg/g.%利用超声微波协同萃取对紫锥菊中菊苣酸最佳提取条件进行研究。采用新鲜的紫锥菊根部,考察乙醇浓度、微波提取时间、微波提取功率、料液比等因素对紫锥菊中菊苣酸提取含量的影响,并采用正交试验优化提取条件。结果表明:浓度为50%乙醇、料液比1∶25 g/mL、微波提取时间660 s、微波提取功率300 W和提取次数为1次为最佳提取条件。在最佳提取条件下进行了3组平行验证试验,得到菊苣酸平均含量为158.4μg/g。

  4. Effect of bilateral testicular resection on thymocyte and its microenvironment in aged mice

    Xi-Yun WEI; Jin-Kun ZHANG; Jun LI; Su-Biao CHEN

    2001-01-01

    Aim: To observe the changes in thymocyte and its microenvironment in aged mice after bilateral testicular resection.Methods: In male old mice, at the 25th day after testicular resection, the peripheral blood and thymus were collected. Blood and thymus suspension smears were prepared for quantitative histochemistry and immunohistochemistry study under light and electron microscopes. Results: In testes resected mice the size and the weight of thymus were markedly increased. The demarcation between cortex and medulla was clear. The cortex was thickened and the cell density was increased. The ratio of cortex/medulla stereometry was increased. The total cell count, thymocyte count,the percentage of acid α-naphthyl acetate esterase (ANAE) positive thymocytes, nonlymphocytes and the rosette formation of macrophages and thymocytes were all increased. The thymocytes surrounded closely to the light thymic epithelial cells, dendritic cells or macrophages. The lymphocytes, particularly the ANAE positive lymphocytes of peripheral blood were increased. Conclusion: After bilateral testicular resection, the thymus of aged male mice showed morphological regeneration and the thymocytes and its microenvironment appeared to be definitely improved. It is suggested that testicular resection may improve immune function.

  5. Cell and Signal Components of the Microenvironment of Bone Metastasis Are Affected by Hypoxia

    Bendinelli, Paola; Maroni, Paola; Matteucci, Emanuela; Desiderio, Maria Alfonsina

    2016-01-01

    Bone metastatic cells release bone microenvironment proteins, such as the matricellular protein SPARC (secreted protein acidic and rich in cysteine), and share a cell signaling typical of the bone metabolism controlled by Runx2. The megakaryocytes in the bone marrow engrafted by the metastases seem to be one of the principal microenvironment sources of the biological stimuli, implicated in the formation of an osteoblastic niche, and affecting metastasis phenotype and colonization. Educated platelets in the circulation might derive from megakaryocytes in bone metastasis. The evaluation of predictive markers in the circulating platelets might be useful for the stratification of patients for therapeutic purposes. The hypoxic environment in bone metastasis is one of the key regulators of the network of the biological soluble and structural components of the matrix. In bone metastatic cells under hypoxia, similar patterns of Runx2 and SPARC are observed, both showing downregulation. Conversely, hypoxia induces Endothelin 1, which upregulates SPARC, and these biological stimuli may be considered prognostic markers of bone metastasis in breast carcinoma patients. PMID:27187355

  6. Cell and Signal Components of the Microenvironment of Bone Metastasis Are Affected by Hypoxia

    Paola Bendinelli

    2016-05-01

    Full Text Available Bone metastatic cells release bone microenvironment proteins, such as the matricellular protein SPARC (secreted protein acidic and rich in cysteine, and share a cell signaling typical of the bone metabolism controlled by Runx2. The megakaryocytes in the bone marrow engrafted by the metastases seem to be one of the principal microenvironment sources of the biological stimuli, implicated in the formation of an osteoblastic niche, and affecting metastasis phenotype and colonization. Educated platelets in the circulation might derive from megakaryocytes in bone metastasis. The evaluation of predictive markers in the circulating platelets might be useful for the stratification of patients for therapeutic purposes. The hypoxic environment in bone metastasis is one of the key regulators of the network of the biological soluble and structural components of the matrix. In bone metastatic cells under hypoxia, similar patterns of Runx2 and SPARC are observed, both showing downregulation. Conversely, hypoxia induces Endothelin 1, which upregulates SPARC, and these biological stimuli may be considered prognostic markers of bone metastasis in breast carcinoma patients.

  7. 硫酸介质中榕树叶提取液的缓蚀性能及其与KI的缓蚀协同效应%Corrosion Inhibition of Ficus Microcarpa Leaves Extract and Its Synergistic Effect with KI in Sulfuric Acid

    卢燕; 郑兴文; 刘新露; 曾凤春

    2013-01-01

    通过电化学方法和失重法,研究了榕树叶提取液(FLE)对碳钢在硫酸溶液中的缓蚀性能,同时研究了它与KI的缓蚀协同效应,探讨了缓蚀机理.研究结果表明:在硫酸溶液中,FLE对碳钢属混合抑制型缓蚀剂,缓蚀效率随其浓度的增加而增大;FLE与KI之间存在良好的协同效应,两者复配后,体系的腐蚀电流密度减小,电荷传递电阻增大,双电层电容减小,缓蚀效率增大,表现出更好的缓蚀作用;FLE与KI复配前后,其在碳钢表面的吸附均为自发过程,且符合Langmuir吸附等温方程.%Through electrochemical methods and weight loss measurement,the corrosion inhibition of ficus microcarpa leaves extract (FLE) for carbon steel in sulfuric acid solutions was studied,and the synergistic effect between FLE and KI was investigated,furthermore the inhibition mechanism of FLE was discussed.The results showed that FLE was a mixed-type inhibitor for carbon steel,and the inhibition efficiency of FLE for carbon steel increased with increase of the concentration of FLE.There existed significant synergistic effect between FLE and KI,which made the mixture of FLE and KI was used as corrosion inhibitor,the corrosion current density and double layer capacitance decreased,the charge transfer resistance increased,consequently showed better corrosion inhibition and higher inhibition efficiency.The adsorption of FLE with the presence and absence of KI on the carbon steel surface was a spontaneous process,and obeyed Langmuir adsorption isotherm model.

  8. Antibacterial and Synergistic Activity of Pentacyclic Triterpenoids Isolated from Alstonia scholaris.

    Wang, Chao-Min; Chen, Hsiao-Ting; Wu, Zong-Yen; Jhan, Yun-Lian; Shyu, Ching-Lin; Chou, Chang-Hung

    2016-01-25

    (1) BACKGROUND: Alstonia scholaris (Apocynaceae) is an important medicinal plant that has been historically used in "Dai" ethnopharmacy to treat infectious diseases in China. Although various pharmacological activities have been reported, the antimicrobial constitutes of A. scholaris have not yet been identified. The objective of this study is to evaluate the antibacterial constitutes from the leaf extract of A. scholaris and to assess the synergistic effects of isolated compounds with antibiotics against bacterial pathogens.; (2) METHODS: The chemical constitutes isolated from the leaf extract of A. scholaris were structurally identified by NMR. The antibacterial and synergistic effect of compounds was assessed by calculating the minimal inhibitory concentration (MIC), checkerboard dilution test, and time-kill assay.; (3) RESULTS: Six pentacyclic triterpenoids were structurally identified as (1) lupeol, (2) betulin, (3) 3-hydroxy-11-ursen-28,13-olide, (4) betulinic acid, (5) oleanolic acid and (6) ursolic acid. Both oleanolic and ursolic acid showed antibacterial activity but were limited to Gram-positive bacteria. Ursolic acid showed a synergistic effect with ampicillin and tetracycline against both Bacillus cereus and S. aureus.; (4) CONCLUSION: These findings reflect that pentacyclic triterpenoids are the antibacterial chemicals in A. scholaris. The ability of ursolic acid to enhance the activity of antibiotics can constitute a valuable group of therapeutic agents in the future.

  9. A study for radiation-related tumor microenvironment

    Son, Young Sook; Hong, Seok Il; Kim, Young Soon; Jin Yong Jae; Lee, Tae Hee; Chung, Eun Kyung; Yi, Jae Yeun; Park, Myung Jin; Kim, Yun Young; Kang, Sin Keun

    1999-04-01

    In this study, we attempted to elucidate the mechanism involved in radiation-induced modification and changes of biological factors and physicochemical factors of tumor microenvironment and develop techniques and agents for the modification of tumor microenvironment which is favorable for efficient radio-cancer therapy based on our basic study. We established in vitro tumor invasion and angiogenesis model, elucidated the importance of MMPs activation and the MMPs/TIMPs complex in the invasive transition of tumor. Furthermore we showed the signaling pathway for MMPs induction through EGF receptor and TGF beta 1 stimulated E-M transition. We also established primary culture of human endothelial cells and tubule forming condition which is utilized for the detection of novel angiogenic factors. We also identified hypoxia induced signaling pathway and showed that GBE improved blood perfusion which may increase the effectiveness of radio-cancer therapy.

  10. Pulsation-limited oxygen diffusion in the tumour microenvironment

    Milotti, Edoardo; Stella, Sabrina; Chignola, Roberto

    2017-01-01

    Hypoxia is central to tumour evolution, growth, invasion and metastasis. Mathematical models of hypoxia based on reaction-diffusion equations provide seemingly incomplete descriptions as they fail to predict the measured oxygen concentrations in the tumour microenvironment. In an attempt to explain the discrepancies, we consider both the inhomogeneous distribution of oxygen-consuming cells in solid tumours and the dynamics of blood flow in the tumour microcirculation. We find that the low-frequency oscillations play an important role in the establishment of tumour hypoxia. The oscillations interact with consumption to inhibit oxygen diffusion in the microenvironment. This suggests that alpha-blockers–a class of drugs used to treat hypertension and stress disorders, and known to lower or even abolish low-frequency oscillations of arterial blood flow –may act as adjuvant drugs in the radiotherapy of solid tumours by enhancing the oxygen effect.

  11. Engineering three-dimensional cell mechanical microenvironment with hydrogels.

    Huang, Guoyou; Wang, Lin; Wang, Shuqi; Han, Yulong; Wu, Jinhui; Zhang, Qiancheng; Xu, Feng; Lu, Tian Jian

    2012-12-01

    Cell mechanical microenvironment (CMM) significantly affects cell behaviors such as spreading, migration, proliferation and differentiation. However, most studies on cell response to mechanical stimulation are based on two-dimensional (2D) planar substrates, which cannot mimic native three-dimensional (3D) CMM. Accumulating evidence has shown that there is a significant difference in cell behavior in 2D and 3D microenvironments. Among the materials used for engineering 3D CMM, hydrogels have gained increasing attention due to their tunable properties (e.g. chemical and mechanical properties). In this paper, we provide an overview of recent advances in engineering hydrogel-based 3D CMM. Effects of mechanical cues (e.g. hydrogel stiffness and externally induced stress/strain in hydrogels) on cell behaviors are described. A variety of approaches to load mechanical stimuli in 3D hydrogel-based constructs are also discussed.

  12. Synergistic antimicrobial activity of Camellia sinensis and Juglans regia against multidrug-resistant bacteria.

    Farooqui, Amber; Khan, Adnan; Borghetto, Ilaria; Kazmi, Shahana U; Rubino, Salvatore; Paglietti, Bianca

    2015-01-01

    Synergistic combinations of antimicrobial agents with different mechanisms of action have been introduced as more successful strategies to combat infections involving multidrug resistant (MDR) bacteria. In this study, we investigated synergistic antimicrobial activity of Camellia sinensis and Juglans regia which are commonly used plants with different antimicrobial agents. Antimicrobial susceptibility of 350 Gram-positive and Gram-negative strains belonging to 10 different bacterial species, was tested against Camellia sinensis and Juglans regia extracts. Minimum inhibitory concentrations (MICs) were determined by agar dilution and microbroth dilution assays. Plant extracts were tested for synergistic antimicrobial activity with different antimicrobial agents by checkerboard titration, Etest/agar incorporation assays, and time kill kinetics. Extract treated and untreated bacteria were subjected to transmission electron microscopy to see the effect on bacterial cell morphology. Camellia sinensis extract showed higher antibacterial activity against MDR S. Typhi, alone and in combination with nalidixic acid, than to susceptible isolates." We further explore anti-staphylococcal activity of Juglans regia that lead to the changes in bacterial cell morphology indicating the cell wall of Gram-positive bacteria as possible target of action. The synergistic combination of Juglans regia and oxacillin reverted oxacillin resistance of methicillin resistant Staphylococcus aureus (MRSA) strains in vitro. This study provides novel information about antimicrobial and synergistic activity of Camellia sinensis and Juglans regia against MDR pathogens.

  13. Synergistic antimicrobial activity of Camellia sinensis and Juglans regia against multidrug-resistant bacteria.

    Amber Farooqui

    Full Text Available Synergistic combinations of antimicrobial agents with different mechanisms of action have been introduced as more successful strategies to combat infections involving multidrug resistant (MDR bacteria. In this study, we investigated synergistic antimicrobial activity of Camellia sinensis and Juglans regia which are commonly used plants with different antimicrobial agents. Antimicrobial susceptibility of 350 Gram-positive and Gram-negative strains belonging to 10 different bacterial species, was tested against Camellia sinensis and Juglans regia extracts. Minimum inhibitory concentrations (MICs were determined by agar dilution and microbroth dilution assays. Plant extracts were tested for synergistic antimicrobial activity with different antimicrobial agents by checkerboard titration, Etest/agar incorporation assays, and time kill kinetics. Extract treated and untreated bacteria were subjected to transmission electron microscopy to see the effect on bacterial cell morphology. Camellia sinensis extract showed higher antibacterial activity against MDR S. Typhi, alone and in combination with nalidixic acid, than to susceptible isolates." We further explore anti-staphylococcal activity of Juglans regia that lead to the changes in bacterial cell morphology indicating the cell wall of Gram-positive bacteria as possible target of action. The synergistic combination of Juglans regia and oxacillin reverted oxacillin resistance of methicillin resistant Staphylococcus aureus (MRSA strains in vitro. This study provides novel information about antimicrobial and synergistic activity of Camellia sinensis and Juglans regia against MDR pathogens.

  14. miR-30e-5p and miR-15a Synergistically Regulate Fatty Acid Metabolism in Goat Mammary Epithelial Cells via LRP6 and YAP1

    Zhi Chen

    2016-11-01

    Full Text Available MicroRNA (miRNA regulates the expression of genes and influences a series of biological processes, including fatty acid metabolism. We screened the expression of miRNA in goat mammary glands during peak-lactation and non-lactating (“dry” periods, and performed an in vitro study with goat mammary epithelial cells (GMEC prior to sequencing analysis. Results illustrated that miR-30e-5p and miR-15a were highly expressed. Utilizing a luciferase reporter assay and Western blot, low-density lipoprotein receptor-related protein 6 (LRP6 and Yes associated protein 1 (YAP1 genes were demonstrated to be a target of miR-30e-5p and miR-15a in GMEC. Moreover, we demonstrated that the overexpression of miR-30e-5p and miR-15a in GMEC promoted fat metabolism while their knockdown impaired fat metabolism. These findings extend the discovery of a key role of miR-30e-5p and miR-15a in mediating adipocyte differentiation by suggesting a role in promoting milk fat synthesis. In conclusion, our findings indicate that miR-30e-5p, together with miR-15a, represses expression of LRP6 and promotes fat metabolism in GMEC. The data expanded our knowledge on the function of miRNAs in milk fat metabolism and synthesis in ruminant mammary cells.

  15. Lifetime-based sensing:  influence of the microenvironment.

    Draxler, S; Lippitsch, M E

    1996-03-01

    The influence of the microenvironment on the fluorescence behavior of indicator molecules is investigated. A model is developed to describe the fluorescence decay of indicator molecules in a nonuniform medium. Its consequences for fluorescence lifetime-based chemical sensors are discussed and verified in two examples, namely, a pH sensor using a pyrene compound in a hydrogel and a ruthenium complex for oxygen sensing embedded in a polystyrene membrane.

  16. Effect of pazopanib on tumor microenvironment and liposome delivery

    Tailor, Tina D.; Hanna, Gabi; Yarmolenko, Pavel S.; Dreher, Matthew R.; Betof, Allison S.; Nixon, Andrew B.; Spasojevic, Ivan; Dewhirst, Mark W.

    2010-01-01

    Pathological angiogenesis creates an abnormal microenvironment in solid tumors, characterized by elevated interstitial fluid pressure (IFP) and hypoxia. Emerging theories suggest that judicious downregulation of pro-angiogenic signaling pathways may transiently “normalize” the vascular bed, making it more suitable for drug delivery and radiotherapy. In this work, we investigate the role of pazopanib, a small-molecule inhibitor of vascular endothelial growth factor (VEGF) receptors and platele...

  17. NFAT Signaling and the Tumorigenic Microenvironment of the Prostate

    2015-10-01

    microenvironment, oncogene, senescense, NFAT, cytokines, 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a. NAME OF...subject, purpose and scope of the research. Based on our preliminary data revealing a role of NFAT activation in prostate cancer (PCa), we hypothesize...of our murine model to further study the tumorigenic processes initiated by NFATc1 activation in the prostate (Aim 1) as well as the key molecular

  18. Obesity, metabolism and the microenvironment: Links to cancer

    2013-01-01

    Historically, cancer research has focused on identifying mutations or amplification of genes within the tumor, which informed the development of targeted therapies against affected pathways. This work often considers tumor cells in isolation; however, it is becoming increasingly apparent that the microenvironment surrounding tumor cells strongly influences tumor onset and progression. This is the so-called "seed and soil" hypothesis wherein the seed (cancer cell) is fed and molded by the meta...

  19. Tissue-engineered microenvironment systems for modeling human vasculature.

    Tourovskaia, Anna; Fauver, Mark; Kramer, Gregory; Simonson, Sara; Neumann, Thomas

    2014-09-01

    The high attrition rate of drug candidates late in the development process has led to an increasing demand for test assays that predict clinical outcome better than conventional 2D cell culture systems and animal models. Government agencies, the military, and the pharmaceutical industry have started initiatives for the development of novel in-vitro systems that recapitulate functional units of human tissues and organs. There is growing evidence that 3D cell arrangement, co-culture of different cell types, and physico-chemical cues lead to improved predictive power. A key element of all tissue microenvironments is the vasculature. Beyond transporting blood the microvasculature assumes important organ-specific functions. It is also involved in pathologic conditions, such as inflammation, tumor growth, metastasis, and degenerative diseases. To provide a tool for modeling this important feature of human tissue microenvironments, we developed a microfluidic chip for creating tissue-engineered microenvironment systems (TEMS) composed of tubular cell structures. Our chip design encompasses a small chamber that is filled with an extracellular matrix (ECM) surrounding one or more tubular channels. Endothelial cells (ECs) seeded into the channels adhere to the ECM walls and grow into perfusable tubular tissue structures that are fluidically connected to upstream and downstream fluid channels in the chip. Using these chips we created models of angiogenesis, the blood-brain barrier (BBB), and tumor-cell extravasation. Our angiogenesis model recapitulates true angiogenesis, in which sprouting occurs from a "parent" vessel in response to a gradient of growth factors. Our BBB model is composed of a microvessel generated from brain-specific ECs within an ECM populated with astrocytes and pericytes. Our tumor-cell extravasation model can be utilized to visualize and measure tumor-cell migration through vessel walls into the surrounding matrix. The described technology can be used

  20. Remodelling the vascular microenvironment of glioblastoma with alpha-particles

    Behling, Katja; Maguire, William F.; Di Gialleonardo, Valentina; Heeb, Lukas E.M.; Hassan, Iman F.; Veach, Darren R.; Keshari, Kayvan R.; Gutin, Philip H.; Scheinberg, David A.; McDevitt, Michael R.

    2016-01-01

    Rationale Tumors escape anti-angiogenic therapy by activation of pro-angiogenic signaling pathways. Bevacizumab is approved for the treatment of recurrent glioblastoma, but patients inevitably develop resistance to this angiogenic inhibitor. We investigated targeted α-particle therapy with 225Ac-E4G10 as an anti-vascular approach and previously showed increased survival and tumor control in a high-grade transgenic orthotopic glioblastoma model. Here we investigate changes in tumor-vascular morphology and functionality caused by 225Ac-E4G10. Methods We investigated remodeling of tumor microenvironment in transgenic Ntva glioblastoma mice using a therapeutic 7.4 kBq dose of 225Ac-E4G10. Immunofluorescence and immunohistochemical analyses imaged morphological changes in the tumor blood brain barrier microenvironment. Multi-color flow cytometry quantified the endothelial progenitor cell population in the bone marrow. Diffusion-weighted magnetic resonance imaged functional changes of the tumor vascular network. Results The mechanism of drug action is a combination of glioblastoma vascular microenvironment remodeling, edema relief, and depletion of regulatory T and endothelial progenitor cells. The primary remodeling event is the reduction of both endothelial and perivascular cell populations. Tumor-associated edema and necrosis was lessened and resulted in increased perfusion and reduced diffusion. Pharmacological uptake of dasatinib into tumor was enhanced following α-particle therapy. Conclusion Targeted anti-vascular α-particle radiation remodels the glioblastoma vascular microenvironment via a multimodal mechanism of action and provides insight into the vascular architecture of Platelet-derived growth factor driven glioblastoma. PMID:27261519

  1. Aging of the microenvironment influences clonality in hematopoiesis.

    Virag Vas

    Full Text Available The mechanisms of the age-associated exponential increase in the incidence of leukemia are not known in detail. Leukemia as well as aging are initiated and regulated in multi-factorial fashion by cell-intrinsic and extrinsic factors. The role of aging of the microenvironment for leukemia initiation/progression has not been investigated in great detail so far. Clonality in hematopoiesis is tightly linked to the initiation of leukemia. Based on a retroviral-insertion mutagenesis approach to generate primitive hematopoietic cells with an intrinsic potential for clonal expansion, we determined clonality of transduced hematopoietic progenitor cells (HPCs exposed to a young or aged microenvironment in vivo. While HPCs displayed primarily oligo-clonality within a young microenvironment, aged animals transplanted with identical pool of cells displayed reduced clonality within transduced HPCs. Our data show that an aged niche exerts a distinct selection pressure on dominant HPC-clones thus facilitating the transition to mono-clonality, which might be one underlying cause for the increased age-associated incidence of leukemia.

  2. Obesity, metabolism and the microenvironment: Links to cancer

    Sneha Sundaram

    2013-01-01

    Full Text Available Historically, cancer research has focused on identifying mutations or amplification of genes within the tumor, which informed the development of targeted therapies against affected pathways. This work often considers tumor cells in isolation; however, it is becoming increasingly apparent that the microenvironment surrounding tumor cells strongly influences tumor onset and progression. This is the so-called "seed and soil" hypothesis wherein the seed (cancer cell is fed and molded by the metabolites, growth factors, modifications of the extracellular matrix or angiogenic factors provided by the soil (or stroma. Currently, 65% of the US population is obese or overweight; similarly staggering figures are reported in US children and globally. Obesity mediates and can exacerbate, both normal and tumor microenvironment dysfunction. Many obesity-associated endocrine, metabolic and inflammatory mediators are suspected to play a role in oncogenesis by modifying systemic nutrient metabolism and the nutrient substrates available locally in the stroma. It is vitally important to understand the biological processes linking obesity and cancer to develop better intervention strategies aimed at curbing the carcinogenic events associated with obesity. In this review, obesity-driven changes in both the normal and tumor microenvironment, alterations in metabolism, and release of signaling molecules such as endocrine, growth, and inflammatory mediators will be highlighted. In addition, we will discuss the effects of the timing of obesity onset or particular "windows of susceptibility," with a focus on breast cancer etiology.

  3. Composite alginate gels for tunable cellular microenvironment mechanics

    Khavari, Adele; Nydén, Magnus; Weitz, David A.; Ehrlicher, Allen J.

    2016-08-01

    The mechanics of the cellular microenvironment can be as critical as biochemistry in directing cell behavior. Many commonly utilized materials derived from extra-cellular-matrix create excellent scaffolds for cell growth, however, evaluating the relative mechanical and biochemical effects independently in 3D environments has been difficult in frequently used biopolymer matrices. Here we present 3D sodium alginate hydrogel microenvironments over a physiological range of stiffness (E = 1.85 to 5.29 kPa), with and without RGD binding sites or collagen fibers. We use confocal microscopy to measure the growth of multi-cellular aggregates (MCAs), of increasing metastatic potential in different elastic moduli of hydrogels, with and without binding factors. We find that the hydrogel stiffness regulates the growth and morphology of these cell clusters; MCAs grow larger and faster in the more rigid environments similar to cancerous breast tissue (E = 4–12 kPa) as compared to healthy tissue (E = 0.4–2 kpa). Adding binding factors from collagen and RGD peptides increases growth rates, and change maximum MCA sizes. These findings demonstrate the utility of these independently tunable mechanical/biochemistry gels, and that mechanical confinement in stiffer microenvironments may increase cell proliferation.

  4. SECs (Sinusoidal Endothelial Cells), Liver Microenvironment, and Fibrosis

    Natarajan, Vaishaali; Harris, Edward N.

    2017-01-01

    Liver fibrosis is a wound-healing response to chronic liver injury such as alcoholic/nonalcoholic fatty liver disease and viral hepatitis with no FDA-approved treatments. Liver fibrosis results in a continual accumulation of extracellular matrix (ECM) proteins and paves the way for replacement of parenchyma with nonfunctional scar tissue. The fibrotic condition results in drastic changes in the local mechanical, chemical, and biological microenvironment of the tissue. Liver parenchyma is supported by an efficient network of vasculature lined by liver sinusoidal endothelial cells (LSECs). These nonparenchymal cells are highly specialized resident endothelial cell type with characteristic morphological and functional features. Alterations in LSECs phenotype including lack of LSEC fenestration, capillarization, and formation of an organized basement membrane have been shown to precede fibrosis and promote hepatic stellate cell activation. Here, we review the interplay of LSECs with the dynamic changes in the fibrotic liver microenvironment such as matrix rigidity, altered ECM protein profile, and cell-cell interactions to provide insight into the pivotal changes in LSEC physiology and the extent to which it mediates the progression of liver fibrosis. Establishing the molecular aspects of LSECs in the light of fibrotic microenvironment is valuable towards development of novel therapeutic and diagnostic targets of liver fibrosis. PMID:28293634

  5. Proteoglycans in cancer biology, tumour microenvironment and angiogenesis.

    Iozzo, Renato V; Sanderson, Ralph D

    2011-05-01

    Proteoglycans, key molecular effectors of cell surface and pericellular microenvironments, perform multiple functions in cancer and angiogenesis by virtue of their polyhedric nature and their ability to interact with both ligands and receptors that regulate neoplastic growth and neovascularization. Some proteoglycans such as perlecan, have pro- and anti-angiogenic activities, whereas other proteoglycans, such as syndecans and glypicans, can also directly affect cancer growth by modulating key signalling pathways. The bioactivity of these proteoglycans is further modulated by several classes of enzymes within the tumour microenvironment: (i) sheddases that cleave transmembrane or cell-associated syndecans and glypicans, (ii) various proteinases that cleave the protein core of pericellular proteoglycans and (iii) heparanases and endosulfatases which modify the structure and bioactivity of various heparan sulphate proteoglycans and their bound growth factors. In contrast, some of the small leucine-rich proteoglycans, such as decorin and lumican, act as tumour repressors by physically antagonizing receptor tyrosine kinases including the epidermal growth factor and the Met receptors or integrin receptors thereby evoking anti-survival and pro-apoptotic pathways. In this review we will critically assess the expanding repertoire of molecular interactions attributed to various proteoglycans and will discuss novel proteoglycan functions modulating cancer progression, invasion and metastasis and how these factors regulate the tumour microenvironment.

  6. Synergistic effects in mixed Escherichia coli biofilms

    Reisner, A.; Holler, B.M.; Molin, Søren

    2006-01-01

    the pathways governing development of more complex heterogeneous communities. In this study, we established a laboratory model where biofilm-stimulating effects due to interactions between genetically diverse strains of Escherichia coli were monitored. Synergistic induction of biofilm formation resulting from...

  7. Modelling synergistic effects of appetite regulating hormones

    Schmidt, Julie Berg; Ritz, Christian

    2016-01-01

    We briefly reviewed one definition of dose addition, which is applicable within the framework of generalized linear models. We established how this definition of dose addition corresponds to effect addition in case only two doses per compound are considered for evaluating synergistic effects. The....... The link between definitions was exemplified for an appetite study where two appetite hormones were studied....

  8. Synergistic effects of brain-derived neurotrophic factor and retinoic acid on inducing the differentiation of bone marrow stromal cells into neuron-like cells in adult rats in vitro

    Yonghai Liu; Yucheng Song; Zunsheng Zhang; Xia Shen

    2006-01-01

    BACKGROUND; Under induction of retinoic acid (RA), bone marrow stromal cells (BMSCs) can differentiate into nerve cells or neuron-like cells, which do not survive for a long time, so those are restricted to an application. Other neurotrophic factors can also differentiate into neuronal cells through inducing BMSCs; especially, brain-derived neurotrophic factor (BDNF) can delay natural death of neurons and play a key role in survival and growth of neurons. The combination of them is beneficial for differentiation of BMSCs.OBJECTIVE: To investigate the effects of BDNF combining with RA on inducing differentiation of BMSCs to nerve cells of adult rats and compare the results between common medium group and single BDNF group.DESIGN: Randomized controlled animal study.SETTING : Department of Neurology, Affiliated Hospital of Xuzhou Medical College.MATERIALS: The experiment was carried out in the Clinical Neurological Laboratory of Xuzhou MedicalCollege from September 2003 to April 2005. A total of 24 SD rats, of either gender, 2 months old,weighing 130-150 g, were provided by Experimental Animal Center of Xuzhou Medical College [certification: SYXK (su) 2002-0038]. Materials and reagents: low-glucose DMEM medium, bovine serum, BDNF,RA, trypsin, separating medium of lymphocyte, monoclonal antibody of mouse-anti-nestin, neuro-specific enolase, glial fibrillary acidic protein (GFAP) antibody, SABC kit, and diaminobenzidine (DAB) color agent. All these mentioned above were mainly provided by SIGMA Company, GIBCO Company and Boshide Company.METHODS: Bone marrow of SD rats was selected for density gradient centrifugation. BMSCs were undertaken primary culture and subculture; and then, those cells were induced respectively in various mediums in total of 3 groups, including control group (primary culture), BDNF group (20 μg/L BDNF) and BDNF+RA group (20 μg/L BDNF plus 20 μg/L RA). On the 3rd and the 7th days after induction, BMSCs were stained immunocytochemically with

  9. Synergistic antioxidant activity of green tea with some herbs

    Dheeraj P Jain

    2011-01-01

    Full Text Available Cardiovascular diseases, cancer, arthritis, etc. are caused by free radicals that are byproducts of metabolic pathways. Selected plants namely Vitis vinifera, Phyllanthus emblica L., Punica granatum, Cinnamomum cassia, Ginkgo biloba L., and Camellia sinensis Linn. are reported to produce antioxidant property. This study is undertaken to support the hypothesis that formulation of a polyherbal combination of these plants shows a synergistic effect with green tea. The extracts of each drug were characterized by phytochemical studies and tests for phenolics and flavonoids. In vitro antioxidant activity for individual drug and its combination was determined by 1,1-diphenyl-2-picrylhydrazyl (DPPH, superoxide, and nitric oxide free radical scavenging methods. Our results suggest that a combination of all these herbs with green tea can synergistically enhance antioxidant activity and thus lower doses of each herb with green tea may be used. Antioxidant potential of polyherbal combination was also comparable to that of standard ascorbic acid. Studies showed that selected individual plants contained abundant quantity of phenolics and flavonoids and their polyherbal combination with green tea was found to produce best antioxidant activity among all individual extracts. This will help in avoiding undesirable side effects due to higher doses of single herb.

  10. Synergistic interaction of platelet derived growth factor (PDGF) with the surface of PLLA/Col/HA and PLLA/HA scaffolds produces rapid osteogenic differentiation.

    Raghavendran, Hanumantha Rao Balaji; Mohan, Saktiswaren; Genasan, Krishnamurithy; Murali, Malliga Raman; Naveen, Sangeetha Vasudevaraj; Talebian, Sepehr; McKean, Robert; Kamarul, Tunku

    2016-03-01

    Scaffolds with structural features similar to the extracellular matrix stimulate rapid osteogenic differentiation in favorable microenvironment and with growth factor supplementation. In this study, the osteogenic potential of electrospun poly-l-lactide/hydroxyapatite/collagen (PLLA/Col/HA, PLLA/HA and PLLA/Col) scaffolds were tested in vitro with the supplementation of platelet derived growth factor-BB (PDGF-BB). Cell attachment and topography, mineralization, extracellular matrix protein localization, and gene expression of the human mesenchymal stromal cells were compared between the fibrous scaffolds PLLA/Col/HA, PLLA/Col, and PLLA/HA. The levels of osteocalcin, calcium, and mineralization were significantly greater in the PLLA/Col/HA and PLLA/HA compared with PLLA/Col. High expression of fibronectin, intracellular adhesion molecule, cadherin, and collagen 1 (Col1) suggests that PLLA/Col/HA and PLLA/HA scaffolds had superior osteoinductivity than PLLA/Col. Additionally, osteopontin, osteocalcin, osterix, Runt-related transcription factor 2 (Runx2), and bone morphogenic protein (BMP2) expression were higher in PLLA/Col/HA and PLLA/HA compared with PLLA/Col. In comparison with PLLA/Col, the PLLA/Col/HA and PLLA/HA scaffolds presented a significant upregulation of the genes Runx2, Col 1, Integrin, osteonectin (ON), bone gamma-carboxyglutamic acid-containing protein (BGALP), osteopontin (OPN), and BMP2. The upregulation of these genes was further increased with PDGF-BB supplementation. These results show that PDGF-BB acts synergistically with PLLA/Col/HA and PLLA/HA to enhance the osteogenic differentiation potential. Therefore, this combination can be used for the rapid expansion of bone marrow stromal cells into bone-forming cells for tissue engineering.

  11. Changing bone marrow micro-environment during development of acute myeloid leukaemia in rats

    Mortensen, B T; Jensen, P O; Helledie, N;

    1998-01-01

    cells (from about 45% to 25%), evidently as a result of the severely changed microenvironment. In this study we have demonstrated in vivo the development of an acidic and hypoxic bone marrow hampering normal haemopoiesis during leukaemic growth. Our data support the notion of BNML as a valuable tool......The Brown Norwegian rat transplanted with promyelocytic leukaemic cells (BNML) has been used as a model for human acute myeloid leukaemia. We have previously shown that both the blood supply to the bone marrow and the metabolic rate decrease in relation to the leukaemic development in these rats....... Here we have investigated how the development and progression of this leukaemia affect oxygenation, pH and proliferation of normal and leukaemic cells in vivo. Bone marrow pH was measured by a needle electrode. Nitroimidazol-theophylline (NITP) was used to identify hypoxic cells, and we applied...

  12. MUC1 modulates the tumor immune microenvironment through the engagement of Siglec-9

    Beatson, Richard; Tajadura-Ortega, Virginia; Achkova, Daniela; Picco, Gianfranco; Tsourouktsoglou, Theodora-Dorita; Klausing, Sandra; Hillier, Matthew; Maher, John; Noll, Thomas; Crocker, Paul R.; Taylor-Papadimitriou, Joyce; Burchell, Joy M.

    2016-01-01

    Siglec-9 is a sialic acid binding lectin predominantly expressed on myeloid cells. Aberrant glycosylation occurs in essentially all types of cancers resulting in increased sialylation. Thus when MUC1 is expressed on cancer cells it is decorated by multiple short, sialylated O-linked glycans (MUC1-ST). Here we show that this cancer-specific MUC1 glycoform could, through the engagement of Siglec-9, educate myeloid cells to release factors associated with tumor microenvironment determination and disease progression. Moreover MUC1-ST induced macrophages to display a TAM-like phenotype with increased expression of PD-L1. MUC1-ST binding to Siglec-9 did not activate SHP-1/2 but surprisingly induced calcium flux leading to MEK-ERK activation. This work defines a critical role for aberrantly glycosylated MUC1 and identifies an activating pathway following Siglec-9 engagement. PMID:27595232

  13. Synergistic Synthetic Biology: Units in Concert.

    Trosset, Jean-Yves; Carbonell, Pablo

    2013-01-01

    Synthetic biology aims at translating the methods and strategies from engineering into biology in order to streamline the design and construction of biological devices through standardized parts. Modular synthetic biology devices are designed by means of an adequate elimination of cross-talk that makes circuits orthogonal and specific. To that end, synthetic constructs need to be adequately optimized through in silico modeling by choosing the right complement of genetic parts and by experimental tuning through directed evolution and craftsmanship. In this review, we consider an additional and complementary tool available to the synthetic biologist for innovative design and successful construction of desired circuit functionalities: biological synergies. Synergy is a prevalent emergent property in biological systems that arises from the concerted action of multiple factors producing an amplification or cancelation effect compared with individual actions alone. Synergies appear in domains as diverse as those involved in chemical and protein activity, polypharmacology, and metabolic pathway complementarity. In conventional synthetic biology designs, synergistic cross-talk between parts and modules is generally attenuated in order to verify their orthogonality. Synergistic interactions, however, can induce emergent behavior that might prove useful for synthetic biology applications, like in functional circuit design, multi-drug treatment, or in sensing and delivery devices. Synergistic design principles are therefore complementary to those coming from orthogonal design and may provide added value to synthetic biology applications. The appropriate modeling, characterization, and design of synergies between biological parts and units will allow the discovery of yet unforeseeable, novel synthetic biology applications.

  14. Switching off malignant mesothelioma: exploiting the hypoxic microenvironment.

    Nabavi, Noushin; Bennewith, Kevin L; Churg, Andrew; Wang, Yuzhuo; Collins, Colin C; Mutti, Luciano

    2016-11-01

    Malignant mesotheliomas are aggressive, asbestos-related cancers with poor patient prognosis, typically arising in the mesothelial surfaces of tissues in pleural and peritoneal cavity. The relative unspecific symptoms of mesotheliomas, misdiagnoses, and lack of precise targeted therapies call for a more critical assessment of this disease. In the present review, we categorize commonly identified genomic aberrations of mesotheliomas into their canonical pathways and discuss targeting these pathways in the context of tumor hypoxia, a hallmark of cancer known to render solid tumors more resistant to radiation and most chemo-therapy. We then explore the concept that the intrinsic hypoxic microenvironment of mesotheliomas can be Achilles' heel for targeted, multimodal therapeutic intervention.

  15. Low Dose IR Creates an Oncogenic Microenvironment by Inducing Premature

    Yuan, Zhi-Min [Harvard School of Public Health

    2013-04-28

    Introduction Much of the work addressing ionizing radiation-induced cellular response has been carried out mainly with the traditional cell culture technique involving only one cell type, how cellular response to IR is influenced by the tissue microenvironment remains elusive. By use of a three-dimensional (3D) co-culture system to model critical interactions of different cell types with their neighbors and with their environment, we recently showed that low-dose IR-induced extracellular signaling via the tissue environment affects profoundly cellular responses. This proposal aims at determining the response of mammary epithelial cells in a tissue-like setting.

  16. Biomolecule delivery to engineer the cellular microenvironment for regenerative medicine.

    Bishop, Corey J; Kim, Jayoung; Green, Jordan J

    2014-07-01

    To realize the potential of regenerative medicine, controlling the delivery of biomolecules in the cellular microenvironment is important as these factors control cell fate. Controlled delivery for tissue engineering and regenerative medicine often requires bioengineered materials and cells capable of spatiotemporal modulation of biomolecule release and presentation. This review discusses biomolecule delivery from the outside of the cell inwards through the delivery of soluble and insoluble biomolecules as well as from the inside of the cell outwards through gene transfer. Ex vivo and in vivo therapeutic strategies are discussed, as well as combination delivery of biomolecules, scaffolds, and cells. Various applications in regenerative medicine are highlighted including bone tissue engineering and wound healing.

  17. Probing the luminal microenvironment of reconstituted epithelial microtissues

    Cerchiari, Alec E.; Samy, Karen E.; Todhunter, Michael E.; Schlesinger, Erica; Henise, Jeff; Rieken, Christopher; Gartner, Zev J.; Desai, Tejal A.

    2016-01-01

    Polymeric microparticles can serve as carriers or sensors to instruct or characterize tissue biology. However, incorporating microparticles into tissues for in vitro assays remains a challenge. We exploit three-dimensional cell-patterning technologies and directed epithelial self-organization to deliver microparticles to the lumen of reconstituted human intestinal microtissues. We also develop a novel pH-sensitive microsensor that can measure the luminal pH of reconstituted epithelial microtissues. These studies offer a novel approach for investigating luminal microenvironments and drug-delivery across epithelial barriers. PMID:27619235

  18. Impact of Microenvironment and Stem-Like Plasticity in Cholangiocarcinoma

    Raggi, Chiara; Invernizzi, Pietro; Andersen, Jesper Bøje

    2014-01-01

    Clinical complexity, anatomic diversity and molecular heterogeneity of cholangiocarcinoma (CCA) represent a major challenge in the assessment of effective targeted therapies. Molecular and cellular mechanisms underlying diversity of CCA growth patterns remain a key issue and a clinical concern...... or tumor microenvironment (TME) likely promotes initiation and progression of this malignancy contributing to its heterogeneity. This review will emphasize the dynamic interplay between stem-like intrinsic and TME-extrinsic pathways, which may represent novel options for multi-targeted therapies in CCA....

  19. Combined Effects of Pericytes in the Tumor Microenvironment

    Aline Lopes Ribeiro

    2015-01-01

    Full Text Available Pericytes are multipotent perivascular cells whose involvement in vasculature development is well established. Evidences in the literature also suggest that pericytes display immune properties and that these cells may serve as an in vivo reservoir of stem cells, contributing to the regeneration of diverse tissues. Pericytes are also capable of tumor homing and are important cellular components of the tumor microenvironment (TME. In this review, we highlight the contribution of pericytes to some classical hallmarks of cancer, namely, tumor angiogenesis, growth, metastasis, and evasion of immune destruction, and discuss how collectively these hallmarks could be tackled by therapies targeting pericytes, providing a rationale for cancer drugs aiming at the TME.

  20. Combined Effects of Pericytes in the Tumor Microenvironment

    Ribeiro, Aline Lopes; Okamoto, Oswaldo Keith

    2015-01-01

    Pericytes are multipotent perivascular cells whose involvement in vasculature development is well established. Evidences in the literature also suggest that pericytes display immune properties and that these cells may serve as an in vivo reservoir of stem cells, contributing to the regeneration of diverse tissues. Pericytes are also capable of tumor homing and are important cellular components of the tumor microenvironment (TME). In this review, we highlight the contribution of pericytes to some classical hallmarks of cancer, namely, tumor angiogenesis, growth, metastasis, and evasion of immune destruction, and discuss how collectively these hallmarks could be tackled by therapies targeting pericytes, providing a rationale for cancer drugs aiming at the TME. PMID:26000022

  1. Synergistic Effect of Decitabine and Valproic Acid on Differentiation and Apoptosts of Stem Cells of an AML - M2 Patient in vitro%地西他滨联合丙戊酸钠体外诱导1例AML-M2复发患者原始细胞凋亡分化的作用研究

    陈琼娜; 王晔恺; 周吉航; 李翊卫; 曾芳; 刘晓光

    2012-01-01

    Objective To investigate the synergistic effect of decitabine( DCA) and valproic acid( VPA) on differentiation and apoptosis of stem cells of an AML - M2 patient in vitro. Methods The stem cells in the bone marrow of the AML - M2 patient were sorted by flow cytometry. The groups were set as follows:control group; DCA alone group A(1.0μmol/L); DCA alone group B(4. 0μmol/L); VPA alone group (2. 0mmol/L); combination group A (DCA l.0μmol/L + VPA 2. 0mmol/L); combination group B(DCA 4. 0μmol/L + VPA 2. 0mmol/L). The cells were treated by drug for 48 hours. Then the apoptosis rates,CD117 and CD14 expressions were detected by flow cytometry. Results Compared with corresponding concentration single drug group,the apoptosis rates and CD 14 expressions of the combination group A and B were significantly higher(P < 0. 01 ) and CD117 expressions of the combination group A and B were significantly lower( P < 0.01). Conclusion There was an enhanced antileukemia activity of combinations of DCA and VPA.%目的 探讨地西他滨( decitabine,DCA)和丙戊酸钠(valproic acid,VPA)联用对1例复发性AML - M2患者原始细胞体外的影响.方法 分选此例患者骨髓原始细胞,设立药物分组如下:对照组,DCA单药A组(1.0μmol/L),DCA单药B组(4.0μmol/L),VPA单药组(2.0mmol/L),联合用药A组(DCA 1.0μmol/L+ VPA 2.0mmol/L),联合用药B组(DCA 4.0μmol/L+VPA 2.0mmol/L),作用48h.应用流式细胞术检测早期凋亡率和CD117、CD14表达率.结果 相对于各自的单药组,联合用药A组和联合用药B组均能显著提高早期凋亡率和CD14表达,抑制CD117的表达(P<0.01).结论 体外DCA联合VPA能显著加强抗白血病效应.

  2. 地西他滨联合丙戊酸钠对一例AML-M4复发患者原始细胞体外的分化凋亡影响%Synergistic effect of decitabine and valproic acid on differentiation and apoptosis of stem cells of an AML - M4 patient in vitro

    安明和; 王晔恺; 周吉航; 李翊卫; 曾芳

    2012-01-01

    Objective:To investigate the synergistic effect of decitabine(DCA) and valproic acid(VPA) on differentiation and apoptosis of stem cells of an AML - M4 patient in vitro. Methods; The groups were set as follows: control group; DCA alone group A ( 1. 0 μmol/L); DCA alone group B (4. 0 μmol/L); VPA alone group (2.0 nunol/L); combination group A ( DCA 1. 0 μmol/L + VPA 2. 0 mmol/L) ; combination group B ( DCA 4.0 μmol/L + VPA 2.0 mmol/L) . The cells were treated by drug for 48 hours. Then the apoptosis rates, CD117 and CD14 expressions were detected by flow cytometry. Results; Compared with corresponding single drug group,the apoptosis rates and CD14 expressions of the combination group A and combination group B were significantly higher(P <0.01) while CD117 expressions were significantly lower(P< 0.01). Conclusion; Combination of DCA and VPA in vitro can remarkably enhance anti - leukemia effect.%目的:探讨地西他滨( decitabine,DCA)和丙戊酸钠(valproic acid,VPA)联用对AML患者原始细胞体外的影响.方法:设立分组如下:对照组,DCA单药A组(1.0 μmol/L),DCA单药B组(4.0 μmol/L),VPA单药组(2.0 mmol/L),联合用药A组(DCA 1.0 mol/L+VPA 2.0 mmol/L),联合用药B组(DCA4.0 μmol/L+ VPA 2.0 mmol/L),作用48 h.应用流式细胞术检测早期凋亡率和CD117、CD14表达率.结果:相对于各自的单药组,联合用药A组和联合用药B组均能显著提高早期凋亡率和CD14表达,抑制CD117的表达(P<0.01).结论:体外DCA联合VPA能显著加强抗白血病效应.

  3. A bladder cancer microenvironment simulation system based on a microfluidic co-culture model

    Liu, Peng-Fei; Cao, Yan-wei; Zhang, Shu-Dong; Zhao, Yang; Liu, Xiao-guang; Shi, Hao-qing; Hu, Ke-yao; Zhu, Guan-qun; Ma, Bo; Niu, Hai-Tao

    2015-01-01

    A tumor microenvironment may promote tumor metastasis and progression through the dynamic interplay between neoplastic cells and stromal cells. In this work, the most representative and significant stromal cells, fibroblasts, endothelial cells, and macrophages were used as vital component elements and combined with bladder cancer cells to construct a bladder cancer microenvironment simulation system. This is the first report to explore bladder cancer microenvironments based on 4 types of cell...

  4. Metabolic Hallmarks of Tumor and Immune Cells in the Tumor Microenvironment

    Renner, Kathrin; Singer, Katrin; Koehl, Gudrun E.; Geissler, Edward K.; Peter, Katrin; Siska, Peter J.; Kreutz, Marina

    2017-01-01

    Cytotoxic T lymphocytes and NK cells play an important role in eliminating malignant tumor cells and the number and activity of tumor-infiltrating T cells represent a good marker for tumor prognosis. Based on these findings, immunotherapy, e.g., checkpoint blockade, has received considerable attention during the last couple of years. However, for the majority of patients, immune control of their tumors is gray theory as malignant cells use effective mechanisms to outsmart the immune system. Increasing evidence suggests that changes in tumor metabolism not only ensure an effective energy supply and generation of building blocks for tumor growth but also contribute to inhibition of the antitumor response. Immunosuppression in the tumor microenvironment is often based on the mutual metabolic requirements of immune cells and tumor cells. Cytotoxic T and NK cell activation leads to an increased demand for glucose and amino acids, a well-known feature shown by tumor cells. These close metabolic interdependencies result in metabolic competition, limiting the proliferation, and effector functions of tumor-specific immune cells. Moreover, not only nutrient restriction but also tumor-driven shifts in metabolite abundance and accumulation of metabolic waste products (e.g., lactate) lead to local immunosuppression, thereby facilitating tumor progression and metastasis. In this review, we describe the metabolic interplay between immune cells and tumor cells and discuss tumor cell metabolism as a target structure for cancer therapy. Metabolic (re)education of tumor cells is not only an approach to kill tumor cells directly but could overcome metabolic immunosuppression in the tumor microenvironment and thereby facilitate immunotherapy. PMID:28337200

  5. Multiple Myeloma Macrophages: Pivotal Players in the Tumor Microenvironment

    Simona Berardi

    2013-01-01

    Full Text Available Tumor microenvironment is essential for multiple myeloma (MM growth, progression, and drug resistance through provision of survival signals and secretion of growth and proangiogenic factors. This paper examines the importance of macrophages within MM bone marrow (BM microenvironment, referred to as MM-associated macrophages, as a potential niche component that supports tumor plasma cells. These macrophages are derived from peripheral blood monocytes recruited into the tumor. Upon activation by MM plasma cells and mesenchymal stromal cells, macrophages can release growth factors, proteolytic enzymes, cytokines, and inflammatory mediators that promote plasma cell growth and survival. Macrophages promote tumor progression through several mechanisms including angiogenesis, growth, and drug resistance. Indeed, these macrophages are essential for the induction of an angiogenic response through vasculogenic mimicry, and this ability proceeds in step with progression of the plasma cell tumors. Data suggest that macrophages play an important role in the biology and survival of patients with MM, and they may be a target for the MM antivascular management.

  6. Carcinoma Cell Hyaluronan as a "Portable" Cancerized Prometastatic Microenvironment.

    Turley, Eva A; Wood, David K; McCarthy, James B

    2016-05-01

    Hyaluronan (HA) is a structurally simple polysaccharide, but its ability to act as a template for organizing pericellular matrices and its regulated synthesis and degradation are key to initiating repair responses. Importantly, these HA functions are usurped by tumor cells to facilitate progression and metastasis. Recent advances have identified the functional complexities associated with the synthesis and degradation of HA-rich matrices. Three enzymes synthesize large HA polymers while multiple hyaluronidases or tissue free radicals degrade these into smaller bioactive fragments. A family of extracellular and cell-associated HA-binding proteins/receptors translates the bioinformation encrypted in this complex polymer mixture to activate signaling networks required for cell survival, proliferation, and migration in an actively remodeling microenvironment. Changes in HA metabolism within both the peritumor stroma and parenchyma are linked to tumor initiation, progression, and poor clinical outcome. We review evidence that metastatic tumor cells must acquire the capability to autonomously synthesize, assemble, and process their own "portable" HA-rich microenvironments to survive in the circulation, metastasize to ectopic sites, and escape therapeutic intervention. Strategies to disrupt the HA machinery of primary tumor and circulating tumor cells may enhance the effectiveness of current conventional and targeted therapies. Cancer Res; 76(9); 2507-12. ©2016 AACR.

  7. Multiparametric probing of microenvironment with solvatochromic fluorescent dyes.

    Klymchenko, Andrey S; Demchenko, Alexander P

    2008-01-01

    We describe new methodology for multiparametric probing of weak non-covalent interactions in the medium based on response of environment-sensitive fluorescent dyes. The commonly used approach is based on correlation of one spectroscopic parameter (e.g. wavelength shift) with environment polarity, which describes a superposition of universal and specific (such as hydrogen bonding) interactions. In our approach, by using several independent spectroscopic parameters of a dye, we monitor simultaneously each individual type of the interactions. For deriving these extra parameters the selected dye should exist in several excited and/or ground states. In the present work, we applied 4'-(diethylamino)-3-hydroxyflavone, which undergoes the excited-state intramolecular proton transfer (ESIPT) and thus exhibits an additional emission band belonging to an ESIPT product (tautomer) form of the dye. The spectroscopic characteristics of the excited normal and the tautomer states as well as of the ESIPT reaction of the dye are differently sensitive to the different types of interactions with microenvironment and therefore can be used for its multiparametric description. The new methodology allowed us to monitor simultaneously three fundamental physicochemical parameters of probe microenvironment: polarity, electronic polarizability and H-bond donor ability. The applications of this approach to binary solvent mixtures, reverse micelles, lipid bilayers and binding sites of proteins are presented and the limitations of this approach are discussed. We believe that the methodology of multiparametric probing will extend the capabilities of fluorescent probes as the tools in biomolecular and cellular research.

  8. Inflammatory Alterations of the Extracellular Matrix in the Tumor Microenvironment

    Iijima, Junko [Department of Molecular Biosciences, Faculty of Life Sciences, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-Ku, Kyoto 603-8555 (Japan); Konno, Kenjiro [Department of Animal Medical Sciences, Faculty of Life Sciences, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-Ku, Kyoto 603-8555 (Japan); Itano, Naoki, E-mail: itanon@cc.kyoto-su.ac.jp [Department of Molecular Biosciences, Faculty of Life Sciences, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-Ku, Kyoto 603-8555 (Japan)

    2011-08-09

    Complex interactions between cancer cells and host stromal cells result in the formation of the “tumor microenvironment”, where inflammatory alterations involve the infiltration of tumor-associated fibroblasts and inflammatory leukocytes that contribute to the acquisition of malignant characteristics, such as increased cancer cell proliferation, invasiveness, metastasis, angiogenesis, and avoidance of adaptive immunity. The microenvironment of a solid tumor is comprised not only of cellular compartments, but also of bioactive substances, including cytokines, growth factors, and extracellular matrix (ECM). ECM can act as a scaffold for cell migration, a reservoir for cytokines and growth factors, and a signal through receptor binding. During inflammation, ECM components and their degraded fragments act directly and indirectly as inflammatory stimuli in certain cases and regulate the functions of inflammatory and immune cells. One such ECM component, hyaluronan, has recently been implicated to modulate innate immune cell function through pattern recognition toll-like receptors and accelerate the recruitment and activation of tumor-associated macrophages in inflamed cancers. Here, we will summarize the molecular mechanism linking inflammation with ECM remodeling in the tumor microenvironment, with a particular emphasis on the role of hyaluronan in controlling the inflammatory response.

  9. Interleukin-5 facilitates lung metastasis by modulating the immune microenvironment.

    Zaynagetdinov, Rinat; Sherrill, Taylor P; Gleaves, Linda A; McLoed, Allyson G; Saxon, Jamie A; Habermann, Arun C; Connelly, Linda; Dulek, Daniel; Peebles, R Stokes; Fingleton, Barbara; Yull, Fiona E; Stathopoulos, Georgios T; Blackwell, Timothy S

    2015-04-15

    Although the lung is the most common metastatic site for cancer cells, biologic mechanisms regulating lung metastasis are not fully understood. Using heterotopic and intravenous injection models of lung metastasis in mice, we found that IL5, a cytokine involved in allergic and infectious diseases, facilitates metastatic colonization through recruitment of sentinel eosinophils and regulation of other inflammatory/immune cells in the microenvironment of the distal lung. Genetic IL5 deficiency offered marked protection of the lungs from metastasis of different types of tumor cells, including lung cancer, melanoma, and colon cancer. IL5 neutralization protected subjects from metastasis, whereas IL5 reconstitution or adoptive transfer of eosinophils into IL5-deficient mice exerted prometastatic effects. However, IL5 deficiency did not affect the growth of the primary tumor or the size of metastatic lesions. Mechanistic investigations revealed that eosinophils produce CCL22, which recruits regulatory T cells to the lungs. During early stages of metastasis, Treg created a protumorigenic microenvironment, potentially by suppressing IFNγ-producing natural killer cells and M1-polarized macrophages. Together, our results establish a network of allergic inflammatory circuitry that can be co-opted by metastatic cancer cells to facilitate lung colonization, suggesting interventions to target this pathway may offer therapeutic benefits to prevent or treat lung metastasis.

  10. Oxidative and Nitrosative Stress in the Metastatic Microenvironment

    Ortega, Ángel L. [Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 15 Av. Blasco Ibañez, 46010 Valencia (Spain); Mena, Salvador [Green Molecular S.L., Pol. Ind. La Coma-Parc Cientific, 46190 Paterna, Valencia (Spain); Estrela, José M., E-mail: jose.m.estrela@uv.es [Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 15 Av. Blasco Ibañez, 46010 Valencia (Spain)

    2010-03-26

    Metastases that are resistant to conventional therapies are the main cause of most cancer-related deaths in humans. Tumor cell heterogeneity, which associates with genomic and phenotypic instability, represents a major problem for cancer therapy. Additional factors, such as the attack of immune cells or organ-specific microenvironments, also influence metastatic cell behavior and the response to therapy. Interaction of cancer and endothelial cells in capillary beds, involving mechanical contact and transient adhesion, is a critical step in the initiation of metastasis. This interaction initiates a cascade of activation pathways that involves cytokines, growth factors, bioactive lipids and reactive oxygen and nitrogen species (ROS and RNS) produced by either the cancer cell or the endothelium. Vascular endothelium-derived NO and H{sub 2}O{sub 2} are cytotoxic for the cancer cells, but also help to identify some critical molecular targets that appear essential for survival of invasive metastatic cell subsets. Surviving cancer cells that extravasate and start colonization of an organ or tissue can still be attacked by macrophages and be influenced by specific intraorgan microenvironment conditions. At all steps; from the primary tumor until colonization of a distant organ; metastatic cells undergo a dynamic process of constant adaptations that may lead to the survival of highly resistant malignant cell subsets. In this sequence of molecular events both ROS and RNS play key roles.

  11. Interstitial fluid: the overlooked component of the tumor microenvironment?

    Wiig Helge

    2010-07-01

    Full Text Available Abstract Background The interstitium, situated between the blood and lymph vessels and the cells, consists of a solid or matrix phase and a fluid phase, together constituting the tissue microenvironment. Here we focus on the interstitial fluid phase of tumors, i.e., the fluid bathing the tumor and stromal cells. Novel knowledge on this compartment may provide important insight into how tumors develop and how they respond to therapy. Results We discuss available techniques for interstitial fluid isolation and implications of recent findings with respect to transcapillary fluid balance and uptake of macromolecular therapeutic agents. By the development of new methods it is emerging that local gradients exist in signaling substances from neoplastic tissue to plasma. Such gradients may provide new insight into the biology of tumors and mechanistic aspects linked to therapy. The emergence of sensitive proteomic technologies has made the interstitial fluid compartment in general and that of tumors in particular a highly valuable source for tissue-specific proteins that may serve as biomarker candidates. Potential biomarkers will appear locally at high concentrations in the tissue of interest and will eventually appear in the plasma, where they are diluted. Conclusions Access to fluid that reliably reflects the local microenvironment enables us to identify substances that can be used in early detection and monitoring of disease.

  12. Apoptosis and the thymic microenvironment in murine lupus.

    Takeoka, Y; Taguchi, N; Shultz, L; Boyd, R L; Naiki, M; Ansari, A A; Gershwin, M E

    1999-11-01

    The thymus of New Zealand black (NZB) mice undergoes premature involution. In addition, cultured thymic epithelial cells from NZB mice undergo accelerated preprogrammed degeneration. NZB mice also have distinctive and well-defined abnormalities of thymic architecture involving stromal cells, defined by staining with monoclonal antibodies specific for the thymic microenvironment. We took advantage of these findings, as well as our large panel of monoclonal antibodies which recognize thymic stroma, to study the induction of apoptosis in the thymus of murine lupus and including changes of epithelial architecture. We studied NZB, MRL/lpr, BXSB/Yaa, C3H/gld mice and BALB/c and C57BL/6 as control mice. Apoptosis was studied both at basal levels and following induction with either dexamethasone or lipopolysaccharide (LPS). The apoptotic cells were primarily found in the thymic cortex, and the frequency of apoptosis in murine lupus was less than 20% of controls. Moreover, all strains of murine lupus had severe abnormalities of the cortical network. These changes were not accentuated by dexamethasone treatment in cultured thymocytes. However, the thymus in murine lupus was less susceptible to LPS-induced apoptosis than control mice. Finally we note that the number of thymic nurse cells (TNC) was lowest in NZB mice. Our findings demonstrate significant abnormalities in the induction of apoptosis and the formation of TNC-like epithelial cells in SLE mice, and suggest that the abnormalities of the thymic microenvironment have an important role in the pathogenesis of murine lupus.

  13. The role of the microenvironment in tumor growth and invasion

    Kim, Yangjin; Stolarska, Magdalena A.; Othmer, Hans G.

    2011-01-01

    Mathematical modeling and computational analysis are essential for understanding the dynamics of the complex gene networks that control normal development and homeostasis, and can help to understand how circumvention of that control leads to abnormal outcomes such as cancer. Our objectives here are to discuss the different mechanisms by which the local biochemical and mechanical microenvironment, which is comprised of various signaling molecules, cell types and the extracellular matrix (ECM), affects the progression of potentially-cancerous cells, and to present new results on two aspects of these effects. We first deal with the major processes involved in the progression from a normal cell to a cancerous cell at a level accessible to a general scientific readership, and we then outline a number of mathematical and computational issues that arise in cancer modeling. In Section 2 we present results from a model that deals with the effects of the mechanical properties of the environment on tumor growth, and in Section 3 we report results from a model of the signaling pathways and the tumor microenvironment (TME), and how their interactions affect the development of breast cancer. The results emphasize anew the complexities of the interactions within the TME and their effect on tumor growth, and show that tumor progression is not solely determined by the presence of a clone of mutated immortal cells, but rather that it can be ‘community-controlled’. It Takes a Village – Hilary Clinton PMID:21736894

  14. Observations on the Synergistic Interactions of Aqueous Oxidizers and Ultraviolet Radiation for Decontamination Applications

    1986-05-20

    alkylbenzene sulfonic acids to carbon dioxide and water using UV irradiation and aqueous hypochlorite. Thus, the synergistic effect of high energy...Perhydroxyl Radicals. A Flash Photolysis Study," Cz.7 J. Cbem. 57, 3017-3022 (1979). M. Nakamura and Y.Ogata, "Photolytic Oxidation of AlkylBenzene Sulfonic ...the low concentration of quinine in the test solution, fluorescence is linear with concentration (Ewing, 1969). Since the pH of 2 x 10-4 quinine

  15. Chlorophyll a and chlorophyllide a inside liposomes made of saturated and unsaturated lipids: A possible impact of the lipids microenvironment

    Petrović Sanja M.

    2014-01-01

    Full Text Available The aim of this work was to examine a possible impact of liposomes lipids microenvironment, dictated by a chemical composition of the fatty acid branches, on incorporation and spectral behaviour of chlorophyll a, and its derivative, chlorophyllide a inside small liposomes. The liposomes with the incorporated chlorophylls were made of dimirystoyl phosphatidylcholine (DMPC, and unsaturated phosphatidylcholine (PC, containing significant fractions of unsaturated fatty acid moieties. In order to achieve the goal, both absorption and fluorescence polarization spectroscopy were applied, and the obtained data for the two incorporated pigments, which play a role of molecular sensors, were compared. In addition, quercetin, a well-known antioxidant, was used as the (chlorophylls emission quencher, in order to estimate the type of environment sensed by the two pigments for the two liposomes that differ in chemical composition. The results, based primarily on fluorescence polarization data have shown that the emissions as well as the emission quenching were notably affected by a change in the lipids’ chemical composition. That is an indirect proof of the impact of the liposomes microenvironment on the incorporated pigments’ spectral behaviour.[ Projekat Ministarstva nauke Republike Srbije, br. TR-34012 i br. OI-172044

  16. Determining lower threshold concentrations for synergistic effects

    Bjergager, Maj-Britt Andersen; Dalhoff, Kristoffer; Kretschmann, Andreas;

    2017-01-01

    on synergistic interactions between the pyrethroid insecticide, alpha-cypermethrin, and one of the three azole fungicides prochloraz, propiconazole or epoxiconazole measured on Daphnia magna immobilization. Three different experimental setups were applied: A standard 48h acute toxicity test, an adapted 48h test.......7 fold higher than the horizontal assessments. Using passive dosing rather than dilution series or spiking did not lower the threshold significantly. Below the threshold for synergy, slight antagony could often be observed. This is most likely due to induction of enzymes active in metabolization of alpha...

  17. Chitosan-Pectin Synergistic Interaction and Gelation

    2001-01-01

    Mixed gels of chitosan-pectin were prepared by varying the ratio of constituents in the presence of NaCl. Mixed gel at 3% of total polysaccharide concentration with addtion of 12% NaCl showed a synergistic maximum when the ratio of chitosan to pectin was 60 : 40. The effect of the polysaccharide concentration,the preparation temperature(Tp), the time of incubation, balk salt concentration, the molecular weight and the degree of deacetylation of chitosan on gelation have been studied. Interaction mechanism between molecules of both polysaccharides was investigated by FT-IR spectrometry.

  18. Synergistic effects of resistance training and protein intake: practical aspects.

    Guimarães-Ferreira, Lucas; Cholewa, Jason Michael; Naimo, Marshall Alan; Zhi, X I A; Magagnin, Daiane; de Sá, Rafaele Bis Dal Ponte; Streck, Emilio Luiz; Teixeira, Tamiris da Silva; Zanchi, Nelo Eidy

    2014-10-01

    Resistance training is a potent stimulus to increase skeletal muscle mass. The muscle protein accretion process depends on a robust synergistic action between protein intake and overload. The intake of protein after resistance training increases plasma amino acids, which results in the activation of signaling molecules leading to increased muscle protein synthesis (MPS) and muscle hypertrophy. Although both essential and non-essential amino acids are necessary for hypertrophy, the intake of free L-leucine or high-leucine whole proteins has been specifically shown to increase the initiation of translation that is essential for elevated MPS. The literature supports the use of protein intake following resistance-training sessions to enhance MPS; however, less understood are the effects of different protein sources and timing protocols on MPS. The sum of the adaptions from each individual training session is essential to muscle hypertrophy, and thus highlights the importance of an optimal supplementation protocol. The aim of this review is to present recent findings reported in the literature and to discuss the practical application of these results. In that light, new speculations and questions will arise that may direct future investigations. The information and recommendations generated in this review should be of benefit to clinical dietitians as well as those engaged in sports.

  19. Remodeling of the Tumor Microenvironment Predicts Increased Risk of Cancer in Postmenopausal Women

    Bager, Cecilie L; Willumsen, Nicholas; Kehlet, Stephanie N

    2016-01-01

    BACKGROUND: An altered tumor microenvironment is one of the earliest signs of cancer and an important driver of the disease. We have seen previously that biomarkers reflecting tumor microenvironment modifications, such as matrix metalloproteinase (MMP)-degraded type 1 collagen (C1M), MMP-degraded...

  20. Microenvironment Dependent Photobiomodulation on Function-Specific Signal Transduction Pathways

    Timon Cheng-Yi Liu

    2014-01-01

    Full Text Available Cellular photobiomodulation on a cellular function has been shown to be homeostatic. Its function-specific pathway mechanism would be further discussed in this paper. The signal transduction pathways maintaining a normal function in its function-specific homeostasis (FSH, resisting the activation of many other irrelative signal transduction pathways, are so sparse that it can be supposed that there may be normal function-specific signal transduction pathways (NSPs. A low level laser irradiation or monochromatic light may promote the activation of partially activated NSP and/or its redundant NSP so that it may induce the second-order phase transition of a function from its dysfunctional one far from its FSH to its normal one in a function-specific microenvironment and may also induce the first-order functional phase transition of the normal function from low level to high level.

  1. Exosomes in tumor microenvironment influence cancer progression and metastasis.

    Kahlert, Christoph; Kalluri, Raghu

    2013-04-01

    Exosomes are small membrane vesicles of endocytic origin with a size of 50-100 nm. They can contain microRNAs, mRNAs, DNA fragments, and proteins, which are shuttled from a donor cell to recipient cells. Many different cell types including immune cells, mesenchymal cells, and cancer cells release exosomes. There is emerging evidence that cancer-derived exosomes contribute to the recruitment and reprogramming of constituents associated with tumor environment. Here, we discuss different mechanisms associated with biogenesis, payload, and transport of exosomes. We highlight the functional relevance of exosomes in cancer, as related to tumor microenvironment, tumor immunology, angiogenesis, and metastasis. Exosomes may exert an immunosuppressive function as well as trigger an anti-tumor response by presenting tumor antigens to dendritic cells. Exosomes may serve as cancer biomarkers and aid in the treatment of cancer.

  2. Synergistic childhood adversities and complex adult psychopathology.

    Putnam, Karen T; Harris, William W; Putnam, Frank W

    2013-08-01

    Numerous studies find a cumulative effect of different types of childhood adversities on increasing risk for serious adult mental and medical outcomes. This study uses the National Comorbidity Survey-Replication sample to investigate the cumulative impact of 8 childhood adversities on complex adult psychopathology as indexed by (a) number of lifetime diagnoses according to the Diagnostic and Statistical Manual of Mental Disorders (4th ed., DSM-IV; American Psychiatric Association, 1994); (b) number of 4 DSM-IV disorder categories (mood, anxiety, impulse control, and substance abuse disorders); and (c) coexistence of internalizing and externalizing disorders. Seven of the 8 childhood adversities were significantly associated with complex adult psychopathology. Individuals with 4 or more childhood adversities had an odds ratio of 7.3, 95% confidence interval [4.7, 11.7] for 4 disorder categories. Additive and multiplicative synergistic effects increasing adult psychopathology were found for specific pairwise combinations of childhood adversities. Synergistic patterns differed by gender suggesting that women are more impacted by sexual abuse and men by economic hardship. The absence of childhood adversities was protective, in that it significantly decreased an individual's risk for subsequent adult mental illness. The results support the clinical impression that increased childhood adversity is associated with more complex adult psychopathology.

  3. Advances in the effects of pH value of micro-environment on wound healing%微环境pH值对创面愈合的作用研究进展

    田瑞瑞; 李娜; 魏力

    2016-01-01

    Wound healing is a complex regeneration process,which is affected by lots of endogenous and exogenous factors.Researches have confirmed that acid environment could prevent wound infection and accelerate wound healing by inhibiting bacteria proliferation,promoting oxygen release,affecting keratinocyte proliferation and migration,etc.In this article,we review the literature to identify the potential relationship between the pH value of wound micro-environment and the progress of wound healing,and summarize the clinical application of variation of pH value of micro-environment in wound healing,thereby to provide new treatment strategy for wound healing.

  4. Synergistic Effect of Decitabine and Valproic Acid on Induction of Differentiation in Leukemic HL-60 Cells%地西他滨联合丙戊酸钠对白血病细胞株的促分化效应研究

    刘波; 邬露丹

    2012-01-01

    OBJECTIVE To investigate the synergistic effect of decitabine(DCA) and valproic acid(VPA) in differentiation induction in leuketnic HL-60 cells. METHODS The drug groups were set as follows: control group; DCA group A(1.0 umol·L‐1); DCA group B(4.0 μmol·L‐1); VPA group(2.0 mmol·L‐1); combination group A(DCA 1.0 μmolL‐1+VPA 2.0 mmol·L‐1); combination group B(DCA 4.0 umol·L‐1+VPA 2.0 mmol·L‐1). The cells were treated for 48 h. The CD117, CD34 mean fluorescence intensity(MFl) and CDI4, CDllb expression were detected by flow cytometry. RESULTS The CD117, CD34 MFI of combination group A and B were significantly lower than their corresponding concentration single drug group(P<0.01). Except CD14 of combination group B, the CD14, CDllb expressions of combination group A and B were significantly lower than their corresponding concentration single drug group(.P<0.01). CONCLUSION There is an enhanced differentiation activity of combinations of DCA and VPA in HL-60 cells.%目的 探讨地西他滨(decitabine,DCA)和丙戊酸钠(valproic acid,VPA)联用对白血病细胞株HL-60的促分化影响.方法 设立分组如下:对照组,DCAA组(1.0 μmol·L-1),DCA B组(4.0 μmol·L-1),VPA组(2.0mmol·L-1),联合用药A组(DCA1.0 μmol·L-1+VPA 2.0 mmol·L-1),联合用药B组(DCA4.0 μmol·L-1+VPA 2.0 mmol·L-1),作用48h.流式细胞术检测CD34、CD117 MF1以及CD11b、CD14表达率、结果 联合用药A、B组的CD1 17和CD34MFI显著低于其各自的单药组(P<0.01);联合用药A组的CD11b和CD14表达率和联合用药B组CDllb表达率显著低于其各自的单药组(P<0.01).结论 VPA与DCA联用对HL-60细胞其促分化作用.

  5. 地西他滨联合丙戊酸钠对AML细胞株U937促凋亡和分化的影响%Synergistic effect of decitabine and valproic acid on induction of apoptosis and differentiation in leukemic U937 cells

    陈静; 王晔恺; 李翊卫

    2012-01-01

    目的:探讨地西他滨(decitabine,DCA)和丙戊酸钠(valproic acid,VPA)联用对白血病细胞株U937的促凋亡和分化影响.方法:设立分组如下:对照组,DCA单药A组(1.0μmol/L),DCA单药B组(4.0 μmol/L),VPA单药组(2.0 mmol/L),联合用药A组(DCA 1.0 μmol/L+ VPA 2.0 mmol/L),联合用药B组(DCA 4.0 μmol/L+ VPA 2.0 mmol/L),作用48 h.应用Annexin V-FITC/PI标记法检测早期凋亡率,流式细胞术检测CD34、CD117 MFI以及CD11b、CD14表达率.结果:联合用药组A、B的凋亡率高于其各自的单药组,差异具有显著统计学意义(P<0.01);联合用药A、B组的CD117和CD34 MFI低于其各自的单药组,差异具有显著统计学意义(P<0.01);联合用药A、B组的CD11b和CD14表达率低于其各自的单药组,差异具有显著统计学意义(P<0.01).结论:U937细胞中VPA能显著增强DCA的促凋亡分化作用.%Objective: To investigate the synergistic effect of decitabine ( DC A ) and valproic acid( VPA) in apoptosis and differentiation induction in leukemic U937 cells. Methods: The drug groups were set as follows;control group;DCA alone group A(1.0 μmol/L) ; DCA alone group B(4,0 μmol/L) ;VPA alone group(2.0 mmol/L) ; combination group A( DCA 1. 0 μmol/L + VPA 2. 0 mmol/L) ; combination group B( DCA 4. 0 μmol/L + VPA 2. 0 mmol/L). The cells were treated by drug for 48 hours. The early apoptosis rates were detected by staining with An-nexin V and PI. The CD117,CD34 mean fluorescence intensity( MFI) and CD14,CDllb expression were detected by flow cytometry. Results: The apoptosis rates of combination group A and B were significantly higher than their corresponding concentration single drug group(P <0.01). The CD117,CD34 MFI of combination group A and B , were significantly lower than their corresponding concentration single drug group(P <0. 01) . The CD14,CDllb expressions of combination group A and B were significantly lower than their corresponding concentration single drug group(P < 0. 01

  6. Mesoporous Silica Coated Polydopamine Functionalized Reduced Graphene Oxide for Synergistic Targeted Chemo-Photothermal Therapy.

    Shao, Leihou; Zhang, Ruirui; Lu, Jianqing; Zhao, Caiyan; Deng, Xiongwei; Wu, Yan

    2017-01-18

    The integration of different therapies into a single nanoplatform has shown great promise for synergistic tumor treatment. Herein, mesoporous silica (MS) coated polydopamine functionalized reduced graphene oxide (pRGO) further modified with hyaluronic acid (HA) (pRGO@MS-HA) has been utilized as a versatile nanoplatform for synergistic targeted chemo-photothermal therapy against cancer. A facile and green chemical method is adopted for the simultaneous reduction and noncovalent functionalization of graphene oxide (GO) by using mussel inspired dopamine (DA) to enhance biocompatibility and the photothermal effect. Then, it was coated with mesoporous silica (MS) (pRGO@MS) to enhance doxorubicin (DOX) loading and be further modified with the targeting moieties hyaluronic acid (HA). The pH-dependent and near-infrared (NIR) laser irradiation-triggered DOX release from pRGO@MS(DOX)-HA is observed, which could enhance the chemo-photothermal therapy effect. In vitro experimental results confirm that pRGO@MS(DOX)-HA exhibits good dispersibility, excellent photothermal property, remarkable tumor cell killing efficiency, and specificity to target tumor cells. In vivo antitumor experiments further demonstrated that pRGO@MS(DOX)-HA could exhibit an excellent synergistic antitumor efficacy, which is much more distinct than any monotherapy. This work presents a novel nanoplatform which could load chemotherapy drugs with high efficiency and be used as light-mediated photothermal cancer therapy agent.

  7. Degradation of methyl orange through synergistic effect of zirconia nanotubes and ultrasonic wave.

    Zhao, Jianling; Wang, Xixin; Zhang, Libin; Hou, Xiaorui; Li, Ying; Tang, Chengchun

    2011-04-15

    Zirconia nanotubes with a length of 25 μm, inner diameter of 80 nm, and wall thickness of 35 nm were prepared by anodization method in mixture of formamide and glycerol (volume ratio = 1:1) containing 1 wt% NH(4)F and 1 wt% H(2)O. Experiments showed that zirconia nanotubes and ultrasonic wave had synergistic degradation effect for methyl orange and the efficiency of ultrasonic wave increased by more than 7 times. The decolorization percentage was influenced by pH value of the solution. Methyl orange was easy to be degraded in acidic solution. The decolorization percentage of methyl orange reached 97.6% when degraded for 8h in 20mg/L methyl orange solution with optimal pH value 2. The reason of synergistic degradation effect for methyl orange might be that adsorption of methyl orange onto zirconia nanotubes resulted in the easy degradation of the methyl orange through ultrasonic wave.

  8. Synergistic Hypergolic Ignition of Amino End Group in Monomers and Polymers

    S. P. Panda

    1986-10-01

    Full Text Available A few monomers, oligomers and polymers with amino end groups have been discovered to undergo synergistic ignition with red fuming nitric acid (RFNA when mixed with large quantities of magnesium powder. Aluminium powder under similar conditions does not ignite the mixture while powders of Zn, Co and Cu cause the ignition. Amongst the polymers used in the experiment commercially available nylon 6 is the most important which may be used as a binder for rocket propellant fuel grains, hypergolic with RFNA. Degree of polymerisation or the chain length of the polymers does not drastically affect the synergistic ignition of the polymer mixture with magnesium powder but high molecular weight and fully aromatised polymers like Kevlar and Nomex fail to ignite under similar conditions. Based upon the earlier work of the authors, explanations for the phenomena oberved have been provided in terms of creation of hot spots leading to ignition at the amino end groups.

  9. Biomolecular Network-Based Synergistic Drug Combination Discovery

    Xiangyi Li

    2016-01-01

    Full Text Available Drug combination is a powerful and promising approach for complex disease therapy such as cancer and cardiovascular disease. However, the number of synergistic drug combinations approved by the Food and Drug Administration is very small. To bridge the gap between urgent need and low yield, researchers have constructed various models to identify synergistic drug combinations. Among these models, biomolecular network-based model is outstanding because of its ability to reflect and illustrate the relationships among drugs, disease-related genes, therapeutic targets, and disease-specific signaling pathways as a system. In this review, we analyzed and classified models for synergistic drug combination prediction in recent decade according to their respective algorithms. Besides, we collected useful resources including databases and analysis tools for synergistic drug combination prediction. It should provide a quick resource for computational biologists who work with network medicine or synergistic drug combination designing.

  10. High-fat-diet-induced obesity causes an inflammatory and tumor-promoting microenvironment in the rat kidney

    Kerstin Stemmer

    2012-09-01

    Obesity and concomitant comorbidities have emerged as public health problems of the first order. For instance, obese individuals have an increased risk for kidney cancer. However, direct mechanisms linking obesity with kidney cancer remain elusive. We hypothesized that diet-induced obesity (DIO promotes renal carcinogenesis by inducing an inflammatory and tumor-promoting microenvironment. We compared chow-fed lean Wistar rats with those that were sensitive (DIOsens or partially resistant (DIOres to DIO to investigate the impact of body adiposity versus dietary nutrient overload in the development of renal preneoplasia and activation of tumor-promoting signaling pathways. Our data clearly show a correlation between body adiposity, the severity of nephropathy, and the total number and incidence of preneoplastic renal lesions. However, similar plasma triglyceride, plasma free fatty acid and renal triglyceride levels were found in chow-fed, DIOres and DIOsens rats, suggesting that lipotoxicity is not a critical contributor to the renal pathology. Obesity-related nephropathy was further associated with regenerative cell proliferation, monocyte infiltration and higher renal expression of monocyte chemotactic protein-1 (MCP-1, interleukin (IL-6, IL-6 receptor and leptin receptor. Accordingly, we observed increased signal transducer and activator of transcription 3 (STAT3 and mammalian target of rapamycin (mTOR phosphorylation in tubules with preneoplastic phenotypes. In summary, our results demonstrate that high body adiposity induces an inflammatory and proliferative microenvironment in rat kidneys that promotes the development of preneoplastic lesions, potentially via activation of the STAT3 and mTOR signaling pathways.

  11. Identification of Senescent Cells in the Bone Microenvironment

    Farr, Joshua N; Fraser, Daniel G; Wang, Haitao; Jaehn, Katharina; Ogrodnik, Mikolaj B; Weivoda, Megan M; Drake, Matthew T; Tchkonia, Tamara; LeBrasseur, Nathan K; Kirkland, James L; Bonewald, Lynda F; Pignolo, Robert J; Monroe, David G; Khosla, Sundeep

    2017-01-01

    Cellular senescence is a fundamental mechanism by which cells remain metabolically active yet cease dividing and undergo distinct phenotypic alterations, including upregulation of p16Ink4a, profound secretome changes, telomere shortening, and decondensation of pericentromeric satellite DNA. Because senescent cells accumulate in multiple tissues with aging, these cells and the dysfunctional factors they secrete, termed the senescence-associated secretory phenotype (SASP), are increasingly recognized as promising therapeutic targets to prevent age-related degenerative pathologies, including osteoporosis. However, the cell type(s) within the bone microenvironment that undergoes senescence with aging in vivo has remained poorly understood, largely because previous studies have focused on senescence in cultured cells. Thus in young (age 6 months) and old (age 24 months) mice, we measured senescence and SASP markers in vivo in highly enriched cell populations, all rapidly isolated from bone/marrow without in vitro culture. In both females and males, p16Ink4a expression by real-time quantitative polymerase chain reaction (rt-qPCR) was significantly higher with aging in B cells, T cells, myeloid cells, osteoblast progenitors, osteoblasts, and osteocytes. Further, in vivo quantification of senescence-associated distension of satellites (SADS), ie, large-scale unraveling of pericentromeric satellite DNA, revealed significantly more senescent osteocytes in old compared with young bone cortices (11% versus 2%, p < 0.001). In addition, primary osteocytes from old mice had sixfold more (p < 0.001) telomere dysfunction-induced foci (TIFs) than osteocytes from young mice. Corresponding with the age-associated accumulation of senescent osteocytes was significantly higher expression of multiple SASP markers in osteocytes from old versus young mice, several of which also showed dramatic age-associated upregulation in myeloid cells. These data show that with aging, a subset of cells

  12. Microenvironment-Driven Bioelimination of Magnetoplasmonic Nanoassemblies and Their Multimodal Imaging-Guided Tumor Photothermal Therapy.

    Li, Linlin; Fu, Shiyan; Chen, Chuanfang; Wang, Xuandong; Fu, Changhui; Wang, Shu; Guo, Weibo; Yu, Xin; Zhang, Xiaodi; Liu, Zhirong; Qiu, Jichuan; Liu, Hong

    2016-07-26

    Biocompatibility and bioelimination are basic requirements for systematically administered nanomaterials for biomedical purposes. Gold-based plasmonic nanomaterials have shown potential applications in photothermal cancer therapy. However, their inability to biodegrade has impeded practical biomedical application. In this study, a kind of bioeliminable magnetoplasmonic nanoassembly (MPNA), assembled from an Fe3O4 nanocluster and gold nanoshell, was elaborately designed for computed tomography, photoacoustic tomography, and magnetic resonance trimodal imaging-guided tumor photothermal therapy. A single dose of photothermal therapy under near-infrared light induced a complete tumor regression in mice. Importantly, MPNAs could respond to the local microenvironment with acidic pH and enzymes where they accumulated including tumors, liver, spleen, etc., collapse into small molecules and discrete nanoparticles, and finally be cleared from the body. With the bioelimination ability from the body, a high dose of 400 mg kg(-1) MPNAs had good biocompatibility. The MPNAs for cancer theranostics pave a way toward biodegradable bio-nanomaterials for biomedical applications.

  13. Synergistic flame retardant effects of composites containing organic montmorillonite, Nylon 6 and 2-cyclic pentaerythritoloctahydrogen tetraphosphate-4,6-benzene sulfonic acid sodium ammion-triazine%新型单组份磷-氮膨胀型阻燃剂/OMMT对尼龙6热稳定性能的影响及其协同阻燃效果

    王超; 李迎春; 胡国胜; 曹东豪

    2015-01-01

    A novel P-N containing intumescent flame retardant, 2-cyclic pentaerythritoloctahydrogen tetraphosphate-4,6-benzene sulfonic acid sodium ammion-triazine ( CTOB) was synthesized and used as an additive in intumescent flame retardant composites containing organic montmorillonite (OMMT) and Nylon 6. The thermal stability and flammability properties of Nylon 6, CTOB, OMMT and their composites were investigated by TGA, limiting oxygen index ( LOI) and cone calorimeter tests. Synergistic effects between CTOB and OMMT in the Nylon 6/CTOB/OMM composite were observed. A combination of CTOB and OMMT improved the thermal stability and the flammability properties of Nylon 6 and increased the LOI value to 28. 0%. The average and peak heat release rates of the ternary composite were reduced by about 65. 7 and 49. 3%, respectively, compared with those of Nylon 6. The residue generated after the cone calorimeter tests upon combustion of the ternary composite was a compact and dense char as revealed by SEM, which is critically important for an excellent flame retardant.%合成出新型单组份磷-氮膨胀型阻燃剂2-环季戊四醇磷酸酯-4,6-对氨基苯磺酸钠均三嗪(CTOB),通过FT-IR,1H NMR和31 P NMR对其结构进行表征。以CTOB与有机蒙脱土( OMMT)为原料,制备出阻燃型CTOB/ OMMT/ Nylon 6复合材料。热重分析表明:CTOB和OMMT的加入能有效提高尼龙6的热稳定性能和成炭性能,通过极限氧指数( LOI)、锥形量热、垂直燃烧实验(UL-94)和TGA对CTOB/ OMMT/ Nylon 6复合材料的阻燃性能进行研究。结果表明,CTOB和 OMMT在尼龙6中表现出良好的协同阻燃效果,CTOB/OMMT/ Nylon 6的氧指数可达28.0%,垂直燃烧性能达到UL-94 V-0级,阻燃后的尼龙6其PHRR 和 THR分别下降了65.7%和49.3%。 CTOB/ OMMT/ Nylon 6燃烧后,表面可生成致密性良好的膨胀炭层,膨胀炭层的形成是有效提高Nylon 6阻燃性能的关键因素。

  14. A dual drug regimen synergistically blocks human parainfluenza virus infection

    Bailly, Benjamin; Dirr, Larissa; El-Deeb, Ibrahim M.; Altmeyer, Ralf; Guillon, Patrice; von Itzstein, Mark

    2016-04-01

    Human parainfluenza type-3 virus (hPIV-3) is one of the principal aetiological agents of acute respiratory illness in infants worldwide and also shows high disease severity in the elderly and immunocompromised, but neither therapies nor vaccines are available to treat or prevent infection, respectively. Using a multidisciplinary approach we report herein that the approved drug suramin acts as a non-competitive in vitro inhibitor of the hPIV-3 haemagglutinin-neuraminidase (HN). Furthermore, the drug inhibits viral replication in mammalian epithelial cells with an IC50 of 30 μM, when applied post-adsorption. Significantly, we show in cell-based drug-combination studies using virus infection blockade assays, that suramin acts synergistically with the anti-influenza virus drug zanamivir. Our data suggests that lower concentrations of both drugs can be used to yield high levels of inhibition. Finally, using NMR spectroscopy and in silico docking simulations we confirmed that suramin binds HN simultaneously with zanamivir. This binding event occurs most likely in the vicinity of the protein primary binding site, resulting in an enhancement of the inhibitory potential of the N-acetylneuraminic acid-based inhibitor. This study offers a potentially exciting avenue for the treatment of parainfluenza infection by a combinatorial repurposing approach of well-established approved drugs.

  15. Combining disulfiram and poly(l-glutamic acid)-cisplatin conjugates for combating cisplatin resistance.

    Song, Wantong; Tang, Zhaohui; Shen, Na; Yu, Haiyang; Jia, Yanjie; Zhang, Dawei; Jiang, Jian; He, Chaoliang; Tian, Huayu; Chen, Xuesi

    2016-06-10

    A poly(l-glutamic acid) graft polyethylene glycol-cisplatin complex (PGA-CisPt) performs well in reducing the toxicity of free cisplatin and greatly enhances the accumulation and retention of cisplatin in solid tumors. However, there is a lack of effective treatment options for cisplatin-resistant tumors. A major reason for this is the dense PEG shell, which ensures that the PGA-CisPt maintains a long retention time in the blood that may result in it bypassing the tumor cells or failing to be endocytosed within the tumor microenvironment. Consequently, the cisplatin from PGA-CisPt is released to the extracellular space in the presence of cisplatin-resistant tumor cells and the resistant problem to free cisplatin still valid. Therefore, we devised a strategy to combat the resistance of cisplatin in the tumor microenvironment using nanoparticles-loaded disulfiram (NPs-DSF) as a modulator. In vitro, cisplatin, in combination with DSF, had a synergistic effect and decreased cell survival rate of cisplatin-resistant A549DDP cells. This effect was also observed when combining PGA-CisPt with NPs-DSF. Similarly, in Balb/C nude mice with A549DDP xenografts, NPs-DSF improved PGA-CisPt effectiveness in inhibiting tumor growth while maintaining low toxicity. Our data demonstrate that DSF reduces intracellular glutathione (GSH) levels, inhibits NFκB activity, and modulates the expression of apoptosis-related proteins Bcl-2 and Bax, thereby improves the effectiveness of cisplatin in resistant cell lines. Here, we provide a promising method for overcoming cisplatin resistance in tumors, while maintaining the in vivo benefits of the PGA-CisPt complex.

  16. Model of spacecraft atomic oxygen and solar exposure microenvironments

    Bourassa, R. J.; Pippin, H. G.

    1993-01-01

    Computer models of environmental conditions in Earth orbit are needed for the following reasons: (1) derivation of material performance parameters from orbital test data, (2) evaluation of spacecraft hardware designs, (3) prediction of material service life, and (4) scheduling spacecraft maintenance. To meet these needs, Boeing has developed programs for modeling atomic oxygen (AO) and solar radiation exposures. The model allows determination of AO and solar ultraviolet (UV) radiation exposures for spacecraft surfaces (1) in arbitrary orientations with respect to the direction of spacecraft motion, (2) overall ranges of solar conditions, and (3) for any mission duration. The models have been successfully applied to prediction of experiment environments on the Long Duration Exposure Facility (LDEF) and for analysis of selected hardware designs for deployment on other spacecraft. The work on these models has been reported at previous LDEF conferences. Since publication of these reports, a revision has been made to the AO calculation for LDEF, and further work has been done on the microenvironments model for solar exposure.

  17. Targeting tumor microenvironment: crossing tumor interstitial fluid by multifunctional nanomedicines

    Yadollah Omidi

    2014-06-01

    Results: We reviewed all relevant literature for the impacts of tumor interstitium and microvasculature within the TME as well as the significance of the implemented strategies. Results: While tumorigenesis initiation seems to be in close relation with an emergence of hypoxia and alterations in epigenetic/genetic materials, large panoplies of molecular events emerge as intricate networks during oncogenesis to form unique lenient TME in favor of tumor progression. Within such irregular interstitium, immune system displays defective surveillance functionalities against malignant cells. Solid tumors show multifacial traits with coadaptation and self-regulation potentials, which bestow profound resistance against the currently used conventional chemotherapy and immunotherapy agents that target solely one face of the disease. Conclusion: The cancerous cells attain unique abilities to form its permissive microenvironment, wherein (a extracellular pH is dysregulated towards acidification, (b extracellular matrix (ECM is deformed, (c stromal cells are cooperative with cancer cells, (d immune system mechanisms are defective, (e non-integrated irregular microvasculature with pores (120-1200 nm are formed, and (h interstitial fluid pressure is high. All these phenomena are against cancer treatment modalities. As a result, to control such abnormal pathophysiologic traits, novel cancer therapy strategies need to be devised using multifunctional nanomedicines and theranostics.

  18. Influential parameters on particle exposure of pedestrians in urban microenvironments

    Buonanno, G.; Fuoco, F. C.; Stabile, L.

    2011-03-01

    Exposure to particle concentrations in urban areas was evaluated in several studies since airborne particles are considered to bring about adverse health effects. Transportation modes and urban microenvironments account for the highest contributions to the overall daily particle exposure concentration. In the present study an evaluation of the influential parameters affecting particle exposure of pedestrian in urban areas is reported. Street geometry, traffic mode, wind speed and direction effects were analyzed through an experimental campaign performed in different streets of an Italian town. To this purpose a high-resolution time measurement apparatus was used in order to capture the dynamic of the freshly emitted particles. Number, surface area and mass concentrations and distributions were measured continuously along both the sides of street canyons and avenue canyons during 10-minutes walking routes. The combined effect of street geometry and wind direction may contribute strongly to dilute the fresh particles emitted by vehicles. In particular, street canyons are characterized by lower ventilation phenomena which lead to similar concentration values on both the side of the street. Higher wind speed was found to decrease concentrations in the canyon. Traffic mode also seems to influence exposure concentrations. In particular, submicrometer particle mass concentration was higher as the traffic is more congested; otherwise, coarse fraction dominates mass exposure concentration along street characterized by a more fluent traffic, showing a typical resuspension modality.

  19. Peritoneal inflammation – A microenvironment for Epithelial Ovarian Cancer (EOC

    Liu Jinsong

    2004-06-01

    Full Text Available Abstract Epithelial ovarian cancer (EOC is a significant cause of cancer related morbidity and mortality in women. Preferential involvement of peritoneal structures contributes to the overall poor outcome in EOC patients. Advances in biotechnology, such as cDNA microarray, are a product of the Human Genome Project and are beginning to provide fresh opportunities to understand the biology of EOC. In particular, it is now possible to examine in depth, at the molecular level, the complex relationship between the tumor itself and its surrounding microenvironment. This review focuses on the anatomy, physiology, and current immunobiologic research of peritoneal structures, and addresses certain potentially useful animal models. Changes in both the inflammatory and non-inflammatory cell compartments, as well as alterations to the extracellular matrix, appear to be signal events that contribute to the remodeling effects of the peritoneal stroma and surface epithelial cells on tumor growth and spread. These alterations may involve a number of proteins, including cytokines, chemokines, growth factors, either membrane or non-membrane bound, and integrins. Interactions between these molecules and molecular structures within the extracellular matrix, such as collagens and the proteoglycans, may contribute to a peritoneal mesothelial surface and stromal environment that is conducive to tumor cell proliferation and invasion. These alterations need to be examined and defined as possible prosnosticators and as therapeutic or diagnostic targets.

  20. Natural Compounds Regulate Glycolysis in Hypoxic Tumor Microenvironment

    Jian-Li Gao

    2015-01-01

    Full Text Available In the early twentieth century, Otto Heinrich Warburg described an elevated rate of glycolysis occurring in cancer cells, even in the presence of atmospheric oxygen (the Warburg effect. Recently it became a therapeutically interesting strategy and is considered as an emerging hallmark of cancer. Hypoxia inducible factor-1 (HIF-1 is one of the key transcription factors that play major roles in tumor glycolysis and could directly trigger Warburg effect. Thus, how to inhibit HIF-1-depended Warburg effect to assist the cancer therapy is becoming a hot issue in cancer research. In fact, HIF-1 upregulates the glucose transporters (GLUT and induces the expression of glycolytic enzymes, such as hexokinase, pyruvate kinase, and lactate dehydrogenase. So small molecules of natural origin used as GLUT, hexokinase, or pyruvate kinase isoform M2 inhibitors could represent a major challenge in the field of cancer treatment. These compounds aim to suppress tumor hypoxia induced glycolysis process to suppress the cell energy metabolism or enhance the susceptibility of tumor cells to radio- and chemotherapy. In this review, we highlight the role of natural compounds in regulating tumor glycolysis, with a main focus on the glycolysis under hypoxic tumor microenvironment.

  1. The Role of Chemoattractant Receptors in Shaping the Tumor Microenvironment

    Jiamin Zhou

    2014-01-01

    Full Text Available Chemoattractant receptors are a family of seven transmembrane G protein coupled receptors (GPCRs initially found to mediate the chemotaxis and activation of immune cells. During the past decades, the functions of these GPCRs have been discovered to not only regulate leukocyte trafficking and promote immune responses, but also play important roles in homeostasis, development, angiogenesis, and tumor progression. Accumulating evidence indicates that chemoattractant GPCRs and their ligands promote the progression of malignant tumors based on their capacity to orchestrate the infiltration of the tumor microenvironment by immune cells, endothelial cells, fibroblasts, and mesenchymal cells. This facilitates the interaction of tumor cells with host cells, tumor cells with tumor cells, and host cells with host cells to provide a basis for the expansion of established tumors and development of distant metastasis. In addition, many malignant tumors of the nonhematopoietic origin express multiple chemoattractant GPCRs that increase the invasiveness and metastasis of tumor cells. Therefore, GPCRs and their ligands constitute targets for the development of novel antitumor therapeutics.

  2. Hyperbaric oxygen therapy improves local microenvironment after spinal cord injury

    Yang Wang; Shuquan Zhang; Min Luo; Yajun Li

    2014-01-01

    Clinical studies have shown that hyperbaric oxygen therapy improves motor function in patients with spinal cord injury. In the present study, we explored the mechanisms associated with the recovery of neurological function after hyperbaric oxygen therapy in a rat model of spinal cord injury. We established an acute spinal cord injury model using a modiifcation of the free-falling object method, and treated the animals with oxygen at 0.2 MPa for 45 minutes, 4 hours after injury. The treatment was administered four times per day, for 3 days. Compared with model rats that did not receive the treatment, rats exposed to hyperbaric oxygen had fewer apoptotic cells in spinal cord tissue, lower expression levels of aquaporin 4/9 mRNA and protein, and more NF-200 positive nerve ifbers. Furthermore, they had smaller spinal cord cavities, rapid recovery of somatosensory and motor evoked potentials, and notably better recovery of hindlimb motor function than model rats. Our ifndings indicate that hyperbaric oxygen therapy reduces apop-tosis, downregulates aquaporin 4/9 mRNA and protein expression in injured spinal cord tissue, improves the local microenvironment for nerve regeneration, and protects and repairs the spinal cord after injury.

  3. Influence of the Microenvironment in the Transcriptome of Leishmania infantum Promastigotes: Sand Fly versus Culture.

    Alcolea, Pedro J; Alonso, Ana; Domínguez, Mercedes; Parro, Víctor; Jiménez, Maribel; Molina, Ricardo; Larraga, Vicente

    2016-05-01

    Zoonotic visceral leishmaniasis is a vector-borne disease caused by Leishmania infantum in the Mediterranean Basin, where domestic dogs and wild canids are the main reservoirs. The promastigote stage replicates and develops within the gut of blood-sucking phlebotomine sand flies. Mature promastigotes are injected in the dermis of the mammalian host and differentiate into the amastigote stage within parasitophorous vacuoles of phagocytic cells. The major vector of L. infantum in Spain is Phlebotomus perniciosus. Promastigotes are routinely axenized and cultured to mimic in vitro the conditions inside the insect gut, which allows for most molecular, cellular, immunological and therapeutical studies otherwise inviable. Culture passages are known to decrease infectivity, which is restored by passage through laboratory animals. The most appropriate source of promastigotes is the gut of the vector host but isolation of the parasite is technically challenging. In fact, this option is not viable unless small samples are sufficient for downstream applications like promastigote cultures and nucleic acid amplification. In this study, in vitro infectivity and differential gene expression have been studied in cultured promastigotes at the stationary phase and in promastigotes isolated from the stomodeal valve of the sand fly P. perniciosus. About 20 ng RNA per sample could be isolated. Each sample contained L. infantum promastigotes from 20 sand flies. RNA was successfully amplified and processed for shotgun genome microarray hybridization analysis. Most differentially regulated genes are involved in regulation of gene expression, intracellular signaling, amino acid metabolism and biosynthesis of surface molecules. Interestingly, meta-analysis by hierarchical clustering supports that up-regulation of 22.4% of the differentially regulated genes is specifically enhanced by the microenvironment (i.e. sand fly gut or culture). The correlation between cultured and naturally

  4. Jawbone microenvironment promotes periodontium regeneration by regulating the function of periodontal ligament stem cells

    Zhu, Bin; Liu, Wenjia; Liu, Yihan; Zhao, Xicong; Zhang, Hao; Luo, Zhuojing; Jin, Yan

    2017-01-01

    During tooth development, the jawbone interacts with dental germ and provides the development microenvironment. Jawbone-derived mesenchymal stem cells (JBMSCs) maintain this microenvironment for root and periodontium development. However, the effect of the jawbone microenvironment on periodontium tissue regeneration is largely elusive. Our previous study showed that cell aggregates (CAs) of bone marrow mesenchymal stem cells promoted periodontium regeneration on the treated dentin scaffold. Here, we found that JBMSCs enhanced not only the osteogenic differentiation of periodontal ligament stem cells (PDLSCs) but also their adhesion to titanium (Ti) material surface. Importantly, the compound CAs of PDLSCs and JBMSCs regenerated periodontal ligament-like fibers and mineralized matrix on the Ti scaffold surface, both in nude mice ectopic and minipig orthotopic transplantations. Our data revealed that an effective regenerative microenvironment, reconstructed by JBMSCs, promoted periodontium regeneration by regulating PDLSCs function on the Ti material. PMID:28053317

  5. The Role of miRNAs as Key Regulators in the Neoplastic Microenvironment

    K. K. Wentz-Hunter

    2011-01-01

    Full Text Available The neoplastic microenvironment has been recognized to play a critical role in the development of cancer. Although a large body of evidence has established the importance of the cancer microenvironment, the manners of crosstalk between it and the cancer cells still remains unclear. Emerging mechanisms of communication include microRNAs (miRNAs. miRNAs are small noncoding RNA molecules that are involved in the posttranscriptional regulation of mRNA. Both intracellular and circulating miRNAs are differentially expressed in cancer and some of these alterations have been correlated with clinical patient outcomes. The role of miRNAs in the tumor microenvironment has only recently become a focus of research, however. In this paper, we discuss the influence of miRNAs on the tumor microenvironment as it relates to cancer progression. We conclude that miRNAs are a critical component in understanding invasion and metastasis of cancer cells.

  6. Synergistic Decolouration of Azo Dye by Pulsed Streamer Discharge Immobilized TiO2 Photocatalysis

    LI Jie; WANG Huijuan; LI Guofeng; WU Yan; QUAN Xie; LIU Zhigang

    2007-01-01

    Photocatalyst was prepared by immobilizing TiO2 on glass beads using the traditional sol-gel method.Ultraviolet light(UV)produced by pulsed streamer discharge Was then used to induce photocatalytic activity of TiO2 photocatalyst.Decolouration efficiency of the representative azo dye(acid orange 7,AO7)was investigated using the synergistic system of pulsed streamer discharge plasma and TiO2 photocatalysis.The obtained results showed that the decolouration rate of AO7 could be increased by 16.7% under the condition of adding supported TiO2 in the pulsed streamer discharge system,compared to that in the sole pulsed streamer discharge plasma system,due to the synergistic effect of pulsed streamer discharge and TiO2 photocatalysis induced by pulsed streamer discharge.The synergistic system of pulsed streamer discharge and TiO2 photocatalyst Was found to have more reactive radicals for degradation of organic compounds in Water.

  7. Synergistic hemolytic reactions between staphylococci and Micrococcus lylae.

    Lämmler, C; Brückler, J

    1989-06-01

    The primary culture of a clinical specimen obtained from a dog with an acute squamous eczema revealed three different bacterial species which demonstrated synergistic hemolytic activities on sheep blood agar plates. The three cultures were identified as beta-hemolytic Staphylococcus intermedius, as a coagulase-negative staphylococcal species, producing a delta-like hemolysin and as non-hemolytic Micrococcus lylae. The coagulase-negative staphylococcal species as well as M. lylae produced synergistically with beta-hemolytic S. intermedius zones of complete hemolysis. The occurrence of three different synergistically active bacterial species from one clinical specimen might be of clinical significance.

  8. Tumor microenvironment:bidirectional interactions between cancer cells and normal cells

    Lu-Yuan Li

    2010-01-01

    @@ "The road to metastasis is paved with tumor-microenvironment interactions",claimed Dr.Isaac Witz from Tel Aviv University,Israel,in his keynote speech at the first Tianjin Forum on Tumor Microenvironment(http://TFTM.nankai.edu.cn),an international conference held at Nankai University in Tianjin,China,on July 2-4,2010.About 300 cancer researchers and students attended the conference.

  9. Using microarrays to study the microenvironment in tumor biology: The crucial role of statistics

    2008-01-01

    Microarrays represent a potentially powerful tool for better understanding the role of the microenvironment on tumor biology. To make the best use of microarray data and avoid incorrect or unsubstantiated conclusions, care must be taken in the statistical analysis. To illustrate the statistical issues involved we discuss three microarray studies related to the microenvironment and tumor biology involving: (i) prostatic stroma cells in cancer and non-cancer tissues; (ii) breast stroma and epit...

  10. AI-05IMPACT OF GBM MICROENVIRONMENT ON EXPRESSION PROFILE OF BONE MARROW DERIVED PROGENITOR CELLS

    Burrell, Kelly; Singh, Sanjay; Agnihotri, Sameer; Hill, Richard; Aldape, Kenneth; Zadeh, Gelareh

    2014-01-01

    We have recently shown that bone marrow derived cells (BMDC) provide a distinct tumor region dependent contribution to glioblastoma multiforme (GBM) neovascularization. The influence of GBM microenvironment on differentiation and modulation of expression factors by BMDC however remains unknown. In this study we establish the differential expression profile of BMDC as a consequence of recruitment and interaction with the GBM microenvironment and in response to radiation (RTx) and anti-angiogen...

  11. Comparative study of proteasome inhibitory, synergistic antibacterial, synergistic anticandidal, and antioxidant activities of gold nanoparticles biosynthesized using fruit waste materials

    Patra, Jayanta Kumar; Baek, Kwang-Hyun

    2016-01-01

    The aim of this study was to compare the biological synthesis of gold nanoparticles (AuNPs) generated using the aqueous extracts of outer oriental melon peel (OMP) and peach. The synthesized OMP-AuNPs and peach extract (PE)-AuNPs were characterized by ultraviolet–visible spectroscopy, field emission scanning electron microscopy, energy dispersive X-ray analysis, X-ray powder diffraction, Fourier transform infrared spectroscopy, and thermogravimetric analysis. The surface plasmon resonance spectra were obtained at 545 nm and 540 nm for OMP-AuNPs and PE-AuNPs, respectively. The estimated absolute crystallite size of the synthesized AuNPs was calculated to be 78.11 nm for OMP-AuNPs and 39.90 nm for PE-AuNPs based on the Scherer equation of the X-ray powder diffraction peaks. Fourier transform infrared spectroscopy results revealed the involvement of bioactive compounds present in OMP and peach extracts in the synthesis and stabilization of synthesized AuNPs. Both the OMP-AuNPs and PE-AuNPs showed a strong antibacterial synergistic activity when combined with kanamycin (9.38–20.45 mm inhibition zones) and rifampicin (9.52–25.23 mm inhibition zones), and they also exerted a strong synergistic anticandidal activity (10.09–15.47 mm inhibition zones) when combined with amphotericin B against five pathogenic Candida species. Both the OMP-AuNPs and PE-AuNPs exhibited a strong antioxidant potential in terms of 1,1-diphenyl-2-picrylhydraxyl radical scavenging, nitric oxide scavenging, 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) radical scavenging, and a reducing power, along with a strong proteasome inhibitory potential that could be useful in cancer drug delivery and cancer treatments. The PE-AuNPs showed comparatively higher activity than OMP-AuNPs, which could be attributed to the presence of rich bioactive compounds in the PE that acted as reducing and capping agents in the synthesis of PE-AuNPs. Overall, the results of the current investigation

  12. Comparative study of proteasome inhibitory, synergistic antibacterial, synergistic anticandidal, and antioxidant activities of gold nanoparticles biosynthesized using fruit waste materials.

    Patra, Jayanta Kumar; Baek, Kwang-Hyun

    The aim of this study was to compare the biological synthesis of gold nanoparticles (AuNPs) generated using the aqueous extracts of outer oriental melon peel (OMP) and peach. The synthesized OMP-AuNPs and peach extract (PE)-AuNPs were characterized by ultraviolet-visible spectroscopy, field emission scanning electron microscopy, energy dispersive X-ray analysis, X-ray powder diffraction, Fourier transform infrared spectroscopy, and thermogravimetric analysis. The surface plasmon resonance spectra were obtained at 545 nm and 540 nm for OMP-AuNPs and PE-AuNPs, respectively. The estimated absolute crystallite size of the synthesized AuNPs was calculated to be 78.11 nm for OMP-AuNPs and 39.90 nm for PE-AuNPs based on the Scherer equation of the X-ray powder diffraction peaks. Fourier transform infrared spectroscopy results revealed the involvement of bioactive compounds present in OMP and peach extracts in the synthesis and stabilization of synthesized AuNPs. Both the OMP-AuNPs and PE-AuNPs showed a strong antibacterial synergistic activity when combined with kanamycin (9.38-20.45 mm inhibition zones) and rifampicin (9.52-25.23 mm inhibition zones), and they also exerted a strong synergistic anticandidal activity (10.09-15.47 mm inhibition zones) when combined with amphotericin B against five pathogenic Candida species. Both the OMP-AuNPs and PE-AuNPs exhibited a strong antioxidant potential in terms of 1,1-diphenyl-2-picrylhydraxyl radical scavenging, nitric oxide scavenging, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) radical scavenging, and a reducing power, along with a strong proteasome inhibitory potential that could be useful in cancer drug delivery and cancer treatments. The PE-AuNPs showed comparatively higher activity than OMP-AuNPs, which could be attributed to the presence of rich bioactive compounds in the PE that acted as reducing and capping agents in the synthesis of PE-AuNPs. Overall, the results of the current investigation highlighted a

  13. Synergistic smart fuel for microstructure mediated measurements

    Smith, James A.; Kotter, Dale K.; Ali, Randall A.; Garrett, Steven L.

    2014-02-01

    Advancing the Nuclear Fuel Cycle and Next Generation Nuclear Power Plants requires enhancing our basic understanding of fuel and materials behavior under irradiation. The two most significant issues limiting the effectiveness and lifespan of the fuel are the loss of thermal conductivity of the fuel and the mechanical strength of both fuel and cladding. The core of a nuclear reactor presents an extremely harsh and challenging environment for both sensors and telemetry due to elevated temperatures and large fluxes of energetic and ionizing particles from radioactive decay processes. The majority of measurements are made in reactors using "radiation hardened" sensors and materials. A different approach has been pursued in this research that exploits high temperatures and materials that are robust with respect to ionizing radiation. This synergistically designed thermoacoustic sensor will be self-powered, wireless, and provide telemetry. The novel sensor will be able to provide reactor process information even if external electrical power and communication are unavailable. In addition, the form-factor for the sensor is identical to the existing fuel rods within reactors and contains no moving parts. Results from initial proof of concept experiments designed to characterize porosity, surface properties and monitor gas composition will be discussed.

  14. Synergistic Smart Fuel For Microstructure Mediated Measurements

    James A. Smith; Dale K. Kotter; Steven L. Garrett; Randall A. Ali

    2013-07-01

    Advancing the Nuclear Fuel Cycle and Next Generation Nuclear Power Plants requires enhancing our basic understanding of fuel and materials behavior under irradiation. The two most significant issues limiting the effectiveness and lifespan of the fuel are the loss of thermal conductivity of the fuel and the mechanical strength of both fuel and cladding. The core of a nuclear reactor presents an extremely harsh and challenging environment for both sensors and telemetry due to elevated temperatures and large fluxes of energetic and ionizing particles from radioactive decay processes. The majority of measurements are made in reactors using “radiation hardened” sensors and materials. A different approach has been pursued in this research that exploits high temperatures and materials that are robust with respect to ionizing radiation. This synergistically designed thermoacoustic sensor will be self-powered, wireless, and provide telemetry. The novel sensor will be able to provide reactor process information even if external electrical power and communication are unavailable. In addition, the form-factor for the sensor is identical to the existing fuel rods within reactors and contains no moving parts. Results from initial proof of concept experiments designed to characterize porosity, surface properties and monitor gas composition will be discussed.

  15. Synergistic neurotrophic effects of piracetam and thiotriazoline

    O. A. Gromova

    2016-01-01

    Full Text Available The paper considers the synergy between the nootropic drug piracetam and the metabolic agent thiotriazoline that maintains energy metabolism and survival of neurons and other types of cells. Piracetam, a nootropic drug, a chemical pyrrolidone derivative, is used in neurological, psychiatric, and narcological practice. There is evidence on the positive effect of piracetam in elderly and senile patients with coronary heart disease. This drug is supposed to stimulate redox processes, to enhance glucose utilization, and to improve regional blood flow in the ischemic brain regions. Due to its action, the drug activates glycolytic processes and elevates ATP concentrations in brain tissue. Thiotriazoline is a compound that has antioxidant, anti-ischemic properties. The co-administration of piracetam and thiothriazoline is an innovation area in the treatment of stroke and other brain damages, especially in insulin resistance and high blood glucose levels. The paper considers the neurobiological properties of thiotriazoline and piracetam, which synergistically exert neuroprotective and neurotrophic effects.

  16. Synergistic smart fuel for microstructure mediated measurements

    Smith, James A.; Kotter, Dale K. [Idaho National Laboratory, Fuel Performance and Design, P.O. Box 1625, Idaho Falls, Idaho, 83415-6188 (United States); Ali, Randall A. [Graduate Program in Acoustics and Applied Research Laboratory, Penn State University, P. . Box 30, M/S 3520D, State College, PA 16804-0030 (United States); Garrett, Steven L. [Graduate Program in Acoustics and Applied Research Laboratory, Penn State University, P.O. Box 30, M/S 3520D, State College, PA 16804-0030 (United States)

    2014-02-18

    Advancing the Nuclear Fuel Cycle and Next Generation Nuclear Power Plants requires enhancing our basic understanding of fuel and materials behavior under irradiation. The two most significant issues limiting the effectiveness and lifespan of the fuel are the loss of thermal conductivity of the fuel and the mechanical strength of both fuel and cladding. The core of a nuclear reactor presents an extremely harsh and challenging environment for both sensors and telemetry due to elevated temperatures and large fluxes of energetic and ionizing particles from radioactive decay processes. The majority of measurements are made in reactors using 'radiation hardened' sensors and materials. A different approach has been pursued in this research that exploits high temperatures and materials that are robust with respect to ionizing radiation. This synergistically designed thermoacoustic sensor will be self-powered, wireless, and provide telemetry. The novel sensor will be able to provide reactor process information even if external electrical power and communication are unavailable. In addition, the form-factor for the sensor is identical to the existing fuel rods within reactors and contains no moving parts. Results from initial proof of concept experiments designed to characterize porosity, surface properties and monitor gas composition will be discussed.

  17. Radiation impairs perineural invasion by modulating the nerve microenvironment.

    Richard L Bakst

    Full Text Available PURPOSE: Perineural invasion (PNI by cancer cells is an ominous clinical event that is associated with increased local recurrence and poor prognosis. Although radiation therapy (RT may be delivered along the course of an invaded nerve, the mechanisms through which radiation may potentially control PNI remain undefined. EXPERIMENTAL DESIGN: An in vitro co-culture system of dorsal root ganglia (DRG and pancreatic cancer cells was used as a model of PNI. An in vivo murine sciatic nerve model was used to study how RT to nerve or cancer affects nerve invasion by cancer. RESULTS: Cancer cell invasion of the DRG was partially dependent on DRG secretion of glial-derived neurotrophic factor (GDNF. A single 4 Gy dose of radiation to the DRG alone, cultured with non-radiated cancer cells, significantly inhibited PNI and was associated with decreased GDNF secretion but intact DRG viability. Radiation of cancer cells alone, co-cultured with non-radiated nerves, inhibited PNI through predominantly compromised cancer cell viability. In a murine model of PNI, a single 8 Gy dose of radiation to the sciatic nerve prior to implantation of non-radiated cancer cells resulted in decreased GDNF expression, decreased PNI by imaging and histology, and preservation of sciatic nerve motor function. CONCLUSIONS: Radiation may impair PNI through not only direct effects on cancer cell viability, but also an independent interruption of paracrine mechanisms underlying PNI. RT modulation of the nerve microenvironment may decrease PNI, and hold significant therapeutic implications for RT dosing and field design for patients with cancers exhibiting PNI.

  18. WE-E-BRE-12: Tumor Microenvironment Dynamics Following Radiation

    Campos, D; Niles, D; Adamson, E; Torres, A; Kissick, M; Eliceiri, K; Kimple, R [University of Wisconsin, Madison, WI (United States)

    2014-06-15

    Purpose: This work aims to understand the radiation-induced interplay between tumor oxygenation and metabolic activity. These dynamics can potentially serve as biomarkers in assessing treatment response allowing for patient-specific adaptive radiotherapy. Methods: Using patient-derived xenografts of head and neck cancer we assessed tumor oxygenation via fiber-optic probe monitored hemoglobin saturation and Blood Oxygen Level Dependent (BOLD) MRI. Measurements were taken before and after a 10 Gy dose of radiation. Changes in metabolic activity were measured via Fluorescence Lifetime IMaging (FLIM) with the appropriate controls following a 10 Gy dose of radiation. FLIM can non-invasively monitor changes in fluorescence in response to the microenvironment including being able to detect free and bound states of the intrinsically fluorescent metabolite NADH (Nicotinamide Adenine Dinucleotide). With this information FLIM can accurately quantify the metabolic state of cells that have been radiated. To model the observed changes, a two-compartment, source-sink simulation relating hemoglobin saturation and metabolic activity was performed using MATLAB. Results: Hemoglobin saturation as measured by interstitial probe and BOLD-MRI decreased by 30% within 15 minutes following radiation. FLIM demonstrated a decrease in the mean fluorescence lifetime of NADH by 100 ps following 10 Gy indicating a shift towards glycolytic pathways. Simulation of radiation-induced alterations in tumor oxygenation demonstrated that these changes can be the result of changes in either vasculature or metabolic activity. Conclusion: Radiation induces significant changes in hemoglobin saturation and metabolic activity. These alterations occur on time scales approximately the duration of common radiation treatments. Further understanding these dynamics has important implications with regard to improvement of therapy and biomarkers of treatment response.

  19. Inhibiting spinal neuron-astrocytic activation correlates with synergistic analgesia of dexmedetomidine and ropivacaine.

    Huang-Hui Wu

    Full Text Available BACKGROUND: This study aims to identify that intrathecal (i.t. injection of dexmedetomidine (Dex and ropivacaine (Ropi induces synergistic analgesia on chronic inflammatory pain and is accompanied with corresponding "neuron-astrocytic" alterations. METHODS: Male, adult Sprague-Dawley rats were randomly divided into sham, control and i.t. medication groups. The analgesia profiles of i.t. Dex, Ropi, and their combination detected by Hargreaves heat test were investigated on the subcutaneous (s.c. injection of complete Freund adjuvant (CFA induced chronic pain in rat and their synergistic analgesia was confirmed by using isobolographic analysis. During consecutive daily administration, pain behavior was daily recorded, and immunohistochemical staining was applied to investigate the number of Fos-immunoreactive (Fos-ir neurons on hour 2 and day 1, 3 and 7, and the expression of glial fibrillary acidic protein (GFAP within the spinal dorsal horn (SDH on day 1, 3, 5 and 7 after s.c. injection of CFA, respectively, and then Western blot to examine spinal GFAP and β-actin levels on day 3 and 7. RESULTS: i.t. Dex or Ropi displayed a short-term analgesia in a dose-dependent manner, and consecutive daily administrations of their combination showed synergistic analgesia and remarkably down-regulated neuronal and astrocytic activations indicated by decreases in the number of Fos-ir neurons and the GFAP expression within the SDH, respectively. CONCLUSION: i.t. co-delivery of Dex and Ropi shows synergistic analgesia on the chronic inflammatory pain, in which spinal "neuron-astrocytic activation" mechanism may play an important role.

  20. A High-Throughput Screening Model of the Tumor Microenvironment for Ovarian Cancer Cell Growth.

    Lal-Nag, Madhu; McGee, Lauren; Guha, Rajarshi; Lengyel, Ernst; Kenny, Hilary A; Ferrer, Marc

    2017-01-01

    The tumor microenvironment plays an important role in the processes of tumor growth, metastasis, and drug resistance. We have used a multilayered 3D primary cell culture model that reproduces the human ovarian cancer metastatic microenvironment to study the effect of the microenvironment on the pharmacological responses of different classes of drugs on cancer cell proliferation. A collection of oncology drugs was screened to identify compounds that inhibited the proliferation of ovarian cancer cells growing as monolayers or forming spheroids, on plastic and on a 3D microenvironment culture model of the omentum metastatic site, and also cells already in preformed spheroids. Target-based analysis of the pharmacological responses revealed that several classes of targets were more efficacious in cancer cells growing in the absence of the metastatic microenvironment, and other target classes were less efficacious in cancer cells in preformed spheres compared to forming spheroid cultures. These findings show that both the cellular context of the tumor microenvironment and cell adhesion mode have an essential role in cancer cell drug resistance. Therefore, it is important to perform screens for new drugs using model systems that more faithfully recapitulate the tissue composition at the site of tumor growth and metastasis.

  1. Optimization of the tumor microenvironment and nanomedicine properties simultaneously to improve tumor therapy

    Jiang, Ting; Wang, Lanting; Mei, Heng; Lu, Heng; Hu, Yu; Pang, Zhiqing

    2016-01-01

    Effective delivery of nanomedicines to tumor tissues depends on both the tumor microenvironment and nanomedicine properties. Accordingly, tumor microenvironment modification or advanced design of nanomedicine was emerging to improve nanomedicine delivery to tumors. However, few studies have emphasized the necessity to optimize the tumor microenvironment and nanomedicine properties simultaneously to improve tumor treatment. In the present study, imatinib mesylate (IMA) was used to normalize the tumor microenvironment including platelet-derived growth factor receptor-β expression inhibition, tumor vessel normalization, and tumor perfusion improvement as demonstrated by immunofluorescence staining. In addition, the effect of tumor microenvironment normalization on tumor delivery of nanomedicines with different sizes was carefully investigated. It was shown that IMA treatment significantly reduced the accumulation of nanoparticles (NPs) around 110 nm but enhanced the accumulation of micelles around 23 nm by in vivo fluorescence imaging experiment. Furthermore, IMA treatment limited the distribution of NPs inside tumors but increased that of micelles with a more homogeneous pattern. Finally, the anti-tumor efficacy study displayed that IMA pretreatment could significantly increase the therapeutic effects of paclitaxel-loaded micelles. All-together, a new strategy to improve nanomedicine delivery to tumor was provided by optimizing both nanomedicine size and the tumor microenvironment simultaneously, and it will have great potential in clinics for tumor treatment. PMID:27566585

  2. Development and characterization of a microfluidic model of the tumour microenvironment

    Ayuso, Jose M.; Virumbrales-Muñoz, María; Lacueva, Alodia; Lanuza, Pilar M.; Checa-Chavarria, Elisa; Botella, Pablo; Fernández, Eduardo; Doblare, Manuel; Allison, Simon J.; Phillips, Roger M.; Pardo, Julián; Fernandez, Luis J.; Ochoa, Ignacio

    2016-01-01

    The physical microenvironment of tumours is characterized by heterotypic cell interactions and physiological gradients of nutrients, waste products and oxygen. This tumour microenvironment has a major impact on the biology of cancer cells and their response to chemotherapeutic agents. Despite this, most in vitro cancer research still relies primarily on cells grown in 2D and in isolation in nutrient- and oxygen-rich conditions. Here, a microfluidic device is presented that is easy to use and enables modelling and study of the tumour microenvironment in real-time. The versatility of this microfluidic platform allows for different aspects of the microenvironment to be monitored and dissected. This is exemplified here by real-time profiling of oxygen and glucose concentrations inside the device as well as effects on cell proliferation and growth, ROS generation and apoptosis. Heterotypic cell interactions were also studied. The device provides a live ‘window’ into the microenvironment and could be used to study cancer cells for which it is difficult to generate tumour spheroids. Another major application of the device is the study of effects of the microenvironment on cellular drug responses. Some data is presented for this indicating the device’s potential to enable more physiological in vitro drug screening. PMID:27796335

  3. Tumor Acidity as Evolutionary Spite

    Mohammed E. A. Shayoub

    2011-01-01

    Full Text Available Most cancer cells shift their metabolic pathway from a metabolism reflecting the Pasteur-effect into one reflecting the Warburg-effect. This shift creates an acidic microenvironment around the tumor and becomes the driving force for a positive carcinogenesis feedback loop. As a consequence of tumor acidity, the tumor microenvironment encourages a selection of certain cell phenotypes that are able to survive in this caustic environment to the detriment of other cell types. This selection can be described by a process which can be modeled upon spite: the tumor cells reduce their own fitness by making an acidic environment, but this reduces the fitness of their competitors to an even greater extent. Moreover, the environment is an important dimension that further drives this spite process. Thus, diminishing the selective environment most probably interferes with the spite process. Such interference has been recently utilized in cancer treatment.

  4. Tumor Acidity as Evolutionary Spite

    Alfarouk, Khalid O., E-mail: khalid.alfarouk@act.sd [Department of Biotechnology, Africa City of Technology, Khartoum (Sudan); Department of Pharmaceutics, Faculty of Pharmacy, University of Khartoum, Khartoum (Sudan); Muddathir, Abdel Khalig [Department of Pharmacognosy, Faculty of Pharmacy, University of Khartoum, Khartoum (Sudan); Shayoub, Mohammed E. A. [Department of Pharmaceutics, Faculty of Pharmacy, University of Khartoum, Khartoum (Sudan)

    2011-01-20

    Most cancer cells shift their metabolic pathway from a metabolism reflecting the Pasteur-effect into one reflecting the Warburg-effect. This shift creates an acidic microenvironment around the tumor and becomes the driving force for a positive carcinogenesis feedback loop. As a consequence of tumor acidity, the tumor microenvironment encourages a selection of certain cell phenotypes that are able to survive in this caustic environment to the detriment of other cell types. This selection can be described by a process which can be modeled upon spite: the tumor cells reduce their own fitness by making an acidic environment, but this reduces the fitness of their competitors to an even greater extent. Moreover, the environment is an important dimension that further drives this spite process. Thus, diminishing the selective environment most probably interferes with the spite process. Such interference has been recently utilized in cancer treatment.

  5. Chiral counteranion synergistic organocatalysis under high temperature: efficient construction of optically pure spiro[cyclohexanone-oxindole] backbone.

    Lan, Yu-Bao; Zhao, Hua; Liu, Zhao-Min; Liu, Guo-Gui; Tao, Jing-Chao; Wang, Xing-Wang

    2011-09-16

    The combination of a cinchona-based chiral primary amine and a BINOL-phosphoric acid has been demonstrated as a powerful and synergistic catalyst system for the double Michael addition of isatylidene malononitriles with α,β-unsaturated ketones, to provide the novel chiral spiro [cyclohexane-1,3'-indoline]-2',3-diones in high yields (88-99%) with excellent diastereo- and enantioselectivities (94:6-99:1 dr's, 95-99% ee's).

  6. Kinetic studies of proton transfer in the microenvironment of a binding site.

    Gutman, M; Huppert, D; Nachliel, E

    1982-01-01

    Excitation of 8-hydroxypyrene 1,3,6-trisulfonate to its first electronic singlet state converts the compound from weak base (pK degrees = 7.7) into a strong acid (pK* = 0.5). The dissociation of the proton in water or dilute salt solution is a very fast reaction, K12 = 1 X 10(10) S-1. In concentrated salt solutions the dissociation is slowed as an exponential function of the chemical activity of the water in the solution. This kinetic parameter has been used to gauge the properties of the microenvironment of the binding sites of bovine serum albumin at which this compound is bound. Time-resolved fluorometry reveals two distinct steps: a rapid dissociation of the proton with tau = 300 +/- 40 ps which lasts approximately 0.5 ns, followed by a slower reaction with tau = 3.3 ns. The first rapid phase represents proton dissociation taking place in the binding site. From the rate constant K = 3.3 X 10(9) s-1 we estimate that the ability of the water molecules in the site to hydrate the ejected proton is equivalent to a salt solution with water activity of 0.85. The slow phase represents the escape of the proton from the binding site. The rate of the escape, 1.4 X 10(8) s-1, is significantly slower than diffusion-controlled dissociation. It is concluded that the shape of the site or its lowered proton conductivity do not allow a rapid escape of the proton to the bulk. Still it should be remembered that the escape of the proton is 10(5)-10(6)-times faster than a typical turnover of an enzyme.U

  7. Effect of lime pre-treatment on the synergistic hydrolysis of sugarcane bagasse by hemicellulases.

    Beukes, Natasha; Pletschke, Brett I

    2010-06-01

    Agricultural crop wastes are typically lignocellulosic in composition and thus partially recalcitrant to enzymatic degradation. The recalcitrant nature of plant biomass and the inability to obtain complete enzymatic hydrolysis has led to the establishment of various pre-treatment strategies. Alkaline pre-treatments increase the accessibility of the exposed surface to enzymatic hydrolysis through the removal of acetyl and uronic acid substituents on hemicelluloses. Unlike the use of steam and acid pre-treatments, alkaline pre-treatments (e.g. lime) solubilise lignin and a small percentage of the hemicelluloses. The most common alkaline pre-treatments that are employed make use of sodium hydroxide and lime. This study compared the synergistic degradation of un-treated and lime pre-treated sugarcane bagasse using cellulosomal and non-cellulosomal hemicellulases as free enzymes. The enzyme combination of 37.5% ArfA and 62.5% ManA produced the highest amount of reducing sugar of 91.834 micromol/min for the degradation of un-treated bagasse. This enzyme combination produced a degree of synergy of 1.87. The free enzymes displayed an approximately 6-fold increase in the enzyme activity, i.e. the total amount of reducing sugar released (593.65 micromol/min) with the enzyme combination of 37.5% ArfA, 25% ManA and 37.5% XynA for the lime pre-treated substrate and a degree of synergy of 2.14. To conclude, this study indicated that pre-treating the sugarcane bagasse is essential, in order to increase the efficiency of lignocellulose enzymatic hydrolysis by disruption of the lignin sheath, that the lime pre-treatment did not have any dramatic effect on the synergistic relationship between the free enzymes, and that time may play an important role in the establishment of synergistic relationships between enzymes.

  8. Synergistic potential of papaya and strawberry nectar blends focused on specific nutrients and antioxidants using alternative thermal and non-thermal processing techniques.

    Swada, Jeffrey G; Keeley, Christopher J; Ghane, Mohammad A; Engeseth, Nicki J

    2016-05-15

    Traditional processing has detrimental effects on nutrient value of fruit nectars; however, combining fruit nectars prior to processing can result in synergistic outcomes, e.g., a combination of nutrients providing a greater effect than they would individually, thus offsetting these losses. To examine this food synergism, papaya and strawberry nectars and their respective blends (25P:75S, 50P:50S, 75P:25S) were processed using ultra high temperature (UHT) and irradiation and examined for ascorbic acid concentration, carotenoid concentration, and antioxidant capacity. Ascorbic acid concentration was best retained after UHT processing, with synergistic relationships in all blends. Synergistic relationships were observed for β-cryptoxanthin concentration after irradiation. β-Carotene experienced both antagonistic and additive relationships whereas lycopene concentration encountered synergistic relationships in the 25P:75S blend for both techniques. All blends exhibited synergistic relationships for antioxidant capacity after UHT processing. These findings demonstrate the benefits of blending fruit nectars; producing a superior product than either fruit processed individually.

  9. Biomechanical remodeling of the microenvironment by stromal Caveolin-1 favors tumor invasion and metastasis

    Goetz, Jacky G.; Minguet, Susana; Navarro-Lérida, Inmaculada; Lazcano, Juan José; Samaniego, Rafael; Calvo, Enrique; Tello, Marta; Osteso-Ibáñez, Teresa; Pellinen, Teijo; Echarri, Asier; Cerezo, Ana; Klein-Szanto, Andres J.P.; Garcia, Ricardo; Keely, Patricia J.; Sánchez-Mateos, Paloma; Cukierman, Edna; Del Pozo, Miguel A.

    2011-01-01

    Summary Mechanotransduction, a key determinant of tissue homeostasis and tumor progression, is driven by intercellular adhesions, cell contractility and forces generated with the microenvironment, dependent on extracellular matrix composition, organization and compliance. Caveolin-1 (Cav1) favors cell elongation in 3D cultures and promotes Rho-and force-dependent contraction, matrix alignment and microenvironment stiffening through regulation of p190RhoGAP. In turn, microenvironment remodeling by Cav1-fibroblasts forces cell elongation. Cav1-deficient mice have disorganized stromal tissue architecture. Stroma associated with human carcinomas and melanoma metastases is enriched in Cav1-expressing carcinoma-associated fibroblasts (CAFs). Cav1 expression in breast CAFs correlates with low survival, and Cav1 depletion in CAFs decreases CAF contractility. Consistently, fibroblast expression of Cav1, through p190RhoGAP regulation, favors directional migration and invasiveness of carcinoma cells in vitro. In vivo, stromal Cav1 remodels peri- and intratumoral microenvironments to facilitate tumor invasion, correlating with increased metastatic potency. Thus, Cav1 modulates tissue responses through force-dependent architectural regulation of the microenvironment. PMID:21729786

  10. Natural product derivative BIO promotes recovery after myocardial infarction via unique modulation of the cardiac microenvironment.

    Kim, Yong Sook; Jeong, Hye-Yun; Kim, Ah Ra; Kim, Woong-Hee; Cho, Haaglim; Um, JungIn; Seo, Youngha; Kang, Wan Seok; Jin, Suk-Won; Kim, Min Chul; Kim, Yong-Chul; Jung, Da-Woon; Williams, Darren R; Ahn, Youngkeun

    2016-08-11

    The cardiac microenvironment includes cardiomyocytes, fibroblasts and macrophages, which regulate remodeling after myocardial infarction (MI). Targeting this microenvironment is a novel therapeutic approach for MI. We found that the natural compound derivative, BIO ((2'Z,3'E)-6-Bromoindirubin-3'-oxime) modulated the cardiac microenvironment to exert a therapeutic effect on MI. Using a series of co-culture studies, BIO induced proliferation in cardiomyocytes and inhibited proliferation in cardiac fibroblasts. BIO produced multiple anti-fibrotic effects in cardiac fibroblasts. In macrophages, BIO inhibited the expression of pro-inflammatory factors. Significantly, BIO modulated the molecular crosstalk between cardiac fibroblasts and differentiating macrophages to induce polarization to the anti-inflammatory M2 phenotype. In the optically transparent zebrafish-based heart failure model, BIO induced cardiomyocyte proliferation and completely recovered survival rate. BIO is a known glycogen synthase kinase-3β inhibitor, but these effects could not be recapitulated using the classical inhibitor, lithium chloride; indicating novel therapeutic effects of BIO. We identified the mechanism of BIO as differential modulation of p27 protein expression and potent induction of anti-inflammatory interleukin-10. In a rat MI model, BIO reduced fibrosis and improved cardiac performance. Histological analysis revealed modulation of the cardiac microenvironment by BIO, with increased presence of anti-inflammatory M2 macrophages. Our results demonstrate that BIO produces unique effects in the cardiac microenvironment to promote recovery post-MI.

  11. Synergistic effect between Sn and K promoters on supported platinum catalyst for isobutane dehydrogenation

    Yiwei Zhang; Yuming Zhou; Lihui Wan; Mengwei Xue; Yongzheng Duan; Xuan Liu

    2011-01-01

    Catalytic dehydrogenation of isobutane has recently received considerable attention because of the increasing demand for isobutene.In this study,the synergistic effect between Sn and K on PtSnK/γ-Al2O3 catalysts has been investigated by changing the content of Sn.It was found that with the presence of potassium,suitable addition of Sn could not only increase the metal dispersion,but also reduce the catalyst acidity.In these cases,the synergistic effect could also strengthen the interactions between the metal and support,which resulted in an increase in both catalytic activity and stability.In our experiments,Pt-0.6SnK/Al catalyst exhibited the lowest deactivation rate (12.4%) and showed a selectivity to isobutene higher than 94% at the isobutane conversion of about 45.3% after running the reaction for 6 h.However,with the excessive loading of Sn,surface property of active sites and the interactions between metal and support were changed.As a result,the initial optimal ratio between the metallic function and acid function would be destroyed,which was disadvantageous to the reaction.

  12. Progress in engineering acid stress resistance of lactic acid bacteria.

    Wu, Chongde; Huang, Jun; Zhou, Rongqing

    2014-02-01

    Lactic acid bacteria (LAB) are widely used for the production of a variety of fermented foods, and are considered as probiotic due to their health-promoting effect. However, LAB encounter various environmental stresses both in industrial fermentation and application, among which acid stress is one of the most important survival challenges. Improving the acid stress resistance may contribute to the application and function of probiotic action to the host. Recently, the advent of genomics, functional genomics and high-throughput technologies have allowed for the understanding of acid tolerance mechanisms at a systems level, and many method to improve acid tolerance have been developed. This review describes the current progress in engineering acid stress resistance of LAB. Special emphasis is placed on engineering cellular microenvironment (engineering amino acid metabolism, introduction of exogenous biosynthetic capacity, and overproduction of stress response proteins) and maintaining cell membrane functionality. Moreover, strategies to improve acid tolerance and the related physiological mechanisms are also discussed.

  13. Synergistic and antagonistic drug combinations depend on network topology.

    Yin, Ning; Ma, Wenzhe; Pei, Jianfeng; Ouyang, Qi; Tang, Chao; Lai, Luhua

    2014-01-01

    Drug combinations may exhibit synergistic or antagonistic effects. Rational design of synergistic drug combinations remains a challenge despite active experimental and computational efforts. Because drugs manifest their action via their targets, the effects of drug combinations should depend on the interaction of their targets in a network manner. We therefore modeled the effects of drug combinations along with their targets interacting in a network, trying to elucidate the relationships between the network topology involving drug targets and drug combination effects. We used three-node enzymatic networks with various topologies and parameters to study two-drug combinations. These networks can be simplifications of more complex networks involving drug targets, or closely connected target networks themselves. We found that the effects of most of the combinations were not sensitive to parameter variation, indicating that drug combinational effects largely depend on network topology. We then identified and analyzed consistent synergistic or antagonistic drug combination motifs. Synergistic motifs encompass a diverse range of patterns, including both serial and parallel combinations, while antagonistic combinations are relatively less common and homogenous, mostly composed of a positive feedback loop and a downstream link. Overall our study indicated that designing novel synergistic drug combinations based on network topology could be promising, and the motifs we identified could be a useful catalog for rational drug combination design in enzymatic systems.

  14. Co-delivery of chemotherapeutics and proteins for synergistic therapy.

    He, Chaoliang; Tang, Zhaohui; Tian, Huayu; Chen, Xuesi

    2016-03-01

    Combination therapy with chemotherapeutics and protein therapeutics, typically cytokines and antibodies, has been a type of crucial approaches for synergistic cancer treatment. However, conventional approaches by simultaneous administration of free chemotherapeutic drugs and proteins lead to limitations for further optimizing the synergistic effects, due to the distinct in vivo pharmacokinetics and distribution of small drugs and proteins, insufficient tumor selectivity and tumor accumulation, unpredictable drug/protein ratios at tumor sites, short half-lives, and serious systemic adverse effects. Consequently, to obtain optimal synergistic anti-tumor efficacy, considerable efforts have been devoted to develop the co-delivery systems for co-incorporating chemotherapeutics and proteins into a single carrier system and subsequently releasing the dual or multiple payloads at desired target sites in a more controllable manner. The co-delivery systems result in markedly enhanced blood stability and in vivo half-lives of the small drugs and proteins, elevated tumor accumulation, as well as the capability of delivering the multiple agents to the same target sites with rational drug/protein ratios, which may facilitate maximizing the synergistic effects and therefore lead to optimal antitumor efficacy. This review emphasizes the recent advances in the co-delivery systems for chemotherapeutics and proteins, typically cytokines and antibodies, for systemic or localized synergistic cancer treatment. Moreover, the proposed mechanisms responsible for the synergy of chemotherapeutic drugs and proteins are discussed.

  15. Regulation of mesenchymal stem cell 3D microenvironment: From macro to microfluidic bioreactors.

    Sart, Sébastien; Agathos, Spiros N; Li, Yan; Ma, Teng

    2016-01-01

    Human mesenchymal stem cells (hMSCs) have emerged as an important cell type in cell therapy and tissue engineering. In these applications, maintaining the therapeutic properties of hMSCs requires tight control of the culture environments and the structural cell organizations. Bioreactor systems are essential tools to achieve these goals in the clinical-scale expansion and tissue engineering applications. This review summarizes how different bioreactors provide cues to regulate the structure and the chemico-mechanical microenvironment of hMSCs with a focus on 3D organization. In addition to conventional bioreactors, recent advances in microfluidic bioreactors as a novel approach to better control the hMSC microenvironment are also discussed. These advancements highlight the key role of bioreactor systems in preserving hMSC's functional properties by providing dynamic and temporal regulation of in vitro cellular microenvironment.

  16. Regulatory T Cells in the Tumor Microenvironment and Cancer Progression: Role and Therapeutic Targeting

    Chaudhary, Belal; Elkord, Eyad

    2016-01-01

    Recent years have seen significant efforts in understanding and modulating the immune response in cancer. In this context, immunosuppressive cells, including regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs), have come under intense investigation for their proposed roles in suppressing tumor-specific immune responses and establishing an immunosuppressive tumor microenvironment, thus enabling tumor immune evasion. Additionally, recent evidence indicates that Tregs comprise diverse and heterogeneous subsets; phenotypically and functionally distinct subsets of tumor-infiltrating Tregs could contribute differently to cancer prognosis and clinical outcomes. Understanding Treg biology in the setting of cancer, and specifically the tumor microenvironment, is important for designing effective cancer therapies. In this review, we critically examine the role of Tregs in the tumor microenvironment and in cancer progression focusing on human studies. We also discuss the impact of current therapeutic modalities on Treg biology and the therapeutic opportunities for targeting Tregs to enhance anti-tumor immune responses and clinical benefits. PMID:27509527

  17. Breast cancer by proxy: Can the microenvironment be both the cause and consequence?

    Ronnov-Jessen, Lone; Bissell, Mina J

    2008-11-16

    Breast cancer is one of the most clear-cut examples of a solid tumor in which systemic cues play a decisive part in its development. The breast tissue is constantly subjected to changes in hormone levels and modifications in the microenvironment. This scenario is even more striking during tumor development because of the dramatic loss or aberration of basement membrane (BM) and myoepithelial cells and the gain of peritumoral myofibroblasts. We suggest that the microenvironment, defined here as all components of the mammary gland other than luminal and/or tumor epithelial cells, might be instrumental in maintaining organ integrity and in promoting, and at times even initiating, breast cancer development. As such, the tumor microenvironment and its constituents, alone or in combination, might serve as promising targets for therapy.

  18. [Design of an anesthesia and micro-environment information management system in mobile operating room].

    Wang, Xianwen; Liu, Zhiguo; Zhang, Wenchang; Wu, Qingfu; Tan, Shulin

    2013-08-01

    We have designed a mobile operating room information management system. The system is composed of a client and a server. A client, consisting of a PC, medical equipments, PLC and sensors, provides the acquisition and processing of anesthesia and micro-environment data. A server is a powerful computer that stores the data of the system. The client gathers the medical device data by using the C/S mode, and analyzes the obtained HL7 messages through the class library call. The client collects the micro-environment information with PLC, and finishes the data reading with the OPC technology. Experiment results showed that the designed system could manage the patient anesthesia and micro-environment information well, and improve the efficiency of the doctors' works and the digital level of the mobile operating room.

  19. Tumor-conditioned Gr-1(+)CD11b(+) myeloid cells induce angiogenesis through the synergistic action of CCL2 and CXCL16 in vitro.

    Han, Eun Chun; Lee, Jungwhoi; Ryu, Seung-Wook; Choi, Chulhee

    2014-01-24

    Gr-1(+)CD11b(+) cells can suppress innate and adaptive immunity, and the functional immunosuppressive characteristics of these cells can be modulated by the tumor microenvironment. Since Gr-1(+)CD11(+) cells are also involved in tumor-associated angiogenesis, we hypothesized that the angiogenic nature of Gr-1(+)CD11b(+) cells could be regulated by the tumor milieu. To address this hypothesis, we imitated a tumor microenvironment by exposing Gr-1(+)CD11b(+) cells isolated from spleen of 4T1 mammary carcinoma-bearing mice to tumor-conditioned medium. Supernatants from tumor-conditioned Gr-1(+)CD11b(+) cells significantly induced capillary-like tube formation and migration of human umbilical vein endothelial cells (HUVECs) compared to naive Gr-1(+)CD11b(+) cells. Incubation of Gr-1(+)CD11b(+) cells with tumor-conditioned medium induced production of pro-angiogenic chemokines CCL2 and CXCL16. Pretreatment with an anti-CCL2 antibody, but not an anti-CXCL16 antibody, suppressed the angiogenic effects of tumor-conditioned Gr-1(+)CD11b(+) cells on HUVECs. Simultaneous neutralization of CCL2 and CXCL16 significantly inhibited tube formation and migration of HUVECs compared to the sole neutralization against CCL2. Supernatants from tumor-conditioned Gr-1(+)CD11b(+) cells induced phosphorylation of ERK1/2 in HUVECs, and inhibition of the ERK pathway blocked angiogenic effects. ERK pathway activity was partially abrogated by neutralization of CCL2 and more suppressed by simultaneous neutralization of CCL2 and CXCL16. These results collectively indicate that CCL2 and CXCL16 chemokines produced by tumor-conditioned Gr-1(+)CD11b(+) myeloid cells synergistically induce angiogenesis in vitro by stimulating the ERK1/2 signaling pathway. Thus, regulation of Gr-1(+)CD11b(+) cells in the tumor microenvironment may contribute to angiogenesis through the secretion of pro-angiogenic chemokines.

  20. Synergistic and Superimposed Effect of Bone Marrow-Derived Mesenchymal Stem Cells Combined with Fasudil in Experimental Autoimmune Encephalomyelitis.

    Yu, Jing-Wen; Li, Yan-Hua; Song, Guo-Bin; Yu, Jie-Zhong; Liu, Chun-Yun; Liu, Jian-Chun; Zhang, Hai-Fei; Yang, Wan-Fang; Wang, Qing; Yan, Ya-Ping; Xiao, Bao-Guo; Ma, Cun-Gen

    2016-12-01

    Bone marrow-derived mesenchymal stem cells (MSCs) are the ideal transplanted cells of cellular therapy for promoting neuroprotection and neurorestoration. However, the optimization of transplanted cells and the improvement of microenvironment around implanted cells are still two critical challenges for enhancing therapeutic effect. In the current study, we observed the therapeutic potential of MSCs combined with Fasudil in mouse model of experimental autoimmune encephalomyelitis (EAE) and explored possible mechanisms of action. The results clearly show that combined intervention of MSCs and Fasudil further reduced the severity of EAE compared with MSCs or Fasudil alone, indicating a synergistic and superimposed effect in treating EAE. The addition of Fasudil inhibited MSC-induced inflammatory signaling TLR-4/MyD88 and inflammatory molecule IFN-γ, IL-1β, and TNF-α but did not convert M1 microglia to M2 phenotype. The delivery of MSCs enhanced the expression of glial cell-derived neurotrophic factor (GDNF) and brain-derived neurotrophic factor (BDNF) compared with that of Fasudil. Importantly, combined intervention of MSCs and Fasudil further increased the expression of BDNF and GDNF compared with the delivery of MSCs alone, indicating that combined intervention of MSCs and Fasudil synergistically contributes to the expression of neurotrophic factors which should be related to the expression of increased galactocerebroside (GalC) compared with mice treated with Fasudil and MSCs alone. However, a lot of investigation is warranted to further elucidate the cross talk of MSCs and Fasudil in the therapeutic potential of EAE/multiple sclerosis.

  1. Synergistic intrafibrillar/extrafibrillar mineralization of collagen scaffolds based on a biomimetic strategy to promote the regeneration of bone defects

    Wang Y

    2016-05-01

    Full Text Available Yao Wang,1 Ngo Van Manh,1,2 Haorong Wang,1 Xue Zhong,1 Xu Zhang,1 Changyi Li1 1School of Dentistry, Hospital of Stomatology, Tianjin Medical University, Tianjin, People’s Republic of China; 2Thaibinh University of Medicine and Pharmacy, Thaibinh, Vietnam Abstract: The mineralization of collagen scaffolds can improve their mechanical properties and biocompatibility, thereby providing an appropriate microenvironment for bone regeneration. The primary purpose of the present study is to fabricate a synergistically intra- and extrafibrillar mineralized collagen scaffold, which has many advantages in terms of biocompatibility, biomechanical properties, and further osteogenic potential. In this study, mineralized collagen scaffolds were fabricated using a traditional mineralization method (ie, immersed in simulated body fluid as a control group and using a biomimetic method based on the polymer-induced liquid precursor process as an experimental group. In the polymer-induced liquid precursor process, a negatively charged polymer, carboxymethyl chitosan (CMC, was used to stabilize amorphous calcium phosphate (ACP to form nanocomplexes of CMC/ACP. Collagen scaffolds mineralized based on the polymer-induced liquid precursor process were in gel form such that nanocomplexes of CMC/ACP can easily be drawn into the interstices of the collagen fibrils. Scanning electron microscopy and transmission electron microscopy were used to examine the porous micromorphology and synergistic mineralization pattern of the collagen scaffolds. Compared with simulated body fluid, nanocomplexes of CMC/ACP significantly increased the modulus of the collagen scaffolds. The results of in vitro experiments showed that the cell count and differentiated degrees in the experimental group were higher than those in the control group. Histological staining and micro-computed tomography showed that the amount of new bone regenerated in the experimental group was larger than that in the

  2. Microsensor measurements of the external and internal microenvironment of Fucus vesiculosus

    Spilling, Kristian; Titelman, Josefin; Greve, Tina M.

    2010-01-01

    We investigated the O2, pH, and irradiance microenvironment in and around the tissue of the brown alga Fucus vesiculosus L. using microsensors. Microsensors are ideal tools for gaining new insights into what limits and controls macroalgal activity and growth at very fine spatial (...) and temporal (seconds) scales. This first microsensor investigation of a fucoid macroalga revealed differences in the microenvironment and metabolic activities at the level of different cell layers and thallus structures. F. vesiculosus responded quickly to rapid shifts in irradiance resulting in a highly...

  3. Molecular detection of Gluconacetobacter sacchari associated with the pink sugarcane mealybug Saccharicoccus sacchari (Cockerell) and the sugarcane leaf sheath microenvironment by FISH and PCR.

    Franke; Fegan; Hayward; Leonard; Sly

    2000-01-01

    Molecular tools for the detection of the newly described acetic acid bacterium Gluconacetobacter sacchari from the pink sugarcane mealybug, Saccharicoccus sacchari Cockerell (Homiptera: Pseudococcidae), and in the sugarcane leaf sheath microenvironment were developed. G. sacchari specific 16S rRNA-targeted oligonucleotide primers were designed and used in PCR amplification of G. sacchari DNA directly from mealybugs, and in a nested PCR to detect low numbers of the bacteria from sugarcane leaf sheath fluid and cane internode scrapings. A sensitivity level of detection of 40-400 cells/reaction was obtained using PCR from exponentially grown bacterial cultures and of 1-10 cells in cane internode scrapings and leaf sheath fluid samples using nested PCR. The specificity of the primer set was demonstrated by the lack of amplification product formation in PCR by closely related acetic acid bacteria, including Gluconacetobacter liquefaciens, and Gluconacetobacter diazotrophicus. A Cy3 labeled probe for G. sacchari was designed and shown to be specific for the species. Investigation of the mealybug microenvironment by whole cell fluorescent in situ hybridization revealed that G. sacchari appears to represent only a minor proportion of the population of the microbiota in the mealybugs tested. This study has shown the usefulness of 16S rRNA-based molecular tools in the identification and detection of G. sacchari from environmental samples and will allow these tools to be used in further ecological research.

  4. Carbon dioxide and nisin act synergistically on Listeria monocytogenes

    Nilsson, Lilian; Chen, Y.H.; Chikindas, M.L.

    2000-01-01

    This paper examines the synergistic action of carbon dioxide and nisin on Listeria monocytogenes Scott A wild-type and nisin-resistant (Nis(r)) cells grown in broth at 4 degrees C. Carbon dioxide extended the lag phase and decreased the specific growth rate of both strains, but to a greater degree...... for cultures in CO2. This synergism between nisin and CO2 was examined mechanistically by following the leakage of carboxyfluorescein (CF) from listerial liposomes. Carbon dioxide enhanced nisin-induced CF leakage, indicating that the synergistic action of CO2 and nisin occurs at the cytoplasmic membrane...

  5. Cross-Talk between Cancer Cells and the Tumour Microenvironment: The Role of the 5-Lipoxygenase Pathway

    Moore, Gillian Y.; Pidgeon, Graham P.

    2017-01-01

    5-lipoxygenase is an enzyme responsible for the synthesis of a range of bioactive lipids signalling molecules known collectively as eicosanoids. 5-lipoxygenase metabolites such as 5-hydroxyeicosatetraenoic acid (5-HETE) and a number of leukotrienes are mostly derived from arachidonic acid and have been shown to be lipid mediators of inflammation in different pathological states including cancer. Upregulated 5-lipoxygenase expression and metabolite production is found in a number of cancer types and has been shown to be associated with increased tumorigenesis. 5-lipoxygenase activity is present in a number of diverse cell types of the immune system and connective tissue. In this review, we discuss potential routes through which cancer cells may utilise the 5-lipoxygenase pathway to interact with the tumour microenvironment during the development and progression of a tumour. Furthermore, immune-derived 5-lipoxygenase signalling can drive both pro- and anti-tumour effects depending on the immune cell subtype and an overview of evidence for these opposing effects is presented. PMID:28125014

  6. Human mammary microenvironment better regulates the biology of human breast cancer in humanized mouse model.

    Zheng, Ming-Jie; Wang, Jue; Xu, Lu; Zha, Xiao-Ming; Zhao, Yi; Ling, Li-Jun; Wang, Shui

    2015-02-01

    During the past decades, many efforts have been made in mimicking the clinical progress of human cancer in mouse models. Previously, we developed a human breast tissue-derived (HB) mouse model. Theoretically, it may mimic the interactions between "species-specific" mammary microenvironment of human origin and human breast cancer cells. However, detailed evidences are absent. The present study (in vivo, cellular, and molecular experiments) was designed to explore the regulatory role of human mammary microenvironment in the progress of human breast cancer cells. Subcutaneous (SUB), mammary fat pad (MFP), and HB mouse models were developed for in vivo comparisons. Then, the orthotopic tumor masses from three different mouse models were collected for primary culture. Finally, the biology of primary cultured human breast cancer cells was compared by cellular and molecular experiments. Results of in vivo mouse models indicated that human breast cancer cells grew better in human mammary microenvironment. Cellular and molecular experiments confirmed that primary cultured human breast cancer cells from HB mouse model showed a better proliferative and anti-apoptotic biology than those from SUB to MFP mouse models. Meanwhile, primary cultured human breast cancer cells from HB mouse model also obtained the migratory and invasive biology for "species-specific" tissue metastasis to human tissues. Comprehensive analyses suggest that "species-specific" mammary microenvironment of human origin better regulates the biology of human breast cancer cells in our humanized mouse model of breast cancer, which is more consistent with the clinical progress of human breast cancer.

  7. Stromal cells and integrins: conforming to the needs of the tumor microenvironment.

    Alphonso, Aimee; Alahari, Suresh K

    2009-12-01

    The microenvironment of a tumor is constituted of a heterogenous population of stromal cells, extracellular matrix components, and secreted factors, all of which make the tumor microenvironment distinct from that of normal tissue. Unlike healthy cells, tumor cells require these unique surroundings to metastasize, spread, and form a secondary tumor at a distant site. In this review, we discuss that stromal cells such as fibroblasts and immune cells including macrophages, their secreted factors, such as vascular endothelial growth factor, transforming growth factor beta, and various chemokines, and the integrins that connect the various cell types play a particularly vital role in the survival of a growing tumor mass. Macrophages and fibroblasts are uniquely plastic cells because they are not only able to switch from tumor suppressing to tumor supporting phenotypes but also able to adopt various tumor-supporting functions based on their location within the microenvironment. Integrins serve as the backbone for all of these prometastatic operations because their function as cell-cell and cell-matrix signal transducers are important for the heterogenous components of the microenvironment to communicate.

  8. Targeting FPR1 and CXCR4 in cancer and the contribution of the tumor microenvironment

    Boer, Jennifer

    2015-01-01

    Solid tumors can be primarily resistant or could become resistant to therapy, due to the protective effect of their direct tumor environment, which is called the microenvironment. UMCG-researcher Jennifer Boer studied the interaction of glioblastoma (GBM) and prostate cancer cells with their tumor m

  9. Brucite microbialites in living coral skeletons: Indicators of extreme microenvironments in shallow-marine settings

    Nothdurft, L.D.; Webb, G.E.; Buster, N.A.; Holmes, C.W.; Sorauf, J.E.; Kloprogge, J.T.

    2005-01-01

    Brucite [Mg(OH)2] microbialites occur in vacated interseptal spaces of living scleractinian coral colonies (Acropora, Pocillopora, Porites) from subtidal and intertidal settings in the Great Barrier Reef, Australia, and subtidal Montastraea from the Florida Keys, United States. Brucite encrusts microbial filaments of endobionts (i.e., fungi, green algae, cyanobacteria) growing under organic biofilms; the brucite distribution is patchy both within interseptal spaces and within coralla. Although brucite is undersaturated in seawater, its precipitation was apparently induced in the corals by lowered pCO 2 and increased pH within microenvironments protected by microbial biofilms. The occurrence of brucite in shallow-marine settings highlights the importance of microenvironments in the formation and early diagenesis of marine carbonates. Significantly, the brucite precipitates discovered in microenvironments in these corals show that early diagenetic products do not necessarily reflect ambient seawater chemistry. Errors in environmental interpretation may arise where unidentified precipitates occur in microenvironments in skeletal carbonates that are subsequently utilized as geochemical seawater proxies. ?? 2005 Geological Society of America.

  10. Dynamic Microenvironment Induces Phenotypic Plasticity of Esophageal Cancer Cells Under Flow

    Calibasi Kocal, Gizem; Güven, Sinan; Foygel, Kira; Goldman, Aaron; Chen, Pu; Sengupta, Shiladitya; Paulmurugan, Ramasamy; Baskin, Yasemin; Demirci, Utkan

    2016-12-01

    Cancer microenvironment is a remarkably heterogeneous composition of cellular and non-cellular components, regulated by both external and intrinsic physical and chemical stimuli. Physical alterations driven by increased proliferation of neoplastic cells and angiogenesis in the cancer microenvironment result in the exposure of the cancer cells to elevated levels of flow-based shear stress. We developed a dynamic microfluidic cell culture platform utilizing eshopagael cancer cells as model cells to investigate the phenotypic changes of cancer cells upon exposure to fluid shear stress. We report the epithelial to hybrid epithelial/mesenchymal transition as a result of decreasing E-Cadherin and increasing N-Cadherin and vimentin expressions, higher clonogenicity and ALDH positive expression of cancer cells cultured in a dynamic microfluidic chip under laminar flow compared to the static culture condition. We also sought regulation of chemotherapeutics in cancer microenvironment towards phenotypic control of cancer cells. Such in vitro microfluidic system could potentially be used to monitor how the interstitial fluid dynamics affect cancer microenvironment and plasticity on a simple, highly controllable and inexpensive bioengineered platform.

  11. The host microenvironment influences prostate cancer invasion, systemic spread, bone colonization, and osteoblastic metastasis

    Sourik S Ganguly

    2014-12-01

    Full Text Available Prostate cancer (PCa is the second leading cause of cancer death in men worldwide. Most PCa patients die with osteoblastic bone metastases. What triggers PCa metastasis to the bone and what causes osteoblastic lesions remain unanswered. A major contributor to PCa metastasis is the host microenvironment. In this revew, we address how the primary tumor microenvironment influences PCa metastasis via integrins, extracellular proteases, and transient epithelia-mesenchymal transition (EMT to promote PCa progression, invasion, and metastasis. We discuss how the bone microenvironment influences metastasis; where chemotactic cytokines favor bone homing, adhesion molecules promote colonization, and bone-derived signals induce osteoblastic lesions. Animal models that fully recapitulate human PCa progression from primary tumor to bone metastasis are needed to understand the PCa pathophysiology that leads to bone metastasis. Better delineation of the specific processes involved in PCa bone metastasize is needed to prevent or treat metastatic PCa. Therapeutic regimens that focus on the tumor microenvironment could add to the PCa pharmacopeia.

  12. 3D bioprinting: improving in vitro models of metastasis with heterogeneous tumor microenvironments

    Jacob L. Albritton

    2017-01-01

    Full Text Available Even with many advances in treatment over the past decades, cancer still remains a leading cause of death worldwide. Despite the recognized relationship between metastasis and increased mortality rate, surprisingly little is known about the exact mechanism of metastatic progression. Currently available in vitro models cannot replicate the three-dimensionality and heterogeneity of the tumor microenvironment sufficiently to recapitulate many of the known characteristics of tumors in vivo. Our understanding of metastatic progression would thus be boosted by the development of in vitro models that could more completely capture the salient features of cancer biology. Bioengineering groups have been working for over two decades to create in vitro microenvironments for application in regenerative medicine and tissue engineering. Over this time, advances in 3D printing technology and biomaterials research have jointly led to the creation of 3D bioprinting, which has improved our ability to develop in vitro models with complexity approaching that of the in vivo tumor microenvironment. In this Review, we give an overview of 3D bioprinting methods developed for tissue engineering, which can be directly applied to constructing in vitro models of heterogeneous tumor microenvironments. We discuss considerations and limitations associated with 3D printing and highlight how these advances could be harnessed to better model metastasis and potentially guide the development of anti-cancer strategies.

  13. Breast cancer by proxy: can the microenvironment be both the cause and consequence?

    Rønnov-Jessen, Lone; Bissell, Mina J

    2009-01-01

    development because of the dramatic loss or aberration of basement membrane (BM) and myoepithelial cells and the gain of peritumoral myofibroblasts. We suggest that the microenvironment, defined here as all components of the mammary gland other than luminal and/or tumor epithelial cells, might be instrumental...

  14. Human body micro-environment: The benefits of controlling airflow interaction

    Melikov, Arsen Krikor

    2015-01-01

    interaction with external invading flows and the resulting heat- and mass transfer, all of which are important for thermal comfort and inhaled air quality, is discussed. The benefit arising from control of the airflow interaction in the micro-environment, in terms of thermal comfort and inhaled air quality...

  15. Microenvironment promotes tumor cell reprogramming in human breast cancer cell lines.

    Fabrizio D'Anselmi

    Full Text Available The microenvironment drives mammary gland development and function, and may influence significantly both malignant behavior and cell growth of mammary cancer cells. By restoring context, and forcing cells to properly interpret native signals from the microenvironment, the cancer cell aberrant behavior can be quelled, and organization re-established. In order to restore functional and morphological differentiation, human mammary MCF-7 and MDA-MB-231 cancer cells were allowed to grow in a culture medium filled with a 10% of the albumen (EW, Egg White from unfertilized chicken egg. That unique microenvironment behaves akin a 3D culture and induces MCF-7 cells to produce acini and branching duct-like structures, distinctive of mammary gland differentiation. EW-treated MDA-MB-231 cells developed buds of acini and duct-like structures. Both MCF-7 and MDA-MB-231 cells produced β-casein, a key milk component. Furthermore, E-cadherin expression was reactivated in MDA-MB-231 cells, as a consequence of the increased cdh1 expression; meanwhile β-catenin - a key cytoskeleton component - was displaced behind the inner cell membrane. Such modification hinders the epithelial-mesenchymal transition in MDA-MB-231 cells. This differentiating pathway is supported by the contemporary down-regulation of canonical pluripotency markers (Klf4, Nanog. Given that egg-conditioned medium behaves as a 3D-medium, it is likely that cancer phenotype reversion could be ascribed to the changed interactions between cells and their microenvironment.

  16. 3D bioprinting: improving in vitro models of metastasis with heterogeneous tumor microenvironments

    Albritton, Jacob L.

    2017-01-01

    ABSTRACT Even with many advances in treatment over the past decades, cancer still remains a leading cause of death worldwide. Despite the recognized relationship between metastasis and increased mortality rate, surprisingly little is known about the exact mechanism of metastatic progression. Currently available in vitro models cannot replicate the three-dimensionality and heterogeneity of the tumor microenvironment sufficiently to recapitulate many of the known characteristics of tumors in vivo. Our understanding of metastatic progression would thus be boosted by the development of in vitro models that could more completely capture the salient features of cancer biology. Bioengineering groups have been working for over two decades to create in vitro microenvironments for application in regenerative medicine and tissue engineering. Over this time, advances in 3D printing technology and biomaterials research have jointly led to the creation of 3D bioprinting, which has improved our ability to develop in vitro models with complexity approaching that of the in vivo tumor microenvironment. In this Review, we give an overview of 3D bioprinting methods developed for tissue engineering, which can be directly applied to constructing in vitro models of heterogeneous tumor microenvironments. We discuss considerations and limitations associated with 3D printing and highlight how these advances could be harnessed to better model metastasis and potentially guide the development of anti-cancer strategies. PMID:28067628

  17. Oncogenic driver genes and the inflammatory microenvironment dictate liver tumor phenotype

    Matter, Matthias S; Marquardt, Jens U; Andersen, Jesper B

    2016-01-01

    The majority of hepatocellular carcinoma (HCC) develops in the background of chronic liver inflammation caused by viral hepatitis and alcoholic or non-alcoholic steatohepatitis. However, the impact of different types of chronic inflammatory microenvironments on the phenotypes of tumors generated...

  18. Upregulation of Syndecan-1 in the bone marrow microenvironment in multiple myeloma is associated with angiogenesis

    Andersen, Niels F; Kristensen, Ida B; Preiss, Birgitte S;

    2014-01-01

    OBJECTIVES: Syndecan-1 (SDC1), hepatocyte growth factor (HGF), vascular endothelial growth factor (VEGF) and interleukin-6 (IL6) are expressed by malignant plasma cells and cells in the bone marrow microenvironment and may be involved in the angiogenic process in multiple myeloma (MM). METHODS: I...

  19. Visualizing the Tumor Microenvironment of Liver Metastasis by Spinning Disk Confocal Microscopy.

    Babes, Liane; Kubes, Paul

    2016-01-01

    Intravital microscopy has evolved into an invaluable technique to study the complexity of tumors by visualizing individual cells in live organisms. Here, we describe a method for employing intravital spinning disk confocal microscopy to picture high-resolution tumor-stroma interactions in real time. We depict in detail the surgical procedures to image various tumor microenvironments and different cellular components in the liver.

  20. Engineering of Three-Dimensional Microenvironments to Promote Contractile Behavior in Primary Intestinal Organoids

    DiMarco, Rebecca L.; Su, James; Yan, Kelley S.; Dewi, Ruby; Kuo, Calvin J.; Heilshorn, Sarah C.

    2014-01-01

    Multiple culture techniques now exist for the long-term maintenance of neonatal primary murine intestinal organoids in vitro; however, the achievement of contractile behavior within cultured organoids has thus far been infrequent and unpredictable. Here we combine finite element simulation of oxygen transport and quantitative comparative analysis of cellular microenvironments to elucidate the critical variables that promote reproducible intestinal organoid contraction. Experimentally, oxygen ...

  1. Synergistic Anti-Myeloma Activity of the Proteasome Inhibitor Marizomib and the IMiD® Immunomodulatory Drug Pomalidomide

    Das, Deepika Sharma; Ray, Arghya; Song, Yan; Richardson, Paul; Trikha, Mohit; Chauhan, Dharminder; Anderson, Kenneth C.

    2015-01-01

    The proteasome inhibitor bortezomib is an effective therapy for the treatment of relapsed and refractory multiple myeloma (RRMM); however, prolonged treatment can be associated with toxicity, peripheral neuropathy and drug resistance. Our earlier studies showed that the novel proteasome inhibitor marizomib is distinct from bortezomib in its chemical structure, mechanisms of action and effects on proteasomal activities, and that it can overcome bortezomib resistance. Pomalidomide, like lenalidomide, has potent immunomodulatory activity and has been approved by the US Food and Drug Administration for the treatment of RRMM. Here, we demonstrate that combining low concentrations of marizomib with pomalidomide induces synergistic anti-MM activity. Marizomib plus pomalidomide-induced apoptosis is associated with: 1) activation of caspase-8, caspase-9, caspase-3 and PARP cleavage; 2) downregulation of cereblon (CRBN), IRF4, MYC and MCL1; and 3) suppression of chymotrypsin-like, caspase-like, and trypsin-like proteasome activities. CRBN-siRNA attenuates marizomib plus pomalidomide-induced MM cells death. Furthermore, marizomib plus pomalidomide inhibits the migration of MM cells and tumour-associated angiogenesis, as well as overcomes cytoprotective effects of bone marrow microenvironment. In human MM xenograft model studies, the combination of marizomib and pomalidomide is well tolerated, inhibits tumour growth and prolongs survival. These preclinical studies provide the rationale for on-going clinical trials of combined marizomib and pomalidomide to improve outcome in patients with RRMM. PMID:26456076

  2. Synergistic anti-myeloma activity of the proteasome inhibitor marizomib and the IMiD immunomodulatory drug pomalidomide.

    Das, Deepika S; Ray, Arghya; Song, Yan; Richardson, Paul; Trikha, Mohit; Chauhan, Dharminder; Anderson, Kenneth C

    2015-12-01

    The proteasome inhibitor bortezomib is an effective therapy for the treatment of relapsed and refractory multiple myeloma (RRMM); however, prolonged treatment can be associated with toxicity, peripheral neuropathy and drug resistance. Our earlier studies showed that the novel proteasome inhibitor marizomib is distinct from bortezomib in its chemical structure, mechanisms of action and effects on proteasomal activities, and that it can overcome bortezomib resistance. Pomalidomide, like lenalidomide, has potent immunomodulatory activity and has been approved by the US Food and Drug Administration for the treatment of RRMM. Here, we demonstrate that combining low concentrations of marizomib with pomalidomide induces synergistic anti-MM activity. Marizomib plus pomalidomide-induced apoptosis is associated with: (i) activation of caspase-8, caspase-9, caspase-3 and PARP cleavage, (ii) downregulation of cereblon (CRBN), IRF4, MYC and MCL1, and (iii) suppression of chymotrypsin-like, caspase-like, and trypsin-like proteasome activities. CRBN-siRNA attenuates marizomib plus pomalidomide-induced MM cells death. Furthermore, marizomib plus pomalidomide inhibits the migration of MM cells and tumour-associated angiogenesis, as well as overcomes cytoprotective effects of bone marrow microenvironment. In human MM xenograft model studies, the combination of marizomib and pomalidomide is well tolerated, inhibits tumour growth and prolongs survival. These preclinical studies provide the rationale for on-going clinical trials of combined marizomib and pomalidomide to improve outcome in patients with RRMM.

  3. The effect of commuting microenvironment on commuter exposures to vehicular emission in Hong Kong

    Chan, L. Y.; Chan, C. Y.; Qin, Y.

    Vehicular exhaust emission has gradually become the major air pollution source in modern cities and traffic related exposure is found to contribute significantly to total human exposure level. A comprehensive survey was conducted from November 1995 to July 1996 in Hong Kong to assess the effect of traffic-induced air pollution inside different commuting microenvironments on commuter exposure. Microenvironmental monitoring is performed for six major public commuting modes (bus, light bus, MTR, railway, tram, ferry), plus private car and roadside pavement. Traffic-related pollutants, CO, NO x, THC and O 3 were selected as the target pollutants. The results indicate that commuter exposure is highly influenced by the choice of commuting microenvironment. In general, the exposure level in decreasing order of measured pollutant level for respective commuting microenvironments are: private car, the group consisting light bus, bus, tram and pavement, MTR and train, and finally ferry. In private car, the CO level is several times higher than that in the other microenvironments with a trip averaged of 10.1 ppm and a maximum of 24.9 ppm. Factors such as the body position of the vehicle, intake point of the ventilation system, fuel used, ventilation, transport mode, road and driving conditions were used in the analysis. Inter-microenvironment, intra-microenvironment and temporal variation of CO concentrations were used as the major indicator. The low body position and low intake point of the ventilation system of the private car are believed to be the cause of higher intake of exhaust of other vehicles and thus result in high pollution level in this microenvironment. Compared with other metropolis around the world and the Hong Kong Air Quality Objectives (HKAQO), exposure levels of commuter to traffic-related air pollution in Hong Kong are relatively low for most pollutants measured. Only several cases of exceedence of HKAQO by NO 2 were recorded. The strong prevailing wind

  4. Synergistic antitumor efficiency of docetaxel and curcumin against lung cancer

    Haitao Yin; Rui Guo; Yong Xu; Yulong Zheng; Zhibo Hou; Xinzheng Dai; Zhengdong Zhang; Donghui Zheng; Hua'e Xu

    2012-01-01

    Curcumin (Cum),the principal polyphenolic curcuminoid,obtained from the turmeric rhizome Curcuma longa,is recently reported to have potential antitumor effects in vitro and in vivo.Docetaxel (Doc) is considered as first-line chemotherapy for the treatment of non-small cell lung cancer.Here we report for the first time that Cum could synergistically enhance the in vitro and in vivo antitumor efficacy of Doc against lung cancer.In the current study,combination index (CI) is calculated in both in vitro and in vivo studies to determine the interaction between Cum and Doc.In the in vitro cytotoxicity test,media-effect analysis clearly indicated a synergistic interaction between Cum and Doc in certain concentrations.Moreover,in vivo evaluation further demonstrated the superior anticancer efficacy of Cum + Doc compared with Doc alone by intravenous delivery in an established A549 transplanted xenograft model.Results showed that Cum synergistically increased the efficacy of Doc immediately after 4 days of the initial treatment.Additionally,simultaneous administration of Cum and Doc showed little toxicity to normal tissues including bone marrow and liver at the therapeutic doses.Therefore,in vitro and in vivo evaluations demonstrated the satisfying synergistic antitumor efficacy of Cum and Doc against lung cancer and the introduction of Cum in traditional chemotherapy is a most promising way to counter the spread of nonsmall cell lung cancer.

  5. Contrast-induced nephrotoxicity: possible synergistic effect of stress hyperglycemia.

    O'Donnell, David H

    2010-07-01

    Oxidative stress on the renal tubules has been implicated as a mechanism of injury in both stress hyperglycemia and contrast-induced nephrotoxicity. The purpose of this study was to determine whether the combination of these effects has a synergistic effect on accentuating renal tubular apoptosis and therefore increasing the risk of contrast-induced nephrotoxicity.

  6. Synergistic Anticancer Effect of Tocotrienol Combined with Chemotherapeutic Agents or Dietary Components: A Review

    Takahiro Eitsuka

    2016-09-01

    Full Text Available Tocotrienol (T3, unsaturated vitamin E, is gaining a lot of attention owing to its potent anticancer effect, since its efficacy is much greater than that of tocopherol (Toc. Various factors are known to be involved in such antitumor action, including cell cycle arrest, apoptosis induction, antiangiogenesis, anti-metastasis, nuclear factor-κB suppression, and telomerase inhibition. Owing to a difference in the affinity of T3 and Toc for the α-tocopherol transfer protein, the bioavailability of orally ingested T3 is lower than that of Toc. Furthermore, cellular uptake of T3 is interrupted by coadministration of α-Toc in vitro and in vivo. Based on this, several studies are in progress to screen for molecules that can synergize with T3 in order to augment its potency. Combinations of T3 with chemotherapeutic drugs (e.g., statins, celecoxib, and gefitinib or dietary components (e.g., polyphenols, sesamin, and ferulic acid exhibit synergistic actions on cancer cell growth and signaling pathways. In this review, we summarize the current status of synergistic effects of T3 and an array of agents on cancer cells, and discuss their molecular mechanisms of action. These combination strategies would encourage further investigation and application in cancer prevention and therapy.

  7. Synergistic Anticancer Effect of Tocotrienol Combined with Chemotherapeutic Agents or Dietary Components: A Review

    Eitsuka, Takahiro; Tatewaki, Naoto; Nishida, Hiroshi; Nakagawa, Kiyotaka; Miyazawa, Teruo

    2016-01-01

    Tocotrienol (T3), unsaturated vitamin E, is gaining a lot of attention owing to its potent anticancer effect, since its efficacy is much greater than that of tocopherol (Toc). Various factors are known to be involved in such antitumor action, including cell cycle arrest, apoptosis induction, antiangiogenesis, anti-metastasis, nuclear factor-κB suppression, and telomerase inhibition. Owing to a difference in the affinity of T3 and Toc for the α-tocopherol transfer protein, the bioavailability of orally ingested T3 is lower than that of Toc. Furthermore, cellular uptake of T3 is interrupted by coadministration of α-Toc in vitro and in vivo. Based on this, several studies are in progress to screen for molecules that can synergize with T3 in order to augment its potency. Combinations of T3 with chemotherapeutic drugs (e.g., statins, celecoxib, and gefitinib) or dietary components (e.g., polyphenols, sesamin, and ferulic acid) exhibit synergistic actions on cancer cell growth and signaling pathways. In this review, we summarize the current status of synergistic effects of T3 and an array of agents on cancer cells, and discuss their molecular mechanisms of action. These combination strategies would encourage further investigation and application in cancer prevention and therapy. PMID:27669218

  8. Synergistic inhibition of Haemonchus contortus exsheathment by flavonoid monomers and condensed tannins.

    Klongsiriwet, Chaweewan; Quijada, Jessica; Williams, Andrew R; Mueller-Harvey, Irene; Williamson, Elizabeth M; Hoste, Hervé

    2015-12-01

    This study investigated the separate and combined anthelmintic (AH) effects of different phenolic compounds, including condensed tannins and flavonoids, all of which are known to occur in willow leaves, a potentially valuable dry season feed. A range of contrasting model tannins, which span the whole range of willow tannins, were isolated from tilia flowers, goat willow leaves, black currant leaves and red currant leaves. All together, the tested compounds represented the major tannin types (procyanidins and prodelphinidins) and flavonoid types (flavonols, flavones and flavanones). The larval exsheathment inhibition assay (LEIA) was used to assess their in vitro effects on Haemonchus contortus third stage larvae. Arbutin, vanillic acid, and taxifolin proved to be ineffective whereas naringenin, quercetin and luteolin were highly effective at 250 μM concentrations. Procyanidin (PC) tannins tended to be less active than prodelphinidin tannins (PD). Experiments with combinations of tannins and quercetin or luteolin revealed for the first time the existence of synergistic AH effects between tannins and flavonoid monomers. They also provided evidence that synergistic effects appear to occur at slightly lower concentrations of PC than PD. This suggests that the AH activity of condensed tannins can be significantly enhanced by the addition of quercetin or luteolin. This information may prove useful for plant breeding or selection and for designing optimal feed mixtures.

  9. Synergistic inhibition of Haemonchus contortus exsheathment by flavonoid monomers and condensed tannins

    Chaweewan Klongsiriwet

    2015-12-01

    Full Text Available This study investigated the separate and combined anthelmintic (AH effects of different phenolic compounds, including condensed tannins and flavonoids, all of which are known to occur in willow leaves, a potentially valuable dry season feed. A range of contrasting model tannins, which span the whole range of willow tannins, were isolated from tilia flowers, goat willow leaves, black currant leaves and red currant leaves. All together, the tested compounds represented the major tannin types (procyanidins and prodelphinidins and flavonoid types (flavonols, flavones and flavanones. The larval exsheathment inhibition assay (LEIA was used to assess their in vitro effects on Haemonchus contortus third stage larvae. Arbutin, vanillic acid, and taxifolin proved to be ineffective whereas naringenin, quercetin and luteolin were highly effective at 250 μM concentrations. Procyanidin (PC tannins tended to be less active than prodelphinidin tannins (PD. Experiments with combinations of tannins and quercetin or luteolin revealed for the first time the existence of synergistic AH effects between tannins and flavonoid monomers. They also provided evidence that synergistic effects appear to occur at slightly lower concentrations of PC than PD. This suggests that the AH activity of condensed tannins can be significantly enhanced by the addition of quercetin or luteolin. This information may prove useful for plant breeding or selection and for designing optimal feed mixtures.

  10. Human embryonic stem cell microenvironment suppresses the tumorigenic phenotype of aggressive cancer cells.

    Postovit, Lynne-Marie; Margaryan, Naira V; Seftor, Elisabeth A; Kirschmann, Dawn A; Lipavsky, Alina; Wheaton, William W; Abbott, Daniel E; Seftor, Richard E B; Hendrix, Mary J C

    2008-03-18

    Embryonic stem cells sustain a microenvironment that facilitates a balance of self-renewal and differentiation. Aggressive cancer cells, expressing a multipotent, embryonic cell-like phenotype, engage in a dynamic reciprocity with a microenvironment that promotes plasticity and tumorigenicity. However, the cancer-associated milieu lacks the appropriate regulatory mechanisms to maintain a normal cellular phenotype. Previous work from our laboratory reported that aggressive melanoma and breast carcinoma express the embryonic morphogen Nodal, which is essential for human embryonic stem cell (hESC) pluripotency. Based on the aberrant expression of this embryonic plasticity gene by tumor cells, this current study tested whether these cells could respond to regulatory cues controlling the Nodal signaling pathway, which might be sequestered within the microenvironment of hESCs, resulting in the suppression of the tumorigenic phenotype. Specifically, we discovered that metastatic tumor cells do not express the inhibitor to Nodal, Lefty, allowing them to overexpress this embryonic morphogen in an unregulated manner. However, exposure of the tumor cells to a hESC microenvironment (containing Lefty) leads to a dramatic down-regulation in their Nodal expression concomitant with a reduction in clonogenicity and tumorigenesis accompanied by an increase in apoptosis. Furthermore, this ability to suppress the tumorigenic phenotype is directly associated with the secretion of Lefty, exclusive to hESCs, because it is not detected in other stem cell types, normal cell types, or trophoblasts. The tumor-suppressive effects of the hESC microenvironment, by neutralizing the expression of Nodal in aggressive tumor cells, provide previously unexplored therapeutic modalities for cancer treatment.

  11. Probing the electrostatics of active site microenvironments along the catalytic cycle for Escherichia coli dihydrofolate reductase.

    Liu, C Tony; Layfield, Joshua P; Stewart, Robert J; French, Jarrod B; Hanoian, Philip; Asbury, John B; Hammes-Schiffer, Sharon; Benkovic, Stephen J

    2014-07-23

    Electrostatic interactions play an important role in enzyme catalysis by guiding ligand binding and facilitating chemical reactions. These electrostatic interactions are modulated by conformational changes occurring over the catalytic cycle. Herein, the changes in active site electrostatic microenvironments are examined for all enzyme complexes along the catalytic cycle of Escherichia coli dihydrofolate reductase (ecDHFR) by incorporation of thiocyanate probes at two site-specific locations in the active site. The electrostatics and degree of hydration of the microenvironments surrounding the probes are investigated with spectroscopic techniques and mixed quantum mechanical/molecular mechanical (QM/MM) calculations. Changes in the electrostatic microenvironments along the catalytic environment lead to different nitrile (CN) vibrational stretching frequencies and (13)C NMR chemical shifts. These environmental changes arise from protein conformational rearrangements during catalysis. The QM/MM calculations reproduce the experimentally measured vibrational frequency shifts of the thiocyanate probes across the catalyzed hydride transfer step, which spans the closed and occluded conformations of the enzyme. Analysis of the molecular dynamics trajectories provides insight into the conformational changes occurring between these two states and the resulting changes in classical electrostatics and specific hydrogen-bonding interactions. The electric fields along the CN axes of the probes are decomposed into contributions from specific residues, ligands, and solvent molecules that make up the microenvironments around the probes. Moreover, calculation of the electric field along the hydride donor-acceptor axis, along with decomposition of this field into specific contributions, indicates that the cofactor and substrate, as well as the enzyme, impose a substantial electric field that facilitates hydride transfer. Overall, experimental and theoretical data provide evidence for

  12. Additive and synergistic effects of kinetin and ethrel on germination, thermodormany, and polyribosome formation in lettuce seeds.

    Rao, V S; Sankhla, N; Khan, A A

    1975-08-01

    The inhibition of germination of Grand Rapids lettuce (Lactuca sativa L.) seeds at 35 C was removed to a marked extent by kinetin and 2-chloroethylphosphonic acid (ethrel). When both compounds were used together, an additive effect was observed. A synergistic effect was, however, noted when ethrel promoted the kinetin reversal of abscisic acid inhibition of seed germination (light- as well as gibberellic acid-, induced). Both kinetin and ethrel increased the total ribosomal material and the percentage of polyribosomes in lettuce seeds imbibed in the light for 24 hours. A combination of the two compounds showed a synergism in polyribosome formation only at high ethrel concentration. The inability of ethrel to reverse abscisic acid inhibition indicates that kinetin action cannot always be substituted by ethrel. The possible mechanisms involved in the enhanced response by a combination of kinetin and ethrel are discussed.

  13. Direct laser writing by two-photon polymerization as a tool for developing microenvironments for evaluation of bacterial growth

    Otuka, A.J.G. [Instituto de Física de São Carlos, Universidade de São Paulo, CP.369, 13560-970 São Carlos, SP (Brazil); Corrêa, D.S. [Laboratório Nacional de Nanotecnologia para o Agronegócio (LNNA), Embrapa Instrumentação, Rua XV de Novembro, 1452, CP.741, 13560-970 São Carlos, SP (Brazil); Fontana, C.R. [Department of Clinical Analysis, School of Pharmaceutical Sciences, University of São Paulo State (UNESP), 1621 Expedicionarios do Brasil Street, Araraquara, Sao Paulo 14801-960 (Brazil); Mendonça, C.R., E-mail: crmendon@ifsc.usp.br [Instituto de Física de São Carlos, Universidade de São Paulo, CP.369, 13560-970 São Carlos, SP (Brazil)

    2014-02-01

    Monitoring bacteria growth and motion in environments is fundamental to understand, for instance, how they proliferate and contaminate organism. Therefore, techniques to fabricate microenvironments for in situ and in vivo studies are interesting for that purpose. In this work we used two-photon polymerization to fabricate microenvironments and, as a proof of principle, we demonstrated the development of the bacteria ATCC 25922 Escherichia coli (E. coli) into the microstructure surroundings. Two varieties of polymeric microenvironments are presented: (i) a microenvironment doped at specific site with ciprofloxacin, an antibiotic typically used in the treatment of diseases caused by E. coli and (ii) micro-fences, which serve as traps for bacteria. These microenvironments, fabricated by two-photon polymerization, may be a potential platform for drug delivery system, by promoting or inhibiting the growth of bacteria in specific biological or synthetic sites. - Highlights: • Microenvironments were fabricated by two-photon polymerization. • We demonstrated the development of Escherichia coli into the microstructure surroundings. • Microenvironment doped with the antibiotic ciprofloxacin was fabricated. • Micro-fences, which serve as traps for bacteria, were also produced.

  14. Induction of anoxic microenvironment in multi-phase metabolic shift strategy during periodic discontinuous batch mode operation enhances treatment of azo dye wastewater.

    Nagendranatha Reddy, C; Naresh Kumar, A; Annie Modestra, J; Venkata Mohan, S

    2014-08-01

    Variation in anoxic microenvironment (multi-phase (MP) metabolic shift strategy) during cycle operation of periodic discontinuous batch/sequencing batch (PDBR/SBR) mode operation showed enhanced degradation of recalcitrant azo dye (C.I. Acid Black 10B) at higher dye load (1250mg/l). The process performance was evaluated by varying anoxic phasing period during cycle operation. Before multiphase (BMP) operation with 2.1% of anoxic period showed color/COD removal efficiency of 41.9%/46.3%. Increment in anoxic period responded favorable in enhancing treatment efficiency [AMPI (16.2%), 49.4%/52.4%; AMPII (26.6%), 54.7%/57.2%; AMPIII (34.9%), 58.4%/61.5%]. Relatively higher bio-electrochemical activity, persistent reductive behavior (redox catalytic currents, 0.26/-0.72μA), prevalence of redox shuttlers (Fe-S proteins, cytochromes, quinones) facilitating enhanced electron transfer by minimization of associated losses and higher enzyme activities were observed with induction of anoxic phase. Anoxic condition shifts system microenvironment between oxidation and reduction assisting reduction of dye to its intermediates followed by their mineralization.

  15. Synergistic effects between catalase inhibitors and modulators of nitric oxide metabolism on tumor cell apoptosis.

    Scheit, Katrin; Bauer, Georg

    2014-10-01

    Inhibitors of catalase (such as ascorbate, methyldopa, salicylic acid and neutralizing antibodies) synergize with modulators of nitric oxide (NO) metabolism (such as arginine, arginase inhibitor, NO synthase-inducing interferons and NO dioxygenase inhibitors) in the singlet oxygen-mediated inactivation of tumor cell protective catalase. This is followed by reactive oxygen species (ROS)-dependent apoptosis induction. TGF-beta, NADPH oxidase-1, NO synthase, dual oxidase-1 and caspase-9 are characterized as essential catalysts in this process. The FAS receptor and caspase-8 are required for amplification of ROS signaling triggered by individual compounds, but are dispensable when the synergistic effect is established. Our findings explain the antitumor effects of catalase inhibitors and of compounds that target NO metabolism, as well as their synergy. These data may have an impact on epidemiological studies related to secondary plant compounds and open new perspectives for the establishment of novel antitumor drugs and for the improvement of established chemotherapeutics.

  16. Synergistic effects of metformin with liraglutide against endothelial dysfunction through GLP-1 receptor and PKA signalling pathway

    Ke, Jing; Liu, Ye; Yang, Jin; Lu, Ran; Tian, Qing; Hou, Wenfang; Wang, Guang; Wei, Rui; Hong, Tianpei

    2017-01-01

    Metformin or glucagon-like peptide-1 (GLP-1) analogue liraglutide has cardiovascular benefits. However, it is not clear whether their combined treatment have additive or synergistic effects on the vasculature. In this study, human umbilical vein endothelial cells (HUVECs), exposed to palmitic acid (PA) to induce endothelial dysfunction, were incubated with metformin, liraglutide or their combination. High fat diet (HFD)-fed ApoE−/− mice were randomized into control, metformin, liraglutide, and combination treatment groups. Results showed that in PA-treated HUVECs and HFD-fed ApoE−/− mice, combination of metformin and liraglutide at lower dose significantly improved endothelial dysfunction compared with the single treatment. Metformin upregulated GLP-1 receptor (GLP-1R) level and protein kinase A (PKA) phosphorylation. However, PKA inhibition but not GLP-1R blockade eliminated the protective effects of metformin on endothelial function. Furthermore, AMPK inhibitor compound C abolished the metformin-mediated upregulation of GLP-1R level and PKA phosphorylation. In conclusion, combination of metformin and liraglutide has synergistic protective effects on endothelial function. Moreover, metformin stimulates GLP-1R and PKA signalling via AMPK-dependent pathway, which may account for its synergistic protective effects with liraglutide. Our findings provide new insights on the interaction between metformin and GLP-1, and provide important information for designing new GLP-1-based therapy strategies in treating type 2 diabetes. PMID:28145471

  17. Tungstate as a synergist to phosphonate-based formulation for corrosion control of carbon steel in nearly neutral aqueous environment

    B V Appa Rao; M Venkateswara Rao; S Srinivasa Rao; B Sreedhar

    2010-07-01

    Synergistic inhibition of corrosion of carbon steel in low chloride aqueous medium using tungstate as a synergist in combination with ,-(phosphonomethyl) glycine (BPMG) and zinc ions is presented. The synergistic action of tungstate has been established through the present studies. The new ternary inhibitor formulation is effective in neutral and slightly acidic as well as slightly alkaline media. Potentiodynamic polarisation studies inferred that the formulation functions as a mixed inhibitor. Impedance studies of the metal/solution interface revealed that the surface film is highly protective. Characterisation by X-ray photoelectron spectroscopy (XPS) of the surface film formed in presence of the inhibitor revealed the presence of iron, phosphorus, nitrogen, oxygen, carbon, zinc and tungsten in the surface film. The chemical shifts in the binding energies of these elements inferred that the surface film is composed of iron oxides/hydroxides, zinc hydroxide, heteropolynuclear complex [Fe(III), Zn(II)-BPMG] and WO3. Reflection absorption FTIR spectroscopic studies also supported the presence of these compounds in the surface film. Morphological features of the metal surface studied in the absence and presence of the inhibitor by scanning electron microscopy (SEM) are also presented. Based on all these results, a plausible mechanism of corrosion inhibition is proposed.

  18. A microenvironment-sensitive fluorescent pyrimidine ribonucleoside analogue: synthesis, enzymatic incorporation, and fluorescence detection of a DNA abasic site.

    Tanpure, Arun A; Srivatsan, Seergazhi G

    2011-11-04

    Base-modified fluorescent ribonucleoside-analogue probes are valuable tools in monitoring RNA structure and function because they closely resemble the structure of natural nucleobases. Especially, 2-aminopurine, a highly environment-sensitive adenosine analogue, is the most extensively utilized fluorescent nucleoside analogue. However, only a few isosteric pyrimidine ribonucleoside analogues that are suitable for probing the structure and recognition properties of RNA molecules are available. Herein, we describe the synthesis and photophysical characterization of a small series of base-modified pyrimidine ribonucleoside analogues derived from tagging indole, N-methylindole, and benzofuran onto the 5-position of uracil. One of the analogues, based on a 5-(benzofuran-2-yl)pyrimidine core, shows emission in the visible region with a reasonable quantum yield and, importantly, displays excellent solvatochromism. The corresponding triphosphate substrate is effectively incorporated into oligoribonucleotides by T7 RNA polymerase to produce fluorescent oligoribonucleotide constructs. Steady-state and time-resolved spectroscopic studies with fluorescent oligoribonucleotide constructs demonstrate that the fluorescent ribonucleoside photophysically responds to subtle changes in its environment brought about by the interaction of the chromophore with neighboring bases. In particular, the emissive ribonucleoside, if incorporated into an oligoribonucleotide, positively reports the presence of a DNA abasic site with an appreciable enhancement in fluorescence intensity. The straightforward synthesis, amicability to enzymatic incorporation, and sensitivity to changes in the microenvironment highlight the potential of the benzofuran-conjugated pyrimidine ribonucleoside as an efficient fluorescent probe to investigate nucleic acid structure, dynamics, and recognition events.

  19. Determination of functionalized gold nanoparticles incorporated in hydrophilic and hydrophobic microenvironments by surface modification of quartz crystal microbalance

    Wu, Tsui-Hsun [Institute of Biomedical Engineering, College of Engineering, College of Medicine, National Taiwan University, Taipei, Taiwan, ROC (China); Institute of Medical Mechatronics, Chang Gung University, Tao-Yuan, Taiwan, ROC (China); Liao, Shu-Chuan [Center of Thin Film Technologies and Applications, Mingchi University of Technology, Taipei, Taiwan, ROC (China); Chen, Ying-Fang [Department of Dentistry, Yun-Lin Branch, National Taiwan University Hospital, Dou-Liu, Yun-Lin, Taiwan, ROC (China); Huang, Yi-You [Institute of Biomedical Engineering, College of Engineering, College of Medicine, National Taiwan University, Taipei, Taiwan, ROC (China); Wei, Yi-Syuan [Department of Materials Engineering, Tatung University, 40 Zhongshan North Road, 3rd Section, Taipei 104, Taiwan, ROC (China); Tu, Shu-Ju, E-mail: sjt@cgu.edu.tw [Department of Medical Imaging and Radiological Sciences, Chang Gung University, 259 Wen-Hwa, 1st Road, Kwei-Shan, Tao-Yuan 133, Taiwan, ROC (China); Chen, Ko-Shao, E-mail: kschen@ttu.edu.tw [Department of Materials Engineering, Tatung University, 40 Zhongshan North Road, 3rd Section, Taipei 104, Taiwan, ROC (China)

    2013-06-01

    In this study, plasma deposition methods were used to immobilize Au electrode of a quartz crystal microbalance (QCM) to create different microenvironments for mass measurement of various modified Au nanoparticles (AuNPs). AuNPs were modified by 11-mercaptoundecanoic acid (MUA) and 1-decanethiol (DCT) for potential applications to drug release, protective coatings, and immunosensors. We aimed to develop a highly sensitive and reliable method to quantify the mass of various modified AuNPs. The surface of AuNPs and Au electrode was coated with polymer films, as determined by Fourier transform infrared spectroscopy and atomic force microscopy. Measurements obtained for various AuNPs and the plasma-treated surface of the Au electrode were compared with those obtained for an untreated Au electrode. According to the resonant frequency shift of QCM, a linear relationship was observed that significantly differed for AuNPs, MUA-AuNPs, and DCT-AuNPs (R{sup 2} range, 0.94–0.965, 0.934–0.972, and 0.874–0.9514, respectively). Compared to inductively coupled plasma and micro-computerized tomography, the QCM method with plasma treatment has advantages of real-time monitoring, greater sensitivity, and lower cost. Our results demonstrate that surface modifications measured by a QCM system for various modified AuNPs were reliable.

  20. Synergistic impacts of habitat loss and fragmentation on model ecosystems.

    Bartlett, Lewis J; Newbold, Tim; Purves, Drew W; Tittensor, Derek P; Harfoot, Michael B J

    2016-09-28

    Habitat loss and fragmentation are major threats to biodiversity, yet separating their effects is challenging. We use a multi-trophic, trait-based, and spatially explicit general ecosystem model to examine the independent and synergistic effects of these processes on ecosystem structure. We manipulated habitat by removing plant biomass in varying spatial extents, intensities, and configurations. We found that emergent synergistic interactions of loss and fragmentation are major determinants of ecosystem response, including population declines and trophic pyramid shifts. Furthermore, trait-mediated interactions, such as a disproportionate sensitivity of large-sized organisms to fragmentation, produce significant effects in shaping responses. We also show that top-down regulation mitigates the effects of land use on plant biomass loss, suggesting that models lacking these interactions-including most carbon stock models-may not adequately capture land-use change impacts. Our results have important implications for understanding ecosystem responses to environmental change, and assessing the impacts of habitat fragmentation.

  1. Neutral Complex Extraction and Synergistic Extraction of Macrolide Antibiotics

    2000-01-01

    Based on the theory of reactive extraction, new solvent systems were developed to replace butylacetate for extraction of macrolide antibiotics (erythromycin, kitasamycin, spiramycin meleumycin etc.). A new neutral complex solvent extraction system, fatty alcohol-kerosene (marked by E1), was used for extraction of erythromycin, one of the macrolide antibiotics. The extraction equilibrium equation is obtained, and the extraction distribution is as follows The effects of several parameters on extraction equilibrium were investigated. Furthermore, a new synergistic extraction system (marked by E2) was developed, in which another solvent was used as synergistic agent to replace the diluent kerosene in the neutral complex extraction system. Based on these new extraction systems, an improved process for extraction of erythromycin was developed, showing remarkable advantages in technology and economics owing to its low solvent consumption of 3kg per billion unit compared with 9-10 for butylacetate. The recovery process of solvent from raffinate may be eliminated.

  2. Synergistic antibacterial activity of Curcumin with antibiotics against Staphylococcus aureus.

    Teow, Sin-Yeang; Ali, Syed Atif

    2015-11-01

    This study evaluated the synergistic antibacterial activity of Curcumin with 8 different antibiotic groups. Two reference, one clinical and ten environmental strains of Staphylococcus aureus (S. aureus) were tested. Disc diffusion assay with 25 μg/mL Curcumin demonstrated synergism in combination with a majority of tested antibiotics against S. aureus. However, checkerboard micro dilution assay only showed synergism, fractional inhibitory concentration index (FICI) indifferent interactions but no antagonism was observed. In time-kill curve, appreciable reduction of bacterial cells was also observed in combination therapy (Curcumin + antibiotics) compared to monotherapy (Curcumin or antibiotic(s) alone). The antibiotics with higher synergistic interaction with Curcumin are arranged in a decreasing order: Amikacin > Gentamicin > Ciprofloxacin.

  3. Robust, synergistic regulation of human gene expression using TALE activators.

    Maeder, Morgan L; Linder, Samantha J; Reyon, Deepak; Angstman, James F; Fu, Yanfang; Sander, Jeffry D; Joung, J Keith

    2013-03-01

    Artificial activators designed using transcription activator-like effector (TALE) technology have broad utility, but previous studies suggest that these monomeric proteins often exhibit low activities. Here we demonstrate that TALE activators can robustly function individually or in synergistic combinations to increase expression of endogenous human genes over wide dynamic ranges. These findings will encourage applications of TALE activators for research and therapy, and guide design of monomeric TALE-based fusion proteins.

  4. The role of the tissue microenvironment in the regulation of cancer cell motility and invasion

    Brábek Jan

    2010-09-01

    Full Text Available Abstract During malignant neoplastic progression the cells undergo genetic and epigenetic cancer-specific alterations that finally lead to a loss of tissue homeostasis and restructuring of the microenvironment. The invasion of cancer cells through connective tissue is a crucial prerequisite for metastasis formation. Although cell invasion is foremost a mechanical process, cancer research has focused largely on gene regulation and signaling that underlie uncontrolled cell growth. More recently, the genes and signals involved in the invasion and transendothelial migration of cancer cells, such as the role of adhesion molecules and matrix degrading enzymes, have become the focus of research. In this review we discuss how the structural and biomechanical properties of extracellular matrix and surrounding cells such as endothelial cells influence cancer cell motility and invasion. We conclude that the microenvironment is a critical determinant of the migration strategy and the efficiency of cancer cell invasion.

  5. Role of Age-Associated Alterations of the Dermal Extracellular Matrix Microenvironment in Human Skin Aging

    Quan, Taihao; Fisher, Gary J

    2015-01-01

    Human skin is largely composed of a collagen-rich connective tissue, which provides structural and functional support. The collagen-rich connective tissue is produced, organized, and maintained by dermal fibroblasts. During aging, dermal collagen fibrils undergo progressive loss and fragmentation, leading to thin and structurally weakened skin. Age-related alterations of collagen fibrils impairs skin structure and function and creates a tissue microenvironment that promotes age-related skin diseases, such as delayed wound healing and skin cancer development. This review describes cellular mechanisms that give rise to self-perpetuating, collagen fibril fragmentation that creates an age-associated dermal microenvironment (AADM), which contributes to decline of human skin function. PMID:25660807

  6. Emergent Behavior from A Cellular Automaton Model for Invasive Tumor Growth in Heterogeneous Microenvironments

    Jiao, Yang

    2011-01-01

    Understanding tumor invasion and metastasis is of crucial importance for both fundamental cancer research and clinical practice. In vitro experiments have established that the invasive growth of malignant tumors is characterized by the dendritic invasive branches composed of chains of tumor cells emanating from the primary tumor mass. The preponderance of previous tumor simulations focused on non-invasive (or proliferative) growth. The formation of the invasive cell chains and their interactions with the primary tumor mass and host microenvironment are not well understood. Here, we present a novel cellular automaton (CA) model that enables one to efficiently simulate invasive tumor growth in a heterogeneous host microenvironment. By taking into account a variety of microscopic-scale tumor-host interactions, including the short-range mechanical interactions between tumor cells and tumor stroma, degradation of extracellular matrix by the invasive cells and oxygen/nutrient gradient driven cell motions, our CA mo...

  7. Induction of mitochondrial dysfunction as a strategy for targeting tumour cells in metabolically compromised microenvironments.

    Zhang, Xiaonan; Fryknäs, Mårten; Hernlund, Emma; Fayad, Walid; De Milito, Angelo; Olofsson, Maria Hägg; Gogvadze, Vladimir; Dang, Long; Påhlman, Sven; Schughart, Leoni A Kunz; Rickardson, Linda; D'Arcy, Padraig; Gullbo, Joachim; Nygren, Peter; Larsson, Rolf; Linder, Stig

    2014-01-01

    Abnormal vascularization of solid tumours results in the development of microenvironments deprived of oxygen and nutrients that harbour slowly growing and metabolically stressed cells. Such cells display enhanced resistance to standard chemotherapeutic agents and repopulate tumours after therapy. Here we identify the small molecule VLX600 as a drug that is preferentially active against quiescent cells in colon cancer 3-D microtissues. The anticancer activity is associated with reduced mitochondrial respiration, leading to bioenergetic catastrophe and tumour cell death. VLX600 shows enhanced cytotoxic activity under conditions of nutrient starvation. Importantly, VLX600 displays tumour growth inhibition in vivo. Our findings suggest that tumour cells in metabolically compromised microenvironments have a limited ability to respond to decreased mitochondrial function, and suggest a strategy for targeting the quiescent populations of tumour cells for improved cancer treatment.

  8. Bone Marrow Cells in Acute Lymphoblastic Leukemia Create a Proinflammatory Microenvironment Influencing Normal Hematopoietic Differentiation Fates

    Armando Vilchis-Ordoñez

    2015-01-01

    Full Text Available B-cell acute lymphoblastic leukemia (B-ALL is a serious public health problem in the pediatric population worldwide, contributing to 85% of deaths from childhood cancers. Understanding the biology of the disease is crucial for its clinical management and the development of therapeutic strategies. In line with that observed in other malignancies, chronic inflammation may contribute to a tumor microenvironment resulting in the damage of normal processes, concomitant to development and maintenance of neoplastic cells. We report here that hematopoietic cells from bone marrow B-ALL have the ability to produce proinflammatory and growth factors, including TNFα, IL-1β, IL-12, and GM-CSF that stimulate proliferation and differentiation of normal stem and progenitor cells. Our findings suggest an apparently distinct CD13+CD33+ population of leukemic cells contributing to a proinflammatory microenvironment that may be detrimental to long-term normal hematopoiesis within B-ALL bone marrow.

  9. Crosstalk between tumor cells and microenvironment via Wnt pathway in colorectal cancer dissemination

    Dan Huang; Xiang Du

    2008-01-01

    Invasion and metastasis are the deadly face of malignant tumors. Considering the high rate of incidence and mortality of colorectal cancer, it is critical to determine the mechanisms of its dissemination. In the parallel investigation of the invasive front and tumor center area of colorectal cancer (CRC), observation of heterogeneous p-catenin distribution and epithelial-mesenchymal transition (EMT) at the invasive front suggested that there might be a crosstalk between tumor cells and the tumor microenvironment. Wnt signaling pathway is also involved in the cancer progression due to its key role in CRC tumorigenesis. Moreover, in recent years, there is increasing evidence that the regulators of microenvironment, including extracellular matrix, growth factors and inflammatory factors, are associated with the activation of Wnt pathway and the mobility of tumor cells. In this review, we will try to explain how these molecules trigger metastasis via the Wnt pathway.

  10. Trabectedin and Plitidepsin: Drugs from the Sea that Strike the Tumor Microenvironment

    Carlos M. Galmarini

    2014-01-01

    Full Text Available The prevailing paradigm states that cancer cells acquire multiple genetic mutations in oncogenes or tumor suppressor genes whose respective activation/up-regulation or loss of function serve to impart aberrant properties, such as hyperproliferation or inhibition of cell death. However, a tumor is now considered as an organ-like structure, a complex system composed of multiple cell types (e.g., tumor cells, inflammatory cells, endothelial cells, fibroblasts, etc. all embedded in an inflammatory stroma. All these components influence each other in a complex and dynamic cross-talk, leading to tumor cell survival and progression. As the microenvironment has such a crucial role in tumor pathophysiology, it represents an attractive target for cancer therapy. In this review, we describe the mechanism of action of trabectedin and plitidepsin as an example of how these specific drugs of marine origin elicit their antitumor activity not only by targeting tumor cells but also the tumor microenvironment.

  11. Macrophages: Regulators of the Inflammatory Microenvironment during Mammary Gland Development and Breast Cancer.

    Brady, Nicholas J; Chuntova, Pavlina; Schwertfeger, Kathryn L

    2016-01-01

    Macrophages are critical mediators of inflammation and important regulators of developmental processes. As a key phagocytic cell type, macrophages evolved as part of the innate immune system to engulf and process cell debris and pathogens. Macrophages produce factors that act directly on their microenvironment and also bridge innate immune responses to the adaptive immune system. Resident macrophages are important for acting as sensors for tissue damage and maintaining tissue homeostasis. It is now well-established that macrophages are an integral component of the breast tumor microenvironment, where they contribute to tumor growth and progression, likely through many of the mechanisms that are utilized during normal wound healing responses. Because macrophages contribute to normal mammary gland development and breast cancer growth and progression, this review will discuss both resident mammary gland macrophages and tumor-associated macrophages with an emphasis on describing how macrophages interact with their surrounding environment during normal development and in the context of cancer.

  12. Breathing and Cross-Infection Risk in the Microenvironment around People

    Nielsen, Peter Vilhelm; Zajas, Jan Jakub; Litewnicki, Michal

    2014-01-01

    The paper focuses on the characteristics of cross-infection risk in a room with an air distribution which creates fully mixed conditions. Several experiments are made to develop models for the flow in the microenvironment and models for the cross-infection risk. The first part of the measurements...... covers experiments with one thermal manikin simulating a person. The exhalation flow in the microenvironment is examined in order to provide a description of its behavior, and to create a mathematical model of velocity and concentration distribution. The description works for different activity levels...... (breathing frequency and volume flow) and it includes a study of the influence of the thermal boundary layer of the manikin. Second part covers measurements with the use of two manikins. It is examined how one exhaling manikin can influence another regarding cross-infection risks. This study includes...

  13. Clarithromycin Synergistically Enhances Thalidomide Cytotoxicity in Myeloma Cells.

    Qiu, Xu-Hua; Shao, Jing-Jing; Mei, Jian-Gang; Li, Han-Qing; Cao, Hong-Qin

    2016-01-01

    Clarithromycin (CAM) is a macrolide antibiotic that is widely used in the treatment of respiratory tract infections, sexually transmitted diseases and infections caused by the Helicobacter pylori and Mycobacterium avium complex. Recent studies showed that CAM was highly effective against multiple myeloma (MM) when used in combination with immunomodulatory drugs and dexamethasone. However, the related mechanism is still unknown. As 3 immunomodulatory agents are all effective in the respective regimen, we postulated that CAM might enhance the effect of immunomodulatory drugs. We evaluated the interaction effects of CAM and thalidomide on myeloma cells. Taking into consideration that thalidomide did not affect the proliferation of myeloma cells in vitro, we cocultured myeloma cells with peripheral blood monocytes and evaluated the effects of CAM and thalidomide on the cocultured cell model. Data showed that thalidomide and CAM synergistically inhibited the proliferation of the cells. On this same model, we also found that thalidomide and CAM synergistically decreased the secretion of tumor necrosis factor-α and interleukin-6. This might be caused by the effect of the 2 drugs on inhibiting the activation of ERK1/2 and AKT. These data suggest that the efficacy of CAM against MM was partly due to its synergistic action with the immunomodulatory agents.

  14. Pooled screening for synergistic interactions subject to blocking and noise.

    Kyle Li

    Full Text Available The complex molecular networks in the cell can give rise to surprising interactions: gene deletions that are synthetically lethal, gene overexpressions that promote stemness or differentiation, synergistic drug interactions that heighten potency. Yet, the number of actual interactions is dwarfed by the number of potential interactions, and discovering them remains a major problem. Pooled screening, in which multiple factors are simultaneously tested for possible interactions, has the potential to increase the efficiency of searching for interactions among a large set of factors. However, pooling also carries with it the risk of masking genuine interactions due to antagonistic influence from other factors in the pool. Here, we explore several theoretical models of pooled screening, allowing for synergy and antagonism between factors, noisy measurements, and other forms of uncertainty. We investigate randomized sequential designs, deriving formulae for the expected number of tests that need to be performed to discover a synergistic interaction, and the optimal size of pools to test. We find that even in the presence of significant antagonistic interactions and testing noise, randomized pooled designs can significantly outperform exhaustive testing of all possible combinations. We also find that testing noise does not affect optimal pool size, and that mitigating noise by a selective approach to retesting outperforms naive replication of all tests. Finally, we show that a Bayesian approach can be used to handle uncertainty in problem parameters, such as the extent of synergistic and antagonistic interactions, resulting in schedules for adapting pool size during the course of testing.

  15. Synergistic effects in the inhibition of copper corrosion

    Gonzalez, S.; Laz, M.M.; Souto, R.M. (Univ. de La Laguna, Tenerife, (Spain). Dept. de Quimica Fisica); Salvarezza, R.C.; Arvia, A.J. (Univ. Nacional de La Plata, (Argentina))

    1993-06-01

    Benzotriazole (BTA), thiourea (TU), and potassium ethylxanthate (KEX), behave as copper (Cu) corrosion inhibitors under certain conditions. These chemicals have been investigated to establish whether they provided synergistic effects. The Cu corrosion inhibition was followed through changes in electrochemical characteristics. Cu specimens were tested at 25 C in two aggressive media, 0.1 M NaCl and 1 M NaClO[sub 4] using the linear potential sweep technique at 0.001 V/s and by scanning electron microscopy of Cu specimens subjected to potentiodynamic and potentiostatic routines. A comparative behavior of the different substances for Cu was presented in the 6.6 [le] pH [le] 11 range. For KEX-BTA mixtures, synergistic inhibition effects were found in 0.1 M NaCl (7 [le] pH [le] 11). The apparent synergistic inhibition was explained tentatively by an increase in the compactness of the polymer-like passivating layer of KEX-Cu, which formed in the presence of BTA and Cl[minus] ions.

  16. Synergistic Antimicrobial Effect of Tribulus terrestris and Bitter Almond Extracts

    Hamid Abtahi

    2014-12-01

    Full Text Available Background: The antimicrobial effects of the extracts of different kinds of plants have been demonstrated in several studies. However, no study has been conducted so far on the synergistic effects of two herbal extracts on their germicidal effects. In this study, in addition to antibacterial effects of the aqueous, methanol or ethanol extracts of Tribulus terrestris and bitter almond on some bacteria, the synergistic effects of the extracts of these two plants were also evaluated. Materials and Methods: In this experimental study, water, methanol and ethanol extracts of seeds were screened against some bacterial strains. Seeds were extracted by percolation method. Aliquots of the extracts at variable concentrations were then incubated with different bacterial strains, and the antimicrobial activities of the extracts from seeds were determined by MIC. Three antibiotics were used as reference compounds for antibacterial activities. Seeds extract inhibited significantly the growth of the tested bacterial strains. Results: The greatest synergistic effect of T. terrestris and bitter almond extracts is detected in methanol and aqueous extracts. Among the bacterial strains tested, Staphylococcus aureus was most susceptibility. Conclusion: The results showed the highest antibacterial effect in the combination of methanol extract of T. terrestris and the aqueous extract of the bitter almond.

  17. Novel, Synergistic Antifungal Combinations that Target Translation Fidelity

    Moreno-Martinez, Elena; Vallieres, Cindy; Holland, Sara L.; Avery, Simon V.

    2015-01-01

    There is an unmet need for new antifungal or fungicide treatments, as resistance to existing treatments grows. Combination treatments help to combat resistance. Here we develop a novel, effective target for combination antifungal therapy. Different aminoglycoside antibiotics combined with different sulphate-transport inhibitors produced strong, synergistic growth-inhibition of several fungi. Combinations decreased the respective MICs by ≥8-fold. Synergy was suppressed in yeast mutants resistant to effects of sulphate-mimetics (like chromate or molybdate) on sulphate transport. By different mechanisms, aminoglycosides and inhibition of sulphate transport cause errors in mRNA translation. The mistranslation rate was stimulated up to 10-fold when the agents were used in combination, consistent with this being the mode of synergistic action. A range of undesirable fungi were susceptible to synergistic inhibition by the combinations, including the human pathogens Candida albicans, C. glabrata and Cryptococcus neoformans, the food spoilage organism Zygosaccharomyces bailii and the phytopathogens Rhizoctonia solani and Zymoseptoria tritici. There was some specificity as certain fungi were unaffected. There was no synergy against bacterial or mammalian cells. The results indicate that translation fidelity is a promising new target for combinatorial treatment of undesirable fungi, the combinations requiring substantially decreased doses of active components compared to each agent alone. PMID:26573415

  18. High throughput screening to investigate the interaction of stem cells with their extracellular microenvironment

    Ankam, Soneela; Teo, Benjamin KK; Kukumberg, Marek; Yim, Evelyn KF

    2013-01-01

    Stem cells in vivo are housed within a functional microenvironment termed the “stem cell niche.” As the niche components can modulate stem cell behaviors like proliferation, migration and differentiation, evaluating these components would be important to determine the most optimal platform for their maintenance or differentiation. In this review, we have discussed methods and technologies that have aided in the development of high throughput screening assays for stem cell research, including ...

  19. Genomic Diversity and the Microenvironment as Drivers of Progression in DCIS

    2015-10-01

    microenvironment, mammographic biomarkers 3. ACCOMPLISHMENTS What were the major goals of the project? Aim 1. Determine whether genetic diversity...of genetic diversity, microenvironmental diversity, and/or mammographic biomarkers can be used to predict which DCIS tumors are most likely to...series of pilot experiments to determine the best resource (Washington University) that we will use to perform the genomic sequencing of our tumors. We

  20. Role of Age-Associated Alterations of the Dermal Extracellular Matrix Microenvironment in Human Skin Aging

    Quan, Taihao; Fisher, Gary J.

    2015-01-01

    Human skin is largely composed of a collagen-rich connective tissue, which provides structural and functional support. The collagen-rich connective tissue is produced, organized, and maintained by dermal fibroblasts. During aging, dermal collagen fibrils undergo progressive loss and fragmentation, leading to thin and structurally weakened skin. Age-related alterations of collagen fibrils impairs skin structure and function and creates a tissue microenvironment that promotes age-related skin d...

  1. Proteomic profiling of the tumor microenvironment: recent insights and the search for biomarkers

    2014-01-01

    Although gain of oncogene functions and loss of tumor suppressor functions are driving forces in tumor development, the tumor microenvironment, comprising the extracellular matrix, surrounding stroma, signaling molecules and infiltrating immune and other cell populations, is now also recognized as crucial to tumor development and metastasis. Many interactions at the tumor cell-environment interface occur at the protein level. Proteomic approaches are contributing to the definition of the prot...

  2. Alexa Fluor-labeled Fluorescent Cellulose Nanocrystals for Bioimaging Solid Cellulose in Spatially Structured Microenvironments

    Grate, Jay W.; Mo, Kai-For; Shin, Yongsoon; Vasdekis, Andreas; Warner, Marvin G.; Kelly, Ryan T.; Orr, Galya; Hu, Dehong; Dehoff, Karl J.; Brockman, Fred J.; Wilkins, Michael J.

    2015-03-18

    Cellulose nanocrystal materials have been labeled with modern Alexa Fluor dyes in a process that first links the dye to a cyanuric chloride molecule. Subsequent reaction with cellulose nanocrystals provides dyed solid microcrystalline cellulose material that can be used for bioimaging and suitable for deposition in films and spatially structured microenvironments. It is demonstrated with single molecular fluorescence microscopy that these films are subject to hydrolysis by cellulose enzymes.

  3. Bone Marrow Cells in Acute Lymphoblastic Leukemia Create a Proinflammatory Microenvironment Influencing Normal Hematopoietic Differentiation Fates

    2015-01-01

    B-cell acute lymphoblastic leukemia (B-ALL) is a serious public health problem in the pediatric population worldwide, contributing to 85% of deaths from childhood cancers. Understanding the biology of the disease is crucial for its clinical management and the development of therapeutic strategies. In line with that observed in other malignancies, chronic inflammation may contribute to a tumor microenvironment resulting in the damage of normal processes, concomitant to development and maintena...

  4. Rapid fabrication of complex 3D extracellular microenvironments by dynamic optical projection stereolithography.

    Zhang, A Ping; Qu, Xin; Soman, Pranav; Hribar, Kolin C; Lee, Jin W; Chen, Shaochen; He, Sailing

    2012-08-16

    The topographic features of the extracelluar matrix (ECM) lay the foundation for cellular behavior. A novel biofabrication method using a digital-mirror device (DMD), called dynamic optical projection stereolithography (DOPsL) is demonstrated. This robust and versatile platform can generate complex biomimetic scaffolds within seconds. Such 3D scaffolds have promising potentials for studying cell interactions with microenvironments in vitro and in vivo.

  5. Microbiota-Modulated Metabolites Shape the Intestinal Microenvironment by Regulating NLRP6 Inflammasome Signaling.

    Levy, Maayan; Thaiss, Christoph A; Zeevi, David; Dohnalová, Lenka; Zilberman-Schapira, Gili; Mahdi, Jemal Ali; David, Eyal; Savidor, Alon; Korem, Tal; Herzig, Yonatan; Pevsner-Fischer, Meirav; Shapiro, Hagit; Christ, Anette; Harmelin, Alon; Halpern, Zamir; Latz, Eicke; Flavell, Richard A; Amit, Ido; Segal, Eran; Elinav, Eran

    2015-12-01

    Host-microbiome co-evolution drives homeostasis and disease susceptibility, yet regulatory principles governing the integrated intestinal host-commensal microenvironment remain obscure. While inflammasome signaling participates in these interactions, its activators and microbiome-modulating mechanisms are unknown. Here, we demonstrate that the microbiota-associated metabolites taurine, histamine, and spermine shape the host-microbiome interface by co-modulating NLRP6 inflammasome signaling, epithelial IL-18 secretion, and downstream anti-microbial peptide (AMP) profiles. Distortion of this balanced AMP landscape by inflammasome deficiency drives dysbiosis development. Upon fecal transfer, colitis-inducing microbiota hijacks this microenvironment-orchestrating machinery through metabolite-mediated inflammasome suppression, leading to distorted AMP balance favoring its preferential colonization. Restoration of the metabolite-inflammasome-AMP axis reinstates a normal microbiota and ameliorates colitis. Together, we identify microbial modulators of the NLRP6 inflammasome and highlight mechanisms by which microbiome-host interactions cooperatively drive microbial community stability through metabolite-mediated innate immune modulation. Therefore, targeted "postbiotic" metabolomic intervention may restore a normal microenvironment as treatment or prevention of dysbiosis-driven diseases.

  6. Evaluation of cage micro-environment of mice housed on various types of bedding materials

    Smith, E.; Stockwell, J.D.; Schweitzer, I.; Langley, S.H.; Smith, A.L.

    2004-01-01

    A variety of environmental factors can affect the outcomes of studies using laboratory rodents. One such factor is bedding. Several new bedding materials and processing methods have been introduced to the market in recent years, but there are few reports of their performance. In the studies reported here, we have assessed the cage micro-environment (in-cage ammonia levels, temperature, and humidity) of mice housed on various kinds of bedding and their combinations. We also compared results for bedding supplied as Nestpaks versus loose bedding. We studied C57BL/6J mice (commonly used) and NOD/LtJ mice (heavy soilers) that were maintained, except in one study, in static duplex cages. In general, we observed little effect of bedding type on in-cage temperature or humidity; however, there was considerable variation in ammonia concentrations. The lowest ammonia concentrations occurred in cages housing mice on hardwood bedding or a mixture of corncob and alpha cellulose. In one experiment comparing the micro-environments of NOD/LtJ male mice housed on woodpulp fiber bedding in static versus ventilated caging, we showed a statistically significant decrease in ammonia concentrations in ventilated cages. Therefore, our data show that bedding type affects the micro-environment in static cages and that effects may differ for ventilated cages, which are being used in vivaria with increasing frequency.

  7. Tumor-Associated Macrophages as Major Players in the Tumor Microenvironment

    Chanmee, Theerawut [Institute of Advanced Technology, Kyoto Sangyo University, Kita-ku, Kyoto 603-8555 (Japan); Ontong, Pawared [Division of Engineering (Biotechnology), Graduate School of Engineering, Kyoto Sangyo University, Kita-ku, Kyoto 603-8555 (Japan); Konno, Kenjiro [Department of Animal Medical Sciences, Faculty of Life Sciences, Kyoto Sangyo University, Kita-ku, Kyoto 603-8555 (Japan); Itano, Naoki, E-mail: itanon@cc.kyoto-su.ac.jp [Institute of Advanced Technology, Kyoto Sangyo University, Kita-ku, Kyoto 603-8555 (Japan); Division of Engineering (Biotechnology), Graduate School of Engineering, Kyoto Sangyo University, Kita-ku, Kyoto 603-8555 (Japan); Department of Molecular Biosciences, Faculty of Life Sciences, Kyoto Sangyo University, Kita-ku, Kyoto 603-8555 (Japan)

    2014-08-13

    During tumor progression, circulating monocytes and macrophages are actively recruited into tumors where they alter the tumor microenvironment to accelerate tumor progression. Macrophages shift their functional phenotypes in response to various microenvironmental signals generated from tumor and stromal cells. Based on their function, macrophages are divided broadly into two categories: classical M1 and alternative M2 macrophages. The M1 macrophage is involved in the inflammatory response, pathogen clearance, and antitumor immunity. In contrast, the M2 macrophage influences an anti-inflammatory response, wound healing, and pro-tumorigenic properties. Tumor-associated macrophages (TAMs) closely resemble the M2-polarized macrophages and are critical modulators of the tumor microenvironment. Clinicopathological studies have suggested that TAM accumulation in tumors correlates with a poor clinical outcome. Consistent with that evidence, experimental and animal studies have supported the notion that TAMs can provide a favorable microenvironment to promote tumor development and progression. In this review article, we present an overview of mechanisms responsible for TAM recruitment and highlight the roles of TAMs in the regulation of tumor angiogenesis, invasion, metastasis, immunosuppression, and chemotherapeutic resistance. Finally, we discuss TAM-targeting therapy as a promising novel strategy for an indirect cancer therapy.

  8. Construction of extracellular microenvironment to improve surface endothelialization of NiTi alloy substrate

    Liu, Peng, E-mail: liupeng79@cqu.edu.cn [Key Laboratory of Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044 (China); State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433 (China); Zhao, Yongchun; Yan, Ying; Hu, Yan; Yang, Weihu [Key Laboratory of Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044 (China); Cai, Kaiyong, E-mail: kaiyong_cai@cqu.edu.cn [Key Laboratory of Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044 (China)

    2015-10-01

    To mimic extracellular microenvironment of endothelial cell, a bioactive multilayered structure of gelatin/chitosan pair, embedding with vascular endothelial growth factor (VEGF), was constructed onto NiTi alloy substrate surface via a layer-by-layer assembly technique. The successful fabrication of the multilayered structure was demonstrated by scanning electron microscopy, atomic force microscopy, contact angle measurement, attenuated total reflection-fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy, respectively. The growth behaviors of endothelial cells on various NiTi alloy substrates were investigated in vitro. Cytoskeleton observation, MTT assay, and wound healing assay proved that the VEGF-embedded multilayer structure positively stimulated adhesion, proliferation and motogenic responses of endothelial cells. More importantly, the present system promoted the nitric oxide production of endothelial cells. The approach affords an alternative to construct extracellular microenvironment for improving surface endothelialization of a cardiovascular implant. - Highlights: • Biofunctional multilayer films mimicking extracellular microenvironment were successfully fabricated. • Multilayered structure stimulated the biological responses of endothelial cells. • The approach affords an efficient approach for surface endothelialization of stent implant.

  9. Differentiation Induction of Mouse Neural Stem Cells in Hydrogel Tubular Microenvironments with Controlled Tube Dimensions.

    Onoe, Hiroaki; Kato-Negishi, Midori; Itou, Akane; Takeuchi, Shoji

    2016-05-01

    In this paper, a tubular 3D microenvironment created in a calcium alginate hydrogel microtube with respect to the effect of scaffold dimensions on the differentiation of mouse neuronal stem cells (mNSCs) is evaluated. Five types of hydrogel microtubes with different core diameters (≈65-200 μm) and shell thicknesses (≈30-110 μm) are fabricated by using a double coaxial microfluidic device, and differentiation of encapsulated mNSCs is induced by changing the growth medium to the differentiation medium. The influence of the microtube geometries is examined by using quantitative real-time polymerase chain reaction and fluorescent immunocytochemistry. The analyses reveal that differences in microtube thickness within 30-110 μm affected the relative Tuj1 expression but do not affect the morphology of encapsulated mNSCs. The diameters of cores influence both the relative Tuj1 expression and morphology of the differentiated neurons. It is found that the tubular microenvironment with a core diameter of less than ≈100 μm contributes to forming highly viable and aligned neural tissue. The tubular microenvironment can provide an effective method for constructing microfiber-shaped neural tissues with geometrically controlled differentiation induction.

  10. [Effects of fruit bag color on the microenvironment, yield and quality of tomato fruits].

    Wang, Lei; Gao, Fang-sheng; Xu, Kun; Xu, Ning

    2013-08-01

    In order to clarify the ecological and biological effects of fruit bagging, tomato variety JYK was taken as the test material to study the changes of the microenvironment in different color fruit bags and the effects of these changes on the fruit development, yield and quality, with the treatment without fruit bagging as the control (CK). The results showed that bagging with different color fruit bags had positive effects in decreasing the light intensity of the microenvironment and increasing its temperature and humidity, and thus, increased the single fruit mass and promoted the harvest stage advanced. Black bag had the best effects in increasing microenvironment temperature and fruit mass, with the single fruit mass increased by 27.2% and the harvest period shortened by 10 days, compared with CK. The fruit maturation period in colorless bag, blue bag and red bag was shortened by 8, 3 and 2 days, and the single mass was increased by 11.8%, 6.4% and 4.8%, respectively. Moreover, the coloring and lycopene content of the fruits with different color bags bagging were improved, but the fruit rigidity and fruit soluble solid, soluble protein, and soluble sugar contents were decreased. Therefore, bagging with different color bags could improve the yield of tomato fruits, but decrease the fruit nutritional quality.

  11. Effect of tumor cells and tumor microenvironment on NK-cell function.

    Vitale, Massimo; Cantoni, Claudia; Pietra, Gabriella; Mingari, Maria Cristina; Moretta, Lorenzo

    2014-06-01

    The ability of tumors to manage an immune-mediated attack has been recently included in the "next generation" of cancer hallmarks. In solid tumors, the microenvironment that is generated during the first steps of tumor development has a pivotal role in immune regulation. An intricate net of cross-interactions occurring between tumor components, stromal cells, and resident or recruited immune cells skews the possible acute inflammatory response toward an aberrant ineffective chronic inflammatory status that favors the evasion from the host's defenses. Natural killer (NK) cells have powerful cytotoxic activity, but their activity may be eluded by the tumor microenvironment. Immunosubversion, immunoediting or immunoselection of poorly immunogenic tumor cells and interference with tumor infiltration play a major role in evading NK-cell responses to tumors. Tumor cells, tumor-associated fibroblasts and tumor-induced aberrant immune cells (i.e. tolerogenic or suppressive macrophages, dendritic cells (DCs) and T cells) can interfere with NK-cell activation pathways or the complex receptor array that regulate NK-cell activation and antitumor activity. Thus, the definition of tumor microenvironment-related immunosuppressive factors, along with the identification of new classes of tissue-residing NK-like innate lymphoid cells, represent key issues to design effective NK-cell-based therapies of solid tumors.

  12. Essential Microenvironment for Thymopoiesis is Preserved in Human Adult and Aged Thymus

    J. Shiraishi

    2003-01-01

    Full Text Available Normal human thymuses at various ages were immunohistologically examined in order to determine whether adult or aged thymus maintained the microenvironment for the T cell development and thymopoiesis was really ongoing. To analyze the thymic microenvironment, two monoclonal antibodies (MoAb were employed. One is MoAb to IL-1 receptor (IL-1R recognizing medullary and subcapsular cortical epithelial cells of normal infant human thymus. The other is UH-1 MoAb recognizing thymic epithelial cells within the cortex, which are negative with IL-1R-MoAb. Thymus of subjects over 20 years of age was split into many fragments and dispersed in the fatty tissue. However, the microenvironment of each fragment was composed of both IL-1R positive and UH-1 positive epithelial cells, and the UH-1 positive portion was populated with lymphocytes showing a follicle-like appearance. Lymphocytes in these follicle-like portions were mostly CD4+CD8+ double positive cells and contained many proliferating cells as well as apoptotic cells. Thus these follicle-like portions in adult and aged thymus were considered to be functioning as cortex as in infant thymus. Proliferative activity of thymocytes in the thymic cortex and the follicle-like portions definitely declined with advance of age, while incidence of apoptotic thymocytes increased with aging.

  13. Microenvironment is involved in cellular response to hydrostatic pressures during chondrogenesis of mesenchymal stem cells.

    Ye, Rui; Hao, Jin; Song, Jinlin; Zhao, Zhihe; Fang, Shanbao; Wang, Yating; Li, Juan

    2014-06-01

    Chondrocytes integrate numerous microenvironmental cues to mount physiologically relevant differentiation responses, and the regulation of mechanical signaling in chondrogenic differentiation is now coming into intensive focus. To facilitate tissue-engineered chondrogenesis by mechanical strategy, a thorough understanding about the interactional roles of chemical factors under mechanical stimuli in regulating chondrogenesis is in great need. Therefore, this study attempts to investigate the interaction of rat MSCs with their microenvironment by imposing dynamic and static hydrostatic pressure through modulating gaseous tension above the culture medium. Under dynamic pressure, chemical parameters (pH, pO2, and pCO2) were kept in homeostasis. In contrast, pH was remarkably reduced due to increased pCO2 under static pressure. MSCs under the dynamically pressured microenvironment exhibited a strong accumulation of GAG within and outside the alginate beads, while cells under the statically pressured environment lost newly synthesized GAG into the medium with a speed higher than its production. In addition, the synergic influence on expression of chondrogenic genes was more persistent under dynamic pressure than that under static pressure. This temporal contrast was similar to that of activation of endogenous TGF-β1. Taken altogether, it indicates that a loading strategy which can keep a homeostatic chemical microenvironment is preferred, since it might sustain the stimulatory effects of mechanical stimuli on chondrogenesis via activation of endogenous TGF-β1.

  14. Nanochips of Tantalum Oxide Nanodots as artificial-microenvironments for monitoring Ovarian cancer progressiveness

    Dhawan, Udesh; Wang, Ssu-Meng; Chu, Ying Hao; Huang, Guewha S.; Lin, Yan Ren; Hung, Yao Ching; Chen, Wen Liang

    2016-08-01

    Nanotopography modulates cell characteristics and cell behavior. Nanotopological cues can be exploited to investigate the in-vivo modulation of cell characteristics by the cellular microenvironment. However, the studies explaining the modulation of tumor cell characteristics and identifying the transition step in cancer progressiveness are scarce. Here, we engineered nanochips comprising of Tantalum oxide nanodot arrays of 10, 50, 100 and 200 nm as artificial microenvironments to study the modulation of cancer cell behavior. Clinical samples of different types of Ovarian cancer at different stages were obtained, primary cultures were established and then seeded on different nanochips. Immunofluorescence (IF) was performed to compare the morphologies and cell characteristics. Indices corresponding to cell characteristics were defined. A statistical comparison of the cell characteristics in response to the nanochips was performed. The cells displayed differential growth parameters. Morphology, Viability, focal adhesions, microfilament bundles and cell area were modulated by the nanochips which can be used as a measure to study the cancer progressiveness. The ease of fabrication of nanochips ensures mass-production. The ability of the nanochips to act as artificial microenvironments and modulate cell behavior may lead to further prospects in the markerless monitoring of the progressiveness and ultimately, improving the prognosis of Ovarian cancer.

  15. Oxygen microenvironment affects the uptake of nanoparticles in head and neck tumor cells

    Chen, Eunice Y.; Hodge, Sasson; Tai, Katherine; Hou, Huagang; Khan, Nadeem; Hoopes, P. Jack; Samkoe, Kimberley S.

    2013-02-01

    Survival of head and neck cancer patients has not improved in several decades despite advances in diagnostic and therapeutic techniques. Tumor hypoxia in head and neck cancers is a critical factor that leads to poor prognosis, resistance to radiation and chemotherapies, and increased metastatic potential. Magnetic nanoparticle hyperthermia (mNPHT) is a promising therapy for hypoxic tumors because nanoparticles (NP) can be directly injected into, or targeted to, hypoxic tumor cells and exposed to alternating magnetic fields (AMF) to induce hyperthermia. Magnetic NPHT can improve therapeutic effectiveness by two modes of action: 1) direct killing of hypoxic tumor cells; and 2) increase in tumor oxygenation, which has the potential to make the tumor more susceptible to adjuvant therapies such as radiation and chemotherapy. Prior studies in breast cancer cells demonstrated that a hypoxic microenvironment diminished NP uptake in vitro; however, mNPHT with intratumoral NP injection in hypoxic tumors increased tumor oxygenation and delayed tumor growth. In this study, head and neck squamous cell carcinoma (HNSCC) cell lines were incubated in normoxic, hypoxic, and hyperoxic conditions with iron oxide NP for 4-72 hours. After incubation, the cells were analyzed for iron uptake by mass spectrometry, Prussian blue staining, and electron microscopy. In contrast to breast cancer cells, uptake of NPs was increased in hypoxic microenvironments as compared to normoxic conditions in HNSCC cells. In future studies, we will confirm the effect of the oxygen microenvironment on NP uptake and efficacy of mNPHT both in vitro and in vivo.

  16. Identification of recurring protein structure microenvironments and discovery of novel functional sites around CYS residues

    Liu Tianyun

    2010-02-01

    Full Text Available Abstract Background The emergence of structural genomics presents significant challenges in the annotation of biologically uncharacterized proteins. Unfortunately, our ability to analyze these proteins is restricted by the limited catalog of known molecular functions and their associated 3D motifs. Results In order to identify novel 3D motifs that may be associated with molecular functions, we employ an unsupervised, two-phase clustering approach that combines k-means and hierarchical clustering with knowledge-informed cluster selection and annotation methods. We applied the approach to approximately 20,000 cysteine-based protein microenvironments (3D regions 7.5 Å in radius and identified 70 interesting clusters, some of which represent known motifs (e.g. metal binding and phosphatase activity, and some of which are novel, including several zinc binding sites. Detailed annotation results are available online for all 70 clusters at http://feature.stanford.edu/clustering/cys. Conclusions The use of microenvironments instead of backbone geometric criteria enables flexible exploration of protein function space, and detection of recurring motifs that are discontinuous in sequence and diverse in structure. Clustering microenvironments may thus help to functionally characterize novel proteins and better understand the protein structure-function relationship.

  17. The senescent microenvironment promotes the emergence of heterogeneous cancer stem-like cells.

    Castro-Vega, Luis Jaime; Jouravleva, Karina; Ortiz-Montero, Paola; Liu, Win-Yan; Galeano, Jorge Luis; Romero, Martha; Popova, Tatiana; Bacchetti, Silvia; Vernot, Jean Paul; Londoño-Vallejo, Arturo

    2015-10-01

    There is a well-established association between aging and the onset of metastasis. Although the mechanisms through which age impinges upon the malignant phenotype remain uncharacterized, the role of a senescent microenvironment has been emphasized. We reported previously that human epithelial cells that undergo telomere-driven chromosome instability (T-CIN) display global microRNA (miR) deregulation and develop migration and invasion capacities. Here, we show that post-crisis cells are not able to form tumors unless a senescent microenvironment is provided. The characterization of cell lines established from such tumors revealed that these cells have acquired cell autonomous tumorigenicity, giving rise to heterogeneous tumors. Further experiments demonstrate that explanted cells, while displaying differences in cell differentiation markers, are all endowed of enhanced stem cell properties including self-renewal and multilineage differentiation capacity. Treatments of T-CIN+ cells with senescence-conditioned media induce sphere formation exclusively in cells with senescence-associated tumorigenicity, a capacity that depends on miR-145 repression. These results indicate that the senescent microenvironment, while promoting further transdifferentiations in cells with genome instability, is able to propel the progression of premalignant cells towards a malignant, cell stem-like state.

  18. Neuropilin-1 stimulates tumor growth by increasing fibronectin fibril assembly in the tumor microenvironment

    Yaqoob, Usman; Cao, Sheng; Shergill, Uday; Jagavelu, Kumaravelu; Geng, Zhimin; Yin, Meng; de Assuncao, Thiago M; Cao, Ying; Szabolcs, Anna; Thorgeirsson, Snorri; Schwartz, Martin; Yang, Ju Dong; Ehman, Richard; Roberts, Lewis; Mukhopadhyay, Debabrata; Shah, Vijay H.

    2012-01-01

    The tumor microenvironment, including stromal myofibroblasts and associated matrix proteins, regulates cancer cell invasion and proliferation. Here we report that neuropilin-1 (NRP-1) orchestrates communications between myofibroblasts and soluble fibronectin (FN) that promote α5β1 integrin-dependent FN fibril assembly, matrix stiffness, and tumor growth. Tumor growth and FN fibril assembly was reduced by genetic depletion or antibody neutralization of NRP-1 from stromal myofibroblasts in vivo. Mechanistically, the increase in FN fibril assembly required glycosylation of serine 612 of the extracellular domain of NRP-1, an intact intracellular NRP-1 SEA domain, and intracellular associations between NRP-1, the scaffold protein GIPC, and the nonreceptor tyrosine kinase c-Abl, that augmented α5β1 FN fibril assembly activity. Analysis of human cancer specimens established an association between tumoral NRP-1 levels and clinical outcome. Our findings indicate that NRP-1 activates the tumor microenvironment, thereby promoting tumor growth. These results not only identify new molecular mechanisms of FN fibril assembly but also have important implications for therapeutic targeting of the myofibroblast in the tumor microenvironment. PMID:22738912

  19. Flame retardant finishing of cotton fabric based on synergistic compounds containing boron and nitrogen.

    Xie, Kongliang; Gao, Aiqin; Zhang, Yongsheng

    2013-10-15

    Boric acid and compound containing nitrogen, 2,4,6-tri[(2-hydroxy-3-trimethyl-ammonium)propyl]-1,3,5-triazine chloride (Tri-HTAC) were used to finish cotton fabric. The flame retardant properties of the finished cotton fabrics and the synergetic effects of boron and nitrogen elements were investigated and evaluated by limited oxygen index (LOI) method. The mechanism of cross-linking reaction among cotton fiber, Tri-HTAC, and boric acid was discussed by FTIR and element analysis. The thermal stability and surface morphology of the finished cotton fabrics were investigated by thermogravimetric analysis (TGA) and scanning electron microscope (SEM), respectively. The finishing system of the mixture containing boron and nitrogen showed excellent synergistic flame retardancy for cotton fabric. The cotton fabric finished with mixture system had excellent flame retardancy. The LOI value of the treated cotton fabric increased over 27.5. Tri-HTAC could form covalent bonds with cellulose fiber and boric acid. The flame retardant cotton fabric showed a slight decrease in tensile strength and whiteness. The surface morphology of flame retardant cotton fiber was smooth.

  20. Mining the tissue-tissue gene co-expression network for tumor microenvironment study and biomarker prediction

    2013-01-01

    Background Recent discovery in tumor development indicates that the tumor microenvironment (mostly stroma cells) plays an important role in cancer development. To understand how the tumor microenvironment (TME) interacts with the tumor, we explore the correlation of the gene expressions between tumor and stroma. The tumor and stroma gene expression data are modeled as a weighted bipartite network (tumor-stroma coexpression network) where the weight of an edge indicates the correlation between...

  1. A drug-perfluorocarbon nanoemulsion with an ultrathin silica coating for the synergistic effect of chemotherapy and ablation by high-intensity focused ultrasound.

    Ma, Ming; Xu, Huixiong; Chen, Hangrong; Jia, Xiaoqing; Zhang, Kun; Wang, Qi; Zheng, Shuguang; Wu, Rong; Yao, Minghua; Cai, Xiaojun; Li, Faqi; Shi, Jianlin

    2014-11-19

    The synergistic effect of chemotherapy and ablation using high-intensity focused ultrasound (HIFU) is realized with a newly developed drug-delivery system. The system comprises an ultrathin silica shell surrounding a poly(lactic-co-glycolic acid) nanoemulsion core containing the drug (CPT) and a perfluorocarbon (PFOB). This nanosystem presents many advantages in drug delivery, such as excellent structural stability, high drug-loading capacity, and rapid HIFU-mediated drug release.

  2. Dietary flaxseed modulates the colonic microenvironment in healthy C57Bl/6 male mice which may alter susceptibility to gut-associated diseases.

    Power, Krista A; Lepp, Dion; Zarepoor, Leila; Monk, Jennifer M; Wu, Wenqing; Tsao, Rong; Liu, Ronghua

    2016-02-01

    Understanding how dietary components alter the healthy baseline colonic microenvironment is important in determining their roles in influencing gut health and gut-associated diseases. Dietary flaxseed (FS) has demonstrated anti-colon cancer effects in numerous rodent models, however, exacerbated acute colonic mucosal injury and inflammation in a colitis model. This study investigates whether FS alters critical aspects of gut health in healthy unchallenged mice, which may help explain some of the divergent effects observed following different gut-associated disease challenges. Four-week-old C57Bl/6 male mice were fed an AIN-93G basal diet (BD) or an isocaloric BD+10% ground FS diet for 3 weeks. FS enhanced colon goblet cell density, mucus production, MUC2 mRNA expression, and cecal short chain fatty acid levels, indicative of beneficial intestinal barrier integrity responses. Additionally, FS enhanced colonic regenerating islet-derived protein 3 gamma (RegIIIγ) and reduced MUC1 and resistin-like molecule beta (RELMβ) mRNA expression which may indicate altered responses in regulating microbial defense and injury repair responses. FS diet altered the fecal microbial community structure (16S rRNA gene profiling), including a 20-fold increase in Prevotella spp. and a 30-fold reduction in Akkermansia muciniphila abundance. A 10-fold reduction in A. muciniphila abundance by FS was also demonstrated in the colon tissue-associated microbiota (quantitative PCR). Furthermore, fecal branched chain fatty acids were increased by FS, indicative of increased microbial-derived putrefactive compounds. In conclusion, consumption of a FS-supplemented diet alters the baseline colonic microenvironment of healthy mice which may modify subsequent mucosal microbial defense and injury-repair responses leading to altered susceptibility to different gut-associated diseases.

  3. 1’-Acetoxychavicol acetate inhibits growth of human oral carcinoma xenograft in mice and potentiates cisplatin effect via proinflammatory microenvironment alterations

    In Lionel LA

    2012-10-01

    Full Text Available Abstract Background Oral cancers although preventable, possess a low five-year survival rate which has remained unchanged over the past three decades. In an attempt to find a more safe, affordable and effective treatment option, we describe here the use of 1’S-1’-acetoxychavicol acetate (ACA, a component of Malaysian ginger traditionally used for various medicinal purposes. Methods Whether ACA can inhibit the growth of oral squamous cell carcinoma (SCC cells alone or in combination with cisplatin (CDDP, was explored both in vitro using MTT assays and in vivo using Nu/Nu mice. Occurrence of apoptosis was assessed using PARP and DNA fragmentation assays, while the mode of action were elucidated through global expression profiling followed by Western blotting and IHC assays. Results We found that ACA alone inhibited the growth of oral SCC cells, induced apoptosis and suppressed its migration rate, while minimally affecting HMEC normal cells. ACA further enhanced the cytotoxic effects of CDDP in a synergistic manner as suggested by combination index studies. We also found that ACA inhibited the constitutive activation of NF-κB through suppression of IKKα/β activation. Human oral tumor xenografts studies in mice revealed that ACA alone was as effective as CDDP in reducing tumor volume, and further potentiated CDDP effects when used in combination with minimal body weight loss. The effects of ACA also correlated with a down-regulation of NF-κB regulated gene (FasL and Bim, including proinflammatory (NF-κB and COX-2 and proliferative (cyclin D1 biomarkers in tumor tissue. Conclusion Overall, our results suggest that ACA inhibits the growth of oral SCC and further potentiates the effect of standard CDDP treatment by modulation of proinflammatory microenvironment. The current preclinical data could form the basis for further clinical trials to improve the current standards for oral cancer care using this active component from the Malaysian

  4. Evaluation of Synergistic Antibacterial and Antioxidant Efficacy of Essential Oils of Spices and Herbs in Combination.

    Anwesa Bag

    Full Text Available The present study was carried out to evaluate the possible synergistic interactions on antibacterial and antioxidant efficacy of essential oils of some selected spices and herbs [bay leaf, black pepper, coriander (seed and leaf, cumin, garlic, ginger, mustard, onion and turmeric] in combination. Antibacterial combination effect was evaluated against six important food-borne bacteria (Bacillus cereus, Listeria monocytogenes, Micrococcus luteus, Staphylococcus aureus, Escherichia coli and Salmonella typhimurium using microbroth dilution, checkerboard titration and time-kill methods. Antioxidant combination effect was assessed by DPPH free radical scavenging method. Total phenolic content was measured by Folin-Ciocalteu method. Bioactivity -guided fractionation of active essential oils for isolation of bioactive compounds was done using TLC-bioautography assay and chemical characterization (qualitative and quantitative of bioactive compounds was performed using DART-MS and HPLC analyses. Cytotoxic potential was evaluated by brine shrimp lethality assay as well as MTT assay using human normal colon cell line. Results showed that among the possible combinations tested only coriander/cumin seed oil combination showed synergistic interactions both in antibacterial (FICI : 0.25-0.50 and antioxidant (CI : 0.79 activities. A high positive correlation between total phenolic content and antibacterial activity against most of the studied bacteria (R2 = 0.688 - 0.917 as well as antioxidant capacity (R2 = 0.828 was also observed. TLC-bioautography-guided screening and subsequent combination studies revealed that two compounds corresponding to Rf values 0.35 from coriander seed oil and 0.53 from cumin seed oil exhibited both synergistic antibacterial and antioxidant activities. The bioactive compound corresponding to Rf 0.35 from coriander seed oil was identified as linalool (68.69% and the bioactive compound corresponding to Rf 0.53 from cumin seed oil was

  5. Evaluation of Synergistic Antibacterial and Antioxidant Efficacy of Essential Oils of Spices and Herbs in Combination.

    Bag, Anwesa; Chattopadhyay, Rabi Ranjan

    2015-01-01

    The present study was carried out to evaluate the possible synergistic interactions on antibacterial and antioxidant efficacy of essential oils of some selected spices and herbs [bay leaf, black pepper, coriander (seed and leaf), cumin, garlic, ginger, mustard, onion and turmeric] in combination. Antibacterial combination effect was evaluated against six important food-borne bacteria (Bacillus cereus, Listeria monocytogenes, Micrococcus luteus, Staphylococcus aureus, Escherichia coli and Salmonella typhimurium) using microbroth dilution, checkerboard titration and time-kill methods. Antioxidant combination effect was assessed by DPPH free radical scavenging method. Total phenolic content was measured by Folin-Ciocalteu method. Bioactivity -guided fractionation of active essential oils for isolation of bioactive compounds was done using TLC-bioautography assay and chemical characterization (qualitative and quantitative) of bioactive compounds was performed using DART-MS and HPLC analyses. Cytotoxic potential was evaluated by brine shrimp lethality assay as well as MTT assay using human normal colon cell line. Results showed that among the possible combinations tested only coriander/cumin seed oil combination showed synergistic interactions both in antibacterial (FICI : 0.25-0.50) and antioxidant (CI : 0.79) activities. A high positive correlation between total phenolic content and antibacterial activity against most of the studied bacteria (R2 = 0.688 - 0.917) as well as antioxidant capacity (R2 = 0.828) was also observed. TLC-bioautography-guided screening and subsequent combination studies revealed that two compounds corresponding to Rf values 0.35 from coriander seed oil and 0.53 from cumin seed oil exhibited both synergistic antibacterial and antioxidant activities. The bioactive compound corresponding to Rf 0.35 from coriander seed oil was identified as linalool (68.69%) and the bioactive compound corresponding to Rf 0.53 from cumin seed oil was identified as p

  6. Investigation of cyclooxygenase and signaling pathways involved in human platelet aggregation mediated by synergistic interaction of various agonists.

    Khan, Nadia; Farooq, Ahsana Dar; Sadek, Bassem

    2015-01-01

    In the present study, the mechanism(s) of synergistic interaction of various platelet mediators such as arachidonic acid (AA) when combined with 5-hydroxytryptamine (5-HT) or adenosine diphosphate (ADP) on human platelet aggregation were examined. The results demonstrated that 5-HT had no or negligible effect on aggregation but it did potentiate the aggregation response of AA. Similarly, the combination of subeffective concentrations of ADP and AA exhibited noticeable rise in platelet aggregation. Moreover, the observed synergistic effect of AA with 5-HT on platelets was inhibited by different cyclooxygenase (COX) inhibitors, namely ibuprofen and celecoxib, with half maximal inhibitory effect (IC50) values of 18.0 ± 1.8 and 15.6 ± 3.4 μmol/L, respectively. Interestingly, the synergistic effect observed for AA with 5-HT was, also, blocked by the 5-HT receptor blockers cyproheptadine (IC50=22.0 ± 7 μmol/L), ketanserin (IC50=152 ± 23 μmol/L), phospholipase C (PLC) inhibitor (U73122; IC50=6.1 ± 0.8 μmol/L), and mitogen activated protein kinase (MAPK) inhibitor (PD98059; IC50=3.8 ± 0.5 μmol/L). Likewise, the synergism of AA and ADP was, also, attenuated by COX inhibitors (ibuprofen; IC50=20 ± 4 μmol/L and celecoxib; IC50=24 ± 7 μmol/L), PLC inhibitor (U73122; IC50=3.7 ± 0.3 μmol/L), and MAPK inhibitor (PD98059; IC50=2.8 ± 1.1 μmol/L). Our observed data demonstrate that the combination of subthreshold concentrations of agonists amplifies platelet aggregation and that these synergistic effects largely depend on activation of COX/thromboxane A2, receptor-operated Ca(2+) channels, Gq/PLC, and MAPK signaling pathways. Moreover, our data revealed that inhibition of COX pathways by using both selective and/or non-selective COX inhibitors blocks not only AA metabolism and thromboxane A2 formation, but also its binding to Gq receptors and activation of receptor-operated Ca(2+) channels in platelets. Overall, our results show that PLC and MAPK inhibitors proved

  7. Synergistic interactions between HDAC and sirtuin inhibitors in human leukemia cells.

    Michele Cea

    Full Text Available Aberrant histone deacetylase (HDAC activity is frequent in human leukemias. However, while classical, NAD(+-independent HDACs are an established therapeutic target, the relevance of NAD(+-dependent HDACs (sirtuins in leukemia treatment remains unclear. Here, we assessed the antileukemic activity of sirtuin inhibitors and of the NAD(+-lowering drug FK866, alone and in combination with traditional HDAC inhibitors. Primary leukemia cells, leukemia cell lines, healthy leukocytes and hematopoietic progenitors were treated with sirtuin inhibitors (sirtinol, cambinol, EX527 and with FK866, with or without addition of the HDAC inhibitors valproic acid, sodium butyrate, and vorinostat. Cell death was quantified by propidium iodide cell staining and subsequent flow-cytometry. Apoptosis induction was monitored by cell staining with FITC-Annexin-V/propidium iodide or with TMRE followed by flow-cytometric analysis, and by measuring caspase3/7 activity. Intracellular Bax was detected by flow-cytometry and western blotting. Cellular NAD(+ levels were measured by enzymatic cycling assays. Bax was overexpressed by retroviral transduction. Bax and SIRT1 were silenced by RNA-interference. Sirtuin inhibitors and FK866 synergistically enhanced HDAC inhibitor activity in leukemia cells, but not in healthy leukocytes and hematopoietic progenitors. In leukemia cells, HDAC inhibitors were found to induce upregulation of Bax, a pro-apoptotic Bcl2 family-member whose translocation to mitochondria is normally prevented by SIRT1. As a result, leukemia cells become sensitized to sirtuin inhibitor-induced apoptosis. In conclusion, NAD(+-independent HDACs and sirtuins cooperate in leukemia cells to avoid apoptosis. Combining sirtuin with HDAC inhibitors results in synergistic antileukemic activity that could be therapeutically exploited.

  8. Synergistic and Pretreatment Effect on Anaerobic Co-Digestion from Rice Straw and Municipal Sewage Sludge

    Mingxing Zhao

    2014-08-01

    Full Text Available Anaerobic digestion is considered to be a priority disposal technology for rice straw and sewage sludge. In this study, the synergistic and alkali-treat effect on co-digestion of rice straw and sewage sludge was investigated. The results indicated that the co-digestion of alkali-treated rice straw and sewage sludge had the best biogas yield of 338.9 mL/gVS, which was 1.06 and 1.75 times that of either alkali-treated rice straw or sewage sludge alone, respectively. The actual biogas and methane yields of a co-digestion group with raw rice straw and sewage sludge (G4 increased 26.39% and 24.79% relative to the theoretical calculation based on raw rice straw digestion (group G2 and sewage sludge digestion (group G5, suggesting that a synergistic effect occurred during the co-digestion process. The maximum concentration of volatile fatty acids (VFA was 4860 mg/L on the 4th day in the sewage sludge group. Xylanase activity reached a maximum of 10.55 U/mL on the 6th day in the alkali-treated rice straw group, while the concentration of protease enzyme was relatively higher in the sewage sludge group than in others. The removal rates of cellulose and hemicellulose in groups with alkali treatment were 32.25% and 36.96% (G1 and 40.86% and 41.61% (G3, higher than that of groups without treatment.

  9. Effects of local and global network connectivity on synergistic epidemics

    Broder-Rodgers, David; Taraskin, Sergei N

    2015-01-01

    The effects of local and global connectivity on the spread of synergistic susceptible-infected-removed epidemics were studied in lattice models with infinite- and finite-range rewiring (small-world and small-world-like models). Several effects were found numerically and supported analytically within a simple model: (i) rewiring enhanced resilience to epidemics with strong constructive synergy on networks with high local connectivity; (ii) rewiring enhanced spread of epidemics with destructive or weak constructive synergy on networks with arbitrary local connectivity; (iii) rewiring enhanced spread of epidemics, independent of synergy, in networks with low local connectivity.

  10. Synergistic Effect of Lupenone and Caryophyllene Oxide against Trypanosoma cruzi

    Glendy Polanco-Hernández

    2013-01-01

    Full Text Available The in vitro trypanocidal activity of a 1 : 4 mixture of lupenone and caryophyllene oxide confirmed a synergistic effect of the terpenoids against epimastigotes forms of T. cruzi (IC50=10.4 μg/mL, FIC = 0.46. In addition, testing of the terpenoid mixture for its capacity to reduce the number of amastigote nests in cardiac tissue and skeletal muscle of infected mice showed a reduction of more than 80% at a dose level of 20.8 mg·kg−1·day−1.

  11. Synergistic Effect of Lupenone and Caryophyllene Oxide against Trypanosoma cruzi

    Polanco-Hernández, Glendy; Escalante-Erosa, Fabiola; García-Sosa, Karlina; Rosado, María E.; Guzmán-Marín, Eugenia; Acosta-Viana, Karla Y.; Giménez-Turba, Alberto; Salamanca, Efraín; Peña-Rodríguez, Luis M.

    2013-01-01

    The in vitro trypanocidal activity of a 1 : 4 mixture of lupenone and caryophyllene oxide confirmed a synergistic effect of the terpenoids against epimastigotes forms of T. cruzi (IC50 = 10.4 μg/mL, FIC = 0.46). In addition, testing of the terpenoid mixture for its capacity to reduce the number of amastigote nests in cardiac tissue and skeletal muscle of infected mice showed a reduction of more than 80% at a dose level of 20.8 mg·kg−1·day−1. PMID:23762135

  12. Biomimetic stochastic topography and electric fields synergistically enhance directional migration of corneal epithelial cells in a MMP-3-dependent manner.

    Gao, Jing; Raghunathan, Vijay Krishna; Reid, Brian; Wei, Dongguang; Diaz, Rodney C; Russell, Paul; Murphy, Christopher J; Zhao, Min

    2015-01-01

    Directed migration of corneal epithelial cells (CECs) is critical for maintenance of corneal homeostasis as well as wound healing. Soluble cytoactive factors and the intrinsic chemical attributes of the underlying extracellular matrix (ECM) participate in stimulating and directing migration. The central importance of the intrinsic biophysical attributes of the microenvironment of the cell in modulating an array of fundamental epithelial behaviors including migration has been widely documented. Among the best measures of these attributes are the intrinsic topography and stiffness of the ECM and electric fields (EFs). How cells integrate these multiple simultaneous inputs is not well understood. Here, we present a method that combines the use of (i) topographically patterned substrates (mean pore diameter 800nm) possessing features that approximate those found in the native corneal basement membrane; and (ii) EFs (0-150mVmm(-1)) mimicking those at corneal epithelial wounds that the cells experience in vivo. We found that topographic cues and EFs synergistically regulated directional migration of human CECs and that this was associated with upregulation of matrix metalloproteinase-3 (MMP3). MMP3 expression and activity were significantly elevated with 150mVmm(-1) applied-EF while MMP2/9 remained unaltered. MMP3 expression was elevated in cells cultured on patterned surfaces against planar surfaces. The highest single-cell migration rate was observed with 150mVmm(-1) applied EF on patterned and planar surfaces. When cultured as a confluent sheet, EFs induced collective cell migration on stochastically patterned surfaces compared with dissociated single-cell migration on planar surfaces. These results suggest significant interaction of biophysical cues in regulating cell behaviors and will help define design parameters for corneal prosthetics and help to better understand corneal wound healing.

  13. Synergistic effects of mica and wollastonite fillers on thermal performance of intumescent fire retardant coating

    Zia-ul-Mustafa, M., E-mail: engr.ziamustafa@gmail.com; Ahmad, Faiz; Megat-Yusoff, Puteri S. M.; Aziz, Hammad [Mechanical Engineering Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak (Malaysia)

    2015-07-22

    In this study, intumescent fire retardant coatings (IFRC) were developed to investigate the synergistic effects of reinforced mica and wollastonite fillers based IFRC towards heat shielding, char expansion, char composition and char morphology. Ammonium poly-phosphate (APP) was used as acid source, expandable graphite (EG) as carbon source, melamine as blowing agent, boric acid as additive and Hardener H-2310 polyamide amine in bisphenol A epoxy resin BE-188(BPA) was used as curing agent. Bunsen burner fire test was used for thermal performance according to UL-94 for 1 h. Field Emission Scanning Electron Microscopy (FESEM) was used to observe char microstructure. X-Ray Diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) were used to analyse char composition. The results showed that addition of clay filler in IFRC enhanced the fire protection performance of intumescent coating. X-Ray Diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) results showed the presence of boron phosphate, silicon phosphate oxide, aluminium borate in the char that improved the thermal performance of intumescent fire retardant coating (IFRC). Resultantly, the presence of these developed compounds enhanced the Integrity of structural steel upto 500°C.

  14. Microbial dark matter ecogenomics reveals complex synergistic networks in a methanogenic bioreactor.

    Nobu, Masaru K; Narihiro, Takashi; Rinke, Christian; Kamagata, Yoichi; Tringe, Susannah G; Woyke, Tanja; Liu, Wen-Tso

    2015-08-01

    Ecogenomic investigation of a methanogenic bioreactor degrading terephthalate (TA) allowed elucidation of complex synergistic networks of uncultivated microorganisms, including those from candidate phyla with no cultivated representatives. Our previous metagenomic investigation proposed that Pelotomaculum and methanogens may interact with uncultivated organisms to degrade TA; however, many members of the community remained unaddressed because of past technological limitations. In further pursuit, this study employed state-of-the-art omics tools to generate draft genomes and transcriptomes for uncultivated organisms spanning 15 phyla and reports the first genomic insight into candidate phyla Atribacteria, Hydrogenedentes and Marinimicrobia in methanogenic environments. Metabolic reconstruction revealed that these organisms perform fermentative, syntrophic and acetogenic catabolism facilitated by energy conservation revolving around H2 metabolism. Several of these organisms could degrade TA catabolism by-products (acetate, butyrate and H2) and syntrophically support Pelotomaculum. Other taxa could scavenge anabolic products (protein and lipids) presumably derived from detrital biomass produced by the TA-degrading community. The protein scavengers expressed complementary metabolic pathways indicating syntrophic and fermentative step-wise protein degradation through amino acids, branched-chain fatty acids and propionate. Thus, the uncultivated organisms may interact to form an intricate syntrophy-supported food web with Pelotomaculum and methanogens to metabolize catabolic by-products and detritus, whereby facilitating holistic TA mineralization to CO2 and CH4.

  15. Controlled synthesis of ordered mesoporous TiO{sub 2}-supported on activated carbon and pore-pore synergistic photocatalytic performance

    Liu, Chen; Li, Youji, E-mail: bcclyj@163.com; Xu, Peng; Li, Ming; Zeng, Mengxiong

    2015-01-15

    Ordered mesoporous titania/activated carbon (OMTAC) were prepared by the template technique with the aid of an ultrasonic method. To explore the relationship between the structure and properties of OMTAC, the ultrasonic-sol-gel technique was applied to synthesize titania dioxide/activated carbon (USTAC). The obtained material structure was characterized by X-ray diffraction (XRD), nitrogen adsorption – desorption, transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), UV diffuse reflectance (DRS) and Photoluminescence (PL) emission spectra. OMTAC photocatalytic performance was evaluated by means of acid red B (ARB) degradation. The pore-pore synergistic amplification mechanism of photocatalysis was proposed and the effects of catalytic conditions on synergistic amplification were explored. The results show that compared to OMT, OMTAC has a small particle size, low electron-hole recombination rate and high surface areas, due to the hindering effect of activated carbon on crystalline grain growth and an ordered mesoporous structure of titania. OMTAC has higher catalytic activity than USTAC, OMT and P25, due to pore-pore synergistic amplification effect of photocatalysis. The OMT content is strongly affected OMTAC photocatalytic activity, and OMTAC-3 (loading 3 times of OMT on AC) has the highest photocatalytic activity due to high hydroxyl concentration, surface area and low electron-hole recombination rate. When ARB is degraded by OMTAC-3, the optimum catalytic conditions are a catalyst concentration of 1 g/L, an ARB concentration of 15 mg/L and a pH of 5. - Graphical abstract: We investigate the influence of mesoporous titania content upon the photocatalytic performance of OMTAC in acid red B degradation. - Highlights: • OMTAC were fabricated by a template technique with the aid of an ultrasonic method. • OMTAC show high photoactivity for acid red B (ARB) degradation. • OMTAC also show pore-pore synergistic photocatalytic

  16. Microenvironment alters epigenetic and gene expression profiles in Swarm rat chondrosarcoma tumors

    Hamm Christopher A

    2010-09-01

    Full Text Available Abstract Background Chondrosarcomas are malignant cartilage tumors that do not respond to traditional chemotherapy or radiation. The 5-year survival rate of histologic grade III chondrosarcoma is less than 30%. An animal model of chondrosarcoma has been established - namely, the Swarm Rat Chondrosarcoma (SRC - and shown to resemble the human disease. Previous studies with this model revealed that tumor microenvironment could significantly influence chondrosarcoma malignancy. Methods To examine the effect of the microenvironment, SRC tumors were initiated at different transplantation sites. Pyrosequencing assays were utilized to assess the DNA methylation of the tumors, and SAGE libraries were constructed and sequenced to determine the gene expression profiles of the tumors. Based on the gene expression analysis, subsequent functional assays were designed to determine the relevancy of the specific genes in the development and progression of the SRC. Results The site of transplantation had a significant impact on the epigenetic and gene expression profiles of SRC tumors. Our analyses revealed that SRC tumors were hypomethylated compared to control tissue, and that tumors at each transplantation site had a unique expression profile. Subsequent functional analysis of differentially expressed genes, albeit preliminary, provided some insight into the role that thymosin-β4, c-fos, and CTGF may play in chondrosarcoma development and progression. Conclusion This report describes the first global molecular characterization of the SRC model, and it demonstrates that the tumor microenvironment can induce epigenetic alterations and changes in gene expression in the SRC tumors. We documented changes in gene expression that accompany changes in tumor phenotype, and these gene expression changes provide insight into the pathways that may play a role in the development and progression of chondrosarcoma. Furthermore, specific functional analysis indicates that

  17. Feedbacks Between Microenvironment and Plant Functional Type and Implications for CO2 Flux in Arctic Ecosystems

    Squires, E.; Rodenheizer, H.; Natali, S.; Mann, P.

    2013-12-01

    Future climate models predict a warmer, drier Arctic, with resultant shifts in vegetative composition and implications for ecosystem carbon budgets. The impact of vegetation change, however, may depend on which plant functional groups are favored in a warming Arctic. Physiological and functional differences between plant groups influence both the local microenvironment and, on a broader scale, whole-ecosystem CO2 flux. We examined the interactions between plants and their microenvironment, and analyzed the effect of these interactions on both soil microbial communities and CO2 flux across different functional groups. Physical and biological aspects of the microenvironment differed between plant functional groups. Lichen patches were characterized by deeper thaw depths, lower soil moisture, greater thermal conductivity, and a thinner organic layer than mosses. To better understand the development of these plant-environment interactions, we conducted a reciprocal transplant experiment, switching multiple lichen and moss patches. Temporal changes in environmental parameters at these sites will demonstrate how different plants modify their environment and will help identify associated implications for soil microbial communities and CO2 flux. We measured CO2 flux and used Biolog assays to examine soil microbial communities in undisturbed patches of mosses, lichens, and shrubs. Patches of birch shrubs had more negative net ecosystem exchange, signifying a carbon sink. Soils from alder shrubs and mosses hosted more active microbial communities than soils under birch shrubs and lichens. These results suggest a strong link between environment, plant functional type, and C cycling. Understanding how this relationship differs among plant functional types is an important part of predicting ecosystem carbon budgets as Arctic vegetation composition shifts in response to climate change.

  18. The physical interaction of myoblasts with the microenvironment during remodeling of the cytoarchitecture.

    Daniel J Modulevsky

    Full Text Available Integrins, focal adhesions, the cytoskeleton and the extracellular matrix, form a structural continuum between the external and internal environment of the cell and mediate the pathways associated with cellular mechanosensitivity and mechanotransduction. This continuum is important for the onset of muscle tissue generation, as muscle precursor cells (myoblasts require a mechanical stimulus to initiate myogenesis. The ability to sense a mechanical cue requires an intact cytoskeleton and strong physical contact and adhesion to the microenvironment. Importantly, myoblasts also undergo reorientation, alignment and large scale remodeling of the cytoskeleton when they experience mechanical stretch and compression in muscle tissue. It remains unclear if such dramatic changes in cell architecture also inhibit physical contact and adhesion with the tissue microenvironment that are clearly important to myoblast physiology. In this study, we employed interference reflection microscopy to examine changes in the close physical contact of myoblasts with a substrate during induced remodeling of the cytoarchitecture (de-stabilization of the actin and microtubule cytoskeleton and inhibition of acto-myosin contractility. Our results demonstrate that while each remodeling pathway caused distinct effects on myoblast morphology and sub-cellular structure, we only observed a ~13% decrease in close physical contact with the substrate, regardless of the pathway inhibited. However, this decrease did not correlate well with changes in cell adhesion strength. On the other hand, there was a close correlation between cell adhesion and β1-integrin expression and the presence of cell-secreted fibronectin, but not with the presence of intact focal adhesions. In this study, we have shown that myoblasts are able to maintain a large degree of physical contact and adhesion to the microenvironment, even during shot periods (<60 min of large scale remodeling and physiological

  19. Targeting of BMI-1 with PTC-209 shows potent anti-myeloma activity and impairs the tumour microenvironment

    Arnold Bolomsky

    2016-03-01

    Full Text Available Abstract Background The polycomb complex protein BMI-1 (BMI-1 is a putative oncogene reported to be overexpressed in multiple myeloma (MM. Silencing of BMI-1 was shown to impair the growth and survival of MM cells. However, therapeutic agents specifically targeting BMI-1 were not available so far. Here, we investigated PTC-209, a novel small molecule inhibitor of BMI-1, for its activity in MM. Methods BMI-1 expression was analysed in human MM cell lines and primary MM cells by using publically available gene expression profiling (GEP data. The anti-MM activity of PTC-209 was investigated by viability testing, cell cycle analysis, annexin V and 7-AAD staining, quantification of cleaved poly(ADP-ribose polymerase (PARP, JC-1 as well as colony formation assays. Deregulation of central myeloma growth and survival genes was studied by quantitative PCR and flow cytometry, respectively. In addition, the impact of PTC-209 on in vitro osteoclast, osteoblast and tube formation was analysed. Results We confirmed overexpression of BMI-1 in MM patients by using publically available GEP datasets. Of note, BMI-1 expression was further increased at relapse which translated into significantly shorter overall survival in relapsed/refractory patients treated with bortezomib or dexamethasone. Treatment with PTC-209 significantly decreased viable cell numbers in human MM cell lines, induced a G1 cell cycle arrest, promoted apoptosis and demonstrated synergistic activity with pomalidomide and carfilzomib. The anti-MM activity of PTC-209 was accompanied by a significant decrease of cyclin D1 (CCND1 and v-myc avian myelocytomatosis viral oncogene homolog (MYC expression as well as upregulation of cyclin-dependent kinase inhibitor 1A (CDKN1A and cyclin-dependent kinase inhibitor 1B (CDKN1B. We also observed upregulation of NOXA (up to 3.6 ± 1.2-fold induction, P = 0.009 and subsequent downregulation of myeloid cell leukemia 1 (MCL-1 protein levels, which likely

  20. Mammary gland development: cell fate specification, stem cells and the microenvironment.

    Inman, Jamie L; Robertson, Claire; Mott, Joni D; Bissell, Mina J

    2015-03-15

    The development of the mammary gland is unique: the final stages of development occur postnatally at puberty under the influence of hormonal cues. Furthermore, during the life of the female, the mammary gland can undergo many rounds of expansion and proliferation. The mammary gland thus provides an excellent model for studying the 'stem/progenitor' cells that allow this repeated expansion and renewal. In this Review, we provide an overview of the different cell types that constitute the mammary gland, and discuss how these cell types arise and differentiate. As cellular differentiation cannot occur without proper signals, we also describe how the tissue microenvironment influences mammary gland development.

  1. Importance of the stem cell microenvironment forophthalmological cell-based therapy

    Peng-Xia Wan; Bo-Wen Wang; Zhi-Chong Wang

    2015-01-01

    Cell therapy is a promising treatment for diseasesthat are caused by cell degeneration or death. Thecells for clinical transplantation are usually obtainedby culturing healthy allogeneic or exogenous tissue invitro . However, for diseases of the eye, obtaining theadequate number of cells for clinical transplantationis difficult due to the small size of tissue donors andthe frequent needs of long-term amplification ofcells in vitro , which results in low cell viability aftertransplantation. In addition, the transplanted cells oftendevelop fibrosis or degrade and have very low survival.Embryonic stem cells (ESCs) and induced pluripotentstem cells (iPS) are also promising candidates for celltherapy. Unfortunately, the differentiation of ESCs canbring immune rejection, tumorigenicity and undesireddifferentiated cells, limiting its clinical application.Although iPS cells can avoid the risk of immune rejectioncaused by ES cell differentiation post-transplantation,the low conversion rate, the risk of tumor formationand the potentially unpredictable biological changesthat could occur through genetic manipulation hinderits clinical application. Thus, the desired clinical effectof cell therapy is impaired by these factors. Recentresearch findings recognize that the reason for lowsurvival of the implanted cells not only depends on theseeded cells, but also on the cell microenvironment,which determines the cell survival, proliferation andeven reverse differentiation. When used for cell therapy,the transplanted cells need a specific three-dimensionalstructure to anchor and specific extra cellular matrixcomponents in addition to relevant cytokine signalingto transfer the required information to support theirgrowth. These structures present in the matrix inwhich the stem cells reside are known as the stem cellmicroenvironment. The microenvironment interactionwith the stem cells provides the necessary homeostasisfor cell maintenance and growth. A large number ofstudies

  2. Expression of osteoblast and osteoclast regulatory genes in the bone marrow microenvironment in multiple myeloma

    Kristensen, Ida B; Christensen, Jacob Haaber; Lyng, Maria Bibi;

    2014-01-01

    of osteoclast regulators (RANK, RANKL, OPG, TRAIL, MIP1A), Wnt inhibitors (DKK1, SFRP2, SFRP3, sclerostin, WIF1) and osteoblast transcription factors (RUNX2, osterix) by quantitative reverse transcriptase polymerase chain reaction (RT-PCR) in the bone marrow (BM) microenvironment using snap-frozen BM biopsies......, thereby achieving minimal post-sampling manipulation, and gene expression profiling (GEP) data, reflecting the in vivo situation. We analyzed 110 biopsies from newly diagnosed patients with MM and monoclonal gammopathy of unknown significance (MGUS) and healthy volunteers. LBD was evaluated using standard...

  3. Interleukin-8 promotes canine hemangiosarcoma growth by regulating the tumor microenvironment

    Kim, Jong-Hyuk, E-mail: jhkim@umn.edu [Department of Veterinary Clinical Science, College of Veterinary Medicine, University of Minnesota, St. Paul, MN (United States); Masonic Cancer Center, University of Minnesota, Minneapolis, MN (United States); Frantz, Aric M.; Anderson, Katie L.; Graef, Ashley J.; Scott, Milcah C. [Department of Veterinary Clinical Science, College of Veterinary Medicine, University of Minnesota, St. Paul, MN (United States); Robinson, Sally [Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN (United States); Sharkey, Leslie C. [Department of Veterinary Clinical Science, College of Veterinary Medicine, University of Minnesota, St. Paul, MN (United States); Masonic Cancer Center, University of Minnesota, Minneapolis, MN (United States); O' Brien, Timothy D. [Department of Veterinary Clinical Science, College of Veterinary Medicine, University of Minnesota, St. Paul, MN (United States); Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN (United States); Dickerson, Erin B. [Department of Veterinary Clinical Science, College of Veterinary Medicine, University of Minnesota, St. Paul, MN (United States); Masonic Cancer Center, University of Minnesota, Minneapolis, MN (United States); Modiano, Jaime F., E-mail: modiano@umn.edu [Department of Veterinary Clinical Science, College of Veterinary Medicine, University of Minnesota, St. Paul, MN (United States); Masonic Cancer Center, University of Minnesota, Minneapolis, MN (United States)

    2014-04-15

    Interleukin-8 (IL-8) gene expression is highly up-regulated in canine hemangiosarcoma (HSA); however, its role in the pathogenesis of this disease is unknown. We investigated the expression of IL-8 in canine HSA tissues and cell lines, as well and the effects of IL-8 on canine HSA in vitro, and in vivo using a mouse xenograft model for the latter. Constitutive expression of IL-8 mRNA, IL-8 protein, and IL-8 receptor were variable among different tumor samples and cell lines, but they showed stable steady states in each cell line. Upon the addition of IL-8, HSA cells showed transient intracellular calcium fluxes, suggesting that their IL-8 receptors are functional and that IL-8 binding activates relevant signaling pathways. Yet, neither addition of exogenous IL-8 nor blockade of endogenous IL-8 by neutralizing anti-IL-8 antibody (α-IL-8 Ab) affected HSA cell proliferation or survival in vitro. To assess potential effects of IL-8 in other tumor constituents, we stratified HSA cell lines and whole tumor samples into “IL-8 high” and “IL-8 low” groups. Genome-wide gene expression profiling showed that samples in the “IL-8 high” tumor group were enriched for genes associated with a “reactive microenvironment,” including activation of coagulation, inflammation, and fibrosis networks. Based on these findings, we hypothesized that the effects of IL-8 on these tumors were mostly indirect, regulating interactions with the microenvironment. This hypothesis was supported by in vivo xenograft experiments where survival and engraftment of tumor cells was inhibited by administration of neutralizing α-IL-8 Ab. Together, our results suggest that IL-8 contributes to establishing a permissive microenvironment during the early stages of tumorigenesis in HSA. - Highlights: • IL-8 is expressed in canine hemangiosarcoma tumor samples and cell lines. • IL-8 transduces a relevant biological signal in canine hemangiosarcoma cells. • IL-8 gene signature is associated

  4. Cell pairing ratio controlled micro-environment with valve-less electrolytic isolation

    Chen, Yu-Chih

    2012-01-01

    We present a ratio controlled cell-to-cell interaction chip using valve-less isolation. We incorporated electrolysis in a microfluidic channel. In each microfluidic chamber, we loaded two types of different cells at various pairing ratios. More than 80% of the microchambers were successfully loaded with a specific target pairing ratio. For the proof of concept, we have demonstrated the cell-to-cell interaction between prostate cancer cells and muscle stem cells can be controlled by cell pairing ratios through growth factor secretion. The experimental data shows that sealing of microenvironment by air generated from electrolysis does not affect cell viability and cell interaction assay results. © 2012 IEEE.

  5. Identification of catalytic residues using a novel feature that integrates the microenvironment and geometrical location properties of residues.

    Lei Han

    Full Text Available Enzymes play a fundamental role in almost all biological processes and identification of catalytic residues is a crucial step for deciphering the biological functions and understanding the underlying catalytic mechanisms. In this work, we developed a novel structural feature called MEDscore to identify catalytic residues, which integrated the microenvironment (ME and geometrical properties of amino acid residues. Firstly, we converted a residue's ME into a series of spatially neighboring residue pairs, whose likelihood of being located in a catalytic ME was deduced from a benchmark enzyme dataset. We then calculated an ME-based score, termed as MEscore, by summing up the likelihood of all residue pairs. Secondly, we defined a parameter called Dscore to measure the relative distance of a residue to the center of the protein, provided that catalytic residues are typically located in the center of the protein structure. Finally, we defined the MEDscore feature based on an effective nonlinear integration of MEscore and Dscore. When evaluated on a well-prepared benchmark dataset using five-fold cross-validation tests, MEDscore achieved a robust performance in identifying catalytic residues with an AUC1.0 of 0.889. At a ≤ 10% false positive rate control, MEDscore correctly identified approximately 70% of the catalytic residues. Remarkably, MEDscore achieved a competitive performance compared with the residue conservation score (e.g. CONscore, the most informative singular feature predominantly employed to identify catalytic residues. To the best of our knowledge, MEDscore is the first singular structural feature exhibiting such an advantage. More importantly, we found that MEDscore is complementary with CONscore and a significantly improved performance can be achieved by combining CONscore with MEDscore in a linear manner. As an implementation of this work, MEDscore has been made freely accessible at http://protein.cau.edu.cn/mepi/.

  6. Synergistic effects of sepiolite on intumescent flame retardant polypropylene

    2010-12-01

    Full Text Available In this paper, the effects of sepiolite as a synergistic agent on the flame retardancy of intumescent flame retardant polypropylene (PP/IFR were studied using the limiting oxygen index (LOI, the UL-94 test, thermogravimetric analysis (TGA, laser Raman spectroscopy (LRS, cone calorimeter test (CCT and scanning electron microscopy (SEM, and the IFR system mainly consisted of the ammonium polyphosphate modified with γ-aminopropyltriethoxysilane coupling agent, melamine and dipentaerythritol. The results from the LOI and UL 94 tests show that sepiolite added to the PP/IFR system has a synergistic flame retardant effects with the IFR system. The TGA results reveal that sepiolite enhances the thermal stability of the PP/IFR composite and increases the char residue formation. The cone calorimeter results indicate that the heat release rate, mass loss rate, total heat release and average specific extinction area of the PP/IFR/sepiolite composite decrease in comparison with the PP/IFR composite. The LRS measurements provide useful information on the carbonaceous microstructures. The morphological structures observed by SEM have demonstrated that sepiolite promote the formation of the reinforced and homogeneous char barrier on the surface of the composites. Simultaneously, the Young’s modulus and flexural modulus of the PP/IFR composites are also much better improved with the increase of sepiolite added.

  7. Synergistic effect of ozonation and ionizing radiation for PVA decomposition.

    Sun, Weihua; Chen, Lujun; Zhang, Yongming; Wang, Jianlong

    2015-08-01

    Ozonation and ionizing radiation are both advanced oxidation processes (AOPs) without chemical addition and secondary pollution. Also, the two processes' efficiency is determined by different pH conditions, which creates more possibilities for their combination. Importantly, the combined process of ozonation and ionizing radiation could be suitable for treating wastewaters with extreme pH values, i.e., textile wastewater. To find synergistic effects, the combined process of ozonation and ionizing radiation mineralization was investigated for degradation of polyvinyl alcohol (PVA) at different pH levels. A synergistic effect was found at initial pH in the range 3.0-9.4. When the initial pH was 3.0, the combined process of ozonation and ionizing radiation gave a PVA mineralization degree of 17%. This was 2.7 times the sum achieved by the two individual processes, and factors of 2.1 and 1.7 were achieved at initial pH of 7.0 and 9.4, respectively. The combined process of ozonation and ionizing radiation was demonstrated to be a feasible strategy for treatment of PVA-containing wastewater.

  8. Radio and Plasma Waves Synergistic Science Opportunities with EJSM

    Cecconi, Baptiste; André, Nicolas; Bougeret, Jean-Louis

    2010-05-01

    The radio and plasma wave (RPW) diagnostics provide a unique access to critical parameters of space plasma, in particular in planetary and satellite environments. Concerning giant planets, this has been demonstrated by major results obtained by the radio investigation on the Galileo and Cassini spacecraft, but also during the Ulysses, Voyager, and Pioneer flybys of Jupiter. Several other missions, past or in flight, demonstrate the uniqueness and relevance of RPW diagnostics to basic problems of astrophysics. The EJSM mission consists of two platforms operating in the Jupiter environment: the NASA-led Jupiter Europa Orbiter (JEO), and the ESA-led Jupiter Ganymede Orbiter (JGO). JEO and JGO will execute a choreographed exploration of the Jupiter System before settling into orbit around Europa and Ganymede, respectively. The EJSM mission architecture hence offers unique opportunities for synergistic and complementary observations that significantly enhance the overall science return of the mission. In this paper, we will first review new and unique science aspects of the Jupiter system that may benefit from different capabilities of RPW investigations onboard JGO and/or JEO: spectral and polarization information, mapping of radio sources, measurements of in situ plasma waves, currents, thermal noise, dust and nano-particle detection and characterization. We will then illustrate unique synergistic and complementary science opportunities offered by RPW investigations onboard JGO and/or JEO, both in terms of Satellite science and in terms of Magnetospheric Science.

  9. Synergistic effects of COMT and TPH2 on social cognition.

    Lin, Chieh-Hsin; Tseng, Yu-Lun; Huang, Chieh-Liang; Chang, Yue-Cune; Tsai, Guochuan E; Lane, Hsien-Yuan

    2013-01-01

    Whether genetic factors affect social cognition, particularly emotion management, requires elucidation. This study investigates whether social cognition varies with genetic variations of COMT and tryptophan hydroxylase-2 (TPH2), which modulate dopamine and serotonin neurotransmissions respectively, and thereby emotion regulation. NIMH-recommended "managing emotions branch and 2 subtasks" of MSCEIT and six neurocognition domains, and genotypes of COMT Val158Met and TPH2 G703T were measured in 150 Han-Chinese healthy adults. Subjects carrying the M allele (M group) of COMT exceeded Val/Val homozygotes (V group) in managing emotions branch (p = 0.032) and emotional relation subtask (p = 0.037). TPH2 T/T homozygotes (T group) excelled those with the G allele (G group) in emotional management subtask (p = 0.025). Subjects with M+T variation surpassed the other 3 groups (M+G, V+T and V+G) in managing emotion branch (p = 0.002), emotional relation subtask (p = 0.023), and emotional management subtask (p = 0.002). The findings remained after control for gender, age, education, and neurocognitive functions. Synergistically, the effect size of COMT-TPH2 combination surmounted the sum of separate effect sizes of COMT and TPH2. The findings suggest that genetic variations of COMT and TPH2 have synergistic effects on social cognition in the general population.

  10. Synergistic impacts of habitat loss and fragmentation on model ecosystems

    Purves, Drew W.; Tittensor, Derek P.; Harfoot, Michael B. J.

    2016-01-01

    Habitat loss and fragmentation are major threats to biodiversity, yet separating their effects is challenging. We use a multi-trophic, trait-based, and spatially explicit general ecosystem model to examine the independent and synergistic effects of these processes on ecosystem structure. We manipulated habitat by removing plant biomass in varying spatial extents, intensities, and configurations. We found that emergent synergistic interactions of loss and fragmentation are major determinants of ecosystem response, including population declines and trophic pyramid shifts. Furthermore, trait-mediated interactions, such as a disproportionate sensitivity of large-sized organisms to fragmentation, produce significant effects in shaping responses. We also show that top-down regulation mitigates the effects of land use on plant biomass loss, suggesting that models lacking these interactions—including most carbon stock models—may not adequately capture land-use change impacts. Our results have important implications for understanding ecosystem responses to environmental change, and assessing the impacts of habitat fragmentation. PMID:27655763

  11. Synergistic ototoxicity due to noise exposure and aminoglycoside antibiotics.

    Li, Hongzhe; Steyger, Peter S

    2009-01-01

    Acoustic exposure to high intensity and/or prolonged noise causes temporary or permanent threshold shifts in auditory perception, reflected by reversible or irreversible damage in the cochlea. Aminoglycoside antibiotics, used for treating or preventing life-threatening bacterial infections, also induce cytotoxicity in the cochlea. Combined noise and aminoglycoside exposure, particularly in neonatal intensive care units, can lead to auditory threshold shifts greater than simple summation of the two insults. The synergistic toxicity of acoustic exposure and aminoglycoside antibiotics is not limited to simultaneous exposures. Prior acoustic insult which does not result in permanent threshold shifts potentiates aminoglycoside ototoxicity. In addition, exposure to subdamaging doses of aminoglycosides aggravates noise-induced cochlear damage. The mechanisms by which aminoglycosides cause auditory dysfunction are still being unraveled, but likely include the following: 1) penetration into the endolymphatic fluid of the scala media, 2) permeation of nonselective cation channels on the apical surface of hair cells, and 3) generation of toxic reactive oxygen species and interference with other cellular pathways. Here we discuss the effect of combined noise and aminoglycoside exposure to identify pivotal synergistic events that can potentiate ototoxicity, in addition to a current understanding of aminoglycoside trafficking within the cochlea. Preventing the ototoxic synergy of noise and aminoglycosides is best achieved by using non-ototoxic bactericidal drugs, and by attenuating perceived noise intensity when life-saving aminoglycoside therapy is required.

  12. PDLLA/PRGD/β-TCP conduits build the neurotrophin-rich microenvironment suppressing the oxidative stress and promoting the sciatic nerve regeneration.

    Qiu, Tong; Yin, Yixia; Li, Binbin; Xie, Lijuan; Yan, Qiongjiao; Dai, Honglian; Wang, Xinyu; Li, Shipu

    2014-10-01

    A novel nerve guidance conduit comprising poly{(lactic acid)-co-[(glycolic acid)-alt-(l-lysine)]} (PRGD), poly (d,l-lactic acid) (PDLLA) and β-tricalcium phosphate (β-TCP) was constructed to facilitate the peripheral nerve regeneration. From the comparative study, PDLLA/PRGD/β-TCP conduit achieved the best recovery in regard of the ultrastructure observation and the SFI evaluation. At the first stage of the injury (7 days), the maximum expression augments in ZnSOD (6.4 folds) and GPX4 (6.8 folds) were observed in PDLLA/PRGD/β-TCP group; while striking rise in actin (6.8 folds), tubulin (5.6 folds), and ERM components expressions were observed later (35 days). Meanwhile, compared with PDLLA and PDLLA/PRGD conduits, PDLLA/PRGD/β-TCP conduits achieved the highest local nerve growth factor (NGF) content and an accumulating BDNF content. We speculated that addition of RGD and β-TCP in the composites were the main positive factors to build the microenvironment rich in NGF and BDNF, which help to counteract with the oxidative stress and to boost the cytoskeletal protein expressions. Therefore, PDLLA/PRGD/β-TCP could be promising composites used in peripheral nerve regeneration.

  13. The Fate of the Tumor in the Hands of Microenvironment: Role of TAMs and mTOR Pathway

    Soave, Danilo Figueiredo; Miguel, Marina Pacheco

    2016-01-01

    Since 2000, written with elegance and accuracy, Hanahan and Weinberg have proposed six major hallmarks of cancer and, together, they provide great advances to the understanding of tumoral biology. Our knowledge about tumor behavior has improved and the investigators have now recognized that inflammatory microenvironment may be a new feature for the tumor entities. Macrophages are considered as an important component of tumoral microenvironment. Biologically, two forms of activated macrophages can be observed: classically activated macrophages (M1) and alternative activated macrophages (M2). Despite the canonical pathways that control this puzzle of macrophages polarization, recently, mTOR signaling pathway has been implicated as an important piece in determining the metabolic and functional differentiation of M1 and M2 profiles. Currently, it is believed that macrophages related to tumoral microenvironment present an “M2-like” feature promoting an immunosuppressive microenvironment enhancing tumoral angiogenesis, growth, and metastasis. In the present review we discuss the role of macrophages in the tumor microenvironment and the role of mTOR pathway in M1 and M2 differentiation. We also discuss the recent findings in M1 and M2 polarization as a possible target in the cancer therapy. PMID:28074082

  14. The Fate of the Tumor in the Hands of Microenvironment: Role of TAMs and mTOR Pathway

    Danilo Figueiredo Soave

    2016-01-01

    Full Text Available Since 2000, written with elegance and accuracy, Hanahan and Weinberg have proposed six major hallmarks of cancer and, together, they provide great advances to the understanding of tumoral biology. Our knowledge about tumor behavior has improved and the investigators have now recognized that inflammatory microenvironment may be a new feature for the tumor entities. Macrophages are considered as an important component of tumoral microenvironment. Biologically, two forms of activated macrophages can be observed: classically activated macrophages (M1 and alternative activated macrophages (M2. Despite the canonical pathways that control this puzzle of macrophages polarization, recently, mTOR signaling pathway has been implicated as an important piece in determining the metabolic and functional differentiation of M1 and M2 profiles. Currently, it is believed that macrophages related to tumoral microenvironment present an “M2-like” feature promoting an immunosuppressive microenvironment enhancing tumoral angiogenesis, growth, and metastasis. In the present review we discuss the role of macrophages in the tumor microenvironment and the role of mTOR pathway in M1 and M2 differentiation. We also discuss the recent findings in M1 and M2 polarization as a possible target in the cancer therapy.

  15. The potential of chondrogenic pre-differentiation of adipose-derived mesenchymal stem cells for regeneration in harsh nucleus pulposus microenvironment.

    Wang, Jingkai; Tao, Yiqing; Zhou, Xiaopeng; Li, Hao; Liang, Chengzhen; Li, Fangcai; Chen, Qi-Xin

    2016-08-03

    Recent studies indicated that cell-based therapy could be a promising approach to treat intervertebral disc degeneration. Though the harsh microenvironment in disc is still challenging to implanted cells, it could be overcome by pre-conditioning graft cells before transplantation, suggested by previous literatures. Therefore, we designed this study to identify the potential effect of chondrogenic pre-differentiation on adipose-derived mesenchymal stem cells in intervertebral disc-like microenvironment, characterized by limited nutrition, acidic, and high osmosis in vitro. Adipose-derived mesenchymal stem cells of rat were divided into five groups, embedded in type II collagen scaffold, and cultured in chondrogenic differentiation medium for 0, 3, 7, 10, and 14 days. Then, the adipose-derived mesenchymal stem cells were implanted and cultured in intervertebral disc-like condition. The proliferation and differentiation of adipose-derived mesenchymal stem cells were evaluated by cell counting kit-8 test, real-time quantitative polymerase chain reaction, and Western blotting and immunofluorescence analysis. Analyzed by the first week in intervertebral disc-like condition, the results showed relatively greater proliferative capability and extracellular matrix synthesis ability of the adipose-derived mesenchymal stem cells pre-differentiated for 7 and 10 days than the control. We concluded that pre-differentiation of rat adipose-derived mesenchymal stem cells in chondrogenic culture medium for 7 to 10 days could promote the regeneration effect of adipose-derived mesenchymal stem cells in intervertebral disc-like condition, and the pre-differentiated cells could be a promising cell source for disc regeneration medicine.

  16. Exo-MFA - A 13C metabolic flux analysis framework to dissect tumor microenvironment-secreted exosome contributions towards cancer cell metabolism.

    Achreja, Abhinav; Zhao, Hongyun; Yang, Lifeng; Yun, Tae Hyun; Marini, Juan; Nagrath, Deepak

    2017-01-11

    Dissecting the pleiotropic roles of tumor micro-environment (TME) on cancer progression has been brought to the foreground of research on cancer pathology. Extracellular vesicles such as exosomes, transport proteins, lipids, and nucleic acids, to mediate intercellular communication between TME components and have emerged as candidates for anti-cancer therapy. We previously reported that cancer-associated fibroblast (CAF) derived exosomes (CDEs) contain metabolites in their cargo that are utilized by cancer cells for central carbon metabolism and promote cancer growth. However, the metabolic fluxes involved in donor cells towards packaging of metabolites in extracellular vesicles and exosome-mediated metabolite flux upregulation in recipient cells are still not known. Here, we have developed a novel empirical and computational technique, exosome-mediated metabolic flux analysis (Exo-MFA) to quantify flow of cargo from source cells to recipient cells via vesicular transport. Our algorithm, which is based on (13)C metabolic flux analysis, successfully predicts packaging fluxes to metabolite cargo in CAFs, dynamic changes in rate of exosome internalization by cancer cells, and flux of cargo release over time. We find that cancer cells internalize exosomes rapidly leading to depletion of extracellular exosomes within 24h. However, metabolite cargo significantly alters intracellular metabolism over the course of 24h by regulating glycolysis pathway fluxes via lactate supply. Furthermore, it can supply up to 35% of the TCA cycle fluxes by providing TCA intermediates and glutamine. Our algorithm will help gain insight into (i) metabolic interactions in multicellular systems (ii) biogenesis of extracellular vesicles and their differential packaging of cargo under changing environments, and (iii) regulation of cancer cell metabolism by its microenvironment.

  17. Eicosanoid profiling in an orthotopic model of lung cancer progression by mass spectrometry demonstrates selective production of leukotrienes by inflammatory cells of the microenvironment.

    Joanna M Poczobutt

    Full Text Available Eicosanoids are bioactive lipid mediators derived from arachidonic acid(1 (AA, which is released by cytosolic phospholipase A2 (cPLA2. AA is metabolized through three major pathways, cyclooxygenase (COX, lipoxygenase (LO and cytochrome P450, to produce a family of eicosanoids, which individually have been shown to have pro- or anti-tumorigenic activities in cancer. However, cancer progression likely depends on complex changes in multiple eicosanoids produced by cancer cells and by tumor microenvironment and a systematic examination of the spectrum of eicosanoids in cancer has not been performed. We used liquid chromatography coupled with tandem mass spectrometry (LC/MS/MS to quantitate eicosanoids produced during lung tumor progression in an orthotopic immunocompetent mouse model of lung cancer, in which Lewis lung carcinoma (LLC cells are injected into lungs of syngeneic mice. The presence of tumor increased products of both the cyclooxygenase and the lipoxygenase pathways in a time-dependent fashion. Comparing tumors grown in cPLA2 knockout vs wild-type mice, we demonstrated that prostaglandins (PGE2, PGD2 and PGF2a were produced by both cancer cells and the tumor microenvironment (TME, but leukotriene (LTB4, LTC4, LTD4, LTE4 production required cPLA2 expression in the TME. Using flow cytometry, we recovered tumor-associated neutrophils and 2 types of tumor-associated macrophages from tumor-bearing lungs and we defined their distinct eicosanoid profiles by LC/MS/MS. The combination of flow cytometry and LC/MS/MS unravels the complexity of eicosanoid production in lung cancer and provides a rationale to develop therapeutic strategies that target select cell populations to inhibit specific classes of eicosanoids.

  18. Eicosanoid profiling in an orthotopic model of lung cancer progression by mass spectrometry demonstrates selective production of leukotrienes by inflammatory cells of the microenvironment.

    Poczobutt, Joanna M; Gijon, Miguel; Amin, Jay; Hanson, Dwight; Li, Howard; Walker, Deandra; Weiser-Evans, Mary; Lu, Xian; Murphy, Robert C; Nemenoff, Raphael A

    2013-01-01

    Eicosanoids are bioactive lipid mediators derived from arachidonic acid(1) (AA), which is released by cytosolic phospholipase A2 (cPLA2). AA is metabolized through three major pathways, cyclooxygenase (COX), lipoxygenase (LO) and cytochrome P450, to produce a family of eicosanoids, which individually have been shown to have pro- or anti-tumorigenic activities in cancer. However, cancer progression likely depends on complex changes in multiple eicosanoids produced by cancer cells and by tumor microenvironment and a systematic examination of the spectrum of eicosanoids in cancer has not been performed. We used liquid chromatography coupled with tandem mass spectrometry (LC/MS/MS) to quantitate eicosanoids produced during lung tumor progression in an orthotopic immunocompetent mouse model of lung cancer, in which Lewis lung carcinoma (LLC) cells are injected into lungs of syngeneic mice. The presence of tumor increased products of both the cyclooxygenase and the lipoxygenase pathways in a time-dependent fashion. Comparing tumors grown in cPLA2 knockout vs wild-type mice, we demonstrated that prostaglandins (PGE2, PGD2 and PGF2a) were produced by both cancer cells and the tumor microenvironment (TME), but leukotriene (LTB4, LTC4, LTD4, LTE4) production required cPLA2 expression in the TME. Using flow cytometry, we recovered tumor-associated neutrophils and 2 types of tumor-associated macrophages from tumor-bearing lungs and we defined their distinct eicosanoid profiles by LC/MS/MS. The combination of flow cytometry and LC/MS/MS unravels the complexity of eicosanoid production in lung cancer and provides a rationale to develop therapeutic strategies that target select cell populations to inhibit specific classes of eicosanoids.

  19. Cold Atmospheric Plasma Induces a Predominantly Necrotic Cell Death via the Microenvironment.

    François Virard

    Full Text Available Cold plasma is a partially ionized gas generated by an electric field at atmospheric pressure that was initially used in medicine for decontamination and sterilization of inert surfaces. There is currently growing interest in using cold plasma for more direct medical applications, mainly due to the possibility of tuning it to obtain selective biological effects in absence of toxicity for surrounding normal tissues,. While the therapeutic potential of cold plasma in chronic wound, blood coagulation, and cancer treatment is beginning to be documented, information on plasma/cell interaction is so far limited and controversial.Using normal primary human fibroblast cultures isolated from oral tissue, we sought to decipher the effects on cell behavior of a proprietary cold plasma device generating guided ionization waves carried by helium. In this model, cold plasma treatment induces a predominantly necrotic cell death. Interestingly, death is not triggered by a direct interaction of the cold plasma with cells, but rather via a transient modification in the microenvironment. We show that modification of the microenvironment redox status suppresses treatment toxicity and protects cells from death. Moreover, necrosis is not accidental and seems to be an active response to an environmental cue, as its execution can be inhibited to rescue cells.These observations will need to be taken into account when studying in vitro plasma/cell interaction and may have implications for the design and future evaluation of the efficacy and safety of this new treatment strategy.

  20. Glioblastoma-Initiating Cells: Relationship with Neural Stem Cells and the Micro-Environment

    Nicolas Goffart

    2013-08-01

    Full Text Available Glioblastoma multiforme (GBM, WHO grade IV is the most common and lethal subtype of primary brain tumor with a median overall survival of 15 months from the time of diagnosis. The presence in GBM of a cancer population displaying neural stem cell (NSC properties as well as tumor-initiating abilities and resistance to current therapies suggests that these glioblastoma-initiating cells (GICs play a central role in tumor development and are closely related to NSCs. However, it is nowadays still unclear whether GICs derive from NSCs, neural progenitor cells or differentiated cells such as astrocytes or oligodendrocytes. On the other hand, NSCs are located in specific regions of the adult brain called neurogenic niches that have been shown to control critical stem cell properties, to nourish NSCs and to support their self-renewal. This “seed-and-soil” relationship has also been adapted to cancer stem cell research as GICs also require a specific micro-environment to maintain their “stem cell” properties. In this review, we will discuss the controversies surrounding the origin and the identification of GBM stem cells and highlight the micro-environment impact on their biology.

  1. Redirection of Human Cancer Cells upon the Interaction with the Regenerating Mouse Mammary Gland Microenvironment

    Sonia M. Rosenfield

    2013-01-01

    Full Text Available Tumorigenesis is often described as a result of accumulated mutations that lead to growth advantage and clonal expansion of mutated cells. There is evidence in the literature that cancer cells are influenced by the microenvironment. Our previous studies demonstrated that the mouse mammary gland is capable of redirecting mouse cells of non-mammary origins as well as Mouse Mammary Tumor Virus (MMTV-neu transformed cells toward normal mammary epithelial cell fate during gland regeneration. Interestingly, the malignant phenotype of MMTV-neu transformed cells was suppressed during serial transplantation experiments. Here, we discuss our studies that demonstrated the potential of the regenerating mouse mammary gland to redirect cancer cells of different species into a functional tumor-free mammary epithelial cell progeny. Immunochemistry for human specific CD133, mitochondria, cytokeratins as well as milk proteins and FISH for human specific probe identified human epithelial cell progeny in ducts, lobules, and secretory acini. Fluorescent In Situ Hybridization (FISH for human centromeric DNA and FACS analysis of propidium iodine staining excluded the possibility of mouse-human cell fusion. To our knowledge this is the first evidence that human cancer cells of embryonic or somatic origins respond to developmental signals generated by the mouse mammary gland microenvironment during gland regeneration in vivo.

  2. Glioblastoma Stem Cells Microenvironment: The Paracrine Roles of the Niche in Drug and Radioresistance

    Alessia Fidoamore

    2016-01-01

    Full Text Available Among all solid tumors, the high-grade glioma appears to be the most vascularized one. In fact, “microvascular hyperplasia” is a hallmark of GBM. An altered vascular network determines irregular blood flow, so that tumor cells spread rapidly beyond the diffusion distance of oxygen in the tissue, with the consequent formation of hypoxic or anoxic areas, where the bulk of glioblastoma stem cells (GSCs reside. The response to this event is the induction of angiogenesis, a process mediated by hypoxia inducible factors. However, this new capillary network is not efficient in maintaining a proper oxygen supply to the tumor mass, thereby causing an oxygen gradient within the neoplastic zone. This microenvironment helps GSCs to remain in a “quiescent” state preserving their potential to proliferate and differentiate, thus protecting them by the effects of chemo- and radiotherapy. Recent evidences suggest that responses of glioblastoma to standard therapies are determined by the microenvironment of the niche, where the GSCs reside, allowing a variety of mechanisms that contribute to the chemo- and radioresistance, by preserving GSCs. It is, therefore, crucial to investigate the components/factors of the niche in order to formulate new adjuvant therapies rendering more efficiently the gold standard therapies for this neoplasm.

  3. [Effects of nutrition medium on cucumber growth and soil microenvironment in greenhouse under continuous cropping].

    Wu, Chun-Cheng; Li, Tian-Lai; Cao, Xia; Meng, Si-Da; Zhang, Yong-Yong; Yang, Li-Juan

    2014-05-01

    An experiment of continuous cropping of cucumber in nutrition medium (composted with straw, rural soil and puffed chicken manure) or soil was conducted in greenhouse in order to study the effects of medium type on the cucumber growth and soil microenvironment, respectively. The results showed that the two treatments both displayed different levels of obstacles resulted from continuous cropping. In the same cropping season, the nutrient content, soil invertase and urease activities and B/F (bacteria/fungi) ratio in the nutrition medium were obviously higher but fungi quantity was lower than in the soil medium, suggesting the use of nutrition medium changed the bacterial population structure as to improve the cucumber growth and yield. Under continuous cropping, correlation analysis showed that the bacterial quantity was significantly positively related with plant height and root dry mass, and markedly significantly positive correlation exited between the aboveground dry mass and yield of cucumber. The urease activity was also significantly positively related with the cucumber yield. Compared with the soil medium, the nutrition medium could greatly improve soil microenvironment and alleviate the continuous cropping obstacle.

  4. Effects of different irrigation methods on micro-environments and root distribution in winter wheat ifelds

    L Guo-hua; SONG Ji-qing; BAI Wen-bo; WU Yong-feng; LIU Yuan; KANG Yao-hu

    2015-01-01

    The irrigation method used in winter wheat ifelds affects micro-environment factors, such as relative humidity (RH) within canopy, soil temperature, topsoil bulk density, soil matric potential, and soil nutrients, and these changes may affect plant root growth. An experiment was carried out to explore the effects of irrigation method on micro-environments and root distribution in a winter wheat ifeld in the 2007–2008 and 2008–2009 growing seasons. The results showed that border irrigation (BI), sprinkler irrigation (SI), and surface drip irrigation (SDI) had no signiifcant effects on soil temperature. Topsoil bulk density, RH within the canopy, soil available N distribution, and soil matric potential were signiifcantly affected by the three treatments. The change in soil matric potential was the key reason for the altered root proifle distribution patterns. Additional y, more ifne roots were produced in the BI treatment when soil water content was low and topsoil bulk density was high. Root growth was most stimulated in the top soil layers and inhibited in the deep layers in the SDI treatment, fol owed by SI and BI, which was due to the different water application frequencies. As a result, the root proifle distribution differed, depending on the irrigation method used. The root distribution pattern changes could be described by the power level variation in the exponential function. A good knowledge of root distribution patterns is important when attempting to model water and nutrient movements and when studying soil-plant interactions.

  5. Bone Microenvironment Modulates Expression and Activity of Cathepsin B in Prostate Cancer

    Izabela Podgorski

    2005-03-01

    Full Text Available Prostate cancers metastasize to bone leading to osteolysis. Here we assessed proteolysis of DOcollagen I (a bone matrix protein and, for comparison, DO-collagen IV, by living human prostate carcinoma cells in vitro. Both collagens were degraded, this degradation was reduced by inhibitors of matrix metallo, serine, cysteine proteases. Because secretion of the cysteine protease cathepsin B is increased in human breast fibroblasts grown on collagen I gels, we analyzed cathepsin B levels and secretion in prostate cells grown on collagen I gels. Levels and secretion were increased only in DU145 cells-cells that expressed the highest baseline levels of cathepsin B. Secretion of cathepsin B was also elevated in DU145 cells grown in vitro on human bone fragments. We further investigated the effect of the bone microenvironment on cathepsin B expression and activity in vivo in a SCID-human model of prostate bone metastasis. High levels of cathepsin B protein and activity were found in DU145, PC3, LNCaP bone tumors, although the PC3 and LNCaP cells had exhibited low cathepsin B expression in vitro. Our results suggest that tumor-stromal interactions in the context of the bone microenvironment can modulate the expression of the cysteine protease cathepsin B.

  6. Microtissues in Cardiovascular Medicine: Regenerative Potential Based on a 3D Microenvironment

    Julia Günter

    2016-01-01

    Full Text Available More people die annually from cardiovascular diseases than from any other cause. In particular, patients who suffer from myocardial infarction may be affected by ongoing adverse remodeling processes of the heart that may ultimately lead to heart failure. The introduction of stem and progenitor cell-based applications has raised substantial hope for reversing these processes and inducing cardiac regeneration. However, current stem cell therapies using single-cell suspensions have failed to demonstrate long-lasting efficacy due to the overall low retention rate after cell delivery to the myocardium. To overcome this obstacle, the concept of 3D cell culture techniques has been proposed to enhance therapeutic efficacy and cell engraftment based on the simulation of an in vivo-like microenvironment. Of great interest is the use of so-called microtissues or spheroids, which have evolved from their traditional role as in vitro models to their novel role as therapeutic agents. This review will provide an overview of the therapeutic potential of microtissues by addressing primarily cardiovascular regeneration. It will accentuate their advantages compared to other regenerative approaches and summarize the methods for generating clinically applicable microtissues. In addition, this review will illustrate the unique properties of the microenvironment within microtissues that makes them a promising next-generation therapeutic approach.

  7. Lactate Contribution to the Tumor Microenvironment: Mechanisms, Effects on Immune Cells and Therapeutic Relevance

    Romero-Garcia, Susana; Moreno-Altamirano, María Maximina B.; Prado-Garcia, Heriberto; Sánchez-García, Francisco Javier

    2016-01-01

    Malignant transformation of cells leads to enhanced glucose uptake and the conversion of a larger fraction of pyruvate into lactate, even under normoxic conditions; this phenomenon of aerobic glycolysis is largely known as the Warburg effect. This metabolic reprograming serves to generate biosynthetic precursors, thus facilitating the survival of rapidly proliferating malignant cells. Extracellular lactate directs the metabolic reprograming of tumor cells, thereby serving as an additional selective pressure. Besides tumor cells, stromal cells are another source of lactate production in the tumor microenvironment, whose role in both tumor growth and the antitumor immune response is the subject of intense research. In this review, we provide an integral perspective of the relationship between lactate and the overall tumor microenvironment, from lactate structure to metabolic pathways for its synthesis, receptors, signaling pathways, lactate-producing cells, lactate-responding cells, and how all contribute to the tumor outcome. We discuss the role of lactate as an immunosuppressor molecule that contributes to tumor evasion and we explore the possibility of targeting lactate metabolism for cancer treatment, as well as of using lactate as a prognostic biomarker. PMID:26909082

  8. Lactate contribution to the tumor microenvironment: mechanisms, effects on immune cells and therapeutic relevance

    Susana eRomero-Garcia

    2016-02-01

    Full Text Available Malignant transformation of cells leads to enhanced glucose uptake and the conversion of a larger fraction of pyruvate into lactate, even under normoxic conditions; this phenomenon of aerobic glycolysis is largely known as the Warburg effect. This metabolic reprogramming serves to generate biosynthetic precursors, thus facilitating the survival of rapidly proliferating malignant cells. Extracellular lactate directs the metabolic reprogramming of tumor cells, thereby serving as an additional selective pressure. Besides tumor cells, stromal cells are another source of lactate production in the tumor microenvironment, whose role in both tumor growth and the anti-tumor immune response is the subject of intense research. In this review, we provide an integral perspective of the relationship between lactate and the overall tumor microenvironment, from lactate structure to metabolic pathways for its synthesis, receptors, signaling pathways, lactate-producing cells, lactate-responding cells, and how all contribute to the tumor outcome. We discuss the role of lactate as a immunosuppressor molecule that contributes to tumor evasion and explore the possibility of targeting lactate metabolism for cancer treatment, as well as of using lactate as a prognostic biomarker.

  9. Uterine Micro-Environment and Estrogen-Dependent Regulation of Osteopontin Expression in Mouse Blastocyst

    Qing-Zhen Xie

    2013-07-01

    Full Text Available Embryo implantation is a highly synchronized bioprocess between an activated blastocyst and a receptive uterus. In mice, successful implantation relies on the dynamic interplay of estrogen and progesterone; however, the key mediators downstream of these hormones that act on blastocyst competency and endometrium receptivity acquisition are largely unknown. In this study, we showed that the expression of osteopontin (OPN in mouse blastocysts is regulated by ovarian estrogen and uterine micro-environment. OPN mRNA is up-regulated in mouse blastocyst on day 4 of pregnancy, which is associated with ovarian estrogen secretion peak. Hormone treatment in vivo demonstrated that OPN expression in a blastocyst is regulated by estrogen through an estrogen receptor (ER. Our results of the delayed and activated implantation model showed that OPN expression is induced after estrogen injection. While estrogen treatment during embryo culture in vitro showed less effect on OPN expression, the tubal ligation model on day 3 of pregnancy confirmed that the regulation of estrogen on OPN expression in blastocyst might, through some specific cytokines, have existed in a uterine micro-environment. Collectively, our study presents that estrogen regulates OPN expression and it may play an important role during embryo implantation by activating blastocyst competence and facilitating the endometrium acceptable for active blastocyst.

  10. Urban air pollution in school-related microenvironments in Bogota, Colombia

    Juan Felipe Franco

    2012-10-01

    Full Text Available Particle-related pollution (PM10, PM2.5 and soot was measured in both indoor and outdoor microenvironments at four public elementary schools in Bogota, Colombia. Three of these schools were located alongside major urban roads in which different types of public transit systems are used (bus rapid transit system and conventional transit buses. The fourth school was located on a non-congested road (background school. Pollutant levels at schools situated on major-roads were higher than those found at the low-congestion-road school. Outdoor black carbon daily mean concentrations at the schools located near major roads were up to six times higher than those recorded at the background school. Mean particulate matter concentrations at schools near major roads were above international standards, suggesting that school-age children in Bogota are exposed to pollution levels that are considered to be harmful by environmental and public health authorities. Elevated indoor and outdoor pollutant concentrations documented in this study suggested that traffic has a direct impact on air quality regarding the schools’ characterised microenvironments.

  11. Human pluripotent stem cells on artificial microenvironments: a high content perspective.

    Priyalakshmi eViswanathan

    2014-07-01

    Full Text Available Self-renewing stem cell populations are increasingly considered as resources for cell therapy and tools for drug discovery. Human pluripotent stem (hPS cells in particular offer a virtually unlimited reservoir of homogeneous cells and can be differentiated towards diverse lineages. Many diseases show impairment in self-renewal or differentiation, abnormal lineage choice or other aberrant cell behavior in response to chemical or physical cues. To investigate these responses, there is a growing interest in the development of specific assays using hPS cells artificial microenvironments and high content analysis. Several hurdles need to be overcome that can be grouped in: (i availability of robust, homogeneous and consistent cell populations as a starting point; (ii appropriate understanding and use of chemical and physical microenvironments; (iii development of assays that dissect the complexity of cell populations in tissues while mirroring specific aspects of their behavior. Here we review recent progress in the culture of hPS cells and we detail the importance of the environment surrounding the cells with a focus on synthetic material and suitable high content analysis approaches. The technologies described if properly combined have the potential to create a paradigm shift in the way diseases are modelled and drug discovery is performed.

  12. Hypoxia-induced reactive oxygen species cause chromosomal abnormalities in endothelial cells in the tumor microenvironment.

    Miyako Kondoh

    Full Text Available There is much evidence that hypoxia in the tumor microenvironment enhances tumor progression. In an earlier study, we reported abnormal phenotypes of tumor-associated endothelial cells such as those resistant to chemotherapy and chromosomal instability. Here we investigated the role of hypoxia in the acquisition of chromosomal abnormalities in endothelial cells. Tumor-associated endothelial cells isolated from human tumor xenografts showed chromosomal abnormalities, >30% of which were aneuploidy. Aneuploidy of the tumor-associated endothelial cells was also shown by simultaneous in-situ hybridization for chromosome 17 and by immunohistochemistry with anti-CD31 antibody for endothelial staining. The aneuploid cells were surrounded by a pimonidazole-positive area, indicating hypoxia. Human microvascular endothelial cells expressed hypoxia-inducible factor 1 and vascular endothelial growth factor A in response to either hypoxia or hypoxia-reoxygenation, and in these conditions, they acquired aneuploidy in 7 days. Induction of aneuploidy was inhibited by either inhibition of vascular endothelial growth factor signaling with vascular endothelial growth factor receptor 2 inhibitor or by inhibition of reactive oxygen species by N-acetyl-L-cysteine. These results indicate that hypoxia induces chromosomal abnormalities in endothelial cells through the induction of reactive oxygen species and excess signaling of vascular endothelial growth factor in the tumor microenvironment.

  13. Photodegradable supramolecular hydrogels with fluorescence turn-on reporter for photomodulation of cellular microenvironments.

    He, Mingtao; Li, Jinbo; Tan, Subee; Wang, Ruzhi; Zhang, Yan

    2013-12-18

    Photodegradable hydrogels that allow 3D encapsulation of cells are important biomaterials to modulate cellular microenvironments with temporal and spatial resolution. Herein we report a photodegradable hydrogel formed by the self-assembly of short peptides modified with a novel phototrigger. The phototrigger is a biaryl-substituted tetrazole moiety that, upon mild light irradiation, undergoes rapid intramolecular photoclick ligation to form a highly fluorescent pyrazoline moiety. Short peptides linked with a tetrazole-containing moiety, Tet(I) or Tet(II), are able to self-assemble into hydrogels, among which the Tet(I)-GFF and Tet(II)-GFRGD gels show good mechanical strength and biocompatibility for 3D encapsulation and prolonged culture of live cells. The phototriggered tetrazole-to-pyrazoline transformation generates a highly fluorescent reporter and induces the disassembly of the hydrogel matrix by disturbing the balance between hydrophilic interaction and π-π stacking of the self-assembled system. Photomodulation of cellular microenvironments was demonstrated not only for the cells grown on top of the gel but also for stem cells encapsulated inside the hydrogels.

  14. Genetic relationships between swamp microenvironment and sulfur distribution of the Late Paleozoic coals in North China

    汤达祯; 杨起; 周春光; 康西栋; 刘大锰; 黄文辉

    2001-01-01

    The genetic relationships between microenvironment of the Late Paleozoic peat-forming swamp and the sulfur contents of coal in North China have been studied by using coal-facies parameters involving gelification degree, tissue preservation index, vegetation index, transportation index, groundwater influence index, water medium indicator and swamp type index, etc. Among the various controlling factors of swamp microenvironment, swamp water medium elaborates a dominant action to sulfur accumulation in the marine-influenced coals; while coal-forming plant type, hydrodynamic state and water covering depth are more important to sulfur accumulation in the fresh water-influenced coals. Geological fractionation of sulfur isotopes reflects that sulfur accumulation experienced multi-stages evolution. Pyrite sulfurs formed earlier than organic sulfur and the sulfur isotopic d 34Sp shows lower values than organic sulfur isotopic d 34So. In the brine-influenced coals, sulfur accumulation processed relatively a long time span, the distribution of sulfur isotopes dispersed,and the coals are provided with high sulfur contents. In the fresh-water-influenced coals, sulfur accumulation occurred mainly at the syngenetic-penesyngenetic stage and the early diagenetic stage, and the total sulfur is lower and mainly composed of organic sulfur.

  15. The Role of Neurokinin-1 Receptor in the Microenvironment of Inflammation and Cancer

    Marisa Rosso

    2012-01-01

    Full Text Available The recent years have witnessed an exponential increase in cancer research, leading to a considerable investment in the field. However, with few exceptions, this effort has not yet translated into a better overall prognosis for patients with cancer, and the search for new drug targets continues. After binding to the specific neurokinin-1 (NK-1 receptor, the peptide substance P (SP, which is widely distributed in both the central and peripheral nervous systems, triggers a wide variety of functions. Antagonists against the NK-1 receptor are safe clinical drugs that are known to have anti-inflammatory, analgesic, anxiolytic, antidepressant, and antiemetic effects. Recently, it has become apparent that SP can induce tumor cell proliferation, angiogenesis, and migration via the NK-1 receptor, and that the SP/NK-1 receptor complex is an integral part of the microenvironment of inflammation and cancer. Therefore, the use of NK-1 receptor antagonists as a novel and promising approach for treating patients with cancer is currently under intense investigation. In this paper, we evaluate the recent scientific developments regarding this receptor system, its role in the microenvironment of inflammation and cancer, and its potentials and pitfalls for the usage as part of modern anticancer strategies.

  16. Stromal androgen receptor regulates the composition of the microenvironment to influence prostate cancer outcome

    Leach, Damien A.; Need, Eleanor F.; Toivanen, Roxanne; Trotta, Andrew P.; Palenthorpe, Helen M.; Tamblyn, David J.; Kopsaftis, Tina; England, Georgina M.; Smith, Eric; Drew, Paul A.; Pinnock, Carole B.; Lee, Peng; Holst, Jeff; Risbridger, Gail P.; Chopra, Samarth; DeFranco, Donald B.; Taylor, Renea A.; Buchanan, Grant

    2015-01-01

    Androgen receptor (AR) signaling in stromal cells is important in prostate cancer, yet the mechanisms underpinning stromal AR contribution to disease development and progression remain unclear. Using patient-matched benign and malignant prostate samples, we show a significant association between low AR levels in cancer associated stroma and increased prostate cancer-related death at one, three and five years post-diganosis, and in tissue recombination models with primary prostate cancer cells that low stromal AR decreases castration-induced apoptosis. AR-regulation was found to be different in primary human fibroblasts isolated from adjacent to cancerous and non-cancerous prostate epithelia, and to represent altered activation of myofibroblast pathways involved in cell cycle, adhesion, migration, and the extracellular matrix (ECM). Without AR signaling, the fibroblast-derived ECM loses the capacity to promote attachment of both myofibroblasts and cancer cells, is less able to prevent cell-matrix disruption, and is less likely to impede cancer cell invasion. AR signaling in prostate cancer stroma appears therefore to alter patient outcome by maintaining an ECM microenvironment inhibitory to cancer cell invasion. This paper provides comprehensive insight into AR signaling in the non-epithelial prostate microenvironment, and a resource from which the prognostic and therapeutic implications of stromal AR levels can be further explored. PMID:25965833

  17. DDR-mediated crosstalk between DNA-damaged cells and their microenvironment.

    Malaquin, Nicolas; Carrier-Leclerc, Audrey; Dessureault, Mireille; Rodier, Francis

    2015-01-01

    The DNA damage response (DDR) is an evolutionarily conserved signaling cascade that senses and responds to double-strand DNA breaks by organizing downstream cellular events, ranging from appropriate DNA repair to cell cycle checkpoints. In higher organisms, the DDR prevents neoplastic transformation by directly protecting the information contained in the genome and by regulating cell fate decisions, like apoptosis and senescence, to ensure the removal of severely damaged cells. In addition to these well-studied cell-autonomous effects, emerging evidence now shows that the DDR signaling cascade can also function in a paracrine manner, thus influencing the biology of the surrounding cellular microenvironment. In this context, the DDR plays an emerging role in shaping the damaged tumor microenvironment through the regulation of tissue repair and local immune responses, thereby providing a promising avenue for novel therapeutic interventions. Additionally, while DDR-mediated extracellular signals can convey information to surrounding, undamaged cells, they can also feedback onto DNA-damaged cells to reinforce selected signaling pathways. Overall, these extracellular DDR signals can be subdivided into two time-specific waves: a rapid bystander effect occurring within a few hours of DNA damage; and a late, delayed, senescence-associated secretory phenotype generally requiring multiple days to establish. Here, we highlight and discuss examples of rapid and late DDR-mediated extracellular alarm signals.

  18. Concentric Gel System to Study the Biophysical Role of Matrix Microenvironment on 3D Cell Migration

    Kurniawan, Nicholas Agung; Chaudhuri, Parthiv Kant; Lim, Chwee Teck

    2015-01-01

    The ability of cells to migrate is crucial in a wide variety of cell functions throughout life from embryonic development and wound healing to tumor and cancer metastasis. Despite intense research efforts, the basic biochemical and biophysical principles of cell migration are still not fully understood, especially in the physiologically relevant three-dimensional (3D) microenvironments. Here, we describe an in vitro assay designed to allow quantitative examination of 3D cell migration behaviors. The method exploits the cell’s mechanosensing ability and propensity to migrate into previously unoccupied extracellular matrix (ECM). We use the invasion of highly invasive breast cancer cells, MDA-MB-231, in collagen gels as a model system. The spread of cell population and the migration dynamics of individual cells over weeks of culture can be monitored using live-cell imaging and analyzed to extract spatiotemporally-resolved data. Furthermore, the method is easily adaptable for diverse extracellular matrices, thus offering a simple yet powerful way to investigate the role of biophysical factors in the microenvironment on cell migration. PMID:25867104

  19. Periodontal Ligament Stem Cells in the Periodontitis Microenvironment Are Sensitive to Static Mechanical Strain

    Jia Liu

    2017-01-01

    Full Text Available During orthodontic treatment, periodontium remodeling of periodontitis patients under mechanical force was abnormal. We have previously confirmed the function impairment of periodontal ligament stem cells (PDLSCs in the periodontitis microenvironment which might be involved in this pathological process. However, the response of PDLSCs in periodontitis microenvironment to mechanical force remains unclear. Therefore, in the present study, we introduced a Flexcell tension apparatus and investigated the response of PDLSCs obtained from periodontal tissues of periodontitis patients (PPDLSCs and of those obtained from healthy periodontal tissues (HPDLSCs to different magnitudes of static mechanical strain (SMS. PPDLSCs showed increased proliferation, decreased osteogenic activity, activated osteoclastogenesis, and greater secretion of inflammatory cytokines. Different magnitudes of SMS exerted distinct effects on HPDLSCs and PPDLSCs. An SMS of 12% induced optimal effects in HPDLSCs, including the highest proliferation, the best osteogenic ability, the lowest osteoclastogenesis, and the lowest secretion of inflammatory cytokines, while the optimal SMS for PPDLSCs was 8%. Excessive SMS damaged PPDLSCs function, including decreased proliferation, an imbalance between osteogenesis and osteoclastogenesis, and an activated inflammatory response. Our data suggest that PPDLSCs are more sensitive and less tolerant to SMS, and this may explain why mechanical force results in undesirable effects in periodontitis patients.

  20. Human Pluripotent Stem Cell Mechanobiology: Manipulating the Biophysical Microenvironment for Regenerative Medicine and Tissue Engineering Applications.

    Ireland, Ronald G; Simmons, Craig A

    2015-11-01

    A stem cell in its microenvironment is subjected to a myriad of soluble chemical cues and mechanical forces that act in concert to orchestrate cell fate. Intuitively, many of these soluble and biophysical factors have been the focus of intense study to successfully influence and direct cell differentiation in vitro. Human pluripotent stem cells (hPSCs) have been of considerable interest in these studies due to their great promise for regenerative medicine. Culturing and directing differentiation of hPSCs, however, is currently extremely labor-intensive and lacks the efficiency required to generate large populations of clinical-grade cells. Improved efficiency may come from efforts to understand how the cell biophysical signals can complement biochemical signals to regulate cell pluripotency and direct differentiation. In this concise review, we explore hPSC mechanobiology and how the hPSC biophysical microenvironment can be manipulated to maintain and differentiate hPSCs into functional cell types for regenerative medicine and tissue engineering applications.

  1. How Do Mesenchymal Stem Cells Influence or Are Influenced by Microenvironment through Extracellular Vesicles Communication?

    Dostert, Gabriel; Mesure, Benjamin; Menu, Patrick; Velot, Émilie

    2017-01-01

    Mesenchymal stem cells (MSCs) are widely used in cell therapy and tissue engineering thanks to their self-renewal, their multipotency, and their immunomodulatory properties that make them an attractive tool for regenerative medicine. A large part of MSCs positive effects is due to their secretion products which participate in creating a favorable microenvironment and closely relate these cells to other cell types. Extracellular vesicles (EVs) belong to cellular secretions. They are produced by cells continuously or after stimulation (e.g., calcium flux, cellular stress) and act in tissue homeostasis and intercellular communication. The understanding of the role of EVs is growing, more particularly their impact on cell migration, differentiation, or immunomodulation. EVs derived from MSCs show these interesting properties that may be considered in therapeutics, although they can have adverse effects by facilitating cancer propagation. Moreover, MSC behavior may also be influenced (proliferation, differentiation) by EVs derived from other donor cells. The aim of this mini review is to summarize the two-way communication between MSCs and other cell types, and how they can affect each other with their microenvironment through EVs. On the one hand, the manuscript presents the influence of MSC-derived EVs on diverse recipient cells and on the other hand, the effects of EVs derived from various donor cells on MSCs. The discrepancies between cancer cells and MSCs communication according to the sources of MSCs but also the tumor origins are also mentioned. PMID:28224125

  2. Neuroblastoma Arginase Activity Creates an Immunosuppressive Microenvironment That Impairs Autologous and Engineered Immunity.

    Mussai, Francis; Egan, Sharon; Hunter, Stuart; Webber, Hannah; Fisher, Jonathan; Wheat, Rachel; McConville, Carmel; Sbirkov, Yordan; Wheeler, Kate; Bendle, Gavin; Petrie, Kevin; Anderson, John; Chesler, Louis; De Santo, Carmela

    2015-08-01

    Neuroblastoma is the most common extracranial solid tumor of childhood, and survival remains poor for patients with advanced disease. Novel immune therapies are currently in development, but clinical outcomes have not matched preclinical results. Here, we describe key mechanisms in which neuroblastoma inhibits the immune response. We show that murine and human neuroblastoma tumor cells suppress T-cell proliferation through increased arginase activity. Arginase II is the predominant isoform expressed and creates an arginine-deplete local and systemic microenvironment. Neuroblastoma arginase activity results in inhibition of myeloid cell activation and suppression of bone marrow CD34(+) progenitor proliferation. Finally, we demonstrate that the arginase activity of neuroblastoma impairs NY-ESO-1-specific T-cell receptor and GD2-specific chimeric antigen receptor-engineered T-cell proliferation and cytotoxicity. High arginase II expression correlates with poor survival for patients with neuroblastoma. The results support the hypothesis that neuroblastoma creates an arginase-dependent immunosuppressive microenvironment in both the tumor and blood that leads to impaired immunosurveillance and suboptimal efficacy of immunotherapeutic approaches.

  3. sFRP2 in the aged microenvironment drives melanoma metastasis and therapy resistance

    Kaur, Amanpreet; Webster, Marie R.; Marchbank, Katie; Behera, Reeti; Ndoye, Abibatou; Kugel, Curtis H.; Dang, Vanessa M.; Appleton, Jessica; O’Connell, Michael P.; Cheng, Phil; Valiga, Alexander A.; Morissette, Rachel; McDonnell, Nazli B.; Ferrucci, Luigi; Kossenkov, Andrew V.; Meeth, Katrina; Tang, Hsin-Yao; Yin, Xiangfan; Wood, William H.; Lehrmann, Elin; Becker, Kevin G.; Flaherty, Keith T.; Frederick, Dennie T.; Wargo, Jennifer A.; Cooper, Zachary A.; Tetzlaff, Michael T.; Hudgens, Courtney; Aird, Katherine M.; Zhang, Rugang; Xu, Xiaowei; Liu, Qin; Bartlett, Edmund; Karakousis, Giorgos; Eroglu, Zeynep; Lo, Roger S.; Chan, Matthew; Menzies, Alexander M.; Long, Georgina V.; Johnson, Douglas B.; Sosman, Jeffrey; Schilling, Bastian; Schadendorf, Dirk; Speicher, David W.; Bosenberg, Marcus; Ribas, Antoni; Weeraratna, Ashani T.

    2016-01-01

    Cancer is a disease of aging, and aged cancer patients have a poorer prognosis. This may be due to accumulated cellular damage, decreases in adaptive immunity, and chronic inflammation. However, the effects of the aged microenvironment on tumor progression have been largely unexplored. Since dermal fibroblasts can have profound impacts on melanoma progression1–4 we examined whether age-related changes in dermal fibroblasts could drive melanoma metastasis and response to targeted therapy. We find that aged fibroblasts secrete a Wnt antagonist, sFRP2, which activates a multi-step signaling cascade in melanoma cells that results in a decrease in β-catenin and MITF, and ultimately the loss of a key redox effector, APE1. Loss of APE1 attenuates the response of melanoma cells to ROS-induced DNA damage, rendering them more resistant to targeted therapy (vemurafenib). Age-related increases in sFRP2 also augment both angiogenesis and metastasis of melanoma cells. These data provide an integrated view of how fibroblasts in the aged microenvironment contribute to tumor progression, offering new paradigms for the design of therapy for the elderly. PMID:27042933

  4. Cancer Microenvironment: What Can We Learn from the Stem Cell Niche.

    Lacina, Lukas; Plzak, Jan; Kodet, Ondrej; Szabo, Pavol; Chovanec, Martin; Dvorankova, Barbora; Smetana, Karel

    2015-10-12

    Epidermal stem cells (ESCs) are crucial for maintenance and self- renewal of skin epithelium and also for regular hair cycling. Their role in wound healing is also indispensable. ESCs reside in a defined outer root sheath portion of hair follicle-also known as the bulge region. ECS are also found between basal cells of the interfollicular epidermis or mucous membranes. The non-epithelial elements such as mesenchymal stem cell-like elements of dermis or surrounding adipose tissue can also contribute to this niche formation. Cancer stem cells (CSCs) participate in formation of common epithelial malignant diseases such as basal cell or squamous cell carcinoma. In this review article, we focus on the role of cancer microenvironment with emphasis on the effect of cancer-associated fibroblasts (CAFs). This model reflects various biological aspects of interaction between cancer cell and CAFs with multiple parallels to interaction of normal epidermal stem cells and their niche. The complexity of intercellular interactions within tumor stroma is depicted on example of malignant melanoma, where keratinocytes also contribute the microenvironmental landscape during early phase of tumor progression. Interactions seen in normal bulge region can therefore be an important source of information for proper understanding to melanoma. The therapeutic consequences of targeting of microenvironment in anticancer therapy and for improved wound healing are included to article.

  5. Omentum and bone marrow: how adipocyte-rich organs create tumour microenvironments conducive for metastatic progression

    Gusky, H. Chkourko; Diedrich, J.; MacDougald, O. A.; Podgorski, I.

    2016-01-01

    Summary A number of clinical studies have linked adiposity with increased cancer incidence, progression and metastasis, and adipose tissue is now being credited with both systemic and local effects on tumour development and survival. Adipocytes, a major component of benign adipose tissue, represent a significant source of lipids, cytokines and adipokines, and their presence in the tumour microenvironment substantially affects cellular trafficking, signalling and metabolism. Cancers that have a high predisposition to metastasize to the adipocyte-rich host organs are likely to be particularly affected by the presence of adipocytes. Although our understanding of how adipocytes influence tumour progression has grown significantly over the last several years, the mechanisms by which adipocytes regulate the meta-static niche are not well-understood. In this review, we focus on the omentum, a visceral white adipose tissue depot, and the bone, a depot for marrow adipose tissue, as two distinct adipocyte-rich organs that share common characteristic: they are both sites of significant metastatic growth. We highlight major differences in origin and function of each of these adipose depots and reveal potential common characteristics that make them environments that are attractive and conducive to secondary tumour growth. Special attention is given to how omental and marrow adipocytes modulate the tumour microenvironment by promoting angiogenesis, affecting immune cells and altering metabolism to support growth and survival of metastatic cancer cells. PMID:27432523

  6. Cancer Microenvironment: What Can We Learn from the Stem Cell Niche

    Lukas Lacina

    2015-10-01

    Full Text Available Epidermal stem cells (ESCs are crucial for maintenance and self- renewal of skin epithelium and also for regular hair cycling. Their role in wound healing is also indispensable. ESCs reside in a defined outer root sheath portion of hair follicle—also known as the bulge region. ECS are also found between basal cells of the interfollicular epidermis or mucous membranes. The non-epithelial elements such as mesenchymal stem cell-like elements of dermis or surrounding adipose tissue can also contribute to this niche formation. Cancer stem cells (CSCs participate in formation of common epithelial malignant diseases such as basal cell or squamous cell carcinoma. In this review article, we focus on the role of cancer microenvironment with emphasis on the effect of cancer-associated fibroblasts (CAFs. This model reflects various biological aspects of interaction between cancer cell and CAFs with multiple parallels to interaction of normal epidermal stem cells and their niche. The complexity of intercellular interactions within tumor stroma is depicted on example of malignant melanoma, where keratinocytes also contribute the microenvironmental landscape during early phase of tumor progression. Interactions seen in normal bulge region can therefore be an important source of information for proper understanding to melanoma. The therapeutic consequences of targeting of microenvironment in anticancer therapy and for improved wound healing are included to article.

  7. Efficacy of Honeycomb TCP-induced Microenvironment on Bone Tissue Regeneration in Craniofacial Area.

    Watanabe, Satoko; Takabatake, Kiyofumi; Tsujigiwa, Hidetsugu; Watanabe, Toshiyuki; Tokuyama, Eijiro; Ito, Satoshi; Nagatsuka, Hitoshi; Kimata, Yoshihiro

    2016-01-01

    Artificial bone materials that exhibit high biocompatibility have been developed and are being widely used for bone tissue regeneration. However, there are no biomaterials that are minimally invasive and safe. In a previous study, we succeeded in developing honeycomb β-tricalcium phosphate (β-TCP) which has through-and-through holes and is able to mimic the bone microenvironment for bone tissue regeneration. In the present study, we investigated how the difference in hole-diameter of honeycomb β-TCP (hole-diameter: 75, 300, 500, and 1600 μm) influences bone tissue regeneration histologically. Its osteoconductivity was also evaluated by implantation into zygomatic bone defects in rats. The results showed that the maximum bone formation was observed on the β-TCP with hole-diameter 300μm, included bone marrow-like tissue and the pattern of bone tissue formation similar to host bone. Therefore, the results indicated that we could control bone tissue formation by creating a bone microenvironment provided by β-TCP. Also, in zygomatic bone defect model with honeycomb β-TCP, the result showed there was osseous union and the continuity was reproduced between the both edges of resected bone and β-TCP, which indicated the zygomatic bone reproduction fully succeeded. It is thus thought that honeycomb β-TCP may serve as an excellent biomaterial for bone tissue regeneration in the head, neck and face regions, expected in clinical applications.

  8. Periodontal Ligament Stem Cells in the Periodontitis Microenvironment Are Sensitive to Static Mechanical Strain

    Liu, Jia; Liu, Shiyu; Gao, Jie; Qin, Wen; Song, Yang

    2017-01-01

    During orthodontic treatment, periodontium remodeling of periodontitis patients under mechanical force was abnormal. We have previously confirmed the function impairment of periodontal ligament stem cells (PDLSCs) in the periodontitis microenvironment which might be involved in this pathological process. However, the response of PDLSCs in periodontitis microenvironment to mechanical force remains unclear. Therefore, in the present study, we introduced a Flexcell tension apparatus and investigated the response of PDLSCs obtained from periodontal tissues of periodontitis patients (PPDLSCs) and of those obtained from healthy periodontal tissues (HPDLSCs) to different magnitudes of static mechanical strain (SMS). PPDLSCs showed increased proliferation, decreased osteogenic activity, activated osteoclastogenesis, and greater secretion of inflammatory cytokines. Different magnitudes of SMS exerted distinct effects on HPDLSCs and PPDLSCs. An SMS of 12% induced optimal effects in HPDLSCs, including the highest proliferation, the best osteogenic ability, the lowest osteoclastogenesis, and the lowest secretion of inflammatory cytokines, while the optimal SMS for PPDLSCs was 8%. Excessive SMS damaged PPDLSCs function, including decreased proliferation, an imbalance between osteogenesis and osteoclastogenesis, and an activated inflammatory response. Our data suggest that PPDLSCs are more sensitive and less tolerant to SMS, and this may explain why mechanical force results in undesirable effects in periodontitis patients. PMID:28316629

  9. Challenges and limitations of targeting cancer stem cells and/or the tumour microenvironment

    Juan Sebastian Yakisich

    2012-05-01

    Full Text Available The existence of cancer cells with stem cell properties (Cancer Stem Cells, CSCs and their association with tumor resistance and relapse has led to the search for active compounds to eliminate these cells or modulate their stemness in the hope of curing cancer. So far, three classes of drugs that target cancer stemness (Stemness Modulator Drugs have been identified: i drugs that selectively eliminate CSCs (stem cell targeting drugs; ii drugs that decrease stemness (stemness inhibitor drugs; and iii drugs that promote stemness (stemness promoting drugs. In addition, microenvironment modulating drugs aimed at selectively targeting the stem cell niche are being investigated and may represent an important class of drug for cancer therapy. This article will briefly review the current use of these substances and discuss the potential outcomes, challenges and limitations of treatment modalities using these classes of drugs for cancer treatment. Finally, a modular tumor model will be proposed as a guide to integrate our knowledge on the biology of cancer stem cell with that of the tumor microenvironment to promote a more rational development of anticancer therapy.

  10. Metastatic breast cancer cells in the bone marrow microenvironment: novel insights into oncoprotection

    Shyam A. Patel

    2011-06-01

    Full Text Available Among all cancers, malignancies of the breast are the second leading cause of cancer death in the United States after carcinoma of the lung. One of the major factors considered when assessing the prognosis of breast cancer patients is whether the tumor has metastasized to distant organs. Although the exact phenotype of the malignant cells responsible for metastasis and dormancy is still unknown, growing evidence has revealed that they may have stem cell-like properties that may account for resistance to chemotherapy and radiation. One process that has been attributed to primary tumor metastasis is the epithelial- to-mesenchymal transition. In this review, we specifically discuss breast cancer dissemination to the bone marrow and factors that ultimately serve to shelter and promote tumor growth, including the complex relationship between mesenchymal stem cells (MSCs and various aspects of the immune system, carcinoma-associated fibroblasts, and the diverse components of the tumor microenvironment. A better understanding of the journey from the primary tumor site to the bone marrow and subsequently the oncoprotective role of MSCs and other factors within that microenvironment can potentially lead to development of novel therapeutic targets.

  11. Hypoxia-Induced Reactive Oxygen Species Cause Chromosomal Abnormalities in Endothelial Cells in the Tumor Microenvironment

    Hida, Yasuhiro; Maishi, Nako; Towfik, Alam Mohammad; Inoue, Nobuo; Shindoh, Masanobu; Hida, Kyoko

    2013-01-01

    There is much evidence that hypoxia in the tumor microenvironment enhances tumor progression. In an earlier study, we reported abnormal phenotypes of tumor-associated endothelial cells such as those resistant to chemotherapy and chromosomal instability. Here we investigated the role of hypoxia in the acquisition of chromosomal abnormalities in endothelial cells. Tumor-associated endothelial cells isolated from human tumor xenografts showed chromosomal abnormalities, >30% of which were aneuploidy. Aneuploidy of the tumor-associated endothelial cells was also shown by simultaneous in-situ hybridization for chromosome 17 and by immunohistochemistry with anti-CD31 antibody for endothelial staining. The aneuploid cells were surrounded by a pimonidazole-positive area, indicating hypoxia. Human microvascular endothelial cells expressed hypoxia-inducible factor 1 and vascular endothelial growth factor A in response to either hypoxia or hypoxia-reoxygenation, and in these conditions, they acquired aneuploidy in 7 days. Induction of aneuploidy was inhibited by either inhibition of vascular endothelial growth factor signaling with vascular endothelial growth factor receptor 2 inhibitor or by inhibition of reactive oxygen species by N-acetyl-L-cysteine. These results indicate that hypoxia induces chromosomal abnormalities in endothelial cells through the induction of reactive oxygen species and excess signaling of vascular endothelial growth factor in the tumor microenvironment. PMID:24260373

  12. Galectin-3 in bone tumor microenvironment: a beacon for individual skeletal metastasis management.

    Nakajima, Kosei; Kho, Dong Hyo; Yanagawa, Takashi; Zimel, Melissa; Heath, Elisabeth; Hogan, Victor; Raz, Avraham

    2016-06-01

    The skeleton is frequently a secondary growth site of disseminated cancers, often leading to painful and devastating clinical outcomes. Metastatic cancer distorts bone marrow homeostasis through tumor-derived factors, which shapes different bone tumor microenvironments depending on the tumor cells' origin. Here, we propose a novel insight on tumor-secreted Galectin-3 (Gal-3) that controls the induction of an inflammatory cascade, differentiation of osteoblasts, osteoclasts, and bone marrow cells, resulting in bone destruction and therapeutic failure. In the approaching era of personalized medicine, the current treatment modalities targeting bone metastatic environments are provided to the patient with limited consideration of the cancer cells' origin. Our new outlook suggests delivering individual tumor microenvironment treatments based on the expression level/activity/functionality of tumor-derived factors, rather than utilizing a commonly shared therapeutic umbrella. The notion of "Gal-3-associated bone remodeling" could be the first step toward a specific personalized therapy for each cancer type generating a different bone niche in patients afflicted with non-curable bone metastasis.

  13. Mesenchymal Stromal Cells Can Regulate the Immune Response in the Tumor Microenvironment

    Alessandro Poggi

    2016-11-01

    Full Text Available The tumor microenvironment is a good target for therapy in solid tumors and hematological malignancies. Indeed, solid tumor cells’ growth and expansion can influence neighboring cells’ behavior, leading to a modulation of mesenchymal stromal cell (MSC activities and remodeling of extracellular matrix components. This leads to an altered microenvironment, where reparative mechanisms, in the presence of sub-acute inflammation, are not able to reconstitute healthy tissue. Carcinoma cells can undergo epithelial mesenchymal transition (EMT, a key step to generate metastasis; these mesenchymal-like cells display the functional behavior of MSC. Furthermore, MSC can support the survival and growth of leukemic cells within bone marrow participating in the leukemic cell niche. Notably, MSC can inhibit the anti-tumor immune response through either carcinoma-associated fibroblasts or bone marrow stromal cells. Experimental data have indicated their relevance in regulating cytolytic effector lymphocytes of the innate and adaptive arms of the immune system. Herein, we will discuss some of the evidence in hematological malignancies and solid tumors. In particular, we will focus our attention on the means by which it is conceivable to inhibit MSC-mediated immune suppression and trigger anti-tumor innate immunity.

  14. Glioblastoma-Initiating Cells: Relationship with Neural Stem Cells and the Micro-Environment

    Goffart, Nicolas [Laboratory of Developmental Neurobiology, GIGA-Neurosciences Research Center, University of Liège, Liège 4000 (Belgium); Kroonen, Jérôme [Human Genetics, CHU and University of Liège, Liège 4000 (Belgium); The T& P Bohnenn Laboratory for Neuro-Oncology, Department of Neurology and Neurosurgery, UMC Utrecht, Utrecht 3556 (Netherlands); Rogister, Bernard, E-mail: Bernard.Register@ulg.ac.be [Laboratory of Developmental Neurobiology, GIGA-Neurosciences Research Center, University of Liège, Liège 4000 (Belgium); Department of Neurology, CHU and University of Liège, Liège 4000 (Belgium); GIGA-Development, Stem Cells and Regenerative Medicine, University of Liège, Liège 4000 (Belgium)

    2013-08-14

    Glioblastoma multiforme (GBM, WHO grade IV) is the most common and lethal subtype of primary brain tumor with a median overall survival of 15 months from the time of diagnosis. The presence in GBM of a cancer population displaying neural stem cell (NSC) properties as well as tumor-initiating abilities and resistance to current therapies suggests that these glioblastoma-initiating cells (GICs) play a central role in tumor development and are closely related to NSCs. However, it is nowadays still unclear whether GICs derive from NSCs, neural progenitor cells or differentiated cells such as astrocytes or oligodendrocytes. On the other hand, NSCs are located in specific regions of the adult brain called neurogenic niches that have been shown to control critical stem cell properties, to nourish NSCs and to support their self-renewal. This “seed-and-soil” relationship has also been adapted to cancer stem cell research as GICs also require a specific micro-environment to maintain their “stem cell” properties. In this review, we will discuss the controversies surrounding the origin and the identification of GBM stem cells and highlight the micro-environment impact on their biology.

  15. MicroRNA-mediated cancer metastasis regulation via heterotypic signals in the microenvironment.

    Ma, Haizhong; Liang, Chunli; Wang, Guangxue; Jia, Sujuan; Zhao, Qian; Xiang, Zhendong; Li, Yuan; Cho, William C; Pestell, Richard G; Liang, Li; Yu, Zuoren

    2014-01-01

    MicroRNAs (miRNAs) are thought to regulate tumor progression and metastasis via direct interaction with target genes within cells. Emerging evidence has demonstrated the secretion of miRNAs into environment via cancer cell exosomes, called "exosomal shuttle small RNA". Microenvironmental miRNAs are important mediators of cell-to-cell communication, and they play important roles in regulating cancer metastasis. RNA analysis indicates enrichment of the miRNA population in cell-culturing medium. miRNA-conditioned medium is able to mediate the function of miRNAs in regulating cancer cell migration and invasion. Here we combine our recent work with literature discussing multiple mechanisms through which exosomal miRNAs regulate cancer cell migration, invasion and metastasis. We summarize a heterotypic signaling pathway by which miRNA regulates the cellular secretion and tumor microenvironment in control of breast cancer cell migration and invasion. In conclusion, exosomal miRNAs are able to regulate cancer metastasis via heterotypic signals in the microenvironment.

  16. The synergistic effect of 1'-acetoxychavicol acetate and sodium butyrate on the death of human hepatocellular carcinoma cells.

    Kato, Rie; Matsui-Yuasa, Isao; Azuma, Hideki; Kojima-Yuasa, Akiko

    2014-04-05

    It has been suggested that the combined effect of natural products may improve the effect of treatment against the proliferation of cancer cells. In this study, we evaluated the combination of 1'-acetoxychavicol acetate (ACA), obtained from Alpinia galangal, and sodium butyrate, a major short chain fatty acid, on the growth of HepG2 human hepatocellular carcinoma cells and found that treatment had a synergistic inhibitory effect. The number of HepG2 cells was synergistically decreased via apoptosis induction when cells were treated with both ACA and sodium butyrate. In ACA- and sodium butyrate-treated cells, intracellular reactive oxygen species (ROS) levels and NADPH oxidase activities were increased significantly. The decrease in cell number after combined treatment of ACA and sodium butyrate was diminished when cells were pretreated with catalase. These results suggest that an increase in intracellular ROS levels is involved in cancer cell death. AMP-activated protein kinase (AMPK), a cellular energy sensor, plays an essential role in controlling processes related to tumor development. In ACA- and sodium butyrate-treated cells, AMPK phosphorylation was induced significantly, and this induction improved when cells were pretreated with catalase. These results suggest that the increase in intracellular ROS is involved in the increase of AMPK phosphorylation. In normal hepatocyte cells, treatment with ACA and sodium butyrate did not decrease cell numbers or increase ROS levels. In conclusion, combined treatment with ACA and sodium butyrate synergistically induced apoptotic cell death via an increase in intracellular ROS and phosphorylation of AMPK. Our findings may provide new insight into the development of novel combination therapies against hepatocellular carcinoma.

  17. Effect of the Premalignant and Tumor Microenvironment on Immune Cell Cytokine Production in Head and Neck Cancer

    Johnson, Sara D. [Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425 (United States); De Costa, Anna-Maria A. [Department of Otolaryngology, Head and Neck Surgery, Medical University of South Carolina, 135 Rutledge Avenue, Charleston, SC 29425 (United States); Department of Medicine, Medical University of South Carolina, 96 Jonathan Lucas Street, Charleston, SC 29425 (United States); Young, M. Rita I., E-mail: rita.young@va.gov [Department of Otolaryngology, Head and Neck Surgery, Medical University of South Carolina, 135 Rutledge Avenue, Charleston, SC 29425 (United States); Department of Medicine, Medical University of South Carolina, 96 Jonathan Lucas Street, Charleston, SC 29425 (United States); Medical Research Service (151), Ralph H. Johnson Veterans Affairs Medical Center, 109 Bee Street, Charleston, SC 29401 (United States)

    2014-04-02

    Head and neck squamous cell carcinoma (HNSCC) is marked by immunosuppression, a state in which the established tumor escapes immune attack. However, the impact of the premalignant and tumor microenvironments on immune reactivity has yet to be elucidated. The purpose of this study was to determine how soluble mediators from cells established from carcinogen-induced oral premalignant lesions and HNSCC modulate immune cell cytokine production. It was found that premalignant cells secrete significantly increased levels of G-CSF, RANTES, MCP-1, and PGE{sub 2} compared to HNSCC cells. Splenocytes incubated with premalignant supernatant secreted significantly increased levels of Th1-, Th2-, and Th17-associated cytokines compared to splenocytes incubated with HNSCC supernatant. These studies demonstrate that whereas the premalignant microenvironment elicits proinflammatory cytokine production, the tumor microenvironment is significantly less immune stimulatory and may contribute to immunosuppression in established HNSCC.

  18. Screening and analysis of breast cancer genes regulated by the human mammary microenvironment in a humanized mouse model

    Zheng, Mingjie; Wang, Jue; Ling, Lijun; Xue, Dandan; Wang, Shui; Zhao, Yi

    2016-01-01

    Tumor microenvironments play critical regulatory roles in tumor growth. Although mouse cancer models have contributed to the understanding of human tumor biology, the effectiveness of mouse cancer models is limited by the inability of the models to accurately present humanized tumor microenvironments. Previously, a humanized breast cancer model in severe combined immunodeficiency mice was established, in which human breast cancer tissue was implanted subcutaneously, followed by injection of human breast cancer cells. It was demonstrated that breast cancer cells showed improved growth in the human mammary microenvironment compared with a conventional subcutaneous mouse model. In the present study, the novel mouse model and microarray technology was used to analyze changes in the expression of genes in breast cancer cells that are regulated by the human mammary microenvironment. Humanized breast and conventional subcutaneous mouse models were established, and orthotopic tumor cells were obtained from orthotopic tumor masses by primary culture. An expression microarray using Illumina HumanHT-12 v4 Expression BeadChip and database analyses were performed to investigate changes in gene expression between tumors from each microenvironment. A total of 94 genes were differentially expressed between the primary cells cultured from the humanized and conventional mouse models. Significant upregulation of genes that promote cell proliferation and metastasis or inhibit apoptosis, such as SH3-domain binding protein 5 (BTK-associated), sodium/chloride cotransporter 3 and periostin, osteoblast specific factor, and genes that promote angiogenesis, such as KIAA1618, was also noted. Other genes that restrain cell proliferation and accelerate cell apoptosis, including tripartite motif containing TRIM36 and NES1, were downregulated. The present results revealed differences in various aspects of tumor growth and metabolism between the two model groups and indicated the functional

  19. Engineering invitro cellular microenvironment using polyelectrolyte multilayer films to control cell adhesion and for drug delivery applications

    Kidambi, Srivatsan

    Over the past decades, the development of new methods for fabricating thin films that provide precise control of the three-dimensional topography and cell adhesion has generated lots of interest. These films could lead to significant advances in the fields of tissue engineering, drug delivery and biosensors which have become increasingly germane areas of research in the field of chemical engineering. The ionic layer-by-layer (LbL) assembly technique called "Polyelectrolyte Multilayers (PEMs)", introduced by Decher in 1991, has emerged as a versatile and inexpensive method of constructing polymeric thin films, with nanometer-scale control of ionized species. PEMs have long been utilized in such applications as sensors, eletrochromics, and nanomechanical thin films but recently they have also been shown to be excellent candidates for biomaterial applications. In this thesis, we engineered these highly customizable PEM thin films to engineer in vitro cellular microenvironments to control cell adhesion and for drug delivery applications. PEM films were engineered to control the adhesion of primary hepatocytes and primary neurons without the aid of adhesive proteins/ligands. We capitalized upon the differential cell attachment and spreading of primary hepatocytes and neurons on poly(diallyldimethylammoniumchloride) (PDAC) and sulfonated polystyrene (SPS) surfaces to make patterned co-cultures of primary hepatocytes/fibroblasts and primary neurons/astrocytes on the PEM surfaces. In addition, we developed self-assembled monolayer (SAM) patterns of m-d-poly(ethylene glycol) (m-dPEG) acid molecules onto PEMs. The created m-dPEG acid monolayer patterns on PEMs acted as resistive templates, and thus prevented further deposits of consecutive poly(anion)/poly(cation) pairs of charged particles and resulted in the formation of three-dimensional (3-D) patterned PEM films or selective particle depositions atop the original multilayer thin films. These new patterned and structured

  20. Synergistic nanomedicine by combined gene and photothermal therapy.

    Kim, Jinhwan; Kim, Jihoon; Jeong, Cherlhyun; Kim, Won Jong

    2016-03-01

    To date, various nanomaterials with the ability for gene delivery or photothermal effect have been developed in the field of biomedicine. The therapeutic potential of these nanomaterials has raised considerable interests in their use in potential next-generation strategies for effective anticancer therapy. In particular, the advancement of novel nanomedicines utilizing both therapeutic strategies of gene delivery and photothermal effect has generated much optimism regarding the imminent development of effective and successful cancer treatments. In this review, we discuss current research progress with regard to combined gene and photothermal therapy. This review focuses on synergistic therapeutic systems combining gene regulation and photothermal ablation as well as logically designed nano-carriers aimed at enhancing the delivery efficiency of therapeutic genes using the photothermal effect. The examples detailed in this review provide insight to further our understanding of combinatorial gene and photothermal therapy, thus paving the way for the design of promising nanomedicines.