WorldWideScience

Sample records for acidic extracellular hydrolytic

  1. Influences of acidic reaction and hydrolytic conditions on monosaccharide composition analysis of acidic, neutral and basic polysaccharides.

    Science.gov (United States)

    Wang, Qing-Chi; Zhao, Xia; Pu, Jiang-Hua; Luan, Xiao-Hong

    2016-06-05

    Monosaccharide composition analysis is important for structural characterization of polysaccharides. To investigate the influences of acidic reaction and hydrolytic conditions on monosaccharide composition analysis of polysaccharides, we chose alginate, starch, chitosan and chondroitin sulfate as representative of acidic, neutral, basic and complex polysaccharides to compare the release degree of monosaccharides under different hydrolytic conditions. The hydrolysis stability of 10 monosaccharide standards was also explored. Results showed that the basic sugars were hard to release but stable, the acidic sugars (uronic acids) were easy to release but unstable, and the release and stability of neutral sugars were in between acidic and basic sugars. In addition, the hydrolysis process was applied to monosaccharide composition analysis of Hippocampus trimaculatus polysaccharide and the appropriate hydrolytic condition was accorded with that of the above four polysaccharides. Thus, different hydrolytic conditions should be used for the monosaccharide composition analysis of polysaccharides based on their structural characteristics.

  2. Tribological study of a highly hydrolytically stable phenylboronic acid ester containing benzothiazolyl in mineral oil

    NARCIS (Netherlands)

    Li, Zhipeng; Li, Xiufeng; Zhang, Yawen; Ren, T.; Zhao, Yidong; Zeng, X.; Heide, van der E.

    2014-01-01

    A novel long chain alkyl phenylboronic acid ester containing heterocyclic compound, bis (1-(benzothiazol-2-ylthio) propan-2-yl)-4-dodecylphenylboronic acid ester (DBBMT), was synthesized and characterized. The hydrolytic stability of the DBBMT was evaluated and the results show that DBBMT is of outs

  3. [Extracellular hydrolytic enzymes produced by entomopathogenic fungi--role in an infection process].

    Science.gov (United States)

    Włóka, Emilia

    2011-01-01

    Entomopathogenic fungi have a great potential in biological control of insect pest population. Fungal pathogens are promising source of insecticides and notable alterative to chemical pesticides. These fungi possess a unique mechanism of insects paralysis. As natural enemies of insects they attack direct host cuticle via a combination of mechanical pressure and cuticle-degrading enzymes. Entomopathogenic fungi produce several proteo-, chitino- and lipolytic enzymes, which are accepted as key factors in insect mycosis. The role of extracellular enzymes in pathogenesis is still not well understood. Profound understanding the mechanisms of insect paralysis by entomopathogenic fungi will help in the production of safer for environment and more efficiency mycoinsecticides.

  4. Synthesis and characterization of hydrolytically degradable copolyester biomaterials based on glycolic acid, sebacic acid and ethylene glycol.

    Science.gov (United States)

    Simitzis, J; Soulis, S; Triantou, D; Zoumpoulakis, L; Zotali, P

    2011-12-01

    Copolyesters of glycolic acid (G) combined with sebacic acid (S) and ethylene glycol were synthesized in different molar ratios (G: 0-100% and S: 100-0%) and their hydrolytic degradation was studied and correlated with their structures. Based on the FTIR spectra of the homopolyesters and copolyesters and the normalized peak intensity of the I(2918), I(2848) and I(1087) for the corresponding wavenumbers, it is concluded that the I(2918) and the I(2848) are in accordance with the mean number degree of polymerization of ethylene sebacate units and the I(1087) is in accordance with the mean number degree of polymerization of glycolate units. Based on the XRD diffractograms, poly(ethylene sebacate) and poly(glycolic acid) belong to the monoclinic and the orthorhombic crystal system, respectively and both have higher crystallinity than the copolyesters. The experimental data of the hydrolytic degradation were fitted with exponential rise to maximum type functions using two-parameter model and four-parameter model. Three regions can been distinguished for the hydrolytic degradation by decreasing the molar feed ratio of sebacic acid, which are correlated with the changes of crystallinity. Two copolyesters are proposed: first the copolyester with high amount of glycolate units (S10G90) having higher hydrolytic degradation than G100 and second the copolyester with equal amount of glycolate and ethylene sebacate units (S50G50), having lower hydrolytic degradation than G100. These hydrolytically degradable copolyesters are soluble in common organic solvents, opposite to poly(glycolic acid) and could have perspectives for biomedical applications.

  5. Hydrolytic breakdown of lactoferricin by lactic acid bacteria.

    Science.gov (United States)

    Paul, Moushumi; Somkuti, George A

    2010-02-01

    Lactoferricin is a 25-amino acid antimicrobial peptide fragment that is liberated by pepsin digestion of lactoferrin present in bovine milk. Along with its antibacterial properties, lactoferricin has also been reported to have immunostimulatory, antiviral, and anticarcinogenic effects. These attributes provide lactoferricin and other natural bioactive peptides with the potential to be functional food ingredients that can be used by the food industry in a variety of applications. At present, commercial uses of these types of compounds are limited by the scarcity of information on their ability to survive food processing environments. We have monitored the degradation of lactoferricin during its incubation with two types of lactic acid bacteria used in the yogurt-making industry, Streptococcus thermophilus and Lactobacillus delbrueckii ssp. bulgaricus, with the aim of assessing the stability of this milk protein-derived peptide under simulated yogurt-making conditions. Analysis of the hydrolysis products isolated from these experiments indicates degradation of this peptide near neutral pH by lactic acid bacteria-associated peptidases, the extent of which was influenced by the bacterial strain used. However, the data also showed that compared to other milk-derived bioactive peptides that undergo complete degradation under these conditions, the 25-amino acid lactoferricin is apparently more resistant, with approximately 50% of the starting material remaining after 4 h of incubation. These findings imply that lactoferricin, as a natural milk protein-derived peptide, has potential applications in the commercial production of yogurt-like fermented dairy products as a multi-functional food ingredient.

  6. Hydrolytic activity of -alkoxide/acetato-bridged binuclear Cu(II) complexes towards carboxylic acid ester

    Indian Academy of Sciences (India)

    Weidong Jiang; Bin Xu; Zhen Xiang; Shengtian Huang; Fuan Liu; Ying Wang

    2013-09-01

    Two -alkoxide/acetate-bridged small molecule binuclear copper(II) complexes were synthesized, and used to promote the hydrolysis of a classic carboxylic acid ester, -nitrophenyl picolinate (PNPP). Both binuclear complexes exhibited good hydrolytic reactivity, giving rise to . 15547- and 17462-fold acceleration over background value for PNPP hydrolysis at neutral conditions, respectively. For comparing, activities of the other two mononuclear analogues were evaluated, revealing that binuclear complexes show approximately 150- and 171-fold kinetic advantage over their mononuclear analogues.

  7. Tribological study of a highly hydrolytically stable phenylboronic acid ester containing benzothiazolyl in mineral oil

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhipeng [School of Chemistry and Chemical Engineering, Key Laboratory for Thin Film and Microfabrication of the Ministry of Education, Shanghai Jiao Tong University, 200240 (China); Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Li, Xiufeng; Zhang, Yawen [School of Chemistry and Chemical Engineering, Key Laboratory for Thin Film and Microfabrication of the Ministry of Education, Shanghai Jiao Tong University, 200240 (China); Ren, Tianhui, E-mail: thren@sjtu.edu.cn [School of Chemistry and Chemical Engineering, Key Laboratory for Thin Film and Microfabrication of the Ministry of Education, Shanghai Jiao Tong University, 200240 (China); Zhao, Yidong [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100039 (China); Zeng, Xiangqiong; Heide, E. van der [Laboratory for Surface Technology and Tribology, University of Twente, Drienerlolaan 5, 7522 NB Enschede (Netherlands)

    2014-07-01

    A novel long chain alkyl phenylboronic acid ester containing heterocyclic compound, bis (1-(benzothiazol-2-ylthio) propan-2-yl)-4-dodecylphenylboronic acid ester (DBBMT), was synthesized and characterized. The hydrolytic stability of the DBBMT was evaluated and the results show that DBBMT is of outstanding hydrolytic stability compared with normal borate esters, which indicates that the designed molecular structure, by introducing benzene ring to conjugate with the electron-deficient boron and the benzothiazole as a hinder group, is effective on obtaining a hydrolytically stable long chain alkyl phenylboronic acid ester. The tribological properties of DBBMT and ZDDP in mineral base oil were evaluated using a four-ball tribometer, which suggests that the DBBMT possesses comprehensive tribological properties and could be a potential candidate for the replacement of ZDDP. Furthermore, in order to understand the tribological behaviors, the worn surface was analyzed by X-ray photoelectron spectroscopy (XPS) and X-ray absorption near edge structure (XANES) spectroscopy. The results indicate that the elements S, B, O and Fe perform complicated tribochemical reactions to form the compact tribological film composed of B{sub 2}O{sub 3}, FeS, Fe{sub 3}O{sub 4} and FeSO{sub 4}.

  8. Thermal and Hydrolytic Stability of Dithiophophoric Acids Stabilité thermique et hydrolytique des acides dithiophosphoriques

    Directory of Open Access Journals (Sweden)

    Ivanov S. K.

    2006-11-01

    Full Text Available The thermal and hydrolytic stability of dibutyl-, diisobutyl- and diisooctyldithiophosphoric acids have been studied in the range of 40-80°C. The reaction progress was followed by the H2S evolution kinetics in volumetric equipment at constant pressure, equal to the barometric one. The kinetic parameters of the process have been determined at various acid water ratios - maximum rates of gas evolution, activation energy and the kinetic order. It has been shown that the hydrolysis proceeds mainly along the sulph-hydrate group of the acid (up to temperatures of 60°C, while at higher temperatures the ester groups and the thion sulphur are attacked too. The thermal stability of dithiophosphoric acids has been studied in the presence of stainless steel, lead and copper plates. It has been shown that stainless steel doesn't affect the process rate, while copper and especially lead increase the gas evolution and decrease the activation energy. A model describing the reaction progress at the interfacial surfaces - organic phase, water and metal surface - has been developed. Based on these data a conclusion is advanced, related to the manifacture technology of antioxidant, anticorrosion and antiwear additives of the zinc dialkyldithiophosphate type. It is pointed out that the neutralization process of dithiophosphoric acids should be carried out in a stainless steel reactor at tempeatures below 70°C. Le présent article s'efforce d'élucider l'influence de l'eau, de la température et des surfaces métalliques sur la stabilité thermique et hydrolytique des acides dibutyl-, diisobutyl- et diisooctyldithiophosphoriques, à la lumière du concept d'interaction.

  9. Quorum sensing in marine snow and its possible influence on production of extracellular hydrolytic enzymes in marine snow bacterium Pantoea ananatis B9.

    Science.gov (United States)

    Jatt, Abdul Nabi; Tang, Kaihao; Liu, Jiwen; Zhang, Zenghu; Zhang, Xiao-Hua

    2015-02-01

    Marine snow is a continuous shower of organic and inorganic detritus, and plays a crucial role in transporting materials from the sea surface to the deep ocean. The aims of the current study were to identify N-acyl homoserine lactone (AHL)-based quorum sensing (QS) signaling molecules directly from marine snow particles and to investigate the possible regulatory link between QS signals and extracellular hydrolytic enzymes produced by marine snow bacteria. The marine snow samples were collected from the surface water of China marginal seas. Two AHLs, i.e. 3OC6-HSL and C8-HSL, were identified directly from marine snow particles, while six different AHL signals, i.e. C4-HSL, 3OC6-HSL, C6-HSL, C10-HSL, C12-HSL and C14-HSL were produced by Pantoea ananatis B9 inhabiting natural marine snow particles. Of the extracellular hydrolytic enzymes produced by P. ananatis B9, alkaline phosphatase activity was highly enhanced in growth medium supplemented with exogenous AHL (C10-HSL), while quorum quenching enzyme (AiiA) drastically reduced the enzyme activity. To our knowledge, this is the first report revealing six different AHL signals produced by P. ananatis B9 and AHL-based QS system enhanced the extracellular hydrolytic enzyme in P. ananatis B9. Furthermore, this study first time revealing 3OC6-HSL production by Paracoccus carotinifaciens affiliated with Alphaproteobacteria. © FEMS 2014. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. Comparison of the hydrolytic degradation and deformation properties of a PLLA-lauric acid based family of biomaterials.

    Science.gov (United States)

    Renouf-Glauser, Annette C; Rose, John; Farrar, David F; Cameron, Ruth Elizabeth

    2006-02-01

    Addition of lauric acid to PLLA results in a significantly increased rate of hydrolytic degradation, with the time-to-loss of tensile strength directly related to the concentration of lauric acid. In this study, the hydrolytic degradation profiles of four materials were studied: amorphous PLLA, amorphous PLLA containing 1.8 wt % lauric acid, amorphous PLLA containing 4.5 wt % lauric acid, and pre-crystallized PLLA containing 1.8 wt % lauric acid. Hydrolytic degradation was monitored through mass profiles, molecular weight profiles, crystallinity and the development of mechanical properties and deformation mechanisms (through simultaneous small-angle X-ray scattering and tensile testing), and a "phase diagram" of properties suggested. The key factor in determining the development of properties was found to be the time at which crystallization occurred in relation to the loss of molecular weight, with the two factors most affecting this being the lauric acid content and the pre-degradation annealing treatment.

  11. Characterization of hydrolytic degradation of polylactic acid/rice hulls composites in water at different temperatures

    Directory of Open Access Journals (Sweden)

    2011-02-01

    Full Text Available Hydrolytic degradations of polylactic acid/rice hulls (PLA/RH composites with various rice hulls contents due to water absorptions at 23, 51 and 69°C were investigated by studying the thermal properties, chemical composition, molecular weight, and morphology of the degraded products. The results have attested that the stability of PLA/RH composites in water depends slightly on rice hulls contents but it is significantly influenced by water temperature. Water absorption in 30 days at 23°C was between 0.87 and 9.25% depending on rice hull contents. However, at thermophilic temperatures, the water absorption and degradation of these products were increased significantly. Saturations were achieved in less than 25 and 9 days at 51°C and 69°C, respectively, while hydrolytic degradation was demonstrated by an increase in fragility and development of crystallinity. At 69°C, there were significant reductions of the decomposition and glass transition temperatures of the polymer by 13°C. These changes were associated with the reduction of the molecular weight of PLA from 153.1 kDa to ~10.7 kDa due to hydrolysis of its ester group.

  12. Hydrolytic and oxidate stability of L-(+) -ascorbic acid supported in pectin films: Influence of the macromolecular structure and calcium presence

    Science.gov (United States)

    The hydrolytic and oxidative stability of L-(+)-ascorbic acid (AA) into plasticized pectin films were separately studied in view of preserving vitamin C activity and/or to achieve localized antioxidant activity at pharmaceutical and food interfaces. Films were made with each one of the enzymatically...

  13. Ultra-Small Fatty Acid-Stabilized Magnetite Nanocolloids Synthesized by In Situ Hydrolytic Precipitation

    Directory of Open Access Journals (Sweden)

    Kheireddine El-Boubbou

    2015-01-01

    Full Text Available Simple, fast, large-scale, and cost-effective preparation of uniform controlled magnetic nanoparticles remains a major hurdle on the way towards magnetically targeted applications at realistic technical conditions. Herein, we present a unique one-pot approach that relies on simple basic hydrolytic in situ coprecipitation of inexpensive metal salts (Fe2+ and Fe3+ compartmentalized by stabilizing fatty acids and aided by the presence of alkylamines. The synthesis was performed at relatively low temperatures (~80°C without the use of high-boiling point solvents and elevated temperatures. This method allowed for the production of ultra-small, colloidal, and hydrophobically stabilized magnetite metal oxide nanoparticles readily dispersed in organic solvents. The results reveal that the obtained magnetite nanoparticles exhibit narrow size distributions, good monodispersities, high saturation magnetizations, and excellent colloidal stabilities. When the [fatty acid] : [Fe] ratio was varied, control over nanoparticle diameters within the range of 2–10 nm was achieved. The amount of fatty acid and alkylamine used during the reaction proved critical in governing morphology, dispersity, uniformity, and colloidal stability. Upon exchange with water-soluble polymers, the ultra-small sized particles become biologically relevant, with great promise for theranostic applications as imaging and magnetically targeted delivery vehicles.

  14. [Glutamic acid as a universal extracellular signal].

    Science.gov (United States)

    Yoneda, Yukio

    2015-08-01

    The prevailing view is that both glutamic (Glu) and gamma-aminobutyric (GABA) acids play a role as an amino acid neurotransmitter released from neurons. However, little attention has been paid to the possible expression and functionality of signaling machineries required for amino acidergic neurotransmission in cells other than central neurons. In line with our first demonstration of the presence of Glu receptors outside the brain, in this review I will outline our recent findings accumulated since then on the physiological and pathological significance of neuronal amino acids as an extracellular signal essential for homeostasis in a variety of phenotypic cells. In undifferentiated neural progenitor cells, for instance, functional expression is seen with different signaling machineries used for glutamatergic and GABAergic neurotransmission in neurons. Moreover, Glu plays a role in mechanisms underlying suppression of proliferation for self-replication in undifferentiated mesenchymal stem cells. There is more accumulating evidence for neuronal amino acids playing a role as an extracellular autocrine or paracrine signal commonly used in different phenotypic cells. Evaluation of drugs currently used could be thus beneficial for the efficient prophylaxis and/or the therapy of a variety of diseases relevant to disturbance of amino acid signaling in diverse organs.

  15. Ascorbic acid: a nonradioactive extracellular space marker in canine heart

    National Research Council Canada - National Science Library

    Reil, G H; Frombach, R; Kownatzki, R; Quante, W; Lichtlen, P R

    1987-01-01

    The distribution pattern of ascorbic acid and L-[14C]ascorbic acid in myocardial tissue was compared with those of the classical radioactive extracellular space markers [3H]-inulin, [3H]sucrose, and Na82Br...

  16. Using the Amino Acid Network to Modulate the Hydrolytic Activity of β-Glycosidases

    Science.gov (United States)

    Souza, Diorge P.; Souza, Valquiria P.; Ikegami, Cecilia M.; Farah, Chuck S.; Marana, Sandro R.

    2016-01-01

    The active site residues in GH1 β-glycosidases are compartmentalized into 3 functional regions, involved in catalysis or binding of glycone and aglycone motifs from substrate. However, it still remains unclear how residues outside the active site modulate the enzymatic activity. To tackle this question, we solved the crystal structure of the GH1 β-glycosidase from Spodoptera frugiperda (Sfβgly) to systematically map its residue contact network and correlate effects of mutations within and outside the active site. External mutations neighbouring the functional residues involved in catalysis and glycone-binding are deleterious, whereas mutations neighbouring the aglycone-binding site are less detrimental or even beneficial. The large dataset of new and previously characterized Sfβgly mutants supports that external perturbations are coherently transmitted to active site residues possibly through contacts and specifically disturb functional regions they interact to, reproducing the effects observed for direct mutations of functional residues. This allowed us to suggest that positions related to the aglycone-binding site are preferential targets for introduction of mutations aiming to further improve the hydrolytic activity of β–glycosidases. PMID:27936116

  17. Identification of rice β-glucosidase with high hydrolytic activity towards salicylic acid β-D-glucoside.

    Science.gov (United States)

    Himeno, Nami; Saburi, Wataru; Wakuta, Shinji; Takeda, Ryosuke; Matsuura, Hideyuki; Nabeta, Kensuke; Sansenya, Sompong; Ketudat Cairns, James R; Mori, Haruhide; Imai, Ryozo; Matsui, Hirokazu

    2013-01-01

    β-Glucosidases (EC 3.2.1.21) split β-glucosidic linkages at the non-reducing end of glucosides and oligosaccharides to release β-D-glucose. One of the important functions of plant β-glucosidase is deglucosylation of inactive glucosides of phytohormones to regulate levels of active hormones. Tuberonic acid is a jasmonate-related compound that shows tuber-inducing activity in the potato. We have identified two enzymes, OsTAGG1 and OsTAGG2, that have hydrolytic activity towards tuberonic acid β-D-glucoside in rice (Oryza sativa L.). The expression of OsTAGG2 is upregulated by wounding and by methyl jasmonate, suggesting that this isozyme is involved in responses to biotic stresses and wounding, but the physiological substrate of OsTAGG2 remains ambiguous. In this study, we produced recombinant OsTAGG2 in Pichia pastoris (rOsTAGG2P), and investigated its substrate specificity in detail. From 1 L of culture medium, 2.1 mg of purified recombinant enzyme was obtained by ammonium sulfate precipitation and Ni-chelating column chromatography. The specific activity of rOsTAGG2P (182 U/mg) was close to that of the native enzyme (171 U/mg), unlike recombinant OsTAGG2 produced in Escherichia coli, which had approximately 3-fold lower specific activity than the native enzyme. The optimum pH and temperature for rOsTAGG2P were pH 3.4 and 60 °C. After pH and heat treatments, the enzyme retained its original activity in a pH range of 3.4-9.8 and below 55 °C. Native OsTAGG2 and rOsTAGG2P showed 4.5-4.7-fold higher activities towards salicylic acid β-D-glucoside, an inactive storage-form of salicylic acid, than towards tuberonic acid β-D-glucoside (TAG), although OsTAGG2 was originally isolated from rice based on TAG-hydrolytic activity.

  18. Fragmentation of extracellular matrix by hypochlorous acid

    DEFF Research Database (Denmark)

    Woods, Alan A; Davies, Michael Jonathan

    2003-01-01

    The interaction of extracellular matrix with cells regulates their adhesion, migration and proliferation, and it is believed that damage to vascular matrix components is a factor in the development of atherosclerosis. Evidence has been provided for a role for the haem enzyme MPO (myeloperoxidase)...

  19. New Biocompatible Polyesters Derived from α-Amino Acids: Hydrolytic Degradation Behavior

    Directory of Open Access Journals (Sweden)

    Jeoshua Katzhendler

    2010-10-01

    Full Text Available New polymers were synthesized from α-hydroxy acids derived from the natural amino acids Ile, Leu, Phe, and Val, combined with lactic acid, glycolic acid and 6-hydroxyhexanoic acid by direct condensation. The toxicity was determined and the degradation process of these polyesters was investigated under physiological conditions by analyzing the composition of the degraded polymers and the oligomers cleaved in the buffer medium. The polymers were found to be non toxic to two cell lines. Polymers displayed a biphasic degradation behavior. In most cases, a linear relationship was found between the weight loss constant and the hydrophobicity of the polymers, Log P. Regarding the second stage of weight loss, it is apparent that polymers derived from α-hydroxy(Lisoleucine ((LHOIle and α-hydroxy(LValine ((LHOVal degraded much faster than those derived from α-hydroxy(Lleucine ((LHOLeu and α-hydroxy(Lphenylalanine ((LHOPhe, probably due to different spatial orientation of the side chains. Copolymers of 6-hydroxyhexanoic acid displayed slow degradation rates as expected, whereas the degradation profile of copolymers of lactic acid was similar to the other homopolymers. These new polyesters may serve as potential biocompatible materials for medical applications.

  20. Biocatalyzed approach for the surface functionalization of poly(L-lactic acid) films using hydrolytic enzymes.

    Science.gov (United States)

    Pellis, Alessandro; Acero, Enrique Herrero; Weber, Hansjoerg; Obersriebnig, Michael; Breinbauer, Rolf; Srebotnik, Ewald; Guebitz, Georg M

    2015-09-01

    Poly(lactic acid) as a biodegradable thermoplastic polyester has received increasing attention. This renewable polyester has found applications in a wide range of products such as food packaging, textiles and biomedical devices. Its major drawbacks are poor toughness, slow degradation rate and lack of reactive side-chain groups. An enzymatic process for the grafting of carboxylic acids onto the surface of poly(L-lactic acid) (PLLA) films was developed using Candida antarctica lipase B as a catalyst. Enzymatic hydrolysis of the PLLA film using Humicola insolens cutinase in order to increase the number of hydroxyl and carboxylic groups on the outer polymer chains for grafting was also assessed and showed a change of water contact angle from 74.6 to 33.1° while the roughness and waviness were an order of magnitude higher in comparison to the blank. Surface functionalization was demonstrated using two different techniques, (14) C-radiochemical analysis and X-ray photoelectron spectroscopy (XPS) using (14) C-butyric acid sodium salt and 4,4,4-trifluorobutyric acid as model molecules, respectively. XPS analysis showed that 4,4,4-trifluorobutyric acid was enzymatically coupled based on an increase of the fluor content from 0.19 to 0.40%. The presented (14) C-radiochemical analyses are consistent with the XPS data indicating the potential of enzymatic functionalization in different reaction conditions.

  1. Resolution of 4-amino-cyclopentanecarboxylic acid methyl esters using hydrolytic enzymes.

    Science.gov (United States)

    Mahmoudian, M; Baines, B S; Dawson, M J; Lawrence, G C

    1992-11-01

    A number of esterases (EC 3.1.1.1) and lipases (EC 3.1.1.3) of microbial and mammalian origin were screened for the ability to resolve racemic 4-amino-cyclopentanecarboxylic acid methyl ester derivatives as potential intermediates in the production of carbocyclic nucleosides. Surprisingly, functionalization of the remote amino group had a profound effect on both the rate and enantioselectivity of hydrolysis of the methyl ester. 4-(Benzoylamino)-2-cyclopentenecarboxylic acid, methyl ester (V) with pig liver esterase gave the highest enantioselectivity. The residual ester, which was of the correct absolute stereochemistry [(+) 1S, 4R] for carbocyclic nucleoside synthesis, could be obtained in high optical purity. Optimization of pH, solvent type, and concentration improved the enantioselectivity of the process by a further twofold.

  2. THE COORDINATION COMPOUNDS OF COBALT (II, III WITH DITHIOCARBAMIC ACID DERIVATIVES — MODIFICATORS OF HYDROLYTIC ENZYMES ACTIVITY

    Directory of Open Access Journals (Sweden)

    L. D. Varbanets

    2013-02-01

    Full Text Available Chloride, bromide and isothiocyanate complexes of cobalt(II with N-substituted thiocarbamoyl-N?-pentamethylenesulfenamides (1–(12, and also complexes of cobalt(II, Ш with derivatives of morpholine-4-carbodithioic acid (13–(18 have been used as modificators of enzymes of hydrolytic action — Bacillus thurin-giensis ІМВ В-7324 peptidases, Bacillus subtilis 147 and Aspergillus flavus var. oryzae 80428 amylases, Eupenicillium erubescens 248 and Cryptococcus albidus 1001 rhamnosidases. It was shown that cobalt (II, Ш compounds influence differently on the activity of enzymes tested, exerted both inhibitory and stimulatory action. It gives a possibility to expect that manifestation of activity by complex molecule depends on ligand and anion presence — Cl–, Br– or NCS–. The high activating action of cobalt(II complexes with N-substituted thiocarbamoyl-N?-pentamethylenesulphenamides (1–(12 on elastase and fibrinolytic activity of peptidases compared to tris(4-morpholinecarbodithioatocobalt(ІІІ (14 and products of its interaction with halogens (15–(17, causes inhibitory effect that is probably due to presence of a weekly S–N link, which is easy subjected to homolytic breaking. The studies of influences of cobalt(II complexes on activity of C. аlbidus and E. еrubescens ?-Lrhamnosidases showed, that majority of compounds inhibits of its activity, at that the most inhibitory effect exerts to C. аlbidus enzyme.To sum up, it is possible to state that character of influence of cobalt(II complexes with N-substituted thiocarbamoyl-N?-pentamethylenesulphenamides, and also cobalt(II, Ш complexes with derivatives of morpholine-4-carbodithioic acid varies depending on both strain producer and enzyme tested. The difference in complex effects on enzymes tested are due to peculiarities of building and functional groups of their active centers, which are also responsible for binding with modificators.

  3. Studies on the hydrolytic stability of 2'-fluoroarabinonucleic acid (2'F-ANA).

    Science.gov (United States)

    Watts, Jonathan K; Katolik, Adam; Viladoms, Júlia; Damha, Masad J

    2009-05-07

    The stability of 2'-deoxy-2'-fluoroarabinonucleic acid (2'F-ANA) to hydrolysis under acidic and basic conditions was compared to that of DNA, RNA and 2'F-RNA. In enzyme-free simulated gastric fluid (pH approximately 1.2), 2'F-ANA was found to have dramatically increased stability (virtually no cleavage observed after 2 days) with respect to both DNA (t(1/2) approximately 2 min) and RNA (t(1/2) approximately 3 h (PO) or 3 days (PS)). These results were observed for both phosphodiester and phosphorothioate backbones and with multiple mixed-base sequences. Under basic conditions, 2'F-ANA also showed good stability. In 1 M NaOH at 65 degrees C, 2'F-ANA had a t(1/2) of approximately 20 h, while RNA was entirely degraded in a few minutes. Furthermore, the nuclease cleavage of phosphorothioate 2'F-ANA and DNA by snake venom phosphodiesterase was studied in detail. One diastereomer of the PS-2'F-ANA linkage was found to be much more vulnerable to enzymatic cleavage than the other, which is parallel to the properties observed for PS-DNA. Additional studies of 2'F-ANA-containing oligonucleotides are warranted based on the excellent stability properties described here.

  4. Neuroprotective Effects of Glutamate Antagonists and Extracellular Acidity

    Science.gov (United States)

    Kaku, David A.; Giffard, Rona G.; Choi, Dennis W.

    1993-06-01

    Glutamate antagonists protect neurons from hypoxic injury both in vivo and in vitro, but in vitro studies have not been done under the acidic conditions typical of hypoxia-ischemia in vivo. Consistent with glutamate receptor antagonism, extracellular acidity reduced neuronal death in murine cortical cultures that were deprived of oxygen and glucose. Under these acid conditions, N-methyl-D-aspartate and α-amino-3-hydroxy-5-methyl-4-isox-azolepropionate-kainate antagonists further reduced neuronal death, such that some neurons tolerated prolonged oxygen and glucose deprivation almost as well as did astrocytes. Neuroprotection induced by this combination exceeded that induced by glutamate antagonists alone, suggesting that extracellular acidity has beneficial effects beyond the attenuation of ionotropic glutamate receptor activation.

  5. Extracellular polymers of acid streamers from pyritic mines

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, D.B.; Kelso, W.I.

    1981-01-01

    Extracellular polymers (slimes) extracted from acid streamers found in three disused North Wales mines were found to be a mixture of polysaccharides and RNA. The polymers exist as microfibrils synthesised by viable members of the acid streamer microbial community. Acid streamers from three mines, and from different zones in one of the mines, were shown to contain similar polymers, although the ratio of monomers varied from site to site. Monosaccharides identified in acid hydrolysates of slimes were glucose, galactose, mannose, ribose, xylose, arabinose, rhamnose and fucose.

  6. Ascorbic acid: Nonradioactive extracellular space marker in canine heart

    Energy Technology Data Exchange (ETDEWEB)

    Reil, G.H.; Frombach, R.; Kownatzki, R.; Quante, W.; Lichtlen, P.R. (Medizinische Hochschule Hannover (West Germany))

    1987-11-01

    The distribution pattern of ascorbic acid and L-({sup 14}C)ascorbic acid in myocardial tissue was compared with those of the classical radioactive extracellular space markers ({sup 3}H)-inulin, ({sup 3}H)sucrose, and Na{sup 82}Br. A new polarographic techniques was developed for analogue registration of ascorbic acid concentration in coronary venous blood. The kinetic data of the markers were studied in an open-chest canine heart preparation during a constant tracer infusion of up to 9 min. Distribution volumes were calculated based on the mean transit time method of Zierler. The distribution volume of ascorbic acid as well as of L-({sup 14}C)ascorbic acid in myocardial tissue agreed closely with those of ({sup 3}H)inulin and ({sup 3}H)sucrose as well as {sup 82}Br. The obtained kinetic data confirmed that ascorbic acid exhibits the physicochemical properties of an extracellular space marker, though this compound was shown to leak slowly into myocardial cells. Favorable attributes of this indicator are its low molecular weight, high diffusibility in interstitial fluid, low binding affinity to macromolecules, and high transcapillary as well as low transplasmalemmal penetration rate. Therefore, this nonradioactive marker can be applied in a safe and simple fashion, and without untoward side effects in experimental animals as well as in patients.

  7. Enzimas hidrolíticas extracelulares de isolados de rizóbia nativos da Amazônia Central, Amazonas, Brasil Extracellular hydrolytic enzymes in indigenous strains of rhizobia in Central Amazonia, Amazonas, Brazil

    Directory of Open Access Journals (Sweden)

    Arlem Nascimento de Oliveira

    2006-12-01

    Full Text Available A associação rizóbia x leguminosa contribui para enriquecer o solo com nitrogênio por meio da fixação biológica. Entretanto, pouco se conhece a respeito do perfil enzimático desses microrganismos. Nesse contexto, a presente investigação propõe avaliar a produção de enzimas hidrolíticas extracelulares por isolados de rizóbia nativos da Amazônia Central. Essa triagem constitui o primeiro passo na seleção de microrganismos nativos que são potencialmente exploráveis como produtores de enzimas. Foram testados 67 isolados nativos de rizóbia para as atividades amilolítica, celulolítica, lactolítica, lipolítica, pectinolítica e proteolítica, em meio YMA modificado. A atividade ureolítica foi detectada em meio ágar-uréia. As bactérias isoladas dos nódulos de feijão caupi mostraram maior capacidade em produzir enzimas do que os isolados bacterianos de soja. De todas as enzimas hidrolíticas avaliadas, apenas a pectinase não foi detectada neste estudo. Amilase (32,8%, protease (28,4%, urease (20,9% e carboximetilcelulase (9,0% foram as enzimas mais freqüentes produzidas pelos isolados. Neste trabalho, apenas as enzimas amilase e protease variaram significativamente entre os isolados de rizóbia. Os isolados INPA R-926 e INPA R-915 exibiram os maiores índices amilolíticos (IE = 3,1 e proteolíticos (IE = 6,6, respectivamente. Este estudo revelou alguns isolados de rizóbia nativos da Amazônia Central como fontes promissoras de enzimas de importância industrial para uso biotecnológico.Legumes enrich the soil by contributing nitrogen through symbiotic biological nitrogen fixation by rhizobia bacteria. However, very little is known about the extracellular enzymatic profile of these microorganisms. In this context, the production of extracellular hydrolytic enzymes by indigenous strains of rhizobia in Central Amazonia was evaluated. This screening constitutes the first step in selecting indigenous microorganisms that are

  8. Hydrolytic enzyme activity enhanced by Barium supplementation

    Directory of Open Access Journals (Sweden)

    Camilo Muñoz

    2016-10-01

    Full Text Available Hydrolysis of polymers is a first and often limiting step during the degradation of plant residues. Plant biomass is generally a major component of waste residues and a major renewable resource to obtain a variety of secondary products including biofuels. Improving the performance of enzymatic hydrolysis of plant material with minimum costs and limiting the use of additional microbial biomass or hydrolytic enzymes directly influences competitiveness of these green biotechnological processes. In this study, we cloned and expressed a cellulase and two esterases recovered from environmental thermophilic soil bacterial communities and characterize their optimum activity conditions including the effect of several metal ions. Results showed that supplementing these hydrolytic reactions with Barium increases the activity of these extracellular hydrolytic enzymes. This observation represents a simple but major improvement to enhance the efficiency and competitiveness of this process within an increasingly important biotechnological sector.

  9. Extracellular and intracellular arachidonic acid-induced contractions in rat aorta

    NARCIS (Netherlands)

    Filipeanu, CM; Brailoiu, E; Petrescu, G; Nelemans, SA

    1998-01-01

    Arachidonic acid induced contractions of de-endothelized rat aortic rings. A more potent effect was obtained after intracellular administration of arachidonic acid using liposomes. Contractions induced by extracellular arachidonic acid were inhibited similarly to phenylephrine-induced contractions b

  10. Determination of extracellular kynurenic acid in the striatum of unanesthetized rats: effect of aminooxyacetic acid

    DEFF Research Database (Denmark)

    Speciale, C; Wu, H Q; Gramsbergen, J B

    1990-01-01

    ). In the presence of KYN (50-2000 microM), KYNA concentration in the dialysate increased continuously to reach steady-state levels after 2h of perfusion. Introduction of the unspecific transaminase inhibitor aminooxyacetic acid (AOAA) through the dialysis probe caused a progressive decrease of extracellular KYNA......, which reached dose-dependent minimal levels within 2 h. One mM AOAA caused an almost complete depletion of KYNA in the dialysate. These data demonstrate that extracellular KYNA can be assessed by microdialysis and that AOAA can be used as a tool to examine the neurobiology of KYNA in awake, freely...

  11. ICH GUIDANCE IN PRACTICE: DEVELOPMENT OF A VALIDATED STABILITY-INDICATING HIGH-PERFORMANCE LIQUID CHROMATOGRAPHIC ASSAY METHOD FOR FEBUXOSTAT AND DEGRADATION KINETIC STUDY IN ACID HYDROLYTIC CONDITION

    Directory of Open Access Journals (Sweden)

    Megha V. Sheth* and Jigar J. Pandya

    2013-02-01

    Full Text Available The degradation behavior of Febuxostat was investigated under different stress degradation (hydrolytic, oxidative, photolytic and thermal conditions recommended by International Conference on Harmonization (ICH using HPLC and LCMS. Febuxostat was found to degrade significantly in acidic and alkaline conditions as well as in neutral hydrolysis. The drug was stable to dry heat, photolytic degradation and under oxidative condition. Resolution of drug and the degradation products formed under different stress studies were successfully achieved on a C-18 column utilizing Methanol- water (with 0.02%v/v TFA in the ratio of 95:5 and at the detection wavelength of 315 nm. The method was validated with respect to linearity, precision, accuracy, selectivity and specificity. The degradation kinetic of Febuxostat in acidic condition at different temperature was studied. The reaction order for Febuxostat in aqueous solvent system followed pseudo first order degradation kinetic. The catalytic rate constant and half-life at particular condition were determined. The Arrhenius plot showed the temperature dependence of Febuxostat.

  12. Incorporation of extracellular fatty acids by a fatty acid kinase-dependent pathway in Staphylococcus aureus.

    Science.gov (United States)

    Parsons, Joshua B; Frank, Matthew W; Jackson, Pamela; Subramanian, Chitra; Rock, Charles O

    2014-04-01

    Acyl-CoA and acyl-acyl carrier protein (ACP) synthetases activate exogenous fatty acids for incorporation into phospholipids in Gram-negative bacteria. However, Gram-positive bacteria utilize an acyltransferase pathway for the biogenesis of phosphatidic acid that begins with the acylation of sn-glycerol-3-phosphate by PlsY using an acyl-phosphate (acyl-PO4 ) intermediate. PlsX generates acyl-PO4 from the acyl-ACP end-products of fatty acid synthesis. The plsX gene of Staphylococcus aureus was inactivated and the resulting strain was both a fatty acid auxotroph and required de novo fatty acid synthesis for growth. Exogenous fatty acids were only incorporated into the 1-position and endogenous acyl groups were channeled into the 2-position of the phospholipids in strain PDJ39 (ΔplsX). Extracellular fatty acids were not elongated. Removal of the exogenous fatty acid supplement led to the rapid accumulation of intracellular acyl-ACP and the abrupt cessation of fatty acid synthesis. Extracts from the ΔplsX strain exhibited an ATP-dependent fatty acid kinase activity, and the acyl-PO4 was converted to acyl-ACP when purified PlsX is added. These data reveal the existence of a novel fatty acid kinase pathway for the incorporation of exogenous fatty acids into S. aureus phospholipids.

  13. Synthesis of a Stable Primary-Alkyl-Substituted Selenenyl Iodide and Its Hydrolytic Conversion to the Corresponding Selenenic Acid.

    Science.gov (United States)

    Sase, Shohei; Kakimoto, Ryo; Kimura, Ryutaro; Goto, Kei

    2015-12-02

    A primary-alkyl-substituted selenenyl iodide was successfully synthesized through oxidative iodination of a selenol with N-iodosuccinimide by taking advantage of a cavity-shaped steric protection group. The selenenyl iodide exhibited high thermal stability and remained unchanged upon heating at 100 °C for 3 h in [D₈]toluene. The selenenyl iodide was reduced to the corresponding selenol by treatment with dithiothreitol. Hydrolysis of the selenenyl iodide under alkaline conditions afforded the corresponding selenenic acid almost quantitatively, corroborating the chemical validity of the recent proposal that hydrolysis of a selenenyl iodide to a selenenic acid is potentially involved in the catalytic mechanism of an iodothyronine deiodinase.

  14. Synthesis of a Stable Primary-Alkyl-Substituted Selenenyl Iodide and Its Hydrolytic Conversion to the Corresponding Selenenic Acid

    Directory of Open Access Journals (Sweden)

    Shohei Sase

    2015-12-01

    Full Text Available A primary-alkyl-substituted selenenyl iodide was successfully synthesized through oxidative iodination of a selenol with N-iodosuccinimide by taking advantage of a cavity-shaped steric protection group. The selenenyl iodide exhibited high thermal stability and remained unchanged upon heating at 100 °C for 3 h in [D8]toluene. The selenenyl iodide was reduced to the corresponding selenol by treatment with dithiothreitol. Hydrolysis of the selenenyl iodide under alkaline conditions afforded the corresponding selenenic acid almost quantitatively, corroborating the chemical validity of the recent proposal that hydrolysis of a selenenyl iodide to a selenenic acid is potentially involved in the catalytic mechanism of an iodothyronine deiodinase.

  15. Non-hydrolytic formation of silica and polysilsesquioxane particles from alkoxysilane monomers with formic acid in toluene/tetrahydrofuran solutions

    Science.gov (United States)

    Boday, Dylan J.; Tolbert, Stephanie; Keller, Michael W.; Li, Zhe; Wertz, Jason T.; Muriithi, Beatrice; Loy, Douglas A.

    2014-03-01

    Silica and polysilsesquioxane particles are used as fillers in composites, catalyst supports, chromatographic separations media, and even as additives to cosmetics. The particles are generally prepared by hydrolysis and condensation of tetraalkoxysilanes and/or organotrialkoxysilanes, respectively, in aqueous alcohol solutions. In this study, we have discovered a new, non-aqueous approach to prepare silica and polysilsesquioxane particles. Spherical, nearly monodisperse, silica particles (600-6,000 nm) were prepared from the reaction of tetramethoxysilane with formic acid (4-8 equivalents) in toluene or toluene/tetrahydrofuran solutions. Polymerization of organotrialkoxysilanes with formic acid failed to afford particles, but bridged polysilsesquioxane particles were obtained from monomers with two trialkoxysilyl group attached to an organic-bridging group. The mild acidic conditions allowed particles to be prepared from monomers, such as bis(3-triethoxysilylpropyl)tetrasulfide, which are unstable to Stöber or base-catalyzed emulsion polymerization conditions. The bridged polysilsesquioxane particles were generally less spherical and more polydisperse than silica particles. Both silica and bridged polysilsesquioxane nanoparticles could be prepared in good yields at monomer concentrations considerably higher than used in Stöber or emulsion approaches.

  16. Activity-based protein profiling of hydrolytic enzymes induced by gibberellic acid in isolated aleurone layers of malting barley.

    Science.gov (United States)

    Daneri-Castro, Sergio N; Chandrasekar, Balakumaran; Grosse-Holz, Friederike M; van der Hoorn, Renier A L; Roberts, Thomas H

    2016-09-01

    During barley germination, the aleurone layer secretes most of the enzymes required to degrade the endosperm, many of which are yet to be characterized. We used activity-based protein profiling (ABPP) to detect a range of active enzymes extracted from aleurone layers isolated from grains of a commercial malting barley variety incubated with or without gibberellic acid (GA). Enzymes found to be induced by GA were putative aleurains, cathepsin-B-like proteases and serine hydrolases. By using an inhibitory sugar panel, a specific active retaining β-glycosidase in the barley aleurone was identified as a putative xylanase. Our results show that ABPP can be used rapidly to identify a variety of active enzyme isoforms in cereal aleurone without the need for enzyme purification.

  17. Production of extracellular proteolytic enzymes by Beauveria bassiana

    Directory of Open Access Journals (Sweden)

    Józefa Chrzanowska

    2014-08-01

    Full Text Available The production of proteolytic enzymes by two strains of Beauveria bassiana 278, B. bassiana 446 and one strain of Ascosphera apis 496 was analysed. It was demonstrated that the strain of B. bassiana 278 proved to be the best producer of basic and acid proteases. The influence of different environmental factors such as nitrogen and carbon sources on the production of extracellular hydrolytic enzymes was assessed. In addition the acid protease from B. bassiana was partially characterized.

  18. Production of extracellular proteolytic enzymes by Beauveria bassiana

    OpenAIRE

    Józefa Chrzanowska; Maria Kołaczkowska

    2014-01-01

    The production of proteolytic enzymes by two strains of Beauveria bassiana 278, B. bassiana 446 and one strain of Ascosphera apis 496 was analysed. It was demonstrated that the strain of B. bassiana 278 proved to be the best producer of basic and acid proteases. The influence of different environmental factors such as nitrogen and carbon sources on the production of extracellular hydrolytic enzymes was assessed. In addition the acid protease from B. bassiana was partially characterized.

  19. Hydrolytic synthesis of novel lanthanide(III) complexes with pyridine-2,6-dicarboxylic acid: Characterization of the structure and the physical properties

    Science.gov (United States)

    Hojnik, Nuša; Kristl, Matjaž; Golobič, Amalija; Jagličić, Zvonko; Drofenik, Miha

    2015-01-01

    The coordination compounds of pyridine-2,6-dicarboxylic acid and two lanthanide(III) ions, Ho3+ and Dy3+, were hydrolytically synthesized in aqueous solutions at a slightly basic pH, and then characterized by thermogravimetric analysis, IR spectroscopy, magnetic measurements as well as X-ray powder and single-crystal diffraction analysis. The elemental analyses were performed to check the purity of the compounds. The formula for these compounds is identified as Na3[Ln(Pydc)3]ṡ14H2O (Ln = Ho, 1; Ln = Dy, 2) in agreement with the X-ray structural analysis and all the other experimental data. The absence of the 1709 cm-1 band corresponding to ν(C dbnd O) in the IR spectra of the compounds evidences the deprotonating of the carboxyl group. The very strong inductive effect of the metal ion that is readily coordinated by the carboxylate group of the zwitterionic ligand is responsible for the formation of the product. The single-crystal X-ray structural analysis revealed that compounds 1 and 2 are isostructural. Their structure can be described as interchanging layers of complex anions [Ln(Pydc)3]3 (Ln = Ho and Dy for 1 and 2, respectively) and layers of hydrated sodium cations. In complex anions the holmium and dysprosium atoms are coordinated by three crystallographically independent pyridinedicarboxylate ligands in tridentate-chelate mode, via one O atom of both carboxylate groups and the ring N atom. The coordination number is nine and the coordination polyhedron is a tricapped trigonal prism with O atoms at the corners.

  20. Effects of Lanthanum on Hydrolytic Enzyme Activities in Red Soil

    Institute of Scientific and Technical Information of China (English)

    褚海燕; 朱建国; 谢祖彬; 李振高; 曹志洪; 曾青; 林先贵

    2002-01-01

    The effects of La on some hydrolytic enzyme activities in red soil were studied in incubation and pot culture experiments. In the incubation experiment, La slightly stimulates the activities of urease and acidic phosphatase in soil and strongly stimulates sucrase activity in soil. In the pot culture experiment, La stimulates the activities of urease, acidic phosphatase and sucrase to different degrees. The stimulative effects of rare earth elements (REE) on hydrolytic enzyme activities in soil may result in increasing yield of crops.

  1. Hydrolytically stable titanium-45

    DEFF Research Database (Denmark)

    Severin, Gregory; Fonslet, Jesper; Zhuravlev, Fedor

    2014-01-01

    Introduction Titanium-45, a candidate PET isotope, is under-employed largely because of the challenging aqueous chemistry of Ti(IV). The propensity for hydrolysis of Ti(IV) compounds makes radio-labeling difficult and excludes 45Ti from use in bio-conjugate chemistry. This is unfortunate because...... metal-based chemotherapeutics such as cisplatin. The aim of our work has been to produce the radioactive analogue of one of these Ti(IV)-salan compounds, Ti-salan-dipic [2], which has hydro-lytic stability on the order of weeks. Not only will this allow us to shed some light on the still un......-known mechanism of antiproliferative action of titanium-based chemotherapeutics, but it will also make progress toward bioconjugate 45Ti PET tracers. In the current abstract, we present some of the methods we are using to separate 45Ti from irradiated Sc, and subsequent labeling conditions. Material and Methods...

  2. l-Amino acid sensing by the extracellular Ca2+-sensing receptor

    OpenAIRE

    Conigrave, Arthur D; Quinn, Stephen J.; Brown, Edward M.

    2000-01-01

    The extracellular calcium (Ca2+o)-sensing receptor (CaR) recognizes and responds to (i.e., “senses”) Ca2+o as its principal physiological ligand. In the present studies, we document that the CaR is activated not only by extracellular calcium ions but also by amino acids, establishing its capacity to sense nutrients of two totally different classes. l-Amino acids, especially aromatic amino acids, including l-phenylalanine and l-tryptophan, stereoselectively mobilized Ca2+ ions in the presence ...

  3. Extracellular acid protease from Aspergillus niger I1: purification and ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-09-15

    Sep 15, 2009 ... Proteases with high activity and stability in acid pH range have .... at a flow rate of 25 ml/h after elution with the same buffer. Protein content (abs. at ..... Role of the hydrophobic amino acid residue in the bitterness of peptides.

  4. Oxidation of intramyocellular lipids is dependent on mitochondrial function and the availability of extracellular fatty acids

    NARCIS (Netherlands)

    Corpeleijn, Eva; Hessvik, Nina P.; Bakke, Siril S.; Levin, Klaus; Blaak, Ellen E.; Thoresen, G. Hege; Gaster, Michael; Rustan, Arild C.

    2010-01-01

    Corpeleijn E, Hessvik NP, Bakke SS, Levin K, Blaak EE, Thoresen GH, Gaster M, Rustan AC. Oxidation of intramyocellular lipids is dependent on mitochondrial function and the availability of extracellular fatty acids. Am J Physiol Endocrinol Metab 299: E14-E22, 2010. First published May 4, 2010; doi:1

  5. De novo design, synthesis and spectroscopic characterization of chiral benzimidazole-derived amino acid Zn(II) complexes: Development of tryptophan-derived specific hydrolytic DNA artificial nuclease agent

    Science.gov (United States)

    Parveen, Shazia; Arjmand, Farukh

    2012-01-01

    Novel ternary dizinc(II) complexes 1- 3, derived from 1,2-bis(1H-benzimidazol-2-yl)ethane-1,2-diol and L-form of amino acids (viz., tryptophan, leucine and valine) were synthesized and characterized by spectroscopic (IR, 1H NMR, UV-vis, ESI-MS) and other analytical methods. To evaluate the biological preference of chiral drugs for inherently chiral target DNA, interaction of 1- 3 with calf thymus DNA in Tris-HCl buffer was studied by various biophysical techniques which reveal that all these complexes bind to CT DNA non-covalently via electrostatic interaction. The higher Kb value of L-tryptophan complex 1 suggested greater DNA binding propensity. Further, to evaluate the mode of action at the molecular level, interaction studies of complexes 1 and 2 with nucleotides (5'-GMP and 5'-TMP) were carried out by UV-vis titrations, 1H and 31P NMR which implicates the preferential selectivity of these complexes to N3 of thymine rather than N7 of guanine. Furthermore, complex 1 exhibits efficient DNA cleavage with supercoiled pBR322. The complex 1 cleaves DNA efficiently involving hydrolytic cleavage pathway. Such chiral synthetic hydrolytic nucleases with asymmetric centers are gaining considerable attention owing to their importance in biotechnology and drug design, in particular to cleave DNA with sequence selectivity different from that of the natural enzymes.

  6. Salicylic acid enhances Staphylococcus aureus extracellular adhesin protein expression.

    Science.gov (United States)

    Alvarez, Lucía P; Barbagelata, María S; Cheung, Ambrose L; Sordelli, Daniel O; Buzzola, Fernanda R

    2011-11-01

    One of the virulence factors required by Staphylococcus aureus at the early stages of infection is Eap, a secreted adhesin that binds many host proteins and is upregulated by the two-component regulatory system saeRS. The S. aureus Newman strain harbors a mutation in saeS that is thought to be responsible for the high level of Eap expression in this strain. This study was designed to ascertain whether salicylic acid (SAL) affects the expression of Eap and the internalization of S. aureus into epithelial cells. The strain Newman treated with SAL exhibited increased levels of eap transcription and protein expression. Furthermore, SAL treatment increased the eap promoter activity. SAL treatment enhanced Eap expression in the Newman and in other S. aureus strains that do not carry the mutation in saeS. Internalization of S. aureus eap and sae mutants into the MAC-T epithelial cells was significantly decreased compared with the wild-type counterparts. In conclusion, we demonstrated that a low concentration of SAL increased S. aureus Eap expression possibly due to enhancement of sae. SAL may create the conditions for S. aureus persistence in the host, not only by decreasing the capsular polysaccharide expression as shown before, but also by enhancing Eap expression.

  7. Extracellular acidic polysaccharide production by a two-membered bacterial coculture.

    Science.gov (United States)

    Kurata, Shinya; Yamada, Kazutaka; Takatsu, Kyoko; Hanada, Satoshi; Koyama, Osamu; Yokomaku, Toyokazu; Kamagata, Yoichi; Kanagawa, Takahiro; Kurane, Ryuichiro

    2003-01-01

    A two-membered coculture of strains KYM-7 and KYM-8, identified as Cellulomonas cellulans and Agrobacterium tumefaciens, respectively, produced a large amount of an extracellular polysaccharide, designated APK-78, from starch. Each strain in pure culture produced only very little amount of polysaccharide from starch; the coexistence of the two strains from the early stage of cultivation was indispensable for a large amount of polysaccharide to be produced. The polysaccharide APK-78 was acidic and composed of glucose, galactose, succinic acid, and pyruvic acid with a molar ratio of 8.1:1.0:1.7:1.0, indicating that it is a succinoglycan type of polysaccharide.

  8. Structure of an Extracellular Polysaccharide from a Strain of Lactic Acid Bacteria

    Institute of Scientific and Technical Information of China (English)

    顾笑梅; 马桂荣; 吴厚铭

    2003-01-01

    A new extracellular polysaccharide (EPS-I) isolated and purified from Z222, a strain of Lactic acid bacteria has been investigated. Sugar composition analysis, methylation analysis and 1H NMR and 13C NMR spectroscopy reveal that the EPS-I is composed of a pentasaccharide repeating unit. The sequence of sugar residue was determined by using two-dlmensional NMR spectroscopy, including heteronudear multiple-bond correlation(HMBC) and nuclear overhauser effect spectroscopy (NOESY).

  9. Relevance of circulating tumor cells, extracellular nucleic acids, and exosomes in breast cancer

    OpenAIRE

    Friel, Anne M.; Corcoran, Claire; Crown, John; O'Driscoll, Lorraine

    2010-01-01

    Abstract Early detection of cancer is vital to improved overall survival rates. At present, evidence is accumulating for the clinical value of detecting occult tumor cells in peripheral blood, plasma, and serum specimens from cancer patients. Both molecular and cellular approaches, which differ in sensitivity and specificity, have been used for such means. Circulating tumor cells and extracellular nucleic acids have been detected within blood, plasma, and sera of cancer patients. A...

  10. Relevance of circulating tumor cells, extracellular nucleic acids, and exosomes in breast cancer.

    Science.gov (United States)

    Friel, Anne M; Corcoran, Claire; Crown, John; O'Driscoll, Lorraine

    2010-10-01

    Early detection of cancer is vital to improved overall survival rates. At present, evidence is accumulating for the clinical value of detecting occult tumor cells in peripheral blood, plasma, and serum specimens from cancer patients. Both molecular and cellular approaches, which differ in sensitivity and specificity, have been used for such means. Circulating tumor cells and extracellular nucleic acids have been detected within blood, plasma, and sera of cancer patients. As the presence of malignant tumors are clinically determined and/or confirmed upon biopsy procurement-which in itself may have detrimental effects in terms of stimulating cancer progression/metastases-minimally invasive methods would be highly advantageous to the diagnosis and prognosis of breast cancer and the subsequent tailoring of targeted treatments for individuals, if reliable panels of biomarkers suitable for such an approach exist. Herein, we review the current advances made in the detection of such circulating tumor cells and nucleic acids, with particular emphasis on extracellular nucleic acids, specifically extracellular mRNAs and discuss their clinical relevance.

  11. [Stearic acid methyl ether: a new extracellular metabolite of the obligate methylotrophic bacterium Methylophilus quaylei].

    Science.gov (United States)

    Terekhova, E A; Stepicheva, N A; Pshenichnikova, A B; Shvets, V I

    2010-01-01

    Methyl esters of fatty acids, free fatty acids, and hydrocarbons were found in the culture liquid and in the cellular lipids of the obligate methylotrophic bacterium Methylophilus quaylei under optimal growth conditions and osmotic stress. The main extracellular hydrophobic metabolite was methyl stearate. Exogenous free fatty acids C16-C18 and their methyl esters stimulated the M. quaylei growth and survivability, as well as production of exopolysaccharide under osmotic and oxidative stress, playing the role of growth factors and adaptogens. The order of hydrophobic supplements according to the ability to stimulate bacterial growth is C18 : 1 > C18 : 0 > C16 : 0 > methyl oleate > methyl stearate > no supplements > C14: 0 > C12 : 0. The mechanism underlying the protective action of fatty acids and their methyl esters is discussed.

  12. Acid-sensing ion channels contribute to the effect of extracellular acidosis on proliferation and migration of A549 cells.

    Science.gov (United States)

    Wu, Yu; Gao, Bo; Xiong, Qiu-Ju; Wang, Yu-Chan; Huang, Da-Ke; Wu, Wen-Ning

    2017-06-01

    Acid-sensing ion channels, a proton-gated cation channel, can be activated by low extracellular pH and involved in pathogenesis of some tumors such as glioma and breast cancer. However, the role of acid-sensing ion channels in the growth of lung cancer cell is unclear. In this study, we investigated the expression of acid-sensing ion channels in human lung cancer cell line A549 and their possible role in proliferation and migration of A549 cells. The results show that acid-sensing ion channel 1, acid-sensing ion channel 2, and acid-sensing ion channel 3 are expressed in A549 cells at the messenger RNA and protein levels, and acid-sensing ion channel-like currents were elicited by extracellular acid stimuli. Moreover, we found that acidic extracellular medium or overexpressing acid-sensing ion channel 1a promotes proliferation and migration of A549 cells. In addition psalmotoxin 1, a specific acid-sensing ion channel 1a inhibitor, or acid-sensing ion channel 1a knockdown can abolish the effect of acid stimuli on A549 cells. In addition, acid-sensing ion channels mediate increase of [Ca(2+)]i induced by low extracellular pH in A549 cells. All these results indicate that acid-sensing ion channel-calcium signal mediate lung cancer cell proliferation and migration induced by extracellular acidosis, and acid-sensing ion channels may serve as a prognostic marker and a therapeutic target for lung cancer.

  13. Withania somnifera attenuates acid production, acid tolerance and extra-cellular polysaccharide formation of Streptococcus mutans biofilms.

    Science.gov (United States)

    Pandit, Santosh; Song, Kwang-Yeob; Jeon, Jae-Gyu

    2014-01-01

    Withania somnifera (Ashwagandha) is a plant of the Solanaceae family. It has been widely used as a remedy for a variety of ailments in India and Nepal. The plant has also been used as a controlling agent for dental diseases. The aim of the present study was to evaluate the activity of the methanol extract of W. somnifera against the physiological ability of cariogenic biofilms and to identify the components of the extract. To determine the activity of the extract, assays for sucrose-dependent bacterial adherence, glycolytic acid production, acid tolerance, and extracellular polysaccharide formation were performed using Streptococcus mutans biofilms. The viability change of S. mutans biofilms cells was also determined. A phytochemical analysis of the extract was performed using TLC and LC/MS/MS. The extract showed inhibitory effects on sucrose-dependent bacterial adherence (≥ 100 μg/ml), glycolytic acid production (≥ 300 μg/ml), acid tolerance (≥ 300 μg/ml), and extracellular polysaccharide formation (≥ 300 μg/ml) of S. mutans biofilms. However, the extract did not alter the viability of S. mutans biofilms cells in all concentrations tested. Based on the phytochemical analysis, the activity of the extract may be related to the presence of alkaloids, anthrones, coumarines, anthraquinones, terpenoids, flavonoids, and steroid lactones (withanolide A, withaferin A, withanolide B, withanoside IV, and 12-deoxy withastramonolide). These data indicate that W. somnifera may be a potential agent for restraining the physiological ability of cariogenic biofilms.

  14. Changes in extracellular levels of amygdala amino acids in genetically fast and slow kindling rat strains.

    Science.gov (United States)

    Shin, Rick S; Anisman, Hymie; Merali, Zul; McIntyre, Dan C

    2002-08-01

    A neurochemical basis for many of the epilepsies has long been suspected to result from an imbalance between excitatory and inhibitory neurotransmitter mechanisms. Data supporting changes in extrasynaptic amino acid levels during epileptogenesis, however, remain controversial. In the present study, we used in vivo microdialysis to measure the levels of extracellular GABA (gamma-aminobutyric acid) and glutamate during seizure development in rats with a genetic predisposition for (Fast), or against (Slow), amygdala kindling. Dialysates were collected from both amygdalae before, during, and up to 12 min after a threshold-triggered amygdala afterdischarge (AD). One hour later, samples were again collected from both amygdalae in response to a hippocampal threshold AD. Daily amygdala kindling commenced the next day but without dialysis. After the rats were fully kindled, the same protocol was again employed. Amino acid levels were not consistently increased above baseline with triggered seizures in either strain. Instead, before kindling, a focal seizure in the Slow rats was associated with a large decrease in GABA in the non-stimulated amygdala, while amino acid levels in the Fast rats remained near baseline in both amygdalae. Similar results were seen after kindling. By contrast, before and after kindling, hippocampal stimulation caused large decreases in all amino acid levels in both amygdalae in both strains. These data suggest that, in response to direct stimulation, extracellular amino acid concentrations remain stable in tissues associated with either greater natural (Fast) or induced (kindled Fast/Slow) excitability, but are lowered with indirect stimulation (hippocampus) and/or low excitability.

  15. Factors that affect leaf extracellular ascorbic acid content and redox status

    Energy Technology Data Exchange (ETDEWEB)

    Burkey, K.O.; Fiscus, E.L. [North Carolina State Univ., United States dept. og Agriculture-Agricultural Research Service and Dept. of Crop Science, Raleigh, NC (United States); Eason, G. [North Carolina, State Univ., United States Dept. of Plant Pathology, Raleigh, NC (United States)

    2003-01-01

    Leaf ascorbic acid content and redox status were compared in ozone-tolerant (Provider) and ozone-sensitive (S156) genotypes of snap bean (Phaseolus vulgaris L.). Plants were grown in pots for 24 days under charcoal-filtered air (CF) conditions in open-top field chambers and then maintained as CF controls (29 nmol mol{sup 1} ozone) or exposed to elevated ozone (71 nmol mol{sup 1} ozone). Following a 10-day treatment, mature leaves of the same age were harvested early in the morning (06:00-08:00 h) or in the afternoon (13:00-15:00 h) for analysis of ascorbic acid (AA) and dehydroascorbic acid (DHA). Vacuum infiltration methods were used to separate leaf AA into apoplast and symplast fractions. The total ascorbate content [AA + DHA] of leaf tissue averaged 28% higher in Provider relative to S156, and Provider exhibited a greater capacity to maintain [AA + DHA] content under ozone stress. Apoplast [AA + DHA] content was 2-fold higher in tolerant Provider (360 nmol g{sup 1} FW maximum) relative to sensitive S156 (160 nmol g1 FW maximum) regardless of sampling period or treatment, supporting the hypothesis that extracellular AA is a factor in ozone tolerance. Apoplast [AA + DHA] levels were significantly higher in the afternoon than early morning for both genotypes, evidence for short-term regulation of extracellular ascorbate content. Total leaf ascorbate was primarily reduced with AA/[AA + DHA] ratios of 0.81-0.90. In contrast, apoplast AA/[AA + DHA] ratios were 0.01-0.60 and depended on genotype and ozone treatment. Provider exhibited a greater capacity to maintain extracellular AA/[AA + DHA] ratios under ozone stress, suggesting that ozone tolerance is associated with apoplast ascorbate redox status. (au)

  16. UV mutagenesis of Cupriavidus necator for extracellular production of (R)-3-hydroxybutyric acid.

    Science.gov (United States)

    Ugwu, C U; Tokiwa, Y; Aoyagi, H; Uchiyama, H; Tanaka, H

    2008-07-01

    Ultraviolet (UV) mutagenesis was carried out to obtain mutant strains of Cupriavidus necator that could produce (R)-3-hydroxybutyric acid [(R)-3-HB] in the culture supernatant. C. necator (formerly known as Ralstonia eutropha) was subjected to UV radiation to generate mutants that are capable of producing (R)-3-HB in the culture supernatant. Results indicated that UV mutagen disrupted the phbB (phbB knock-out) and thus, promoted production of (R)-3-HB in mutant strains. Inclusion of acetoacetate esters (carbonyl compounds) in the culture broth led to increased production of (R)-3-HB. Thus, acetoacetyl-CoA (an intermediate of the PHB synthetic pathway) might have been converted to acetoacetate, which in the presence of (R)-3-HB dehydrogenase and NADPH/NADP(+), resulted in extracellular production of (R)-3-HB. UV mutagenesis proved to be a satisfactory method in generating interesting mutants for extracellular production of (R)-3-HB. Extracellular production of (R)-3-HB upon addition of acetoacetate esters would suggest a likely (R)-3-HB biosynthetic pathway in C. necator. Mutants obtained in this study are very useful for production of (R)-3-HB. For the first time, the production of (R)-3-HB by C. necator via acetoacetate is reported.

  17. Enhancement of extracellular lipid production by oleaginous yeast through preculture and sequencing batch culture strategy with acetic acid.

    Science.gov (United States)

    Huang, Xiang-Feng; Shen, Yi; Luo, Hui-Juan; Liu, Jia-Nan; Liu, Jia

    2017-09-19

    Oleaginous yeast Cryptococcus curvatus MUCL 29819, an acid-tolerant lipid producer, was tested to spill lipids extracellularly using different concentrations of acetic acid as carbon source. Extracellular lipids were released when the yeast was cultured with acetic acid exceeding 20g/L. The highest production of lipid (5.01g/L) was obtained when the yeast was cultured with 40g/L acetic acid. When the yeast was cultivated with moderate concentration (20g/L) of acetic acid, lipid production was further increased by 49.6% through preculture with 40g/L acetic acid as stimulant. When applying high concentration (40g/L) of acetic acid as carbon source in sequencing batch cultivation, extracellular lipids accounted up to 50.5% in the last cycle and the extracellular lipids reached 5.43g/L through the whole process. This study provides an effective strategy to enhance extracellular lipid production and facilitate the recovery of microbial lipids. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Compressive strength and hydrolytic stability of fly ash based geopolymers

    Directory of Open Access Journals (Sweden)

    Nikolić Irena

    2013-01-01

    Full Text Available The process of geopolymerization involves the reaction of solid aluminosilicate materials with highly alkaline silicate solution yielding an aluminosilicate inorganic polymer named geopolymer, which may be successfully applied in civil engineering as a replacement for cement. In this paper we have investigated the influence of synthesis parameters: solid to liquid ratio, NaOH concentration and the ratio of Na2SiO3/NaOH, on the mechanical properties and hydrolytic stability of fly ash based geopolymers in distilled water, sea water and simulated acid rain. The highest value of compressive strength was obtained using 10 mol dm-3 NaOH and at the Na2SiO3/NaOH ratio of 1.5. Moreover, the results have shown that mechanical properties of fly ash based geopolymers are in correlation with their hydrolytic stability. Factors that increase the compressive strength also increase the hydrolytic stability of fly ash based geopolymers. The best hydrolytic stability of fly ash based geopolymers was shown in sea water while the lowest stability was recorded in simulated acid rain. [Projekat Ministarstva nauke Republike Srbije, br. 172054 i Nanotechnology and Functional Materials Center, funded by the European FP7 project No. 245916

  19. Extracellular matrix assembly in extreme acidic eukaryotic biofilms and their possible implications in heavy metal adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Aguilera, Angeles [Centro de Astrobiologia (INTA-CSIC), Carretera de Ajalvir Km 4, Torrejon de Ardoz, 28850 Madrid (Spain)], E-mail: aguileraba@inta.es; Souza-Egipsy, Virginia [Centro de Astrobiologia (INTA-CSIC), Carretera de Ajalvir Km 4, Torrejon de Ardoz, 28850 Madrid (Spain); San Martin-Uriz, Patxi [Centro de Biologia Molecular (UAM-CSIC), Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain); Amils, Ricardo [Centro de Astrobiologia (INTA-CSIC), Carretera de Ajalvir Km 4, Torrejon de Ardoz, 28850 Madrid (Spain); Centro de Biologia Molecular (UAM-CSIC), Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain)

    2008-07-30

    To evaluate the importance of the extracellular matrix in relation to heavy metal binding capacity in extreme acidic environments, the extracellular polymeric substances (EPS) composition of 12 biofilms isolated from Rio Tinto (SW, Spain) was analyzed. Each biofilm was composed mainly by one or two species of eukaryotes, although other microorganisms were present. EPS ranged from 130 to 439 mg g{sup -1} biofilm dry weight, representing between 15% and the 40% of the total biofilm dry weight (DW). Statistically significant differences (p < 0.05) were found in the amount of total EPS extracted from biofilms dominated by the same organism at different sampling points. The amount of EPS varied among different biofilms collected from the same sampling location. Colloidal EPS ranged from 42 to 313 mg g{sup -1} dry weight; 10% to 30% of the total biofilm dry weight. Capsular EPS ranged from 50 to 318 mg g{sup -1} dry weight; 5% to 30% of the total biofilm dry weight. Seven of the 12 biofilms showed higher amounts of capsular than colloidal EPS (p < 0.05). Total amount of EPS decreased when total cell numbers and pH increased. There was a positive correlation between EPS concentration and heavy metal concentration in the water. Observations by low temperature scanning electron microscopy (LTSEM) revealed the mineral adsorption in the matrix of EPS and onto the cell walls. EPS in all biofilms were primarily composed of carbohydrates, heavy metals and humic acid, plus small quantities of proteins and DNA. After carbohydrates, heavy metals were the second main constituents of the extracellular matrix. Their total concentrations ranged from 3 to 32 mg g{sup -1} biofilm dry weight, reaching up to 16% of the total composition. In general, the heavy metal composition of the EPS extracted from the biofilms closely resembled the metal composition of the water from which the biofilms were collected.

  20. Characterization of purple acid phosphatases involved in extracellular dNTP utilization in Stylosanthes.

    Science.gov (United States)

    Liu, Pan-Dao; Xue, Ying-Bin; Chen, Zhi-Jian; Liu, Guo-Dao; Tian, Jiang

    2016-07-01

    Stylo (Stylosanthes spp.) is a pasture legume predominant in tropical and subtropical areas, where low phosphorus (P) availability is a major constraint for plant growth. Therefore, stylo might exhibit superior utilization of the P pool on acid soils, particularly organic P. However, little is known about mechanisms of inorganic phosphate (Pi) acquisition employed by stylo. In this study, the utilization of extracellular deoxy-ribonucleotide triphosphate (dNTP) and the underlying physiological and molecular mechanisms were examined for two stylo genotypes with contrasting P efficiency. Results showed that the P-efficient genotype, TPRC2001-1, was superior to the P-inefficient genotype, Fine-stem, when using dNTP as the sole P source. This was reflected by a higher dry weight and total P content for TPRC2001-1 than for Fine-stem, which was correlated with higher root-associated acid phosphatase (APase) activities in TPRC2001-1 under low P conditions. Subsequently, three PAP members were cloned from TPRC2001-1: SgPAP7, SgPAP10, and SgPAP26 Expression levels of these three SgPAPs were up-regulated by Pi starvation in stylo roots. Furthermore, there was a higher abundance of transcripts of SgPAP7 and SgPAP10 in TPRC2001-1 than in Fine-stem. Subcellular localization analysis demonstrated that these three SgPAPs were localized on the plasma membrane. Overexpression of these three SgPAPs could result in significantly increased root-associated APase activities, and thus extracellular dNTP utilization in bean hairy roots. Taken together, the results herein suggest that SgPAP7, SgPAP10, and SgPAP26 may differentially contribute to root-associated APase activities, and thus control extracellular dNTP utilization in stylo.

  1. High capacity for extracellular acid-base regulation in the air-breathing fish Pangasianodon hypophthalmus.

    Science.gov (United States)

    Damsgaard, Christian; Gam, Le Thi Hong; Tuong, Dang Diem; Thinh, Phan Vinh; Huong Thanh, Do Thi; Wang, Tobias; Bayley, Mark

    2015-05-01

    The evolution of accessory air-breathing structures is typically associated with reduction of the gills, although branchial ion transport remains pivotal for acid-base and ion regulation. Therefore, air-breathing fishes are believed to have a low capacity for extracellular pH regulation during a respiratory acidosis. In the present study, we investigated acid-base regulation during hypercapnia in the air-breathing fish Pangasianodon hypophthalmus in normoxic and hypoxic water at 28-30°C. Contrary to previous studies, we show that this air-breathing fish has a pronounced ability to regulate extracellular pH (pHe) during hypercapnia, with complete metabolic compensation of pHe within 72 h of exposure to hypoxic hypercapnia with CO2 levels above 34 mmHg. The high capacity for pHe regulation relies on a pronounced ability to increase levels of HCO3(-) in the plasma. Our study illustrates the diversity in the physiology of air-breathing fishes, such that generalizations across phylogenies may be difficult.

  2. Extracellular ascorbic acid fluctuation during the protective process of ischemic preconditioning in rabbit renal ischemia-reperfusion model measured

    Institute of Scientific and Technical Information of China (English)

    LIU Lei; LIN Yu-qing; YAN Long-tao; HONG Kai; HOU Xiao-fei; MAO Lan-qun; MA Lu-lin

    2010-01-01

    Background Ascorbic acid has important antioxidant properties, and may play a role in the protective effects of ischemic preconditioning on later ischemia-reperfusion. Herein, we examined the role of endogenous extracellular ascorbic acid in ischemic preconditioning in the kidney.Methods We developed a solitary rabbit kidney model where animals received ischemia-reperfusion only (ischemia-reperfusion group, n=15) or ischemic preconditioning followed by ischemia-reperfusion (ischemic preconditioning group, n=15). Ischemia-reperfusion was induced by occluding and loosening of the renal pedicle. The process of ischemic preconditioning included 15-minute brief ischemia and 10-minute reperfusion. In vivo microdialysis coupled with online electrochemical detection was used to determine levels of endogenous extracellular ascorbic acid in both groups. The extent of tissue damage was determined in kidney sections stained with hematoxylin and eosin. Serum creatinine and urea nitrogen were also detected to assess renal function.Results During ischemia-reperfusion, the extracellular ascorbic acid concentration during ischemia increased rapidly to the peak level ((130.01 ±9.98)%), and then decreased slowly to near basal levels. Similar changes were observed during reperfusion (peak level, (126.78±18.24)%). In the ischemic preconditioning group there was a similar pattern of extracellular ascorbic acid concentration during ischemic preconditioning. However, the ascorbic acid level was significantly lower during the ischemia and early reperfusion stage compared to the ischemia-reperfusion group. Additionally, the extent of glomerular ischemic collapse, tubular dilation, tubular denudation, and loss of brush border were markedly attenuated in the ischemic preconditioning group. Levels of serum creatinine and urea nitrogen were also decreased significantly in the ischemic preconditioning group.Conclusions Ischemic preconditioning may protect renal tissue against ischemia

  3. Hydrolytic Amino Acids Employed as a Novel Organic Nitrogen Source for the Preparation of PGPF-Containing Bio-Organic Fertilizer for Plant Growth Promotion and Characterization of Substance Transformation during BOF Production.

    Science.gov (United States)

    Zhang, Fengge; Meng, Xiaohui; Feng, Chenglong; Ran, Wei; Yu, Guanghui; Zhang, Yingjun; Shen, Qirong

    2016-01-01

    Opportunity costs seriously limit the large-scale production of bio-organic fertilizers (BOFs) both in China and internationally. This study addresses the utilization of amino acids resulting from the acidic hydrolysis of pig corpses as organic nitrogen sources to increase the density of TrichodermaharzianumT-E5 (a typical plant growth-promoting fungi, PGPF). This results in a novel, economical, highly efficient and environmentally friendly BOF product. Fluorescence excitation-emission matrix (EEM) spectroscopy combined with fluorescence regional integration (FRI) was employed to monitor compost maturity levels, while pot experiments were utilized to test the effects of this novel BOF on plant growth. An optimization experiment, based on response surface methodologies (RSMs), showed that a maximum T-E5 population (3.72 × 108 ITS copies g-1) was obtained from a mixture of 65.17% cattle manure compost (W/W), 19.33% maggot manure (W/W), 15.50% (V/W)hydrolytic amino acid solution and 4.69% (V/W) inoculum at 28.7°C after a 14 day secondary solid fermentation. Spectroscopy analysis revealed that the compost transformation process involved the degradation of protein-like substances and the formation of fulvic-like and humic-like substances. FRI parameters (PI, n, PII, n, PIII, n and PV, n) were used to characterize the degree of compost maturity. The BOF resulted in significantly higher increased chlorophyll content, shoot length, and shoot and root dry weights of three vegetables (cucumber, tomato and pepper) by 9.9%~22.4%, 22.9%~58.5%, 31.0%~84.9%, and 24.2%~34.1%, respectively. In summary, this study presents an operational means of increasing PGPF T-E5 populations in BOF to promote plant growth with a concomitant reduction in production cost. In addition, a BOF compost maturity assessment using fluorescence EEM spectroscopy and FRI ensured its safe field application.

  4. Novel extracellular PHB depolymerase from Streptomyces ascomycinicus: PHB copolymers degradation in acidic conditions.

    Directory of Open Access Journals (Sweden)

    Javier García-Hidalgo

    Full Text Available The ascomycin-producer strain Streptomyces ascomycinicus has been proven to be an extracellular poly(R-3-hydroxybutyrate (PHB degrader. The fkbU gene, encoding a PHB depolymerase (PhaZ Sa , has been cloned in E. coli and Rhodococcus sp. T104 strains for gene expression. Gram-positive host Rhodococcus sp. T104 was able to produce and secrete to the extracellular medium an active protein form. PhaZ Sa was purified by two hydrophobic interaction chromatographic steps, and afterwards was biochemically as well as structurally characterized. The enzyme was found to be a monomer with a molecular mass of 48.4 kDa, and displayed highest activity at 45°C and pH 6, thus being the first PHB depolymerase from a gram-positive bacterium presenting an acidic pH optimum. The PHB depolymerase activity of PhaZ Sa was increased in the presence of divalent cations due to non-essential activation, and also in the presence of methyl-β-cyclodextrin and PEG 3350. Protein structure was analyzed, revealing a globular shape with an alpha-beta hydrolase fold. The amino acids comprising the catalytic triad, Ser(131-Asp(209-His(269, were identified by multiple sequence alignment, chemical modification of amino acids and site-directed mutagenesis. These structural results supported the proposal of a three-dimensional model for this depolymerase. PhaZ Sa was able to degrade PHB, but also demonstrated its ability to degrade films made of PHB, PHBV copolymers and a blend of PHB and starch (7∶3 proportion wt/wt. The features shown by PhaZ Sa make it an interesting candidate for industrial applications involving PHB degradation.

  5. Extracellular Ca(2+)-dependent enhancement of cytocidal potency of zoledronic acid in human oral cancer cells.

    Science.gov (United States)

    Inoue, Sayaka; Arai, Naoya; Tomihara, Kei; Takashina, Michinori; Hattori, Yuichi; Noguchi, Makoto

    2015-08-15

    Direct antitumor effects of bisphosphonates (BPs) have been demonstrated in various cancer cells in vitro. However, the effective concentrations of BPs are typically much higher than their clinically relevant concentrations. Oral cancers frequently invade jawbone and may lead to the release of Ca(2+) in primary lesions. We investigated the effects of the combined application of zoledronic acid (ZA) and Ca(2+) on proliferation and apoptosis of oral cancer cells. Human oral cancer cells, breast cancer cells, and colon cancer cells were treated with ZA at a wide range of concentrations in different Ca(2+) concentration environments. Under a standard Ca(2+) concentration (0.6mM), micromolar concentrations of ZA were required to inhibit oral cancer cell proliferation. Increasing extracellular Ca(2+) concentrations greatly enhanced the potency of the ZA cytocidal effect. The ability of Ca(2+) to enhance the cytocidal effects of ZA was negated by the Ca(2+)-selective chelator EGTA. In contrast, the cytocidal effect of ZA was less pronounced in breast and colon cancer cells regardless of whether extracellular Ca(2+) was elevated. In oral cancer cells incubated with 1.6mM Ca(2+), ZA up-regulated mitochondrial Bax expression and increased mitochondrial Ca(2+) uptake. This was associated with decreased mitochondrial membrane potential and increased release of cytochrome c. We suggest that ZA can specifically produce potent cytocidal activity in oral cancer cells in an extracellular Ca(2+)-dependent manner, implying that BPs may be useful for treatment of oral squamous cell carcinoma with jawbone invasion leading to the hypercalcemic state.

  6. Reduction of endogenous kynurenic acid formation enhances extracellular glutamate, hippocampal plasticity, and cognitive behavior.

    Science.gov (United States)

    Potter, Michelle C; Elmer, Greg I; Bergeron, Richard; Albuquerque, Edson X; Guidetti, Paolo; Wu, Hui-Qiu; Schwarcz, Robert

    2010-07-01

    At endogenous brain concentrations, the astrocyte-derived metabolite kynurenic acid (KYNA) antagonizes the alpha 7 nicotinic acetylcholine receptor and, possibly, the glycine co-agonist site of the NMDA receptor. The functions of these two receptors, which are intimately involved in synaptic plasticity and cognitive processes, may, therefore, be enhanced by reductions in brain KYNA levels. This concept was tested in mice with a targeted deletion of kynurenine aminotransferase II (KAT II), a major biosynthetic enzyme of brain KYNA. At 21 days of age, KAT II knock-out mice had reduced hippocampal KYNA levels (-71%) and showed significantly increased performance in three cognitive paradigms that rely in part on the integrity of hippocampal function, namely object exploration and recognition, passive avoidance, and spatial discrimination. Moreover, compared with wild-type controls, hippocampal slices from KAT II-deficient mice showed a significant increase in the amplitude of long-term potentiation in vitro. These functional changes were accompanied by reduced extracellular KYNA (-66%) and increased extracellular glutamate (+51%) concentrations, measured by hippocampal microdialysis in vivo. Taken together, a picture emerges in which a reduction in the astrocytic formation of KYNA increases glutamatergic tone in the hippocampus and enhances cognitive abilities and synaptic plasticity. Our studies raise the prospect that interventions aimed specifically at reducing KYNA formation in the brain may constitute a promising molecular strategy for cognitive improvement in health and disease.

  7. Hypohalous acids contribute to renal extracellular matrix damage in experimental diabetes.

    Science.gov (United States)

    Brown, Kyle L; Darris, Carl; Rose, Kristie Lindsey; Sanchez, Otto A; Madu, Hartman; Avance, Josh; Brooks, Nickolas; Zhang, Ming-Zhi; Fogo, Agnes; Harris, Raymond; Hudson, Billy G; Voziyan, Paul

    2015-06-01

    In diabetes, toxic oxidative pathways are triggered by persistent hyperglycemia and contribute to diabetes complications. A major proposed pathogenic mechanism is the accumulation of protein modifications that are called advanced glycation end products. However, other nonenzymatic post-translational modifications may also contribute to pathogenic protein damage in diabetes. We demonstrate that hypohalous acid-derived modifications of renal tissues and extracellular matrix (ECM) proteins are significantly elevated in experimental diabetic nephropathy. Moreover, diabetic renal ECM shows diminished binding of α1β1 integrin consistent with the modification of collagen IV by hypochlorous (HOCl) and hypobromous acids. Noncollagenous (NC1) hexamers, key connection modules of collagen IV networks, are modified via oxidation and chlorination of tryptophan and bromination of tyrosine residues. Chlorotryptophan, a relatively minor modification, has not been previously found in proteins. In the NC1 hexamers isolated from diabetic kidneys, levels of HOCl-derived oxidized and chlorinated tryptophan residues W(28) and W(192) are significantly elevated compared with nondiabetic controls. Molecular dynamics simulations predicted a more relaxed NC1 hexamer tertiary structure and diminished assembly competence in diabetes; this was confirmed using limited proteolysis and denaturation/refolding. Our results suggest that hypohalous acid-derived modifications of renal ECM, and specifically collagen IV networks, contribute to functional protein damage in diabetes.

  8. [Effects of extracts of Dragon's blood on fibroblast proliferation and extracellular matrix hyaluronic acid].

    Science.gov (United States)

    Li, Dan; Hui, Rui; Hu, Yongwu; Han, Yan; Guo, Shuzhong

    2015-01-01

    To investigate the effects of Dragon' s blood extract on proliferation and secret extracellular matrix function of fibroblasts in vitro. Dragon' s blood was extracted by chloroform, acetoacetic ester, alcohol. Human fibroblast were cultured in vitro in media containing gradient dilutions of Dragon' s blood extracts (0.002, 0.02, 0.2, 2, 20 mg/ml) , which was followed by cell proliferation assessed with MTT assay on 0, 12, 24, 36, 48, 60, 72 h. Under the optimal concentration, the cell growth curves were drawn and the flow cytometry (FCM) was used to determine the changes of cell cycle. On 0, 12, 24, 36, 48, 60, 72 h, the concentration of hyaluronic acid in the supernatant of fibroblast culture was measured by radioimmunoassay. 0.2-2 mg/ml Dragon' s blood extracts enhanced the proliferation of fibroblasts in a dose-dependent manner. 2 mg/ml was the optimal dilution of Dragon's blood extract, and it increased the ratio of S cells in cell cycle [(25.80 ± 3.10)%] than control group [(7.50 ± 0.70)%, P Dragon's blood group, concentration of Hyaluronic acid secreted by fibroblasts gradually increased, but were less than control (P Dragon's blood acetoacetic ester extract improved the proliferation of cultured human fibroblasts in vitro, might be beneficial to promote wound healing.

  9. Cross-talk between cancer and mesenchymal stem cells through extracellular vesicles carrying nucleic acids.

    Directory of Open Access Journals (Sweden)

    Tatiana eLopatina

    2016-05-01

    Full Text Available Extracellular vesicles (EVs are considered to be a novel complex mechanism of cell communication within the tumor microenvironment. EVs may act as vehicles for transcription factors and nucleic acids inducing epigenetic changes in recipient cells. Since tumor EVs may be present in patient biological fluids, it is important to investigate their function and molecular mechanisms of action. It has been shown that tumor cells release EVs, which are capable in regulating cell apoptosis, proliferation, invasion, epithelial-mesenchymal transition, as well as, to suppress activity of immune cells, to enhance angiogenesis, and to prepare a favorable microenvironment for metastasis. On the other hand EVs derived from stromal cells, such as mesenchymal stem cells, may influence the phenotype of tumor cells through reciprocal crosstalk greatly influenced by the transcription factors and nucleic acids they carry. In particular, non-coding RNAs (ncRNA, including microRNAs and long ncRNA RNAs, have recently been identified as the main candidates for the phenotypic changes induced in the recipient cells by EVs. Non-coding RNAs, which are important regulators of mRNA and protein expression, can function either as tumor suppressors or as oncogenes, depending on their targets. Herein, we have attempted to revise actual evidence reported in the literature on the role of EVs in tumor biology with particular regards to the crosstalk of ncRNAs between cancer cells and mesenchymal stem cells.

  10. Endophytic Fungi from Frankincense Tree Improves Host Growth and Produces Extracellular Enzymes and Indole Acetic Acid.

    Directory of Open Access Journals (Sweden)

    Abdul Latif Khan

    Full Text Available Boswellia sacra, an economically important frankincense-producing tree found in the desert woodlands of Oman, is least known for its endophytic fungal diversity and the potential of these fungi to produce extracellular enzymes and auxins. We isolated various fungal endophytes belonging to Eurotiales (11.8%, Chaetomiaceae (17.6%, Incertae sadis (29.5%, Aureobasidiaceae (17.6%, Nectriaceae (5.9% and Sporomiaceae (17.6% from the phylloplane (leaf and caulosphere (stem of the tree. Endophytes were identified using genomic DNA extraction, PCR amplification and sequencing the internal transcribed spacer regions, whereas a detailed phylogenetic analysis of the same gene fragment was made with homologous sequences. The endophytic colonization rate was significantly higher in the leaf (5.33% than the stem (0.262%. The Shannon-Weiner diversity index was H' 0.8729, while Simpson index was higher in the leaf (0.583 than in the stem (0.416. Regarding the endophytic fungi's potential for extracellular enzyme production, fluorogenic 4-methylumbelliferone standards and substrates were used to determine the presence of cellulases, phosphatases and glucosidases in the pure culture. Among fungal strains, Penicillum citrinum BSL17 showed significantly higher amounts of glucosidases (62.15±1.8 μM-1min-1mL and cellulases (62.11±1.6 μM-1min-1mL, whereas Preussia sp. BSL10 showed significantly higher secretion of glucosidases (69.4±0.79 μM-1min-1mL and phosphatases (3.46±0.31μM-1min-1mL compared to other strains. Aureobasidium sp. BSS6 and Preussia sp. BSL10 showed significantly higher potential for indole acetic acid production (tryptophan-dependent and independent pathways. Preussia sp. BSL10 was applied to the host B. sacra tree saplings, which exhibited significant improvements in plant growth parameters and accumulation of photosynthetic pigments. The current study concluded that endophytic microbial resources producing extracellular enzymes and auxin

  11. Endophytic Fungi from Frankincense Tree Improves Host Growth and Produces Extracellular Enzymes and Indole Acetic Acid.

    Science.gov (United States)

    Khan, Abdul Latif; Al-Harrasi, Ahmed; Al-Rawahi, Ahmed; Al-Farsi, Zainab; Al-Mamari, Aza; Waqas, Muhammad; Asaf, Sajjad; Elyassi, Ali; Mabood, Fazal; Shin, Jae-Ho; Lee, In-Jung

    2016-01-01

    Boswellia sacra, an economically important frankincense-producing tree found in the desert woodlands of Oman, is least known for its endophytic fungal diversity and the potential of these fungi to produce extracellular enzymes and auxins. We isolated various fungal endophytes belonging to Eurotiales (11.8%), Chaetomiaceae (17.6%), Incertae sadis (29.5%), Aureobasidiaceae (17.6%), Nectriaceae (5.9%) and Sporomiaceae (17.6%) from the phylloplane (leaf) and caulosphere (stem) of the tree. Endophytes were identified using genomic DNA extraction, PCR amplification and sequencing the internal transcribed spacer regions, whereas a detailed phylogenetic analysis of the same gene fragment was made with homologous sequences. The endophytic colonization rate was significantly higher in the leaf (5.33%) than the stem (0.262%). The Shannon-Weiner diversity index was H' 0.8729, while Simpson index was higher in the leaf (0.583) than in the stem (0.416). Regarding the endophytic fungi's potential for extracellular enzyme production, fluorogenic 4-methylumbelliferone standards and substrates were used to determine the presence of cellulases, phosphatases and glucosidases in the pure culture. Among fungal strains, Penicillum citrinum BSL17 showed significantly higher amounts of glucosidases (62.15±1.8 μM-1min-1mL) and cellulases (62.11±1.6 μM-1min-1mL), whereas Preussia sp. BSL10 showed significantly higher secretion of glucosidases (69.4±0.79 μM-1min-1mL) and phosphatases (3.46±0.31μM-1min-1mL) compared to other strains. Aureobasidium sp. BSS6 and Preussia sp. BSL10 showed significantly higher potential for indole acetic acid production (tryptophan-dependent and independent pathways). Preussia sp. BSL10 was applied to the host B. sacra tree saplings, which exhibited significant improvements in plant growth parameters and accumulation of photosynthetic pigments. The current study concluded that endophytic microbial resources producing extracellular enzymes and auxin could

  12. Extracellular pH defense against lactic acid in untrained and trained altitude residents.

    Science.gov (United States)

    Böning, D; Rojas, J; Serrato, M; Reyes, O; Coy, L; Mora, M

    2008-05-01

    The assumption that buffering at altitude is deteriorated by bicarbonate (bi) reduction was investigated. Extracellular pH defense against lactic acidosis was estimated from changes (Delta) in lactic acid ([La]), [HCO3-], pH and PCO2 in plasma, which equilibrates with interstitial fluid. These quantities were measured in earlobe blood during and after incremental bicycle exercise in 10 untrained (UT) and 11 endurance-trained (TR) highlanders (2,600 m). During exercise the capacity of non-bicarbonate buffers (betanbi=-Delta[La]. DeltapH(-1)-Delta[HCO3-]. DeltapH(-1)) amounted to 40+/-2 (SEM) and 28+/-2 mmol l(-1) in UT and TR, respectively (P<0.01). During recovery beta (nbi) decreased to 20 (UT) and 16 (TR) mmol l(-1) (P<0.001) corresponding to values expected from hemoglobin, dissolved protein and phosphate concentrations related to extracellular fluid (ecf). This was accompanied by a larger decrease of base excess after than during exercise for a given Delta[La]. betabi amounted to 37-41 mmol l(-1) being lower than at sea level. The large exercise betanbi was mainly caused by increasing concentrations of buffers due to temporary shrinking of ecf. Tr has lower betanbi in spite of an increased Hb mass mainly because of an expanded ecf compared to UT. In highlanders betanbi is higher than in lowlanders because of larger Hb mass and reduced ecf and counteracts the decrease in [HCO3-]. The amount of bicarbonate is probably reduced by reduction of the ecf at altitude but this is compensated by lower maximal [La] and more effective hyperventilation resulting in attenuated exercise acidosis at exhaustion.

  13. Production of extracellular ferulic acid esterases by Lactobacillus strains using natural and synthetic carbon sources

    Directory of Open Access Journals (Sweden)

    Dominik Szwajgier

    2011-09-01

    Full Text Available Background. Ferulic acid esterases (FAE, EC 3.1.1.73, also known as feruloyl esterases, cinnamic acid esterases or cinnamoyl esterases, belong to a common group of hydrolases distributed in the plant kingdom. Especially the fungal enzymes were very well characterised in the past whereas the enzyme was rarely found in the lactic acid bacteria (LAB strains. It is well known that strong antioxidants free phenolic acids can be released from the dietary fiber by the action of intestinal microflora composed among others also of Lactobacillus strains. The aim of this study was to examine four Lactobacillus strains (L. acidophilus K1, L. rhamnosus E/N, PEN, OXYfor the ability to produce extracellular FAE on different synthetic and natural carbon sources. Material and methods. The LAB strains were grown in the minimal growth media using German wheat bran, rye bran, brewers’ spent grain, isolated larchwood arabinogalactan, apple pectin, corn pectin, methyl ferulate, methyl p-coumarate, methyl syringate or methyl vanillate as the sole carbon source. FAE activity was determined using the post-cultivation supernatants, methyl ferulate and HPLC with UV detection. Results. The highest FAE activity was obtained with L. acidophilus K1 and methyl ferulate (max. 23.34 ±0.05 activity units and methyl p-coumarate (max. 14.96 ±0.47 activity units as carbon sources. L. rhamnosus E/N, OXY and PEN exhibited the limited ability to produce FAE with cinnamic acids methyl esters. Methyl syringate and methyl vanillate (MS and MV were insufficient carbon sources for FAE production. Brewers’ spent grain was the most suitable substrate for FAE production by L. acidophilus K1 (max. 2.64 ±0.06 activity units and L. rhamnosus E/N, OXY and PEN. FAE was also successfully induced by natural substrates rye bran, corn pectin (L. acidophilus K1, German wheat bran and larchwood arabinogalactan (E/N, PEN or German wheat bran and corn pectin (OXY. Conclusions. This study proved the

  14. Extracellular acid block and acid-enhanced inactivation of the Ca2+-activated cation channel TRPM5 involve residues in the S3-S4 and S5-S6 extracellular domains.

    Science.gov (United States)

    Liu, Dan; Zhang, Zheng; Liman, Emily R

    2005-05-27

    TRPM5, a member of the superfamily of transient receptor potential ion channels, is essential for the detection of bitter, sweet, and amino acid tastes. In heterologous cell types it forms a nonselective cation channel that is activated by intracellular Ca(2+). TRPM5 is likely to be part of the taste transduction cascade, and regulators of TRPM5 are likely to affect taste sensation. In this report we show that TRPM5, but not the related channel TRPM4b, is potently blocked by extracellular acidification. External acidification has two effects, a fast reversible block of the current (IC(50) pH = 6.2) and a slower irreversible enhancement of current inactivation. Mutation of a single Glu residue in the S3-S4 linker and a His residue in the pore region each reduced sensitivity of TRPM5 currents to fast acid block (IC(50) pH = 5.8 for both), and the double mutant was nearly insensitive to acidic pH (IC(50) pH = 5.0). Prolonged exposure to acidic pH enhanced inactivation of TRPM5 currents, and mutant channels that were less sensitive to acid block were also less sensitive to acid-enhanced inactivation, suggesting an intimate association between the two processes. These processes are, however, distinct because the pore mutant H896N, which has normal sensitivity to acid block, shows significant recovery from acid-enhanced inactivation. These data show that extracellular acidification acts through specific residues on TRPM5 to block conduction through two distinct but related mechanisms and suggest a possible interaction between extracellular pH and activation and adaptation of bitter, sweet, and amino acid taste transduction.

  15. Conserved charged amino acid residues in the extracellular region of sodium/iodide symporter are critical for iodide transport activity

    Directory of Open Access Journals (Sweden)

    Liang Ji-An

    2010-11-01

    Full Text Available Abstract Background Sodium/iodide symporter (NIS mediates the active transport and accumulation of iodide from the blood into the thyroid gland. His-226 located in the extracellular region of NIS has been demonstrated to be critical for iodide transport in our previous study. The conserved charged amino acid residues in the extracellular region of NIS were therefore characterized in this study. Methods Fourteen charged residues (Arg-9, Glu-79, Arg-82, Lys-86, Asp-163, His-226, Arg-228, Asp-233, Asp-237, Arg-239, Arg-241, Asp-311, Asp-322, and Asp-331 were replaced by alanine. Iodide uptake abilities of mutants were evaluated by steady-state and kinetic analysis. The three-dimensional comparative protein structure of NIS was further modeled using sodium/glucose transporter as the reference protein. Results All the NIS mutants were expressed normally in the cells and targeted correctly to the plasma membrane. However, these mutants, except R9A, displayed severe defects on the iodide uptake. Further kinetic analysis revealed that mutations at conserved positively charged amino acid residues in the extracellular region of NIS led to decrease NIS-mediated iodide uptake activity by reducing the maximal rate of iodide transport, while mutations at conserved negatively charged residues led to decrease iodide transport by increasing dissociation between NIS mutants and iodide. Conclusions This is the first report characterizing thoroughly the functional significance of conserved charged amino acid residues in the extracellular region of NIS. Our data suggested that conserved charged amino acid residues, except Arg-9, in the extracellular region of NIS were critical for iodide transport.

  16. Salicylic acid changes the properties of extracellular peroxidase activity secreted from wounded wheat (Triticum aestivum L.) roots.

    Science.gov (United States)

    Minibayeva, F; Mika, A; Lüthje, S

    2003-05-01

    Wheat ( Triticum aestivum L.) roots released proteins showing peroxidase activity in the apoplastic solution in response to wound stress. Preincubation of excised roots with 1 mM salicylic acid at pH 7.0 enhanced the guaiacol peroxidase activity of the extracellular solution (so-called extracellular peroxidase). The soluble enzymes were partially purified by precipitation with ammonium sulfate followed by size exclusion and ion exchange chromatography. Despite an increase in the total activity of secreted peroxidase induced by pretreatment of excised roots with salicylic acid, the specific activity of the partially purified protein was significantly lower compared to that of the control. Purification of the corresponding proteins by ion exchange chromatography indicates that several isoforms of peroxidase occurred in both control and salicylic acid-treated samples. The activities of the extracellular peroxidases secreted by the salicylic acid-treated roots responded differently to calcium and lectins compared with those from untreated roots. Taken together, our data suggest that salicylic acid changes the isoforms of peroxidase secreted by wounded wheat roots.

  17. Influence of Humic Acid Complexation with Metal Ions on Extracellular Electron Transfer Activity.

    Science.gov (United States)

    Zhou, Shungui; Chen, Shanshan; Yuan, Yong; Lu, Qin

    2015-11-23

    Humic acids (HAs) can act as electron shuttles and mediate biogeochemical cycles, thereby influencing the transformation of nutrients and environmental pollutants. HAs commonly complex with metals in the environment, but few studies have focused on how these metals affect the roles of HAs in extracellular electron transfer (EET). In this study, HA-metal (HA-M) complexes (HA-Fe, HA-Cu, and HA-Al) were prepared and characterized. The electron shuttle capacities of HA-M complexes were experimentally evaluated through microbial Fe(III) reduction, biocurrent generation, and microbial azoreduction. The results show that the electron shuttle capacities of HAs were enhanced after complexation with Fe but were weakened when using Cu or Al. Density functional theory calculations were performed to explore the structural geometry of the HA-M complexes and revealed the best binding sites of the HAs to metals and the varied charge transfer rate constants (k). The EET activity of the HA-M complexes were in the order HA-Fe > HA-Cu > HA-Al. These findings have important implications for biogeochemical redox processes given the ubiquitous nature of both HAs and various metals in the environment.

  18. Adsorption of toxic mercury(II) by an extracellular biopolymer poly(gamma-glutamic acid).

    Science.gov (United States)

    Inbaraj, B Stephen; Wang, J S; Lu, J F; Siao, F Y; Chen, B H

    2009-01-01

    Adsorption of mercury(II) by an extracellular biopolymer, poly(gamma-glutamic acid) (gamma-PGA), was studied as a function of pH, temperature, agitation time, ionic strength, light and heavy metal ions. An appreciable adsorption occurred at pH>3 and reached a maximum at pH 6. Isotherms were well predicted by Redlich-Peterson model with a dominating Freundlich behavior, implying the heterogeneous nature of mercury(II) adsorption. The adsorption followed an exothermic and spontaneous process with increased orderliness at solid/solution interface. The adsorption was rapid with 90% being attained within 5 min for a 80 mg/L mercury(II) solution, and the kinetic data were precisely described by pseudo second order model. Ionic strength due to added sodium salts reduced the mercury(II) binding with the coordinating ligands following the order: Cl(-) >SO(4)(2-) >NO(3)(-). Both light and heavy metal ions decreased mercury(II) binding by gamma-PGA, with calcium(II) ions showing a more pronounced effect than monovalent sodium and potassium ions, while the interfering heavy metal ions followed the order: Cu(2+) > Cd(2+) > Zn(2+). Distilled water adjusted to pH 2 using hydrochloric acid recovered 98.8% of mercury(II), and gamma-PGA reuse for five cycles of operation showed a loss of only 6.5%. IR spectra of gamma-PGA and Hg(II)-gamma-PGA revealed binding of mercury(II) with carboxylate and amide groups on gamma-PGA.

  19. Hydrolytic fragmentation of seed gums under microwave irradiation.

    Science.gov (United States)

    Singh, V; Tiwari, A

    2009-03-01

    The seed gum solutions of Ipomoea purga, Ipomoea palmata, Ipomoea dasysperma, Cyanaposis tetragonolobus (Guar gum) and Crotolaria medicaginea were microwave (MW) irradiated and their degradation to oligo and monosaccharides was investigated. The gum solutions were fragmented into oligosaccharides/constituent monosaccharides depending upon the length of MW exposure in presence of catalytic amount of mineral acid or even when no acid was used. A mechanism for the microwave induced hydrolytic degradation of the seed gums has been proposed. The MW exposure time required for the partial and complete degradation of the gums was found dependent on the types of the linkages and degree of the branching present in the gums.

  20. Adhesion dynamics of porcine esophageal fibroblasts on extracellular matrix protein-functionalized poly(lactic acid)

    Energy Technology Data Exchange (ETDEWEB)

    Cai Ning; Gong Yingxue; Chan, Vincent; Liao Kin [School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Chian, Kerm Sin [School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798 (Singapore)], E-mail: askliao@ntu.edu.sg

    2008-03-01

    Effective attachment of esophageal cells on biomaterials is one important requirement in designing engineered esophagus substitute for esophageal cancer treatment. In this study, poly(lactic acid) (PLA) was subjected to surface modification by coupling extracellular matrix (ECM) proteins on its surface to promote cell adhesion. Two typical ECM proteins, collagen type I (COL) and fibronectin (FN), were immobilized on the PLA surface with the aid of glutaraldehyde as a cross linker between aminolyzed PLA and ECM proteins. By using confocal reflectance interference contrast microscopy (C-RICM) integrating with phase contrast microscopy, the long-term adhesion dynamics of porcine esophageal fibroblasts (PEFs) on four types of surfaces (unmodified PLA, PLA-COOH, PLA-COL and PLA-FN) was investigated during 24 h of culture. It is demonstrated by C-RICM results that PEFs form strong adhesion contact on all four types of surfaces at different stages of cell seeding. Among the four surfaces, PEFs on the PLA-FN surface reach the maximum adhesion energy (9.5 x 10{sup -7} J m{sup -2}) in the shortest time (20 min) during the initial stage of cell seeding. After adhesion energy reaches the maximum value, PEFs maintain their highly deformed geometries till they reached a steady state after 20 h of culture. F-actin immunostaining results show that the evolvement of spatial organization of F-actin is tightly correlated with the formation of adhesion contact and cell spreading. Furthermore, the cell attachment ratio of PEFs on PLA in 2 h is only 26% compared with 88% on PLA-FN, 73% on PLA-COL and 36% on PLA-COOH. All the results demonstrate the effect of surface functionalization on the biophysical responses of PEFs in cell adhesion. Fibronectin-immobilized PLA demonstrates promising potential for application as an engineered esophagus substitute.

  1. Convulsant and Subconvulsant Doses of Norfloxacin in the Presence and Absence of Biphenylacetic Acid Alter Extracellular Hippocampal Glutamate but Not Gamma-Aminobutyric Acid Levels in Conscious Rats

    Science.gov (United States)

    Smolders, I.; Gousseau, C.; Marchand, S.; Couet, W.; Ebinger, G.; Michotte, Y.

    2002-01-01

    Fluoroquinolones are antibiotics with central excitatory side effects. These adverse effects presumably result from inhibition of γ-aminobutyric acid (GABA) binding to GABAA receptors. This GABA antagonistic effect is greatly potentiated by the active metabolite of fenbufen, biphenylacetic acid (BPAA). Nevertheless, it remains questionable whether GABA receptor antagonism alone can explain the convulsant activity potentials of these antimicrobial agents. The present study was undertaken to investigate the possible effects of norfloxacin, both in the absence and in the presence of BPAA, on the extracellular hippocampal levels of GABA and glutamate, the main central inhibitory and excitatory amino acid neurotransmitters, respectively. This in vivo microdialysis approach with conscious rats allows monitoring of behavioral alterations and concomitant transmitter modulation in the hippocampus. Peroral administration of 100 mg of BPAA per kg of body weight had no effect on behavior and did not significantly alter extracellular GABA or glutamate concentrations. Intravenous perfusion of 300 mg of norfloxacin per kg did not change the rat's behavior or the concomitant neurotransmitter levels in about half of the experiments, while the remaining animals exhibited severe seizures. These norfloxacin-induced convulsions did not affect extracellular hippocampal GABA levels but were accompanied by enhanced glutamate concentrations. Half of the rats receiving both 100 mg of BPAA per kg and 50 mg of norfloxacin per kg displayed lethal seizures, while the remaining animals showed no seizure-related behavior. In the latter subgroup, again no significant alterations in extracellular GABA levels were observed, but glutamate overflow remained significantly elevated for at least 3 h. In conclusion, norfloxacin exerts convulsant activity in rats, accompanied by elevations of extracellular hippocampal glutamate levels but not GABA levels, even in the presence of BPAA. PMID:11796360

  2. A complete enzymatic recovery of ferulic acid from corn residues with extracellular enzymes from Neosartorya spinosa NRRL185.

    Science.gov (United States)

    Shin, Hyun-Dong; McClendon, Shara; Le, Tien; Taylor, Frank; Chen, Rachel Ruizhen

    2006-12-20

    An economic ferulic acid recovery from biomass via biological methods is of interest for a number of reasons. Ferulic acid is a precursor to vanillin synthesis. It is also a known antioxidant with potential food and medical applications. Despite its universal presence in all plant cell wall material, the complex structure of the plant cell wall makes ferulic acid recovery from biomass a challenging bioprocess. Previously, without pretreatment, very low (3-13%) recovery of ferulic acid from corn residues was achieved. We report here the discovery of a filamentous fungus Neosartorya spinosa NRRL185 capable of producing a full complement of enzymes to release ferulic acid and the development of an enzymatic process for a complete recovery of ferulic acid from corn bran and corn fibers. A partial characterization of the extracellular proteome of the microbe revealed the presence of at least seven cellulases and hemicellulases activities, including multiple iso-forms of xylanase and ferulic acid esterase. The recovered ferulic acid was bio-converted to vanillin, demonstrating its potential application in natural vanillin synthesis. The enzymatic ferulic acid recovery accompanied a significant release of reducing sugars (76-100%), suggesting much broader applications of the enzymes and enzyme mixtures from this organism.

  3. Preliminary Study on the Performance and Interaction of Recycling Hydrolytic-Aerobic Combined Process of High Concentration Starch Wastewater

    Institute of Scientific and Technical Information of China (English)

    李清彪; 廖鑫凯; 吴志旺; 邓旭; 黄益丽; 卢英华; 孙道华; 洪铭媛; 王琳

    2004-01-01

    A new recycling hydrolytic-aerobic combined process was developed to treat the high concentration organic wastewater. Simulated wastewater containing 10 g·L-1 starch with a CODcr value of 10000 mg·L-1 wasused. At first, the hydrolytic degradation and aerobic degradation process were examined in two batch reactors, respectively. In the stand-alone hydrolytic process, starch in the wastewater almost disappeared after 11 h treatment, but CODCr remained as high as 5803mg·L-1 after two days. In the aerobic process, the biodegradation rate of starch was much slower during the first 11 h than that in the hydrolytic process, although the CODCr removal efficiency reached 89.6% and more than 90% starch could be degraded after 37.5 h. To determine the interaction effects of the two processes, a series of hydrolytic-aerobic combinations were examined in details. Hydrolytic process played an important role in the whole recycle combination process as it could improve the biodegradability of the high concentration starch wastewater. However, from the other experiments, the negative effect of hydrolytic acidification was found in the hydrolytic-aerobic combination, which suggested that the aerobic microorganisms needed time to adapt themselves to the acidic environment. The effect of the degrading time, which was spent in the hydrolytic and aerobic unit, and the number of circulations, with which the wastewater went through the two units were investigated. It was found that a recycle combination of 6 h hydrolytic process with 12 h aerobic process was highly effective and potentially economical, in which the final removal efficiency of CODcr and efficiency of starch degradation reached 94.1% and 98.8%, respectively.

  4. Hydrolytic and ligninolytic enzyme activities in the Pb contaminated soil inoculated with litter-decomposing fungi.

    Science.gov (United States)

    Kähkönen, Mika A; Lankinen, Pauliina; Hatakka, Annele

    2008-06-01

    The impact of Pb contamination was tested to five hydrolytic (beta-glucosidase, beta-xylosidase, beta-cellobiosidase, alpha-glucosidase and sulphatase) and two ligninolytic (manganese peroxidase, MnP and laccase) enzyme activities in the humus layer in the forest soil. The ability of eight selected litter-degrading fungi to grow and produce extracellular enzymes in the heavily Pb (40 g Pb of kg ww soil(-1)) contaminated and non-contaminated soil in the non-sterile conditions was also studied. The Pb content in the test soil was close to that of the shooting range at Hälvälä (37 g Pb of kg ww soil(-1)) in Southern Finland. The fungi were Agaricus bisporus, Agrocybe praecox, Gymnopus peronatus, Gymnopilus sapineus, Mycena galericulata, Gymnopilus luteofolius, Stropharia aeruginosa and Stropharia rugosoannulata. The Pb contamination (40 g Pb of kg ww soil(-1)) was deleterious to all five studied hydrolytic enzyme activities after five weeks of incubation. All five hydrolytic enzyme activities were significantly higher in the soil than in the extract of the soil indicating that a considerable part of enzymes were particle bound in the soils. Hydrolytic enzyme activities were higher in the non-contaminated soil than in the Pb contaminated soil. Fungal inocula increased the hydrolytic enzyme activities beta-cellobiosidase and beta-glucosidase in non-contaminated soils. All five hydrolytic enzyme activities were similar with fungi and without fungi in the Pb contaminated soil. This was in line that Pb contamination (40 g Pb of kg ww soil(-1)) depressed the growth of all fungi compared to those grown without Pb in the soil. Laccase and MnP activities were low in both Pb contaminated and non-contaminated soil cultures. MnP activities were higher in soil cultures containing Pb than without Pb. Our results showed that Pb in the shooting ranges decreased fungal growth and microbial functioning in the soil.

  5. Oxidation of intramyocellular lipids is dependent on mitochondrial function and the availability of extracellular fatty acids

    DEFF Research Database (Denmark)

    Corpeleijn, Eva; Hessvik, Nina P; Bakke, Siril S;

    2010-01-01

    (2) trapping system and measured under various conditions of extracellular OA (5 or 100 microM) and glucose (0.1 or 5.0 mM) and the absence or presence of mitochondrial uncoupling [carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP)]. First, increased extracellular OA availability (5 vs. 100...... microM) reduced ICL(OX) by 37%. No differences in total lipolysis were observed between low and high OA availability. Uncoupling with FCCP restored ICL(OX) to basal levels during high OA availability. Mitochondrial mass was positively related to ICL(OX), but only in myotubes from lean individuals...

  6. Hydrolytic degradation of nitrendipine and nisoldipine.

    Science.gov (United States)

    Alvarez-Lueje, A; Sturm, J; Squella, J A; Núñez-Vergara, L J

    2002-06-01

    The development of a new HPLC-UV diode array procedure applied to follow the hydrolytic degradation of two well-known 4-nitrophenyl-1,4-dihydropyridine derivatives, nitrendipine and nisoldipine is reported. Hydrolysis of each drug were carried out in ethanol/Britton-Robinson buffer at different pHs, stored into amber vials at controlled temperatures of 40, 60 and 80 degrees C and periodically sampled and assayed by HPLC. Nitrendipine degradation in different parenteral solutions was also evaluated. The HPLC procedure exhibited an adequate selectivity, repeatability (pH 8) with a first order kinetic for both drugs. At pH 12, 80 degrees C, k values of 3.56x10(-2) x h(-1) and 2.22x10(-2) for nitrendipine and nisoldipine, respectively were obtained. Also, activation energies of 16.8 and 14.7 kcal x mol(-1) for nitrendipine and nisoldipine, respectively, were calculated. Furthermore, from the results obtained from hydrolytic degradation in different solutions for parenteral use, we can affirm that solutions significantly increased the degradation of nitrendipine. In conclusion, the HPLC proposed procedure exhibited adequate analytical requirements to be applied to the hydrolytic degradation studies of nitrendipine and nisoldipine. Furthermore, all tested parenteral solutions significantly increased the hydrolytic degradation of nitrendipine, the composition of solution being a relevant factor.

  7. High ω-3:ω-6 fatty acids ratio increases fatty acid binding protein 4 and extracellular secretory phospholipase A2IIa in human ectopic endometrial cells

    Science.gov (United States)

    Khanaki, Korosh; Sadeghi, Mohammad Reza; Akhondi, Mohammad Mehdi; Darabi, Masoud; Mehdizadeh, Amir; Shabani, Mahdi; Rahimipour, Ali; Nouri, Mohammad

    2014-01-01

    Background: Endometriosis, a common chronic inflammatory disorder, is defined by the atypical growth of endometrium- like tissue outside of the uterus. Secretory phospholipase A2 group IIa (sPLA2-IIa) and fatty acid binding protein4 (FABP4) play several important roles in the inflammatory diseases. Objective: Due to reported potential anti-inflammatory effects of ω-3 and ω-6 fatty acids, the purpose of the present study was to investigate the effects of ω-3 and ω-6 polyunsaturated fatty acids (PUFAs) on fatty acid binding protein 4 and extracellular secretory phospholipase A2IIa in cultured endometrial cells. Materials and Methods: Ectopic and eutopic endometrial tissues obtained from 15 women were snap frozen. After thawing and tissue digestion, primary mixed stromal and endometrial epithelial cell culture was performed for 8 days in culture mediums supplemented with normal and high ratios of ω-3 and ω-6 PUFA. sPLA2-IIa in the culture medium and FABP4 level was determined using enzyme immuno assay (EIA) technique. Results: Within ectopic endometrial cells group, the level of cellular FABP4 and extracellular sPLA2-IIa were remarkably increased under high ω-3 PUFA exposure compared with control condition (p=0.014 and p=0.04 respectively). Conclusion: ω-3 PUFAs may increase the level of cellular FABP4 and extracellular sPLA2-IIa in ectopic endometrial cells, since sPLAIIa and FABP4 may affect endometriosis via several mechanisms, more relevant studies are encouraged to know the potential effect of increased cellular FABP4 and extracellular sPLA2-IIa on endometriosis. PMID:25709631

  8. Regulation of the arachidonic acid-stimulated respiratory burst in neutrophils by intra- cellular and extracellular calcium

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The respiratory burst is an important physiological function ofthe neutrophils in killing the bacteria invading in human body. We used chemiluminescence method to measure the exogenous arachidonic acid-stimulated respiratory burst, and measured the cytosolic free calcium concentration in neutrophils by the fluorescence method. It was found that, on one hand, the arachidonic acid-stimulated respiratory burst was enhanced by elevating the cytosolic free calcium concentration in neutrophils with a potent endomembrane Ca2+-ATPase inhibitor, Thapsgargin; on the other hand, chelating the intracellular or extracellular calcium by EGTA or BAPTA inhibited the respiratory burst. Results showed that calcium plays an important regulatory role in the signaling pathway involved in the exogenous arachidonic acid-stimulated respiratory burst of neutrophils.

  9. Extracellular protease derived from lactic acid bacteria stimulates the fermentative lactic acid production from the by-products of rice as a biomass refinery function.

    Science.gov (United States)

    Watanabe, Masanori; Techapun, Charin; Kuntiya, Ampin; Leksawasdi, Noppol; Seesuriyachan, Phisit; Chaiyaso, Thanongsak; Takenaka, Shinji; Maeda, Isamu; Koyama, Masahiro; Nakamura, Kozo

    2017-02-01

    A lactic acid producing bacterium, Lactobacillus rhamnosus M-23, newly isolated from a rice washing drainage storage tank was found to produce l-(+)-lactic acid from a non-sterilized mixture of rice washing drainage and rice bran without any additions of nutrients under the simultaneous saccharification and fermentation (SSF) process. This strain has the ability to utilize the non-sterilized rice washing drainage and rice bran as a source of carbohydrate, saccharifying enzymes and nutrients for lactic acid production. Observation of extracellular protease activity in SSF culture broth showed that a higher protease activity was present in strain M-23 than in other isolated lactic acid producing bacteria (LABs). To investigate the structural changes of solid particles of rice washing drainage throughout LAB cultivation, scanning electron microscopic (SEM) observation and Fourier transform infrared-spectroscopy (FT-IR) analysis were performed. The results of the SEM observation showed that the surface material could be removed from solid particles of rice washing drainage treated by culture broth (supernatant) of strain M-23, thus exposing the crystal structure of the starch particle surface. The results of the FT-IR analysis revealed that the specific transmittance decrease of the CC and CO stretching and OH group of the solid particles of the rice washing drainage were highly correlated with the produced lactic acid concentration and extracellular protease activity, respectively. These results demonstrate the high lactic acid producing ability of strain M-23 from a non-sterilized mixture of rice washing drainage and rice bran under the SSF condition due to the removal of proteinaceous material and exposure of the starch particle surface by extracellular protease.

  10. Caffeic acid treatment alters the extracellular adenine nucleotide hydrolysis in platelets and lymphocytes of adult rats.

    Science.gov (United States)

    Anwar, Javed; Spanevello, Roselia Maria; Pimentel, Victor Camera; Gutierres, Jessié; Thomé, Gustavo; Cardoso, Andreia; Zanini, Daniela; Martins, Caroline; Palma, Heloisa Einloft; Bagatini, Margarete Dulce; Baldissarelli, Jucimara; Schmatz, Roberta; Leal, Cláudio Alberto Martins; da Costa, Pauline; Morsch, Vera Maria; Schetinger, Maria Rosa Chitolina

    2013-06-01

    This study evaluated the effects of caffeic acid on ectonucleotidase activities such as NTPDase (nucleoside triphosphate diphosphohydrolase), Ecto-NPP (nucleotide pyrophosphatase/phosphodiesterase), 5'-nucleotidase and adenosine deaminase (ADA) in platelets and lymphocytes of rats, as well as in the profile of platelet aggregation. Animals were divided into five groups: I (control); II (oil); III (caffeic acid 10 mg/kg); IV (caffeic acid 50 mg/kg); and V (caffeic acid 100 mg/kg). Animals were treated with caffeic acid diluted in oil for 30 days. In platelets, caffeic acid decreased the ATP hydrolysis and increased ADP hydrolysis in groups III, IV and V when compared to control (P<0.05). The 5'-nucleotidase activity was decreased, while E-NPP and ADA activities were increased in platelets of rats of groups III, IV and V (P<0.05). Caffeic acid reduced significantly the platelet aggregation in the animals of groups III, IV and V in relation to group I (P<0.05). In lymphocytes, the NTPDase and ADA activities were increased in all groups treated with caffeic acid when compared to control (P<0.05). These findings demonstrated that the enzymes were altered in tissues by caffeic acid and this compound decreased the platelet aggregation suggesting that caffeic acid should be considered a potentially therapeutic agent in disorders related to the purinergic system.

  11. Acidic extracellular microenvironment promotes the invasion and cathepsin B secretion of PC-3 cells.

    Science.gov (United States)

    Gao, Li; Fang, You-Qiang; Zhang, Tian-Yu; Ge, Bo; Tang, Rong-Jing; Huang, Jie-Fu; Jiang, Lei-Ming; Tan, Ning

    2015-01-01

    This study aimed to investigate the effect of acidic microenvironment on the invasion of prostatic carcinoma PC-3 cells and to explore the potential mechanism. PC-3 cells were maintained in medium at different pHs (pH 7.4, pH 7.0 and pH 6.6). Invasion and metastasis of PC-3 cells were investigated in vitro. Acridine orange staining was performed, followed by laser confocal scanning microscopy for the localization of lysosomes. Western blot assay and ELISA were employed to evaluate the effect of acidic microenvironment on the cathepsin B secretion. Acidic microenvironment remarkably promote the invasion and migration of PC-3 cells (Pmicroenvironment promoted the cathepsin B secretion in PC- cells. Acidic microenvironment may significantly promote the invasion of PC-3 cells and increase the secretion of cathepsin B. This suggests that the acidic microenvironment induced invasion of PC- cells is related to the elevated cathepsin B secretion.

  12. The astrocyte-derived alpha7 nicotinic receptor antagonist kynurenic acid controls extracellular glutamate levels in the prefrontal cortex.

    Science.gov (United States)

    Wu, Hui-Qiu; Pereira, Edna F R; Bruno, John P; Pellicciari, Roberto; Albuquerque, Edson X; Schwarcz, Robert

    2010-01-01

    The cognitive deficits seen in schizophrenia patients are likely related to abnormal glutamatergic and cholinergic neurotransmission in the prefrontal cortex. We hypothesized that these impairments may be secondary to increased levels of the astrocyte-derived metabolite kynurenic acid (KYNA), which inhibits alpha7 nicotinic acetylcholine receptors (alpha7AChR) and may thereby reduce glutamate release. Using in vivo microdialysis in unanesthetized rats, we show here that nanomolar concentrations of KYNA, infused directly or produced in situ from its bioprecursor kynurenine, significantly decrease extracellular glutamate levels in the prefrontal cortex. This effect was prevented by the systemic administration of galantamine (3 mg/kg) but not by donepezil (2 mg/kg), indicating that KYNA blocks the allosteric potentiating site of the alpha7AChR, which recognizes galantamine but not donepezil as an agonist. In separate rats, reduction of prefrontal KYNA formation by (S)-4-ethylsulfonyl benzoylalanine, a specific inhibitor of KYNA synthesis, caused a significant elevation in extracellular glutamate levels. Jointly, our results demonstrate that fluctuations in endogenous KYNA formation bidirectionally influence cortical glutamate concentrations. These findings suggest that selective attenuation of cerebral KYNA production, by increasing glutamatergic tone, might improve cognitive function in individuals with schizophrenia.

  13. Activation of Plant Innate Immunity by Extracellular High Mobility Group Box 3 and Its Inhibition by Salicylic Acid.

    Directory of Open Access Journals (Sweden)

    Hyong Woo Choi

    2016-03-01

    Full Text Available Damage-associated molecular pattern molecules (DAMPs signal the presence of tissue damage to induce immune responses in plants and animals. Here, we report that High Mobility Group Box 3 (HMGB3 is a novel plant DAMP. Extracellular HMGB3, through receptor-like kinases BAK1 and BKK1, induced hallmark innate immune responses, including i MAPK activation, ii defense-related gene expression, iii callose deposition, and iv enhanced resistance to Botrytis cinerea. Infection by necrotrophic B. cinerea released HMGB3 into the extracellular space (apoplast. Silencing HMGBs enhanced susceptibility to B. cinerea, while HMGB3 injection into apoplast restored resistance. Like its human counterpart, HMGB3 binds salicylic acid (SA, which results in inhibition of its DAMP activity. An SA-binding site mutant of HMGB3 retained its DAMP activity, which was no longer inhibited by SA, consistent with its reduced SA-binding activity. These results provide cross-kingdom evidence that HMGB proteins function as DAMPs and that SA is their conserved inhibitor.

  14. Installing hydrolytic activity into a completely de novo protein framework

    Science.gov (United States)

    Burton, Antony J.; Thomson, Andrew R.; Dawson, William M.; Brady, R. Leo; Woolfson, Derek N.

    2016-09-01

    The design of enzyme-like catalysts tests our understanding of sequence-to-structure/function relationships in proteins. Here we install hydrolytic activity predictably into a completely de novo and thermostable α-helical barrel, which comprises seven helices arranged around an accessible channel. We show that the lumen of the barrel accepts 21 mutations to functional polar residues. The resulting variant, which has cysteine-histidine-glutamic acid triads on each helix, hydrolyses p-nitrophenyl acetate with catalytic efficiencies that match the most-efficient redesigned hydrolases based on natural protein scaffolds. This is the first report of a functional catalytic triad engineered into a de novo protein framework. The flexibility of our system also allows the facile incorporation of unnatural side chains to improve activity and probe the catalytic mechanism. Such a predictable and robust construction of truly de novo biocatalysts holds promise for applications in chemical and biochemical synthesis.

  15. The production-influencing factors of extracellular polysacchadde(EPS) from a Strain of lactic acid bacteria and EPS extraction

    Institute of Scientific and Technical Information of China (English)

    CHEN Ying; SUN Liping; ZENG Yong; WANG Lei; AN Liguo

    2006-01-01

    The influencing factors of extracellular polysaccharide(EPS)produced from a strain of lactic acid bacteria(LAB L15)were studied by using the phenol-H2SO4 method.It was demonstrated that the strain produced EPS at the most amount when it was incubated for 40-48 h and when the pH value was 4 under 30℃.Glucose was the most suitable carbon source for LAB-producing EPS.The rough EPS was obtained from L15 culture after centrifugation,dialysis,deprotein,decoloration,and ethanol-precipitation.The sample was at least composed of two polysaccharides mat were completely different in molecular weight and the amount.The purified EPS was passed through the SephadexG-200 colunm and it showed that it was a sample purified by thin layer chromatography.

  16. Promoting extracellular matrix remodeling via ascorbic acid enhances the survival of primary ovarian follicles encapsulated in alginate hydrogels.

    Science.gov (United States)

    Tagler, David; Makanji, Yogeshwar; Tu, Tao; Bernabé, Beatriz Peñalver; Lee, Raymond; Zhu, Jie; Kniazeva, Ekaterina; Hornick, Jessica E; Woodruff, Teresa K; Shea, Lonnie D

    2014-07-01

    The in vitro growth of ovarian follicles is an emerging technology for fertility preservation. Various strategies support the culture of secondary and multilayer follicles from various species including mice, non-human primate, and human; however, the culture of early stage (primary and primordial) follicles, which are more abundant in the ovary and survive cryopreservation, has been limited. Hydrogel-encapsulating follicle culture systems that employed feeder cells, such as mouse embryonic fibroblasts (MEFs), stimulated the growth of primary follicles (70-80 µm); yet, survival was low and smaller follicles (structure and degenerated. These morphologic changes were associated with a breakdown of the follicular basement membrane; hence, this study investigated ascorbic acid based on its role in extracellular matrix (ECM) deposition/remodeling for other applications. The selection of ascorbic acid was further supported by a microarray analysis that suggested a decrease in mRNA levels of enzymes within the ascorbate pathway between primordial, primary, and secondary follicles. The supplementation of ascorbic acid (50 µg/mL) significantly enhanced the survival of primary follicles (alginate hydrogels, which coincided with improved structural integrity. Follicles developed antral cavities and increased to diameters exceeding 250 µm. Consistent with improved structural integrity, the gene/protein expression of ECM and cell adhesion molecules was significantly changed. This research supports the notion that modifying the culture environment (medium components) can substantially enhance the survival and growth of early stage follicles. © 2013 Wiley Periodicals, Inc.

  17. Conversion of cheese whey into a fucose- and glucuronic acid-rich extracellular polysaccharide by Enterobacter A47.

    Science.gov (United States)

    Antunes, Sílvia; Freitas, Filomena; Alves, Vítor D; Grandfils, Christian; Reis, Maria A M

    2015-09-20

    Cheese whey was used as the sole substrate for the production of extracellular polysaccharides (EPS) by Enterobacter A47. An EPS concentration of 6.40 g L(-1) was reached within 3.2 days of cultivation, corresponding to a volumetric productivity of 2.00 g L(-1) d(-1). The produced EPS was mainly composed of glucuronic acid (29 mol%) and fucose (29 mol%), with lower contents of glucose and galactose (21 mol% each) and a total acyl groups content of 32 wt.%. The polymer had an average molecular weight of 1.8×10(6) Da, with a polydispersity index of 1.2, and an intrinsic viscosity of 8.0 dL g(-1). EPS aqueous solutions (1.0 wt.% in 0.01 M NaCl, at pH 8.0) presented a shear thinning behavior with a viscosity of the first Newtonian plateau approaching 0.1 Pas. This novel glucuronic acid-rich polymer possesses interesting rheological properties, which, together with its high content of glucuronic acid and fucose, two bioactive sugar monomers, confers it a great potential for use in high-value applications, such as cosmetics and pharmaceuticals.

  18. PECM: prediction of extracellular matrix proteins using the concept of Chou's pseudo amino acid composition.

    Science.gov (United States)

    Zhang, Jian; Sun, Pingping; Zhao, Xiaowei; Ma, Zhiqiang

    2014-12-21

    The extracellular matrix proteins (ECMs) are widely found in the tissues of multicellular organisms. They consist of various secreted proteins, mainly polysaccharides and glycoproteins. The ECMs involve the exchange of materials and information between resident cells and the external environment. Accurate identification of ECMs is a significant step in understanding the evolution of cancer as well as promises wide range of potential applications in therapeutic targets or diagnostic markers. In this paper, an accurate computational method named PECM is proposed for identifying ECMs. Here, we explore various sequence-derived discriminative features including evolutionary information, predicted secondary structure, and physicochemical properties. Rather than simply combining the features which may bring information redundancy and unwanted noises, we use Fisher-Markov selector and incremental feature selection approach to search the optimal feature subsets. Then, we train our model by the technique of support vector machine (SVM). PECM achieves good prediction performance with the ACC scores about 86% and 90% on testing and independent datasets, which are competitive with the state-of-the-art ECMs prediction tools. A web-server named PECM which implements the proposed approach is freely available at http://59.73.198.144:8088/PECM/.

  19. Hydrolytic potential of a psychrotrophic Pseudomonas isolated from refrigerated raw milk

    Directory of Open Access Journals (Sweden)

    Ana Paula F. Corrêa

    2011-12-01

    Full Text Available The production of extracellular hydrolases by a psychrotrophic bacterium isolated from refrigerated raw milk, and identified as a Pseudomonas sp. belonging to the Pseudomonas jenssenii group, was studied. This bacterium produced proteolytic and lipolytic enzymes in all media investigated (skim milk, cheese whey, casein broth, and tryptone soy broth. High levels of α-glucosidase were produced in skim milk broth. Hydrolytic enzymes detected in skim milk broth are of particular concern, indicating that these enzymes could be produced by Pseudomonas sp. during the cold storage of raw milk, contributing to the spoilage problem in milk and dairy products.

  20. Selection of commercial hydrolytic enzymes with potential antifouling activity in marine environments.

    Science.gov (United States)

    Zanaroli, Giulio; Negroni, Andrea; Calisti, Cecilia; Ruzzi, Maurizio; Fava, Fabio

    2011-12-10

    In this work, the marine antifouling potential of some commercially available hydrolytic enzymes acting on the main constituents of extracellular polymeric substances (EPS) involved in bacterial biofilm formation was determined. The selected protease (i.e., alpha-chymotrypsin from bovine pancreas), carbohydrase (i.e., alpha-amylase from porcine pancreas) and lipase (from porcine pancreas) exhibited remarkable hydrolytic activities towards target macromolecules typically composing EPS under a wide range of pHs (6.5-9.0 for alpha-chymotrysin and alpha-amylase; 7.0-8.5 for the lipase) and temperatures (from 10 °C to 30 °C), as well as relevant half-lives (from about 2 weeks to about 2 months), in a marine synthetic water. The activity displayed by each enzyme was poorly affected by the co-presence of the other enzymes, thus indicating their suitability to be employed in combination. None of the enzymes was able to inhibit the formation of biofilm by an actual site marine microbial community when applied singly. However, a mixture of the same enzymes reduced biofilm formation by about 90% without affecting planktonic growth of the same microbial community. This indicates that multiple hydrolytic activities are required to efficiently prevent biofilm formation by complex microbial communities, and that the mixture of enzymes selected in this study has the potential to be employed as an environmental friendly antifouling agent in marine antifouling coatings.

  1. The effects of extracellular pH and hydroxycinnamic acids influence the intracellular pH of Brettanomyces bruxellensis DSM 7001

    DEFF Research Database (Denmark)

    Campolongo, Simona; Siegumfeldt, Henrik; Aabo, Thomas Ask

    2014-01-01

    and intracellular pH changes in B. bruxellensis DSM 7001, in response to extracellular pH, as well as to the presence of an energy source and hydroxycinnamic acids, have been investigated in this paper by means of Fluorescent Ratio Imaging Microscopy (FRIM). The results show that B. bruxellensis DSM 7001 is able...

  2. EXTRACELLULAR GAMMA-AMINOBUTYRIC-ACID IN THE SUBSTANTIA-NIGRA RETICULATA MEASURED BY MICRODIALYSIS IN AWAKE RATS - EFFECTS OF VARIOUS STIMULANTS

    NARCIS (Netherlands)

    TIMMERMAN, W; WESTERINK, BHC

    1995-01-01

    The gamma-aminobutyric acid (GABA)-ergic system in the substantia nigra reticulata (SNR) was challenged by local infusion of various receptor-specific agents to obtain additional information on the physiological significance of extracellular GABA levels as measured by microdialysis in awake rats. No

  3. Cytocompatibility of novel extracellular matrix protein analogs of biodegradable polyester polymers derived from α-hydroxy amino acids.

    Science.gov (United States)

    Lecht, Shimon; Cohen-Arazi, Naomi; Cohen, Gadi; Ettinger, Keren; Momic, Tatjana; Kolitz, Michal; Naamneh, Majdi; Katzhendler, Jehoshua; Domb, Abraham J; Lazarovici, Philip; Lelkes, Peter I

    2014-01-01

    One of the challenges in regenerative medicine is the development of novel biodegradable materials to build scaffolds that will support multiple cell types for tissue engineering. Here we describe the preparation, characterization, and cytocompatibility of homo- and hetero-polyesters of α-hydroxy amino acid derivatives with or without lactic acid conjugation. The polymers were prepared by a direct condensation method and characterized using gel permeation chromatography, (1)H-nuclear magnetic resonance spectroscopy, Fourier transform infrared spectroscopy, differential scanning calorimetry, optical activity, and solubility. The surface charge of the polymers was evaluated using zeta potential measurements. The polymers were coated onto glass cover slips followed by characterization using nano-surface profiler, thin film reflectometry, and atomic force microscopy (AFM). Their interaction with endothelial and neuronal cells was assessed using adhesion, proliferation, and differentiation assays. Of the characterized polymers, Poly-HOVal-LA, but not Poly-(D)HOPhe, significantly augmented nerve growth factor (NGF)-induced neuronal differentiation of the PC12 pheochromcytoma cells. In contrast, Poly-HOLeu increased by 20% the adhesion of endothelial cells, but did not affect PC12 cell differentiation. NGF-induced Erk1/2 phosphorylation in PC12 cells grown on the different polymers was similar to the effect observed for cells cultured on collagen type I. While no significant association could be established between charge and the differentiative/proliferative properties of the polymers, AFM analysis indicated augmentation of NGF-induced neuronal differentiation on smooth polymer surfaces. We conclude that overall selective cytocompatibility and bioactivity might render α-hydroxy amino acid polymers useful as extracellular matrix-mimicking materials for tissue engineering.

  4. Multiple roles of the extracellular vestibule amino acid residues in the function of the rat P2X4 receptor.

    Directory of Open Access Journals (Sweden)

    Milos B Rokic

    Full Text Available The binding of ATP to trimeric P2X receptors (P2XR causes an enlargement of the receptor extracellular vestibule, leading to opening of the cation-selective transmembrane pore, but specific roles of vestibule amino acid residues in receptor activation have not been evaluated systematically. In this study, alanine or cysteine scanning mutagenesis of V47-V61 and F324-N338 sequences of rat P2X4R revealed that V49, Y54, Q55, F324, and G325 mutants were poorly responsive to ATP and trafficking was only affected by the V49 mutation. The Y54F and Y54W mutations, but not the Y54L mutation, rescued receptor function, suggesting that an aromatic residue is important at this position. Furthermore, the Y54A and Y54C receptor function was partially rescued by ivermectin, a positive allosteric modulator of P2X4R, suggesting a rightward shift in the potency of ATP to activate P2X4R. The Q55T, Q55N, Q55E, and Q55K mutations resulted in non-responsive receptors and only the Q55E mutant was ivermectin-sensitive. The F324L, F324Y, and F324W mutations also rescued receptor function partially or completely, ivermectin action on channel gating was preserved in all mutants, and changes in ATP responsiveness correlated with the hydrophobicity and side chain volume of the substituent. The G325P mutant had a normal response to ATP, suggesting that G325 is a flexible hinge. A topological analysis revealed that the G325 and F324 residues disrupt a β-sheet upon ATP binding. These results indicate multiple roles of the extracellular vestibule amino acid residues in the P2X4R function: the V49 residue is important for receptor trafficking to plasma membrane, the Y54 and Q55 residues play a critical role in channel gating and the F324 and G325 residues are critical for vestibule widening.

  5. Stiffness of hyaluronic acid gels containing liver extracellular matrix supports human hepatocyte function and alters cell morphology.

    Science.gov (United States)

    Deegan, Daniel B; Zimmerman, Cynthia; Skardal, Aleksander; Atala, Anthony; Shupe, Thomas D

    2015-03-01

    Tissue engineering and cell based liver therapies have utilized primary hepatocytes with limited success due to the failure of hepatocytes to maintain their phenotype in vitro. In order to overcome this challenge, hyaluronic acid (HA) cell culture substrates were formulated to closely mimic the composition and stiffness of the normal liver cellular microenvironment. The stiffness of the substrate was modulated by adjusting HA hydrogel crosslinking. Additionally, the repertoire of bioactive molecules within the HA substrate was bolstered by supplementation with normal liver extracellular matrix (ECM). Primary human hepatocyte viability and phenotype were determined over a narrow physiologically relevant range of substrate stiffnesses from 600 to 4600Pa in both the presence and absence of liver ECM. Cell attachment, viability, and organization of the actin cytoskeleton improved with increased stiffness up to 4600Pa. These differences were not evident in earlier time points or substrates containing only HA. However, gene expression for the hepatocyte markers hepatocyte nuclear factor 4 alpha (HNF4α) and albumin significantly decreased on the 4600Pa stiffness at day 7 indicating that cells may not have maintained their phenotype long-term at this stiffness. Function, as measured by albumin secretion, varied with both stiffness and time in culture and peaked at day 7 at the 1200Pa stiffness, slightly below the stiffness of normal liver ECM at 3000Pa. Overall, gel stiffness affected primary human hepatocyte cell adhesion, functional marker expression, and morphological characteristics dependent on both the presence of liver ECM in gel substrates and time in culture.

  6. Saturated fatty acid palmitate induces extracellular release of histone H3: A possible mechanistic basis for high-fat diet-induced inflammation and thrombosis

    Energy Technology Data Exchange (ETDEWEB)

    Shrestha, Chandan [Department of Systems Biology in Thromboregulation, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima (Japan); Department of Laboratory and Vascular Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima (Japan); Ito, Takashi [Department of Systems Biology in Thromboregulation, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima (Japan); Kawahara, Ko-ichi [Department of Biomedical Engineering, Osaka Institute of Technology, Osaka (Japan); Shrestha, Binita; Yamakuchi, Munekazu; Hashiguchi, Teruto [Department of Laboratory and Vascular Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima (Japan); Maruyama, Ikuro, E-mail: rinken@m3.kufm.kagoshima-u.ac.jp [Department of Systems Biology in Thromboregulation, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima (Japan)

    2013-08-09

    Highlights: •High-fat diet feeding and palmitate induces the release of nuclear protein histone H3. •ROS production and JNK signaling mediates the release of histone H3. •Extracellular histones induces proinflammatory and procoagulant response. -- Abstract: Chronic low-grade inflammation is a key contributor to high-fat diet (HFD)-related diseases, such as type 2 diabetes, non-alcoholic steatohepatitis, and atherosclerosis. The inflammation is characterized by infiltration of inflammatory cells, particularly macrophages, into obese adipose tissue. However, the molecular mechanisms by which a HFD induces low-grade inflammation are poorly understood. Here, we show that histone H3, a major protein component of chromatin, is released into the extracellular space when mice are fed a HFD or macrophages are stimulated with the saturated fatty acid palmitate. In a murine macrophage cell line, RAW 264.7, palmitate activated reactive oxygen species (ROS) production and JNK signaling. Inhibitors of these pathways dampened palmitate-induced histone H3 release, suggesting that the extracellular release of histone H3 was mediated, in part, through ROS and JNK signaling. Extracellular histone activated endothelial cells toexpress the adhesion molecules ICAM-1 and VCAM-1 and the procoagulant molecule tissue factor, which are known to contribute to inflammatory cell recruitment and thrombosis. These results suggest the possible contribution of extracellular histone to the pathogenesis of HFD-induced inflammation and thrombosis.

  7. Silencing of acidic pathogenesis-related PR-1 genes increases extracellular beta-(1 -> 3)-glucanase activity at the onset of tobacco defence reactions

    DEFF Research Database (Denmark)

    Riviere, M.P.; Marais, A.; Ponchet, M.

    2008-01-01

    silenced. Plants lacking extracellular PR-1s were more susceptible than wild-type plants to the oomycete Phytophthora parasitica but displayed unaffected systemic acquired resistance and developmental resistance to this pathogen. Treatment with salicylic acid up-regulates the PR-1g gene, encoding a basic...... protein of the PR-1 family, in PR-1-deficient tobacco, indicating that PR-1 expression may repress that of PR-1g. This shows that acidic PR-1s are dispensable for expression of salicylic acid-dependent acquired resistances against P. parasitica and may reveal a functional overlap in tobacco defence...

  8. Functions and regulations of hydrolytic acidification in dyeing wastewater treatment:A review%印染废水水解酸化作用及其调控研究进展

    Institute of Scientific and Technical Information of China (English)

    刘娜; 谢学辉; 柳建设

    2014-01-01

    The paper sketched the mechanisms of hydrolytic acidification process,introduced the applications of the independent process or combined with other technologies in dyeing wastewater treatment,and analyzed the roles of microbes and extracellular enzymes in hydrolytic acidification process. This paper also summarized the optimization regulation methods of hydrolytic acidification stages,including adding microbial agents or co-metabolism matrixes and activators. The evaluation indexes of hydrolytic acidification regulation effect were generalized , including pH value , chromaticity,volatile fatty acids (VFA),BOD5/COD,variation of organic matters,enzyme activity and changes of microbial population. Currently,although hydrolytic acidification process is widely used and made some achievements in dyeing wastewater treatment,the mechanisms of microbes in it are still not clear making the specifically regulations of functional microbes difficult. This paper proposed an effective way to improve the rate of hydrolytic acidification by regulating the functional microbes based on studying microbial mechanism. The effects of hydrolytic acidification process in dyeing wastewater treatment may be maximized.%阐述了水解酸化工艺的机理,介绍了其以独立的工艺或与其他工艺相结合在印染废水处理中的应用,并分析了水解酸化过程中微生物及其产生的胞外酶的作用。另外,本文还总结了水解酸化阶段的优化调控方法,包括直接投加菌剂或共代谢基质类物质和投加激活剂,并概括了水解酸化调控效果的评价指标,包括pH值、色度、挥发性脂肪酸 VFA、BOD5/COD、有机物组成的变化、酶活、微生物种群结构变化。目前,虽然水解酸化工艺在印染废水处理中应用广泛且有所成效,但是对其中微生物的作用机制尚不十分了解,无法有针对性地对功能菌群进行优化调控。本文提出在深入探讨微生物作用机理的

  9. Acidic extracellular pH promotes prostate cancer bone metastasis by enhancing PC-3 stem cell characteristics, cell invasiveness and VEGF-induced vasculogenesis of BM-EPCs.

    Science.gov (United States)

    Huang, Sheng; Tang, Yubo; Peng, Xinsheng; Cai, Xingdong; Wa, Qingde; Ren, Dong; Li, Qiji; Luo, Jiaquan; Li, Liangping; Zou, Xuenong; Huang, Shuai

    2016-10-01

    Bone metastasis is a main cause of cancer-related mortality in patients with advanced prostate cancer. Emerging evidence suggests that the acidic extracellular microenvironment plays significant roles in the growth and metastasis of tumors. However, the effects of acidity on bone metastasis of PCa remain undefined. In the present study, PC-3 cells were cultured in acidic medium (AM; pH 6.5) or neutral medium (NM; pH 7.4), aiming to investigate the effects and possible mechanisms of acidic extracellular microenvironment in bone metastasis of PCa. Our results showed that AM can promote spheroid and colony formations, cell viability and expression of stem cell characteristic-related markers in PC-3 cells. Moreover, AM stimulates MMP-9 secretion and promotes invasiveness of PC-3 cells, and these effects can be inhibited by blocking of MMP-9. Furthermore, AM stimulates VEGF secretion of PC-3 and AM conditioned medium (CMAM) promotes vasculogenesis of BM-EPCs by increasing cell viability, migration, tube formation, which involved activating the phosphorylation of VEGFR-2, Akt and P38, when pH of NM conditioned medium (CMNM) was modulated the same as AM conditioned medium (CMAM). Further studies have shown that CMNM induced vasculogenesis of BM-EPCs can be inhibited by the inhibition of VEGFR2 with DMH4. These findings suggest that acidic extracellular microenvironment may have the potential to modulate prostate cancer bone metastasis by enhancing PC-3 stem cell characteristics, cell invasiveness and VEGF-induced vasculogenesis of BM-EPCs. Improved anticancer strategies should be designed to selectively target acidic tumor microenvironment.

  10. Hydrolytic Amino Acids Employed as a Novel Organic Nitrogen Source for the Preparation of PGPF-Containing Bio-Organic Fertilizer for Plant Growth Promotion and Characterization of Substance Transformation during BOF Production.

    Directory of Open Access Journals (Sweden)

    Fengge Zhang

    Full Text Available Opportunity costs seriously limit the large-scale production of bio-organic fertilizers (BOFs both in China and internationally. This study addresses the utilization of amino acids resulting from the acidic hydrolysis of pig corpses as organic nitrogen sources to increase the density of TrichodermaharzianumT-E5 (a typical plant growth-promoting fungi, PGPF. This results in a novel, economical, highly efficient and environmentally friendly BOF product. Fluorescence excitation-emission matrix (EEM spectroscopy combined with fluorescence regional integration (FRI was employed to monitor compost maturity levels, while pot experiments were utilized to test the effects of this novel BOF on plant growth. An optimization experiment, based on response surface methodologies (RSMs, showed that a maximum T-E5 population (3.72 × 108 ITS copies g-1 was obtained from a mixture of 65.17% cattle manure compost (W/W, 19.33% maggot manure (W/W, 15.50% (V/Whydrolytic amino acid solution and 4.69% (V/W inoculum at 28.7°C after a 14 day secondary solid fermentation. Spectroscopy analysis revealed that the compost transformation process involved the degradation of protein-like substances and the formation of fulvic-like and humic-like substances. FRI parameters (PI, n, PII, n, PIII, n and PV, n were used to characterize the degree of compost maturity. The BOF resulted in significantly higher increased chlorophyll content, shoot length, and shoot and root dry weights of three vegetables (cucumber, tomato and pepper by 9.9%~22.4%, 22.9%~58.5%, 31.0%~84.9%, and 24.2%~34.1%, respectively. In summary, this study presents an operational means of increasing PGPF T-E5 populations in BOF to promote plant growth with a concomitant reduction in production cost. In addition, a BOF compost maturity assessment using fluorescence EEM spectroscopy and FRI ensured its safe field application.

  11. Canceling effect leads temperature insensitivity of hydrolytic enzymes in soil

    Science.gov (United States)

    Razavi, Bahar S.; Blagodatskaya, Evgenia; Kuzyakov, Yakov

    2015-04-01

    Extracellular enzymes are important for decomposition of many macromolecules abundant in soil such as cellulose, hemicelluloses and proteins (Allison et al., 2010; Chen et al., 2012). The temperature sensitivity of enzymes responsible for organic matter decomposition is the most crucial parameter for prediction of the effects of global warming on carbon cycle. Temperature responses of biological systems are often expressed as a Q10 functions; The Q10 describes how the rate of a chemical reaction changes with a temperature increase for 10 °C The aim of this study was to test how the canceling effect will change with variation in temperature interval, during short-term incubation. We additionally investigated, whether canceling effect occurs in a broad range of concentrations (low to high) and whether it is similar for the set of hydrolytic enzymes within broad range of temperatures. To this end, we performed soil incubation over a temperature range of 0-40°C (with 5°C steps). We determined the activities of three enzymes involved in plant residue decomposition: β-glucosidase and cellobiohydrolase, which are commonly measured as enzymes responsible for degrading cellulose (Chen et al., 2012), and xylanase, which degrades xylooligosaccharides (short xylene chain) in to xylose, thus being responsible for breaking down hemicelluloses (German et al., 2011). Michaelis-Menten kinetics measured at each temperature allowed to calculate Q10 values not only for the whole reaction rates, but specifically for maximal reaction rate (Vmax) and substrate affinity (Km). Subsequently, the canceling effect - simultaneous increase of Vmax and Km with temperature was analyzed within 10 and 5 degree of temperature increase. Three temperature ranges (below 10, between 15 and 25, and above 30 °C) clearly showed non-linear but stepwise increase of temperature sensitivity of all three enzymes and allowed to conclude for predominance of psychrophilic, mesophilic and thermophilic

  12. Complex coordinated extracellular metabolism: Acid phosphatases activate diluted human leukocyte proteins to generate energy flow as NADPH from purine nucleotide ribose.

    Science.gov (United States)

    Hibbs, John B; Vavrin, Zdenek; Cox, James E

    2016-08-01

    Complex metabolism is thought to occur exclusively in the crowded intracellular environment. Here we report that diluted enzymes from lysed human leukocytes produce extracellular energy. Our findings involve two pathways: the purine nucleotide catabolic pathway and the pentose phosphate pathway, which function together to generate energy as NADPH. Glucose6P fuel for NADPH production is generated from structural ribose of purine ribonucleoside monophosphates, ADP, and ADP-ribose. NADPH drives glutathione reductase to reduce an oxidized glutathione disulfide-glutathione redox couple. Acid phosphatases initiate ribose5P salvage from purine ribonucleoside monophosphates, and transaldolase controls the direction of carbon chain flow through the nonoxidative branch of the pentose phosphate pathway. These metabolic control points are regulated by pH. Biologically, this energy conserving metabolism could function in perturbed extracellular spaces.

  13. Screening of Marine Actinomycetes from Segara Anakan for Natural Pigment and Hydrolytic Activities

    Science.gov (United States)

    Asnani, A.; Ryandini, D.; Suwandri

    2016-02-01

    Marine actinomycetes have become sources of great interest to natural product chemistry due to their new chemical entities and bioactive metabolites. Since April 2010, we have screened actinobacteria from five sites that represent different ecosystems of Segara Anakan lagoon. In this present study we focus on specific isolates, K-2C which covers 1) actinomycetes identification based on morphology observation and 16S rRNA gene; 2) fermentation and isolation of pigment; 3) structure determination of pigment; and 4) hydrolytic enzymes characterization; Methodologies relevant to the studies were implemented accordingly. The results indicated that K-2C was likely Streptomyces fradiae strain RSU15, and the best fermentation medium should contain starch and casein with 21 days of incubation. The isolate has extracellular as well as intracellular pigments. Isolated pigments gave purple color with λmax of 529.00 nm. The pigment was structurally characterized. Interestingly, Streptomyces K-2C was able to produce potential hydrolytic enzymes such as amylase, cellulase, protease, lipase, urease, and nitrate reductase.

  14. Tetracycline removal and effect on the formation and degradation of extracellular polymeric substances and volatile fatty acids in the process of hydrogen fermentation.

    Science.gov (United States)

    Hou, Guangying; Hao, Xiaoyan; Zhang, Rui; Wang, Jing; Liu, Rutao; Liu, Chunguang

    2016-07-01

    Many research indicate antibiotics show adverse effect on methane fermentation, while few research focus on their effect on hydrogen fermentation. The present study aimed to gain insight of the effect of antibiotics on hydrogen fermentation with waste sludge and corn straw as substrate. For this purpose, tetracycline, as a model, was investigated with regard to tetracycline removal, hydrogen production, interaction with extracellular polymeric substances (EPSs) of substrate and volatile fatty acids (VFAs) on concentration and composition. Results show that tetracycline could be removed efficiently by hydrogen fermentation, and relative low-dose tetracycline (200mg/l) exposure affects little on hydrogen production. While tetracycline exposure could change hydrogen fermentation from butyric acid-type to propionic acid-type depending on tetracycline level. Based upon three-dimensional excitation-emission matrix fluorescence spectroscopy and UV-vis tetracycline changed the component and content of EPSs, and static quenching was the main mechanism between EPSs with tetracycline.

  15. Endophytic filamentous fungi from a Catharanthus roseus: Identification and its hydrolytic enzymes

    Directory of Open Access Journals (Sweden)

    Farah Wahida Ayob

    2016-05-01

    Full Text Available This paper reported on the various filamentous fungi strains that were isolated from a wild grown Catharanthus roseus. Based on the morphological characteristics and molecular technique through a Polymerase Chain Reaction and DNA sequencing method using internal transcribed spacer (ITS, these fungi had been identified as a Colletotrichum sp., Macrophomina phaseolina, Nigrospora sphaerica and Fusarium solani. The ultrastructures of spores and hyphae were observed under a Scanning Electron Microscope. The hydrolytic enzyme test showed that all strains were positive in secreting cellulase. Colletotrichum sp. and F. solani strains also gave a positive result for amylase while only F. solani was capable to secrete protease. These fungi were putatively classified as endophytic fungi since they produced extracellular enzymes that allow them to penetrate plant cell walls and colonize with symbiotic properties.

  16. Hydrolytic enzymes in Paracoccidioides brasiliensis--ecological aspects.

    Science.gov (United States)

    Benoliel, Bruno; Arraes, Fabrício B M; Reis, Viviane Castelo-Branco; Siqueira, Saulo J L de; Parachin, Nádia S; Torres, Fernando A G

    2005-06-30

    Paracoccidioides brasiliensis is a thermally dimorphic fungus that causes paracoccidioidomycosis. The yeast form of this pathogen is found in the animal host whereas the mycelial form is recovered from living and non-living organic material. The sole carbon source available in these habitats is represented by polysaccharides from the plant cell wall. Hydrolytic enzymes are necessary to convert these polymers into simple sugars for fungal metabolism. We report on the presence of ortholog genes of hydrolytic enzymes identified in the P. brasiliensis transcriptome and on hydrolytic activities in supernatants of induced P. brasiliensis cultures of mycelium and yeast cells. Enzymatic assays have shown cellulase and xylanase activities, both being higher in mycelium than in the yeast form. Amylase and chitinase activities were detected only in mycelium. Data so far reinforce the idea that mycelial P. brasiliensis is a saprobe.

  17. Extracellular HMGB1 Modulates Glutamate Metabolism Associated with Kainic Acid-Induced Epilepsy-Like Hyperactivity in Primary Rat Neural Cells

    Directory of Open Access Journals (Sweden)

    Yuji Kaneko

    2017-02-01

    Full Text Available Background/Aims: Neuroinflammatory processes have been implicated in the pathophysiology of seizure/epilepsy. High mobility group box 1 (HMGB1, a non-histone DNA binding protein, behaves like an inflammatory cytokine in response to epileptogenic insults. Kainic acid (KA is an excitotoxic reagent commonly used to induce epilepsy in rodents. However, the molecular mechanism by which KA-induced HMGB1 affords the initiation of epilepsy, especially the role of extracellular HMGB1 in neurotransmitter expression, remains to be elucidated. Methods: Experimental early stage of epilepsy-related hyperexcitability was induced in primary rat neural cells (PRNCs by KA administration. We measured the localization of HMGB1, cell viability, mitochondrial activity, and expression level of glutamate metabolism-associated enzymes. Results: KA induced the translocation of HMGB1 from nucleus to cytosol, and its release from the neural cells. The translocation is associated with post-translational modifications. An increase in extracellular HMGB1 decreased PRNC cell viability and mitochondrial activity, downregulated expression of glutamate decarboxylase67 (GAD67 and glutamate dehydrogenase (GLUD1/2, and increased intracellular glutamate concentration and major histocompatibility complex II (MHC II level. Conclusions: That a surge in extracellular HMGB1 approximated seizure initiation suggests a key pathophysiological contribution of HMGB1 to the onset of epilepsy-related hyperexcitability.

  18. Halophilic Bacteria as a Source of Novel Hydrolytic Enzymes

    Directory of Open Access Journals (Sweden)

    Encarnación Mellado

    2013-01-01

    Full Text Available Hydrolases constitute a class of enzymes widely distributed in nature from bacteria to higher eukaryotes. The halotolerance of many enzymes derived from halophilic bacteria can be exploited wherever enzymatic transformations are required to function under physical and chemical conditions, such as in the presence of organic solvents and extremes in temperature and salt content. In recent years, different screening programs have been performed in saline habitats in order to isolate and characterize novel enzymatic activities with different properties to those of conventional enzymes. Several halophilic hydrolases have been described, including amylases, lipases and proteases, and then used for biotechnological applications. Moreover, the discovery of biopolymer-degrading enzymes offers a new solution for the treatment of oilfield waste, where high temperature and salinity are typically found, while providing valuable information about heterotrophic processes in saline environments. In this work, we describe the results obtained in different screening programs specially focused on the diversity of halophiles showing hydrolytic activities in saline and hypersaline habitats, including the description of enzymes with special biochemical properties. The intracellular lipolytic enzyme LipBL, produced by the moderately halophilic bacterium Marinobacter lipolyticus, showed advantages over other lipases, being an enzyme active over a wide range of pH values and temperatures. The immobilized LipBL derivatives obtained and tested in regio- and enantioselective reactions, showed an excellent behavior in the production of free polyunsaturated fatty acids (PUFAs. On the other hand, the extremely halophilic bacterium, Salicola marasensis sp. IC10 showing lipase and protease activities, was studied for its ability to produce promising enzymes in terms of its resistance to temperature and salinity.

  19. Altered micro-ribonucleic acid expression profiles of extracellular microvesicles in the seminal plasma of patients with oligoasthenozoospermia.

    Science.gov (United States)

    Abu-Halima, Masood; Ludwig, Nicole; Hart, Martin; Leidinger, Petra; Backes, Christina; Keller, Andreas; Hammadeh, Mohamad; Meese, Eckart

    2016-10-01

    To determine whether microRNA (miRNA) expression profile is different in extracellular microvesicles collected from seminal plasma of men with oligoasthenozoospermia, to gain further insight into molecular mechanisms underlying male infertility. Microarray with quantitative real-time polymerase chain reaction validation and Western blot analysis confirmation. University research and clinical institutes. A total of 24 men, including 12 oligoasthenozoospermic subfertile men and 12 normozoospermic men. None. Statistically significant altered miRNA expression profiles in oligoasthenozoospermic subfertile men compared with normozoospermic fertile men. Extracellular microvesicles including exosomes were isolated from seminal plasma by ultracentrifugation. Presence of exosome-specific proteins was confirmed by Western blotting. In the extracellular microvesicles, we analyzed 1,205 miRNAs by microarray and identified 36 miRNAs with altered expression levels in oligoasthenozoospermic compared with normozoospermic fertile men. Seven miRNAs were overexpressed and 29 miRNAs were underexpressed in oligoasthenozoospermic men. Using quantitative real-time polymerase chain reaction as an independent method, we confirmed the significantly higher expression levels of miR-765 and miR-1275 and the significantly lower expression level of miR-15a in oligoasthenozoospermic subfertile men as compared with the normozoospermic men. We identified altered expression levels of miRNAs in extracellular microvesicles from seminal plasma as part of the molecular events in the male genital tract. These miRNAs may help to understand the molecular mechanisms underlying male infertility. Copyright © 2016 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  20. Aging Degree of Silk Fabrics Under Hydrolytic Condition Characterized by Tyrosine and Aspartic Acid Contents%酪氨酸与天门冬氨酸含量对蚕丝织物水解老化程度的表征效果

    Institute of Scientific and Technical Information of China (English)

    贾丽玲; 郑海玲; 周旸; 徐东霞; 吴子婴; 邢梦阳

    2014-01-01

    Aging process of silk fabrics under hydrolytic condition is accompanied by oxidation and loss of amino acids.In this study,concentrated hydrochloric acid and solid NaOH were used to prepare acidic and alkaline solutions with 4 pH values which were further used to hydrolyze silk fabrics.The results indicated that the aging degree of silk samples treated with strong acid (pH 2) or strong base (pH 12) was higher than that of other treatments.The amino acid contents of hydrolyzed silk samples were also measured by reversed phase high performance liquid chromatography with pre-column derivatization (RP-HPLC) for analyzing the relationship of tyrosine and aspartic acid contents with aging degree of silk samples.When the treatment time by strong acid or strong base was prolonged to 10 days,the percentage of aspartic acid in the treated silk samples decreased obviously.There was a good linear relationship between aspartic acid content and the treatment time.Moreover,among treatments by acidic or alkaline solution with all 4 pH values,aspartic acid content in proteins of the treated silk fabrics displayed a functional corresponding relationship with retention rate of breaking strength,while no regularity was found between tryosine content and the treatment time.Therefore,aspartic acid content was a more suitable indicator of silk aging degree under hydrolysis than tyrosine content.In addition,in silk protein,glutamic acid is similar with aspartic acid,both of which are of acidic amino acids.In our measurement result,aspartic acid content was positively correlated with glutamic acid,which further verified the good effect of using aspartic acid content to characterize the aging degree of silk fabrics.%蚕丝织物的水解老化过程会伴随着丝蛋白中氨基酸的氧化和流失,分别以浓盐酸和NaOH固体配制4种pH值的酸、碱溶液对蚕丝织物进行水解老化处理,以强酸(pH 2)、强碱(pH 12)溶液水解处理蚕丝织物的老化程度较严重.采

  1. Microbial short-chain fatty acid production and extracellular enzymes activities during in vitro fermentation of polysaccharides from the seeds of Plantago asiatica L. treated with microwave irradiation.

    Science.gov (United States)

    Hu, Jie-Lun; Nie, Shao-Ping; Li, Chang; Fu, Zhi-Hong; Xie, Ming-Yong

    2013-06-26

    Effects of microwave irradiation on microbial short-chain fatty acid production and the activites of extracellular enzymes during in vitro fermentation of the polysaccharide from Plantago asiatica L. were investigated in this study. It was found that the apparent viscosity, average molecular weight, and particle size of the polysaccharide decreased after microwave irradiation. Reducing sugar amount increased with molecular weight decrease, suggesting the degradation may derive from glycosidic bond rupture. The polysaccharide surface topography was changed from large flakelike structure to smaller chips. FT-IR showed that microwave irradiation did not alter the primary functional groups in the polysaccharide. However, short-chain fatty acid productions of the polysaccharide during in vitro fermentation significantly increased after microwave irradiation. Activities of microbial extracellular enzymes xylanase, arabinofuranosidase, xylosidase, and glucuronidase in fermentation cultures supplemented with microwave irradiation treated polysaccharide were also generally higher than those of untreated polysaccharide. This showed that microwave irradiation could be a promising degradation method for the production of value-added polysaccharides.

  2. Extracellular Loop 2 of the Free Fatty Acid Receptor 2 Mediates Allosterism of a Phenylacetamide Ago-Allosteric ModulatorS⃞

    Science.gov (United States)

    Smith, Nicola J.; Ward, Richard J.; Stoddart, Leigh A.; Hudson, Brian D.; Kostenis, Evi; Ulven, Trond; Morris, Joanne C.; Tränkle, Christian; Tikhonova, Irina G.; Adams, David R.

    2011-01-01

    Allosteric agonists are powerful tools for exploring the pharmacology of closely related G protein-coupled receptors that have nonselective endogenous ligands, such as the short chain fatty acids at free fatty acid receptors 2 and 3 (FFA2/GPR43 and FFA3/GPR41, respectively). We explored the molecular mechanisms mediating the activity of 4-chloro-α-(1-methylethyl)-N-2-thiazolylbenzeneacetamide (4-CMTB), a recently described phenylacetamide allosteric agonist and allosteric modulator of endogenous ligand function at human FFA2, by combining our previous knowledge of the orthosteric binding site with targeted examination of 4-CMTB structure-activity relationships and mutagenesis and chimeric receptor generation. Here we show that 4-CMTB is a selective agonist for FFA2 that binds to a site distinct from the orthosteric site of the receptor. Ligand structure-activity relationship studies indicated that the N-thiazolyl amide is likely to provide hydrogen bond donor/acceptor interactions with the receptor. Substitution at Leu173 or the exchange of the entire extracellular loop 2 of FFA2 with that of FFA3 was sufficient to reduce or ablate, respectively, allosteric communication between the endogenous and allosteric agonists. Thus, we conclude that extracellular loop 2 of human FFA2 is required for transduction of cooperative signaling between the orthosteric and an as-yet-undefined allosteric binding site of the FFA2 receptor that is occupied by 4-CMTB. PMID:21498659

  3. Radiolytic and hydrolytic stability of extractant molecules

    Energy Technology Data Exchange (ETDEWEB)

    Cames, B.; Caniffi, B.; Rudloff, D. [CEA Marcoule - DRCP/SCPS/LCSE: BP 17171, Bagnols-sur-Ceze, 30207 cedex (France)

    2008-07-01

    In nuclear spent fuel reprocessing industry, actinide partitioning processes are based on solvent extraction and organic phase recycling. It is well-known that both radiolysis and acidic hydrolysis leads to degradation of extractant molecules. To have more information on the stability of extractant molecules used in a reprocessing plant, batch studies have been carried out to determine parameters governing the extractant consumption kinetic under hydrolysis and radiolysis effects (dose rate, degradation time and nitric acidity of the organic phase). For gamma radiation, results about DMDOHEMA (N,N'-dimethyl-N,N'-di-octyl-hexyl-ethoxy-malonamide) and DEHiBA (N,N'-di(ethyl-2-hexyl)iso-butanamide) show that degradation of DMDOHEMA and DEHiBA depends only on nitric acidity of the organic phase, dose rate and radiolysis time (DMDOHEMA consumption kinetic constant is 2 times slower than for DEHiBA). For same degradation conditions, it has been shown that {alpha}-radiolysis of DMDOHEMA is 4 times slower than {gamma}-radiolysis, and acidic hydrolysis of DMDOHEMA is effective whereas that of DEHiBA is not. (authors)

  4. Hydrolytic gain during hydrolysis reactions : implications and correction procedures

    NARCIS (Netherlands)

    Marchal, L.M.; Tramper, J.

    1999-01-01

    Some of the structural parameters of starch (e.g. % beta- or gluco-hydrolysis) were influenced by the increase in mass during the hydrolysis reactions (hydrolytic gain). Procedures were derived to correct this apparent % of hydrolysis to actual % of hydrolysis. These analytically derived equations a

  5. The effect of the source of microorganisms on adaptation of hydrolytic consortia dedicated to anaerobic digestion of maize silage.

    Science.gov (United States)

    Poszytek, Krzysztof; Pyzik, Adam; Sobczak, Adam; Lipinski, Leszek; Sklodowska, Aleksandra; Drewniak, Lukasz

    2017-02-17

    The main aim of this study was to evaluate the effect of the source of microorganisms on the selection of hydrolytic consortia dedicated to anaerobic digestion of maize silage. The selection process was investigated based on the analysis of changes in the hydrolytic activity and the diversity of microbial communities derived from (i) a hydrolyzer of a commercial agricultural biogas plant, (ii) cattle slurry and (iii) raw sewage sludge, during a series of 10 passages. Following the selection process, the adapted consortia were thoroughly analyzed for their ability to utilize maize silage and augmentation of anaerobic digestion communities. The results of selection of the consortia showed that every subsequent passage of each consortium leads to their adaptation to degradation of maize silage, which was manifested by the increased hydrolytic activity of the adapted consortia. Biodiversity analysis (based on the 16S rDNA amplicon sequencing) confirmed the changes microbial community of each consortium, and showed that after the last (10th) passage all microbial communities were dominated by the representatives of Lactobacillaceae, Prevotellaceae, Veillonellaceae. The results of the functional analyses showed that the adapted consortia improved the efficiency of maize silage degradation, as indicated by the increase in the concentration of glucose and volatile fatty acids (VFAs), as well as the soluble chemical oxygen demand (sCOD). Moreover, bioaugmentation of anaerobic digestion communities by the adapted hydrolytic consortia increased biogas yield by 10-29%, depending on the origin of the community. The obtained results also indicate that substrate input (not community origin) was the driving force responsible for the changes in the community structure of hydrolytic consortia dedicated to anaerobic digestion.

  6. d(− Lactic Acid-Induced Adhesion of Bovine Neutrophils onto Endothelial Cells Is Dependent on Neutrophils Extracellular Traps Formation and CD11b Expression

    Directory of Open Access Journals (Sweden)

    Pablo Alarcón

    2017-08-01

    Full Text Available Bovine ruminal acidosis is of economic importance as it contributes to reduced milk and meat production. This phenomenon is mainly attributed to an overload of highly fermentable carbohydrate, resulting in increased d(− lactic acid levels in serum and plasma. Ruminal acidosis correlates with elevated acute phase proteins in blood, along with neutrophil activation and infiltration into various tissues leading to laminitis and aseptic polysynovitis. Previous studies in bovine neutrophils indicated that d(− lactic acid decreased expression of L-selectin and increased expression of CD11b to concentrations higher than 6 mM, suggesting a potential role in neutrophil adhesion onto endothelia. The two aims of this study were to evaluate whether d(− lactic acid influenced neutrophil and endothelial adhesion and to trigger neutrophil extracellular trap (NET production (NETosis in exposed neutrophils. Exposure of bovine neutrophils to 5 mM d(− lactic acid elevated NET release compared to unstimulated neutrophil negative controls. Moreover, this NET contains CD11b and histone H4 citrullinated, the latter was dependent on PAD4 activation, a critical enzyme in DNA decondensation and NETosis. Furthermore, NET formation was dependent on d(− lactic acid plasma membrane transport through monocarboxylate transporter 1 (MCT1. d(− lactic acid enhanced neutrophil adhesion onto endothelial sheets as demonstrated by in vitro neutrophil adhesion assays under continuous physiological flow conditions, indicating that cell adhesion was a NET- and a CD11b/ICAM-1-dependent process. Finally, d(− lactic acid was demonstrated for the first time to trigger NETosis in a PAD4- and MCT1-dependent manner. Thus, d(− lactic acid-mediated neutrophil activation may contribute to neutrophil-derived pro-inflammatory processes, such as aseptic laminitis and/or polysynovitis in animals suffering acute ruminal acidosis.

  7. Sponge-associated bacteria of Lakshadweep coral reefs, India: resource for extracellular hydrolytic enzymes

    Digital Repository Service at National Institute of Oceanography (India)

    Feby, A.; Nair, S.

    % of the sponge-associated bacteria expressed multiple enzymatic activities (greater than equal to 4) with variation in the percentage of expression of individ-ual enzymes. More than 65% of the culturable het-erotrophic bacteria associated with sponges were...

  8. Hydrolytic Stability of Polyurethane-Coated Fabrics Used for Collapsible Fuel Storage Containers

    Science.gov (United States)

    2014-06-01

    Hydrolytic Stability of Polyurethane -Coated Fabrics Used for Collapsible Fuel Storage Containers by James M. Sloan ARL-TR-6949 June 2014...Hydrolytic Stability of Polyurethane -Coated Fabrics Used for Collapsible Fuel Storage Containers James M. Sloan Weapons and Materials...From - To) October 2012–February 2014 4. TITLE AND SUBTITLE Hydrolytic Stability of Polyurethane -Coated Fabrics Used for Collapsible Fuel Storage

  9. Extracellular loop 2 of the free Fatty Acid receptor 2 mediates allosterism of a phenylacetamide ago-allosteric modulator

    DEFF Research Database (Denmark)

    Smith, Nicola J; Ward, Richard J; Stoddart, Leigh A;

    2011-01-01

    Allosteric agonists are powerful tools for exploring the pharmacology of closely related G protein-coupled receptors that have nonselective endogenous ligands, such as the short chain fatty acids at free fatty acid receptors 2 and 3 (FFA2/GPR43 and FFA3/GPR41, respectively). We explored the molec...

  10. Glutamine deficiency in extracellular fluid exerts adverse effects on protein and amino acid metabolism in skeletal muscle of healthy, laparotomized, and septic rats.

    Science.gov (United States)

    Holecek, Milan; Sispera, Ludek

    2014-05-01

    Characteristic feature of critical illness, such as trauma and sepsis, is muscle wasting associated with activated oxidation of branched-chain amino acids (valine, leucine, isoleucine) and enhanced release of glutamine (GLN) to the blood. GLN consumption in visceral tissues frequently exceeds its release from muscle resulting in GLN deficiency that may exert adverse effects on the course of the disease. In the present study, we investigated the effects of GLN depletion in extracellular fluid on GLN production and protein and amino acid metabolism in skeletal muscle of healthy, laparotomized, and septic rats. Cecal ligation and puncture (CLP) was used as a model of sepsis. After 24 h, soleus muscle (SOL, slow-twitch, red muscle) and extensor digitorum longus (EDL, fast-twitch, white muscle) were isolated and incubated in a medium containing 0.5 mM GLN or without GLN. L-[1-(14)C]leucine was used to estimate protein synthesis and leucine oxidation, 3-methylhistidine release was used to evaluate myofibrillar protein breakdown. CLP increased GLN release from muscle, protein breakdown and leucine oxidation, and decreased protein synthesis. The effects were more pronounced in EDL. Alterations induced by laparotomy were similar to those observed in sepsis, but of a lower extent. GLN deficiency in medium enhanced GLN release and decreased intramuscular GLN concentration, decreased protein synthesis in muscles of intact and laparotomized rats, and enhanced leucine oxidation in SOL of intact and protein breakdown in SOL of laparotomized rats. It is concluded that (1) fast-twitch fibers are more sensitive to septic stimuli than slow-twitch fibers, (2) extracellular GLN deficiency may exert adverse effects on protein and amino acid metabolism in skeletal muscle, and (3) muscles of healthy and laparotomized animals are more sensitive to GLN deficiency than muscles of septic animals.

  11. Contrasting Effects of Acidic pH on the Extracellular and Intracellular Activities of the Anti-Gram-Positive Fluoroquinolones Moxifloxacin and Delafloxacin against Staphylococcus aureus ▿ †

    Science.gov (United States)

    Lemaire, Sandrine; Tulkens, Paul M.; Van Bambeke, Françoise

    2011-01-01

    In contrast to currently marketed fluoroquinolones, which are zwitterionic, delafloxacin is an investigational fluoroquinolone with an anionic character that is highly active against Gram-positive bacteria. We have examined the effect of acidic pH on its accumulation in Staphylococcus aureus and in human THP-1 cells, in parallel with its activity against extracellular and intracellular S. aureus. Moxifloxacin was used as a comparator. Delafloxacin showed MICs 3 to 5 log2 dilutions lower than those of moxifloxacin for a collection of 35 strains with relevant resistance mechanisms and also proved to be 10-fold more potent against intracellular S. aureus ATCC 25923. In medium at pH 5.5, this difference was further enhanced, with the MIC decreasing by 5 log2 dilutions. In infected cells incubated in acidic medium, the relative potency was 10-fold higher than that at neutral pH and the maximal relative efficacy reached a bactericidal effect at 24 h. These results can be explained by a 10-fold increase in delafloxacin accumulation in both bacteria and cells at acidic pH, making delafloxacin one of the most efficient drugs tested in this model. Opposite effects were seen for moxifloxacin with respect to both activity and accumulation. As reported for zwitterionic fluoroquinolones, delafloxacin was found associated with the soluble fraction in homogenates of eukaryotic cells. Taken together, these properties may confer to delafloxacin an advantage for the eradication of S. aureus in acidic environments, including intracellular infections. PMID:21135179

  12. Culturable heterotrophic bacteria from Potter Cove, Antarctica, and their hydrolytic enzymes production

    Directory of Open Access Journals (Sweden)

    Mauro Tropeano

    2012-12-01

    Full Text Available Affiliations of the dominant culturable bacteria isolated from Potter Cove, South Shetland Islands, Antarctica, were investigated together with their production of cold-active hydrolytic enzymes. A total of 189 aerobic heterotrophic bacterial isolates were obtained at 4°C and sorted into 63 phylotypes based on their amplified ribosomal DNA restriction analysis profiles. The sequencing of the 16S rRNA genes of representatives from each phylotype showed that the isolates belong to the phyla Proteobacteria (classes Alpha- and Gamma-proteobacteria, Bacteroidetes (class Flavobacteria, Actinobacteria (class Actinobacteria and Firmicutes (class Bacilli. The predominant culturable group in the site studied belongs to the class Gammaproteobacteria, with 65 isolates affiliated to the genus Pseudoalteromonas and 58 to Psychrobacter. Among the 189 isolates screened, producers of amylases (9.5%, pectinases (22.8%, cellulases (14.8%, CM-cellulases (25.4%, xylanases (20.1% and proteases (44.4% were detected. More than 25% of the isolates produced at least one extracellular enzyme, with some of them producing up to six of the tested extracellular enzymatic activities. These results suggest that a high culturable bacterial diversity is present in Potter Cove and that this place represents a promising source of biomolecules.

  13. Extracellular vesicles from MDA-MB-231 breast cancer cells stimulated with linoleic acid promote an EMT-like process in MCF10A cells.

    Science.gov (United States)

    Galindo-Hernandez, Octavio; Serna-Marquez, Nathalia; Castillo-Sanchez, Rocio; Salazar, Eduardo Perez

    2014-12-01

    Extracellular vesicles (EVs) are membrane-limited vesicles secreted by normal and malignant cells and their function is dependent on the cargo they carry and the cell type from which they originate. Moreover, EVs mediate many stages of tumor progression including angiogenesis, escape from immune surveillance and extracellular matrix degradation. Linoleic acid (LA) is an essential polyunsaturated fatty acid that induces expression of plasminogen activator inhibitor-1, proliferation, migration and invasion in breast cancer cells. However the role of secreted EVs from MDA-MB-231 cells stimulated with LA like mediator of the epithelial-mesenchymal-transition (EMT) process in mammary non-tumorigenic epithelial cells MCF10A remains to be studied. In the present study, we demonstrate that treatment of MDA-MB-231 cells for 48 h with 90 µM LA does not induce an increase in the number of secreted EVs. In addition, EVs isolated from supernatants of MDA-MB-231 stimulated for 48 h with 90 µM LA induce a transient down-regulation of E-cadherin expression, and an increase of Snail1 and 2, Twist1 and 2, Sip1, vimentin and N-cadherin expression in MCF10A cells. EVs also promote an increase of MMP-2 and -9 secretions, an increase of NFκB-DNA binding activity, migration and invasion in MCF10A cells. In summary, our findings demonstrate, for the first time, that EVs isolated from supernatants of MDA-MB-231 stimulated for 48 h with 90 µM LA induce an EMT-like process in MCF10A cells.

  14. Coordinated Regulation of the Neutral Amino Acid Transporter SNAT2 and the Protein Phosphatase Subunit GADD34 Promotes Adaptation to Increased Extracellular Osmolarity*

    Science.gov (United States)

    Krokowski, Dawid; Jobava, Raul; Guan, Bo-Jhih; Farabaugh, Kenneth; Wu, Jing; Majumder, Mithu; Bianchi, Massimiliano G.; Snider, Martin D.; Bussolati, Ovidio; Hatzoglou, Maria

    2015-01-01

    Cells respond to shrinkage induced by increased extracellular osmolarity via programmed changes in gene transcription and mRNA translation. The immediate response to this stress includes the induction of expression of the neutral amino acid transporter SNAT2. Increased SNAT2-mediated uptake of neutral amino acids is an essential adaptive mechanism for restoring cell volume. In contrast, stress-induced phosphorylation of the α subunit of the translation initiation factor eIF2 (eIF2α) can promote apoptosis. Here we show that the response to mild hyperosmotic stress involves regulation of the phosphorylation of eIF2α by increased levels of GADD34, a regulatory subunit of protein phosphatase 1 (PP1). The induction of GADD34 was dependent on transcriptional control by the c-Jun-binding cAMP response element in the GADD34 gene promoter and posttranscriptional stabilization of its mRNA. This mechanism differs from the regulation of GADD34 expression by other stresses that involve activating transcription factor 4 (ATF4). ATF4 was not translated during hyperosmotic stress despite an increase in eIF2α phosphorylation. The SNAT2-mediated increase in amino acid uptake was enhanced by increased GADD34 levels in a manner involving decreased eIF2α phosphorylation. It is proposed that the induction of the SNAT2/GADD34 axis enhances cell survival by promoting the immediate adaptive response to stress. PMID:26041779

  15. Highly conserved glutamic acid in the extracellular IV–V loop in rhodopsins acts as the counterion in retinochrome, a member of the rhodopsin family

    Science.gov (United States)

    Terakita, Akihisa; Yamashita, Takahiro; Shichida, Yoshinori

    2000-01-01

    Retinochrome is a member of the rhodopsin family having a chromophore retinal and functioning as a retinal photoisomerase in squid photoreceptor cells. Unlike vertebrate rhodopsins, but like many invertebrate rhodopsins, retinochrome does not have a glutamic acid at position 113 to serve as a counterion for the protonated retinylidene Schiff base. Here we investigated possible counterions in retinochrome by site-specific mutagenesis. Our results showed that the counterion is the glutamic acid at position 181, at which almost all the pigments in the rhodopsin family, including vertebrate and invertebrate rhodopsins, have a glutamic or aspartic acid. The remarkable exceptions are the long-wavelength visual pigments that have a histidine that, together with a nearby lysine, serves as a chloride-binding site. Replacement of Glu-181 of bovine rhodopsin with Gln caused a 10-nm red-shift of absorption maximum. Because the position at 181 is in the extracellular loop connecting the transmembrane helices VI and V, these results demonstrate the importance of this loop to function for spectral tuning in the rhodopsin family. PMID:11106382

  16. Molecular characterization of hydrolytic enzymes from hyperthermophilic archaea.

    OpenAIRE

    Voorhorst, W.G.B.

    1998-01-01

    Hyperthermophiles are recently discovered microorganisms which are able to grow optimally above 85 °C. Most hyperthermophiles belong to the Archaea, the third domain of life. One of the main interests in hyperthermophiles to deepen the insight in the way their proteins are stabilized and how to apply this knowledge to improve the stability of biotechnologically relevant enzymes. In this thesis attention has been focused on hydrolytic enzymes from hyperthermophilic archaea to provide insight i...

  17. Conserved Aspartic Acid Residues Lining the Extracellular Loop I of Sodium-coupled Bile Acid Transporter ASBT Interact with Na+ and 7α-OH Moieties on the Ligand Cholestane Skeleton*

    Science.gov (United States)

    Hussainzada, Naissan; Da Silva, Tatiana Claro; Zhang, Eric Y.; Swaan, Peter W.

    2008-01-01

    Functional contributions of residues Val-99—Ser-126 lining extracellular loop (EL) 1 of the apical sodium-dependent bile acid transporter were determined via cysteine-scanning mutagenesis, thiol modification, and in silico interpretation. Despite membrane expression for all but three constructs (S112C, Y117C, S126C), most EL1 mutants (64%) were inactivated by cysteine mutation, suggesting a functional role during sodium/bile acid co-transport. A negative charge at conserved residues Asp-120 and Asp-122 is required for transport function, whereas neutralization of charge at Asp-124 yields a functionally active transporter. D124A exerts low affinity for common bile acids except deoxycholic acid, which uniquely lacks a 7α-hydroxyl (OH) group. Overall, we conclude that (i) Asp-122 functions as a Na+ sensor, binding one of two co-transported Na+ ions, (ii) Asp-124 interacts with 7α-OH groups of bile acids, and (iii) apolar EL1 residues map to hydrophobic ligand pharmacophore features. Based on these data, we propose a comprehensive mechanistic model involving dynamic salt bridge pairs and hydrogen bonding involving multiple residues to describe sodium-dependent bile acid transporter-mediated bile acid and cation translocation. PMID:18508772

  18. Functional screening of hydrolytic activities reveals an extremely thermostable cellulase from a deep-sea archaeon

    Directory of Open Access Journals (Sweden)

    Benedikt eLeis

    2015-07-01

    Full Text Available Extreme habitats serve as a source of enzymes which are active under extreme conditions and are candidates for industrial applications. In this work, six large-insert mixed genomic libraries were screened for hydrolase activities in a broad temperature range (8 to 70 °C. Among a variety of hydrolytic activities, one fosmid clone, derived from a library of pooled isolates of hyperthermophilic archaea from deep sea vents, displayed hydrolytic activity on carboxymethyl cellulose substrate plates at 70 °C but not at lower temperatures. Sequence analysis of the fosmid insert revealed a gene encoding a novel glycoside hydrolase family 12 (GHF12 endo-1,4-β-glucanase, termed Cel12E. The enzyme shares 45 % sequence identity with a protein from the archaeon Thermococcus sp. AM4 and displays a unique multidomain architecture. Biochemical characterization of Cel12E revealed a remarkably thermostable protein, which appears to be of archaeal origin. The enzyme displayed maximum activity at 92 °C and was active on a variety of linear 1,4-β-glucans like carboxymethyl cellulose, β-glucan, lichenan, and phosphoric acid swollen cellulose. The protein is able to bind to various insoluble β-glucans. Product pattern analysis indicated that Cel12E is an endo-cleaving β-glucanase. Cel12E expands the toolbox of hyperthermostable archaeal cellulases with biotechnological potential.

  19. A method to measure hydrolytic activity of adenosinetriphosphatases (ATPases.

    Directory of Open Access Journals (Sweden)

    Gianluca Bartolommei

    Full Text Available The detection of small amounts (nanomoles of inorganic phosphate has a great interest in biochemistry. In particular, phosphate detection is useful to evaluate the rate of hydrolysis of phosphatases, that are enzymes able to remove phosphate from their substrate by hydrolytic cleavage. The hydrolysis rate is correlated to enzyme activity, an extremely important functional parameter. Among phosphatases there are the cation transporting adenosinetriphosphatases (ATPases, that produce inorganic phosphate by cleavage of the γ-phosphate of ATP. These membrane transporters have many fundamental physiological roles and are emerging as potential drug targets. ATPase hydrolytic activity is measured to test enzyme functionality, but it also provides useful information on possible inhibitory effects of molecules that interfere with the hydrolytic process. We have optimized a molybdenum-based protocol that makes use of potassium antimony (III oxide tartrate (originally employed for phosphate detection in environmental analysis to allow its use with phosphatase enzymes. In particular, the method was successfully applied to native and recombinant ATPases to demonstrate its reliability, validity, sensitivity and versatility. Our method introduces significant improvements to well-established experimental assays, which are currently employed for ATPase activity measurements. Therefore, it may be valuable in biochemical and biomedical investigations of ATPase enzymes, in combination with more specific tests, as well as in high throughput drug screening.

  20. aguA, the gene encoding an extracellular alpha-glucuronidase from Aspergillus tubingensis, is specifically induced on xylose and not on glucuronic acid.

    Science.gov (United States)

    de Vries, R P; Poulsen, C H; Madrid, S; Visser, J

    1998-01-01

    An extracellular alpha-glucuronidase was purified and characterized from a commercial Aspergillus preparation and from culture filtrate of Aspergillus tubingensis. The enzyme has a molecular mass of 107 kDa as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and 112 kDa as determined by mass spectrometry, has a determined pI just below 5.2, and is stable at pH 6.0 for prolonged times. The pH optimum for the enzyme is between 4.5 and 6.0, and the temperature optimum is 70 degrees C. The alpha-glucuronidase is active mainly on small substituted xylo-oligomers but is also able to release a small amount of 4-O-methylglucuronic acid from birchwood xylan. The enzyme acts synergistically with endoxylanases and beta-xylosidase in the hydrolysis of xylan. The enzyme is N glycosylated and contains 14 putative N-glycosylation sites. The gene encoding this alpha-glucuronidase (aguA) was cloned from A. tubingensis. It consists of an open reading frame of 2,523 bp and contains no introns. The gene codes for a protein of 841 amino acids, containing a eukaryotic signal sequence of 20 amino acids. The mature protein has a predicted molecular mass of 91,790 Da and a calculated pI of 5.13. Multiple copies of the gene were introduced in A. tubingensis, and expression was studied in a highly overproducing transformant. The aguA gene was expressed on xylose, xylobiose, and xylan, similarly to genes encoding endoxylanases, suggesting a coordinate regulation of expression of xylanases and alpha-glucuronidase. Glucuronic acid did not induce the expression of aguA and also did not modulate the expression on xylose. Addition of glucose prevented expression of aguA on xylan but only reduced the expression on xylose.

  1. aguA, the Gene Encoding an Extracellular α-Glucuronidase from Aspergillus tubingensis, Is Specifically Induced on Xylose and Not on Glucuronic Acid

    Science.gov (United States)

    de Vries, Ronald P.; Poulsen, Charlotte H.; Madrid, Susan; Visser, Jaap

    1998-01-01

    An extracellular α-glucuronidase was purified and characterized from a commercial Aspergillus preparation and from culture filtrate of Aspergillus tubingensis. The enzyme has a molecular mass of 107 kDa as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and 112 kDa as determined by mass spectrometry, has a determined pI just below 5.2, and is stable at pH 6.0 for prolonged times. The pH optimum for the enzyme is between 4.5 and 6.0, and the temperature optimum is 70°C. The α-glucuronidase is active mainly on small substituted xylo-oligomers but is also able to release a small amount of 4-O-methylglucuronic acid from birchwood xylan. The enzyme acts synergistically with endoxylanases and β-xylosidase in the hydrolysis of xylan. The enzyme is N glycosylated and contains 14 putative N-glycosylation sites. The gene encoding this α-glucuronidase (aguA) was cloned from A. tubingensis. It consists of an open reading frame of 2,523 bp and contains no introns. The gene codes for a protein of 841 amino acids, containing a eukaryotic signal sequence of 20 amino acids. The mature protein has a predicted molecular mass of 91,790 Da and a calculated pI of 5.13. Multiple copies of the gene were introduced in A. tubingensis, and expression was studied in a highly overproducing transformant. The aguA gene was expressed on xylose, xylobiose, and xylan, similarly to genes encoding endoxylanases, suggesting a coordinate regulation of expression of xylanases and α-glucuronidase. Glucuronic acid did not induce the expression of aguA and also did not modulate the expression on xylose. Addition of glucose prevented expression of aguA on xylan but only reduced the expression on xylose. PMID:9440512

  2. Influence of wastewater sludge treatment using combined peroxyacetic acid oxidation and inorganic coagulants re-flocculation on characteristics of extracellular polymeric substances (EPS).

    Science.gov (United States)

    Zhang, Weijun; Cao, Bingdi; Wang, Dongsheng; Ma, Teng; Xia, Hua; Yu, Dehong

    2016-01-01

    Extracellular polymeric substances (EPS) are highly hydrated biopolymers and play important roles in bioflocculation, floc stability, and solid-water separation processes. Destroying EPS structure will result in sludge reduction and release of trapped water. In this study, the effects of combined process of peracetic acid (PAA) pre-oxidation and chemical re-flocculation on morphological properties and distribution and composition of EPS of the resultant sludge flocs were investigated in detail to gain insights into the mechanism involved in sludge treatment. It was found that sludge particles were effectively solubilized and protein-like substances were degraded into small molecules after PAA oxidation. A higher degradation of protein-like substances was observed at acid environments under PAA oxidation. Microscopic analysis revealed that no integral sludge floc was observed after oxidation with PAA at high doses. The floc was reconstructed with addition of inorganic coagulants (polyaluminium chloride (PACl) and ferric chloride (FeCl3)) and PACl performed better in flocculation due to its higher charge neutralization and bridging ability. Combined oxidative lysis and chemical re-flocculation provide a novel solution for sludge treatment.

  3. Changes in brain glucose use and extracellular ions associated with kainic acid-induced seizures: (/sup 14/C)-2-deoxyglucose and intracranial

    Energy Technology Data Exchange (ETDEWEB)

    Chastain, J.E Jr.

    1986-01-01

    The effect of kainic acid (KA) on brain glucose use with coadministration of diazepam, and the effect of KA on brain extracellular (K/sup +/), Ca/sup 2 +/), and (Na/sup +/) was investigated in rats by means of (/sup 14/C)-2-deoxyglucose (2-DG) and intracranial microdialysis, respectively. Also, the impact of intracranial microdialysis on brain regional metabolic function was studied. Co-treatment with KA and diazepam attenuated KA-induced 3 hr increases and prevented 48 hr decreases in glucose use within all structures measured, particularly the piriform cortex and amygdala. Hippocampal CA/sub 3/, CA/sub 4/, and CA/sub 1/-ventral were least affected by diazepam. The results suggest that diazepam suppresses KA seizure spread from its focus, proposed to be CA/sub 3/. KA-induced ions changes were studied by intracranial microdialysis. Dialysis fibers were implanted within the hippocampus or piriform cortex and perfused 24 hr later. Samples, collected before and after KA, were analyzed for (K/sup +/), (Ca/sup 2 +/), and (Na/sup +/). KA caused an early and prolonged increase in extracellular (K/sup +/) and a negligible decrease in (Ca/sup 2 +/) within the hippocampus. In the piriform cortex, both (K/sup +/) and (Na/sup +/) increase during a period of early seizure signs. The results indicate that ion homostatic control of ion levels is better maintained during parenteral KA-induced seizures than when the brain is activated locally or during ischemia/hypoxia. The effect of intracranial microdialysis was studied by means of 2-DG in control state and KA-induced seizure state. The results indicate that intracranial microdialysis alters brain metabolic function during KA-induced seizures, but not in the control state. At 3 hr post KA, seizure metabolic activity was enhanced within the piriform cortex, and attenuated within the hippocampus.

  4. Metabolism of [3-{sup 3}H]oleanolic acid in the isolated ``Calendula officinalis`` leaf cells and transport of the synthesized glycosides, to the cell wall and the extracellular space

    Energy Technology Data Exchange (ETDEWEB)

    Szakiel, A.; Wasiukiewicz, I.; Janiszowska, W. [Warsaw Univ. (Poland). Katedra Biochemii

    1995-12-31

    It has been shown for the first time that [3-{sup 3}H]oleanolic acid glycosides formed in the cytosol of ``C. officinalis`` leaf cells are transported to the extracellular space in the form of pentaglucoside VI (44%), whereas glucuronides derived from [3-{sup 3}H]oleanolic acid 3-O-monoglucuronide (29%) as well as a part of glucosides (24%) were transported into the cell walls. (author). 15 refs, 2 figs, 1 tab.

  5. Resource allocation and extracellular acid-base status in the sea urchin Strongylocentrotus droebachiensis in response to CO₂ induced seawater acidification.

    Science.gov (United States)

    Stumpp, M; Trübenbach, K; Brennecke, D; Hu, M Y; Melzner, F

    2012-04-01

    Anthropogenic CO(2) emission will lead to an increase in seawater pCO(2) of up to 80-100 Pa (800-1000 μatm) within this century and to an acidification of the oceans. Green sea urchins (Strongylocentrotus droebachiensis) occurring in Kattegat experience seasonal hypercapnic and hypoxic conditions already today. Thus, anthropogenic CO(2) emissions will add up to existing values and will lead to even higher pCO(2) values >200 Pa (>2000 μatm). To estimate the green sea urchins' potential to acclimate to acidified seawater, we calculated an energy budget and determined the extracellular acid base status of adult S. droebachiensis exposed to moderately (102-145 Pa, 1007-1431 μatm) and highly (284-385 Pa, 2800-3800 μatm) elevated seawater pCO(2) for 10 and 45 days. A 45-day exposure to elevated pCO(2) resulted in a shift in energy budgets, leading to reduced somatic and reproductive growth. Metabolic rates were not significantly affected, but ammonium excretion increased in response to elevated pCO(2). This led to decreased O:N ratios. These findings suggest that protein metabolism is possibly enhanced under elevated pCO(2) in order to support ion homeostasis by increasing net acid extrusion. The perivisceral coelomic fluid acid-base status revealed that S. droebachiensis is able to fully (intermediate pCO(2)) or partially (high pCO(2)) compensate extracellular pH (pH(e)) changes by accumulation of bicarbonate (maximum increases 2.5mM), albeit at a slower rate than typically observed in other taxa (10-day duration for full pH(e) compensation). At intermediate pCO(2), sea urchins were able to maintain fully compensated pH(e) for 45 days. Sea urchins from the higher pCO(2) treatment could be divided into two groups following medium-term acclimation: one group of experimental animals (29%) contained remnants of food in their digestive system and maintained partially compensated pH(e) (+2.3mM HCO(3)(-)), while the other group (71%) exhibited an empty digestive system and

  6. Probing the hydrolytic reactivity of 2-difluoromethyl pyrroles.

    Science.gov (United States)

    Melanson, Jennifer A; Figliola, Carlotta; Smithen, Deborah A; Kajetanowicz, Aleksandra K; Thompson, Alison

    2016-12-20

    α-Difluoromethyl pyrroles were found to be stable while N-protected with an electron-withdrawing group. Due to the propensity of pyrroles to access azafulvenium-like intermediates, the C-F bonds of an α-difluoromethyl substituent are labile under hydrolytic conditions. The presence of certain electron-withdrawing substituents about the pyrrolic ring can accelerate this process, as determined through a kinetic comparison of the deprotection and subsequent hydrolysis reactions of N-protected β-aryl α-difluoromethyl pyrroles.

  7. Adhesion performance of new hydrolytically stable one-component self-etching enamel/dentin adhesives.

    Science.gov (United States)

    Salz, Ulrich; Bock, Thorsten

    2010-02-01

    To demonstrate that hydrolytically stable methacrylamide monomers allow one-component self-etching adhesives with comparable adhesive properties and better storage stability than hitherto available methyacrylate-based adhesive formulations. The shear bond strength and storage stability of the new one-component self-etching, methacrylamide-based adhesive AdheSE One F (Ivoclar Vivadent) to enamel and dentin was compared to the methacrylate-based Clearfil S3 Bond (Kuraray), G-Bond (GC), Hybrid Bond (Sun Medical), iBond (Heraeus Kulzer), Optibond All In One (Sybron-Kerr), and the methacrylamide-based Xeno V (Dentsply). Hydrolytic stability and adhesive performance of these adhesives was evaluated by accelerated aging at 42 degrees C over 16 weeks and monthly assessment of shear bond strength to dentin. The null hypothesis was that the bond strength of one-bottle self-etching dental adhesives is independent of storage duration and that, disregarding their higher stability against hydrolysis, methacrylamide- based materials offer performance beyond shelf-life time, comparable to methacrylate-based adhesives. Statistical analysis included 1-way-ANOVA and the Tukey-B post-hoc test (p AdheSE One F) to 16.6 MPa (iBond) and on dentin from 36.1 MPa (Optibond All In One) to 20.5 MPa (G-Bond). During accelerated aging, methacrylate-based adhesives with a pH AdheSE One F and Xeno V were stable for 16 weeks regarding shear bond strength to dentin. The shelf life of one-component self-etching adhesives is determined by their chemical composition. In conventional methacrylate-based adhesives, the inherently acidic environment of such formulations leads to monomer degradation due to hydrolysis. In contrast, methacrylamide-based adhesives are stable to aqueous acid and exhibit much superior storage stability without monomer degradation-related losses in adhesion performance.

  8. Ultrasound-assisted extraction and characterization of hydrolytic and oxidative enzymes produced by solid state fermentation.

    Science.gov (United States)

    Szabo, Orsolya Erzsebet; Csiszar, Emilia; Toth, Karolina; Szakacs, George; Koczka, Bela

    2015-01-01

    Ligninolytic and hydrolytic enzymes were produced with six selected fungi on flax substrate by solid state fermentation (SSF). The extracellular enzyme production of the organisms in two SSF media was evaluated by measuring the soluble protein concentration and the filter paper, endoxylanase, 1,4-β-d-glucosidase, 1,4-β-d-endoglucanase, polygalacturonase, lignin peroxidase, manganese peroxidase and laccase activities of the clear culture solutions produced by conventional extraction from the SSF materials. The SSF material of the best enzyme producer (Trichoderma virens TUB F-498) was further investigated to enhance the enzyme recovery by low frequency ultrasound treatment. Performance of both the original and ultrasound macerated crude enzyme mixtures was evaluated in degradation of the colored lignin-containing and waxy materials of raw linen fabric. Results proved that sonication (at 40%, 60% and 80% amplitudes, for 60min) did not result in reduction in the filter paper, lignin peroxidase and laccase activities of the crude enzyme solution, but has a significant positive effect on the efficiency of enzyme extraction from the SSF material. Depending on the parameters of sonication, the enzyme activities in the extracts obtained can be increased up to 129-413% of the original activities measured in the control extracts recovered by a common magnetic stirrer. Sonication also has an effect on both the enzymatic removal of the lignin-containing color materials and hydrophobic surface layer from the raw linen.

  9. Reduction of inflammatory responses and enhancement of extracellular matrix formation by vanillin-incorporated poly(lactic-co-glycolic acid) scaffolds.

    Science.gov (United States)

    Lee, Yujung; Kwon, Jeongil; Khang, Gilson; Lee, Dongwon

    2012-10-01

    Vanillin is one of the major components of vanilla, a commonly used flavoring agent and preservative and is known to exert potent antioxidant and anti-inflammatory activities. In this work, vanillin-incorporated poly(lactic-co-glycolic acid) (PLGA) films and scaffolds were fabricated to evaluate the effects of vanillin on the inflammatory responses and extracellular matrix (ECM) formation in vitro and in vivo. The incorporation of vanillin to PLGA films induced hydrophilic nature, resulting in the higher cell attachment and proliferation than the pure PLGA film. Vanillin also reduced the generation of reactive oxygen species (ROS) in cells cultured on the pure PLGA film and significantly inhibited the PLGA-induced inflammatory responses in vivo, evidenced by the reduced accumulation of inflammatory cells and thinner fibrous capsules. The effects of vanillin on the ECM formation were evaluated using annulus fibrous (AF) cell-seeded porous PLGA/vanillin scaffolds. PLGA/vanillin scaffolds elicited the more production of glycosaminoglycan and collagen than the pure PLGA scaffold, in a concentration-dependent manner. Based on the low level of inflammatory responses and enhanced ECM formation, vanillin-incorporated PLGA constructs make them promising candidates in the future biomedical applications.

  10. Hydrolytical instability of hydroxyanthraquinone glycosides in pressurized liquid extraction.

    Science.gov (United States)

    Wianowska, Dorota

    2014-05-01

    Hydroxyanthraquinones represent a group of pharmacologically active compounds characteristic for plants of the Rumex and Rheum genera. These compounds in the human intestine act as laxative compounds. As they cause the greatest side effects and are often abused by the public, their accurate analysis in plants and plant-derived laxatives is much needed. To isolate compounds from plants, pressurized liquid extraction (PLE) is frequently applied. The technique has been regarded, so far, as very effective, even in isolation of sensitive compounds for which exposure time in high temperature has a negative impact. This work demonstrates some interesting and surprising results accompanying PLE of hydroxyanthraquinones from the Rumex crispus L. root using methanol/water mixtures as extractant. The presented results demonstrate that glycoside forms of hydroxyanthraquinones (emodin-8-O-β-D-glucopyranoside, chrysophanol-8-O-β-D-glucopyranoside, and physcion-8-O-β-D-glucopyranoside) are hydrolytically unstable even in the short-lasting PLE. The increase of water concentration in the extractant leads to the increase of the transformation degree of the glycoside forms to the corresponding aglycones (emodin, chrysophanol, and physcion), increasing the concentration of the latter. The rise in the PLE temperature accelerates the hydrolytical degradation of the glycoside forms. The extension of the extraction time also intensifies this process. The presented results show that extraction of glycosides using extractants containing water can lead to false conclusions about the chemical composition of plants.

  11. Extracellular Ionic Locks Determine Variation in Constitutive Activity and Ligand Potency between Species Orthologs of the Free Fatty Acid Receptors FFA2 and FFA3*

    Science.gov (United States)

    Hudson, Brian D.; Tikhonova, Irina G.; Pandey, Sunil K.; Ulven, Trond; Milligan, Graeme

    2012-01-01

    Free fatty acid receptors 2 and 3 (FFA2 and FFA3) are G protein-coupled receptors for short chain free fatty acids (SCFAs). They respond to the same set of endogenous ligands but with distinct rank-order of potency such that acetate (C2) has been described as FFA2-selective, whereas propionate (C3) is non-selective. Although C2 was confirmed to be selective for human FFA2 over FFA3, this ligand was not selective between the mouse orthologs. Moreover, although C3 was indeed not selective between the human orthologs, it displayed clear selectivity for mouse FFA3 over mouse FFA2. This altered selectivity to C2 and C3 resulted from broad differences in SCFAs potency at the mouse orthologs. In studies to define the molecular basis for these observations, marked variation in ligand-independent constitutive activity was identified using a [35S]GTPγS assay. The orthologs with higher potency for the SCFAs, human FFA2 and mouse FFA3, displayed high constitutive activity in this assay, whereas the orthologs with lower potency for the agonist ligands, mouse FFA2 and human FFA3, did not. Sequence alignments of the second extracellular loop identified single negatively charged residues in FFA2 and FFA3 not conserved between species and predicted to form ionic lock interactions with arginine residues within the FFA2 or FFA3 agonist binding pocket to regulate constitutive activity and SCFA potency. Reciprocal mutation of these residues between species orthologs resulted in the induction (or repression) of constitutive activity and in most cases also yielded corresponding changes in SCFA potency. PMID:23066016

  12. Preliminary Study on the Performance and Interaction of Recycling Hydrolytic-Aerobic Combined Process of High Concentration Starch Wastewater%高浓度淀粉废水水解--好氧循环一体化处理工艺的初步研究

    Institute of Scientific and Technical Information of China (English)

    李清彪; 廖鑫凯; 吴志旺; 邓旭; 黄益丽; 卢英华; 孙道华; 洪铭嫒; 王琳

    2004-01-01

    A new recycling hydrolytic-aerobic combined process was developed to treat the high concentration used. At first, the hydrolytic degradation and aerobic degradation process were examined in two batch reactors,respectively. In the stand-alone hydrolytic process, starch in the wastewater almost disappeared after 11 h treatment,but CODCr remained as high as 5803mg. L-1 after two days. In the aerobic process, the biodegradation rate of starch was much slower during the first 11 h than that in the hydrolytic process, although the CODCr removal efficiency reached 89.6% and more than 90% starch could be degraded after 37.5 h. To determine the interaction effects of the two processes, a series of hydrolytic-aerobic combinations were examined in details. Hydrolytic process played an important role in the whole recycle combination process as it could improve the biodegradability of the high concentration starch wastewater. However, from the other experiments, the negative effect of hydrolytic acidification was found in the hydrolytic-aerobic combination, which suggested that the aerobic microorganisms needed time to adapt themselves to the acidic environment. The effect of the degrading time, which was spent in the hydrolytic and aerobic unit, and the number of circulations, with which the wastewater went through the two units were investigated. It was found that a recycle combination of 6 h hydrolytic process with 12 h aerobic process was highly effective and potentially economical, in which the final removal efficiency of CODCr and efficiency of starch degradation reached 94.1% and 98.8%, respectively.

  13. Hydrolytic degradation of composite resins: effects on the microhardness

    Directory of Open Access Journals (Sweden)

    Martos Josué

    2003-01-01

    Full Text Available The purpose of this investigation was to evaluate the microhardness of two laboratory-processed composites (Artglass; belleGlass and two direct placement composites (Filtek Z250; Alert, after aging in distilled water. Twenty cylinders (8 mm diameter; 2 mm height per tested material were prepared and stored in 10 ml of distilled water. Five Knoop hardness measurements were made on the surface of the specimens with a Miniload Hardness Tester under a load of 50 g for 30 s at 10 min, 24 h, 30 and 90 days. Statistical analysis was perfomed using two-way ANOVA, followed by a SNK multiple comparison test (p < 0.05. The analysis showed statistically significant difference among hardness means recorded at the different aging time and the tested materials. It may be concluded that all materials presented hydrolytic degradation due to aging in aqueous environment.

  14. Extracellular secretion of recombinant proteins

    Science.gov (United States)

    Linger, Jeffrey G.; Darzins, Aldis

    2014-07-22

    Nucleic acids encoding secretion signals, expression vectors containing the nucleic acids, and host cells containing the expression vectors are disclosed. Also disclosed are polypeptides that contain the secretion signals and methods of producing polypeptides, including methods of directing the extracellular secretion of the polypeptides. Exemplary embodiments include cellulase proteins fused to secretion signals, methods to produce and isolate these polypeptides, and methods to degrade lignocellulosic biomass.

  15. Exercise pre‑conditioning alleviates brain damage via excitatory amino acid transporter 2 and extracellular signal‑regulated kinase 1/2 following ischemic stroke in rats.

    Science.gov (United States)

    Wang, Xiao; Zhang, Min; Feng, Rui; Li, Wen-Bin; Ren, Shi-Qing; Zhang, Feng

    2015-02-01

    Previous studies have reported that physical exercise may exert a neuroprotective effect in humans as well as animals. However, the detailed mechanisms underlying the neuroprotective effect of exercise has remained to be elucidated. The aim of the present study was to explore the possible signaling pathways involved in the protective effect of pre‑ischemic treadmill training for ischemic stroke in rats. A total of 36 male Sprague‑Dawley rats were divided at random into three groups as follows (n=12 for each): Sham surgery group; middle cerebral artery occlusion (MCAO) group; and exercise with MCAO group. Following treadmill training for three weeks, the middle cerebral artery was occluded for 90 min in order to induce ischemic stroke, followed by reperfusion. Following 24 h post‑reperfusion, six rats from each group were assessed for neurological deficits and then sacrificed to calculate the infarct volume. The remaining rats (n=6 for each group) were sacrificed and the expression levels of excitatory amino acid transporter 2 (EAAT‑2) and extracellular signal‑regulated kinase 1/2 (ERK1/2) were detected using western blot analysis. The results of the present study demonstrated that rats that underwent pre‑ischemic exercise intervention had a significantly decreased brain infarct volume and neurological deficits; in addition, the pre‑ischemic exercise group showed decreased overexpression of phosphorylated ERK1/2 and increased expression of EAAT‑2 following ischemic stroke. In conclusion, treadmill training exercise prior to ischemic stroke alleviated brain damage in rats via regulation of EAAT‑2 and ERK1/2.

  16. Effect of free ammonium and free nitrous acid on the activity, aggregate morphology and extracellular polymeric substance distribution of ammonium oxidizing bacteria in partial nitrification.

    Science.gov (United States)

    Yao, Qian; Peng, Dangcong; Wang, Bo; Chen, Yuanyuan; Li, Jiaqi; Zhao, Qiaodi; Wang, Binbin

    2017-09-01

    Successful partial nitrification not only guarantees the inhibition of nitrite oxidation, but also does not excessively retard the ammonia oxidation rate. Therefore, the performance of ammonium oxidizing bacteria (AOB) during partial nitrification is fundamental to this process. In this study, two lab-scale partial nitrification bioreactors containing different inhibition conditions-one with free ammonium (FA) inhibition, the other with free nitrous acid (FNA) inhibition-were used to compare the differences between activity, quantity, aggregation morphology and extracellular polymeric substance (EPS) distribution of AOB. The results showed that although stable, long-term, partial nitrification was achieved in both reactors, there were differences in AOB activity, microbial spatial distribution and EPS characteristic. In the FA bioreactor, FA concentration was conducted at more than 40 mg/L, which had a strong impact on the metabolism of AOB. The activity and quantity decreased by 50%. Higher EPS (42.44 ± 2.31 mg g(-1) mixed liquor volatile suspended solids [MLVSS]) and protein were introduced into the EPS matrix. However, in the FNA bioreactor, the FNA concentration was about 0.23 mg/L. It did not reach a level to affect AOB metabolism. The AOB activity and quantity were maintained at high levels and the total EPS content was 28.29 ± 2.04 mg g(-1) MLVSS. Additionally, the microscopic results showed that in the FA bioreactor, AOB cells aggregated in microcolonies, while they appeared to be self-flocculating with no specific conformation in the other reactor. β-polysaccharides located inside sludge flocs in the FA bioreactor but only accumulated around the outer layer of activated sludge flocs in the FNA condition. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  17. Chrysophanic acid reduces testosterone-induced benign prostatic hyperplasia in rats by suppressing 5α-reductase and extracellular signal-regulated kinase.

    Science.gov (United States)

    Youn, Dong-Hyun; Park, Jinbong; Kim, Hye-Lin; Jung, Yunu; Kang, JongWook; Jeong, Mi-Young; Sethi, Gautam; Seok Ahn, Kwang; Um, Jae-Young

    2017-02-07

    Benign prostatic hyperplasia (BPH) is one of the most common chronic diseases in male population, of which incidence increases gradually with age. In this study, we investigated the effect of chrysophanic acid (CA) on BPH. BPH was induced by a 4-week injection of testosterone propionate (TP). Four weeks of further injection with vehicle, TP, TP + CA, TP + finasteride was carried on. In the CA treatment group, the prostate weight was reduced and the TP-induced histological changes were restored as the normal control group. CA treatment suppressed the TP-elevated prostate specific antigen (PSA) expression. In addition, 5α-reductase, a crucial factor in BPH development, was suppressed to the normal level close to the control group by CA treatment. The elevated expressions of androgen receptor (AR), estrogen receptor α and steroid receptor coactivator 1 by TP administration were also inhibited in the CA group when compared to the TP-induced BPH group. Then we evaluated the changes in three major factors of the mitogen-activated protein kinase chain during prostatic hyperplasia; extracellular signal-regulated kinase (ERK), c-Jun-N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (p38). While ERK was elevated in the process of BPH, JNK and p38 was not changed. This up-regulated ERK was also reduced as normal by CA treatment. Further in vitro studies with RWPE-1 cells confirmed TP-induced proliferation and elevated AR, PSA and p-ERK were all reduced by CA treatment. Overall, these results suggest a potential pharmaceutical feature of CA in the treatment of BPH.

  18. Hydrolytic And Enzymatic Degradation Characteristics Of Biodegradable Aliphatic Polysters

    Institute of Scientific and Technical Information of China (English)

    LI Suming

    2004-01-01

    Aliphatic polyesters, especially those derived from lactide (PLA), glycolide (PGA) and ε-caprolactone (PCL), are being investigated worldwide for applications in the field of surgery (suture material, devices for internal bone fracture fixation), pharmacology (sustained drug delivery systems), and tissue engineering (scaffold for tissue regeneration) [1,2]. This is mainly due to their good biocompatibility and variable degradability. These polymers present also a growing interest for environmental applications in agriculture (mulch films) and in our everyday life (packaging material)as the development of biodegradable materials is now considered as one of the potential solutions to the problem of plastic waste management.For both biomedical and environmental applications, it is of major importance to understand the degradation characteristics of the polymers. The hydrolytic degradation of aliphatic polyesters has been investigated by many research groups. Our group has shown that degradation of PLAGA large size devices is faster inside than at the surface. This heterogeneous degradation is due to the autocatalytic effect of carboxylic endgroups formed by ester bond cleavage. Moreover,degradation-induced morphological and compositional changes were also elucidated. In the case of PCL, the hydrolytic degradation is very slow due to its hydrophobicity and crystallinity.The enzymatic degradation of these polymers has been investigated by a number of authors. A specific enzyme, proteinase K, has been shown to have significant effects on PLA degradation. This enzyme preferentially degrade L-lactate units as opposed to D-lactate ones, amorphous zones as opposed to crystalline ones [3]. The enzymatic degradation of PCL polymers has also been investigated. A number of lipase-type enzymes were found to significantly accelerate the degradation of PCL despite its high crystallinity. In the case of PLA/PCL blends, the two components exhibited well separated crystalline domains

  19. Comparison of hydrolytic and non-hydrolytic atomic layer deposition chemistries: Interfacial electronic properties at alumina-silicon interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Marstell, Roderick J.; Strandwitz, Nicholas C., E-mail: strand@lehigh.edu [Department of Materials Science and Engineering and Center for Advanced Materials and Nanotechnology, Lehigh University, Bethlehem, Pennsylvania 18015 (United States)

    2015-11-14

    We report the differences in the passivation and electronic properties of aluminum oxide (Al{sub 2}O{sub 3}) deposited on silicon via traditional hydrolytic atomic layer deposition (ALD) and non-hydrolytic (NH) ALD chemistries. Traditional films were grown using trimethylaluminum (TMA) and water and NHALD films grown using TMA and isopropanol at 300 °C. Hydrolytically grown ALD films contain a smaller amount of fixed charge than NHALD films (oxide fixed charge Q{sub f} {sub Traditional} = −8.1 × 10{sup 11 }cm{sup −2} and Q{sub f} {sub NHALD} = −3.6 × 10{sup 12 }cm{sup −2}), and a larger degree of chemical passivation than NHALD films (density of interface trap states, D{sub it} {sub Traditional} = 5.4 × 10{sup 11 }eV{sup −1 }cm{sup −2} and D{sub it} {sub NHALD} = 2.9 × 10{sup 12 }eV{sup −1 }cm{sup −2}). Oxides grown with both chemistries were found to have a band gap of 7.1 eV. The conduction band offset was 3.21 eV for traditionally grown films and 3.38 eV for NHALD. The increased D{sub it} for NHALD films may stem from carbon impurities in the oxide layer that are at and near the silicon surface, as evidenced by both the larger trap state time constant (τ{sub Traditional} = 2.2 × 10{sup −9} s and τ{sub NHALD} = 1.7 × 10{sup −7} s) and the larger carbon concentration. We have shown that the use of alcohol-based oxygen sources in NHALD chemistry can significantly affect the resulting interfacial electronic behavior presenting an additional parameter for understanding and controlling interfacial electronic properties at semiconductor-dielectric interfaces.

  20. Tumor extracellular acidity-activated nanoparticles as drug delivery systems%肿瘤酸度活化的纳米药物载体

    Institute of Scientific and Technical Information of China (English)

    李洪军; 王均

    2014-01-01

    pH响应性的纳米粒(nanoparticles,NPs)作为药物输送载体用于肿瘤治疗倍受关注。实体瘤的弱酸性肿瘤微环境(pHe约为6.8)为抗肿瘤药物纳米载体的设计提供了新思路和发展契机。相对于靶向基团介导的肿瘤靶向策略,对pHe响应的纳米载体更具有普适性。本文概述了pHe活化纳米药物载体在肿瘤治疗中的设计和应用现状,重点介绍pHe触发表面电荷反转的纳米颗粒用于抗肿瘤药物和小干扰RNA(siRNA)输送的研究进展,并展望这种新型载体在增强肿瘤疗效方面的应用潜力。%pH-responsive nanoparticles (NPs) are currently under intense development as carriers of drug delivery systems for cancer therapy. Of these NPs, those that are designed to target the slightly acidic extracellular pH environment (pHe~6.8) of solid tu-mors offer a new paradigm of tumor-targeted drug delivery. Compared with conventional, specific, surface-targeting approaches, the pHe-targeting strategy is considered to be more general because of the common occurrence of an acidic microenvironment in solid tu-mors. This review mainly focuses on the design and applications of pHe-activated NPs, particularly on pHe-activated surface-charge re-versal NPs, for drug and siRNA delivery to tumors. The novel development of NPs described in this review has high potential for achieving stronger therapeutic effects in cancer treatment.

  1. The Role of Glutamic or Aspartic Acid in Position Four of the Epitope Binding Motif and Thyrotropin Receptor-Extracellular Domain Epitope Selection in Graves' Disease

    Science.gov (United States)

    Inaba, Hidefumi; Martin, William; Ardito, Matt; De Groot, Anne Searls; De Groot, Leslie J.

    2010-01-01

    Context: Development of Graves' disease (GD) is related to HLA-DRB1*0301 (DR3),and more specifically to arginine at position 74 of the DRB1 molecule. The extracellular domain (ECD) of human TSH receptor (hTSH-R) contains the target antigen. Objective and Design: We analyzed the relation between hTSH-R-ECD peptides and DR molecules to determine whether aspartic acid (D) or glutamic acid (E) at position four in the binding motif influenced selection of functional epitopes. Results: Peptide epitopes from TSH-R-ECD with D or E in position four (D/E+) had higher affinity for binding to DR3 than peptides without D/E (D/E−) (IC50 29.3 vs. 61.4, P = 0.0024). HLA-DR7, negatively correlated with GD, and DRB1*0302 (HLA-DR18), not associated with GD, had different profiles of epitope binding. Toxic GD patients who are DR3+ had higher responses to D/E+ peptides than D/E− peptides (stimulation index 1.42 vs. 1.22, P = 0.028). All DR3+ GD patients (toxic + euthyroid) had higher responses, with borderline significance (Sl; 1.32 vs. 1.18, P = 0.051). Splenocytes of DR3 transgenic mice immunized to TSH-R-ECD responded to D/E+ peptides more than D/E− peptides (stimulation index 1.95 vs. 1.69, P = 0.036). Seven of nine hTSH-R-ECD peptide epitopes reported to be reactive with GD patients' peripheral blood mononuclear cells contain binding motifs with D/E at position four. Conclusions: TSH-R-ECD epitopes with D/E in position four of the binding motif bind more strongly to DRB1*0301 than epitopes that are D/E− and are more stimulatory to GD patients' peripheral blood mononuclear cells and to splenocytes from mice immunized to hTSH-R. These epitopes appear important in immunogenicity to TSH-R due to their favored binding to HLA-DR3, thus increasing presentation to T cells. PMID:20392871

  2. An acidic amino acid transmembrane helix 10 residue conserved in the neurotransmitter:sodium:symporters is essential for the formation of the extracellular gate of the γ-aminobutyric acid (GABA) transporter GAT-1.

    Science.gov (United States)

    Ben-Yona, Assaf; Kanner, Baruch I

    2012-03-01

    GAT-1 mediates transport of GABA together with sodium and chloride in an electrogenic process enabling efficient GABAergic transmission. Biochemical and modeling studies based on the structure of the bacterial homologue LeuT are consistent with a mechanism whereby the binding pocket is alternately accessible to either side of the membrane and which predicts that the extracellular part of transmembrane domain 10 (TM10) exhibits aqueous accessibility in the outward-facing conformation only. In this study we have engineered cysteine residues in the extracellular half of TM10 of GAT-1 and probed their state-dependent accessibility to sulfhydryl reagents. In three out of four of the accessible cysteine mutants, the inhibition of transport by a membrane impermeant sulfhydryl reagent was diminished under conditions expected to increase the proportion of inward-facing transporters, such as the presence of GABA together with the cotransported ions. A conserved TM10 aspartate residue, whose LeuT counterpart participates in a "thin" extracellular gate, was found to be essential for transport and only the D451E mutant exhibited residual transport activity. D451E exhibited robust sodium-dependent transient currents with a voltage-dependence indicative of an increased apparent affinity for sodium. Moreover the accessibility of an endogenous cysteine to a membrane impermeant sulfhydryl reagent was enhanced by the D451E mutation, suggesting that sodium binding promotes an outward-facing conformation of the transporter. Our results support the idea that TM10 of GAT-1 lines an accessibility pathway from the extracellular space into the binding pocket and plays a role in the opening and closing of the extracellular transporter gate.

  3. Extracellular Matrix Proteins

    Directory of Open Access Journals (Sweden)

    Linda Christian Carrijo-Carvalho

    2012-01-01

    Full Text Available Lipocalin family members have been implicated in development, regeneration, and pathological processes, but their roles are unclear. Interestingly, these proteins are found abundant in the venom of the Lonomia obliqua caterpillar. Lipocalins are β-barrel proteins, which have three conserved motifs in their amino acid sequence. One of these motifs was shown to be a sequence signature involved in cell modulation. The aim of this study is to investigate the effects of a synthetic peptide comprising the lipocalin sequence motif in fibroblasts. This peptide suppressed caspase 3 activity and upregulated Bcl-2 and Ki-67, but did not interfere with GPCR calcium mobilization. Fibroblast responses also involved increased expression of proinflammatory mediators. Increase of extracellular matrix proteins, such as collagen, fibronectin, and tenascin, was observed. Increase in collagen content was also observed in vivo. Results indicate that modulation effects displayed by lipocalins through this sequence motif involve cell survival, extracellular matrix remodeling, and cytokine signaling. Such effects can be related to the lipocalin roles in disease, development, and tissue repair.

  4. Evidence for osmotic regulation of hydrolytic enzyme production in germinating barley seeds.

    Science.gov (United States)

    Jones, R L; Armstrong, J E

    1971-08-01

    alpha-Amylase levels in intact seeds of barley (Hordeum vulgare L. cv. Himalaya) reach a maximum at 3 to 4 days of germination while gibberellin levels continue to increase beyond 6 days of germination. In contrast to its effect on half seeds, gibberellic acid does not increase the total amount of alpha-amylase produced in germinating seeds. The inability of gibberellic acid to stimulate alpha-amylase production is not related to its availability; rather, evidence suggests that a factor(s) in whole seeds prevents further enhancement of alpha-amylase formation and accumulation. Hydrolysis products accumulate in the subaleurone space of the endosperm of germinating seeds up to concentrations of 570 milliosmolar. Chromatography of these hydrolysis products indicate the presence of maltose and glucose. Calculations based on reducing sugar determinations show that glucose accounts for as much as 57% of the solutes present in the endosperm fluid. Both maltose and glucose in the range of 0.2 to 0.4 M effectively inhibit the production of alpha-amylase by isolated barley aleurone layers. This inhibition is quantitatively similar to that brought about by solutions of polyethylene glycol and mannitol. On the basis of these data we propose that hydrolysis products which accumulate in the starchy endosperm of germinating seeds function to regulate the production of hydrolytic enzymes by the aleurone layer.

  5. Hydrolytic stability of self-etch adhesives bonded to dentin.

    Science.gov (United States)

    Inoue, S; Koshiro, K; Yoshida, Y; De Munck, J; Nagakane, K; Suzuki, K; Sano, H; Van Meerbeek, B

    2005-12-01

    Functional monomers chemically interact with hydroxyapatite that remains within submicron hybrid layers produced by mild self-etch adhesives. The functional monomer 10-MDP interacts most intensively with hydroxyapatite, and its calcium salt appeared most hydrolytically stable, as compared with 4-MET and phenyl-P. We investigated the hypothesis that additional chemical interaction of self-etch adhesives improves bond stability. The micro-tensile bond strength (muTBS) of the 10-MDP-based adhesive did not decrease significantly after 100,000 cycles, but did after 50,000 and 30,000 cycles, respectively, for the 4-MET-based and the phenyl-P-based adhesives. Likewise, the interfacial ultrastructure was unchanged after 100,000 thermocycles for the 10-MDP-based adhesive, while that of both the 4-MET- and phenyl-P-based adhesives contained voids and less-defined collagen. The findings of this study support the concept that long-term durability of adhesive-dentin bonds depends on the chemical bonding potential of the functional monomer.

  6. Hydrolytic activity of alpha-amylase in anaerobic digested sludge.

    Science.gov (United States)

    Higuchi, Y; Ohashi, A; Imachi, H; Harada, H

    2005-01-01

    Hydrolysis is usually considered to be a rate-limiting step in anaerobic digestion. For improving anaerobic solid waste treatments, it is essential to elucidate the mechanism of hydrolysis. In this study, alpha-amylase, one of the hydrolytic enzymes, was investigated for the elucidation of more precise mechanism of hydrolysis. Alpha-amylase activity of solid starch-degrading bacteria (SDB) was estimated through batch experiments with several different substrates and with distinction between cell-bound and cell-free alpha-amylase. Monitoring of newly isolated strains of SDB was done by fluorescence in situ hybridization. Results indicated that cell-bound alpha-amylase is chiefly responsible for the hydrolysis in the digested sludge, providing very useful information that the contact between microbial cells and solids is significantly important. The activity of alpha-amylase of the digested sludge remained quite low when not required, but increased as they recognized appropriate substrates. Several-fold higher activity was obtained for starch or maltose as compared to glucose only.

  7. Hydrolytic catalysis and structural stabilization in a designed metalloprotein

    Science.gov (United States)

    Zastrow, Melissa L.; Peacock, Anna F. A.; Stuckey, Jeanne A.; Pecoraro, Vincent L.

    2012-02-01

    Metal ions are an important part of many natural proteins, providing structural, catalytic and electron transfer functions. Reproducing these functions in a designed protein is the ultimate challenge to our understanding of them. Here, we present an artificial metallohydrolase, which has been shown by X-ray crystallography to contain two different metal ions—a Zn(II) ion, which is important for catalytic activity, and a Hg(II) ion, which provides structural stability. This metallohydrolase displays catalytic activity that compares well with several characteristic reactions of natural enzymes. It catalyses p-nitrophenyl acetate (pNPA) hydrolysis with an efficiency only ~100-fold less than that of human carbonic anhydrase (CA)II and at least 550-fold better than comparable synthetic complexes. Similarly, CO2 hydration occurs with an efficiency within ~500-fold of CAII. Although histidine residues in the absence of Zn(II) exhibit pNPA hydrolysis, miniscule apopeptide activity is observed for CO2 hydration. The kinetic and structural analysis of this first de novo designed hydrolytic metalloenzyme reveals necessary design features for future metalloenzymes containing one or more metals.

  8. "Non-hydrolytic" sol-gel synthesis of molybdenum sulfides

    Science.gov (United States)

    Leidich, Saskia; Buechele, Dominique; Lauenstein, Raphael; Kluenker, Martin; Lind, Cora

    2016-10-01

    Non-hydrolytic sol-gel reactions provide a low temperature solution based synthetic approach to solid-state materials. In this paper, reactions between molybdenum chloride and hexamethyldisilthiane in chloroform were explored, which gave access to both MoS2 and Mo2S3 after heat treatment of as-recovered amorphous samples to 600-1000 °C. Interesting morphologies were obtained for MoS2, ranging from fused spherical particles to well-defined nanoplatelets and nanoflakes. Both 2H- and 3R-MoS2 were observed, which formed thin hexagonal and triangular platelets, respectively. The platelets exhibited thicknesses of 10-30 nm, which corresponds to 15-50 MoS2 layers. No attempts to prevent agglomeration were made, however, well separated platelets were observed for many samples. Heating at 1000 °C led to formation of Mo2S3 for samples that showed well-defined MoS2 at lower temperatures, while less crystalline samples had a tendency to retain the MoS2 structure.

  9. Hydrolytic bacteria in mesophilic and thermophilic degradation of plant biomass

    Energy Technology Data Exchange (ETDEWEB)

    Zverlov, Vladimir V.; Hiegl, Wolfgang; Koeck, Daniela E.; Koellmeier, Tanja; Schwarz, Wolfgang H. [Department of Microbiology, Technische Universitaet Muenchen, Freising-Weihenstephan (Germany); Kellermann, Josef [Max Planck Institute for Biochemistry, Am Klopferspitz, Martinsried (Germany)

    2010-12-15

    Adding plant biomass to a biogas reactor, hydrolysis is the first reaction step in the chain of biological events towards methane production. Maize silage was used to enrich efficient hydrolytic bacterial consortia from natural environments under conditions imitating those in a biogas plant. At 55-60 C a more efficient hydrolyzing culture could be isolated than at 37 C. The composition of the optimal thermophilic bacterial consortium was revealed by sequencing clones from a 16S rRNA gene library. A modified PCR-RFLP pre-screening method was used to group the clones. Pure anaerobic cultures were isolated. 70% of the isolates were related to Clostridium thermocellum. A new culture-independent method for identification of cellulolytic enzymes was developed using the isolation of cellulose-binding proteins. MALDI-TOF/TOF analysis and end-sequencing of peptides from prominent protein bands revealed cellulases from the cellulosome of C. thermocellum and from a major cellulase of Clostridium stercorarium. A combined culture of C. thermocellum and C. stercorarium was shown to excellently degrade maize silage. A spore preparation method suitable for inoculation of maize silage and optimal hydrolysis was developed for the thermophilic bacterial consortium. This method allows for concentration and long-term storage of the mixed culture for instance for inoculation of biogas fermenters. (Copyright copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Nanocrystalline nickel ferrite particles synthesized by non-hydrolytic sol-gel method and their composite with biodegradable polymer.

    Science.gov (United States)

    Yin, H; Casey, P S; Chow, G M

    2012-11-01

    Targeted drug delivery has been one of the most important biomedical applications for magnetic particles. Such applications require magnetic particles to have functionalized surfaces/surface coatings that facilitate their incorporation into a polymer matrix to produce a polymer composite. In this paper, nanocrystalline nickel ferrite particles with an oleic acid surface coating were synthesized using a non-hydrolytic sol-gel method and incorporated into a biodegradable polymer matrix, poly(D,L-lactide) PLA prepared using a double emulsion method. As-synthesized nickel ferrite particles had a multi-crystalline structure with chemically adsorbed oleic acid on their surface. After forming the PLA composite, nickel ferrite particles were encapsulated in PLA microspheres. At low nickel ferrite concentrations, composites showed very similar surface charges to that of PLA. The composites were magnetically responsive and increasing the nickel ferrite concentration was found to increase magnetization of the composite.

  11. Synthesis,thermal property and hydrolytic degradation of a novel star-shaped hexa[p-(carbonylglycinomethylester)phenoxy]cyclotriphosphazene

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    A novel star-shaped cyclotriphosphazene substituted by glycinomethylesterphenoxy and its intermediates are synthesized from hexachlorocyclotriphosphazene (HCCP). The structures are characterized by 1H NMR,13C NMR,31P NMR,FTIR and elemental analysis. Their thermal properties are clarified by thermogravimetric analysis (TGA),differential scanning calorimentry (DSC) and FTIR,while hydrolytic degradation behaviour is studied with UV-vis spectrophotometer and by measuring the weight loss,and the phosphorus content of residue. According to hydrolysis behaviour of hexa[p-(carbonylglycinomethylester)phenoxy]cyclotriphosphazene (HGPCP) under different conditions,it is easy to hydrolyze in hydrochloric acid (pH 1.0) than in phosphate buffer (pH 7.4) at 37℃. And the sample hydrolytic degradation still remains at the stage of side groups’ break. The TGA data show that the thermal stability of the hexa[p-(aldehyde)phenoxy]cyclotriphosphazene (HAPCP),hexa[p-(carboxyl) phenoxy]cyclotriphosphazene (HCPCP) and HGPCP is so high that their char residues are 75%,47% and 47% at 800℃,respectively,probably due to cross-linking between molecules.

  12. Conformationally sensitive proximity of extracellular loops 2 and 4 of the γ-aminobutyric acid (GABA) transporter GAT-1 inferred from paired cysteine mutagenesis.

    Science.gov (United States)

    Hilwi, Maram; Dayan, Oshrat; Kanner, Baruch I

    2014-12-05

    The sodium- and chloride-coupled GABA transporter GAT-1 is a member of the neurotransmitter:sodium:symporters, which are crucial for synaptic transmission. Structural work on the bacterial homologue LeuT suggests that extracellular loop 4 closes the extracellular solvent pathway when the transporter becomes inward-facing. To test whether this model can be extrapolated to GAT-1, cysteine residues were introduced at positions 359 and 448 of extracellular loop 4 and transmembrane helix 10, respectively. Treatment of HeLa cells, expressing the double cysteine mutant S359C/K448C with the oxidizing reagent copper(II)(1,10-phenantroline)3, resulted in a significant inhibition of [(3)H]GABA transport. However, transport by the single cysteine mutant S359C was also inhibited by the oxidant, whereas its activity was almost 4-fold stimulated by dithiothreitol. Both effects were attenuated when the conserved cysteine residues, Cys-164 and/or Cys-173, were replaced by serine. These cysteines are located in extracellular loop 2, the role of which in the structure and function of the eukaryotic neurotransmitter:sodium:symporters remains unknown. The inhibition of transport of S359C by the oxidant was markedly reduced under conditions expected to increase the proportion of inward-facing transporters, whereas the reactivity of the mutants to a membrane-impermeant sulfhydryl reagent was not conformationally sensitive. Our data suggest that extracellular loops 2 and 4 come into close proximity to each other in the outward-facing conformation of GAT-1.

  13. Hydrolytic degradation of N,N‧-ethylenedimaleimide: Crystal structures of key intermediates and proposed mechanisms

    Science.gov (United States)

    Tan, Xue-Jie; Cheng, Shuang-Shuang; Shi, Yan; Xing, Dian-Xiang; Liu, Yun; Li, Hui; Feng, Wen-Quan; Yang, Jian-Bo

    2016-12-01

    Maleimide groups are used extensively in bioconjugation reactions, but limited mechanistic studies are available regarding their hydrolysis reactions. In this paper, five single-crystal structures related with the reaction of four-step hydrolytic degradation of N,N‧-ethylenedimaleimide have been investigated. On the basis of experimental results, the reaction mechanisms without or with water catalysis are proposed, which could provide some enlightenment into the study of similar hydrolytic degradations.

  14. New and Simple Ways to Minimize Water Uptake and Hydrolytic Degradation in Cyanate Esters

    Science.gov (United States)

    2016-01-27

    Hydrolytic Degradation in Cyanate Esters 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Andrew J. Guenthner...Water Uptake and Hydrolytic Degradation in Cyanate Esters 27 January 2016 Andrew J. Guenthner1, Christopher M. Sahagun2, Michael D. Ford3, Kevin R...cyanate esters can degrade on long-term exposure to hot water U.S. Navy photo by Mass Communication Specialist 3rd Class Torrey W. Lee (public domain

  15. A tetrairon(III)complex recognizing protein structures via a hydrolytic pathway

    Institute of Scientific and Technical Information of China (English)

    PAN Qunhui; JIANG Wei; WANG Ming; LIAO Zhanru; LIU Changlin

    2005-01-01

    There might be significant differences in the rate and efficiency in the metal complex-mediated hydrolytic reactions of proteins belonging to the different structural patterns. The tetrairon(III) complex [Fe4(NTB)4 (μ2-O)2(μ4- Suc)]6+, as a promoter in protein hydrolysis, is sensitive to α-helices in proteins, indicating that some metal complexes, as artificial proteolytic agents, could be used as a new hydrolytic probe of protein structures.

  16. Treatment of anthraquinone dye wastewater by hydrolytic acidification-aerobic process

    Institute of Scientific and Technical Information of China (English)

    YANG Jian; WU Min; Li Dan

    2004-01-01

    Experiment on microbial degradation with two kinds of biological process, hydrolytic acidification-aerobic process and aerobic process was conducted to treat the anthraquinone dye wastewater with CODCr concentration of 400 mg/L and chroma 800. The experimental result demonstrated that the hydrolytic-aerobic process could raise the biodegradability of anthraquinone dye wastewater effectively. The effluent CODCr can reach 120-170 mg/L and chroma 150 which is superior to that from simple aerobic process.

  17. High throughput screening of hydrolytic enzymes from termites using a natural substrate derived from sugarcane bagasse

    OpenAIRE

    2011-01-01

    Background The description of new hydrolytic enzymes is an important step in the development of techniques which use lignocellulosic materials as a starting point for fuel production. Sugarcane bagasse, which is subjected to pre-treatment, hydrolysis and fermentation for the production of ethanol in several test refineries, is the most promising source of raw material for the production of second generation renewable fuels in Brazil. One problem when screening hydrolytic activities is that th...

  18. High throughput screening of hydrolytic enzymes from termites using a natural substrate derived from sugarcane bagasse

    OpenAIRE

    2011-01-01

    Background: The description of new hydrolytic enzymes is an important step in the development of techniques which use lignocellulosic materials as a starting point for fuel production. Sugarcane bagasse, which is subjected to pre-treatment, hydrolysis and fermentation for the production of ethanol in several test refineries, is the most promising source of raw material for the production of second generation renewable fuels in Brazil. One problem when screening hydrolytic activities is that t...

  19. High throughput screening of hydrolytic enzymes from termites using a natural substrate derived from sugarcane bagasse

    OpenAIRE

    2011-01-01

    Abstract Background The description of new hydrolytic enzymes is an important step in the development of techniques which use lignocellulosic materials as a starting point for fuel production. Sugarcane bagasse, which is subjected to pre-treatment, hydrolysis and fermentation for the production of ethanol in several test refineries, is the most promising source of raw material for the production of second generation renewable fuels in Brazil. One problem when screening hydrolytic activities i...

  20. Effect of realgar on extracellular amino acid neurotransmitters in hippocampal CA1 region determined by online microdialysis–dansyl chloride derivatization–high-performance liquid chromatography and fluorescence detection.

    Science.gov (United States)

    Huo, Taoguang; Zhang, Yinghua; Li, Weikai; Yang, Huilei; Jiang, Hong; Sun, Guifan

    2014-09-01

    An online microdialysis (MD)–dansyl chloride (Dns) derivatization–high-performance liquid chromatography (HPLC) and fluorescence detection (FD) system was developed for simultaneous determination of eight extracellular amino acid neurotransmitters in hippocampus. The MD probe was implanted in hippocampal CA1 region. Dialysate and Dns were online mixed and derivatized. The derivatives were separated on an ODS column and detected by FD. The developed online system showed good linearity, precision, accuracy and recovery. This online MD-HPLC system was applied to monitor amino acid neurotransmitters levels in rats exposed to realgar (0.3, 0.9 and 2.7 g/kg body weight). The result shows that glutamate concentrations were significantly increased (pHPLC–FD system provides a new experimental method for studying the effect of toxic Chinese medicines on amino acid neurotransmitters.

  1. MODIFICATION OF POLYAMIDE 6 WITH POLYAMINOAMIDE-g-POLY(ETHYLENE GLYCOL) VIA HYDROLYTIC POLYMERIZATION

    Institute of Scientific and Technical Information of China (English)

    Yao-chi Liu; Wei Xu; Yuan-qin Xiong; Fan Zhang; Wei-jian Xu

    2009-01-01

    To enhance the impact strength of polyamide 6, hydrolytic polymerization modification by the polyaminoamide-g-poly(ethylene glycol) (PAAEG) derivatives with poly(ethylene glycol) (PEG) molecular weight of 400-10000 was studied. Amide groups of polyaminoamide segments were postulated to form hydrogen bonding with polyamide 6, and hydroxy groups of PAAEG units were expected to react with carboxylic acid groups of polyamide 6 forming copolymers during the polymerization. The improved compatibility in amorphous regions of blends has been confirmed by differential scanning calorimetry (DSC) and scanning electron microscopy (SEM) of fracture surfaces. The effects of PAAEG on the water absorption and notch sensitivity of blends were investigated, using water uptake measurement and mechanical testings, respectively. For comparison, pure polyamide 6 and the blend of PEG/polyamide 6 were also investigated. The addition of PAAEG retarded the crystallization of polyamide 6, but did not make remarkable influences on its crystalline structure. As a consequence of the strong interactions between the dispersed phases and polyamide 6 matrices, PAAEG was a more suitable additive for improving the notched impact strength of polyarnide 6 than PEG.

  2. Stability study of simvastatin under hydrolytic conditions assessed by liquid chromatography.

    Science.gov (United States)

    Alvarez-Lueje, Alejandro; Valenzuela, Christian; Squella, Juan Arturo; Núñez-Vergara, Luis Joaquín

    2005-01-01

    In this work, a liquid chromatography stability-indicating method was developed and applied to study the hydrolytic behavior of simvastatin in different pH values and temperatures. The selected chromatographic conditions were a C18 column; acetonitrile-28 mM phosphate buffer solution, pH 4 (65 + 35) as the mobile phase; 251 degrees C column temperature; and flow rate 1 mL/min. The developed method exhibited an adequate repeatability and reproducibility (coefficient of variation 0.54 and 0.74%, respectively) and a recovery higher than 98%. Furthermore, the detection and quantification limits were 9.1 x 10(-7) and 2.8 x 10(-6) M, respectively. The degradation of simvastatin fitted to pseudo-first order kinetics. The degradation was pH dependent, being much higher at alkaline pH than at acid pH. Activation energy, kinetic rate constants (k) at different temperatures, the half life (t1/2) and the time for 10% degradation to occur (t90) values are also reported.

  3. The hydrolytic enzymes produced by fungi strains isolated from the sand and soil of recreational areas

    Science.gov (United States)

    Kurnatowski, Piotr; Wójcik, Anna; Błaszkowska, Joanna; Góralska, Katarzyna

    2016-10-01

    The pathogenicity of fungi depends on, inter alia, the secretion of hydrolytic enzymes. The aim of this study was to determine the enzymatic activity of yeasts and yeast-like fungi isolated from children’s recreation areas, and compare the results with literature data of strains obtained from patients with mycoses. The enzymatic activity of 96 strains was assessed using an API ZYM kit (bioMerieux, France) and their biotypes were established. The fungal species were found to produce from 16 to 19 hydrolases: the most active were: leucine arylamidase (e5), acid phosphatase (e10), alkaline phosphatase (e1), naphthol-AS-BI-phosphohydrolase (e11), esterase – C4 (e2), β-galac - tosidase (e13) and β-glucosidase (e16). In addition, 13 biotypes characteristic of particular species of fungi were defined. Most strains could be categorized as biotypes C2 – 39.5% and A – 26%. The examined fungal strains isolated from recreational areas have selected biochemical characteristics i.e. production of hydrolases, which demonstrate their pathogenicity. They produce a number of enzymes which are also present in strains isolated from patients with mycoses, including: leucine arylamidase (e5), acid phosphatase (e10), naphthol-AS-BI-phosphohydrolase (e11) and alkaline phosphatase (e1). The biotypes identified in the course of this study (A, B3, B4, C1, C6 and D3) have been also reported in cases of fungal infection. Therefore, the fungi present in the sand and soil of recreational have pathogenic properties and are possible factors of fungal infection among children.

  4. Hydrolytic Enzyme Activities and Protein Pattern of Avocado Fruit Ripened in Air and in Low Oxygen, with and without Ethylene.

    Science.gov (United States)

    Kanellis, A K; Solomos, T; Mattoo, A K

    1989-05-01

    The effect of 2.5% O(2) atmosphere with and without ethylene on the activities of hydrolytic enzymes associated with cell walls, and total protein profile during ripening of avocado fruits (Persea americana Mill., cv Hass) were investigated. The low 2.5% O(2) atmosphere prevented the rise in the activities of cellulase, polygalacturonase, and acid phosphatase in avocado fruits whose ripening was initiated with ethylene. Addition of 100 microliters per liter ethylene to low O(2) atmosphere did not alter these suppressive effects of 2.5% O(2). Furthermore, 2.5% O(2) atmosphere delayed the development of a number of polypeptides that appear during ripening of avocado fruits while at the same time new polypeptides accumulated. The composition of the extraction buffer and its pH greatly affected the recovery of cellulase activity and its total immunoreactive protein.

  5. A biodegradation study of forest biomass by Aspergillus niger F7: correlation between enzymatic activity, hydrolytic percentage and biodegradation index

    Directory of Open Access Journals (Sweden)

    Nivedita Sharma

    2012-06-01

    Full Text Available Aspergillus niger F7 isolated from soil was found to be the potent producer of cellulase and xylanase. The residue of forest species Toona ciliata, Celtris australis, Cedrus deodara and Pinus roxburghii was selected as substrate for biodegradation study due to its easy availability and wide use in industry. It was subjected to alkali (sodium hydroxide treatment for enhancing its degradation. Biodegradation of forest waste by hydrolytic enzymes (cellulase and xylanase secreted by A. niger under solid state fermentation (SSF was explored. SSF of pretreated forest biomass was found to be superior over untreated forest biomass. Highest extracellular enzyme activity of 2201±23.91 U/g by A. niger was shown in pretreated C. australis wood resulting in 6.72±0.20 percent hydrolysis and 6.99±0.23 biodegradation index (BI. The lowest BI of 1.40±0.08 was observed in untreated saw dust of C. deodara having the least enzyme activity of 238±1.36 U/g of dry matter. Biodegradation of forest biomass under SSF was increased many folds when moistening agent i.e. tap water had been replaced with modified basal salt media (BSM. In BSM mediated degradation of forest waste with A. niger, extracellular enzyme activity was increased up to 4089±67.11 U/g of dry matter in turn resulting in higher BI of 15.4±0.41 and percent hydrolysis of 19.38±0.81 in pretreated C. australis wood. A. niger exhibited higher enzyme activity on pretreated biomass when moistened with modified BSM in this study. Statistically a positive correlation has been drawn between these three factors i.e. enzyme activity, BI and percent hydrolysis of forest biomass thus proving their direct relationship with each other.

  6. A biodegradation study of forest biomass by Aspergillus niger F7: correlation between enzymatic activity, hydrolytic percentage and biodegradation index.

    Science.gov (United States)

    Sharma, Nivedita; Kaushal, Richa; Gupta, Rakesh; Kumar, Sanjeev

    2012-04-01

    Aspergillus niger F7 isolated from soil was found to be the potent producer of cellulase and xylanase. The residue of forest species Toona ciliata, Celtris australis, Cedrus deodara and Pinus roxburghii was selected as substrate for biodegradation study due to its easy availability and wide use in industry. It was subjected to alkali (sodium hydroxide) treatment for enhancing its degradation. Biodegradation of forest waste by hydrolytic enzymes (cellulase and xylanase) secreted by A. niger under solid state fermentation (SSF) was explored. SSF of pretreated forest biomass was found to be superior over untreated forest biomass. Highest extracellular enzyme activity of 2201±23.91 U/g by A. niger was shown in pretreated C. australis wood resulting in 6.72±0.20 percent hydrolysis and 6.99±0.23 biodegradation index (BI). The lowest BI of 1.40±0.08 was observed in untreated saw dust of C. deodara having the least enzyme activity of 238±1.36 U/g of dry matter. Biodegradation of forest biomass under SSF was increased many folds when moistening agent i.e. tap water had been replaced with modified basal salt media (BSM). In BSM mediated degradation of forest waste with A. niger, extracellular enzyme activity was increased up to 4089±67.11 U/g of dry matter in turn resulting in higher BI of 15.4±0.41 and percent hydrolysis of 19.38±0.81 in pretreated C. australis wood. A. niger exhibited higher enzyme activity on pretreated biomass when moistened with modified BSM in this study. Statistically a positive correlation has been drawn between these three factors i.e. enzyme activity, BI and percent hydrolysis of forest biomass thus proving their direct relationship with each other.

  7. Conventional and modified hydrodistillation method for the extraction of glucosinolate hydrolytic products: a comparative account.

    Science.gov (United States)

    Arora, Rohit; Singh, Bikram; Vig, Adarsh Pal; Arora, Saroj

    2016-01-01

    Eruca sativa is extensively used as raw and its oil is also used for cooking due to its exceptional flavour. The volatile nature of the hydrolytic products of glucosinolates makes the extraction difficult. The hydrodistillation method used previously yield very less amount of the extract as well as the absence of stirring in the round bottom flask causes burning of both the crushed seeds and the flask. To overcome these drawbacks, a method has been developed using magnetic stirrer and hot plate. The yield and composition of hydrolytic products in the extract with the modified method was increased along with an increase in the amount of major hydrolytic products as seen by GC-MS. This method thus has immense potential in pharmaceutical industries, due to the ease of extraction and isolation.

  8. Conditions of Mytilus edulis extracellular body fluids and shell composition in a pH-treatment experiment: Acid-base status, trace elements and δ11B

    Science.gov (United States)

    Heinemann, Agnes; Fietzke, Jan; Melzner, Frank; BöHm, Florian; Thomsen, JöRn; Garbe-SchöNberg, Dieter; Eisenhauer, Anton

    2012-01-01

    Mytilus edulis were cultured for 3 months under six different seawater pCO2 levels ranging from 380 to 4000 μatm. Specimen were taken from Kiel Fjord (Western Baltic Sea, Germany) which is a habitat with high and variable seawater pCO2 and related shifts in carbonate system speciation (e.g., low pH and low CaCO3 saturation state). Hemolymph (HL) and extrapallial fluid (EPF) samples were analyzed for pH and total dissolved inorganic carbon (CT) to calculate pCO2 and [HCO3-]. A second experiment was conducted for 2 months with three different pCO2 levels (380, 1400 and 4000 μatm). Boron isotopes (δ11B) were investigated by LA-MC-ICP-MS (Laser Ablation-Multicollector-Inductively Coupled Plasma-Mass Spectrometry) in shell portions precipitated during experimental treatment time. Additionally, elemental ratios (B/Ca, Mg/Ca and Sr/Ca) in the EPF of specimen from the second experiment were measured via ICP-OES (Inductively Coupled Plasma-Optical Emission Spectrometry). Extracellular pH was not significantly different in HL and EPF but systematically lower than ambient water pH. This is due to high extracellular pCO2 values, a prerequisite for metabolic CO2 excretion. No accumulation of extracellular [HCO3-] was measured. Elemental ratios (B/Ca, Mg/Ca and Sr/Ca) in the EPF increased slightly with pH which is in accordance with increasing growth and calcification rates at higher seawater pH values. Boron isotope ratios were highly variable between different individuals but also within single shells. This corresponds to a high individual variability in fluid B/Ca ratios and may be due to high boron concentrations in the organic parts of the shell. The mean δ11B value shows no trend with pH but appears to represent internal pH (EPF) rather than ambient water pH.

  9. Extracellular ionic locks determine variation in constitutive activity and ligand potency between species orthologs of the free fatty acid receptors FFA2 and FFA3

    DEFF Research Database (Denmark)

    Hudson, Brian D; Tikhonova, Irina G; Pandey, Sunil K

    2012-01-01

    Free fatty acid receptors 2 and 3 (FFA2 and FFA3) are G protein-coupled receptors for short chain free fatty acids (SCFAs). They respond to the same set of endogenous ligands but with distinct rank-order of potency such that acetate (C2) has been described as FFA2-selective, whereas propionate (C...

  10. A review on hydrolytic enzymes in the treatment of wastewater with high oil and grease content.

    Science.gov (United States)

    Cammarota, M C; Freire, D M G

    2006-11-01

    Wastewater from dairies and slaughterhouses contains high levels of fats and proteins that present low biodegradability. A large number of pretreatment systems are employed to remove oil and grease (O&G) to prevent a host of problems that may otherwise arise in the biological process, and reduce the efficiency of the treatment station. Problems caused by excessive O&G include a reduction in the cell-aqueous phase transfer rates, a sedimentation hindrance due to the development of filamentous microorganisms, development and flotation of sludge with poor activity, clogging and the emergence of unpleasant odors. Therefore the application of a pretreatment to hydrolyze and dissolve lipids may improve the biological degradation of fatty wastewaters, accelerating the process and improving time efficiency. However thus far, only a few studies describing the degradation of fats and oils by alkaline/acid/enzymatic hydrolysis have been reported; the treatment of effluents from several origins is a new and promising application for lipases. Among the strains that produce the hydrolytic enzymes studied, the fungus Penicillium restrictum is a particularly promising one. When cultivated in low-cost solid medium composed of agro-industrial waste, P. restrictum produces a pool of hydrolases capable of degrading the most complex organic compounds. This degradation enables a considerable increase in organic matter removal efficiency to be realized, which results in the attainment of a high-quality effluent in the subsequent biological treatment stage. Consequently, there is presently a wide variety of ongoing scientific investigation in the field of developing enzymatic hydrolysis processes to precede traditional biological treatment.

  11. A thermally responsive injectable hydrogel incorporating methacrylate-polylactide for hydrolytic lability

    Science.gov (United States)

    Ma, Zuwei; Nelson, Devin M.; Hong, Yi; Wagner, William R.

    2011-01-01

    Injectable thermoresponsive hydrogels are of interest for a variety of biomedical applications, including regional tissue mechanical support as well as drug and cell delivery. Within this class of materials there is a need to provide options for gels with stronger mechanical properties as well as variable degradation profiles. To address this need, the hydrolytically labile monomer, methacrylate-polylactide (MAPLA), with an average 2.8 lactic acid units, was synthesized and copolymerized with N-isopropylacrylamide (NIPAAm) and 2-hydroxyethyl methacrylate (HEMA) to obtain bioabsorbable thermally responsive hydrogels. Poly(NIPAAm-co-HEMA-co-MAPLA) with three monomer feed ratios (84/10/6, 82/10/8 and 80/10/10) was synthesized and characterized with NMR, FTIR and GPC. The copolymers were soluble in saline at reduced temperature (<10°C), forming clear solutions that increased in viscosity with the MAPLA feed ratio. The copolymers underwent sol-gel transition at lower critical solution temperatures of 12.4, 14.0 and 16.2°C respectively and solidified immediately upon being placed in a 37°C water bath. The warmed hydrogels gradually excluded water to reach final water contents of ~45%. The hydrogels as formed were mechanically strong, with tensile strengths as high as 100 kPa and shear moduli of 60 kPa. All three hydrogels were completely degraded (solubilized) in PBS over a 6–8 month period at 37°C, with a higher MAPLA feed ratio resulting in a faster degradation period. Culture of primary vascular smooth muscle cells with degradation solutions demonstrated a lack of cytotoxicity. The synthesized hydrogels provide new options for biomaterial injection therapy where increased mechanical strength and relatively slow resorption rates would be attractive. PMID:20575552

  12. A novel method to control hydrolytic degradation of nanocomposite biocompatible materials via imparting superhydrophobicity

    Energy Technology Data Exchange (ETDEWEB)

    Khakbaz, Mobina [Department of Chemical Engineering, Islamic Azad University, Shahrood Branch, P.O. Box 36155-163, Shahrood (Iran, Islamic Republic of); Hejazi, Iman [Department of Polymer Engineering & Color Technology, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Seyfi, Javad, E-mail: Jseyfi@gmail.com [Department of Chemical Engineering, Islamic Azad University, Shahrood Branch, P.O. Box 36155-163, Shahrood (Iran, Islamic Republic of); Jafari, Seyed-Hassan [School of Chemical Engineering, University of Tehran, P.O. Box 11155-4563, Tehran (Iran, Islamic Republic of); Khonakdar, Hossein Ali [Iran Polymer and Petrochemical Institute, P.O. Box 14965/115, Tehran (Iran, Islamic Republic of); Davachi, Seyed Mohammad [School of Chemical Engineering, University of Tehran, P.O. Box 11155-4563, Tehran (Iran, Islamic Republic of)

    2015-12-01

    Highlights: • Superhydrophobic surface was obtained from a terpolymer for biomedical applications. • Hydrolytic degradation was delayed notably through inducing superhydrophobicity. • A novel method including combined use of non-solvent and nanoparticles was used. • Extreme wettabilities are attained by varying non-solvent and nanoparticles content. • Use of nanoparticle increased pore size via accelerating the evaporation process. - Abstract: Acceleration of hydrolytic degradation of biomedical materials is not always desirable. For instance, terpolymers based on L-lactide, glycolide and trimethylene carbonate exhibit very fast hydrolytic degradation due to their amorphous structure, hydrophilicity, and high water absorption capability. Therefore, an attempt was made in the current study to impede the hydrolytic degradation for these materials through imparting superhydrophobicity to their surfaces. The used terpolymer has been shown to have promising potential applications as bio-absorbable surgical sutures and other biomedical materials, and thus, its applicability could be further extended upon impeding its hydrolytic degradation. Moreover, a novel method including combined use of non-solvent and nanoparticles was utilized to achieve superhydrophobicity. Very diverse wettability results were obtained which were attributed to the obtained various morphologies according to scanning electron microscopy results. More importantly, a unique hierarchical morphology was found to be responsible for the observed water repellent behavior. X-ray photoelectron spectroscopy results revealed co-existence of nanosilica particles and terpolymer chains on the surface's top layer. Finally, it was found that the superhydrophobic sample exhibited a significantly impeded hydrolytic degradation as compared with the hydrophilic pure terpolymer which was attributed to the formation of air pockets on the surface's top layer.

  13. AN INTEGRATED, ANIMATED MODEL OF THE (NA, K-ATPase HYDROLYTIC CYCLE

    Directory of Open Access Journals (Sweden)

    F.A. Leone

    2006-07-01

    Full Text Available The  (Na,  K-ATPase,  or  sodium  pump,  is  the  principal,  active  transport  system  that  establishes  sodium  and potassium  gradients  across  the  plasma  membranes  of  all  animal  cells.  Such  gradients  are  critical  to  sustaining important cellular functions like osmotic equilibrium, cell volume and pH homeostasis, among many others (Ann Rev Physiol 65: 817, 2003; Physiol 19: 377, 2004. This transport protein is a heterodimer that consists of a 110-kDa  -subunit  and  a  55-kDa,  glycosylated  -subunit.  A  group  of  seven  small  proteins,  known  as  FXYD  proteins  from  the sequence  of  a  conserved  motif  has  been  identified  recently,  and  one  of  these,  FXYD2,  constitutes  the  (Na,  K-ATPase  -subunit.  Our  model  is  based  on  conformational  changes  occurring  between  the  E1  and  E2  forms  of  the enzyme, which initiates its hydrolytic cycle at a high ATP/ADP ratio. While all steps are reversible, the model does not include  the reverse  reactions that can  take  place under appropriate conditions. The  E1 state  corresponds to that of the SERCA, recently crystallized (Science 304; 1672, 2004; Nature 430: 529, 2004. The animation was developed in Macromedia  Flash  8.0® and  illustrates  the  principle  of  an  alternating-access  model  of  an  ion  pump.  The  protein  is embedded  in  the  membrane  with  the  extracellular  face  uppermost  and  the  cytoplasmic  face  at  the  bottom.  Access from  the  cytoplasmic  or  extracellular  faces  to  the  cation-binding  sites,  located  in  the  transmembrane  moiety,  are controlled  by  two  gates  (moving  horizontal  bars,  and  conformations  showing  the  two  gates  closed  correspond  to states with occluded Na+ and K+ sites. Changes in cation-binding site structure entail

  14. Alternative methods for characterization of extracellular vesicles

    Directory of Open Access Journals (Sweden)

    Fatemeh eMomen-Heravi

    2012-09-01

    Full Text Available Extracellular vesicles are nano-sized vesicles released by all cells in vitro as well as in vivo. Their role has been implicated mainly in cell-cell communication, but also in disease biomarkers and more recently in gene delivery. They represent a snapshot of the cell status at the moment of release and carry bioreactive macromolecules such as nucleic acids, proteins and lipids. A major limitation in this emerging new field is the availability/awareness of techniques to isolate and properly characterize Extracellular vesicles. The lack of gold standards makes comparing different studies very difficult and may potentially hinder some Extracellular vesicles -specific evidence. Characterization of Extracellular vesicles has also recently seen many advances with the use of Nanoparticle Tracking Analysis (NTA, flow cytometry, cryo-EM instruments and proteomic technologies. In this review, we discuss the latest developments in translational technologies involving characterization methods including the facts in their support and the challenges they face.

  15. Hydraulic retention time impact of treated recirculated leachate on the hydrolytic kinetic rate of coffee pulp in an acidogenic reactor.

    Science.gov (United States)

    Houbron, E; González-López, G I; Cano-Lozano, V; Rustrían, E

    2008-01-01

    This study attempted to investigate the impact of HRT of treated leachate recirculation on hydrolysis solubilization rate of coffee pulp in an acidogenic reactor. Coffee pulp presents more than 70% of organic matter and around of 30% of lignin and cellulose. Five lab scale reactors of 20 litres were used. Each reactor was fed with 5 kg of fresh coffee pulp and anaerobic sludge was used as inoculate. HRT of 0.5, 1, 3 and 10 days were applied. Each experiment shows that Total, Soluble and VFA COD appear rapidly in the removed leachate. HRT have a great impact on hydrolytic rate with an optimal value of 32,000 mg x L(-1) x d(-1).Low HRT increases hydrolysis rate and in consequence reduces duration of the hydrolytic phase. Also composition and concentration of VFA are influenced by HRT. Low ones favour acetic acid production and high ones permit the production of butyric. Low HRT generates leachate more easily fermentable. Efficiency of solubilization and acidification are independent of the HRT and present average values of 78% and 65% respectively. By batch feeding solid and continuous recirculation of treated leachate, HRT and SRT could be dissociated, where solid had a very high retention without problems of load, mixing and inhibition, and liquid could be recirculated with a very high rate. Under these low HRT condition, the first reactor of a two stage anaerobic system could reduces the hydrolysis duration of organic solid waste like coffee pulp and generate an optimal leachate for the methanization process. Copyright IWA Publishing 2008.

  16. Microbial respiration and kinetics of extracellular enzymes activities through rhizosphere and detritusphere at agricultural site

    Science.gov (United States)

    Löppmann, Sebastian; Blagodatskaya, Evgenia; Kuzyakov, Yakov

    2014-05-01

    detritivore communities in the soil. The kinetics (Km and Vmax) of four extracellular hydrolytic enzymes responsible for C- and phosphorous-cycle (β-glucosidase, β-xylosidase, β-cellobiohydrolase and acid phosphatase), microbial biomass, basal respiration (BR) and substrate-induced respiration (SIR) were measured in rhizosphere, detritusphere and control from 0 - 10 and 10 - 20 cm. The metabolic quotient (qCO2) was calculated as specific indicator for efficiency of microbial substrate utilization. We observed clear differences in enzymes activities at low and high concentrations of substrate. At substrate saturation enzyme activity rates of were significantly higher in rooted plots compared to litter amended plots, whereas at lower concentration no treatment effect could be found. The BR, SIR and qCO2 values were significantly higher at 0 - 10 cm of the planted treatment compared to litter and control plots, revealing a significantly higher respiration at lower efficiency of microbial substrate utilization in the rhizosphere. The Michaelis-Menten constant (Km) decreased with depth, especially for β-glucosidase, acid phosphatase and β-xylosidase, indicating higher substrate affinity of microorganisms in deeper soil and therefore different enzyme systems functioning. The substrate affinity factor (Vmax/Km) increased 2-fold with depth for various enzymes, reflecting a switch of predominantly occurring microbial strategies. Vmax/Km ratio indicated relative domination of zymogenous microbial communities (r-strategists) in 0 - 10 cm depth as compared with 10 - 20 cm depth where the K-strategists dominated.

  17. Granulocyte colony-stimulating factor increases extracellular glutamic acid uptake and suppresses free radicals in an experimental model of amyotrophic lateral sclerosis

    Institute of Scientific and Technical Information of China (English)

    Shengzhe Zheng; Lei Song; Lei Lu; Lina Lin; Yao Wang; Qun Liu

    2011-01-01

    Excitatory amino acid toxicity and free radical damage play important roles in amyotrophic lateral sclerosis.Granulocyte colony-stimulating factor (G-CSF) protects nerve cells exposed to high-concentrations of glutamic acid, suggesting positive effects in the treatment of amyotrophic lateral sclerosis.The present study induced in vitro motor neuron injury using glutamic acid excitotoxicity, and the biochemical effects of G-CSF on glutamic acid concentration were determined.In addition, the effects of G-CSF on superoxide dismutase, glutathione peroxidase activity in motor neurons, and malondialdehyde and nitric oxide contents were analyzed.Immunohistochemistry was performed to measure neuronal survival.Results revealed that G-CSF significantly suppressed free radical activity, inhibited excitotoxicity, and reduced apoptosis and loss of motor neurons in the anterior horn of the spinal cord.

  18. Lactic acid from apple pomace: a laboratory experiment for teaching valorisation of wastes

    National Research Council Canada - National Science Library

    Alonso, J. L; Garrote, G; Domínguez, H; Santos, V; Parajó, J. C

    2009-01-01

    ...: starting from AP, hydrolytic enzymes and lactic acid bacteria present in yogurt, saccharification of the polysaccharides contained in AP and their fermentation into lactic acid are simultaneously carried out...

  19. Determination of the Proportion of Total Soil Extracellular Acid Phosphomonoesterase (E.C. 3.1.3.2 Activity Represented by Roots in the Soil of Different Forest Ecosystems

    Directory of Open Access Journals (Sweden)

    Klement Rejsek

    2012-01-01

    Full Text Available The aim of this study is to present a new method for determining the root-derived extracellular acid phosphomonoesterase (EAPM activity fraction within the total EAPM activity of soil. EAPM activity was determined for roots, organic and mineral soil. Samples were collected using paired PVC cylinders, inserted to a depth of 15 cm, within seven selected forest stands. Root-derived EAPM formed between 4 and18% of the total EAPM activity of soil from forests of differing maturity. A new approach, presented in this work, enables separation of root-derived EAPM activity from total soil EAPM. Separation of root-derived EAPM from soil provides a better understanding of its role in P-cycling in terrestrial ecosystems. The method presented in this work is a first step towards the separation of root- and microbe-derived EAPM in soils, which are thought to possess different kinetic properties and different sensitivity to environmental change.

  20. Crystal structure of Mox-1, a unique plasmid-mediated class C β-lactamase with hydrolytic activity towards moxalactam.

    Science.gov (United States)

    Oguri, Takuma; Furuyama, Takamitsu; Okuno, Takashi; Ishii, Yoshikazu; Tateda, Kazuhiro; Bonomo, Robert A; Shimizu-Ibuka, Akiko

    2014-07-01

    Mox-1 is a unique plasmid-mediated class C β-lactamase that hydrolyzes penicillins, cephalothin, and the expanded-spectrum cephalosporins cefepime and moxalactam. In order to understand the unique substrate profile of this enzyme, we determined the X-ray crystallographic structure of Mox-1 β-lactamase at a 1.5-Å resolution. The overall structure of Mox-1 β-lactamase resembles that of other AmpC enzymes, with some notable exceptions. First, comparison with other enzymes whose structures have been solved reveals significant differences in the composition of amino acids that make up the hydrogen-bonding network and the position of structural elements in the substrate-binding cavity. Second, the main-chain electron density is not observed in two regions, one containing amino acid residues 214 to 216 positioned in the Ω loop and the other in the N terminus of the B3 β-strand corresponding to amino acid residues 303 to 306. The last two observations suggest that there is significant structural flexibility of these regions, a property which may impact the recognition and binding of substrates in Mox-1. These important differences allow us to propose that the binding of moxalactam in Mox-1 is facilitated by the avoidance of steric clashes, indicating that a substrate-induced conformational change underlies the basis of the hydrolytic profile of Mox-1 β-lactamase.

  1. Identification of Specific Effect of Chloride on the Spectral Properties and Structural Stability of Multiple Extracellular Glutamic Acid Mutants of Bacteriorhodopsin

    Science.gov (United States)

    Lazarova, Tzvetana; Mlynarczyk, Krzysztof; Querol, Enric; Tenchov, Boris; Filipek, Slawomir; Padrós, Esteve

    2016-01-01

    In the present work we combine spectroscopic, DSC and computational approaches to examine the multiple extracellular Glu mutants E204Q/E194Q, E204Q/E194Q/E9Q and E204Q/E194Q/E9Q/E74Q of bacteriorhodopsin by varying solvent ionic strength and composition. Absorption spectroscopy data reveal that the absorption maxima of multiple EC Glu mutants can be tuned by the chloride concentration in the solution. Visible Circular dichroism spectra imply that the specific binding of Cl- can modulate weakened exciton chromophore coupling and reestablish wild type-like bilobe spectral features of the mutants. The DSC data display reappearance of the reversible thermal transition, higher Tm of denaturation and an increase in the enthalpy of unfolding of the mutants in 1 M KCl solutions. Molecular dynamics simulations indicate high affinity binding of Cl- to Arg82 and to Gln204 and Gln194 residues in the mutants. Analysis of the experimental data suggests that simultaneous elimination of the negatively charged side chain of Glu194 and Glu204 is the major cause for mutants’ alterations. Specific Cl- binding efficiently coordinates distorted hydrogen bonding interactions of the EC region and reconstitutes the conformation and structure stability of mutated bR in WT-like fashion. PMID:27657718

  2. 冬虫夏草对肾衰患者细胞氨基酸代谢的影响%The Influence of Cordyceps Sinensis on the Extracellular and Intracellular Free Amino Acid Levels in Patients with CRF

    Institute of Scientific and Technical Information of China (English)

    朱淳; 左静南; 朱汉威

    2000-01-01

    Objective To study the Cordyceps Sinensis acting on the metabolism of intracellular and extracellular amino acids in patients with CRF. Methods We observed ten patients with CRF, compared the free amino acid concentrations in plasma, erthrocytes and skeletal muscle before and after Cordyceps Sinensis treatment by the amino acid automatic analytical instrument. Results After the CRF group took Cordyceps Sinensis, the Leu, Ile, Thr, Lys, Cys, Tyr concentrations in plasma and Tyr, Glu in erythrocytes approached the normal levels. In one sample of skeletal muscle, the Thr, Lys concentrations approached the normal, whereas both the intracellular and extracellular Val concentrations were still decreased remarkably as compared with the normal controls. Conclusion In patinets with CRF, Cordyceps Sinensis can improve the metabolic disorder notably, increase the dropped free amino acids in varying degrees, but couldn't correct completely the disturbance.%目的 研究冬虫夏草(虫草)对慢性肾功能衰竭(CRF)患者细胞内外氨基酸代谢的影响。 方法 采用LKB-4400型氨基酸自动分析仪测定10例CRF患者服用虫草前后的血浆、红细胞、骨骼肌细胞内的游离氨基酸浓度。结果 CRF患者服用虫草后血浆中亮氨酸、异亮氨酸、苏氨酸、赖氨酸、胱氨酸、酪氨酸浓度和红细胞中酪氨酸、谷氨酸浓度接近正常,1例骨骼肌标本苏氨酸、赖氨酸浓度接近正常;而细胞内外缬氨酸浓度仍显著降低。结论 虫草能显著改善CRF患者的氨基酸代谢紊乱,使下降的游离氨基酸水平均有不同程度的提高,但不能使其完全恢复正常。

  3. Extracellular calcium sensing and extracellular calcium signaling

    Science.gov (United States)

    Brown, E. M.; MacLeod, R. J.; O'Malley, B. W. (Principal Investigator)

    2001-01-01

    The cloning of a G protein-coupled extracellular Ca(2+) (Ca(o)(2+))-sensing receptor (CaR) has elucidated the molecular basis for many of the previously recognized effects of Ca(o)(2+) on tissues that maintain systemic Ca(o)(2+) homeostasis, especially parathyroid chief cells and several cells in the kidney. The availability of the cloned CaR enabled the development of DNA and antibody probes for identifying the CaR's mRNA and protein, respectively, within these and other tissues. It also permitted the identification of human diseases resulting from inactivating or activating mutations of the CaR gene and the subsequent generation of mice with targeted disruption of the CaR gene. The characteristic alterations in parathyroid and renal function in these patients and in the mice with "knockout" of the CaR gene have provided valuable information on the CaR's physiological roles in these tissues participating in mineral ion homeostasis. Nevertheless, relatively little is known about how the CaR regulates other tissues involved in systemic Ca(o)(2+) homeostasis, particularly bone and intestine. Moreover, there is evidence that additional Ca(o)(2+) sensors may exist in bone cells that mediate some or even all of the known effects of Ca(o)(2+) on these cells. Even more remains to be learned about the CaR's function in the rapidly growing list of cells that express it but are uninvolved in systemic Ca(o)(2+) metabolism. Available data suggest that the receptor serves numerous roles outside of systemic mineral ion homeostasis, ranging from the regulation of hormonal secretion and the activities of various ion channels to the longer term control of gene expression, programmed cell death (apoptosis), and cellular proliferation. In some cases, the CaR on these "nonhomeostatic" cells responds to local changes in Ca(o)(2+) taking place within compartments of the extracellular fluid (ECF) that communicate with the outside environment (e.g., the gastrointestinal tract). In others

  4. Nano-Mechanical Studies on Polyglactin Sutures Subjected to In Vitro Hydrolytic and Enzymatic Degradation.

    Science.gov (United States)

    Sun, Leming; Wanasekara, Nandula; Chalivendra, Vijaya; Calvert, Paul

    2015-01-01

    An experimental investigation on the effects of in vitro hydrolytic and enzymatic degradation on mechanical properties of polyglactin 910 monofilament sutures was performed by conducting nanoindentation studies using an atomic force microscope (AFM). For hydrolytic degradation, the sutures were incubated in phosphate buffered saline (PBS) solution at three different pH conditions, 5, 7.4, and 10. For enzymatic degradation, esterase was employed at pH condition of 7.4. The property of the sutures changed with time at different conditions were investigated by nanoindentation, tensile test experiments, image analysis using both of scanning electron microscopy (SEM) and AFM, and also Fourier transform infrared spectroscopy (FTIR). The effects of degradation on gradation of Young's modulus values across the cross section of the sutures were studied by doing progressive nanoindentation from center to surface. FTIR studies revealed the formation of new hydroxyl bonds due to both hydrolytic and enzymatic degradations. Nanoindentation results indicated that the degradation does not cause a gradient of Young's modulus of the polyglactin 910 monofilament sutures across the cross section from center to surface at different degradation times for both hydrolytic and enzymatic degradations. However, in general, the Young's modulus of all samples was decreased over 4 weeks of degradation. The microscopic evaluation of the samples also showed both qualitative changes in surface morphology and quantitative changes in surface roughness on the surface of degraded sutures. This study provided a deep understanding of the polyglactin sutures subjected to in vitro hydrolytic and enzymatic degradation, and also opened a new avenue to study the biomaterials at nano-scale.

  5. Influence of pH on Morphology and Structure during Hydrolytic Degradation of the Segmented GL-b-[GL-co-TMC-co-CL]-b-GL Copolymer

    Directory of Open Access Journals (Sweden)

    Yolanda Márquez

    2015-09-01

    Full Text Available Hydrolytic degradation in media having a continuous variation of pH from 2 to 12 was studied for a copolymer having two polyglycolide hard blocks and a middle soft segment constituted by glycolide, trimethylene carbonate, and ɛ-caprolactone units. The last units were susceptible to cross-linking reactions by γ irradiation that led to an increase of the molecular weight of the sample. Nevertheless, the susceptibility to hydrolytic degradation was enhanced with respect to non-irradiated samples and consequently such samples were selected to analyze the degradation process through weight loss measurements and the evaluation of changes on molecular weight, morphology, and SAXS patterns. Results reflected the different hydrolytic mechanisms that took place in acid and basic media and the different solubilization of the degradation products. Thus, degradation was faster and solubilization higher in the basic media. In this case, fibers showed a high surface erosion and the formation of both longitudinal and deep circumferential cracks that contrasted with the peeling process detected at intermediate pHs (from 6 to 8 and the absence of longitudinal cracks at low pHs. SAXS measurements indicated that degradation was initiated through the hydrolysis of the irregular molecular folds placed on the amorphous interlamellar domains but also affected lamellar crystals at the last stages. Subsequent heating processes performed with degraded samples were fundamental to reveal the changes in microstructure that occurred during degradation and even the initial lamellar arrangement. In particular, the presence of interfibrillar domains and the disposition of lamellar domains at different levels along the fiber axis for a determined cross-section were evidenced.

  6. Hydrolytic charge-reversal of PEGylated polyplexes enhances intracellular un-packaging and activity of siRNA.

    Science.gov (United States)

    Werfel, Thomas A; Swain, Corban; Nelson, Christopher E; Kilchrist, Kameron V; Evans, Brian C; Miteva, Martina; Duvall, Craig L

    2016-04-01

    Hydrolytically degrading nano-polyplexes (HDG-NPs) that reverse charge through conversion of tertiary amines to carboxylic acids were investigated to improve intracellular un-packaging of siRNA and target gene silencing compared to a non-degradable analog (non-HDG-NPs). Both NP types comprised reversible addition-fragmentation chain-transfer (RAFT) synthesized diblock copolymers of a poly(ethylene glycol) (PEG) corona-forming block and a cationic block for nucleic acid packaging that incorporated butyl methacrylate (BMA) and either dimethylaminoethyl methacrylate (DMAEMA, non-HDG-NPs) or dimethylaminoethyl acrylate (DMAEA, HDG-NPs). HDG-NPs decreased significantly in size and released significantly more siRNA (∼40%) than non-HDG-NPs after 24 h in aqueous solution. While both HDG-NPs and non-HDG-NPs had comparable uptake and cytotoxicity up to 150 nM siRNA doses, HDG-NPs achieved significantly higher target gene silencing of the model gene luciferase in vitro. High resolution FRET confocal microscopy was used to monitor the intracellular un-packaging of siRNA. Non-HDG-NPs had significantly higher FRET efficiency than HDG-NPs, indicating that siRNA delivered from HDG-NPs was more fully un-packaged and therefore had improved intracellular bioavailability.

  7. Cultural conditions on the production of extracellular enzymes by Trichoderma isolates from tobacco rhizosphere.

    Science.gov (United States)

    Mallikharjuna Rao, K L N; Siva Raju, K; Ravisankar, H

    2016-01-01

    Twelve isolates of Trichoderma spp. isolated from tobacco rhizosphere were evaluated for their ability to produce chitinase and β-1,3-glucanase extracellular hydrolytic enzymes. Isolates ThJt1 and TvHt2, out of 12 isolates, produced maximum activities of chitinase and β-1,3-glucanase, respectively. In vitro production of chitinase and β-1,3-glucanase by isolates ThJt1 and TvHt2 was tested under different cultural conditions. The enzyme activities were significantly influenced by acidic pH and the optimum temperature was 30°C. The chitin and cell walls of Sclerotium rolfsii, as carbon sources, supported the maximum and significantly higher chitinase activity by both isolates. The chitinase activity of isolate ThJt1 was suppressed significantly by fructose (80.28%), followed by glucose (77.42%), whereas the β-1,3-glucanase activity of ThJt1 and both enzymes of isolate TvHt2 were significantly suppressed by fructose, followed by sucrose. Ammonium nitrate as nitrogen source supported the maximum activity of chitinase in both isolates, whereas urea was a poor nitrogen source. Production of both enzymes by the isolates was significantly influenced by the cultural conditions. Thus, the isolates ThJt1 and TvHt2 showed higher levels of chitinase and β-1,3-glucanase activities and were capable of hydrolyzing the mycelium of S. rolfsii infecting tobacco. These organisms can be used therefore for assessment of their synergism in biomass production and biocontrol efficacy and for their field biocontrol ability against S. rolfsii and Pythium aphanidermatum infecting tobacco.

  8. Porous Materials for Hydrolytic Dehydrogenation of Ammonia Borane

    Directory of Open Access Journals (Sweden)

    Tetsuo Umegaki

    2015-07-01

    Full Text Available Hydrogen storage is still one of the most significant issues hindering the development of a “hydrogen energy economy”. Ammonia borane is notable for its high hydrogen densities. For the material, one of the main challenges is to release efficiently the maximum amount of the stored hydrogen. Hydrolysis reaction is a promising process by which hydrogen can be easily generated from this compound. High purity hydrogen from this compound can be evolved in the presence of solid acid or metal based catalyst. The reaction performance depends on the morphology and/or structure of these materials. In this review, we survey the research on nanostructured materials, especially porous materials for hydrogen generation from hydrolysis of ammonia borane.

  9. Extracellular polymeric substances play roles in extracellular electron transfer of Shewanella oneidensis MR-1

    DEFF Research Database (Denmark)

    Xiao, Yong; Zhang, En-Hua; Christensen, Hans Erik Mølager

    It is well known that microorganism is surrounded by extracellular polymeric substances (EPS) which include polysaccharides, proteins, glycoproteins, nucleic acids, phospholipids, and humic acids. However, previous studies on microbial extracellular electron transfer (EET) are conducted on cells...... the extraction (Figure 1.a and 1.b). Comparing to cells in control group, MR-1 treated at 38 °C for EPS extraction showed different electrochemical characterizations as revealed by differential pulse voltammetry (Figure 1.c). EPS extracted from MR-1 also was proved to be electrochemically active. The present...

  10. Economical evolution: microbes reduce the synthetic cost of extracellular proteins.

    Science.gov (United States)

    Smith, Daniel R; Chapman, Matthew R

    2010-08-24

    Protein evolution is not simply a race toward improved function. Because organisms compete for limited resources, fitness is also affected by the relative economy of an organism's proteome. Indeed, many abundant proteins contain relatively high percentages of amino acids that are metabolically less taxing for the cell to make, thus reducing cellular cost. However, not all abundant proteins are economical, and many economical proteins are not particularly abundant. Here we examined protein composition and found that the relative synthetic cost of amino acids constrains the composition of microbial extracellular proteins. In Escherichia coli, extracellular proteins contain, on average, fewer energetically expensive amino acids independent of their abundance, length, function, or structure. Economic pressures have strategically shaped the amino acid composition of multicomponent surface appendages, such as flagella, curli, and type I pili, and extracellular enzymes, including type III effector proteins and secreted serine proteases. Furthermore, in silico analysis of Pseudomonas syringae, Mycobacterium tuberculosis, Saccharomyces cerevisiae, and over 25 other microbes spanning a wide range of GC content revealed a broad bias toward more economical amino acids in extracellular proteins. The synthesis of any protein, especially those rich in expensive aromatic amino acids, represents a significant investment. Because extracellular proteins are lost to the environment and not recycled like other cellular proteins, they present a greater burden on the cell, as their amino acids cannot be reutilized during translation. We hypothesize that evolution has optimized extracellular proteins to reduce their synthetic burden on the cell.

  11. Single amino acid insertions in extracellular loop 2 of Bombyx mori ABCC2 disrupt its receptor function for Bacillus thuringiensis Cry1Ab and Cry1Ac but not Cry1Aa toxins.

    Science.gov (United States)

    Tanaka, Shiho; Miyamoto, Kazuhisa; Noda, Hiroaki; Endo, Haruka; Kikuta, Shingo; Sato, Ryoichi

    2016-04-01

    In a previous report, seven Cry1Ab-resistant strains were identified in the silkworm, Bombyx mori; these strains were shown to have a tyrosine insertion at position 234 in extracellular loop 2 of the ABC transporter C2 (BmABCC2). This insertion was confirmed to destroy the receptor function of BmABCC2 and confer the strains resistance against Cry1Ab and Cry1Ac. However, these strains were susceptible to Cry1Aa. In this report, we examined the mechanisms of the loss of receptor function of the transporter by expressing mutations in Sf9 cells. After replacement of one or two of the five amino acid residues in loop 2 of the susceptible BmABCC2 gene [BmABCC2_S] with alanine, cells still showed susceptibility, retaining the receptor function. Five mutants with single amino acid insertions at position 234 in BmABCC2 were also generated, resulting in loop 2 having six amino acids, which corresponds to replacing the tyrosine insertion in the resistant BmABCC2 gene [BmABCC2_R(+(234)Y)] with another amino acid. All five mutants exhibited loss of function against Cry1Ab and Cry1Ac. These results suggest that the amino acid sequence in loop 2 is less important than the loop size (five vs. six amino acids) or loop structure for Cry1Ab and Cry1Ac activity. Several domain-swapped mutant toxins were then generated among Cry1Aa, Cry1Ab, and Cry1Ac, which are composed of three domains. Swapped mutants containing domain II of Cry1Ab or Cry1Ac did not kill Sf9 cells expressing BmABCC2_R(+(234)Y), suggesting that domain II of the Cry toxin is related to the interaction with the receptor function of BmABCC2. This also suggests that different reactions against Bt-toxins in some B. mori strains, that is, Cry1Ab resistance or Cry1Aa susceptibility, are attributable to structural differences in domain II of Cry1A toxins.

  12. Binding of Pu(IV) to galacturonic acid and extracellular polymeric substances (EPS) from Shewanella putrefaciens, Clostridium sp. and Pseudomonas fluorescens

    Energy Technology Data Exchange (ETDEWEB)

    Harper, R.M. [Dept. of Environmental Sciences, Huxley Coll. of the Environment, Western Washington Univ., WA (United States); Kantar, C. [Dept. of Environmental Engineering, Mersin Univ., Ciftllikkoy, Mersin (Turkey); Honeyman, B.D. [Environmental Science and Engineering Div., Colorado School of Mines, Golden, CO (United States)

    2008-07-01

    The conditional stability constants for trace-level concentrations of Pu(IV) complexing with galacturonic acid and EPS, isolated from axenic Clostridium sp., P. fluorescens and Shewanella putrefaciens CN32 cultures, were determined at pH 4 and an ionic strength of 0.1 M NaCl using an ion-exchange technique. The analysis of ion-exchange data with Schubert's technique indicates that the Pu binding by galacturonic acid and EPS from Clostridium sp. and S. putrefaciens can be described based on the formation of 1: 1 Pu(IV)-ligand complexes. However, the accurate description of Pu binding by EPS from P. fluorescens requires postulation of a mixture of 1: 1/1: 2 complexes between Pu(IV) and ligands under the experimental conditions studied. The results from the ion-exchange experiments were also modeled based on a non-electrostatic, discrete ligand approach in which bacterial EPS is conceptualized as being composed of a suite of monoprotic acids, HL{sub 1}, of arbitrarily-assigned pK{sub a} (i) values (e.g., 4, 6 and 8). The examination of ion-exchange data in a chemical model suggested that only the pK{sub a} 4 (L{sub 1}) and 6 (L{sub 2}) ligands are sufficient to accurately simulate the Pu(IV)/EPS binding, implying that carboxylic groups in EPS are the primary binding sites for complexing with Pu(IV) under the experimental conditions examined. The affinity of EPS for complexing Pu(IV) decreases in the order of Clostridium sp. > S. putrefaciens > P. fluorescens although the concentrations of carboxylic groups in EPS decrease in the order of P. fluorescens > S. putrefaciens > Clostridium sp. This discrepancy may be due to differences in binding affinities between Na{sup +} ion in solution and EPS ligands. At I = 0.1 M, models demonstrated that the EPS from P. fluorescens exhibits a much stronger affinity for the Na{sup +} ion compared to ligands from other EPS; therefore, the deprotonated carboxylic sites of EPS from P. fluorescens are hypothesized to be mostly bound

  13. Biological properties of extracellular vesicles and their physiological functions

    NARCIS (Netherlands)

    Yáñez-Mó, María; Siljander, Pia R-M; Andreu, Zoraida; Zavec, Apolonija Bedina; Borràs, Francesc E; Buzas, Edit I; Buzas, Krisztina; Casal, Enriqueta; Cappello, Francesco; Carvalho, Joana; Colás, Eva; Cordeiro-da Silva, Anabela; Fais, Stefano; Falcon-Perez, Juan M; Ghobrial, Irene M; Giebel, Bernd; Gimona, Mario; Graner, Michael; Gursel, Ihsan; Gursel, Mayda; Heegaard, Niels H H; Hendrix, An; Kierulf, Peter; Kokubun, Katsutoshi; Kosanovic, Maja; Kralj-Iglic, Veronika; Krämer-Albers, Eva-Maria; Laitinen, Saara; Lässer, Cecilia; Lener, Thomas; Ligeti, Erzsébet; Linē, Aija; Lipps, Georg; Llorente, Alicia; Lötvall, Jan; Manček-Keber, Mateja; Marcilla, Antonio; Mittelbrunn, Maria; Nazarenko, Irina; Nolte-'t Hoen, Esther N M; Nyman, Tuula A; O'Driscoll, Lorraine; Olivan, Mireia; Oliveira, Carla; Pállinger, Éva; Del Portillo, Hernando A; Reventós, Jaume; Rigau, Marina; Rohde, Eva; Sammar, Marei; Sánchez-Madrid, Francisco; Santarém, N; Schallmoser, Katharina; Ostenfeld, Marie Stampe; Stoorvogel, Willem|info:eu-repo/dai/nl/074352385; Stukelj, Roman; Van der Grein, Susanne G; Vasconcelos, M Helena; Wauben, Marca H M|info:eu-repo/dai/nl/112675735; De Wever, Olivier

    2015-01-01

    In the past decade, extracellular vesicles (EVs) have been recognized as potent vehicles of intercellular communication, both in prokaryotes and eukaryotes. This is due to their capacity to transfer proteins, lipids and nucleic acids, thereby influencing various physiological and pathological

  14. Extracellular Gd-CA

    DEFF Research Database (Denmark)

    Thomsen, Henrik S; Marckmann, Peter

    2008-01-01

    Until recently it was believed that extracellular gadolinium-based contrast agents were safe for both the kidneys and all other organs within the dose range up to 0.3 mmol/kg body weight. However, in 2006, it was demonstrated that some gadolinium-based contrast agents may trig the development of ...

  15. Transparent and hard zirconia-based hybrid coatings with excellent dynamic/thermoresponsive oleophobicity, thermal durability, and hydrolytic stability.

    Science.gov (United States)

    Masheder, Benjamin; Urata, Chihiro; Hozumi, Atsushi

    2013-08-28

    Smooth, transparent, and extremely hard zirconia (ZrO2)-based inorganic-organic hybrid films showing excellent dynamic oleophobicity, thermal durability, and hydrolytic stability were successfully prepared through a simple combination of zirconium tetrapropoxide (Zr(O(CH2)2CH3)4) with stearic acids. In this study, we have particularly focused on the effects of stearic acid molecular architecture (linear-stearic acid (LSA) and branched-stearic acid (BSA)) on surface physical/chemical properties. Although, in each case, the resulting hybrid (Zr:LSA and Zr:BSA) films achieved by a simple spin-coating method were highly smooth and transparent, the final surface properties were markedly dependent on their molecular architectures. Thanks to the thermal stability of BSA, our Zr:BSA hybrid films displayed a greatly improved thermal effective range (maximum of 200 °C), while for Zr:LSA hybrid films, serious thermal damage to surface dewetting behavior was observed at less than 150 °C. The hardness of the Zr:BSA hybrid films were markedly increased by curing at 200 °C for 1 h (from 1.95 GPa to 3.03 GPa), while maintaining their dynamic dewettability toward n-hexadecane, when compared with Zr:LSA hybrid films (0.95-1.19 GPa). Small volume n-hexadecane droplets (5 μL) were easily set in motion, sliding across and off our best Zr:BSA hybrid film surfaces at low substrate tilt angles (<10°) without pinning. Moreover, they also showed thermoresponsive dynamic dewetting behavior, reasonable resistance to hydrolysis in an aqueous environment, and antifingerprint properties.

  16. Thermoreversible copolymer gels for extracellular matrix.

    Science.gov (United States)

    Vernon, B; Kim, S W; Bae, Y H

    2000-07-01

    To improve the properties of a reversible synthetic extracellular matrix based on a thermally reversible polymer, copolymers of N-isopropylacrylamide and acrylic acid were prepared in benzene with varying contents of acrylic acid (0 to 3%) and the thermal properties were evaluated. The poly(N-isopropylacrylamide) and copolymers made with acrylic acid had molecular weights from 0.8 to 1.7 x10(6) D. Differential scanning calorimetry (DSC) showed the high-molecular-weight acrylic acid copolymers had similar onset temperatures to the homopolymers, but the peak width was considerably increased with increasing acrylic acid content. DSC and cloud point measurements showed that polymers with 0 to 3% acrylic acid exhibit a lower critical solution temperature (LCST) transition between 30 degrees and 37 degrees C. In swelling studies, the homopolymer showed significant syneresis at temperatures above 31 degrees C. Copolymers with 1 and 1.5% showed syneresis beginning at 32 degrees and 37 degrees C, respectively. At 37 degrees C the copolymers with 1.5-3% acrylic acid showed little or no syneresis. Due to the high water content and a transition near physiologic conditions (below 37 degrees C), the polymers with 1.5-2.0% acrylic acid exhibited properties that would be useful in the development of a refillable synthetic extracellular matrix. Such a matrix could be applied to several cell types, including islets of Langerhans, for a biohybrid artificial pancreas.

  17. The influence of paclitaxel on hydrolytic degradation in matrices obtained from aliphatic polyesters and polyester carbonates.

    Science.gov (United States)

    Musiał-Kulik, Monika; Kasperczyk, Janusz; Jelonek, Katarzyna; Dobrzyński, Piotr; Gebarowska, Katarzyna; Janeczek, Henryk; Libera, Marcin

    2010-01-01

    Biodegradable polymers have become common materials used in pharmacy and medicine due to their properties such as mechanical strength, biocompatibility and non-toxic degradation products. Different compositions of copolymers and also their chain microstructure may have an effect on matrices degradation and thus on the drug release profile. In our study, we aimed at the influence of paclitaxel content on hydrolytic degradation process of terpolymeric matrices. Hydrolytic degradation of three kinds of matrices (with 5 or 10% of paclitaxel and drug free matrices) prepared from three types of terpolymers was performed in vitro at 37 degrees C in phosphate buffer solution (PBS, pH 7,4). The 1H and 13C NMR spectra of terpolymers were recorded. Thermal properties were monitored by differential scanning calorimetry (DSC). Molecular weight dispersity (D) and molecular weight were determined using gel permeation chromatography (GPC). The surface morphology was studied by means of the scanning electron microscopy (SEM). The most significant degradation was observed in case of poly(L-lactide-co-glycolide-co-epsilon-caprolactone) 44:32:24. Weight loss and water uptake were similar in the event of the same type of matrices obtained from the two poly(L-lactide-co-glycolide-co-TMC). Decelerated paclitaxel release in case of matrices with 51:26:23 molar ratio was noticed and it can be connected with higher content of carbonate units. Knowledge of paclitaxel influence on hydrolytic degradation process may contribute to receive valuable information about its release mechanisms from biodegradable terpolymers.

  18. The Power of Non-Hydrolytic Sol-Gel Chemistry: A Review

    Directory of Open Access Journals (Sweden)

    Ales Styskalik

    2017-05-01

    Full Text Available This review is devoted to non-hydrolytic sol-gel chemistry. During the last 25 years, non-hydrolytic sol-gel (NHSG techniques were found to be attractive and versatile methods for the preparation of oxide materials. Compared to conventional hydrolytic approaches, the NHSG route allows reaction control at the atomic scale resulting in homogeneous and well defined products. Due to these features and the ability to design specific materials, the products of NHSG reactions have been used in many fields of application. The aim of this review is to present an overview of NHSG research in recent years with an emphasis on the syntheses of mixed oxides, silicates and phosphates. The first part of the review highlights well known condensation reactions with some deeper insights into their mechanism and also presents novel condensation reactions established in NHSG chemistry in recent years. In the second section we discuss porosity control and novel compositions of selected materials. In the last part, the applications of NHSG derived materials as heterogeneous catalysts and supports, luminescent materials and electrode materials in Li-ion batteries are described.

  19. Durability of switchable QR code carriers under hydrolytic and photolytic conditions

    Science.gov (United States)

    Ecker, Melanie; Pretsch, Thorsten

    2013-09-01

    Following a guest diffusion approach, the surface of a shape memory poly(ester urethane) (PEU) was either black or blue colored. Bowtie-shaped quick response (QR) code carriers were then obtained from laser engraving and cutting, before thermo-mechanical functionalization (programming) was applied to stabilize the PEU in a thermo-responsive (switchable) state. The stability of the dye within the polymer surface and long-term functionality of the polymer were investigated against UVA and hydrolytic ageing. Spectrophotometric investigations verified UVA ageing-related color shifts from black to yellow-brownish and blue to petrol-greenish whereas hydrolytically aged samples changed from black to greenish and blue to light blue. In the case of UVA ageing, color changes were accompanied by dye decolorization, whereas hydrolytic ageing led to contrast declines due to dye diffusion. The Michelson contrast could be identified as an effective tool to follow ageing-related contrast changes between surface-dyed and laser-ablated (undyed) polymer regions. As soon as the Michelson contrast fell below a crucial value of 0.1 due to ageing, the QR code was no longer decipherable with a scanning device. Remarkably, the PEU information carrier base material could even then be adequately fixed and recovered. Hence, the surface contrast turned out to be the decisive parameter for QR code carrier applicability.

  20. β-Hydroxybutyric acid inhibits growth hormone-releasing hormone synthesis and secretion through the GPR109A/extracellular signal-regulated 1/2 signalling pathway in the hypothalamus.

    Science.gov (United States)

    Fu, S-P; Liu, B-R; Wang, J-F; Xue, W-J; Liu, H-M; Zeng, Y-L; Huang, B-X; Li, S-N; Lv, Q-K; Wang, W; Liu, J-X

    2015-03-01

    β-Hydroxybutyric acid (BHBA) has recently been shown to regulate hormone synthesis and secretion in the hypothalamus. However, little is known about the effects of BHBA-mediated hormone regulation or the detailed mechanisms by which BHBA regulates growth hormone-releasing hormone (GHRH) synthesis and secretion. In the present study, we examined the expression of the BHBA receptor GPR109A in primary hypothalamic cell cultures. We hypothesised that BHBA regulates GHRH via GPR109A and its downstream signals. Initial in vivo studies conducted in rats demonstrated that GHRH mRNA expression in the hypothalamus was strongly inversely correlated with BHBA levels in the cerebrospinal fluid during postnatal development (r = -0.89, P hypothalamus in both in vivo and in vitro, and this effect was also inhibited by PTX in vitro. In primary hypothalamic cells, BHBA activated the extracellular signal-regulated kinase (ERK)1/2, p38 and c-Jun N-terminal kinase mitogen-activated protein kinase (MAPK) kinases, as shown by western blot analysis. Moreover, inhibition of ERK1/2 with U0126 attenuated the BHBA-mediated reduction in Gsh-1 expression and GHRH synthesis and secretion. These results strongly suggest that BHBA directly regulates GHRH synthesis and secretion via the GPR109A/ERK1/2 MAPK pathway, and also that Gsh-1 is essential for this function. © 2015 British Society for Neuroendocrinology.

  1. A C69-family cysteine dipeptidase from Lactobacillus farciminis JCM1097 possesses strong Gly-Pro hydrolytic activity.

    Science.gov (United States)

    Sakamoto, Takuma; Otokawa, Takuya; Kono, Ryosuke; Shigeri, Yasushi; Watanabe, Kunihiko

    2013-11-01

    Dipeptide Gly-Pro, a hard-to-degrade and collagenous peptide, is thought to be hydrolysed by prolidases that can work on various X-Pro dipeptides. Here, we found an entirely different type of dipeptidase from Lactobacillus farciminis JCM1097 that cleaves Gly-Pro far more efficiently and with higher specificity than prolidases, and then investigated its properties by use of a recombinant enzyme. Although L. farciminis dipeptidase was expressed in the form of an inclusion body in Escherichia coli at 37 °C, it was smoothly over-expressed in a soluble form at a lower temperature. The maximal Gly-Pro hydrolytic activity was attained in E. coli at 30 °C. In contrast to prolidases that are metallopeptidases showing the modest or marginal activity toward Gly-Pro, this L. farciminis dipeptidase belongs to the cysteine peptidase family C69. Lactobacillus farciminis dipeptidase occurs in cytoplasm and utilizes the side chain of an amino-terminal cysteine residue to perform the nucleophilic attack on the target amide bond between Gly-Pro after processing eight amino acid residues at the N-terminus. Furthermore, L. farciminis dipeptidase is potent enough to synthesize Gly-Pro from Gly and Pro by a reverse reaction. These novel properties could be revealed by virtue of the success in preparing recombinant enzymes in higher yield and in a stable form.

  2. Histidine-Based Lipopeptides Enhance Cleavage of Nucleic Acids: Interactions with DNA and Hydrolytic Properties.

    Science.gov (United States)

    Bélières, M; Déjugnat, C; Chouini-Lalanne, N

    2015-12-16

    Interaction studies and cleavage activity experiments were carried out between plasmid DNA and a series of histidine-based lipopeptides. Specific fluorescent probes (ethidium bromide, Hoechst 33342, and pyrene) were used to monitor intercalation, minor groove binding, and self-assembly of lipopeptides, respectively. Association between DNA and lipopeptides was thus evidenced, highlighting the importance of both histidine and hydrophobic tail in the interaction process. DNA cleavage in the presence of lipopeptides was then detected by gel electrophoresis and quantified, showing the importance of histidine and the involvement of its side-chain imidazole in the hydrolysis mechanism. These systems could then be developed as synthetic nucleases while raising concern of introducing histidine in the design of lipopeptide-based transfection vectors.

  3. Botryosphaeriales fungi produce extracellular enzymes with biotechnological potential.

    Science.gov (United States)

    Esteves, Ana Cristina; Saraiva, Márcia; Correia, António; Alves, Artur

    2014-05-01

    Phytopathogenic fungi are known for producing an arsenal of extracellular enzymes whose involvement in the infection mechanism has been suggested. However, these enzymes are largely unknown and their biotechnological potential also remains poorly understood. In this study, the production and thermostability of extracellular enzymes produced by phytopathogenic Botryosphaeriaceae was investigated. Hydrolytic and oxidative activities were detected and quantified at different temperatures. Most strains (70%; 37/53) were able to produce simultaneously cellulases, laccases, xylanases, pectinases, pectin lyases, amylases, lipases, and proteases. Surprisingly for mesophilic filamentous fungi, several enzymes proved to be thermostable: cellulases from Neofusicoccum mediterraneum CAA 001 and from Dothiorella prunicola CBS 124723, lipases from Diplodia pinea (CAA 015 and CBS 109726), and proteases from Melanops tulasnei CBS 116806 were more active at 70 °C than at any of the other temperatures tested. In addition, lipases produced by Diplodia pinea were found to be significantly more active than any other known lipase from Botryosphaeriales. The thermal activity profile and the wide array of activities secreted by these fungi make them optimal producers of biotechnologically relevant enzymes that may be applied in the food and the health industries (proteases), the pulp-and-paper and biofuel industries (cellulases), or even in the detergent industry (lipases, proteases, amylases, and cellulases).

  4. Aliphatic fatty acids and esters: inhibition of growth and exoenzyme production of Candida, and their cytotoxicity in vitro: anti-Candida effect and cytotoxicity of fatty acids and esters.

    Science.gov (United States)

    Souza, Juliana L S; da Silva, Adriana F; Carvalho, Pedro H A; Pacheco, Bruna S; Pereira, Cláudio M P; Lund, Rafael G

    2014-09-01

    The secretion of extracellular phospholipases and proteinases of Candida has been described as a relevant virulence factor in human infections. Aliphatic fatty acids have antimicrobial properties, but the mechanism by which they affect the virulence factors of microorganisms, such as Candida, is still unclear, and there are a few reports about their toxicity. The current study investigated the in vitro antifungal activity, exoenzyme production and cytotoxicity of some aliphatic fatty acids and their ester derivatives against the Candida species. The minimum inhibitory concentration and minimum fungicidal concentrations of aliphatic medium-chain fatty acids, methyl and ethyl esters were performed using the CLSI M27-A3 method and the cytotoxicity assay was performed according to ISO 10993-5. The influence of these compounds in the inhibition of the production of hydrolytic enzymes, phospholipases and proteinases by Candida was also investigated. Data analysis was performed using the one-way ANOVA method (p≤0.05). In relation to the MIC against Candida species, the fatty acid with the best result was Lauric acid, although its ester derivatives showed no activity. The inhibition of phospholipase production was more significant than the inhibition of proteinase production by Candida. Tested fatty acids revealed more than 80% cell viability in their MIC concentrations. Additionally, a cell viability of 100% was reported at concentrations of anti-enzymatic effect. Therefore, the potential use of these fatty acids could be the basis for more antimicrobial tests.

  5. The second extracellular loop of pore-forming subunits of ATP-binding cassette transporters for basic amino acids plays a crucial role in interaction with the cognate solute binding protein(s).

    Science.gov (United States)

    Eckey, Viola; Weidlich, Daniela; Landmesser, Heidi; Bergmann, Ulf; Schneider, Erwin

    2010-04-01

    In the thermophile Geobacillus stearothermophilus, the uptake of basic amino acids is mediated by an ABC transporter composed of the substrate binding protein (receptor) ArtJ and a homodimer each of the pore-forming subunit, ArtM, and the nucleotide-binding subunit, ArtP. We recently identified two putative binding sites in ArtJ that might interact with the Art(MP)(2) complex, thereby initiating the transport cycle (A. Vahedi-Faridi et al., J. Mol. Biol. 375:448-459, 2008). Here we investigated the contribution of charged amino acid residues in the second extracellular loop of ArtM to contact with ArtJ. Our results demonstrate a crucial role for residues K177, R185, and E188, since mutations to oppositely charged amino acids or glutamine led to a complete loss of ArtJ-stimulated ATPase activity of the complex variants in proteoliposomes. The defects could not be suppressed by ArtJ variants carrying mutations in site I (K39E and K152E) or II (E163K and D170K), suggesting a more complex interplay than that by a single salt bridge. These findings were supported by cross-linking assays demonstrating physical proximity between ArtJ(N166C) and ArtM(E182C). The importance of positively charged residues for receptor-transporter interaction was underscored by mutational analysis of the closely related transporter HisJ/LAO-HisQMP(2) of Salmonella enterica serovar Typhimurium. While transporter variants with mutated positively charged residues in HisQ displayed residual ATPase activities, corresponding mutants of HisM could no longer be stimulated by HisJ/LAO. Interestingly, the ATPase activity of the HisQM(K187E)P(2) variant was inhibited by l- and d-histidine in detergent, suggesting a role of the residue in preventing free histidine from gaining access to the substrate binding site within HisQM.

  6. The Second Extracellular Loop of Pore-Forming Subunits of ATP-Binding Cassette Transporters for Basic Amino Acids Plays a Crucial Role in Interaction with the Cognate Solute Binding Protein(s)▿

    Science.gov (United States)

    Eckey, Viola; Weidlich, Daniela; Landmesser, Heidi; Bergmann, Ulf; Schneider, Erwin

    2010-01-01

    In the thermophile Geobacillus stearothermophilus, the uptake of basic amino acids is mediated by an ABC transporter composed of the substrate binding protein (receptor) ArtJ and a homodimer each of the pore-forming subunit, ArtM, and the nucleotide-binding subunit, ArtP. We recently identified two putative binding sites in ArtJ that might interact with the Art(MP)2 complex, thereby initiating the transport cycle (A. Vahedi-Faridi et al., J. Mol. Biol. 375:448-459, 2008). Here we investigated the contribution of charged amino acid residues in the second extracellular loop of ArtM to contact with ArtJ. Our results demonstrate a crucial role for residues K177, R185, and E188, since mutations to oppositely charged amino acids or glutamine led to a complete loss of ArtJ-stimulated ATPase activity of the complex variants in proteoliposomes. The defects could not be suppressed by ArtJ variants carrying mutations in site I (K39E and K152E) or II (E163K and D170K), suggesting a more complex interplay than that by a single salt bridge. These findings were supported by cross-linking assays demonstrating physical proximity between ArtJ(N166C) and ArtM(E182C). The importance of positively charged residues for receptor-transporter interaction was underscored by mutational analysis of the closely related transporter HisJ/LAO-HisQMP2 of Salmonella enterica serovar Typhimurium. While transporter variants with mutated positively charged residues in HisQ displayed residual ATPase activities, corresponding mutants of HisM could no longer be stimulated by HisJ/LAO. Interestingly, the ATPase activity of the HisQM(K187E)P2 variant was inhibited by l- and d-histidine in detergent, suggesting a role of the residue in preventing free histidine from gaining access to the substrate binding site within HisQM. PMID:20154136

  7. Extracellular Enzyme Activity assay as indicator of soil microbial functional diversity and activity

    DEFF Research Database (Denmark)

    Hendriksen, Niels Bohse; Winding, Anne

    2012-01-01

    Extracellular Enzyme Activity assay as indicator of soil microbial functional diversity and activity Niels Bohse Hendriksen, Anne Winding. Department of Environmental Science, Aarhus University, 4000 Roskilde, Denmark Soil enzymes originate from a variety of organisms, notably fungi and bacteria...... and especially hydrolytic extracellular enzymes are of pivotal importance for decomposition of organic substrates and biogeochemical cycling. Their activity reflects the functional diversity and activity of the microorganisms involved in decomposition processes which are essential processes for soil functioning......, experimental conditions of extraction of enzymes from soils, buffer and pH, substrate concentration, temperature and the necessary controls were optimized and standardized. This has resulted in an optimized standard operating procedure of EEA, which are being tested as an indicator of soil functional diversity...

  8. Extracellular Enzyme Activity assay as indicator of soil microbial functional diversity and activity

    DEFF Research Database (Denmark)

    Hendriksen, Niels Bohse; Winding, Anne

    2012-01-01

    and especially hydrolytic extracellular enzymes are of pivotal importance for decomposition of organic substrates and biogeochemical cycling. Their activity reflects the functional diversity and activity of the microorganisms involved in decomposition processes which are essential processes for soil functioning...... and soil ecosystem services. The soil enzyme activity has been measured by the use of fluorogenic model substrates e.g. methylumbelliferyl (MUF) substrates for a number of enzymes involved in the degradation of polysaccharides as cellulose, hemicellulose and chitin, while degradation of proteins has been...... followed by amino-methyl-coumaric substrates (AMC). The already developed Extracellular Enzyme Activity (EEA) assay was further optimized as a microwell based assay for the activity of enzymes involved in degradation of polysaccharides and proteins. Using specific MUF and AMC substrates on European soils...

  9. Extracellular enzyme activity assay as indicator of soil microbial functional diversity and activity

    DEFF Research Database (Denmark)

    Hendriksen, Niels Bohse; Winding, Anne

    2012-01-01

    of soil microbial functions is still needed. In soil, enzymes originate from a variety of organisms, notably fungi and bacteria and especially hydrolytic extracellular enzymes are of pivotal importance for decomposition of organic substrates and biogeochemical cycling. Their activity will reflect...... the functional diversity and activity of the microorganisms involved in decomposition processes. Their activity has been measured by the use of fluorogenic model substrates e.g. methylumbelliferyl (MUF) substrates for a number of enzymes involved in the degradation of polysacharides as cellulose, hemicellulose...... and chitin, while degradation of proteins has been followed by amino-methyl-coumaric substrates (AMC). Based on these fluorogenic substrates the Extracellular Enzyme Activity assay was optimized as a microwell based standardized assay for the activity of enzymes involved in degradation of polysaccharides...

  10. Hydrolytic metabolism of phenyl and benzyl salicylates, fragrances and flavoring agents in foods, by microsomes of rat and human tissues.

    Science.gov (United States)

    Ozaki, Hitomi; Sugihara, Kazumi; Tamura, Yuki; Fujino, Chieri; Watanabe, Yoko; Uramaru, Naoto; Sone, Tomomichi; Ohta, Shigeru; Kitamura, Shigeyuki

    2015-12-01

    Salicylates are used as fragrance and flavor ingredients for foods, as UV absorbers and as medicines. Here, we examined the hydrolytic metabolism of phenyl and benzyl salicylates by various tissue microsomes and plasma of rats, and by human liver and small-intestinal microsomes. Both salicylates were readily hydrolyzed by tissue microsomes, predominantly in small intestine, followed by liver, although phenyl salicylate was much more rapidly hydrolyzed than benzyl salicylate. The liver and small-intestinal microsomal hydrolase activities were completely inhibited by bis(4-nitrophenyl)phosphate, and could be extracted with Triton X-100. Phenyl salicylate-hydrolyzing activity was co-eluted with carboxylesterase activity by anion exchange column chromatography of the Triton X-100 extracts of liver and small-intestinal microsomes. Expression of rat liver and small-intestinal isoforms of carboxylesterase, Ces1e and Ces2c (AB010632), in COS cells resulted in significant phenyl salicylate-hydrolyzing activities with the same specific activities as those of liver and small-intestinal microsomes, respectively. Human small-intestinal microsomes also exhibited higher hydrolyzing activity than liver microsomes towards these salicylates. Human CES1 and CES2 isozymes expressed in COS cells both readily hydrolyzed phenyl salicylate, but the activity of CES2 was higher than that of CES1. These results indicate that significant amounts of salicylic acid might be formed by microsomal hydrolysis of phenyl and benzyl salicylates in vivo. The possible pharmacological and toxicological effects of salicylic acid released from salicylates present in commercial products should be considered.

  11. Hydrolytic activity of vanadate toward serine-containing peptides studied by kinetic experiments and DFT theory.

    Science.gov (United States)

    Ho, Phuong Hien; Mihaylov, Tzvetan; Pierloot, Kristine; Parac-Vogt, Tatjana N

    2012-08-20

    Hydrolysis of dipeptides glycylserine (Gly-Ser), leucylserine (Leu-Ser), histidylserine (His-Ser), glycylalanine (Gly-Ala), and serylglycine (Ser-Gly) was examined in vanadate solutions by means of (1)H, (13)C, and (51)V NMR spectroscopy. In the presence of a mixture of oxovanadates, the hydrolysis of the peptide bond in Gly-Ser proceeds under the physiological pH and temperature (37 °C, pD 7.4) with a rate constant of 8.9 × 10(-8) s(-1). NMR and EPR spectra did not show evidence for the formation of paramagnetic species, excluding the possibility of V(V) reduction to V(IV) and indicating that the cleavage of the peptide bond is purely hydrolytic. The pD dependence of k(obs) exhibits a bell-shaped profile, with the fastest hydrolysis observed at pD 7.4. Combined (1)H, (13)C, and (51)V NMR experiments revealed formation of three complexes between Gly-Ser and vanadate, of which only one complex, designated Complex 2, formed via coordination of amide oxygen and amino nitrogen to vanadate, is proposed to be hydrolytically active. Kinetic experiments at pD 7.4 performed by using a fixed amount of Gly-Ser and increasing amounts of Na(3)VO(4) allowed calculation of the formation constant for the Gly-Ser/VO(4)(3-) complex (K(f) = 16.1 M(-1)). The structure of the hydrolytically active Complex 2 is suggested also on the basis of DFT calculations. The energy difference between Complex 2 and the major complex detected in the reaction mixture, Complex 1, is calculated to be 7.1 kcal/mol in favor of the latter. The analysis of the molecular properties of Gly-Ser and their change upon different modes of coordination to the vanadate pointed out that only in Complex 2 the amide carbon is suitable for attack by the hydroxyl group in the Ser side chain, which acts as an effective nucleophile. The origin of the hydrolytic activity of vanadate is most likely a combination of the polarization of amide oxygen in Gly-Ser due to the binding to vanadate, followed by the intramolecular

  12. Extracellular polymeric substances act as transient media in extracellular electron transfer of Shewanella oneidensis MR-1

    DEFF Research Database (Denmark)

    Xiao, Yong; Zhang, Jingdong; Ulstrup, Jens

    without extracting EPS or cells collected from log stage or early-steady stage cultures with little EPS. Therefore, microbial cells are believed in contact directly with each other or electrode. Such attempt apparently ignored the role of EPS in microbial EET, even though many components of EPS......It is well known that microorganism is surrounded by extracellular polymeric substances (EPS) which include polysaccharides, proteins, glycoproteins, nucleic acids, phospholipids, and humic acids. However, previous studies on microbial extracellular electron transfer (EET) are conducted on cells......, such as DNA, humic acids and some proteins, are electrochemically active or semiconductive. Herein, we report experimental evidences of EPS role on EET for Shewanella oneidensis MR-1. Atomic force microscopy clearly showed that the cell surface was cleaned and few EPS could be observed on MR-1 after...

  13. Cattle Hair Hydrolysis and Properties of Hydrolytes%牛毛的水解及水解产物性能分析

    Institute of Scientific and Technical Information of China (English)

    刘萌; 程海明

    2012-01-01

    对来源于保毛脱毛法回收的牛毛的不同水解方法进行了考察,包括氢氧化钠水解法、盐酸水解法、双氧水水解法、硫化钠水解法和尿素一巯基乙醇水解法。在相同的固液比及水解温度下,对此5种水解工艺及相应水解产物性能进行了分析。氢氧化钠及硫化钠水解方法对毛水解最为迅速,在1h以内即可使毛完全水解。盐酸法及尿素/巯基乙醇水解法所得水解物热变性温度高,仍保持有角蛋白特征的螺旋结构。双氧水法水解产物外观最为浅淡,再次溶解性最好。%The cattle hair hydrolysis methods were discussed recovered from the hair saving unhairing method in leather mak- ing process. The cattle hair was hydrolyzed by five different methods, which were alkali hydrolysis, acid hydrolysis, peroxide hy- drolysis, urea - mecaptoethanol hydrolysis and reductant hydrolysis respectively. The hair could be completely hydrolyzated in less than 1 h by using sodium hydroxide and sodium sulfide. The hydrolytes keeps the characteristic c~ - helix structure of keratin and shows high thermal stability for both hydrochloric acid hydrolysis and urea/mecaptoethanol hydrolysis. The hydrolyte of peroxide hydrolysis shows the lightest appearance and the best solubility.

  14. Extracellular matrix structure.

    Science.gov (United States)

    Theocharis, Achilleas D; Skandalis, Spyros S; Gialeli, Chrysostomi; Karamanos, Nikos K

    2016-02-01

    Extracellular matrix (ECM) is a non-cellular three-dimensional macromolecular network composed of collagens, proteoglycans/glycosaminoglycans, elastin, fibronectin, laminins, and several other glycoproteins. Matrix components bind each other as well as cell adhesion receptors forming a complex network into which cells reside in all tissues and organs. Cell surface receptors transduce signals into cells from ECM, which regulate diverse cellular functions, such as survival, growth, migration, and differentiation, and are vital for maintaining normal homeostasis. ECM is a highly dynamic structural network that continuously undergoes remodeling mediated by several matrix-degrading enzymes during normal and pathological conditions. Deregulation of ECM composition and structure is associated with the development and progression of several pathologic conditions. This article emphasizes in the complex ECM structure as to provide a better understanding of its dynamic structural and functional multipotency. Where relevant, the implication of the various families of ECM macromolecules in health and disease is also presented.

  15. Replacement of traditional seawater-soluble pigments by starch and hydrolytic enzymes in polishing antifouling coatings

    DEFF Research Database (Denmark)

    Olsen, Søren Martin; Pedersen, L. T.; Dam-Johansen, Kim;

    2010-01-01

    The use of starch and hydrolytic enzymes as replacement for traditional polishing pigments (e.g., Cu2O and ZnO) in antifouling coatings has been investigated. The enzymes facilitate a slow conversion of water-insoluble starch into water-soluble glucose, and dissolution of glucose causes the devel......The use of starch and hydrolytic enzymes as replacement for traditional polishing pigments (e.g., Cu2O and ZnO) in antifouling coatings has been investigated. The enzymes facilitate a slow conversion of water-insoluble starch into water-soluble glucose, and dissolution of glucose causes...... the development of a leached (porous) layer in the wetted, outermost part of the coating. Subsequent water-binder interaction at the pore walls gives rise to polishing, in a manner similar to that of conventional antifouling coatings. Different starch types have been evaluated and classified as potential coating...... the starch-enzyme coatings tested; however, polishing is only detected for two out of four binder systems investigated. Suitable polishing rates of 7-10 mu m/month, based on the enzymatic starch-degradation, have been measured. Controls containing only starch (no enzyme) did not polish....

  16. High throughput screening of hydrolytic enzymes from termites using a natural substrate derived from sugarcane bagasse

    Directory of Open Access Journals (Sweden)

    Lucena Severino A

    2011-11-01

    Full Text Available Abstract Background The description of new hydrolytic enzymes is an important step in the development of techniques which use lignocellulosic materials as a starting point for fuel production. Sugarcane bagasse, which is subjected to pre-treatment, hydrolysis and fermentation for the production of ethanol in several test refineries, is the most promising source of raw material for the production of second generation renewable fuels in Brazil. One problem when screening hydrolytic activities is that the activity against commercial substrates, such as carboxymethylcellulose, does not always correspond to the activity against the natural lignocellulosic material. Besides that, the macroscopic characteristics of the raw material, such as insolubility and heterogeneity, hinder its use for high throughput screenings. Results In this paper, we present the preparation of a colloidal suspension of particles obtained from sugarcane bagasse, with minimal chemical change in the lignocellulosic material, and demonstrate its use for high throughput assays of hydrolases using Brazilian termites as the screened organisms. Conclusions Important differences between the use of the natural substrate and commercial cellulase substrates, such as carboxymethylcellulose or crystalline cellulose, were observed. This suggests that wood feeding termites, in contrast to litter feeding termites, might not be the best source for enzymes that degrade sugarcane biomass.

  17. Hydrolytic Degradation Behaviors of Poly(p-dioxanone) in Ambient Environments

    Institute of Scientific and Technical Information of China (English)

    You Yuan; Song-dong Ding; Yin-qiao Zhao; Yu-zhong Wang

    2014-01-01

    The effects of temperature and relative humidity on the hydrolytic degradation of poly(p-dioxanone) (PPDO) were investigated.The hydrolytic degradation behaviors were monitored by tracing the changes of water absorption,mechanical and crystalline properties,molecular weight and its distribution,surface morphologies,as well as infrared absorption peaks and hydrogen chemical shifts during the degradation.It is found that the water absorption increases whilst the intrinsic viscosity,tensile strength and elongation at break decrease as the temperature or relative humidity increases.With degradation time growing,the molecular weight drops and its distribution broadens.The crystallinity of PPDO has a tendency to increase at first and then to decrease,while the crystalline structure is not significantly changed.At the same time,some cracks are observed on the surface and keep growing and deepening.All results show that temperature plays more significant roles than relative humidity during the degradation.The analyses of Fourier transform infrared spectroscopy and hydrogen nuclear magnetic resonance spectroscopy reveal that the degradation of PPDO is a predominant hydrolysis of ester linkages.

  18. Polar organic solvent added to an aqueous solution changes hydrolytic property of lipase.

    Science.gov (United States)

    Tsuzuki, Wakako; Ue, Akemi; Nagao, Akihiko

    2003-08-01

    For developing further uses of lipase as a biocatalyst, its hydrolytic activity toward some esters was investigated in a miscible solution composed of a buffer and a polar organic solvent. Twenty percent dimethylformamide, 35% dimethylsulfoxide, 15% 1,4-dioxane, 15% dimethoxyethane, and 2% diethoxyethane promoted the hydrolysis by a lipase from Rhizomucor miehei toward some hydrophobic substrates, 4-methylumbelliferyl oleate, 4-methylumbelliferyl palmitate, and monoolein. While hydrolysis by this lipase toward the substrates with a relatively weak hydrophobicity (4-metylumbelliferyl heptanoate and 4-methylumbelliferyl nanoate) was suppressed by these solvents. A fluorometric analysis showed that the polar organic solvent in the buffer induced some conformational change around a tryptophan residue of R. miehei lipase. In addition to the influence of the miscible solvent on the solubility of the substrates, the conformational change of the protein induced by the miscible solvent would also affect the reactive properties of the lipase. Adding a polar organic solvent to an aqueous solution will be an efficient method for changing hydrolytic performance of lipases.

  19. HYDROLYTIC DEGRADATION BEHAVIOR OF PLLA NANOCOMPOSITES REINFORCED WITH MODIFIED CELLULOSE NANOCRYSTALS

    Directory of Open Access Journals (Sweden)

    Everton Luiz de Paula

    2015-09-01

    Full Text Available Bionanocomposites derived from poly(L-Lactide (PLLA were reinforced with chemically modified cellulose nanocrystals (m-CNCs. The effects of these modified cellulose nanoparticles on the mechanical and hydrolytic degradation behavior of polylactide were studied. The m-CNCs were prepared by a method in which hydrolysis of cellulose chains is performed simultaneously with the esterification of hydroxyl groups to produce modified nanocrystals with ester groups. FTIR, elemental analysis, TEM, XRD and contact angle measurements were used to confirm and characterize the chemical modifications of the m-CNCs. These bionanocomposites gave considerably better mechanical properties than neat PLLA based on an approximately 100% increase in tensile strength. Due to the hydrophobic properties of the esterified nanocrystals incorporated into a polymer matrix, it was also demonstrated that a small amount of m-CNCs could lead to a remarkable decrease in the hydrolytic degradation rate of the biopolymer. In addition, the m-CNCs considerably delay the degradation of the nanocomposite by providing a physical barrier that prevents the permeation of water, which thus hinders the overall absorption of water into the matrix. The results obtained in this study show the nanocrystals can be used to reinforce polylactides and fine-tune their degradation rates in moist or physiological environments.

  20. The Effects of Extracellular Acidosis on Neurons and Glia In Vitro

    OpenAIRE

    Goldman, Steven A.; PULSINELLI, WILLIAM A.; Clarke, Wendy Y.; Kraig, Richard P.; Plum, Fred

    1989-01-01

    Cerebral lactic acid, a product of ischemic anaerobic glycolysis, may directly contribute to ischemic brain damage in vivo. In this study we evaluated the effects of extracellular acid exposure on 7-day-old cultures of embryonic rat forebrain. Mixed neuronal and glial cultures were exposed to either lactic or hydrochloric acid to compare the toxicities of relatively permeable and impermeable acids. Neurons were relatively resistant to extracellular HCl acidosis, often surviving 10-min exposur...

  1. A fluorescence-based hydrolytic enzyme activity assay for quantifying toxic effects of Roundup® to Daphnia magna

    DEFF Research Database (Denmark)

    Ørsted, Michael; Roslev, Peter

    2015-01-01

    Daphnia magna is a widely used model organism for aquatic toxicity testing. In the present study, we investigated the hydrolytic enzyme activity of D. magna after exposure to toxicant stress. In vivo enzyme activity was quantified using 15 fluorogenic enzyme probes based on 4-methylumbelliferyl o...... that the fluorescence based hydrolytic enzyme activity assay (FLEA assay) can be used as an index of D. magna stress. Combining enzyme activity with fluorescence measurements may be applied as a simple and quantitative supplement for toxicity testing with D. magna....

  2. Hydrolytic and pumping activity of H+-ATPase from leaves of sugar beet (Beta vulgaris L.) as affected by salt stress.

    Science.gov (United States)

    Wakeel, Abdul; Hanstein, Stefan; Pitann, Britta; Schubert, Sven

    2010-06-15

    Cell wall extensibility plays an important role in plant growth. According to the acid-growth theory, lower apoplastic pH allows extension growth by affecting cell wall extensibility. A lowered apoplastic pH is presumed to activate wall-loosening enzymes that control plant growth. Plasma membrane (PM) H(+)-ATPases play a major role in the apoplastic acidification by H(+) transport from cytosol to the apoplast. A salt-induced decrease in H(+)-pumping activity of plasma membrane H(+)-ATPases in salt-sensitive maize plants has previously been found. This led us to formulate the hypothesis that salt-resistant plant species such as sugar beet (Beta vulgaris L.) may have a mechanism to eliminate the effect of higher salt concentrations on plasma membrane H(+)-ATPase activity. In the present study, sugar beet plants were grown in 1mM NaCl (control) or 150 mM NaCl in hydroponics. H(+)-ATPase hydrolytic and pumping activities were measured in plasma membrane vesicles isolated from sugar beet shoots. We found that plasma membrane H(+)-ATPase hydrolytic and pumping activities were not affected by application of 150 mM NaCl. Moreover, apoplastic pH was also not affected under salt stress. However, a decrease in plant growth was observed. We assume that growth reduction was not due to a decrease in PM-H(+)-ATPase activity, but that other factors may be responsible for growth inhibition of sugar beet plants under salt stress.

  3. In vitro differential activity of phospholipases and acid proteinases of clinical isolates of Candida

    Directory of Open Access Journals (Sweden)

    Aurean D'Eça Júnior

    2011-06-01

    Full Text Available INTRODUCTION: Candida yeasts are commensals; however, if the balance of normal flora is disrupted or the immune defenses are compromised, Candida species can cause disease manifestations. Several attributes contribute to the virulence and pathogenicity of Candida, including the production of extracellular hydrolytic enzymes, particularly phospholipase and proteinase. This study aimed to investigate the in vitro activity of phospholipases and acid proteinases in clinical isolates of Candida spp. METHODS: Eighty-two isolates from hospitalized patients collected from various sites of origin were analyzed. Phospholipase production was performed in egg yolk medium and the production of proteinase was verified in a medium containing bovine serum albumin. The study was performed in triplicate. RESULTS: Fifty-six (68.3% of isolates tested were phospholipase positive and 16 (44.4% were positive for proteinase activity. C. tropicalis was the species with the highest number of positive isolates for phospholipase (91.7%. Statistically significant differences were observed in relation to production of phospholipases among species (p<0,0001 and among the strains from different sites of origin (p=0.014. Regarding the production of acid protease, the isolates of C. parapsilosis tested presented a larger number of producers (69.2%. Among the species analyzed, the percentage of protease producing isolates did not differ statistically (χ2=1.9 p=0.5901 (χ2=1.9 p=0.5901. CONCLUSIONS: The majority of C. non-albicans and all C. albicans isolates were great producers of hydrolytic enzymes and, consequently, might be able to cause infection under favorable conditions.

  4. Towards early detection of the hydrolytic degradation of poly(bisphenol A)carbonate by hyphenated liquid chromatography and comprehensive two-dimensional liquid chromatography

    NARCIS (Netherlands)

    Coulier, L.; Kaal, E.R.; Hankemeier, Th.

    2006-01-01

    The hydrolytic degradation of poly(bisphenol A)carbonate (PC) has been characterized by various liquid chromatography techniques. Size exclusion chromatography (SEC) showed a significant decrease in molecular mass as a result of hydrolytic degradation, while 'liquid chromatography at critical

  5. Towards early detection of the hydrolytic degradation of poly(bisphenol A)carbonate by hyphenated liquid chromatography and comprehensive two-dimensional liquid chromatography

    NARCIS (Netherlands)

    Coulier, L.; Kaal, E.R.; Hankemeier, Th.

    2006-01-01

    The hydrolytic degradation of poly(bisphenol A)carbonate (PC) has been characterized by various liquid chromatography techniques. Size exclusion chromatography (SEC) showed a significant decrease in molecular mass as a result of hydrolytic degradation, while 'liquid chromatography at critical condit

  6. Stability indicating assay method for acotiamide: separation, identification and characterization of its hydroxylated and hydrolytic degradation products along with a process related impurity by UHPLC-ESI-QTOF-MS/MS.

    Science.gov (United States)

    Thummar, Mohit; Patel, Prinesh N; Gananadhamu, S; Srinivas, R

    2017-08-24

    The presence of impurities and degradation products will affect the pharmacokinetic, pharmacodynamic properties and alter the safety of the drug. Hence, development of stability indicating assay method is an integral part of quality product development and is crucial for the regulatory approval of drug products. Acotiamide was subjected to stress degradation under hydrolytic, oxidative, photo and thermal stress conditions. The resulted degradation products (DPs), as well as process related impurity (IMP), were selectively separated from the drug on Waters Acquity HSS cyano column (100 × 2.1 mm, 1.8 μm) with mobile phase containing a gradient mixture of 0.1 % formic acid and acetonitrile (ACN) at flow rate of 0.25 mL min(-1) . The drug was found to degrade in hydrolytic (Acidic and basic), oxidative and photolytic stress while it remained stable in neutral hydrolytic and thermal stress conditions. The seven degradation products (DPs) and one process related impurity (IMP) were observed. All the DPs and process IMP were well separated by the developed UHPLC method and subsequently characterized by UHPLC-ESI-QTOF-MS/MS. The proposed UHPLC method was validated with respect to specificity, linearity, accuracy, precision and robustness as per ICH guideline, Q2 (R1). All the observed DPs were new and formed by hydrolysis of an amide bond, phenyl ring hydroxylation and hydrolysis of methoxy group the phenyl ring. The despropyl process impurity was observed and well separated from the drug. The proposed UHPLC mass spectrometric method has greater utility in the identification of degradation products in much less time with great selectivity. This article is protected by copyright. All rights reserved.

  7. Intracellular & extracellular lipolysis

    NARCIS (Netherlands)

    Dijk, Wieneke

    2016-01-01

    The body efficiently stores energy in the form of triglyceride (fat) molecules. However, triglycerides cannot directly enter or exit our cells, but first need to be degraded to so-called fatty acids before moving in or out a cell. This degradation process, called lipolysis, is crucial for human phys

  8. Activity, life time and effect of hydrolytic enzymes for enhanced biogas production from sludge anaerobic digestion.

    Science.gov (United States)

    Odnell, Anna; Recktenwald, Michael; Stensén, Katarina; Jonsson, Bengt-Harald; Karlsson, Martin

    2016-10-15

    As an alternative to energy intensive physical methods, enzymatic treatment of sludge produced at wastewater treatment plants for increased hydrolysis and biogas production was investigated. Several hydrolytic enzymes were assessed with a focus on how enzyme activity and life time was influenced by sludge environments. It could be concluded that the activity life time of added enzymes was limited (biogas in situ experiments, subtilisin at a 1% mixture on basis of volatile solids, was the only enzyme providing a significantly increased biomethane production of 37%. However, even at this high concentration, subtilisin could not hydrolyze all available substrate within the life time of the enzyme. Thus, for large scale implementation, enzymes better suited to the sludge environments are needed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Shape and size controlled synthesis of uniform iron oxide nanocrystals through new non-hydrolytic routes

    Science.gov (United States)

    Li, Wenlu; Lee, Seung Soo; Wu, Jiewei; Hinton, Carl H.; Fortner, John D.

    2016-08-01

    New, non-hydrolytic routes to synthesize highly crystalline iron oxide nanocrystals (8-40 nm, magnetite) are described in this report whereby particle size and morphology were precisely controlled through reactant (precursor, e.g. (FeO(OH)) ratios, co-surfactant and organic additive, and/or reaction time. Particle size, with high monodispersivity (oxide nanocrystals can be reproducibly synthesized through simple one-pot thermal decomposition methods. High resolution transmission electron microscope, x-ray diffraction, and superconducting quantum interference device were used to characterize the size, structure and magnetic properties of the resulting nanocrystals. For aqueous applications, materials synthesized/purified in organic solvents are broadly water dispersible through a variety of phase (aqueous) transfer method(s).

  10. Hydrolytically stable fluorinated metal-organic frameworks for energy-efficient dehydration

    Science.gov (United States)

    Cadiau, Amandine; Belmabkhout, Youssef; Adil, Karim; Bhatt, Prashant M.; Pillai, Renjith S.; Shkurenko, Aleksander; Martineau-Corcos, Charlotte; Maurin, Guillaume; Eddaoudi, Mohamed

    2017-05-01

    Natural gas must be dehydrated before it can be transported and used, but conventional drying agents such as activated alumina or inorganic molecular sieves require an energy-intensive desiccant-regeneration step. We report a hydrolytically stable fluorinated metal-organic framework, AlFFIVE-1-Ni (KAUST-8), with a periodic array of open metal coordination sites and fluorine moieties within the contracted square-shaped one-dimensional channel. This material selectively removed water vapor from gas streams containing CO2, N2, CH4, and higher hydrocarbons typical of natural gas, as well as selectively removed both H2O and CO2 in N2-containing streams. The complete desorption of the adsorbed water molecules contained by the AlFFIVE-1-Ni sorbent requires relatively moderate temperature (~105°C) and about half the energy input for commonly used desiccants.

  11. Biogas production from brewery spent grain enhanced by bioaugmentation with hydrolytic anaerobic bacteria.

    Science.gov (United States)

    Čater, Maša; Fanedl, Lijana; Malovrh, Špela; Logar, Romana Marinšek

    2015-06-01

    Lignocellulosic substrates are widely available but not easily applied in biogas production due to their poor anaerobic degradation. The effect of bioaugmentation by anaerobic hydrolytic bacteria on biogas production was determined by the biochemical methane potential assay. Microbial biomass from full scale upflow anaerobic sludge blanket reactor treating brewery wastewater was a source of active microorganisms and brewery spent grain a model lignocellulosic substrate. Ruminococcus flavefaciens 007C, Pseudobutyrivibrio xylanivorans Mz5(T), Fibrobacter succinogenes S85 and Clostridium cellulovorans as pure and mixed cultures were used to enhance the lignocellulose degradation and elevate the biogas production. P. xylanivorans Mz5(T) was the most successful in elevating methane production (+17.8%), followed by the coculture of P. xylanivorans Mz5(T) and F. succinogenes S85 (+6.9%) and the coculture of C. cellulovorans and F. succinogenes S85 (+4.9%). Changes in microbial community structure were detected by fingerprinting techniques.

  12. Plastic-PDMS bonding for high pressure hydrolytically stable active microfluidics.

    Science.gov (United States)

    Lee, Kevin S; Ram, Rajeev J

    2009-06-07

    We explore the application of organofunctional silanes for bonding plastic substrates to PDMS membranes. Such devices would enable actuated membrane microfluidics in plastic devices. Bond strength degradation in aqueous environments can be reduced by using bis-silanes with larger alkoxy end groups to promote organofunctional bond formation with the plastic substrate. Hydrolytic failure can also result from low silane crosslink density or interface hydrophilicity. A test device consisting of three-valve peristaltic pumps is fabricated out of polycarbonate (PC) and bonded to PDMS through isopropoxy modified bis-trimethoxy-silyl-propyl-amine. Valves operated up to 60 psi in aqueous environments without failure. Solutions of DI water and 1 M HCl were also pumped through the device via peristaltic actuation at 18 psi for 2 weeks without bond failure. 1 M NaOH was also tested but resulted in bond failure after 115 hours.

  13. Hydrolytically stable fluorinated metal-organic frameworks for energy-efficient dehydration

    KAUST Repository

    Cadiau, Amandine

    2017-05-18

    Natural gas must be dehydrated before it can be transported and used, but conventional drying agents such as activated alumina or inorganic molecular sieves require an energy-intensive desiccant-regeneration step. We report a hydrolytically stable fluorinated metal-organic framework, AlFFIVE-1-Ni (KAUST-8), with a periodic array of open metal coordination sites and fluorine moieties within the contracted square-shaped one-dimensional channel. This material selectively removed water vapor from gas streams containing CO2, N2, CH4, and higher hydrocarbons typical of natural gas, as well as selectively removed both H2O and CO2 in N2-containing streams. The complete desorption of the adsorbed water molecules contained by the AlFFIVE-1-Ni sorbent requires relatively moderate temperature (~105°C) and about half the energy input for commonly used desiccants.

  14. Design and Synthesis of Functional Silsesquioxane-Based Hybrids by Hydrolytic Condensation of Bulky Triethoxysilanes

    Directory of Open Access Journals (Sweden)

    Hideharu Mori

    2012-01-01

    Full Text Available This paper presents a short overview of recent advances in the design and synthesis of organic-inorganic hybrids using silsesquioxane-based nanoparticles having nanometer size, relatively narrow size distribution, high functionalities, and various characteristic features, mainly focusing on our recent researches related to the subject. A highlight of this paper is the water-soluble silsesquioxane-based nanoparticles, including hydroxyl-functionalized and cationic silsesquioxanes, which were synthesized via the one-step condensation of the bulky triethoxysilane precursors. The design and synthesis of R-SiO1.5/SiO2 and R-SiO1.5/TiO2 hybrids by hydrolytic cocondensation of a triethoxysilane precursor and metal alkoxides are briefly introduced. This paper also deals with recent results in stimuli-responsive hybrids based on the water-soluble silsesquioxane nanoparticles and fluorinated and amphiphilic silsesquioxane hybrids.

  15. Metagenomics as a Tool for Enzyme Discovery: Hydrolytic Enzymes from Marine-Related Metagenomes.

    Science.gov (United States)

    Popovic, Ana; Tchigvintsev, Anatoly; Tran, Hai; Chernikova, Tatyana N; Golyshina, Olga V; Yakimov, Michail M; Golyshin, Peter N; Yakunin, Alexander F

    2015-01-01

    This chapter discusses metagenomics and its application for enzyme discovery, with a focus on hydrolytic enzymes from marine metagenomic libraries. With less than one percent of culturable microorganisms in the environment, metagenomics, or the collective study of community genetics, has opened up a rich pool of uncharacterized metabolic pathways, enzymes, and adaptations. This great untapped pool of genes provides the particularly exciting potential to mine for new biochemical activities or novel enzymes with activities tailored to peculiar sets of environmental conditions. Metagenomes also represent a huge reservoir of novel enzymes for applications in biocatalysis, biofuels, and bioremediation. Here we present the results of enzyme discovery for four enzyme activities, of particular industrial or environmental interest, including esterase/lipase, glycosyl hydrolase, protease and dehalogenase.

  16. Hydrolytic and oxidative degradation of electrospun supramolecular biomaterials: In vitro degradation pathways.

    Science.gov (United States)

    Brugmans, M C P; Sӧntjens, S H M; Cox, M A J; Nandakumar, A; Bosman, A W; Mes, T; Janssen, H M; Bouten, C V C; Baaijens, F P T; Driessen-Mol, A

    2015-11-01

    The emerging field of in situ tissue engineering (TE) of load bearing tissues places high demands on the implanted scaffolds, as these scaffolds should provide mechanical stability immediately upon implantation. The new class of synthetic supramolecular biomaterial polymers, which contain non-covalent interactions between the polymer chains, thereby forming complex 3D structures by self assembly. Here, we have aimed to map the degradation characteristics of promising (supramolecular) materials, by using a combination of in vitro tests. The selected biomaterials were all polycaprolactones (PCLs), either conventional and unmodified PCL, or PCL with supramolecular hydrogen bonding moieties (either 2-ureido-[1H]-pyrimidin-4-one or bis-urea units) incorporated into the backbone. As these materials are elastomeric, they are suitable candidates for cardiovascular TE applications. Electrospun scaffold strips of these materials were incubated with solutions containing enzymes that catalyze hydrolysis, or solutions containing oxidative species. At several time points, chemical, morphological, and mechanical properties were investigated. It was demonstrated that conventional and supramolecular PCL-based polymers respond differently to enzyme-accelerated hydrolytic or oxidative degradation, depending on the morphological and chemical composition of the material. Conventional PCL is more prone to hydrolytic enzymatic degradation as compared to the investigated supramolecular materials, while, in contrast, the latter materials are more susceptible to oxidative degradation. Given the observed degradation pathways of the examined materials, we are able to tailor degradation characteristics by combining selected PCL backbones with additional supramolecular moieties. The presented combination of in vitro test methods can be employed to screen, limit, and select biomaterials for pre-clinical in vivo studies targeted to different clinical applications.

  17. Identification of a novel post-hydrolytic state in CFTR gating.

    Science.gov (United States)

    Jih, Kang-Yang; Sohma, Yoshiro; Li, Min; Hwang, Tzyh-Chang

    2012-05-01

    Adenosine triphosphate (ATP)-binding cassette (ABC) transporters, ubiquitous proteins found in all kingdoms of life, catalyze substrates translocation across biological membranes using the free energy of ATP hydrolysis. Cystic fibrosis transmembrane conductance regulator (CFTR) is a unique member of this superfamily in that it functions as an ATP-gated chloride channel. Despite difference in function, recent studies suggest that the CFTR chloride channel and the exporter members of the ABC protein family may share an evolutionary origin. Although ABC exporters harness the free energy of ATP hydrolysis to fuel a transport cycle, for CFTR, ATP-induced dimerization of its nucleotide-binding domains (NBDs) and subsequent hydrolysis-triggered dimer separation are proposed to be coupled, respectively, to the opening and closing of the gate in its transmembrane domains. In this study, by using nonhydrolyzable ATP analogues, such as pyrophosphate or adenylyl-imidodiphosphate as baits, we captured a short-lived state (state X), which distinguishes itself from the previously identified long-lived C2 closed state by its fast response to these nonhydrolyzable ligands. As state X is caught during the decay phase of channel closing upon washout of the ligand ATP but before the channel sojourns to the C2 closed state, it likely emerges after the bound ATP in the catalysis-competent site has been hydrolyzed and the hydrolytic products have been released. Thus, this newly identified post-hydrolytic state may share a similar conformation of NBDs as the C2 closed state (i.e., a partially separated NBD and a vacated ATP-binding pocket). The significance of this novel state in understanding the structural basis of CFTR gating is discussed.

  18. Placental extracellular vesicles and feto-maternal communication.

    Science.gov (United States)

    Tong, M; Chamley, L W

    2015-01-29

    The human placenta is an anatomically unique structure that extrudes a variety of extracellular vesicles into the maternal blood (including syncytial nuclear aggregates, microvesicles, and nanovesicles). Large quantities of extracellular vesicles are produced by the placenta in both healthy and diseased pregnancies. Since their first description more than 120 years ago, placental extracellular vesicles are only now being recognized as important carriers for proteins, lipids, and nucleic acids, which may play a crucial role in feto-maternal communication. Here, we summarize the current literature on the cargos of placental extracellular vesicles and the known effects of such vesicles on maternal cells/systems, especially those of the maternal immune and vascular systems. Copyright © 2015 Cold Spring Harbor Laboratory Press; all rights reserved.

  19. Hydrolytic stability and tribological properties of N-containing heterocyclic borate esters as lubricant additives in rapeseed oil

    NARCIS (Netherlands)

    Li, J.; Li, Zhipeng; Ren, Tianhui; Zeng, Xiangqiong; Heide, van der Emeil

    2014-01-01

    Borate ester compounds are emerging as promising materials for lubricating systems. The main drawback of borate esters however, is the susceptiblity to hydrolysis. In this work, two kinds of N-containing heterocyclic borate esters were synthesized. Their hydrolytic stability and tribological propert

  20. The influence of morphology on the (hydrolytic degradation of as-polymerized and hot-drawn poly (L-lactide))

    NARCIS (Netherlands)

    Joziasse, CAP; Grijpma, DW; Cordewener, FW; Bos, RRM; Pennings, AJ

    1998-01-01

    The influence of morphology on the hydrolytic degradation behavior of poly(L-lactide) has been studied. High molecular weight and highly crystalline as-polymerized poly(L-lactide) was obtained in high yields through melt polymerization. Poly(L-lactide) fiber with a draw ratio of 5.6 was obtained by

  1. Fast in vitro hydrolytic degradation of polyester urethane acrylate biomaterials: Structure elucidation, separation and quantification of degradation products

    NARCIS (Netherlands)

    Ghaffar, A.; Verschuren, P.G.; Geenevasen, J.A.J.; Handels, T.; Berard, J.; Plum, B.; Dias, A.A.; Schoenmakers, P.J.; van der Wal, S.

    2011-01-01

    Synthetic biomaterials have evoked extensive interest for applications in the field of health care. Prior to administration to the body a quantitative study is necessary to evaluate their composition. An in vitro method was developed for the quick hydrolytic degradation of poly-2-hydroxyethyl methac

  2. The Role of Extracellular Vesicles: An Epigenetic View of the Cancer Microenvironment

    Directory of Open Access Journals (Sweden)

    Zhongrun Qian

    2015-01-01

    Full Text Available Exosomes, microvesicles, and other extracellular vesicles are released by many cell types, including cancer cells and cancer-related immune cells. Extracellular vesicles can directly or indirectly facilitate the transfer of bioinformation to recipient cells or to the extracellular environment. In cancer, exosomes have been implicated in tumor initiation, proliferation, and metastasis. Extracellular vesicles can transmit proteins and nucleic acids that participate in DNA methylation, histone modification, and posttranscriptional regulation of RNA. Factors transmitted by extracellular vesicles reflect the donor cell status, and extracellular vesicles derived from tumor cells may be also responsible for altering expression of tumor promoting and tumor suppressing genes in recipient cells. Thus, circulating extracellular vesicles may act as biomarkers of cancer, and detection of these biomarkers may be applied to diagnosis or assessment of prognosis in patients with cancer.

  3. Extracellular vesicles for drug delivery

    NARCIS (Netherlands)

    Vader, Pieter; Mol, Emma A; Pasterkamp, Gerard; Schiffelers, Raymond M

    Extracellular vesicles (EVs) are cell-derived membrane vesicles, and represent an endogenous mechanism for intercellular communication. Since the discovery that EVs are capable of functionally transferring biological information, the potential use of EVs as drug delivery vehicles has gained

  4. Humic Acid-Like and Fulvic Acid-Like Inhibition on the Hydrolysis of Cellulose and Tributyrin

    NARCIS (Netherlands)

    Fernandes, T.V.; Lier, van J.B.; Zeeman, Grietje

    2015-01-01

    Enzymatic hydrolysis of complex wastes is a critical step for efficient biogas production in anaerobic digesters. Inhibition of this hydrolytic step was studied by addition of humic acid-like (HAL) and fulvic acid-like (FAL) substances, extracted from maize silage and fresh cow manure, to batch

  5. Humic Acid-Like and Fulvic Acid-Like Inhibition on the Hydrolysis of Cellulose and Tributyrin

    NARCIS (Netherlands)

    Fernandes, Tania V.; van Lier, Jules B.; Zeeman, Grietje

    2015-01-01

    Enzymatic hydrolysis of complex wastes is a critical step for efficient biogas production in anaerobic digesters. Inhibition of this hydrolytic step was studied by addition of humic acid-like (HAL) and fulvic acid-like (FAL) substances, extracted from maize silage and fresh cow manure, to batch

  6. 细胞外ATP和水杨酸对烟草光合指标的影响%Effects of extracellular ATP and salicylic acid on photosynthetic index of tobacco

    Institute of Scientific and Technical Information of China (English)

    冯汉青; 焦青松

    2014-01-01

    研究了细胞外ATP(eATP)和水杨酸(SA)对烟草(Nicotiana tabacum)叶片的气孔导度(GH2 O)、蒸腾速率(E)、光合作用速率(A)与叶绿素荧光参数[包括PSⅡ潜在最大光化学量子效率(Fv/Fm)、PSⅡ光适应下实际光化学效率Y(Ⅱ)、电子传递速率(ETR)、非光化学荧光淬灭(NPQ)和光化学荧光淬灭(qP)]的影响。结果表明:SA能导致A、GH2 O和E的下降,而eATP的处理能缓解SA造成的A、GH2 O和E的下降;但SA未对叶绿素荧光参数Fv/Fm、Y(Ⅱ)、NPQ、qP和ETR造成显著影响,eATP的加入也未改变SA处理下叶片叶绿素荧光参数的水平。这说明SA能导致光合作用的抑制,而eATP能明显缓解SA对光合作用的抑制,但以上作用可能均和光反应阶段无关。并对其内在机理进行了探讨。%The present work studied the effects of extracellular ATP (eATP )and salicylic acid (SA)on transpiration rate (E),stomatal conductance (GH2 O),photosynthesis rate (A)and chlorophyll fluorescence parameters,including maximal photochemical efficiency of PSⅡ(Fv/Fm),effective photochemical quantum yield of PSⅡ(Y(Ⅱ)),PSⅡelec-tron transport rate (ETR),non-photochemical quenching coefficient (NPQ)and the coefficient of photochemical fluo-rescence (qP))of tobacco (Nicotiana tabacum).The results showed that the transpiration rate (E),stomatal con-ductance (GH2 O)and photosynthesis rate (A)decreased under SA stress,while these decreases were anesised by the addition of eATP .However,SA had no significant effects on the chlorophyll fluorescence parameters,and the addition of eATP did not significantly changed the values of the chlorophyll fluorescence parameters under SA stress.These results indicated that SA could inhibit photosynthesis of tobacco leaves and the addition of eATP could alleviate the inhibition of photosynthesis by SA stress,while these effects were not related to the light reaction.We also discussed the possible mechanism based on these observations.

  7. Extracellular proteases of Halobacillus blutaparonensis strain M9, a new moderately halophilic bacterium

    Science.gov (United States)

    Santos, Anderson F.; Valle, Roberta S.; Pacheco, Clarissa A.; Alvarez, Vanessa M.; Seldin, Lucy; Santos, André L.S.

    2013-01-01

    Halophilic microorganisms are source of potential hydrolytic enzymes to be used in industrial and/or biotechnological processes. In the present study, we have investigated the ability of the moderately halophilic bacterium Halobacillus blutaparonensis (strain M9), a novel species described by our group, to release proteolytic enzymes. This bacterial strain abundantly proliferated in Luria-Bertani broth supplemented with 2.5% NaCl as well as secreted proteases to the extracellular environment. The production of proteases occurred in bacterial cells grown under different concentration of salt, ranging from 0.5% to 10% NaCl, in a similar way. The proteases secreted by H. blutaparonensis presented the following properties: (i) molecular masses ranging from 30 to 80 kDa, (ii) better hydrolytic activities under neutral-alkaline pH range, (iii) expression modulated according to the culture age, (iv) susceptibility to phenylmethylsulphonyl fluoride, classifying them as serine-type proteases, (v) specific cleavage over the chymotrypsin substrate, and (vi) enzymatic stability in the presence of salt (up to 20% NaCl) and organic solvents (e.g., ether, isooctane and cyclohexane). The proteases described herein are promising for industrial practices due to its haloalkaline properties. PMID:24688526

  8. Extracellular proteases of Halobacillus blutaparonensis strain M9, a new moderately halophilic bacterium

    Directory of Open Access Journals (Sweden)

    Anderson F. Santos

    2013-12-01

    Full Text Available Halophilic microorganisms are source of potential hydrolytic enzymes to be used in industrial and/or biotechnological processes. In the present study, we have investigated the ability of the moderately halophilic bacterium Halobacillus blutaparonensis (strain M9, a novel species described by our group, to release proteolytic enzymes. This bacterial strain abundantly proliferated in Luria-Bertani broth supplemented with 2.5% NaCl as well as secreted proteases to the extracellular environment. The production of proteases occurred in bacterial cells grown under different concentration of salt, ranging from 0.5% to 10% NaCl, in a similar way. The proteases secreted by H. blutaparonensis presented the following properties: (i molecular masses ranging from 30 to 80 kDa, (ii better hydrolytic activities under neutral-alkaline pH range, (iii expression modulated according to the culture age, (iv susceptibility to phenylmethylsulphonyl fluoride, classifying them as serine-type proteases, (v specific cleavage over the chymotrypsin substrate, and (vi enzymatic stability in the presence of salt (up to 20% NaCl and organic solvents (e.g., ether, isooctane and cyclohexane. The proteases described herein are promising for industrial practices due to its haloalkaline properties.

  9. Effects of extracts of Dragon's blood on fibroblast proliferation and extracellular matrix hyaluronic acid%血竭提取物对成纤维细胞增殖及合成透明质酸的影响

    Institute of Scientific and Technical Information of China (English)

    李丹; 惠瑞; 胡咏武; 韩岩; 郭树忠

    2015-01-01

    Objective To investigate the effects of Dragon' s blood extract on proliferation and secret extracellular matrix function of fibroblasts in vitro.Methods Dragon ' s blood was extracted by chloroform,acetoacetic ester,alcohol.Human fibroblast were cultured in vitro in media containing gradient dilutions of Dragon's blood extracts (0.002,0.02,0.2,2,20 mg/ml),which was followed by cell proliferation assessed with MTT assay on 0,12,24,36,48,60,72 h.Under the optimal concentration,the cell growth curves were drawn and the flow cytometry (FCM) was used to determine the changes of cell cycle.On 0,12,24,36,48,60,72 h,the concentration of hyaluronic acid in the supernatant of fibroblast culture was measured by radioimmunoassay.Results 0.2-2 mg/ml Dragon' s blood extracts enhanced the proliferation of fibroblasts in a dose-dependent manner.2 mg/ml was the optimal dilution of Dragon' s blood extract,and it increased the ratio of S cells in cell cycle[(25.80 ± 3.10) %] than control group[(7.50 ± 0.70)%,P < 0.01].From 12 h to 72 h,in 2 mg/ml Dragon's blood group,concentration of Hyaluronic acid secreted by fibroblasts gradually increased,but were less than control(P < 0.01).Conclusions Dragon ' s blood acetoacetic ester extract improved the proliferation of cultured human fibroblasts in vitro,might be beneficial to promote wound healing.%目的 研究血竭提取物对成纤维细胞生物学作用的影响.方法 将血竭经过氯仿、乙酸乙酯、乙醇依次回流提取分别得到3种血竭提取液,培养液稀释后行成纤维细胞培养.噻唑蓝法MTT检测浓度分别为0.002、0.02、0.2、2、20 mg/ml的血竭提取物,在0、12、24、36、48、60、72h7个检测点对体外培养成纤维细胞增殖的影响,并绘制最适浓度下细胞生长曲线.流式细胞术FCM分析最适浓度培养下成纤维细胞的细胞周期变化.应用放射免疫分析法检测0、12、24、36、48、60、72 h细胞培养上清液中透明质酸(hyaluronic acid

  10. The origin, function, and diagnostic potential of RNA within extracellular vesicles present in human biological fluids

    OpenAIRE

    Taylor, Douglas D.; Gercel-Taylor, Cicek

    2013-01-01

    We have previously demonstrated that tumor cells release membranous structures into their extracellular environment, which are termed exosomes, microvesicles or extracellular vesicles depending on specific characteristics, including size, composition and biogenesis pathway. These cell-derived vesicles can exhibit an array of proteins, lipids and nucleic acids derived from the originating tumor. This review focuses of the transcriptome (RNA) of these extracellular vesicles. Based on current da...

  11. Xylanases, Cellulases, and Acid Protease Produced by Stenocarpella maydis Grown in Solid-state and Submerged Fermentation

    Directory of Open Access Journals (Sweden)

    Edna María Hernández-Domínguez

    2014-03-01

    Full Text Available Activity levels of extracellular hydrolytic enzymes produced by Stenocarpella maydis, a fungal pathogen of maize, have so far not been reported. Production of xylanase, cellulase, and acid protease by this ascomycete using different culture media in solid-state and submerged fermentation was studied. In solid-state fermentation, polyurethane foam was used as an inert support, and corncob, corn leaves, and broken corn were used as biodegradable supports. The highest xylanase activity was produced in the medium with xylan in both fermentation systems, reaching 18,020 U/L and 19,266 U/L for submerged and solid-state fermentation, respectively. Cellulase production was observed only in the culture medium with carboxymethylcellulose, obtaining values of 7,872 U/L in submerged fermentation and 9,439 U/L in solid-state fermentation. The acid protease was produced only in minimal medium with glucose in acidic pH, reaching the highest levels of activity in SSF (806 U/L. The corncob was the best biodegradable support for the production of xylanases and acid protease. Two isoenzymes of xylanase and cellulase were observed in both fermentation systems, and three isoenzymes of xylanase were produced on the biodegradable supports.

  12. Biological properties of extracellular vesicles and their physiological functions

    NARCIS (Netherlands)

    Yáñez-Mó, María; Siljander, Pia R-M; Andreu, Zoraida; Zavec, Apolonija Bedina; Borràs, Francesc E; Buzas, Edit I; Buzas, Krisztina; Casal, Enriqueta; Cappello, Francesco; Carvalho, Joana; Colás, Eva; Cordeiro-da Silva, Anabela; Fais, Stefano; Falcon-Perez, Juan M; Ghobrial, Irene M; Giebel, Bernd; Gimona, Mario; Graner, Michael; Gursel, Ihsan; Gursel, Mayda; Heegaard, Niels H H; Hendrix, An; Kierulf, Peter; Kokubun, Katsutoshi; Kosanovic, Maja; Kralj-Iglic, Veronika; Krämer-Albers, Eva-Maria; Laitinen, Saara; Lässer, Cecilia; Lener, Thomas; Ligeti, Erzsébet; Linē, Aija; Lipps, Georg; Llorente, Alicia; Lötvall, Jan; Manček-Keber, Mateja; Marcilla, Antonio; Mittelbrunn, Maria; Nazarenko, Irina; Nolte-'t Hoen, Esther N M; Nyman, Tuula A; O'Driscoll, Lorraine; Olivan, Mireia; Oliveira, Carla; Pállinger, Éva; Del Portillo, Hernando A; Reventós, Jaume; Rigau, Marina; Rohde, Eva; Sammar, Marei; Sánchez-Madrid, Francisco; Santarém, N; Schallmoser, Katharina; Ostenfeld, Marie Stampe; Stoorvogel, Willem; Stukelj, Roman; Van der Grein, Susanne G; Vasconcelos, M Helena; Wauben, Marca H M; De Wever, Olivier

    2015-01-01

    In the past decade, extracellular vesicles (EVs) have been recognized as potent vehicles of intercellular communication, both in prokaryotes and eukaryotes. This is due to their capacity to transfer proteins, lipids and nucleic acids, thereby influencing various physiological and pathological functi

  13. Extracellular enzyme activities in a tropical mountain rainforest region of southern Ecuador affected by low soil P status and land-use change

    Science.gov (United States)

    Tischer, Alexander; Blagodatskaya, Evgenia; Ute, Hamer

    2014-05-01

    Little is known about the enzymatic response of microorganisms in soils having a low P status and being subjected to global change phenomena, such as forest disturbance and land-use change. Along a land-use sequence (natural forest - young pasture - old pasture - abandoned pasture - shrubland) in the Andes of southern Ecuador mineral topsoils of Cambisols / Umbrisols were investigated. We tested whether the activities of the six hydrolytic enzymes (cellobiohydrolase, β-glucosidase, N-acetylglucosaminidase, α-glucosidase, xylanase, acid phosphomonoesterase) were affected by nutrient status and land-use induced alterations in soil pH (pHH2O from 3.7 to 5.2), resource quantity and quality (e.g. a SOC:N:P ratio from 182:13:1 to 1050:38:1) and microbial community structure (as monitored by phospholipid fatty acids). Microbial production of acid phosphatase responded to the low P status of the sites by a higher investment in the acquisition of P compared to C. We determined three major drivers of enzyme activities: 1.) Microbial demand for P regulated the production of acid phosphatase, provided that N and C were available. At the natural forest site the two-fold higher specific activity of acid phosphatase pointed to a high microbial P-demand, whereas the production of acid phosphatase was constrained by the availability of N and DOC after pasture abandonment. 2.) Microbial biomass that was controlled by pH and resource availability (total soil N (organic and inorganic N), organic P (Bray-fraction)) was the main driver for cellobiohydrolase, β-glucosidase and N-acetylglucosaminidase activities. 3.) Substrate induction due to increased litter inputs of herbaceous plant species seemed to regulate α-glucosidase and xylanase activities during secondary succession. In contrast, alterations in the abundance of microbial groups affected the variation in extracellular enzyme activities only marginally. At the level of broadly defined microbial groups (PLFA), our results

  14. CHARACTERIZATION OF EXTRACELLULAR GABA IN THE SUBSTANTIA-NIGRA-RETICULATA BY MEANS OF BRAIN MICRODIALYSIS

    NARCIS (Netherlands)

    TIMMERMAN, W; ZWAVELING, J; WESTERINK, BHC

    1992-01-01

    Brain microdialysis was used to characterize extracellular gamma-aminobutyric acid (GABA) in the substantia nigra reticulata (SNR) of freely moving rats. The extracellular GABA in the SNR was characterized using acutely implanted probes (4-8 h after surgery; day 1) and chronically implanted probes (

  15. Hydrolytic and thermal degradation of PCL and PCL/Bentonite compounds

    Energy Technology Data Exchange (ETDEWEB)

    Franca, Danyelle Campos; Bezerra, Elieber Barros; Morais, Dayanne Diniz de Souza; Araujo, Edcleide Maria [Universidade Federal de Campina grande (UFCG), PB (Brazil). Departamento de Engenharia de Materiais; Wellen, Renate Maria Ramos, E-mail: wellen.renate@gmail.com [Universidade Federal da Paraiba (UFPB), Joao Pessoa, PB (Brazil). Departamento de Engenharia de Materiais

    2016-05-15

    Poly(ε-caprolactone)/montmorillonite (PCL/MMT) and Poly(εcaprolactone)/organo-modified montmorillonite (PCL/OMMT) compounds at 3% w/w clay content were prepared by melting mixing. The effect of MMT and OMMT on the degradability of PCL injected specimens was investigated in vacuum at 40 deg C for up to 45 days and in aqueous medium at 40 deg C for up to 45 days. Selected specimens were collected after 15, 30 and 45 days of exposure. Microstructural changes were monitored during the degradation experiment by means of melt flow rate (MFR), weight loss, X ray diffraction (XRD), mechanical properties, and scanning electron microscopy (SEM). PCL and its compounds revealed not to be prone to hydrolytic degradation with similar results for MFR of samples exposed in vacuum and water. Gain and loss of weight were observed during experiments, probably due to swelling mechanism taking place in two stages, with the amorphous phase being the first to be swelled followed by the crystalline one. By XRD a new peak corresponding to (002) plane was evident for PCL/OMMT. PCL proved to be resistant to degradation since experiments carried out in vacuum or in aqueous medium for up to 45 days were not enough to affect the mechanical integrity of PCL samples. (author)

  16. Inhibitors of the Hydrolytic Enzyme Dimethylarginine Dimethylaminohydrolase (DDAH: Discovery, Synthesis and Development

    Directory of Open Access Journals (Sweden)

    Rhys B. Murphy

    2016-05-01

    Full Text Available Dimethylarginine dimethylaminohydrolase (DDAH is a highly conserved hydrolytic enzyme found in numerous species, including bacteria, rodents, and humans. In humans, the DDAH-1 isoform is known to metabolize endogenous asymmetric dimethylarginine (ADMA and monomethyl arginine (l-NMMA, with ADMA proposed to be a putative marker of cardiovascular disease. Current literature reports identify the DDAH family of enzymes as a potential therapeutic target in the regulation of nitric oxide (NO production, mediated via its biochemical interaction with the nitric oxide synthase (NOS family of enzymes. Increased DDAH expression and NO production have been linked to multiple pathological conditions, specifically, cancer, neurodegenerative disorders, and septic shock. As such, the discovery, chemical synthesis, and development of DDAH inhibitors as potential drug candidates represent a growing field of interest. This review article summarizes the current knowledge on DDAH inhibition and the derived pharmacokinetic parameters of the main DDAH inhibitors reported in the literature. Furthermore, current methods of development and chemical synthetic pathways are discussed.

  17. Bifunctionalized hybrid silica spheres by hydrolytic cocondensation of 3-aminopropyltriethoxysilane and vinyltriethoxysilane.

    Science.gov (United States)

    Nair, Bindu Prasannakumaran; Pavithran, Chorappan

    2010-01-19

    Facile, surfactant free synthetic strategy for bifunctionalized hybrid silica spheres (HS) with structural ordering is presented. HS was prepared by casting and drying of stable siloxane solution from hydrolytic co-condensation of 3-aminopropyltriethoxysilane (AS) and vinyltriethoxysilane (VS) with AS:VS mole ratio of 1:3 in ethanol/water mixture. Spheres of size in the range of 250 nm to 2.5 microm were produced by adjusting the concentration of reacted siloxane solution using ethanol. Characterization by FTIR, XRD, TGA, and DSC revealed that the HS was formed from coprecipitation of fully condensed polyhedral oligomeric silsesquioxane (POSS) bilayer and incompletely condensed siloxanes (SIL) produced during drying. Formation of POSS bilayer was confirmed by intercalating and stabilizing POSS within a smectite clay and characterizing the modified clay. XRD, FTIR, SEM, and HRTEM of HS heated to 170 degrees C revealed transformation from disordered into ordered lamellar structure of POSS bilayer assembly and siloxane network due to rearrangement and densification of low melting SIL.

  18. Phytoestrogens in milk: Overestimations caused by contamination of the hydrolytic enzyme used during sample extraction.

    Science.gov (United States)

    Bláhová, L; Kohoutek, J; Procházková, T; Prudíková, M; Bláha, L

    2016-09-01

    Isoflavones are natural phytoestrogens with antioxidant and endocrine-disrupting potencies. Monitoring of their levels is important to ensure the high quality and safety of food, milk, and dairy products. The efficiency and accuracy of phytoestrogen analyses in complex matrices such as milk depend on the extraction procedure, which often uses hydrolysis by means of the β-glucuronidase/sulfatase enzyme originating from Helix pomatia. The present study reveals that the commercially available hydrolytic enzyme is contaminated by several phytoestrogen isoflavones (genistein, daidzein, formononetin, and biochanin A) and their metabolite equol, as well as flavones (naringenin and apigenin) and coumestrol. We show that the concentrations of daidzein and genistein in the enzyme could have impaired the results of analyses of the main isoflavones in several previously published studies. Of 8 analyzed compounds, only equol was confirmed in the present study and it serves as a reliable marker of phytoestrogens originating from cow feed. Critical reassessment of phytoestrogen concentrations in milk is needed because several previously published studies might have overestimated the concentrations depending on the extraction procedure used.

  19. MOF-5-Polystyrene: Direct Production from Monomer, Improved Hydrolytic Stability, and Unique Guest Adsorption.

    Science.gov (United States)

    Gamage, Nipuni-Dhanesha H; McDonald, Kyle A; Matzger, Adam J

    2016-09-19

    An unprecedented mode of reactivity of Zn4 O-based metal-organic frameworks (MOFs) offers a straightforward and powerful approach to polymer-hybridized porous solids. The concept is illustrated with the production of MOF-5-polystyrene wherein polystyrene is grafted and uniformly distributed throughout MOF-5 crystals after heating in pure styrene for 4-24 h. The surface area and polystyrene content of the material can be fine-tuned by controlling the duration of heating styrene in the presence of MOF-5. Polystyrene grafting significantly alters the physical and chemical properties of pristine MOF-5, which is evident from the unique guest adsorption properties (solvatochromic dye uptake and improved CO2 capacity) as well as the dramatically improved hydrolytic stability of composite. Based on the fact that MOF-5 is the best studied member of the structure class, and has been produced at scale by industry, these findings can be directly leveraged for a range of current applications.

  20. A novel hydrolytic product from flesh of Mactra veneriformis and its bioactivities in calcium supplement

    Science.gov (United States)

    Wang, Lingchong; Chen, Shiyong; Liu, Rui; Wu, Hao

    2012-09-01

    To prepare calcium-binding peptides, the flesh residue of Mactra Veneriformis was subjected to enzymatic hydrolysis. By comparing the capability of combining calcium of the hydrolyzates, pepsin was confirmed to be the most suitable enzyme for hydrolyzing the flesh residue to release calcium-binding peptides among the seven tested proteases. The pepsin hydrolyzate (PHM) was divided into three fractions according to the molecule weight of its composition, which ranged from 0.5 to 15 kDa. The low-molecule-weight fraction named PHM-3 had the highest capability in combining calcium. The peptides existing in the PHM-3 fraction consisted of higher contents of Glu, Ala and Leu, and could produce one type of calcium-peptide complex by powerfully chelating calcium ions. PHM-3 products could effectively increase calcium absorption and retention while they decreased the calcium excretion in animal tests. Additionally, symptoms caused by low calcium bioavailability in ovariectomized rats, such as bone mineral density reduction and mechanical strength loss could be significantly ameliorated by the hydrolytic products addition in diet.

  1. Lignocellulosic Fermentation of Wild Grass Employing Recombinant Hydrolytic Enzymes and Fermentative Microbes with Effective Bioethanol Recovery

    Directory of Open Access Journals (Sweden)

    Saprativ P. Das

    2013-01-01

    Full Text Available Simultaneous saccharification and fermentation (SSF studies of steam exploded and alkali pretreated different leafy biomass were accomplished by recombinant Clostridium thermocellum hydrolytic enzymes and fermentative microbes for bioethanol production. The recombinant C. thermocellum GH5 cellulase and GH43 hemicellulase genes expressed in Escherichia coli cells were grown in repetitive batch mode, with the aim of enhancing the cell biomass production and enzyme activity. In batch mode, the cell biomass (A600 nm of E. coli cells and enzyme activities of GH5 cellulase and GH43 hemicellulase were 1.4 and 1.6 with 2.8 and 2.2 U·mg−1, which were augmented to 2.8 and 2.9 with 5.6 and 3.8 U·mg−1 in repetitive batch mode, respectively. Steam exploded wild grass (Achnatherum hymenoides provided the best ethanol titres as compared to other biomasses. Mixed enzyme (GH5 cellulase, GH43 hemicellulase mixed culture (Saccharomyces cerevisiae, Candida shehatae system gave 2-fold higher ethanol titre than single enzyme (GH5 cellulase single culture (Saccharomyces cerevisiae system employing 1% (w/v pretreated substrate. 5% (w/v substrate gave 11.2 g·L−1 of ethanol at shake flask level which on scaling up to 2 L bioreactor resulted in 23 g·L−1 ethanol. 91.6% (v/v ethanol was recovered by rotary evaporator with 21.2% purification efficiency.

  2. Hydrolytic enzyme activities in shiitake mushroom (Lentinula edodes) strains cultivated on coffee pulp.

    Science.gov (United States)

    Mata, Gerardo; Salmones, Dulce; Pérez-Merlo, Rosalía

    Hydrolytic enzyme production (cellulases, laminarinases and xylanases) was studied in cultures of Lentinula edodes on sterilized coffee pulp. Samples of substrate colonized by mycelia were taken after 7, 14, 21, 28 and 35 days of incubation at 25°C (W1 to W5) and during the fruiting period at different stages: formation of primordia (PF), first harvest (H) and one week after the first harvest (PH). The enzymatic activity was lower during the early mycelial growth and showed higher levels during the formation and development of fruiting bodies. During the reproductive stage of the fungus, the samples were subjected to a soaking treatment; however, it was not possible to relate this soaking treatment to the increase in enzyme production. The levels of enzymatic activity suggest that secretion of the studied enzymes does not influence the adaptability of the strains to the substrate. Copyright © 2016 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  3. A Novel Hydrolytic Product from Flesh of Mactra veneriformis and Its Bioactivities in Calcium Supplement

    Institute of Scientific and Technical Information of China (English)

    WANG Lingchong; CHEN Shiyong; LIU Rui; WU Hao

    2012-01-01

    To prepare calcium-binding peptides,the flesh residue of Mactra Veneriformis was subjected to enzymatic hydrolysis.By comparing the capability of combining calcium of the hydrolyzates,pepsin was confirmed to be the most suitable enzyme for hydrolyzing the flesh residue to release calcium-binding peptides among the seven tested proteases.The pepsin hydrolyzate(PHM)was divided into three fractions according to the molecule weight of its composition,which ranged from 0.5 to 15 kDa.The low-molecule-weight fraction named PHM-3 had the highest capability in combining calcium.The peptides existing in the PHM-3fraction consisted of higher contents of Glu,Ala and Leu,and could produce one type of calcium-peptide complex by powerfully chelating calcium ions.PHM-3 products could effectively increase calcium absorption and retention while they decreased the calcium excretion in animal tests.Additionally,symptoms caused by low calcium bioavailability in ovariectomized rats,such as bone mineral density reduction and mechanical strength loss could be significantly ameliorated by the hydrolytic products addition in diet.

  4. Stimulation of the hydrolytic stage for biogas production from cattle manure in an electrochemical bioreactor.

    Science.gov (United States)

    Samani, Saeed; Abdoli, Mohammad Ali; Karbassi, Abdolreza; Amin, Mohammad Mehdi

    Electrical current in the hydrolytic phase of the biogas process might affect biogas yield. In this study, four 1,150 mL single membrane-less chamber electrochemical bioreactors, containing two parallel titanium plates were connected to the electrical source with voltages of 0, -0.5, -1 and -1.5 V, respectively. Reactor 1 with 0 V was considered as a control reactor. The trend of biogas production was precisely checked against pH, oxidation reduction potential and electrical power at a temperature of 37 ± 0.5°C amid cattle manure as substrate for 120 days. Biogas production increased by voltage applied to Reactors 2 and 3 when compared with the control reactor. In addition, the electricity in Reactors 2 and 3 caused more biogas production than Reactor 4. Acetogenic phase occurred more quickly in Reactor 3 than in the other reactors. The obtained results from Reactor 4 were indicative of acidogenic domination and its continuous behavior under electrical stimulation. The results of the present investigation clearly revealed that phasic electrical current could enhance the efficiency of biogas production.

  5. Separation of xylo-oligosaccharides from enzymatic hydrolytes using membrane reactor

    Institute of Scientific and Technical Information of China (English)

    杨富国; 方正; 徐勇; 姚春才; 余世袁; 朱琼霞

    2003-01-01

    The time course of xylo-oligosaccharides concentration and xylo-oligosaccharides yield in the separation of xylo-oligosaccharides from enzymatic hydrolytes was studied using a membrane reactor with constant permeate flux of 4 L @ m-2 @ h-1. The results show that xylanases retain 90% of its activity in the reactor. The concentration of xylo-oligosaccharides achieves the maximum, about 5.48 g/L in 30 min. The difference of xylo-oligosaccharides in the retentate and permeate stream is low, <0.62 g/L, therefore it can permeate through membrane. Under the operating conditions that xylan concentration is 30.0 g/L, pH 5.0, operating pressure 16 kPa, temperature 48 ℃,feed velocity 400 mL/min, reaction volume 400 mL, enzyme dosage 10%(volume fraction), dilution rate 1 h -1, and enzymatic hydrolysis time 195 min, the yield of xylo-oligosaccharides reaches 31.69 %.

  6. [Effect of Arnica montana tincture on some hydrolytic enzyme activities of rat liver in experimental toxic hepatitis].

    Science.gov (United States)

    Iaremiĭ, I M; Meshchyshen, I F; Hrihor'ieva, N P; Kostiuk, L S

    1998-01-01

    Effects of tinctura arnica on arginase, adenosine triphosphatase, glucose-6-phosphatase and 5'-nucleotidase activities of rats liver in case of experimental toxic hepatitis have been studied. Toxic hepatitis was caused by 2 times interstomach administration of 0.25 ml oil solution of carbon tetrachloride per 100 g of animal weight. 20 mkl/100 g of tinctura arnica was administered every day per os for 14 days. The enzyme activities have been investigated at 3, 7 and 17 days. A significant demention of a studied hydrolytic enzyme activities in rats liver at intoxication of the body by CCI4 has been shown. It has been established that tinctura arnica administered per os to intoxicated animals sped up the normalization of hydrolytic enzyme activities in rat liver.

  7. Extracellular proteins limit the dispersal of biogenic nanoparticles

    Science.gov (United States)

    Moreau, J.W.; Weber, P.K.; Martin, M.C.; Gilbert, B.; Hutcheon, I.D.; Banfield, J.F.

    2007-01-01

    High-spatial-resolution secondary ion microprobe spectrometry, synchrotron radiation-based Fourier-transform infrared spectroscopy, and polyacrylamide gel analysis demonstrated the intimate association of proteins with spheroidal aggregates of biogenic zinc sulfide nanocrystals, an example of extracellular biomineralization. Experiments involving synthetic zinc sulfide nanoparticles and representative amino acids indicated a driving role for cysteine in rapid nanoparticle aggregation. These findings suggest that microbially derived extracellular proteins can limit the dispersal of nanoparticulate metal-bearing phases, such as the mineral products of bioremediation, that may otherwise be transported away from their source by subsurface fluid flow.

  8. Unravelling the Interactions between Hydrolytic and Oxidative Enzymes in Degradation of Lignocellulosic Biomass by Sporothrix carnis under Various Fermentation Conditions

    Directory of Open Access Journals (Sweden)

    Olusola A. Ogunyewo

    2016-01-01

    Full Text Available The mechanism underlying the action of lignocellulolytic enzymes in biodegradation of lignocellulosic biomass remains unclear; hence, it is crucial to investigate enzymatic interactions involved in the process. In this study, degradation of corn cob by Sporothrix carnis and involvement of lignocellulolytic enzymes in biodegradation were investigated over 240 h cultivation period. About 60% degradation of corn cob was achieved by S. carnis at the end of fermentation. The yields of hydrolytic enzymes, cellulase and xylanase, were higher than oxidative enzymes, laccase and peroxidase, over 144 h fermentation period. Maximum yields of cellulase (854.4 U/mg and xylanase (789.6 U/mg were at 96 and 144 h, respectively. Laccase and peroxidase were produced cooperatively with maximum yields of 489.06 U/mg and 585.39 U/mg at 144 h. Drastic decline in production of cellulase at 144 h (242.01 U/mg and xylanase at 192 h (192.2 U/mg indicates that they play initial roles in biodegradation of lignocellulosic biomass while laccase and peroxidase play later roles. Optimal degradation of corn cob (76.6% and production of hydrolytic and oxidative enzymes were achieved with 2.5% inoculum at pH 6.0. Results suggest synergy in interactions between the hydrolytic and oxidative enzymes which can be optimized for improved biodegradation.

  9. Determination of the action modes of cellulases from hydrolytic profiles over a time course using fluorescence-assisted carbohydrate electrophoresis.

    Science.gov (United States)

    Zhang, Qing; Zhang, Xiaomei; Wang, Peipei; Li, Dandan; Chen, Guanjun; Gao, Peiji; Wang, Lushan

    2015-03-01

    Fluorescence-assisted carbohydrate electrophoresis (FACE) is a sensitive and simple method for the separation of oligosaccharides. It relies on labeling the reducing ends of oligosaccharides with a fluorophore, followed by PAGE. Concentration changes of oligosaccharides following hydrolysis of a carbohydrate polymer could be quantitatively measured continuously over time using the FACE method. Based on the quantitative analysis, we suggested that FACE was a relatively high-throughput, repeatable, and suitable method for the analysis of the action modes of cellulases. On account of the time courses of their hydrolytic profiles, the apparent processivity was used to show the different action modes of cellulases. Cellulases could be easily differentiated as exoglucanases, β-glucosidases, or endoglucanases. Moreover, endoglucanases from the same glycoside hydrolases family had a variety of apparent processivity, indicating the different modes of action. Endoglucanases with the same binding capacities and hydrolytic activities had similar oligosaccharide profiles, which aided in their classification. The hydrolytic profile of Trichoderma reesei Cel12A, an endoglucanases from T. reesei, contained glucose, cellobiose, and cellotriose, which revealed that it may have a new glucosidase activity, corresponding to that of EC 3.2.1.74. A hydrolysate study of a T. reesei Cel12A-N20A mutant demonstrated that the FACE method was sufficiently sensitive to detect the influence of a single-site mutation on enzymatic activity.

  10. Extracellular vesicles for drug delivery

    NARCIS (Netherlands)

    Vader, Pieter; Mol, Emma A; Pasterkamp, Gerard; Schiffelers, Raymond M

    2016-01-01

    Extracellular vesicles (EVs) are cell-derived membrane vesicles, and represent an endogenous mechanism for intercellular communication. Since the discovery that EVs are capable of functionally transferring biological information, the potential use of EVs as drug delivery vehicles has gained consider

  11. Effects of the toxic dinoflagellate, Gymnodinium catenatum on hydrolytic and antioxidant enzymes, in tissues of the giant lions-paw scallop Nodipecten subnodosus.

    Science.gov (United States)

    Estrada, Norma; de Jesús Romero, Maria; Campa-Córdova, Angel; Luna, Antonio; Ascencio, Felipe

    2007-11-01

    This study documents effects of the toxic dinoflagellate Gymnodinium catenatum, a producer of paralytic shellfish poison, on juvenile farmed (5.9+/-0.39 cm) giant lions-paw scallop Nodipecten subnodosus. Scallops were fed bloom concentrations of toxic dinoflagellate G. catenatum for 7 h. The effect of the toxic dinoflagellate in different tissues was determined by analysis of antioxidant enzymes (catalase, superoxide dismutase, gluthathione peroxidase), thiobarbituric acid reactive substances (lipid peroxidation), and hydrolytic enzymes (proteases, glycosidases, phosphatases, lipases, and esterases). Histopathological photos record the effects of the toxic dinoflagellate in various tissues. The results show that juvenile lions-paw scallops produce pseudo-feces, partially close their shell, increase melanization, and aggregate hemocytes. Several enzymes were affected and could serve as biological markers. In general, the adductor muscle was not affected. In the digestive gland, some enzymes could be the result of defensive and digestive processes. Gills and mantle tissue were markedly affected because these sites respond first to toxic dinoflagellates, leading to the idea that proteolytic cascades could be involved.

  12. A field pilot-scale study of biological treatment of heavy oil-produced water by biological filter with airlift aeration and hydrolytic acidification system.

    Science.gov (United States)

    Zhang, Min; Wang, Junming; Zhang, Zhongzhi; Song, Zhaozheng; Zhang, Zhenjia; Zhang, Beiyu; Zhang, Guangqing; Wu, Wei-Min

    2016-03-01

    Heavy oil-produced water (HOPW) is a by-product during heavy oil exploitation and can cause serious environmental pollution if discharged without adequate treatment. Commercial biochemical treatment units are important parts of HOPW treatment processes, but many are not in stable operation because of the toxic and refractory substances, salt, present. Therefore, pilot-scale experiments were conducted to evaluate the performance of hydrolytic acidification-biological filter with airlift aeration (HA-BFAA), a novel HOPW treatment system. Four strains isolated from oily sludge were used for bioaugmentation to enhance the biodegradation of organic pollutants. The isolated bacteria were evaluated using 3-day biochemical oxygen demand, oil, dodecyl benzene sulfonic acid, and chemical oxygen demand (COD) removals as evaluation indices. Bioaugmentation enhanced the COD removal by 43.5 mg/L under a volume load of 0.249 kg COD/m(3) day and hydraulic retention time of 33.6 h. The effluent COD was 70.9 mg/L and the corresponding COD removal was 75.0 %. The optimum volumetric air-to-water ratio was below 10. The removal ratios of the total extractable organic pollutants, alkanes, and poly-aromatic hydrocarbons were 71.1, 94.4, and 94.0 %, respectively. Results demonstrated that HA-BFAA was an excellent HOPW treatment system.

  13. The impact of extracellular acidosis on dendritic cell function.

    Science.gov (United States)

    Vermeulen, Mónica Elba; Gamberale, Romina; Trevani, Analía Silvina; Martínez, Diego; Ceballos, Ana; Sabatte, Juan; Giordano, Mirta; Geffner, Jorge Raúl

    2004-01-01

    Dendritic cells (DCs) are the most efficient antigen-presenting cells. They are activated in the periphery by conserved pathogen molecules and by inflammatory mediators produced by a variety of cell types in response to danger signals. It is widely appreciated that inflammatory responses in peripheral tissues are usually associated with the development of acidic microenvironments. Surprisingly, there are relatively few studies directed to analyze the effect of extracellular acidosis on the immune response. We focus on the influence of extracellular acidosis on the function of immature DCs. The results presented here show that acidosis activates DCs. It increases the acquisition of extracellular antigens for MHC class I-restricted presentation and the ability of antigen-pulsed DCs to induce both specific CD8+ CTL and B-cell responses. These findings may have important implications to our understanding of the mechanisms through which DCs sense the presence of infection or inflammation in nonlymphoid tissues.

  14. The Effects of Extracellular Matrix on Tissue Engineering Construction of Cartilage in Vitro

    Institute of Scientific and Technical Information of China (English)

    YU Li; LI Fa-tao; TANG Ming-qiao; YAN Wei-qun

    2006-01-01

    The effects of various cartilage extracellular matrix on the construction of rabbit growth plate cartilage tissue in vitro were studied. The results show that collagen, proteoglycan and hyaluronic acid can promote the growth of cultured chondrocytes but the effects of various cartilage extracellular matrix(ECM)on chondrocyte differentiation are different. Collagen can promote the hypertrophy of chondrocytes while proteoglycan and hyaluronic acid inhibit the transition of mature chondrocytes into hypertrophied chondrocytes.

  15. Enzymatic Production of Extracellular Reactive Oxygen Species by Marine Microorganisms

    Science.gov (United States)

    Diaz, J. M.; Andeer, P. F.; Hansel, C. M.

    2014-12-01

    Reactive oxygen species (ROS) serve as intermediates in a myriad of biogeochemically important processes, including cell signaling pathways, cellular oxidative stress responses, and the transformation of both nutrient and toxic metals such as iron and mercury. Abiotic reactions involving the photo-oxidation of organic matter were once considered the only important sources of ROS in the environment. However, the recent discovery of substantial biological ROS production in marine systems has fundamentally shifted this paradigm. Within the last few decades, marine phytoplankton, including diatoms of the genus Thalassiosira, were discovered to produce ample extracellular quantities of the ROS superoxide. Even more recently, we discovered widespread production of extracellular superoxide by phylogenetically and ecologically diverse heterotrophic bacteria at environmentally significant levels (up to 20 amol cell-1 hr-1), which has introduced the revolutionary potential for substantial "dark" cycling of ROS. Despite the profound biogeochemical importance of extracellular biogenic ROS, the cellular mechanisms underlying the production of this ROS have remained elusive. Through the development of a gel-based assay to identify extracellular ROS-producing proteins, we have recently found that enzymes typically involved in antioxidant activity also produce superoxide when molecular oxygen is the only available electron acceptor. For example, large (~3600 amino acids) heme peroxidases are involved in extracellular superoxide production by a bacterium within the widespread Roseobacter clade. In Thalassiosira spp., extracellular superoxide is produced by flavoproteins such as glutathione reductase and ferredoxin NADP+ reductase. Thus, extracellular ROS production may occur via secreted and/or cell surface enzymes that modulate between producing and degrading ROS depending on prevailing geochemical and/or ecological conditions.

  16. Hydrolytic enzymes conjugated to quantum dots mostly retain whole catalytic activity.

    Science.gov (United States)

    Iyer, Aditya; Chandra, Anil; Swaminathan, Rajaram

    2014-09-01

    Tagging a luminescent quantum dot (QD) with a biological like enzyme (Enz) creates value-added entities like quantum dot-enzyme bioconjugates (QDEnzBio) that find utility as sensors to detect glucose or beacons to track enzymes in vivo. For such applications, it is imperative that the enzyme remains catalytically active while the quantum dot is luminescent in the bioconjugate. A critical feature that dictates this is the quantum dot-enzyme linkage chemistry. Previously such linkages have put constraints on polypeptide chain dynamics or hindered substrate diffusion to active site, seriously undermining enzyme catalytic activity. In this work we address this issue using avidin-biotin linkage chemistry together with a flexible spacer to conjugate enzyme to quantum dot. The catalytic activity of three biotinylated hydrolytic enzymes, namely, hen egg white lysozyme (HEWL), alkaline phosphatase (ALP) and acetylcholinesterase (AChE) was investigated post-conjugation to streptavidin linked quantum dot for multiple substrate concentrations and varying degrees of biotinylation. We demonstrate that all enzymes retain full catalytic activity in the quantum dot-enzyme bioconjugates in comparison to biotinylated enzyme alone. However, unlike alkaline phosphatase and acetylcholinesterase, the catalytic activity of hen egg white lysozyme was observed to be increasingly susceptible to ionic strength of medium with rising level of biotinylation. This susceptibility was attributed to arise from depletion of positive charge from lysine amino groups after biotinylation. We reasoned that avidin-biotin linkage in the presence of a flexible seven atom spacer between biotin and enzyme poses no constraints to enzyme structure/dynamics enabling retention of full enzyme activity. Overall our results demonstrate for the first time that streptavidin-biotin chemistry can yield quantum dot enzyme bioconjugates that retain full catalytic activity as native enzyme. Copyright © 2014 Elsevier B

  17. Hydrolytic anaerobic reactor and aerated constructed wetland systems for municipal wastewater treatment - HIGHWET project.

    Science.gov (United States)

    Pascual, A; de la Varga, D; Arias, C A; Van Oirschot, D; Kilian, R; Álvarez, J A; Soto, M

    2017-01-01

    The HIGHWET project combines the hydrolytic up-flow sludge bed (HUSB) anaerobic digester and constructed wetlands (CWs) with forced aeration for decreasing the footprint and improving effluent quality. The HIGHWET plant in A Coruña (NW of Spain) treating municipal wastewater consists of a HUSB and four parallel subsurface horizontal flow (HF) CWs. HF1, HF2 and HF3 units are fitted with forced aeration, while the control HF4 is not aerated. All the HF units are provided with effluent recirculation, but different heights of gravel bed (0.8 m in HF1 and HF2, and 0.5 m in HF3 and HF4) are implemented. Besides, a tobermorite-enriched material was added in the HF2 unit in order to improve phosphorus removal. The HUSB 76-89% of total suspended solids (TSS) and about 40% of chemical oxygen demand (COD) and biological oxygen demand (BOD). Aerated HF units reached above 96% of TSS, COD and BOD at a surface loading rate of 29-47 g BOD5/m(2)·d. An aeration regime ranging from 5 h on/3 h off to 3 h on/5 h off was found to be adequate to optimize nitrogen removal, which ranged from 53% to 81%. Average removal rates of 3.4 ± 0.4 g total nitrogen (TN)/m(2)·d and 12.8 ± 3.7 g TN/m(3)·d were found in the aerated units, being 5.5 and 4.1 times higher than those of the non-aerated system. The tobermorite-enriched HF2 unit showed a distinct higher phosphate (60-67%) and total phosphorus (54%) removal.

  18. Optimizing dentin bond durability: strategies to prevent hydrolytic degradation of the hybrid layer

    Science.gov (United States)

    Tjäderhane, Leo; Nascimento, Fabio D.; Breschi, Lorenzo; Mazzoni, Annalisa; Tersariol, Ivarne L.S.; Geraldeli, Saulo; Tezvergil-Mutluay, Arzu; Carrilho, Marcela; Carvalho, Ricardo M.; Tay, Franklin R.; Pashley, David H.

    2014-01-01

    Objectives Endogenous dentin collagenolytic enzymes, matrix metalloproteinases (MMPs) and cysteine cathepsins, are responsible for the time-related hydrolysis of collagen matrix of the hybrid layers. As the integrity of the collagen matrix is essential for the preservation of long-term dentin bond strength, inhibition or inactivation of endogenous dentin proteases is necessary for durable resin-bonded composite resin restorations. Methods Dentin contains collagenolytic enzymes, matrix metalloproteinases (MMPs) and cysteine cathepsins, which are responsible for the hydrolytic degradation of collagen matrix in the bonded interface. Several tentative approaches to prevent enzyme function either directly or indirectly have been proposed in the literature. Results Chlorhexidine, a general inhibitor of both MMPs and cysteine cathepsins, applied before primer/adhesive application is the most tested method. In general, these experiments have shown that enzyme inhibition is a promising scheme to improve hybrid layer preservation and bond strength durability. Other enzyme inhibitors, e.g. enzyme-inhibiting monomers and antimicrobial compounds, may be considered promising alternatives that would allow more simple clinical application than chlorhexidine. Cross-linking collagen and/or dentin organic matrix-bound enzymes could render hybrid layer organic matrix resistant to degradation, and complete removal of water from the hybrid layer with ethanol wet bonding or biomimetic remineralization should eliminate hydrolysis of both collagen and resin components. Significance Identification of the enzymes responsible for the hydrolysis of hybrid layer collagen and understanding their function has prompted several innovative approaches to retain the hybrid layer integrity and strong dentin bonding. The ultimate goal, prevention of collagen matrix degradation with techniques and commercially available materials that are simple and effective in clinical settings may be achievable in

  19. Vitamin A Deficiency and Alterations in the Extracellular Matrix

    Directory of Open Access Journals (Sweden)

    Teresa Barber

    2014-11-01

    Full Text Available Vitamin A or retinol which is the natural precursor of several biologically active metabolites can be considered the most multifunctional vitamin in mammals. Its deficiency is currently, along with protein malnutrition, the most serious and common nutritional disorder worldwide. It is necessary for normal embryonic development and postnatal tissue homeostasis, and exerts important effects on cell proliferation, differentiation and apoptosis. These actions are produced mainly by regulating the expression of a variety of proteins through transcriptional and non-transcriptional mechanisms. Extracellular matrix proteins are among those whose synthesis is known to be modulated by vitamin A. Retinoic acid, the main biologically active form of vitamin A, influences the expression of collagens, laminins, entactin, fibronectin, elastin and proteoglycans, which are the major components of the extracellular matrix. Consequently, the structure and macromolecular composition of this extracellular compartment is profoundly altered as a result of vitamin A deficiency. As cell behavior, differentiation and apoptosis, and tissue mechanics are influenced by the extracellular matrix, its modifications potentially compromise organ function and may lead to disease. This review focuses on the effects of lack of vitamin A in the extracellular matrix of several organs and discusses possible molecular mechanisms and pathologic implications.

  20. PREPARATION AND PROPERTIES OF EXTRACELLULAR BIOPOLYMER FLOCCULANT

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The biopolymer flocculant (named PS-2) producing by Pseudomonas fluorescens was investigated. The PS-2 had high efficiency with small dosage, when dealing with kaolin suspension, formed larger floc, with big sedimentation rate, over a wide range of temperatures. Distributing of flocculating activity test showed that the biopolymer flocculant was an extracellular product. The composition analysis of purified biopolymer flocculant showed that it composed mainly of polysaccharide and nucleic acid. The content of polysaccharide was 86.7%, which determined by using phenol-vitriol method, and the content of nucleic acid was 7.8%, which determined by UV absorption method. The biopolymer flocculant as a powder form showed much better stability than that as a supernatant. The character of biopolymer flocculant was stable even it was heated to 100℃ when it in acidic condition. The optimal conditions to flocculate kaolin suspension were as follows: pH 8~12, flocculant dosage 1mL/L, and Ca2+ as the optimal cation.

  1. PREPARATION AND PROPERTIES OF EXTRACELLULAR BIOPOLYMER FLOCCULANT

    Institute of Scientific and Technical Information of China (English)

    LI Chunxiang; LIU Binbin; XIONG Jinshui; YAN Jingchun

    2007-01-01

    The biopolymer flocculant (named PS-2) producing by Pseudomonas fluorescens was investigated. The PS-2 had high efficiency with small dosage, when dealing with kaolin suspension,formed larger floc, with big sedimentation rate, over a wide range of temperatures. Distributing of flocculating activity test showed that the biopolymer flocculant was an extracellular product. The composition analysis of purified biopolymer flocculant showed that it composed mainly of polysaccharide and nucleic acid. The content of polysaccharide was 86.7%, which determined by using phenol-vitriol method, and the content of nucleic acid was 7.8%, which determined by UV absorption method. The biopolymer flocculant as a powder form showed much better stability than that as a supernatant. The character of biopolymer flocculant was stable even it was heated to 100 ℃ when it in acidic condition. The optimal conditions to flocculate kaolin suspension were as follows:pH 8~12, flocculant dosage 1mL/L, and Ca2+ as the optimal cation.

  2. Extracellular vesicles: Exosomes, microvesicles, and friends

    NARCIS (Netherlands)

    Raposo, G.; Stoorvogel, W.|info:eu-repo/dai/nl/074352385

    2013-01-01

    Cells release into the extracellular environment diverse types of membrane vesicles of endosomal and plasma membrane origin called exosomes and microvesicles, respectively. These extracellular vesicles (EVs) represent an important mode of intercellular communication by serving as vehicles for

  3. Extracellular enzyme kinetics scale with resource availability

    Science.gov (United States)

    Microbial community metabolism relies on external digestion, mediated by extracellular enzymes that break down complex organic matter into molecules small enough for cells to assimilate. We analyzed the kinetics of 40 extracellular enzymes that mediate the degradation and assimi...

  4. Neutrophil Extracellular Traps and Microcrystals

    Science.gov (United States)

    2017-01-01

    Neutrophil extracellular traps represent a fascinating mechanism by which PMNs entrap extracellular microbes. The primary purpose of this innate immune mechanism is thought to localize the infection at an early stage. Interestingly, the ability of different microcrystals to induce NET formation has been recently described. Microcrystals are insoluble crystals with a size of 1–100 micrometers that have different composition and shape. Microcrystals have it in common that they irritate phagocytes including PMNs and typically trigger an inflammatory response. This review is the first to summarize observations with regard to PMN activation and NET release induced by microcrystals. Gout-causing monosodium urate crystals, pseudogout-causing calcium pyrophosphate dehydrate crystals, cholesterol crystals associated with atherosclerosis, silicosis-causing silica crystals, and adjuvant alum crystals are discussed. PMID:28373994

  5. Neutrophil Extracellular Traps and Microcrystals.

    Science.gov (United States)

    Rada, Balázs

    2017-01-01

    Neutrophil extracellular traps represent a fascinating mechanism by which PMNs entrap extracellular microbes. The primary purpose of this innate immune mechanism is thought to localize the infection at an early stage. Interestingly, the ability of different microcrystals to induce NET formation has been recently described. Microcrystals are insoluble crystals with a size of 1-100 micrometers that have different composition and shape. Microcrystals have it in common that they irritate phagocytes including PMNs and typically trigger an inflammatory response. This review is the first to summarize observations with regard to PMN activation and NET release induced by microcrystals. Gout-causing monosodium urate crystals, pseudogout-causing calcium pyrophosphate dehydrate crystals, cholesterol crystals associated with atherosclerosis, silicosis-causing silica crystals, and adjuvant alum crystals are discussed.

  6. Neutrophil Extracellular Traps and Microcrystals

    Directory of Open Access Journals (Sweden)

    Balázs Rada

    2017-01-01

    Full Text Available Neutrophil extracellular traps represent a fascinating mechanism by which PMNs entrap extracellular microbes. The primary purpose of this innate immune mechanism is thought to localize the infection at an early stage. Interestingly, the ability of different microcrystals to induce NET formation has been recently described. Microcrystals are insoluble crystals with a size of 1–100 micrometers that have different composition and shape. Microcrystals have it in common that they irritate phagocytes including PMNs and typically trigger an inflammatory response. This review is the first to summarize observations with regard to PMN activation and NET release induced by microcrystals. Gout-causing monosodium urate crystals, pseudogout-causing calcium pyrophosphate dehydrate crystals, cholesterol crystals associated with atherosclerosis, silicosis-causing silica crystals, and adjuvant alum crystals are discussed.

  7. Evaluation of the methanogenic step of a two-stage anaerobic digestion process of acidified olive mill solid residue from a previous hydrolytic-acidogenic step.

    Science.gov (United States)

    Rincón, B; Borja, R; Martín, M A; Martín, A

    2009-09-01

    A study of the second step or methanogenic stage of a two-stage anaerobic digestion process treating two-phase olive oil mill solid residue (OMSR) was conducted at mesophilic temperature (35 degrees C). The substrate fed to the methanogenic step was the effluent from a hydrolytic-acidogenic reactor operating at an organic loading rate (OLR) of 12.9 g chemical oxygen demand (COD) L(-1) d(-1) and at a hydraulic retention time (HRT) of 12.4 days; these OLR and HRT were found to be the best values to achieve the maximum total volatile fatty acid concentration (14.5 g L(-1) expressed as acetic acid) with a high concentration in acetic acid (57.5% of the total concentration) as the principal precursor of methane. The methanogenic stage was carried out in an anaerobic stirred tank reactor containing saponite as support media for the immobilization of microorganisms. OLRs of between 0.8 and 22.0 g COD L(-1) d(-1) were studied. These OLRs corresponded to HRTs of between 142.9 and 4.6 days. The methanogenic reactor operated with high stability for OLRs lower than 20.0 g COD L(-1) d(-1). This behaviour was shown by the total volatile fatty acids/total alkalinity ratio, whose values were always kept 0.12 for HRTs>4.6 days. The total COD (T-COD) removed was in the range of 94.3-61.3% and the volatile solids (VS) removed between 92.8% and 56.1% for OLRs between 0.8 and 20.0 g COD L(-1) d(-1). In the same way, a reduction of 43.8% was achieved for phenolic content. The low concentration of total volatile fatty acids (TVFA) observed (below 1 g L(-1) expressed as CH(3)COOH) in the methanogenic reactor effluents showed the high percentage of consumption and conversion of these acids to methane. A methane yield of 0.268+/-0.003 L CH(4) at standard temperature and pressure conditions (STP) g(-1) COD eliminated was achieved.

  8. Light Regimes Shape Utilization of Extracellular Organic C and N in a Cyanobacterial Biofilm

    Energy Technology Data Exchange (ETDEWEB)

    Stuart, Rhona K.; Mayali, Xavier; Boaro, Amy A.; Zemla, Adam; Everroad, R. Craig; Nilson, Daniel; Weber, Peter K.; Lipton, Mary; Bebout, Brad M.; Pett-Ridge, Jennifer; Thelen, Michael P.

    2016-06-28

    ABSTRACT

    Although it is becoming clear that many microbial primary producers can also play a role as organic consumers, we know very little about the metabolic regulation of photoautotroph organic matter consumption. Cyanobacteria in phototrophic biofilms can reuse extracellular organic carbon, but the metabolic drivers of extracellular processes are surprisingly complex. We investigated the metabolic foundations of organic matter reuse by comparing exoproteome composition and incorporation of13C-labeled and15N-labeled cyanobacterial extracellular organic matter (EOM) in a unicyanobacterial biofilm incubated using different light regimes. In the light and the dark, cyanobacterial direct organic C assimilation accounted for 32% and 43%, respectively, of all organic C assimilation in the community. Under photosynthesis conditions, we measured increased excretion of extracellular polymeric substances (EPS) and proteins involved in micronutrient transport, suggesting that requirements for micronutrients may drive EOM assimilation during daylight hours. This interpretation was supported by photosynthesis inhibition experiments, in which cyanobacteria incorporated N-rich EOM-derived material. In contrast, under dark, C-starved conditions, cyanobacteria incorporated C-rich EOM-derived organic matter, decreased excretion of EPS, and showed an increased abundance of degradative exoproteins, demonstrating the use of the extracellular domain for C storage. Sequence-structure modeling of one of these exoproteins predicted a specific hydrolytic activity that was subsequently detected, confirming increased EOM degradation in the dark. Associated heterotrophic bacteria increased in abundance and upregulated transport proteins under dark relative to light conditions. Taken together, our results indicate that biofilm cyanobacteria are successful competitors for organic C and N and that cyanobacterial nutrient and energy requirements control

  9. Light Regimes Shape Utilization of Extracellular Organic C and N in a Cyanobacterial Biofilm

    Energy Technology Data Exchange (ETDEWEB)

    Stuart, Rhona K.; Mayali, Xavier; Boaro, Amy A.; Zemla, Adam; Everroad, R. Craig; Nilson, Daniel; Weber, Peter K.; Lipton, Mary; Bebout, Brad M.; Pett-Ridge, Jennifer; Thelen, Michael P.

    2016-06-28

    Although it is becoming clear that many microbial primary producers can also play a role as organic consumers, we know very little about the metabolic regulation of photoautotroph organic matter consumption. Cyanobacteria in phototrophic biofilms can reuse extracellular organic carbon, but the metabolic drivers of extracellular processes are surprisingly complex. We investigated the metabolic foundations of organic matter reuse by comparing exoproteome composition and incorporation of13C-labeled and15N-labeled cyanobacterial extracellular organic matter (EOM) in a unicyanobacterial biofilm incubated using different light regimes. In the light and the dark, cyanobacterial direct organic C assimilation accounted for 32% and 43%, respectively, of all organic C assimilation in the community. Under photosynthesis conditions, we measured increased excretion of extracellular polymeric substances (EPS) and proteins involved in micronutrient transport, suggesting that requirements for micronutrients may drive EOM assimilation during daylight hours. This interpretation was supported by photosynthesis inhibition experiments, in which cyanobacteria incorporated N-rich EOM-derived material. In contrast, under dark, C-starved conditions, cyanobacteria incorporated C-rich EOM-derived organic matter, decreased excretion of EPS, and showed an increased abundance of degradative exoproteins, demonstrating the use of the extracellular domain for C storage. Sequence-structure modeling of one of these exoproteins predicted a specific hydrolytic activity that was subsequently detected, confirming increased EOM degradation in the dark. Associated heterotrophic bacteria increased in abundance and upregulated transport proteins under dark relative to light conditions. Taken together, our results indicate that biofilm cyanobacteria are successful competitors for organic C and N and that cyanobacterial nutrient and energy requirements control the use of EOM.

  10. Production in Pichia pastoris, antifungal activity and crystal structure of a class I chitinase from cowpea (Vigna unguiculata): Insights into sugar binding mode and hydrolytic action.

    Science.gov (United States)

    Landim, Patrícia G Castro; Correia, Tuana O; Silva, Fredy D A; Nepomuceno, Denise R; Costa, Helen P S; Pereira, Humberto M; Lobo, Marina D P; Moreno, Frederico B M B; Brandão-Neto, José; Medeiros, Suelen C; Vasconcelos, Ilka M; Oliveira, José T A; Sousa, Bruno L; Barroso-Neto, Ito L; Freire, Valder N; Carvalho, Cristina P S; Monteiro-Moreira, Ana C O; Grangeiro, Thalles B

    2017-04-01

    A cowpea class I chitinase (VuChiI) was expressed in the methylotrophic yeast P. pastoris. The recombinant protein was secreted into the culture medium and purified by affinity chromatography on a chitin matrix. The purified chitinase migrated on SDS-polyacrylamide gel electrophoresis as two closely-related bands with apparent molecular masses of 34 and 37 kDa. The identity of these bands as VuChiI was demonstrated by mass spectrometry analysis of tryptic peptides and N-terminal amino acid sequencing. The recombinant chitinase was able to hydrolyze colloidal chitin but did not exhibit enzymatic activity toward synthetic substrates. The highest hydrolytic activity of the cowpea chitinase toward colloidal chitin was observed at pH 5.0. Furthermore, most VuChiI activity (approximately 92%) was retained after heating to 50 °C for 30 min, whereas treatment with 5 mM Cu(2+) caused a reduction of 67% in the enzyme's chitinolytic activity. The recombinant protein had antifungal activity as revealed by its ability to inhibit the spore germination and mycelial growth of Penicillium herquei. The three-dimensional structure of VuChiI was resolved at a resolution of 1.55 Å by molecular replacement. The refined model had 245 amino acid residues and 381 water molecules, and the final R-factor and Rfree values were 14.78 and 17.22%, respectively. The catalytic domain of VuChiI adopts an α-helix-rich fold, stabilized by 3 disulfide bridges and possessing a wide catalytic cleft. Analysis of the crystallographic model and molecular docking calculations using chito-oligosaccharides provided evidences about the VuChiI residues involved in sugar binding and catalysis, and a possible mechanism of antifungal action is suggested.

  11. Measurement of the ratio of glomerular filtration rate to plasma volume from the technetium-99m diethylene triamine pentaacetic acid renogram: comparison with glomerular filtration rate in relation to extracellular fluid volume

    Energy Technology Data Exchange (ETDEWEB)

    Peters, A.M. (Dept. of Diagnostic Radiology, Hammersmith Hospital, London (United Kingdom)); Allison, H. (Dept. of Diagnostic Radiology, Hammersmith Hospital, London (United Kingdom)); Ussov, W.Yu. (Dept. of Diagnostic Radiology, Hammersmith Hospital, London (United Kingdom))

    1994-04-01

    We describe a technique which does not require a blood sample, is already normalised for plasma volume and uses the robust Patlak plot for measuring renal uptake. The rate of kidney uptake, dR(t)/dt, at time = 0, as a fraction of the injected dose, is equal to the fraction of the plasma volume (PV) filtered per minute, i.e. IKGFR/PV. The gradient dR(0)/dt cannot be accurately measured directly but is equal to [[alpha] . LV(0)], where [alpha] is the renal uptake constant (proportional to IKGFR) and LV is the count rate over a left ventricular ROI. LV(0) was obtained by extrapolation of LV(t), while [alpha] is the slope of the Patlak plot up to 3 min. GFR/PV (i.e. right plus left kidneys) in patients with normal renal function was about 0.04 min[sup -1], as would be expected from normal values of GFR (120 ml/min) and plasma volume (3 l). GFR/PV correlated significantly with the ratio of GFR to extracellular fluid volume (ECV), measured from the terminal exponential of the plasma clearance curve (GFR/PV = 3.2.GFR/ECV + 5.3 ml/min/l [r = 0.82, n = 82]). GFR/PV (r = 0.74) and GFR/ECV (r = 0.82) both correlated inversely and non-linearly with plasma creatinine in 43 studies where the measurement was made within 1 week of the [sup 99m]Tc-DTPA study. They also correlated significantly with the plasma cyclosporin trough level in 14 patients with dermatomyositis on the 30 occasions when this measurement was made within 1 week of the renogram (r = -0.38, P < 0.05 for GFR/PV and r = -0.77, P < 0.001 for GFR/ECV). The ratio of GFR/PV to GFR/ECV is the ratio of extracellular fluid volume to plasma volume, and this was 4.0 (SD 0.99). We conclude that both GFR/PV and GFR/ECV can be easily measured with [sup 99m]Tc-DTPA and are physiologically valid expressions of GFR. (orig./MG)

  12. Production of Oxidative and Hydrolytic Enzymes by Coprinus cinereus (Schaeff. Gray from Sisal Wastes Supplemented with Cow Dung Manure

    Directory of Open Access Journals (Sweden)

    Prosper Raymond

    2015-01-01

    Full Text Available The activity of oxidative and hydrolytic enzymes of the edible and medicinal white rot fungi Coprinus cinereus (Schaeff. Gray mushroom was observed during mycelia growth and fruiting body development in solid substrate fermentation using sisal waste fractions amended with cow dung manure as supplement. Laccase had the highest titre value among the five detected enzymes. Its activity was higher during mycelia growth compared to fruiting phase, with 10% supplemented substrate formulation unmixed sisal leaf decortication residues [abbreviated SL : SB (100 : 0] displaying the highest activity of 39.45±12.05 Ug−1. Lignin peroxidase (LiP exhibited a characteristic wave-like pattern with the highest peaks found either during full mycelia colonization or soon after first flush harvest; the highest activity of 1.93±0.62 Ug−1 was observed on unsupplemented SL : SB (100 : 0 substrate formulation during mycelia colonization. For hydrolytic enzymes, the highest carboxymethyl cellulase (CMCase activity of 2.03±0.70 Ug−1 was observed on 20% supplemented SL : SB (0 : 100 after first flush; that of pectinase (1.90±0.32 Ug−1 was revealed after third flush on 10% supplemented SL : SB (0 : 100 substrate formulation while 10% supplemented SL : SB (25 : 75 exhibited the highest xylanase activity (1.23±0.12 Ug−1 after first flush. These findings show that the activities of both oxidative and hydrolytic enzymes were regulated in line with developmental phase of growth of Coprinus cinereus.

  13. Antibacterial activity of Nb–aluminum oxide prepared by the non-hydrolytic sol–gel route

    OpenAIRE

    Alfenas, C. dos S.; Ricci, G. P.; De Faria, E. H.; Saltarelli, M.; Lima, O. J. de; Rocha, Z. N. da; E. J. Nassar; Calefi,Paulo Sergio; Montanari, Lilian B.; Martins, Carlos H. Gomes; Katia J. Ciuffi

    2011-01-01

    Acesso restrito: Texto completo. p. 65-70. Brazil has been the largest producer of niobium (Nb2O5) since 1980, and this material is usually applied to reduce corrosion in alloys. In addition, it has recently been evaluated for use in other technological areas, such as adsorption and catalysis. This paper presents the results of the antibacterial activity of Nb–aluminum oxide, designated MAC–Nb5+, prepared by the non-hydrolytic sol–gel route. The resulting material MAC–Nb5+ was character...

  14. Acidic pH stimulates the production of the angiogenic CXC chemokine, CXCL8 (interleukin-8), in human adult mesenchymal stem cells via the extracellular signal-regulated kinase, p38 mitogen-activated protein kinase, and NF-kappaB pathways.

    Science.gov (United States)

    Bischoff, David S; Zhu, Jian-Hua; Makhijani, Nalini S; Yamaguchi, Dean T

    2008-07-01

    Blood vessel injury results in limited oxygen tension and diffusion leading to hypoxia, increased anaerobic metabolism, and elevated production of acidic metabolites that cannot be easily removed due to the reduced blood flow. Therefore, an acidic extracellular pH occurs in the local microenvironment of disrupted bone. The potential role of acidic pH and glu-leu-arg (ELR(+)) CXC chemokines in early events in bone repair was studied in human mesenchymal stem cells (hMSCs) treated with medium of decreasing pH (7.4, 7.0, 6.7, and 6.4). The cells showed a reciprocal increase in CXCL8 (interleukin-8, IL-8) mRNA levels as extracellular pH decreased. At pH 6.4, CXCL8 mRNA was induced >60x in comparison to levels at pH 7.4. hMSCs treated with osteogenic medium (OGM) also showed an increase in CXCL8 mRNA with decreasing pH; although, at a lower level than that seen in cells grown in non-OGM. CXCL8 protein was secreted into the medium at all pHs with maximal induction at pH 6.7. Inhibition of the G-protein-coupled receptor alpha, G(alphai), suppressed CXCL8 levels in response to acidic pH; whereas phospholipase C inhibition had no effect on CXCL8. The use of specific mitogen-activated protein kinase (MAPK) signal transduction inhibitors indicated that the pH-dependent increase in CXCL8 mRNA is due to activation of ERK and p38 pathways. The JNK pathway was not involved. NF-kappaB inhibition resulted in a decrease in CXCL8 levels in hMSCs grown in non-OGM. However, OGM-differentiated hMSCs showed an increase in CXCL8 levels when treated with the NF-kappaB inhibitor PDTC, a pyrrolidine derivative of dithiocarbamate.

  15. Identification of a receptor for extracellular renalase.

    Directory of Open Access Journals (Sweden)

    Ling Wang

    Full Text Available An increased risk for developing essential hypertension, stroke and diabetes is associated with single nucleotide gene polymorphisms in renalase, a newly described secreted flavoprotein with oxidoreductase activity. Gene deletion causes hypertension, and aggravates acute ischemic kidney (AKI and cardiac injury. Independent of its intrinsic enzymatic activities, extracellular renalase activates MAPK signaling and prevents acute kidney injury (AKI in wild type (WT mice. Therefore, we sought to identity the receptor for extracellular renalase.RP-220 is a previously identified, 20 amino acids long renalase peptide that is devoid of any intrinsic enzymatic activity, but it is equally effective as full-length recombinant renalase at protecting against toxic and ischemic injury. Using biotin transfer studies with RP-220 in the human proximal tubular cell line HK-2 and protein identification by mass spectrometry, we identified PMCA4b as a renalase binding protein. This previously characterized plasma membrane ATPase is involved in cell signaling and cardiac hypertrophy. Co-immunoprecipitation and co-immunolocalization confirmed protein-protein interaction between endogenous renalase and PMCA4b. Down-regulation of endogenous PMCA4b expression by siRNA transfection, or inhibition of its enzymatic activity by the specific peptide inhibitor caloxin1b each abrogated RP-220 dependent MAPK signaling and cytoprotection. In control studies, these maneuvers had no effect on epidermal growth factor mediated signaling, confirming specificity of the interaction between PMCA4b and renalase.PMCA4b functions as a renalase receptor, and a key mediator of renalase dependent MAPK signaling.

  16. Characterization Of A Novel Hydrolytic Enzyme Producing Thermophilic Bacterium Isolated From The Hot Spring Of Azad Kashmir-Pakistan

    Directory of Open Access Journals (Sweden)

    Sana Zahoor

    Full Text Available ABSTRACT A thermophilic bacterium (TP-2 was isolated from the Tatta Pani hot spring in Azad Kashmir and was characterized using phenotypic and genotypic characters. The strain developed cream colored, round, smooth, flat and slimy colonies while the cells were Gram positive rods that ranged in size from about 2.1-3.6 μm to 0.2-0.3 μm in width. Sequence analysis of its 16S rRNA gene showed that isolate TP-2 had 89% homology with Geobacillus debilis. It grew within pH range of 5.5 to 8.5 with optimum growth at pH 7.0. The isolate showed optimum growth at 65ºC and gave positive results for gelatin hydrolysis (GEL, ortho nitrophenyl-β-D-galactopyranosidase (ONPG, and nitrate production and produced acid from sucrose, glucose and maltose. It utilized glucose, fructose, maltose, lactose, sucrose, xylan, starch, filter paper and carboxymethylcellulose as sole carbon source. Isolate TP-2 produced significant amount of industrially important enzymes i.e. extracellular α-amylase, CMCase, FPase, Xylanase, Protease and Lipase and intracellular CMCase and FPase.

  17. On-site hydrolytic enzymes production from fungal co-cultivation of Bermuda grass and corn cob.

    Science.gov (United States)

    Amaro-Reyes, Aldo; Gracida, Jorge; Huizache-Peña, Nelson; Elizondo-García, Norberto; Salazar-Martínez, José; García Almendárez, Blanca E; Regalado, Carlos

    2016-07-01

    Solid state fermentation (SSF) is used to produce industrial enzymes. The objective of this study was to use a co-culture of Aspergillus niger GS1 and Trichoderma reesei, grown on a mixture of Bermuda grass and corn cob to obtain fermented forage (FF) rich in hydrolytic enzymes, as a value added ingredient for animal feed. FPase, amylase and xylanase productivities (dry matter, DM) were 8.8, 181.4, and 42.1Ug(-1)h(-1), respectively (1U=reducing sugars released min(-1)), after 12-16h of SSF with C/N=60. Cellulose, hemicellulose and lignin decreased 1.6-, 2.7- and 1.9-fold (DM), respectively. In vitro ruminal and true digestibility of DM was improved 2.4- and 1.4-fold. Ruminal digestion of FF reduced 1.32-fold the acetate:propionate ratio, which may reduce the environmental impact of ruminants feeding. On-site hydrolytic enzymes productivity using SSF without enzymes extraction could be of economic potential for digestibility improvement in animal feed.

  18. Hydrolytic Fitness of N-glycosyl Bonds: Comparing the Deglycosylation Kinetics of Modified, Alternative and Native Nucleosides

    Science.gov (United States)

    Rios, Andro C; Yu, Hiu T; Tor, Yitzhak

    2014-01-01

    Nature’s selection of the contemporary nucleobases in RNA and DNA continues to intrigue the origin of life community. While the prebiotic synthesis of the N-glycosyl bond has historically been a central area of investigation, variations in hydrolytic stabilities among the N-glycosyl bonds may have presented an additional selection pressure that contributed to nucleobase and nucleoside evolution. To experimentally probe this hypothesis, a systematic kinetic analysis of the hydrolytic deglycosylation reactions of modified, alternative and native nucleosides was undertaken. Rate constants were measured as a function of temperature (at pH 1) to produce Arrhenius and Eyring plots for extrapolation to 37°C and determination of thermodynamic activation parameters. Rate enhancements based on the differences in reaction rates of deoxyribo- and ribo-glycosidic bonds were found to vary under the same conditions. Rate constants of deoxynucleosides were also measured across the pH range of 1 – 3 (at 50°C), which highlighted how simple changes to the heterocycle alone can lead to significant variation in deglycosylation rates. The contemporary nucleosides exhibited the slowest deglycosylation rates in comparison to the non-native/alternative nucleosides, which we suggest as experimental support for nature’s selection of the fittest N-glycosyl bonds. PMID:25750482

  19. Extracellular nucleotide signaling in plants

    Energy Technology Data Exchange (ETDEWEB)

    Stacey, Gary [Univ. of Missouri, Columbia, MO (United States)

    2016-09-08

    Over the life of this funded project, our research group identified and characterized two key receptor proteins in plants; one mediating the innate immunity response to chitin and the other elucidating the key receptor for extracellular ATP. In the case of chitin recognition, we recently described the quaternary structure of this receptor, shedding light on how the receptor functions. Perhaps more importantly, we demonstrated that all plants have the ability to recognize both chitin oligomers and lipochitooligosacchardes, fundamentally changing how the community views the evolution of these systems and strategies that might be used, for example, to extend symbiotic nitrogen fixation to non-legumes. Our discovery of DORN1 opens a new chapter in plant physiology documenting conclusively that eATP is an important extracellular signal in plants, as it is in animals. At this point, we cannot predict just how far reaching this discovery may prove to be but we are convinced that eATP signaling is fundamental to plant growth and development and, hence, we believe that the future will be very exciting for the study of DORN1 and its overall function in plants.

  20. Melanoma affects the composition of blood cell-derived extracellular vesicles

    Directory of Open Access Journals (Sweden)

    Nina Koliha

    2016-07-01

    Full Text Available Extracellular vesicles are specifically loaded with nucleic acids, lipids, and proteins from their parental cell. Therefore, the constitution of extracellular vesicles reflects the type and status of the originating cell and extracellular vesicles in melanoma patient’s plasma could be indicative for the tumor. Likewise, extracellular vesicles might influence tumor progression by regulating immune responses. We performed a broad protein characterization of extracellular vesicles from plasma of melanoma patients and healthy donors as well as from T cells, B cells, natural killer cells, monocytes, monocyte-derived dendritic cells and platelets using a multiplex bead-based platform. Using this method, we succeeded in analyzing 58 proteins that were differentially displayed on extracellular vesicles. Hierarchal clustering of protein intensity patterns grouped extracellular vesicles according to their originating cell type. The analysis of extracellular vesicles from stimulated B cells and monocyte-derived dendritic cells revealed the transfer of surface proteins to vesicles depending on the cell status. The protein profiles of plasma vesicles resembled the protein profiles of extracellular vesicles from platelets, antigen presenting cells and natural cells as shown by platelet markers, costimulatory proteins, and a natural killer cell subpopulation marker. In comparison to healthy plasma vesicles, melanoma plasma vesicles showed altered signals for platelet markers indicating a changed vesicle secretion or protein loading of extracellular vesicles by platelets and a lower CD8 signal that might be associated with a diminished activity of natural killer cells or T cells. As we hardly detected melanoma-derived vesicles in patient’s plasma, we concluded that blood cells induced the observed differences. In summary, our results question a direct effect of melanoma cells on the composition of extracellular vesicles in melanoma plasma, but rather argue

  1. EVpedia: an integrated database of high-throughput data for systemic analyses of extracellular vesicles

    Directory of Open Access Journals (Sweden)

    Dae-Kyum Kim

    2013-03-01

    Full Text Available Secretion of extracellular vesicles is a general cellular activity that spans the range from simple unicellular organisms (e.g. archaea; Gram-positive and Gram-negative bacteria to complex multicellular ones, suggesting that this extracellular vesicle-mediated communication is evolutionarily conserved. Extracellular vesicles are spherical bilayered proteolipids with a mean diameter of 20–1,000 nm, which are known to contain various bioactive molecules including proteins, lipids, and nucleic acids. Here, we present EVpedia, which is an integrated database of high-throughput datasets from prokaryotic and eukaryotic extracellular vesicles. EVpedia provides high-throughput datasets of vesicular components (proteins, mRNAs, miRNAs, and lipids present on prokaryotic, non-mammalian eukaryotic, and mammalian extracellular vesicles. In addition, EVpedia also provides an array of tools, such as the search and browse of vesicular components, Gene Ontology enrichment analysis, network analysis of vesicular proteins and mRNAs, and a comparison of vesicular datasets by ortholog identification. Moreover, publications on extracellular vesicle studies are listed in the database. This free web-based database of EVpedia (http://evpedia.info might serve as a fundamental repository to stimulate the advancement of extracellular vesicle studies and to elucidate the novel functions of these complex extracellular organelles.

  2. Extracellular Acidification Acts as a Key Modulator of Neutrophil Apoptosis and Functions.

    Directory of Open Access Journals (Sweden)

    Shannan Cao

    Full Text Available In human pathological conditions, the acidification of local environment is a frequent feature, such as tumor and inflammation. As the pH of microenvironment alters, the functions of immune cells are about to change. It makes the extracellular acidification a key modulator of innate immunity. Here we detected the impact of extracellular acidification on neutrophil apoptosis and functions, including cell death, respiratory burst, migration and phagocytosis. As a result, we found that under the acid environment, neutrophil apoptosis delayed, respiratory burst inhibited, polarization augmented, chemotaxis differed, endocytosis enhanced and bacteria killing suppressed. These findings suggested that extracellular acidification acts as a key regulator of neutrophil apoptosis and functions.

  3. Extracellular DNA contributes to dental biofilm formation: an ex vivo study

    DEFF Research Database (Denmark)

    Schlafer, Sebastian; Meyer, Rikke Louise; Dige, Irene;

    The extracellular matrix of dental biofilms plays an important role during caries development. It increases the mechanical stability of the biofilm, it prevents desiccation, it serves as a reservoir for nutrients and it contributes to the long-term preservation of acidic microenvironments. Research...... on the biofilm matrix in the field of dentistry has focused mainly on the synthesis, structure and function of extracellular polysaccharides. In recent years, studies conducted on biofilms from other habitats have shown that the presence of extracellular DNA contributes to biofilm formation and stability...

  4. Streptococcus mutans-derived extracellular matrix in cariogenic oral biofilms.

    Science.gov (United States)

    Klein, Marlise I; Hwang, Geelsu; Santos, Paulo H S; Campanella, Osvaldo H; Koo, Hyun

    2015-01-01

    Biofilms are highly structured microbial communities that are enmeshed in a self-produced extracellular matrix. Within the complex oral microbiome, Streptococcus mutans is a major producer of extracellular polymeric substances including exopolysaccharides (EPS), eDNA, and lipoteichoic acid (LTA). EPS produced by S. mutans-derived exoenzymes promote local accumulation of microbes on the teeth, while forming a spatially heterogeneous and diffusion-limiting matrix that protects embedded bacteria. The EPS-rich matrix provides mechanical stability/cohesiveness and facilitates the creation of highly acidic microenvironments, which are critical for the pathogenesis of dental caries. In parallel, S. mutans also releases eDNA and LTA, which can contribute with matrix development. eDNA enhances EPS (glucan) synthesis locally, increasing the adhesion of S. mutans to saliva-coated apatitic surfaces and the assembly of highly cohesive biofilms. eDNA and other extracellular substances, acting in concert with EPS, may impact the functional properties of the matrix and the virulence of cariogenic biofilms. Enhanced understanding about the assembly principles of the matrix may lead to efficacious approaches to control biofilm-related diseases.

  5. Streptococcus mutans-derived extracellular matrix in cariogenic oral biofilms

    Directory of Open Access Journals (Sweden)

    Marlise eKlein

    2015-02-01

    Full Text Available Biofilms are highly structured microbial communities that are enmeshed in a self-produced extracellular matrix. Within the complex oral microbiome, Streptococcus mutans is a major producer of extracellular polymeric substances including exopolysaccharides (EPS, eDNA and lipoteichoic acid (LTA. EPS produced by S. mutans-derived exoenzymes promote local accumulation of microbes on the teeth, while forming a spatially heterogeneous and diffusion-limiting matrix that protects embedded bacteria. The EPS-rich matrix provides mechanical stability/cohesiveness and facilitates the creation of highly acidic microenvironments, which are critical for the pathogenesis of dental caries. In parallel, S. mutans also releases eDNA and LTA, which can contribute with matrix development. eDNA enhances EPS (glucan synthesis locally, increasing the adhesion of S. mutans to saliva-coated apatitic surfaces and the assembly of highly cohesive biofilms. eDNA and other extracellular substances, acting in concert with EPS, may impact the functional properties of the matrix and the virulence of cariogenic biofilms. Enhanced understanding about the assembly principles of the matrix may lead to efficacious approaches to control biofilm-related diseases.

  6. Analysis of extracellular RNA by digital PCR

    Directory of Open Access Journals (Sweden)

    Kenji eTakahashi

    2014-06-01

    Full Text Available The transfer of extracellular RNA is emerging as an important mechanism for intracellular communication. The ability for the transfer of functionally active RNA molecules from one cell to another within vesicles such as exosomes enables a cell to modulate cellular signaling and biological processes within recipient cells. The study of extracellular RNA requires sensitive methods for the detection of these molecules. In this methods article, we will describe protocols for the detection of such extracellular RNA using sensitive detection technologies such as digital PCR. These protocols should be valuable to researchers interested in the role and contribution of extracellular RNA to tumor cell biology.

  7. Extracellular Molecules Involved in Cancer Cell Invasion

    Energy Technology Data Exchange (ETDEWEB)

    Stivarou, Theodora; Patsavoudi, Evangelia, E-mail: epatsavoudi@pasteur.gr [Department of Biochemistry, Hellenic Pasteur Institute, Athens 11521 (Greece); Technological Educational Institute of Athens, Egaleo, Athens 12210 (Greece)

    2015-01-26

    Nowadays it is perfectly clear that understanding and eradicating cancer cell invasion and metastasis represent the crucial, definitive points in cancer therapeutics. During the last two decades there has been a great interest in the understanding of the extracellular molecular mechanisms involved in cancer cell invasion. In this review, we highlight the findings concerning these processes, focusing in particular on extracellular molecules, including extracellular matrix proteins and their receptors, growth factors and their receptors, matrix metalloproteinases and extracellular chaperones. We report the molecular mechanisms underlying the important contribution of this pool of molecules to the complex, multi-step phenomenon of cancer cell invasion.

  8. Extracellular Molecules Involved in Cancer Cell Invasion

    Directory of Open Access Journals (Sweden)

    Theodora Stivarou

    2015-01-01

    Full Text Available Nowadays it is perfectly clear that understanding and eradicating cancer cell invasion and metastasis represent the crucial, definitive points in cancer therapeutics. During the last two decades there has been a great interest in the understanding of the extracellular molecular mechanisms involved in cancer cell invasion. In this review, we highlight the findings concerning these processes, focusing in particular on extracellular molecules, including extracellular matrix proteins and their receptors, growth factors and their receptors, matrix metalloproteinases and extracellular chaperones. We report the molecular mechanisms underlying the important contribution of this pool of molecules to the complex, multi-step phenomenon of cancer cell invasion.

  9. Hydrogen liberation from the hydrolytic dehydrogenation of dimethylamine-borane at room temperature by using a novel ruthenium nanocatalyst.

    Science.gov (United States)

    Caliskan, Salim; Zahmakiran, Mehmet; Durap, Feyyaz; Özkar, Saim

    2012-04-28

    Herein we report the discovery of an in situ generated, highly active nanocatalyst for the room temperature dehydrogenation of dimethylamine-borane in water. The new catalyst system consisting of ruthenium(0) nanoparticles stabilized by the hydrogenphosphate anion can readily and reproducibly be formed under in situ conditions from the dimethylamine-borane reduction of a ruthenium(III) precatalyst in tetrabutylammonium dihydrogenphosphate solution at 25 ± 0.1 °C. These new water dispersible ruthenium nanoparticles were characterized by using a combination of advanced analytical techniques. The results show the formation of well-dispersed ruthenium(0) nanoparticles of 2.9 ± 0.9 nm size stabilized by the hydrogenphosphate anion in aqueous solution. The resulting ruthenium(0) nanoparticles act as a highly active catalyst in the generation of 3.0 equiv. of H(2) from the hydrolytic dehydrogenation of dimethylamine-borane with an initial TOF value of 500 h(-1) at 25 ± 0.1 °C. Moreover, they provide exceptional catalytic lifetime (TTO = 11,600) in the same reaction at room temperature. The work reported here also includes the following results; (i) monitoring the formation kinetics of the in situ generated ruthenium nanoparticles, by using the hydrogen generation from the hydrolytic dehydrogenation of dimethylamine-borane as a catalytic reporter reaction, shows that sigmoidal kinetics of catalyst formation and concomitant dehydrogenation fits well to the two-step, slow nucleation and then autocatalytic surface growth mechanism, A → B (rate constant k(1)) and A + B → 2B (rate constant k(2)), in which A is RuCl(3)·3H(2)O and B is the growing, catalytically active Ru(0)(n) nanoclusters. (ii) Hg(0) poisoning coupled with activity measurements after solution infiltration demonstrates that the in situ generated ruthenium(0) nanoparticles act as a kinetically competent heterogeneous catalyst in hydrogen generation from the hydrolytic dehydrogenation of dimethylamine

  10. Microscopic monitoring of extracellular pH in dental biofilms

    DEFF Research Database (Denmark)

    Schlafer, Sebastian; Garcia, Javier; Greve, Matilde

    pH in dental biofilm is a key virulence factor for the development of caries lesions. The complex three-dimensional architecture of dental biofilms leads to steep gradients of nutrients and metabolites, including organic acids, across the biofilm. For decades, measuring pH in dental biofilm has...... been limited to monitoring bulk pH with electrodes. Although pH microelectrodes with a better spatial resolution have been developed, they do not permit to monitor horizontal pH gradients in real-time. Quantitative fluorescent microscopic techniques, such as fluorescence lifetime imaging or pH...... ratiometry, can be employed to map the pH landscape in dental biofilm with more detail. However, when pH sensitive fluorescent probes are used to visualize pH in biofilms, it is crucial to differentiate between extracellular and intracellular pH. Intracellular microbial pH and pH in the extracellular matrix...

  11. Bacterial Extracellular Polysaccharides Involved in Biofilm Formation

    Directory of Open Access Journals (Sweden)

    Elena P. Ivanova

    2009-07-01

    Full Text Available Extracellular polymeric substances (EPS produced by microorganisms are a complex mixture of biopolymers primarily consisting of polysaccharides, as well as proteins, nucleic acids, lipids and humic substances. EPS make up the intercellular space of microbial aggregates and form the structure and architecture of the biofilm matrix. The key functions of EPS comprise the mediation of the initial attachment of cells to different substrata and protection against environmental stress and dehydration. The aim of this review is to present a summary of the current status of the research into the role of EPS in bacterial attachment followed by biofilm formation. The latter has a profound impact on an array of biomedical, biotechnology and industrial fields including pharmaceutical and surgical applications, food engineering, bioremediation and biohydrometallurgy. The diverse structural variations of EPS produced by bacteria of different taxonomic lineages, together with examples of biotechnological applications, are discussed. Finally, a range of novel techniques that can be used in studies involving biofilm-specific polysaccharides is discussed.

  12. Force spectroscopy of hepatocytic extracellular matrix components

    Energy Technology Data Exchange (ETDEWEB)

    Yongsunthon, R., E-mail: YongsuntR@Corning.com [Corning Incorporated, SP-FR-01, R1S32D, Corning, NY 14831 (United States); Baker, W.A.; Bryhan, M.D.; Baker, D.E.; Chang, T.; Petzold, O.N.; Walczak, W.J.; Liu, J.; Faris, R.A.; Senaratne, W.; Seeley, L.A.; Youngman, R.E. [Corning Incorporated, SP-FR-01, R1S32D, Corning, NY 14831 (United States)

    2009-07-15

    We present atomic force microscopy and force spectroscopy data of live hepatocytes (HEPG2/C3A liver cell line) grown in Eagle's Minimum Essential Medium, a complex solution of salts and amino acids commonly used for cell culture. Contact-mode imaging and force spectroscopy of this system allowed correlation of cell morphology and extracellular matrix (ECM) properties with substrate properties. Force spectroscopy analysis of cellular 'footprints' indicated that the cells secrete large polymers (e.g., 3.5 {mu}m contour length and estimated MW 1000 kDa) onto their substrate surface. Although definitive identification of the polymers has not yet been achieved, fluorescent-labeled antibody staining has specified the presence of ECM proteins such as collagen and laminin in the cellular footprints. The stretched polymers appear to be much larger than single molecules of known ECM components, such as collagen and heparan sulfate proteoglycan, thus suggesting that the cells create larger entangled, macromolecular structures from smaller components. There is strong evidence which suggests that the composition of the ECM is greatly influenced by the hydrophobicity of the substrate surface, with preferential production and/or adsorption of larger macromolecules on hydrophobic surfaces.

  13. Routes and mechanisms of extracellular vesicle uptake

    Directory of Open Access Journals (Sweden)

    Laura Ann Mulcahy

    2014-08-01

    Full Text Available Extracellular vesicles (EVs are small vesicles released by donor cells that can be taken up by recipient cells. Despite their discovery decades ago, it has only recently become apparent that EVs play an important role in cell-to-cell communication. EVs can carry a range of nucleic acids and proteins which can have a significant impact on the phenotype of the recipient. For this phenotypic effect to occur, EVs need to fuse with target cell membranes, either directly with the plasma membrane or with the endosomal membrane after endocytic uptake. EVs are of therapeutic interest because they are deregulated in diseases such as cancer and they could be harnessed to deliver drugs to target cells. It is therefore important to understand the molecular mechanisms by which EVs are taken up into cells. This comprehensive review summarizes current knowledge of EV uptake mechanisms. Cells appear to take up EVs by a variety of endocytic pathways, including clathrin-dependent endocytosis, and clathrin-independent pathways such as caveolin-mediated uptake, macropinocytosis, phagocytosis, and lipid raft–mediated internalization. Indeed, it seems likely that a heterogeneous population of EVs may gain entry into a cell via more than one route. The uptake mechanism used by a given EV may depend on proteins and glycoproteins found on the surface of both the vesicle and the target cell. Further research is needed to understand the precise rules that underpin EV entry into cells.

  14. Response of hydrolytic enzyme activities and nitrogen mineralization to fertilizer and organic matter application in subtropical paddy soils

    Science.gov (United States)

    Kader, Mohammed Abdul; Yeasmin, Sabina; Akter, Masuda; Sleutel, Steven

    2016-04-01

    Driving controllers of nitrogen (N) mineralization in paddy soils, especially under anaerobic soil conditions, remain elusive. The influence of exogenous organic matter (OM) and fertilizer application on the activities of five relevant enzymes (β-glucosaminidase, β-glucosidase, L-glutaminase, urease and arylamidase) was measured in two long-term field experiments. One 18-years field experiment was established on a weathered terrace soil with a rice-wheat crop rotation at the Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU) having five OM treatments combined with two mineral N fertilizer levels. Another 30-years experiment was established on a young floodplain soil with rice-rice crop rotation at the Bangladesh Agricultural University (BAU) having eight mineral fertilizer treatments combined with organic manure. At BSMRAU, N fertilizer and OM amendments significantly increased all enzyme activities, suggesting them to be primarily determined by substrate availability. At BAU, non-responsiveness of β-glucosidase activity suggested little effect of the studied fertilizer and OM amendments on general soil microbial activity. Notwithstanding probably equal microbial demand for N, β-glucosaminidase and L-glutaminase activities differed significantly among the treatments (P>0.05) and followed strikingly opposite trends and correlations with soil organic N mineralization. So enzymatic pathways to acquire N differed by treatment at BAU, indicating differences in soil N quality and bio-availability. L-glutaminase activity was significantly positively correlated to the aerobic and anaerobic N mineralization rates at both field experiments. Combined with negative correlations between β-glucosaminidase activity and N mineralization rates, it appears that terminal amino acid NH2 hydrolysis was a rate-limiting step for soil N mineralization at BAU. Future investigations with joint quantification of polyphenol accumulation and binding of N, alongside an

  15. Ratiometric Imaging of Extracellular pH in Dental Biofilms.

    Science.gov (United States)

    Schlafer, Sebastian; Dige, Irene

    2016-03-09

    The pH in bacterial biofilms on teeth is of central importance for dental caries, a disease with a high worldwide prevalence. Nutrients and metabolites are not distributed evenly in dental biofilms. A complex interplay of sorption to and reaction with organic matter in the biofilm reduces the diffusion paths of solutes and creates steep gradients of reactive molecules, including organic acids, across the biofilm. Quantitative fluorescent microscopic methods, such as fluorescence life time imaging or pH ratiometry, can be employed to visualize pH in different microenvironments of dental biofilms. pH ratiometry exploits a pH-dependent shift in the fluorescent emission of pH-sensitive dyes. Calculation of the emission ratio at two different wavelengths allows determining local pH in microscopic images, irrespective of the concentration of the dye. Contrary to microelectrodes the technique allows monitoring both vertical and horizontal pH gradients in real-time without mechanically disturbing the biofilm. However, care must be taken to differentiate accurately between extra- and intracellular compartments of the biofilm. Here, the ratiometric dye, seminaphthorhodafluor-4F 5-(and-6) carboxylic acid (C-SNARF-4) is employed to monitor extracellular pH in in vivo grown dental biofilms of unknown species composition. Upon exposure to glucose the dye is up-concentrated inside all bacterial cells in the biofilms; it is thus used both as a universal bacterial stain and as a marker of extracellular pH. After confocal microscopic image acquisition, the bacterial biomass is removed from all pictures using digital image analysis software, which permits to exclusively calculate extracellular pH. pH ratiometry with the ratiometric dye is well-suited to study extracellular pH in thin biofilms of up to 75 µm thickness, but is limited to the pH range between 4.5 and 7.0.

  16. Structural and Functional Studies of Aspergillus oryzae Cutinase: Enhanced Thermostability and Hydrolytic Activity of Synthetic Ester and Polyester Degradation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Z.; Gosser, Y; Baker, P; Ravee, Y; Li, H; Butterfoss, G; Kong, X; Gross, R; Montclare, J; et al.

    2009-01-01

    Cutinases are responsible for hydrolysis of the protective cutin lipid polyester matrix in plants and thus have been exploited for hydrolysis of small molecule esters and polyesters. Here we explore the reactivity, stability, and structure of Aspergillus oryzae cutinase and compare it to the well-studied enzyme from Fusarium solani. Two critical differences are highlighted in the crystallographic analysis of the A. oryzae structure: (i) an additional disulfide bond and (ii) a topologically favored catalytic triad with a continuous and deep groove. These structural features of A. oryzae cutinase are proposed to result in an improved hydrolytic activity and altered substrate specificity profile, enhanced thermostability, and remarkable reactivity toward the degradation of the synthetic polyester polycaprolactone. The results presented here provide insight into engineering new cutinase-inspired biocatalysts with tailor-made properties.

  17. Purification and characterization of the commercialized, cloned Bacillus megaterium. alpha. -amylase. Pt. 1. Purification and hydrolytic properties

    Energy Technology Data Exchange (ETDEWEB)

    Brumm, P.J.; Hebeda, R.E.; Teague, W.M.

    1991-08-01

    An amylolytic enzyme, orignally isolated from Bacillus megaterium, was shown to increase the maximum amount of dextrose produced during saccharification by decreasing the amount of residual oligosaccharides. The enzyme, now commercially produced in a genetically engineered strain of Bacillus subtilis, was purified to homogeneity from the commerical product. A combination of gel permeation chromatography in the presence of 1.0 M NaCl and chromatofocusing between pH 9.0 and 7.0 were used to obtain the pure enzyme. The molecular weight of the Bacillus megaterium {alpha}-amylase was 59,000 by SDS gel electrophoresis, and the isoelectric point was 8.9 to 9.0. The enzyme was shown to possess both hydrolytic and transferase activity. The enzyme hydrolyzed a wide variety of soluble substrates. The rate of hydrolysis was greatest on soluble starch; {alpha}(1.6)-branched substrates and cyclodextrins were hydrolyzed more slowly. (orig.).

  18. Mechanical behaviour׳s evolution of a PLA-b-PEG-b-PLA triblock copolymer during hydrolytic degradation.

    Science.gov (United States)

    Breche, Q; Chagnon, G; Machado, G; Girard, E; Nottelet, B; Garric, X; Favier, D

    2016-07-01

    PLA-b-PEG-b-PLA is a biodegradable triblock copolymer that presents both the mechanical properties of PLA and the hydrophilicity of PEG. In this paper, physical and mechanical properties of PLA-b-PEG-b-PLA are studied during in vitro degradation. The degradation process leads to a mass loss, a decrease of number average molecular weight and an increase of dispersity index. Mechanical experiments are made in a specific experimental set-up designed to create an environment close to in vivo conditions. The viscoelastic behaviour of the material is studied during the degradation. Finally, the mechanical behaviour is modelled with a linear viscoelastic model. A degradation variable is defined and included in the model to describe the hydrolytic degradation. This variable is linked to physical parameters of the macromolecular polymer network. The model allows us to describe weak deformations but become less accurate for larger deformations. The abilities and limits of the model are discussed.

  19. A NOVEL STRAIN OF Aspergillus niger PRODUCING A COCKTAIL OF HYDROLYTIC DEPOLYMERISING ENZYMES FOR THE PRODUCTION OF SECOND GENERATION BIOFUELS

    Directory of Open Access Journals (Sweden)

    Namita Bansal

    2011-02-01

    Full Text Available The screening and isolation of fungi producing a cocktail of hydrolytic enzymes was studied. Among the various isolates obtained from different soil samples, a strain NS-2 was selected. The phylogenetic analysis of this strain showed highest homology (99% with Aspergillus niger. It was capable of producing cellulolytic, hemicellulolytic, amylolytic, and pectinolytic enzymes in appreciable titers on wheat bran based liquid and solid state media. The mixture of enzymes produced by this organism could effectively hydrolyze various domestic waste residues, revealing conversion efficiencies of 89 to 92% and produced high reducing sugar yields of 0.48 to 0.66 g/g of dry residue. This enzyme cocktail could potentially find a significant application in the conversion of agricultural and other waste residues having cellulose, hemicellulose, starch, and pectin as carbohydrates to produce simpler sugars which can be fermented for the production of second generation biofuels.

  20. Hydrolytic degradation of composites of poly(L-lactide-co-epsilon-caprolactone) 70/30 and β-tricalcium phosphate.

    Science.gov (United States)

    Ahola, Niina; Veiranto, Minna; Rich, Jaana; Efimov, Alexander; Hannula, Markus; Seppälä, Jukka; Kellomäki, Minna

    2013-11-01

    There is an increasing need for synthetic bone substitute materials that decrease the need for allografts and autografts. In this study, composites of β-tricalcium phosphate and a biodegradable poly(L-lactide-co-ε-caprolactone) were manufactured using extrusion to form biodegradable composites with high β-tricalcium phosphate contents for osteoconductivity. The hydrolytic degradation of the composites containing 0, 10, 20, 35 and 50% of β-tricalcium phosphate was studied in vitro for 52 weeks. During the study, it was observed that β-tricalcium phosphate did not have an effect on the degradation rate of the polymer matrix. However, the crystallinity of the materials increased throughout the test series and changes in glass transition temperatures were also observed as the comonomer ratio of the polymer matrix changed as the degradation proceeded. The results show that the materials have desirable degradation properties and, thus, possess great potential as bioabsorbable and osteoconductive bone filling materials.

  1. Structures of benthic prokaryotic communities and their hydrolytic enzyme activities resuspended from samples of intertidal mudflats: An experimental approach

    Science.gov (United States)

    Mallet, Clarisse; Agogué, Hélène; Bonnemoy, Frédérique; Guizien, Katell; Orvain, Francis; Dupuy, Christine

    2014-09-01

    Resuspended sediment can increase plankton biomass and the growth of bacteria, thus influencing the coastal planktonic microbial food web. But little is known about resuspension itself: is it a single massive change or a whole series of events and how does it affect the quantity and quality of resuspended prokaryotic cells? We simulated the sequential erosion of mud cores to better understand the fate and role of benthic prokaryotes resuspended in the water column. We analyzed the total, attached and free-living prokaryotic cells resuspended, their structure and the activities of their hydrolytic enzymes in terms of the biotic and abiotic factors that affect the composition of microphytobenthic biofilm. Free living prokaryotes were resuspended during the fluff layer erosion phase (for shear velocities below 5 cm · s- 1) regardless of the bed sediment composition. At the higher shear velocities, resuspended prokaryotes were attached to particulate matter. Free and attached cells are thus unevenly distributed, scattered throughout the organic matter (OM) in the uppermost mm of the sediment. Only 10-27% of the total cells initially resuspended were living and most of the Bacteria were Cyanobacteria and Gamma-proteobacteria; their numbers increased to over 30% in parallel with the hydrolytic enzyme activity at highest shear velocity. These conditions released prokaryotic cells having different functions that lie deep in the sediment; the most important of them are Archaea. Finally, composition of resuspended bacterial populations varied with resuspension intensity, and intense resuspension events boosted the microbial dynamics and enzyme activities in the bottom layers of sea water.

  2. Hydrolytic enzymes production by Aspergillus section Nigri in presence of butylated hydroxyanisole and propyl paraben on peanut meal extract agar.

    Science.gov (United States)

    Barberis, Carla L; Landa, María F; Barberis, Mauricio G; Giaj-Merlera, Guillermo; Dalcero, Ana M; Magnoli, Carina E

    2014-01-01

    In the last years, food grade antioxidants are used safely as an alternative to traditional fungicides to control fungal growth in several food and agricultural products. In this work, the effect of butylated hydroxyanisole (BHA) and propyl paraben (PP) on two hydrolytic enzyme activity (β-d-glucosidase and α-d-galactosidase) by Aspergillus section Nigri species under different water activity conditions (aW; 0.98, 0.95 and 0.93) and incubation time intervals (24, 48, 72 and 96h) was evaluated on peanut-based medium. The activity of two glycosidases, β-d-glucosidase and α-d-galactosidase, was assayed using as substrates 4-nitrophenyl-β-d-glucopyranosido and 4-nitrophenyl-α-d-galactopyranosido, respectively. The enzyme activity was determined by the increase in optical density at 405nm caused by the liberation of p-nitrophenol by enzymatic hydrolysis of the substrate. Enzyme activity was expressed as micromoles of p-nitrophenol released per minute. The major inhibition in β-d-glucosidase activity of A. carbonarius and A. niger was found with 20mmoll(-1) of BHA or PP at 0.98 and 0.95 aW, respectively, whereas for α-d-galactosidase activity a significant decrease in enzyme activity with respect to control was observed in A. carbonarius among 5 to 20mmoll(-1) of BHA or PP in all conditions assayed. Regarding A. niger, the highest percentages of enzyme inhibition activity were found with 20mmoll(-1) of BHA or PP at 0.95 aW and 96h. The results of this work provide information about the capacity of BHA and PP to inhibit in vitro conditions two of the most important hydrolytic enzymes produced by A. carbonarius and A. niger species. Copyright © 2012 Revista Iberoamericana de Micología. Published by Elsevier Espana. All rights reserved.

  3. Quantitative phase analysis and microstructure characterization of magnetite nanocrystals obtained by microwave assisted non-hydrolytic sol–gel synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Sciancalepore, Corrado, E-mail: corrado.sciancalepore@unimore.it [Department of Engineering “Enzo Ferrari”, University of Modena and Reggio Emilia, Via Pietro Vivarelli 10, 41100 Modena (Italy); Bondioli, Federica [Department of Industrial Engineering, University of Parma, Parco Area delle Scienze, 181/A, 43124 Parma (Italy); INSTM Consortium, Via G. Giusti 9, 51121 Firenze (Italy); Manfredini, Tiziano [Department of Engineering “Enzo Ferrari”, University of Modena and Reggio Emilia, Via Pietro Vivarelli 10, 41100 Modena (Italy); INSTM Consortium, Via G. Giusti 9, 51121 Firenze (Italy); Gualtieri, Alessandro [Department of Chemical and Geological Science, University of Modena and Reggio Emilia, Via S. Eufemia 19, 41121 Modena Italy (Italy)

    2015-02-15

    An innovative preparation procedure, based on microwave assisted non-hydrolytic sol–gel synthesis, to obtain spherical magnetite nanoparticles was reported together with a detailed quantitative phase analysis and microstructure characterization of the synthetic products. The nanoparticle growth was analyzed as a function of the synthesis time and was described in terms of crystallization degree employing the Rietveld method on the magnetic nanostructured system for the determination of the amorphous content using hematite as internal standard. Product crystallinity increases as the microwave thermal treatment is increased and reaches very high percentages for synthesis times longer than 1 h. Microstructural evolution of nanocrystals was followed by the integral breadth methods to obtain information on the crystallite size-strain distribution. The results of diffraction line profile analysis were compared with nanoparticle grain distribution estimated by dimensional analysis of the transmission electron microscopy (TEM) images. A variation both in the average grain size and in the distribution of the coherently diffraction domains is evidenced, allowing to suppose a relationship between the two quantities. The traditional integral breadth methods have proven to be valid for a rapid assessment of the diffraction line broadening effects in the above-mentioned nanostructured systems and the basic assumption for the correct use of these methods are discussed as well. - Highlights: • Fe{sub 3}O{sub 4} nanocrystals were obtained by MW-assisted non-hydrolytic sol–gel synthesis. • Quantitative phase analysis revealed that crystallinity up to 95% was reached. • The strategy of Rietveld refinements was discussed in details. • Dimensional analysis showed nanoparticles ranging from 4 to 8 nm. • Results of integral breadth methods were compared with microscopic analysis.

  4. Synthesis and photoluminescent properties of yttrium vanadate phosphor prepared by the non-hydrolytic sol–gel process

    Energy Technology Data Exchange (ETDEWEB)

    Matos, Marcela G.; Faria, Emerson H. de; Rocha, Lucas A.; Calefi, Paulo S.; Ciuffi, Katia J. [Universidade de Franca, Av. Dr. Armando Salles Oliveira, 201 Franca, SP, CEP 14404-600 (Brazil); Nassar, Eduardo J., E-mail: ejnassar@unifran.br [Universidade de Franca, Av. Dr. Armando Salles Oliveira, 201 Franca, SP, CEP 14404-600 (Brazil); Sarmento, Victor Hugo Vitorino [Universidade Federal de Sergipe, Av. Ver. Olimpio Grande s/n Itabaiana, SE, CEP 49500-000 (Brazil)

    2014-03-15

    We used the non-hydrolytic sol–gel route to synthesize YVO{sub 4} crystalline phases doped with europium III ion. We heat-treated the samples at 600, 800, and 1000 °C and characterized the materials by thermal analysis, X-ray diffraction, small-angle X-ray scattering, and photoluminescence. Larger weight loss occurred until 500 °C, ascribed to removal of residual precursor molecules. X-ray diffraction patterns evidenced YVO{sub 4} phase formation at 600 °C. The crystallite size depended on the heat treatment temperature. SAXS showed that the nature of the system interfaces changed as a function of the thermal treatment. The excitation spectra of the samples displayed the charge transfer band. The photoluminescence data revealed the characteristic transition bands arising from the {sup 5}D{sub 0}→{sup 5}F{sub J} (J=0, 1, 2, 3, and 4) manifolds under maximum excitation at the charge transfer band and the {sup 5}L{sub 6} level of the Eu{sup 3+} ion. The {sup 5}D{sub 0}→{sup 7}F{sub 2} transition dominated the emission spectra, indicating that the Eu{sup 3+} ion occupies a site without inversion center. The lifetime and quantum efficiency values were about 0.70 ms and 50%, respectively, corroborating literature results. -- Highlights: • This study described the preparation of the yttrium vanadate by non-hydrolytic sol–gel. • The SAXS curves can be interpreted from the fractal theory for a two-phase model. • The goal of the work is the preparation of the phosphors at low temperature. • The lifetimes depend on wavelength of the excitation.

  5. Extracellular DNA in oral microbial biofilms.

    Science.gov (United States)

    Jakubovics, Nicholas S; Burgess, J Grant

    2015-07-01

    The extracellular matrix of microbial biofilms is critical for surface adhesion and nutrient homeostasis. Evidence is accumulating that extracellular DNA plays a number of important roles in biofilm integrity and formation on hard and soft tissues in the oral cavity. Here, we summarise recent developments in the field and consider the potential of targeting DNA for oral biofilm control.

  6. Facial recognition of heroin vaccine opiates: type 1 cross-reactivities of antibodies induced by hydrolytically stable haptenic surrogates of heroin, 6-acetylmorphine, and morphine.

    Science.gov (United States)

    Matyas, Gary R; Rice, Kenner C; Cheng, Kejun; Li, Fuying; Antoline, Joshua F G; Iyer, Malliga R; Jacobson, Arthur E; Mayorov, Alexander V; Beck, Zoltan; Torres, Oscar B; Alving, Carl R

    2014-03-14

    Novel synthetic compounds similar to heroin and its major active metabolites, 6-acetylmorphine and morphine, were examined as potential surrogate haptens for the ability to interface with the immune system for a heroin vaccine. Recent studies have suggested that heroin-like haptens must degrade hydrolytically to induce independent immune responses both to heroin and to the metabolites, resulting in antisera containing mixtures of antibodies (type 2 cross-reactivity). To test this concept, two unique hydrolytically stable haptens were created based on presumed structural facial similarities to heroin or to its active metabolites. After conjugation of a heroin-like hapten (DiAmHap) to tetanus toxoid and mixing with liposomes containing monophosphoryl lipid A, high titers of antibodies after two injections in mice had complementary binding sites that exhibited strong type 1 ("true") specific cross-reactivity with heroin and with both of its physiologically active metabolites. Mice immunized with each surrogate hapten exhibited reduced antinociceptive effects caused by injection of heroin. This approach obviates the need to create hydrolytically unstable synthetic heroin-like compounds to induce independent immune responses to heroin and its active metabolites for vaccine development. Facial recognition of hydrolytically stable surrogate haptens by antibodies together with type 1 cross-reactivities with heroin and its metabolites can help to guide synthetic chemical strategies for efficient development of a heroin vaccine.

  7. Thermomyces lanuginosus STm: a source of thermostable hydrolytic enzymes for novel application in extraction of high-quality natural rubber from Taraxacum kok-saghyz (rubber dandelion)

    Science.gov (United States)

    Hydrolytic enzymes from a newly isolated strain of the thermophilic fungus Thermomyces lanuginosus were used to extract rubber from Taraxacum kok-saghyz commonly known as rubber (or Russian or Kazak(h)) dandelion. The fungus was isolated from garden soil and identified as Thermomyces lanuginosus STm...

  8. Hydrolytic degradation of poly(D,L-lactide-co-glycolide 50/50)-di-acrylate network as studied by liquid chromatography-mass spectrometry

    NARCIS (Netherlands)

    Peters, R.; Lebouille, J.; Plum, B.; Schoenmakers, P.; van der Wal, S.

    2011-01-01

    The soluble products of the hydrolytic degradation of photochemically cross-linked poly-(d,l-lactide-co-glycolide 50/50)-di-acrylate film were analysed at different stages to obtain insight into the complex (bio)degradation processes. Liquid chromatography-mass spectrometry analyses have been used t

  9. Mycoparasitism studies of Trichoderma species against three phytopathogenic fungi: evaluation of antagonism and hydrolytic enzyme production.

    Science.gov (United States)

    Qualhato, Thiago Fernandes; Lopes, Fabyano Alvares Cardoso; Steindorff, Andrei Stecca; Brandão, Renata Silva; Jesuino, Rosália Santos Amorim; Ulhoa, Cirano José

    2013-09-01

    Trichoderma spp. are used for biocontrol of several plant pathogens. However, their efficient interaction with the host needs to be accompanied by production of secondary metabolites and cell wall-degrading enzymes. Three parameters were evaluated after interaction between four Trichoderma species and plant-pathogenic fungi: Fusarium solani, Rhizoctonia solani and Sclerotinia sclerotiorum. Trichoderma harzianum and T. asperellum were the most effective antagonists against the pathogens. Most of the Trichoderma species produced toxic volatile metabolites, having significant effects on growth and development of the plant pathogens. When these species were grown in liquid cultures with cell walls from these plant pathogens, they produced and secreted β-1,3-glucanase, NAGAse, chitinase, acid phosphatase, acid proteases and alginate lyase.

  10. Effects of Lactobacillus plantarum and hydrolytic enzymes on fermentation and ruminal degradability of orange pulp silage

    Directory of Open Access Journals (Sweden)

    HAMID PAYA

    2015-12-01

    Full Text Available The current study was carried out to examine the effect of inoculants, enzymes and mixtures of them on the fermentation, degradability and nutrient value of orange pulp silage. Orange pulp was treated with water (control, inoculant (Lactobacillus plantarum, enzymes (multiple enzyme or inoculants + enzymes prior to ensiling (denoted C, I, E and I+E. For ensiled orange pulp, 84 kg of orange pulp were mixed with 16 kg of wheat straw as an absorbent. Three mini-silos were prepared for each treatment and ensiled for 90 days. Data of each silo within each silage treatment was averaged and used as an experimental unit in a completely random design. Silage pH, total fatty acid and ammonia nitrogen were determined. Silage pH and lactic acid concentration were lowest and highest respectively for I and I+E (p<0.01, while the lowest (p <0.01 NH3N concentration (49.8 g/kg total N was observed in I compared to the control. The lowest acetic and butyric acid concentrations were observed in I and I+E compared with the control (p <0.01. The highest metabolizable energy (ME, net energy lactation (NEl, digestible organic matter in dry matter (DOMD, short chain fatty acid (SCFA and microbial protein (MP values were observed for I+E (p <0.01. The in vitro degradability of dry matter (IVDMD was highest (P<0.01 in I+E, while the highest (P<0.01 effective degradability of DM (EDDM was observed for E and I+E treatments. These results indicated that the bacterial inoculants and combination of enzyme and bacterial inoculants clearly improved silage fermentation characteristic. In addition, the ME, DOM, MP and IVDMD of I+E were significantly improved.

  11. Human pancreatic cancer tumors are nutrient poor and tumor cells actively scavenge extracellular protein.

    Science.gov (United States)

    Kamphorst, Jurre J; Nofal, Michel; Commisso, Cosimo; Hackett, Sean R; Lu, Wenyun; Grabocka, Elda; Vander Heiden, Matthew G; Miller, George; Drebin, Jeffrey A; Bar-Sagi, Dafna; Thompson, Craig B; Rabinowitz, Joshua D

    2015-02-01

    Glucose and amino acids are key nutrients supporting cell growth. Amino acids are imported as monomers, but an alternative route induced by oncogenic KRAS involves uptake of extracellular proteins via macropinocytosis and subsequent lysosomal degradation of these proteins as a source of amino acids. In this study, we examined the metabolism of pancreatic ductal adenocarcinoma (PDAC), a poorly vascularized lethal KRAS-driven malignancy. Metabolomic comparisons of human PDAC and benign adjacent tissue revealed that tumor tissue was low in glucose, upper glycolytic intermediates, creatine phosphate, and the amino acids glutamine and serine, two major metabolic substrates. Surprisingly, PDAC accumulated essential amino acids. Such accumulation could arise from extracellular proteins being degraded through macropinocytosis in quantities necessary to meet glutamine requirements, which in turn produces excess of most other amino acids. Consistent with this hypothesis, active macropinocytosis is observed in primary human PDAC specimens. Moreover, in the presence of physiologic albumin, we found that cultured murine PDAC cells grow indefinitely in media lacking single essential amino acids and replicate once in the absence of free amino acids. Growth under these conditions was characterized by simultaneous glutamine depletion and essential amino acid accumulation. Overall, our findings argue that the scavenging of extracellular proteins is an important mode of nutrient uptake in PDAC.

  12. Decrease of extracellular taurine in the rat dorsal hippocampus after central nervous administration of vasopressin

    DEFF Research Database (Denmark)

    Brust, P; Christensen, Thomas; Diemer, Nils Henrik

    1992-01-01

    The extracellular amino acid concentrations in the left and right dorsal hippocampus of male rats were studied before and during application of vasopressin into the right hippocampus. The method of intracerebral microdialysis was used for both arginine vasopressin administration and monitoring...... of the composition of the extracellular fluid. The concentrations of 16 amino acids were measured by HPLC in the perfusate samples. The level of taurine declined 20% in the right hippocampus during perfusion with vasopressin, whereas o-phosphoethanolamine decreased in both sides, the left 20% and the right 24...

  13. Monitoring the Hydrolysis of Olive Oil Catalyzed by Lipase via Acid Value Detection

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Hydrolysis of olive oil catalyzed by Candida lipolytica lipase was investigated. The relative concentration of the components in the product was determined by using high performance liquid chromatography(HPLC). Furthermore, a novel rapid method to detect the hydrolytic process of olive oil was developed based on the relationship between the acid value and the relative concentration of the different components.

  14. Extracellular DNA metabolism in Haloferax volcanii

    Directory of Open Access Journals (Sweden)

    Scott eChimileski

    2014-02-01

    Full Text Available Extracellular DNA is found in all environments and is a dynamic component of the micro-bial ecosystem. Microbial cells produce and interact with extracellular DNA through many endogenous mechanisms. Extracellular DNA is processed and internalized for use as genetic information and as a major source of macronutrients, and plays several key roles within prokaryotic biofilms. Hypersaline sites contain some of the highest extracellular DNA con-centrations measured in nature–a potential rich source of carbon, nitrogen and phosphorus for halophilic microorganisms. We conducted DNA growth studies for the halophilic archaeon Haloferax volcanii DS2 and show that this model Halobacteriales strain is capable of using exogenous double-stranded DNA as a nutrient. Further experiments with varying medium composition, DNA concentration and DNA types revealed that DNA is utilized primarily as a phosphorus source, that growth on DNA is concentration-dependent and that DNA isolated from different sources is metabolized selectively, with a bias against highly divergent methylated DNA sources. Additionally, fluorescence microscopy experiments showed that labeled DNA colocalized with Haloferax volcanii cells. The gene Hvo_1477 was also identified using a comparative genomic approach as a factor likely to be involved in extracellular DNA processing at the cell surface, and deletion of Hvo_1477 created an H. volcanii strain deficient in its ability to grow on extracellular DNA. Widespread distribution of Hvo_1477 homologs in archaea suggests metabolism of extracellular DNA may be of broad ecological and physiological relevance in this domain of life.

  15. Extracellular Vesicles in Heart Disease: Excitement for the Future?

    Directory of Open Access Journals (Sweden)

    Kirsty M. Danielson

    2014-01-01

    Full Text Available Extracellular vesicles (EV, including exosomes, microvesicles and apoptotic bodies, are released from numerous cell types and are involved in intercellular communication, physiological functions and the pathology of disease. They have been shown to carry and transfer a wide range of cargo including proteins, lipids and nucleic acids. The role of EVs in cardiac physiology and heart disease is an emerging field that has produced intriguing findings in recent years. This review will outline what is currently known about EVs in the cardiovascular system, including cellular origins, functional roles and utility as biomarkers and potential therapeutics.

  16. Extracellular Proteins Limit the Dispersal of BiogenicNanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Moreau, John W.; Weber, Peter K.; Martin, Michael C.; Gilbert,Benjamin; Hutcheon, Ian D.; Banfield, Jillian F.

    2007-04-27

    High spatial-resolution secondaryion microprobespectrometry, synchrotron radiation Fourier-transform infraredspectroscopy and polyacrylamide gel analysis demonstrate the intimateassociation of proteins with spheroidal aggregates of biogenic zincsulfide nanocrystals, an example of extracellular biomineralization.Experiments involving synthetic ZnS nanoparticles and representativeamino acids indicate a driving role for cysteine in rapid nanoparticleaggregation. These findings suggest that microbially-derivedextracellular proteins can limit dispersal of nanoparticulatemetal-bearing phases, such as the mineral products of bioremediation,that may otherwise be transported away from their source by subsurfacefluid flow.

  17. Agrowaste-based Polyhydroxyalkanoate (PHA production using hydrolytic potential of Bacillus thuringiensis IAM 12077

    Directory of Open Access Journals (Sweden)

    Vaishnavi Gowda

    2014-02-01

    Full Text Available The study identified the innate enzymatic potential (amylase of the PHB producing strain B.thuringiensis IAM 12077 and explored the same for cost-effective production of PHB using agrowastes, eliminating the need for pretreatment (acid hydrolysis and/or commercial enzyme. Comparative polyhydroxyalkanoate (PHA production by B. thuringiensis IAM 12077 in biphasic growth conditions using glucose and starch showed appreciable levels of growth (5.7 and 6.8 g/L and PHA production (58.5 and 41.5% with a PHA yield of 3.3 and 2.8 g/L, respectively. Nitrogen deficiency supported maximum PHA yield (2.46 g/L and accumulation (53.3%. Maximum growth (3.6 g/L, PHB yield (2.6 g/L and PHA accumulation (72.8% was obtained with C:N ratio of 8:1 using starch as the carbon source (10 g/L. Nine substrates (agro and food wastes viz. rice husk, wheat bran, ragi husk, jowar husk, jackfruit seed powder, mango peel, potato peel, bagasse and straw were subjected to two treatments- acid hydrolysis and hydrolysis by innate enzymes, and the reducing sugars released thereby were utilized for polymer production. All the substrates tested supported comparable PHB production with acid hydrolysis (0.96 g/L-8.03 g/L and enzyme hydrolysis (0.96 g/L -5.16 g/L. Mango peel yielded the highest PHB (4.03 g/L; 51.3%, followed by jackfruit seed powder (3.93 g/L; 29.32%. Varied levels of amylase activity (0.25U-10U in all the substrates suggested the enzymatic hydrolysis of agrowastes.

  18. The voltage dependence of GABAA receptor gating depends on extracellular pH.

    Science.gov (United States)

    Pytel, Maria; Mercik, Katarzyna; Mozrzymas, Jerzy W

    2005-11-28

    Recent studies have indicated that changes in extracellular pH and in membrane voltage affect the gamma-amino-n-butyric acid type A receptor gating mainly by altering desensitization and binding. To test whether the effects of membrane potential and pH are additive, their combined actions were investigated. By analyzing the current responses to rapid gamma-amino-n-butyric acid applications, we found that the current to voltage relationship was close to linear at acid pH but the increasing pH induced an inward rectification. Desensitization was enhanced at depolarizing potentials, but this strongly depended on pH, being weak at acidic and strong at basic pH values. A similar trend was observed for the onset rate of responses to saturating gamma-amino-n-butyric acid concentration. These data provide evidence that the voltage sensitivity of GABAA receptors depends on extracellular pH.

  19. The voltage dependence of GABAA receptor gating depends on extracellular pH

    Science.gov (United States)

    Pytel, Maria; Mercik, Katarzyna; Mozrzymas, Jerzy W.

    2007-01-01

    Recent studies have indicated that changes in extracellular pH and in membrane voltage affect the γ-amino-n-butyric acid type A receptor gating mainly by altering desensitization and binding. To test whether the effects of membrane potential and pH are additive, their combined actions were investigated. By analyzing the current responses to rapid γ-amino-n-butyric acid applications, we found that the current to voltage relationship was close to linear at acid pH but the increasing pH induced an inward rectification. Desensitization was enhanced at depolarizing potentials, but this strongly depended on pH, being weak at acidic and strong at basic pH values. A similar trend was observed for the onset rate of responses to saturating γ-amino-n-butyric acid concentration. These data provide evidence that the voltage sensitivity of GABAA receptors depends on extracellular pH. PMID:16272885

  20. Hydrolytic degradation profile and RP-HPLC estimation of cilostazol in tablet dosage form

    Directory of Open Access Journals (Sweden)

    Basniwal P

    2008-01-01

    Full Text Available A simple, selective, precise and stability-indicating high-performance liquid-chromatographic method of analysis of cilostazol in pharmaceutical dosage form was developed and validated. The solvent system consisted of 10 mM phosphate buffer (pH 6.0:acetonitrile:methanol (20:40:40. Retention time of cilostazol in C18 column was 5.7 ± 0.1 min at the flow rate 1.3 ml/min. Cilostazol was detected at 248 nm at room temperature. The linear regression analysis data for the calibration plots showed good linear relationship with correlation coefficient value, r 2 =0.9998 in the concentration range 100-3200 ng/ml with slope 43.45 intercept 156.75. The method was validated for linearity, range, accuracy, precision and specificity. Cilostazol was determined in tablet dosage form in range of 99.58-100.67% with 0.4600 standard deviation. Stress studies were conducted in acid and alkali hydrolysis with gradual increasing concentration. Cilostazol was found to be stable in various concentrations of acidic and alkaline.

  1. Impact of fire, landscape position, aspect, and soil depth on microbial extracellular enzyme activities in the Jemez River Basin Critical Zone Observatory.

    Science.gov (United States)

    Fairbanks, D.; Murphy, M. A.; Frost, G.; Chorover, J.; Gallery, R. E.; Rich, V. I.

    2014-12-01

    Fire frequency and severity are increasing across the western US, and post-fire recovery and effects on critical zone structure are not fully understood. Resident microbiota (bacteria and fungi) transform the majority of carbon in ecosystems, and the structure of these communities influence seedling establishment and the trajectory of vegetative recovery as well as biogeochemical cycling. We surveyed changes in microbial composition and activity after wildfire to better understand soil microbial resilience and fire ecology. Specifically, we assessed potential extracellular enzyme activities in response to fire severity across landscape position and aspect. We sampled 18 days after containment of the June 2013 Thompson Ridge Fire in the Jemez River Basin Critical Zone Observatory, across a gradient of burn severities in a mixed-conifer zero order basin. We subsampled six depths through the surface soil profile and measured potential activities of seven hydrolytic enzymes using established fluorometric techniques. Four of these enzymes hydrolyze C-rich substrates (β-glucosidase [BG], β-D-cellubiosidase [CB], xylosidase [XYL], and α-glucosidase [AG], two hydrolyze N-rich substrates N-acetyl-β-glucosaminidase [NAG] and leucine aminopeptidase [LAP]), and one hydrolyzes a P-rich substrate (acid phosphatase [PHOS]). Results showed decreased activities with depth for BG, CB, and LAP. Significantly higher potential enzyme activity was observed for convergent sites relative to planar or divergent sites across all depths sampled. Additionally, we looked at shifts in enzyme nutrient acquisition ratios that correspond with resource limitations relative to microbial stoichiometric demands. Higher acquisition potential is interpreted as greater resource allocation towards nutrient acquisition. Results showed a variance in resource acquisition potential with depth for C relative to N, with greater resources being allocated towards acquiring C at shallower depth. Conversely

  2. Enzyme disintegration with spatial resolution reveals different distributions of sludge extracellular polymer substances

    National Research Council Canada - National Science Library

    Lü, Fan; Wang, Jingwen; Shao, Liming; He, Pinjing

    2016-01-01

    To understand the intrinsic role of hydrolytic enzymes in sludge treatment, particularly their effect on the digestibility and dewaterability of sludge, activated sludge flocs were disintegrated using...

  3. Effect of herbizid and touchdown herbicides on soil fungi and on production of some extracellular enzymes.

    Science.gov (United States)

    El-Said, A H M; Abdel-Hafez, S I I; Saleem, A

    2005-01-01

    Glucophilic and cellulose-decomposing fungi were significantly reduced in soil samples treated with 0.019-0.152 mg a.i./kg soil of the herbicides Herbizid and Touchdown. The decrease was regularly correlated with the doses of the two herbicides and persisted till the end of the experiment (12 weeks). The isolated fungi were found to be able to produce hydrolytic extracellular enzymes in solid media but with variable capabilities. The ability to produce enzymes was adversily affected by the incorporation of herbicides in culture media. Lower doses of herbicides were occasionally promotive to enzyme production and mycelial growth of some fungi. Incorporation of 50 ppm of Herbizid and Touchdown significantly activated amylase production and mycelial dry weight in cultures of Fusarium oxysporum, Mucor hiemalis and Penicillium chrysogenum. There was a significant increase in C1-cellulase produced by F. oxysporum and P. aurantiogriseum when cultures were treated with 50, 100 and 200 ppm of Herbizid which induced also more Cx-cellulase production by P. chrysogenum. Lipase and protease production was always lower in treated than in control fungal cultures.

  4. and extracellular laccase isoenzymes from Pleurotus ostreatus ...

    African Journals Online (AJOL)

    ZMG

    Colonia Vicentina, Delegación Iztapalapa, 09340 México D.F., México. ... In this study, extracellular laccase enzymes produced by Pleurotus ostreatus was identified in .... the intracellular forms), through the modified zymography method of.

  5. Bacterial binding to extracellular proteins - in vitro adhesion

    DEFF Research Database (Denmark)

    Schou, C.; Fiehn, N.-E.

    1999-01-01

    Viridans streptococci, bacterial adherence, extracellular matrix proteins, surface receptors, endocarditis......Viridans streptococci, bacterial adherence, extracellular matrix proteins, surface receptors, endocarditis...

  6. Imbalanced nutrient recycling in a warmer ocean driven by differential response of extracellular enzymatic activities.

    Science.gov (United States)

    Ayo, Begoña; Abad, Naiara; Artolozaga, Itxaso; Azua, Iñigo; Baña, Zuriñe; Unanue, Marian; Gasol, Josep M; Duarte, Carlos M; Iriberri, Juan

    2017-10-01

    Ocean oligotrophication concurrent with warming weakens the capacity of marine primary producers to support marine food webs and act as a CO2 sink, and is believed to result from reduced nutrient inputs associated to the stabilization of the thermocline. However, nutrient supply in the oligotrophic ocean is largely dependent on the recycling of organic matter. This involves hydrolytic processes catalyzed by extracellular enzymes released by bacteria, which temperature dependence has not yet been evaluated. Here, we report a global assessment of the temperature-sensitivity, as represented by the activation energies (Ea ), of extracellular β-glucosidase (βG), leucine aminopeptidase (LAP) and alkaline phosphatase (AP) enzymatic activities, which enable the uptake by bacteria of substrates rich in carbon, nitrogen, and phosphorus, respectively. These Ea were calculated from two different approaches, temperature experimental manipulations and a space-for-time substitution approach, which generated congruent results. The three activities showed contrasting Ea in the subtropical and tropical ocean, with βG increasing the fastest with warming, followed by LAP, while AP showed the smallest increase. The estimated activation energies predict that the hydrolysis products under projected warming scenarios will have higher C:N, C:P and N:P molar ratios than those currently generated, and suggest that the warming of oceanic surface waters leads to a decline in the nutrient supply to the microbial heterotrophic community relative to that of carbon, particularly so for phosphorus, slowing down nutrient recycling and contributing to further ocean oligotrophication. © 2017 John Wiley & Sons Ltd.

  7. Imbalanced nutrient recycling in a warmer ocean driven by differential response of extracellular enzymatic activities

    KAUST Repository

    Ayo, Begoña

    2017-06-08

    Ocean oligotrophication concurrent with warming weakens the capacity of marine primary producers to support marine food webs and act as a CO2 sink, and is believed to result from reduced nutrient inputs associated to the stabilization of the thermocline. However, nutrient supply in the oligotrophic ocean is largely dependent on the recycling of organic matter. This involves hydrolytic processes catalyzed by extracellular enzymes released by bacteria, which temperature-dependence has not yet been evaluated. Here we report a global assessment of the temperature-sensitivity, as represented by the activation energies (Ea ), of extracellular β-glucosidase (βG), leucine aminopeptidase (LAP) and alkaline phosphatase (AP) enzymatic activities, which enable the uptake by bacteria of substrates rich in carbon, nitrogen and phosphorus, respectively. These Ea were calculated from two different approaches, temperature experimental manipulations and a space-for-time substitution approach, which generated congruent results. The three activities showed contrasting Ea in the subtropical and tropical ocean, with βG increasing the fastest with warming, followed by LAP, while AP showed the smallest increase. The estimated activation energies predict that the hydrolysis products under projected warming scenarios will have higher C:N, C:P and N:P molar ratios than those currently generated, and suggest that the warming of oceanic surface waters leads to a decline in the nutrient supply to the microbial heterotrophic community relative to that of carbon, particularly so for phosphorus, slowing down nutrient recycling and contributing to further ocean oligotrophication. This article is protected by copyright. All rights reserved.

  8. The extracellular RNA complement of Escherichia coli.

    Science.gov (United States)

    Ghosal, Anubrata; Upadhyaya, Bimal Babu; Fritz, Joëlle V; Heintz-Buschart, Anna; Desai, Mahesh S; Yusuf, Dilmurat; Huang, David; Baumuratov, Aidos; Wang, Kai; Galas, David; Wilmes, Paul

    2015-01-21

    The secretion of biomolecules into the extracellular milieu is a common and well-conserved phenomenon in biology. In bacteria, secreted biomolecules are not only involved in intra-species communication but they also play roles in inter-kingdom exchanges and pathogenicity. To date, released products, such as small molecules, DNA, peptides, and proteins, have been well studied in bacteria. However, the bacterial extracellular RNA complement has so far not been comprehensively characterized. Here, we have analyzed, using a combination of physical characterization and high-throughput sequencing, the extracellular RNA complement of both outer membrane vesicle (OMV)-associated and OMV-free RNA of the enteric Gram-negative model bacterium Escherichia coli K-12 substrain MG1655 and have compared it to its intracellular RNA complement. Our results demonstrate that a large part of the extracellular RNA complement is in the size range between 15 and 40 nucleotides and is derived from specific intracellular RNAs. Furthermore, RNA is associated with OMVs and the relative abundances of RNA biotypes in the intracellular, OMV and OMV-free fractions are distinct. Apart from rRNA fragments, a significant portion of the extracellular RNA complement is composed of specific cleavage products of functionally important structural noncoding RNAs, including tRNAs, 4.5S RNA, 6S RNA, and tmRNA. In addition, the extracellular RNA pool includes RNA biotypes from cryptic prophages, intergenic, and coding regions, of which some are so far uncharacterised, for example, transcripts mapping to the fimA-fimL and ves-spy intergenic regions. Our study provides the first detailed characterization of the extracellular RNA complement of the enteric model bacterium E. coli. Analogous to findings in eukaryotes, our results suggest the selective export of specific RNA biotypes by E. coli, which in turn indicates a potential role for extracellular bacterial RNAs in intercellular communication. © 2015 The

  9. Transcriptome of extracellular vesicles released by hepatocytes.

    Directory of Open Access Journals (Sweden)

    Felix Royo

    Full Text Available The discovery that the cells communicate through emission of vesicles has opened new opportunities for better understanding of physiological and pathological mechanisms. This discovery also provides a novel source for non-invasive disease biomarker research. Our group has previously reported that hepatocytes release extracellular vesicles with protein content reflecting the cell-type of origin. Here, we show that the extracellular vesicles released by hepatocytes also carry RNA. We report the messenger RNA composition of extracellular vesicles released in two non-tumoral hepatic models: primary culture of rat hepatocytes and a progenitor cell line obtained from a mouse foetal liver. We describe different subpopulations of extracellular vesicles with different densities and protein and RNA content. We also show that the RNA cargo of extracellular vesicles released by primary hepatocytes can be transferred to rat liver stellate-like cells and promote their activation. Finally, we provide in vitro and in vivo evidence that liver-damaging drugs galactosamine, acetaminophen, and diclofenac modify the RNA content of these vesicles. To summarize, we show that the extracellular vesicles secreted by hepatocytes contain various RNAs. These vesicles, likely to be involved in the activation of stellate cells, might become a new source for non-invasive identification of the liver toxicity markers.

  10. Biological conduits combining bone marrow mesenchymal stem cells and extracellular matrix to treat long-segment sciatic nerve defects

    Directory of Open Access Journals (Sweden)

    Yang Wang

    2015-01-01

    Full Text Available The transplantation of polylactic glycolic acid conduits combining bone marrow mesenchymal stem cells and extracellular matrix gel for the repair of sciatic nerve injury is effective in some respects, but few data comparing the biomechanical factors related to the sciatic nerve are available. In the present study, rabbit models of 10-mm sciatic nerve defects were prepared. The rabbit models were repaired with autologous nerve, a polylactic glycolic acid conduit + bone marrow mesenchymal stem cells, or a polylactic glycolic acid conduit + bone marrow mesenchymal stem cells + extracellular matrix gel. After 24 weeks, mechanical testing was performed to determine the stress relaxation and creep parameters. Following sciatic nerve injury, the magnitudes of the stress decrease and strain increase at 7,200 seconds were largest in the polylactic glycolic acid conduit + bone marrow mesenchymal stem cells + extracellular matrix gel group, followed by the polylactic glycolic acid conduit + bone marrow mesenchymal stem cells group, and then the autologous nerve group. Hematoxylin-eosin staining demonstrated that compared with the polylactic glycolic acid conduit + bone marrow mesenchymal stem cells group and the autologous nerve group, a more complete sciatic nerve regeneration was found, including good myelination, regularly arranged nerve fibers, and a completely degraded and resorbed conduit, in the polylactic glycolic acid conduit + bone marrow mesenchymal stem cells + extracellular matrix gel group. These results indicate that bridging 10-mm sciatic nerve defects with a polylactic glycolic acid conduit + bone marrow mesenchymal stem cells + extracellular matrix gel construct increases the stress relaxation under a constant strain, reducing anastomotic tension. Large elongations under a constant physiological load can limit the anastomotic opening and shift, which is beneficial for the regeneration and functional reconstruction of sciatic nerve. Better

  11. The effects of extracellular acidosis on neurons and glia in vitro.

    Science.gov (United States)

    Goldman, S A; Pulsinelli, W A; Clarke, W Y; Kraig, R P; Plum, F

    1989-08-01

    Cerebral lactic acid, a product of ischemic anaerobic glycolysis, may directly contribute to ischemic brain damage in vivo. In this study we evaluated the effects of extracellular acid exposure on 7-day-old cultures of embryonic rat forebrain. Mixed neuronal and glial cultures were exposed to either lactic or hydrochloric acid to compare the toxicities of relatively permeable and impermeable acids. Neurons were relatively resistant to extra-cellular HCl acidosis, often surviving 10-min exposures to pH 3.8. In the same cultures, immunochemically defined astrocytes survived 10-min HCl exposures to a maximum acidity of pH 4.2. Similarly, axonal bundles defasciculated in HCl-titrated media below pH 4.4, although their constituent fibers often survived pH 3.8. Cell death occurred at higher pH in cultures subjected to lactic acidosis than in those exposed to HCl. Over half of forebrain neurons and glia subjected for 10 min to lactic acidification failed to survive exposure to pH 4.9. Longer 1-h lactic acid incubations resulted in cell death below pH 5.2. The potent cytotoxicity of lactic acid may be a direct result of the relatively rapid transfer of its neutral protonated form across cell membranes. This process would rapidly deplete intracellular buffer stores, resulting in unchecked cytosolic acidification. Neuronal and glial death from extracellular acidosis may therefore be a function of both the degree and the rapidity of intracellular acidification.

  12. Extracellular Vesicles from Ovarian Carcinoma Cells Display Specific Glycosignatures

    Directory of Open Access Journals (Sweden)

    Joana Gomes

    2015-08-01

    Full Text Available Cells release vesicles to the extracellular environment with characteristic nucleic acid, protein, lipid, and glycan composition. Here we have isolated and characterized extracellular vesicles (EVs and total cell membranes (MBs from ovarian carcinoma OVMz cells. EVs were enriched in specific markers, including Tsg101, CD63, CD9, annexin-I, and MBs contained markers of cellular membrane compartments, including calnexin, GRASP65, GS28, LAMP-1, and L1CAM. The glycoprotein galectin-3 binding protein (LGALS3BP was strongly enriched in EVs and it contained sialylated complex N-glycans. Lectin blotting with a panel of lectins showed that EVs had specific glycosignatures relative to MBs. Furthermore, the presence of glycoproteins bearing complex N-glycans with α2,3-linked sialic acid, fucose, bisecting-GlcNAc and LacdiNAc structures, and O-glycans with the T-antigen were detected. The inhibition of N-glycosylation processing from high mannose to complex glycans using kifunensine caused changes in the composition of EVs and induced a decrease of several glycoproteins. In conclusion, the results showed that glycosignatures of EVs were specific and altered glycosylation within the cell affected the composition and/or dynamics of EVs release. Furthermore, the identified glycosignatures of EVs could provide novel biomarkers for ovarian cancer.

  13. Stability of barakol under hydrolytic stress conditions and its major degradation product.

    Science.gov (United States)

    Chantong, Boonrat; Wongtongtair, Supim; Nusuetrong, Punnee; Sotanaphun, Uthai; Chaichantipyuth, Chaiyo; Meksuriyen, Duangdeun

    2009-03-01

    The aim of the present study was to investigate the stability of barakol, an anxiolytic constituent extracted from leaves of Senna siamea (Lam.) Irwin & Barneby (syn. Cassia siamea Lam.), under the International Conference on Harmonisation suggested conditions using HPLC with photodiode array detection. Extensive degradation of barakol was found to occur under alkaline conditions through base-catalyzed hydrolysis. Mild degradation of barakol was observed under thermal and oxidative stress while it was stable under acidic conditions. The reaction rate constants (Kobs) of barakol degradation under alkaline conditions at pHs 12 and 13 were 3.0x10(-5) and 9.6x10(-3) min(-1), respectively. The activation energy according to the Arrhenius plot was calculated to be 26.9+/-3.3 kcal/mol at pH 13 and temperatures between 12 and 51 degrees C. The major degradation product of barakol under both alkaline and thermal stress conditions was characterized by LC-MS and NMR as cassiachromone.

  14. Metal compound-mediated hydrolytic cleavage of oxidized insulin B chain: Regioselectivity and influence of peptide secondary structure

    Institute of Scientific and Technical Information of China (English)

    罗雪梅; 何卫江; 张宇; 郭子建; 朱龙根

    2000-01-01

    The interaction of oxidized insulin B chain (B) with cis-[Pd-(en) Cl2] (en= ethylendiamine), cis-[Pd-(dtco-3-OH)Cl2](dtc o-3-OH= dithiacyclooctan-3-ol) and CuCl2 was studied by electrospray mass spectrometry. It is discovered that the binding of Pd(Ⅱ) complexes and the sites of cleavage are highly dependent on the secondary structure and local e nvironment of B. The hydrolytic cleavage of denatured B by Pd (Ⅱ) complexes was monitored by HPLC. The reaction is regioselective and follows first order kinetics with half-life of 4.8 days at 40°C. Two a mide bonds, i.e. at Leu6-Cys7 and at Gly8-Ser9, which are close to the two potential Pd(Ⅱ) binding sites His5 and His10, are selectively cleaved. In the case of Cu(Ⅱ) ion as promoter, only one cleavage site was observed which is located at Gly8-Ser9 bond. These results provide improved understanding on the deign of artificial metallopeptidase.

  15. Ruthenium nanoparticles confined in SBA-15 as highly efficient catalyst for hydrolytic dehydrogenation of ammonia borane and hydrazine borane

    Science.gov (United States)

    Yao, Qilu; Lu, Zhang-Hui; Yang, Kangkang; Chen, Xiangshu; Zhu, Meihua

    2015-10-01

    Ultrafine ruthenium nanoparticles (NPs) within the mesopores of the SBA-15 have been successfully prepared by using a “double solvents” method, in which n-hexane is used as a hydrophobic solvent and RuCl3 aqueous solution is used as a hydrophilic solvent. After the impregnation and reduction processes, the samples were characterized by XRD, TEM, EDX, XPS, N2 adsorption-desorption, and ICP techniques. The TEM images show that small sized Ru NPs with an average size of 3.0 ± 0.8 nm are uniformly dispersed in the mesopores of SBA-15. The as-synthesized Ru@SBA-15 nanocomposites (NCs) display exceptional catalytic activity for hydrogen generation by the hydrolysis of ammonia borane (NH3BH3, AB) and hydrazine borane (N2H4BH3, HB) at room temperature with the turnover frequency (TOF) value of 316 and 706 mol H2 (mol Ru min)-1, respectively, relatively high values reported so far for the same reaction. The activation energies (Ea) for the hydrolysis of AB and HB catalyzed by Ru@SBA-15 NCs are measured to be 34.8 ± 2 and 41.3 ± 2 kJ mol-1, respectively. Moreover, Ru@SBA-15 NCs also show satisfied durable stability for the hydrolytic dehydrogenation of AB and HB, respectively.

  16. Hydrolytic protein cleavage mediated by unusual mononuclear copper(II) complexes: X-ray structures and solution studies.

    Science.gov (United States)

    de Oliveira, Mauricio C B; Scarpellini, Marciela; Neves, Ademir; Terenzi, Hernán; Bortoluzzi, Adailton J; Szpoganics, Bruno; Greatti, Alessandra; Mangrich, Antônio S; de Souza, Emanuel M; Fernandez, Pablo M; Soares, Marcia R

    2005-02-21

    The crystal structures and redox and UV-vis/EPR spectroscopic properties of two new mononuclear copper(II) complexes, [Cu(HL1)Cl2] (1) and [Cu(L1)Cl] (2), prepared through the reaction between copper(II) chloride and the ligand 2-[(bis(pyridylmethyl)amino)methyl]-4-methyl-6-formylphenol (HL1) under distinct base conditions, are reported along with solution studies. Also, we demonstrate that these CuII complexes are able to cleave unactivated peptide bonds from bovine serum albumin (BSA) and the thermostable enzyme Taq DNA polymerase at micromolar concentration, under mild pH and temperature conditions. The cleavage activity seems to be specific with defined proteolytic fragments appearing after protein treatment. The location of the specific cleavage sites was tentatively assigned to solvent-accessible portions of the protein. These are two of the most active Cu(II) complexes described to date, since their cleavage activity is detected in minutes and evidence is here presented for a hydrolytic mechanism mediating protein cleavage by these complexes.

  17. Crucial differences in the hydrolytic degradation between industrial polylactide and laboratory-scale poly(L-lactide).

    Science.gov (United States)

    Höglund, Anders; Odelius, Karin; Albertsson, Ann-Christine

    2012-05-01

    The rate of degradation of large-scale synthesized polylactide (PLA) of industrial origin was compared with that of laboratory-scale synthesized poly(L-lactide) (PLLA) of similar molar mass. The structural discrepancy between the two material types resulted in a significant difference in degradation rate. Although the hydrolysis of industrial PLA was substantially faster than that of PLLA, the PLA material became less brittle and fragmented to a lesser extent during degradation. In addition, a comprehensive picture of the degradation of industrial PLA was obtained by subjecting different PLA materials to hydrolytic degradation at various temperatures and pH's for up to 182 days. The surrounding environment had no effect on the degradation rate at physiological temperature, but the degradation was faster in water than in a phosphate buffer after prolonged degradation at temperatures above the T(g). The degree of crystallinity had a greater influence than the degradation environment on the rate of hydrolysis. For a future use of polylactide in applications where bulk plastics are generally used today, for example plastic packages, the appropriate PLA grade must be chosen based on the conditions prevailing in the degradation environment.

  18. Hydrolytic activity and ultrastructural changes in fruit skins from two prickly pear (Opuntia sp.) varieties during storage.

    Science.gov (United States)

    Carrillo-López, Armando; Cruz-Hernández, Andrés; Cárabez-Trejo, Alfonso; Guevara-Lara, Fidel; Paredes-López, Octavio

    2002-03-13

    The activity of four cell wall hydrolases, pectinmethylesterase (PME), polygalacturonase (PG), cellulase, and beta-galactosidase (beta-Gal), was measured in fruit skins of two prickly pear varieties, Naranjona and Charola, during storage at 18 degrees C and 85-95% relative humidity (RH). In Naranjona (Opuntia ficus indica), of short postharvest life (ca. 2 weeks), PG, cellulase, and beta-Gal increased their activity more than twice, whereas PME activity tended to increase only slightly during storage. In Charola (Opuntia sp.), of long postharvest life (ca. 2 months), only beta-Gal increased its activity (77%), showing a high PG activity from the beginning of storage. Transmission electron microscopy observations showed middle lamella dissolution at the end of storage for both varieties. Naranjona showed a higher cell wall enzymatic activity than Charola, in agreement with their storability differences. Our results suggest that PG and cellulase in Naranjona and PG and beta-Gal in Charola are the main enzymes responsible for cell wall hydrolytic and ultrastructural changes in skins of stored prickly pears.

  19. On the Use of Molecular Weight Cutoff Cassettes to Measure Dynamic Relaxivity of Novel Gadolinium Contrast Agents: Example Using Hyaluronic Acid Polymer Complexes in Phosphate-Buffered Saline

    Directory of Open Access Journals (Sweden)

    Nima Kasraie

    2011-01-01

    Full Text Available The aims of this study were to determine whether standard extracellular contrast agents of Gd(III ions in combination with a polymeric entity susceptible to hydrolytic degradation over a finite period of time, such as Hyaluronic Acid (HA, have sufficient vascular residence time to obtain comparable vascular imaging to current conventional compounds and to obtain sufficient data to show proof of concept that HA with Gd-DTPA ligands could be useful as vascular imaging agents. We assessed the dynamic relaxivity of the HA bound DTPA compounds using a custom-made phantom, as well as relaxation rates at 10.72 MHz with concentrations ranging between 0.09 and 7.96 mM in phosphate-buffered saline. Linear dependences of static longitudinal relaxation rate (R1 on concentration were found for most measured samples, and the HA samples continued to produce high signal strength after 24 hours after injection into a dialysis cassette at 3T, showing superior dynamic relaxivity values compared to conventional contrast media such as Gd-DTPA-BMA.

  20. Hydrolytic study of the copolymer Poly pyrrole/ Polyethyleneglycol and Poly pyrrole synthesized by plasma; Estudio hidrolitico del copolimero polipirrol/polietilenglicol y polipirrol sintetizado por plasma

    Energy Technology Data Exchange (ETDEWEB)

    Colin, E.; Enriquez, M.A.; Olayo, M.G.; Cruz, G.J.; Carapia, L.; Romero, M. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico); Morales, J.; Olayo, R. [UAM-I, A.P. 55-534 Iztapalapa, Mexico D.F. (Mexico)

    2006-07-01

    In this work the study about the hydrolytic compatibility of semiconductor polymers, copolymer Poly pyrrole/ Polyethyleneglycol (PPy/PEG) and Poly pyrrole (PPy) for their possible use as biomaterials. The polymers were synthesized by plasma between 10 and 100 W, with discharges of splendor RF to 13.5 MHz with resistive coupling. The hydrolytic affinity was evaluated calculating the contact angle with solutions of NaCl, NaCl-MgSO{sub 4} and Krebs-Ringer. The results show a hydrophilicity increment due to the increase of the surface ruggedness with the synthesis energy. On the contrary, the crystallinity diminishes when increasing the power in PPy and it stays approximately constant in PPy/PEG. The electric conductivity presents a growth from 2 to 4 magnitude orders in function of the water content in the polymers. (Author)

  1. Structural investigation of an extracellular polysaccharide produced by the cariogenic bacterium Streptococcus mutans strain UA159

    NARCIS (Netherlands)

    Li, Bo; Dobruchowska, Justyna M.; Hoogenkamp, Michel A.; Gerwig, Gerrit J.

    2012-01-01

    The structure of an extracellular polysaccharide EPS159 produced from sucrose by Streptococcus mutans UA159 was investigated through the main oligosaccharides obtained from partial acid hydrolysis, monosaccharide/methylation analysis, and 1D/2D H-1 NMR spectroscopy. The results showed that EPS159 co

  2. In Vivo Imaging Reveals Extracellular Vesicle-Mediated Phenocopying of Metastatic Behavior

    NARCIS (Netherlands)

    Zomer, Anoek; Maynard, Carrie; Verweij, Frederik Johannes; Kamermans, Alwin; Schafer, Ronny; Beerling, Evelyne; Schiffelers, Raymond Michel; de Wit, Elzo; Berenguer, Jordi; Ellenbroek, Saskia Inge Johanna; Wurdinger, Thomas; Pegtel, Dirk Michiel; van Rheenen, Jacco

    2015-01-01

    Most cancer cells release heterogeneous populations of extracellular vesicles (EVs) containing proteins, lipids, and nucleic acids. In vitro experiments showed that EV uptake can lead to transfer of functional mRNA and altered cellular behavior. However, similar in vivo experiments remain challengin

  3. Extracellular pH regulates bone cell function.

    Science.gov (United States)

    Arnett, Timothy R

    2008-02-01

    The skeletons of land vertebrates contain a massive reserve of alkaline mineral (hydroxyapatite), which is ultimately available to buffer metabolic H+ if acid-base balance is not maintained within narrow limits. The negative impact of acidosis on the skeleton has long been known but was thought to result from passive, physicochemical dissolution of bone mineral. This brief, selective review summarizes what is now known of the direct functional responses of bone cells to extracellular pH. We discovered that bone resorption by cultured osteoclasts is stimulated directly by acid. The stimulatory effect is near-maximal at pH 7.0, whereas above pH 7.4, resorption is switched off. In bone organ cultures, H+-stimulated bone mineral release is almost entirely osteoclast-mediated, with a negligible physicochemical component. Acidification is the key requirement for osteoclasts to excavate resorption pits in all species studied to date, and extracellular H+ may thus be regarded as the long-sought osteoclast activation factor. Acid-activated osteoclasts can be stimulated further by agents such as parathyroid hormone, 1,25-dihydroxycholecalciferol, and receptor activator of nuclear factor kappaB ligand. Osteoclasts may respond to pH changes via H+-sensing ion channels such as transient receptor potential vanilloid 1, a nociceptor that is also activated by capsaicin. Acidosis also exerts a powerful, reciprocal inhibitory effect on the mineralization of bone matrix by cultured osteoblasts. This is caused by increased hydroxyapatite solubility at low pH, together with selective inhibition of alkaline phosphatase, which is required for mineralization. Diets or drugs that shift acid-base balance in the alkaline direction may provide useful treatments for bone loss disorders.

  4. Isolation and characterization of bacterial strains with a hydrolytic profile with potential use in bioconversion of agroindustial by-products and waste

    Directory of Open Access Journals (Sweden)

    Cintia Anabela Mazzucotelli

    2013-06-01

    Full Text Available There is a trend towards the use of novel technologies nowadays, mainly focused on biological processes, for recycling and the efficient utilization of organic residues that can be metabolized by different microorganisms as a source of energy. In the present study the isolation of bacterial strains from six different agro-industrial by-products and waste was performed with the objective of evaluating their hydrolytic capacities and suitability for use in bioconversion of specific substrates. The 34 isolated strains were screened in specific culture media for the production of various hydrolytic enzymes (lipase, protease, cellulase, and amylase. It was found that 28 strains exhibited proteolytic activity, 18 had lipolytic activity, 13 had caseinolytic activity, 15 had amylolytic activity, and 11 strains exhibited cellulolytic activity. The strains that showed the highest hydrolytic capacities with biotechnological potential were selected, characterized genotipically, and identified as Bacillus, Serratia, Enterococcus, Klebsiella, Stenotrophomonas, Lactococcus, and Escherichia genera. It was concluded that the strain isolates have a high potential for use in the bioconversion of agro-industrial waste, both as a pure culture and as a microbial consortium.

  5. Aqueous solution synthesis of Pt-M (M = Fe, Co, Ni) bimetallic nanoparticles and their catalysis for the hydrolytic dehydrogenation of ammonia borane.

    Science.gov (United States)

    Wang, Shuai; Zhang, Duo; Ma, Yanyun; Zhang, Hui; Gao, Jing; Nie, Yuting; Sun, Xuhui

    2014-08-13

    Platinum-based bimetallic nanocatalysts have attracted much attention due to their high-efficiency catalytic performance in energy-related applications such as fuel cell and hydrogen storage, for example, the hydrolytic dehydrogenation of ammonia borane (AB). In this work, a simple and green method has been demonstrated to successfully prepare Pt-M (M = Fe, Co, Ni) NPs with tunable composition (nominal Pt/M atomic ratios of 4:1, 1:1, and 1:4) in aqueous solution under mild conditions. All Pt-M NPs with a small size of 3-5 nm show a Pt fcc structure, suggesting the bimetallic formation (alloy and/or partial core-shell), examined by transmission electron microscopy (TEM), X-ray diffraction (XRD), and X-ray absorption fine structure (XAFS) analysis. The catalytic activities of Pt-M NPs in the hydrolytic dehydrogenation of AB reveal that Pt-Ni NPs with a ratio of 4:1 show the best catalytic activity and even better than that of pure Pt NPs when normalized to Pt molar amount. The Ni oxidation state in Pt-Ni NPs has been suggested to be responsible for the corresponding catalytic activity for hydrolytic dehydrogenation of AB by XAFS study. This strategy for the synthesis of Pt-M NPs is simple and environmentally benign in aqueous solution with the potential for scale-up preparation and the in situ catalytic reaction.

  6. Comparative genomics of citric-acid-producing Aspergillus niger ATCC 1015 versus enzyme-producing CBS 513.88

    DEFF Research Database (Denmark)

    Andersen, Mikael Rørdam; Salazar, Margarita Pena; Schaap, Peter J.

    2011-01-01

    The filamentous fungus Aspergillus niger exhibits great diversity in its phenotype. It is found globally, both as marine and terrestrial strains, produces both organic acids and hydrolytic enzymes in high amounts, and some isolates exhibit pathogenicity. Although the genome of an industrial enzym...

  7. Intraocular degradation behavior of crosslinked and linear poly(trimethylene carbonate) and poly(D,L-lactic acid)

    NARCIS (Netherlands)

    Jansen, Janine; Koopmans, Steven A.; Los, Leonoor I.; van der Worp, Roelofje J.; Podt, Johanna G.; Hooymans, Johanna M. M.; Feijen, Jan; Grijpma, Dirk W.

    2011-01-01

    The intraocular degradation behavior of poly(trimethylene carbonate) (PTMC) networks and poly(-D,L-lactic acid) (PDLLA) networks and of linear high molecular weight PTMC and PDLLA was evaluated. PTMC is known to degrade by enzymatic surface erosion in vivo, whereas PDLLA degrades by hydrolytic bulk

  8. Comparative genomics of citric-acid-producing Aspergillus niger ATCC 1015 versus enzyme-producing CBS 513.88

    NARCIS (Netherlands)

    Andersen, M.R.; Salazar, M.P.; Schaap, P.J.

    2011-01-01

    The filamentous fungus Aspergillus niger exhibits great diversity in its phenotype. It is found globally, both as marine and terrestrial strains, produces both organic acids and hydrolytic enzymes in high amounts, and some isolates exhibit pathogenicity. Although the genome of an industrial enzyme-p

  9. Vertebrate extracellular preovulatory and postovulatory egg coats.

    Science.gov (United States)

    Menkhorst, Ellen; Selwood, Lynne

    2008-11-01

    Extracellular egg coats deposited by maternal or embryonic tissues surround all vertebrate conceptuses during early development. In oviparous species, the time of hatching from extracellular coats can be considered equivalent to the time of birth in viviparous species. Extracellular coats must be lost during gestation for implantation and placentation to occur in some viviparous species. In the most recent classification of vertebrate extracellular coats, Boyd and Hamilton (Cleavage, early development and implantation of the egg. In: Parkes AS (ed.), Marshall's Physiology of Reproduction, vol. 2, 3rd ed. London: Longmans, Green & Co; 1961:1-126) defined the coat synthesized by the oocyte during oogenesis as primary and the coat deposited by follicle cells surrounding the oocyte as secondary. Tertiary egg coats are those synthesized and deposited around the primary or secondary coat by the maternal reproductive tract. This classification is difficult to reconcile with recent data collected using modern molecular biological techniques that can accurately establish the site of coat precursor synthesis and secretion. We propose that a modification to the classification by Boyd and Hamilton is required. Vertebrate egg coats should be classed as belonging to the following two broad groups: the preovulatory coat, which is deposited during oogenesis by the oocyte or follicle cells, and the postovulatory coats, which are deposited after fertilization by the reproductive tract or conceptus. This review discusses the origin and classification of vertebrate extracellular preovulatory and postovulatory coats and illustrates what is known about coat homology between the vertebrate groups.

  10. Modeling extracellular field potentials and the frequency-filtering properties of extracellular space

    CERN Document Server

    Bedard, C; Destexhe, A; Bédard, Claude; Kroeger, Helmut; Destexhe, Alain

    2003-01-01

    Extracellular local field potentials (LFP) are usually modeled as arising from a set of current sources embedded in a homogeneous extracellular medium. Although this formalism can successfully model several properties of LFPs, it does not account for their frequency-dependent attenuation with distance, a property essential to correctly model extracellular spikes. Here we derive expressions for the extracellular potential that include this frequency-dependent attenuation. We first show that, if the extracellular conductivity is non-homogeneous, there is induction of non-homogeneous charge densities which may result in a low-pass filter. We next derive a simplified model consisting of a punctual (or spherical) current source with spherically-symmetric conductivity/permittivity gradients around the source. We analyze the effect of different radial profiles of conductivity and permittivity on the frequency-filtering behavior of this model. We show that this simple model generally displays low-pass filtering behav...

  11. Glioblastoma extracellular vesicles: reservoirs of potential biomarkers

    Directory of Open Access Journals (Sweden)

    Redzic JS

    2014-02-01

    Full Text Available Jasmina S Redzic,1 Timothy H Ung,2 Michael W Graner2 1Skaggs School of Pharmacy and Pharmaceutical Sciences, 2Department of Neurosurgery, School of Medicine, University of Colorado Denver, Aurora, CO, USA Abstract: Glioblastoma multiforme (GBM is the most frequent and most devastating of the primary central nervous system tumors, with few patients living beyond 2 years postdiagnosis. The damage caused by the disease and our treatments for the patients often leave them physically and cognitively debilitated. Generally, GBMs appear after very short clinical histories and are discovered by imaging (using magnetic resonance imaging [MRI], and the diagnosis is validated by pathology, following surgical resection. The treatment response and diagnosis of tumor recurrence are also tracked by MRI, but there are numerous problems encountered with these monitoring modalities, such as ambiguous interpretation and forms of pseudoprogression. Diagnostic, prognostic, and predictive biomarkers would be an immense boon in following treatment schemes and in determining recurrence, which often requires an invasive intracranial biopsy to verify imaging data. Extracellular vesicles (EVs are stable, membrane-enclosed, virus-sized particles released from either the cell surface or from endosomal pathways that lead to the systemic release of EVs into accessible biofluids, such as serum/plasma, urine, cerebrospinal fluid, and saliva. EVs carry a wide variety of proteins, nucleic acids, lipids, and other metabolites, with many common features but with enough individuality to be able to identify the cell of origin of the vesicles. These components, if properly interrogated, could allow for the identification of tumor-derived EVs in biofluids, indicating tumor progression, relapse, or treatment failure. That knowledge would allow clinicians to continue with treatment regimens that were actually effective or to change course if the therapies were failing. Here, we review

  12. Extracellular proteolysis in the adult murine brain.

    Science.gov (United States)

    Sappino, A P; Madani, R; Huarte, J; Belin, D; Kiss, J Z; Wohlwend, A; Vassalli, J D

    1993-08-01

    Plasminogen activators are important mediators of extracellular metabolism. In the nervous system, plasminogen activators are thought to be involved in the remodeling events required for cell migration during development and regeneration. We have now explored the expression of the plasminogen activator/plasmin system in the adult murine central nervous system. Tissue-type plasminogen activator is synthesized by neurons of most brain regions, while prominent tissue-type plasminogen activator-catalyzed proteolysis is restricted to discrete areas, in particular within the hippocampus and hypothalamus. Our observations indicate that tissue-type plasminogen activator-catalyzed proteolysis in neural tissues is not limited to ontogeny, but may also contribute to adult central nervous system physiology, for instance by influencing neuronal plasticity and synaptic reorganization. The identification of an extracellular proteolytic system active in the adult central nervous system may also help gain insights into the pathogeny of neurodegenerative disorders associated with extracellular protein deposition.

  13. IDENTIFICATION AND EVALUATION OF FIBER HYDROLYTIC ENZYMES IN THE EXTRACT OF TERMITES (Glyptotermes montanus FOR POULTRY FEED APPLICATION

    Directory of Open Access Journals (Sweden)

    Tresnawati Purwadari

    2016-10-01

    Full Text Available Foot rot disease of black pepper caused by Phytophthora capsici had been reported in Batangas and Laguna, Philippines. The plant was recovered following the application of crop residue (organic substrate and intercropping with other crops. This study was aimed to isolate, identify, and determine the soil mycoflora from the rhizosphere of black pepper grown on various cropping patterns in Batangas and Laguna. Antagonistic activity of mycoflora isolates was tested against P. capsici using dual culture technique. The result showed that 149 colonies of soil mycoflora isolated were belonging to 14 genera; three of them, i.e. Penicillium, Paecilomyces and Aspergillus, were the most dominant. All of the mycoflora isolates were able to inhibit the growth of the pathogen. Eighteen of them were the most promising antagonists, based on their inhibition growth of more than 60%. It is suggested that antagonistic mechanism of Mucor isolate (1001, Trichoderma (125, 170, 171, 179, 180, 181, Gliocladium (109, Cunninghamella (165, 168, Mortierella (177, and Aspergillus (106 was space competitor (competition for nutrient since they rapidly overgrew the pathogen. Aspergillus (67, 79, 81, 83, 108, and 202 isolates inhibited the pathogen apparently by producing antibiotic, whereas Trichoderma (125, 170, 171, 179, 180, and 181 isolates were able to penetrate the hyphae of the pathogen. The organic matter percentage in the soil was significantly correlated with the number of antagonistic mycoflora in rhizosphere (R2 = 0.1094, but the cropping pattern wPoultry are not able to digest fiber in the diet. Hydrolytic enzymes including cellulases and hemicellulases have been used as poultry feed supplement. Termites (Glyptotermes montanus have the ability to digest wood that contains high fiber. The purpose of this experiment was to identify the cellulase and hemicellulase of termite extract. The hydrolytic (saccharification activity of the termite extract on feedstuffs was

  14. Extracellular acidosis promotes neutrophil transdifferentiation to MHC class II-expressing cells.

    Science.gov (United States)

    Pliyev, Boris K; Sumarokov, Alexander B; Buriachkovskaia, Lyudmila I; Menshikov, Mikhail

    2011-01-01

    Inflammation in peripheral tissues is usually associated with local acidosis. In the present study, we demonstrate that extracellular acidification enhances GM-CSF- and IFN-γ-induced expression of HLA-DR, CD80 and CD86 in human neutrophils (neutrophil transdifferentiation), and potentiates antigen-capturing capacities (both endocytosis and phagocytosis) of the transdifferentiated cells. Furthermore, in acidic conditions the transdifferentiated neutrophils have stronger antigen-presenting capacity, inducing more intense proliferation of autologous T lymphocytes in the presence of staphylococcal enterotoxin A. Thus, extracellular acidosis can represent a factor that promotes neutrophil transdifferentiation and potentiates the functional abilities of the transdifferentiated cells in inflammatory foci in vivo.

  15. Extracellular matrix and tissue engineering applications

    NARCIS (Netherlands)

    Fernandes, Hugo; Moroni, Lorenzo; Blitterswijk, van Clemens; Boer, de Jan

    2009-01-01

    The extracellular matrix is a key component during regeneration and maintenance of tissues and organs, and it therefore plays a critical role in successful tissue engineering as well. Tissue engineers should recognise that engineering technology can be deduced from natural repair processes. Due to a

  16. Extracellular vesicles: fundamentals and clinical relevance

    Directory of Open Access Journals (Sweden)

    Wael Nassar

    2015-01-01

    Full Text Available All types of cells of eukaryotic organisms produce and release small nanovesicles into their extracellular environment. Early studies have described these vesicles as ′garbage bags′ only to remove obsolete cellular molecules. Valadi and colleagues, in 2007, were the first to discover the capability of circulating extracellular vesicles (EVs to horizontally transfer functioning gene information between cells. These extracellular vesicles express components responsible for angiogenesis promotion, stromal remodeling, chemoresistance, genetic exchange, and signaling pathway activation through growth factor/receptor transfer. EVs represent an important mode of intercellular communication by serving as vehicles for transfer between cells of membrane and cytosolic proteins, lipids, signaling proteins, and RNAs. They contribute to physiology and pathology, and they have a myriad of potential clinical applications in health and disease. Moreover, vesicles can pass the blood-brain barrier and may perhaps even be considered as naturally occurring liposomes. These cell-derived EVs not only represent a central mediator of the disease microenvironment, but their presence in the peripheral circulation may serve as a surrogate for disease biopsies, enabling real-time diagnosis and disease monitoring. In this review, we′ll be addressing the characteristics of different types of extracellular EVs, as well as their clinical relevance and potential as diagnostic markers, and also define therapeutic options.

  17. Extracellular calmodulin: A polypeptide signal in plants?

    Institute of Scientific and Technical Information of China (English)

    孙大业; 唐文强; 马力耕

    2001-01-01

    Traditionally, calmodulin (CaM) was thought to be a multi-functional receptor for intracellular Ca2+ signals. But in the last ten years, it was found that CaM also exists and acts extracellularly in animal and plant cells to regulate many important physiological functions. Laboratory studies by the authors showed that extracellular CaM in plant cells can stimulate the proliferation of suspension cultured cell and protoplast; regulate pollen germination and pollen tube elongation,and stimulate the light-independent gene expression of Rubisco small subunit (rbcS). Furthermore,we defined the trans-membrane and intracellular signal transduction pathways for extracellular CaM by using a pollen system. The components in this pathway include heterotrimeric G-protein,phospholipase C, IP3, calcium signal and protein phosphorylation etc. Based on our findings, we suggest that extracellular CaM is a polypeptide signal in plants. This idea strongly argues against the traditional concept that there is no intercellular polypeptide signal in plants.

  18. An extracellular subtilase switch for immune priming in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Vicente Ramírez

    Full Text Available In higher eukaryotes, induced resistance associates with acquisition of a priming state of the cells for a more effective activation of innate immunity; however, the nature of the components for mounting this type of immunological memory is not well known. We identified an extracellular subtilase from Arabidopsis, SBT3.3, the overexpression of which enhances innate immune responses while the loss of function compromises them. SBT3.3 expression initiates a durable autoinduction mechanism that promotes chromatin remodeling and activates a salicylic acid(SA-dependent mechanism of priming of defense genes for amplified response. Moreover, SBT3.3 expression-sensitized plants for enhanced expression of the OXI1 kinase gene and activation of MAP kinases following pathogen attack, providing additional clues for the regulation of immune priming by SBT3.3. Conversely, in sbt3.3 mutant plants pathogen-mediated induction of SA-related defense gene expression is drastically reduced and activation of MAP kinases inhibited. Moreover, chromatin remodeling of defense-related genes normally associated with activation of an immune priming response appear inhibited in sbt3.3 plants, further indicating the importance of the extracellular SBT3.3 subtilase in the establishment of immune priming. Our results also point to an epigenetic control in the regulation of plant immunity, since SBT3.3 is up-regulated and priming activated when epigenetic control is impeded. SBT3.3 represents a new regulator of primed immunity.

  19. Acute uptake inhibition increases extracellular serotonin in the rat forebrain.

    Science.gov (United States)

    Rutter, J J; Auerbach, S B

    1993-06-01

    The effect of acute uptake inhibition on serotonin (5-HT) in the rat central nervous system was monitored by using in vivo dialysis. Peripheral administration of the selective 5-HT uptake blocker, fluoxetine, caused a dose-dependent increase in extracellular 5-HT in both the diencephalon and the striatum. Administration of fluoxetine or sertraline, another selective 5-HT uptake inhibitor, caused a prolonged (24 hr) increase in 5-HT and decrease in 5-hydroxyindoleacetic acid. In addition, fluoxetine and sertraline attenuated the 5-HT releasing effect of fenfluramine administered 24 hr later. Local infusion of fluoxetine into the diencephalon caused an increase in 5-HT that was twice as large as the effect of peripheral injection. Peripheral fluoxetine, by enhancing extracellular 5-HT in the raphe, probably resulted in activation of somatodendritic autoreceptors and inhibition of 5-HT neuronal discharge. Thus, the increase in 5-HT in the diencephalon after peripheral fluoxetine presumably reflected a balance between decreased release and inhibition of reuptake. In support of this, after first infusing fluoxetine into the diencephalon to maximally block reuptake, peripheral injection of the uptake inhibitor caused a decrease in 5-HT.

  20. Physicochemical Plus Hydrolytic/Aerobic Plus Hydrolytic/Aerobic Treatment of Coating Waste-water%物化+水解/好氧+水解/好氧法处理涂装废水

    Institute of Scientific and Technical Information of China (English)

    姜盖汕; 崔宏; 金成文; 赵夏

    2013-01-01

      汽车涂装工艺过程中产生脱脂废水、磷化废水、电泳废水、喷漆废水(浓水)等四大类,统称为涂装废水。本文综述了各类废液和废水的来源、排放方式、污染物成分、浓度等,针对其特性,磷化废水采用间歇序批式物化预处理,除磷、除锌、除镍的效果达到99%。其出水与脱脂废水、电泳废水混合形成涂装废水,采用混凝气浮法进行预处理,去除有机物和悬浮物。其出水再与其他废水混合形成综合污水,利用两段式水解/好氧生物处理工艺,进一步去除高分子有机物,使各项污染指标达到国家排放标准。%Four type coating waste-water (referred to as the coating waste-water) such as the degreasing waste-water, phosphating waste-water, electrophoresis waste-water, spray paint waste-water were produced during automobile coating process. This paper summarizes the source, emissions, pollutant composition, and con-centration of all kinds of waste-liquid and waste-water. Phosphating waste-water was treated by sequencing batch physicochemical pretreatment according to its characteristics, the effect of phosphorus removal, zinc re-moval and nickel removal reached 99%. This effluent water was mixed with degreasing waste-water and elec-trophoresis waste-water to form a coating waste-water, the organics and suspended solids were removed by pre-treatment of mixed condensed gas. This effluent water was mixed with other waste-water to form a comprehensive sewage, by using two stage hydrolytic/aerobic biological treatment process, and further removal of organic poly-mer, so that the pollution indicators have reached the national emission standard.

  1. Extracellular calmodulin: A polypeptide signal in plants?

    Institute of Scientific and Technical Information of China (English)

    SUN; Daye(

    2001-01-01

    [1]Cheng. W. Y., Cyclic 3', 5'-nucleotide phosphodiestrase: demonstration of an activator, Biochm. Biophys. Res. Commun.,1970, 38: 533-538.[2]Boynton, A. L., Whitfield, J. F., MacManus, J. P., Calmodulin stimulates DNA synthesis by rat liver cells, BBRC.1980,95(2): 745-749.[3]Gorbacherskaya, L. V., Borovkova, T. V., Rybin, U. O. et al., Effect of exogenous calmodulin on lymphocyte proliferation in normal subjects, Bull Exp. Med. Biol., 1983, 95: 361-363.[4]Wong, P. Y.-K., Lee, W. H., Chao, PH.-W., The role of calmodulin in prostaglandin metabolism, Ann. NY Acad. Sci.,1980, 356: 179-189.[5]Mac Neil, S., Dawson, R. A., Crocker, G. et al., Effects of extracellular calmodulin and calmodulin antagonists on B16 melanoma cell growth, J. Invest. Dermatol., 1984, 83: 15-19.[6]Crocker, D. G., Dawson, R. A., Mac Neil, S. et al., An extracellular role for calmodulin-like activity in cell proliferation,Biochem. J., 1988, 253: 877-884.[7]Polito. V. S., Calmodulin and calmodulin inhibitors: effect on pollen germination and tube growth, in Pollen: Biology and Implications for Plant Breeding (eds. Mulvshy, D. L., Ottaviaro, E.), New York: Elsevier, 1983.53-60.[8]Biro, R. L., Sun, D. Y., Roux, S. J.et al., Characterization of oat calmodulin and radioimmunoassay of its subcellular distribution, Plant Physiol., 1984,75: 382-386.[9]Terry, M. E., Bonner, B. A., An examination of centrifugation as a method of extracting an extracellular solution from peas, and its use for the study of IAA-induced growth, Plant Physiol., 1980, 66: 321-325.[10]Josefina, H. N., Aldasars, J. J., Rodriguez, D., Localization of calmodulin on embryonic Cice aricium L, in Molecular and Cellular Aspects of Calcium in Plant Development (ed. Trewavas, A. J.), New York, London: Plenum Press, 1985, 313.[11]Dauwalder, M., Roux, S. J., Hardison, L., Distribution of calmodulin in pea seedling: immunocytochemical localization in plumules and root apices, Planta, 1986, 168: 461

  2. Oxidative and other posttranslational modifications in extracellular vesicle biology.

    Science.gov (United States)

    Szabó-Taylor, Katalin; Ryan, Brent; Osteikoetxea, Xabier; Szabó, Tamás G; Sódar, Barbara; Holub, Marcsilla; Németh, Andrea; Pálóczi, Krisztina; Pállinger, Éva; Winyard, Paul; Buzás, Edit I

    2015-04-01

    Extracellular vesicles including exosomes, microvesicles and apoptotic vesicles, are phospholipid bilayer surrounded structures secreted by cells universally, in an evolutionarily conserved fashion. Posttranslational modifications such as oxidation, citrullination, phosphorylation and glycosylation play diverse roles in extracellular vesicle biology. Posttranslational modifications orchestrate the biogenesis of extracellular vesicles. The signals extracellular vesicles transmit between cells also often function via modulating posttranslational modifications of target molecules, given that extracellular vesicles are carriers of several active enzymes catalysing posttranslational modifications. Posttranslational modifications of extracellular vesicles can also contribute to disease pathology by e.g. amplifying inflammation, generating neoepitopes or carrying neoepitopes themselves.

  3. Extracellular vesicles: masters of intercellular communication and potential clinical interventions.

    Science.gov (United States)

    Pitt, Jonathan M; Kroemer, Guido; Zitvogel, Laurence

    2016-04-01

    Intercellular signaling via extracellular vesicles (EVs) is an underappreciated modality of cell-cell crosstalk that enables cells to convey packages of complex instructions to specific recipient cells. EVs transmit these instructions through their cargoes of multiple proteins, nucleic acids, and specialized lipids, which are derived from their cells of origin and allow for combinatorial effects upon recipient cells. This Review series brings together the recent progress in our understanding of EV signaling in physiological and pathophysiological conditions, highlighting how certain EVs, particularly exosomes, can promote or regulate infections, host immune responses, development, and various diseases - notably cancer. Given the diverse nature of EVs and their abilities to profoundly modulate host cells, this series puts particular emphasis on the clinical applications of EVs as therapeutics and as diagnostic biomarkers.

  4. Extracellular vesicles: Pharmacological modulators of the peripheral and central signals governing obesity.

    Science.gov (United States)

    Milbank, Edward; Martinez, M Carmen; Andriantsitohaina, Ramaroson

    2016-01-01

    Obesity and its metabolic resultant dysfunctions such as insulin resistance, hyperglycemia, dyslipidemia and hypertension, grouped as the "metabolic syndrome", are chronic inflammatory disorders that represent one of the most severe epidemic health problems. The imbalance between energy intake and expenditure, leading to an excess of body fat and an increase of cardiovascular and diabetes risks, is regulated by the interaction between central nervous system (CNS) and peripheral signals in order to regulate behavior and finally, the metabolism of peripheral organs. At present, pharmacological treatment of obesity comprises actions in both CNS and peripheral organs. In the last decades, the extracellular vesicles have emerged as participants in many pathophysiological regulation processes. Whether used as biomarkers, targets or even tools, extracellular vesicles provided some promising effects in the treatment of a large variety of diseases. Extracellular vesicles are released by cells from the plasma membrane (microvesicles) or from multivesicular bodies (exosomes) and contain lipids, proteins and nucleic acids, such as DNA, protein coding, and non-coding RNAs. Owing to their composition, extracellular vesicles can (i) activate receptors at the target cell and then, the subsequent intracellular pathway associated to the specific receptor; (ii) transfer molecules to the target cells and thereby change their phenotype and (iii) be used as shuttle of drugs and, thus, to carry specific molecules towards specific cells. Herein, we review the impact of extracellular vesicles in modulating the central and peripheral signals governing obesity.

  5. The Extracellular Matrix in Photosynthetic Mats: A Cyanobacterial Gingerbread House

    Science.gov (United States)

    Stuart, R.; Stannard, W.; Bebout, B.; Pett-Ridge, J.; Mayali, X.; Weber, P. K.; Lipton, M. S.; Lee, J.; Everroad, R. C.; Thelen, M.

    2014-12-01

    Hypersaline laminated cyanobacterial mats are excellent model systems for investigating photoautotrophic contributions to biogeochemical cycling on a millimeter scale. These self-sustaining ecosystems are characterized by steep physiochemical gradients that fluctuate dramatically on hour timescales, providing a dynamic environment to study microbial response. However, elucidating the distribution of energy from light absorption into biomass requires a complete understanding of the various constituents of the mat. Extracellular polymeric substances (EPS), which can be composed of proteins, polysaccharides, lipids and DNA are a major component of these mats and may function in the redistribution of nutrients and metabolites within the community. To test this notion, we established a model mat-building culture for comparison with the phylogenetically diverse natural mat communities. In these two systems we determined how proteins and glycans in the matrix changed as a function of light and tracked nutrient flow from the matrix. Using mass spectrometry metaproteomics analysis, we found homologous proteins in both field and culture extracellular matrix that point to cyanobacterial turnover of amino acids, inorganic nutrients, carbohydrates and nucleic acids from the EPS. Other abundant functions identified included oxidative stress response from both the cyanobacteria and heterotrophs and cyanobacterial structural proteins that may play a role in mat cohesion. Several degradative enzymes also varied in abundance in the EPS in response to light availability, suggesting active secretion. To further test cyanobacterial EPS turnover, we generated isotopically-labeled EPS and used NanoSIMS to trace uptake of this labeled EPS. Our findings suggest Cyanobacteria may facilitate nutrient transfer to other groups, as well as uptake of their own products through degradation of EPS components. This work provides evidence for the essential roles of EPS for storage, structural

  6. Comparative study of the hydrolytic metabolism of methyl-, ethyl-, propyl-, butyl-, heptyl- and dodecylparaben by microsomes of various rat and human tissues.

    Science.gov (United States)

    Ozaki, Hitomi; Sugihara, Kazumi; Watanabe, Yoko; Fujino, Chieri; Uramaru, Naoto; Sone, Tomomichi; Ohta, Shigeru; Kitamura, Shigeyuki

    2013-12-01

    Hydrolytic metabolism of methyl-, ethyl-, propyl-, butyl-, heptyl- and dodecylparaben by various tissue microsomes and plasma of rats, as well as human liver and small-intestinal microsomes, was investigated and the structure-metabolic activity relationship was examined. Rat liver microsomes showed the highest activity toward parabens, followed by small-intestinal and lung microsomes. Butylparaben was most effectively hydrolyzed by the liver microsomes, which showed relatively low hydrolytic activity towards parabens with shorter and longer alkyl side chains. In contrast, small-intestinal microsomes exhibited relatively higher activity toward longer-side-chain parabens, and showed the highest activity towards heptylparaben. Rat lung and skin microsomes showed liver-type substrate specificity. Kidney and pancreas microsomes and plasma of rats showed small-intestinal-type substrate specificity. Liver and small-intestinal microsomal hydrolase activity was completely inhibited by bis(4-nitrophenyl)phosphate, and could be extracted with Triton X-100. Ces1e and Ces1d isoforms were identified as carboxylesterase isozymes catalyzing paraben hydrolysis by anion exchange column chromatography of Triton X-100 extract from liver microsomes. Ces1e and Ces1d expressed in COS cells exhibited significant hydrolase activities with the same substrate specificity pattern as that of liver microsomes. Small-intestinal carboxylesterase isozymes Ces2a and Ces2c expressed in COS cells showed the same substrate specificity as small-intestinal microsomes, being more active toward longer-alkyl-side-chain parabens. Human liver microsomes showed the highest hydrolytic activity toward methylparaben, while human small-intestinal microsomes showed a broadly similar substrate specificity to rat small-intestinal microsomes. Human CES1 and CES2 isozymes showed the same substrate specificity patterns as human liver and small-intestinal microsomes, respectively.

  7. Production and characterization of an extracellular lipase from Candida guilliermondii

    Directory of Open Access Journals (Sweden)

    Anne Caroline Defranceschi Oliveira

    2014-12-01

    Full Text Available Extracellular lipases from the endophytic yeast Candida guilliermondii isolated from castor leaves (Ricinus communis L. were produced using low-cost raw materials such as agro-industrial residues and applying them in the esterification of oleic acid for evaluating their potential use in biodiesel production. After partial purification using ammonium sulfate, the enzyme was characterized and presented higher activity (26.8 ± 1.5 U mL-1 in the presence of 5 mmol L-1 NaCl at 30 ºC and pH 6.5. The production through submerged fermentation was formerly performed in 150 mL erlenmeyer flasks and, once the enzyme production was verified, assays in a 14 L bioreactor were conducted, obtaining 18 ± 1.4 U mL-1. The produced enzyme was applied in the oleic acid esterification under different solvents: hexane, cyclohexane or cyclohexanone and different acid:alcohol molar ratios. Higher ester conversion rate (81% was obtained using hexane and the molar ratio of 1:9 was the best conditions using methanol. The results suggest the potential for development of endophytic yeast in the production of biocatalyst through submerged fermentation using agroindustrial residues as culture medium.

  8. Draft Genome Sequences of Pseudomonas fluorescens BS2 and Pusillimonas noertemannii BS8, Soil Bacteria That Cooperate To Degrade the Poly-γ-d-Glutamic Acid Anthrax Capsule.

    Science.gov (United States)

    Stabler, Richard A; Negus, David; Pain, Arnab; Taylor, Peter W

    2013-01-01

    A mixed culture of Pseudomonas fluorescens BS2 and Pusillimonas noertemannii BS8 degraded poly-γ-d-glutamic acid; when the 2 strains were cultured separately, no hydrolytic activity was apparent. Here we report the draft genome sequences of both soil isolates.

  9. Draft Genome Sequences of Pseudomonas fluorescens BS2 and Pusillimonas noertemannii BS8, Soil Bacteria That Cooperate To Degrade the Poly- -D-Glutamic Acid Anthrax Capsule

    KAUST Repository

    Stabler, R. A.

    2013-01-24

    A mixed culture of Pseudomonas fluorescens BS2 and Pusillimonas noertemannii BS8 degraded poly-γ-d-glutamic acid; when the 2 strains were cultured separately, no hydrolytic activity was apparent. Here we report the draft genome sequences of both soil isolates.

  10. Extracellular pH modulates GABAergic neurotransmission in rat hypothalamus.

    Science.gov (United States)

    Chen, Z L; Huang, R Q

    2014-06-20

    Changes in extracellular pH have a modulatory effect on GABAA receptor function. It has been reported that pH sensitivity of the GABA receptor is dependent on subunit composition and GABA concentration. Most of previous investigations focused on GABA-evoked currents, which only reflect the postsynaptic receptors. The physiological relevance of pH modulation of GABAergic neurotransmission is not fully elucidated. In the present studies, we examined the influence of extracellular pH on the GABAA receptor-mediated inhibitory neurotransmission in rat hypothalamic neurons. The inhibitory postsynaptic currents (IPSCs), tonic currents, and the GABA-evoked currents were recorded with whole-cell patch techniques on the hypothalamic slices from Sprague-Dawley rats at 15-26 postnatal days. The amplitude and frequency of spontaneous GABA IPSCs were significantly increased while the external pH was changed from 7.3 to 8.4. In the acidic pH (6.4), the spontaneous GABA IPSCs were reduced in amplitude and frequency. The pH induced changes in miniature GABA IPSCs (mIPSCs) similar to that in spontaneous IPSCs. The pH effect on the postsynaptic GABA receptors was assessed with exogenously applied varying concentrations of GABA. The tonic currents and the currents evoked by sub-saturating concentration of GABA ([GABA]) (10 μM) were inhibited by acidic pH and potentiated by alkaline pH. In contrast, the currents evoked by saturating [GABA] (1mM) were not affected by pH changes. We also investigated the influence of pH buffers and buffering capacity on pH sensitivity of GABAA receptors on human recombinant α1β2γ2 GABAA receptors stably expressed in HEK 293 cells. The pH influence on GABAA receptors was similar in HEPES- and MES-buffered media, and not dependent on protonated buffers, suggesting that the observed pH effect on GABA response is a specific consequence of changes in extracellular protons. Our data suggest that the hydrogen ions suppress the GABAergic neurotransmission

  11. Analysis of the inter- and extracellular formation of platinum nanoparticles by Fusarium oxysporum f. sp. lycopersici using response surface methodology

    Energy Technology Data Exchange (ETDEWEB)

    Riddin, T L [Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, PO Box 94, Grahamstown (South Africa); Gericke, M [MINTEK, Private Bag X3015, Randburg 2125 (South Africa); Whiteley, C G [Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, PO Box 94, Grahamstown (South Africa)

    2006-07-28

    Fusarium oxysporum fungal strain was screened and found to be successful for the inter- and extracellular production of platinum nanoparticles. Nanoparticle formation was visually observed, over time, by the colour of the extracellular solution and/or the fungal biomass turning from yellow to dark brown, and their concentration was determined from the amount of residual hexachloroplatinic acid measured from a standard curve at 456 nm. The extracellular nanoparticles were characterized by transmission electron microscopy. Nanoparticles of varying size (10-100 nm) and shape (hexagons, pentagons, circles, squares, rectangles) were produced at both extracellular and intercellular levels by the Fusarium oxysporum. The particles precipitate out of solution and bioaccumulate by nucleation either intercellularly, on the cell wall/membrane, or extracellularly in the surrounding medium. The importance of pH, temperature and hexachloroplatinic acid (H{sub 2}PtCl{sub 6}) concentration in nanoparticle formation was examined through the use of a statistical response surface methodology. Only the extracellular production of nanoparticles proved to be statistically significant, with a concentration yield of 4.85 mg l{sup -1} estimated by a first-order regression model. From a second-order polynomial regression, the predicted yield of nanoparticles increased to 5.66 mg l{sup -1} and, after a backward step, regression gave a final model with a yield of 6.59 mg l{sup -1}.

  12. Analysis of the inter- and extracellular formation of platinum nanoparticles by Fusarium oxysporum f. sp. lycopersici using response surface methodology

    Science.gov (United States)

    Riddin, T. L.; Gericke, M.; Whiteley, C. G.

    2006-07-01

    Fusarium oxysporum fungal strain was screened and found to be successful for the inter- and extracellular production of platinum nanoparticles. Nanoparticle formation was visually observed, over time, by the colour of the extracellular solution and/or the fungal biomass turning from yellow to dark brown, and their concentration was determined from the amount of residual hexachloroplatinic acid measured from a standard curve at 456 nm. The extracellular nanoparticles were characterized by transmission electron microscopy. Nanoparticles of varying size (10-100 nm) and shape (hexagons, pentagons, circles, squares, rectangles) were produced at both extracellular and intercellular levels by the Fusarium oxysporum. The particles precipitate out of solution and bioaccumulate by nucleation either intercellularly, on the cell wall/membrane, or extracellularly in the surrounding medium. The importance of pH, temperature and hexachloroplatinic acid (H2PtCl6) concentration in nanoparticle formation was examined through the use of a statistical response surface methodology. Only the extracellular production of nanoparticles proved to be statistically significant, with a concentration yield of 4.85 mg l-1 estimated by a first-order regression model. From a second-order polynomial regression, the predicted yield of nanoparticles increased to 5.66 mg l-1 and, after a backward step, regression gave a final model with a yield of 6.59 mg l-1.

  13. Monitoring intra- and extracellular redox capacity of intact barley aleurone layers responding to phytohormones.

    Science.gov (United States)

    Mark, Christina; Zór, Kinga; Heiskanen, Arto; Dufva, Martin; Emnéus, Jenny; Finnie, Christine

    2016-12-15

    Redox regulation is important for numerous processes in plant cells including abiotic stress, pathogen defence, tissue development, seed germination and programmed cell death. However, there are few methods allowing redox homeostasis to be addressed in whole plant cells, providing insight into the intact in vivo environment. An electrochemical redox assay that applies the menadione-ferricyanide double mediator is used to assess changes in the intracellular and extracellular redox environment in living aleurone layers of barley (Hordeum vulgare cv. Himalaya) grains, which respond to the phytohormones gibberellic acid and abscisic acid. Gibberellic acid is shown to elicit a mobilisation of electrons as detected by an increase in the reducing capacity of the aleurone layers. By taking advantage of the membrane-permeable menadione/menadiol redox pair to probe the membrane-impermeable ferricyanide/ferrocyanide redox pair, the mobilisation of electrons was dissected into an intracellular and an extracellular, plasma membrane-associated component. The intracellular and extracellular increases in reducing capacity were both suppressed when the aleurone layers were incubated with abscisic acid. By probing redox levels in intact plant tissue, the method provides a complementary approach to assays of reactive oxygen species and redox-related enzyme activities in tissue extracts.

  14. Involvement of extracellular matrix constituents in breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Lochter, Andre; Bissell, Mina J

    1995-06-01

    It has recently been established that the extracellular matrix is required for normal functional differentiation of mammary epithelia not only in culture, but also in vivo. The mechanisms by which extracellular matrix affects differentiation, as well as the nature of extracellular matrix constituents which have major impacts on mammary gland function, have only now begun to be dissected. The intricate variety of extracellular matrix-mediated events and the remarkable degree of plasticity of extracellular matrix structure and composition at virtually all times during ontogeny, make such studies difficult. Similarly, during carcinogenesis, the extracellular matrix undergoes gross alterations, the consequences of which are not yet precisely understood. Nevertheless, an increasing amount of data suggests that the extracellular matrix and extracellular matrix-receptors might participate in the control of most, if not all, of the successive stages of breast tumors, from appearance to progression and metastasis.

  15. Extracellular matrix component signaling in cancer

    DEFF Research Database (Denmark)

    Multhaupt, Hinke A. B.; Leitinger, Birgit; Gullberg, Donald

    2016-01-01

    Cell responses to the extracellular matrix depend on specific signaling events. These are important from early development, through differentiation and tissue homeostasis, immune surveillance, and disease pathogenesis. Signaling not only regulates cell adhesion cytoskeletal organization and motil...... as well as matrix constitution and protein crosslinking. Here we summarize roles of the three major matrix receptor types, with emphasis on how they function in tumor progression. [on SciFinder(R)]......Cell responses to the extracellular matrix depend on specific signaling events. These are important from early development, through differentiation and tissue homeostasis, immune surveillance, and disease pathogenesis. Signaling not only regulates cell adhesion cytoskeletal organization...... and motility but also provides survival and proliferation cues. The major classes of cell surface receptors for matrix macromols. are the integrins, discoidin domain receptors, and transmembrane proteoglycans such as syndecans and CD44. Cells respond not only to specific ligands, such as collagen, fibronectin...

  16. Biotechnological Aspects of Microbial Extracellular Electron Transfer

    Science.gov (United States)

    Kato, Souichiro

    2015-01-01

    Extracellular electron transfer (EET) is a type of microbial respiration that enables electron transfer between microbial cells and extracellular solid materials, including naturally-occurring metal compounds and artificial electrodes. Microorganisms harboring EET abilities have received considerable attention for their various biotechnological applications, in addition to their contribution to global energy and material cycles. In this review, current knowledge on microbial EET and its application to diverse biotechnologies, including the bioremediation of toxic metals, recovery of useful metals, biocorrosion, and microbial electrochemical systems (microbial fuel cells and microbial electrosynthesis), were introduced. Two potential biotechnologies based on microbial EET, namely the electrochemical control of microbial metabolism and electrochemical stimulation of microbial symbiotic reactions (electric syntrophy), were also discussed. PMID:26004795

  17. Tetraspanins in Extracellular Vesicle Formation and Function

    OpenAIRE

    Andreu, Zoraida; Yáñez-Mó, María

    2014-01-01

    Extracellular vesicles (EVs) represent a novel mechanism of intercellular communication as vehicles for intercellular transfer of functional membrane and cytosolic proteins, lipids, and RNAs. Microvesicles, ectosomes, shedding vesicles, microparticles, and exosomes are the most common terms to refer to the different kinds of EVs based on their origin, composition, size, and density. Exosomes have an endosomal origin and are released by many different cell types, participating in different phy...

  18. Tetraspanins in Extracellular Vesicle formation and function

    OpenAIRE

    Zoraida Andreu Martínez; María eYáñez-Mó

    2014-01-01

    Extracellular vesicles (EVs) represent a novel mechanism of intercellular communication as vehicles for intercellular transfer of functional membrane and cytosolic proteins, lipids, and RNAs. Microvesicles, ectosomes, shedding vesicles, microparticles and exosomes are the most common terms to refer to the different kinds of EVs based on their origin, composition, size and density. Exosomes have an endosomal origin and are released by many different cell types, participating in different physi...

  19. Matrix Extracellular Phosphoglycoprotein Inhibits Phosphate Transport

    OpenAIRE

    Marks, J; Churchill, L J; Debnam, E. S.; Unwin, R J

    2008-01-01

    The role of putative humoral factors, known as phosphatonins, in phosphate homeostasis and the relationship between phosphate handling by the kidney and gastrointestinal tract are incompletely understood. Matrix extracellular phosphoglycoprotein (MEPE), one of several candidate phosphatonins, promotes phosphaturia, but whether it also affects intestinal phosphate absorption is unknown. Here, using the in situ intestinal loop technique, we demonstrated that short-term infusion of MEPE inhibits...

  20. Engineering hydrogels as extracellular matrix mimics

    OpenAIRE

    Geckil, Hikmet; Xu, Feng; Zhang, Xiaohui; Moon, SangJun; Demirci, Utkan

    2010-01-01

    Extracellular matrix (ECM) is a complex cellular environment consisting of proteins, proteoglycans, and other soluble molecules. ECM provides structural support to mammalian cells and a regulatory milieu with a variety of important cell functions, including assembling cells into various tissues and organs, regulating growth and cell–cell communication. Developing a tailored in vitro cell culture environment that mimics the intricate and organized nanoscale meshwork of native ECM is desirable....

  1. Bordetella parapertussis Circumvents Neutrophil Extracellular Bactericidal Mechanisms

    Science.gov (United States)

    Gorgojo, Juan; Scharrig, Emilia; Gómez, Ricardo M.; Harvill, Eric T.; Rodríguez, Maria Eugenia

    2017-01-01

    B. parapertussis is a whooping cough etiological agent with the ability to evade the immune response induced by pertussis vaccines. We previously demonstrated that in the absence of opsonic antibodies B. parapertussis hampers phagocytosis by neutrophils and macrophages and, when phagocytosed, blocks intracellular killing by interfering with phagolysosomal fusion. But neutrophils can kill and/or immobilize extracellular bacteria through non-phagocytic mechanisms such as degranulation and neutrophil extracellular traps (NETs). In this study we demonstrated that B. parapertussis also has the ability to circumvent these two neutrophil extracellular bactericidal activities. The lack of neutrophil degranulation was found dependent on the O antigen that targets the bacteria to cell lipid rafts, eventually avoiding the fusion of nascent phagosomes with specific and azurophilic granules. IgG opsonization overcame this inhibition of neutrophil degranulation. We further observed that B. parapertussis did not induce NETs release in resting neutrophils and inhibited NETs formation in response to phorbol myristate acetate (PMA) stimulation by a mechanism dependent on adenylate cyclase toxin (CyaA)-mediated inhibition of reactive oxygen species (ROS) generation. Thus, B. parapertussis modulates neutrophil bactericidal activity through two different mechanisms, one related to the lack of proper NETs-inducer stimuli and the other one related to an active inhibitory mechanism. Together with previous results these data suggest that B. parapertussis has the ability to subvert the main neutrophil bactericidal functions, inhibiting efficient clearance in non-immune hosts. PMID:28095485

  2. Extracellular quality control in the epididymis

    Institute of Scientific and Technical Information of China (English)

    Gail A. Cornwall; H. Henning von Horsten; Douglas Swartz; Seethal Johnson; Kim Chau; Sandra Whelly

    2007-01-01

    The epididymal lumen represents a unique extracellular environment because of the active sperm maturation process that takes place within its confines. Although much focus has been placed on the interaction of epididymal secretory proteins with spermatozoa in the lumen, very little is known regarding how the complex epididymal milieu as a whole is maintained, including mechanisms to prevent or control proteins that may not stay in their native folded state following secretion. Because some misfolded proteins can form cytotoxic aggregate structures known as amyloid, it is likely that control/surveillance mechanisms exist within the epididymis to protect against this process and allow sperm maturation to occur. To study protein aggregation and to identify extracellular quality control mechanisms in the epididymis, we used the cystatin family of cysteine protease inhibitors, including cystatin-related epididymal spermatogenic and cystatin C as molecular models because both proteins have inherent properties to aggregate and form amyloid. In this chapter, we present a brief summary of protein aggregation by the amyloid pathway based on what is known from other organ systems and describe quality control mechanisms that exist intracellularly to control protein misfolding and aggregation. We then present a summary of our studies of cystatinrelated epididymal spermatogenic (CRES) oligomerization within the epididymal lumen, including studies suggesting that transglutaminase cross-linking may be one mechanism of extracellular quality control within the epididymis.

  3. EXTRACELLULAR VESICLES: CLASSIFICATION, FUNCTIONS AND CLINICAL RELEVANCE

    Directory of Open Access Journals (Sweden)

    A. V. Oberemko

    2014-12-01

    Full Text Available This review presents a generalized definition of vesicles as bilayer extracellular organelles of all celular forms of life: not only eu-, but also prokaryotic. The structure and composition of extracellular vesicles, history of research, nomenclature, their impact on life processes in health and disease are discussed. Moreover, vesicles may be useful as clinical instruments for biomarkers, and they are promising as biotechnological drug. However, many questions in this area are still unresolved and need to be addressed in the future. The most interesting from the point of view of practical health care represents a direction to study the effect of exosomes and microvesicles in the development and progression of a particular disease, the possibility of adjusting the pathological process by means of extracellular vesicles of a particular type, acting as an active ingredient. Relevant is the further elucidation of the role and importance of exosomes to the surrounding cells, tissues and organs at the molecular level, the prospects for the use of non-cellular vesicles as biomarkers of disease.

  4. Extracellular conversion of adiponectin hexamers into trimers

    Science.gov (United States)

    Kim, Jeong-a; Nuñez, Martha; Briggs, David B.; Laskowski, Bethany L.; Chhun, Jimmy J.; Eleid, Joseph K.; Quon, Michael J.; Tsao, Tsu-Shuen

    2012-01-01

    Adiponectin is an adipocyte-secreted hormone that exists as trimers, hexamers and larger species collectively referred to as HMW (high-molecular-weight) adiponectin. Whether hexamers or HMW adiponectin serve as precursors for trimers outside the circulation is currently unknown. Here, we demonstrate that adiponectin trimers can be generated from larger oligomers secreted from primary rat adipose cells or differentiated 3T3-L1 adipocytes. Purified hexameric, but not HMW, adiponectin converted into trimers in conditioned media separated from 3T3-L1 adipocytes or, more efficiently, when enclosed in the dialysis membrane in the presence of adipocytes. Several lines of evidence indicate that the conversion is mediated by an extracellular redox system. First, N-terminal epitope-tagged hexamers converted into trimers without proteolytic removal of the tag. Secondly, appearance of trimers was associated with conversion of disulfide-bonded dimers into monomers. Thirdly, thiol-reactive agents inhibited conversion into trimers. Consistent with a redox-based mechanism, purified hexamers reductively converted into trimers in defined glutathione redox buffer with reduction potential typically found in the extracellular environment while the HMW adiponectin remained stable. In addition, conversion of hexamers into trimers was enhanced by NADPH, but not by NADP+. Collectively, these data strongly suggest the presence of an extracellular redox system capable of converting adiponectin oligomers. PMID:22973892

  5. Extracellular DNA: the tip of root defenses?

    Science.gov (United States)

    Hawes, Martha C; Curlango-Rivera, Gilberto; Wen, Fushi; White, Gerard J; Vanetten, Hans D; Xiong, Zhongguo

    2011-06-01

    This review discusses how extracellular DNA (exDNA) might function in plant defense, and at what level(s) of innate immunity this process might operate. A new role for extracellular factors in mammalian defense has been described in a series of studies. These studies reveal that cells including neutrophils, eosinophils, and mast cells produce 'extracellular traps' (ETs) consisting of histone-linked exDNA. When pathogens are attracted to such ETs, they are trapped and killed. When the exDNA component of ETs is degraded, trapping is impaired and resistance against invasion is reduced. Conversely, mutation of microbial genes encoding exDNases that degrade exDNA results in loss of virulence. This discovery that exDNases are virulence factors opens new avenues for disease control. In plants, exDNA is required for defense of the root tip. Innate immunity-related proteins are among a group of >100 proteins secreted from the root cap and root border cell populations. Direct tests revealed that exDNA also is rapidly synthesized and exported from the root tip. When this exDNA is degraded by the endonuclease DNase 1, root tip resistance to fungal infection is lost; when the polymeric structure is degraded more slowly, by the exonuclease BAL31, loss of resistance to fungal infection is delayed accordingly. The results suggest that root border cells may function in a manner analogous to that which occurs in mammalian cells.

  6. Extracellular matrix proteins involved in pseudoislets formation.

    Science.gov (United States)

    Maillard, Elisa; Sencier, Marie-Christine; Langlois, A; Bietiger, William; Krafft, Mp; Pinget, Michel; Sigrist, Séverine

    2009-01-01

    Extracellular matrix proteins are known to mediate, through integrins, cell adhesion and are involved in a number of cellular processes, including insulin expression and secretion in pancreatic islets. We investigated whether expression of some extracellular matrix proteins were implied in islets-like structure formation, named pseudoislets. For this purpose, we cultured the β-cell line, RINm5F, during 1, 3, 5 and 7 days of culture on treated or untreated culture plate to form adherent cells or pseudoislets and analysed insulin, collagen IV, fibronectin, laminin 5 and β1-integrin expression. We observed that insulin expression and secretion were increased during pseudoislets formation. Moreover, we showed by immunohistochemistry an aggregation of insulin secreting cells in the centre of the pseudoislets. Peripheral β-cells of pseudoislets did not express insulin after 7 days of culture. RT-PCR and immunohistochemistry studies showed a transient expression of type IV collagen in pseudoislets for the first 3 days of culture. Study of fibronectin expression indicated that adherent cells expressed more fibronectin than pseudoislets. In contrast, laminin 5 was more expressed in pseudoislets than in adherent cells. Finally, expression of β1-integrin was increased in pseudoislets as compared to adherent cells. In conclusion, laminin 5 and collagen IV might be implicated in pseudoislets formation whereas fibronectin might be involved in cell adhesion. These data suggested that extracellular matrix proteins may enhance the function of pseudoislets.

  7. Intracellular Biopotentials During Static Extracellular Stimulation

    Science.gov (United States)

    Klee, Maurice

    1973-01-01

    Two properties of the intracellular potentials and electric fields resulting from static extracellular stimulation are obtained for arbitrarily shaped cells. First, the values of intracellular potential are shown to be bounded by the maximum and minimum values of extracellular potential on the surface of the cell. Second, the volume average of the magnitude of intracellular electric field is shown to have an upper bound given by the ratio of the magnitude of the largest extracellular potential difference on the surface of the cell to a generalized length constant λ = [σintraVcell/(σmemb Acell)]1/2, where Vcell and Acell are the volume and surface area of the cell, σintra is the intracellular conductivity (reciprocal ohms per centimeter), and σmemb is the membrane conductivity (reciprocal ohms per square centimeter). The use of the upper bound on the volume average of the magnitude of intracellular electric field as an estimate for intracellular isopotentiality is discussed and the use of the generalized length constant for electrically describing arbitrary cells is illustrated for cylindrical- and spheroidal-shaped cells. PMID:4726882

  8. Extracellular polymeric substances mediate bioleaching/biocorrosion via interfacial processes involving iron(III) ions and acidophilic bacteria.

    Science.gov (United States)

    Sand, Wolfgang; Gehrke, Tilman

    2006-01-01

    Extracellular polymeric substances seem to play a pivotal role in biocorrosion of metals and bioleaching, biocorrosion of metal sulfides for the winning of precious metals as well as acid rock drainage. For better control of both processes, the structure and function of extracellular polymeric substances of corrosion-causing or leaching bacteria are of crucial importance. Our research focused on the extremophilic bacteria Acidithiobacillus ferrooxidans and Leptospirillum ferrooxidans, because of the "simplicity" and knowledge about the interactions of these bacteria with their substrate/substratum and their environment. For this purpose, the composition of the corresponding extracellular polymeric substances and their functions were analyzed. The extracellular polymeric substances of both species consist mainly of neutral sugars and lipids. The functions of the exopolymers seem to be: (i) to mediate attachment to a (metal) sulfide surface, and (ii) to concentrate iron(III) ions by complexation through uronic acids or other residues at the mineral surface, thus, allowing an oxidative attack on the sulfide. Consequently, dissolution of the metal sulfide is enhanced, which may result in an acceleration of 20- to 100-fold of the bioleaching process over chemical leaching. Experiments were performed to elucidate the importance of the iron(III) ions complexed by extracellular polymeric substances for strain-specific differences in oxidative activity for pyrite. Strains of A. ferrooxidans with a high amount of iron(III) ions in their extracellular polymeric substances possess greater oxidation activity than those with fewer iron(III) ions. These data provide insight into the function of and consequently the advantages that extracellular polymeric substances provide to bacteria. The role of extracellular polymeric substances for attachment under the conditions of a space station and resulting effects like biofouling, biocorrosion, malodorous gases, etc. will be discussed.

  9. Carbon assimilation and extracellular antigens of some yeast-like fungi.

    Science.gov (United States)

    Middelhoven, W J; De Hoog, G S; Notermans, S

    1989-01-01

    Many yeast-like fungi assimilated n-hexadecane, butylamine and putrescine as sole carbon sources. Methanol was not assimilated. This points to a physiological similarity to endomycetous, hydrocarbon-utilizing yeasts. Stephanoascus ciferrii assimilated uric acid, adenine and allantoin as sole source of carbon and nitrogen. All strains of Geotrichum candidum and many other yeast-like fungi assimilated acetoin and butan-2,3-diol. Assimilation tests for adenine, uric acid, allantoin, acetoin and butan-2,3-diol were found to be suitable for taxonomic purposes. Extracellular antigens immunologically related to those produced by Geotrichum candidum were detected in the cell-free culture liquids of several yeast-like fungi. The extracellular antigen excreted by Stephanoascus ciferrii was species-specific.

  10. Responses of soil hydrolytic enzymes, ammonia-oxidizing bacteria and archaea to nitrogen applications in a temperate grassland in Inner Mongolia

    Science.gov (United States)

    Zhang, Xinyu; Tang, Yuqian; Shi, Yao; He, Nianpeng; Wen, Xuefa; Yu, Qiang; Zheng, Chunyu; Sun, Xiaomin; Qiu, Weiwen

    2016-09-01

    We used a seven-year urea gradient applied field experiment to investigate the effects of nitrogen (N) applications on soil N hydrolytic enzyme activity and ammonia-oxidizing microbial abundance in a typical steppe ecosystem in Inner Mongolia. The results showed that N additions inhibited the soil N-related hydrolytic enzyme activities, especially in 392 kg N ha‑1 yr‑1 treatment. As N additions increased, the amoA gene copy ratios of ammonia-oxidizing archaea (AOA) to ammonia-oxidizing bacteria (AOB) decreased from 1.13 to 0.65. Pearson correlation analysis showed that the AOA gene copies were negatively related with NH4+-N content. However, the AOB gene copies were positively correlated with NO3‑-N content. Moderate N application rates (56–224 kg N ha‑1 yr‑1) accompanied by P additions are beneficial to maintaining the abundance of AOB, as opposed to the inhibition of highest N application rate (392 kg N ha‑1 yr‑1) on the abundance of AOB. This study suggests that the abundance of AOB and AOA would not decrease unless N applications exceed 224 kg N ha‑1 yr‑1 in temperate grasslands in Inner Mongolia.

  11. Effect of Chain-Extenders on the Properties and Hydrolytic Degradation Behavior of the Poly(lactide/ Poly(butylene adipate-co-terephthalate Blends

    Directory of Open Access Journals (Sweden)

    Mingqing Chen

    2013-10-01

    Full Text Available Biodegradable poly(lactide/poly(butylene adipate-co-terephthalate (PLA/PBAT blends were prepared by reactive blending in the presence of chain-extenders. Two chain-extenders with multi-epoxy groups were studied. The effect of chain-extenders on the morphology, mechanical properties, thermal behavior, and hydrolytic degradation of the blends was investigated. The compatibility between the PLA and PBAT was significantly improved by in situ formation of PLA-co-PBAT copolymers in the presence of the chain-extenders, results in an enhanced ductility of the blends, e.g., the elongation at break was increased to 500% without any decrease in the tensile strength. The differential scanning calorimeter (DSC results reveal that cold crystallization of PLA was enhanced due to heterogeneous nucleation effect of the in situ compatibilized PBAT domains. As known before, PLA is sensitive to hydrolysis and in the presence of PBAT and the chain-extenders, the hydrolytic degradation of the blend was evident. A three-stage hydrolysis mechanism for the system is proposed based on a study of weight loss and molecular weight reduction of the samples and the pH variation of the degradation medium.

  12. Extracellular acidification elicits a chloride current that shares characteristics with ICl(swell).

    Science.gov (United States)

    Nobles, Muriel; Higgins, Christopher F; Sardini, Alessandro

    2004-11-01

    A Cl- current activated by extracellular acidification, ICl(pHac), has been characterized in various mammalian cell types. Many of the properties of ICl(pHac) are similar to those of the cell swelling-activated Cl- current ICl(swell): ion selectivity (I- > Br- > Cl- > F-), pharmacology [ICl(pHac) is inhibited by 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS), 1,9-dideoxyforskolin (DDFSK), diphenylamine-2-carboxylic acid (DPC), and niflumic acid], lack of dependence on intra- or extracellular Ca2+, and presence in all cell types tested. ICl(pHac) differs from ICl(swell) in three aspects: 1) its rate of activation and inactivation is very much more rapid, currents reaching a maximum in seconds rather than minutes; 2) it exhibits a slow voltage-dependent activation in contrast to the fast voltage-dependent activation and time- and voltage-dependent inactivation observed for ICl(swell); and 3) it shows a more pronounced outward rectification. Despite these differences, study of the transition between the two currents strongly suggests that ICl(swell) and ICl(pHac) are related and that extracellular acidification reflects a novel stimulus for activating ICl(swell) that, additionally, alters the biophysical properties of the channel.

  13. Extracellular lipolytic enzyme activity of a newly isolated Debaryomyces hansenii.

    Science.gov (United States)

    Takaç, Serpil; Sengel, Banu S

    2010-01-01

    A strain isolated from waste of a milk products plant and exhibited extracellular lipolytic activity was identified as Debaryomyces hansenii by 5.8S rRNA and 28S rRNA gene sequence analyses. Lipolytic activity was assayed spectrophotometrically by using p-nitrophenylpalmitate. Higher specific lipolytic activities were obtained in the presence of tristearin (0.68 U/mg prot), oleic acid (0.56 U/mg prot), and soybean oil (0.36 U/mg prot) than other triglycerides, fatty acids, and vegetable oils considered as carbon sources. Cheese whey appeared to be a good alternative to lipidic substances for lipolytic activity. Among various organic and inorganic nitrogen sources, soy flour was found to attain the lipolytic activity similar to that provided by universal yeast medium components. This work is the first report on the discussion of lipolytic activity enhancement by D. hansenii through modulating the cultivation medium. It also proposes low cost medium nutrients that could be of industrial value and could serve as basal nutrients for further optimization studies on the lipase production by D. hansenii.

  14. Vibrio cholerae evades neutrophil extracellular traps by the activity of two extracellular nucleases.

    Directory of Open Access Journals (Sweden)

    Andrea Seper

    Full Text Available The Gram negative bacterium Vibrio cholerae is the causative agent of the secretory diarrheal disease cholera, which has traditionally been classified as a noninflammatory disease. However, several recent reports suggest that a V. cholerae infection induces an inflammatory response in the gastrointestinal tract indicated by recruitment of innate immune cells and increase of inflammatory cytokines. In this study, we describe a colonization defect of a double extracellular nuclease V. cholerae mutant in immunocompetent mice, which is not evident in neutropenic mice. Intrigued by this observation, we investigated the impact of neutrophils, as a central part of the innate immune system, on the pathogen V. cholerae in more detail. Our results demonstrate that V. cholerae induces formation of neutrophil extracellular traps (NETs upon contact with neutrophils, while V. cholerae in return induces the two extracellular nucleases upon presence of NETs. We show that the V. cholerae wild type rapidly degrades the DNA component of the NETs by the combined activity of the two extracellular nucleases Dns and Xds. In contrast, NETs exhibit prolonged stability in presence of the double nuclease mutant. Finally, we demonstrate that Dns and Xds mediate evasion of V. cholerae from NETs and lower the susceptibility for extracellular killing in the presence of NETs. This report provides a first comprehensive characterization of the interplay between neutrophils and V. cholerae along with new evidence that the innate immune response impacts the colonization of V. cholerae in vivo. A limitation of this study is an inability for technical and physiological reasons to visualize intact NETs in the intestinal lumen of infected mice, but we can hypothesize that extracellular nuclease production by V. cholerae may enhance survival fitness of the pathogen through NET degradation.

  15. Overview of microalgal extracellular polymeric substances (EPS) and their applications.

    Science.gov (United States)

    Xiao, Rui; Zheng, Yi

    2016-11-15

    Microalgae have been studied as natural resources for a number of applications, most particularly food, animal feed, biofuels, pharmaceuticals, and nutraceuticals. In addition to the intracellular compounds of interest, microalgae can also excrete various extracellular polymeric substances (EPS) into their immediate living environment during their life cycle to form a hydrated biofilm matrix. These microalgal EPS mainly consist of polysaccharides, proteins, nucleic acids and lipids. Most notably, EPS retain their stable matrix structure and form a 3-D polymer network for cells to interact with each other, and mediate their adhesion to surfaces. EPS also play a role as extracellular energy and carbon sinks. They are also abundant source of structurally and compositionally diverse biopolymers which possess unique bioactivities for special high-value applications, specifically as antivirals, antitumor agents, antioxidants, anticoagulants and anti-inflammatories. Their superior rheological properties also make microalgal EPS particularly useful in mechanical engineering (e.g., biolubricants and drag reducers) and food science/engineering (e.g., thickener and preservatives) applications. The chemical composition and structure of EPS appear to correlate with their applications, but the fundamentals of such relationship are not well understood. This article summarizes previous research on microalgal EPS derived from green algae, diatoms and red algae, including compositions/functions/structure, production, and potential applications. The importance of exopolysaccharides and EPS proteins, with their particular metabolic characteristics, are also described because of their potential high-value applications. This review concludes with potential future research areas of microalgal EPS. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Resorbable extracellular matrix grafts in urologic reconstruction

    Directory of Open Access Journals (Sweden)

    Richard A. Santucci

    2005-06-01

    Full Text Available PURPOSE: There is an increasingly large body of literature concerning tissue-engineering products that may be used in urology. Some of these are quite complex (such as multilayer patient-specific cell-seeded implants yet the most simple and successful products to date are also the most uncomplicated: resorbable acellular extra-cellular matrices (ECMs harvested from animals. ECMs have been used in a variety of difficult urologic reconstruction problems, and this review is intended to summarize this complex literature for the practicing urologist. METHODS: Medline search of related terms such as "SIS, small intestinal submucosa, ECM, extracellular matrix, acellular matrix and urologic reconstruction". Manuscripts missed in the initial search were taken from the bibliographies of the primary references. RESULTS: Full review of potential clinical uses of resorbable extra-cellular matrices in urologic reconstruction. CONCLUSIONS: Currently, the "state of the art" in tissue engineering solutions for urologic reconstruction means resorbable acellular xenograft matrices. They show promise when used as a pubovaginal sling or extra bolstering layers in ureteral or urethral repairs, although recent problems with inflammation following 8-ply pubovaginal sling use and failures after 1- and 4-ply SIS repair of Peyronie's disease underscore the need for research before wide adoption. Preliminary data is mixed concerning the potential for ECM urethral patch graft, and more data is needed before extended uses such as bladder augmentation and ureteral replacement are contemplated. The distant future of ECMs in urology likely will include cell-seeded grafts with the eventual hope of producing "off the shelf" replacement materials. Until that day arrives, ECMs only fulfill some of the requirements for the reconstructive urologist.

  17. Comparison of CD45 extracellular domain sequences from divergent vertebrate species suggests the conservation of three fibronectin type III domains.

    Science.gov (United States)

    Okumura, M; Matthews, R J; Robb, B; Litman, G W; Bork, P; Thomas, M L

    1996-08-15

    Mammalian CD45 is a transmembrane protein tyrosine phosphatase expressed by all nucleated cells of hematopoietic origin. In lymphocytes, CD45 is required for Ag-induced signal transduction due to its ability to positively regulate Src family members. The mechanisms by which CD45 function is regulated are unknown. Indeed, the interactions of CD45 extracellular domains are largely undefined. To gain insight into potentially important regions of the extracellular domain, we sought to identify conserved features from divergent species. cDNAs encoding the putative CD45 homologue from Heterodontus francisci (horned shark) were isolated. The cDNA sequence predicts a protein of 1200 amino acids that contains a 452-amino acid extracellular domain, a 22-amino acid transmembrane region, and a 703-amino acid cytoplasmic domain. Alignment searches revealed that the Heterodontus cytoplasmic domain sequence was most identical to mammalian CD45 and a transmembrane protein tyrosine phosphatase sequence identified from chickens, ChPTP lambda. A dendrogram with other transmembrane protein tyrosine phosphatase sequences suggest that the Heterodontus and chicken sequences represents CD45 orthologues for their respective species. Analysis of vertebrate CD45 extracellular domain sequences indicates the conservation of three structural regions: a region containing potential O-linked carbohydrate sites, a cysteine-containing region, and a region containing three fibronectin type III domains. For each vertebrate species, multiple isoforms are generated by alternative splicing of three exons that encode a portion of the region containing potential O-linked glycosylation sites. These studies provide evidence for a conservation in CD45 extracellular domain structure between divergent species and provide a basis for understanding CD45 extracellular domain interactions.

  18. Managing Brain Extracellular K(+) during Neuronal Activity

    DEFF Research Database (Denmark)

    Larsen, Brian Roland; Stoica, Anca; MacAulay, Nanna

    2016-01-01

    reveal insights into pathological conditions such as epilepsy, migraine, and spreading depolarization following cerebral ischemia. In addition, particular neurological diseases occur as a result of mutations in the α2- (familial hemiplegic migraine type 2) and α3 isoforms (rapid-onset dystonia...... parkinsonism/alternating hemiplegia of childhood). This review addresses aspects of the Na(+)/K(+)-ATPase in the regulation of extracellular K(+) in the central nervous system as well as the related pathophysiology. Understanding the physiological setting in non-pathological tissue would provide a better...

  19. Biogenesis, delivery, and function of extracellular RNA

    Directory of Open Access Journals (Sweden)

    James G. Patton

    2015-08-01

    Full Text Available The Extracellular RNA (exRNA Communication Consortium was launched by the National Institutes of Health to focus on the extent to which RNA might function in a non-cell-autonomous manner. With the availability of increasingly sensitive tools, small amounts of RNA can be detected in serum, plasma, and other bodily fluids. The exact mechanism(s by which RNA can be secreted from cells and the mechanisms for the delivery and uptake by recipient cells remain to be determined. This review will summarize current knowledge about the biogenesis and delivery of exRNA and outline projects seeking to understand the functional impact of exRNA.

  20. Extracellular polymeric bacterial coverages as minimal surfaces

    CERN Document Server

    Saa, A; Saa, Alberto; Teschke, Omar

    2005-01-01

    Surfaces formed by extracellular polymeric substances enclosing individual and some small communities of {\\it Acidithiobacillus ferrooxidans} on plates of hydrophobic silicon and hydrophilic mica are analyzed by means of atomic force microscopy imaging. Accurate nanoscale descriptions of such coverage surfaces are obtained. The good agreement with the predictions of a rather simple but realistic theoretical model allows us to conclude that they correspond, indeed, to minimal area surfaces enclosing a given volume associated with the encased bacteria. This is, to the best of our knowledge, the first shape characterization of the coverage formed by these biomolecules, with possible applications to the study of biofilms.

  1. Bidirectional extracellular matrix signaling during tissue morphogenesis

    Science.gov (United States)

    Gjorevski, Nikolce; Nelson, Celeste M.

    2009-01-01

    Normal tissue development and function are regulated by the interplay between cells and their surrounding extracellular matrix (ECM). The ECM provides biochemical and mechanical contextual information that is conveyed from the cell membrane through the cytoskeleton to the nucleus to direct cell phenotype. Cells, in turn, remodel the ECM and thereby sculpt their local microenvironment. Here we review the mechanisms by which cells interact with, respond to, and influence the ECM, with particular emphasis placed on the role of this bidirectional communication during tissue morphogenesis. We also discuss the implications for successful engineering of functional tissues ex vivo. PMID:19896886

  2. Succession of Soil Acidity Quality and its Influence on Soil Phosphorus Types

    Institute of Scientific and Technical Information of China (English)

    DUANWenbiao; CHENLixin

    2004-01-01

    Succession rules of soil acidity quality of larch plantations in first rotation at different development stages, succession rules of soil acidity quality of young stand of larch plantations in second rotation and the relationship between soil acidity and various forms of organic phosphorus and inorganic phosphorus were studied in mountainous area of eastern part of Northeastern China. The results showed that active acidity (pH value) inrhizosphere soil decreased continually with stand age increasing from young stand, half-mature stand, near mature stand to mature stand, but active acidity (pH value) in non-rhizosphere soil, exchange acidity, exchangeable aluminium, total hydrolytic acidity, and the ratio of exchange acidity and total hydrolytic acidity in rhizosphere soil and in non-rhizosphere soil increased apparently; total organic P, moderately resistant organic P, and highly resistant organic P in soil decreased at all age stages in larch plantations when soil acidity added. For rhizosphere soil of all stands of larch plantations at different development stages,there was positive correlation between Ca-P (except in young stand), Al-P(except in half-mature stand), Fe-P (except in near mature stand and mature stand), O-P (except in young stand), and soil active acidity,respectively; For rhizosphere soil, there was negative correlation between Ca-P (except in half-mature stand), Al-P(except in young stand), O-P, and exchange acidity, exchangeable aluminium, there was also negative correlation between Ca-P, Al-P(except in young stand and half-mature stand), Fe-P, O-P, and total hydrolytic acidity respectively. For rhizosphere soil, the correlation coefficient between Ca-P, O-P and total hydrolytic aciditydecreased, respectively, as stand ages up and that between Fe-P and exchange acidity,exchangeable aluminium increased, respectively, as stand ages grew. For non-rhizosphere soil, there was not significant correlation between soil acidity and various forms of

  3. Biological conduits combining bone marrow mesenchymal stem cells and extracellular matrix to treat long-segment sciatic nerve defects

    Institute of Scientific and Technical Information of China (English)

    Yang Wang; Zheng-wei Li; Min Luo; Ya-jun Li; Ke-qiang Zhang

    2015-01-01

    The transplantation of polylactic glycolic acid conduits combining bone marrow mesenchymal stem cells and extracellular matrix gel for the repair of sciatic nerve injury is effective in some re-spects, but few data comparing the biomechanical factors related to the sciatic nerve are available. In the present study, rabbit models of 10-mm sciatic nerve defects were prepared. The rabbit models were repaired with autologous nerve, a polylactic glycolic acid conduit+bone marrow mesenchymal stem cells, or a polylactic glycolic acid conduit+bone marrow mesenchymal stem cells+extracellular matrix gel. After 24 weeks, mechanical testing was performed to determine the stress relaxation and creep parameters. Following sciatic nerve injury, the magnitudes of the stress decrease and strain increase at 7,200 seconds were largest in the polylactic glycolic acid conduit+bone marrow mesenchymal stem cells+extracellular matrix gel group, followed by the polylactic glycolic acid conduit+bone marrow mesenchymal stem cells group, and then the autologous nerve group. Hematoxylin-eosin staining demonstrated that compared with the poly-lactic glycolic acid conduit+bone marrow mesenchymal stem cells group and the autologous nerve group, a more complete sciatic nerve regeneration was found, including good myelination, regularly arranged nerve ifbers, and a completely degraded and resorbed conduit, in the polylac-tic glycolic acid conduit+bone marrow mesenchymal stem cells+extracellular matrix gel group. These results indicate that bridging 10-mm sciatic nerve defects with a polylactic glycolic acid conduit+bone marrow mesenchymal stem cells+extracellular matrix gel construct increases the stress relaxation under a constant strain, reducing anastomotic tension. Large elongations under a constant physiological load can limit the anastomotic opening and shift, which is ben-eifcial for the regeneration and functional reconstruction of sciatic nerve. Better regeneration was found with the

  4. THE SIGNIFICANCE OF EXTRACELLULAR GABA IN THE SUBSTANTIA-NIGRA OF THE RAT DURING SEIZURES AND ANTICONVULSANT TREATMENTS

    NARCIS (Netherlands)

    SAYIN, U; TIMMERMAN, W; WESTERINK, BHC

    1995-01-01

    The effects of the anti-epileptic drugs valproic acid and gamma-vinyl-GABA (vigabatrin) on the extracellular content of GABA was determined by microdialysis. Probes were implanted in the substantia nigra reticulata (SNR) of rats. It was found that gamma-vinyl-GABA (1000 mg/kg) induced a 4-6-fold

  5. THE SIGNIFICANCE OF EXTRACELLULAR GABA IN THE SUBSTANTIA-NIGRA OF THE RAT DURING SEIZURES AND ANTICONVULSANT TREATMENTS

    NARCIS (Netherlands)

    SAYIN, U; TIMMERMAN, W; WESTERINK, BHC

    1995-01-01

    The effects of the anti-epileptic drugs valproic acid and gamma-vinyl-GABA (vigabatrin) on the extracellular content of GABA was determined by microdialysis. Probes were implanted in the substantia nigra reticulata (SNR) of rats. It was found that gamma-vinyl-GABA (1000 mg/kg) induced a 4-6-fold inc

  6. Method for isolation and molecular characterization of extracellular microvesicles released from brain endothelial cells

    Directory of Open Access Journals (Sweden)

    Haqqani Arsalan S

    2013-01-01

    Full Text Available Abstract Background In addition to possessing intracellular vesicles, eukaryotic cells also produce extracellular microvesicles, ranging from 50 to 1000 nm in diameter that are released or shed into the microenvironment under physiological and pathological conditions. These membranous extracellular organelles include both exosomes (originating from internal vesicles of endosomes and ectosomes (originating from direct budding/shedding of plasma membranes. Extracellular microvesicles contain cell-specific collections of proteins, glycoproteins, lipids, nucleic acids and other molecules. These vesicles play important roles in intercellular communication by acting as carrier for essential cell-specific information to target cells. Endothelial cells in the brain form the blood–brain barrier, a specialized interface between the blood and the brain that tightly controls traffic of nutrients and macromolecules between two compartments and interacts closely with other cells forming the neurovascular unit. Therefore, brain endothelial cell extracellular microvesicles could potentially play important roles in ‘externalizing’ brain-specific biomarkers into the blood stream during pathological conditions, in transcytosis of blood-borne molecules into the brain, and in cell-cell communication within the neurovascular unit. Methods To study cell-specific molecular make-up and functions of brain endothelial cell exosomes, methods for isolation of extracellular microvesicles using mass spectrometry-compatible protocols and the characterization of their signature profiles using mass spectrometry -based proteomics were developed. Results A total of 1179 proteins were identified in the isolated extracellular microvesicles from brain endothelial cells. The microvesicles were validated by identification of almost 60 known markers, including Alix, TSG101 and the tetraspanin proteins CD81 and CD9. The surface proteins on isolated microvesicles could potentially

  7. Method for isolation and molecular characterization of extracellular microvesicles released from brain endothelial cells.

    Science.gov (United States)

    Haqqani, Arsalan S; Delaney, Christie E; Tremblay, Tammy-Lynn; Sodja, Caroline; Sandhu, Jagdeep K; Stanimirovic, Danica B

    2013-01-10

    In addition to possessing intracellular vesicles, eukaryotic cells also produce extracellular microvesicles, ranging from 50 to 1000 nm in diameter that are released or shed into the microenvironment under physiological and pathological conditions. These membranous extracellular organelles include both exosomes (originating from internal vesicles of endosomes) and ectosomes (originating from direct budding/shedding of plasma membranes). Extracellular microvesicles contain cell-specific collections of proteins, glycoproteins, lipids, nucleic acids and other molecules. These vesicles play important roles in intercellular communication by acting as carrier for essential cell-specific information to target cells. Endothelial cells in the brain form the blood-brain barrier, a specialized interface between the blood and the brain that tightly controls traffic of nutrients and macromolecules between two compartments and interacts closely with other cells forming the neurovascular unit. Therefore, brain endothelial cell extracellular microvesicles could potentially play important roles in 'externalizing' brain-specific biomarkers into the blood stream during pathological conditions, in transcytosis of blood-borne molecules into the brain, and in cell-cell communication within the neurovascular unit. To study cell-specific molecular make-up and functions of brain endothelial cell exosomes, methods for isolation of extracellular microvesicles using mass spectrometry-compatible protocols and the characterization of their signature profiles using mass spectrometry -based proteomics were developed. A total of 1179 proteins were identified in the isolated extracellular microvesicles from brain endothelial cells. The microvesicles were validated by identification of almost 60 known markers, including Alix, TSG101 and the tetraspanin proteins CD81 and CD9. The surface proteins on isolated microvesicles could potentially interact with both primary astrocytes and cortical neurons

  8. Regulation of polyisoprenylated methylated protein methyl esterase by polyunsaturated fatty acids and prostaglandins

    OpenAIRE

    Amissah, Felix; Taylor, Shalina; Duverna, Randolph; Ayuk-Takem, Lambert T.; Lamango, Nazarius S

    2011-01-01

    Polyisoprenylation is a set of secondary modifications involving proteins whose aberrant activities are implicated in cancers and degenerative disorders. The last step of the pathway involves an ester-forming polyisoprenylated protein methyl transferase- and hydrolytic polyisoprenylated methylated protein methyl esterase (PMPMEase)-catalyzed reactions. Omega-3 and omega-6 polyunsaturated fatty acids (PUFAs) have been linked with antitumorigeneis and tumorigenesis, respectively. PUFAs are stru...

  9. Concentrated Sulfuric Acid Hydrolysis of Hardwood Aspen and Softwood Pine for Bioethanol Production

    OpenAIRE

    Janga, Kando Khalifa

    2011-01-01

    Bioethanol production from lignocellulosic biomass has been targeted as an alternative solution to the existing dependence on fossil fuels in the transportation sector. However, the recalcitrant nature of lignocelluloses has been a challenge to the hydrolytic processes and hence commercialization.This study has investigated the feasibility of the concentrated sulfuric acid hydrolysis (CSAH) process for bioethanol production from wood-based lignocelluloses. This is because the process enjoys h...

  10. Defining the extracellular matrix using proteomics

    Science.gov (United States)

    Byron, Adam; Humphries, Jonathan D; Humphries, Martin J

    2013-01-01

    The cell microenvironment has a profound influence on the behaviour, growth and survival of cells. The extracellular matrix (ECM) provides not only mechanical and structural support to cells and tissues but also binds soluble ligands and transmembrane receptors to provide spatial coordination of signalling processes. The ability of cells to sense the chemical, mechanical and topographical features of the ECM enables them to integrate complex, multiparametric information into a coherent response to the surrounding microenvironment. Consequently, dysregulation or mutation of ECM components results in a broad range of pathological conditions. Characterization of the composition of ECM derived from various cells has begun to reveal insights into ECM structure and function, and mechanisms of disease. Proteomic methodologies permit the global analysis of subcellular systems, but extracellular and transmembrane proteins present analytical difficulties to proteomic strategies owing to the particular biochemical properties of these molecules. Here, we review advances in proteomic approaches that have been applied to furthering our understanding of the ECM microenvironment. We survey recent studies that have addressed challenges in the analysis of ECM and discuss major outcomes in the context of health and disease. In addition, we summarize efforts to progress towards a systems-level understanding of ECM biology. PMID:23419153

  11. Extracellular superoxide dismutase of boar seminal plasma.

    Science.gov (United States)

    Kowalowka, M; Wysocki, P; Fraser, L; Strzezek, J

    2008-08-01

    Superoxide dismutase (SOD) is an enzymatic component of the antioxidant defense system that protects spermatozoa by catalysing the dismutation of superoxide anions to hydrogen peroxide and oxygen. Age and season effects on SOD activity in the seminal plasma were measured in boars at the onset of 8 months through a 35-month period. It was found that age-related changes in SOD activity in the seminal plasma were markedly higher in boars less than 2 years of age. However, it appeared that SOD activity was established at the early sexual maturity age (8-12 months). There were variations in SOD activity throughout the season, being significantly higher in spring and autumn than in summer. A secretory extracellular form of SOD (EC-SOD) was purified to homogeneity (350-fold) from boar seminal plasma, using a three-step purification protocol (affinity chromatography followed by ion exchange and ceramic hydroxyapatite chromatography). The molecular properties and specificity of SOD (molecular mass, isoelectric point, optimum pH, thermostability and susceptibility to inhibitors) confirmed that the purified enzyme is an extracellular form of Cu/Zn-superoxide dismutase occurring in boar seminal plasma. The results of this study indicate that EC-SOD is an important antioxidant enzyme of boar seminal plasma, which plays an important physiological role in counteracting oxidative stress in spermatozoa.

  12. Extracellular polymers of ozonized waste activated sludge.

    Science.gov (United States)

    Liu, J C; Lee, C H; Lai, J Y; Wang, K C; Hsu, Y C; Chang, B V

    2001-01-01

    Effect of ozonation on characteristics of waste activated sludge was investigated in the current study. Concentrations of cell-bound extracellular polymers (washed ECPs) did not change much upon ozonation, whereas the sum of cell-bound and soluble extracellular polymers (unwashed ECPs) increased with increasing ozone dose. Washed ECPs in original sludge as divided by molecular weight distribution was 39% 10,000 Da (high MW). It was observed that the low-MW fraction decreased, and the high-MW fraction increased in ozonized sludge. The unwashed ECPs were characterized as 44% in low MW, 30% in medium MW, and 26% in high MW. Both low-MW and medium-MW fractions of unwashed ECPs decreased while high-MW fraction increased in ozonized sludge. The dewaterability of ozonized sludge, assessed by capillary suction time (CST) and specific resistance to filtration (SRF), deteriorated with ozone dose. The optimal dose of cationic polyelectrolyte increased with increasing ozone dose. The production rate and the accumulated amount of methane gas of ozonized sludge were also higher.

  13. Extracellular ATP inhibits root gravitropism at concentrations that inhibit polar auxin transport

    Science.gov (United States)

    Tang, Wenqiang; Brady, Shari R.; Sun, Yu; Muday, Gloria K.; Roux, Stanley J.

    2003-01-01

    Raising the level of extracellular ATP to mM concentrations similar to those found inside cells can block gravitropism of Arabidopsis roots. When plants are grown in Murashige and Skoog medium supplied with 1 mM ATP, their roots grow horizontally instead of growing straight down. Medium with 2 mM ATP induces root curling, and 3 mM ATP stimulates lateral root growth. When plants are transferred to medium containing exogenous ATP, the gravity response is reduced or in some cases completely blocked by ATP. Equivalent concentrations of ADP or inorganic phosphate have slight but usually statistically insignificant effects, suggesting the specificity of ATP in these responses. The ATP effects may be attributable to the disturbance of auxin distribution in roots by exogenously applied ATP, because extracellular ATP can alter the pattern of auxin-induced gene expression in DR5-beta-glucuronidase transgenic plants and increase the response sensitivity of plant roots to exogenously added auxin. The presence of extracellular ATP also decreases basipetal auxin transport in a dose-dependent fashion in both maize (Zea mays) and Arabidopsis roots and increases the retention of [(3)H]indole-3-acetic acid in root tips of maize. Taken together, these results suggest that the inhibitory effects of extracellular ATP on auxin distribution may happen at the level of auxin export. The potential role of the trans-plasma membrane ATP gradient in auxin export and plant root gravitropism is discussed.

  14. Extracellular superoxide production, viability and redox poise in response to desiccation in recalcitrant Castanea sativa seeds.

    Science.gov (United States)

    Roach, Thomas; Beckett, Richard P; Minibayeva, Farida V; Colville, Louise; Whitaker, Claire; Chen, Hongying; Bailly, Christophe; Kranner, Ilse

    2010-01-01

    Reactive oxygen species (ROS) are implicated in seed death following dehydration in desiccation-intolerant 'recalcitrant' seeds. However, it is unknown if and how ROS are produced in the apoplast and if they play a role in stress signalling during desiccation. We studied intracellular damage and extracellular superoxide (O(2)(.-)) production upon desiccation in Castanea sativa seeds, mechanisms of O(2)(.-) production and the effect of exogenously supplied ROS. A transient increase in extracellular O(2)(.-) production by the embryonic axes preceded significant desiccation-induced viability loss. Thereafter, progressively more oxidizing intracellular conditions, as indicated by a significant shift in glutathione half-cell reduction potential, accompanied cell and axis death, coinciding with the disruption of nuclear membranes. Most hydrogen peroxide (H(2)O(2))-dependent O(2)(.-) production was found in a cell wall fraction that contained extracellular peroxidases (ECPOX) with molecular masses of approximately 50 kDa. Cinnamic acid was identified as a potential reductant required for ECPOX-mediated O(2)(.-) production. H(2)O(2), applied exogenously to mimic the transient ROS burst at the onset of desiccation, counteracted viability loss of sub-lethally desiccation-stressed seeds and of excised embryonic axes grown in tissue culture. Hence, extracellular ROS produced by embryonic axes appear to be important signalling components involved in wound response, regeneration and growth.

  15. The International Society for Extracellular Vesicles launches the first massive open online course on extracellular vesicles

    Directory of Open Access Journals (Sweden)

    Cecilia Lässer

    2016-12-01

    Full Text Available The International Society for Extracellular Vesicles (ISEV has organised its first educational online course for students and beginners in the field of extracellular vesicles (EVs. This course, “Basics of Extracellular Vesicles,” uses recorded lectures from experts in the field and will be open for an unlimited number of participants. The course is divided into 5 modules and can be accessed at www.coursera.org/learn/extracellular-vesicles. The first module is an introduction to the field covering the nomenclature and history of EVs. Module 2 focuses on the biogenesis and uptake mechanisms of EVs, as well as their RNA, protein and lipid cargo. Module 3 covers the collection and processing of cell culture media and body fluids such as blood, breast milk, cerebrospinal fluid and urine prior to isolation of EVs. Modules 4 and 5 present different isolation methods and characterisation techniques utilised in the EV field. Here, differential ultracentrifugation, size-exclusion chromatography, density gradient centrifugation, kit-based precipitation, electron microscopy, cryo-electron microscopy, flow cytometry, atomic-force microscopy and nanoparticle-tracking analysis are covered. This first massive open online course (MOOC on EVs was launched on 15 August 2016 at the platform “Coursera” and is free of charge.

  16. Extracellular matrix in canine mammary tumors with special focus on versican, a versatile extracellular proteoglycan

    NARCIS (Netherlands)

    Erdélyi, Ildikó

    2006-01-01

    The extracellular matrix (ECM) research has become fundamental to understand cancer. This thesis focuses on the exploration of ECM composition and organization in canine mammary tumors, with a special interest in the large chondroitin-sulfate proteoglycan (PG), versican. Chapter 1 gives an overvie

  17. Effect of nitrogen narcosis on extracellular levels of dopamine and its metabolites in the rat striatum, using intracerebral microdialysis.

    Science.gov (United States)

    Barthelemy-Requin, M; Semelin, P; Risso, J J

    1994-12-19

    In man, nitrogen narcosis is characterized by euphoria, impaired cognitive function, neuromuscular incoordination and, ultimately, loss of consciousness. Because of the motor movement disorders, we chose to study the nigrostriatal system, whose major function is to regulate the extrapyramidal nervous system. The purpose of this investigation was to monitor changes in extracellular levels of dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) in the striatum of conscious rats, using intracerebral microdialysis. Results show a 40% decrease in extracellular DA concentration, a 59% increase in extracellular DOPAC and an increase in HVA starting with exposure to the nitrogen mixture. Thirty minutes after the beginning of the exposure, a compensation phase took place. HVA returns to its initial basal value, and levels of DOPAC and DA returned towards normal but never reached their initial values. These results contrast with those observed during the High Pressure Neurological Syndrome (HPNS, 5.1 MPa of helium pressure) in which there is a significant increase in extracellular DA. Therefore, some of the symptoms of nitrogen narcosis may be linked with the decrease in the extracellular DA levels.

  18. The Penicillium chrysogenum extracellular proteome. Conversion from a food-rotting strain to a versatile cell factory for white biotechnology.

    Science.gov (United States)

    Jami, Mohammad-Saeid; García-Estrada, Carlos; Barreiro, Carlos; Cuadrado, Abel-Alberto; Salehi-Najafabadi, Zahra; Martín, Juan-Francisco

    2010-12-01

    The filamentous fungus Penicillium chrysogenum is well-known by its ability to synthesize β-lactam antibiotics as well as other secondary metabolites. Like other filamentous fungi, this microorganism is an excellent host for secretion of extracellular proteins because of the high capacity of its protein secretion machinery. In this work, we have characterized the extracellular proteome reference map of P. chrysogenum Wisconsin 54-1255 by two-dimensional gel electrophoresis. This method allowed the correct identification of 279 spots by peptide mass fingerprinting and tandem MS. These 279 spots included 328 correctly identified proteins, which corresponded to 131 different proteins and their isoforms. One hundred and two proteins out of 131 were predicted to contain either classical or nonclassical secretion signal peptide sequences, providing evidence of the authentic extracellular location of these proteins. Proteins with higher representation in the extracellular proteome were those involved in plant cell wall degradation (polygalacturonase, pectate lyase, and glucan 1,3-β-glucosidase), utilization of nutrients (extracellular acid phosphatases and 6-hydroxy-d-nicotine oxidase), and stress response (catalase R). This filamentous fungus also secretes enzymes specially relevant for food industry, such as sulfydryl oxidase, dihydroxy-acid dehydratase, or glucoamylase. The identification of several antigens in the extracellular proteome also highlights the importance of this microorganism as one of the main indoor allergens. Comparison of the extracellular proteome among three strains of P. chrysogenum, the wild-type NRRL 1951, the Wis 54-1255 (an improved, moderate penicillin producer), and the AS-P-78 (a penicillin high-producer), provided important insights to consider improved strains of this filamentous fungus as versatile cell-factories of interest, beyond antibiotic production, for other aspects of white biotechnology.

  19. Mechanism of Excretion of a Bacterial Proteinase: Factors Controlling Accumulation of the Extracellular Proteinase of a Sarcina Strain (Coccus P)

    Energy Technology Data Exchange (ETDEWEB)

    BISSELL, MINA J.; TOSI, ROBERTO; GORINI, LUIGI

    1970-06-29

    It has been known that the extracellular proteinase of Coccus P is found only in cultures grown in the presence of Ca{sup 2+}. It is now shown that this cation is required neither for synthesis, excretion, or activation of a zymogen nor as a prosthetic factor necessary for enzymatic activity. The only function of Ca{sup 2+} is to stabilize the active structure of the enzyme molecule, presumably by substituting for absence of S-S bridges. In the absence of Ca{sup 2+} , the excreted proteinase undergoes rapid autodigestion and, instead of the active protein, its hydrolytic products are accumulated in the culture fluid. In minimal medium and under conditions of enzyme stability [presence of Ca{sup 2+} and Ficoll (Pharmacia)], Coccus P accumulates the proteinase at a gradually reduced speed although the rate of cultural growth remains constant. It is shown that this decline in rate of accumulation is caused by the excreted proteinase itself, possibly acting on its own precursor emerging from the cell in a form susceptible to proteolytic attack and not amenable to Ca{sup 2+} protection. A proteinase precursor is actually demonstrable in a calciumless culture at the onset of the enzyme accumulation which follows Ca{sup 2+} addition. It is suggested that excreted proteins require an unfolded (or incompletely folded) structure to cross the cell envelope. The proteinase excreted by a Sarcina strain (Coccus P) is found only in cultures containing Ca{sup 2+} ions (1), a feature common to proteinases of other bacteria (4, 12, 18) and to other excreted enzymes (14). Among the nontoxic divalent cations, Ca{sup 2+} is rather specific in this effect. Other ions such as Mn{sup 2+} or Mg{sup 2+}, the latter being present in all media as an indispensible growth factor, are ineffective. Addition of Ca{sup 2+} to the proteolytically inactive supernatant fluid of a calcium- free culture does not result in the appearance of the missing enzyme activity. The early assumption that Ca{sup 2

  20. Core-shell structured nanospheres with mesoporous silica shell and Ni core as a stable catalyst for hydrolytic dehydrogenation of ammonia borane

    Institute of Scientific and Technical Information of China (English)

    Hua; Liu; Changyan; Cao; Ping; Li; Yu; Yu; Weiguo; Song

    2014-01-01

    Core-shell structured nanospheres with mesoporous silica shell and Ni core(denoted as Ni@meso-SiO2) are prepared through a three-step process. Monodispersed Ni precursors are first prepared, and then coated with mesoporous SiO2. Final Ni@meso-SiO2spheres are obtained after calcination. The products are characterized by X-ray powder diffraction, transmission electron microscopy and N2adsorption-desorption methods. These spheres have a high surface area and are well dispersed in water, showing a high catalytic activity with a TOF value of 18.5,and outstanding stability in hydrolytic dehydrogenation of ammonia borane at room temperature.

  1. Production of hydrolytic enzymes by Trichoderma isolates with antagonistic activity against Crinipellis perniciosa, the causal agent of witches' broom of cocoa

    Directory of Open Access Journals (Sweden)

    Marco Janice Lisboa De

    2003-01-01

    Full Text Available Two isolates of Trichoderma, which reduce the incidence of witches'broom disease caused in cocoa by Crinipellis perniciosa, were evaluated for their potential to produce hydrolases in liquid medium. Very low or no hydrolytic activity was produced in the absence of any substrate. The activities of chitinase, N-acetylglucosaminidase, beta-1,3-glucanase, total cellulase, endoglucanase, aryl- beta-glucosidase, beta-glucosidase, protease and amylase increased dramatically within 72-120 h of growth in the presence of specific substrates. Except for N-acetylglucosaminidase and beta-glucosidase Trichoderma harzianum isolate 1051 produced the largest amounts of hydrolases. The possible involvement of these enzymes in the antagonistic interaction between Trichoderma and C. perniciosa is discussed.

  2. Probing the electronic structure of M-graphene oxide (M = Ni, Co, NiCo) catalysts for hydrolytic dehydrogenation of ammonia borane

    Science.gov (United States)

    Zhao, Binhua; Liu, Jinyin; Zhou, Litao; Long, Dan; Feng, Kun; Sun, Xuhui; Zhong, Jun

    2016-01-01

    Various metal elements (M = Ni, Co, NiCo) were dispersed on graphene oxide (GO) to form the M-GO hybrids by a facile way. The hybrids showed good catalytic activities in the hydrolytic dehydrogenation of ammonia borane (AB, NH3BH3), which were significantly enhanced when compared to the metal nanoparticles or GO alone. The electronic structure of the hybrids has been probed by scanning transmission X-ray microscopy (STXM). The distribution of metal elements was clearly imaged with identical electronic structure. Moreover, an interfacial interaction between metal and GO was observed with the peak intensity proportional to the catalytic performance in the hydrolysis of AB. The results provide new insight into the enhanced performance of the M-GO hybrids and may help for the design of advanced catalysts.

  3. Gene Expression and Activity Profiling Reveal a Significant Contribution of Exo-Phosphotransferases to the Extracellular Nucleotides Metabolism in HUVEC Endothelial Cells.

    Science.gov (United States)

    Wujak, Magdalena; Hetmann, Anna; Porowińska, Dorota; Roszek, Katarzyna

    2017-06-01

    Purinergic signaling maintains local tissue homeostasis in blood vessels via the regulation of vascular tone, blood platelet aggregation, cell proliferation, and differentiation as well as inflammatory responses. Extracellular purines are important signaling molecules in the vasculature, and both purine-hydrolysing as well as -phosphorylating enzymes are considered to selectively govern extracellular nucleotide/nucleoside metabolism. Recent studies have provided some evidence for the existence of these enzymes in a soluble form in human blood and their secretion into the extracellular space under physiological and pathological conditions. However, the comprehensive analysis of endothelium-derived enzymes involved in purine metabolic pathways has received no attention so far. In the presented study, in vitro cultured human umbilical vein endothelial cells (HUVEC) are shown to be an abundant source of exo-nucleotidases comprising 5'-nucleotidase (exo-5'-NT), and nucleoside triphosphate diphosphohydrolases (exo-NTPDase) as well as phosphotransferases, represented by nucleoside diphosphate kinase (exo-NDPK) and adenylate kinase (exo-AK). An attempt is also made to demonstrate that, in contrast to the metabolic pattern determined on the endothelial cell surface, exo-phosphorylating activities markedly predominate over exo-hydrolytic ones. We present for the first time the expression profiles of genes encoding isoenzymes belonging to distinct nucleotide kinase and nucleotidase families. The genes encoding NDPK1, NDPK2, AK1, and AK2 phosphotransferases have been shown to be expressed at the highest level in HUVEC cells. The data indicate the coexistence of secreted and cell-associated factors of endothelial origin mediating ATP-consuming and ATP-generating pathways with the predominance of exo-phosphotransferases activity. The described enzymes contribute to the regulation of purinergic signal duration and extent in the venous vasculature. J. Cell. Biochem. 118: 1341

  4. Preparation and characterization of EPDM/silica composites prepared through non-hydrolytic sol-gel method in the absence and presence of a coupling agent

    Directory of Open Access Journals (Sweden)

    T. H. Mokhothu

    2014-11-01

    Full Text Available Ethylene propylene diene monomer (EPDM rubber composites containing in situ generated silica particles was prepared through a non-hydrolytic sol-gel (NHSG method with silicon tetrachloride as precursor. The silica particles were homogenously dispersed in the EPDM matrix, but there were agglomerates at high silica contents. The swelling experiments showed a decrease in the crosslinking density of the vulcanized rubber due to the presence of the silica particles for both the composites prepared in the presence and absence of a coupling agent, bis-[-3-(triethoxysilyl-propyl]-tetrasulfide (TESPT. Unlike the composites prepared through a hydrolytic sol-gel (HSG method with TEOS as precursor, the TESPT did not seem to take part in the sol-gel reaction. The presence of TESPT influenced the interaction and dispersion of the silica particles in the EPDM matrix, which gave rise to increased thermal stability of the EPDM when compared to the composites prepared in the absence of TESPT. However, ethylene chloride and TESPT evaporated from the samples at temperatures below the EPDM decomposition range. The values of the Nielsen model parameters, that gave rise to a good agreement with the experimentally determined Young’s modulus values, indicated improved dispersion and reduced size of the silica aggregates in the EPDM matrix. There was also good agreement between the storage modulus and Young’s modulus values. The filler effectiveness (Factor C indicated a mechanical stiffening effect and a thermal stability contribution by the filler, while the damping reduction (DR values confirmed that the EPDM interacted strongly with the well dispersed silica particles and the polymer chain mobility was restricted. The tensile properties, however, were in some cases worse than those for the samples prepared through the HSG method in the presence of TEOS.

  5. Blending of soluble corn fiber with pullulan, sorbitol, or fructose attenuates glycemic and insulinemic responses in the dog and affects hydrolytic digestion in vitro.

    Science.gov (United States)

    de Godoy, M R C; Knapp, B K; Bauer, L L; Swanson, K S; Fahey, G C

    2013-08-01

    The objective of these experiments was to measure in vitro hydrolytic digestion and glycemic and insulinemic responses of select carbohydrate blends, all containing the novel carbohydrate soluble corn fiber (SCF). Two SCF that varied in their method of production were used to formulate the carbohydrate blends. One set of blends contained a SCF that was spray dried (SCFsd) and then blended with different amounts of either pullulan, sorbitol, or fructose. The other set of blends contained a SCF produced using longer evaporation time (SCF) and then blended with different ratios of pullulan, sorbitol, and fructose. Free sugar concentrations found in the individual SCFsd and SCF substrates were low but varied. Spray-dried soluble corn fiber had a reduced free sugar concentration compared with SCF (2.8 vs. 14.2%). Glucose was the main free sugar found in both SCFsd and SCF but at different concentrations (2.7 vs. 12.7%, respectively). The majority of the SCFsd blends were completely hydrolyzed to their monosaccharide components. Glucose accounted for most of the hydrolyzed monosaccharides for SCFsd and all the SCFsd blends. Hydrolyzed monosaccharide concentrations for the SCF:pullulan:sorbitol:fructose blends followed similar trends to the SCFsd blends where greater percentages of fructose and sorbitol resulted in decreased (P sorbitol. Total released monosaccharides were high in SCFsd blends containing either 50% fructose or sorbitol, but the combination resulted in reduced concentrations of glucose released (P sorbitol:fructose blends also had intermediate to high released monosaccharides as a result of in vitro hydrolytic digestion. All SCF blends resulted in decreased glycemic and insulinemic responses compared with the maltodextrin control (P sorbitol in the blends had the greatest impact on glycemic and insulinemic responses, even at concentrations as low as 5% of the blends. Overall, SCF and their blends may prove beneficial as components of low glycemic

  6. Non-hydrolytic Disruption of Crystalline Structure of Cellulose by Cellulose Binding Domain and Linker Sequence of Cellobiohydrolase I from Penicillium janthinellum.

    Science.gov (United States)

    Gao, Pei-Ji; Chen, Guan-Jun; Wang, Tian-Hong; Zhang, Ying-Shu; Liu, Jie

    2001-01-01

    The cooperation between cellobiohydrolase (CBHI) and endoglucanase (EG) is necessary for biodegradation of native cellulose, but its mechanism is still poorly understood. The present paper report at the first time that an isolated component, the cellulose binding domain with its linker sequence of cellobiohydrolase I from Penicillium janthinellum (CBD(CBHI)), plays an important role in the synergism between CBHI and EGI during cellulose biodegradation. A recombinantplasmid (pUC18C), containing the gene fragment encoding CBD(CBHI) from P.janthinellum was derived from pUC18-181. In pUC 18C, the catalytic domain region of cbhI gene was deleted by in vitro DNA manipulations and then E.coli JM 109 was transformed for the production of LacZ-CBD fusion protein. The active LacZ-CBD fusion protein was digested by papain and then purified by re-exclusion chromatography. The purified peptide sequence of CBD(CBHI) had the ability of binding crystalline cellulose. The detailed morphological and structural changes of cotton fibers after binding CBD(CBHI) were investigated by using scanning electron microscopy, calorimetric activity and X-ray diffraction. The results demonstrated that the CBD(CBHI) not only has a high binding capacity to cellulose, but also causes non-hydrolytic disruption of crystalline cellulose, which leads to the release of short fibers. IR spectroscopy and X-ray diffraction show that destabilization is caused by the non-hydrolytic disruption of cellulose and the disruption of hydrogen bonds in crystalline cellulose. The efficiency of crystalline cellulose degradation was enhanced by synergistic action of CBD(CBHI) with EGI. These results suggest that the cellulose-binding domain with its linker plays an important role in crystalline cellulose degradation.

  7. Investigation of the Fusarium virguliforme Transcriptomes Induced during Infection of Soybean Roots Suggests that Enzymes with Hydrolytic Activities Could Play a Major Role in Root Necrosis

    Science.gov (United States)

    Sahu, Binod B.; Baumbach, Jordan L.; Singh, Prashant; Srivastava, Subodh K.; Yi, Xiaoping

    2017-01-01

    Sudden death syndrome (SDS) is caused by the fungal pathogen, Fusarium virguliforme, and is a major threat to soybean production in North America. There are two major components of this disease: (i) root necrosis and (ii) foliar SDS. Root symptoms consist of root necrosis with vascular discoloration. Foliar SDS is characterized by interveinal chlorosis and leaf necrosis, and in severe cases by flower and pod abscission. A major toxin involved in initiating foliar SDS has been identified. Nothing is known about how root necrosis develops. In order to unravel the mechanisms used by the pathogen to cause root necrosis, the transcriptome of the pathogen in infected soybean root tissues of a susceptible cultivar, ‘Essex’, was investigated. The transcriptomes of the germinating conidia and mycelia were also examined. Of the 14,845 predicted F. virguliforme genes, we observed that 12,017 (81%) were expressed in germinating conidia and 12,208 (82%) in mycelia and 10,626 (72%) in infected soybean roots. Of the 10,626 genes induced in infected roots, 224 were transcribed only following infection. Expression of several infection-induced genes encoding enzymes with oxidation-reduction properties suggests that degradation of antimicrobial compounds such as the phytoalexin, glyceollin, could be important in early stages of the root tissue infection. Enzymes with hydrolytic and catalytic activities could play an important role in establishing the necrotrophic phase. The expression of a large number of genes encoding enzymes with catalytic and hydrolytic activities during the late infection stages suggests that cell wall degradation could be involved in root necrosis and the establishment of the necrotrophic phase in this pathogen. PMID:28095498

  8. Extracellular RNAs: development as biomarkers of human disease

    Directory of Open Access Journals (Sweden)

    Joseph F. Quinn

    2015-08-01

    Full Text Available Ten ongoing studies designed to test the possibility that extracellular RNAs may serve as biomarkers in human disease are described. These studies, funded by the NIH Common Fund Extracellular RNA Communication Program, examine diverse extracellular body fluids, including plasma, serum, urine and cerebrospinal fluid. The disorders studied include hepatic and gastric cancer, cardiovascular disease, chronic kidney disease, neurodegenerative disease, brain tumours, intracranial haemorrhage, multiple sclerosis and placental disorders. Progress to date and the plans for future studies are outlined.

  9. Neutrophils cast extracellular traps in response to protozoan parasites.

    Science.gov (United States)

    Abi Abdallah, Delbert S; Denkers, Eric Y

    2012-01-01

    Release of extracellular traps by neutrophils is a now well-established phenomenon that contributes to the innate response to extracellular bacterial and fungal pathogens. The importance of NETs during protozoan infection has been less explored, but recent findings suggest an emerging role for release of neutrophil-derived extracellular DNA in response to this class of microbial pathogens. The present review summarizes findings to date regarding elicitation of NETs by Toxoplasma gondii, Plasmodium falciparum, Eimeria bovis, and Leishmania spp.

  10. The metabolic impact of extracellular nitrite on aerobic metabolism of Paracoccus denitrificans.

    Science.gov (United States)

    Hartop, K R; Sullivan, M J; Giannopoulos, G; Gates, A J; Bond, P L; Yuan, Z; Clarke, T A; Rowley, G; Richardson, D J

    2017-02-07

    Nitrite, in equilibrium with free nitrous acid (FNA), can inhibit both aerobic and anaerobic growth of microbial communities through bactericidal activities that have considerable potential for control of microbial growth in a range of water systems. There has been much focus on the effect of nitrite/FNA on anaerobic metabolism and so, to enhance understanding of the metabolic impact of nitrite/FNA on aerobic metabolism, a study was undertaken with a model denitrifying bacterium Paracoccus denitrificans PD1222. Extracellular nitrite inhibits aerobic growth of P. denitrificans in a pH-dependent manner that is likely to be a result of both nitrite and free nitrous acid (pKa = 3.25) and subsequent reactive nitrogen oxides generated from the intracellular passage of FNA into P. denitrificans. Increased expression of a gene encoding a flavohemoglobin protein (Fhp) (Pden_1689) was observed in response to extracellular nitrite. Construction and analysis of a deletion mutant established Fhp to be involved in endowing nitrite/FNA resistance at high extracellular nitrite concentrations. Global transcriptional analysis confirmed nitrite-dependent expression of fhp and indicated that P. denitrificans expressed a number of stress response systems associated with protein, DNA and lipid repair. It is therefore suggested that nitrite causes a pH-dependent stress response that is due to the production of associated reactive nitrogen species, such as nitric oxide from the internalisation of FNA.

  11. The NIH Extracellular RNA Communication Consortium.

    Science.gov (United States)

    Ainsztein, Alexandra M; Brooks, Philip J; Dugan, Vivien G; Ganguly, Aniruddha; Guo, Max; Howcroft, T Kevin; Kelley, Christine A; Kuo, Lillian S; Labosky, Patricia A; Lenzi, Rebecca; McKie, George A; Mohla, Suresh; Procaccini, Dena; Reilly, Matthew; Satterlee, John S; Srinivas, Pothur R; Church, Elizabeth Stansell; Sutherland, Margaret; Tagle, Danilo A; Tucker, Jessica M; Venkatachalam, Sundar

    2015-01-01

    The Extracellular RNA (exRNA) Communication Consortium, funded as an initiative of the NIH Common Fund, represents a consortium of investigators assembled to address the critical issues in the exRNA research arena. The overarching goal is to generate a multi-component community resource for sharing fundamental scientific discoveries, protocols, and innovative tools and technologies. The key initiatives include (a) generating a reference catalogue of exRNAs present in body fluids of normal healthy individuals that would facilitate disease diagnosis and therapies, (b) defining the fundamental principles of exRNA biogenesis, distribution, uptake, and function, as well as development of molecular tools, technologies, and imaging modalities to enable these studies,

  12. Physiology and pathology of extracellular vesicules

    Directory of Open Access Journals (Sweden)

    M. A. Panteleev

    2017-01-01

    Full Text Available This year marks the 50th anniversary of the first publication about blood plasma microparticles. Initially considered as cell fragments or “platelet dust”, extracellular vesicles currently attracted the attention of biochemists, biophysicists, physicians, pharmacists around the world. They are heterogeneous in structure and derived from many cell types, express different antigen and contain variety of biomolecules that determines wide range of biological activity, including procoagulant, regenerative, immunomodulating, and others. They play an important role in the pathophysiology of different diseases and conditions – from infarction, injuries and pregnancies to the “graft versus host” disease. The vesicles as medicaments and their carriers, as well as the drugs that affect them, are a rapidly developing field of research.

  13. Extracellular Matrices (ECM) for Tissue Repair.

    Science.gov (United States)

    Polanco, Thais O; Xylas, Joanna; Lantis, John C

    2016-04-01

    Persistence of skin wounds due to underlying disease, bacterial contamination, and/or repeated trauma, causes a chronic condition where a functional extracellular matrix (ECM) cannot be established and the normal wound-healing cascade is unable to progress. These open chronic wounds leave the body susceptible to infection and present a major healthcare problem. To this end, a broad range of biologic ECM scaffolds have been developed that can provide other therapeutic options aside from traditional wound care approaches. These tissue engineered ECM scaffolds aim to facilitate the restoration of functional skin-like tissue by altering the chronic wound environment and facilitating cellular attachment, proliferation, and differentiation. This discussion will center on reviewing current ECM scaffolds and highlighting their properties and mechanism of action with respect to the clinical application in chronic, non-healing wounds.

  14. Neutrophil extracellular traps in tissue pathology.

    Science.gov (United States)

    Nakazawa, Daigo; Kumar, Santosh; Desai, Jyaysi; Anders, Hans-Joachim

    2017-03-01

    Neutrophil extracellular traps (NETs) are innate immune systems against invading pathogens. NETs are characterized as released DNA mixed with cytoplasmic antimicrobial proteins such as myeloperoxidase, proteinase3 and neutrophil elastase. While NETs are thought to have an important role in host defense, recent work has suggested that NETs contribute to tissue injury in non-infectious disease states. Uncontrolled NET formation in autoimmune diseases, metabolic disorders, cancers and thrombotic diseases can exacerbate a disease or even be a major initiator of tissue injury. But spotting NETs in tissues is not easy. Here we review the available histopathological evidence on the presence of NETs in a variety of diseases. We discuss technical difficulties and potential sources of misinterpretation while trying to detect NETs in tissue samples.

  15. Extracellular nicotinamide phosphoribosyltransferase, a new cancer metabokine

    Science.gov (United States)

    Grolla, Ambra A; Travelli, Cristina

    2016-01-01

    Abstract In this review, we focus on the secreted form of nicotinamide phosphoribosyltransferase (NAMPT); extracellular NAMPT (eNAMPT), also known as pre‐B cell colony‐enhancing factor or visfatin. Although intracellular NAMPT is a key enzyme in controlling NAD metabolism, eNAMPT has been reported to function as a cytokine, with many roles in physiology and pathology. Circulating eNAMPT has been associated with several metabolic and inflammatory disorders, including cancer. Because cytokines produced in the tumour micro‐environment play an important role in cancer pathogenesis, in part by reprogramming cellular metabolism, future improvements in cancer immunotherapy will require a better understanding of the crosstalk between cytokine action and tumour biology. In this review, the knowledge of eNAMPT in cancer will be discussed, focusing on its immunometabolic function as a metabokine, its secretion, its mechanism of action and possible roles in the cancer micro‐environment. PMID:27128025

  16. Extracellular Vesicles in Chronic Obstructive Pulmonary Disease

    Directory of Open Access Journals (Sweden)

    Tsukasa Kadota

    2016-10-01

    Full Text Available Chronic obstructive pulmonary disease (COPD is characterized by the progression of irreversible airflow limitation and is a leading cause of morbidity and mortality worldwide. Although several crucial mechanisms of COPD pathogenesis have been studied, the precise mechanism remains unknown. Extracellular vesicles (EVs, including exosomes, microvesicles, and apoptotic bodies, are released from almost all cell types and are recognized as novel cell–cell communication tools. They have been shown to carry and transfer a wide variety of molecules, such as microRNAs, messenger RNAs, and proteins, which are involved in physiological functions and the pathology of various diseases. Recently, EVs have attracted considerable attention in pulmonary research. In this review, we summarize the recent findings of EV-mediated COPD pathogenesis. We also discuss the potential clinical usefulness of EVs as biomarkers and therapeutic agents for the treatment of COPD.

  17. Extracellular Matrix Molecules Facilitating Vascular Biointegration

    Directory of Open Access Journals (Sweden)

    Martin K.C. Ng

    2012-08-01

    Full Text Available All vascular implants, including stents, heart valves and graft materials exhibit suboptimal biocompatibility that significantly reduces their clinical efficacy. A range of biomolecules in the subendothelial space have been shown to play critical roles in local regulation of thrombosis, endothelial growth and smooth muscle cell proliferation, making these attractive candidates for modulation of vascular device biointegration. However, classically used biomaterial coatings, such as fibronectin and laminin, modulate only one of these components; enhancing endothelial cell attachment, but also activating platelets and triggering thrombosis. This review examines a subset of extracellular matrix molecules that have demonstrated multi-faceted vascular compatibility and accordingly are promising candidates to improve the biointegration of vascular biomaterials.

  18. Cloning of a novel 6-chloronicotinic acid chlorohydrolase from the newly isolated 6-chloronicotinic acid mineralizing Bradyrhizobiaceae strain SG-6C.

    Directory of Open Access Journals (Sweden)

    Madhura Shettigar

    Full Text Available A 6-chloronicotinic acid mineralizing bacterium was isolated from enrichment cultures originating from imidacloprid-contaminated soil samples. This Bradyrhizobiaceae, designated strain SG-6C, hydrolytically dechlorinated 6-chloronicotinic acid to 6-hydroxynicotinic acid, which was then further metabolised via the nicotinic acid pathway. This metabolic pathway was confirmed by growth and resting cell assays using HPLC and LC-MS studies. A candidate for the gene encoding the initial dechlorination step, named cch2 (for 6-chloronicotinic acid chlorohydrolase, was identified using genome sequencing and its function was confirmed using resting cell assays on E. coli heterologously expressing this gene. The 464 amino acid enzyme was found to be a member of the metal dependent hydrolase superfamily with similarities to the TRZ/ATZ family of chlorohydrolases. We also provide evidence that cch2 was mobilized into this bacterium by an Integrative and Conjugative Element (ICE that feeds 6-hydroxynicotinic acid into the existing nicotinic acid mineralization pathway.

  19. Active endocannabinoids are secreted on extracellular membrane vesicles.

    Science.gov (United States)

    Gabrielli, Martina; Battista, Natalia; Riganti, Loredana; Prada, Ilaria; Antonucci, Flavia; Cantone, Laura; Matteoli, Michela; Maccarrone, Mauro; Verderio, Claudia

    2015-02-01

    Endocannabinoids primarily influence neuronal synaptic communication within the nervous system. To exert their function, endocannabinoids need to travel across the intercellular space. However, how hydrophobic endocannabinoids cross cell membranes and move extracellularly remains an unresolved problem. Here, we show that endocannabinoids are secreted through extracellular membrane vesicles produced by microglial cells. We demonstrate that microglial extracellular vesicles carry on their surface N-arachidonoylethanolamine (AEA), which is able to stimulate type-1 cannabinoid receptors (CB1), and inhibit presynaptic transmission, in target GABAergic neurons. This is the first demonstration of a functional role of extracellular vesicular transport of endocannabinoids.

  20. Bioengineering Human Myocardium on Native Extracellular Matrix

    Science.gov (United States)

    Guyette, Jacques P.; Charest, Jonathan M; Mills, Robert W; Jank, Bernhard J.; Moser, Philipp T.; Gilpin, Sarah E.; Gershlak, Joshua R.; Okamoto, Tatsuya; Gonzalez, Gabriel; Milan, David J.; Gaudette, Glenn R.; Ott, Harald C.

    2015-01-01

    Rationale More than 25 million individuals suffer from heart failure worldwide, with nearly 4,000 patients currently awaiting heart transplantation in the United States. Donor organ shortage and allograft rejection remain major limitations with only about 2,500 hearts transplanted each year. As a theoretical alternative to allotransplantation, patient-derived bioartificial myocardium could provide functional support and ultimately impact the treatment of heart failure. Objective The objective of this study is to translate previous work to human scale and clinically relevant cells, for the bioengineering of functional myocardial tissue based on the combination of human cardiac matrix and human iPS-derived cardiac myocytes. Methods and Results To provide a clinically relevant tissue scaffold, we translated perfusion-decellularization to human scale and obtained biocompatible human acellular cardiac scaffolds with preserved extracellular matrix composition, architecture, and perfusable coronary vasculature. We then repopulated this native human cardiac matrix with cardiac myocytes derived from non-transgenic human induced pluripotent stem cells (iPSCs) and generated tissues of increasing three-dimensional complexity. We maintained such cardiac tissue constructs in culture for 120 days to demonstrate definitive sarcomeric structure, cell and matrix deformation, contractile force, and electrical conduction. To show that functional myocardial tissue of human scale can be built on this platform, we then partially recellularized human whole heart scaffolds with human iPSC-derived cardiac myocytes. Under biomimetic culture, the seeded constructs developed force-generating human myocardial tissue, showed electrical conductivity, left ventricular pressure development, and metabolic function. Conclusions Native cardiac extracellular matrix scaffolds maintain matrix components and structure to support the seeding and engraftment of human iPS-derived cardiac myocytes, and enable

  1. Filter based phase distortions in extracellular spikes.

    Science.gov (United States)

    Yael, Dorin; Bar-Gad, Izhar

    2017-01-01

    Extracellular recordings are the primary tool for extracting neuronal spike trains in-vivo. One of the crucial pre-processing stages of this signal is the high-pass filtration used to isolate neuronal spiking activity. Filters are characterized by changes in the magnitude and phase of different frequencies. While filters are typically chosen for their effect on magnitudes, little attention has been paid to the impact of these filters on the phase of each frequency. In this study we show that in the case of nonlinear phase shifts generated by most online and offline filters, the signal is severely distorted, resulting in an alteration of the spike waveform. This distortion leads to a shape that deviates from the original waveform as a function of its constituent frequencies, and a dramatic reduction in the SNR of the waveform that disrupts spike detectability. Currently, the vast majority of articles utilizing extracellular data are subject to these distortions since most commercial and academic hardware and software utilize nonlinear phase filters. We show that this severe problem can be avoided by recording wide-band signals followed by zero phase filtering, or alternatively corrected by reversed filtering of a narrow-band filtered, and in some cases even segmented signals. Implementation of either zero phase filtering or phase correction of the nonlinear phase filtering reproduces the original spike waveforms and increases the spike detection rates while reducing the number of false negative and positive errors. This process, in turn, helps eliminate subsequent errors in downstream analyses and misinterpretations of the results.

  2. Filter based phase distortions in extracellular spikes

    Science.gov (United States)

    Yael, Dorin

    2017-01-01

    Extracellular recordings are the primary tool for extracting neuronal spike trains in-vivo. One of the crucial pre-processing stages of this signal is the high-pass filtration used to isolate neuronal spiking activity. Filters are characterized by changes in the magnitude and phase of different frequencies. While filters are typically chosen for their effect on magnitudes, little attention has been paid to the impact of these filters on the phase of each frequency. In this study we show that in the case of nonlinear phase shifts generated by most online and offline filters, the signal is severely distorted, resulting in an alteration of the spike waveform. This distortion leads to a shape that deviates from the original waveform as a function of its constituent frequencies, and a dramatic reduction in the SNR of the waveform that disrupts spike detectability. Currently, the vast majority of articles utilizing extracellular data are subject to these distortions since most commercial and academic hardware and software utilize nonlinear phase filters. We show that this severe problem can be avoided by recording wide-band signals followed by zero phase filtering, or alternatively corrected by reversed filtering of a narrow-band filtered, and in some cases even segmented signals. Implementation of either zero phase filtering or phase correction of the nonlinear phase filtering reproduces the original spike waveforms and increases the spike detection rates while reducing the number of false negative and positive errors. This process, in turn, helps eliminate subsequent errors in downstream analyses and misinterpretations of the results. PMID:28358895

  3. Ciliary extracellular vesicles: Txt msg orgnlls

    Science.gov (United States)

    Wang, Juan; Barr, Maureen M.

    2016-01-01

    Cilia are sensory organelles that protrude from cell surfaces to monitor the surrounding environment. In addition to its role as sensory receiver, the cilium also releases extracellular vesicles (EVs). The release of sub-micron sized EVs is a conserved form of intercellular communication used by all three kingdoms of life. These extracellular organelles play important roles in both short and long range signaling between donor and target cells and may coordinate systemic responses within an organism in normal and diseased states. EV shedding from ciliated cells and EV-cilia interactions are evolutionarily conserved phenomena, yet remarkably little is known about the relationship between the cilia and EVs and the fundamental biology of EVs. Studies in the model organisms Chlamydomonas and C. elegans have begun to shed light on ciliary EVs. Chlamydomonas EVs are shed from tips of flagella and are bioactive. C. elegans EVs are shed and released by ciliated sensory neurons in an intraflagellar transport (IFT)-dependent manner. C. elegans EVs play a role in modulating animal-to-animal communication, and this EV bioactivity is dependent on EV cargo content. Some ciliary pathologies, or ciliopathies, are associated with abnormal EV shedding or with abnormal cilia-EV interactions, suggest the cilium may be an important organelle as an EV donor or as an EV target. Until the past few decades, both cilia and EVs were ignored as vestigial or cellular junk. As research interest in these two organelles continues to gain momentum, we envision a new field of cell biology emerging. Here, we propose that the cilium is a dedicated organelle for EV biogenesis and EV reception. We will also discuss possible mechanisms by which EVs exert bioactivity and explain how what is learned in model organisms regarding EV biogenesis and function may provide insight to human ciliopathies. PMID:26983828

  4. Role of extracellular superoxide dismutase in hypertension.

    Science.gov (United States)

    Gongora, Maria Carolina; Qin, Zhenyu; Laude, Karine; Kim, Ha Won; McCann, Louise; Folz, J Rodney; Dikalov, Sergey; Fukai, Tohru; Harrison, David G

    2006-09-01

    We previously found that angiotensin II-induced hypertension increases vascular extracellular superoxide dismutase (ecSOD), and proposed that this is a compensatory mechanism that blunts the hypertensive response and preserves endothelium-dependent vasodilatation. To test this hypothesis, we studied ecSOD-deficient mice. ecSOD(-/-) and C57Blk/6 mice had similar blood pressure at baseline; however, the hypertension caused by angiotensin II was greater in ecSOD(-/-) compared with wild-type mice (168 versus 147 mm Hg, respectively; P<0.01). In keeping with this, angiotensin II increased superoxide and reduced endothelium-dependent vasodilatation in small mesenteric arterioles to a greater extent in ecSOD(-/-) than in wild-type mice. In contrast to these findings in resistance vessels, angiotensin II paradoxically improved endothelium-dependent vasodilatation, reduced intracellular and extracellular superoxide, and increased NO production in aortas of ecSOD(-/-) mice. Whereas aortic expression of endothelial NO synthase, Cu/ZnSOD, and MnSOD were not altered in ecSOD(-/-) mice, the activity of Cu/ZnSOD was increased by 80% after angiotensin II infusion. This was associated with a concomitant increase in expression of the copper chaperone for Cu/ZnSOD in the aorta but not in the mesenteric arteries. Moreover, the angiotensin II-induced increase in aortic reduced nicotinamide-adenine dinucleotide phosphate oxidase activity was diminished in ecSOD(-/-) mice as compared with controls. Thus, during angiotensin II infusion, ecSOD reduces hypertension, minimizes vascular superoxide production, and preserves endothelial function in resistance arterioles. We also identified novel compensatory mechanisms involving upregulation of copper chaperone for Cu/ZnSOD, increased Cu/ZnSOD activity, and decreased reduced nicotinamide-adenine dinucleotide phosphate oxidase activity in larger vessels. These compensatory mechanisms preserve large vessel function when ecSOD is absent in

  5. Oncogenic extracellular vesicles in brain tumour progression

    Directory of Open Access Journals (Sweden)

    Esterina eD'Asti

    2012-07-01

    Full Text Available The brain is a frequent site of neoplastic growth, including both primary and metastatic tumours. The clinical intractability of many brain tumours and their distinct biology are implicitly linked to the unique microenvironment of the central nervous system (CNS and cellular interactions within. Among the most intriguing forms of cellular interactions is that mediated by membrane-derived extracellular vesicles (EVs. Their biogenesis (vesiculation and uptake by recipient cells serves as a unique mechanism of intercellular trafficking of complex biological messages including the exchange of molecules that cannot be released through classical secretory pathways, or that are prone to extracellular degradation. Tumour cells produce EVs containing molecular effectors of several cancer-related processes such as growth, invasion, drug resistance, angiogenesis, and coagulopathy. Notably, tumour-derived EVs (oncosomes also contain oncogenic proteins, transcripts, DNA and microRNA (miR. Uptake of this material may change properties of the recipient cells and impact the tumour microenvironment. Examples of transformation-related molecules found in the cargo of tumour-derived EVs include the oncogenic epidermal growth factor receptor (EGFRvIII, tumour suppressors (PTEN and oncomirs (miR-520g. It is postulated that EVs circulating in blood or cerebrospinal fluid (CSF of brain tumour patients may be used to decipher molecular features (mutations of the underlying malignancy, reflect responses to therapy or molecular subtypes of primary brain tumours (e.g. glioma or medulloblastoma. It is possible that metastases to the brain may also emit EVs with clinically relevant oncogenic signatures. Thus EVs emerge as a novel and functionally important vehicle of intercellular communication that can mediate multiple biological effects. In addition, they provide a unique platform to develop molecular biomarkers in brain malignancies.

  6. Biodegradation and metabolic pathway of β-chlorinated aliphatic acid in Bacillus sp. CGMCC no. 4196.

    Science.gov (United States)

    Lin, Chunjiao; Yang, Lirong; Xu, Gang; Wu, Jianping

    2011-04-01

    In this study, a bacterial Bacillus sp. CGMCC no. 4196 was isolated from mud. This strain exhibited the ability to degrade high concentration of 3-chloropropionate (3-CPA, 120 mM) or 3-chlorobutyrate (30 mM), but not chloroacetate or 2-chloropropionate (2-CPA). The growing cells, resting cells, and cell-free extracts from this bacterium had the capability of 3-CPA degradation. The results indicated that the optimum biocatalyst for 3-CPA biodegradation was the resting cells. The 3-CPA biodegradation pathway was further studied through the metabolites and critical enzymes analysis by HPLC, LC-MS, and colorimetric method. The results demonstrated that the metabolites of 3-CPA were 3-hydroxypropionic acid (3-HP) and malonic acid semialdehyde, and the critical enzymes were 3-CPA dehalogenase and 3-HP dehydroxygenase. Thus, the mechanism of the dehalogenase-catalyzed reaction was inferred as hydrolytic dehalogenation which was coenzyme A-independent and oxygen-independent. Finally, the pathway of β-chlorinated aliphatic acid biodegradation could be concluded as follows: the β-chlorinated acid is first hydrolytically dehalogenated to the β-hydroxyl aliphatic acid, and the hydroxyl aliphatic acid is oxidized to β-carbonyl aliphatic acid by β-hydroxy aliphatic acid dehydroxygenase. It is the first report that 3-HP was produced from 3-CPA by β-chlorinate