WorldWideScience

Sample records for acid-soluble spore proteins

  1. Small acid soluble proteins for rapid spore identification.

    Energy Technology Data Exchange (ETDEWEB)

    Branda, Steven S.; Lane, Todd W.; VanderNoot, Victoria A.; Jokerst, Amanda S.

    2006-12-01

    This one year LDRD addressed the problem of rapid characterization of bacterial spores such as those from the genus Bacillus, the group that contains pathogenic spores such as B. anthracis. In this effort we addressed the feasibility of using a proteomics based approach to spore characterization using a subset of conserved spore proteins known as the small acid soluble proteins or SASPs. We proposed developing techniques that built on our previous expertise in microseparations to rapidly characterize or identify spores. An alternative SASP extraction method was developed that was amenable to both the subsequent fluorescent labeling required for laser-induced fluorescence detection and the low ionic strength requirements for isoelectric focusing. For the microseparations, both capillary isoelectric focusing and chip gel electrophoresis were employed. A variety of methods were evaluated to improve the molecular weight resolution for the SASPs, which are in a molecular weight range that is not well resolved by the current methods. Isoelectric focusing was optimized and employed to resolve the SASPs using UV absorbance detection. Proteomic signatures of native wild type Bacillus spores and clones genetically engineered to produce altered SASP patterns were assessed by slab gel electrophoresis, capillary isoelectric focusing with absorbance detection as well as microchip based gel electrophoresis employing sensitive laser-induced fluorescence detection.

  2. Ultraviolet irradiation of DNA complexed with. alpha. /. beta. -type small, acid-soluble proteins from spores of Bacillus or Clostridium species makes spore photoproduct but not thymine dimers

    Energy Technology Data Exchange (ETDEWEB)

    Nicholson, W.L.; Setlow, B.; Setlow, P. (Univ. of Connecticut Health Center, Farmington (United States))

    1991-10-01

    UV irradiation of complexes of DNA and an {alpha}/{beta}-type small, acid-soluble protein (SASP) from Bacillus subtilis spores gave decreasing amounts of pyrimidine dimers and increasing amounts of spore photoproduct as the SASP/DNA ratio was increased. The yields of pyrimidine dimers and spore photoproduct were < 0.2% and 8% of total thymine, respectively, when DNA saturated with SASP was irradiated at 254 nm with 30 kJ/m{sup 2}; in the absence of SASP the yields were reversed - 4.5% and 0.3%, respectively. Complexes of DNA with {alpha}/{beta}-type SASP from Bacillus cereus, Bacillus megaterium, or Clostridium bifermentans spores also gave spore photoproduct upon UV irradiation. However, incubation of these SASPs with DNA under conditions preventing complex formation or use of mutant SASPs that do not form complexes did not affect the photoproducts formed in vitro. These results suggest that the UV photochemistry of bacterial spore DNA in vivo is due to the binding of {alpha}/{beta}-type SASP, a binding that is known to cause a change in DNA conformation in vitro from the B form to the A form. The yields of spore photoproduct in vitro were significantly lower than in vivo, perhaps because of the presence of substances other than SASP in spores. It is suggested that as these factors diffuse out in the first minutes of spore germination, spore photoproduct yields become similar to those observed for irradiation of SASP/DNA complexes in vitro.

  3. A novel small acid soluble protein variant is important for spore resistance of most Clostridium perfringens food poisoning isolates.

    Directory of Open Access Journals (Sweden)

    Jihong Li

    2008-05-01

    Full Text Available Clostridium perfringens is a major cause of food poisoning (FP in developed countries. C. perfringens isolates usually induce the gastrointestinal symptoms of this FP by producing an enterotoxin that is encoded by a chromosomal (cpe gene. Those typical FP strains also produce spores that are extremely resistant to food preservation approaches such as heating and chemical preservatives. This resistance favors their survival and subsequent germination in improperly cooked, prepared, or stored foods. The current study identified a novel alpha/beta-type small acid soluble protein, now named Ssp4, and showed that sporulating cultures of FP isolates producing resistant spores consistently express a variant Ssp4 with an Asp substitution at residue 36. In contrast, Gly was detected at Ssp4 residue 36 in C. perfringens strains producing sensitive spores. Studies with isogenic mutants and complementing strains demonstrated the importance of the Asp 36 Ssp4 variant for the exceptional heat and sodium nitrite resistance of spores made by most FP strains carrying a chromosomal cpe gene. Electrophoretic mobility shift assays and DNA binding studies showed that Ssp4 variants with an Asp at residue 36 bind more efficiently and tightly to DNA than do Ssp4 variants with Gly at residue 36. Besides suggesting one possible mechanistic explanation for the highly resistant spore phenotype of most FP strains carrying a chromosomal cpe gene, these findings may facilitate eventual development of targeted strategies to increase killing of the resistant spores in foods. They also provide the first indication that SASP variants can be important contributors to intra-species (and perhaps inter-species variations in bacterial spore resistance phenotypes. Finally, Ssp4 may contribute to spore resistance properties throughout the genus Clostridium since ssp4 genes also exist in the genomes of other clostridial species.

  4. A novel small acid soluble protein variant is important for spore resistance of most Clostridium perfringens food poisoning isolates.

    Science.gov (United States)

    Li, Jihong; McClane, Bruce A

    2008-05-02

    Clostridium perfringens is a major cause of food poisoning (FP) in developed countries. C. perfringens isolates usually induce the gastrointestinal symptoms of this FP by producing an enterotoxin that is encoded by a chromosomal (cpe) gene. Those typical FP strains also produce spores that are extremely resistant to food preservation approaches such as heating and chemical preservatives. This resistance favors their survival and subsequent germination in improperly cooked, prepared, or stored foods. The current study identified a novel alpha/beta-type small acid soluble protein, now named Ssp4, and showed that sporulating cultures of FP isolates producing resistant spores consistently express a variant Ssp4 with an Asp substitution at residue 36. In contrast, Gly was detected at Ssp4 residue 36 in C. perfringens strains producing sensitive spores. Studies with isogenic mutants and complementing strains demonstrated the importance of the Asp 36 Ssp4 variant for the exceptional heat and sodium nitrite resistance of spores made by most FP strains carrying a chromosomal cpe gene. Electrophoretic mobility shift assays and DNA binding studies showed that Ssp4 variants with an Asp at residue 36 bind more efficiently and tightly to DNA than do Ssp4 variants with Gly at residue 36. Besides suggesting one possible mechanistic explanation for the highly resistant spore phenotype of most FP strains carrying a chromosomal cpe gene, these findings may facilitate eventual development of targeted strategies to increase killing of the resistant spores in foods. They also provide the first indication that SASP variants can be important contributors to intra-species (and perhaps inter-species) variations in bacterial spore resistance phenotypes. Finally, Ssp4 may contribute to spore resistance properties throughout the genus Clostridium since ssp4 genes also exist in the genomes of other clostridial species.

  5. The role of small acid-soluble proteins (SASPs) in protection of spores of Clostridium botulinum against nitrous acid.

    Science.gov (United States)

    Meaney, Carolyn A; Cartman, Stephen T; McClure, Peter J; Minton, Nigel P

    2016-01-04

    Mutant strains of Clostridium botulinum ATCC 3502 were generated using the ClosTron in four genes (CBO1789, CBO1790, CBO3048, CBO3145) identified as encoding α/β-type SASP homologues. The spores of mutant strains in which CBO1789 or CBO1790 was inactivated demonstrated a significant increase in sensitivity to the damaging agent nitrous acid (P0.05), two other chemicals commonly used as components of disinfection regimes. These data indicate that the SASPs CBO1789 or CBO1790 play a significant role in resistance to nitrous acid, but not in resistance to formaldehyde or hydrogen peroxide.

  6. Small acid-soluble spore proteins of Clostridium acetobutylicum are able to protect DNA in vitro and are specifically cleaved by germination protease GPR and spore protease YyaC.

    Science.gov (United States)

    Wetzel, Daniela; Fischer, Ralf-Jörg

    2015-11-01

    Small acid-soluble proteins (SASPs) play an important role in protection of DNA in dormant bacterial endospores against damage by heat, UV radiation or enzymic degradation. In the genome of the strict anaerobe Clostridium acetobutylicum, five genes encoding SASPs have been annotated and here a further sixth candidate is suggested. The ssp genes are expressed in parallel dependent upon Spo0A, a master regulator of sporulation. Analysis of the transcription start points revealed a σG or a σF consensus promoter upstream of each ssp gene, confirming a forespore-specific gene expression. SASPs were termed SspA (Cac2365), SspB (Cac1522), SspD (Cac1620), SspF (Cac2372), SspH (Cac1663) and Tlp (Cac1487). Here it is shown that with the exception of Tlp, every purified recombinant SASP is able to bind DNA in vitro thereby protecting it against enzymic degradation by DNase I. Moreover, SspB and SspD were specifically cleaved by the two germination-specific proteases GPR (Cac1275) and YyaC (Cac2857), which were overexpressed in Escherichia coli and activated by an autocleavage reaction. Thus, for the first time to our knowledge, GPR-like activity and SASP specificity could be demonstrated for a YyaC-like protein. Collectively, the results assign SspA, SspB, SspD, SspF and SspH of C. acetobutylicum as members of α/β-type SASPs, whereas Tlp seems to be a non-DNA-binding spore protein of unknown function. In acetic acid-extracted proteins of dormant spores of C. acetobutylicum, SspA was identified almost exclusively, indicating its dominant biological role as a major α/β-type SASP in vivo.

  7. Proteomic analysis of small acid soluble proteins in the spore core of Bacillus subtilis ΔprpE and 168 strains with predictions of peptides liquid chromatography retention times as an additional tool in protein identification

    Directory of Open Access Journals (Sweden)

    Obuchowski Michał

    2010-11-01

    Full Text Available Abstract Background Sporulation, characteristic for some bacteria such as Bacillus subtilis, has not been entirely defined yet. Protein phosphatase E (PrpE and small, acid soluble spore proteins (SASPs influence this process. Nevertheless, direct result of PrpE interaction on SASPs content in spore coat of B. subtilis has not been evidenced so far. As proteomic approach enables global analysis of occurring proteins, therefore it was chosen in this experiment to compare SASPs occurrence in two strains of B. subtilis, standard 168 and ΔprpE, lacking PrpE phosphatase. Proteomic analysis is still a challenge, and despite of big approach in mass spectrometry (MS field, the identification reliability remains unsatisfactory. Therefore there is a rising interest in new methods, particularly bioinformatic tools that would harden protein identification. Most of currently applied algorithms are based on MS-data. Information from separation steps is not still in routine usage, even though they also provide valuable facts about analyzed structures. The aim of this research was to apply a model for peptides retention times prediction, based on quantitative structure-retention relationships (QSRR in SASPs analysis, obtained from two strains of B. subtilis proteome digests after separation and identification of the peptides by LC-ESI-MS/MS. The QSRR approach was applied as the additional constraint in proteomic research verifying results of MS/MS ion search and confirming the correctness of the peptides identifications along with the indication of the potential false positives and false negatives. Results In both strains of B. subtilis, peptides characteristic for SASPs were found, however their identification confidence varied. According to the MS identity parameter Xcorr and difference between predicted and experimental retention times (ΔtR four groups could be distinguished: correctly and incorrectly identified, potential false positives and false

  8. Influence of acid-soluble proteins from bivalve Siliqua radiata ligaments on calcium carbonate crystal growth

    Science.gov (United States)

    Huang, Zeng-Qiong; Zhang, Gang-Sheng

    2016-08-01

    In vitro biomimetic synthesis of calcium carbonate (CaCO3) in the presence of shell proteins is a heavily researched topic in biomineralization. However, little is known regarding the function of bivalve ligament proteins in the growth of CaCO3 crystals. In this study, using fibrous protein K58 from Siliqua radiata ligaments or coverslips as substrates, we report the results of our study of CaCO3 precipitation in the presence or absence of acid-soluble proteins (ASP) from inner ligament layers. ASP can disturb the controlling function of K58 or a coverslip on the crystalline phase, resulting in the formation of aragonite, calcite, and vaterite. In addition, we identified the following four primary components from ASP by mass spectroscopy: alkaline phosphatase (ALP), ABC transporter, keratin type II cytoskeletal 1 (KRT 1), and phosphate ABC transporter, phosphate-binding protein (PstS). Further analysis revealed that the first three proteins and especially ALP, which is important in bone mineralisation, could affect the polymorphism and morphology of CaCO3 crystals by trapping calcium ions in their domains. Our results indicate that ALP may play an important role in the formation of aragonite in S. radiata ligaments. This paper may facilitate our understanding of the biomineralization process.

  9. Restoration of Brain Acid Soluble Protein 1 Inhibits Proliferation and Migration of Thyroid Cancer Cells

    Institute of Scientific and Technical Information of China (English)

    Run-Sheng Guo; Yue Yu; Jun Chen; Yue-Yu Chen; Na Shen; Ming Qiu

    2016-01-01

    Background:Brain acid soluble protein 1 (BASP1) is identified as a novel potential tumor suppressor in several cancers.However,its role in thyroid cancer has not been investigated yet.In the present study,the antitumor activities of BASP1 against the growth and migration of thyroid cancer cells were evaluated.Methods:BASP1 expression in thyroid cancer tissues and normal tissues were examined by immunohistochemical staining and the association between its expression and prognosis was analyzed,pcDNA-BASP 1 carrying full length ofBASP1 cDNA was constructed to restore the expression ofBASP 1 in thyroid cancer cell lines (BHT-101 and KMH-2).The cell proliferation in vitro and in vivo was evaluated by WST-1 assay and xenograft tumor models,respectively.Cell cycle distribution after transfection was analyzed using flow cytometry.Cell apoptosis after transfection was examined by annexin V/propidium iodide assay.The migration was examined using transwell assay.Results:BASP 1 expression was abundant in normal tissues while it is significantly decreased in cancer tissues (P =0.000).pcDNA-BASP1 restored the expression of BASP1 and significantly inhibited the growth of BHT-101 and KMH-2 cells as well as xenograft tumors in nude mice (P =0.000).pcDNA-BASP1 induced G1 arrest and apoptosis in BHT-101 and KMH-2 cells.In addition,pcDNA-BASP1 significantly inhibited the cell migration.Conclusions:Downregnlation of BASP1 expression may play a role in the tumorigenesis of thyroid cancer.Restoration of BASP1 expression exerted extensive antitumor activities against growth and migration of thyroid cancer cells,which suggested that BASP1 gene might act as a potential therapeutic agent for the treatment of thyroid cancer.

  10. Bacterial spore germination and protein mobility.

    Science.gov (United States)

    Moir, Anne

    2003-10-01

    Fluorescence recovery after photobleaching (FRAP) of green fluorescent protein (GFP) has been used to report on protein mobility in single spores. Proteins found in dormant Bacillus spores are not mobile; however, mobility is restored when germination occurs and the core rehydrates. Spores of a cwlD mutant, in which the cortex is resistant to hydrolysis, are able to complete the earliest stages of germination in response to a specific germinant stimulus; in these circumstances, the protein in the spore remains immobile. Therefore, the earliest stages of spore germination, including loss of resistance to extreme heat and the complete release of the spore component dipicolinic acid, are achieved without the restoration of protein mobility.

  11. Roles of DacB and spm proteins in clostridium perfringens spore resistance to moist heat, chemicals, and UV radiation.

    Science.gov (United States)

    Paredes-Sabja, Daniel; Sarker, Nahid; Setlow, Barbara; Setlow, Peter; Sarker, Mahfuzur R

    2008-06-01

    Clostridium perfringens food poisoning is caused mainly by enterotoxigenic type A isolates that typically possess high spore heat resistance. Previous studies have shown that alpha/beta-type small, acid-soluble proteins (SASP) play a major role in the resistance of Bacillus subtilis and C. perfringens spores to moist heat, UV radiation, and some chemicals. Additional major factors in B. subtilis spore resistance are the spore's core water content and cortex peptidoglycan (PG) structure, with the latter properties modulated by the spm and dacB gene products and the sporulation temperature. In the current work, we have shown that the spm and dacB genes are expressed only during C. perfringens sporulation and have examined the effects of spm and dacB mutations and sporulation temperature on spore core water content and spore resistance to moist heat, UV radiation, and a number of chemicals. The results of these analyses indicate that for C. perfringens SM101 (i) core water content and, probably, cortex PG structure have little if any role in spore resistance to UV and formaldehyde, presumably because these spores' DNA is saturated with alpha/beta-type SASP; (ii) spore resistance to moist heat and nitrous acid is determined to a large extent by core water content and, probably, cortex structure; (iii) core water content and cortex PG cross-linking play little or no role in spore resistance to hydrogen peroxide; (iv) spore core water content decreases with higher sporulation temperatures, resulting in spores that are more resistant to moist heat; and (v) factors in addition to SpmAB, DacB, and sporulation temperature play roles in determining spore core water content and thus, spore resistance to moist heat.

  12. Role of Spore Coat Proteins in the Resistance of Bacillus subtilis Spores to Caenorhabditis elegans Predation▿

    OpenAIRE

    2008-01-01

    Bacterial spores are resistant to a wide range of chemical and physical insults that are normally lethal for the vegetative form of the bacterium. While the integrity of the protein coat of the spore is crucial for spore survival in vitro, far less is known about how the coat provides protection in vivo against predation by ecologically relevant hosts. In particular, assays had characterized the in vitro resistance of spores to peptidoglycan-hydrolyzing enzymes like lysozyme that are also imp...

  13. Functional and Immunological Analyses of Superoxide Dismutases and Other Spore-Associated Proteins of Bacillus anthracis

    Science.gov (United States)

    2008-08-20

    exposed spore proteins by ELISA . ..69 Figure 6. Localization of B. anthracis spore proteins within the spore by immunoelectron microscopy...Staphylococcus aureus (114), Streptococcus agalactiae (177), Bordatella pertussis (119), Shigella flexneri (73), Campylobacter jejuni (178), and Enterococcus... ELISA analysis. Anti-spore ELISA . Analysis of antigen target accessibility on the spore surface was done by enzyme-linked immunosorbent assays

  14. A versatile nano display platform from bacterial spore coat proteins.

    Science.gov (United States)

    Wu, I-Lin; Narayan, Kedar; Castaing, Jean-Philippe; Tian, Fang; Subramaniam, Sriram; Ramamurthi, Kumaran S

    2015-04-09

    Dormant bacterial spores are encased in a thick protein shell, the 'coat', which contains ∼70 different proteins. The coat protects the spore from environmental insults, and is among the most durable static structures in biology. Owing to extensive cross-linking among coat proteins, this structure has been recalcitrant to detailed biochemical analysis, so molecular details of how it assembles are largely unknown. Here, we reconstitute the basement layer of the coat atop spherical membranes supported by silica beads to create artificial spore-like particles. We report that these synthetic spore husk-encased lipid bilayers (SSHELs) assemble and polymerize into a static structure, mimicking in vivo basement layer assembly during sporulation in Bacillus subtilis. In addition, we demonstrate that SSHELs may be easily covalently modified with small molecules and proteins. We propose that SSHELs may be versatile display platforms for drugs and vaccines in clinical settings, or for enzymes that neutralize pollutants for environmental remediation.

  15. Relationship of the syntheses of spore coat protein and parasporal crystal protein in Bacillus thuringiensis.

    Science.gov (United States)

    Aronson, A I; Tyrell, D J; Fitz-James, P C; Bulla, L A

    1982-01-01

    Two major classes of polypeptides were extracted from the spore surface of Bacillus thuringiensis subsp. kurstaki: the 134,000-dalton protoxin that is the major component of the crystalline inclusion and spore coat polypeptides very similar to those found on Bacillus cereus spores. The quantity of spore coat polypeptides produced was reduced when compared with that produced by certain acrystalliferous mutants or by B. thuringiensis subsp. israelensis. The latter organism produced an inclusion toxic to mosquito larvae, but deposited very little of the inclusion protein on the spore surface. The reduction in spore coat protein in B. thuringiensis subsp. kurstaki was also seen in freeze-etched electron micrographs of spores. B. thuringiensis subsp. kurstaki spores germinated rather slowly when compared with related species, a property previously correlated with a deficiency or defect of the spore coat. Many mutants of B. thuringiensis subsp. kurstaki unable to form a crystalline inclusion were nontoxic and lacked a well-defined spore coat. Other mutants isolated either directly from the wild type or from coat-deficient mutants produced spores that were identical to those produced by the closely related species. Bacillus cereus, on the basis of morphology, germination rate, and the size and antigenicity of the spore coat polypeptides. Most of the protein extractable from the inclusion produced by B. thuringiensis subsp. israelensis was about 26,000 daltons, considerably smaller than the major polypeptide extractable from other inclusions. Some of the B. thuringiensis subsp. israelensis inclusion protein was found on the spore surface, but the majority of the extractable spore coat protein was the same size and antigenicity as that found on B. cereus spores. The B. thuringiensis subsp. israelensis spores germinated at a rate close to that of B. cereus, especially when the spores were formed at 37 degrees C, and the morphology of the spore surface was very similar to

  16. 14C Analysis of protein extracts from Bacillus spores.

    Science.gov (United States)

    Cappuccio, Jenny A; Falso, Miranda J Sarachine; Kashgarian, Michaele; Buchholz, Bruce A

    2014-07-01

    Investigators of bioagent incidents or interdicted materials need validated, independent analytical methods that will allow them to distinguish between recently made bioagent samples versus material drawn from the archives of a historical program. Heterotrophic bacteria convert the carbon in their food sources, growth substrate or culture media, into the biomolecules they need. The F(14)C (fraction modern radiocarbon) of a variety of media, Bacillus spores, and separated proteins from Bacillus spores was measured by accelerator mass spectrometry (AMS). AMS precisely measures F(14)C values of biological materials and has been used to date the synthesis of biomaterials over the bomb pulse era (1955 to present). The F(14)C of Bacillus spores reflects the radiocarbon content of the media in which they were grown. In a survey of commercial media we found that the F(14)C value indicated that carbon sources for the media were alive within about a year of the date of manufacture and generally of terrestrial origin. Hence, bacteria and their products can be dated using their (14)C signature. Bacillus spore samples were generated onsite with defined media and carbon free purification and also obtained from archived material. Using mechanical lysis and a variety of washes with carbon free acids and bases, contaminant carbon was removed from soluble proteins to enable accurate (14)C bomb-pulse dating. Since media is contemporary, (14)C bomb-pulse dating of isolated soluble proteins can be used to distinguish between historical archives of bioagents and those produced from recent media.

  17. Solid-Phase Capture of Proteins, Spores, and Bacteria†

    OpenAIRE

    Weimer, B.C.; Walsh, M. K.; Beer, C.; Koka, R.; X. Wang

    2001-01-01

    Current methods for the detection of pathogens in food and water samples generally require a preenrichment step that allows selective enrichment of the test organism. The objective of this research was to eliminate an enrichment step to allow detection of bacteria directly in food and water samples in 30 min. A high-flow-rate, fluidized bed to capture and concentrate large (bacteria and spores) and small (protein) molecules was developed. This format, ImmunoFlow, is volume independent and use...

  18. 14C Analysis of Protein Extracts from Bacillus Spores

    Science.gov (United States)

    Cappucio, Jenny A.; Sarachine Falso, Miranda J.; Kashgarian, Michaele; Buchholz, Bruce A.

    2014-01-01

    Investigators of bioagent incidents or interdicted materials need validated, independent analytical methods that will allow them to distinguish between recently made bioagent samples versus material drawn from the archives of a historical program. Heterotrophic bacteria convert the carbon in their food sources, growth substrate or culture media, into the biomolecules they need. The F14C (fraction modern radiocarbon) of a variety of media, Bacillus spores, and separated proteins from Bacillus spores was measured by accelerator mass spectrometry (AMS). AMS precisely measures F14C values of biological materials and has been used to date the synthesis of biomaterials over the bomb pulse era (1955 to present). The F14C of Bacillus spores reflects the radiocarbon content of the media in which they were grown. In a survey of commercial media we found that the F14C value indicated that carbon sources for the media were alive within about a year of the date of manufacture and generally of terrestrial origin. Hence, bacteria and their products can be dated using their 14C signature. Bacillus spore samples were generated onsite with defined media and carbon free purification and also obtained from archived material. Using mechanical lysis and a variety of washes with carbon free acids and bases, contaminant carbon was removed from soluble proteins to enable accurate 14C bomb-pulse dating. Since media is contemporary, 14C bomb-pulse dating of isolated soluble proteins can be used to distinguish between historical archives of bioagents and those produced from recent media. PMID:24814329

  19. In pursuit of protein targets: proteomic characterization of bacterial spore outer layers.

    Science.gov (United States)

    Abhyankar, Wishwas; Hossain, Abeer H; Djajasaputra, André; Permpoonpattana, Patima; Ter Beek, Alexander; Dekker, Henk L; Cutting, Simon M; Brul, Stanley; de Koning, Leo J; de Koster, Chris G

    2013-10-04

    Bacillus cereus, responsible for food poisoning, and Clostridium difficile, the causative agent of Clostridium difficile-associated diarrhea (CDAD), are both spore-forming pathogens involved in food spoilage, food intoxication, and other infections in humans and animals. The proteinaceous coat and the exosporium layers from spores are important for their resistance and pathogenicity characteristics. The exosporium additionally provides an ability to adhere to surfaces eventually leading to spore survival in food. Thus, studying these layers and identifying suitable protein targets for rapid detection and removal of spores is of the utmost importance. In this study, we identified 100 proteins from B. cereus spore coat, exosporium and 54 proteins from the C. difficile coat insoluble protein fraction. In an attempt to define a universal set of spore outer layer proteins, we identified 11 superfamily domains common to the identified proteins from two Bacilli and one Clostridium species. The evaluated orthologue relationships of identified proteins across different spore formers resulted in a set of 13 coat proteins conserved across the spore formers and 12 exosporium proteins conserved in the B. cereus group, which could be tested for quick and easy detection or targeted in strategies aimed at removal of spores from surfaces.

  20. Current Physical and SDS Extraction Methods Do Not Efficiently Remove Exosporium Proteins from Bacillus anthracis spores

    Science.gov (United States)

    Thompson, Brian M.; Binkley, Jana M.; Stewart, George C.

    2011-01-01

    Biochemical studies of the outermost spore layers of the Bacillus cereus family are hindered by difficulties in efficient dispersal of the external spore layers and difficulties in dissociating protein complexes that comprise the exosporium layer. Detergent and physical methods have been utilized to disrupt the exosporium layer. Herein we compare commonly used SDS extraction buffers used to extract spore proteins and demonstrate the incomplete extractability of the exosporium layer by these methods. Sonication and bead beating methods for exosporium layer removal were also examined. A combination of genetic and physical methods is the most effective for isolating proteins found in the spore exosporium. PMID:21338631

  1. Current physical and SDS extraction methods do not efficiently remove exosporium proteins from Bacillus anthracis spores.

    Science.gov (United States)

    Thompson, Brian M; Binkley, Jana M; Stewart, George C

    2011-05-01

    Biochemical studies of the outermost spore layers of the Bacillus cereus family are hindered by difficulties in efficient dispersal of the external spore layers and difficulties in dissociating protein complexes that comprise the exosporium layer. Detergent and physical methods have been utilized to disrupt the exosporium layer. Herein we compare commonly used SDS extraction buffers used to extract spore proteins and demonstrate the incomplete extractability of the exosporium layer by these methods. Sonication and bead beating methods for exosporium layer removal were also examined. A combination of genetic and physical methods is the most effective for isolating proteins found in the spore exosporium.

  2. Current Physical and SDS Extraction Methods Do Not Efficiently Remove Exosporium Proteins from Bacillus anthracis spores

    OpenAIRE

    Thompson, Brian M.; Binkley, Jana M; Stewart, George C.

    2011-01-01

    Biochemical studies of the outermost spore layers of the Bacillus cereus family are hindered by difficulties in efficient dispersal of the external spore layers and difficulties in dissociating protein complexes that comprise the exosporium layer. Detergent and physical methods have been utilized to disrupt the exosporium layer. Herein we compare commonly used SDS extraction buffers used to extract spore proteins and demonstrate the incomplete extractability of the exosporium layer by these m...

  3. Dynamic localization of penicillin-binding proteins during spore development in Bacillus subtilis

    NARCIS (Netherlands)

    Scheffers, Dirk-Jan

    2005-01-01

    During Bacillus subtilis spore formation, many membrane proteins that function in spore development localize to the prespore septum and, subsequently, to the outer prespore membrane. Recently, it was shown that the cell-division-specific penicillin-binding proteins (PBPs) 1 and 2b localize to the as

  4. Improved proteomic analysis following trichloroacetic acid extraction of Bacillus anthracis spore proteins.

    Science.gov (United States)

    Deatherage Kaiser, Brooke L; Wunschel, David S; Sydor, Michael A; Warner, Marvin G; Wahl, Karen L; Hutchison, Janine R

    2015-11-01

    Proteomic analysis of bacterial samples provides valuable information about cellular responses and functions under different environmental pressures. Analysis of cellular proteins is dependent upon efficient extraction from bacterial samples, which can be challenging with increasing complexity and refractory characteristics. While no single method can recover 100% of the bacterial proteins, selected protocols can improve overall protein isolation, peptide recovery, or enrichment for certain classes of proteins. The method presented here is technically simple, does not require specialized equipment such as a mechanical disrupter, and is effective for protein extraction of the particularly challenging sample type of Bacillus anthracis Sterne spores. The ability of Trichloroacetic acid (TCA) extraction to isolate proteins from spores and enrich for spore-specific proteins was compared to the traditional mechanical disruption method of bead beating. TCA extraction improved the total average number of proteins identified within a sample as compared to bead beating (547 vs 495, respectively). Further, TCA extraction enriched for 270 spore proteins, including those typically identified by first isolating the spore coat and exosporium layers. Bead beating enriched for 156 spore proteins more typically identified from whole spore proteome analyses. The total average number of proteins identified was equal using TCA or bead beating for easily lysed samples, such as B. anthracis vegetative cells. As with all assays, supplemental methods such as implementation of an alternative preparation method may simplify sample preparation and provide additional insight to the protein biology of the organism being studied.

  5. Improvement on Acid-solubility of Soy Protein Isolate with Enzymatic Method%酶法提高大豆分离蛋白酸溶性的研究

    Institute of Scientific and Technical Information of China (English)

    黄橙子; 王静; 高红亮; 崔红亮; 常忠义

    2013-01-01

    通过单因素试验研究了植酸酶添加量、酶解时间、pH、温度和料液浓度对大豆蛋白酸溶度、透光率和料液粘度的影响,在单因素试验的基础上对pH、温度、料液浓度和时间进行四因素三水平的正交试验,结果表明,当植酸酶添加量为0.6%时,酶解的最佳条件组合为pH3.0,温度40℃,料液浓度10%,酶解时间45 min,此时大豆分离蛋白的酸溶度为45.79%,透光率为68.5%,与优化前相比,分别提高了30.65%和29.4%.%Soy protein isolate(SPI)has been used in the food industry for decades,but its application in acidic food products was Limited because of its low solubility in the acidic condition. The objective of the experiments was to improve the solubility of SPI under acidic conditions by hydrolyzing the phytic acid with phytase and to find the optimum conditions for the enzymatic hydrolyzing process. During the experiments, acid-soluble properties,including acid-solubility,transmittance,and viscosity of the processed material have been observed. Single factor and orthogonal experiments revealed that when the solid content of the curd slurry was 10% ,the best phytase adding amount was 0. 6% ,the ideal condition for the enzymatic reaction was pH3.0, 40℃,45 min. After the enzymatic treatment,acid-solubility and transmittance of SPI reached 45.79% and 68. 5% ,increased by 30.65% and 29.4% ,respectively.

  6. In vitro and in vivo analyses of the Bacillus anthracis spore cortex lytic protein SleL

    OpenAIRE

    2012-01-01

    The bacterial endospore is the most resilient biological structure known. Multiple protective integument layers shield the spore core and promote spore dehydration and dormancy. Dormancy is broken when a spore germinates and becomes a metabolically active vegetative cell. Germination requires the breakdown of a modified layer of peptidoglycan (PG) known as the spore cortex. This study reports in vitro and in vivo analyses of the Bacillus anthracis SleL protein. SleL is a spore cortex lytic en...

  7. Bacillus subtilis spore protein SpoVAC functions as a mechanosensitive channel

    NARCIS (Netherlands)

    Velasquez Guzman, Jeanette; Schuurman-Wolters, Geesina; Birkner, Jan Peter; Abee, Tjakko; Poolman, Bert

    2014-01-01

    A critical event during spore germination is the release of Ca-DPA (calcium in complex with dipicolinic acid). The mechanism of release of Ca-DPA through the inner membrane of the spore is not clear, but proteins encoded by the Bacillus subtilis spoVA operon are involved in the process. We cloned an

  8. Role of dipicolinic acid in the germination, stability, and viability of spores of Bacillus subtilis.

    Science.gov (United States)

    Magge, Anil; Granger, Amanda C; Wahome, Paul G; Setlow, Barbara; Vepachedu, Venkata R; Loshon, Charles A; Peng, Lixin; Chen, De; Li, Yong-Qing; Setlow, Peter

    2008-07-01

    Spores of Bacillus subtilis spoVF strains that cannot synthesize dipicolinic acid (DPA) but take it up during sporulation were prepared in medium with various DPA concentrations, and the germination and viability of these spores as well as the DPA content in individual spores were measured. Levels of some other small molecules in DPA-less spores were also measured. These studies have allowed the following conclusions. (i) Spores with no DPA or low DPA levels that lack either the cortex-lytic enzyme (CLE) SleB or the receptors that respond to nutrient germinants could be isolated but were unstable and spontaneously initiated early steps in spore germination. (ii) Spores that lacked SleB and nutrient germinant receptors and also had low DPA levels were more stable. (iii) Spontaneous germination of spores with no DPA or low DPA levels was at least in part via activation of SleB. (iv) The other redundant CLE, CwlJ, was activated only by the release of high levels of DPA from spores. (v) Low levels of DPA were sufficient for the viability of spores that lacked most alpha/beta-type small, acid-soluble spore proteins. (vi) DPA levels accumulated in spores prepared in low-DPA-containing media varied greatly between individual spores, in contrast to the presence of more homogeneous DPA levels in individual spores made in media with high DPA concentrations. (vii) At least the great majority of spores of several spoVF strains that contained no DPA also lacked other major spore small molecules and had gone through some of the early reactions in spore germination.

  9. An improved system for the surface immobilisation of proteins on Bacillus thuringiensis vegetative cells and spores through a new spore cortex-lytic enzyme anchor.

    Science.gov (United States)

    Shao, Xiaohu; Ni, Hong; Lu, Ting; Jiang, Mengtian; Li, Hua; Huang, Xinfeng; Li, Lin

    2012-02-15

    An improved surface-immobilisation system was engineered to target heterologous proteins onto vegetative cells and spores of Bacillus thuringiensis plasmid-free recipient strain BMB171. The sporulation-dependent spore cortex-lytic enzyme from B. thuringiensis YBT-1520, SceA, was expressed in vegetative cells and used as the surface anchoring motif. Green fluorescent protein (GFP) and a Bacillus endo-β-1,3-1,4-glucanase (BglS) were used as the fusion partners to test the binding efficiency and the functional activities of immobilised surface proteins. The surface localisation of the SceA-GFP fusion protein on vegetative cells and spores was confirmed by Western blot, immunofluorescence microscopy and flow cytometry. The GFP fluorescence intensity from both vegetative cells and spores was measured and compared to a previously characterised surface display system using a peptidoglycan hydrolase anchor (Mbg). Results demonstrated comparable efficiency of SceA- and Mbg-mediated immobilisation on vegetative cells but a more efficient immobilisation on spores using the SceA anchor, suggesting SceA has greater potential for spore-based applications. The SceA protein was then applied to target BglS onto vegetative cells and spores, and the surface immobilisation was verified by the substantial whole-cell enzymatic activity and enhanced whole-spore enzymatic activity compared to vegetative cells. A dually active B. thuringiensis vegetative cell and spore display system could prove especially valuable for the development of regenerable and heat-stable biocatalysts that function under adverse environmental conditions, for example, an effective feed additive for improved digestion and nutrient absorption by livestock.

  10. A Clostridium difficile-Specific, Gel-Forming Protein Required for Optimal Spore Germination

    Directory of Open Access Journals (Sweden)

    M. Lauren Donnelly

    2017-01-01

    Full Text Available Clostridium difficile is a Gram-positive spore-forming obligate anaerobe that is a leading cause of antibiotic-associated diarrhea worldwide. In order for C. difficile to initiate infection, its aerotolerant spore form must germinate in the gut of mammalian hosts. While almost all spore-forming organisms use transmembrane germinant receptors to trigger germination, C. difficile uses the pseudoprotease CspC to sense bile salt germinants. CspC activates the related subtilisin-like protease CspB, which then proteolytically activates the cortex hydrolase SleC. Activated SleC degrades the protective spore cortex layer, a step that is essential for germination to proceed. Since CspC incorporation into spores also depends on CspA, a related pseudoprotease domain, Csp family proteins play a critical role in germination. However, how Csps are incorporated into spores remains unknown. In this study, we demonstrate that incorporation of the CspC, CspB, and CspA germination regulators into spores depends on CD0311 (renamed GerG, a previously uncharacterized hypothetical protein. The reduced levels of Csps in gerG spores correlate with reduced responsiveness to bile salt germinants and increased germination heterogeneity in single-spore germination assays. Interestingly, asparagine-rich repeat sequences in GerG’s central region facilitate spontaneous gel formation in vitro even though they are dispensable for GerG-mediated control of germination. Since GerG is found exclusively in C. difficile, our results suggest that exploiting GerG function could represent a promising avenue for developing C. difficile-specific anti-infective therapies.

  11. A Clostridium difficile-Specific, Gel-Forming Protein Required for Optimal Spore Germination

    Science.gov (United States)

    Donnelly, M. Lauren; Li, William; Li, Yong-qing; Hinkel, Lauren; Setlow, Peter

    2017-01-01

    ABSTRACT Clostridium difficile is a Gram-positive spore-forming obligate anaerobe that is a leading cause of antibiotic-associated diarrhea worldwide. In order for C. difficile to initiate infection, its aerotolerant spore form must germinate in the gut of mammalian hosts. While almost all spore-forming organisms use transmembrane germinant receptors to trigger germination, C. difficile uses the pseudoprotease CspC to sense bile salt germinants. CspC activates the related subtilisin-like protease CspB, which then proteolytically activates the cortex hydrolase SleC. Activated SleC degrades the protective spore cortex layer, a step that is essential for germination to proceed. Since CspC incorporation into spores also depends on CspA, a related pseudoprotease domain, Csp family proteins play a critical role in germination. However, how Csps are incorporated into spores remains unknown. In this study, we demonstrate that incorporation of the CspC, CspB, and CspA germination regulators into spores depends on CD0311 (renamed GerG), a previously uncharacterized hypothetical protein. The reduced levels of Csps in gerG spores correlate with reduced responsiveness to bile salt germinants and increased germination heterogeneity in single-spore germination assays. Interestingly, asparagine-rich repeat sequences in GerG’s central region facilitate spontaneous gel formation in vitro even though they are dispensable for GerG-mediated control of germination. Since GerG is found exclusively in C. difficile, our results suggest that exploiting GerG function could represent a promising avenue for developing C. difficile-specific anti-infective therapies. PMID:28096487

  12. Involvement of Coat Proteins in Bacillus subtilis Spore Germination in High-Salinity Environments.

    Science.gov (United States)

    Nagler, Katja; Setlow, Peter; Reineke, Kai; Driks, Adam; Moeller, Ralf

    2015-10-01

    The germination of spore-forming bacteria in high-salinity environments is of applied interest for food microbiology and soil ecology. It has previously been shown that high salt concentrations detrimentally affect Bacillus subtilis spore germination, rendering this process slower and less efficient. The mechanistic details of these salt effects, however, remained obscure. Since initiation of nutrient germination first requires germinant passage through the spores' protective integuments, the aim of this study was to elucidate the role of the proteinaceous spore coat in germination in high-salinity environments. Spores lacking major layers of the coat due to chemical decoating or mutation germinated much worse in the presence of NaCl than untreated wild-type spores at comparable salinities. However, the absence of the crust, the absence of some individual nonmorphogenetic proteins, and the absence of either CwlJ or SleB had no or little effect on germination in high-salinity environments. Although the germination of spores lacking GerP (which is assumed to facilitate germinant flow through the coat) was generally less efficient than the germination of wild-type spores, the presence of up to 2.4 M NaCl enhanced the germination of these mutant spores. Interestingly, nutrient-independent germination by high pressure was also inhibited by NaCl. Taken together, these results suggest that (i) the coat has a protective function during germination in high-salinity environments; (ii) germination inhibition by NaCl is probably not exerted at the level of cortex hydrolysis, germinant accessibility, or germinant-receptor binding; and (iii) the most likely germination processes to be inhibited by NaCl are ion, Ca(2+)-dipicolinic acid, and water fluxes.

  13. Processing, Assembly and Localization of a Bacillus anthracis Spore Protein

    Science.gov (United States)

    2010-01-01

    10.1099/ mic .0.033407-0 174 033407 Printed in Great Britain Approved for public release. Distribution is unlimited Report Documentation Page Form...on LB agar plates to assay viable cells. In vivo challenges. Female Hartley guinea pigs (350–400 g) were obtained from Charles River Laboratories...Guinea pigs were challenged intramuscularly (Fellows et al., 2001) by injection of 200 ml of heat-activated spores suspended in water. The animals were

  14. Comparison of the properties of Bacillus subtilis spores made in liquid or on agar plates.

    Science.gov (United States)

    Rose, R; Setlow, B; Monroe, A; Mallozzi, M; Driks, A; Setlow, P

    2007-09-01

    To compare the properties of the spores of Bacillus subtilis prepared in liquid and on plates. The spores of B. subtilis were prepared at 37 degrees C using a nutrient exhaustion medium either in liquid or on agar plates. The levels of core water, dipicolinic acid (DPA) and small, acid-soluble spore proteins (SASP) were essentially identical in spores made in liquid or on plates. Spores prepared in liquid were killed approximately threefold more rapidly at 90 degrees C in water than the spores prepared on plates, and the spores prepared in liquid were more sensitive to nitrous acid and a diluted stable superoxidized water. Spores prepared in liquid also germinated more rapidly with several agents than those prepared on plates. Pellets of spores prepared on plates were darker than spores prepared in liquid, and spores prepared in liquid had more readily extracted coat protein. However, there were no major differences in the relative levels of individual coat proteins or the cross-linking of the coat protein GerQ in the two types of spores, although the inner membrane of spores prepared on plates had a higher ratio of anteiso- to iso-fatty acids. The preparation in liquid yielded spores with some different properties than those made on agar plates. Spores made in liquid had lower resistance to heat and several chemicals, and germinated more readily with several agents. There were also differences in the composition of the inner membrane of spores prepared under these two conditions. However, there were no major differences in the levels of DPA, core water, SASP and individual coat proteins or the cross-linking of a coat protein in spores made in liquid and on plates. This work demonstrates that the preparation method can affect the resistance and germination properties of bacterial spores, even if an identical medium and temperature are used. Evidence was also obtained consistent with the role of the inner membrane in spore resistance and germination, and that some

  15. Identification of the immunogenic spore and vegetative proteins of Bacillus anthracis vaccine strain A16R.

    Directory of Open Access Journals (Sweden)

    Xiankai Liu

    Full Text Available Immunoproteomics was used to screen the immunogenic spore and vegetative proteins of Bacillus anthracis vaccine strain A16R. The spore and vegetative proteins were separated by 2D gel electrophoresis and transferred to polyvinylidene difluoride membranes, and then western blotting was performed with rabbit immune serum against B.anthracis live spores. Immunogenic spots were cut and digested by trypsin. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry was performed to identify the proteins. As a result, 11 and 45 immunogenic proteins were identified in the spores and vegetative cells, respectively; 26 of which have not been reported previously. To verify their immunogenicity, 12 of the identified proteins were selected to be expressed, and the immune sera from the mice vaccinated by the 12 expressed proteins, except BA0887, had a specific western blot band with the A16R whole cellular lytic proteins. Some of these immunogenic proteins might be used as novel vaccine candidates themselves or for enhancing the protective efficacy of a protective-antigen-based vaccine.

  16. Structure, diversity and evolution of protein toxins from spore-forming entomopathogenic bacteria

    NARCIS (Netherlands)

    Maagd, de R.A.; Bravo, A.; Berry, C.; Crickmore, N.; Schnepf, H.E.

    2003-01-01

    Gram-positive spore-forming entomopathogenic bacteria can utilize a large variety of protein toxins to help them invade, infect, and finally kill their hosts, through their action on the insect midgut. These toxins belong to a number of homology groups containing a diversity of protein structures an

  17. Function of the SpoVAEa and SpoVAF Proteins of Bacillus subtilis Spores

    Science.gov (United States)

    2014-06-01

    1ITLE AND SUBTITLE 5a CONTRACTNUMBER Function of the SpoVAEa and SpoVAF proteins of Bacillus W911NF-09-1-0286 subtilis spores 5b. GRANT NUMBER 5c...ABSTRACT The Bacillus subtilis spoVAEa and spoVAF genes are expressed in developng spores as members of the spoVA operon that encodes proteins essential...8217\\ ;~ 1~~~4-~,.1. A\\ C’~~1T 1\\ D~ ~~,.1 C’~~1T 1\\ T’\\ ~-~ ,.1;~~1. •• 4-~,.1 ~:-:1~-1 •• ;~ ~~~~~~~ ~f:’ 15. SUBJECT TERMS Bacillus , spores SpoVA

  18. Spore surface proteins of Brevibacillus laterosporus are involved in insect pathogenesis

    Science.gov (United States)

    Marche, Maria Giovanna; Mura, Maria Elena; Falchi, Giovanni; Ruiu, Luca

    2017-01-01

    Outer spore envelope proteins of pathogenic bacteria often present specific virulence factors and tools to evade the defence system of their hosts. Brevibacillus laterosporus, a pathogen of invertebrates and an antimicrobial-producing species, is characterised by a unique spore coat and canoe-shaped parasporal body (SC-CSPB) complex surrounding the core spore. In the present study, we identified and characterised major proteins of the SC-CSPB complex of B. laterosporus, and we investigated their entomopathogenic role. Employing a proteomic approach and a B. laterosporus-house fly study model, we found four highly conserved proteins (ExsC, CHRD, CpbA and CpbB) that function as insect virulence factors. CpbA was associated with a significantly higher mortality of flies and greater relative gene expression levels during sporulation, compared to the other SC-CSPB proteins. Taken together, we suggest that spore surface proteins are a part of a complex set of toxins and virulence factors that B. laterosporus employs in its pathogenicity against flies. PMID:28256631

  19. Improved Proteomic Analysis Following Trichloroacetic Acid Extraction of Bacillus anthracis Spore Proteins

    Energy Technology Data Exchange (ETDEWEB)

    Kaiser, Brooke LD; Wunschel, David S.; Sydor, Michael A.; Warner, Marvin G.; Wahl, Karen L.; Hutchison, Janine R.

    2015-08-07

    Proteomic analysis of bacterial samples provides valuable information about cellular responses and functions under different environmental pressures. Proteomic analysis is dependent upon efficient extraction of proteins from bacterial samples without introducing bias toward extraction of particular protein classes. While no single method can recover 100% of the bacterial proteins, selected protocols can improve overall protein isolation, peptide recovery, or enrich for certain classes of proteins. The method presented here is technically simple and does not require specialized equipment such as a mechanical disrupter. Our data reveal that for particularly challenging samples, such as B. anthracis Sterne spores, trichloroacetic acid extraction improved the number of proteins identified within a sample compared to bead beating (714 vs 660, respectively). Further, TCA extraction enriched for 103 known spore specific proteins whereas bead beating resulted in 49 unique proteins. Analysis of C. botulinum samples grown to 5 days, composed of vegetative biomass and spores, showed a similar trend with improved protein yields and identification using our method compared to bead beating. Interestingly, easily lysed samples, such as B. anthracis vegetative cells, were equally as effectively processed via TCA and bead beating, but TCA extraction remains the easiest and most cost effective option. As with all assays, supplemental methods such as implementation of an alternative preparation method may provide additional insight to the protein biology of the bacteria being studied.

  20. Characterization of a spore-specific protein of the Bacillus cereus group

    NARCIS (Netherlands)

    From, C.; Voort, van der M.; Abee, T.; Granum, P.E.

    2012-01-01

    Bc1245 is a monocistronic chromosomal gene of Bacillus cereus ATCC 14579 encoding a putative protein of 143 amino acids identified in this study to have a spore-related function in B. cereus. Bc1245 is highly conserved in the genome of members of the B. cereus group, indicating an important function

  1. Characterization of a spore-specific protein of the Bacillus cereus group

    NARCIS (Netherlands)

    From, C.; Voort, van der M.; Abee, T.; Granum, P.E.

    2012-01-01

    Bc1245 is a monocistronic chromosomal gene of Bacillus cereus ATCC 14579 encoding a putative protein of 143 amino acids identified in this study to have a spore-related function in B. cereus. Bc1245 is highly conserved in the genome of members of the B. cereus group, indicating an important function

  2. Diverse supramolecular structures formed by self-assembling proteins of the B acillus subtilis spore coat

    OpenAIRE

    2015-01-01

    Summary Bacterial spores (endospores), such as those of the pathogens C lostridium difficile and B acillus anthracis, are uniquely stable cell forms, highly resistant to harsh environmental insults. B acillus subtilis is the best studied spore‐former and we have used it to address the question of how the spore coat is assembled from multiple components to form a robust, protective superstructure. B . subtilis coat proteins (CotY, CotE, CotV and CotW) expressed in E scherichia coli can arrange...

  3. Spore Resistance Properties.

    Science.gov (United States)

    Setlow, Peter

    2014-10-01

    Spores of various Bacillus and Clostridium species are among the most resistant life forms known. Since the spores of some species are causative agents of much food spoilage, food poisoning, and human disease, and the spores of Bacillus anthracis are a major bioweapon, there is much interest in the mechanisms of spore resistance and how these spores can be killed. This article will discuss the factors involved in spore resistance to agents such as wet and dry heat, desiccation, UV and γ-radiation, enzymes that hydrolyze bacterial cell walls, and a variety of toxic chemicals, including genotoxic agents, oxidizing agents, aldehydes, acid, and alkali. These resistance factors include the outer layers of the spore, such as the thick proteinaceous coat that detoxifies reactive chemicals; the relatively impermeable inner spore membrane that restricts access of toxic chemicals to the spore core containing the spore's DNA and most enzymes; the low water content and high level of dipicolinic acid in the spore core that protect core macromolecules from the effects of heat and desiccation; the saturation of spore DNA with a novel group of proteins that protect the DNA against heat, genotoxic chemicals, and radiation; and the repair of radiation damage to DNA when spores germinate and return to life. Despite their extreme resistance, spores can be killed, including by damage to DNA, crucial spore proteins, the spore's inner membrane, and one or more components of the spore germination apparatus.

  4. Preparation and Characterization of Nano-sized Emulsions Produced from Acid-soluble Soy Protein and Polysaccharide Complexes%大豆酸溶蛋白/大豆多糖纳米乳液的制备及表征

    Institute of Scientific and Technical Information of China (English)

    齐军茹; 翁静宜; 康燕辉; 冯纪璐; 刘倩茹; 刘李森; 廖劲松

    2015-01-01

    纳米乳液具有抗沉降和抗乳析动力学稳定性,是提高脂溶性物质的水溶性和生物利用度的有效手段.本论文探索了大豆酸溶蛋白(acid soluble soy protein,ASSP)/大豆多糖(soy soluble polysaccharides,SSP)纳米乳液的制备工艺,系统分析了pH条件、加油量、压力、质量比、热处理等因素对纳米乳液形成以及稳定性的影响.结果表明:在pH 3.0~4.0范围内,酸溶蛋白与大豆多糖质量比1∶4,400 bar的压力下,可以很好地包埋5%~20%的油,此时制备的乳液粒径为269.33±2.26 nm,并且储存60天粒径无显著性变化(P>0.05).pH条件、高压以及热处理对乳液的稳定性具有显著影响(P<0.05),ASSP/SSP纳米乳液适合食品工业中的酸性介质、高温以及高盐环境下的应用.通过果胶酶水解大豆多糖,对酸溶蛋白/大豆多糖纳米乳液的形态学进行了研究分析,结果表明酸溶蛋白/大豆多糖纳米乳液的微滴表面被多糖覆盖,大豆多糖能够很好地固定在微滴表面并使得纳米乳液微滴稳定和分散.

  5. Comparative Study on the Infectivity and Spore Surface Protein of Nosema bombycis and Its Morphological Variant Strain

    Institute of Scientific and Technical Information of China (English)

    HUANG Shao-kang; LU Xing-meng

    2005-01-01

    A new morphological variant strain of microsporidium was produced by infecting the mulberry looper, Hemerophila atrilineata [Phthonandria atrilineata], with Nosema bombycis successively for 24 times, and named 24Nbh. Comparative studies on morphology, infectivity and spore surface protein were conducted. 24Nbh was short and wide, and had a significant difference (P<0.01) over the Nb spores. The infectivity tests conducted on second instar silkworm larvae showed that IC50 of 24Nbh was 1.98× 104 spores mL-1 and of Nb was 1.72× 103 spores mL-1, thus indicating that the infectivity of Nb decreased 11.5 times after multiplying in mulberry looper for 24 times. The IC50 of spores from silkworm infected with 24 Nbh was 6.9 times less than Nb, showing that the infectivity of 24Nbh spores rejuvenated very fast when reinfected to silkworms, further more, the length and width of such spore was larger than 24Nbh (P<0.01) and smaller than Nb (P<0.05).The SDS-PAGE profiles of Nb and 24Nbh were generally the same, 4 distinct proteins of 12, 17, 30, 33 kDa were obtained with difference in quantity. When 120 μg of protein was applied for 2D-PAGE, five suspected different proteins with difference in quantity were observed. These results demonstrate that these differential proteins maybe associated with variation in infectivity of the spores.

  6. Changes in Bacillus Spore Small Molecules, rRNA, Germination, and Outgrowth after Extended Sublethal Exposure to Various Temperatures: Evidence that Protein Synthesis Is Not Essential for Spore Germination.

    Science.gov (United States)

    Korza, George; Setlow, Barbara; Rao, Lei; Li, Qiao; Setlow, Peter

    2016-12-15

    rRNAs of dormant spores of Bacillus subtilis were >95% degraded during extended incubation at 50°C, as reported previously (E. Segev, Y. Smith, and S. Ben-Yehuda, Cell 148:139-114, 2012, doi:http://dx.doi.org/10.1016/j.cell.2011.11.059), and this was also true of spores of Bacillus megaterium Incubation of spores of these two species for ∼20 h at 75 to 80°C also resulted in the degradation of all or the great majority of the 23S and 16S rRNAs, although this rRNA degradation was slower than nonenzymatic hydrolysis of purified rRNAs at these temperatures. This rRNA degradation at high temperature generated almost exclusively oligonucleotides with minimal levels of mononucleotides. RNase Y, suggested to be involved in rRNA hydrolysis during B. subtilis spore incubation at 50°C, did not play a role in B. subtilis spore rRNA breakdown at 80°C. Twenty hours of incubation of Bacillus spores at 70°C also decreased the already minimal levels of ATP in dormant spores 10- to 30-fold, to ≤0.01% of the total free adenine nucleotide levels. Spores depleted of rRNA were viable and germinated relatively normally, often even faster than starting spores. Their return to vegetative growth was also similar to that of untreated spores for B. megaterium spores and slower for heat-treated B. subtilis spores; accumulation of rRNA took place only after completion of spore germination. These findings thus strongly suggest that protein synthesis is not essential for Bacillus spore germination.IMPORTANCE A recent report (L. Sinai, A. Rosenberg, Y. Smith, E. Segev, and S. Ben-Yehuda, Mol Cell 57:3486-3495, 2015, doi:http://dx.doi.org/10.1016/j.molcel.2014.12.019) suggested that protein synthesis is essential for early steps in the germination of dormant spores of Bacillus subtilis If true, this would be a paradigm shift in our understanding of spore germination. We now show that essentially all of the rRNA can be eliminated from spores of Bacillus megaterium or B. subtilis, and these

  7. Roles of the Bacillus anthracis Spore Protein ExsK in Exosporium Maturation and Germination

    Science.gov (United States)

    2009-12-01

    Fritsch, and T. Maniatis . 1989. Molecular cloning : a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY. 37...on ExsFA/BxpB. In spores lacking the exosporium surface protein BclA, ExsK fails to mature into high- molecular -mass species observed in wild-type...the envi- ronment. To gain insight into the molecular basis of exosporium as- sembly and function, we studied a previously identified but otherwise

  8. Bacillus and other spore-forming genera: variations in responses and mechanisms for survival.

    Science.gov (United States)

    Checinska, Aleksandra; Paszczynski, Andrzej; Burbank, Malcolm

    2015-01-01

    The ubiquity of Bacilli endospores in soils facilitates their easy transfer routes to other environments, including cleanrooms and low-biomass sites required by many industries such as food production and processing. A bacterial endospore is a metabolically dormant form of life that is much more resistant to heat, desiccation, lack of nutrients, exposure to UV and gamma radiation, organic chemicals, and oxidizing agents than is a vegetative cell. For example, the heat tolerance of endospores depends on multiple factors such as sporulation temperature, core dehydration, and the presence of minerals and small, acid-soluble proteins (SASPs) in the core. This review describes our current understanding of the persistence mechanisms related to sporeformers' biochemical properties and discusses in detail spores' heat, radiation, and reactive chemical resistance. In addition, it discusses the impact of contamination with spores on many areas of human activity, spore adhesive properties, and biofilm contribution to resistance.

  9. Diverse supramolecular structures formed by self‐assembling proteins of the B acillus subtilis spore coat

    Science.gov (United States)

    Jiang, Shuo; Wan, Qiang; Krajcikova, Daniela; Tang, Jilin; Tzokov, Svetomir B.; Barak, Imrich

    2015-01-01

    Summary Bacterial spores (endospores), such as those of the pathogens C lostridium difficile and B acillus anthracis, are uniquely stable cell forms, highly resistant to harsh environmental insults. B acillus subtilis is the best studied spore‐former and we have used it to address the question of how the spore coat is assembled from multiple components to form a robust, protective superstructure. B . subtilis coat proteins (CotY, CotE, CotV and CotW) expressed in E scherichia coli can arrange intracellularly into highly stable macro‐structures through processes of self‐assembly. Using electron microscopy, we demonstrate the capacity of these proteins to generate ordered one‐dimensional fibres, two‐dimensional sheets and three‐dimensional stacks. In one case (CotY), the high degree of order favours strong, cooperative intracellular disulfide cross‐linking. Assemblies of this kind could form exquisitely adapted building blocks for higher‐order assembly across all spore‐formers. These physically robust arrayed units could also have novel applications in nano‐biotechnology processes. PMID:25872412

  10. Etching of polymers, proteins and bacterial spores by atmospheric pressure DBD plasma in air

    Science.gov (United States)

    Kuzminova, A.; Kretková, T.; Kylián, O.; Hanuš, J.; Khalakhan, I.; Prukner, V.; Doležalová, E.; Šimek, M.; Biederman, H.

    2017-04-01

    Many studies proved that non-equilibrium discharges generated at atmospheric pressure are highly effective for the bio-decontamination of surfaces of various materials. One of the key processes that leads to a desired result is plasma etching and thus the evaluation of etching rates of organic materials is of high importance. However, the comparison of reported results is rather difficult if impossible as different authors use diverse sources of atmospheric plasma that are operated at significantly different operational parameters. Therefore, we report here on the systematic study of the etching of nine different common polymers that mimic the different structures of more complicated biological systems, bovine serum albumin (BSA) selected as the model protein and spores of Bacillus subtilis taken as a representative of highly resistant micro-organisms. The treatment of these materials was performed by means of atmospheric pressure dielectric barrier discharge (DBD) sustained in open air at constant conditions. All tested polymers, BSA and spores, were readily etched by DBD plasma. However, the measured etching rates were found to be dependent on the chemical structure of treated materials, namely on the presence of oxygen in the structure of polymers.

  11. Synergistic Activity Between S-Layer Protein and Spore-Crystal Preparations from Lysinibacillus sphaericus Against Culex quinquefasciatus Larvae.

    Science.gov (United States)

    Lozano, Lucía C; Dussán, Jenny

    2017-03-01

    Lysinibacillus sphaericus is used for the biological control of mosquitoes. The main toxicity mechanism of pathogenic strains is a binary toxin produced during sporulation. S-layer is a proteinaceous structure on the surface of bacteria; its functions have been involved in the interaction between bacterial cells and the environment, for example, as protective coats, surface recognition, and biological control. In L. sphaericus, S-layer protein (SlpC) is expressed in vegetative cells, and is also found in spore-crystal preparations; it has larvicidal activity in Culex spp. In this study, partial and completed sporulated culture toxicities were compared; also, S-layer protein and spore-crystal proteins were tested against Culex quinquefasciatus larvae for possible interactions. Larvicidal activity obtained with a combination of SlpC and spore-crystal proteins from strain III(3)7 showed no significant interaction, whereas, combinations of both preparations from strain 2362 showed synergistic effect. The highest synergistic activity observed was between spore protein complex from strain 2362 and SlpC from III(3)7. S-layer protein could be considered a good alternative in formulation improvement, for biological control of mosquitoes.

  12. Atomic force microscopy imaging and single molecule recognition force spectroscopy of coat proteins on the surface of Bacillus subtilis spore.

    Science.gov (United States)

    Tang, Jilin; Krajcikova, Daniela; Zhu, Rong; Ebner, Andreas; Cutting, Simon; Gruber, Hermann J; Barak, Imrich; Hinterdorfer, Peter

    2007-01-01

    Coat assembly in Bacillus subtilis serves as a tractable model for the study of the self-assembly process of biological structures and has a significant potential for use in nano-biotechnological applications. In the present study, the morphology of B. subtilis spores was investigated by magnetically driven dynamic force microscopy (MAC mode atomic force microscopy) under physiological conditions. B. subtilis spores appeared as prolate structures, with a length of 0.6-3 microm and a width of about 0.5-2 microm. The spore surface was mainly covered with bump-like structures with diameters ranging from 8 to 70 nm. Besides topographical explorations, single molecule recognition force spectroscopy (SMRFS) was used to characterize the spore coat protein CotA. This protein was specifically recognized by a polyclonal antibody directed against CotA (anti-CotA), the antibody being covalently tethered to the AFM tip via a polyethylene glycol linker. The unbinding force between CotA and anti-CotA was determined as 55 +/- 2 pN. From the high-binding probability of more than 20% in force-distance cycles it is concluded that CotA locates in the outer surface of B. subtilis spores.

  13. A gene encoding a vicilin-like protein is specifically expressed in fern spores. Evolutionary pathway of seed storage globulins.

    Science.gov (United States)

    Shutov, A D; Braun, H; Chesnokov, Y V; Bäumlein, H

    1998-02-15

    The isolation and characterisation of a cDNA coding for a vicilin-like protein of the fern Matteuccia struthiopteris is described. The corresponding gene is specifically expressed during late stages of spore development. Extensive sequence comparisons suggest that the fern protein can be considered as a molecular missing link between single-domain germin/spherulin-like proteins and two-domain seed storage globulins of gymnosperms and angiosperms. Further, evidence is provided for the existence of a superfamily of structurally related, functionally different proteins which includes storage globulins of the vicilin and legumin families, a membrane-associated sucrose-binding protein of soybean, a Forssman antigen-binding lectin of velvet bean, the precursor of the vacuolar membrane bound proteins MP27/MP32 of pumpkin, the embryogenesis-specific protein Gea8 of carrot, the fern-spore-specific protein described here as well as the functionally diverse family of germins/germin-like proteins and the spherulins of myxomycetes. We propose that seed storage globulins of spermatophytes evolved from desiccation-related single-domain proteins of prokaryotes via a duplicated two-domain ancestor that is best represented by the extant fern spore-specific vicilin-like protein.

  14. Ambient pH stress inhibits spore germination of Penicillium expansum by impairing protein synthesis and folding: a proteomic-based study.

    Science.gov (United States)

    Li, Boqiang; Lai, Tongfei; Qin, Guozheng; Tian, Shiping

    2010-01-01

    Spore germination is the first step for fungal pathogens to infect host plants. The pH value, as one of the most important environmental parameters, has critical influence on spore germination. In this study, effects of ambient pH on spore germination were determined by culturing spores of Penicillium expansum in medium with pH values at 2.0, 5.0 and 8.0, and involved mechanisms were further investigated through methods of comparative proteomics. The results demonstrated that spore germination of P. expansum was obviously inhibited at pH 2.0 and 8.0. Using quadrupole time-of-flight tandem mass spectrometer, 34 proteins with significant changes in abundance were identified. Among them, 17 proteins were related to protein synthesis and folding, and most of them were down-regulated at pH 2.0 and 8.0. Accordingly, lower content of total soluble proteins and higher ratio of aggregated proteins were observed in spores at pH 2.0 and 8.0. In addition, it was found that ambient pH could affect intracellular pH and ATP level of P. expansum spores. These findings indicated that ambient pH might affect spore germination of P. expansum by changing intracellular pH and regulating protein expression. Further, impairing synthesis and folding of proteins might be one of the main reasons.

  15. Spore germination of Trichoderma atroviride is inhibited by its LysM protein TAL6.

    Science.gov (United States)

    Seidl-Seiboth, Verena; Zach, Simone; Frischmann, Alexa; Spadiut, Oliver; Dietzsch, Christian; Herwig, Christoph; Ruth, Claudia; Rodler, Agnes; Jungbauer, Alois; Kubicek, Christian P

    2013-03-01

    LysM motifs are carbohydrate-binding modules found in prokaryotes and eukaryotes. They have general N-acetylglucosamine binding properties and therefore bind to chitin and related carbohydrates. In plants, plasma-membrane-bound proteins containing LysM motifs are involved in plant defence responses, but also in symbiotic interactions between plants and microorganisms. Filamentous fungi secrete LysM proteins that contain several LysM motifs but no enzymatic modules. In plant pathogenic fungi, for LysM proteins roles in dampening of plant defence responses and protection from plant chitinases were shown. In this study, the carbohydrate-binding specificities and biological function of the LysM protein TAL6 from the plant-beneficial fungus Trichoderma atroviride were investigated. TAL6 contains seven LysM motifs and the sequences of its LysM motifs are very different from other fungal LysM proteins investigated so far. The results showed that TAL6 bound to some forms of polymeric chitin, but not to chito-oligosaccharides. Further, no binding to fungal cell wall preparations was detected. Despite these rather weak carbohydrate-binding properties, a strong inhibitory effect of TAL6 on spore germination was found. TAL6 was shown to specifically inhibit germination of Trichoderma spp., but interestingly not of other fungi. Thus, this protein is involved in self-signalling processes during fungal growth rather than fungal-plant interactions. These data expand the functional repertoire of fungal LysM proteins beyond effectors in plant defence responses and show that fungal LysM proteins are also involved in the self-regulation of fungal growth and development. © 2013 The Authors Journal compilation © 2013 FEBS.

  16. Activity of spores and extracellular proteins from six Cry+ strains and a Cry- strain of Bacillus thuringiensis subsp. kurstaki against the western spruce budworm, Choristoneura occidentalis (Lepidoptera: Tortricidae).

    Science.gov (United States)

    Kalmykova, Galina; Burtseva, Ljudmila; Milne, Ross; van Frankenhuyzen, Kees

    2009-05-01

    We characterized insecticidal activity of previously untested strains of Bacillus thuringiensis kurstaki belonging to two crystal serovars (K-1 and K-73) against the western spruce budworm (Choristoneura occidentalis Freeman 1967). By testing various components, we demonstrated that spores play a critical role in the pathogenesis of each strain. Spore-free crystals caused low mortality and purified spores were generally not toxic. The addition of spores to purified protoxin increased toxicity several hundred-fold, regardless of the parental strain from which the spores or protoxins were derived. The crystal and spore components did not account for full insecticidal activity of whole sporulated cultures owing to the toxicity of soluble proteins that are secreted during cell growth. We observed a marked difference in toxicity of secreted proteins between the K-1 and K-73 type strains, with the K-1 preparations causing much higher mortality, mass reduction, and inhibition of pupation. There was a consistent correlation between relative toxicity of secreted protein preparations and the presence and quantity of the Vip3A protein, suggesting that this protein contributes to the virulence of B. thuringiensis subsp. kurstaki in western spruce budworm larvae. However, other virulence factors have to be invoked to explain the synergizing effect of spores from both K-1 and K-73 strains on Cry protein toxicity.

  17. Gene activity during germination of spores of the fern, Onoclea sensibilis: RNA and protein synthesis and the role of stored mRNA

    Science.gov (United States)

    Raghavan, V.

    1991-01-01

    Pattern of 3H-uridine incorporation into RNA of spores of Onoclea sensibilis imbibed in complete darkness (non-germinating conditions) and induced to germinate in red light was followed by oligo-dT cellulose chromatography, gel electrophoresis coupled with fluorography and autoradiography. In dark-imbibed spores, RNA synthesis was initiated about 24 h after sowing, with most of the label accumulating in the high mol. wt. poly(A) -RNA fraction. There was no incorporation of the label into poly(A) +RNA until 48 h after sowing. In contrast, photo-induced spores began to synthesize all fractions of RNA within 12 h after sowing and by 24 h, incorporation of 3H-uridine into RNA of irradiated spores was nearly 70-fold higher than that into dark-imbibed spores. Protein synthesis, as monitored by 3H-arginine incorporation into the acid-insoluble fraction and by autoradiography, was initiated in spores within 1-2 h after sowing under both conditions. Autoradiographic experiments also showed that onset of protein synthesis in the cytoplasm of the germinating spore is independent of the transport of newly synthesized nuclear RNA. One-dimensional sodium dodecyl sulphate-polyacrylamide gel electrophoresis of 35S-methionine-labelled proteins revealed a good correspondence between proteins synthesized in a cell-free translation system directed by poly(A) +RNA of dormant spores and those synthesized in vivo by dark-imbibed and photo-induced spores. These results indicate that stored mRNAs of O. sensibilis spores are functionally competent and provide templates for the synthesis of proteins during dark-imbibition and germination.

  18. High Pressure Germination of Bacillus subtilis Spores with Alterations in Levels and Types of Germination Proteins

    Science.gov (United States)

    2014-01-01

    a rapidly growing non thermal food processing technology that ensures the safety of meat , fruit juice and seafood products , extends product shelf...perfringens spores in meat products . Food Microbiol 26, 272 277. Behravan, J., Chirakkal, H., Masson, A. and Moir, A. (2000) Mutations in the gerP locus...significant agents of food spoilage and food borne disease, and the extreme resistance properties of these spores make them a major concern for the food

  19. Characterization of the spore surface and exosporium proteins of Clostridium sporogenes; implications for Clostridium botulinum group I strains.

    Science.gov (United States)

    Janganan, Thamarai K; Mullin, Nic; Tzokov, Svetomir B; Stringer, Sandra; Fagan, Robert P; Hobbs, Jamie K; Moir, Anne; Bullough, Per A

    2016-10-01

    Clostridium sporogenes is a non-pathogenic close relative and surrogate for Group I (proteolytic) neurotoxin-producing Clostridium botulinum strains. The exosporium, the sac-like outermost layer of spores of these species, is likely to contribute to adhesion, dissemination, and virulence. A paracrystalline array, hairy nap, and several appendages were detected in the exosporium of C. sporogenes strain NCIMB 701792 by EM and AFM. The protein composition of purified exosporium was explored by LC-MS/MS of tryptic peptides from major individual SDS-PAGE-separated protein bands, and from bulk exosporium. Two high molecular weight protein bands both contained the same protein with a collagen-like repeat domain, the probable constituent of the hairy nap, as well as cysteine-rich proteins CsxA and CsxB. A third cysteine-rich protein (CsxC) was also identified. These three proteins are also encoded in C. botulinum Prevot 594, and homologues (75-100% amino acid identity) are encoded in many other Group I strains. This work provides the first insight into the likely composition and organization of the exosporium of Group I C. botulinum spores. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. Bacterial spore survival after exposure to HZE particle bombardment -implication for the lithopanspermia hypothesis.

    Science.gov (United States)

    Moeller, Ralf; Berger, Thomas; Matthiä, Daniel; Okayasu, Ryuichi; Kitamura, H.; Reitz, Guenther

    transcriptional response during spore germination" (Moeller et al., 2008 [3]). To simulate the interplanetary journey of a meteorite, stacks of spore-samples on gabbro slides in different depths were exposed. Spore survival and the rate of the induced mutations (i.e., sporulation-deficiency (Spo-)) depended on the LET of the applied species of ions as well as on the location (and depth) of the irradiated spores in the artificial meteorite. The exposure to high LET iron ions led to a low level of spore survival and increased frequency of mutation to Spo-compared to low-energy charged particles compared to the low LET helium ions. In order to obtain insights on the role of DNA repair by nonhomologous end joining (NHEJ), homologous recombination (HR) and apurinic/apyrimidinic (AP) endonucleases in B. subtilis spore resistance to high-energy charged particles has been studied in parallel. Spores deficient in NHEJ and AP endonucleases were significantly more sensitive to HZE particle bombardment than were the HR-mutant and wild-type spores, indicating that NHEJ and AP endonucleases provide DNA break repair pathways during spore germination. ((References: [1] Arrhenius, S. 1903. Die Verbreitung des Lebens im Weltenraum. Umschau 7:481-485.; [2] Nicholson, W. L. 2009. Ancient micronauts: interplanetary transport of microbes by cosmic impacts. Trends Mi-crobiol. 17:243-250.; [3] Moeller, R., P. Setlow, G. Horneck, T. Berger, G. Reitz, P. Rettberg, A. J. Doherty, R. Okayasu, and W. L. Nicholson. 2008. Roles of the major, small, acid-soluble spore proteins and spore-specific and universal DNA repair mechanisms in resistance of Bacillus subtilis spores to ionizing radiation from X-rays and high-energy charged-particle bombardment. J. Bacteriol. 190:1134-1140.))

  1. In pursuit of protein targets: proteomic characterization of bacterial spore outer layers

    NARCIS (Netherlands)

    Abhyankar, W.; Hossain, A.H.; Djajasaputra, A.; Permpoonpattana, P.; ter Beek, A.; Dekker, H.L.; Cutting, S.M.; Brul, S.; de Koning, L.J.; de Koster, C.G.

    2013-01-01

    Bacillus cereus, responsible for food poisoning, and Clostridium difficile, the causative agent of Clostridium difficile-associated diarrhea (CDAD), are both spore-forming pathogens involved in food spoilage, food intoxication, and other infections in humans and animals. The proteinaceous coat and t

  2. Gel-free proteomic identification of the Bacillus subtilis insoluble spore coat protein fraction

    NARCIS (Netherlands)

    W. Abhyankar; A. ter Beek; H. Dekker; R. Kort; S. Brul; C.G. de Koster

    2011-01-01

    Species from the genus Bacillus have the ability to form endospores, dormant cellular forms that are able to survive heat and acid preservation techniques commonly used in the food industry. Resistance characteristics of spores towards various environmental stresses are in part attributed to their c

  3. Use of Yeast Spores for Microencapsulation of Enzymes

    OpenAIRE

    2014-01-01

    Here, we report a novel method to produce microencapsulated enzymes using Saccharomyces cerevisiae spores. In sporulating cells, soluble secreted proteins are transported to the spore wall. Previous work has shown that the spore wall is capable of retaining soluble proteins because its outer layers work as a diffusion barrier. Accordingly, a red fluorescent protein (RFP) fusion of the α-galactosidase, Mel1, expressed in spores was observed in the spore wall even after spores were subjected to...

  4. Effects of steam autoclave treatment on Geobacillus stearothermophilus spores.

    Science.gov (United States)

    Huesca-Espitia, L C; Suvira, M; Rosenbeck, K; Korza, G; Setlow, B; Li, W; Wang, S; Li, Y-Q; Setlow, P

    2016-11-01

    To determine the mechanism of autoclave killing of Geobacillus stearothermophilus spores used in biological indicators (BIs) for steam autoclave sterilization, and rates of loss of spore viability and a spore enzyme used in BIs. Spore viability, dipicolinic acid (DPA) release, nucleic acid staining, α-glucosidase activity, protein structure and mutagenesis were measured during autoclaving of G. stearothermophilus spores. Loss of DPA and increases in spore core nucleic acid staining were slower than loss of spore viability. Spore core α-glucosidase was also lost more slowly than spore viability, although soluble α-glucosidase in spore preparations was lost more rapidly. However, spores exposed to an effective autoclave sterilization lost all viability and α-glucosidase activity. Apparently killed autoclaved spores were not recovered by artificial germination in supportive media, much spore protein was denatured during autoclaving, and partially killed autoclave-treated spore preparations did not acquire mutations. These results indicate that autoclave-killed spores cannot be revived, spore killing by autoclaving is likely by protein damage, and spore core α-glucosidase activity is lost more slowly than spore viability. This work provides insight into the mechanism of autoclave killing of spores of an organism used in BIs, and that a spore enzyme in a BI is more stable to autoclaving than spore viability. © 2016 The Society for Applied Microbiology.

  5. Crystal structure of the PepSY-containing domain of the YpeB protein involved in germination of bacillus spores.

    Science.gov (United States)

    Üstok, Fatma Işık; Chirgadze, Dimitri Y; Christie, Graham

    2015-10-01

    The crystal structure of the C-terminal domain of the Bacillus megaterium YpeB protein has been solved by X-ray crystallography to 1.80-Å resolution. The full-length protein is essential in stabilising the SleB cortex lytic enzyme in Bacillus spores, and may have a role in regulating SleB activity during spore germination. The YpeB-C crystal structure comprises three tandemly repeated PepSY domains, which are aligned to form an extended laterally compressed molecule. A predominantly positively charged region located in the second PepSY domain may provide a site for protein interactions that are important in stabilising SleB and YpeB within the spore.

  6. Microbicidal effects of weakly acidified chlorous acid water against feline calicivirus and Clostridium difficile spores under protein-rich conditions.

    Science.gov (United States)

    Goda, Hisataka; Yamaoka, Hitoshi; Nakayama-Imaohji, Haruyuki; Kawata, Hiroyuki; Horiuchi, Isanori; Fujita, Yatsuka; Nagao, Tamiko; Tada, Ayano; Terada, Atsushi; Kuwahara, Tomomi

    2017-01-01

    Sanitation of environmental surfaces with chlorine based-disinfectants is a principal measure to control outbreaks of norovirus or Clostridium difficile. The microbicidal activity of chlorine-based disinfectants depends on the free available chlorine (FAC), but their oxidative potential is rapidly eliminated by organic matter. In this study, the microbicidal activities of weakly acidified chlorous acid water (WACAW) and sodium hypochlorite solution (NaClO) against feline calcivirus (FCV) and C. difficile spores were compared in protein-rich conditions. WACAW inactivated FCV and C. difficile spores better than NaClO under all experimental conditions used in this study. WACAW above 100 ppm FAC decreased FCV >4 log10 within 30 sec in the presence of 0.5% each of bovine serum albumin (BSA), polypeptone or meat extract. Even in the presence of 5% BSA, WACAW at 600 ppm FAC reduced FCV >4 log10 within 30 sec. Polypeptone inhibited the virucidal activity of WACAW against FCV more so than BSA or meat extract. WACAW at 200 ppm FAC decreased C. difficile spores >3 log10 within 1 min in the presence of 0.5% polypeptone. The microbicidal activity of NaClO was extensively diminished in the presence of organic matter. WACAW recovered its FAC to the initial level after partial neutralization by sodium thiosulfate, while no restoration of the FAC was observed in NaClO. These results indicate that WACAW is relatively stable under organic matter-rich conditions and therefore may be useful for treating environmental surfaces contaminated by human excretions.

  7. Development of Spore Protein of Myxobolus koi as an Immunostimulant for Prevent of Myxobolusis on Gold Fish (Cyprinus carpio Linn) by Oral Immunisation

    Science.gov (United States)

    Mahasri, Gunanti

    2017-02-01

    Production of Gold fish (Cyprinus carpio Linn) in Indonesia has always increased from 2013 to 2015 year by year with increasing average 2% per year. The amount of production was respectively 571.892 tonnes, 1129.273 tonnes, and 1186.674 tonnes. There were almost no problems to sale of gold fish because it had a good enough prospect. The aims of this research were Isolation of spore protein of Myxobolus koi by using SDS-PAGE to analyze immun respons and survival rate gold fish that immunized with spore protein of Myxobolus koi. The method of this research used experimental method, and belonged to 4 treatments that are: Controle = the group of gold fish not immunized with protein spore of Myxobolus koi neither infected by Myxobolus koi (T1). The group immunized and infested by spore of Myxobolus koi (T2), The group which immunized and not infested by Myxobolus koi (T3), and The group only infested by Myxobolus koi (T4). The dose of immunostimulant was 5 ml in 1 kg of food. The result showed that there were two bands of whole spore protein with molecule weight (MW) 150 kDa and 72 kDa and one band of crude protein Myxobolus koi with molecule weight 73 kD and the optical density point was 0.132 on the first day and increased to 0.769 on the 56 th day. The result also showed that the immun respons and survival rate increased from 27% to 86% in chellence test. The protein spore of Myxobolus koi can used to develops material for immunostimulant and to prevent the myxobolusis.

  8. Crystal structure of the PepSY-containing domain of the YpeB protein involved in germination of Bacillus spores

    OpenAIRE

    2015-01-01

    This is the author accepted manuscript. The final version is available from Wiley via http://dx.doi.org/10.1002/prot.24868 The crystal structure of the C-terminal domain of the Bacillus megaterium YpeB protein has been solved by X-ray crystallography to 1.80 Å resolution. The full-length protein is essential in stabilising the SleB cortex lytic enzyme in Bacillus spores, and may have a role in regulating SleB activity during spore germination. The YpeB-C crystal structure comprises three t...

  9. Crystal structure of the PepSY-containing domain of the YpeB protein involved in germination of Bacillus spores

    OpenAIRE

    2015-01-01

    This is the author accepted manuscript. The final version is available from Wiley via http://dx.doi.org/10.1002/prot.24868 The crystal structure of the C-terminal domain of the Bacillus megaterium YpeB protein has been solved by X-ray crystallography to 1.80 ? resolution. The full-length protein is essential in stabilising the SleB cortex lytic enzyme in Bacillus spores, and may have a role in regulating SleB activity during spore germination. The YpeB-C crystal structure comprises three t...

  10. Characterization of Acid Soluble Collagen from Redbelly Yellowtail Fusilier Fish Skin (Caesio cuning

    Directory of Open Access Journals (Sweden)

    Ika Astiana

    2016-04-01

    Full Text Available Fish skin can be used as raw material for producing collagen. The collagen can be extracted by chemical or combination of chemical and enzymatic processes. Extraction of collagen chemically can do with the acid process that produces acid soluble collagen (ASC. This study aimed to determine the optimum concentration and time of pretreatment and extraction, also to determine the characteristics of the acid soluble collagen from the skin of yellow tail fish. Extraction of collagen done by pretreatment using NaOH at the concentration of 0.05; 0.1; and 0.15 M and extraction using acetic acid at the concentration of 0.3; 0.5; and 0.7 M. Pretreatment NaOH with concentration 0.05 M and soaking time of 8 hours is the best combination for eliminating non collagen protein. Combination treatment of acetic acid at the concentration of 0.3 M for 3 days obtained the best solubility. The yield of collagen ASC was 18.4±1.49% (db and 5.79±0.47% (wb. Amino acid composition that is dominant in the ASC collagen was glycine (25.09±0.003%, alanine (13.71±0.075%, and proline (12.15±0.132%. Collagen from yellow tail fish skin has α1, α2, β and γ protein structure with the molecular weight of 125, 113, 170-181, and 208 KDa. The transition and melting temperatures of collagen were 67.69oC and 144.4oC. The surface structure of collagen by analysis of SEM has fibers on the surface.

  11. Fission yeast ATF/CREB family protein Atf21 plays important roles in production of normal spores.

    Science.gov (United States)

    Morita, Tomohiko; Yamada, Takatomi; Yamada, Shintaro; Matsumoto, Kouji; Ohta, Kunihiro

    2011-02-01

    Activating transcription factor/cAMP response element binding protein (ATF/CREB) family transcription factors play central roles in maintaining cellular homeostasis. They are activated in response to environmental stimuli, bind to CRE sequences in the promoters of stress-response genes and regulate transcription. Although ATF/CREB proteins are widely conserved among most eukaryotes, their characteristics are highly diverse. Here, we investigated the functions of a fission yeast ATF/CREB protein Atf21 to find out its unique properties. We show that Atf21 is dispensable for the adaptive response to several stresses such as nitrogen starvation and for meiotic events including nuclear divisions. However, spores derived from atf21Δ mutants are not as mature as wild-type ones and are unable to form colonies under nutrition-rich conditions. Furthermore, we demonstrate that the Atf21 protein, which is scarce in early meiosis, gradually accumulates as meiosis proceeds; it reaches maximum levels approximately 8 h after nitrogen starvation and is present during germination. These results suggest that Atf21 is expressed and functions long after nitrogen starvation. Given that other well-characterized fission yeast ATF/CREB proteins Atf1 and Pcr1 accumulate and function promptly upon exposure to environmental stresses, we propose that Atf21 is a distinct member of the ATF/CREB family in fission yeast. © 2010 The Authors. Journal compilation © 2010 by the Molecular Biology Society of Japan/Blackwell Publishing Ltd.

  12. Clostridium difficile spore-macrophage interactions: spore survival.

    Directory of Open Access Journals (Sweden)

    Daniel Paredes-Sabja

    Full Text Available BACKGROUND: Clostridium difficile is the main cause of nosocomial infections including antibiotic associated diarrhea, pseudomembranous colitis and toxic megacolon. During the course of Clostridium difficile infections (CDI, C. difficile undergoes sporulation and releases spores to the colonic environment. The elevated relapse rates of CDI suggest that C. difficile spores has a mechanism(s to efficiently persist in the host colonic environment. METHODOLOGY/PRINCIPAL FINDINGS: In this work, we provide evidence that C. difficile spores are well suited to survive the host's innate immune system. Electron microscopy results show that C. difficile spores are recognized by discrete patchy regions on the surface of macrophage Raw 264.7 cells, and phagocytosis was actin polymerization dependent. Fluorescence microscopy results show that >80% of Raw 264.7 cells had at least one C. difficile spore adhered, and that ∼60% of C. difficile spores were phagocytosed by Raw 264.7 cells. Strikingly, presence of complement decreased Raw 264.7 cells' ability to phagocytose C. difficile spores. Due to the ability of C. difficile spores to remain dormant inside Raw 264.7 cells, they were able to survive up to 72 h of macrophage infection. Interestingly, transmission electron micrographs showed interactions between the surface proteins of C. difficile spores and the phagosome membrane of Raw 264.7 cells. In addition, infection of Raw 264.7 cells with C. difficile spores for 48 h produced significant Raw 264.7 cell death as demonstrated by trypan blue assay, and nuclei staining by ethidium homodimer-1. CONCLUSIONS/SIGNIFICANCE: These results demonstrate that despite efficient recognition and phagocytosis of C. difficile spores by Raw 264.7 cells, spores remain dormant and are able to survive and produce cytotoxic effects on Raw 264.7 cells.

  13. Architecture and Assembly of the Bacillus subtilis Spore Coat

    Science.gov (United States)

    2014-09-26

    icandy contaminated with germinated spores and these germinat ed spores were removed by centrifugation in a one step HistodenzTM (Sigma, St. Louis...spore resistance but also because some coat proteins play significant roles in spore germination . However, much recent work on the spore coat has... germinating spores of various Bacillus [14,21 30] and Clostridium [3 1] species. H owever, this analysis has generally been conducted on wild type

  14. REMOVAL OF ACID-SOLUBLE LIGNIN FROM BIOMASS EXTRACTS USING AMBERLITE XAD-4 RESIN

    Directory of Open Access Journals (Sweden)

    Thomas James Schwartz

    2010-09-01

    Full Text Available This paper describes a method for the removal of acid-soluble lignin from acid hydrolyzed hemicelluloses extracted from a mixture of northern hardwood chips, by using Amberlite XAD-4 resin, which was shown to remove 100% of furan derivatives and 90% of acid-soluble lignin. Subsequent fermentation of the resin treated hydrolyzates gave ethanol yields as high as 97% of theoretical and showed a marked increase in fermentation rate. Regeneration of resin performed with 75% acetone was 85% efficient with respect to acid soluble lignin.

  15. REMOVAL OF ACID-SOLUBLE LIGNIN FROM BIOMASS EXTRACTS USING AMBERLITE XAD-4 RESIN

    OpenAIRE

    Thomas James Schwartz; Martin Lawoko

    2010-01-01

    This paper describes a method for the removal of acid-soluble lignin from acid hydrolyzed hemicelluloses extracted from a mixture of northern hardwood chips, by using Amberlite XAD-4 resin, which was shown to remove 100% of furan derivatives and 90% of acid-soluble lignin. Subsequent fermentation of the resin treated hydrolyzates gave ethanol yields as high as 97% of theoretical and showed a marked increase in fermentation rate. Regeneration of resin performed with 75% acetone was 85% efficie...

  16. Characterization of Acid Soluble Collagen from Redbelly Yellowtail Fusilier Fish Skin (Caesio cuning

    Directory of Open Access Journals (Sweden)

    Ika Astiana

    2016-04-01

    Full Text Available Fish skin can be used as raw material for producing collagen. The collagen can be extracted by chemicalor combination of chemical and enzymatic processes. Extraction of collagen chemically can do with theacid process that produces acid soluble collagen (ASC. This study aimed to determine the optimumconcentration and time of pretreatment and extraction, also to determine the characteristics of the acidsoluble collagen from the skin of yellow tail fish. Extraction of collagen done by pretreatment using NaOH atthe concentration of 0.05; 0.1; and 0.15 M and extraction using acetic acid at the concentration of 0.3; 0.5; and0.7 M. Pretreatment NaOH with concentration 0.05 M and soaking time of 8 hours is the best combinationfor eliminating non collagen protein. Combination treatment of acetic acid at the concentration of 0.3 Mfor 3 days obtained the best solubility. The yield of collagen ASC was 18.4±1.49% (db and 5.79±0.47%(wb. Amino acid composition that is dominant in the ASC collagen was glycine (25.09±0.003%, alanine(13.71±0.075%, and proline (12.15±0.132%. Collagen from yellow tail fish skin has α1, α2, β and γprotein structure with the molecular weight of 125, 113, 170-181, and 208 KDa. The transition and meltingtemperatures of collagen were 67.69oC and 144.4oC. The surface structure of collagen by analysis of SEM hasfibers on the surface.Keywords: cholesterol, fatty acids, meat tissue, proximate, red snapper (L. argentimaculatus

  17. Distinction of broken cellular wall Ganoderma lucidum spores and G. lucidum spores using FTIR microspectroscopy

    Science.gov (United States)

    Chen, Xianliang; Liu, Xingcun; Sheng, Daping; Huang, Dake; Li, Weizu; Wang, Xin

    2012-11-01

    In this paper, FTIR microspectroscopy was used to identify broken cellular wall Ganoderma lucidum spores and G. lucidum spores. For IR spectra, broken cellular wall G. lucidum spores and G. lucidum spores were mainly different in the regions of 3000-2800, 1660-1600, 1400-1200 and 1100-1000 cm-1. For curve fitting, the results showed the differences in the protein secondary structures and the polysaccharide structures/content between broken cellular wall G. lucidum spores and G. lucidum spores. Moreover, the value of A1078/A1741 might be a potentially useful factor to distinguish broken cellular wall G. lucidum spores from G. lucidum spores. Additionally, FTIR microspectroscopy could identify broken cellular wall G. lucidum spores and G. lucidum spores accurately when it was combined with hierarchical cluster analysis. The result suggests FTIR microspectroscopy is very simple and efficient for distinction of broken cellular wall G. lucidum spores and G. lucidum spores. The result also indicates FTIR microspectroscopy may be useful for TCM identification.

  18. A new chitinase-like xylanase inhibitor protein (XIP from coffee (Coffea arabica affects Soybean Asian rust (Phakopsora pachyrhizi spore germination

    Directory of Open Access Journals (Sweden)

    Mehta Angela

    2011-02-01

    Full Text Available Abstract Background Asian rust (Phakopsora pachyrhizi is a common disease in Brazilian soybean fields and it is difficult to control. To identify a biochemical candidate with potential to combat this disease, a new chitinase-like xylanase inhibitor protein (XIP from coffee (Coffea arabica (CaclXIP leaves was cloned into the pGAPZα-B vector for expression in Pichia pastoris. Results A cDNA encoding a chitinase-like xylanase inhibitor protein (XIP from coffee (Coffea arabica (CaclXIP, was isolated from leaves. The amino acid sequence predicts a (β/α8 topology common to Class III Chitinases (glycoside hydrolase family 18 proteins; GH18, and shares similarity with other GH18 members, although it lacks the glutamic acid residue essential for catalysis, which is replaced by glutamine. CaclXIP was expressed as a recombinant protein in Pichia pastoris. Enzymatic assay showed that purified recombinant CaclXIP had only residual chitinolytic activity. However, it inhibited xylanases from Acrophialophora nainiana by approx. 60% when present at 12:1 (w/w enzyme:inhibitor ratio. Additionally, CaclXIP at 1.5 μg/μL inhibited the germination of spores of Phakopsora pachyrhizi by 45%. Conclusions Our data suggests that CaclXIP belongs to a class of naturally inactive chitinases that have evolved to act in plant cell defence as xylanase inhibitors. Its role on inhibiting germination of fungal spores makes it an eligible candidate gene for the control of Asian rust.

  19. The Acid Soluble Disulphide and Mixed Disulphide Levels of Some Normal Tissues and Transplanted Tumours

    Science.gov (United States)

    Calcutt, G.; Ting, S. M.

    1970-01-01

    The acid soluble disulphides and mixed disulphides of a range of normal rat and mouse tissues and a number of transplanted rat or mouse tumours were measured. The result were considered in relation to other workers' data. It is noted that more radioresponsive tissues have higher levels than the more radioresistant tissues. PMID:5475758

  20. Site-Directed Mutagenesis and Structural Studies Suggest that the Germination Protease, GPR, in Spores of Bacillus Species Is an Atypical Aspartic Acid Protease

    Science.gov (United States)

    Carroll, Thomas M.; Setlow, Peter

    2005-01-01

    Germination protease (GPR) initiates the degradation of small, acid-soluble spore proteins (SASP) during germination of spores of Bacillus and Clostridium species. The GPR amino acid sequence is not homologous to members of the major protease families, and previous work has not identified residues involved in GPR catalysis. The current work has focused on identifying catalytically essential amino acids by mutagenesis of Bacillus megaterium gpr. A residue was selected for alteration if it (i) was conserved among spore-forming bacteria, (ii) was a potential nucleophile, and (iii) had not been ruled out as inessential for catalysis. GPR variants were overexpressed in Escherichia coli, and the active form (P41) was assayed for activity against SASP and the zymogen form (P46) was assayed for the ability to autoprocess to P41. Variants inactive against SASP and unable to autoprocess were analyzed by circular dichroism spectroscopy and multiangle laser light scattering to determine whether the variant's inactivity was due to loss of secondary or quaternary structure, respectively. Variation of D127 and D193, but no other residues, resulted in inactive P46 and P41, while variants of each form were well structured and tetrameric, suggesting that D127 and D193 are essential for activity and autoprocessing. Mapping these two aspartate residues and a highly conserved lysine onto the B. megaterium P46 crystal structure revealed a striking similarity to the catalytic residues and propeptide lysine of aspartic acid proteases. These data indicate that GPR is an atypical aspartic acid protease. PMID:16199582

  1. 枯草芽胞杆菌芽胞表面展示外源蛋白的研究进展%Research Progress on Bacillus subtilis Spore Display of Recombinant Proteins

    Institute of Scientific and Technical Information of China (English)

    余小霞; 田健; 伍宁丰

    2013-01-01

    Bacillus subtilis is Gram-positive bacteria with biological safy. It can form spores with strong stress resistance in poor nutrient environment. The spore of Bacillus subtilis consists of 3 parts including the core, cortex and spore coat protein. Recently, the Bacillus subtilis spore coat proteins, such as CotB, CotC, CotG, CotX and OxdD, have been successfully used as vectors to display the antigen proteins, enzymes or reporter protein on the spore surfaces. The recombinant proteins on Bacillus subtilis spores usually have many advantages, such as good stability, easy purification and safety. Therefore, they can be used in medicine, food and feed industry, and other fields. It has a great application prospect. This review introduced in detail the molecular characteristics of Bacillus subtilis spores, the construction process of the expressive system on spore surface and its application prospect. Thus, the paper provided a foundation for the basic and applied research about spore surface display system.%枯草芽胞杆菌是一种生物安全的革兰氏阳性细菌,在营养匮乏的环境下,可形成具有强抗逆性的芽胞。枯草芽胞杆菌的芽胞由核心、皮层、孢子外套蛋白三部分组成,目前已成功利用枯草芽胞杆菌芽胞外套蛋白CotB、CotC、CotG、CotX和OxdD为载体,将酶蛋白、抗原蛋白或荧光标记蛋白等展示于芽胞表面。芽胞表面展示的蛋白通常具有较好的稳定性、易于纯化和安全性好等优点,可应用于医药、食品及饲料工业等领域,具有较大的应用前景。详细介绍了枯草芽胞杆菌芽胞的分子特点及芽胞表面展示系统的构建过程及其应用前景,为芽胞表面展示载体的基础及应用研究奠定基础。

  2. Initiation of bacterial spore germination.

    Science.gov (United States)

    Vary, J C; Halvorson, H O

    1968-04-01

    To investigate the problem of initiation in bacterial spore germination, we isolated, from extracts of dormant spores of Bacillus cereus strain T and B. licheniformis, a protein that initiated spore germination when added to a suspension of heat-activated spores. The optimal conditions for initiatory activity of this protein (the initiator) were 30 C in 0.01 to 0.04 m NaCl and 0.01 m tris(hydroxymethyl)aminomethane (pH 8.5). The initiator was inhibited by phosphate but required two co-factors, l-alanine (1/7 of K(m) for l-alanine-inhibited germination) and nicotinamide adenine dinucleotide (1.25 x 10(-4)m). In the crude extract, the initiator activity was increased 3.5-fold by heating the extract at 65 C for 10 min, but the partially purified initiator preparation was completely heat-sensitive (65 C for 5 min). Heat stability could be conferred on the purified initiator by adding 10(-3)m dipicolinic acid. A fractionation of this protein that excluded l-alanine dehydrogenase and adenosine deaminase from the initiator activity was developed. The molecular weight of the initiator was estimated as 7 x 10(4). The kinetics of germination in the presence of initiator were examined at various concentrations of l-alanine and nicotinamide adenine dinucleotide.

  3. Genomics, evolution, and crystal structure of a new family of bacterial spore kinases

    OpenAIRE

    2009-01-01

    Bacterial spore formation is a complex process of fundamental relevance to biology and human disease. The spore coat structure is complex and poorly understood, and the roles of many of the protein components remain unclear. We describe a new family of spore coat proteins, the bacterial spore kinases (BSKs), and the first crystal structure of a BSK, YtaA (CotI) from Bacillus subtilis. BSKs are widely distributed in spore-forming Bacillus and Clostridium species, and have a dynamic evolutionar...

  4. Hydrazine inactivates bacillus spores

    Science.gov (United States)

    Schubert, Wayne; Plett, G. A.; Yavrouian, A. H.; Barengoltz, J.

    2005-01-01

    Planetary Protection places requirements on the maximum number of viable bacterial spores that may be delivered by a spacecraft to another solar system body. Therefore, for such space missions, the spores that may be found in hydrazine are of concern. A proposed change in processing procedures that eliminated a 0.2 um filtration step propmpted this study to ensure microbial contamination issue existed, especially since no information was found in the literature to substantiate bacterial spore inactivation by hydrazine.

  5. A Type III protein-RNA toxin-antitoxin system from Bacillus thuringiensis promotes plasmid retention during spore development.

    Science.gov (United States)

    Short, Francesca L; Monson, Rita E; Salmond, George P C

    2015-01-01

    Members of the Bacillus cereus sensu lato group of bacteria often contain multiple large plasmids, including those encoding virulence factors in B. anthracis. Bacillus species can develop into spores in response to stress. During sporulation the genomic content of the cell is heavily compressed, which could result in counterselection of extrachromosomal genomic elements, unless they have robust stabilization and segregation systems. Toxin-antitoxin (TA) systems are near-ubiquitous in prokaryotes and have multiple biological roles, including plasmid stabilization during vegetative growth. Here, we have shown that a Type III TA system, based on an RNA antitoxin and endoribonuclease toxin, from plasmid pAW63 in Bacillus thuringiensis serovar kurstaki HD-73 can dramatically promote plasmid retention in populations undergoing sporulation and germination, and we provide evidence that this occurs through the post-segregational killing of plasmid-free forespores. Our findings show how an extremely common genetic module can be used to ensure plasmid maintenance during stress-induced developmental transitions, with implications for plasmid dynamics in B. cereus s.l. bacteria.

  6. Effects of caffeine intake during gestation and lactation on the acid solubility of enamel in weanling rats.

    Science.gov (United States)

    Schneider, P E; Alonzo, G; Nakamoto, T; Falster, A U; Simmons, W B

    1995-01-01

    The purpose of this study was to evaluate the effects of dietary caffeine during gestation and lactation on the acid solubility of molar teeth of weanling rats. Nineteen pregnant dams were divided into two groups. The 9 dams in the control group were fed a 20% protein diet supplemented with caffeine (2 mg/100 g BW) throughout the experiment. At birth, 8 pups were randomly assigned to each dam. Pups were killed on day 22. The 1st and 2nd molars were removed from each pup's maxilla and mandible. Four randomly selected molars from each litter were placed in a chamber and bathed with a flow of acid solution and the amount of mineral dissolved from the enamel was determined. The results showed that the amount of dissolved Ca and Mg from enamel surfaces of 1st molars from rats in the caffeine group after exposure to acid was consistently greater than that of the non caffeine group. In the 2nd molars there was no significant difference between caffeine and noncaffeine groups. Scanning electron microscopy revealed an alteration of the enamel surface of the 1st molars of the caffeine group after acid exposure. These results indicate that caffeine intake during gestation and lactation would have a deleterious effect on dental enamel of 1st molars in newborn rats.

  7. Cryopreservation of fern spores

    Science.gov (United States)

    Spore banks for ferns are analogous to seed banks for angiosperms and provide a promising ex situ conservation tool because large quantities of germplasm with high genetic variation can be conserved in a small space with low economic and technical costs. Ferns produce two types of spores with very ...

  8. Rapid onsite assessment of spore viability.

    Energy Technology Data Exchange (ETDEWEB)

    Branda, Steven; Lane, Todd W.; VanderNoot, Victoria A.; Gaucher, Sara P.; Jokerst, Amanda S.

    2005-12-01

    This one year LDRD addresses problems of threat assessment and restoration of facilities following a bioterror incident like the incident that closed down mail facilities in late 2001. Facilities that are contaminated with pathogenic spores such as B. anthracis spores must be shut down while they are treated with a sporicidal agent and the effectiveness of the treatment is ascertained. This process involves measuring the viability of spore test strips, laid out in a grid throughout the facility; the CDC accepted methodologies require transporting the samples to a laboratory and carrying out a 48 hr outgrowth experiment. We proposed developing a technique that will ultimately lead to a fieldable microfluidic device that can rapidly assess (ideally less than 30 min) spore viability and effectiveness of sporicidal treatment, returning facilities to use in hours not days. The proposed method will determine viability of spores by detecting early protein synthesis after chemical germination. During this year, we established the feasibility of this approach and gathered preliminary results that should fuel a future more comprehensive effort. Such a proposal is currently under review with the NIH. Proteomic signatures of Bacillus spores and vegetative cells were assessed by both slab gel electrophoresis as well as microchip based gel electrophoresis employing sensitive laser-induced fluorescence detection. The conditions for germination using a number of chemical germinants were evaluated and optimized and the time course of protein synthesis was ascertained. Microseparations were carried out using both viable spores and spores inactivated by two different methods. A select number of the early synthesis proteins were digested into peptides for analysis by mass spectrometry.

  9. Crystal structure of an antifungal osmotin-like protein from Calotropis procera and its effects on Fusarium solani spores, as revealed by atomic force microscopy: Insights into the mechanism of action.

    Science.gov (United States)

    Ramos, Marcio V; de Oliveira, Raquel S B; Pereira, Humberto M; Moreno, Frederico B M B; Lobo, Marina D P; Rebelo, Luciana M; Brandão-Neto, José; de Sousa, Jeanlex S; Monteiro-Moreira, Ana C O; Freitas, Cléverson D T; Grangeiro, Thalles Barbosa

    2015-11-01

    CpOsm is an antifungal osmotin/thaumatin-like protein purified from the latex of Calotropis procera. The protein is relatively thermostable and retains its antifungal activity over a wide pH range; therefore, it may be useful in the development of new antifungal drugs or transgenic crops with enhanced resistance to phytopathogenic fungi. To gain further insight into the mechanism of action of CpOsm, its three-dimensional structure was determined, and the effects of the protein on Fusarium solani spores were investigated by atomic force microscopy (AFM). The atomic structure of CpOsm was solved at a resolution of 1.61Å, and it contained 205 amino acid residues and 192 water molecules, with a final R-factor of 18.12% and an Rfree of 21.59%. The CpOsm structure belongs to the thaumatin superfamily fold and is characterized by three domains stabilized by eight disulfide bonds and a prominent charged cleft, which runs the length of the front side of the molecule. Similarly to other antifungal thaumatin-like proteins, the cleft of CpOsm is predominantly acidic. AFM images of F. solani spores treated with CpOsm resulted in striking morphological changes being induced by the protein. Spores treated with CpOsm were wrinkled, and the volume of these cells was reduced by approximately 80%. Treated cells were covered by a shell of CpOsm molecules, and the leakage of cytoplasmic content from these cells was also observed. Based on the structural features of CpOsm and the effects that the protein produces on F. solani spores, a possible mechanism of action is suggested and discussed.

  10. A study of Ganoderma lucidum spores by FTIR microspectroscopy

    Science.gov (United States)

    Wang, Xin; Chen, Xianliang; Qi, Zeming; Liu, Xingcun; Li, Weizu; Wang, Shengyi

    2012-06-01

    In order to obtain unique information of Ganoderma lucidum spores, FTIR microspectroscopy was used to study G. lucidum spores from Anhui Province (A), Liaoning Province (B) and Shangdong Province (C) of China. IR micro-spectra were acquired with high-resolution and well-reproducibility. The IR spectra of G. lucidum spores from different areas were similar and mainly made up of the absorption bands of polysaccharide, sterols, proteins, fatty acids, etc. The results of curve fitting indicated the protein secondary structures were dissimilar among the above G. lucidum spores. To identify G. lucidum spores from different areas, the H1078/H1640 value might be a potentially useful factor, furthermore FTIR microspectroscopy could realize this identification efficiently with the help of hierarchical cluster analysis. The result indicates FTIR microspectroscopy is an efficient tool for identification of G. lucidum spores from different areas. The result also suggests FTIR microspectroscopy is a potentially useful tool for the study of TCM.

  11. Structural similarity of a developmentally regulated bacterial spore coat protein to beta gamma-crystallins of the vertebrate eye lens.

    Science.gov (United States)

    Bagby, S; Harvey, T S; Eagle, S G; Inouye, S; Ikura, M

    1994-05-10

    The solution structure of Ca(2+)-loaded protein S (M(r) 18,792) from the Gram-negative soil bacterium Myxococcus xanthus has been determined by multidimensional heteronuclear NMR spectroscopy. Protein S consists of four internally homologous motifs, arranged to produce two domains with a pseudo-twofold symmetry axis, overall resembling a triangular prism. Each domain consists of two topologically inequivalent "Greek keys": the second and fourth motifs form standard Greek keys, whereas the first and third motifs each contain a regular alpha-helix in addition to the usual four beta-strands. The structure of protein S is similar to those of the vertebrate eye lens beta gamma-crystallins, which are thought to be evolutionarily related to protein S. Both protein S and the beta gamma-crystallins function by forming stable multimolecular assemblies. However, protein S possesses distinctive motif organization and domain packing, indicating a different mode of oligomerization and a divergent evolutionary pathway from the beta gamma-crystallins.

  12. The Molecular Timeline of a Reviving Bacterial Spore

    OpenAIRE

    2015-01-01

    Summary The bacterial spore can rapidly convert from a dormant to a fully active cell. Here we study this remarkable cellular transition in Bacillus subtilis and reveal the identity of the newly synthesized proteins throughout spore revival. Our analysis uncovers a highly ordered developmental program that correlates with the spore morphological changes and reveals the spatial and temporal molecular events fundamental to reconstruct a cell. As opposed to current knowledge, we found that trans...

  13. Antibacterial action of acetic acid soluble material isolated from Mucor rouxii and its application onto textile.

    Science.gov (United States)

    Moussa, Shaaban; Ibrahim, Atef; Okba, Adel; Hamza, Hanafy; Opwis, Klaus; Schollmeyer, Eckhard

    2011-06-01

    Acetic acid soluble material (AcSM) is a chitosan-rich fraction isolated from the fungal cell wall materials. The final step in the traditional production of fungal chitosan is the separation of chitosan from the cell wall AcSM via raising the pH to 9-10 followed by centrifugation. This step results in further undesirable economic and environmental effects. The goal of this paper is to avoid that by investigating the antimicrobial effect of the whole AcSM from Mucor rouxii DSM-1191 cell wall and its application on cotton fabrics. The treated fabrics were characterized through monitoring the textile physical properties and for the antibacterial activity against Escherichia coli and Micrococcus luteus. Results showed that Mucor rouxii DSM-1191 has excellent potentials to be used for cell wall AcSM production on industrial scale with a maximum content of 40% in dry mycelia. The obtained results indicated that the physical properties of the treated fabrics, as well as the antibacterial activity, were improved after treatment with fungal AcSM. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Acid-soluble breakdown of homologous deoxyribonucleic acid adsorbed by Haemophilus influenzae: its biological significance

    Energy Technology Data Exchange (ETDEWEB)

    Stuy, J.H.

    1974-11-01

    Competent bacteria of Haemophilus influenzae strain Rd were exposed to various kinds of radioactive deoxyribonucleic acid (DNA) for short periods of time and at relatively low temperature. The fate of phage HP1 DNA was studied most extensively. Adsorbed DNA was partially acid solubilized by lysogens and by nonlysogens with very similar kinetics. The biological activity of the DNA decreased extensively in both lysogenic and nonlysogenic recipients. 2,4-Dinitrophenol had no effect on the acid solubilization but largely abolished the biological inactivation. Inactivation kinetics for three different markers and for the triple combination were roughly the same. The presence of 2,4-dinitrophenol in the medium, or the HP1 prophage in the chromosome, did not alter this observation. This suggests that acid solubilization involves the destruction of whole DNA molecules. In view of the absence of DNA homology between phage and host, it is concluded that acid-soluble breakdown of adsorbed transforming DNA is not an integral part of the donor DNA integration process. Behavior of mutant bacteria indicates that neither exonuclease III nor exonuclease V is involved.

  15. Myxomycete (slime mold) spores: unrecognized aeroallergens?

    Science.gov (United States)

    Lierl, Michelle B

    2013-12-01

    Myxomycete spores are present in the outdoor air but have not been studied for allergenicity. To determine whether patients with seasonal allergic rhinitis (SAR) symptoms are sensitized to myxomycete spores. Myxomycete specimens were collected in the field. Nine species of myxomycetes were collected and identified: Arcyria cinerea, Ceratiomyxa fruticulosa, Fuligo septica, Hemitrichia clavata, Lycogala epidendrum, Metatrichia vesparium, Stemonitis nigrescens, Tubifera ferruginosa, and Trichea favoginea. Allergen extracts were made for each species. Protein content of each extract was measured by bicinchoninic acid assay. Protein electrophoresis was performed. Subjects with a history of SAR symptoms were enrolled, and allergy skin prick testing was performed with each extract. Protein content of the extracts ranged from 1.05 to 5.8 mg/mL. Protein bands were seen at 10 to 250 kD. Allergy prick testing was performed in 69 subjects; 42% of subjects had positive prick test results for at least 1 myxomycete extract, with 9% to 22% reacting to each extract. Five of the 12 subjects who tested negative for all allergens on the standard aeroallergen panel had positive prick test results for myxomycetes. Forty-two percent of subjects with SAR were sensitized to myxomycete spores. A significant subset of subjects who had SAR symptoms and otherwise negative skin test results showed sensitization to myxomycetes. These spores are present in the outdoor air during the summer and autumn and might be significant aeroallergens. Copyright © 2013 American College of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  16. Biosorption of uranium and copper by Bacillus Sphaericus JG-A12 cells, spores and S-layer proteins embedded in sol-gel ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Raff, J.; Soltmann, U.; Boettcher, H. [Arbeitsgruppe Funktionelle Schichten, GMBU e.V., Dresden (Germany); Matys, S.; Pompe, W. [Inst. fuer Materialwissenschaft, Technische Univ. Dresden (Germany); Selenska-Pobell, S.

    2002-05-01

    Vegetative cells, spores and stabilized S-layer sheets of B. sphaericus JG-A12 were embedded in SiO{sub 2} bulk particles using sol-gel techniques. In sorption experiments the metal binding capacity of the free biocomponents and the corresponding biological ceramics were compared. (orig.)

  17. Fifth international fungus spore conference

    Energy Technology Data Exchange (ETDEWEB)

    Timberlake, W.E.

    1993-04-01

    This folio contains the proceedings of the Fifth International Fungal Spore Conference held August 17-21, 1991 at the Unicoi State Park at Helen, Georgia. The volume contains abstracts of each oral presentation as well as a collection of abstracts describing the poster sessions. Presentations were organized around the themes (1) Induction of Sporulation, (2) Nuclear Division, (3) Spore Formation, (4) Spore Release and Dispersal, and (4) Spore Germination.

  18. Anthrax Spores under a microscope

    Science.gov (United States)

    2003-01-01

    Anthrax spores are inactive forms of Bacillus anthracis. They can survive for decades inside a spore's tough protective coating; they become active when inhaled by humans. A result of NASA- and industry-sponsored research to develop small greenhouses for space research is the unique AiroCide TiO2 system that kills anthrax spores and other pathogens.

  19. Interlaboratory evaluation of cellulosic acid-soluble internal air sampling capsules for multi-element analysis.

    Science.gov (United States)

    Andrews, Ronnee N; Feng, H Amy; Ashley, Kevin

    2016-01-01

    An interlaboratory study was carried out to evaluate the use of acid-soluble cellulosic air sampling capsules for their suitability in the measurement of trace elements in workplace atmospheric samples. These capsules are used as inserts to perform closed-face cassette sample collection for occupational exposure monitoring. The interlaboratory study was performed in accordance with NIOSH guidelines that describe statistical procedures for evaluating measurement accuracy of air monitoring methods. The performance evaluation materials used consisted of cellulose acetate capsules melded to mixed-cellulose ester filters that were dosed with multiple elements from commercial standard aqueous solutions. The cellulosic capsules were spiked with the following 33 elements of interest in workplace air monitoring: Ag, Al, As, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, In, K, La, Li, Mg, Mn, Mo, Ni, P, Pb, Sb, Se, Sn, Sr, Te, Ti, Tl, V, W, Y, Zn, Zr. The elemental loading levels were certified by an accredited provider of certified reference materials. Triplicates of media blanks and multielement-spiked capsules at three different elemental loadings were sent to each participating laboratory; the elemental loading levels were not revealed to the laboratories. The volunteer participating laboratories were asked to prepare the samples by acid dissolution and to analyze aliquots of extracted samples by inductively coupled plasma atomic emission spectrometry in accordance with NIOSH methods. It was requested that the study participants report their analytical results in units of μg of each target element per internal capsule sample. For the majority of the elements investigated (30 out of 33), the study accuracy estimates obtained satisfied the NIOSH accuracy criterion (A internal sampling capsules for multielement analysis by atomic spectrometry.

  20. Do small spores disperse further than large spores?

    Science.gov (United States)

    Norros, Veera; Rannik, Ullar; Hussein, Tareq; Petäjä, Tuukka; Vesala, Timo; Ovaskainen, Otso

    2014-06-01

    In species that disperse by airborne propagules an inverse relationship is often assumed between propagule size and dispersal distance. However, for microscopic spores the evidence for the relationship remains ambiguous. Lagrangian stochastic dispersion models that have been successful in predicting seed dispersal appear to predict similar dispersal for all spore sizes up to -40 microm diameter. However, these models have assumed that spore size affects only the downwards drift of particles due to gravitation and have largely omitted the highly size-sensitive deposition process to surfaces such as forest canopy. On the other hand, they have assumed that spores are certain to deposit when the air parcel carrying them touches the ground. Here, we supplement a Lagrangian stochastic dispersion model with a mechanistic deposition model parameterized by empirical deposition data for 1-10 microm spores. The inclusion of realistic deposition improved the ability of the model to predict empirical data on the dispersal of a wood-decay fungus (aerodynamic spore size 3.8 microm). Our model predicts that the dispersal of 1-10 microm spores is in fact highly sensitive to spore size, with 97-98% of 1 microm spores but only 12-58% of 10-microm spores dispersing beyond 2 km in the simulated range of wind and canopy conditions. Further, excluding the assumption of certain deposition at the ground greatly increased the expected dispersal distances throughout the studied spore size range. Our results suggest that by evolutionary adjustment of spore size, release height and timing of release, fungi and other organisms with microscopic spores can change the expected distribution of dispersal locations markedly. The complex interplay of wind and canopy conditions in determining deposition resulted in some counterintuitive predictions, such as that spores disperse furthest under intermediate wind, providing intriguing hypotheses to be tested empirically in future studies.

  1. Effectiveness of anchovy substrate application on decreasing acid solubility of Sprague Dawley rats’ tooth enamel (in vivo)

    Science.gov (United States)

    Triputra, F.; Puspitawati, R.; Gunawan, H. A.

    2017-08-01

    Anchovies (Stolephorus insularis), a natural resource of Indonesia, contain fluoride in the form of CaF2 and can function as a fluoridation material to prevent dental caries. The aim of this study is to study the effectiveness of anchovy substrate, through food or topical application, in decreasing the acid solubility of tooth enamel. This research used 14 Sprague Dawley rats as subjects divided into the following 5 groups: baseline, experimental feeding, experimental smearing, and their negative controls. After 15 days of anchovy substrate application, lower incisors were extracted and the acid solubility of enamel was analyzed qualitatively and quantitatively using a stereo microscope and a Micro-Vickers Hardness Tester. Analysis of enamel surface destruction and enamel surface microscopic hardness shifting after a 60 sec application of H2PO4 (50% concentration) resulted in a decrease in acid solubility of enamel treated with anchovy substrate. This result can be seen with both the chewing and smearing method. S. insularis can be used as an alternative material for fluoridation.

  2. Surface charge and hydrodynamic coefficient measurements of Bacillus subtilis spore by optical tweezers.

    Science.gov (United States)

    Pesce, Giuseppe; Rusciano, Giulia; Sasso, Antonio; Isticato, Rachele; Sirec, Teja; Ricca, Ezio

    2014-04-01

    In this work we report on the simultaneous measurement of the hydrodynamic coefficient and the electric charge of single Bacillus subtilis spores. The latter has great importance in protein binding to spores and in the adhesion of spores onto surfaces. The charge and the hydrodynamic coefficient were measured by an accurate procedure based on the analysis of the motion of single spores confined by an optical trap. The technique has been validated using charged spherical polystyrene beads. The excellent agreement of our results with the expected values demonstrates the quality of our procedure. We measured the charge of spores of B. subtilis purified from a wild type strain and from two isogenic mutants characterized by an altered spore surface. Our technique is able to discriminate the three spore types used, by their charge and by their hydrodynamic coefficient which is related to the hydrophobic properties of the spore surface. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. The molecular timeline of a reviving bacterial spore.

    Science.gov (United States)

    Sinai, Lior; Rosenberg, Alex; Smith, Yoav; Segev, Einat; Ben-Yehuda, Sigal

    2015-02-19

    The bacterial spore can rapidly convert from a dormant to a fully active cell. Here we study this remarkable cellular transition in Bacillus subtilis and reveal the identity of the newly synthesized proteins throughout spore revival. Our analysis uncovers a highly ordered developmental program that correlates with the spore morphological changes and reveals the spatial and temporal molecular events fundamental to reconstruct a cell. As opposed to current knowledge, we found that translation takes place during the earliest revival event, termed germination, a process hitherto considered to occur without the need for any macromolecule synthesis. Furthermore, we demonstrate that translation is required for execution of germination and relies on the bona fide translational factors RpmE and Tig. Our study sheds light on the spore revival process and on the vital building blocks underlying cellular awakening, thereby paving the way for designing new antimicrobial agents to eradicate spore-forming pathogens.

  4. Binding Affinity of Glycoconjugates to BACILLUS Spores and Toxins

    Science.gov (United States)

    Rasol, Aveen; Eassa, Souzan; Tarasenko, Olga

    2010-04-01

    Early recognition of Bacillus cereus group species is important since they can cause food-borne illnesses and deadly diseases in humans. Glycoconjugates (GCs) are carbohydrates covalently linked to non-sugar moieties including lipids, proteins or other entities. GCs are involved in recognition and signaling processes intrinsic to biochemical functions in cells. They also stimulate cell-cell adhesion and subsequent recognition and activation of receptors. We have demonstrated that GCs are involved in Bacillus cereus spore recognition. In the present study, we have investigated whether GCs possess the ability to bind and recognize B. cereus spores and Bacillus anthracis recombinant single toxins (sTX) and complex toxins (cTX). The affinity of GCs to spores + sTX and spores + cTX toxins was studied in the binding essay. Our results demonstrated that GC9 and GC10 were able to selectively bind to B. cereus spores and B. anthracis toxins. Different binding affinities for GCs were found toward Bacillus cereus spores + sTX and spores + cTX. Dilution of GCs does not impede the recognition and binding. Developed method provides a tool for simultaneous recognition and targeting of spores, bacteria toxins, and/or other entities.

  5. Spore: Spawning Evolutionary Misconceptions?

    Science.gov (United States)

    Bean, Thomas E.; Sinatra, Gale M.; Schrader, P. G.

    2010-10-01

    The use of computer simulations as educational tools may afford the means to develop understanding of evolution as a natural, emergent, and decentralized process. However, special consideration of developmental constraints on learning may be necessary when using these technologies. Specifically, the essentialist (biological forms possess an immutable essence), teleological (assignment of purpose to living things and/or parts of living things that may not be purposeful), and intentionality (assumption that events are caused by an intelligent agent) biases may be reinforced through the use of computer simulations, rather than addressed with instruction. We examine the video game Spore for its depiction of evolutionary content and its potential to reinforce these cognitive biases. In particular, we discuss three pedagogical strategies to mitigate weaknesses of Spore and other computer simulations: directly targeting misconceptions through refutational approaches, targeting specific principles of scientific inquiry, and directly addressing issues related to models as cognitive tools.

  6. New Rapid Spore Assay

    Science.gov (United States)

    Kminek, Gerhard; Conley, Catharine

    2012-07-01

    The presentation will detail approved Planetary Protection specifications for the Rapid Spore Assay for spacecraft components and subsystems. Outlined will be the research and studies on which the specifications were based. The research, funded by ESA and NASA/JPL, was conducted over a period of two years and was followed by limited cleanroom studies to assess the feasibility of this assay during spacecraft assembly.

  7. Spore coat architecture of Clostridium novyi NT spores.

    Science.gov (United States)

    Plomp, Marco; McCaffery, J Michael; Cheong, Ian; Huang, Xin; Bettegowda, Chetan; Kinzler, Kenneth W; Zhou, Shibin; Vogelstein, Bert; Malkin, Alexander J

    2007-09-01

    Spores of the anaerobic bacterium Clostridium novyi NT are able to germinate in and destroy hypoxic regions of tumors in experimental animals. Future progress in this area will benefit from a better understanding of the germination and outgrowth processes that are essential for the tumorilytic properties of these spores. Toward this end, we have used both transmission electron microscopy and atomic force microscopy to determine the structure of both dormant and germinating spores. We found that the spores are surrounded by an amorphous layer intertwined with honeycomb parasporal layers. Moreover, the spore coat layers had apparently self-assembled, and this assembly was likely to be governed by crystal growth principles. During germination and outgrowth, the honeycomb layers, as well as the underlying spore coat and undercoat layers, sequentially dissolved until the vegetative cell was released. In addition to their implications for understanding the biology of C. novyi NT, these studies document the presence of proteinaceous growth spirals in a biological organism.

  8. MECHANISM OF FUSARIUM TRICINCTUM (CORDA SACC. SPORE INACTIVATION BY CHLORINE DIOXIDE

    Directory of Open Access Journals (Sweden)

    Zhao Chen

    2015-06-01

    Full Text Available The mechanism of Fusarium tricinctum (Corda Sacc. spore inactivation by chlorine dioxide (ClO2 was investigated. During F. tricinctum spore inactivation by ClO2, protein, DNA, and metal ion leakage, enzyme activity, and cell ultrastructure were examined. Protein and DNA leakages were not detected, while there were metal ion leakages of K+, Ca2+, and Mg2+, which were well-correlated with the inactivation rate. The enzyme activities of glucose-6-phosphate dehydrogenase, citrate synthase, and phosphofructokinase were inhibited and were also well-correlated with the inactivation rate. Electron micrographs showed the ultrastructural modifications of spores and demonstrated that spores were heavily distorted and collapsed from their regular structure. Spore surface damage and disruption in inner components was also severe. The metal ion leakage, the inhibition of enzyme activities, and the damage of spore structure were significant in F. tricinctum spore inactivation by ClO2.

  9. The dynamics of acid-soluble phosphorus compounds in the course of winter and spring wheat germination under various thermic conditions. Part II. Labile phosphorus after hydrolysis of the acid-soluble fraction

    Directory of Open Access Journals (Sweden)

    A. Barbaro

    2015-06-01

    Full Text Available The changes in labile phosphorus compounds content during germination of wheat were investigated. These compounds were determined in acid-soluble germ extracts separated into fractions according to the solubility of their barium salts. Low germination temperature was found to raise the labile phosphorus content in the fraction of insoluble barium salts. If we assume that labile P of this fraction consisted mainly of adenosinedi- and triphosphates, it would seem that the rise, in the ATP and ADP level under the influence of low temperature may be essential for initiating flowering in winter varieties.

  10. Phosphoproteome dynamics mediate revival of bacterial spores

    OpenAIRE

    2015-01-01

    Background Bacterial spores can remain dormant for decades, yet harbor the exceptional capacity to rapidly resume metabolic activity and recommence life. Although germinants and their corresponding receptors have been known for more than 30 years, the molecular events underlying this remarkable cellular transition from dormancy to full metabolic activity are only partially defined. Results Here, we examined whether protein phospho-modifications occur during germination, the first step of exit...

  11. Role of YpeB in Cortex Hydrolysis during Germination of Bacillus anthracis Spores

    Science.gov (United States)

    Bernhards, Casey B.

    2014-01-01

    The infectious agent of the disease anthrax is the spore of Bacillus anthracis. Bacterial spores are extremely resistant to environmental stresses, which greatly hinders spore decontamination efforts. The spore cortex, a thick layer of modified peptidoglycan, contributes to spore dormancy and resistance by maintaining the low water content of the spore core. The cortex is degraded by germination-specific lytic enzymes (GSLEs) during spore germination, rendering the cells vulnerable to common disinfection techniques. This study investigates the relationship between SleB, a GSLE in B. anthracis, and YpeB, a protein necessary for SleB stability and function. The results indicate that ΔsleB and ΔypeB spores exhibit similar germination phenotypes and that the two proteins have a strict codependency for their incorporation into the dormant spore. In the absence of its partner protein, SleB or YpeB is proteolytically degraded soon after expression during sporulation, rather than escaping the developing spore. The three PepSY domains of YpeB were examined for their roles in the interaction with SleB. YpeB truncation mutants illustrate the necessity of a region beyond the first PepSY domain for SleB stability. Furthermore, site-directed mutagenesis of highly conserved residues within the PepSY domains resulted in germination defects corresponding to reduced levels of both SleB and YpeB in the mutant spores. These results identify residues involved in the stability of both proteins and reiterate their codependent relationship. It is hoped that the study of GSLEs and interacting proteins will lead to the use of GSLEs as targets for efficient activation of spore germination and facilitation of spore cleanup. PMID:25022853

  12. Role of YpeB in cortex hydrolysis during germination of Bacillus anthracis spores.

    Science.gov (United States)

    Bernhards, Casey B; Popham, David L

    2014-10-01

    The infectious agent of the disease anthrax is the spore of Bacillus anthracis. Bacterial spores are extremely resistant to environmental stresses, which greatly hinders spore decontamination efforts. The spore cortex, a thick layer of modified peptidoglycan, contributes to spore dormancy and resistance by maintaining the low water content of the spore core. The cortex is degraded by germination-specific lytic enzymes (GSLEs) during spore germination, rendering the cells vulnerable to common disinfection techniques. This study investigates the relationship between SleB, a GSLE in B. anthracis, and YpeB, a protein necessary for SleB stability and function. The results indicate that ΔsleB and ΔypeB spores exhibit similar germination phenotypes and that the two proteins have a strict codependency for their incorporation into the dormant spore. In the absence of its partner protein, SleB or YpeB is proteolytically degraded soon after expression during sporulation, rather than escaping the developing spore. The three PepSY domains of YpeB were examined for their roles in the interaction with SleB. YpeB truncation mutants illustrate the necessity of a region beyond the first PepSY domain for SleB stability. Furthermore, site-directed mutagenesis of highly conserved residues within the PepSY domains resulted in germination defects corresponding to reduced levels of both SleB and YpeB in the mutant spores. These results identify residues involved in the stability of both proteins and reiterate their codependent relationship. It is hoped that the study of GSLEs and interacting proteins will lead to the use of GSLEs as targets for efficient activation of spore germination and facilitation of spore cleanup.

  13. Spore formation and toxin production in Clostridium difficile biofilms.

    Directory of Open Access Journals (Sweden)

    Ekaterina G Semenyuk

    Full Text Available The ability to grow as a biofilm can facilitate survival of bacteria in the environment and promote infection. To better characterize biofilm formation in the pathogen Clostridium difficile, we established a colony biofilm culture method for this organism on a polycarbonate filter, and analyzed the matrix and the cells in biofilms from a variety of clinical isolates over several days of biofilm culture. We found that biofilms readily formed in all strains analyzed, and that spores were abundant within about 6 days. We also found that extracellular DNA (eDNA, polysaccharide and protein was readily detected in the matrix of all strains, including the major toxins A and/or B, in toxigenic strains. All the strains we analyzed formed spores. Apart from strains 630 and VPI10463, which sporulated in the biofilm at relatively low frequencies, the frequencies of biofilm sporulation varied between 46 and 65%, suggesting that variations in sporulation levels among strains is unlikely to be a major factor in variation in the severity of disease. Spores in biofilms also had reduced germination efficiency compared to spores obtained by a conventional sporulation protocol. Transmission electron microscopy revealed that in 3 day-old biofilms, the outermost structure of the spore is a lightly staining coat. However, after 6 days, material that resembles cell debris in the matrix surrounds the spore, and darkly staining granules are closely associated with the spores surface. In 14 day-old biofilms, relatively few spores are surrounded by the apparent cell debris, and the surface-associated granules are present at higher density at the coat surface. Finally, we showed that biofilm cells possess 100-fold greater resistance to the antibiotic metronidazole then do cells cultured in liquid media. Taken together, our data suggest that C. difficile cells and spores in biofilms have specialized properties that may facilitate infection.

  14. Spore formation and toxin production in Clostridium difficile biofilms.

    Science.gov (United States)

    Semenyuk, Ekaterina G; Laning, Michelle L; Foley, Jennifer; Johnston, Pehga F; Knight, Katherine L; Gerding, Dale N; Driks, Adam

    2014-01-01

    The ability to grow as a biofilm can facilitate survival of bacteria in the environment and promote infection. To better characterize biofilm formation in the pathogen Clostridium difficile, we established a colony biofilm culture method for this organism on a polycarbonate filter, and analyzed the matrix and the cells in biofilms from a variety of clinical isolates over several days of biofilm culture. We found that biofilms readily formed in all strains analyzed, and that spores were abundant within about 6 days. We also found that extracellular DNA (eDNA), polysaccharide and protein was readily detected in the matrix of all strains, including the major toxins A and/or B, in toxigenic strains. All the strains we analyzed formed spores. Apart from strains 630 and VPI10463, which sporulated in the biofilm at relatively low frequencies, the frequencies of biofilm sporulation varied between 46 and 65%, suggesting that variations in sporulation levels among strains is unlikely to be a major factor in variation in the severity of disease. Spores in biofilms also had reduced germination efficiency compared to spores obtained by a conventional sporulation protocol. Transmission electron microscopy revealed that in 3 day-old biofilms, the outermost structure of the spore is a lightly staining coat. However, after 6 days, material that resembles cell debris in the matrix surrounds the spore, and darkly staining granules are closely associated with the spores surface. In 14 day-old biofilms, relatively few spores are surrounded by the apparent cell debris, and the surface-associated granules are present at higher density at the coat surface. Finally, we showed that biofilm cells possess 100-fold greater resistance to the antibiotic metronidazole then do cells cultured in liquid media. Taken together, our data suggest that C. difficile cells and spores in biofilms have specialized properties that may facilitate infection.

  15. Architecture and High-Resolution Structure of Bacillus thuringiensis and Bacillus cereus Spore Coat Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Plomp, M; Leighton, T; Wheeler, K; Malkin, A

    2005-02-18

    We have utilized atomic force microscopy (AFM) to visualize the native surface topology and ultrastructure of Bacillus thuringiensis and Bacillus cereus spores in water and in air. AFM was able to resolve the nanostructure of the exosporium and three distinctive classes of appendages. Removal of the exosporium exposed either a hexagonal honeycomb layer (B. thuringiensis) or a rodlet outer spore coat layer (B. cereus). Removal of the rodlet structure from B. cereus spores revealed an underlying honeycomb layer similar to that observed with B. thuringiensis spores. The periodicity of the rodlet structure on the outer spore coat of B. cereus was {approx}8 nm, and the length of the rodlets was limited to the cross-patched domain structure of this layer to {approx}200 nm. The lattice constant of the honeycomb structures was {approx}9 nm for both B. cereus and B. thuringiensis spores. Both honeycomb structures were composed of multiple, disoriented domains with distinct boundaries. Our results demonstrate that variations in storage and preparation procedures result in architectural changes in individual spore surfaces, which establish AFM as a useful tool for evaluation of preparation and processing ''fingerprints'' of bacterial spores. These results establish that high-resolution AFM has the capacity to reveal species-specific assembly and nanometer scale structure of spore surfaces. These species-specific spore surface structural variations are correlated with sequence divergences in a spore core structural protein SspE.

  16. Bacillus globigii bugbeads: a model simulant of a bacterial spore.

    Science.gov (United States)

    Farrell, Svetlana; Halsall, H Brian; Heineman, William R

    2005-01-15

    Nonpathogenic microorganisms are often used as simulants of biological pathogens during the initial phase of detection method development. While these simulants approximate the size, shape, and cellular organization of the microorganism of interest, they do not resemble its surface protein content, a factor particularly important in methods based on immunorecognition. Here, we develop and detect an artificial bacterial spore--B. globigii (BG) Bugbead-a particle mimicking the antigenic surface of BG spores. Two methods of spore protein extraction were compared both quantitatively (by protein concentration assay) and qualitatively (by SDS-PAGE and Western blot): extraction by mechanical disruption and extraction by chemical decoating. The former method was more efficient in producing more protein and a greater number of antigens. BG Bugbeads were made by conjugating the extracted proteins to 0.8-microm carboxyl-coated polystyrene particles via carbodiimide coupling. BG Bugbeads were successfully detected by a bead-based enzyme-labeled immunoassay with fluorescence detection with a detection limit of 6.9 x 10(3) particles/mL. Formation of the Bugbead-capture bead complex was confirmed by ESEM. The concept of a harmless artificial spore can be applied to developing improved simulants for pathogenic spore-forming microorganisms such as B. anthracis, C. botulinum, and B. cereus, which can to be used for method validation, instrument calibration, and troubleshooting.

  17. Vacuum-induced Mutations In Bacillus Subtilis Spores

    Science.gov (United States)

    Munakata, N.; Maeda, M.; Hieda, K.

    During irradiation experiments with vacuum-UV radiation using synchrotron sources, we made unexpected observation that Bacillus subtilis spores of several recombination-deficient strains lost colony-forming ability by the exposure to high vacuum alone. Since this suggested the possible injury in spore DNA, we looked for mutation induction using the spores of strains HA101 (wild-type repair capability) and TKJ6312 (excision and spore repair deficient) that did not lose survivability. It was found that the frequency of nalidixic-acid resistant mutation increased several times in both of these strains by the exposure to high vacuum (10e-4 Pa after 24 hours). The analysis of sequence changes in gyrA gene showed that the majority of mutations carried a unique allele (gyrA12) of tandem double-base substitutions from CA to TT. The observation has been extended to rifampicin resistant mutations, the majority of that carried substitutions from CA to TT or AT in rpoB gene. On the other hand, when the spores of strains PS578 and PS2319 (obtained from P. Setlow) that are defective in a group of small acidic proteins (alpha/beta-type SASP) were similarly treated, none of the mutants analyzed carried such changes. This suggests that the unique mutations might be induced by the interaction of small acidic proteins with spore DNA under forced dehydration. The results indicate that extreme vacuum causes severe damage in spore DNA, and provide additional constraint to the long-term survival of bacterial spores in the space environment.

  18. Bacterial spores as particulate carriers for gene gun delivery of plasmid DNA.

    Science.gov (United States)

    Aps, Luana R M M; Tavares, Milene B; Rozenfeld, Julio H K; Lamy, M Teresa; Ferreira, Luís C S; Diniz, Mariana O

    2016-06-20

    Bacillus subtilis spores represent a suitable platform for the adsorption of proteins, enzymes and viral particles at physiological conditions. In the present work, we demonstrate that purified spores can also adsorb DNA on their surface after treatment with cationic molecules. In addition, we demonstrate that DNA-coated B. subtilis spores can be used as particulate carriers and act as an alternative to gold microparticles for the biolistic (gene gun) administration of plasmid DNA in mice. Gene gun delivery of spores pre-treated with DODAB (dioctadecyldimethylammonium bromide) allowed efficient plasmid DNA absorption and induced protein expression levels similar to those obtained with gold microparticles. More importantly, we demonstrated that a DNA vaccine adsorbed on spores can be loaded into biolistic cartridges and efficiently delivered into mice, which induced specific cellular and antibody responses. Altogether, these data indicate that B. subtilis spores represent a simple and low cost alternative for the in vivo delivery of DNA vaccines by the gene gun technology.

  19. Hydrazine vapor inactivates Bacillus spores

    Science.gov (United States)

    Schubert, Wayne W.; Engler, Diane L.; Beaudet, Robert A.

    2016-05-01

    NASA policy restricts the total number of bacterial spores that can remain on a spacecraft traveling to any planetary body which might harbor life or have evidence of past life. Hydrazine, N2H4, is commonly used as a propellant on spacecraft. Hydrazine as a liquid is known to inactivate bacterial spores. We have now verified that hydrazine vapor also inactivates bacterial spores. After Bacillus atrophaeus ATCC 9372 spores deposited on stainless steel coupons were exposed to saturated hydrazine vapor in closed containers, the spores were recovered from the coupons, serially diluted, pour plated and the surviving bacterial colonies were counted. The exposure times required to reduce the spore population by a factor of ten, known as the D-value, were 4.70 ± 0.50 h at 25 °C and 2.85 ± 0.13 h at 35 °C. These inactivation rates are short enough to ensure that the bioburden of the surfaces and volumes would be negligible after prolonged exposure to hydrazine vapor. Thus, all the propellant tubing and internal tank surfaces exposed to hydrazine vapor do not contribute to the total spore count.

  20. Gene activity during germination of spores of the fern, Onoclea sensibilis. Cell-free translation analysis of mRNA of spores and the effect of alpha-amanitin on spore germination

    Science.gov (United States)

    Raghavan, V.

    1992-01-01

    Poly(A)-RNA fractions of dormant, dark-imbibed (non-germinating) and photoinduced (germinating) spores of Onoclea sensibilis were poor templates in the rabbit reticulocyte lysate protein synthesizing system, but the translational efficiency of poly(A)+RNA was considerably higher than that of unfractionated RNA. Poly(A)+RNA isolated from photoinduced spores had a consistently higher translational efficiency than poly(A)+RNA from dark-imbibed spores. Analysis of the translation products by one-dimensional polyacrylamide gel electrophoresis showed no qualitative differences in the mRNA populations of dormant, dark-imbibed, and photoinduced spores. However, poly(A)+RNA from dark-imbibed spores appeared to encode in vitro fewer detectable polypeptides at a reduced intensity than photoinduced spores. A DNA clone encoding the large subunit of maize ribulose bisphosphate carboxylase hybridized at strong to moderate intensity to RNA isolated from dark-imbibed spores, indicating the absence of mRNA degradation. Although alpha-amanitin did not inhibit the germination of spores, the drug prevented the elongation of the rhizoid and protonemal initial with a concomitant effect on the synthesis of poly(A)+RNA. These results are consistent with the view that some form of translational control involving stored mRNA operates during dark-imbibition and photoinduced germination of spores.

  1. Maximum shields: the assembly and function of the bacterial spore coat.

    Science.gov (United States)

    Driks, Adam

    2002-06-01

    Spores produced by bacilli and clostridia are surrounded by a multilayered protein shell called the coat. As the armor-like appearance of the coat suggests, this structure, along with others within the spore, confers the remarkable resistance properties that make Bacillus anthracis spores such potent biological weapons. Here, I review recent studies of coat assembly in the model organism Bacillus subtilis, and explore the implications of these findings for coat assembly in B. anthracis and for defense against biological weapons.

  2. Spore Coat Architecture of Clostridium novyi-NT spores

    Energy Technology Data Exchange (ETDEWEB)

    Plomp, M; McCafferey, J; Cheong, I; Huang, X; Bettegowda, C; Kinzler, K; Zhou, S; Vogelstein, B; Malkin, A

    2007-05-07

    Spores of the anaerobic bacterium Clostridium novyi-NT are able to germinate in and destroy hypoxic regions of tumors in experimental animals. Future progress in this area will benefit from a better understanding of the germination and outgrowth processes that are essential for the tumorilytic properties of these spores. Towards this end, we have used both transmission electron microscopy and atomic force microscopy to determine the structure of dormant as well as germinating spores. We found that the spores are surrounded by an amorphous layer intertwined with honeycomb parasporal layers. Moreover, the spore coat layers had apparently self-assembled and this assembly was likely to be governed by crystal growth principles. During germination and outgrowth, the honeycomb layers as well as the underlying spore coat and undercoat layers sequentially dissolved until the vegetative cell was released. In addition to their implications for understanding the biology of C. novyi-NT, these studies document the presence of proteinaceous growth spirals in a biological organism.

  3. Dipicolinic Acid Release by Germinating Clostridium difficile Spores Occurs through a Mechanosensing Mechanism

    Science.gov (United States)

    Francis, Michael B.

    2016-01-01

    ABSTRACT Classically, dormant endospores are defined by their resistance properties, particularly their resistance to heat. Much of the heat resistance is due to the large amount of dipicolinic acid (DPA) stored within the spore core. During spore germination, DPA is released and allows for rehydration of the otherwise-dehydrated core. In Bacillus subtilis, 7 proteins are encoded by the spoVA operon and are important for DPA release. These proteins receive a signal from the activated germinant receptor and release DPA. This DPA activates the cortex lytic enzyme CwlJ, and cortex degradation begins. In Clostridium difficile, spore germination is initiated in response to certain bile acids and amino acids. These bile acids interact with the CspC germinant receptor, which then transfers the signal to the CspB protease. Activated CspB cleaves the cortex lytic enzyme, pro-SleC, to its active form. Subsequently, DPA is released from the core. C. difficile encodes orthologues of spoVAC, spoVAD, and spoVAE. Of these, the B. subtilis SpoVAC protein was shown to be capable of mechanosensing. Because cortex degradation precedes DPA release during C. difficile spore germination (opposite of what occurs in B. subtilis), we hypothesized that cortex degradation would relieve the osmotic constraints placed on the inner spore membrane and permit DPA release. Here, we assayed germination in the presence of osmolytes, and we found that they can delay DPA release from germinating C. difficile spores while still permitting cortex degradation. Together, our results suggest that DPA release during C. difficile spore germination occurs though a mechanosensing mechanism. IMPORTANCE Clostridium difficile is transmitted between hosts in the form of a dormant spore, and germination by C. difficile spores is required to initiate infection, because the toxins that are necessary for disease are not deposited on the spore form. Importantly, the C. difficile spore germination pathway

  4. The phosphorylation of protein S6 modulates the interaction of the 40 S ribosomal subunit with the 5'-untranslated region of a dictyostelium pre-spore-specific mRNA and controls its stability.

    Science.gov (United States)

    Chiaberge, S; Cassarino, E; Mangiarotti, G

    1998-10-16

    AC914 mRNA, a pre-spore-specific mRNA that accumulates only in the post-aggregation stage of development, is transcribed constitutively as shown by nuclear run-off experiments and by fusing its promoter to the luciferase reporter gene. The same mRNA disappears quickly from disaggregated cells. If the 5'-untranslated region (5'UTR) of the constitutively expressed Actin 15 mRNA is substituted for the 5'UTR of AC914 mRNA, this can no longer be destabilized and accumulates both in growing and disaggregated cells. If the 5'UTR of AC914 mRNA is substituted for the 5'UTR of Actin 15 mRNA, the latter accumulates only in aggregated cells. Pactamycin, but not other inhibitors of protein synthesis, prevents AC914 mRNA from being destabilized in disaggregated cells, suggesting a role of 40 S subunits in the destabilization. This has been confirmed by using an in vitro system in which the in vivo stability of different mRNAs is reproduced. A protein kinase A-dependent phosphorylation of ribosomal protein S6 determines whether 40 S subunits are capable or not of destabilizing AC914 mRNA in the in vitro system.

  5. NASA Facts: SporeSat

    Science.gov (United States)

    Martinez, Andres; Cappuccio, Gelsomina; Tomko, David

    2013-01-01

    SporeSat is an autonomous, free-flying three-unit (3U) spacecraft that will be used to conduct scientific experiments to gain a deeper knowledge of the mechanisms of plant cell gravity sensing. SporeSat is being developed through a partnership between NASAs Ames Research Center and the Department of Agricultural and Biological Engineering at Purdue University. Amani Salim and Jenna L. Rickus are the Purdue University Principal Investigators. The SporeSat mission will be flown using a 3U nanosatellite weighing approximately 12 pounds and measuring 14 inches long by 4 inches wide by 4 inches tall. SporeSat will utilize flight-proven spacecraft technologies demonstrated on prior Ames nanosatellite missions such as PharmaSat and OrganismOrganic Exposure to Orbital Stresses (OOREOS) as well as upgrades that increase the hardware integration capabilities with SporeSat science instrumentation. In addition, the SporeSat science payload will serve as a technology platform to evaluate new microsensor technologies for enabling future fundamental biology missions.

  6. Spore populations among bulk tank raw milk and dairy powders are significantly different.

    Science.gov (United States)

    Miller, Rachel A; Kent, David J; Watterson, Matthew J; Boor, Kathryn J; Martin, Nicole H; Wiedmann, Martin

    2015-12-01

    To accommodate stringent spore limits mandated for the export of dairy powders, a more thorough understanding of the spore species present will be necessary to develop prospective strategies to identify and reduce sources (i.e., raw materials or in-plant) of contamination. We characterized 1,523 spore isolates obtained from bulk tank raw milk (n=33 farms) and samples collected from 4 different dairy powder-processing plants producing acid whey, nonfat dry milk, sweet whey, or whey protein concentrate 80. The spores isolated comprised 12 genera, at least 44 species, and 216 rpoB allelic types. Bacillus and Geobacillus represented the most commonly isolated spore genera (approximately 68.9 and 12.1%, respectively, of all spore isolates). Whereas Bacillus licheniformis was isolated from samples collected from all plants and farms, Geobacillus spp. were isolated from samples from 3 out of 4 plants and just 1 out of 33 farms. We found significant differences between the spore population isolated from bulk tank raw milk and those isolated from dairy powder plant samples, except samples from the plant producing acid whey. A comparison of spore species isolated from raw materials and finished powders showed that although certain species, such as B. licheniformis, were found in both raw and finished product samples, other species, such as Geobacillus spp. and Anoxybacillus spp., were more frequently isolated from finished powders. Importantly, we found that 8 out of 12 genera were isolated from at least 2 different spore count methods, suggesting that some spore count methods may provide redundant information if used in parallel. Together, our results suggest that (1) Bacillus and Geobacillus are the predominant spore contaminants in a variety of dairy powders, implying that future research efforts targeted at elucidating approaches to reduce levels of spores in dairy powders should focus on controlling levels of spore isolates from these genera; and (2) the spore

  7. Effects of meteorological conditions on spore plumes

    Science.gov (United States)

    Burch, M.; Levetin, E.

    2002-05-01

    Fungal spores are an ever-present component of the atmosphere, and have long been known to trigger asthma and hay fever symptoms in sensitive individuals. The atmosphere around Tulsa has been monitored for airborne spores and pollen with Burkard spore traps at several sampling stations. This study involved the examination of the hourly spore concentrations on days that had average daily concentrations near 50,000 spores/m3 or greater. Hourly concentrations of Cladosporium, Alternaria, Epicoccum, Curvularia, Pithomyces, Drechslera, smut spores, ascospores, basidiospores, other, and total spores were determined on 4 days at three sites and then correlated with hourly meteorological data including temperature, rainfall, wind speed, dew point, air pressure, and wind direction. On each of these days there was a spore plume, a phenomenon in which spore concentrations increased dramatically over a very short period of time. Spore plumes generally occurred near midday, and concentrations were seen to increase from lows around 20,000 total spores/m3 to highs over 170,000 total spores/m3 in 2 h. Multiple regression analysis of the data indicated that increases in temperature, dew point, and air pressure correlated with the increase in spore concentrations, but no single weather variable predicted the appearance of a spore plume. The proper combination of changes in these meteorological parameters that result in a spore plume may be due to the changing weather conditions associated with thunderstorms, as on 3 of the 4 days when spore plumes occurred there were thunderstorms later that evening. The occurrence of spore plumes may have clinical significance, because other studies have shown that sensitization to certain spore types can occur during exposure to high spore concentrations.

  8. Recent advances in germination of Clostridium spores.

    Science.gov (United States)

    Olguín-Araneda, Valeria; Banawas, Saeed; Sarker, Mahfuzur R; Paredes-Sabja, Daniel

    2015-05-01

    Members of Clostridium genus are a diverse group of anaerobic spore-formers that includes several pathogenic species. Their anaerobic requirement enhances the importance of the dormant spore morphotype during infection, persistence and transmission. Bacterial spores are metabolically inactive and may survive for long times in the environment and germinate in presence of nutrients termed germinants. Recent progress with spores of several Clostridium species has identified the germinant receptors (GRs) involved in nutrient germinant recognition and initiation of spore germination. Signal transduction from GRs to the downstream effectors remains poorly understood but involves the release of dipicolinic acid. Two mechanistically different cortex hydrolytic machineries are present in Clostridium spores. Recent studies have also shed light into novel biological events that occur during spore formation (accumulation of transcriptional units) and transcription during early spore outgrowth. In summary, this review will cover all of the recent advances in Clostridium spore germination. Copyright © 2014 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  9. Measuring Total and Germinable Spore Populations

    Science.gov (United States)

    Noell, A.C.; Yung, P.T.; Yang, W.; Lee, C.; Ponce, A.

    2011-01-01

    It has been shown that bacterial endospores can be enumerated using a microscopy based assay that images the luminescent halos from terbium ions bound to dipicolinic acid, a spore specific chemical marker released upon spore germination. Further development of the instrument has simplified it towards automation while at the same time improving image quality. Enumeration of total spore populations has also been developed allowing measurement of the percentage of viable spores in any population by comparing the germinable/culturable spores to the total. Percentage viability will allow a more quantitative comparison of the ability of spores to survive across a wide range of extreme environments.

  10. Stem rust spores elicit rapid RPG1 phosphorylation

    Science.gov (United States)

    Stem rust threatens cereal production worldwide. Understanding the mechanism by which durable resistance genes, such as Rpg1, function is critical. We show that the RPG1 protein is phosphorylated within 5 min by exposure to spores from avirulent but not virulent races of stem rust. Transgenic mutant...

  11. Molecular Kinetics of Reviving Bacterial Spores

    OpenAIRE

    2013-01-01

    Bacterial spores can remain dormant for years, yet they possess a remarkable potential to rapidly resume a vegetative life form. Here, we identified a distinct phase at the onset of spore outgrowth, designated the ripening period. This transition phase is exploited by the germinating spore for molecular reorganization toward elongation and subsequent cell division. We have previously shown that spores of different ages, kept under various temperatures, harbor dissimilar molecular reservoirs (...

  12. Optical and structural properties of plasma-treated Cordyceps bassiana spores as studied by circular dichroism, absorption, and fluorescence spectroscopy

    Science.gov (United States)

    Lee, Geon Joon; Sim, Geon Bo; Choi, Eun Ha; Kwon, Young-Wan; Kim, Jun Young; Jang, Siun; Kim, Seong Hwan

    2015-01-01

    To understand the killing mechanism of fungal spores by plasma treatment, the optical, structural, and biological properties of the insect pathogenic fungus Cordyceps bassiana spores were studied. A nonthermal atmospheric-pressure plasma jet (APPJ) was used to treat the spores in aqueous solution. Optical emission spectra of the APPJ acquired in air indicated emission peaks corresponding to hydroxyl radicals and atomic oxygen. When the APPJ entered the aqueous solution, additional reactive species were derived from the interaction of plasma radicals with the aqueous solution. Fluorescence and absorption spectroscopy confirmed the generation of hydroxyl radicals and hydrogen peroxide in the plasma-activated water (PAW). Spore counting showed that plasma treatment significantly reduced spore viability. Absorption spectroscopy, circular dichroism (CD) spectroscopy, and agarose gel electrophoresis of the DNA extracted from plasma-treated spores showed a reduction in spore DNA content. The magnitude of the dip in the CD spectrum was lower in the plasma-treated spores than in the control, indicating that plasma treatment causes structural modifications and/or damage to cellular components. Tryptophan fluorescence intensity was lower in the plasma-treated spores than in the control, suggesting that plasma treatment modified cell wall proteins. Changes in spore viability and DNA content were attributed to structural modification of the cell wall by reactive species coming from the APPJ and the PAW. Our results provided evidence that the plasma radicals and the derived reactive species play critical roles in fungal spore inactivation.

  13. Optical and structural properties of plasma-treated Cordyceps bassiana spores as studied by circular dichroism, absorption, and fluorescence spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Geon Joon, E-mail: gjlee@kw.ac.kr; Sim, Geon Bo; Choi, Eun Ha [Plasma Bioscience Research Center/Department of Electrical and Biological Physics, Kwangwoon University, Seoul 139-701 (Korea, Republic of); Kwon, Young-Wan [KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 136-701 (Korea, Republic of); Kim, Jun Young; Jang, Siun; Kim, Seong Hwan, E-mail: piceae@naver.com [Department of Microbiology and Institute of Basic Sciences, Dankook University, Cheonan 330-714 (Korea, Republic of)

    2015-01-14

    To understand the killing mechanism of fungal spores by plasma treatment, the optical, structural, and biological properties of the insect pathogenic fungus Cordyceps bassiana spores were studied. A nonthermal atmospheric-pressure plasma jet (APPJ) was used to treat the spores in aqueous solution. Optical emission spectra of the APPJ acquired in air indicated emission peaks corresponding to hydroxyl radicals and atomic oxygen. When the APPJ entered the aqueous solution, additional reactive species were derived from the interaction of plasma radicals with the aqueous solution. Fluorescence and absorption spectroscopy confirmed the generation of hydroxyl radicals and hydrogen peroxide in the plasma-activated water (PAW). Spore counting showed that plasma treatment significantly reduced spore viability. Absorption spectroscopy, circular dichroism (CD) spectroscopy, and agarose gel electrophoresis of the DNA extracted from plasma-treated spores showed a reduction in spore DNA content. The magnitude of the dip in the CD spectrum was lower in the plasma-treated spores than in the control, indicating that plasma treatment causes structural modifications and/or damage to cellular components. Tryptophan fluorescence intensity was lower in the plasma-treated spores than in the control, suggesting that plasma treatment modified cell wall proteins. Changes in spore viability and DNA content were attributed to structural modification of the cell wall by reactive species coming from the APPJ and the PAW. Our results provided evidence that the plasma radicals and the derived reactive species play critical roles in fungal spore inactivation.

  14. Effect of Acid-Soluble Aluminum on the Evolution of Non-metallic Inclusions in Spring Steel

    Science.gov (United States)

    Wang, Yong; Tang, Haiyan; Wu, Tuo; Wu, Guanghui; Li, Jingshe

    2017-04-01

    The content of acidic soluble aluminum in molten steel ([Al]s) is of significance to the control of total oxygen (TO), the formation of non-metallic inclusions, and the improvement of the surface quality of billets. Industrial trials and thermodynamic calculations were performed to study the effects of [Al]s content on the TO and the evolution of non-metallic inclusions in 60Si2Mn-Cr spring steel that was deoxidized by Si-Mn ((low aluminum process (LAP)) and Si-Mn-Al (high aluminum process (HAP)). The results show that the [Al]s contents in billets are within 0.0060 to 0.0069 mass pct in the LAP and 0.016 to 0.055 mass pct in the HAP. The TO content at each station of the LAP is higher than that in the HAP; the inclusions of billets were mainly of the CaO-Al2O3-SiO2 type in the former, and of the CaO-Al2O3-MgO and CaS-Al2O3-MgO types in the latter. A tendency is found that the higher the [Al]s, the easier it is to deviate from the low melting point region of the inclusion distribution and the larger the size of the inclusions. The relationships between [Al]s and the melting point of the oxide inclusions and the Al2O3 content in the oxide inclusions are also discussed in terms of experiment and calculation.

  15. Oxidative damage involves in the inhibitory effect of nitric oxide on spore germination of Penicillium expansum.

    Science.gov (United States)

    Lai, Tongfei; Li, Boqiang; Qin, Guozheng; Tian, Shiping

    2011-01-01

    The effects of nitric oxide (NO) on spore germination of Penicillium expansum were investigated and a possible mechanism was evaluated. The results indicated that NO released by sodium nitroprusside (SNP) significantly suppressed fungal growth. With the use of an oxidant sensitive probe and Western blot analysis, an increased level of intracellular reactive oxygen species (ROS) and enhanced carbonylation damage were detected in spores of P. expansum under NO stress. Exogenous superoxide dismutase (SOD) and ascorbic acid (Vc) could increase the resistance of the spore to the inhibitory effect of NO. The activities of SOD and catalase (CAT), as well as ATP content in spores under NO stress were also lower than those in the control. We suggest that NO in high concentration induces the generation of ROS which subsequently causes severe oxidative damage to proteins crucial to the process of spore germination of P. expansum.

  16. Photometric immersion refractometry of bacterial spores.

    Science.gov (United States)

    Gerhardt, P; Beaman, T C; Corner, T R; Greenamyre, J T; Tisa, L S

    1982-01-01

    Photometric immersion refractometry was used to determine the average apparent refractive index (n) of five types of dormant Bacillus spores representing a 600-fold range in moist-heat resistance determined as a D100 value. The n of a spore type increased as the molecular size of various immersion solutes decreased. For comparison of the spore types, the n of the entire spore and of the isolated integument was determined by use of bovine serum albumin, which is excluded from permeating into them. The n of the sporoplast (the structures bounded by the outer pericortex membrane) was determined by use of glucose, which was shown to permeate into the spore only as deeply as the pericortex membrane. Among the various spore types, an exponential increase in the heat resistance correlated with the n of the entire spore and of the sporoplast, but not of the isolated perisporoplast integument. Correlation of the n with the solids content of the entire spore provided a method of experimentally obtaining the refractive index increment (dn/dc), which was constant for the various spore types and enables the calculation of solids and water content from an n. Altogether, the results showed that the total water content is distributed unequally within the dormant spore, with less water in the sporoplast than in the perisporoplast integument, and that the sporoplast becomes more refractile and therefore more dehydrated as the heat resistance becomes greater among the various spore types. PMID:6802796

  17. Measurements of DNA Damage and Repair in Bacillus anthracis Sterne Spores by UV Radiation

    Science.gov (United States)

    2014-09-18

    increase of water, protein motility begins and enzymatic activity is initiated. The outgrowth period of germination is the only step that contains...process [23]. 17 Figure 5. The spore germination process. Germination occurs in 2 main stages. The initiation/activation step involves the...with a red fluorescent protein was transformed into Ba Sterne cells prior. Following irradiation, germination media was added and the spores were

  18. Isolating and Purifying Clostridium difficile Spores

    Science.gov (United States)

    Edwards, Adrianne N.; McBride, Shonna M.

    2016-01-01

    Summary The ability for the obligate anaerobe, Clostridium difficile, to form a metabolically dormant spore is critical for the survival of this organism outside of the host. This spore form is resistant to a myriad of environmental stresses, including heat, desiccation and exposure to disinfectants and antimicrobials. These intrinsic properties of spores allow C. difficile to survive long-term in an oxygenated environment, to be easily transmitted from host-to-host and to persist within the host following antibiotic treatment. Because of the importance of the spore form to the C. difficile lifecycle and treatment and prevention of C. difficile infection (CDI), the isolation and purification of spores are necessary to study the mechanisms of sporulation and germination, investigate spore properties and resistances, and for use in animal models of CDI. This chapter provides basic protocols, in vitro growth conditions and additional considerations for purifying C. difficile spores for a variety of downstream applications. PMID:27507337

  19. Surface tension propulsion of fungal spores.

    Science.gov (United States)

    Noblin, Xavier; Yang, Sylvia; Dumais, Jacques

    2009-09-01

    Most basidiomycete fungi actively eject their spores. The process begins with the condensation of a water droplet at the base of the spore. The fusion of the droplet onto the spore creates a momentum that propels the spore forward. The use of surface tension for spore ejection offers a new paradigm to perform work at small length scales. However, this mechanism of force generation remains poorly understood. To elucidate how fungal spores make effective use of surface tension, we performed a detailed mechanical analysis of the three stages of spore ejection: the transfer of energy from the drop to the spore, the work of fracture required to release the spore from its supporting structure and the kinetic energy of the spore after ejection. High-speed video imaging of spore ejection in Auricularia auricula and Sporobolomyces yeasts revealed that drop coalescence takes place over a short distance ( approximately 5 microm) and energy transfer is completed in less than 4 mus. Based on these observations, we developed an explicit relation for the conversion of surface energy into kinetic energy during the coalescence process. The relation was validated with a simple artificial system and shown to predict the initial spore velocity accurately (predicted velocity: 1.2 m s(-1); observed velocity: 0.8 m s(-1) for A. auricula). Using calibrated microcantilevers, we also demonstrate that the work required to detach the spore from the supporting sterigma represents only a small fraction of the total energy available for spore ejection. Finally, our observations of this unique discharge mechanism reveal a surprising similarity with the mechanics of jumping in animals.

  20. Phospholipase Cδ regulates germination of Dictyostelium spores

    Directory of Open Access Journals (Sweden)

    Van Haastert Peter JM

    2001-12-01

    Full Text Available Abstract Background Many eukaryotes, including plants and fungi make spores that resist severe environmental stress. The micro-organism Dictyostelium contains a single phospholipase C gene (PLC; deletion of the gene has no effect on growth, cell movement and differentiation. In this report we show that PLC is essential to sense the environment of food-activated spores. Results Plc-null spores germinate at alkaline pH, reduced temperature or increased osmolarity, conditions at which the emerging amoebae can not grow. In contrast, food-activated wild-type spores return to dormancy till conditions in the environment allow growth. The analysis of inositol 1,4,5-trisphosphate (IP3 levels and the effect of added IP3 uncover an unexpected mechanism how PLC regulates spore germination: i deletion of PLC induces the enhanced activity of an IP5 phosphatase leading to high IP3 levels in plc-null cells; ii in wild-type spores unfavourable conditions inhibit PLC leading to a reduction of IP3 levels; addition of exogenous IP3 to wild-type spores induces germination at unfavourable conditions; iii in plc-null spores IP3 levels remain high, also at unfavourable environmental conditions. Conclusions The results imply that environmental conditions regulate PLC activity and that IP3 induces spore germination; the uncontrolled germination of plc-null spores is not due to a lack of PLC activity but to the constitutive activation of an alternative IP3-forming pathway.

  1. Adsorption of β-galactosidase of Alicyclobacillus acidocaldarius on wild type and mutants spores of Bacillus subtilis

    Directory of Open Access Journals (Sweden)

    Sirec Teja

    2012-08-01

    Full Text Available Abstract Background The Bacillus subtilis spore has long been used as a surface display system with potential applications in a variety of fields ranging from mucosal vaccine delivery, bioremediation and biocatalyst development. More recently, a non-recombinant approach of spore display has been proposed and heterologous proteins adsorbed on the spore surface. We used the well-characterized β-galactosidase from the thermoacidophilic bacterium Alicyclobacillus acidocaldarius as a model to study enzyme adsorption, to analyze whether and how spore-adsorption affects the properties of the enzyme and to improve the efficiency of the process. Results We report that purified β-galactosidase molecules were adsorbed to purified spores of a wild type strain of B. subtilis retaining ca. 50% of their enzymatic activity. Optimal pH and temperature of the enzyme were not altered by the presence of the spore, that protected the adsorbed β-galactosidase from exposure to acidic pH conditions. A collection of mutant strains of B. subtilis lacking a single or several spore coat proteins was compared to the isogenic parental strain for the adsorption efficiency. Mutants with an altered outermost spore layer (crust were able to adsorb 60-80% of the enzyme, while mutants with a severely altered or totally lacking outer coat adsorbed 100% of the β-galactosidase molecules present in the adsorption reaction. Conclusion Our results indicate that the spore surface structures, the crust and the outer coat layer, have an negative effect on the adhesion of the β-galactosidase. Electrostatic forces, previously suggested as main determinants of spore adsorption, do not seem to play an essential role in the spore-β-galactosidase interaction. The analysis of mutants with altered spore surface has shown that the process of spore adsorption can be improved and has suggested that such improvement has to be based on a better understanding of the spore surface structure

  2. Toxicity of Bacillus thuringiensis spores to the tobacco hornworm, Manduca sexta.

    Science.gov (United States)

    Schesser, J H; Bulla, L A

    1978-01-01

    Toxicity of Bacillus thuringiensis spores to the tobacco hornworm, Manduca sexta, is described. The numbers of larvae killed were in relation to spore dry weight. At a surface application of 6.8 ng/cm2, there was an 85 percent survival, but less than 50 percent survived at 68.2 ng/cm2. Striking similarity of spores to parasporal crystals is revealed by slope of mortality curves, inhibition of stadial growth, and 50 percent lethal dose values based on protein content. PMID:623457

  3. Adhesion of Colletotrichum lindemuthianum Spores to Phaseolus vulgaris Hypocotyls and to Polystyrene.

    Science.gov (United States)

    Young, D H; Kauss, H

    1984-04-01

    Adhesion of Colletotrichum lindemuthianum spores to Phaseolus vulgaris hypocotyls and to polystyrene was inhibited by the respiratory inhibitors sodium azide and antimycin A, indicating a requirement for metabolic activity in adhesion. Various commercial proteins and Tween 80 also reduced adhesion to both surfaces. Binding was enhanced by the presence of salts: sodium, potassium, calcium, and magnesium chlorides were equally effective. The removal of surface wax from hypocotyls by chloroform treatment greatly reduced their subsequent ability to bind spores. The results suggest a similar mechanism for spore adhesion to the plant surface and to polystyrene, involving purely physical surface properties rather than group-specific binding sites.

  4. Kinetics of germination of individual spores of Geobacillus stearothermophilus as measured by raman spectroscopy and differential interference contrast microscopy.

    Directory of Open Access Journals (Sweden)

    Tingting Zhou

    Full Text Available Geobacillus stearothermophilus is a gram-positive, thermophilic bacterium, spores of which are very heat resistant. Raman spectroscopy and differential interference contrast microscopy were used to monitor the kinetics of germination of individual spores of G. stearothermophilus at different temperatures, and major conclusions from this work were as follows. 1 The CaDPA level of individual G. stearothermophilus spores was similar to that of Bacillus spores. However, the Raman spectra of protein amide bands suggested there are differences in protein structure in spores of G. stearothermophilus and Bacillus species. 2 During nutrient germination of G. stearothermophilus spores, CaDPA was released beginning after a lag time (T(lag between addition of nutrient germinants and initiation of CaDPA release. CaDPA release was complete at T(release, and DT(release (T(release - T(lag was 1-2 min. 3 Activation by heat or sodium nitrite was essential for efficient nutrient germination of G. stearothermophilus spores, primarily by decreasing T(lag values. 4 Values of T(lag and T(release were heterogeneous among individual spores, but DT(release values were relatively constant. 5 Temperature had major effects on nutrient germination of G. stearothermophilus spores, as at temperatures below 65°C, average T(lag values increased significantly. 6 G. stearothermophilus spore germination with exogenous CaDPA or dodecylamine was fastest at 65°C, with longer T(lag values at lower temperatures. 7 Decoating of G. stearothermophilus spores slowed nutrient germination slightly and CaDPA germination significantly, but increased dodecylamine germination markedly. These results indicate that the dynamics and heterogeneity of the germination of individual G. stearothermophilus spores are generally similar to that of Bacillus species.

  5. Bacillus subtilis Spores Germinate in the Chicken Gastrointestinal Tract▿

    OpenAIRE

    Stephen T Cartman; La Ragione, Roberto M.; Woodward, Martin J.

    2008-01-01

    A number of poultry probiotics contain bacterial spores. In this study, orally administered spores of Bacillus subtilis germinated in the gastrointestinal (GI) tracts of chicks. Furthermore, 20 h after spores were administered, vegetative cells outnumbered spores throughout the GI tract. This demonstrates that spore-based probiotics may function in this host through metabolically active mechanisms.

  6. Spore Cortex Hydrolysis Precedes Dipicolinic Acid Release during Clostridium difficile Spore Germination

    OpenAIRE

    2015-01-01

    Bacterial spore germination is a process whereby a dormant spore returns to active, vegetative growth, and this process has largely been studied in the model organism Bacillus subtilis. In B. subtilis, the initiation of germinant receptor-mediated spore germination is divided into two genetically separable stages. Stage I is characterized by the release of dipicolinic acid (DPA) from the spore core. Stage II is characterized by cortex degradation, and stage II is activated by the DPA released...

  7. Spore-to-spore agar culture of the myxomycete Physarum globuliferum.

    Science.gov (United States)

    Liu, Pu; Wang, Qi; Li, Yu

    2010-02-01

    The ontogeny of the myxomycete Physarum globuliferum was observed on corn meal agar and hanging drop cultures without adding sterile oat flakes, bacteria or other microorganisms. Its complete life cycle including spore germination, myxamoebae, swarm cells, plasmodial development, and maturity of fructifications was demonstrated. Details of spore-to-spore development are described and illustrated.

  8. Anthrax Toxins in Context of Bacillus anthracis Spores and Spore Germination.

    Science.gov (United States)

    Cote, Christopher K; Welkos, Susan L

    2015-08-17

    The interaction of anthrax toxin or toxin components with B. anthracis spores has been demonstrated. Germinating spores can produce significant amounts of toxin components very soon after the initiation of germination. In this review, we will summarize the work performed that has led to our understanding of toxin and spore interactions and discuss the complexities associated with these interactions.

  9. Electron Beam Irradiation Dose Dependently Damages the Bacillus Spore Coat and Spore Membrane

    Directory of Open Access Journals (Sweden)

    S. E. Fiester

    2012-01-01

    Full Text Available Effective control of spore-forming bacilli begs suitable physical or chemical methods. While many spore inactivation techniques have been proven effective, electron beam (EB irradiation has been frequently chosen to eradicate Bacillus spores. Despite its widespread use, there are limited data evaluating the effects of EB irradiation on Bacillus spores. To study this, B. atrophaeus spores were purified, suspended in sterile, distilled water, and irradiated with EB (up to 20 kGy. Irradiated spores were found (1 to contain structural damage as observed by electron microscopy, (2 to have spilled cytoplasmic contents as measured by spectroscopy, (3 to have reduced membrane integrity as determined by fluorescence cytometry, and (4 to have fragmented genomic DNA as measured by gel electrophoresis, all in a dose-dependent manner. Additionally, cytometry data reveal decreased spore size, increased surface alterations, and increased uptake of propidium iodide, with increasing EB dose, suggesting spore coat alterations with membrane damage, prior to loss of spore viability. The present study suggests that EB irradiation of spores in water results in substantial structural damage of the spore coat and inner membrane, and that, along with DNA fragmentation, results in dose-dependent spore inactivation.

  10. Reticulate spore ornamentation in Strobilomyces

    Institute of Scientific and Technical Information of China (English)

    Ronald H.Petersen; John Dunlap; Karen W.Hughes

    2011-01-01

    Reticulate spore ornamentation in Strobilomyces (Boletaceae,Basidiomycotina) is visible under light microscopy (bright field and phase contrast) up to 1,500×.While some distinctions can be made at this magnification,ontogeny and fine structure of the ornamentation cannot be discerned.Scanning electron microscope images,conversely,reveal significant additional structure from which the ontogenetic process can be traced.Citing numerous New and Old World collections,this paper presents evidence distinguishing reticulate ornamentation ontogeny in these disjunct populations.

  11. Effects of Mn2+ Levels on the Resistance Properties of Bacillus cereus Spores

    Science.gov (United States)

    2013-01-01

    In contrast, Bacillus subtilis spores with over a 200-fold range of protoplast Mn levels exhibited no significant differences in resistance to...Bacillus megaterium by wet heat. Lett. Appl . Microbiol. 50:507-514. Daly MJ (2012) Death by protein damage in irradiated cells. DNA Repair 11:12-21...levels on resistance of Bacillus megaterium spores to heat, radiation and hydrogen peroxide. J. Appl . Microbiol. 111:663-670. Ghosh S, Setlow P (2010

  12. What can spores do for us?

    NARCIS (Netherlands)

    Wolken, W.A.M.; Tramper, J.; Werf, M.J. van der

    2003-01-01

    Many organisms have the ability to form spores, a remarkable phase in their life cycles. Compared with vegetative cells, spores have several advantages (e.g. resistance to toxic compounds, temperature, desiccation and radiation) making them well suited to various applications. The applications of sp

  13. What can spores do for us?

    NARCIS (Netherlands)

    Wolken, W.A.M.; Tramper, J.; Werf, M.J. van der

    2003-01-01

    Many organisms have the ability to form spores, a remarkable phase in their life cycles. Compared with vegetative cells, spores have several advantages (e.g. resistance to toxic compounds, temperature, desiccation and radiation) making them well suited to various applications. The applications of

  14. What can spores do for us?

    NARCIS (Netherlands)

    Wolken, W.A.M.; Tramper, J.; Werf, van der M.J.

    2003-01-01

    Many organisms have the ability to form spores, a remarkable phase in their life cycles. Compared with vegetative cells, spores have several advantages (e.g. resistance to toxic compounds, temperature, desiccation and radiation) making them well suited to various applications. The applications of sp

  15. Detecting Cortex Fragments During Bacterial Spore Germination.

    Science.gov (United States)

    Francis, Michael B; Sorg, Joseph A

    2016-06-25

    The process of endospore germination in Clostridium difficile, and other Clostridia, increasingly is being found to differ from the model spore-forming bacterium, Bacillus subtilis. Germination is triggered by small molecule germinants and occurs without the need for macromolecular synthesis. Though differences exist between the mechanisms of spore germination in species of Bacillus and Clostridium, a common requirement is the hydrolysis of the peptidoglycan-like cortex which allows the spore core to swell and rehydrate. After rehydration, metabolism can begin and this, eventually, leads to outgrowth of a vegetative cell. The detection of hydrolyzed cortex fragments during spore germination can be difficult and the modifications to the previously described assays can be confusing or difficult to reproduce. Thus, based on our recent report using this assay, we detail a step-by-step protocol for the colorimetric detection of cortex fragments during bacterial spore germination.

  16. Enhanced specificity of bacterial spore identification by oxidation and mass spectrometry.

    Science.gov (United States)

    Demirev, Plamen A

    2004-01-01

    Addition of an oxidizing agent (e.g., hydrogen peroxide) to intact spores selectively and completely oxidizes Met-containing biomarker proteins by formation of Met sulfoxides. This reaction increases the masses of the biomarker proteins observed in matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) of Bacillus spores by Deltam = (16 x n) Da, where n is the number of Met residues in the sequence of each individual protein. The procedure is very rapid, and can be performed in situ (i.e., on the MALDI target). It confirms the identity of individual biomarkers by comparing the number of Met amino acids from the experimentally determined mass shifts with predictions for n from the tentative amino acid sequence for each protein. In turn, accurate determination of n for several biomarkers allows rapid validation of the initial spore identification by MALDI-MS.

  17. Nanomechanical analysis of Clostridium tyrobutyricum spores.

    Science.gov (United States)

    Andreeva, N; Bassi, D; Cappa, F; Cocconcelli, P S; Parmigiani, F; Ferrini, G

    2010-12-01

    In this work we report on the measurement of the Young modulus of the external surface of Clostridium tyrobutyricum spores in air with an atomic force microscope. The Young modulus can be reliably measured despite the strong tip-spore adhesion forces and the need to immobilize the spores due to their slipping on most substrates. Moreover, we investigate the disturbing factors and consider some practical aspects that influence the measurements of elastic properties of biological objects with the atomic force microscopy indentation techniques.

  18. Genomics, evolution, and crystal structure of a new family of bacterial spore kinases.

    Science.gov (United States)

    Scheeff, Eric D; Axelrod, Herbert L; Miller, Mitchell D; Chiu, Hsiu-Ju; Deacon, Ashley M; Wilson, Ian A; Manning, Gerard

    2010-05-01

    Bacterial spore formation is a complex process of fundamental relevance to biology and human disease. The spore coat structure is complex and poorly understood, and the roles of many of the protein components remain unclear. We describe a new family of spore coat proteins, the bacterial spore kinases (BSKs), and the first crystal structure of a BSK, YtaA (CotI) from Bacillus subtilis. BSKs are widely distributed in spore-forming Bacillus and Clostridium species, and have a dynamic evolutionary history. Sequence and structure analyses indicate that the BSKs are CAKs, a prevalent group of small molecule kinases in bacteria that is distantly related to the eukaryotic protein kinases. YtaA has substantial structural similarity to CAKs, but also displays distinctive features that broaden our understanding of the CAK group. Evolutionary constraint analysis of the protein surfaces indicates that members of the BSK family have distinct clade-conserved patterns in the substrate binding region, and probably bind and phosphorylate distinct targets. Several classes of BSKs have apparently independently lost catalytic activity to become pseudokinases, indicating that the family also has a major noncatalytic function.

  19. Investigation of bacterial spore structure by high resolution solid-state nuclear magnetic resonance spectroscopy and transmission electron microscopy.

    Science.gov (United States)

    Leuschner, R G; Lillford, P J

    2001-01-22

    High resolution solid-state nuclear magnetic resonance spectroscopy (NMR) in combination with transmission electron microscopy (TEM) of spores of Bacillus cereus, an outer coatless mutant B. subtilis 322, an inner coatless mutant B. subtilis 325 and of germinated spores of B. subtilis CMCC 604 were carried out. Structural differences in the coats, mainly protein of spores were reflected by NMR spectra which indicated also differences in molecular mobility of carbohydrates which was partially attributed to the cortex. Dipicolinic acid (DPA) of spores of B. cereus displayed a high degree of solid state order and may be crystalline. Heat activation was studied on spores of B. subtilis 357 lux + and revealed a structural change when analysed by TEM but this was not associated with increases in molecular mobility since no effects were measured by NMR.

  20. Quantitative immunofluorescence studies of the serology of Bacillus anthracis spores.

    OpenAIRE

    1983-01-01

    A fluorescein-conjugated antibody against formalin-inactivated spores of Bacillus anthracis Vollum reacted only weakly with a variety of Bacillus species in microfluorometric immunofluorescence assays. A conjugated antibody against spores of B. anthracis Sterne showed little affinity for spores of several B. anthracis isolates including B. anthracis Vollum, indicating that more than one anthrax spore serotype exists.

  1. Incidence, diversity and characteristics of spores of psychrotolerant spore formers in various REPFEDS produced in Belgium.

    Science.gov (United States)

    Samapundo, S; Devlieghere, F; Xhaferi, R; Heyndrickx, M

    2014-12-01

    The major objectives of this study were to determine the incidence of psychrotolerant spore formers from REPFEDS marketed in Belgium, and their diversity and characteristics. Spore formers in general were found as spores on 38.3% of the food samples and in 85% food products types evaluated. 76% of the food samples containing spore formers had spores before enrichment. A total of 86 spore formers were isolated from the samples. 28 of 86 bacterial spore formers (32.6%) were capable of vegetative growth at 7 °C. 96% (27/28) of these psychrotolerant spore formers were determined to belong to Bacillus or related genera. According to a (GTG)5-PCR analysis, 24 of these 28 isolates were genetically distinct from each other. 10.7% (3/28) of the bacilli were determined to belong to the Bacillus cereus group, namely B. cereus (chicken curry and Edam cheese) and Bacillus mycoides (Emmental cheese). Almost half of the bacilli (12/27) were putatively identified as Bacillus pumilus, which occurs ubiquitously in nature and has been associated with outbreaks of foodborne disease. Only one psychrotolerant clostridium, Clostridium tyrobutyricum, was isolated in the study. The results of this study show the highly diverse ecology and spoilage potential of psychrotolerant spore formers in REPFEDs marketed in Belgium.

  2. The nature of water within bacterial spores: protecting life in extreme environments

    Science.gov (United States)

    Rice, Charles V.; Friedline, Anthony; Johnson, Karen; Zachariah, Malcolm M.; Thomas, Kieth J., III

    2011-10-01

    The bacterial spore is a formidable container of life, protecting the vital contents from chemical attack, antimicrobial agents, heat damage, UV light degradation, and water dehydration. The exact role of the spore components remains in dispute. Nevertheless, water molecules are important in each of these processes. The physical state of water within the bacterial spore has been investigated since the early 1930's. The water is found two states, free or bound, in two different areas, core and non-core. It is established that free water is accessible to diffuse and exchange with deuterated water and that the diffusible water can access all areas of the spore. The presence of bound water has come under recent scrutiny and has been suggested the water within the core is mobile, rather than bound, based on the analysis of deuterium relaxation rates. Using an alternate method, deuterium quadrupole-echo spectroscopy, we are able to distinguish between mobile and immobile water molecules. In the absence of rapid motion, the deuterium spectrum of D2O is dominated by a broad line, whose line shape is used as a characteristic descriptor of molecular motion. The deuterium spectrum of bacterial spores reveals three distinct features: the broad peak of immobilized water, a narrow line of water in rapid motion, and a signal of intermediate width. This third signal is assigned this peak from partially deuterated proteins with the spore in which N-H groups have undergone exchange with water deuterons to form N-D species. As a result of these observations, the nature of water within the spore requires additional explanation to understand how the spore and its water preserve life.

  3. The Role of Aquaporins in pH-Dependent Germination of Rhizopus delemar Spores.

    Science.gov (United States)

    Turgeman, Tidhar; Shatil-Cohen, Arava; Moshelion, Menachem; Teper-Bamnolker, Paula; Skory, Christopher D; Lichter, Amnon; Eshel, Dani

    2016-01-01

    Rhizopus delemar and associated species attack a wide range of fruit and vegetables after harvest. Host nutrients and acidic pH are required for optimal germination of R. delemar, and we studied how this process is triggered. Glucose induced spore swelling in an acidic environment, expressed by an up to 3-fold increase in spore diameter, whereas spore diameter was smaller in a neutral environment. When suspended in an acidic environment, the spores started to float, indicating a change in their density. Treatment of the spores with HgCl2, an aquaporin blocker, prevented floating and inhibited spore swelling and germ-tube emergence, indicating the importance of water uptake at the early stages of germination. Two putative candidate aquaporin-encoding genes-RdAQP1 and RdAQP2-were identified in the R. delemar genome. Both presented the conserved NPA motif and six-transmembrane domain topology. Expressing RdAQP1 and RdAQP2 in Arabidopsis protoplasts increased the cells' osmotic water permeability coefficient (Pf) compared to controls, indicating their role as water channels. A decrease in R. delemar aquaporin activity with increasing external pH suggested pH regulation of these proteins. Substitution of two histidine (His) residues, positioned on two loops facing the outer side of the cell, with alanine eliminated the pH sensing resulting in similar Pf values under acidic and basic conditions. Since hydration is critical for spore switching from the resting to activate state, we suggest that pH regulation of the aquaporins can regulate the initial phase of R. delemar spore germination, followed by germ-tube elongation and host-tissue infection.

  4. Structural Analysis of Bacillus subtilis Spore Peptidoglycan During Sporulation

    OpenAIRE

    2000-01-01

    Structural analysis of Bacillus subtilis spore peptidoglycan during sporulation:Jennifer L. Meador-Parton:David L. Popham, Chairman:Department of Biology:(ABSTRACT):Bacterial spore peptidoglycan (PG) is very loosely cross-linked relative to vegetative PG. Theories suggest that loosely cross-linked spore PG may have a flexibility which contributes to the attainment of spore core dehydration. The structure of the PG found in fully dormant spores has previously been examined in wild type and m...

  5. Nanomechanical Characterization of Bacillus anthracis Spores by Atomic Force Microscopy

    OpenAIRE

    2016-01-01

    The study of structures and properties of bacterial spores is important to understanding spore formation and biological responses to environmental stresses. While significant progress has been made over the years in elucidating the multilayer architecture of spores, the mechanical properties of the spore interior are not known. Here, we present a thermal atomic force microscopy (AFM) study of the nanomechanical properties of internal structures of Bacillus anthracis spores. We developed a nan...

  6. Quantitative Proteomic Analysis of Germination of Nosema bombycis Spores under Extremely Alkaline Conditions

    Science.gov (United States)

    Liu, Han; Chen, Bosheng; Hu, Sirui; Liang, Xili; Lu, Xingmeng; Shao, Yongqi

    2016-01-01

    The microsporidian Nosema bombycis is an obligate intracellular pathogen of the silkworm Bombyx mori, causing the epidemic disease Pebrine and extensive economic losses in sericulture. Although N. bombycis forms spores with rigid spore walls that protect against various environmental pressures, ingested spores germinate immediately under the extremely alkaline host gut condition (Lepidoptera gut pH > 10.5), which is a key developmental turning point from dormant state to infected state. However, to date this process remains poorly understood due to the complexity of the animal digestive tract and the lack of genetic tools for microsporidia. Here we show, using an in vitro spore germination model, how the proteome of N. bombycis changes during germination, analyse specific metabolic pathways employed in detail, and validate key functional proteins in vivo in silkworms. By a label-free quantitative proteomics approach that is directly based on high-resolution mass spectrometry (MS) data, a total of 1136 proteins were identified with high confidence, with 127 proteins being significantly changed in comparison to non-germinated spores. Among them, structural proteins including polar tube protein 1 and 3 and spore wall protein (SWP) 4 and 30 were found to be significantly down-regulated, but SWP9 significantly up-regulated. Some nucleases like polynucleotide kinase/phosphatase and flap endonucleases 1, together with a panel of hydrolases involved in protein degradation and RNA cleavage were overrepresented too upon germination, which implied that they might play important roles during spore germination. The differentially regulated trends of these genes were validated, respectively, by quantitative RT-PCR and 3 proteins of interest were confirmed by Western blotting analyses in vitro and in vivo. Furthermore, the pathway analysis showed that abundant up- and down-regulations appear involved in the glycolysis, pentose phosphate pathway, purine, and pyrimidine metabolism

  7. Quantitative Proteomic Analysis of Germination of Nosema bombycis Spores under Extremely Alkaline Conditions.

    Science.gov (United States)

    Liu, Han; Chen, Bosheng; Hu, Sirui; Liang, Xili; Lu, Xingmeng; Shao, Yongqi

    2016-01-01

    The microsporidian Nosema bombycis is an obligate intracellular pathogen of the silkworm Bombyx mori, causing the epidemic disease Pebrine and extensive economic losses in sericulture. Although N. bombycis forms spores with rigid spore walls that protect against various environmental pressures, ingested spores germinate immediately under the extremely alkaline host gut condition (Lepidoptera gut pH > 10.5), which is a key developmental turning point from dormant state to infected state. However, to date this process remains poorly understood due to the complexity of the animal digestive tract and the lack of genetic tools for microsporidia. Here we show, using an in vitro spore germination model, how the proteome of N. bombycis changes during germination, analyse specific metabolic pathways employed in detail, and validate key functional proteins in vivo in silkworms. By a label-free quantitative proteomics approach that is directly based on high-resolution mass spectrometry (MS) data, a total of 1136 proteins were identified with high confidence, with 127 proteins being significantly changed in comparison to non-germinated spores. Among them, structural proteins including polar tube protein 1 and 3 and spore wall protein (SWP) 4 and 30 were found to be significantly down-regulated, but SWP9 significantly up-regulated. Some nucleases like polynucleotide kinase/phosphatase and flap endonucleases 1, together with a panel of hydrolases involved in protein degradation and RNA cleavage were overrepresented too upon germination, which implied that they might play important roles during spore germination. The differentially regulated trends of these genes were validated, respectively, by quantitative RT-PCR and 3 proteins of interest were confirmed by Western blotting analyses in vitro and in vivo. Furthermore, the pathway analysis showed that abundant up- and down-regulations appear involved in the glycolysis, pentose phosphate pathway, purine, and pyrimidine metabolism

  8. Monitoring biochemical changes in bacterial spore during thermal and pressure-assisted thermal processing using FT-IR spectroscopy.

    Science.gov (United States)

    Subramanian, Anand; Ahn, Juhee; Balasubramaniam, V M; Rodriguez-Saona, Luis

    2007-10-31

    Pressure-assisted thermal processing (PATP) is being widely investigated for processing low acid foods. However, its microbial safety has not been well established and the mechanism of inactivation of pathogens and spores is not well understood. Fourier transform infrared (FT-IR) spectroscopy was used to study some of the biochemical changes in bacterial spores occurring during PATP and thermal processing (TP). Spore suspensions (approximately 10(9) CFU/mL of water) of Clostridium tyrobutyricum, Bacillus sphaericus, and three strains of Bacillus amyloliquefaciens were treated by PATP (121 degrees C and 700 MPa) for 0, 10, 20, and 30 s and TP (121 degrees C) for 0, 10, 20, and 30 s. Treated and untreated spore suspensions were analyzed using FT-IR in the mid-infrared region (4000-800 cm(-1)). Multivariate classification models based on soft independent modeling of class analogy (SIMCA) were developed using second derivative-transformed spectra. The spores could be differentiated up to the strain level due to differences in their biochemical composition, especially dipicolinic acid (DPA) and secondary structure of proteins. During PATP changes in alpha-helix and beta-sheets of secondary protein were evident in the spectral regions 1655 and 1626 cm(-1), respectively. Infrared absorption bands from DPA (1281, 1378, 1440, and 1568 cm(-1)) decreased significantly during the initial stages of PATP, indicating release of DPA. During TP changes were evident in the bands associated with secondary proteins. DPA bands showed little or no change during TP. A correlation was found between the spore's Ca-DPA content and its resistance to PATP. FT-IR spectroscopy could classify different strains of bacterial spores and determine some of the changes occurring during spore inactivation by PATP and TP. Furthermore, this technique shows great promise for rapid screening PATP-resistant bacterial spores.

  9. A method for the determination of bacterial spore DNA content based on isotopic labelling, spore germination and diphenylamine assay; ploidy of spores of several Bacillus species.

    Science.gov (United States)

    Hauser, P M; Karamata, D

    1992-01-01

    A reliable method for measuring the spore DNA content, based on radioactive DNA labelling, spore germination in absence of DNA replication and diphenylamine assay, was developed. The accuracy of the method, within 10-15%, is adequate for determining the number of chromosomes per spore, provided that the genome size is known. B subtilis spores were shown to be invariably monogenomic, while those of larger bacilli Bacillus megaterium, Bacillus cereus and Bacillus thuringiensis, often, if not invariably, contain two genomes. Attempts to modify the spore DNA content of B subtilis by altering the richness of the sporulation medium, the sporulation conditions (liquid or solid medium), or by mutation, were apparently unsuccessful. An increase of spore size with medium richness, not accompanied by an increase in DNA content, was observed. The implication of the apparently species-specific spore ploidy and the influence of the sporulation conditions on spore size and shape are discussed.

  10. Spores of Aspergillus versicolor isolated from indoor air of a moisture-damaged building provoke acute inflammation in mouse lungs.

    Science.gov (United States)

    Jussila, Juha; Komulainen, Hannu; Kosma, Veli-Matti; Nevalainen, Aino; Pelkonen, Jukka; Hirvonen, Maija-Riitta

    2002-12-01

    Microbial growth in moisture-damaged buildings has been associated with respiratory health effects, and the spores of the mycotoxin producing fungus Aspergillus versicolor are frequently present in the indoor air. To characterize the potential of these spores to cause harmful respiratory effects, mice were exposed via intratracheal instillation to a single dose of the spores of A. versicolor (1 x 10(5), 1 x 10(6), 5 x 10(6), 1 x 10(7), or 1 x 10(8) spores), isolated from the indoor air of a moisture-damaged building. Inflammation and toxicity in lungs were evaluated 24 h later by assessment of biochemical markers and histopathology. The time course of the effects was investigated with the dose of 5 x 10(6) spores for up to 28 days. The exposure to the spores increased transiently proinflammatory cytokine levels (tumor necrosis factor [TNF] alpha and interleukin [IL]-6) in bronchoalveolar lavage fluid (BALF). The cytokine responses were dose and time dependent. The highest cytokine concentrations were measured at 6 h after the dose, and they returned to the control level by 3 days. Moreover, the spores of A. versicolor recruited inflammatory cells into airways: Neutrophils peaked transiently at 24 h, macrophages at 3 days, and lymphocytes at 7 days after the dosing. The inflammatory cell response did not completely disappear during the subsequent 28 days, though no histopathological changes were seen at that time point. The spores did not induce expression of inducible nitric oxide synthase in lavaged cells. Only the highest spore dose (1 x 10(8)) markedly increased serum IL-6, increased vascular leakage, and caused cytotoxicity (i.e., increased levels of albumin, total protein, lactate dehydrogenase [LDH], and hemoglobin in BALF) in the airways. In summary, the spores of A. versicolor caused acute inflammation in mouse lungs. This indicates that they have potential to provoke adverse health effects in the occupants of moisture-damaged buildings.

  11. The ice nucleation ability of one of the most abundant types of fungal spores found in the atmosphere

    Directory of Open Access Journals (Sweden)

    R. Iannone

    2011-02-01

    Full Text Available Recent atmospheric measurements show that biological particles are a potentially important class of ice nuclei. Types of biological particles that may be good ice nuclei include bacteria, pollen and fungal spores. We studied the ice nucleation properties of water droplets containing fungal spores from the genus Cladosporium, one of the most abundant types of spores found in the atmosphere. For water droplets containing a Cladosporium spore surface area of ~217 μm2 (equivalent to ~5 spores with average diameters of 3.2 μm , 1% of the droplets froze by −28.5 °C and 10% froze by –30.1 °C. However, there was a strong dependence on freezing temperature with the spore surface area of Cladosporium within a given droplet. Mean freezing temperatures for droplets containing 1–5 spores are expected to be approximately −35.1 ± 2.3 °C (1σ S. D.. Atmospheric ice nucleation on spores of Cladosporium sp., or other spores with similar surface properties, thus do not appear to explain recent atmospheric measurements showing that biological particles participate as atmospheric ice nuclei. The poor ice nucleation ability of Cladosporium sp. may be attributed to the surface which is coated with hydrophobins (a class of hydrophobic proteins that appear to be widespread in filamentous fungi. Given the ubiquity of hydrophobins on spore surfaces, the current study may be applicable to many fungal species of atmospheric importance.

  12. Bacterial spores in food : how phenotypic variability complicates prediction of spore properties and bacterial behavior

    NARCIS (Netherlands)

    Eijlander, Robyn T.; Abee, Tjakko; Kuipers, Oscar P.

    2011-01-01

    Bacillus spores are a known cause of food spoilage and their increased resistance poses a major challenge in efficient elimination. Recent studies on bacterial cultures at the single cell level have revealed how minor differences in essential spore properties, such as core water content or germinant

  13. Bacterial spores in food: how phenotypic variability complicates prediction of spore properties and bacterial behavior

    NARCIS (Netherlands)

    Eijlander, R.T.; Abee, T.; Kuipers, O.P.

    2011-01-01

    Bacillus spores are a known cause of food spoilage and their increased resistance poses a major challenge in efficient elimination. Recent studies on bacterial cultures at the single cell level have revealed how minor differences in essential spore properties, such as core water content or germinant

  14. Bacillus cereus spore damage recovery and diversity in spore germination and carbohydrate utilisation

    NARCIS (Netherlands)

    Warda, Alicja K.

    2016-01-01

    Bacterial spores are extremely robust survival vehicles that are highly resistant towards environmental stress conditions including heat, UV radiation and other stresses commonly applied during food production and preservation. Spores, including those of the toxin-producing food-borne human pathogen

  15. Sensitive, Rapid Detection of Bacterial Spores

    Science.gov (United States)

    Kern, Roger G.; Venkateswaran, Kasthuri; Chen, Fei; Pickett, Molly; Matsuyama, Asahi

    2009-01-01

    A method of sensitive detection of bacterial spores within delays of no more than a few hours has been developed to provide an alternative to a prior three-day NASA standard culture-based assay. A capability for relatively rapid detection of bacterial spores would be beneficial for many endeavors, a few examples being agriculture, medicine, public health, defense against biowarfare, water supply, sanitation, hygiene, and the food-packaging and medical-equipment industries. The method involves the use of a commercial rapid microbial detection system (RMDS) that utilizes a combination of membrane filtration, adenosine triphosphate (ATP) bioluminescence chemistry, and analysis of luminescence images detected by a charge-coupled-device camera. This RMDS has been demonstrated to be highly sensitive in enumerating microbes (it can detect as little as one colony-forming unit per sample) and has been found to yield data in excellent correlation with those of culture-based methods. What makes the present method necessary is that the specific RMDS and the original protocols for its use are not designed for discriminating between bacterial spores and other microbes. In this method, a heat-shock procedure is added prior to an incubation procedure that is specified in the original RMDS protocols. In this heat-shock procedure (which was also described in a prior NASA Tech Briefs article on enumerating sporeforming bacteria), a sample is exposed to a temperature of 80 C for 15 minutes. Spores can survive the heat shock, but nonspore- forming bacteria and spore-forming bacteria that are not in spore form cannot survive. Therefore, any colonies that grow during incubation after the heat shock are deemed to have originated as spores.

  16. Ultrastructure of spore development in Scutellospora heterogama.

    Science.gov (United States)

    Jeffries, Peter; Robinson-Boyer, Louisa; Rice, Paul; Newsam, Ray J; Dodd, John C

    2007-07-01

    The ultrastructural detail of spore development in Scutellospora heterogama is described. Although the main ontogenetic events are similar to those described from light microscopy, the complexity of wall layering is greater when examined at an ultrastructural level. The basic concept of a rigid spore wall enclosing two inner, flexible walls still holds true, but there are additional zones within these three walls distinguishable using electron microscopy, including an inner layer that is involved in the formation of the germination shield. The spore wall has three layers rather than the two reported previously. An outer, thin ornamented layer and an inner, thicker layer are both derived from the hyphal wall and present at all stages of development. These layers differentiate into the outer spore layer visible at the light microscope level. A third inner layer unique to the spore develops during spore swelling and rapidly expands before contracting back to form the second wall layer visible by light microscopy. The two inner flexible walls also are more complex than light microscopy suggests. The close association with the inner flexible walls with germination shield formation consolidates the preferred use of the term 'germinal walls' for these structures. A thin electron-dense layer separates the two germinal walls and is the region in which the germination shield forms. The inner germinal wall develops at least two sub-layers, one of which has an appearance similar to that of the expanding layer of the outer spore wall. An electron-dense layer is formed on the inner surface of the inner germinal wall as the germination shield develops, and this forms the wall surrounding the germination shield as well as the germination tube. At maturity, the outer germinal wall develops a thin, striate layer within its substructure.

  17. Isolation and Characterization of a Galactosamine Wall from Spores and Spherules of Physarum polycephalum

    Science.gov (United States)

    McCormick, J. Justin; Blomquist, Judith C.; Rusch, Harold P.

    1970-01-01

    The myxomycete, Physarum polycephalum, can be induced under laboratory conditions to form two different hard-walled forms, spores and spherules. Characterization of both types of walls revealed only a single sugar, galactosamine. It was identified after acid hydrolysis of the isolated walls by chromatography in three solvent systems, by its positive reaction with ammoniacal silver nitrate, ninhydrin, Galactostat, and the Elson-Morgan test, and by ninhydrin degradation to lyxose. Galactosamine was present as a polymer with solubility characteristics the same as the β1-4–linked glucosamine polymer (chitosan). The walls were also found to contain about 2% protein. Spherule walls revealed a single glycoprotein on gel electrophoresis. Spore walls contained a similar protein component. The phosphate content of isolated spherule walls was 9.8%, and that of spore walls was 1.4%. Spore walls also contained about 15% melanin which was shown to be similar to fungal melanin. A novel method was used to measure the rate of mature spherule formation based on the loss of extractability of P. polycephalum natural pigment. The presence of a rare galactosamine polymer in P. polycephalum spore and spherule walls as the only carbohydrate suggests that the myxomycetes are not closely related to the fungi or the protozoa. PMID:16559084

  18. Proteomic Profiling and Identification of Immunodominant Spore Antigens of Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis‡

    Science.gov (United States)

    DelVecchio, Vito G.; Connolly, Joseph P.; Alefantis, Timothy G.; Walz, Alexander; Quan, Marian A.; Patra, Guy; Ashton, John M.; Whittington, Jessica T.; Chafin, Ryan D.; Liang, Xudong; Grewal, Paul; Khan, Akbar S.; Mujer, Cesar V.

    2006-01-01

    Differentially expressed and immunogenic spore proteins of the Bacillus cereus group of bacteria, which includes Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis, were identified. Comparative proteomic profiling of their spore proteins distinguished the three species from each other as well as the virulent from the avirulent strains. A total of 458 proteins encoded by 232 open reading frames were identified by matrix-assisted laser desorption ionization-time-of-flight mass spectrometry analysis for all the species. A number of highly expressed proteins, including elongation factor Tu (EF-Tu), elongation factor G, 60-kDa chaperonin, enolase, pyruvate dehydrogenase complex, and others exist as charge variants on two-dimensional gels. These charge variants have similar masses but different isoelectric points. The majority of identified proteins have cellular roles associated with energy production, carbohydrate transport and metabolism, amino acid transport and metabolism, posttranslational modifications, and translation. Novel vaccine candidate proteins were identified using B. anthracis polyclonal antisera from humans postinfected with cutaneous anthrax. Fifteen immunoreactive proteins were identified in B. anthracis spores, whereas 7, 14, and 7 immunoreactive proteins were identified for B. cereus and in the virulent and avirulent strains of B. thuringiensis spores, respectively. Some of the immunodominant antigens include charge variants of EF-Tu, glyceraldehyde-3-phosphate dehydrogenase, dihydrolipoamide acetyltransferase, Δ-1-pyrroline-5-carboxylate dehydrogenase, and a dihydrolipoamide dehydrogenase. Alanine racemase and neutral protease were uniquely immunogenic to B. anthracis. Comparative analysis of the spore immunome will be of significance for further nucleic acid- and immuno-based detection systems as well as next-generation vaccine development. PMID:16957262

  19. Identification and validation of specific markers of Bacillus anthracis spores by proteomics and genomics approaches.

    Science.gov (United States)

    Chenau, Jérôme; Fenaille, François; Caro, Valérie; Haustant, Michel; Diancourt, Laure; Klee, Silke R; Junot, Christophe; Ezan, Eric; Goossens, Pierre L; Becher, François

    2014-03-01

    Bacillus anthracis is the causative bacteria of anthrax, an acute and often fatal disease in humans. The infectious agent, the spore, represents a real bioterrorism threat and its specific identification is crucial. However, because of the high genomic relatedness within the Bacillus cereus group, it is still a real challenge to identify B. anthracis spores confidently. Mass spectrometry-based tools represent a powerful approach to the efficient discovery and identification of such protein markers. Here we undertook comparative proteomics analyses of Bacillus anthracis, cereus and thuringiensis spores to identify proteoforms unique to B. anthracis. The marker discovery pipeline developed combined peptide- and protein-centric approaches using liquid chromatography coupled to tandem mass spectrometry experiments using a high resolution/high mass accuracy LTQ-Orbitrap instrument. By combining these data with those from complementary bioinformatics approaches, we were able to highlight a dozen novel proteins consistently observed across all the investigated B. anthracis spores while being absent in B. cereus/thuringiensis spores. To further demonstrate the relevance of these markers and their strict specificity to B. anthracis, the number of strains studied was extended to 55, by including closely related strains such as B. thuringiensis 9727, and above all the B. cereus biovar anthracis CI, CA strains that possess pXO1- and pXO2-like plasmids. Under these conditions, the combination of proteomics and genomics approaches confirms the pertinence of 11 markers. Genes encoding these 11 markers are located on the chromosome, which provides additional targets complementary to the commonly used plasmid-encoded markers. Last but not least, we also report the development of a targeted liquid chromatography coupled to tandem mass spectrometry method involving the selection reaction monitoring mode for the monitoring of the 4 most suitable protein markers. Within a proof

  20. Aerodynamics of puffball mushroom spore dispersal

    Science.gov (United States)

    Amador, Guillermo; Barberie, Alex; Hu, David

    2012-11-01

    Puffball mushrooms Lycoperdon are spherical fungi that release a cloud of spores in response to raindrop impacts. In this combined experimental and theoretical study, we elucidate the aerodynamics of this unique impact-based spore-dispersal. We characterize live puffball ejections by high speed video, the geometry and elasticity of their shells by cantilever experiments, and the packing fraction and size of their spores by scanning electron microscope. We build a dynamically similar puffball mimic composed of a tied-off latex balloon filled with baby powder and topped with a 1-cm slit. A jet of powder is elicited by steady lateral compression of the mimic between two plates. The jet height is a bell-shaped function of force applied, with a peak of 18 cm at loads of 45 N. We rationalize the increase in jet height with force using Darcy's Law: the applied force generates an overpressure maintained by the air-tight elastic membrane. Pressure is relieved as the air travels through the spore interstitial spaces, entrains spores, and exits through the puffball orifice. This mechanism demonstrates how powder-filled elastic shells can generate high-speed jets using energy harvested from rain.

  1. Dothistroma septosporum: spore production and weather conditions

    Energy Technology Data Exchange (ETDEWEB)

    Dvorak, M.; Drapela, K.; Kankovsky, L.

    2012-11-01

    Dartmouth's septosporum, the causal agent of Dothistroma needle blight is a widespread fungus which infects more than 80 species of coniferous trees through the entire world. Spreading of the infection is strongly affected by climatic factors of each locality where it is recorded. We attempt to describe the concrete limiting climatic factors necessary for the releasing of conidia of D. septosporum and to find out the timing of its spore production within the year. For this purpose we used an automatic volumetric spore trap and an automatic meteorological station. We found that a minimum daily average temperature of 10 degree centigrade was necessary for any spore production, as well as a long period of high air humidity. The values obtained in the present study were a little bit higher than those previously published, which may arise questions about a possible changing trend of the behaviour in the development of the Dothistroma needle blight causal agent. We used autoregressive integrated moving average (ARIMA) models to predict the spore counts on the base of previous values of spore counts and dew point. For a locality from Hackerovka, the best ARIMA model was 1,0,0; and for a locality from Lanzhot, the best was 3,1,0. (Author) 19 refs.

  2. Spore analysis and tetrad dissection of Schizosaccharomyces pombe

    DEFF Research Database (Denmark)

    Ekwall, Karl; Thon, Genevieve

    2017-01-01

    Here we describe the processing of Schizosaccharomyces pombe spores in batches (random spore analysis) or through tetrad dissections. Spores are usually prepared from matings between haploid strains (producing zygotic asci) or from sporulating diploids (producing azygotic asci). In random spore...... analysis, a snail enzyme preparation is used to digest the walls of asci to release free spores that are diluted and plated to form colonies. In tetrad dissection, a needle attached to a micromanipulator is used to pick asci and separate spores. Tetrad dissection has traditionally been the method of choice...

  3. Inactivation of Bacterial Spore, Endotoxin, Lipid A, Normal Prion and Abnormal Prion by Exposures to Several Sorts of Gases Plasma.

    Science.gov (United States)

    Shintani, Hideharu

    2016-01-01

    This review discusses the application of several sorts of non-equilibrium gas plasma discharges for sterilization and disinfection treatments against spores or bioburden on/in the healthcare products or biological indicators. The basic properties of electrical discharges are briefly reviewed and thereafter the paper discusses the interactions of gas plasma with several sorts of biological systems such as bacteria, bacterial spores, endotoxins, lipid A and normal and abnormal prion proteins.

  4. Bacillus subtilis spores expressing the VP28 antigen: a potential oral treatment to protect Litopenaeus vannamei against white spot syndrome.

    Science.gov (United States)

    Nguyen, Anh T V; Pham, Cuong K; Pham, Huong T T; Pham, Hang L; Nguyen, Anh H; Dang, Lua T; Huynh, Hong A; Cutting, Simon M; Phan, Tuan-Nghia

    2014-09-01

    The envelope protein VP28 of white spot syndrome virus (WSSV) is considered a candidate antigen for use in a potential vaccine to this important shrimp pathogen (the cause of white spot syndrome, WSS). Here, we used spores of Bacillus subtilis to display VP28 on the spore surface. Trials were conducted to evaluate their ability to protect shrimps against WSSV infection. The gene cotB-vp28 was integrated into the chromosome of the laboratory strain B. subtilis PY79, and expression of CotB-VP28 was detected by Western blotting and immunofluorescence. Expression of CotB-VP28 was equivalent to 1000 molecules per spore. PY79 and CotB-VP28 spores were mixed with pellets for feeding of whiteleg shrimps (Litopenaeus vannamei), followed by WSSV challenge. Superoxidase dismutase (SOD), phenoloxidase activities and mortality rates of the two shrimp groups were evaluated. Groups fed with PY79 and CotB-VP28 spores at day 7 had increased SOD activities of 29% and increased phenoloxidase activities of 15% and 33%, respectively, compared to those of the control group. Fourteen days postchallenge, 35% of vaccinated shrimps had died compared to 49% of those fed naked spores (PY79) and 66% untreated, unchallenged animals. These data suggest that spores expressing VP28 have potential as a prophylactic treatment of WSS.

  5. Investigation of Chlorine Treatment DNA-Based Detection of the Bacillus anthracis Spore

    Science.gov (United States)

    2005-12-01

    chloramine derivatives. These chloramines spontaneously oligomerize forming stable adducts with proteins and nucleic acids. In addition, reducing...exposure with heat is altering spore biomolecules such as proteins that can bind with PCR primers and template. In this experiment, the effects that heat...by BSA was determined by amending chlorine solutions with the protein and then quantifying free chlorine residuals using the DPD (N,N-diethyl-p

  6. Chemical and morphological studies of bacterial spore formation. IV. The development of spore refractility.

    Science.gov (United States)

    YOUNG, I E; JAMES, P C

    1962-01-01

    From the stage of a completed membranous forespore to that of a fully ripened free spore, synchronously sporulating cells of a variant Bacillus cereus were studied by cytological and chemical methods. Particular attention was paid to the development of the three spore layers-cortex, coat, and exosporium-in relation to the forespore membrane. First, the cortex is laid down between the recently described (5) double layers of the forespore membrane. Then when the cortex is (1/3) fully formed, the spore coat and exosporium are laid down peripheral to the outer membrane layer covering the cortex. As these latter layers appear, the spores, previously dense by dark phase contrast, gradually "whiten" or show an increase in refractive index. With this whitening, calcium uptake commences, closely followed by the synthesis of dipicolinic acid and the process is terminated, an hour later, with the formation of a fully refractile spore. In calcium-deficient media, final refractility is lessened and dipicolinic acid is formed only in amounts proportional to the available calcium. If calcium is withheld during the period of uptake beyond a critical point, sporulating cells lose the ability to assimilate calcium and to form normal amounts of dipicolinic acid. The resulting deficient spores are liberated from the sporangia but are unstable in water suspensions. Unlike ripe spores, they do not react violently to acid hydrolysis and, in thin sections, their cytoplasmic granules continue to stain with lead solutions.

  7. UV resistance of Bacillus anthracis spores revisited: validation of Bacillus subtilis spores as UV surrogates for spores of B. anthracis Sterne.

    Science.gov (United States)

    Nicholson, Wayne L; Galeano, Belinda

    2003-02-01

    Recent bioterrorism concerns have prompted renewed efforts towards understanding the biology of bacterial spore resistance to radiation with a special emphasis on the spores of Bacillus anthracis. A review of the literature revealed that B. anthracis Sterne spores may be three to four times more resistant to 254-nm-wavelength UV than are spores of commonly used indicator strains of Bacillus subtilis. To test this notion, B. anthracis Sterne spores were purified and their UV inactivation kinetics were determined in parallel with those of the spores of two indicator strains of B. subtilis, strains WN624 and ATCC 6633. When prepared and assayed under identical conditions, the spores of all three strains exhibited essentially identical UV inactivation kinetics. The data indicate that standard UV treatments that are effective against B. subtilis spores are likely also sufficient to inactivate B. anthracis spores and that the spores of standard B. subtilis strains could reliably be used as a biodosimetry model for the UV inactivation of B. anthracis spores.

  8. High-Resolution Spore Coat Architecture and Assembly of Bacillus Spores

    Energy Technology Data Exchange (ETDEWEB)

    Malkin, A J; Elhadj, S; Plomp, M

    2011-03-14

    Elucidating the molecular architecture of bacterial and cellular surfaces and its structural dynamics is essential to understanding mechanisms of pathogenesis, immune response, physicochemical interactions, environmental resistance, and provide the means for identifying spore formulation and processing attributes. I will discuss the application of in vitro atomic force microscopy (AFM) for studies of high-resolution coat architecture and assembly of several Bacillus spore species. We have demonstrated that bacterial spore coat structures are phylogenetically and growth medium determined. We have proposed that strikingly different species-dependent coat structures of bacterial spore species are a consequence of sporulation media-dependent nucleation and crystallization mechanisms that regulate the assembly of the outer spore coat. Spore coat layers were found to exhibit screw dislocations and two-dimensional nuclei typically observed on inorganic and macromolecular crystals. This presents the first case of non-mineral crystal growth patterns being revealed for a biological organism, which provides an unexpected example of nature exploiting fundamental materials science mechanisms for the morphogenetic control of biological ultrastructures. We have discovered and validated, distinctive formulation-specific high-resolution structural spore coat and dimensional signatures of B. anthracis spores (Sterne strain) grown in different formulation condition. We further demonstrated that measurement of the dimensional characteristics of B. anthracis spores provides formulation classification and sample matching with high sensitivity and specificity. I will present data on the development of an AFM-based immunolabeling technique for the proteomic mapping of macromolecular structures on the B. anthracis surfaces. These studies demonstrate that AFM can probe microbial surface architecture, environmental dynamics and the life cycle of bacterial and cellular systems at near

  9. Ptaquiloside in bracken spores from Britain

    DEFF Research Database (Denmark)

    Rasmussen, Lars Holm; Schmidt, Bjørn; Sheffield, Elizabeth

    2013-01-01

    Secondary metabolites from bracken fern (Pteridium aquilinum (L.) Kuhn) are suspected of causing cancer in humans. The main carcinogen is the highly water-soluble norsesquiterpene glucoside ptaquiloside, which may be ingested by humans through food, e.g. via contaminated water, meat or milk. It has...... in a collection of spores from Britain. Ptaquiloside was present in all samples, with a maximum of 29μgg−1, which is very low compared to other parts of the fern. Considering the low abundance of spores in breathing air under normal conditions, this exposure route is likely to be secondary to milk or drinking...

  10. Comparison of hand hygiene procedures for removing Bacillus cereus spores.

    Science.gov (United States)

    Sasahara, Teppei; Hayashi, Shunji; Hosoda, Kouichi; Morisawa, Yuji; Hirai, Yoshikazu

    2014-01-01

    Bacillus cereus is a spore-forming bacterium. B. cereus occasionally causes nosocomial infections, in which hand contamination with the spores plays an important role. Therefore, hand hygiene is the most important practice for controlling nosocomial B. cereus infections. This study aimed to determine the appropriate hand hygiene procedure for removing B. cereus spores. Thirty volunteers' hands were experimentally contaminated with B. cereus spores, after which they performed 6 different hand hygiene procedures. We compared the efficacy of the procedures in removing the spores from hands. The alcohol-based hand-rubbing procedures scarcely removed them. The soap washing procedures reduced the number of spores by more than 2 log10. Extending the washing time increased the spore-removing efficacy of the washing procedures. There was no significant difference in efficacy between the use of plain soap and antiseptic soap. Handwashing with soap is appropriate for removing B. cereus spores from hands. Alcohol-based hand-rubbing is not effective.

  11. Summoning the wind: Hydrodynamic cooperation of forcibly ejected fungal spores

    CERN Document Server

    Roper, Marcus; Cobb, Ann; Dillard, Helene R; Pringle, Anne

    2009-01-01

    The forcibly launched spores of the crop pathogen \\emph{Sclerotinia sclerotiorum} must eject through many centimeters of nearly still air to reach the flowers of the plants that the fungus infects. Because of their microscopic size, individually ejected spores are quickly brought to rest by drag. In the accompanying fluid dynamics video we show experimental and numerical simulations that demonstrate how, by coordinating the nearly simultaneous ejection of hundreds of thousands of spores,\\emph{Sclerotinia} and other species of apothecial fungus are able to sculpt a flow of air that carries spores across the boundary layer and around intervening obstacles. Many spores are sacrificed to create this flow of air. Although high speed imaging of spore launch in a wild isolate of the dung fungus \\emph{Ascobolus} shows that the synchronization of spore ejections is self-organized, which could lead to spores delaying their ejection to avoid being sacrificed, simulations and asymptotic analysis show that, close the frui...

  12. Immunomodulatory effects of Bacillus subtilis (natto) B4 spores on murine macrophages.

    Science.gov (United States)

    Xu, Xin; Huang, Qin; Mao, Yulong; Cui, Zhiwen; Li, Yali; Huang, Yi; Rajput, Imran Rashid; Yu, Dongyou; Li, Weifen

    2012-12-01

    To investigate the immunomodulatory effects of Bacillus subtilis (B. subtilis) (natto) B4 spores on murine macrophage, RAW 264.7 cells were cultured alone or with B subtilis (natto) B4 spores at 37°C for 12 hrs, then both cells and culture supernatants were collected for analyses. Exposure of RAW 264.7 cells to B. subtilis (natto) B4 spores had no significant effects on macrophage viability and amounts of extracellular lactate dehydrogenase (LDH). However, it remarkably increased the activities of acid phosphatase (ACP), lactate dehydrogenase (LDH) and inducible nitric oxide synthase (iNOS) in cells and the amounts of nitric oxide (NO) and cytokines (tumor necrosis factor-alpha, interferon-gamma, interleukin [IL]-1 beta, IL-6, IL-12, IL-10 and macrophage inflammatory protein-2) in culture supernatants. These results demonstrate that B. subtilis (natto) B4 spores are harmless to murine macrophages and can stimulate their activation through up-regulation of ACP and LDH activities and enhance their immune function by increasing iNOS activity and stimulating NO and cytokine production. The above findings suggest that B. subtilis (natto) B4 spores have immunomodulatory effects on macrophages. © 2012 The Societies and Wiley Publishing Asia Pty Ltd.

  13. Observation of the dynamic germination of single bacterial spores using rapid Raman imaging

    Science.gov (United States)

    Kong, Lingbo; Setlow, Peter; Li, Yong-qing

    2014-01-01

    The dynamics of bacterial spore germination were successfully observed using a fast Raman imaging system, in combination with real-time phase contrast microscopy. By using a multifocus scan scheme, the spontaneous Raman-scattering imaging acquisition speed was increased to ˜30 s per frame while maintaining diffraction-limited resolution, which allowed monitoring of the dynamics of spore germination on a time scale of tens of seconds to a few minutes. This allowed simultaneous gathering of rich spatial distribution information on different cellular components including time-lapse molecular images of Ca-dipicolinic acid, protein, and nucleic acid during germination of single bacterial spores for the periods of 30 to 60 min.

  14. Inactivation of three genera of dominant fungal spores in groundwater using chlorine dioxide: Effectiveness, influencing factors, and mechanisms.

    Science.gov (United States)

    Wen, Gang; Xu, Xiangqian; Huang, Tinglin; Zhu, Hong; Ma, Jun

    2017-08-18

    Fungi in aquatic environments received more attention recently; therefore, the characteristics of inactivation of fungal spores by widely used disinfectants are quite important. Nonetheless, the inactivation efficacy of fungal spores by chlorine dioxide is poorly known. In this study, the effectiveness of chlorine dioxide at inactivation of three dominant genera of fungal spores isolated from drinking groundwater and the effects of pH, temperature, chlorine dioxide concentration, and humic acid were evaluated. The inactivation mechanisms were explored by analyzing the leakage of intracellular substances, the increase in extracellular adenosine triphosphate (ATP), deoxyribonucleic acid (DNA), and proteins as well as the changes in spore morphology. The kinetics of inactivation by chlorine dioxide fitted the Chick-Watson model, and different fungal species showed different resistance to chlorine dioxide inactivation, which was in the following order: Cladosporium sp.>Trichoderma sp. >Penicillium sp., which are much more resistant than Escherichia coli. Regarding the three genera of fungal spores used in this study, chlorine dioxide was more effective at inactivation of fungal spores than chlorine. The effect of disinfectant concentration and temperature was positive, and the impact of pH levels (6.0 and 7.0) was insignificant, whereas the influence of water matrices on the inactivation efficiency was negative. The increased concentration of characteristic extracellular substances and changes of spore morphology were observed after inactivation with chlorine dioxide and were due to cell wall and cell membrane damage in fungal spores, causing the leakage of intracellular substances and death of a fungal spore. Copyright © 2017. Published by Elsevier Ltd.

  15. Cadmium affects the mitochondrial viability and the acid soluble thiols concentration in liver, kidney, heart and gills of Ancistrus brevifilis (Eigenmann, 1920)

    Science.gov (United States)

    Velasquez-Vottelerd, P.; Anton, Y.; Salazar-Lugo, R.

    2015-01-01

    The freshwater fish Ancistrus brevifilis, which is found in Venezuelan rivers, is considered a potential sentinel fish in ecotoxicological studies. The cadmium (Cd) effect on the mitochondrial viability (MV) and acid soluble thiols levels (AST) in A. brevifilis tissues (liver, kidney, heart, and gill) was evaluated. Forty-two fish with similar sizes and weights were randomly selected, of which 7 fish (with their respective replicate) were exposed for 7 and 30 days to a Cd sublethal concentration (0.1 mg.l-1). We determined the MV through a Janus Green B colorimetric assay and we obtained the concentration of AST by Ellman’s method. Mitochondrial viability decreased in fish exposed to Cd for 30 days with the liver being the most affected tissue. We also detected a significant decrease in AST levels was in fishes exposed to Cd for 7 days in liver and kidney tissues; these results suggests that AST levels are elevated in some tissues may act as cytoprotective and adaptive alternative mechanism related to the ROS detoxification, maintenance redox status and mitochondrial viability. Organ-specifics variations were observed in both assays. We conclude that the Cd exposure effect on AST levels and MV, vary across fish tissues and is related to the exposure duration, the molecule dynamics in different tissues, the organism and environmental conditions. PMID:26623384

  16. Measurement of Metabolic Activity in Dormant Spores of Bacillus Species

    Science.gov (United States)

    2015-01-14

    SECURITY CLASSIFICATION OF: Spores of Bacillus megaterium and Bacillus subtilis were harvested shortly after release from sporangia, incubated under...Dec-2014 Approved for Public Release; Distribution Unlimited Final Report: Measurement of Metabolic Activity in Dormant Spores of Bacillus Species...Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 spores, Bacillus , spore dormancy, 3-phosphoglycerate REPORT DOCUMENTATION PAGE 11

  17. Fifth international fungus spore conference. [Abstracts]: Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Timberlake, W.E.

    1993-04-01

    This folio contains the proceedings of the Fifth International Fungal Spore Conference held August 17-21, 1991 at the Unicoi State Park at Helen, Georgia. The volume contains abstracts of each oral presentation as well as a collection of abstracts describing the poster sessions. Presentations were organized around the themes (1) Induction of Sporulation, (2) Nuclear Division, (3) Spore Formation, (4) Spore Release and Dispersal, and (4) Spore Germination.

  18. Hydrolysis of cortex peptidoglycan during bacterial spore germination.

    Science.gov (United States)

    Makino, Shio; Moriyama, Ryuichi

    2002-06-01

    Despite the most extreme dormancy and resistance properties among living systems, bacterial endospores retain an alert sensory mechanism to respond to the germinants and initiate germination. Although the molecular mechanism of the germination process is not completely described, current progress in the studies on the enzymes involved in the process gave us a somewhat clearer picture of the process of spore peptidoglycan (cortex) hydrolysis, a major biochemical event in germination. Germination-specific cortex-lytic enzymes require muramic acid d-lactam in their substrates. At least two types of enzymes are involved in the germination process: a spore cortex-lytic enzyme (SCLE) and a cortical fragment-lytic enzyme (CFLE). Except for their peptidoglycan-binding regions, the primary structures of SCLE and CFLE vary according species. Both enzymes differ in their hydrolytic bond-specificities and recognition of the substrates morphology. SCLE appears to initiate germination by uncrosslinking the intract cortex, and the CFLE further degrades the polysaccharide moiety of the SCLE-modified cortex. In vivo CFLE activity is likely regulated by its requirement for partially un-crosslinked cortex, while SCLE requires activation process. Clostridium perfringens SCLE is activated by a germination-specific serine protease during germination, but the activation mechanism of SCLE in Bacillus species is unknown. Cortex-lytic enzymes are expressed at the early stage of sporulation but the compartment of expression depends on proteins. However, all enzymes are located outside the cortex layer in dormant spores, suggesting that the hydrolysis process initiates at the exterior side of the cortex. The assembly of the germination apparatus is also discussed.

  19. 9 CFR 113.66 - Anthrax Spore Vaccine-Nonencapsulated.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Anthrax Spore Vaccine-Nonencapsulated. 113.66 Section 113.66 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE... REQUIREMENTS Live Bacterial Vaccines § 113.66 Anthrax Spore Vaccine—Nonencapsulated. Anthrax Spore...

  20. Dendritic Cells Endocytose Bacillus Anthracis Spores: Implications for Anthrax Pathogenesis

    Science.gov (United States)

    2007-11-02

    Dendritic Cells Endocytose Bacillus anthracis Spores: Implications for Anthrax Pathogenesis1 Katherine C. Brittingham,* Gordon Ruthel,* Rekha G...germination and dissemination of spores. Found in high frequency throughout the respiratory track, dendritic cells (DCs) routinely take up foreign...COVERED - 4. TITLE AND SUBTITLE Dendritic cells endocytose Bacillus anthracis spores: implications for anthrax pathogenesis, The Journal of

  1. Imaging bacterial spores by soft-x-ray microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Stead, A.D.; Ford, T.W. [Univ. of London, Surrey (United Kingdom); Judge, J. [Unilever plc, Sharnbrook (United Kingdom)] [and others

    1997-04-01

    Bacterial spores are able to survive dehydration, but neither the physiological nor structural basis of this have been fully elucidated. Furthermore, once hydrated, spores often require activation before they will germinate. Several treatments can be used to activate spores, but in the case of Bacillus subtlis the most effective is heat treatment. The physiological mechanism associated with activation is also not understood, but some workers suggest that the loss of calcium from the spores may be critical. However, just prior to germination, the spores change from being phase bright to phase dark when viewed by light microscopy. Imaging spores by soft x-ray microscopy is possible without fixation. Thus, in contrast to electron microscopy, it is possible to compare the structure of dehydrated and hydrated spores in a manner not possible previously. A further advantage is that it is possible to monitor individual spores by phase contrast light microscopy immediately prior to imaging with soft x-rays; whereas, with both electron microscopy and biochemical studies, it is a population of spores being studied without knowledge of the phase characteristics of individual spores. This study has therefore tried to compare dehydrated and hydrated spores and to determine if there is a mass loss from individual spores as they pass the transition from being phase bright to phase dark.

  2. Toxicity of terpenes to spores and mycelium of Penicillium digitatum

    NARCIS (Netherlands)

    Wolken, W.A.M.; Tramper, J.; Werf, M.J. van der

    2002-01-01

    Spores, although often considered metabolically inert, catalyze a variety of reactions. The use of spores instead of mycelium for bioconversions has several advantages. In this paper, we describe the difference in susceptibility of mycelium and spores against toxic substrates and products. A higher

  3. Toxicity of terpenes to spores and mycelium op Penicillium digitatum

    NARCIS (Netherlands)

    Wolken, W.A.M.; Tramper, J.; Werf, van der M.J.

    2002-01-01

    Spores, although often considered metabolically inert, catalyze a variety of reactions. The use of spores instead of mycelium for bioconversions has several advantages. In this paper, we describe the difference in susceptibility of mycelium and spores against toxic substrates and products. A higher

  4. Geraniol biotransformation-pathway in spores of Penicillium digitatum

    NARCIS (Netherlands)

    Wolken, W.A.M.; Werf, M.J. van der

    2001-01-01

    Spores of Penicillium digitatum ATCC 201167 transform geraniol, nerol, citral, and geranic acid into methylheptenone. Spore extracts of P. digitatum convert geraniol and nerol NAD+-dependently into citral. Spore extract also converts citral NAD+-dependently into geranic acid. Furthermore, a novel en

  5. Mechanisms of Resistance in Microbial Spores

    Science.gov (United States)

    1990-12-20

    solids (and water) content by immersion refractometry . Heat-activated spores of Bacillus stearotherrnophilus were found to be separable into two...incrC· ment of bacterial cells, enabling determination of their solids content by immersion refractometry . The results agreed well with values for

  6. Airborne myxomycete spores: detection using molecular techniques

    Science.gov (United States)

    Kamono, Akiko; Kojima, Hisaya; Matsumoto, Jun; Kawamura, Kimitaka; Fukui, Manabu

    2009-01-01

    Myxomycetes are organisms characterized by a life cycle that includes a fruiting body stage. Myxomycete fruiting bodies contain spores, and wind dispersal of the spores is considered important for this organism to colonize new areas. In this study, the presence of airborne myxomycetes and the temporal changes in the myxomycete composition of atmospheric particles (aerosols) were investigated with a polymerase chain reaction (PCR)-based method for Didymiaceae and Physaraceae. Twenty-one aerosol samples were collected on the roof of a three-story building located in Sapporo, Hokkaido Island, northern Japan. PCR analysis of DNA extracts from the aerosol samples indicated the presence of airborne myxomycetes in all the samples, except for the one collected during the snowfall season. Denaturing gradient gel electrophoresis (DGGE) analysis of the PCR products showed seasonally varying banding patterns. The detected DGGE bands were subjected to sequence analyses, and four out of nine obtained sequences were identical to those of fruiting body samples collected in Hokkaido Island. It appears that the difference in the fruiting period of each species was correlated with the seasonal changes in the myxomycete composition of the aerosols. Molecular evidence shows that newly formed spores are released and dispersed in the air, suggesting that wind-driven dispersal of spores is an important process in the life history of myxomycetes. This study is the first to detect airborne myxomycetes with the use of molecular ecological analyses and to characterize their seasonal distribution.

  7. Phospholipase Cδ regulates germination of Dictyostelium spores

    NARCIS (Netherlands)

    Dijken, Peter van; Haastert, Peter J.M. van

    2001-01-01

    Background: Many eukaryotes, including plants and fungi make spores that resist severe environmental stress. The micro-organism Dictyostelium contains a single phospholipase C gene (PLC); deletion of the gene has no effect on growth, cell movement and differentiation. In this report we show that PLC

  8. Phospholipase Cδ regulates germination of Dictyostelium spores

    NARCIS (Netherlands)

    Dijken, Peter van; Haastert, Peter J.M. van

    2001-01-01

    Background: Many eukaryotes, including plants and fungi make spores that resist severe environmental stress. The micro-organism Dictyostelium contains a single phospholipase C gene (PLC); deletion of the gene has no effect on growth, cell movement and differentiation. In this report we show that PLC

  9. Effects of Citral on Aspergillus flavus Spores by Quasi-elastic Light Scattering and Multiplex Microanalysis Techniques

    Institute of Scientific and Technical Information of China (English)

    Man LUO; Li-Ke JIANG; Yao-Xiong HUANG; Ming XIAO; Bo LI; Guo-Lin ZOU

    2004-01-01

    Citral refined from Litsea cubeba oil has been found to have a strong influence on fungi,especially Aspergillus flavus. Multiplex microanalysis and quasi-elastic light scattering techniques were applied to study the effects of citral on Aspergillus flavus spores from the levels of membrane, organelle and intracellular macromolecule. It was found that citral injured the wall and the membrane of A. flavus spore,resulting in decrease of its elasticity. After entering the cell, citral not only influenced the genetic expression of mitochondrion reduplication and its morphology, but also changed the aggregation of protein-like macromolecules. As a result, cells, organelles and macromolecules lost their normal structures and functions,eventually leading to the loss of germination ability of A. flavus spores. Since Litsea cubeba oil as food additive and antifungal agent is safe and less poisonous, it is important to elucidate the inhibitory mechanisms of Litsea cubeba oil on the germination ability ofA. flavus spore.

  10. Nanoscale chemical imaging of Bacillus subtilis spores by combining tip-enhanced Raman scattering and advanced statistical tools.

    Science.gov (United States)

    Rusciano, Giulia; Zito, Gianluigi; Isticato, Rachele; Sirec, Teja; Ricca, Ezio; Bailo, Elena; Sasso, Antonio

    2014-12-23

    Tip-enhanced Raman Scattering (TERS) has recently emerged as a powerful spectroscopic technique capable of providing subdiffraction morphological and chemical information on samples. In this work, we apply TERS spectroscopy for surface analysis of the Bacillus subtilis spore, a very attractive biosystem for a wide range of applications regulated by the spore surface properties. The observed spectra reflect the complex and heterogeneous environment explored by the plasmonic tip, therefore exhibiting significant point-to-point variations at the nanoscale. Herein, we demonstrate that TERS data processing via principal component analysis allows handling such spectral changes, thus enabling an unbiased correlative imaging based on TERS. Our experimental outcomes suggest a denser arrangement of both proteins and carbohydrates on specific spore surface regions simultaneously revealed by AFM phase imaging. Successful TERS analysis of spores' surface is useful for bacterial surface-display systems and drug delivery applications.

  11. Mapping of Proteomic Composition on the Surfaces of Bacillus spores by Atomic Force Microscopy-based Immunolabeling

    Energy Technology Data Exchange (ETDEWEB)

    Plomp, M; Malkin, A J

    2008-06-02

    Atomic force microscopy provides a unique capability to image high-resolution architecture and structural dynamics of pathogens (e.g. viruses, bacteria and bacterial spores) at near molecular resolution in native conditions. Further development of atomic force microscopy in order to enable the correlation of pathogen protein surface structures with specific gene products is essential to understand the mechanisms of the pathogen life cycle. We have applied an AFM-based immunolabeling technique for the proteomic mapping of macromolecular structures through the visualization of the binding of antibodies, conjugated with nanogold particles, to specific epitopes on Bacillus spore surfaces. This information is generated while simultaneously acquiring the surface morphology of the pathogen. The immunospecificity of this labeling method was established through the utilization of specific polyclonal and monoclonal antibodies that target spore coat and exosporium epitopes of Bacillus atrophaeus and Bacillus anthracis spores.

  12. Studies on the bacterial spore coat 6 effects of alkali extraction on the spore of Bacillus thiaminolyticus.

    Science.gov (United States)

    Minami, J; Ichikawa, T; Kondo, M

    1977-01-01

    Thin sections of the spore of Bacillus thiaminolyticus Matsukawa and Misawa show a characteristic surface structure with five ridges, and a series of three district layers. The outer layer of the spore coat was peeled off by SDS sonic treatment, and than the middle layer was solubilized by alkali extraction of the SDS sonic-treated spore. The spores subjected to these treatments were still refractile, heat resistant, and contained dipicolinic acid, but lost their resistance to mechanical shock.

  13. Monitoring Rates and Heterogeneity of High-Pressure Germination of Bacillus Spores by Phase-Contrast Microscopy of Individual Spores

    Science.gov (United States)

    2014-01-01

    SECURITY CLASSIFICATION OF: The germination of multiple individual Bacillus subtilis spores by a high pressure (HP) of 140-150 (unless noted...otherwise) megaPascals (MPa) that activates spore germinant receptors (GRs) was monitored by phase contrast microscopy in a diamond anvil cell. Major...conclusions were that: i) >95% of spores germinated in 40 min; ii) individual spore’s HP germination kinetics were very similar to those for nutrient

  14. Source strength of fungal spore aerosolization from moldy building material

    Energy Technology Data Exchange (ETDEWEB)

    Gorny, Rafa L.; Reponen, Tiina; Grinshpun, Sergey A.; Willeke, Klaus [Cincinnati Univ., Dept. of Environmental Health, Cincinnati, OH (United States)

    2001-07-01

    The release of Aspergillus versicolor, Cladosporium cladosporioides, and Penicillium melinii spores from agar and ceiling tile surfaces was tested under different controlled environmental conditions using a newly designed and constructed aerosolization chamber. This study revealed that all the investigated parameters, such as fungal species, air velocity above the surface, texture of the surface, and vibration of contaminated material, affected the fungal spore release. It was found that typical indoor air currents can release up to 200 spores cm {sup -2} from surface with fungal spores during 30-min experiments. The release of fungal spores from smooth agar surfaces was found to be inadequate for accurately predicting the emission from rough ceiling tile surfaces because the air turbulence increases the spore release from a rough surface. A vibration of a frequency of 1Hz at a power level of 14W resulted in a significant increase in the spore release rate. The release appears to depend on the morphology of the fungal colonies grown on ceiling tile surfaces including the thickness of conidiophores, the length of spore chains, and the shape of spores. The spores were found to be released continuously during each 30-min experiment. However, the release rate was usually highest during the first few minutes of exposure to air currents and mechanical vibration. About 71-88% of the spores released during a 30-min interval became airborne during the first 10min. (Author)

  15. Detection of chlorophylls in spores of seven ferns.

    Science.gov (United States)

    Tseng, Mei-Hwei; Lin, Kuei-Huei; Huang, Yi-Jia; Chang, Ya-Lan; Huang, Sheng-Cih; Kuo, Li-Yaung; Huang, Yao-Moan

    2017-03-01

    Fern spores were traditionally classified into chlorophyllous (green) and nonchlorophyllous (nongreen) types based on the color visible to the naked eye. Recently, a third type, "cryptochlorophyllous spores", is recognized, and these spores are nongreen under white light but contain chlorophylls. Epifluorescence microscopy was previously used to detect chlorophylls in cryptochlorophyllous spores. In addition to epifluorescence microscopy, current study performed some other approaches, including spore-squash epifluorescence, absorption spectra, laser-induced fluorescence emission spectra, thin layer chromatography (TLC), and ultra-high performance liquid chromatography with ultraviolet and mass spectrometric detection (UHPLC-UV-MS) in order to detect chlorophylls of spores of seven ferns (Sphaeropteris lepifera, Ceratopteris thalictroides, Leptochilus wrightii, Leptochilus pothifolius, Lepidomicrosorum buergerianum, Osmunda banksiifolia, and Platycerium grande). Destructive methods, such as TLC and UHPLC-UV-MS, successfully detected chlorophylls inside the spores when their signals of red fluorescence under epifluorescence microscope were masked by spore wall. Although UHPLC-UV-MS analysis was the most sensitive and reliable for determining the chlorophylls of spores, spore-squash epifluorescence is not only reliable but also cost- and time-effective one among our study methods. In addition, we first confirmed that Lepidomicrosorium buergerianum, Leptochilus pothifolius, Leptochilus wrightii, and Platycerium grande, produce cryptochlorophyllous spores.

  16. Inactivation of Clostridium difficile spores by microwave irradiation.

    Science.gov (United States)

    Ojha, Suvash Chandra; Chankhamhaengdecha, Surang; Singhakaew, Sombat; Ounjai, Puey; Janvilisri, Tavan

    2016-04-01

    Spores are a potent agent for Clostridium difficile transmission. Therefore, factors inhibiting spores have been of continued interest. In the present study, we investigated the influence of microwave irradiation in addition to conductive heating for C. difficile spore inactivation in aqueous suspension. The spores of 15 C. difficile isolates from different host origins were exposed to conductive heating and microwave irradiation. The complete inhibition of spore viability at 10(7) CFU/ml was encountered following microwave treatment at 800 W for 60 s, but was not observed in the conductive-heated spores at the same time-temperature exposure. The distinct patterns of ultrastructural alterations following microwave and conductive heat treatment were observed and the degree of damages by microwave was in the exposure time-dependent manner. Microwave would therefore be a simple and time-efficient tool to inactivate C. difficile spores, thus reducing the risk of C. difficile transmission.

  17. INCORPORATION OF BACTERIOPHAGE GENOME BY SPORES OF BACILLUS SUBTILIS.

    Science.gov (United States)

    TAKAHASHI, I

    1964-06-01

    Takahashi, I. (Microbiology Research Institute, Ottawa, Ontario, Canada). Incorporation of bacteriophage genome by spores of Bacillus subtilis. J. Bacteriol. 87:1499-1502. 1964-The buoyant density in a CsCl gradient of deoxyribonucleic acid (DNA) extracted from spores of Bacillus subtilis was found to be identical to that of DNA from vegetative cells. Density-gradient centrifugation of DNA of spores derived from cultures infected with phage PBS 1 revealed the presence of a minor band whose density corresponded to that of the phage DNA in addition to the spore DNA. No intermediate bands were present. The relative amount of the phage DNA present in the spores was estimated to be 11%, suggesting that spores of this organism may incorporate several copies of the phage genome. Although the possibility that true lysogeny may occur cannot be entirely eliminated, the results seem to indicate that the phage genomes incorporated into spores are not attached to the host chromosome in this system.

  18. Determination of fungal spore release from wet building materials

    DEFF Research Database (Denmark)

    Kildesø, J.; Wurtz, H.; Nielsen, Kristian Fog;

    2003-01-01

    of fungal spores was induced by well-defined jets of air impacting from rotating nozzles. The spores and other particles released from the surface were transported by the air flowing from the chamber through a top outlet to a particle counter and sizer. For two of the fungi (Penicillium chrysogenum...... and Trichoderma harzianum ), the number of spores produced on the gypsum board and subsequently released was quantified. Also the relationship between air velocities from 0.3 to 3 m/s over the surface and spore release has been measured. The method was found to give very reproducible results for each fungal...... isolate, whereas the spore release is very different for different fungi under identical conditions. Also, the relationship between air velocity and spore release depends on the fungus. For some fungi a significant number of particles smaller than the spore size were released. The method applied...

  19. Mushroom spore dispersal by convectively-driven winds

    CERN Document Server

    Dressaire, Emilie; Song, Boya; Roper, Marcus

    2015-01-01

    Thousands of fungal species rely on mushroom spores to spread across landscapes. It has long been thought that spores depend on favorable airflows for dispersal -- that active control of spore dispersal by the parent fungus is limited to an impulse delivered to the spores to carry them clear of the gill surface. Here we show that evaporative cooling of the air surrounding the mushroom pileus creates convective airflows capable of carrying spores at speeds of centimeters per second. Convective cells can transport spores from gaps that may be only a centimeter high, and lift spores ten centimeters or more into the air. The work reveals how mushrooms tolerate and even benefit from crowding, and provides a new explanation for their high water needs.

  20. Bacterial spore structures and their protective role in biocide resistance.

    Science.gov (United States)

    Leggett, M J; McDonnell, G; Denyer, S P; Setlow, P; Maillard, J-Y

    2012-09-01

    The structure and chemical composition of bacterial spores differ considerably from those of vegetative cells. These differences largely account for the unique resistance properties of the spore to environmental stresses, including disinfectants and sterilants, resulting in the emergence of spore-forming bacteria such as Clostridium difficile as major hospital pathogens. Although there has been considerable work investigating the mechanisms of action of many sporicidal biocides against Bacillus subtilis spores, there is far less information available for other species and particularly for various Clostridia. This paucity of information represents a major gap in our knowledge given the importance of Clostridia as human pathogens. This review considers the main spore structures, highlighting their relevance to spore resistance properties and detailing their chemical composition, with a particular emphasis on the differences between various spore formers. Such information will be vital for the rational design and development of novel sporicidal chemistries with enhanced activity in the future.

  1. [Bacterial spore--a new vaccine vehicle--a review].

    Science.gov (United States)

    Wang, Yanchun; Zhang, Zhaoshan

    2008-03-01

    Bacterial spores are robust and dormant life forms with formidable resistance properties. Spores of the genus Bacillus have been used for a long time as probiotics for oral bacteriotherapy both in humans and animals. Recently, genetically modified B. subtilis spores and B. anthracis spores have been used as indestructible delivery vehicles for vaccine antigens. They were used as vaccine vehicles or spore vaccine for oral immunization against tetanus and anthrax, and the results were very exciting. Unlike many second generation vaccine systems currently under development, bacterial spores offer heat stability and the flexibility for genetic manipulation. At the same time, they can elicit mucosal immune response by oral and nasal administration. This review focuses on the use of recombinant spores as vaccine delivery vehicles.

  2. Fern spore longevity in saline water: can sea bottom sediments maintain a viable spore bank?

    Science.gov (United States)

    de Groot, G Arjen; During, Heinjo

    2013-01-01

    Freshwater and marine sediments often harbor reservoirs of plant diaspores, from which germination and establishment may occur whenever the sediment falls dry. Therewith, they form valuable records of historical inter- and intraspecific diversity, and are increasingly exploited to facilitate diversity establishment in new or restored nature areas. Yet, while ferns may constitute a considerable part of a vegetation's diversity and sediments are known to contain fern spores, little is known about their longevity, which may suffer from inundation and--in sea bottoms--salt stress. We tested the potential of ferns to establish from a sea or lake bottom, using experimental studies on spore survival and gametophyte formation, as well as a spore bank analysis on sediments from a former Dutch inland sea. Our experimental results revealed clear differences among species. For Asplenium scolopendrium and Gymnocarpium dryopteris, spore germination was not affected by inundated storage alone, but decreased with rising salt concentrations. In contrast, for Asplenium trichomanes subsp. quadrivalens germination decreased following inundation, but not in response to salt. Germination rates decreased with time of storage in saline water. Smaller and less viable gametophytes were produced when saline storage lasted for a year. Effects on germination and gametophyte development clearly differed among genotypes of A. scolopendrium. Spore bank analyses detected no viable spores in marine sediment layers. Only two very small gametophytes (identified as Thelypteris palustris via DNA barcoding) emerged from freshwater sediments. Both died before maturation. We conclude that marine, and likely even freshwater sediments, will generally be of little value for long-term storage of fern diversity. The development of any fern vegetation on a former sea floor will depend heavily on the deposition of spores onto the drained land by natural or artificial means of dispersal.

  3. In situ investigation of Geobacillus stearothermophilus spore germination and inactivation mechanisms under moderate high pressure.

    Science.gov (United States)

    Georget, Erika; Kapoor, Shobhna; Winter, Roland; Reineke, Kai; Song, Youye; Callanan, Michael; Ananta, Edwin; Heinz, Volker; Mathys, Alexander

    2014-08-01

    Bacterial spores are a major concern for food safety due to their high resistance to conventional preservation hurdles. Innovative hurdles can trigger bacterial spore germination or inactivate them. In this work, Geobacillus stearothermophilus spore high pressure (HP) germination and inactivation mechanisms were investigated by in situ infrared spectroscopy (FT-IR) and fluorometry. G. stearothermophilus spores' inner membrane (IM) was stained with Laurdan fluorescent dye. Time-dependent FT-IR and fluorescence spectra were recorded in situ under pressure at different temperatures. The Laurdan spectrum is affected by the lipid packing and level of hydration, and provided information on the IM state through the Laurdan generalized polarization. Changes in the -CH2 and -CH3 asymmetric stretching bands, characteristic of lipids, and in the amide I' band region, characteristic of proteins' secondary structure elements, enabled evaluation of the impact of HP on endospores lipid and protein structures. These studies were complemented by ex situ analyses (plate counts and microscopy). The methods applied showed high potential to identify germination mechanisms, particularly associated to the IM. Germination up to 3 log10 was achieved at 200 MPa and 55 °C. A molecular-level understanding of these mechanisms is important for the development and validation of multi-hurdle approaches to achieve commercial sterility.

  4. Spore development and nuclear inheritance in arbuscular mycorrhizal fungi

    Directory of Open Access Journals (Sweden)

    Hijri Mohamed

    2011-02-01

    Full Text Available Abstract Background A conventional tenet of classical genetics is that progeny inherit half their genome from each parent in sexual reproduction instead of the complete genome transferred to each daughter during asexual reproduction. The transmission of hereditary characteristics from parents to their offspring is therefore predictable, although several exceptions are known. Heredity in microorganisms, however, can be very complex, and even unknown as is the case for coenocytic organisms such as Arbuscular Mycorrhizal Fungi (AMF. This group of fungi are plant-root symbionts, ubiquitous in most ecosystems, which reproduce asexually via multinucleate spores for which sexuality has not yet been observed. Results We examined the number of nuclei per spore of four AMF taxa using high Z-resolution live confocal microscopy and found that the number of nuclei was correlated with spore diameter. We show that AMF have the ability, through the establishment of new symbioses, to pass hundreds of nuclei to subsequent generations of multinucleated spores. More importantly, we observed surprising heterogeneity in the number of nuclei among sister spores and show that massive nuclear migration and mitosis are the mechanisms by which AMF spores are formed. We followed spore development of Glomus irregulare from hyphal swelling to spore maturity and found that the spores reached mature size within 30 to 60 days, and that the number of nuclei per spores increased over time. Conclusions We conclude that the spores used for dispersal of AMF contain nuclei with two origins, those that migrate into the spore and those that arise by mitosis in the spore. Therefore, these spores do not represent a stage in the life cycle with a single nucleus, raising the possibility that AMF, unlike all other known eukaryotic organisms, lack the genetic bottleneck of a single-nucleus stage.

  5. Study on Extraction of Acid-Soluble Collagens from Silver Carp Skin%鲢鱼鱼皮中酸溶性胶原蛋白提取工艺研究

    Institute of Scientific and Technical Information of China (English)

    黄爱妮; 汪海波; 李丽; 胡小泓; 周胜男

    2016-01-01

    With silver carp fish skin as raw material,the optimal extraction parameters of acid-soluble collagens were explored by single factor test and orthogonal test. The denaturation temperatures of acid-soluble collagens were analyzed by AR-500 dynamic rheometer. The results showed that the optimal parameters for the extraction of acid-soluble collagens from silver carp skin were with acetate as the extraction agent,the concentration of acetic acid 0.3 mol/L,material/liquid ratio of 1∶60 (g/mL) for 96 h. The starting denaturation temperature of acid-soluble collagens from silver carp skin was 32.31℃,and the peak temperature was 34.82℃.%以鲢鱼鱼皮为原料,通过单因素试验和正交试验对鲢鱼鱼皮中酸溶性胶原蛋白的提取工艺参数进行分析,并用AR-500动态流变仪对鲢鱼鱼皮中酸溶性胶原蛋白的热变性温度进行分析。结果表明:鲢鱼鱼皮原料中酸溶性胶原蛋白提取的最佳工艺条件为:以乙酸作为提取剂,乙酸浓度0.3 mol/L,料液比1∶60(g/mL),提取时间96 h;此胶原蛋白的热变性起始温度为32.31℃,峰值温度为34.82℃。

  6. Maternal parentage influences spore production but not spore pigmentation in the anisogamous and hermaphroditic fungus Neurospora crassa

    DEFF Research Database (Denmark)

    Zimmerman, Kolea; Levitis, Daniel; Pringle, Anne

    2014-01-01

    , and various ascospore characteristics. Mixed effects models of these data show that the female parent accounts for the majority of variation in perithecial production, number of spores produced, and spore germination. Surprisingly, both sexes equally influence the percentage of spores that are pigmented....... In this fungus, pigmented spores are viable and unpigmented spores are inviable. These results show that while both parents influence all these traits, maternal influence is strongest on both fertility and mortality traits until the spores are physiologically independent of the maternal cytoplasm......., Hall, & Kowbel 2011). Precise genetic distances between mating pairs were calculated to control for the effects of crossing distance on offspring production. We performed reciprocal crosses of all 121 strain pairings and collected data on perithecial production, ascospore (sexual spore) production...

  7. CLOSTRIDIUM SPORE ATTACHMENT TO HUMAN CELLS

    Energy Technology Data Exchange (ETDEWEB)

    PANESSA-WARREN,B.; TORTORA,G.; WARREN,J.

    1997-08-10

    This paper uses high resolution scanning electron microscopy (SEM) with a LaB6 gun and the newest commercial field emission guns, to obtain high magnification images of intact clostridial spores throughout the activation/germination/outgrowth process. By high resolution SEM, the clostridial exosporial membrane can be seen to produce numerous delicate projections (following activation), that extend from the exosporial surface to a nutritive substrate (agar), or cell surface when anaerobically incubated in the presence of human cells (embryonic fibroblasts and colon carcinoma cells). Magnifications of 20,000 to 200,000Xs at accelerating voltages low enough to minimize or eliminate specimen damage (1--5 kV) have permitted the entire surface of C.sporogenes and C.difficile endospores to be examined during all stages of germination. The relationships between the spore and the agar or human cell surface were also clearly visible.

  8. The effect of rifampicin on the developmental phases of germinating spores of Clostridum sp., MSp+.

    Science.gov (United States)

    Hawirko, R Z; Bhatnagar, P K; Chung, K L; Chow, C T

    1977-12-01

    The effect of rifampicin on the developmental phases of germinating spores of Clostridium botulinum, MSp+, has been studied. At sublethal concentrations of rifampicin (0.05 ng/ml) the time periods required for outgrowth and vegetative growth was significantly prolonged because of the inhibition of RNA and protein synthesis. However, rifampicin had essentially no effect on DNA synthesis or on subsequent spore formation. Chemical analyses showed that the amount of protein present in vegetative cells of the rifampicin-treated cultures was twice as great as in the untreated cultures but the total protein content of endospores was the same in both cases. It was revealed in ultrastructural studies of rifampicin (0.1 ng/ml) treated cultures, examined after 22 h, that septum formation and normal cell division of the emerging cell was blocked and a few cells showed constriction which produced one normal and one protoplast-like daughter cell.

  9. Methyl Iodide Fumigation of Bacillus anthracis Spores.

    Science.gov (United States)

    Sutton, Mark; Kane, Staci R; Wollard, Jessica R

    2015-09-01

    Fumigation techniques such as chlorine dioxide, vaporous hydrogen peroxide, and paraformaldehyde previously used to decontaminate items, rooms, and buildings following contamination with Bacillus anthracis spores are often incompatible with materials (e.g., porous surfaces, organics, and metals), causing damage or residue. Alternative fumigation with methyl bromide is subject to U.S. and international restrictions due to its ozone-depleting properties. Methyl iodide, however, does not pose a risk to the ozone layer and has previously been demonstrated as a fumigant for fungi, insects, and nematodes. Until now, methyl iodide has not been evaluated against Bacillus anthracis. Sterne strain Bacillus anthracis spores were subjected to methyl iodide fumigation at room temperature and at 550C. Efficacy was measured on a log-scale with a 6-log reduction in CFUs being considered successful compared to the U.S. Environmental Protection Agency biocide standard. Such efficacies were obtained after just one hour at 55 °C and after 12 hours at room temperature. No detrimental effects were observed on glassware, PTFE O-rings, or stainless steel. This is the first reported efficacy of methyl iodide in the reduction of Bacillus anthracis spore contamination at ambient and elevated temperatures.

  10. Role of YpeB in Cortex Hydrolysis during Germination of Bacillus anthracis Spores

    OpenAIRE

    2014-01-01

    The infectious agent of the disease anthrax is the spore of Bacillus anthracis. Bacterial spores are extremely resistant to environmental stresses, which greatly hinders spore decontamination efforts. The spore cortex, a thick layer of modified peptidoglycan, contributes to spore dormancy and resistance by maintaining the low water content of the spore core. The cortex is degraded by germination-specific lytic enzymes (GSLEs) during spore germination, rendering the cells vulnerable to common ...

  11. Thirty-four identifiable airborne fungal spores in Havana, Cuba

    Directory of Open Access Journals (Sweden)

    Michel Almaguer

    2015-05-01

    Full Text Available The airborne fungal spore content in Havana, Cuba, collected by means a non-viable volumetric methodology, was studied from November 2010 – October 2011. The study, from a qualitative point of view, allowed the characterization of 29 genera and 5 fungal types, described following the Saccardo´s morphotypes, as well as their morphobiometrical characteristics. In the amerospores morphotype, the conidia of 7 genera (with ascospores, basidiospores and uredospores and 5 fungal types were included. Among phragmospores morphotype, the ascospores and conidia of 12 different genera were identified. The dictyospores morphotype only included conidial forms from 6 genera. Finally, the less frequent morphotypes were staurospores, didymospores and distosepted spores. In general, the main worldwide spread mitosporic fungi also predominated in the Havana atmosphere, accompanied by some ascospores and basidiospores. [i]Cladosporium[/i] cladosporioides type was the most abundant with a total of 148,717 spores, followed by [i]Leptosphaeria, Coprinus[/i] and the [i]Aspergillus-Penicillium [/i]type spores, all of them with total values ranging from 20,591 – 16,392 spores. The higher monthly concentrations were registered in January (31,663 spores and the lowest in December (7,314 spores. Generally, the average quantity of spores recorded during the months of the dry season (20,599 spores was higher compared with that observed during the rainy season (17,460 spores.

  12. Thirty-four identifiable airborne fungal spores in Havana, Cuba

    Directory of Open Access Journals (Sweden)

    Michel Almaguer

    2015-05-01

    Full Text Available The airborne fungal spore content in Havana, Cuba, collected by means a non-viable volumetric methodology, was studied from November 2010 – October 2011. The study, from a qualitative point of view, allowed the characterization of 29 genera and 5 fungal types, described following the Saccardo´s morphotypes, as well as their morphobiometrical characteristics. In the amerospores morphotype, the conidia of 7 genera (with ascospores, basidiospores and uredospores and 5 fungal types were included. Among phragmospores morphotype, the ascospores and conidia of 12 different genera were identified. The dictyospores morphotype only included conidial forms from 6 genera. Finally, the less frequent morphotypes were staurospores, didymospores and distosepted spores. In general, the main worldwide spread mitosporic fungi also predominated in the Havana atmosphere, accompanied by some ascospores and basidiospores. Cladosporium cladosporioides type was the most abundant with a total of 148,717 spores, followed by Leptosphaeria, Coprinus and the Aspergillus-Penicillium type spores, all of them with total values ranging from 20,591 – 16,392 spores. The higher monthly concentrations were registered in January (31,663 spores and the lowest in December (7,314 spores. Generally, the average quantity of spores recorded during the months of the dry season (20,599 spores was higher compared with that observed during the rainy season (17,460 spores.

  13. Thirty-four identifiable airborne fungal spores in Havana, Cuba.

    Science.gov (United States)

    Almaguer, Michel; Aira, María-Jesús; Rodríguez-Rajo, F Javier; Fernandez-Gonzalez, Maria; Rojas-Flores, Teresa I

    2015-01-01

    The airborne fungal spore content in Havana, Cuba, collected by means a non-viable volumetric methodology, was studied from November 2010 - October 2011. The study, from a qualitative point of view, allowed the characterization of 29 genera and 5 fungal types, described following the Saccardo´s morphotypes, as well as their morphobiometrical characteristics. In the amerospores morphotype, the conidia of 7 genera (with ascospores, basidiospores and uredospores) and 5 fungal types were included. Among phragmospores morphotype, the ascospores and conidia of 12 different genera were identified. The dictyospores morphotype only included conidial forms from 6 genera. Finally, the less frequent morphotypes were staurospores, didymospores and distosepted spores. In general, the main worldwide spread mitosporic fungi also predominated in the Havana atmosphere, accompanied by some ascospores and basidiospores. Cladosporium cladosporioides type was the most abundant with a total of 148,717 spores, followed by Leptosphaeria, Coprinus and the Aspergillus-Penicillium type spores, all of them with total values ranging from 20,591 - 16,392 spores. The higher monthly concentrations were registered in January (31,663 spores) and the lowest in December (7,314 spores). Generally, the average quantity of spores recorded during the months of the dry season (20,599 spores) was higher compared with that observed during the rainy season (17,460 spores).

  14. Airborne Spore Analysis of Karabük Atmosphere

    Directory of Open Access Journals (Sweden)

    Ayşe Kaplan

    2014-05-01

    Full Text Available In order to identify types and amounts of airborne allergenic spore dispersal in the atmosphere of Karabük by gravimetric method in 2006 and 2007, two Durham samplers were situated on roof and garden of Technical Education Faculty of Karabük University between the dates January 1, 2006 and December 31, 2007. As a result of the analysis a total of 2822.2±625.01 spore/cm2 spore quantity belonging to 21 types was identified. Of this total, 1106±250.33 spore/cm² was observed in 2006 and 1716±374.68 spore/cm² was observed in 2007. Spore concentrations revealed no statistically differences between two samplers (t=0.1527-1.1355, p>0.05. The relationship between spore concentrations and meteorological factors was displayed by Spearman Correlation analysis. The highest quantity of fungal spores and Myxomycetes were determined in June and July. Cladosporium, Alternaria, Ustilago, Myxomycetes and unidentified Ascomycetes spores were recorded as dominant. In the end of this study, a two-year spore calendar was prepared.

  15. Bryophyte spore germinability is inhibited by peatland substrates

    Science.gov (United States)

    Bu, Zhao-Jun; Li, Zhi; Liu, Li-Jie; Sundberg, Sebastian; Feng, Ya-Min; Yang, Yun-He; Liu, Shuang; Song, Xue; Zhang, Xing-Lin

    2017-01-01

    Bryophyte substrates and species may affect spore germination through allelopathy. Polytrichum strictum is currently expanding in peatlands in north-eastern China - is this an effect of its superior spore germinability or do its gametophytes have a stronger allelopathic effect than do Sphagnum? We conducted a spore burial experiment to test the effect of species identity, substrate and water table depth (WTD) on spore germinability and bryophyte allelopathic effect with P. strictum and two Sphagnum species (S. palustre and S. magellanicum). After 5 months of burial during a growing season, the spores were tested for germinability. Allelopathic effect of bryophyte substrates was assessed by the difference between spore germinability after being stored inside or outside the substrates. After burial, more than 90% of the spores lost their germinability across all three species due to ageing and allelopathy. Spore germinability differed among species, where the spores in S. palustre had a higher germination frequency than those in P. strictum. The three bryophytes maintained a higher germinability in Sphagnum than in Polytrichum hummocks, probably due to a stronger allelopathic effect of P. strictum. Water table drawdown by 10 cm increased germinability by more than 60% across the three species. The study indicates that P. strictum does not possess an advantage regarding spore germination but rather its gametophytes have a stronger allelopathic effect. Due to the weaker inhibitive effect of Sphagnum gametophytes, P. strictum may have a potential establishment superiority over Sphagnum in peatlands, in addition to a better drought tolerance, which may explain its current expansion.

  16. VeA of Aspergillus niger increases spore dispersing capacity by impacting conidiophore architecture.

    Science.gov (United States)

    Wang, Fengfeng; Dijksterhuis, Jan; Wyatt, Timon; Wösten, Han A B; Bleichrodt, Robert-Jan

    2015-01-01

    Aspergillus species are highly abundant fungi worldwide. Their conidia are among the most dominant fungal spores in the air. Conidia are formed in chains on the vesicle of the asexual reproductive structure called the conidiophore. Here, it is shown that the velvet protein VeA of Aspergillus niger maximizes the diameter of the vesicle and the spore chain length. The length and width of the conidiophore stalk and vesicle were reduced nearly twofold in a ΔveA strain. The latter implies a fourfold reduced surface area to develop chains of spores. Over and above this, the conidial chain length was approximately fivefold reduced. The calculated 20-fold reduction in formation of conidia by ΔveA fits the 8- to 17-fold decrease in counted spore numbers. Notably, morphology of the ΔveA conidiophores of A. niger was very similar to that of wild-type Aspergillus sydowii. This suggests that VeA is key in conidiophore architecture diversity in the fungal kingdom. The finding that biomass formation of the A. niger ΔveA strain was reduced twofold shows that VeA not only impacts dispersion capacity but also colonization capacity of A. niger.

  17. An ultra-high temperature flow-through capillary device for bacterial spore lysis.

    Science.gov (United States)

    Hukari, Kyle W; Patel, Kamlesh D; Renzi, Ronald F; West, Jay A A

    2010-08-01

    Rapid and specific characterization of bacterial endospores is dependent on the ability to rupture the cell wall to enable analysis of the intracellular components. In particular, bacterial spores from the bacillus genus are inherently robust and very difficult to lyze or solubilize. Standard protocols for spore inactivation include chemical treatment, sonication, pressure, and thermal lysis. Although these protocols are effective for the inactivation of these agents, they are less well suited for sample preparation for analysis using proteomic and genomic approaches. To overcome this difficulty, we have designed a simple capillary device to perform thermal lysis of bacterial spores. Using this device, we were able to super heat (195 degrees C) an ethylene glycol lysis buffer to perform rapid flow-through rupture and solubilization of bacterial endospores. We demonstrated that the lysates from this preparation method are compatible with CGE as well as DNA amplification analysis. We further demonstrated the flow-through lysing device could be directly coupled to a miniaturized electrophoresis instrument for integrated sample preparation and analysis. In this arrangement, we were enabled to perform sample lysis, fluorescent dye labeling, and protein electrophoresis analysis of bacterial spores in less than 10 min. The described sample preparation device is rapid, simple, inexpensive, and easily integratable with various microfluidic devices.

  18. Biocidal Energetic Materials for the Destruction of Spore Forming Bacteria

    Science.gov (United States)

    2015-07-01

    L R E P O R T DTRA-TR-13-52 Biocidal Energetic Materials for the Destruction of Spore Forming Bacteria Distribution Statement A...Z39.18 00-07-2015 Technical N/A Biocidal Energetic Materials for the Destruction of Spore Forming Bacteria HDTRA1-10-1-0108 Emily M. Hunt, Ph.D. West...understand the interaction between spore forming bacteria and thermite reactions and products and to exploit energetic material reactions with

  19. Spore Coat Architecture of Clostridium novyi NT Spores▿

    OpenAIRE

    Plomp, Marco; McCaffery, J. Michael; Cheong, Ian; Huang, Xin; Bettegowda, Chetan; Kinzler, Kenneth W.; Zhou, Shibin; Vogelstein, Bert; Malkin, Alexander J.

    2007-01-01

    Spores of the anaerobic bacterium Clostridium novyi NT are able to germinate in and destroy hypoxic regions of tumors in experimental animals. Future progress in this area will benefit from a better understanding of the germination and outgrowth processes that are essential for the tumorilytic properties of these spores. Toward this end, we have used both transmission electron microscopy and atomic force microscopy to determine the structure of both dormant and germinating spores. We found th...

  20. Inactivation of Bacillus Anthracis Spores Using Carbon Nanotubes

    Science.gov (United States)

    2014-10-30

    the attachment of B. anthracis spores, when in combination with natural peptide nisin, it can inhibit the biofilm formation from B. anthrancis spores...McCoy, Chang Yang, Wei Chen, Ebenezer Addae, Liju Yang. Investigation of Gold/ Copper Sulfide Core/Shell Nanoparticles’ Antimicrobial Activity to...1. “Effect of Gold/ Copper Sulfide Core/Shell Nanoparticles on Bacillus Anthracis Spores and Cells”, E. Addae1, M. Lilly1, E. McCoy1, C. Yang2, W

  1. Chitinolytic activity in viable spores of encephalitozoon species

    Directory of Open Access Journals (Sweden)

    Schottelius J

    2000-01-01

    Full Text Available By employing 4-methylumbelliferyl-beta-D-NN',N"-triacetylchitotriose substrate in a semi quantitative assay, chitinolytic activity in viable spores of Encephalitozoon cuniculi and E. intestinalis was detected and dependence on reaction time, spore concentration, concentration of substrate and temperature were demonstrated. It was possible to block the chitinolytic activity by chitin hydrolysate. By incubation at 80°C for 10 min or at 55°C for 20 min the spores were loosing the chitinolytic activity. Incubation of the spores in trypsin reduced the chitinolytic activity. Cellulase activity could not be detected.

  2. Surface tension propulsion of fungal spores by use of microdroplets

    CERN Document Server

    Noblin, Xavier; Dumais, Jacques

    2010-01-01

    Many edible mushrooms eject their spores (about 10 microns in size) at high speed (about 1 m/s) using surface tension forces in a few microseconds. Basically the coalescence of a droplet with the spore generates the necessary momentum to eject the spore. We have detailed this mechanism in \\cite{noblin2}. In this article, we give some details about the high speed movies (up to 250000 fps) of mushrooms' spores ejection attached to this submission. This video was submitted as part of the Gallery of Fluid Motion 2010 which is showcase of fluid dynamics videos.

  3. Quantitative and Sensitive RNA Based Detection of Bacillus Spores

    Directory of Open Access Journals (Sweden)

    Ekaterina eOsmekhina

    2014-03-01

    Full Text Available The fast and reliable detection of bacterial spores is of great importance and still remains a challenge. Here we describe a direct RNA based diagnostic method for the specific detection of viable bacterial spores which does not depends on an enzymatic amplification step and therefore is directly appropriate for quantification. The procedure includes the following steps: (i heat activation of spores, (ii germination and enrichment cultivation, (iii cell lysis, and (iv analysis of 16S rRNA in crude cell lysates using a sandwich hybridization assay. The sensitivity of the method is dependent on the cultivation time and the detection limit; it is possible to detect 10 spores per ml when the RNA analysis is performed after 6 h of enrichment cultivation. At spore concentrations above 106 spores per ml the cultivation time can be shortened to 30 min. Total analysis times are in the range of 2 to 8 hours depending on the spore concentration in samples. The developed procedure is optimized at the example of Bacillus subtilis spores but should be applicable to other organisms. The new method can easily be modified for other target RNAs and is suitable for specific detection of spores from known groups of organisms.

  4. A bacterial spore model of pulsed electric fields on spore morphology change revealed by simulation and SEM.

    Science.gov (United States)

    Qiu, Xing; Lee, Yin Tung; Yung, Pun To

    2014-01-01

    A two-layered spore model was proposed to analyze morphological change of bacterial spores subjected under pulsed electric fields. The outer layer, i.e. spore coat, was defined by Mooney-Rivlin hyper-elastic material model. The inner layer, i.e. peptidoglycan and spore core, was modeled by applying additional adhesion forces. The effect of pulsed electric fields on surface displacement was simulated in COMSOL Multiphysics and verified by SEM. The electro-mechanical theory, considering spore coat as a capacitor, was used to explain concavity; and the thin viscoelastic film theory, considering membrane bilayer as fluctuating surfaces, was used to explain leakage forming. Mutual interaction of external electric fields, charged spores, adhesion forces and ions movement were all predicted to contribute to concavity and leakage.

  5. Analysis of a Novel Spore Antigen in Bacillus anthracis That Contributes to Spore Opsonization

    Science.gov (United States)

    2008-01-01

    sporulated by culture in Leighton–Doi broth with spectinomycin, and the spores were harvested and purified as described above. Single colonies of the...percentage recovery was calculated by determining the percentage of mutant bacteria (based upon antibiotic resistance) recovered from the spleen... Fermentation , purification, and characterization of protective antigen from a recombinant, avirulent strain of Bacillus anthracis. Appl Environ

  6. Adhesion of Colletotrichum lindemuthianum Spores to Phaseolus vulgaris Hypocotyls and to Polystyrene

    OpenAIRE

    Young, David H.; Kauss, Heinrich

    1984-01-01

    Adhesion of Colletotrichum lindemuthianum spores to Phaseolus vulgaris hypocotyls and to polystyrene was inhibited by the respiratory inhibitors sodium azide and antimycin A, indicating a requirement for metabolic activity in adhesion. Various commercial proteins and Tween 80 also reduced adhesion to both surfaces. Binding was enhanced by the presence of salts: sodium, potassium, calcium, and magnesium chlorides were equally effective. The removal of surface wax from hypocotyls by chloroform ...

  7. Contamination of healthcare workers' hands with bacterial spores.

    Science.gov (United States)

    Sasahara, Teppei; Ae, Ryusuke; Watanabe, Michiyo; Kimura, Yumiko; Yonekawa, Chikara; Hayashi, Shunji; Morisawa, Yuji

    2016-08-01

    Clostridium species and Bacillus spp. are spore-forming bacteria that cause hospital infections. The spores from these bacteria are transmitted from patient to patient via healthcare workers' hands. Although alcohol-based hand rubbing is an important hand hygiene practice, it is ineffective against bacterial spores. Therefore, healthcare workers should wash their hands with soap when they are contaminated with spores. However, the extent of health care worker hand contamination remains unclear. The aim of this study is to determine the level of bacterial spore contamination on healthcare workers' hands. The hands of 71 healthcare workers were evaluated for bacterial spore contamination. Spores attached to subject's hands were quantitatively examined after 9 working hours. The relationship between bacterial spore contamination and hand hygiene behaviors was also analyzed. Bacterial spores were detected on the hands of 54 subjects (76.1%). The mean number of spores detected was 468.3 CFU/hand (maximum: 3300 CFU/hand). Thirty-seven (52.1%) and 36 (50.7%) subjects were contaminated with Bacillus subtilis and Bacillus cereus, respectively. Nineteen subjects (26.8%) were contaminated with both Bacillus species. Clostridium difficile was detected on only one subject's hands. There was a significant negative correlation between the hand contamination level and the frequency of handwashing (r = -0.44, P < 0.01) and a significant positive correlation between the hand contamination level and the elapsed time since last handwashing (r = 0.34, P < 0.01). Healthcare workers' hands may be frequently contaminated with bacterial spores due to insufficient handwashing during daily patient care.

  8. Model simulations of fungal spore distribution over the Indian region

    Science.gov (United States)

    Ansari, Tabish U.; Valsan, Aswathy E.; Ojha, N.; Ravikrishna, R.; Narasimhan, Balaji; Gunthe, Sachin S.

    2015-12-01

    Fungal spores play important role in the health of humans, animals, and plants by constituting a class of the primary biological aerosol particles (PBAPs). Additionally, these could mediate the hydrological cycle by acting as nuclei for ice and cloud formation (IN and CCN respectively). Various processes in the biosphere and the variations in the meteorological conditions control the releasing mechanism of spores through active wet and dry discharge. In the present paper, we simulate the concentration of fungal spores over the Indian region during three distinct meteorological seasons by combining a numerical model (WRF-Chem) with the fungal spore emissions based on land-use type. Maiden high-resolution regional simulations revealed large spatial gradient and strong seasonal dependence in the concentration of fungal spores over the Indian region. The fungal spore concentrations are found to be the highest during winter (0-70 μg m-3 in December), moderately higher during summer (0-35 μg m-3 in May) and lowest during the monsoon (0-25 μg m-3 in July). The elevated concentrations during winter are attributed to the shallower boundary layer trapping the emitted fungal spores in smaller volume. In contrast, the deeper boundary layer mixing in May and stronger monsoonal-convection in July distribute the fungal spores throughout the lower troposphere (∼5 km). We suggest that the higher fungal spore concentrations during winter could have potential health impacts. While, stronger vertical mixing could enable fungal spores to influence the cloud formation during summer and monsoon. Our study provides the first information about the distribution and seasonal variation of fungal spores over the densely populated and observationally sparse Indian region.

  9. Clonal diversity and population genetic structure of arbuscular mycorrhizal fungi (Glomus spp.) studied by multilocus genotyping of single spores

    DEFF Research Database (Denmark)

    Holtgrewe-Stukenbrock, Eva; Rosendahl, Søren

    2005-01-01

    characterized by SSCP (single stranded conformation polymorphism) and sequencing.   All spore genotypes were unique suggesting that no recombination was taking place in the populations. There were no overall differences in the distribution of genotypes in the two fields and identical genotypes could be sampled......A nested multiplex PCR (polymerase chain reaction) approach was used for multilocus genotyping of arbuscular mycorrhizal fungal populations. This method allowed us to amplify multiple loci from Glomus single spores in a single PCR amplification. Variable introns in the two protein coding genes Gm...

  10. Live-imaging of Bacillus subtilis spore germination and outgrowth

    NARCIS (Netherlands)

    Pandey, R.

    2014-01-01

    Spores of Gram-positive bacteria such as Bacillus and Clostridium cause huge economic losses to the food industry. In food products, spores survive under food preservation conditions and subsequent germination and outgrowth eventually causes food spoilage. Therefore efforts are being made to elimina

  11. Inhibition of spore germination of Alternaria tenuis by sulfur dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Couey, H.M.

    1962-08-01

    As a part of a continuing study of SO/sub 2/ fumigation of table grapes, the effect of SO/sub 2/ on spores of an isolate of A. tenuis Auct. causing decay of table grapes was determined. The amount of SO/sub 2/ required to inhibit completely spore germination depended on availability of moisture and the temperature. At 20/sup 0/C, wet spores required 20-min exposure to 100 ppm SO/sub 2/ to prevent germination, but spores equilibrated at 90% relative humidity (RH) required 10-min exposure to 1000 ppm SO/sub 2/. Dry spores at 60% RH were unaffected by a 20-min exposure to 4000 ppm SO/sub 2/. Increasing the temperature in the range 5-20/sup 0/C increased effectiveness of the SO/sub 2/ treatment. A comparison of Alternaria with Botrytis cinerea Fr. (studied earlier) showed that wet spores of these organisms were about equally sensitive to SO/sub 2/, but that dry Alternaria spores were more resistant to SO/sub 2/ than dry Botrytis spores under comparable conditions.

  12. Mushrooms as Rainmakers: How Spores Act as Nuclei for Raindrops.

    Science.gov (United States)

    Hassett, Maribeth O; Fischer, Mark W F; Money, Nicholas P

    2015-01-01

    Millions of tons of fungal spores are dispersed in the atmosphere every year. These living cells, along with plant spores and pollen grains, may act as nuclei for condensation of water in clouds. Basidiospores released by mushrooms form a significant proportion of these aerosols, particularly above tropical forests. Mushroom spores are discharged from gills by the rapid displacement of a droplet of fluid on the cell surface. This droplet is formed by the condensation of water on the spore surface stimulated by the secretion of mannitol and other hygroscopic sugars. This fluid is carried with the spore during discharge, but evaporates once the spore is airborne. Using environmental electron microscopy, we have demonstrated that droplets reform on spores in humid air. The kinetics of this process suggest that basidiospores are especially effective as nuclei for the formation of large water drops in clouds. Through this mechanism, mushroom spores may promote rainfall in ecosystems that support large populations of ectomycorrhizal and saprotrophic basidiomycetes. Our research heightens interest in the global significance of the fungi and raises additional concerns about the sustainability of forests that depend on heavy precipitation.

  13. High resolution FESEM and TEM reveal bacterial spore attachment.

    Science.gov (United States)

    Panessa-Warren, Barbara J; Tortora, George T; Warren, John B

    2007-08-01

    Transmission electron microscopy (TEM) studies in the 1960s and early 1970s using conventional thin section and freeze fracture methodologies revealed ultrastructural bacterial spore appendages. However, the limited technology at that time necessitated the time-consuming process of imaging serial sections and reconstructing each structure. Consequently, the distribution and function of these appendages and their possible role in colonization or pathogenesis remained unknown. By combining high resolution field emission electron microscopy with TEM images of identical bacterial spore preparations, we have been able to obtain images of intact and sectioned Bacillus and Clostridial spores to clearly visualize the appearance, distribution, resistance (to trypsin, chloramphenicol, and heat), and participation of these structures to facilitate attachment of the spores to glass, agar, and human cell substrates. Current user-friendly commercial field emission scanning electron microscopes (FESEMs), permit high resolution imaging, with high brightness guns at lower accelerating voltages for beam sensitive intact biological samples, providing surface images at TEM magnifications for making direct comparisons. For the first time, attachment structures used by pathogenic, environmental, and thermophile bacterial spores could be readily visualized on intact spores to reveal how specific appendages and outer spore coats participated in spore attachment, colonization, and invasion.

  14. Improvement of immunodetection of bacterial spore antigen by ultrasonic cavitation.

    Science.gov (United States)

    Borthwick, Kathryn A J; Love, Tracey E; McDonnell, Martin B; Coakley, W Terence

    2005-11-15

    Ultrasonic cavitation was employed to enhance sensitivity of bacterial spore immunoassay detection, specifically, enzyme-linked immunosorbent assay (ELISA) and resonant mirror (RM) sensing. Bacillus spore suspensions were exposed to high-power ultrasound in a tubular sonicator operated at 267 kHz in both batch and flow modes. The sonicator was designed to deliver high output power and is in a form that can be cooled efficiently to avoid thermal denaturation of antigen. The 30-s batch and cooled flow (0.3 mL/min) sonication achieved an approximately 20-fold increase in ELISA sensitivity compared to unsonicated spores by ELISA. RM sensing of sonicated spores achieved detection sensitivity of approximately 10(6) spores/mL, whereas unsonicated spores were undetectable at the highest concentration tested. Improvements in detection were associated with antigen released from the spores. Equilibrium temperature increase in the tubular sonicator was limited to 14 K after 30 min and was maintained for 6 h with cooling and flow (0.3 mL/min). The work described here demonstrates the utility of the tubular sonicator for the improvement in the sensitivity of the detection of spores and its suitability as an in-line component of a rapid detection system.

  15. The Role of the Electrostatic Force in Spore Adhesion

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Eunhyea [Georgia Institute of Technology; Yiacoumi, Sotira [Georgia Institute of Technology; Lee, Ida [University of Tennessee, Knoxville (UTK); Tsouris, Costas [ORNL

    2010-01-01

    Electrostatic force is investigated as one of the components of the adhesion force between Bacillus thuringiensis (Bt) spores and planar surfaces. The surface potentials of a Bt spore and a mica surface are experimentally obtained using a combined atomic force microscopy (AFM)-scanning surface potential microscopy technique. On the basis of experimental information, the surface charge density of the spores is estimated at 0.03 {micro}C/cm{sup 2} at 20% relative humidity and decreases with increasing humidity. The Coulombic force is introduced for the spore-mica system (both charged, nonconductive surfaces), and an electrostatic image force is introduced to the spore-gold system because gold is electrically conductive. The Coulombic force for spore-mica is repulsive because the components are similarly charged, while the image force for the spore-gold system is attractive. The magnitude of both forces decreases with increasing humidity. The electrostatic forces are added to other force components, e.g., van der Waals and capillary forces, to obtain the adhesion force for each system. The adhesion forces measured by AFM are compared to the estimated values. It is shown that the electrostatic (Coulombic and image) forces play a significant role in the adhesion force between spores and planar surfaces.

  16. Identification of Differentially Expressed Genes during Bacillus subtilis Spore Outgrowth in High-Salinity Environments Using RNA Sequencing

    Science.gov (United States)

    Nagler, Katja; Krawczyk, Antonina O.; De Jong, Anne; Madela, Kazimierz; Hoffmann, Tamara; Laue, Michael; Kuipers, Oscar P.; Bremer, Erhard; Moeller, Ralf

    2016-01-01

    In its natural habitat, the soil bacterium Bacillus subtilis often has to cope with fluctuating osmolality and nutrient availability. Upon nutrient depletion it can form dormant spores, which can revive to form vegetative cells when nutrients become available again. While the effects of salt stress on spore germination have been analyzed previously, detailed knowledge on the salt stress response during the subsequent outgrowth phase is lacking. In this study, we investigated the changes in gene expression during B. subtilis outgrowth in the presence of 1.2 M NaCl using RNA sequencing. In total, 402 different genes were upregulated and 632 genes were downregulated during 90 min of outgrowth in the presence of salt. The salt stress response of outgrowing spores largely resembled the osmospecific response of vegetative cells exposed to sustained high salinity and included strong upregulation of genes involved in osmoprotectant uptake and compatible solute synthesis. The σB-dependent general stress response typically triggered by salt shocks was not induced, whereas the σW regulon appears to play an important role for osmoadaptation of outgrowing spores. Furthermore, high salinity induced many changes in the membrane protein and transporter transcriptome. Overall, salt stress seemed to slow down the complex molecular reorganization processes (“ripening”) of outgrowing spores by exerting detrimental effects on vegetative functions such as amino acid metabolism. PMID:27766092

  17. Bacillus atrophaeus Outer Spore Coat Assembly and Ultrastructure

    Energy Technology Data Exchange (ETDEWEB)

    Plomp, M; Leighton, T J; Wheeler, K E; Pitesky, M E; Malkin, A J

    2005-11-21

    Our previous atomic force microscopy (AFM) studies successfully visualized native Bacillus atrophaeus spore coat ultrastructure and surface morphology. We have shown that the outer spore coat surface is formed by a crystalline array of {approx}11 nm thick rodlets, having a periodicity of {approx}8 nm. We present here further AFM ultrastructural investigations of air-dried and fully hydrated spore surface architecture. In the rodlet layer, planar and point defects, as well as domain boundaries, similar to those described for inorganic and macromolecular crystals, were identified. For several Bacillus species, rodlet structure assembly and architectural variation appear to be a consequence of species-specific nucleation and crystallization mechanisms that regulate the formation of the outer spore coat. We propose a unifying mechanism for nucleation and self-assembly of this crystalline layer on the outer spore coat surface.

  18. Presence survival spores of Bacillus thuringiensis varieties in grain warehouse

    Directory of Open Access Journals (Sweden)

    Sánchez-Yáñez Juan Manuel

    2016-08-01

    Full Text Available Genus Bacillus thuringiensis (Bt synthesized spores and crystals toxic to pest-insects in agriculture. Bt is comospolitan then possible to isolate some subspecies or varieties from warehouse. The aims of study were: i to isolate Bt varieties from grain at werehouse ii to evaluate Bt toxicity on Spodoptera frugiperda and Shit-ophilus zeamaisese iii to analyze Bt spores persistence in Zea mays grains at werehouse compared to same Bt on grains exposed to sun radiation. Results showed that at werehouse were recovered more than one variety of Bt spores. According to each isolate Bt1 o Bt2 were toxic to S. frugiperda or S. zeamaisese. One those Bt belong to var morrisoni. At werehouse these spores on Z. mays grains surviving more time, while the same spores exposed to boicide sun radiation they died.

  19. Inhibition of Lipopolysaccharide-Induced Interleukin 8 in Human Adenocarcinoma Cell Line HT-29 by Spore Probiotics: B. coagulans and B. subtilis (natto).

    Science.gov (United States)

    Azimirad, Masoumeh; Alebouyeh, Masoud; Naji, Tahereh

    2017-03-01

    Probiotics are used as a treatment for different intestinal disorders. They confer health benefits by different ways. This study was aimed to investigate immunomodulatory effect of Bacillus probiotic spores on the production of lipopolysaccharide (LPS)-induced interleukin 8 (IL-8) in HT-29 intestinal epithelial cells. Differentiated intestinal epithelial cell line was used as a model for the study of colonization of purified spores (Bacillus subtilis (natto) and B. coagulans) and their anti-inflammatory effects. MTT assay and trypan blue staining were used for the detection of optimal concentration of the purified spores and LPS. Pre-treatment assay was done by treatment of the cells with the purified spores for 2 h, followed by challenges with LPS for 3 and 18 h. Post-treatment assay was done by initial treatment of the cells with LPS for 18 h, followed by the spores for 3 and 6 h. Levels of IL-8 secretion and its mRNA expression were measured by ELISA and relative Q real-time PCR. Our results showed similar rates of adherence to intestinal epithelial cells by the spore probiotics, while displaying no cytotoxic effect. In the pre-treatment assay, a significant decrease in IL-8, at both protein and mRNA levels, was measured for B. coagulans spores after the addition of LPS, which was higher than those observed for Bacillus subtilis (natto) spores. In the post-treatment assay, while Bacillus subtilis (but not B. coagulans) diminished the LPS-stimulated IL-8 levels after 3 h of incubation, the inhibitory effect was not constant. In conclusion, ability of Bacillus spore probiotics for adherence to intestinal epithelial cell and their anti-inflammatory effects, through interference with LPS/IL-8 signaling, was shown in this study. Further studies are needed to characterize responsible bacterial compounds associated with these effects.

  20. Decontamination Options for Drinking Water Contaminated with Bacillus anthracis Spores

    Energy Technology Data Exchange (ETDEWEB)

    Raber, E; Burklund, A

    2010-02-16

    Five parameters were evaluated with surrogates of Bacillus anthracis spores to determine effective decontamination options for use in a contaminated drinking water supply. The parameters were: (1) type of Bacillus spore surrogate (B. thuringiensis or B. atrophaeus); (2) spore concentration in suspension (10{sup 2} to 10{sup 6} spores/ml); (3) chemical characteristics of decontaminant [sodium dicholor-s-triazinetrione dihydrate (Dichlor), hydrogen peroxide, potassium peroxymonosulfate (Oxone), sodium hypochlorite, and VirkonS{reg_sign}]; (4) decontaminant concentration (0.01% to 5%); and (5) decontaminant exposure time (10 min to 24 hr). Results from 162 suspension tests with appropriate controls are reported. Hydrogen peroxide at a concentration of 5%, and Dichlor and sodium hypochlorite at a concentration of 2%, were effective at spore inactivation regardless of spore type tested, spore exposure time, or spore concentration evaluated. This is the first reported study of Dichlor as an effective decontaminant for B. anthracis spore surrogates. Dichlor's desirable characteristics of high oxidation potential, high level of free chlorine, and more neutral pH than that of other oxidizers evaluated appear to make it an excellent alternative. All three oxidizers were effective against B. atrophaeus spores in meeting EPA's biocide standard of greater than a 6 log kill after a 10-minute exposure time and at lower concentrations than typically reported for biocide use. Solutions of 5% VirkonS{reg_sign} and Oxone were less effective decontaminants than other options evaluated in this study and did not meet the EPA's efficacy standard for biocides. Differences in methods and procedures reported by other investigators make quantitative comparisons among studies difficult.

  1. Determination of fungal spore release from wet building materials.

    Science.gov (United States)

    Kildesø, J; Würtz, H; Nielsen, K F; Kruse, P; Wilkins, K; Thrane, U; Gravesen, S; Nielsen, P A; Schneider, T

    2003-06-01

    The release and transport of fungal spores from water-damaged building materials is a key factor for understanding the exposure to particles of fungal origin as a possible cause of adverse health effects associated to growth of fungi indoors. In this study, the release of spores from nine species of typical indoor fungi has been measured under controlled conditions. The fungi were cultivated for a period of 4-6 weeks on sterilized wet wallpapered gypsum boards at a relative humidity (RH) of approximately 97%. A specially designed small chamber (P-FLEC) was placed on the gypsum board. The release of fungal spores was induced by well-defined jets of air impacting from rotating nozzles. The spores and other particles released from the surface were transported by the air flowing from the chamber through a top outlet to a particle counter and sizer. For two of the fungi (Penicillium chrysogenum and Trichoderma harzianum), the number of spores produced on the gypsum board and subsequently released was quantified. Also the relationship between air velocities from 0.3 to 3 m/s over the surface and spore release has been measured. The method was found to give very reproducible results for each fungal isolate, whereas the spore release is very different for different fungi under identical conditions. Also, the relationship between air velocity and spore release depends on the fungus. For some fungi a significant number of particles smaller than the spore size were released. The method applied in the study may also be useful for field studies and for generation of spores for exposure studies.

  2. Survival of Spores of Trichoderma longibrachiatum in Space: data from the Space Experiment SPORES on EXPOSE-R

    Science.gov (United States)

    Neuberger, Katja; Lux-Endrich, Astrid; Panitz, Corinna

    2015-01-01

    In the space experiment `Spores in artificial meteorites' (SPORES), spores of the fungus Trichoderma longibrachiatum were exposed to low-Earth orbit for nearly 2 years on board the EXPOSE-R facility outside of the International Space Station. The environmental conditions tested in space were: space vacuum at 10-7-10-4 Pa or argon atmosphere at 105 Pa as inert gas atmosphere, solar extraterrestrial ultraviolet (UV) radiation at λ > 110 nm or λ > 200 nm with fluences up to 5.8 × 108 J m-2, cosmic radiation of a total dose range from 225 to 320 mGy, and temperature fluctuations from -25 to +50°C, applied isolated or in combination. Comparable control experiments were performed on ground. After retrieval, viability of spores was analysed by two methods: (i) ethidium bromide staining and (ii) test of germination capability. About 30% of the spores in vacuum survived the space travel, if shielded against insolation. However, in most cases no significant decrease was observed for spores exposed in addition to the full spectrum of solar UV irradiation. As the spores were exposed in clusters, the outer layers of spores may have shielded the inner part. The results give some information about the likelihood of lithopanspermia, the natural transfer of micro-organisms between planets. In addition to the parameters of outer space, sojourn time in space seems to be one of the limiting parameters.

  3. Rugged single domain antibody detection elements for Bacillus anthracis spores and vegetative cells.

    Directory of Open Access Journals (Sweden)

    Scott A Walper

    Full Text Available Significant efforts to develop both laboratory and field-based detection assays for an array of potential biological threats started well before the anthrax attacks of 2001 and have continued with renewed urgency following. While numerous assays and methods have been explored that are suitable for laboratory utilization, detection in the field is often complicated by requirements for functionality in austere environments, where limited cold-chain facilities exist. In an effort to overcome these assay limitations for Bacillus anthracis, one of the most recognizable threats, a series of single domain antibodies (sdAbs were isolated from a phage display library prepared from immunized llamas. Characterization of target specificity, affinity, and thermal stability was conducted for six sdAb families isolated from rounds of selection against the bacterial spore. The protein target for all six sdAb families was determined to be the S-layer protein EA1, which is present in both vegetative cells and bacterial spores. All of the sdAbs examined exhibited a high degree of specificity for the target bacterium and its spore, with affinities in the nanomolar range, and the ability to refold into functional antigen-binding molecules following several rounds of thermal denaturation and refolding. This research demonstrates the capabilities of these sdAbs and their potential for integration into current and developing assays and biosensors.

  4. Rugged single domain antibody detection elements for Bacillus anthracis spores and vegetative cells.

    Science.gov (United States)

    Walper, Scott A; Anderson, George P; Brozozog Lee, P Audrey; Glaven, Richard H; Liu, Jinny L; Bernstein, Rachel D; Zabetakis, Dan; Johnson, Linwood; Czarnecki, Jill M; Goldman, Ellen R

    2012-01-01

    Significant efforts to develop both laboratory and field-based detection assays for an array of potential biological threats started well before the anthrax attacks of 2001 and have continued with renewed urgency following. While numerous assays and methods have been explored that are suitable for laboratory utilization, detection in the field is often complicated by requirements for functionality in austere environments, where limited cold-chain facilities exist. In an effort to overcome these assay limitations for Bacillus anthracis, one of the most recognizable threats, a series of single domain antibodies (sdAbs) were isolated from a phage display library prepared from immunized llamas. Characterization of target specificity, affinity, and thermal stability was conducted for six sdAb families isolated from rounds of selection against the bacterial spore. The protein target for all six sdAb families was determined to be the S-layer protein EA1, which is present in both vegetative cells and bacterial spores. All of the sdAbs examined exhibited a high degree of specificity for the target bacterium and its spore, with affinities in the nanomolar range, and the ability to refold into functional antigen-binding molecules following several rounds of thermal denaturation and refolding. This research demonstrates the capabilities of these sdAbs and their potential for integration into current and developing assays and biosensors.

  5. Heat-induced oxidative injury contributes to inhibition of Botrytis cinerea spore germination and growth.

    Science.gov (United States)

    Zhao, Wei; Wisniewski, Michael; Wang, Wenjie; Liu, Jia; Liu, Yongsheng

    2014-03-01

    The inhibitory effect of heat treatment (HT) on Botrytis cinerea, a major postharvest fungal pathogen, and the possible mode of action were investigated. Spore germination and germ tube elongation of B. cinerea were both increasingly and significantly inhibited by HT (43 °C) for 10, 20 or 30 min. HT-induced gene expression of NADPH oxidase A, resulted in the intracellular accumulation of reactive oxygen species. HT-treated B. cinerea spores exhibited higher levels of oxidative damage to proteins and lipids, compared to the non-HT control. These findings indicate that HT resulted in oxidative damage which then played an important role in the inhibitory effect on B. cinerea. In the current study, HT was effective in controlling gray mold, caused by B. cinerea, in pear fruits. Understanding the mode of action by which HT inhibits fungal pathogens will help in the application of HT for management of postharvest fungal diseases of fruits and vegetables.

  6. Methods for neutralizing anthrax or anthrax spores

    Science.gov (United States)

    Sloan, Mark A; Vivekandanda, Jeevalatha; Holwitt, Eric A; Kiel, Johnathan L

    2013-02-26

    The present invention concerns methods, compositions and apparatus for neutralizing bioagents, wherein bioagents comprise biowarfare agents, biohazardous agents, biological agents and/or infectious agents. The methods comprise exposing the bioagent to an organic semiconductor and exposing the bioagent and organic semiconductor to a source of energy. Although any source of energy is contemplated, in some embodiments the energy comprises visible light, ultraviolet, infrared, radiofrequency, microwave, laser radiation, pulsed corona discharge or electron beam radiation. Exemplary organic semiconductors include DAT and DALM. In certain embodiments, the organic semiconductor may be attached to one or more binding moieties, such as an antibody, antibody fragment, or nucleic acid ligand. Preferably, the binding moiety has a binding affinity for one or more bioagents to be neutralized. Other embodiments concern an apparatus comprising an organic semiconductor and an energy source. In preferred embodiments, the methods, compositions and apparatus are used for neutralizing anthrax spores.

  7. Germination Requirements of Bacillus macerans Spores

    Science.gov (United States)

    Sacks, L. E.; Thompson, P. A.

    1971-01-01

    2-Phenylacetamide is an effective germinant for spores of five strains of Bacillus macerans, particularly in the presence of fructose. Benzyl penicillin, the phenyl acetamide derivative of penicillin, and phenylacetic acid are also good germinants. l-Asparagine is an excellent germinant for four strains. α-Amino-butyric acid is moderately effective. Pyridoxine, pyridoxal, adenine, and 2,6-diaminopurine are potent germinants for NCA strain 7X1 only. d-Glucose is a powerful germinant for strain B-70 only. d-Fructose and d-ribose strongly potentiate germination induced by other germinants (except l-asparagine) but have only weak activity by themselves. Niacinamide and nicotinamide-adenine dinucleotide, inactive by themselves, are active in the presence of fructose or ribose. Effects of pH, ion concentration, and temperature are described. PMID:4251279

  8. Development of a heat-stable and orally delivered recombinant M2e-expressing B. subtilis spore-based influenza vaccine.

    Science.gov (United States)

    Zhao, Guangyu; Miao, Yu; Guo, Yan; Qiu, Hongjie; Sun, Shihui; Kou, Zhihua; Yu, Hong; Li, Junfeng; Chen, Yue; Jiang, Shibo; Du, Lanying; Zhou, Yusen

    2014-01-01

    Highly conserved ectodomain of influenza virus M2 protein (M2e) is an important target for the development of universal influenza vaccines. Today, the use of chemical or genetic fusion constructs have been undertaken to overcome the low immunogenicity of M2e in vaccine formulation. However, current M2e vaccines are neither orally delivered nor heat-stable. In this study, we evaluated the immune efficacy of an orally delivered recombinant M2e vaccine containing 3 molcules of M2e consensus sequence of influenza A viruses, termed RSM2e3. To accomplish this, CotB, a spore coat of Bacillus subtilis (B. subtilis), was used as a fusion partner, and heat-stable nonpathogenic B. subtilis spores were used as the carrier. Our results showed that CotB-M2e3 fusion had no effect on spore structure or function in the resultant recombinant RSM2e3 strain and that heterologous influenza virus M2e protein was successfully displayed on the surface of the recombinant RSM2e3 spore. Importantly, recombinant RSM2e3 spores elicited strong and long-term M2e-specific systemic and mucosal immune responses, completely protecting immunized mice from lethal challenge of A/PR/8/34(H1N1) influenza virus. Taken together, our study forms a solid basis for the development of a novel orally delivered and heat-stable influenza vaccine based on B. subtilis spore surface display.

  9. Using Spores for Fusarium spp. Classification by MALDI-Based Intact Cell/Spore Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Wolfgang Winkler

    2012-01-01

    Full Text Available Fusarium is a widespread genus of filamentous fungi and a member of the soil microbial community. Certain subspecies are health threatening because of their mycotoxin production that affects the human and animal food chain. Thus, for early and effective pest control, species identification is of particular interest; however, differentiation on the subspecies level is challenging and time-consuming for this fungus. In the present study, we show the possibilities of intact cell mass spectrometry for spore analysis of 22 different Fusarium strains belonging to six Fusarium subspecies. We found that species differentiation is possible if mass spectrometric analyses are performed under well-defined conditions with fixed parameters. A critical point for analysis is a proper sample preparation of spores, which increases the quality of mass spectra with respect to signal intensity and m/z value variations. It was concluded that data acquistion has to be performed automatically; otherwise, user-specific variations are introduced generating data which cannot fit the existing datasets. Data that show clearly that matrix-assisted laser desorption ionization-based intact cell/intact spore mass spectrometry (IC/ISMS can be applied to differentiate closely related Fusarium spp. are presented. Results show a potential to build a database on Fusarium species for accurate species identification, for fast response in the case of infections in the cornfield. We furthermore demonstrate the high precision of our approach in classification of intact Fusarium species according to the location of their collection.

  10. Novel Secretion Apparatus Maintains Spore Integrity and Developmental Gene Expression in Bacillus subtilis

    Science.gov (United States)

    Meisner, Jeffrey; Serrano, Monica; Henriques, Adriano O.; Moran, Charles P.; Rudner, David Z.

    2009-01-01

    Sporulation in Bacillus subtilis involves two cells that follow separate but coordinately regulated developmental programs. Late in sporulation, the developing spore (the forespore) resides within a mother cell. The regulation of the forespore transcription factor σG that acts at this stage has remained enigmatic. σG activity requires eight mother-cell proteins encoded in the spoIIIA operon and the forespore protein SpoIIQ. Several of the SpoIIIA proteins share similarity with components of specialized secretion systems. One of them resembles a secretion ATPase and we demonstrate that the ATPase motifs are required for σG activity. We further show that the SpoIIIA proteins and SpoIIQ reside in a multimeric complex that spans the two membranes surrounding the forespore. Finally, we have discovered that these proteins are all required to maintain forespore integrity. In their absence, the forespore develops large invaginations and collapses. Importantly, maintenance of forespore integrity does not require σG. These results support a model in which the SpoIIIA-SpoIIQ proteins form a novel secretion apparatus that allows the mother cell to nurture the forespore, thereby maintaining forespore physiology and σG activity during spore maturation. PMID:19609349

  11. Sterilization Resistance of Bacterial Spores Explained with Water Chemistry.

    Science.gov (United States)

    Friedline, Anthony W; Zachariah, Malcolm M; Middaugh, Amy N; Garimella, Ravindranath; Vaishampayan, Parag A; Rice, Charles V

    2015-11-01

    Bacterial spores can survive for long periods without nutrients and in harsh environmental conditions. This survival is influenced by the structure of the spore, the presence of protective compounds, and water retention. These compounds, and the physical state of water in particular, allow some species of bacterial spores to survive sterilization schemes with hydrogen peroxide and UV light. The chemical nature of the spore core and its water has been a subject of some contention and the chemical environment of the water impacts resistance paradigms. Either the spore has a glassy core, where water is immobilized along with other core components, or the core is gel-like with mobile water diffusion. These properties affect the movement of peroxide and radical species, and hence resistance. Deuterium solid-state NMR experiments are useful for examining the nature of the water inside the spore. Previous work in our lab with spores of Bacillus subtilis indicate that, for spores, the core water is in a more immobilized state than expected for the gel-like core theory, suggesting a glassy core environment. Here, we report deuterium solid-state NMR observations of the water within UV- and peroxide-resistant spores from Bacillus pumilus SAFR-032. Variable-temperature NMR experiments indicate no change in the line shape after heating to 50 °C, but an overall decrease in signal after heating to 100 °C. These results show glass-like core dynamics within B. pumilus SAFR-032 that may be the potential source of its known UV-resistance properties. The observed NMR traits can be attributed to the presence of an exosporium containing additional labile deuterons that can aid in the deactivation of sterilizing agents.

  12. Bacteriocins: Novel Solutions to Age Old Spore-Related Problems?

    Science.gov (United States)

    Egan, Kevin; Field, Des; Rea, Mary C; Ross, R Paul; Hill, Colin; Cotter, Paul D

    2016-01-01

    Bacteriocins are ribosomally synthesized antimicrobial peptides produced by bacteria, which have the ability to kill or inhibit other bacteria. Many bacteriocins are produced by food grade lactic acid bacteria (LAB). Indeed, the prototypic bacteriocin, nisin, is produced by Lactococcus lactis, and is licensed in over 50 countries. With consumers becoming more concerned about the levels of chemical preservatives present in food, bacteriocins offer an alternative, more natural approach, while ensuring both food safety and product shelf life. Bacteriocins also show additive/synergistic effects when used in combination with other treatments, such as heating, high pressure, organic compounds, and as part of food packaging. These features are particularly attractive from the perspective of controlling sporeforming bacteria. Bacterial spores are common contaminants of food products, and their outgrowth may cause food spoilage or food-borne illness. They are of particular concern to the food industry due to their thermal and chemical resistance in their dormant state. However, when spores germinate they lose the majority of their resistance traits, making them susceptible to a variety of food processing treatments. Bacteriocins represent one potential treatment as they may inhibit spores in the post-germination/outgrowth phase of the spore cycle. Spore eradication and control in food is critical, as they are able to spoil and in certain cases compromise the safety of food by producing dangerous toxins. Thus, understanding the mechanisms by which bacteriocins exert their sporostatic/sporicidal activity against bacterial spores will ultimately facilitate their optimal use in food. This review will focus on the use of bacteriocins alone, or in combination with other innovative processing methods to control spores in food, the current knowledge and gaps therein with regard to bacteriocin-spore interactions and discuss future research approaches to enable spores to be more

  13. Bacteriocins: Novel Solutions to Age Old Spore-Related Problems?

    Directory of Open Access Journals (Sweden)

    Kevin eEgan

    2016-04-01

    Full Text Available Bacteriocins are ribosomally synthesized antimicrobial peptides produced by bacteria, which have the ability to kill or inhibit other bacteria. Many bacteriocins are produced by food grade lactic acid bacteria (LAB. Indeed, the prototypic bacteriocin, nisin, is produced by Lactococcus lactis, and is licensed in over 50 countries. With consumers becoming more concerned about the levels of chemical preservatives present in food, bacteriocins offer an alternative, more natural, approach, while ensuring both food safety and product shelf life. Bacteriocins also show additive/synergistic effects when used in combination with other treatments, such as heating, high pressure, organic compounds, and as part of food packaging. These features are particularly attractive from the perspective of controlling sporeforming bacteria. Bacterial spores are common contaminants of food products, and their outgrowth may cause food spoilage or food-borne illness. They are of particular concern to the food industry due to their thermal and chemical resistance in their dormant state. However, when spores germinate they lose the majority of their resistance traits, making them susceptible to a variety of food processing treatments. Bacteriocins represent one potential treatment as they may inhibit spores in the post-germination/outgrowth phase of the spore cycle. Spore eradication and control in food is critical, as they are able to spoil and in certain cases compromise the safety of food by producing dangerous toxins. Thus, understanding the mechanisms by which bacteriocins exert their sporostatic/sporicidal activity against bacterial spores will ultimately facilitate their optimal use in food. This review will focus on the use of bacteriocins alone, or in combination with other innovative processing methods to control spores in food, the current knowledge and gaps therein with regard to bacteriocin-spore interactions and discuss future research approaches to enable

  14. Bacteriocins: Novel Solutions to Age Old Spore-Related Problems?

    Science.gov (United States)

    Egan, Kevin; Field, Des; Rea, Mary C.; Ross, R. Paul; Hill, Colin; Cotter, Paul D.

    2016-01-01

    Bacteriocins are ribosomally synthesized antimicrobial peptides produced by bacteria, which have the ability to kill or inhibit other bacteria. Many bacteriocins are produced by food grade lactic acid bacteria (LAB). Indeed, the prototypic bacteriocin, nisin, is produced by Lactococcus lactis, and is licensed in over 50 countries. With consumers becoming more concerned about the levels of chemical preservatives present in food, bacteriocins offer an alternative, more natural approach, while ensuring both food safety and product shelf life. Bacteriocins also show additive/synergistic effects when used in combination with other treatments, such as heating, high pressure, organic compounds, and as part of food packaging. These features are particularly attractive from the perspective of controlling sporeforming bacteria. Bacterial spores are common contaminants of food products, and their outgrowth may cause food spoilage or food-borne illness. They are of particular concern to the food industry due to their thermal and chemical resistance in their dormant state. However, when spores germinate they lose the majority of their resistance traits, making them susceptible to a variety of food processing treatments. Bacteriocins represent one potential treatment as they may inhibit spores in the post-germination/outgrowth phase of the spore cycle. Spore eradication and control in food is critical, as they are able to spoil and in certain cases compromise the safety of food by producing dangerous toxins. Thus, understanding the mechanisms by which bacteriocins exert their sporostatic/sporicidal activity against bacterial spores will ultimately facilitate their optimal use in food. This review will focus on the use of bacteriocins alone, or in combination with other innovative processing methods to control spores in food, the current knowledge and gaps therein with regard to bacteriocin-spore interactions and discuss future research approaches to enable spores to be more

  15. New pressure and temperature effects on bacterial spores

    Energy Technology Data Exchange (ETDEWEB)

    Mathys, A; Knorr, D [Berlin University of Technology, Department of Food Biotechnology and Food Process Engineering, Koenigin-Luise-Str. 22, D-14195 Berlin (Germany); Heinz, V [German Institute of Food Technology, p. o. box 1165, D-49601, Quackenbrueck (Germany)], E-mail: alexander.mathys@tu-berlin.de

    2008-07-15

    The mechanism of inactivation of bacterial spores by heat and pressure is still a matter of discussion. Obviously, the change of the dissociation equilibrium under pressure and temperature plays a dominant role in inactivation of microorganisms. Heat and pressure inactivation of Geobacillus. stearothermophilus spores at different initial pH-values in ACES and phosphate buffer confirmed this view. Thermal inactivation in ACES buffer at 122 deg. C resulted in higher logarithmic reductions. Contrary, after pressure treatment at 900 MPa with 80 deg. C phosphate buffer showed higher inactivation. These results indicated the different dissociation equilibrium shifts in buffer systems by heat and pressure. Due to preparation, storage and handling of highly concentrated spore suspensions the clumping and the formation of aggregates can hardly be avoided. Consequently, the impact of the agglomeration size distribution on the quantitative assessment of G. stearothermophilus spore inactivation was determined by using a three-fold dynamic optical backreflexion measurement. Two limiting cases have been discriminated in mathematical modelling: three dimensional, spherical packing for maximum spore count and two dimensional, circular packing for minimum spore count of a particular agglomerate. Thermal inactivation studies have been carried out in thin glass capillaries, where by using numerical simulations the non isothermal conditions were modelled and taken into account. It is shown that the shoulder formation often found in thermal spore inactivation can sufficiently be described by first-order inactivation kinetics when the agglomeration size is considered. In case of high pressure inactivation agglomerations could be strongly changed by high forces at compression and especially decompression phase. The physiological response of Bacillus licheniformis spores to high pressure was investigated using multiparameter flow cytometry. Spores were treated by high pressure at 150 MPa

  16. New pressure and temperature effects on bacterial spores

    Science.gov (United States)

    Mathys, A.; Heinz, V.; Knorr, D.

    2008-07-01

    The mechanism of inactivation of bacterial spores by heat and pressure is still a matter of discussion. Obviously, the change of the dissociation equilibrium under pressure and temperature plays a dominant role in inactivation of microorganisms. Heat and pressure inactivation of Geobacillus. stearothermophilus spores at different initial pH-values in ACES and phosphate buffer confirmed this view. Thermal inactivation in ACES buffer at 122°C resulted in higher logarithmic reductions. Contrary, after pressure treatment at 900 MPa with 80°C phosphate buffer showed higher inactivation. These results indicated the different dissociation equilibrium shifts in buffer systems by heat and pressure. Due to preparation, storage and handling of highly concentrated spore suspensions the clumping and the formation of aggregates can hardly be avoided. Consequently, the impact of the agglomeration size distribution on the quantitative assessment of G. stearothermophilus spore inactivation was determined by using a three-fold dynamic optical backreflexion measurement. Two limiting cases have been discriminated in mathematical modelling: three dimensional, spherical packing for maximum spore count and two dimensional, circular packing for minimum spore count of a particular agglomerate. Thermal inactivation studies have been carried out in thin glass capillaries, where by using numerical simulations the non isothermal conditions were modelled and taken into account. It is shown that the shoulder formation often found in thermal spore inactivation can sufficiently be described by first-order inactivation kinetics when the agglomeration size is considered. In case of high pressure inactivation agglomerations could be strongly changed by high forces at compression and especially decompression phase. The physiological response of Bacillus licheniformis spores to high pressure was investigated using multiparameter flow cytometry. Spores were treated by high pressure at 150 MPa with 37

  17. Effects of temperature and desiccation on ex situ conservation of nongreen fern spores

    Science.gov (United States)

    Conservation of the genetic diversity of ferns is limited by the paucity of ex situ spore banks. Conflicting reports of fern spore response to low temperature and moisture impedes establishment of fern spore banks. There is little information available to evaluate longevity of fern spores under dif...

  18. On the neutralization of bacterial spores in post-detonation flows

    Science.gov (United States)

    Gottiparthi, K. C.; Schulz, J. C.; Menon, S.

    2014-09-01

    In multiple operational scenarios, explosive charges are used to neutralize confined or unconfined stores of bacterial spores. The spore destruction is achieved by post-detonation combustion and mixing of hot detonation product gases with the ambient flow and spore clouds. In this work, blast wave interaction with bacterial spore clouds and the effect of post-detonation combustion on spore neutralization are investigated using numerical simulations. Spherical explosive charges (radius, = 5.9 cm) comprising of nitromethane are modeled in the vicinity of a spore cloud, and the spore kill in the post-detonation flow is quantified. The effect of the mass of the spores and the initial distance, , of the spore cloud from the explosive charge on the percentage of spores neutralized is investigated. When the spores are initially placed within a distance of 3.0, within 0.1 ms after detonation of the charge, all the spores are neutralized by the blast wave and the hot detonation product gases. In contrast, almost all the spores survived the explosion when is greater than 8.0. The percentage of intact spores varied from 0 to 100 for 3.0 8.0 with spore neutralization dependent on time spent by the spores in the post-detonation mixing/combustion zone.

  19. Does proximity to neighbours affect germination of spores of non-proteolytic Clostridium botulinum?

    Science.gov (United States)

    Webb, Martin D; Stringer, Sandra C; Le Marc, Yvan; Baranyi, József; Peck, Michael W

    2012-10-01

    It is recognised that inoculum size affects the rate and extent of bacterial spore germination. It has been proposed that this is due to spores interacting: molecules released from germinated spores trigger germination of dormant neighbours. This study investigated whether changes to the total number of spores in a system or proximity to other spores (local spore density) had a more significant effect on interaction between spores of non-proteolytic Clostridium botulinum strain Eklund 17B attached to defined areas of microscope slides. Both the number of spores attached to the slides and local spore density (number of spores per mm(2)) were varied by a factor of nine. Germination was observed microscopically at 15 °C for 8 h and the probability of, and time to, germination calculated from image analysis measurements. Statistical analysis revealed that the effect of total spore number on the probability of germination within 8 h was more significant than that of proximity to neighbours (local spore density); its influence on germination probability was approximately four-times greater. Total spore number had an even more significant affect on time to germination; it had a nine-fold greater influence than proximity to neighbours. The applied models provide a means to characterise, quantitatively, the effect of the total spore number on spore germination relative to the effect of proximity to neighbouring spores.

  20. Investigating synergism during sequential inactivation of Bacillus subtilis spores with several disinfectants.

    Science.gov (United States)

    Cho, Min; Kim, Jae-Hong; Yoon, Jeyong

    2006-08-01

    The sequential application of ozone, chlorine dioxide, or UV followed by free chlorine was performed to investigate the synergistic inactivation of Bacillus subtilis spores. The greatest synergism was observed when chlorine dioxide was used as a primary disinfectant followed by secondary disinfection with free chlorine. A lesser synergistic effect was observed when ozone was used as the primary disinfectant, but no synergism was observed when UV was used as the primary disinfectant. When free chlorine was used as the primary disinfectant (i.e., sequential application in the reverse order), the synergistic effect was shown only when chlorine dioxide was applied as the secondary disinfectant. The synergistic effect observed could be related to damage to the spore coat during primary disinfection, suggested by the loss of proteins from spores during disinfectant treatment. The greatest synergism observed by the chlorine dioxide/free chlorine pair suggested that common reaction sites might exist for these disinfectants. The concept of percent synergistic effect was introduced to quantitatively compare the extent of synergistic effects in the sequential disinfection processes.

  1. Small Probes for Orbital Return of Experiments (SPORE) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Analogous to the CubeSat standardization of micro-satellites, the SPORE flight system architecture will utilize a modular design approach to provide low-cost...

  2. Waterline ATS B. globigii spore water disinfection data

    Data.gov (United States)

    U.S. Environmental Protection Agency — Disinfection of B. globigii spores (a non-pathogenic surrogate for B. anthracis) in clean and dirty water using the ATS-Waterline system, which uses ultraviolet...

  3. Alicyclobacillus acidoterrestris: new methods for inhibiting spore germination.

    Science.gov (United States)

    Bevilacqua, A; Sinigaglia, M; Corbo, M R

    2008-07-15

    For a long period the thermal processing has been considered as the only way to reduce the initial spore number of Alicyclobacillus acidoterrestris and prevent the spoilage of acidic beverage. New methods, however, were proposed by the literature to control spore germination both in laboratory media and in real systems. After a brief introduction on the impact of A. acidoterrestris in food microbiology and a description of enumeration methods and heat processing applied by the juices manufactures, a review of innovative approaches to inhibit and/or control spore germination is proposed. In particular, this paper focuses on two different topics; the 1st is the use of some natural compounds (monolaurin, lysozyme, nisin and essential oils) or some chemicals, conventional (like sodium-benzoate, organic acids, surfactants and chlorine dioxide) or not conventional (chlorine dioxide as gas). The 2nd topic is a description of some innovative methods to reduce the initial spore number (high hydrostatic and homogenisation pressures, radiation and microwaves).

  4. VUV absorption spectroscopy of bacterial spores and DNA components

    Science.gov (United States)

    Fiebrandt, Marcel; Lackmann, Jan-Wilm; Raguse, Marina; Moeller, Ralf; Awakowicz, Peter; Stapelmann, Katharina

    2017-01-01

    Low-pressure plasmas can be used to inactivate bacterial spores and sterilize goods for medical and pharmaceutical applications. A crucial factor are damages induced by UV and VUV radiation emitted by the plasma. To analyze inactivation processes and protection strategies of spores, absorption spectra of two B. subtilis strains are measured. The results indicate, that the inner and outer coat of the spore significantly contribute to the absorption of UV-C and also of the VUV, protecting the spore against radiation based damages. As the sample preparation can significantly influence the absorption spectra due to salt residues, the cleaning procedure and sample deposition is tested for its reproducibility by measuring DNA oligomers and pUC18 plasmid DNA. The measurements are compared and discussed with results from the literature, showing a strong decrease of the salt content enabling the detection of absorption structures in the samples.

  5. Oxidation mechanism of Penicillium digitatum spores through neutral oxygen radicals

    Science.gov (United States)

    Hashizume, Hiroshi; Ohta, Takayuki; Takeda, Keigo; Ishikawa, Kenji; Hori, Masaru; Ito, Masafumi

    2014-01-01

    To investigate the inactivation process of Penicillium digitatum spores through neutral oxygen species, the spores were treated with an atmospheric-pressure oxygen radical source and observed in-situ using a fluorescent confocal-laser microscope. The treated spores were stained with two fluorescent dyes, 1,1‧-dioctadecyl-3,3,Y,3‧-tetramethylindocarbocyanine perchlorate (DiI) and diphenyl-1-pyrenylphosphine (DPPP). The intracellular organelles as well as the cell membranes in the spores treated with the oxygen radical source were stained with DiI without a major morphological change of the membranes. DPPP staining revealed that the organelles were oxidized by the oxygen radical treatment. These results suggest that neutral oxygen species, especially atomic oxygen, induce a minor structural change or functional inhibition of cell membranes, which leads to the oxidation of the intracellular organelles through the penetration of reactive oxygen species into the cell.

  6. Spore-forming bacteria and their utilisation as probiotics.

    Science.gov (United States)

    Bader, J; Albin, A; Stahl, U

    2012-03-01

    In this review article, the beneficial application of bacterial spore formers as probiotics in the food industry is discussed based on the knowledge gleaned from current publications. The summary of new scientific results provides evidence of the advantages of the utilisation of Bacillus or Clostridium strains in the food industry. Both bacteria are able to produce a very stable duration form: the endospore. Compared to the widely used lactic acid bacteria, bacterial spores offer the advantage of a higher survival rate during the acidic stomach passage and better stability during the processing and storage of the food product. In many food products, germination of the spores does not occur. Hence the product quality of the food is not affected because of their inactive metabolism. Besides the possible utilisation and functional properties, an overview of the fast-developing knowledge about the mechanisms of the beneficial health effects of spore-forming bacteria is provided.

  7. Pharmacologic and toxicologic evaluation of C. novyi-NT spores.

    Science.gov (United States)

    Diaz, Luis A; Cheong, Ian; Foss, Catherine A; Zhang, Xiaosong; Peters, Brock A; Agrawal, Nishant; Bettegowda, Chetan; Karim, Baktiar; Liu, Guosheng; Khan, Khalid; Huang, Xin; Kohli, Manu; Dang, Long H; Hwang, Paul; Vogelstein, Ahava; Garrett-Mayer, Elizabeth; Kobrin, Barry; Pomper, Martin; Zhou, Shibin; Kinzler, Kenneth W; Vogelstein, Bert; Huso, David L

    2005-12-01

    Clostridium novyi-NT (C. novyi-NT) spores have been shown to be potent therapeutic agents in experimental tumors of mice and rabbits. In the present study, pharmacologic and toxicologic studies were performed to better understand the factors influencing the efficacy and toxicity of this form of therapy. We found that spores were rapidly cleared from the circulation by the reticuloendothelial system. Even after large doses were administered, no clinical toxicity was observed in healthy mice or rabbits. The spores were also not toxic in mice harboring poorly vascularized non-neoplastic lesions, including myocardial infarcts. In tumor-bearing mice, toxicity appeared related to tumor size and spore dose, as expected with any bacterial infection. However, there was no laboratory or histopathologic evidence of sepsis, and the toxicity could be effectively controlled by simple hydration.

  8. In vitro spore germination and gametophytic growth development of ...

    African Journals Online (AJOL)

    SAM

    2014-06-04

    Jun 4, 2014 ... Maximum spore germination rates (84%) were observed in. 70 g/L of sucrose and .... two weeks and gametophyte growth rates (length, width of ..... Smith AR, Pryer KM, Schuettpelz E, Korall P, Schneider H, Wolf PG. (2006).

  9. Simulation modeling of anthrax spore dispersion in a bioterrorism incident.

    Science.gov (United States)

    Reshetin, Vladimir P; Regens, James L

    2003-12-01

    Recent events have increased awareness of the risk posed by terrorist attacks. Bacillus anthracis has resurfaced in the 21st century as a deadly agent of bioterrorism because of its potential for causing massive civilian casualties. This analysis presents the results of a computer simulation of the dispersion of anthrax spores in a typical 50-story, high-rise building after an intentional release during a bioterrorist incident. The model simulates aerosol dispersion in the case of intensive, small-scale convection, which equalizes the concentration of anthrax spores over the building volume. The model can be used to predict the time interval required for spore dispersion throughout a building after a terrorist attack in a high-rise building. The analysis reveals that an aerosol release of even a relatively small volume of anthrax spores during a terrorist incident has the potential to quickly distribute concentrations that are infectious throughout the building.

  10. Late Silurian trilete spores from northern Jiangsu, China.

    Science.gov (United States)

    Wang; Li

    2000-08-01

    The Late Silurian is generally considered to a particular significant key period in the study of early land vascular plants. A trilete spore assemblage of the Upper Silurian is described from northern Jiangsu, China. This assemblage comprises 11 genera and 20 species of trilete spores (including laevigate, apiculate, perinotrilite, patinate, rarely distally murornate and equatorially crassitate, and three indeterminate trilete miospores forms). It has similarities to those described from coeval assemblages from around the world (e.g., England and South Wales; Tripolitania, Libya; Cornwallis Island, Canadian Arctic; Northwest Spain). The rare cryptospore, only one specimen (Tetrahedraletes sp.) had been found to be associated with the Chinese trilete spore assemblage. The discovery of the trilete spores from Late Silurian rocks indicates the existence of early land plants, some possibly vascular, at that time in northern Jiangsu, China.

  11. Genotoxic evaluation in Oreochromis niloticus (Fish: Characidae) of recombinant spore-crystal complexes Cry1Ia, Cry10Aa and Cry1Ba6 from Bacillus thuringiensis.

    Science.gov (United States)

    Freire, I S; Miranda-Vilela, A L; Fascineli, M L; Oliveira-Filho, E C; Martins, E S; Monnerat, R G; Grisolia, C K

    2014-03-01

    Bioinsecticides from Bacillus thuringiensis (Bt) are widely used around the world in biological control against larval stages of many insect species. Bt has been considered a biopesticide that is highly specific to different orders of insects, non-polluting and harmless to humans and other vertebrates, thus becoming a viable alternative for combating agricultural pests and insect vectors of diseases. The family of Bt δ-endotoxins are crystal-protein inclusions showing toxicity to insects' midgut, causing cell lysis leading to starvation, septicemia and death. The aim of this study is to evaluate the genotoxic potential of recombinant Bt spore-crystals expressing Cry1Ia, Cry10Aa and Cry1Ba6 on peripheral erythrocyte cells of Oreochromis niloticus, through comet assay, micronucleus (MN) test and nuclear abnormalities (NA) analysis. Fish (n = 10/group) were exposed for 96 h at 10(7) spores 30 l(-1), 10(8) spores 30 l(-1) or 10(9) spores 30 l(-1) of Bt spore-crystals. Cry1Ia showed a significant increase in comet cells at levels 1 and 2, but not at levels 3 and 4, so it was not mutagenic nor did it induce MN or NA. These three spore-crystals showed some fish toxicity at only the highest exposure level, which normally does not occur in the field.

  12. Formation of non-viable spores of Dictyostelium discoideum by UV-irradiation and caffeine

    Energy Technology Data Exchange (ETDEWEB)

    Ohnishi, T.; Hazama, M.; Okaichi, K.; Nozu, K. (Nara Medical Univ., Kashihara (Japan))

    1982-09-01

    The spores formed from amoeboid cells of the wild type strain of Dictyostelium discoideum after UV-irradiation were characterized. Cell differentiation in the presence of caffeine after a fluence of 300 J/m/sup 2/ resulted in a population of spores which was 98% non-viable. The UV-irradiation did not affect the conversion of the spores to swollen spores but did affect the conversion of swollen spores to amoeboid cells. When the germination of the spores was done without caffeine, only a small effect on conversion of swollen spores to amoeboid cells and on the beginning of growth was detected. On the other hand, in the presence of caffeine, the spores had a remarkable delay in both. It was also shown that few, if any, pyrimidine dimers exist in the DNA of the non-viable spores. Possible mechanisms of formation of non-viable spores are discussed.

  13. Inflammatory potential of the spores of Penicillium spinulosum isolated from indoor air of a moisture-damaged building in mouse lungs.

    Science.gov (United States)

    Jussila, Juha; Komulainen, Hannu; Kosma, Veli-Matti; Pelkonen, Jukka; Hirvonen, Maija-Riitta

    2002-10-01

    Excess moisture and microbial growth have been associated with adverse health effects, especially in the airways, of the inhabitants of moisture-damaged buildings. The spores of Penicillium spp. are commonly present in the indoor air, both in moisture-damaged and in reference buildings, though their numbers seem to be significantly higher in the damaged buildings. To assess the potential of Penicillium spinulosum to evoke harmful respiratory effects, mice were exposed via intratracheal instillation to a single dose of the spores of P. spinulosum, isolated from the indoor air of a moisture-damaged building (1×10(5), 1×10(6), 5×10(6), 1×10(7) or 5×10(7) spores). Inflammation and toxicity in lungs were evaluated 24 h later. The time-course of the effects was investigated with the dose of 5×10(6) spores for 28 days. The fungal spores caused mild transient inflammation. The spore exposure transiently increased proinflammatory cytokine (TNFα and IL-6) levels in bronchoalveolar lavage fluid (BALF) in a dose- and time-dependent manner. The highest concentrations of both cytokines were measured at 6 h after a single dosage. The spore exposure did not cause expression of inducible nitric oxide synthase in lavaged cells. Neutrophils were acutely recruited into airways, but the response leveled off in 3 days. Neither cytotoxicity nor major changes in vascular permeability (i.e. increases in albumin, total protein, lactate dehydrogenase or hemoglobin levels in BALF) were observed in the lungs. Considering the profile and magnitude of the changes and the dose of the spores, we conclude that P. spinulosum has a low potential to cause acute respiratory inflammation, nor does it cause direct cytotoxicity.

  14. Effects of Chlorine Dioxide on Spore Structural and Fuctional Properties

    Science.gov (United States)

    2006-05-31

    A., Price, B., Leighton, T. and K. Wheeler. 2003. Kinetics of size changes of individual Bacillus thuringiensis spores in response to changes in...vegetative growth . The germination process involves a defined temporal order of events, characterized initially by hydrolysis of the spore coat and...capable of early germination but not resumption of vegetative growth and cell division. We have explored the use of rapid spectrophotometric assays to

  15. Effect of Nanofibers on Spore Penetration and Lunar Dust Filtration

    OpenAIRE

    Phil Gibson, Ph.D.; Heidi Schreuder-Gibson, Ph.D.; Robert Stote; Margaret Roylance, Ph.D.; Cathy Capone; Masami Nakagawa, Ph.D.

    2008-01-01

    The results of two separate studies on biological spore penetration and simulated lunar dust filtration illustrate the use of nanofibers in some nonstandard filtration applications (nanofibers are generally defined as having diameters of less than a micron). In the first study, a variety of microporous liners containing microfibers and nanofibers were combined with cotton-based fabrics in order to filter aerosolized spores. The aerosol penetration resistance of the nanofiber-lined fabrics was...

  16. Fate of ingested Clostridium difficile spores in mice.

    Directory of Open Access Journals (Sweden)

    Amber Howerton

    Full Text Available Clostridium difficile infection (CDI is a leading cause of antibiotic-associated diarrhea, a major nosocomial complication. The infective form of C. difficile is the spore, a dormant and resistant structure that forms under stress. Although spore germination is the first committed step in CDI onset, the temporal and spatial distribution of ingested C. difficile spores is not clearly understood. We recently reported that CamSA, a synthetic bile salt analog, inhibits C. difficile spore germination in vitro and in vivo. In this study, we took advantage of the anti-germination activity of bile salts to determine the fate of ingested C. difficile spores. We tested four different bile salts for efficacy in preventing CDI. Since CamSA was the only anti-germinant tested able to prevent signs of CDI, we characterized CamSa's in vitro stability, distribution, and cytotoxicity. We report that CamSA is stable to simulated gastrointestinal (GI environments, but will be degraded by members of the natural microbiota found in a healthy gut. Our data suggest that CamSA will not be systemically available, but instead will be localized to the GI tract. Since in vitro pharmacological parameters were acceptable, CamSA was used to probe the mouse model of CDI. By varying the timing of CamSA dosage, we estimated that C. difficile spores germinated and established infection less than 10 hours after ingestion. We also showed that ingested C. difficile spores rapidly transited through the GI tract and accumulated in the colon and cecum of CamSA-treated mice. From there, C. difficile spores were slowly shed over a 96-hour period. To our knowledge, this is the first report of using molecular probes to obtain disease progression information for C. difficile infection.

  17. Structural Analysis of Bacillus subtilis Spore Peptidoglycan during Sporulation

    OpenAIRE

    2000-01-01

    A major structural element of bacterial endospores is a peptidoglycan (PG) wall. This wall is produced between the two opposed membranes surrounding the developing forespore and is composed of two layers. The inner layer is the germ cell wall, which appears to have a structure similar to that of the vegetative cell wall and which serves as the initial cell wall following spore germination. The outer layer, the cortex, has a modified structure, is required for maintenance of spore dehydration,...

  18. The Exosporium Layer of Bacterial Spores: a Connection to the Environment and the Infected Host

    OpenAIRE

    2015-01-01

    Much of what we know regarding bacterial spore structure and function has been learned from studies of the genetically well-characterized bacterium Bacillus subtilis. Molecular aspects of spore structure, assembly, and function are well defined. However, certain bacteria produce spores with an outer spore layer, the exosporium, which is not present on B. subtilis spores. Our understanding of the composition and biological functions of the exosporium layer is much more limited than that of oth...

  19. Mechanisms of Induction of Germination of Bacillus subtilis Spores by High Pressure

    OpenAIRE

    Paidhungat, Madan; Setlow, Barbara; Daniels, William B.; Hoover, Dallas; Papafragkou, Efstathia; Setlow, Peter

    2002-01-01

    Spores of Bacillus subtilis lacking all germinant receptors germinate >500-fold slower than wild-type spores in nutrients and were not induced to germinate by a pressure of 100 MPa. However, a pressure of 550 MPa induced germination of spores lacking all germinant receptors as well as of receptorless spores lacking either of the two lytic enzymes essential for cortex hydrolysis during germination. Complete germination of spores either lacking both cortex-lytic enzymes or with a cortex not att...

  20. Quantification of Nonproteolytic Clostridium botulinum Spore Loads in Food Materials.

    Science.gov (United States)

    Barker, Gary C; Malakar, Pradeep K; Plowman, June; Peck, Michael W

    2016-01-04

    We have produced data and developed analysis to build representations for the concentration of spores of nonproteolytic Clostridium botulinum in materials that are used during the manufacture of minimally processed chilled foods in the United Kingdom. Food materials are categorized into homogenous groups which include meat, fish, shellfish, cereals, fresh plant material, dairy liquid, dairy nonliquid, mushroom and fungi, and dried herbs and spices. Models are constructed in a Bayesian framework and represent a combination of information from a literature survey of spore loads from positive-control experiments that establish a detection limit and from dedicated microbiological tests for real food materials. The detection of nonproteolytic C. botulinum employed an optimized protocol that combines selective enrichment culture with multiplex PCR, and the majority of tests on food materials were negative. Posterior beliefs about spore loads center on a concentration range of 1 to 10 spores kg(-1). Posterior beliefs for larger spore loads were most significant for dried herbs and spices and were most sensitive to the detailed results from control experiments. Probability distributions for spore loads are represented in a convenient form that can be used for numerical analysis and risk assessments.

  1. Availability of websites offering to sell psilocybin spores and psilocybin.

    Science.gov (United States)

    Lott, Jason P; Marlowe, Douglas B; Forman, Robert F

    2009-09-01

    This study assesses the availability of websites offering to sell psilocybin spores and psilocybin, a powerful hallucinogen contained in Psilocybe mushrooms. Over a 25-month period beginning in March 2003, eight searches were conducted in Google using the term "psilocybin spores." In each search the first 100 nonsponsored links obtained were scored by two independent raters according to standardized criteria to determine whether they offered to sell psilocybin or psilocybin spores. No attempts were made to procure the products offered for sale in order to ascertain whether the marketed psilocybin was in fact "genuine" or "counterfeit." Of the 800 links examined, 58% led to websites offering to sell psilocybin spores. Additionally, evidence that whole Psilocybe mushrooms are offered for sale online was obtained. Psilocybin and psilocybin spores were found to be widely available for sale over the Internet. Online purchase of psilocybin may facilitate illicit use of this potent psychoactive substance. Additional studies are needed to assess whether websites offering to sell psilocybin and psilocybin spores actually deliver their products as advertised.

  2. Removal of pyrimidine dimers in UV-irradiated spores of Dictyostelium discoideum during germination

    Energy Technology Data Exchange (ETDEWEB)

    Okaichi, K.; Tano, K.; Ohnishi, T.; Nozu, K.

    1985-06-01

    The spores of Dictyostelium discoideum TW-8 (radC) are about twice as sensitive to UV than the parental strain NC-4 spores at a 10% survival level. Ultraviolet irradiation apparently suppressed the emergence of amoebae from swollen TW-8 spores as compared with NC-4 spores, though the conversion of spores into swollen spores was not affected by UV irradiation in either strain. About 85% removal of pyrimidine dimers was detected in UV-irradiated NC-4 spores at 200 J/m/sup 2/ during spore germination for 9 h, but no removal of pyrimidine dimers was detected in TW-8 spores under the same conditions. The removal of pyrimidine dimers from the NC-4 spores began at around 2 h germination when the spores have become swollen. The number of enzyme-sensitive sites (ESS) detected by Micrococcus luteus endonuclease in the DNA of UV-irradiated NC-4 spores also began to decrease at about 2 h into germination. The decrease in ESS, however, was hardly detectable in UV-irradiated TW-8 spores at any step during germination. Cycloheximide inhibited both decrease in the number of pyrimidine dimers, and decrease in the number of ESS of UV-irradiated NC-4 spores. It is suggested that UV-specific endonuclease is newly synthesized in swollen spores of NC-4. (author).

  3. 鲈鱼骨酸溶性和酶溶性胶原的性质比较%Characteristics Comparison of Acid-soluble and Pepsin-soluble Collagens from bond of Lateolabrax j aponicus C

    Institute of Scientific and Technical Information of China (English)

    马国红; 张延华; 宋理平

    2015-01-01

    Acid-soluble and pepsin-soluble collagens (ASC and PSC) were extracted from the bond of L ate‐olabrax j aponicus C and partially characterized .The compositions and certain properties of Acid-soluble and pepsin-soluble collagens (ASC and PSC) of the bond of Lateolabrax japonicus C .were strdied .The denat‐uration temperature (Td) of collagens were researched by viscosity of collagen solution .The Td of ASC and PSC from bone were 25~30 ℃ and 30~35 ℃ ,respectively .Electrophoretic patterns of collagens from bone were high purity Collagen typeⅠ,hydroxyproline and proline were lower the ASC than the PSC .which was in accordance with the results of composition analysis and Td .%以鲈鱼骨为原料提取得到酸溶性胶原(ASC)和酶溶性胶原(PSC),对ASC和PSC的性质进行比较。粘度测定结果表明,ASC的变性温度25~30℃,PSC的变性温度为30~35℃;电泳结果表明,ASC和 PSC都属于Ⅰ型胶原且纯度比较高;氨基酸分析结果显示,羟脯氨酸和脯氨酸含量ASC均低于PSC ,氨基酸检测结果与粘度检测结果相一致。

  4. Fungal Spores Viability on the International Space Station.

    Science.gov (United States)

    Gomoiu, I; Chatzitheodoridis, E; Vadrucci, S; Walther, I; Cojoc, R

    2016-11-01

    In this study we investigated the security of a spaceflight experiment from two points of view: spreading of dried fungal spores placed on the different wafers and their viability during short and long term missions on the International Space Station (ISS). Microscopic characteristics of spores from dried spores samples were investigated, as well as the morphology of the colonies obtained from spores that survived during mission. The selected fungal species were: Aspergillus niger, Cladosporium herbarum, Ulocladium chartarum, and Basipetospora halophila. They have been chosen mainly based on their involvement in the biodeterioration of different substrate in the ISS as well as their presence as possible contaminants of the ISS. From biological point of view, three of the selected species are black fungi, with high melanin content and therefore highly resistant to space radiation. The visual inspection and analysis of the images taken before and after the short and the long term experiments have shown that all biocontainers were returned to Earth without damages. Microscope images of the lids of the culture plates revealed that the spores of all species were actually not detached from the surface of the wafers and did not contaminate the lids. From the adhesion point of view all types of wafers can be used in space experiments, with a special comment on the viability in the particular case of iron wafers when used for spores that belong to B. halophila (halophilic strain). This is encouraging in performing experiments with fungi without risking contamination. The spore viability was lower in the experiment for long time to ISS conditions than that of the short experiment. From the observations, it is suggested that the environment of the enclosed biocontainer, as well as the species'specific behaviour have an important effect, reducing the viability in time. Even the spores were not detached from the surface of the wafers, it was observed that spores used in the

  5. Fungal Spores Viability on the International Space Station

    Science.gov (United States)

    Gomoiu, I.; Chatzitheodoridis, E.; Vadrucci, S.; Walther, I.; Cojoc, R.

    2016-04-01

    In this study we investigated the security of a spaceflight experiment from two points of view: spreading of dried fungal spores placed on the different wafers and their viability during short and long term missions on the International Space Station (ISS). Microscopic characteristics of spores from dried spores samples were investigated, as well as the morphology of the colonies obtained from spores that survived during mission. The selected fungal species were: Aspergillus niger, Cladosporium herbarum, Ulocladium chartarum, and Basipetospora halophila. They have been chosen mainly based on their involvement in the biodeterioration of different substrate in the ISS as well as their presence as possible contaminants of the ISS. From biological point of view, three of the selected species are black fungi, with high melanin content and therefore highly resistant to space radiation. The visual inspection and analysis of the images taken before and after the short and the long term experiments have shown that all biocontainers were returned to Earth without damages. Microscope images of the lids of the culture plates revealed that the spores of all species were actually not detached from the surface of the wafers and did not contaminate the lids. From the adhesion point of view all types of wafers can be used in space experiments, with a special comment on the viability in the particular case of iron wafers when used for spores that belong to B. halophila (halophilic strain). This is encouraging in performing experiments with fungi without risking contamination. The spore viability was lower in the experiment for long time to ISS conditions than that of the short experiment. From the observations, it is suggested that the environment of the enclosed biocontainer, as well as the species'specific behaviour have an important effect, reducing the viability in time. Even the spores were not detached from the surface of the wafers, it was observed that spores used in the

  6. Fungal Spores Viability on the International Space Station

    Science.gov (United States)

    Gomoiu, I.; Chatzitheodoridis, E.; Vadrucci, S.; Walther, I.; Cojoc, R.

    2016-11-01

    In this study we investigated the security of a spaceflight experiment from two points of view: spreading of dried fungal spores placed on the different wafers and their viability during short and long term missions on the International Space Station (ISS). Microscopic characteristics of spores from dried spores samples were investigated, as well as the morphology of the colonies obtained from spores that survived during mission. The selected fungal species were: Aspergillus niger, Cladosporium herbarum, Ulocladium chartarum, and Basipetospora halophila. They have been chosen mainly based on their involvement in the biodeterioration of different substrate in the ISS as well as their presence as possible contaminants of the ISS. From biological point of view, three of the selected species are black fungi, with high melanin content and therefore highly resistant to space radiation. The visual inspection and analysis of the images taken before and after the short and the long term experiments have shown that all biocontainers were returned to Earth without damages. Microscope images of the lids of the culture plates revealed that the spores of all species were actually not detached from the surface of the wafers and did not contaminate the lids. From the adhesion point of view all types of wafers can be used in space experiments, with a special comment on the viability in the particular case of iron wafers when used for spores that belong to B. halophila (halophilic strain). This is encouraging in performing experiments with fungi without risking contamination. The spore viability was lower in the experiment for long time to ISS conditions than that of the short experiment. From the observations, it is suggested that the environment of the enclosed biocontainer, as well as the species'specific behaviour have an important effect, reducing the viability in time. Even the spores were not detached from the surface of the wafers, it was observed that spores used in the

  7. Mechanism by which contact with plant cuticle triggers cutinase gene expression in the spores of Fusarium solani f. sp. pisi

    Energy Technology Data Exchange (ETDEWEB)

    Woloshuk, C.P.; Kolattukudy, P.E.

    1986-03-01

    Spores of the phytopathogenic fungus Fusarium solani f. sp. pisi were shown to produce the extracellular enzyme, cutinase, only when cutin or cutin hydrolysate was added to the spore suspension. Dihydroxy-C/sub 16/ acid and trihydroxy-C/sub 18/ acid, which are unique cutin monomers, showed the greatest cutinase-inducing activity. Experiments with several compounds structurally related to these fatty acids suggested that both a omega-hydroxyl and a midchain hydroxyl are required for cutinase-inducing activity. Cutinase appeared in the medium 30-45 min after the addition of the inducers to the spore suspension, and the activity level increased for 6 hr. Addition of cycloheximide (5 ..mu..g/ml) completely inhibited cutinase production, suggesting that protein synthesis was involved in the increase of cutinase activity. Immunoblot analysis with rabbit antibodies prepared against cutinase showed that cutinase protein increased in parallel with the increase in enzyme activity. Measurement of cutinase-specific RNA levels by dot-blot hybridization with /sup 32/P-labeled cutinase cDNA showed that the cutinase gene transcripts could be detected within 15 min after addition of the inducers. Addition of exogenous cutinase greatly enhanced the level of cutinase gene transcripts induced by cutin. These results strongly suggest that the fungal spore senses that it is in contact with the plant by the production of small amounts of cutin monomers catalyzed by the low level of cutinase carried by the spore and that these monomers induce the synthesis of cutinase needed for penetration of the fungus into the plant.

  8. Challenges and advances in systems biology analysis of Bacillus spore physiology; molecular differences between an extreme heat resistant spore forming Bacillus subtilis food isolate and a laboratory strain

    NARCIS (Netherlands)

    Brul, S.; van Beilen, J.; Caspers, M.; O'Brien, A.; de Koster, C.; Oomes, S.; Smelt, J.; Kort, R.; ter Beek, A.

    2011-01-01

    Bacterial spore formers are prime organisms of concern in the food industry. Spores from the genus Bacillus are extremely stress resistant, most notably exemplified by high thermotolerance. This sometimes allows surviving spores to germinate and grow out to vegetative cells causing food spoilage and

  9. Recombinant Bacillus subtilis spores expressing cholera toxin B subunit and Helicobacter pylori urease B confer protection against H. pylori in mice.

    Science.gov (United States)

    Zhou, Zhenwen; Dong, Hui; Huang, Yanmei; Yao, Shuwen; Liang, Bingshao; Xie, Yongqiang; Long, Yan; Mai, Jialiang; Gong, Sitang

    2017-01-01

    Helicobacter pylori infection is associated with chronic gastritis, peptic ulcers, gastric cancer and mucosa-associated lymphoid tissue lymphoma. The limitations of current therapies for H. pylori infection include poor compliance and antibiotic resistance. Therefore, an effective anti-H. pylori vaccine would be an alternative or complement to antibiotic treatment. Urease B (UreB) is considered an ideal vaccine antigen against H. pylori infection. In this study, cholera toxin B subunit (CTB), a mucosal adjuvant, was used to enhance the immunogenicity of a novel Bacillus subtilis spore vaccine expressing CTB-UreB, along with the B. subtilis spore coat protein CotC as a fusion protein. Oral administration of B. subtilis spores expressing CotC-UreB or CotC-CTB-UreB led to increased levels of UreB-specific IgG in serum and UreB-specific IgA in faeces, as well as elevated levels of IL-10 and IFN-γ in splenocytes. In addition, oral administration of CotC-UreB or CotC-CTB-UreB spores induced significant reductions (80.0 and 90.5 %, respectively) in gastric H. pylori bacterial load (1.11±0.36×105 and 0.53±0.21×105 c.f.u., respectively) compared to that of the CotC control group (5.56±1.64×105 c.f.u., P<0.01). Moreover, CotC-CTB-UreB spores were significantly more effective at reducing the bacterial load than CotC-UreB spores (P<0.05). These results indicate that CotC-CTB-UreB-expressing B. subtilis spores are a potential vaccine candidate for the control of H. pylori infection.

  10. High avidity binding of engineered papaya mosaic virus virus-like particles to resting spores of Plasmodiophora brassicae.

    Science.gov (United States)

    Morin, Hélène; Tremblay, Marie-Hélène; Plante, Edith; Paré, Christine; Majeau, Nathalie; Hogue, Richard; Leclerc, Denis

    2007-02-01

    Papaya mosaic virus (PapMV) like particles (VLPs) were used as a platform for fusion of affinity peptides binding to resting spores of Plasmodiophora brassicae-a major pathogen of crucifers. Three peptides with specific affinity to the target were isolated and cloned at the C-terminus of the PapMV coat protein (CP), generating three different high avidity VLPs. The peptides were exposed at the surface of the VLPs and their avidity to resting spores of P. brassicae was measured by flow cytometry. NLP-A, with the peptide DPAPRPR, showed the highest avidity. The binding avidity of NLP-A to P. brassicae spores was comparable to that of a polyclonal antibody. NLP-A was also shown to be more specific than the antibody. Fusion of the affinity peptide to a monomeric form (mCP) of the CP [Lecours, K., Tremblay, M.-H., Laliberté Gagné, M.-E., Gagné, S.M., Leclerc, D., 2006. Purification and biochemical characterization of a monomeric form of papaya mosaic potexvirus coat protein. Protein Express. Purific. 47, 273-280] generated a fusion protein that was unable to assemble into VLPs, and mCP-A fusions failed to bind resting spores. The avidity of VLP-A was increased by adding a glycine spacer between the C-terminus of the PapMV CP and the peptide, and improved even further by using a duplicated A peptide in the fusion protein. The use of high avidity VLPs has advantages over polyclonal antibodies because of target specificity. VLPs offers the specificity of monoclonal antibodies but can be more easily generated using the powerful selection of phage display.

  11. Viable spore counts in biological controls pre-sterilization.

    Science.gov (United States)

    Brusca, María I; Bernat, María I; Turcot, Liliana; Nastri, Natalia; Nastri, Maria; Rosa, Alcira

    2005-01-01

    The aim of the present study was to evaluate the total count of viable spores in standardized inoculated carriers pre-sterilization. Samples of "Bacterial Spore Sterilization Strip" (R Biological Laboratories) (well before their expiry date) were divided into Group A (B. subtilis) and Group B (B. stearothermophylus). Twenty-four strips were tested per group. The strips were minced in groups of three, placed in chilled sterile water and vortexed for 5 minutes to obtain a homogenous suspension. Ten ml of the homogenous suspension were transferred to two sterile jars, i.e. one jar per group. The samples were then heated in a water bath at 95 degrees C (Group A) or 80 degrees C (Group B) for 15 minutes and cooled rapidly in an ice bath at 0- 4 degrees C during 15 minutes. Successive dilutions were performed until a final aliquot of 30 to 300 colony-forming units (CFU) was obtained. The inoculums were placed in Petri dishes with culture medium (soy extract, casein agar adapted for spores, melted and cooled to 45-50 degrees C) and incubated at 55 degrees C or 37 degrees C. Statistical analysis of the data was performed. A larger number of spores were found at 48 hours than at 24 hours. However, this finding did not hold true for all the groups. The present results show that monitoring viable spores pre-sterilization would guarantee the accuracy of the data. Total spore counts must be within 50 and 300% of the number of spores indicated in the biological control. The procedure is essential to guarantee the efficacy of the biological control.

  12. The Exosporium Layer of Bacterial Spores: a Connection to the Environment and the Infected Host.

    Science.gov (United States)

    Stewart, George C

    2015-12-01

    Much of what we know regarding bacterial spore structure and function has been learned from studies of the genetically well-characterized bacterium Bacillus subtilis. Molecular aspects of spore structure, assembly, and function are well defined. However, certain bacteria produce spores with an outer spore layer, the exosporium, which is not present on B. subtilis spores. Our understanding of the composition and biological functions of the exosporium layer is much more limited than that of other aspects of the spore. Because the bacterial spore surface is important for the spore's interactions with the environment, as well as being the site of interaction of the spore with the host's innate immune system in the case of spore-forming bacterial pathogens, the exosporium is worthy of continued investigation. Recent exosporium studies have focused largely on members of the Bacillus cereus family, principally Bacillus anthracis and Bacillus cereus. Our understanding of the composition of the exosporium, the pathway of its assembly, and its role in spore biology is now coming into sharper focus. This review expands on a 2007 review of spore surface layers which provided an excellent conceptual framework of exosporium structure and function (A. O. Henriques and C. P. Moran, Jr., Annu Rev Microbiol 61:555-588, 2007, http://dx.doi.org/10.1146/annurev.micro.61.080706.093224). That review began a process of considering outer spore layers as an integrated, multilayered structure rather than simply regarding the outer spore components as independent parts.

  13. At-line determining spore germination of Penicillium chrysogenum bioprocesses in complex media.

    Science.gov (United States)

    Ehgartner, Daniela; Fricke, Jens; Schröder, Andreas; Herwig, Christoph

    2016-10-01

    Spore inoculum quality in filamentous bioprocesses is a critical parameter associated with viable spore concentration (1) and spore germination (2). It influences pellet morphology and, consequently, process performance. The state-of-the-art method to measure viable spore concentration is tedious, associated with significant inherent bias, and not applicable in real-time. Therefore, it is not usable as process analytical technology (PAT). Spore germination has so far been monitored using image analysis, which is hampered by complex medium background often observed in filamentous bioprocesses. The method presented here is based on the combination of viability staining and large-particle flow cytometry which enables measurements in real-time and hence aims to be applicable as a PAT tool. It is compatible with the complex media background and allows the quantification of metabolically active spores and the monitoring of spore germination. A distinction of germinated spores and not germinated spores was based on logistic regression, using multiparameteric data from flow cytometry. In a first step, a significant correlation between colony-forming unit (CFU) counts and viable spore concentration (1) in an industrially relevant model bioprocess was found. Spore germination (2) was followed over the initial process phase with close temporal resolution. The validation of the method showed an error below 5 %. Differences in spore germination for various spore inocula ages and spore inoculum concentrations were monitored. The real-time applicability of the method suggests the implementation as a PAT tool in filamentous bioprocesses.

  14. Dna stability and survival of bacillus subtilis spores in extreme dryness

    Science.gov (United States)

    Dose, Klaus; Gill, Markus

    1995-06-01

    The inactivation of Bacillus subtilis spores during long-term exposure (up to several months) to extreme dryness (especially vacuum) is strain-dependent, through only to a small degree. During a first phase (lasting about four days) monolayers of spores lose about 20% of their viability, regardless of the strain studied. During this phase loss in viability can be equally attributed both to damages of hydrophobic structures (membranes and proteins) and DNA. During a second phase lasting for the remaining time of experimental observation (weeks, months and years) the loss in viability is slowed. A viability of 55% to 75% (depending on the strain) is attained after a total exposure of 36 days. The loss in viability during the second phase can be correlated with the occurrence of DNA double strand breaks. Also covalent DNA-protein cross-links are formed by vacuum exposure. If the protein moiety of these cross-links is degraded by proteinase K-treatment in vitro additional DNA double strand breaks result. The data are also discussed with respect to survival on Mars and in near Earth orbits.

  15. Blue and red light-induced germination of resting spores in the red-tide diatom Leptocylindrus danicus.

    Science.gov (United States)

    Shikata, Tomoyuki; Iseki, Mineo; Matsunaga, Shigeru; Higashi, Sho-ichi; Kamei, Yasuhiro; Watanabe, Masakatsu

    2011-01-01

    Photophysiological and pharmacological approaches were used to examine light-induced germination of resting spores in the red-tide diatom Leptocylindrus danicus. The equal-quantum action spectrum for photogermination had peaks at about 440 nm (blue light) and 680 nm (red light), which matched the absorption spectrum of the resting spore chloroplast, as well as photosynthetic action spectra reported for other diatoms. DCMU, an inhibitor of photosynthetic electron flow near photosystem II, completely blocked photogermination. These results suggest that the photosynthetic system is involved in the photoreception process of light-induced germination. Results of pharmacological studies of the downstream signal transduction pathway suggested that Ca(2+) influx is the closest downstream neighbor, followed by steps involving calmodulin, nitric oxide synthase, guanylyl cyclase, protein-tyrosine-phosphatase, protein kinase C and actin polymerization and translation.

  16. Fighting Ebola with novel spore decontamination technologies for the military.

    Science.gov (United States)

    Doona, Christopher J; Feeherry, Florence E; Kustin, Kenneth; Olinger, Gene G; Setlow, Peter; Malkin, Alexander J; Leighton, Terrance

    2015-01-01

    Recently, global public health organizations such as Doctors without Borders (MSF), the World Health Organization (WHO), Public Health Canada, National Institutes of Health (NIH), and the U.S. government developed and deployed Field Decontamination Kits (FDKs), a novel, lightweight, compact, reusable decontamination technology to sterilize Ebola-contaminated medical devices at remote clinical sites lacking infra-structure in crisis-stricken regions of West Africa (medical waste materials are placed in bags and burned). The basis for effectuating sterilization with FDKs is chlorine dioxide (ClO2) produced from a patented invention developed by researchers at the US Army Natick Soldier RD&E Center (NSRDEC) and commercialized as a dry mixed-chemical for bacterial spore decontamination. In fact, the NSRDEC research scientists developed an ensemble of ClO2 technologies designed for different applications in decontaminating fresh produce; food contact and handling surfaces; personal protective equipment; textiles used in clothing, uniforms, tents, and shelters; graywater recycling; airplanes; surgical instruments; and hard surfaces in latrines, laundries, and deployable medical facilities. These examples demonstrate the far-reaching impact, adaptability, and versatility of these innovative technologies. We present herein the unique attributes of NSRDEC's novel decontamination technologies and a Case Study of the development of FDKs that were deployed in West Africa by international public health organizations to sterilize Ebola-contaminated medical equipment. FDKs use bacterial spores as indicators of sterility. We review the properties and structures of spores and the mechanisms of bacterial spore inactivation by ClO2. We also review mechanisms of bacterial spore inactivation by novel, emerging, and established non-thermal technologies for food preservation, such as high pressure processing, irradiation, cold plasma, and chemical sanitizers, using an array of Bacillus

  17. Fighting Ebola with novel spore decontamination technologies for the military

    Science.gov (United States)

    Doona, Christopher J.; Feeherry, Florence E.; Kustin, Kenneth; Olinger, Gene G.; Setlow, Peter; Malkin, Alexander J.; Leighton, Terrance

    2015-01-01

    Recently, global public health organizations such as Doctors without Borders (MSF), the World Health Organization (WHO), Public Health Canada, National Institutes of Health (NIH), and the U.S. government developed and deployed Field Decontamination Kits (FDKs), a novel, lightweight, compact, reusable decontamination technology to sterilize Ebola-contaminated medical devices at remote clinical sites lacking infra-structure in crisis-stricken regions of West Africa (medical waste materials are placed in bags and burned). The basis for effectuating sterilization with FDKs is chlorine dioxide (ClO2) produced from a patented invention developed by researchers at the US Army Natick Soldier RD&E Center (NSRDEC) and commercialized as a dry mixed-chemical for bacterial spore decontamination. In fact, the NSRDEC research scientists developed an ensemble of ClO2 technologies designed for different applications in decontaminating fresh produce; food contact and handling surfaces; personal protective equipment; textiles used in clothing, uniforms, tents, and shelters; graywater recycling; airplanes; surgical instruments; and hard surfaces in latrines, laundries, and deployable medical facilities. These examples demonstrate the far-reaching impact, adaptability, and versatility of these innovative technologies. We present herein the unique attributes of NSRDEC’s novel decontamination technologies and a Case Study of the development of FDKs that were deployed in West Africa by international public health organizations to sterilize Ebola-contaminated medical equipment. FDKs use bacterial spores as indicators of sterility. We review the properties and structures of spores and the mechanisms of bacterial spore inactivation by ClO2. We also review mechanisms of bacterial spore inactivation by novel, emerging, and established non-thermal technologies for food preservation, such as high pressure processing, irradiation, cold plasma, and chemical sanitizers, using an array of Bacillus

  18. STREPTOMYCES SPECIES COMPRISING THE BLUE-SPORE SERIES.

    Science.gov (United States)

    TREJO, W H; BENNETT, R E

    1963-03-01

    Trejo, W. H. (Squibb Institute for Medical Research, New Brunswick, N.J.) and R. E. Bennett. Streptomyces species comprising the blue-spore series. J. Bacteriol. 85:676-690. 1963.-The objective of this study was to define and delimit the streptomycetes of the blue-spored (Viridochromogenes) series. The series, as defined in this study, includes 11 blue and blue-green species. The green-spored species were excluded on the basis of morphology as well as color. It was proposed that NRRL B-1511 be designated as the neotype strain of Streptomyces viridochromogenes (Krainsky) Waksman and Henrici, and that IMRU 3761 be designated as the neotype for Streptomyces cyaneus (Krassilnikov) Waksman. Evidence was presented to show that physiological criteria cannot be used to differentiate these organisms below the series level. The major characteristics of the Viridochromogenes series are blue to blue-green spores borne in spirals, and chromogenicity (melanin-positive). Reverse color and spore morphology provide a basis for separation below the series level.

  19. Effect of Nanofibers on Spore Penetration and Lunar Dust Filtration

    Directory of Open Access Journals (Sweden)

    Phil Gibson, Ph.D.

    2008-06-01

    Full Text Available The results of two separate studies on biological spore penetration and simulated lunar dust filtration illustrate the use of nanofibers in some nonstandard filtration applications (nanofibers are generally defined as having diameters of less than a micron. In the first study, a variety of microporous liners containing microfibers and nanofibers were combined with cotton-based fabrics in order to filter aerosolized spores. The aerosol penetration resistance of the nanofiber-lined fabrics was measured, and some analysis was conducted of where the particles are captured within the fabric layers. Testing was conducted with aerosolized living spores, in order to evaluate the efficacy of various fabric treatments on spore viability within the fabric layers after exposure. Reported are the results of studies on fabrics with and without a removable electrospun nanofiber liner, and the fate of the spores within the fabric layers. In the second study, non-instrumented filtration testing using simulated lunar dust determined the comparative filtration efficiency of various nonwoven filtration media. Nanofiber witness media, combined with scanning electron microscope images, showed that an electrospun nonwoven filter layer effectively filtered out all the large and fine particles of the simulated lunar dust.

  20. Scanning Surface Potential Microscopy of Spore Adhesion on Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ida [University of Tennessee, Knoxville (UTK); Chung, Eunhyea [Georgia Institute of Technology; Kweon, Hyojin [Georgia Institute of Technology; Yiacoumi, Sotira [Georgia Institute of Technology; Tsouris, Costas [ORNL

    2012-01-01

    The adhesion of spores of Bacillus anthracis - the cause of anthrax and a likely biological threat - to solid surfaces is an important consideration in cleanup after an accidental or deliberate release. However, because of safety concerns, directly studying B. anthracis spores with advanced instrumentation is problematic. As a first step, we are examining the electrostatic potential of Bacillus thuringiensis (Bt), which is a closely related species that is often used as a simulant to study B. anthracis. Scanning surface potential microscopy (SSPM), also known as Kelvin probe force microscopy (KPFM), was used to investigate the influence of relative humidity (RH) on the surface electrostatic potential of Bt that had adhered to silica, mica, or gold substrates. AFM/SSPM side-by-side images were obtained separately in air, at various values of RH, after an aqueous droplet with spores was applied on each surface and allowed to dry before measurements. In the SSPM images, a negative potential on the surface of the spores was observed compared with that of the substrates. The surface potential decreased as the humidity increased. Spores were unable to adhere to a surface with an extremely negative potential, such as mica.

  1. HtrC is involved in proteolysis of YpeB during germination of Bacillus anthracis and Bacillus subtilis spores.

    Science.gov (United States)

    Bernhards, Casey B; Chen, Yan; Toutkoushian, Hannah; Popham, David L

    2015-01-01

    Bacterial endospores can remain dormant for decades yet can respond to nutrients, germinate, and resume growth within minutes. An essential step in the germination process is degradation of the spore cortex peptidoglycan wall, and the SleB protein in Bacillus species plays a key role in this process. Stable incorporation of SleB into the spore requires the YpeB protein, and some evidence suggests that the two proteins interact within the dormant spore. Early during germination, YpeB is proteolytically processed to a stable fragment. In this work, the primary sites of YpeB cleavage were identified in Bacillus anthracis, and it was shown that the stable products are comprised of the C-terminal domain of YpeB. Modification of the predominant YpeB cleavage sites reduced proteolysis, but cleavage at other sites still resulted in loss of full-length YpeB. A B. anthracis strain lacking the HtrC protease did not generate the same stable YpeB products. In B. anthracis and Bacillus subtilis htrC mutants, YpeB was partially stabilized during germination but was still degraded at a reduced rate by other, unidentified proteases. Purified HtrC cleaved YpeB to a fragment similar to that observed in vivo, and this cleavage was stimulated by Mn(2+) or Ca(2+) ions. A lack of HtrC did not stabilize YpeB or SleB during spore formation in the absence of the partner protein, indicating other proteases are involved in their degradation during sporulation.

  2. Understanding of the importance of the spore coat structure and pigmentation in the Bacillus subtilis spore resistance to low-pressure plasma sterilization

    Science.gov (United States)

    Raguse, Marina; Fiebrandt, Marcel; Denis, Benjamin; Stapelmann, Katharina; Eichenberger, Patrick; Driks, Adam; Eaton, Peter; Awakowicz, Peter; Moeller, Ralf

    2016-07-01

    Low-pressure plasmas have been evaluated for their potential in biomedical and defense purposes. The sterilizing effect of plasma can be attributed to several active agents, including (V)UV radiation, charged particles, radical species, neutral and excited atoms and molecules, and the electric field. Spores of Bacillus subtilis were used as a bioindicator and a genetic model system to study the sporicidal effects of low-pressure plasma decontamination. Wild-type spores, spores lacking the major protective coat layers (inner, outer, and crust), pigmentation-deficient spores or spore impaired in encasement (a late step in coat assembly) were systematically tested for their resistance to low-pressure argon, hydrogen, and oxygen plasmas with and without admixtures. We demonstrate that low-pressure plasma discharges of argon and oxygen discharges cause significant physical damage to spore surface structures as visualized by atomic force microscopy. Spore resistance to low-pressure plasma was primarily dependent on the presence of the inner, and outer spore coat layers as well as spore encasement, with minor or less importance of the crust and spore pigmentation, whereas spore inactivation itself was strongly influenced by the gas composition and operational settings.

  3. Use of fatty acid methyl ester profiles for discrimination of Bacillus cereus T-strain spores grown on different media.

    Science.gov (United States)

    Ehrhardt, Christopher J; Chu, Vivian; Brown, TeeCie; Simmons, Terrie L; Swan, Brandon K; Bannan, Jason; Robertson, James M

    2010-03-01

    The goal of this study was to determine if cellular fatty acid methyl ester (FAME) profiling could be used to distinguish among spore samples from a single species (Bacillus cereus T strain) that were prepared on 10 different medium formulations. To analyze profile differences and identify FAME biomarkers diagnostic for the chemical constituents in each sporulation medium, a variety of statistical techniques were used, including nonmetric multidimensional scaling (nMDS), analysis of similarities (ANOSIM), and discriminant function analysis (DFA). The results showed that one FAME biomarker, oleic acid (18:1 omega9c), was exclusively associated with spores grown on Columbia agar supplemented with sheep blood and was indicative of blood supplements that were present in the sporulation medium. For spores grown in other formulations, multivariate comparisons across several FAME biomarkers were required to discern profile differences. Clustering patterns in nMDS plots and R values from ANOSIM revealed that dissimilarities among FAME profiles were most pronounced when spores grown with disparate sources of complex additives or protein supplements were compared (R > 0.8), although other factors also contributed to FAME differences. DFA indicated that differentiation could be maximized with a targeted subset of FAME variables, and the relative contributions of branched FAME biomarkers to group dissimilarities changed when different media were compared. When taken together, these analyses indicate that B. cereus spore samples grown in different media can be resolved with FAME profiling and that this may be a useful technique for providing intelligence about the production methods of Bacillus organisms in a forensic investigation.

  4. Adenosine Monophosphate-Based Detection of Bacterial Spores

    Science.gov (United States)

    Kern, Roger G.; Chen, Fei; Venkateswaran, Kasthuri; Hattori, Nori; Suzuki, Shigeya

    2009-01-01

    A method of rapid detection of bacterial spores is based on the discovery that a heat shock consisting of exposure to a temperature of 100 C for 10 minutes causes the complete release of adenosine monophosphate (AMP) from the spores. This method could be an alternative to the method described in the immediately preceding article. Unlike that method and related prior methods, the present method does not involve germination and cultivation; this feature is an important advantage because in cases in which the spores are those of pathogens, delays involved in germination and cultivation could increase risks of infection. Also, in comparison with other prior methods that do not involve germination, the present method affords greater sensitivity. At present, the method is embodied in a laboratory procedure, though it would be desirable to implement the method by means of a miniaturized apparatus in order to make it convenient and economical enough to encourage widespread use.

  5. Lipoxygenase Activity Accelerates Programmed Spore Germination in Aspergillus fumigatus

    Directory of Open Access Journals (Sweden)

    Gregory J. Fischer

    2017-05-01

    Full Text Available The opportunistic human pathogen Aspergillus fumigatus initiates invasive growth through a programmed germination process that progresses from dormant spore to swollen spore (SS to germling (GL and ultimately invasive hyphal growth. We find a lipoxygenase with considerable homology to human Alox5 and Alox15, LoxB, that impacts the transitions of programmed spore germination. Overexpression of loxB (OE::loxB increases germination with rapid advance to the GL stage. However, deletion of loxB (ΔloxB or its signal peptide only delays progression to the SS stage in the presence of arachidonic acid (AA; no delay is observed in minimal media. This delay is remediated by the addition of the oxygenated AA oxylipin 5-hydroxyeicosatetraenoic acid (5-HETE that is a product of human Alox5. We propose that A. fumigatus acquisition of LoxB (found in few fungi enhances germination rates in polyunsaturated fatty acid-rich environments.

  6. Pollen and spores as a passive monitor of ultraviolet radiation

    Directory of Open Access Journals (Sweden)

    Wesley Toby Fraser

    2014-04-01

    Full Text Available Sporopollenin is the primary component of the outer walls of pollen and spores. The chemical composition of sporopollenin is responsive to levels of ultraviolet (UV radiation exposure, via a concomitant change in the concentration of phenolic compounds. This relationship offers the possibility of using fossil pollen and spore chemistry as a novel proxy for past UV flux. Phenolic compounds in sporopollenin can be quantified using Fourier Transform infrared spectroscopy. The high potential for preservation of pollen and spores in the geologic record, and the conservative nature of sporopollenin chemistry across the land plant phylogeny, means that this new proxy has the potential to reconstruct UV flux over much longer timescales than has previously been possible. This new tool has important implications for understanding the relationship between UV flux, solar insolation and climate in the past, as well as providing a possible means of assessing paleoaltitude, and ozone thickness.

  7. Protection of Penaeus monodon against white spot syndrome by continuous oral administration of a low concentration of Bacillus subtilis spores expressing the VP28 antigen.

    Science.gov (United States)

    Pham, K-C; Tran, H T T; Van Doan, C; Le, P H; Van Nguyen, A T; Nguyen, H A; Hong, H A; Cutting, S M; Phan, T-N

    2017-03-01

    In this study, Bacillus subtilis spores expressing a chimeric protein, CotB-VP28, were used as a probiotic vaccine to protect black tiger shrimps (Penaeus monodon) against white spot syndrome virus (WSSV) infection. Oral administration of pellets coated with CotB-VP28 spores (at ≥1 × 10(9 ) CFU per g pellet) to shrimps induced immune-relating phenoloxydase activity (PO) in shrimps after 14 days of feeding (prior challenge) and at day 3 post challenge (1·26 and 1·70 fold increase respectively). A 75% protection rate was obtained by continuous feeding of the spore-coated pellets at ≥1 × 10(9 ) CFU per g for 14 days prior to WSSV challenge and during all the postchallenge period. Even when the amount of CotB-VP28 spores in feed pellets was reduced down to ≥5 × 10(7)  CFU per g and ≥1 × 10(6)  CFU per g, relatively high protection rates of 70 and 67·5%, respectively, were still obtained. By contrast, feeding pellets without spores (untreated group) and with naked spores (PY79 group) at ≥1 × 10(9)  CFU per g could not protect shrimps against WSSV. These data suggest that supplementation of CotB-VP28 spores at low dose of ≥1 × 10(6)  CFU per g could be effective as a prophylactic treatment of WSS for black tiger shrimps.

  8. Flow-cytometric Analysis of Bacillus anthracis Spores

    Directory of Open Access Journals (Sweden)

    D. V. Kamboj

    2006-11-01

    Full Text Available Flow-cytometric technique has been established as a powerful tool for detection andidentification of microbiological agents. Unambiguous and rapid detection of Bacillus anthracisspores has been reported using immunoglobulin G-fluorescein isothiocyanate conjugate againstlive spores. In addition to the high sensitivity, the present technique could differentiate betweenspores of closely related species, eg, Bacillus cereus and Bacillus subtilis using fluorescenceintensity. The technique can be used for detection of live as well as inactivated spores makingit more congenial for screening of suspected samples of bioterrorism.

  9. Physical determinants of radiation sensitivity in bacterial spores

    Energy Technology Data Exchange (ETDEWEB)

    Powers, E.L.

    1982-01-01

    Several factors modifying radiation sensitivity in dry bacterial spores are described and discussed. Vacuum inducing the loss of critical structural water, very low dose rates of radiation from which the cell may recover, radiations of high linear energy transfer, and the action of temperature over long periods of time on previously irradiated cells are recognized from extensive laboratory work as important in determining survival of spores exposed to low radiation doses at low temperatures for long periods of time. Some extensions of laboratory work are proposed.

  10. Pulling the trigger: the mechanism of bacterial spore germination.

    Science.gov (United States)

    Foster, S J; Johnstone, K

    1990-01-01

    In spite of displaying the most extreme dormancy and resistance properties known among living systems, bacterial endospores retain an alert environment-sensing mechanism that can respond within seconds to the presence of specific germinants. This germination response is triggered in the absence of both germinant and germinant-stimulated metabolism. Genes coding for components of the sensing mechanism in spores of Bacillus subtilis have been cloned and sequenced. However, the molecular mechanism whereby these receptors interact with germinants to initiate the germination response is unknown. Recent evidence has suggested that in spores of Bacillus megaterium KM, proteolytic activation of an autolytic enzyme constitutes part of the germination trigger reaction.

  11. Inhibition of Bacillus cereus spore outgrowth and multiplication by chitosan.

    Science.gov (United States)

    Mellegård, Hilde; From, Cecilie; Christensen, Bjørn E; Granum, Per E

    2011-10-03

    Bacillus cereus is an endospore-forming bacterium able to cause food-associated illness. Different treatment processes are used in the food industry to reduce the number of spores and thereby the potential of foodborne disease. Chitosan is a polysaccharide with well-documented antibacterial activity towards vegetative cells. The activity against bacterial spores, spore germination and subsequent outgrowth and growth (the latter two events hereafter denoted (out)growth), however, is poorly documented. By using six different chitosans with defined macromolecular properties, we evaluated the effect of chitosan on Bacillus cereus spore germination and (out)growth using optical density assays and a dipicolinic acid release assay. (Out)growth was inhibited by chitosan, but germination was not. The action of chitosan was found to be concentration-dependent and also closely related to weight average molecular weight (M(w)) and fraction of acetylation (F(A)) of the biopolymer. Chitosans of low acetylation (F(A)=0.01 or 0.16) inhibited (out)growth more effectively than higher acetylated chitosans (F(A)=0.48). For the F(A)=0.16 chitosans with medium (56.8kDa) and higher M(w) (98.3kDa), a better (out)growth inhibition was observed compared to low M(w) (10.6kDa) chitosan. The same trend was not evident with chitosans of 0.48 acetylation, where the difference in activity between the low (19.6kDa) and high M(w) (163.0kDa) chitosans was only minor. In a spore test concentration corresponding to 10(2)-10(3)CFU/ml (spore numbers relevant to food), less chitosan was needed to suppress (out)growth compared to higher spore numbers (equivalent to 10(8)CFU/ml), as expected. No major differences in chitosan susceptibility between three different strains of B. cereus were detected. Our results contribute to a better understanding of chitosan activity towards bacterial spore germination and (out)growth.

  12. Bacillus cereus spores and cereulide in food-borne illness

    OpenAIRE

    Shaheen, Ranad

    2009-01-01

    B. cereus is a gram-positive bacterium that possesses two different forms of life:the large, rod-shaped cells (ca. 0.002 mm by 0.004 mm) that are able to propagate and the small (0.001 mm), oval shaped spores. The spores can survive in almost any environment for up to centuries without nourishment or water. They are insensitive towards most agents that normally kill bacteria: heating up to several hours at 90 ºC, radiation, disinfectants and extreme alkaline (≥ pH 13) and acid (≀ pH 1) e...

  13. Effect of synthetic detergents on germination of fern spores

    Energy Technology Data Exchange (ETDEWEB)

    Devi, Y.; Devi, S.

    1986-12-01

    Synthetic detergents constitute one of the most important water pollutants by contaminating the lakes and rivers through domestic and industrial use. Considerable information is now available for the adverse effects of detergents an aquatic fauna including fish, algae, and higher aquatic plants. Marked inhibition of germination in orchids and brinjals and of seedlings growth in raddish suggest that rapidly growing systems could be sensitive to detergent polluted water. The present study of the effect of linear alkyl benzene sulphonate on germination of the spores of a fern, Diplazium esculentum aims at the understanding of the effects of water pollution on pteridophytes and the development of spore germination assay for phytoxicity evaluation.

  14. Characteristics of spore germination and protonemal development in Hypnum pacleseens

    Institute of Scientific and Technical Information of China (English)

    HUANG Shiliang; LI Min; ZHAO Jiancheng; ZHANG Yuanming; WANG Zhenjie

    2006-01-01

    The spore germination,protonemal development,and gametophyte differentiation of Hypnum pacleseens were observed in cultivation.Photomicrographs showed that spore germination of Hypnum pacleseens occured within the exospore.Its protonema is massive with filamentous chloronema formed inside.The terminal part of the chloronema differentiated into filamentous caulonema and its rhizoid was derived from the apical cell of the filamentous chloronema.The initial cell of gametophyte differentiated from chloronema and caulonema.Sporeling type of Hypnum pacleseens is developmentally similar to Glyphmitrium-type.

  15. Systematic Assessment of Nonproteolytic Clostridium botulinum Spores for Heat Resistance

    Science.gov (United States)

    Stringer, Sandra C.; Barker, Gary C.; Peck, Michael W.

    2016-01-01

    ABSTRACT Heat treatment is an important controlling factor that, in combination with other hurdles (e.g., pH, aw), is used to reduce numbers and prevent the growth of and associated neurotoxin formation by nonproteolytic C. botulinum in chilled foods. It is generally agreed that a heating process that reduces the spore concentration by a factor of 106 is an acceptable barrier in relation to this hazard. The purposes of the present study were to review the available data relating to heat resistance properties of nonproteolytic C. botulinum spores and to obtain an appropriate representation of parameter values suitable for use in quantitative microbial risk assessment. In total, 753 D values and 436 z values were extracted from the literature and reveal significant differences in spore heat resistance properties, particularly those corresponding to recovery in the presence or absence of lysozyme. A total of 503 D and 338 z values collected for heating temperatures at or below 83°C were used to obtain a probability distribution representing variability in spore heat resistance for strains recovered in media that did not contain lysozyme. IMPORTANCE In total, 753 D values and 436 z values extracted from literature sources reveal significant differences in spore heat resistance properties. On the basis of collected data, two z values have been identified, z = 7°C and z = 9°C, for spores recovered without and with lysozyme, respectively. The findings support the use of heat treatment at 90°C for 10 min to reduce the spore concentration by a factor of 106, providing that lysozyme is not present during recovery. This study indicates that greater heat treatment is required for food products containing lysozyme, and this might require consideration of alternative recommendation/guidance. In addition, the data set has been used to test hypotheses regarding the dependence of spore heat resistance on the toxin type and strain, on the heating technique used, and on the

  16. Discrimination of Spore-Forming Bacilli Using spoIVA

    Science.gov (United States)

    Venkateswaran, Kasthuri; LaDuc, Myron; Stuecker, Tara

    2009-01-01

    A method of discriminating between spore-forming and non-spore-forming bacteria is based on a combination of simultaneous sporulation-specific and non-sporulation-specific quantitative polymerase chain reactions (Q-PCRs). The method was invented partly in response to the observation that for the purposes of preventing or reducing biological contamination affecting many human endeavors, ultimately, only the spore-forming portions of bacterial populations are the ones that are problematic (or, at least, more problematic than are the non-spore-forming portions). In some environments, spore-forming bacteria constitute small fractions of the total bacterial populations. The use of sporulation-specific primers in Q-PCR affords the ability to assess the spore-forming fraction of a bacterial population present in an environment of interest. This assessment can provide a more thorough and accurate understanding of the bacterial contamination in the environment, thereby making it possible to focus contamination- testing, contamination-prevention, sterilization, and decontamination resources more economically and efficiently. The method includes the use of sporulation-specific primers in the form of designed, optimized deoxyribonucleic acid (DNA) oligonucleotides specific for the bacterial spoIVA gene (see table). [In "spoIVA," "IV" signifies Roman numeral four and the entire quoted name refers to gene A for the fourth stage of sporulation.] These primers are mixed into a PCR cocktail with a given sample of bacterial cells. A control PCR cocktail into which are mixed universal 16S rRNA primers is also prepared. ["16S rRNA" denotes a ribosomal ribonucleic acid (rRNA) sequence that is common to all organisms.] Following several cycles of heating and cooling according to the PCR protocol to amplify amounts of DNA molecules, the amplification products can be analyzed to determine the types of bacterial cells present within the samples. If the amplification product is strong

  17. FORMALDEHYDE GAS INACTIVATION OF BACILLUS ANTHRACIS, BACILLUS SUBTILIS AND GEOBACILLUS STEAROTHERMOPHILUS SPORES ON INDOOR SURFACE MATERIALS.

    Science.gov (United States)

    Research evaluated the decontamination of Bacillus anthracis, Bacillus subtilis, and Geobacillus stearothermophilus spores on indoor surface material using formaldehyde gas. Spores were dried on seven types of indoor surfaces and exposed to 1100 ppm formaldehyde gas for 10 hr. Fo...

  18. A novel, inducible, citral lyase purified from spores of Penicillium digitatum

    NARCIS (Netherlands)

    Wolken, W.A.M.; Loo, W.J.V. van; Tramper, J.; Werf, M.J. van der

    2002-01-01

    A novel lyase, combining hydratase and aldolase activity, that converts citral into methylheptenone and acetaldehyde, was purified from spores of Penicillium digitatum. Remarkably, citral lyase activity was induced 118-fold by incubating nongerminating spores with the substrate, citral. This cofacto

  19. Inside the Meteorite — Bacterial Spore Survival After Exposure to Galactic Cosmic Radiation

    Science.gov (United States)

    Moeller, R.; Berger, T.; Matthiä, D.; Okayasu, R.; Kato, T.; Kitamura, H.; Reitz, G.

    2010-04-01

    Based on their unique resistance to various space parameters, bacterial spores are one of the model systems used for astrobiological studies. In our research, we studied the response of Bacillus subtilis spores to the exposure of galactic cosmic radiation.

  20. Surface Hydrophobicity and Surface Rigidity Induce Spore Germination in Colletotrichum graminicola.

    Science.gov (United States)

    Chaky, J; Anderson, K; Moss, M; Vaillancourt, L

    2001-06-01

    ABSTRACT We investigated the relationship between physical characteristics of artificial surfaces, spore attachment, and spore germination in Colletotrichum graminicola. Surface hydrophobicity and surface rigidity were both signals for breaking dormancy and initiating spore germination, but spore attachment alone was not an important inducing signal. The presence of a carbon source overrode the necessity for a rigid, hydrophobic substrate for spore germination. Spore attachment was typically stronger to more hydrophobic surfaces, but certain hydrophilic surfaces also proved to be good substrates for spore attachment. In contrast to spore germination, appressorial induction was more dependent on attachment to a rigid substrate than it was on surface hydrophobicity. Appressoria were induced efficiently on hydrophilic surfaces, as long as there was significant conidial attachment to those surfaces.

  1. A novel, inducible, citral lyase purified from spores of Penicillium digitatum

    NARCIS (Netherlands)

    Wolken, W.A.M.; Loo, W.J.V. van; Tramper, J.; Werf, M.J. van der

    2002-01-01

    A novel lyase, combining hydratase and aldolase activity, that converts citral into methylheptenone and acetaldehyde, was purified from spores of Penicillium digitatum. Remarkably, citral lyase activity was induced 118-fold by incubating nongerminating spores with the substrate, citral. This

  2. Palynological investigation of the sediment cores from the Arabian Sea 1 Fungal spores

    Digital Repository Service at National Institute of Oceanography (India)

    Chandra, A.; Saxena, R.K.; Setty, M.G.A.P.

    The paper deals with the systematic study of the fungal spores recovered from five sediment cores from the Arabian Sea The fungal spore assemblage recorded here includes 12 genera viz., @iInapertisporites, Dicellaesporites, Multicellaesporites...

  3. Impact of Spore Biology on the Rate of Kill and Suppression of Resistance in Bacillus anthracis▿

    OpenAIRE

    Drusano, G L; Okusanya, O. O.; Okusanya, A. O.; van Scoy, B.; Brown, D L; Fregeau, C.; Kulawy, R.; Kinzig, M; Sörgel, F; Heine, H. S.; Louie, A

    2009-01-01

    Bacillus anthracis is complex because of its spore form. The spore is invulnerable to antibiotic action. It also has an impact on the emergence of resistance. We employed the hollow-fiber infection model to study the impacts of different doses and schedules of moxifloxacin on the total-organism population, the spore population, and the subpopulations of vegetative- and spore-phase organisms that were resistant to moxifloxacin. We then generated a mathematical model of the impact of moxifloxac...

  4. Observations on the migration of bacillus spores outside a contaminated facility during a decontamination efficacy study

    Science.gov (United States)

    Silvestri, Erin E.; Perkins, Sarah; Lordo, Robert; Kovacik, William; Nichols, Tonya L.; Bowling, Charlena Yoder; Griffin, Dale W.; Schaefer, Frank W.

    2015-01-01

    The potential for an intentional wide-area or indoor release of Bacillus anthracis spores remains a concern, but the fate and transport of B. anthracis spores in indoor and outdoor environments are not well understood. Some studies have examined the possibility of spore transport within ventilation systems and in buildings and transport into a building following an outdoor release. Little research exists regarding the potential for spores to migrate to the outside of a building following an indoor release.

  5. Characterization of fungal spores in ambient particulate matter: A study from the Himalayan region

    Science.gov (United States)

    Kumar, Ajay; Attri, Arun K.

    2016-10-01

    Fungal spores as a constituent of ambient particulate matter (PM) is of concern; they not only display the physical traits of a particle, but are also potential allergens and health risk. An investigation over fourteen month was undertaken at a rural site located in the Western Himalayan region, to evaluate the PM associated fungal spores' concentration and diversity. The season-wise change in the fungal spores concentration in the Coarse Particulate Matter (CPM) fraction (aerodynamic diameter > 10 μm) varied from 500 to 3899 spores m-3. Their average concentration over 14 months was 1517 spores m-3. Significant diversity of fungal spores in the CPM samples was observed; 27 individual genera of fungal spores were identified, of which many were known allergens. Presence of Ascomycota and Basidiomycota fungal spores was dominant in the samples; ∼20% of the spores were un-characterized. The season-wise variability in fungal spores showed a statistically significant high correlation with CPM load. Maximum number concentration of the spores in CPM was recorded in the summer, while minimum in the winter. The high diversity of spores occurred during monsoon and post monsoon months. The meteorological factors played an important role in the fungal spores' distribution profile. The temporal profile of the spores showed significant correlation with the ambient temperature (T), relative humidity (RH), wind speed (WS) and planetary boundary layer (PBL) height. Strong correlation of WS with fungal spores and CPM, and wind back trajectories suggest that re-suspension and wind assisted transport of PM contributes to ambient CPM associated fungal spores.

  6. Meteorological factors associated with abundance of airborne fungal spores over natural vegetation

    Science.gov (United States)

    Crandall, Sharifa G.; Gilbert, Gregory S.

    2017-08-01

    The abundance of airborne fungal spores in agricultural and urban settings increases with greater air temperature, relative humidity, or precipitation. The same meteorological factors that affect temporal patterns in spore abundance in managed environments also vary spatially across natural habitats in association with differences in vegetation structure. Here we investigated how temporal and spatial variation in aerial spore abundance is affected by abiotic (weather) and biotic (vegetation) factors as a foundation for predicting how fungi may respond to changes in weather and land-use patterns. We measured the phenology of airborne fungal spores across a mosaic of naturally occurring vegetation types at different time scales to describe (1) how spore abundance changes over time, (2) which local meteorological variables are good predictors for airborne spore density, and (3) whether spore abundance differs across vegetation types. Using an air volumetric vacuum sampler, we collected spore samples at 3-h intervals over a 120-h period in a mixed-evergreen forest and coastal prairie to measure diurnal, nocturnal, and total airborne spore abundance across vegetation types. Spore samples were also collected at weekly and monthly intervals in mixed-evergreen forest, redwood forest, and maritime chaparral vegetation types from 12 field sites across two years. We found greater airborne spore densities during the wetter winter months compared to the drier summer months. Mean total spore abundance in the mixed-evergreen forest was twice than in the coastal prairie, but there were no significant differences in total airborne spore abundance among mixed-evergreen forest, redwood forest, and maritime chaparral vegetation types. Weekly and monthly peaks in airborne spore abundance corresponded with rain events and peaks in soil moisture. Overall, temporal patterns in meteorological factors were much more important in determining airborne fungal spore abundance than the

  7. Quantification of [i]C. globosum [/i]spores in house dust samples

    Directory of Open Access Journals (Sweden)

    Chunhua Shi

    2014-09-01

    Full Text Available [i]Chaetomium globosum [/i]is one of the most common fungi that grows in damp buildings and occurs in agricultural and forestry workplaces. Using sera from atopic patients, we characterized and purified an extracellular chitosanase (Chg47 from [i]C. globosum[/i] that is antigenic to humans. The study reports the production of monoclonal antibodies to the protein. Three capture ELISAs were developed for Chg47 for detection of spores and spore and mycelial fragments in dust samples using different mono- and polyclonal antibody combinations. One method is based on an enhanced biotinylated polyclonal antibody as the secondary antibody and coating anti-IgM to capture one of two clones of IgM monoclonal antibodies as the capture antibody. The other method makes use of an enhanced rabbit polyclonal antibody as both the primary and capture antibody. The detection limit of the double PAb method for the Chg47 antigen was 7.6 pg/ml. When the anti-IgM+10B3 clone was used, the detection limit was 61 pg/ml and for anti-IgM+5F12, 122 pg/ml. The detection limit of double PAb method is comparable to methods for the allergen and spores of [i]Aspergillus versicolor[/i] in house dust and is more sensitive than other immunoassays for allergens in house including for [i]Stachybotrys chartarum[/i], [i]Aspergillus fumigatus[/i] and [i]Alternaria alternata[/i]. All three methods had limited cross-reactivity to fungi common in house dust representing a diverse array of taxa.

  8. Global transcriptome analysis of spore formation in Myxococcus xanthus reveals a locus necessary for cell differentiation

    Directory of Open Access Journals (Sweden)

    Treuner-Lange Anke

    2010-04-01

    Full Text Available Abstract Background Myxococcus xanthus is a Gram negative bacterium that can differentiate into metabolically quiescent, environmentally resistant spores. Little is known about the mechanisms involved in differentiation in part because sporulation is normally initiated at the culmination of a complex starvation-induced developmental program and only inside multicellular fruiting bodies. To obtain a broad overview of the sporulation process and to identify novel genes necessary for differentiation, we instead performed global transcriptome analysis of an artificial chemically-induced sporulation process in which addition of glycerol to vegetatively growing liquid cultures of M. xanthus leads to rapid and synchronized differentiation of nearly all cells into myxospore-like entities. Results Our analyses identified 1 486 genes whose expression was significantly regulated at least two-fold within four hours of chemical-induced differentiation. Most of the previously identified sporulation marker genes were significantly upregulated. In contrast, most genes that are required to build starvation-induced multicellular fruiting bodies, but which are not required for sporulation per se, were not significantly regulated in our analysis. Analysis of functional gene categories significantly over-represented in the regulated genes, suggested large rearrangements in core metabolic pathways, and in genes involved in protein synthesis and fate. We used the microarray data to identify a novel operon of eight genes that, when mutated, rendered cells unable to produce viable chemical- or starvation-induced spores. Importantly, these mutants displayed no defects in building fruiting bodies, suggesting these genes are necessary for the core sporulation process. Furthermore, during the starvation-induced developmental program, these genes were expressed in fruiting bodies but not in peripheral rods, a subpopulation of developing cells which do not sporulate

  9. Human cell exposure assays of Bacillus thuringiensis commercial insecticides: production of Bacillus cereus-like cytolytic effects from outgrowth of spores.

    Science.gov (United States)

    Tayabali, A F; Seligy, V L

    2000-01-01

    Most contemporary bioinsecticides are derived from scaled-up cultures of Bacillus thuringiensis subspecies israelensis (Bti) and kurstaki (Btk), whose particulate fractions contain mostly B. thuringiensis spores (> 10(12)/L) and proteinaceous aggregates, including crystal-like parasporal inclusion bodies (PIB). Based on concerns over relatedness to B. cereus-group pathogens, we conducted extensive testing of B. thuringiensis (BT) products and their subfractions using seven human cell types. The Bti/Btk products generated nonspecific cytotoxicities involving loss in bioreduction, cell rounding, blebbing and detachment, degradation of immunodetectable proteins, and cytolysis. Their threshold dose (Dt approximately equal.5 times 10(-14)% BT product/target cell) equated to a single spore and a target cell half-life (tLD(50)) of approximately 16 hr. At Dts > 10(4), the tLD(50) rapidly shifted to < 4 hr; with antibiotic present, no component, including PIB-related [delta]-endotoxins, was cytolytic up to an equivalent of approximately 10(9 )Dt. The cytolytic agent(s) within the Bti/Btk-vegetative cell exoprotein (VCP) pool is an early spore outgrowth product identical to that of B. cereus and acting possibly by arresting protein synthesis. No cytolytic effects were seen with VCP from B. subtilis and Escherichia coli. These data, including recent epidemiologic work indicate that spore-containing BT products have an inherent capacity to lyse human cells in free and interactive forms and may also act as immune sensitizers. To critically impact at the whole body level, the exposure outcome would have to be an uncontrolled infection arising from intake of Btk/Bti spores. For humans, such a condition would be rare, arising possibly in equally rare exposure scenarios involving large doses of spores and individuals with weak or impaired microbe-clearance capacities and/or immune response systems. PMID:11049810

  10. Impact of sorbic acid on germination and outgrowth heterogeneity of Bacillus cereus ATCC 14579 spores

    NARCIS (Netherlands)

    Besten, den H.M.W.; Melis, van C.C.J.; Sanders, J.W.; Nierop Groot, M.N.; Abee, T.

    2012-01-01

    Population heterogeneity complicates the predictability of the outgrowth kinetics of individual spores. Flow cytometry sorting and monitoring of the germination and outgrowth of single dormant spores allowed the quantification of acid-induced spore population heterogeneity at pH 5.5 and in the prese

  11. Influence of food matrix on outgrowth heterogeneity of heat damaged Bacillus cereus spores

    NARCIS (Netherlands)

    Warda, A.K.; Besten, den H.M.W.; Sha, N.; Abee, T.; Nierop Groot, M.N.

    2015-01-01

    Spoilage of heat treated foods can be caused by the presence of surviving spore-formers. It is virtually impossible to prevent contamination at the primary production level as spores are ubiquitous present in the environment and can contaminate raw products. As a result spore inactivation treatments

  12. Influence of food matrix on outgrowth heterogeneity of heat damaged Bacillus cereus spores

    NARCIS (Netherlands)

    Warda, A.K.; Besten, den H.M.W.; Sha, N.; Abee, T.; Nierop Groot, M.N.

    2015-01-01

    Spoilage of heat treated foods can be caused by the presence of surviving spore-formers. It is virtually impossible to prevent contamination at the primary production level as spores are ubiquitous present in the environment and can contaminate raw products. As a result spore inactivation treatments

  13. Concentrations of butyric acid bacteria spores in silage and relationships with aerobic deterioration

    NARCIS (Netherlands)

    Vissers, M.M.M.; Driehuis, F.; Giffel, M.C.T.; Jong, de P.; Lankveld, J.M.G.

    2007-01-01

    Germination and growth of spores of butyric acid bacteria ( BAB) may cause severe defects in semihard cheeses. Silage is the main source of BAB spores in cheese milk. The objectives of the study were to determine the significance of grass silages and corn silages as sources of BAB spores and to inve

  14. SporeWeb : an interactive journey through the complete sporulation cycle of Bacillus subtilis

    NARCIS (Netherlands)

    Eijlander, Robyn T.; Jong, Anne de; Krawczyk, Antonina O.; Holsappel, Siger; Kuipers, Oscar P.

    2014-01-01

    Bacterial spores are a continuous problem for both food-based and health-related industries. Decades of scientific research dedicated towards understanding molecular and gene regulatory aspects of sporulation, spore germination and spore properties have resulted in a wealth of data and information.

  15. Effect of temperature on green spore longevity for the ferns Equisetum ramosissimum and Osmunda regalis

    Science.gov (United States)

    Some fern species produce chlorophyllic or green spores. Green spores lose viability quickly compared to nongreen spores, and so need specialized treatment for long term conservation in germplasm banks. Dry storage at different temperatures (25 ºC, 4 ºC, -25 ºC, -80 ºC and -196 ºC) was studied in ...

  16. Spore-killing meiotic drive factors in a natural population of the fungus Podospora anserina

    NARCIS (Netherlands)

    Gaag, van der M.; Debets, A.J.M.; Oosterhof, J.; Slakhorst, S.M.; Thijssen, J.A.G.M.; Hoekstra, R.F.

    2000-01-01

    In fungi, meiotic drive is observed as spore killing. In the secondarily homothallic ascomycete Podospora anserina it is characterized by the abortion of two of the four spores in the ascus. We have identified seven different types of meiotic drive elements (Spore killers). Among 99 isolates from na

  17. Modeling Radiation Effectiveness for Inactivation of Bacillus Spores

    Science.gov (United States)

    2015-09-17

    EFFECTIVENESS FOR INACTIVATION OF BACILLUS SPORES Emily A. Knight, B.A., M.S. Major, USAF Committee Membership: Dr. William P. Baker Chair Dr. Larry W...linked to food poisoning and causes gastrointestinal diseases with symptoms ranging from mild nausea to frequent vomiting . However, as described above

  18. Sporicidal characteristics of heated dolomite powder against Bacillus subtilis spores.

    Science.gov (United States)

    Yasue, Syogo; Sawai, Jun; Kikuchi, Mikio; Nakakuki, Takahito; Sano, Kazuo; Kikuchi, Takahide

    2014-01-01

    Dolomite is a double salt composed of calcium carbonate (CaCO3) and magnesium carbonate (MgCO3). The heat treatment of CaCO3 and MgCO3 respectively generates calcium oxide (CaO) and magnesium oxide (MgO), which have antimicrobial activity. In this study, heated dolomite powder (HDP) slurry was investigated for its sporicidal activity against Bacillus subtilis ATCC 6633 spores. The B. subtilis spores used in this study were not affected by acidic (pH 1) or alkaline (pH 13) conditions, indicating that they were highly resistant. However, dolomite powder heated to 1000℃ for 1 h could kill B. subtilis spores, even at pH 12.7. Sporicidal activity was only apparent when the dolomite powder was heated to 800℃ or higher, and sporicidal activity increased with increases in the heating temperature. This temperature corresponded to that of the generation of CaO. We determined that MgO did not contribute to the sporicidal activity of HDP. To elucidate the sporicidal mechanism of the HDP against B. subtilis spores, the generation of active oxygen from HDP slurry was examined by chemiluminescence analysis. The generation of active oxygen increased when the HDP slurry concentration rose. The results suggested that, in addition to its alkalinity, the active oxygen species generated from HDP were associated with sporicidal activity.

  19. Pollen and spores as a passive monitor of ultraviolet radiation

    NARCIS (Netherlands)

    Fraser, W.T.; Lomax, B.H.; Jardine, P.E.; Gosling, W.D.; Sephton, M.A.

    2014-01-01

    Sporopollenin is the primary component of the outer walls of pollen and spores. The chemical composition of sporopollenin is responsive to levels of ultraviolet (UV) radiation exposure, via a concomitant change in the concentration of phenolic compounds. This relationship offers the possibility of

  20. Phylogenetic placement of two species known only from resting spores

    DEFF Research Database (Denmark)

    Hajek, Ann E; Gryganskyi, Andrii; Bittner, Tonya;

    2016-01-01

    Molecular methods were used to determine the generic placement of two species of Entomophthorales known only from resting spores. Historically, these species would belong in the form-genus Tarichium, but this classification provides no information about phylogenetic relationships. Using DNA from...

  1. Multigeneration Cross-Contamination of Mail with Bacillus anthracis Spores.

    Directory of Open Access Journals (Sweden)

    Jason Edmonds

    Full Text Available The release of biological agents, including those which could be used in biowarfare or bioterrorism in large urban areas, has been a concern for governments for nearly three decades. Previous incidents from Sverdlosk and the postal anthrax attack of 2001 have raised questions on the mechanism of spread of Bacillus anthracis spores as an aerosol or contaminant. Prior studies have demonstrated that Bacillus atrophaeus is easily transferred through simulated mail handing, but no reports have demonstrated this ability with Bacillus anthracis spores, which have morphological differences that may affect adhesion properties between spore and formite. In this study, equipment developed to simulate interactions across three generations of envelopes subjected to tumbling and mixing was used to evaluate the potential for cross-contamination of B. anthracis spores in simulated mail handling. In these experiments, we found that the potential for cross-contamination through letter tumbling from one generation to the next varied between generations while the presence of a fluidizer had no statistical impact on the transfer of material. Likewise, the presence or absence of a fluidizer had no statistically significant impact on cross-contamination levels or reaerosolization from letter opening.

  2. The proteome of spore surface layers in food spoiling bacteria

    NARCIS (Netherlands)

    Abhyankar, W.R.

    2014-01-01

    Endospores are dormant, multilayered, highly resistant cellular structures formed in response to stress by certain bacteria belonging to the genera Bacillus, Clostridium and other related organisms. In presence of nutrients and favorable conditions spores germinate and grow out as normal vegetative

  3. Refined multivalent display of bacterial spore-binding peptides.

    Science.gov (United States)

    Lusvarghi, Sabrina; Kim, Jenny Morana; Creeger, Yehuda; Armitage, Bruce Alan

    2009-05-07

    A multiple antigen peptide display scaffold was used to create multivalent versions of a heptapeptide selected previously by phage display to bind to Bacillus subtilis spores. A simple flow cytometric assay was developed in which a biotinylated form of the peptide was first bound to fluorescent streptavidin, then the fluorescent streptavidin-peptide complex was bound to spores before introduction into the cytometer. This assay clearly demonstrated that the tetravalent scaffold enhanced the affinity for B. subtilis spores by greater than 1 and 2 orders of magnitude when compared to divalent and monovalent analogues, respectively. However, variations in the number and flexibility of spacer residues within the scaffold did not significantly affect the binding affinity of the tetravalent peptides. Similar to prior reports, these multivalent scaffolds are effective most likely because they mimic the multivalent display of the original peptide library on the phage coat. Moreover, the tetravalent peptides can be readily integrated into a variety of heterogeneous and homogeneous spore-detection assay formats.

  4. Phospholipase C delta regulates germination of Dictyostelium spores

    NARCIS (Netherlands)

    Van Dijken, P.; Van Haastert, PJM

    2001-01-01

    Background: Many eukaryotes including plants and fungi make spores that resist severe environmental stress. The micro-organism Dictyostelium contains a single phospholipase C gene (PLC); deletion of the gene has no effect on growth cell movement and differentiation. In this report we show that PLC

  5. Phospholipase C delta regulates germination of Dictyostelium spores

    NARCIS (Netherlands)

    Van Dijken, P.; Van Haastert, PJM

    2001-01-01

    Background: Many eukaryotes including plants and fungi make spores that resist severe environmental stress. The micro-organism Dictyostelium contains a single phospholipase C gene (PLC); deletion of the gene has no effect on growth cell movement and differentiation. In this report we show that PLC i

  6. Adhesion of Spores of Bacillus thuringiensis on a Planar Surface

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Eunhyea [Georgia Institute of Technology; Kweon, Hyojin [Georgia Institute of Technology; Yiacoumi, Sotira [Georgia Institute of Technology; Lee, Ida [University of Tennessee, Knoxville (UTK); Joy, David Charles [ORNL; Palumbo, Anthony Vito [ORNL; Tsouris, Costas [ORNL

    2010-01-01

    Adhesion of spores of Bacillus thuringiensis (Bt) and spherical silica particles on surfaces was experimentally and theoretically investigated in this study. Topography analysis via atomic force microscopy (AFM) and electron microscopy indicates that Bt spores are rod shaped, {approx}1.3 {mu}m in length and {approx}0.8 {mu}m in diameter. The adhesion force of Bt spores and silica particles on gold-coated glass was measured at various relative humidity (RH) levels by AFM. It was expected that the adhesion force would vary with RH because the individual force components contributing to the adhesion force depend on RH. The adhesion force between a particle and a planar surface in atmospheric environments was modeled as the contribution of three major force components: capillary, van der Waals, and electrostatic interaction forces. Adhesion force measurements for Bt spore (silica particle) and the gold surface system were comparable with calculations. Modeling results show that there is a critical RH value, which depends on the hydrophobicity of the materials involved, below which the water meniscus does not form and the contribution of the capillary force is zero. As RH increases, the van der Waals force decreases while the capillary force increases to a maximum value.

  7. Multigeneration Cross-Contamination of Mail with Bacillus anthracis Spores

    Science.gov (United States)

    Edmonds, Jason; Lindquist, H. D. Alan; Sabol, Jonathan; Martinez, Kenneth; Shadomy, Sean; Cymet, Tyler; Emanuel, Peter

    2016-01-01

    The release of biological agents, including those which could be used in biowarfare or bioterrorism in large urban areas, has been a concern for governments for nearly three decades. Previous incidents from Sverdlosk and the postal anthrax attack of 2001 have raised questions on the mechanism of spread of Bacillus anthracis spores as an aerosol or contaminant. Prior studies have demonstrated that Bacillus atrophaeus is easily transferred through simulated mail handing, but no reports have demonstrated this ability with Bacillus anthracis spores, which have morphological differences that may affect adhesion properties between spore and formite. In this study, equipment developed to simulate interactions across three generations of envelopes subjected to tumbling and mixing was used to evaluate the potential for cross-contamination of B. anthracis spores in simulated mail handling. In these experiments, we found that the potential for cross-contamination through letter tumbling from one generation to the next varied between generations while the presence of a fluidizer had no statistical impact on the transfer of material. Likewise, the presence or absence of a fluidizer had no statistically significant impact on cross-contamination levels or reaerosolization from letter opening. PMID:27123934

  8. Ascoaphaera osmophila sp.nov. An Australian Spore Cyst

    DEFF Research Database (Denmark)

    Skou, Jens-Peder; King, , J.

    1984-01-01

    Ascosphaera osmophila sp. nov. is described. Septa occur often close together and remain intact when the mycelium disintegrates. A fairly good production of mature spore cysts occurs only on media containing 10% sugar or more. A. osmophila lives in association with the mason bee, Chalicodoma...

  9. Microwave inactivation of Bacillus atrophaeus spores in healthcare waste.

    Science.gov (United States)

    Oliveira, E A; Nogueira, N G P; Innocentini, M D M; Pisani, R

    2010-11-01

    Public healthcare wastes from the region of Ribeirão Preto, Brazil, pre-sterilized in an autoclave, were inoculated with spores of Bacillus atrophaeus for microwave processing on a laboratory scale. The influence of waste moisture (40%, 50% and 60% wet basis), presence of surfactant, power per unit mass of waste (100, 150 and 200 W/kg) and radiation exposure time (from 5 to 40 min) on the heating curves was investigated. The most favorable conditions for waste heating with respect to moisture and use of surfactant were then applied in an experimental analysis of the degree of inactivation of B. atrophaeus spores as a function of time and power per unit mass of waste. Based on Chick's and Arrhenius laws, the experimental results were adjusted by the least squares method to determine the activation energies (9203-5782 J/mol) and the Arrhenius pre-exponential factor (0.23 min(-1)). The kinetic parameters thus obtained enabled us to predict the degree of inactivation achieved for B. atrophaeus spores in typical healthcare waste. The activation energy was found to decrease as the power per waste mass increased, leading to the conclusion that, in addition to the thermal effect on the inactivation of B. atrophaeus spores, there was an effect inherent to radiation. Copyright © 2010 Elsevier Ltd. All rights reserved.

  10. High prevalence of bacterial spore-formers active against mosquito larvae in temporary monsoon flooded sites in Orissa, India.

    Science.gov (United States)

    Rout, Regalin; Raina, Vishakha; Suar, Mrutyunjay; Luethy, Peter

    2011-06-01

    Different ecosystems were probed in the vicinity of the city of Bhubaneswar in the Indian state of Orissa for the presence of bacterial spore-formers with activity against mosquito larvae. The most productive sites were places that were flooded during the monsoon season, including roadside ditches and shorelines of ponds. Among 630 isolates screened, 44 (7%) showed larvicidal activity against larvae of Aedes aegypti. The specific activity of the bacterial spore-formers varied greatly. Isolates were found with specific activities superior to the Bacillus thuringiensis israelensis reference strain of the Pasteur Institute. All mosquitocidal strains produced crystal proteins, and based on the biochemical analyses could be classified into the species B. thuringiensis. Such strains possess the potential for the development of new microbial products for mosquito control in India.

  11. SirA enforces diploidy by inhibiting the replication initiator DnaA during spore formation in Bacillus subtilis.

    Science.gov (United States)

    Wagner, Jennifer K; Marquis, Kathleen A; Rudner, David Z

    2009-09-01

    How cells maintain their ploidy is relevant to cellular development and disease. Here, we investigate the mechanism by which the bacterium Bacillus subtilis enforces diploidy as it differentiates into a dormant spore. We demonstrate that a sporulation-induced protein SirA (originally annotated YneE) blocks new rounds of replication by targeting the highly conserved replication initiation factor DnaA. We show that SirA interacts with DnaA and displaces it from the replication origin. As a result, expression of SirA during growth rapidly blocks replication and causes cell death in a DnaA-dependent manner. Finally, cells lacking SirA over-replicate during sporulation. These results support a model in which induction of SirA enforces diploidy by inhibiting replication initiation as B. subtilis cells develop into spores.

  12. Airway inflammation among compost workers exposed to actinomycetes spores

    Directory of Open Access Journals (Sweden)

    Kari Kulvik Heldal

    2015-05-01

    Full Text Available Objectives. To study the associations between exposure to bioaerosols and work-related symptoms, lung function and biomarkers of airway inflammation in compost workers. Materials and method. Personal full-shift exposure measurements were performed on 47 workers employed at five windrow plants (n=20 and five reactor plants (n=27. Samples were analyzed for endotoxins, bacteria, fungal and actinomycetes spores. Health examinations were performed on workers and 37 controls before and after work on the day exposure was measured. The examinations included symptoms recorded by questionnaire, lung function by spirometry and nasal dimensions by acoustic rhinometry (AR. The pneumoproteins CC16, SP-D and SP-A were measured in a blood sample drawn at the end of the day. Results. The levels of endotoxins (median 3 EU/m[sup]3[/sup] , range 0–730 EU/m[sup]3[/sup] and actinomycetes spores (median 0.2 × 10[sup]6[/sup] spores/m[sup]3[/sup] , range 0–590 × 10[sup]6[/sup] spores/m[sup]3[/sup] were significantly higher in reactor plants compared to windrow plants. However, windrow composting workers reported more symptoms than reactor composting workers, probably due to use of respiratory protection. Exposure-response relationships between actinomycetes spores exposure and respiratory effects, found as cough and nose irritation during a shift, was significantly increased (OR 4.3, 95% CI 1.1–16, OR 6.1, 95% CI 1.5–25, respectively, p<0.05 among workers exposed to 0.02–0.3 × 10[sup]6[/sup] actinomycetes spores/m 3 , and FEV1/FVC% decreased cross shift (b=–3.2, SE=1.5%, p<0.01. Effects were weaker in the highest exposed group, but these workers used respiratory protection, frequently limiting their actual exposure. No relationships were found between exposure and pneumoprotein concentrations. Conclusions. The major agent in the aerosol generated at compost plants was actinomycetes spores which was associated with work related cough symptoms and work

  13. NanoSIMS analysis of Bacillus spores for forensics

    Energy Technology Data Exchange (ETDEWEB)

    Weber, P K; Davisson, M L; Velsko, S P

    2010-02-23

    The threat associated with the potential use of radiological, nuclear, chemical and biological materials in terrorist acts has resulted in new fields of forensic science requiring the application of state-of-the-science analytical techniques. Since the anthrax letter attacks in the United States in the fall of 2001, there has been increased interest in physical and chemical characterization of bacterial spores. While molecular methods are powerful tools for identifying genetic differences, other methods may be able to differentiate genetically identical samples based on physical and chemical properties, as well as provide complimentary information, such as methods of production and approximate date of production. Microanalysis has the potential to contribute significantly to microbial forensics. Bacillus spores are highly structured, consisting of a core, cortex, coat, and in some species, an exosporium. This structure provides a template for constraining elemental abundance differences at the nanometer scale. The primary controls on the distribution of major elements in spores are likely structural and physiological. For example, P and Ca are known to be abundant in the spore core because that is where P-rich nucleic acids and Cadipicolinic acid are located, respectively. Trace elements are known to bind to the spore coat but the controls on these elements are less well understood. Elemental distributions and abundances may be directly related to spore production, purification and stabilization methodologies, which are of particular interest for forensic investigation. To this end, we are developing a high-resolution secondary ion mass spectrometry method using a Cameca NanoSIMS 50 to study the distribution and abundance of trace elements in bacterial spores. In this presentation we will review and compare methods for preparing and analyzing samples, as well as review results on the distribution and abundance of elements in bacterial spores. We use NanoSIMS to

  14. Spore to spore culture of Didymium operculatum, a new Myxomycete from the Atacama Desert of Chile.

    Science.gov (United States)

    de Basanta, D Wrigley; Lado, C; Estrada-Torres, A

    2011-01-01

    A new species of Didymium (Myxomycetes), D. operculatum, is described in this paper, and details of its life cycle are provided. The new species was recorded during studies of the Atacama Desert in Chile. It has been collected directly in the field and isolated in moist chamber cultures prepared with material from an endemic cactus. The distinguishing characters of this species are its dehiscence by means of an apical operculum combined with a whitish calcareous stalk and the banded reticulate ornamentation of the spores. The morphology of this new myxomycete was examined with scanning electron microscopy and light microscopy, and micrographs of relevant details are included in this paper. Some comments are made on the patterns of distribution of Didymium species in arid lands and adaptive characters enabling this genus to colonize such extreme environments. It is proposed that a longer cycle and the ability to resort to resistant forms many times during their development reflect the response of these myxomycetes to the largely unfavorable conditions of their environment.

  15. Radiosensitivity of spores of Paenibacillus larvae ssp. larvae in honey

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Wanderley Mendes de [Ministerio da Agricultura, Pecuaria e Abastecimento, Rio de Janeiro, RJ (Brazil). Servico de Inspecao de Produtos de Origem Animal]. E-mail: sipa-rj@agricultura.gov.br; Vital, Helio de Carvalho [Centro Tecnologico do Exercito CTEx, Rio de Janeiro, RJ (Brazil). Div. de Defesa Quimica, Biologica e Nuclear]. E-mail: vital@ctex.eb.br; Schuch, Dulce Maria Tocchetto [Ministerio da Agricultura, Pecuaria e Abastecimento, Porto Alegre, RS (Brazil)]. E-mail: micro-lara-rs@agricultura.gov.br

    2007-07-01

    Irradiation, usually used in combination with other conventional methods of conservation, has been proven to be an efficient tool to ensure the safety of many types of foods by destroying pathogenic microorganisms and extending their shelf-lives. This work has investigated the efficacy of gamma irradiation to inactivate spores of the bacterium Paenibacillus larvae that causes the 'American foulbrood', a highly contagious disease still exotic in Brazil that kills bees and contaminates honey, preventing its commercialization and causing great economical losses. In this study, 60 g samples of two types of honey inoculated with 3.5x10{sup 3} spores/mL of that bacterium were irradiated with doses of 0, 5, 7.5, 10, 12.5 and 15 kGy and counted. The analyses indicated a mean reduction of 97.5{+-}0.7% in the number of viable spores exposed to 5 kGy. The application of doses of 7.5 kGy or higher yielded no viable spores above the detection threshold (10/mL). In addition the value of D{sub 10} (3.1{+-}0.3 kGy) was estimated and the logarithm of the population of viable spores of Paenibacillus larvae subsp. larvae was determined as linear and quadratic polynomial functions of the radiation dose. The results indicated that the dose of 10 kGy could be insufficient to assure complete sterilization of honey in some cases while suggesting that 25 kGy would perform such task adequately. (author)

  16. Fighting Ebola through Novel Spore Decontamination Technologies for the Military

    Directory of Open Access Journals (Sweden)

    Christopher J. Doona

    2015-08-01

    Full Text Available AbstractRecently, global public health organizations such as Doctors without Borders (MSF, the World Health Organization (WHO, Public Health Canada, National Institutes of Health (NIH, and the U.S. government developed and deployed Field Decontamination Kits (FDKs, a novel, lightweight, compact, reusable decontamination technology to sterilize Ebola-contaminated medical devices at remote clinical sites lacking infra-structure in crisis-stricken regions of West Africa (medical waste materials are placed in bags and burned. The basis for effectuating sterilization with FDKs is chlorine dioxide (ClO2 produced from a patented invention developed by researchers at the US Army – Natick Soldier RD&E Center (NSRDEC and commercialized as a dry mixed-chemical for bacterial spore decontamination. In fact, the NSRDEC research scientists developed an ensemble of ClO2 technologies designed for different applications in decontaminating fresh produce; food contact and handling surfaces; personal protective equipment; textiles used in clothing, uniforms, tents, and shelters; graywater recycling; airplanes; surgical instruments; and hard surfaces in latrines, laundries, and deployable medical facilities. These examples demonstrate the far-reaching impact, adaptability, and versatility of these innovative technologies. We present herein the unique attributes of NSRDEC’s novel decontamination technologies and a Case Study of the development of FDKs that were deployed in West Africa by international public health organizations to sterilize Ebola-contaminated medical equipment. FDKs use bacterial spores as indicators of sterility. We review the properties and structures of spores and the mechanisms of bacterial spore inactivation by ClO2. We also review mechanisms of bacterial spore inactivation by novel, emerging, and established nonthermal technologies for food preservation, such as high pressure processing, irradiation, cold plasma, and chemical sanitizers

  17. Protein

    Science.gov (United States)

    ... Food Service Resources Additional Resources About FAQ Contact Protein Protein is found throughout the body—in muscle, ... the heart and respiratory system, and death. All Protein Isn’t Alike Protein is built from building ...

  18. Inactivation of Spores of Bacillus Species by Wet Heat: Studies on Single Spores Using Laser Tweezers Taman Spectroscopy

    Science.gov (United States)

    2013-02-01

    germination using phase contrast and fluorescence microscopy, Raman spectroscopy and optical tweezers, Nature Protocols , (04 2011): . doi: 05/11...multiple individual spores [ Nature Protocols , 6, 625 (2011)]. (1e) We developed a multiple-trap laser tweezers Raman spectroscopy (LTRS) array for

  19. Intact Cell/Spore Mass Spectrometry of Fusarium Macro Conidia for Fast Isolate and Species Differentiation

    Science.gov (United States)

    Dong, Hongjuan; Marchetti-Deschmann, Martina; Winkler, Wolfgang; Lohninger, Hans; Allmaier, Guenter

    The focus of this paper is the development of an approach called intact cell mass spectrometry (ICMS) or intact spore mass spectrometry (ISMS) based on the technique matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) for the rapid differentiation and identification of Fusarium species. Several parameters, which are known to affect the quality of IC mass spectra, have been investigated in detail by varying the MALDI matrix as well as the solvent system, in which the matrix has been dissolved, the solvent system for sample purification and the type of sample/MALDI matrix deposition technique. In the end characteristic as well as highly reproducible IC or IS mass spectra or peptide/protein fingerprints of three Fusarium species (F. cerealis, F. graminearum and F. poae) including 16 Fusarium isolates derived from different hosts and geographical locations have been obtained. Unscaled hierarchical cluster analysis based on ICMS data of eight selected Fusarium isolates of two species F. graminearum and F. poae revealed significant difference among the peptide/protein pattern of them. The results of the applied cluster analysis proved that, ICMS is a powerful approach for the rapid differentiation of Fusarium species. In addition, an on-target tryptic digestion was applied to Fusarium macro conidia spores to identify proteins using MALDI post source decay (PSD) fragment ion analysis. Two kinds of trypsin, namely bead-immobilized - to favor cleavage of surface-associated proteins - and non-immobilized trypsin were applied and compared. The results showed that the latter is more suitable for generating sequence tags by PSD fragment ion analysis.

  20. Workshop report: modeling the molecular mechanism of bacterial spore germination and elucidating reasons for germination heterogeneity.

    Science.gov (United States)

    Indest, Karl J; Buchholz, Wallace G; Faeder, Jim R; Setlow, Peter

    2009-08-01

    Over the course of 2 days, top researchers in the fields of bacterial spore biology and computational biology discussed approaches to determine the cause of spore germination heterogeneity. Biological and mathematical data gaps were identified, and experimental approaches and computational strategies for modeling spore germination were presented and evaluated. As a result of these interactions, future research directions were defined, the outcome of which should result in a robust model to help define the molecular mechanism(s) of spore germination. Mechanistic understanding of germination will be instrumental for developing novel sterilization, treatment, and decontamination strategies to mitigate threats posed by spores.

  1. Production of Soy Sauce Koji Mold Spore Inoculum in Plastic Bags

    OpenAIRE

    Lotong, N.; Suwanarit, P.

    1983-01-01

    An innovation is described for producing soy sauce koji mold spore inoculum by using inexpensive autoclavable plastic bags and reuseable plastic enclosures to make culture vessels. After growth, the spore mass could be dried and packaged in the same bag after removing the enclosure. Broken rice was used as the substrate for mold cultivation. Viable spore counts of 109 spores per g were obtained under optimal conditions. After drying at 50°C for 6 h, the moisture content of the spore mass decr...

  2. Response of Bacillus subtilis spores to dehydration and UV irradiation at extremely low temperatures.

    Science.gov (United States)

    Dose, K; Klein, A

    1996-02-01

    Spores of Bacillus subtilis have been exposed to the conditions of extreme dehydration (argon/silica gel; simulated space vacuum) for up to 12 weeks at 298 K and 80 K in the dark. The inactivation has been correlated with the production of DNA-double strand-breaks. The temperature-dependence of the rate constants for inactivation or production of DNA-double strand-breaks is surprisingly low. Controls kept in the frozen state at 250 K for the same period of time showed no sign of deterioration. In another series of experiments the spores have been UV irradiated (253.7 nm) at 298 K, 200 K and 80 K after exposure to dehydrating conditions for 3 days. Fluence-effect relationships for inactivation, production of DNA-double strand-breaks and DNA-protein cross-links are presented. The corresponding F37-values for inactivation and production of DNA lesions are significantly increased only at 80 K (factor of 4 to 5). The data indicate that the low temperatures that prevail in the outer parts of the Solar System or at the nightside of Mars or the Moon are not sufficiently low to crucially inhibit inactivation by dehydration. Our data place further constraints on the panspermia hypothesis.

  3. Recent Advances in Cyclonucleosides: C-Cyclonucleosides and Spore Photoproducts in Damaged DNA

    Directory of Open Access Journals (Sweden)

    Hiroki Takahata

    2012-09-01

    Full Text Available Cyclonucleosides which are fixed in a specific conformation around the glycosyl bond by a carbon and heteroatom chain constitute a unique category of nucleoside derivatives. Because they are structural analogs, cyclonucleosides and oligodeoxynucleotides containing them would be useful tools for investigating the biological functions and conformations of DNA, RNA as well as their steric interactions with proteins. C-Cyclonucleosides bridged by a carbon chain between the base and sugar moieties are the most attractive from the synthetic points of view as well as for use as biological tools. In this review, recent progress of the synthesis of C-cyclonucleosides is surveyed. Among the C-cyclonucleosides, 5′,8-C-cyclodeoxyadenosine is one of the well-known derivatives of which the first practical synthesis was reported over 30 years ago. Recently, 5′,8-C-cyclodeoxyadenosine has attracted considerable interest as a biomarker, since its formation in oxidatively-damaged DNA is considered to be related to various diseases and aging. Another important analogue of cyclonucleosides is a unique thymidine phosphate dimer, a so-called spore photoproduct, which has been found in photo-damaged DNA. Recent advances in the synthesis, mechanism-studies, and stereochemical preference of repairing enzymes related to 5′,8-C-cyclodeoxyadenosine and spore photoproducts are also reviewed.

  4. Investigation of ice-assisted sonication on the microstructure and chemical quality of Ganoderma lucidum spores.

    Science.gov (United States)

    Zhao, Ding; Chang, Ming-Wei; Li, Jing-Song; Suen, William; Huang, Jie

    2014-11-01

    Ganoderma lucidum spores (GLS) are well known for disease treatment and vitality enhancement, and have been shown to contain a variety of bioactive components, such as polysaccharides and triterpenes. However, the resilient bilayer sporoderm structure of GLS restricts the release of bioactive components and limits its complete pharmacological effects. The current study was aimed to improve the quality of GLS by means of a customized sonication technique, particularly, the effect of sonication processing parameters on GLS-breaking efficiencies was investigated. Significant morphological changes, such as cracked, fractured, and disintegrated GLS were observed using scanning electron microscopy (SEM) after sonication treatment. The performance for breaking GLS sporoderm was obtained at ultrasonic power density of 23.7 W/cm(2) , duty cycle 100%, and 90-min processing time. Through the combination of sonication in an ice bath, sporoderm breaking efficiency can be further increased from 45% to almost 75%. FTIR analysis revealed an increase in bioactive components of polysaccharide, protein, and fatty acid from the sonication processed GLS when compared to ground spores available commercially. The current results indicated that the ice bath combined sonication method is more effective in delivering GLS ingredients and could be an economic technique for the production of high-quality broken sporoderm GLS.

  5. Mixed Production of Filamentous Fungal Spores for Preventing Soil-Transmitted Helminth Zoonoses: A Preliminary Analysis

    Directory of Open Access Journals (Sweden)

    M. S. Arias

    2013-01-01

    Full Text Available Helminth zoonoses are parasitic infections shared by humans and animals, being the soil-transmitted helminths (STHs mainly caused by roundworms (ascarids and hookworms. This study was aimed to assess the individual and/or mixed production of two helminth-antagonistic fungi, one ovicide (Mucor circinelloides and other predator (Duddingtonia flagrans. Fungi were grown both in Petri plates and in a submerged culture (composed by water, NaCl, Na2HPO4 · 12 H2O, and wheat (Triticum aestivum. A Fasciola hepatica recombinant protein (FhrAPS was incorporated to the cultures to improve fungal production. All the cultured plates showed fungal growth, without difference in the development of the fungi when grown alone or mixed. High counts of Mucor spores were produced in liquid media cultures, and no significant differences were achieved regarding single or mixed cultures, or the incorporation of the FhrAPS. A significantly higher production of Duddingtonia spores after the incorporation of the FhrAPS was observed. When analyzing the parasiticide efficacy of the fungal mixture, viability of T. canis eggs reduced to 51%, and the numbers of third stage cyathostomin larvae reduced to 4%. It is concluded, the capability of a fungal mixture containing an ovicide (Mucor and a predator species (Duddingtonia for growing together in a submerged medium containing the FhrAPS offers a very interesting tool for preventing STHs.

  6. Effect of Carbon and Nitrogen Availability on Metabolism of Amino Acids in Germinating Spores of Arbuscular Mycorrhizal Fungi

    Institute of Scientific and Technical Information of China (English)

    JIN Hai-Ru; JIANG Dong-Hua; ZHANG Ping-Hua

    2011-01-01

    The effects of carbon (C) and nitrogen (N) sources on N utilization and biosynthesis of amino acids were examined in the germinating spores of the arbuscular mycorrhizal (AM) fungus Glomus intraradices Schenck & Smith after exposure to various N substrates,CO2,glucose,and/or root exudates.The N uptake and de novo biosynthesis of amino acids were analyzed using stable isotopic labeling with mass spectrometric detection.High-performance liquid chromatography-based analysis was used to measure amino acid levels.In the absence of exogenous N sources and in the presence of 25 mL L-1 CO2,the germinating AM fungal spores utilized internal N storage as well as C skeletons derived from the degradation of storage lipids to biosynthesize the free amino acids,in which serine and glycine were produced predominantly.The concentrations of internal amino acids increased gradually as the germination time increased from 0 to 1 or 2 weeks.However,asparagine and glutamine declined to the low levels; both degraded to provide the biosynthesis of other amino acids with C and N donors.The availability of exogenous inorganic N (ammonium and nitrate) and organic N (urea,arginine,and glutamine) to the AM fungal spores using only CO2 for germination generated more than 5 times more internal free amino acids than those in the absence of exogenous N.A supply of exogenous nitrate to the AM fungal spores with only CO2 gave rise to more than 10 times more asparagine than that without exogenous N.In contrast,the extra supply of exogenous glucose to the AM fungal spores generated a significant enhancement in the uptake of exogenous N sources,with more than 3 times more free amino acids being produced than those supplied with only exogenous CO2.Meanwhile,arginine was the most abundant free amino acid produced and it was incorporated into the proteins of AM fungal spores to serve as an N storage compound.

  7. Arabitol and mannitol as tracers for the quantification of airborne fungal spores

    Science.gov (United States)

    Bauer, Heidi; Claeys, Magda; Vermeylen, Reinhilde; Schueller, Elisabeth; Weinke, Gert; Berger, Anna; Puxbaum, Hans

    Fungal spores constitute a sizeable fraction of coarse organic carbon (OC) in the atmospheric aerosol. In order to avoid tedious spore count methods, tracers for quantifying the spore-OC in atmospheric aerosol are sought. Arabitol and mannitol have been proposed as such tracers, since no other emission sources for these compounds have been reported. By parallel investigations of spore counts and tracer determinations from PM 10 filter samples we could derive quantitative relationships between the amounts of tracer compounds and the numbers of spores in the atmosphere for different sites in the area of Vienna. We obtained over all average relationships of 1.2 pg arabitol spore -1, with a range of 0.8-1.8, and 1.7 pg mannitol spore -1, with a range of 1.2-2.4, with a clear site dependence. Thus, using these conversion factors from spore counts to spore-OC and spore-mass, along with analytical data for arabitol or mannitol in filter samples, the contribution of fungal spores to the OC and to the mass balance of atmospheric aerosol particles can be estimated.

  8. Spore Dispersion of Tricholoma matsutake at a Pinus densiflora Stand in Korea.

    Science.gov (United States)

    Park, Hyun; Ka, Kang-Hyeon

    2010-09-01

    The spore of Tricholoma matsutake is considered to be the starting point of the mushroom growth cycle, but the mechanism of mycelial development from the spore stage is not yet clarified. In this study, we tried to measure how far the spores of T. matsutake disperse from a fruiting body located at a Pinus densiflora stand in Korea. We established 16 slide glasses coated with glycerin near a fruiting body in four directions separated by four different distance intervals within a mushroom productive stand after removing all other fruiting bodies from three plots. The number of dispersed spores increased with time from the first day (475 spores/cm(2)) to the fourth day (836 spores/cm(2)) after the pileus opened. The number of spores dispersed downward was about 1.5 times greater than that dispersed toward the ridge. The number of dispersed spores decreased exponentially as the distance from each fruiting body increased. More than 95% of the spores dropped within a meter from the fruiting body, with 75% dropping within 0.5 m. Even so, the number of spores dispersed over 5 m from the fruiting body was more than 50 million when considering the total number of spores produced by a fruiting body is about 5 billion.

  9. Genetic Factors and Host Traits Predict Spore Morphology for a Butterfly Pathogen

    Directory of Open Access Journals (Sweden)

    Jacobus C. de Roode

    2013-08-01

    Full Text Available Monarch butterflies (Danaus plexippus throughout the world are commonly infected by the specialist pathogen Ophryocystis elektroscirrha (OE. This protozoan is transmitted when larvae ingest infectious stages (spores scattered onto host plant leaves by infected adults. Parasites replicate internally during larval and pupal stages, and adult monarchs emerge covered with millions of dormant spores on the outsides of their bodies. Across multiple monarch populations, OE varies in prevalence and virulence. Here, we examined geographic and genetic variation in OE spore morphology using clonal parasite lineages derived from each of four host populations (eastern and western North America, South Florida and Hawaii. Spores were harvested from experimentally inoculated, captive-reared adult monarchs. Using light microscopy and digital image analysis, we measured the size, shape and color of 30 replicate spores per host. Analyses examined predictors of spore morphology, including parasite source population and clone, parasite load, and the following host traits: family line, sex, wing area, and wing color (orange and black pigmentation. Results showed significant differences in spore size and shape among parasite clones, suggesting genetic determinants of morphological variation. Spore size also increased with monarch wing size, and monarchs with larger and darker orange wings tended to have darker colored spores, consistent with the idea that parasite development depends on variation in host quality and resources. We found no evidence for effects of source population on variation in spore morphology. Collectively, these results provide support for heritable variation in spore morphology and a role for host traits in affecting parasite development.

  10. Breaking and Characteristics of Ganoderma Lucidum Spores by High Speed Entrifugal Shearing Pulverizer

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The spores of Ganoderma lucidum were ground and broken to ultrafine particles by high speed centrifugal shearing(HSCS) pulverizer. The characteristics of Ganoderma lucidum spores were analyzed by scanning electron microscope (SEM), Fourier transform infrared spectrophotometry (FTIR). Ultraviolet-visible pectrophotometer was used to determine the extraction ratio of aqueous solubility polysaccharide between the raw and broken spores. The immunological function on the mice before and after the breaking of spores was investigated. The experimental results show that after being ground, the sporoderm-broken ratio reachs 100%,the original active ingredients of ganoderma lucidum spores do not change, and the extraction ratio of aqueous solubility polysaccharide is greatly increased by 40.08%. The broken spores show much higher immunological activity comparing with original spores of Ganoderma lucidum.

  11. In vitro high-resolution structural dynamics of single germinating bacterial spores

    Energy Technology Data Exchange (ETDEWEB)

    Plomp, M; Leighton, T; Wheeler, K; Malkin, A

    2006-11-14

    Although significant progress has been achieved in understanding the genetic and biochemical bases of the spore germination process, the structural basis for breaking the dormant spore state remains poorly understood. We have used atomic force microscopy (AFM) to probe the high-resolution structural dynamics of single Bacillus atrophaeus spores germinating under native conditions. Here we show that AFM can reveal previously unrecognized germination-induced alterations in spore coat architecture and topology as well as the disassembly of outer spore coat rodlet structures. These results and previous studies in other microorganisms suggest that the spore coat rodlets are structurally similar to amyloid fibrils. AFM analysis of the nascent surface of the emerging germ cell revealed a porous network of peptidoglycan fibers. The results are consistent with a honeycomb model structure for synthetic peptidoglycan oligomers determined by nuclear magnetic resonance. AFM is a promising experimental tool for investigating the morphogenesis of spore germination and cell wall peptidoglycan structure.

  12. In vitro high-resolution structural dynamics of single germinating bacterial spores

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence Livermore National Laboratory

    2006-12-11

    Although significant progress has been achieved in understanding the genetic and biochemical bases of the spore germination process, the structural basis for breaking the dormant spore state remains poorly understood. We have used atomic force microscopy (AFM) to probe the high-resolution structural dynamics of single Bacillus atrophaeus spores germinating under native conditions. Here we show that AFM can reveal previously unrecognized germination-induced alterations in spore coat architecture and topology as well as the disassembly of outer spore coat rodlet structures. These results and previous studies in other microorganisms suggest that the spore coat rodlets are structurally similar to amyloid fibrils. AFM analysis of the nascent surface of the emerging germ cell revealed a porous network of peptidoglycan fibers. The results are consistent with a honeycomb model structure for synthetic peptidoglycan oligomers determined by nuclear magnetic resonance. AFM is a promising experimental tool for investigating the morphogenesis of spore germination and cell wall peptidoglycan structure.

  13. Production of soy sauce koji mold spore inoculum in plastic bags.

    Science.gov (United States)

    Lotong, N; Suwanarit, P

    1983-11-01

    An innovation is described for producing soy sauce koji mold spore inoculum by using inexpensive autoclavable plastic bags and reuseable plastic enclosures to make culture vessels. After growth, the spore mass could be dried and packaged in the same bag after removing the enclosure. Broken rice was used as the substrate for mold cultivation. Viable spore counts of 10 spores per g were obtained under optimal conditions. After drying at 50 degrees C for 6 h, the moisture content of the spore mass decreased from 35.22 to 6.32% with no significant effect on spore viability. The dry spores could be stored in the refrigerator or at room temperature for at least 3 months.

  14. Nanoscale structural and mechanical analysis of Bacillus anthracis spores inactivated with rapid dry heating.

    Science.gov (United States)

    Xing, Yun; Li, Alex; Felker, Daniel L; Burggraf, Larry W

    2014-03-01

    Effective killing of Bacillus anthracis spores is of paramount importance to antibioterrorism, food safety, environmental protection, and the medical device industry. Thus, a deeper understanding of the mechanisms of spore resistance and inactivation is highly desired for developing new strategies or improving the known methods for spore destruction. Previous studies have shown that spore inactivation mechanisms differ considerably depending upon the killing agents, such as heat (wet heat, dry heat), UV, ionizing radiation, and chemicals. It is believed that wet heat kills spores by inactivating critical enzymes, while dry heat kills spores by damaging their DNA. Many studies have focused on the biochemical aspects of spore inactivation by dry heat; few have investigated structural damages and changes in spore mechanical properties. In this study, we have inactivated Bacillus anthracis spores with rapid dry heating and performed nanoscale topographical and mechanical analysis of inactivated spores using atomic force microscopy (AFM). Our results revealed significant changes in spore morphology and nanomechanical properties after heat inactivation. In addition, we also found that these changes were different under different heating conditions that produced similar inactivation probabilities (high temperature for short exposure time versus low temperature for long exposure time). We attributed the differences to the differential thermal and mechanical stresses in the spore. The buildup of internal thermal and mechanical stresses may become prominent only in ultrafast, high-temperature heat inactivation when the experimental timescale is too short for heat-generated vapor to efficiently escape from the spore. Our results thus provide direct, visual evidences of the importance of thermal stresses and heat and mass transfer to spore inactivation by very rapid dry heating.

  15. Fed-batch production of gluconic acid by terpene-treated Aspergillus niger spores.

    Science.gov (United States)

    Ramachandran, Sumitra; Fontanille, Pierre; Pandey, Ashok; Larroche, Christian

    2008-12-01

    Aspergillus niger spores were used as catalyst in the bioconversion of glucose to gluconic acid. Spores produced by solid-state fermentation were treated with 15 different terpenes including monoterpenes and monoterpenoids to permeabilize and inhibit spore germination. It was found that spore membrane permeability is significantly increased by treatment with terpenoids when compared to monoterpenes. Best results were obtained with citral and isonovalal. Studies were carried out to optimize spores concentration (10(7)-10(10) spores/mL), terpene concentrations in the bioconversion medium and time of exposure (1-18 h) needed for permeabilization of spores. Fed-batch production of gluconate was done in a bioreactor with the best conditions [10(9) spores/mL of freeze-thawed spores treated with citral (3% v/v) for 5 h] followed by sequential additions of glucose powder and pH-regulated with a solution containing 2 mol/L of either NaOH or KOH. Bioconversion performance of the spore enzyme was compared with the commercial glucose oxidase at 50, 60, and 70 degrees C. Results showed that the spore enzyme was comparatively stable at 60 degrees C. It was also found that the spores could be reutilized for more than 14 cycles with almost similar reaction rate. Similar biocatalytic activity was rendered by spores even after its storage of 1 year at -20 degrees C. This study provided an experimental evidence of the significant catalytic role played by A. niger spore in bioconversion of glucose to gluconic acid with high yield and stability, giving protection to glucose oxidase.

  16. Self-inhibition of spore germination via reactive oxygen in the fungus Cladosporium cucumerinum, causal agent of cucurbit scab

    Science.gov (United States)

    Cladosporium cucumerinum spore germination in vitro depended on spore suspension density. Different fungal isolates displayed maximum germination at different spore concentrations. For one isolate, maximum spore density was observed at both 18 and 25 °C, although germination percentage increased sli...

  17. Transcriptome analysis of Bacillus thuringiensis spore life, germination and cell outgrowth in a vegetable-based food model.

    Science.gov (United States)

    Bassi, Daniela; Colla, Francesca; Gazzola, Simona; Puglisi, Edoardo; Delledonne, Massimo; Cocconcelli, Pier Sandro

    2016-05-01

    Toxigenic species belonging to Bacillus cereus sensu lato, including Bacillus thuringiensis, cause foodborne outbreaks thanks to their capacity to survive as spores and to grow in food matrixes. The goal of this work was to assess by means of a genome-wide transcriptional assay, in the food isolate B. thuringiensis UC10070, the gene expression behind the process of spore germination and consequent outgrowth in a vegetable-based food model. Scanning electron microscopy and Energy Dispersive X-ray microanalysis were applied to select the key steps of B. thuringiensis UC10070 cell cycle to be analyzed with DNA-microarrays. At only 40 min from heat activation, germination started rapidly and in less than two hours spores transformed in active growing cells. A total of 1646 genes were found to be differentially expressed and modulated during the entire B. cereus life cycle in the food model, with most of the significant genes belonging to transport, transcriptional regulation and protein synthesis, cell wall and motility and DNA repair groups. Gene expression studies revealed that toxin-coding genes nheC, cytK and hblC were found to be expressed in vegetative cells growing in the food model.

  18. Distribution of sterols in the fungi. I - Fungal spores

    Science.gov (United States)

    Weete, J. D.; Laseter, J. L.

    1974-01-01

    Mass spectrometry was used to examine freely extractable sterols from spores of several species of fungi. Ergosterol was the most common sterol produced by any individual species, but it was completely absent from two species belonging to apparently distantly related groups of fungi: the aquatic Phycomycetes and the rust fungi. This fact could have taxonomic or phylogenetic implications. The use of glass capillary columns in the resolution of the sterols is shown to eliminate some of the difficulty inherent in this process.

  19. Distribution of sterols in the fungi. I - Fungal spores

    Science.gov (United States)

    Weete, J. D.; Laseter, J. L.

    1974-01-01

    Mass spectrometry was used to examine freely extractable sterols from spores of several species of fungi. Ergosterol was the most common sterol produced by any individual species, but it was completely absent from two species belonging to apparently distantly related groups of fungi: the aquatic Phycomycetes and the rust fungi. This fact could have taxonomic or phylogenetic implications. The use of glass capillary columns in the resolution of the sterols is shown to eliminate some of the difficulty inherent in this process.

  20. Ribosomal ribonucleic acid maturation during bacterial spore germination.

    Science.gov (United States)

    Bleyman, M; Woese, C

    1969-01-01

    All the ribosomal ribonucleic acid made during the early stages of germination of spores of Bacillus subtilis is of the "precursor" type, i.e., that type appearing in the incomplete forms of the ribosome. Shortly before the onset of deoxyribonucleic acid synthesis in germination, this precursor ribonucleic acid changed to the mature ribosomal ribonucleic acid characteristic of the 30S and 50S ribosomal subunits.

  1. Indole and 3-indolylacetonitrile inhibit spore maturation in Paenibacillus alvei

    Directory of Open Access Journals (Sweden)

    Cho Moo

    2011-05-01

    Full Text Available Abstract Background Bacteria use diverse signaling molecules to ensure the survival of the species in environmental niches. A variety of both Gram-positive and Gram-negative bacteria produce large quantities of indole that functions as an intercellular signal controlling diverse aspects of bacterial physiology. Results In this study, we sought a novel role of indole in a Gram-positive bacteria Paenibacillus alvei that can produce extracellular indole at a concentration of up to 300 μM in the stationary phase in Luria-Bertani medium. Unlike previous studies, our data show that the production of indole in P. alvei is strictly controlled by catabolite repression since the addition of glucose and glycerol completely turns off the indole production. The addition of exogenous indole markedly inhibits the heat resistance of P. alvei without affecting cell growth. Observation of cell morphology with electron microscopy shows that indole inhibits the development of spore coats and cortex in P. alvei. As a result of the immature spore formation of P. alvei, indole also decreases P. alvei survival when exposed to antibiotics, low pH, and ethanol. Additionally, indole derivatives also influence the heat resistance; for example, a plant auxin, 3-indolylacetonitrile dramatically (2900-fold decreased the heat resistance of P. alvei, while another auxin 3-indoleacetic acid had a less significant influence on the heat resistance of P. alvei. Conclusions Together, our results demonstrate that indole and plant auxin 3-indolylacetonitrile inhibit spore maturation of P. alvei and that 3-indolylacetonitrile presents an opportunity for the control of heat and antimicrobial resistant spores of Gram-positive bacteria.

  2. Modelling the heat stress and the recovery of bacterial spores.

    Science.gov (United States)

    Mafart, P; Leguérinel, I

    1997-07-22

    After heat treatment, the temperature incubation and the medium composition, (pH and sodium chloride content) influence the capacity of injured spores to repair heat damage. The concept of heat resistance D- (decimal reduction time) and z-values (temperature increase which results in a ten fold reduction of the D value) is not sufficient and the ratio of spore recovery after incubation should be considered in calculations used in thermal processing of food. This paper aims to derive a model describing the recovery of injured spores as a function of both the heat treatment intensity and the environmental conditions. According to data from numerous investigators, when spores are incubated in unfavorable conditions, the ratio of cell recovery and the apparent D-value are reduced. Moreover the ratio of the apparent D-value and the estimated in optimal incubation D-value is constant and independent of the heat treatment conditions. Beyond these observations it is shown that the ratio of cell recovery with respect to the heat treatment F-value (exposure time, in minutes, at 121.1 degrees C which results in the same destruction ratio that the considered heat treatment does) is linear and can be quantified by using two factors independent of the heat treatment: the gamma-factor reflects the degree of precariousness due to the heat stress while the epsilon-factor reflects more intrinsically the incubation conditions without previous heat treatment. The gamma-factor varies as a function of the incubation temperature according to an Arrhenius law.

  3. Variation of desiccation tolerance and longevity in fern spores.

    Science.gov (United States)

    Ballesteros, Daniel; Hill, Lisa M; Walters, Christina

    2017-04-01

    This work contributes to the understanding of plant cell responses to extreme water stress when it is applied at different intensity and duration. Fern spores are used to explore survival at relative humidity (RH)desiccation damage occurs in desiccation tolerant cells, and that it is expressed as a time-dependent response, otherwise known as aging. Copyright © 2017 Elsevier GmbH. All rights reserved.

  4. Pollen and spores as biological recorders of past ultraviolet irradiance.

    Science.gov (United States)

    Jardine, Phillip E; Fraser, Wesley T; Lomax, Barry H; Sephton, Mark A; Shanahan, Timothy M; Miller, Charlotte S; Gosling, William D

    2016-12-15

    Solar ultraviolet (UV) irradiance is a key driver of climatic and biotic change. Ultraviolet irradiance modulates stratospheric warming and ozone production, and influences the biosphere from ecosystem-level processes through to the largest scale patterns of diversification and extinction. Yet our understanding of ultraviolet irradiance is limited because no method has been validated to reconstruct its flux over timescales relevant to climatic or biotic processes. Here, we show that a recently developed proxy for ultraviolet irradiance based on spore and pollen chemistry can be used over long (10(5) years) timescales. Firstly we demonstrate that spatial variations in spore and pollen chemistry correlate with known latitudinal solar irradiance gradients. Using this relationship we provide a reconstruction of past changes in solar irradiance based on the pollen record from Lake Bosumtwi in Ghana. As anticipated, variations in the chemistry of grass pollen from the Lake Bosumtwi record show a link to multiple orbital precessional cycles (19-21 thousand years). By providing a unique, local proxy for broad spectrum solar irradiance, the chemical analysis of spores and pollen offers unprecedented opportunities to decouple solar variability, climate and vegetation change through geologic time and a new proxy with which to probe the Earth system.

  5. Setting risk-informed environmental standards for Bacillus anthracis spores.

    Science.gov (United States)

    Hong, Tao; Gurian, Patrick L; Ward, Nicholas F Dudley

    2010-10-01

    In many cases, human health risk from biological agents is associated with aerosol exposures. Because air concentrations decline rapidly after a release, it may be necessary to use concentrations found in other environmental media to infer future or past aerosol exposures. This article presents an approach for linking environmental concentrations of Bacillus. anthracis (B. anthracis) spores on walls, floors, ventilation system filters, and in human nasal passages with human health risk from exposure to B. anthracis spores. This approach is then used to calculate example values of risk-informed concentration standards for both retrospective risk mitigation (e.g., prophylactic antibiotics) and prospective risk mitigation (e.g., environmental clean up and reoccupancy). A large number of assumptions are required to calculate these values, and the resulting values have large uncertainties associated with them. The values calculated here suggest that documenting compliance with risks in the range of 10(-4) to 10(-6) would be challenging for small diameter (respirable) spore particles. For less stringent risk targets and for releases of larger diameter particles (which are less respirable and hence less hazardous), environmental sampling would be more promising.

  6. Muricholic acids inhibit Clostridium difficile spore germination and growth.

    Directory of Open Access Journals (Sweden)

    Michael B Francis

    Full Text Available Infections caused by Clostridium difficile have increased steadily over the past several years. While studies on C. difficile virulence and physiology have been hindered, in the past, by lack of genetic approaches and suitable animal models, newly developed technologies and animal models allow these processes to be studied in detail. One such advance is the generation of a mouse-model of C. difficile infection. The development of this system is a major step forward in analyzing the genetic requirements for colonization and infection. While important, it is equally as important in understanding what differences exist between mice and humans. One of these differences is the natural bile acid composition. Bile acid-mediated spore germination is an important step in C. difficile colonization. Mice produce several different bile acids that are not found in humans. These muricholic acids have the potential to impact C. difficile spore germination. Here we find that the three muricholic acids (α-muricholic acid, β-muricholic acid and ω-muricholic acid inhibit C. difficile spore germination and can impact the growth of vegetative cells. These results highlight an important difference between humans and mice and may have an impact on C. difficile virulence in the mouse-model of C. difficile infection.

  7. Long-term survival of bacterial spores in space

    Science.gov (United States)

    Horneck, G.; Bucker, H.; Reitz, G.

    1994-01-01

    On board of the NASA Long Duration Exposure Facility (LDEF), spores of Bacillus subtilis in monolayers (10(exp 6)/sample) or multilayers (10(exp 8)/sample) were exposed to the space environment for nearly six years and their survival was analyzed after retrieval. The response to space parameters, such as vacuum (10(exp -6) Pa), solar electromagnetic radiation up to the highly energetic vacuum-ultraviolet range 10(exp 9) J/sq m) and/or cosmic radiation (4.8 Gy), was studied and compared to the results of a simultaneously running ground control experiment. If shielded against solar ultraviolet (UV)-radiation, up to 80% of spores in multilayers survive in space. Solar UV-radiation, being the most deleterious parameter of space, reduces survival by 4 orders of magnitude or more. However, up to 10(exp 4) viable spores were still recovered, even in completely unprotected samples. Substances, such as glucose or buffer salts serve as chemical protectants. With this 6 year study in space, experimental data are provided to the discussion on the likelihood of 'Panspermia'.

  8. Mutagenesis of Bacillus subtilis spores exposed to simulated space environment

    Science.gov (United States)

    Munakata, N.; Natsume, T.; Takahashi, K.; Hieda, K.; Panitz, C.; Horneck, G.

    Bacterial spores can endure in a variety of extreme earthly environments. However, some conditions encountered during the space flight could be detrimental to DNA in the spore, delimiting the possibility of transpermia. We investigate the genetic consequences of the exposure to space environments in a series of preflight simulation project of EXPOSE. Using Bacillus subtilis spores of repair-proficient HA101 and repair-deficient TKJ6312 strains, the mutations conferring resistance to rifampicin were detected, isolated and sequenced. Most of the mutations were located in a N-terminal region of the rpoB gene encoding RNA polymerase beta-subunit. Among several potentially mutagenic factors, high vacuum, UV radiation, heat, and accelerated heavy ions induced mutations with varying efficiencies. A majority of mutations induced by vacuum exposure carried a tandem double-base change (CA to TT) at a unique sequence context of TCAGC. Results indicate that the vacuum and high temperature may act synergistically for the induction of mutations.

  9. Pollen and spores as biological recorders of past ultraviolet irradiance

    Science.gov (United States)

    Jardine, Phillip E.; Fraser, Wesley T.; Lomax, Barry H.; Sephton, Mark A.; Shanahan, Timothy M.; Miller, Charlotte S.; Gosling, William D.

    2016-12-01

    Solar ultraviolet (UV) irradiance is a key driver of climatic and biotic change. Ultraviolet irradiance modulates stratospheric warming and ozone production, and influences the biosphere from ecosystem-level processes through to the largest scale patterns of diversification and extinction. Yet our understanding of ultraviolet irradiance is limited because no method has been validated to reconstruct its flux over timescales relevant to climatic or biotic processes. Here, we show that a recently developed proxy for ultraviolet irradiance based on spore and pollen chemistry can be used over long (105 years) timescales. Firstly we demonstrate that spatial variations in spore and pollen chemistry correlate with known latitudinal solar irradiance gradients. Using this relationship we provide a reconstruction of past changes in solar irradiance based on the pollen record from Lake Bosumtwi in Ghana. As anticipated, variations in the chemistry of grass pollen from the Lake Bosumtwi record show a link to multiple orbital precessional cycles (19–21 thousand years). By providing a unique, local proxy for broad spectrum solar irradiance, the chemical analysis of spores and pollen offers unprecedented opportunities to decouple solar variability, climate and vegetation change through geologic time and a new proxy with which to probe the Earth system.

  10. Significance of air humidity and air velocity for fungal spore release into the air

    Science.gov (United States)

    Pasanen, A.-L.; Pasanen, P.; Jantunen, M. J.; Kalliokoski, P.

    Our previous field studies have shown that the presence of molds in buildings does not necessarily mean elevated airborne spore counts. Therefore, we investigated the release of fungal spores from cultures of Aspergillus fumigatus, Penicillium sp. and Cladosporium sp. at different air velocities and air humidities. Spores of A. fumigatus and Penicillium sp. were released from conidiophores already at air velocity of 0.5 ms -1, whereas Cladosporium spores required at least a velocity of 1.0 ms -1. Airborne spore counts of A. fumigatus and Penicillium sp. were usually higher in dry than moist air, being minimal at relative humidities (r.h.) above 70%, while the effect of r.h. on the release of Cladosporium sp. was ambivalent. The geometric mean diameter of released spores increased when the r.h. exceeded a certain level which depends on fungal genus. Thus, spores of all three fungi were hygroscopic but the hygroscopicity of various spores appeared at different r.h.-ranges. This study indicates that spore release is controlled by external factors and depends on fungal genus which can be one reason for considerable variation of airborne spore counts in buildings with mold problems.

  11. Impact of spore biology on the rate of kill and suppression of resistance in Bacillus anthracis.

    Science.gov (United States)

    Drusano, G L; Okusanya, O O; Okusanya, A O; van Scoy, B; Brown, D L; Fregeau, C; Kulawy, R; Kinzig, M; Sörgel, F; Heine, H S; Louie, A

    2009-11-01

    Bacillus anthracis is complex because of its spore form. The spore is invulnerable to antibiotic action. It also has an impact on the emergence of resistance. We employed the hollow-fiber infection model to study the impacts of different doses and schedules of moxifloxacin on the total-organism population, the spore population, and the subpopulations of vegetative- and spore-phase organisms that were resistant to moxifloxacin. We then generated a mathematical model of the impact of moxifloxacin, administered by continuous infusion or once daily, on vegetative- and spore-phase organisms. The ratio of the rate constant for vegetative-phase cells going to spore phase (K(vs)) to the rate constant for spore-phase cells going to vegetative phase (K(sv)) determines the rate of organism clearance. The continuous-infusion drug profile is more easily sensed as a threat; the K(vs)/K(sv) ratio increases at lower drug exposures (possibly related to quorum sensing). This movement to spore phase protects the organism but makes the emergence of resistance less likely. Suppression of resistance requires a higher level of drug exposure with once-daily administration than with a continuous infusion, a difference that is related to vegetative-to-spore (and back) transitioning. Spore biology has a major impact on drug therapy and resistance suppression. These findings explain why all drugs of different classes have approximately the same rate of organism clearance for Bacillus anthracis.

  12. Characterization of bacterial spore germination using integrated phase contrast microscopy, Raman spectroscopy, and optical tweezers.

    Science.gov (United States)

    Kong, Lingbo; Zhang, Pengfei; Setlow, Peter; Li, Yong-Qing

    2010-05-01

    We present a methodology that combines external phase contrast microscopy, Raman spectroscopy, and optical tweezers to monitor a variety of changes during the germination of single Bacillus cereus spores in both nutrient (l-alanine) and non-nutrient (Ca-dipicolinic acid (DPA)) germinants with a temporal resolution of approximately 2 s. Phase contrast microscopy assesses changes in refractility of individual spores during germination, while Raman spectroscopy gives information on changes in spore-specific molecules. The results obtained include (1) the brightness of the phase contrast image of an individual dormant spore is proportional to the level of CaDPA in that spore; (2) the end of the first Stage of germination, revealed as the end of the rapid drop in spore refractility by phase contrast microscopy, precisely corresponds to the completion of the release of CaDPA as revealed by Raman spectroscopy; and (3) the correspondence between the rapid drop in spore refractility and complete CaDPA release was observed not only for spores germinating in the well-controlled environment of an optical trap but also for spores germinating when adhered on a microscope coverslip. Using this latter method, we also simultaneously characterized the distribution of the time-to-complete-CaDPA release (T(release)) of hundreds of individual B. cereus spores germinating with both saturating and subsaturating concentrations of l-alanine and with CaDPA.

  13. Clostridium difficile virulence factors: Insights into an anaerobic spore-forming pathogen

    Science.gov (United States)

    Awad, Milena M; Johanesen, Priscilla A; Carter, Glen P; Rose, Edward; Lyras, Dena

    2014-01-01

    The worldwide emergence of epidemic strains of Clostridium difficile linked to increased disease severity and mortality has resulted in greater research efforts toward determining the virulence factors and pathogenesis mechanisms used by this organism to cause disease. C. difficile is an opportunist pathogen that employs many factors to infect and damage the host, often with devastating consequences. This review will focus on the role of the 2 major virulence factors, toxin A (TcdA) and toxin B (TcdB), as well as the role of other putative virulence factors, such as binary toxin, in C. difficile-mediated infection. Consideration is given to the importance of spores in both the initiation of disease and disease recurrence and also to the role that surface proteins play in host interactions. PMID:25483328

  14. Spore production of Penicillium roqueforti by solid state fermentation: Stoichiometry, growth and sporulation behavior.

    Science.gov (United States)

    Desfarges, C; Larroche, C; Gros, J B

    1987-06-01

    The development of Penicillium roqueforti on buckwheat seeds proceeds roughly into four steps, involving a lag phase and three growth phases. First, it appears as a spore germination and external colonization of the grains by the mycelium. Then, mainly external sporulation and internal colonization of the seeds occur and finally internal sporulation takes place. The Stoichiometry of the growth and the sporulation is established. Kinetic experiments performed in a fixed bed reactor show that the growth of the microorganism (biomass production) may be estimated by the protein content of the medium. This growth occurs with a very low mu(max) value close to 0.030 h(-1). The chitin content of the medium is an indicator of the sporulation, just as the metabolic liquor (mainly water) produced during the course of a cultivation. The values of the observed respiratory quotient are close to those predicted by stoichiometry.

  15. Carbon-13 (13C) labeling of Bacillus subtilis vegetative cells and spores: suitability for DNA stable isotope probing (DNA-SIP) of spores in soils.

    Science.gov (United States)

    Nicholson, Wayne L; Fedenko, Jeffrey; Schuerger, Andrew C

    2009-07-01

    To test the suitability of DNA stable isotope probing (DNA-SIP) for characterizing bacterial spore populations in soils, the properties of Bacillus subtilis cells and spores intensely labeled with [(13)C]glucose were characterized. Spore germination, vegetative growth rates, and sporulation efficiency were indistinguishable on glucose versus [(13)C]glucose, as were spore wet heat and UV resistance. Unlabeled and (13)C-labeled spores contained 1.0989 and 74.336 at.% (13)C, and exhibited wet densities of 1.356 and 1.365 g/ml, respectively. Chromosomal DNAs containing (12)C versus (13)C were readily separated by their different buoyant densities in cesium chloride/ethidium bromide gradients.

  16. The protein composition of reconstituted 30S ribosomal subunits: the effects of single protein omission.

    Science.gov (United States)

    Buck, M A; Olah, T V; Perrault, A R; Cooperman, B S

    1991-06-01

    Using reverse phase HPLC, we have been able to quantify the protein compositions of reconstituted 30S ribosomal subunits, formed either with the full complement of 30S proteins in the reconstitution mix or with a single protein omitted. We denote particles formed in the latter case as SPORE (single protein omission reconstitution) particles. An important goal in 30S reconstitution studies is the formation of reconstituted subunits having uniform protein composition, preferably corresponding to one copy of each protein per reconstituted particle. Here we describe procedures involving variation of the protein:rRNA ratio that approach this goal. In SPORE particles the omission of one protein often results in the partial loss in uptake of other proteins. We also describe procedures to increase the uptake of such proteins into SPORE particles, thus enhancing the utility of the SPORE approach in defining the role of specific proteins in 30S structure and function. The losses of proteins other than the omitted protein provide a measure of protein:protein interaction within the 30S subunit. Most of these losses are predictable on the basis of other such measures. However, we do find evidence for several long-range protein:protein interactions (S6:S3, S6:S12, S10:S16, and S6:S4) that have not been described previously.

  17. Atividade da invertase ácida solúvel e da insolúvel em tubérculos de batata recondicionados após o armazenamento sob diferentes temperaturas Acid soluble invertase and insoluble activity in potato tuber subsequent reconditioning after storage in different temperatures

    Directory of Open Access Journals (Sweden)

    Ladislau Soares Ferreira

    2007-12-01

    Full Text Available Objetivou-se no trabalho determinar a atividade das enzimas invertase ácida solúvel e invertase insolúvel em tubérculos de batata de genótipos Atlantic, Pérola, Asterix e C-1786-6-94, armazenados em diferentes temperaturas com posterior recondicionamento. Determinou-se a atividade das enzimas invertase ácida solúvel e insolúvel aos 0, 30 e 60 dias de armazenamento. Aos 30 dias de armazenamento a atividade das duas enzimas foi estimulada pela temperatura de 4ºC. O recondicionamento de 4ºC para 20ºC diminuiu a atividade das enzimas em todos os cultivares. O armazenamento a 12ºC bem como o recondicionamento de 12ºC para 20ºC pouco influenciou na atividade da invertase ácida solúvel. A atividade da invertase insolúvel sob 12ºC foi aumentada aos 30 e 60 dias de armazenamento, no clone C1786-6-94 e na cultivar Atlantic. O armazenamento a 20ºC não alterou a atividade das enzimas invertase ácida solúvel e insolúvel para as cultivares em estudo.The aim of this work was to quantify the activity of the acid soluble invertase enzymes and insoluble invertase in tubers of potato genotypes: Atlantic, Pérola, Asterix and C-1786-6-94 stored in different temperatures with recondition. One determined the activity of the acid soluble enzymes and insoluble invertase at 0 30 and 60 days of storage. In 30 days of storage the activity of the two enzymes was stimulated by the temperature at 4ºC. The recondition from 4º C to 20º C reduced the activity of the insoluble and acid soluble invertase in all cultivars, however in different way among them. The storage at 12ºC and the reconditioned from 12º C to 20º C had little influence on the activity of the acid soluble invertase. The activity of the insoluble invertase under 12º C was increased at 30 and 60 days of recondition in C-1786-6-94 clone and Atlantic cultivar. The storage at 20ºC did not alter the activity of the acid soluble invertase enzyme and insoluble invertase for the

  18. Sterilization of hydrogen peroxide resistant bacterial spores with stabilized chlorine dioxide.

    Science.gov (United States)

    Friedline, Anthony; Zachariah, Malcolm; Middaugh, Amy; Heiser, Matt; Khanna, Neeraj; Vaishampayan, Parag; Rice, Charles V

    2015-01-01

    Bacillus pumilus SAFR-032 spores isolated from a clean room environment are known to exhibit enhanced resistance to peroxide, desiccation, UV radiation and chemical disinfection than other spore-forming bacteria. The survival of B. pumilus SAFR-032 spores to standard clean room sterilization practices requires development of more stringent disinfection agents. Here, we report the effects of a stabilized chlorine dioxide-based biocidal agent against spores of B. pumilus SAFR-032 and Bacillus subtilis ATCC 6051. Viability was determined via CFU measurement after exposure. Chlorine dioxide demonstrated efficacy towards sterilization of spores of B. pumilus SAFR-032 equivalent or better than exposure to hydrogen peroxide. These results indicate efficacy of chlorine dioxide delivered through a stabilized chlorine dioxide product as a means of sterilization of peroxide- and UV-resistant spores.

  19. Responses of Bacillus subtilis spores to space environment: results from experiments in space.

    Science.gov (United States)

    Horneck, G

    1993-02-01

    Onboard of several spacecrafts (Apollo 16, Spacelab 1, LDEF), spores of Bacillus subtilis were exposed to selected parameters of space, such as space vacuum, different spectral ranges of solar UV-radiation and cosmic rays, applied separately or in combination, and we have studied their survival and genetic changes after retrieval. The spores survive extended periods of time in space--up to several years--, if protected against the high influx of solar UV-radiation. Water desorption caused by the space vacuum leads to structural changes of the DNA; the consequences are an increased mutation frequency and altered photobiological properties of the spores. UV-effects, such as killing and mutagenesis, are augmented, if the spores are in space vacuum during irradiation. Vacuum-specific photoproducts which are different from the 'spore photoproduct' may cause the synergistic response of spores to the simultaneous action of UV and vacuum. The experiments provide an experimental test of certain steps of the panspermia hypothesis.

  20. Enhancement of intrinsic antitumor activity in spore-endotoxin mixtures of Bacillus thuringiensis by exposure to ultraviolet radiation

    Energy Technology Data Exchange (ETDEWEB)

    Zamola, B.; Karminski-Zamola, G.; Fuks, Z.; Kubovic, M. (Zagreb Univ. (Yugoslavia)); Wrishcer, M. (Institut Rudjer Boskovic, Zagreb (Yugoslavia))

    1985-03-01

    Irradiation of spore-endotoxin mixtures from Bacillus thuringiensis cultures at 254 nm (60 ..mu..W cm/sup -2/) enhances their intrinsic antitumor potency as well as that of either component. The extent of enhancement depends on the length of exposure (optimum: 35 min) and may thus be due to photochemical changes of the endotoxin protein or/and to photoproduction of additional compounds with antitumor activity. Antitumor effects, expressed as survival rates of C57BL/6 mice inoculated with Lewis' mouse lung carcinoma and subjected to treatments 24 h later, depended on the number of doses of preparations administered (mixture, separated components).

  1. SirA enforces diploidy by inhibiting the replication initiator DnaA during spore formation in Bacillus subtilis

    OpenAIRE

    Jennifer K. Wagner; Marquis, Kathleen A.; Rudner, David Z.

    2009-01-01

    How cells maintain their ploidy is relevant to cellular development and disease. Here, we investigate the mechanism by which the bacterium Bacillus subtilis enforces diploidy as it differentiates into a dormant spore. We demonstrate that a sporulation-induced protein SirA (originally annotated YneE) blocks new rounds of replication by targeting the highly conserved replication initiation factor DnaA. We show that SirA interacts with DnaA and displaces it from the replication origin. As a resu...

  2. Induced sporicidal activity of chlorhexidine against Clostridium difficile spores under altered physical and chemical conditions.

    Directory of Open Access Journals (Sweden)

    Michelle M Nerandzic

    Full Text Available Chlorhexidine is a broad-spectrum antimicrobial commonly used to disinfect the skin of patients to reduce the risk of healthcare-associated infections. Because chlorhexidine is not sporicidal, it is not anticipated that it would have an impact on skin contamination with Clostridium difficile, the most important cause of healthcare-associated diarrhea. However, although chlorhexidine is not sporicidal as it is used in healthcare settings, it has been reported to kill spores of Bacillus species under altered physical and chemical conditions that disrupt the spore's protective barriers (e.g., heat, ultrasonication, alcohol, or elevated pH. Here, we tested the hypothesis that similarly altered physical and chemical conditions result in enhanced sporicidal activity of chlorhexidine against C. difficile spores.C. difficile spores became susceptible to heat killing at 80 °C within 15 minutes in the presence of chlorhexidine, as opposed to spores suspended in water which remained viable. The extent to which the spores were reduced was directly proportional to the concentration of chlorhexidine in solution, with no viable spores recovered after 15 minutes of incubation in 0.04%-0.0004% w/v chlorhexidine solutions at 80 °C. Reduction of spores exposed to 4% w/v chlorhexidine solutions at moderate temperatures (37 °C and 55 °C was enhanced by the presence of 70% ethanol. However, complete elimination of spores was not achieved until 3 hours of incubation at 55 °C. Elevating the pH to ≥9.5 significantly enhanced the killing of spores in either aqueous or alcoholic chlorhexidine solutions.Physical and chemical conditions that alter the protective barriers of C. difficile spores convey sporicidal activity to chlorhexidine. Further studies are necessary to identify additional agents that may allow chlorhexidine to reach its target within the spore.

  3. The occurrence of Ganoderma spores in the air and its relationships with meteorological factors

    Directory of Open Access Journals (Sweden)

    Agnieszka Grinn-Gofroń

    2012-12-01

    Full Text Available According to a recent study, Ganoderma may be the third genus, after Alternaria and Cladosporium, whose spores cause symptoms of allergy and whose levels are directly related to meteorological factors. There are only few articles from different parts of the world about the relationships between Ganoderma spore count and meteorological factors. The aim of the study was to review all available publications about airborne Ganoderma spores and to compare the results in a short useful form.

  4. Diurnal variations of airborne fungal spores concentration in the town and rural area

    Directory of Open Access Journals (Sweden)

    Idalia Kasprzyk

    2012-12-01

    Full Text Available Airborne fungal spores were monitored in 2001-2002 in Rzeszów (town and its neighborhood. The aim of investigations was to ascertain if there were differences in diurnal variations of airborne fungal spores concentration between town and rural area. The sampling was carried out using volumetric method. Traps were located at the same heights - app. 12 m. Airborne spores were sampled continuously. Microscopical slides were prepared for each day. Analysis was carried out on one longitudinal band of 48 mm long divided into 24 segments corresponding following hours of day. The results were expressed as mean number of fungal spores per cubic meter per 24 hours. For this survey, five geni of allergenic fungi were selected: Alternaria, Botrytis, Cladosporium, Epicoccum, Ganoderma. The concentrations of their airborne spores were high or very high. It was calculated theoretical day, where the hourly count was the percentage mean of number of spores at that time every chosen day without rainfall from 2001 and 2001 years. The diurnal periodicity of Alternaria, Cladosporium, Epicoccum and Ganoderma showed one peak, while Botrytis two. Anamorphic spores peaked in the afternoon, while their minima occurred in the morning. The highest concentrations of Ganoderma basidiospores were at down or at night, but minima during the day. There were no clear differences in the peak values between two studied sites. The results indicate that maximum concentrations of all spores generally occurred a few hour earlier in the rural area than in the town. Probably, in the rural area airborne spores came from many local sources and their diurnal periodicity reflected rhythm of spore liberation. Towns are characterized by specific microclimate with higher temperature and wind blowing to the centre. In Rzeszów fungal spores could be transported outside and carried out by wind from distant sources. This study showed, among others, that habitat conditions are an important factors

  5. Ultraweak luminescence from germinating resting spores of Entomophthora virulenta Hall et Dunn

    OpenAIRE

    Janusz Sławiński; Irena Majchrowicz; Edward Grabikowski

    2014-01-01

    Germinating resting spores of Entomophthora virulenta Hall et Dunn emit ultraweak luminescence with the intensity of the order 100 photons • s-1 • cm-2 in the spectral region 200-750 nm. The emission kinetics and intensity depend on vitality and incubation temperature of the spores. The higher the ability of resting spores to germinate, the more intense the luminescence. Elevation of the incubation temperature to 50°C enhances ultraweak luminescence. The activation energy was found to be abou...

  6. A novel method for standardized application of fungal spore coatings for mosquito exposure bioassays

    Directory of Open Access Journals (Sweden)

    Knols Bart GJ

    2010-01-01

    Full Text Available Abstract Background Interest in the use of fungal entomopathogens against malaria vectors is growing. Fungal spores infect insects via the cuticle and can be applied directly on the insect to evaluate infectivity. For flying insects such as mosquitoes, however, application of fungal suspensions on resting surfaces is more realistic and representative of field settings. For this type of exposure, it is essential to apply specific amounts of fungal spores homogeneously over a surface for testing the effects of fungal dose and exposure time. Contemporary methods such as spraying or brushing spore suspensions onto substrates do not produce the uniformity and consistency that standardized laboratory assays require. Two novel fungus application methods using equipment developed in the paint industry are presented and compared. Methods Wired, stainless steel K-bars were tested and optimized for coating fungal spore suspensions onto paper substrates. Different solvents and substrates were evaluated. Two types of coating techniques were compared, i.e. manual and automated coating. A standardized bioassay set-up was designed for testing coated spores against malaria mosquitoes. Results K-bar coating provided consistent applications of spore layers onto paper substrates. Viscous Ondina oil formulations were not suitable and significantly reduced spore infectivity. Evaporative Shellsol T solvent dried quickly and resulted in high spore infectivity to mosquitoes. Smooth proofing papers were the most effective substrate and showed higher infectivity than cardboard substrates. Manually and mechanically applied spore coatings showed similar and reproducible effects on mosquito survival. The standardized mosquito exposure bioassay was effective and consistent in measuring effects of fungal dose and exposure time. Conclusions K-bar coating is a simple and consistent method for applying fungal spore suspensions onto paper substrates and can produce coating layers

  7. Novel Strategies for Enhanced Removal of Persistent Bacillus anthracis Surrogates and Clostridium difficile Spores from Skin

    Science.gov (United States)

    Nerandzic, Michelle M.; Rackaityte, Elze; Jury, Lucy A.; Eckart, Kevin; Donskey, Curtis J.

    2013-01-01

    Background Removing spores of Clostridium difficile and Bacillus anthracis from skin is challenging because they are resistant to commonly used antimicrobials and soap and water washing provides only modest efficacy. We hypothesized that hygiene interventions incorporating a sporicidal electrochemically generated hypochlorous acid solution (Vashe®) would reduce the burden of spores on skin. Methods Hands of volunteers were inoculated with non-toxigenic C. difficile spores or B. anthracis spore surrogates to assess the effectiveness of Vashe solution for reducing spores on skin. Reduction in spores was compared for Vashe hygiene interventions versus soap and water (control). To determine the effectiveness of Vashe solution for removal of C. difficile spores from the skin of patients with C. difficile infection (CDI), reductions in levels of spores on skin were compared for soap and water versus Vashe bed baths. Results Spore removal from hands was enhanced with Vashe soak (>2.5 log10 reduction) versus soap and water wash or soak (~2.0 log10 reduction; P soap and water wash followed by soaking in Vashe removed >3.5 log10 spores from hands (P washing or soaking alone). Bed baths using soap and water (N =26 patients) did not reduce the percentage of positive skin cultures for CDI patients (64% before versus 57% after bathing; P =0.5), whereas bathing with Vashe solution (N =21 patients) significantly reduced skin contamination (54% before versus 8% after bathing; P =0.0001). Vashe was well-tolerated with no evidence of adverse effects on skin. Conclusions Vashe was safe and effective for reducing the burden of B. anthracis surrogates and C. difficile spores on hands. Bed baths with Vashe were effective for reducing C. difficile on skin. These findings suggest a novel strategy to reduce the burden of spores on skin. PMID:23844234

  8. Neutron flow exposure as a test for survival of Artemia salina spores.

    Science.gov (United States)

    Matveeva, I S; Smirnov, A N; Vodennikov, B D; Popov, I M; Semenov, D S; Kolesnikov, M V; Syroeshkin, A V

    2004-11-01

    Live and heat-inactivated Artemia salina spores (samples with the same mass and filling density) were exposed to a flow of thermal neutrons from a (252)Cf radioactive source at an equivalent dose power of about 1 microSv/h. Irradiation led to a 4-fold acceleration of nauplius development and to modification of the element profiles of live spores. The difference between absorption/diffusion of thermal neutrons by live and dead spores was revealed.

  9. Novel strategies for enhanced removal of persistent Bacillus anthracis surrogates and Clostridium difficile spores from skin.

    Science.gov (United States)

    Nerandzic, Michelle M; Rackaityte, Elze; Jury, Lucy A; Eckart, Kevin; Donskey, Curtis J

    2013-01-01

    Removing spores of Clostridium difficile and Bacillus anthracis from skin is challenging because they are resistant to commonly used antimicrobials and soap and water washing provides only modest efficacy. We hypothesized that hygiene interventions incorporating a sporicidal electrochemically generated hypochlorous acid solution (Vashe(®)) would reduce the burden of spores on skin. Hands of volunteers were inoculated with non-toxigenic C. difficile spores or B. anthracis spore surrogates to assess the effectiveness of Vashe solution for reducing spores on skin. Reduction in spores was compared for Vashe hygiene interventions versus soap and water (control). To determine the effectiveness of Vashe solution for removal of C. difficile spores from the skin of patients with C. difficile infection (CDI), reductions in levels of spores on skin were compared for soap and water versus Vashe bed baths. Spore removal from hands was enhanced with Vashe soak (>2.5 log10 reduction) versus soap and water wash or soak (~2.0 log10 reduction; Psoap and water wash followed by soaking in Vashe removed >3.5 log10 spores from hands (Psoap and water (N =26 patients) did not reduce the percentage of positive skin cultures for CDI patients (64% before versus 57% after bathing; P =0.5), whereas bathing with Vashe solution (N =21 patients) significantly reduced skin contamination (54% before versus 8% after bathing; P =0.0001). Vashe was well-tolerated with no evidence of adverse effects on skin. Vashe was safe and effective for reducing the burden of B. anthracis surrogates and C. difficile spores on hands. Bed baths with Vashe were effective for reducing C. difficile on skin. These findings suggest a novel strategy to reduce the burden of spores on skin.

  10. Novel strategies for enhanced removal of persistent Bacillus anthracis surrogates and Clostridium difficile spores from skin.

    Directory of Open Access Journals (Sweden)

    Michelle M Nerandzic

    Full Text Available BACKGROUND: Removing spores of Clostridium difficile and Bacillus anthracis from skin is challenging because they are resistant to commonly used antimicrobials and soap and water washing provides only modest efficacy. We hypothesized that hygiene interventions incorporating a sporicidal electrochemically generated hypochlorous acid solution (Vashe(® would reduce the burden of spores on skin. METHODS: Hands of volunteers were inoculated with non-toxigenic C. difficile spores or B. anthracis spore surrogates to assess the effectiveness of Vashe solution for reducing spores on skin. Reduction in spores was compared for Vashe hygiene interventions versus soap and water (control. To determine the effectiveness of Vashe solution for removal of C. difficile spores from the skin of patients with C. difficile infection (CDI, reductions in levels of spores on skin were compared for soap and water versus Vashe bed baths. RESULTS: Spore removal from hands was enhanced with Vashe soak (>2.5 log10 reduction versus soap and water wash or soak (~2.0 log10 reduction; P3.5 log10 spores from hands (P<0.01 compared to washing or soaking alone. Bed baths using soap and water (N =26 patients did not reduce the percentage of positive skin cultures for CDI patients (64% before versus 57% after bathing; P =0.5, whereas bathing with Vashe solution (N =21 patients significantly reduced skin contamination (54% before versus 8% after bathing; P =0.0001. Vashe was well-tolerated with no evidence of adverse effects on skin. CONCLUSIONS: Vashe was safe and effective for reducing the burden of B. anthracis surrogates and C. difficile spores on hands. Bed baths with Vashe were effective for reducing C. difficile on skin. These findings suggest a novel strategy to reduce the burden of spores on skin.

  11. MICROFILTRATION AND ULTRAFILTRATION OF Bacillus thuringiensis FERMENTATION BROTH: MEMBRANE PERFORMANCE AND SPORE-CRYSTAL RECOVERY APPROACHES

    OpenAIRE

    R. Marzban; F. Saberi; M.M.A. Shirazi

    2016-01-01

    Abstract Recovery of spores and crystals from the fermentation broth of Bacillus thuringiensis (Bt) was studied using the membrane separation technology. Four types of polymeric membranes, with different characteristics, in the range of microfiltration (MF) and ultrafiltration (UF) were used for evaluating their permeate flux and spore-crystal recovery capacity. Results indicated that both MF and UF membranes are effective for spore-crystal recovery. The hydrophobic MF membrane made of polyvi...

  12. Water properties in fern spores: sorption characteristics relating to water affinity, glassy states, and storage stability.

    Science.gov (United States)

    Ballesteros, Daniel; Walters, Christina

    2007-01-01

    Ex situ conservation of ferns may be accomplished by maintaining the viability of stored spores for many years. Storage conditions that maximize spore longevity can be inferred from an understanding of the behaviour of water within fern spores. Water sorption properties were measured in spores of five homosporeous species of ferns and compared with properties of pollen, seeds, and fern leaf tissue. Isotherms were constructed at 5, 25, and 45 degrees C and analysed using different physicochemical models in order to quantify chemical affinity and heat (enthalpy) of sorption of water in fern spores. Fern spores hydrate slowly but dry rapidly at ambient relative humidity. Low Brunauer-Emmet-Teller monolayer values, few water-binding sites according to the D'Arcy-Watt model, and limited solute-solvent compatibility according to the Flory-Huggins model suggest that fern spores have low affinity for water. Despite the low water affinity, fern spores demonstrate relatively high values of sorption enthalpy (DeltaH(sorp)). Parameters associated with binding sites and DeltaH(sorp) decrease with increasing temperature, suggesting temperature- and hydration-dependent changes in volume of spore macromolecules. Collectively, these data may relate to the degree to which cellular structures within fern spores are stabilized during drying and cooling. Water sorption properties within fern spores suggest that storage at subfreezing temperatures will give longevities comparable with those achieved with seeds. However, the window of optimum water contents for fern spores is very narrow and much lower than that measured in seeds, making precise manipulation of water content imperative for achieving maximum longevity.

  13. Simple detection of Bacillus anthracis spores by precipitation method with goat antibody anti anthrosa

    OpenAIRE

    2016-01-01

    Background: Bacillus anthracis has a potential for biological weapon or bioterorism. Attack of Bacillus anthracis is very fatal, and the distribution is very easy and cheap through the spores. The aim of this was study to detect the spores of Bacillus anthracis. Methods: Bacillus anthracis isolates were grown on serum agar and then sheep blood medium, to stimulate capsule formation. Spores which formed painted using the method of Schaefer and Fultton. The methods of precipitation and immun...

  14. Achieving Consistent Multiple Daily Low-Dose Bacillus anthracis Spore Inhalation Exposures in the Rabbit Model

    Science.gov (United States)

    2012-06-13

    daily low-dose Bacillus anthracis spore inhalation exposures in the rabbit model Roy E. Barnewall 1, Jason E. Comer 1, Brian D. Miller 1, BradfordW...multiple exposure days. Keywords: Bacillus anthracis , inhalation exposures, low-dose, subchronic exposures, spores, anthrax, aerosol system INTRODUCTION... Bacillus Anthracis Spore Inhalation Exposures In The Rabbit Model 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d

  15. Environmental microbiology as related to planetary quarantine. [water activity and temperature effects on bacterial spore survival

    Science.gov (United States)

    Pflug, I. J.

    1972-01-01

    The survival of Bacillus subtilis var. niger spores suspended in solutions of sucrose and glycerol at calculated water activities and varying temperatures was studied. The overall results indicated that as the water activity of the liquid decreased from .99 to .85, the heat resistance of the spores increased. The nature of the substance controlling the water activity, and the history of the spores prior to treatment also had an affect on their heat resistance.

  16. Regulation of the Spore Cortex Lytic Enzyme SleB in Bacillus anthracis

    OpenAIRE

    2014-01-01

    Bacillus anthracis is the causative agent of the disease anthrax and poses a threat due to its potential to be used as a biological weapon. The spore form of this bacterium is an extremely resistant structure, making spore decontamination exceptionally challenging. During spore germination, nutrient germinants interact with Ger receptors, triggering a cascade of events. A crucial event in this process is degradation of the cortex peptidoglycan by germination-specific lytic enzymes (GSLEs),...

  17. Gene discovery in EST sequences from the wheat leaf rust fungus Puccinia triticina sexual spores, asexual spores and haustoria, compared to other rust and corn smut fungi

    Directory of Open Access Journals (Sweden)

    Wynhoven Brian

    2011-03-01

    . tritici (Pst, and poplar leaf rust Melampsora species, and the corn smut fungus, Ustilago maydis (Um. While extensive homologies were found, many genes appeared novel and species-specific; over 40% of genes did not match any known sequence in existing databases. Focusing on spore stages, direct comparison to Um identified potential functional homologs, possibly allowing heterologous functional analysis in that model fungus. Many potentially secreted protein genes were identified by similarity searches against genes and proteins of Pgt and Melampsora spp., revealing apparent orthologs. Conclusions The current set of Pt unigenes contributes to gene discovery in this major cereal pathogen and will be invaluable for gene model verification in the genome sequence.

  18. Challenges and advances in systems biology analysis of Bacillus spore physiology; molecular differences between an extreme heat resistant spore forming Bacillus subtilis food isolate and a laboratory strain.

    Science.gov (United States)

    Brul, Stanley; van Beilen, Johan; Caspers, Martien; O'Brien, Andrea; de Koster, Chris; Oomes, Suus; Smelt, Jan; Kort, Remco; Ter Beek, Alex

    2011-04-01

    Bacterial spore formers are prime organisms of concern in the food industry. Spores from the genus Bacillus are extremely stress resistant, most notably exemplified by high thermotolerance. This sometimes allows surviving spores to germinate and grow out to vegetative cells causing food spoilage and possible intoxication. Similar issues though more pending toward spore toxigenicity are observed for the anaerobic Clostridia. The paper indicates the nature of stress resistance and highlights contemporary molecular approaches to analyze the mechanistic basis of it in Bacilli. A molecular comparison between a laboratory strain and a food borne isolate, very similar at the genomic level to the laboratory strain but generating extremely heat resistant spores, is discussed. The approaches cover genome-wide genotyping, proteomics and genome-wide expression analyses studies. The analyses aim at gathering sufficient molecular information to be able to put together an initial framework for dynamic modelling of spore germination and outgrowth behaviour. Such emerging models should be developed both at the population and at the single spore level. Tools and challenges in achieving the latter are succinctly discussed.

  19. Detection limit of Clostridium botulinum spores in dried mushroom samples sourced from China.

    Science.gov (United States)

    Malakar, Pradeep K; Plowman, June; Aldus, Clare F; Xing, Zengtao; Zhao, Yong; Peck, Michael W

    2013-08-16

    A survey of dried mushrooms (Lentinula edodes (Shiitake) and Auricularia auricula (Wood Ear)) sourced from China was carried out to determine the natural contamination of these mushrooms with spores of proteolytic Clostridium botulinum and non-proteolytic C. botulinum. The mushrooms were collected from supermarkets and retailers in 21 cities in China during October 2008. Spore loads of C. botulinum in mushrooms have a degree of uncertainty and variability and this study contributes valuable data for determining prevalence of spores of C. botulinum in mushrooms. An optimized detection protocol that combined selective enrichment culture with multiplex PCR was used to test for spores of proteolytic and non-proteolytic C. botulinum. Detection limits were calculated, using a maximum likelihood protocol, from mushroom samples inoculated with defined numbers of spores of proteolytic C. botulinum or non-proteolytic C. botulinum. Based on the maximum likelihood detection limit, it is estimated that dried mushroom A. auricula contained <550spores/kg of proteolytic C. botulinum, and <350spores/kg of non-proteolytic C. botulinum. Dried L. edodes contained <1500spores/kg of proteolytic C. botulinum and it was not possible to determine reliable detection limits for spores of non-proteolytic C. botulinum using the current detection protocol.

  20. Non-Seasonal Variation of Airborne Aspergillus Spore Concentration in a Hospital Building

    Directory of Open Access Journals (Sweden)

    Michael Oberle

    2015-10-01

    Full Text Available Nosocomial fungal infections are gaining increased attention from infectiologists. An adequate investigation into the levels of airborne Aspergillus and other fungal spores in hospital settings, under normal conditions, is largely unknown. We monitored airborne spore contamination in a Swiss hospital building in order to establish a seasonally-dependent base-line level. Air was sampled using an impaction technique, twice weekly, at six different locations over one year. Specimens were seeded in duplicate on Sabouraud agar plates. Grown colonies were identified to genus levels. The airborne Aspergillus spore concentration was constantly low throughout the whole year, at a median level of 2 spores/m3 (inter-quartile range = IQR 1–4, and displayed no seasonal dependency. The median concentration of other fungal spores was higher and showed a distinct seasonal variability with the ambient temperature change during the different seasons: 82 spores/m3 (IQR 26–126 in summer and 9 spores/m3 (IQR 6–15 in winter. The spore concentration varied considerably between the six sampling sites in the building (10 to 26 spores/m3. This variability may explain the variability of study results in the literature.

  1. Fungal spore content of the atmosphere of the Cave of Nerja (southern Spain): diversity and origin.

    Science.gov (United States)

    Docampo, Silvia; Trigo, M Mar; Recio, Marta; Melgar, Marta; García-Sánchez, José; Cabezudo, Baltasar

    2011-01-15

    Fungal spores are of great interest in aerobiology and allergy due to their high incidence in both outdoor and indoor environments and their widely recognized ability to cause respiratory diseases and other pathologies. In this work, we study the spore content of the atmosphere of the Cave of Nerja, a karstic cavity and an important tourist attraction situated on the eastern coast of Malaga (southern Spain), which receives more than half a million visitors every year. This study was carried out over an uninterrupted period of 4 years (2002-2005) with the aid of two Hirst-type volumetric pollen traps (Lanzoni VPPS 2000) situated in different halls of the cave. In the atmosphere of the Cave of Nerja, 72 different spore types were detected during the studied period and daily mean concentrations of up to 282,195 spores/m(3) were reached. Thirty-five of the spore types detected are included within Ascomycota and Basidiomycota (19 and 16 types, respectively). Of the remaining spore types, 32 were categorized within the group of so-called imperfect fungi, while Oomycota and Myxomycota were represented by 2 and 3 spore types, respectively. Aspergillus/Penicillium was the most abundant spore type with a yearly mean percentage that represented 50% of the total, followed by Cladosporium. Finally, the origin of the fungal spores found inside the cave is discussed on the basis of the indoor/outdoor concentrations and the seasonal behaviour observed. Copyright © 2010 Elsevier B.V. All rights reserved.

  2. Rapid inactivation of Penicillium digitatum spores using high-density nonequilibrium atmospheric pressure plasma

    Science.gov (United States)

    Iseki, Sachiko; Ohta, Takayuki; Aomatsu, Akiyoshi; Ito, Masafumi; Kano, Hiroyuki; Higashijima, Yasuhiro; Hori, Masaru

    2010-04-01

    A promising, environmentally safe method for inactivating fungal spores of Penicillium digitatum, a difficult-to-inactivate food spoilage microorganism, was developed using a high-density nonequilibrium atmospheric pressure plasma (NEAPP). The NEAPP employing Ar gas had a high electron density on the order of 1015 cm-3. The spores were successfully and rapidly inactivated using the NEAPP, with a decimal reduction time in spores (D value) of 1.7 min. The contributions of ozone and UV radiation on the inactivation of the spores were evaluated and concluded to be not dominant, which was fundamentally different from the conventional sterilizations.

  3. Decontamination of B. globigii spores from drinking water infrastructure using disinfectants

    Data.gov (United States)

    U.S. Environmental Protection Agency — Decontamination of Bacillus spores adhered to common drinking water infrastructure surfaces was evaluated using a variety of disinfectants. Corroded iron and...

  4. Metabolism of bile salts in mice influences spore germination in Clostridium difficile.

    Directory of Open Access Journals (Sweden)

    Jennifer L Giel

    Full Text Available Clostridium difficile, a spore-forming bacterium, causes antibiotic-associated diarrhea. In order to produce toxins and cause disease, C. difficile spores must germinate and grow out as vegetative cells in the host. Although a few compounds capable of germinating C. difficile spores in vitro have been identified, the in vivo signal(s to which the spores respond were not previously known. Examination of intestinal and cecal extracts from untreated and antibiotic-treated mice revealed that extracts from the antibiotic-treated mice can stimulate colony formation from spores to greater levels. Treatment of these extracts with cholestyramine, a bile salt binding resin, severely decreased the ability of the extracts to stimulate colony formation from spores. This result, along with the facts that the germination factor is small, heat-stable, and water-soluble, support the idea that bile salts stimulate germination of C. difficile spores in vivo. All extracts able to stimulate high level of colony formation from spores had a higher proportion of primary to secondary bile salts than extracts that could not. In addition, cecal flora from antibiotic-treated mice was less able to modify the germinant taurocholate relative to flora from untreated mice, indicating that the population of bile salt modifying bacteria differed between the two groups. Taken together, these data suggest that an in vivo-produced compound, likely bile salts, stimulates colony formation from C. difficile spores and that levels of this compound are influenced by the commensal gastrointestinal flora.

  5. Control of Bacillus licheniformis spores isolated from dairy materials in yogurt production.

    Science.gov (United States)

    Tanaka, Takashi; Ito, Akiko; Kamikado, Hideaki

    2012-01-01

    To determine the effects of sporulation temperature and period on Bacillus licheniformis spore heat resistance, B. licheniformis strain No.25 spores were sporulated at 30, 37, 42, or 50°C for 11 d and at 50°C for 1.7, 4, 7, or 11 d. The heat resistance of B. licheniformis strain No.25 spores at 110°C increased with an increase in the sporulation temperature. Spores sporulated at 50°C were 1.4-fold more heat resistant than those sporulated at 30°C. Furthermore, the heat resistance of B. licheniformis strain No.25 spores at 110°C increased with an increase in the sporulation period. Spores sporulated for 11 d were 5.3-fold more heat resistant than those sporulated for 1.7 d. The heat resistance of B. licheniformis strain No.25 spores at 110°C increased with increases in the sporulation temperature and sporulation period. The results presented in this study can be applied to the pasteurization process to control B. licheniformis spores. Pasteurization at 110°C for about 60sec. is effective in controlling B. licheniformis spores isolated from dairy materials in yogurt production.

  6. Evaluation of germination, distribution, and persistence of Bacillus subtilis spores through the gastrointestinal tract of chickens.

    Science.gov (United States)

    Latorre, J D; Hernandez-Velasco, X; Kallapura, G; Menconi, A; Pumford, N R; Morgan, M J; Layton, S L; Bielke, L R; Hargis, B M; Téllez, G

    2014-07-01

    Spores are popular as direct-fed microbials, though little is known about their mode of action. Hence, the first objective of the present study was to evaluate the in vitro germination and growth rate of Bacillus subtilis spores. Approximately 90% of B. subtilis spores germinate within 60 min in the presence of feed in vitro. The second objective was to determine the distribution of these spores throughout different anatomical segments of the gastrointestinal tract (GIT) in a chicken model. For in vivo evaluation of persistence and dissemination, spores were administered to day-of-hatch broiler chicks either as a single gavage dose or constantly in the feed. During 2 independent experiments, chicks were housed in isolation chambers and fed sterile corn-soy-based diets. In these experiments one group of chickens was supplemented with 10(6) spores/g of feed, whereas a second group was gavaged with a single dose of 10(6) spores per chick on day of hatch. In both experiments, crop, ileum, and cecae were sampled from 5 chicks at 24, 48, 72, 96, and 120 h. Viable B. subtilis spores were determined by plate count method after heat treatment (75°C for 10 min). The number of recovered spores was constant through 120 h in each of the enteric regions from chickens receiving spores supplemented in the feed. However, the number of recovered B. subtilis spores was consistently about 10(5) spores per gram of digesta, which is about a 1-log10 reduction of the feed inclusion rate, suggesting approximately a 90% germination rate in the GIT when fed. On the other hand, recovered B. subtilis spores from chicks that received a single gavage dose decreased with time, with only approximately 10(2) spores per gram of sample by 120 h. This confirms that B. subtilis spores are transiently present in the GIT of chickens, but the persistence of vegetative cells is presently unknown. For persistent benefit, continuous administration of effective B. subtilis direct-fed microbials as vegetative

  7. Live/Dead Bacterial Spore Assay Using DPA-Triggered Tb Luminescence

    Science.gov (United States)

    Ponce, Adrian

    2003-01-01

    A method of measuring the fraction of bacterial spores in a sample that remain viable exploits DPA-triggered luminescence of Tb(3+) and is based partly on the same principles as those described earlier. Unlike prior methods for performing such live/dead assays of bacterial spores, this method does not involve counting colonies formed by cultivation (which can take days), or counting of spores under a microscope, and works whether or not bacterial spores are attached to other small particles (i.e., dust), and can be implemented on a time scale of about 20 minutes.

  8. Utility of sodium hypochlorite for ultrastructure study of bacterial spore integuments.

    Science.gov (United States)

    Rode, L J; Williams, M G

    1966-12-01

    Rode, L. J. (The University of Texas, Austin), and M. Glenn Williams. Utility of sodium hypochlorite for ultrastructure study of bacterial spore integuments. J. Bacteriol. 92:1772-1778. 1966.-Spores of Bacillus megaterium are partially dissolved by sodium hypochlorite. Spore integuments become visible during the dissolution, and ultrastructural features may be detected. Three distinct integument types are described for B. megaterium QM B1551 with the use of this technique. Since a variety of microbial cells are affected by sodium hypochlorite, its use may be applicable to ultrastructure study of cells other than bacterial spores.

  9. Effects of meteorological factors on the levels of Alternaria spores on a potato crop

    Science.gov (United States)

    Escuredo, Olga; Seijo, Maria Carmen; Fernández-González, Maria; Iglesias, Isabel

    2011-03-01

    Alternaria solani Soraeur produces early blight in Solanum tuberosum L., leading to significant agricultural losses. The current study was carried out on the extensive potato crop situated in north-western of Spain during 2007, 2008 and 2009. In this area potato crops are the most important source of income. In this work we used a Hirst-type volumetric spore-trap for the aerobiological monitoring of Alternaria spores. The highest spore concentrations were recorded during the 2009 cycle (10,555 spores), and the lowest concentrations were recorded during the 2008 cycle (5,471 spores). Over the 3 years of study, the highest concentrations were registered during the last stage of the crop. The aim of the study was to observe the influence of meteorological factors on the concentration of Alternaria spores, which can lead to serious infection and early blight. Prediction of the stages during which a crop is particularly vulnerable to infection allows for adjustment of the application of fungicide and is of environmental and agricultural importance. For this reason, we tested three models (P-Days, DD and IWP) to predict the first treatment and decrease the negative effect that these spores have on potato crops. The parameter that showed the most significant correlation with spore concentrations was minimum temperature. We used ARIMA (autoregressive integrated model of running mean) time-series models to determine the forecast. We considered weather data as predictor variables and the concentration of spores on the previous day as the fixed variable.

  10. At-line determination of spore inoculum quality in Penicillium chrysogenum bioprocesses.

    Science.gov (United States)

    Ehgartner, Daniela; Herwig, Christoph; Neutsch, Lukas

    2016-06-01

    Spore inoculum quality in filamentous bioprocesses is a critical parameter influencing pellet morphology and, consequently, process performance. It is essential to determine the concentration of viable spores before inoculation, to implement quality control and decrease batch-to-batch variability. The ability to assess the spore physiologic status with close-to-real time resolution would offer interesting perspectives enhanced process analytical technology (PAT) and quality by design (QbD) strategies. Up to now, the parameters contributing to spore inoculum quality are not clearly defined. The state-of-the-art method to investigate this variable is colony-forming unit (CFU) determination, which assesses the number of growing spores. This procedure is tedious, associated with significant inherent bias, and not applicable in real time.Here, a novel method is presented, based on the combination of viability staining (propidium iodide and fluorescein diacetate) and large-particle flow cytometry. It is compatible with the complex medium background often observed in filamentous bioprocesses and allows for a classification of the spores into different subpopulations. Next to viable spores with intact growth potential, dormant or inactive as well as physiologically compromised cells are accurately determined. Hence, a more holistic few on spore inoculum quality and early-phase biomass composition is provided, offering enhanced information content.In an industrially relevant model bioprocess, good correlation to CFU counts was found. Morphological parameters (e.g. spore swelling) that are not accessible via standard monitoring tools were followed over the initial process phase with close temporal resolution.

  11. Mechanistic studies of the radical SAM enzyme spore photoproduct lyase (SPL).

    Science.gov (United States)

    Li, Lei

    2012-11-01

    Spore photoproduct lyase (SPL) repairs a special thymine dimer 5-thyminyl-5,6-dihydrothymine, which is commonly called spore photoproduct or SP at the bacterial early germination phase. SP is the exclusive DNA photo-damage product in bacterial endospores; its generation and swift repair by SPL are responsible for the spores' extremely high UV resistance. The early in vivo studies suggested that SPL utilizes a direct reversal strategy to repair the SP in the absence of light. The research in the past decade further established SPL as a radical SAM enzyme, which utilizes a tri-cysteine CXXXCXXC motif to harbor a [4Fe-4S] cluster. At the 1+ oxidation state, the cluster provides an electron to the S-adenosylmethionine (SAM), which binds to the cluster in a bidentate manner as the fourth and fifth ligands, to reductively cleave the CS bond associated with the sulfonium ion in SAM, generating a reactive 5'-deoxyadenosyl (5'-dA) radical. This 5'-dA radical abstracts the proR hydrogen atom from the C6 carbon of SP to initiate the repair process; the resulting SP radical subsequently fragments to generate a putative thymine methyl radical, which accepts a back-donated H atom to yield the repaired TpT. SAM is suggested to be regenerated at the end of each catalytic cycle; and only a catalytic amount of SAM is needed in the SPL reaction. The H atom source for the back donation step is suggested to be a cysteine residue (C141 in Bacillus subtilis SPL), and the H-atom transfer reaction leaves a thiyl radical behind on the protein. This thiyl radical thus must participate in the SAM regeneration process; however how the thiyl radical abstracts an H atom from the 5'-dA to regenerate SAM is unknown. This paper reviews and discusses the history and the latest progress in the mechanistic elucidation of SPL. Despite some recent breakthroughs, more questions are raised in the mechanistic understanding of this intriguing DNA repair enzyme. This article is part of a Special Issue

  12. Characteristics and determinants of ambient fungal spores in Hualien, Taiwan

    Science.gov (United States)

    Ho, Hsiao-Man; Rao, Carol Y.; Hsu, Hsiao-Hsien; Chiu, Yueh-Hsiu; Liu, Chi-Ming; Chao, H. Jasmine

    Characteristics and determinants of ambient aeroallergens are of much concern in recent years because of the apparent health impacts of allergens. Yet relatively little is known about the complex behaviors of ambient aeroallergens. To address this issue, we monitored ambient fungal spores in Hualien, Taiwan from 1993-1996 to examine the compositions and temporal variations of fungi, and to evaluate possible determinants. We used a Burkard seven-day volumetric spore trap to collect daily fungal spores. Air pollutants, meteorological factors, and Asian dust events were included in the statistical analyses to predict fungal levels. We found that the most dominant fungal categories were ascospores, followed by Cladosporium and Aspergillus/Penicillium. The majority of the fungal categories had significant diurnal and seasonal variations. Total fungi, Cladosporium, Ganoderma, Arthrinium/Papularia, Cercospora, Periconia, Alternaria, Botrytis, and PM 10 had significantly higher concentrations ( p<0.05) during the period affected by Asian dust events. In multiple regression models, we found that temperature was consistently and positively associated with fungal concentrations. Other factors correlated with fungal concentrations included ozone, particulate matters with an aerodynamic diameter less than 10 μm (PM 10), relative humidity, rainfall, atmospheric pressure, total hydrocarbons, carbon monoxide, nitrogen dioxide, and sulfur dioxide. Most of the fungal categories had higher levels in 1994 than in 1995-96, probably due to urbanization of the study area. In this study, we demonstrated complicated interrelationships between fungi and air pollution/meteorological factors. In addition, long-range transport of air pollutants contributed significantly to local aeroallergen levels. Future studies should examine the health impacts of aeroallergens, as well as the synergistic/antagonistic effects of weather, and local and global-scale air pollutions.

  13. Dry heat exposures of surface exposed and embedded Bacillus spores

    Science.gov (United States)

    Schubert, Wayne

    Dry heat microbial reduction (DHMR) is the primary technique used to reduce the microbial load of spacecraft and component parts. Often, manufacturing procedures require heating flight hardware to high temperatures for purposes other than planetary protection DHMR. The existing specifications, however, do not allow for additional planetary protection bioburden reduction credit if the hardware is exposed without controlled relative humidity. The intent of this study was to provide adequate data on the DHMR technique to support modification of four aspects of current requirements; expansion of acceptable time and temperature combinations used for spacecraft dry heat microbial reduction processes above 125° C, determining the effect that humidity has on spore lethality as a function of temperature, understanding the lethality for spores with exceptionally high thermal resistance and to investigate the extended exposure requirement for materials that might contain embedded microorganisms. Spores from two bacterial species were tested, B. atrophaeus ATCC 9372 and B. sp. ATCC 29669, under three conditions encompassing 5 temperature points. Embedded experiments utilized a silicone rubber polymer that is commonly used on robotic spacecraft, and surface exposed experiments were performed under both ambient and vacuum-controlled humidity conditions. The results obtained support the use of DHMR protocols that extend the maximum temperature range from 125° C to 170° C, with either controlled or ambient humidity. If implemented, this will give projects bioburden reduction credit for shorter treatments at extended temperatures, and allow spacecraft to be processed in more readily available and less expensive facilities that do not have humidity control, with significant cost and schedule benefits. The study also demonstrated that the required heating time for materials presumed to have embedded bioburden is conservative.

  14. Bacterial spores survive treatment with commercial sterilants and disinfectants.

    Science.gov (United States)

    Sagripanti, J L; Bonifacino, A

    1999-09-01

    This study compared the activity of commercial liquid sterilants and disinfectants on Bacillus subtilis spores deposited on three types of devices made of noncorrodible, corrodible, or polymeric material. Products like Renalin, Exspor, Wavicide-01, Cidexplus, and cupric ascorbate were tested under conditions specified for liquid sterilization. These products, at the shorter times indicated for disinfection, and popular disinfectants, like Clorox, Cavicide, and Lysol were also studied. Data obtained with a sensitive and quantitative test suggest that commercial liquid sterilants and disinfectants are less effective on contaminated surfaces than generally acknowledged.

  15. Encapsulation of Bacterial Spores in Nanoorganized Polyelectrolyte Shells (Postprint)

    Science.gov (United States)

    2009-05-27

    Baca, H.; Ashley, C.; Carnes , E.; Lopez, D.; Flemming, J.; Dunphy, D.; Singh, S.; Lopez, G.; Brozik, S.; Werner-Washburne, M.; Brinker, J. Science...concentration of aqueous polyelectrolytes was 2 mg/mL ( pH 6.8). All polymer samples were treated briefly in a sonicating bath and then vortex mixed before...positively charged and PGA is negatively charged at pH 6.5-7 due to amine and acid ionized Scheme 1 Figure 1. ζ-potential of a B. subtilis spore in DI water at

  16. An Optical Biosensor for Bacillus Cereus Spore Detection

    Science.gov (United States)

    Li, Chengquan; Tom, Harry W. K.

    2005-03-01

    We demonstrate a new transduction scheme for optical biosensing. Bacillus cereus is a pathogen that may be found in food and dairy products and is able to produce toxins and cause food poisoning. It is related to Bacillus anthracis (anthrax). A CCD array covered with micro-structured glass coverslip is used to detect the optical resonant shift due to the binding of the antigen (bacillus cereus spore) to the antibody (polyclonal antibody). This novel optical biosensor scheme has the potential for detecting 10˜100 bioagents in a single device as well as the potential to test for antigens with multiple antibody tests to avoid ``false positives.''

  17. Spore production of Beauveria bassiana from agro-industrial residues

    Directory of Open Access Journals (Sweden)

    Herta Stutz Dalla Santa

    2005-06-01

    Full Text Available The purpose of this work was to produce Beauveria bassiana by Solid-State Fermentation using agro-industrial residues and optimizing the cultivation conditions. Refused potatoes, coffee husks and sugar-cane bagasse were tested. The blend of refused potatoes and sugar-cane bagasse (60-40% with particle size in the range of 0.8-2 mm was used in the fermentation experiments. In Erlenmeyer flasks the best spore production was achieved with the following conditions: incubation temperature 26º C; initial pH 6.0; inoculum concentration 10(7 spores.g-1.dw and initial moisture 75%. In the column type reactor using forced aeration under the optimized conditions, the maximum production (1.07x10(10spores.g-1.dw was obtained at the 10th day of fermentation. The respirometric analyses of the fermentation showed a strong correlation between fungal growth and spore production.O objetivo deste trabalho foi produzir Beauveria bassiana por fermentação no estado sólido em resíduos agro-industriais e otimizar as condições de cultivo. Batata-refugo, polpa de café e bagaço de cana de açúcar foram testados. A mistura de batata-refugo e de bagaço de cana de açúcar (60:40%, com granulometria de 2 a 0,8 mm foi escolhida como melhor substrato/suporte. Em frascos de Erlenmeyer a produção de esporos foi maior com as seguintes condições: pH 6,0; temperatura de incubação de 26º C; taxa de inóculo de 10(7 esporos.g-1 de matéria seca; e umidade inicial de 75%. Em bioreator do tipo coluna com aeração forçada, as condições otimizadas possibilitaram uma produção máxima de esporos no 10º dia de fermentação, obtendo-se 1,07x10(10 esporos.g-1 de matéria seca. A análise respirométrica desta fermentação permitiu correlacionar o desenvolvimento do fungo com a produção de esporos.

  18. Deoxyribonucleic acid synthesis and deoxynucleotide metabolism during bacterial spore germination.

    Science.gov (United States)

    Setlow, P

    1973-06-01

    Deoxyribonucleic acid (DNA) synthesis during germination of Bacillus megaterium spores takes place in two stages. In stage I (0-55 min) DNA synthesis is slow and there is no detectable net synthesis, whereas in stage II (from 55 min on) the rate of synthesis is much faster and net DNA synthesis occurs. Deoxyribonucleotide pool sizes match the rates of DNA synthesis in stages I and II. The level of deoxyribonucleotide triphosphates is not correlated with the level of deoxyribonucleotide kinases, but rather with that of ribonucleotide reductase activity.

  19. Comparison of the antitumor activity on spore polysaccharides (G/-SP) and broken spore polysaccharides (Gl-BSP) isolated from Ganoderma lucidum

    Institute of Scientific and Technical Information of China (English)

    Peng-yunWANG; Zhi-binLIN

    2004-01-01

    AIM: To compare the antitumor activity of spore polysaccharides (GI-SP) and broken spore polysaccharides (GI-BSP) from spores of Ganoderma lucidum (Leyss ex fr) Karst. METHODS: BALB/c mice were implanted with Sarcoma 180 and administered intragastrically with Gl-SP or G/-BPS (50, 100, 200 mg/kg)respectively for 14 d. At the end of experiment, the tumor were removed and weighted. At the same time, spleens of tumorbearing mice were prepared to observe the effect of Gl-SP and

  20. Ice nucleation by fungal spores from the classes Agaricomycetes, Ustilaginomycetes, and Eurotiomycetes, and the effect on the atmospheric transport of these spores

    Science.gov (United States)

    Haga, D. I.; Burrows, S. M.; Iannone, R.; Wheeler, M. J.; Mason, R. H.; Chen, J.; Polishchuk, E. A.; Pöschl, U.; Bertram, A. K.

    2014-08-01

    We studied the ice nucleation properties of 12 different species of fungal spores chosen from three classes: Agaricomycetes, Ustilaginomycetes, and Eurotiomycetes. Agaricomycetes include many types of mushroom species and are widely distributed over the globe. Ustilaginomycetes are agricultural pathogens and have caused widespread damage to crops. Eurotiomycetes are found on all types of decaying material and include important human allergens. We focused on these classes because they are thought to be abundant in the atmosphere and because there is very little information on the ice nucleation ability of these classes of spores in the literature. All of the fungal spores investigated contained some fraction of spores that serve as ice nuclei at temperatures warmer than homogeneous freezing. The cumulative number of ice nuclei per spore was 0.001 at temperatures between -19 °C and -29 °C, 0.01 between -25.5 °C and -31 °C, and 0.1 between -26 °C and -31.5 °C. On average, the order of ice nucleating ability for these spores is Ustilaginomycetes > Agaricomycetes ≃ Eurotiomycetes. The freezing data also suggests that, at temperatures ranging from -20 °C to -25 °C, all of the fungal spores studied here are less efficient ice nuclei compared to Asian mineral dust on a per surface area basis. We used our new freezing results together with data in the literature to compare the freezing temperatures of spores from the phyla Basidiomycota and Ascomycota, which together make up 98% of known fungal species found on Earth. The data show that within both phyla (Ascomycota and Basidiomycota), there is a wide range of freezing properties, and also that the variation within a phylum is greater than the variation between the average freezing properties of the phyla. Using a global chemistry-climate transport model, we investigated whether ice nucleation on the studied spores, followed by precipitation, can influence the transport and global distributions of these spores in

  1. Ice Nucleation of Fungal Spores from the Classes Agaricomycetes, Ustilaginomycetes, and Eurotiomycetes, and the effect on the Atmospheric Transport of these Spores

    Energy Technology Data Exchange (ETDEWEB)

    Haga, D. I.; Burrows, Susannah M.; Iannone, R.; Wheeler, M. J.; Mason, R.; Chen, J.; Polishchuk, E. A.; Poschl, U.; Bertram, Allan K.

    2014-08-26

    Ice nucleation on fungal spores may affect the frequency and properties of ice and mixed-phase clouds. We studied the ice nucleation properties of 12 different species of fungal spores chosen from three classes: Agaricomycetes, Ustilagomycetes, and Eurotiomycetes. Agaricomycetes include many types of mushroom species and are cosmopolitan all over the globe. Ustilagomycetes are agricultural pathogens and have caused widespread damage to crops. Eurotiomycetes are found on all types of decaying material and include important human allergens. We focused on these classes since they are thought to be abundant in the atmosphere and because there is very little information on the ice nucleation ability of these classes of spores in the literature. All of the fungal spores investigated were found to cause freezing of water droplets at temperatures warmer than homogeneous freezing. The cumulative number of ice nuclei per spore was 0.001 at temperatures between -19 °C and -29 °C, 0.01 between -25.5 °C and -31 °C, and 0.1 between -26 °C and -36 °C. On average, the order of ice nucleating ability for these spores is Ustilagomycetes > Agaricomycetes ≅ Eurotiomycetes. We show that at temperatures below -20 °C, all of the fungal spores studied here are less efficient ice nuclei compared to Asian mineral dust on a per surface area basis. We used our new freezing results together with data in the literature to compare the freezing temperatures of spores from the phyla Basidiomycota and Ascomycota, which together make up 98 % of known fungal species found on Earth. The data show that within both phyla (Ascomycota and Basidiomycota) there is a wide range of freezing properties, and also that the variation within a phylum is greater than the variation between the average freezing properties of the phyla. Using a global chemistry-climate transport model, we investigated whether ice nucleation on the studied spores, followed by precipitation, can influence the atmospheric

  2. Ecology and thermal inactivation of microbes in and on interplanetary space vehicle components. [heat sensitivity of bacterial spores

    Science.gov (United States)

    Campbell, J. E.; Reyes, A. L.; Wehby, A. J.; Crawford, R. G.; Wimsatt, J. C.; Peeler, J. T.

    1973-01-01

    The mechanism for thermal inactivation of bacterial spores under moist or dry heat was studied. Experimental conditions were established relating to spore loss of heat resistance and loss of optical density as a measure of the rate and extent of germination in spore suspensions. Events occurring during germination were correlated with phase darkening (refractility and non-refractility of spores), stainability characteristics of heat and non-heat treated spores, morphological characteristics, and studies on swelling of spores by an increase in packed cell volume.

  3. Decontamination options for Bacillus anthracis-contaminated drinking water determined from spore surrogate studies.

    Science.gov (United States)

    Raber, Ellen; Burklund, Alison

    2010-10-01

    Five parameters were evaluated with surrogates of Bacillus anthracis spores to determine effective decontamination alternatives for use in a contaminated drinking water supply. The parameters were as follows: (i) type of Bacillus spore surrogate (B. thuringiensis or B. atrophaeus), (ii) spore concentration in suspension (10(2) and 10(6) spores/ml), (iii) chemical characteristics of the decontaminant (sodium dichloro-S-triazinetrione dihydrate [Dichlor], hydrogen peroxide, potassium peroxymonosulfate [Oxone], sodium hypochlorite, and VirkonS), (iv) decontaminant concentration (0.01% to 5%), and (v) exposure time to decontaminant (10 min to 1 h). Results from 138 suspension tests with appropriate controls are reported. Hydrogen peroxide at a concentration of 5% and Dichlor or sodium hypochlorite at a concentration of 2% were highly effective at spore inactivation regardless of spore type tested, spore exposure time, or spore concentration evaluated. This is the first reported study of Dichlor as an effective decontaminant for B. anthracis spore surrogates. Dichlor's desirable characteristics of high oxidation potential, high level of free chlorine, and a more neutral pH than that of other oxidizers evaluated appear to make it an excellent alternative. All three oxidizers were effective against B. atrophaeus spores in meeting the EPA biocide standard of greater than a 6-log kill after a 10-min exposure time and at lower concentrations than typically reported for biocide use. Solutions of 5% VirkonS and Oxone were less effective as decontaminants than other options evaluated in this study and did not meet the EPA's efficacy standard for a biocide, although they were found to be as effective for concentrations of 10(2) spores/ml. Differences in methods and procedures reported by other investigators make quantitative comparisons among studies difficult.

  4. The characterisation of Bacillus spores occurring in the manufacturing of (low acid) canned products.

    Science.gov (United States)

    Oomes, S J C M; van Zuijlen, A C M; Hehenkamp, J O; Witsenboer, H; van der Vossen, J M B M; Brul, S

    2007-11-30

    Spore-forming bacteria can be a problem in the food industry, especially in the canning industry. Spores present in ingredients or present in the processing environment severely challenge the preservation process since their thermal resistance may be very high. We therefore asked the question which bacterial spore formers are found in a typical soup manufacturing plant, where they originate from and what the thermal resistance of their spores is. To answer these questions molecular techniques for bacterial species and strain identification were used as well as a protocol for the assessment of spore heat stress resistance based on the Kooiman method. The data indicate the existence and physiological cause of the high thermal resistance of spores of many of the occurring species. In particular it shows that ingredients used in soup manufacturing are a rich source of high thermal resistant spores and that sporulation in the presence of ingredients rich in divalent metal ions exerts a strong influence on spore heat resistance. It was also indicated that Bacillus spores may well be able to germinate and resporulate during manufacturing i.e. through growth and sporulation in line. Both these spores and those originating from the ingredients were able to survive certain thermal processing settings. Species identity was confirmed using fatty acid analysis, 16SrRNA gene sequencing and DNA-DNA hybridisation. Finally, molecular typing experiments using Ribotyping and AFLP analysis show that strains within the various Bacillus species can be clustered according to the thermal resistance properties of their spores. AFLP performed slightly better than Ribotyping. The data proofed to be useful for the generation of strain specific probes. Protocols to validate these probes in routine identification and innovation aimed at tailor made heat processing in soup manufacturing have been formulated.

  5. Germination and outgrowth of spores of Bacillus cereus group members: diversity and role of germinant receptors.

    Science.gov (United States)

    Abee, Tjakko; Groot, Masja Nierop; Tempelaars, Marcel; Zwietering, Marcel; Moezelaar, Roy; van der Voort, Menno

    2011-04-01

    Bacillus cereus is a gram-positive, facultative anaerobic, endospore-forming toxicogenic human pathogen. Endospores are highly specialized, metabolically dormant cell types that are resistant to extreme environmental conditions, including heat, dehydration and other physical stresses. B. cereus can enter a range of environments, and can in its spore form, survive harsh conditions. If these conditions become favorable, spores can germinate and grow out and reach considerable numbers in a range of environments including processed foods. Certainly the last decade, when consumer preferences have shifted to mildly processed food, new opportunities arose for spore-forming spoilage and pathogenic organisms. Only rigorous methods have been shown to be capable of destroying all spores present in food, thus a shift toward e.g., milder heat preservation strategies, may result in low but significant amounts of viable spores in food products. Hence, the need for a mild spore destruction strategy is eminent including control of spore outgrowth. Consequently, there is a large interest in triggering spore germination in foodstuffs, since germinated spores have lost the extreme resistance of dormant spores and are relatively easy to kill. Another option could be to prevent germination so that no dangerous levels can be reached. This contribution will focus on germination and outgrowth characteristics of B. cereus and other members of the B. cereus group, providing an overview of the niches these spore-formers can occupy, the signals that trigger germination, and how B. cereus copes with these wake-up calls in different environments including foods, during food processing and upon interaction with the human host.

  6. Activate to eradicate: inhibition of Clostridium difficile spore outgrowth by the synergistic effects of osmotic activation and nisin.

    Directory of Open Access Journals (Sweden)

    Michelle M Nerandzic

    Full Text Available BACKGROUND: Germination is the irreversible loss of spore-specific properties prior to outgrowth. Because germinating spores become more susceptible to killing by stressors, induction of germination has been proposed as a spore control strategy. However, this strategy is limited by superdormant spores that remain unaffected by germinants. Harsh chemicals and heat activation are effective for stimulating germination of superdormant spores but are impractical for use in a hospital setting, where Clostridium difficile spores present a challenge. Here, we tested whether osmotic activation solutes will provide a mild alternative for stimulation of superdormant C. difficile spores in the presence of germinants as previously demonstrated in several species of Bacillus. In addition, we tested the hypothesis that the limitations of superdormancy can be circumvented with a combined approach using nisin, a FDA-approved safe bacteriocin, to inhibit outgrowth of germinated spores and osmotic activation solutes to enhance outgrowth inhibition by stimulating superdormant spores. PRINCIPAL FINDINGS: Exposure to germination solution triggered ~1 log(10 colony forming units (CFU of spores to germinate, and heat activation increased the spores that germinated to >2.5 log(10CFU. Germinating spores, in contrast to dormant spores, became susceptible to inhibition by nisin. The presence of osmotic activation solutes did not stimulate germination of superdormant C. difficile spores exposed to germination solution. But, in the absence of germination solution, osmotic activation solutes enhanced nisin inhibition of superdormant spores to >3.5 log(10CFU. The synergistic effects of osmotic activation solutes and nisin were associated with loss of membrane integrity. CONCLUSIONS: These findings suggest that the synergistic effects of osmotic activation and nisin bypass the limitations of germination as a spore control strategy, and might be a novel method to safely and

  7. Self-healing concrete by use of microencapsulated bacterial spores

    Energy Technology Data Exchange (ETDEWEB)

    Wang, J.Y. [Magnel Laboratory for Concrete Research, Faculty of Engineering and Architecture, Ghent University, TechnologieparkZwijnaarde 904, B-9052 Ghent (Belgium); Laboratory of Microbial Ecology and Technology (LabMET), Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent (Belgium); Soens, H. [Devan Chemicals NV, Klein Frankrijk 18, 9600 Ronse (Belgium); Verstraete, W. [Laboratory of Microbial Ecology and Technology (LabMET), Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent (Belgium); De Belie, N., E-mail: nele.debelie@ugent.be [Magnel Laboratory for Concrete Research, Faculty of Engineering and Architecture, Ghent University, TechnologieparkZwijnaarde 904, B-9052 Ghent (Belgium)

    2014-02-15

    Microcapsules were applied to encapsulate bacterial spores for self-healing concrete. The viability of encapsulated spores and the influence of microcapsules on mortar specimens were investigated first. Breakage of the microcapsules upon cracking was verified by Scanning Electron Microscopy. Self-healing capacity was evaluated by crack healing ratio and the water permeability. The results indicated that the healing ratio in the specimens with bio-microcapsules was higher (48%–80%) than in those without bacteria (18%–50%). The maximum crack width healed in the specimens of the bacteria series was 970 μm, about 4 times that of the non-bacteria series (max 250 μm). The overall water permeability in the bacteria series was about 10 times lower than that in non-bacteria series. Wet–dry cycles were found to stimulate self-healing in mortar specimens with encapsulated bacteria. No self-healing was observed in all specimens stored at 95%RH, indicating that the presence of liquid water is an essential component for self-healing.

  8. Holographic deep learning for rapid optical screening of anthrax spores

    Science.gov (United States)

    Jo, YoungJu; Park, Sangjin; Jung, JaeHwang; Yoon, Jonghee; Joo, Hosung; Kim, Min-hyeok; Kang, Suk-Jo; Choi, Myung Chul; Lee, Sang Yup; Park, YongKeun

    2017-01-01

    Establishing early warning systems for anthrax attacks is crucial in biodefense. Despite numerous studies for decades, the limited sensitivity of conventional biochemical methods essentially requires preprocessing steps and thus has limitations to be used in realistic settings of biological warfare. We present an optical method for rapid and label-free screening of Bacillus anthracis spores through the synergistic application of holographic microscopy and deep learning. A deep convolutional neural network is designed to classify holographic images of unlabeled living cells. After training, the network outperforms previous techniques in all accuracy measures, achieving single-spore sensitivity and subgenus specificity. The unique “representation learning” capability of deep learning enables direct training from raw images instead of manually extracted features. The method automatically recognizes key biological traits encoded in the images and exploits them as fingerprints. This remarkable learning ability makes the proposed method readily applicable to classifying various single cells in addition to B. anthracis, as demonstrated for the diagnosis of Listeria monocytogenes, without any modification. We believe that our strategy will make holographic microscopy more accessible to medical doctors and biomedical scientists for easy, rapid, and accurate point-of-care diagnosis of pathogens. PMID:28798957

  9. Efficient transformation of Rhizopus delemar by electroporation of germinated spores.

    Science.gov (United States)

    Xu, Sha; Zhou, Zhengxiong; Du, Guocheng; Zhou, Jingwen; Chen, Jian

    2014-08-01

    High efficient transformation of mycelial fungi is essential to both metabolic engineering and physiological analysis of these industrially important microorganisms. However, transformation efficiencies for mycelial fungi are highly restricted by difficulties in colony formation and competent cell preparation. In this work, an innovative transformation procedure that could significantly improve the efficiency of colony formation and transformation process has been established for a typical mycelial fungus, Rhizopus delemar. Single colonies of R. delemar were obtained with the addition of sodium deoxycholate. Fresh germinated spores of R. delemar were successfully transformed by electroporation. In addition, by pretreatment of the germinated spores with 0.05M lithium acetate (LiAc) and 20mM dithiothreitol (DTT) before electroporation, the transformation efficiency was further improved by 9.5-fold. The final transformation efficiency at optimal conditions reached 1239 transformants/μg DNA. The method described here would facilitate more efficient metabolic engineering and investigation of physiological functions in R. delemar or other similar mycelial fungi.

  10. Role of visible light-activated photocatalyst on the reduction of anthrax spore-induced mortality in mice.

    Directory of Open Access Journals (Sweden)

    Jyh-Hwa Kau

    Full Text Available BACKGROUND: Photocatalysis of titanium dioxide (TiO(2 substrates is primarily induced by ultraviolet light irradiation. Anion-doped TiO(2 substrates were shown to exhibit photocatalytic activities under visible-light illumination, relative environmentally-friendly materials. Their anti-spore activity against Bacillus anthracis, however, remains to be investigated. We evaluated these visible-light activated photocatalysts on the reduction of anthrax spore-induced pathogenesis. METHODOLOGY/PRINCIPAL FINDINGS: Standard plating method was used to determine the inactivation of anthrax spore by visible light-induced photocatalysis. Mouse models were further employed to investigate the suppressive effects of the photocatalysis on anthrax toxin- and spore-mediated mortality. We found that anti-spore activities of visible light illuminated nitrogen- or carbon-doped titania thin films significantly reduced viability of anthrax spores. Even though the spore-killing efficiency is only approximately 25%, our data indicate that spores from photocatalyzed groups but not untreated groups have a less survival rate after macrophage clearance. In addition, the photocatalysis could directly inactivate lethal toxin, the major virulence factor of B. anthracis. In agreement with these results, we found that the photocatalyzed spores have tenfold less potency to induce mortality in mice. These data suggest that the photocatalysis might injury the spores through inactivating spore components. CONCLUSION/SIGNIFICANCE: Photocatalysis induced injuries of the spores might be more important than direct killing of spores to reduce pathogenicity in the host.

  11. Hourly predictive artificial neural network and multivariate regression tree models of Alternaria and Cladosporium spore concentrations in Szczecin (Poland)

    Science.gov (United States)

    Grinn-Gofroń, Agnieszka; Strzelczak, Agnieszka

    2009-11-01

    A study was made of the link between time of day, weather variables and the hourly content of certain fungal spores in the atmosphere of the city of Szczecin, Poland, in 2004-2007. Sampling was carried out with a Lanzoni 7-day-recording spore trap. The spores analysed belonged to the taxa Alternaria and Cladosporium. These spores were selected both for their allergenic capacity and for their high level presence in the atmosphere, particularly during summer. Spearman correlation coefficients between spore concentrations, meteorological parameters and time of day showed different indices depending on the taxon being analysed. Relative humidity (RH), air temperature, air pressure and clouds most strongly and significantly influenced the concentration of Alternaria spores. Cladosporium spores correlated less strongly and significantly than Alternaria. Multivariate regression tree analysis revealed that, at air pressures lower than 1,011 hPa the concentration of Alternaria spores was low. Under higher air pressure spore concentrations were higher, particularly when RH was lower than 36.5%. In the case of Cladosporium, under higher air pressure (>1,008 hPa), the spores analysed were more abundant, particularly after 0330 hours. In artificial neural networks, RH, air pressure and air temperature were the most important variables in the model for Alternaria spore concentration. For Cladosporium, clouds, time of day, air pressure, wind speed and dew point temperature were highly significant factors influencing spore concentration. The maximum abundance of Cladosporium spores in air fell between 1200 and 1700 hours.

  12. Pyrimidine dimer formation and germination of UV-irradiated spores of Dictyostelium discoideum NC-4 and. gamma. s-13

    Energy Technology Data Exchange (ETDEWEB)

    Nozu, K.; Ohnishi, T.; Okaichi, K. (Nara Medical Univ., Kashihara (Japan))

    1982-04-01

    Survival, UV-photoproducts and germination of UV-irradiated spores of Dictyostelium discoideum were studied on two strains, NC-4 and ..gamma..s-13. The spores of NC-4 are about 35 times more resistant to UV than ..gamma..s-13 spores at 10% survival. Pyrimidine dimers were formed in UV-irradiated spores in both strains. No photoproducts other than pyrimidine dimers were detected. The formation of pyrimidine dimers in spores was about 2% in both strains at 800 J/m/sup 2/. In the germination of spores, the conversion of spores into swollen spores was not affected by UV in both strains, but the emergence of amoebae from the swollen spores was suppressed, which was more distinctive in ..gamma..s-13 spores than in NC-4 spores. The emerged amoebae from the UV-irradiated NC-4 spores were viable, while those from the ..gamma..s-13 spores were inviable even when they succeeded in emergence.

  13. Toward a Noninvasive, Label-Free Screening Method for Determining Spore Inoculum Quality of Penicillium chrysogenum Using Raman Spectroscopy.

    Science.gov (United States)

    Wieland, Karin; Kuligowski, Julia; Ehgartner, Daniela; Ramer, Georg; Koch, Cosima; Ofner, Johannes; Herwig, Christoph; Lendl, Bernhard

    2017-01-01

    We report on a label-free, noninvasive method for determination of spore inoculum quality of Penicillium chrysogenum prior to cultivation/germination. Raman microspectroscopy providing direct, molecule-specific information was used to extract information on the viability state of spores sampled directly from the spore inoculum. Based on the recorded Raman spectra, a supervised classification method was established for classification between living and dead spores and thus determining spore inoculum quality for optimized process control. A fast and simple sample preparation method consisting of one single dilution step was employed to eliminate interfering signals from the matrix and to achieve isolation of single spores on the sample carrier (CaF2). Aiming to avoid any influence of the killing procedure in the Raman spectrum of the spore, spores were considered naturally dead after more than one year of storage time. Fluorescence staining was used as reference method. A partial least squares discriminant analysis classifier was trained with Raman spectra of 258 living and dead spores (178 spectra for calibration, 80 spectra for validation). The classifier showed good performance when being applied to a 1 µL droplet taken from a 1:1 mixture of living and dead spores. Of 135 recorded spectra, 51% were assigned to living spores while 49% were identified as dead spores by the classifier. The results obtained in this work are a fundamental step towards developing an automated, label-free, and noninvasive screening method for assessing spore inoculum quality.

  14. Draft Genome Sequences of Seven Thermophilic Spore-Forming Bacteria Isolated from Foods That Produce Highly Heat-Resistant Spores, Comprising Geobacillus spp., Caldibacillus debilis, and Anoxybacillus flavithermus

    NARCIS (Netherlands)

    Berendsen, Erwin M; Wells-Bennik, Marjon H J; Krawczyk, Antonina O; de Jong, Anne; van Heel, Auke; Holsappel, Siger; Eijlander, Robyn T; Kuipers, Oscar P

    2016-01-01

    Here, we report the draft genomes of five strains of Geobacillus spp., one Caldibacillus debilis strain, and one draft genome of Anoxybacillus flavithermus, all thermophilic spore-forming Gram-positive bacteria.

  15. Draft Genome Sequences of Seven Thermophilic Spore-Forming Bacteria Isolated from Foods That Produce Highly Heat-Resistant Spores, Comprising Geobacillus spp., Caldibacillus debilis, and Anoxybacillus flavithermus

    Science.gov (United States)

    Berendsen, Erwin M.; Wells-Bennik, Marjon H. J.; Krawczyk, Antonina O.; de Jong, Anne; van Heel, Auke; Holsappel, Siger; Eijlander, Robyn T.

    2016-01-01

    Here, we report the draft genomes of five strains of Geobacillus spp., one Caldibacillus debilis strain, and one draft genome of Anoxybacillus flavithermus, all thermophilic spore-forming Gram-positive bacteria. PMID:27151781

  16. Evaluating the transport of bacillus subtilis spores as a potential surrogate for Cryptosporidium parvum Oocysts

    Science.gov (United States)

    The USEPA has recommended the use of aerobic spores as an indicator for Cryptosporidium oocysts when determining groundwater under the direct influence of surface water. Surface properties, interaction energies, transport, retention, and release behavior of B. subtilis spores were measured over a r...

  17. Detecting Clostridium difficile spores from inanimate surfaces of the hospital environment: which method is best?

    Science.gov (United States)

    Claro, Tânia; Daniels, Stephen; Humphreys, Hilary

    2014-09-01

    The recovery of Clostridium difficile spores from hospital surfaces was assessed using rayon swabs, flocked swabs, and contact plates. The contact plate method was less laborious, achieved higher recovery percentages, and detected spores at lower inocula than swabs. Rayon swabs were the least efficient method. However, further studies are required in health care settings.

  18. Presence of Clostridium botulinum spores in Matricaria chamomilla (chamomile) and its relationship with infant botulism.

    Science.gov (United States)

    Bianco, María I; Lúquez, Carolina; de Jong, Laura I T; Fernández, Rafael A

    2008-02-10

    Nowadays, infant botulism is the most important form of human botulism in some countries. This illness affects infants younger than 52 weeks of age. The infection occurs in the intestinal tract; therefore, ingestion of Clostridium botulinum spores with food is proposed. In some countries, people use chamomile tea as a household remedy for intestinal colics and given this tea to infants. Chamomile can be contaminated with C. botulinum and could be a vehicle of its spores. Our aim was to study the prevalence and spore-load of C. botulinum in chamomile. We analysed 200 samples; the 7.5% of them were contaminated with botulinum spores. However, prevalence of these spores was significantly higher in chamomile sold by weight in herbal stores (unwrapped chamomile) than prevalence in chamomile sold in tea bags (p=0.0055). The spore-load detected in all positive samples was 0.3-0.4 spores per gram of chamomile. We identified C. botulinum types A, B, and F in the 53.3%, 6.7%, and 13.3%, respectively. Chamomile (principally, unwrapped chamomile) is a potencial vehicle of C. botulinum spores, and ingestion of chamomile tea could represent a risk for infant botulism.

  19. High gas pressure: an innovative method for the inactivation of dried bacterial spores.

    Science.gov (United States)

    Colas de la Noue, A; Espinasse, V; Perrier-Cornet, J-M; Gervais, P

    2012-08-01

    In this article, an original non-thermal process to inactivate dehydrated bacterial spores is described. The use of gases such as nitrogen or argon as transmission media under high isostatic pressure led to an inactivation of over 2 logs CFU/g of Bacillus subtilis spores at 430 MPa, room temperature, for a 1 min treatment. A major requirement for the effectiveness of the process resided in the highly dehydrated state of the spores. Only a water activity below 0.3 led to substantial inactivation. The solubility of the gas in the lipid components of the spore and its diffusion properties was essential to inactivation. The main phenomenon involved seems to be the sorption of the gas under pressure by the spores' structures such as residual pores and plasma membranes, followed by a sudden drop in pressure. Observation by phase-contrast microscopy suggests that internal structures have been affected by the treatment. Some parallels with polymer permeability to gas and rigidity at various water activities offer a few clues about the behavior of the outer layers of spores in response to this parameter and provide a good explanation for the sensitivity of spores to high gas pressure discharge at low hydration levels. Specificity of microorganisms such as size, organization, and composition could help in understanding the differences between spores and yeast regarding the parameters required for inactivation, such as pressure or maintenance time.

  20. Specific peptides as alternative to antibody ligands for biomagnetic separation of Clostridium tyrobutyricum spores.

    Science.gov (United States)

    Lavilla, Maria; Moros, Maria; Puertas, Sara; Grazú, Valeria; Pérez, María Dolores; Calvo, Miguel; de la Fuente, Jesus M; Sánchez, Lourdes

    2012-04-01

    Nowadays, the reference method for the detection of Clostridium tyrobutyricum in milk is the most-probable-number method, a very time-consuming and non-specific method. In this work, the suitability of the use of superparamagnetic beads coated with specific antibodies and peptides for bioseparation and concentration of spores of C. tyrobutyricum has been assessed. Peptide or antibody functionalized nanoparticles were able to specifically bind C. tyrobutyricum spores and concentrate them up to detectable levels. Moreover, several factors, such as particle size (200 nm and 1 μm), particle derivatization (aminated and carboxylated beads), coating method, and type of ligand have been studied in order to establish the most appropriate conditions for spore separation. Results show that concentration of spore is favored by a smaller bead size due to the wider surface of interaction in relation to particle volume. Antibody orientation, related to the binding method, is also critical in spore recovery. However, specific peptides seem to be a better ligand than antibodies, not only due to the higher recovery ratio of spores obtained but also due to the prolonged stability over time, allowing an optimal recovery of spores up to 3 weeks after bead coating. These results demonstrate that specific peptides bound to magnetic nanoparticles can be used instead of traditional antibodies to specifically bind C. tyrobutyricum spores being a potential basis for a rapid method to detect this bacterial target.

  1. Minimizing the level of butyric acid bacteria spores in farm tank milk

    NARCIS (Netherlands)

    Vissers, M.M.M.; Driehuis, F.; Giffel, M.C.T.; Jong, de P.; Lankveld, J.M.G.

    2007-01-01

    A year-long survey of 24 dairy farms was conducted to determine the effects of farm management on the concentrations of butyric acid bacteria (BAB) spores in farm tank milk (FTM). The results were used to validate a control strategy derived from model simulations. The BAB spore concentrations were m

  2. Changes in concentration of Alternaria and Cladosporium spores during summer storms

    Science.gov (United States)

    Grinn-Gofroń, Agnieszka; Strzelczak, Agnieszka

    2013-09-01

    Fungal spores are known to cause allergic sensitization. Recent studies reported a strong association between asthma symptoms and thunderstorms that could be explained by an increase in airborne fungal spore concentrations. Just before and during thunderstorms the values of meteorological parameters rapidly change. Therefore, the goal of this study was to create a predictive model for hourly concentrations of atmospheric Alternaria and Cladosporium spores on days with summer storms in Szczecin (Poland) based on meteorological conditions. For this study we have chosen all days of June, July and August (2004-2009) with convective thunderstorms. There were statistically significant relationships between spore concentration and meteorological parameters: positive for air temperature and ozone content while negative for relative humidity. In general, before a thunderstorm, air temperature and ozone concentration increased, which was accompanied by a considerable increase in spore concentration. During and after a storm, relative humidity increased while both air temperature ozone concentration along with spore concentrations decreased. Artificial neural networks (ANN) were used to assess forecasting possibilities. Good performance of ANN models in this study suggest that it is possible to predict spore concentrations from meteorological variables 2 h in advance and, thus, warn people with spore-related asthma symptoms about the increasing abundance of airborne fungi on days with storms.

  3. Gas discharge plasmas are effective in inactivating Bacillus and Clostridium spores.

    Science.gov (United States)

    Tseng, Shawn; Abramzon, Nina; Jackson, James O; Lin, Wei-Jen

    2012-03-01

    Bacterial spores are the most resistant form of life and have been a major threat to public health and food safety. Nonthermal atmospheric gas discharge plasma is a novel sterilization method that leaves no chemical residue. In our study, a helium radio-frequency cold plasma jet was used to examine its sporicidal effect on selected strains of Bacillus and Clostridium. The species tested included Bacillus subtilis, Bacillus stearothermophilus, Clostridium sporogenes, Clostridium perfringens, Clostridium difficile, and Clostridium botulinum type A and type E. The plasmas were effective in inactivating selected Bacillus and Clostridia spores with D values (decimal reduction time) ranging from 2 to 8 min. Among all spores tested, C. botulinum type A and C. sporogenes were significantly more resistant to plasma inactivation than other species. Observations by phase contrast microscopy showed that B. subtilis spores were severely damaged by plasmas and the majority of the treated spores were unable to initiate the germination process. There was no detectable fragmentation of the DNA when the spores were treated for up to 20 min. The release of dipicolinic acid was observed almost immediately after the plasma treatment, indicating the spore envelope damage could occur quickly resulting in dipicolinic acid release and the reduction of spore resistance.

  4. Detection of Fungal Spores Using a Generic Surface Plasmon Resonance Immunoassay

    DEFF Research Database (Denmark)

    Skottrup, Peter; Hearty, Stephen; Frøkiær, Hanne;

    2007-01-01

    . Spiked Pst samples were further examined in a background of a related spore and it was found that Pst quantification was possible in this mixture. This study represent the first use of SPR technology for fungal spore detection as well as the first report of a successful biosensor-based detection strategy...

  5. Bringing Evolution to a Technological Generation: A Case Study with the Video Game SPORE

    Science.gov (United States)

    Poli, DorothyBelle; Berenotto, Christopher; Blankenship, Sara; Piatkowski, Bryan; Bader, Geoffrey A.; Poore, Mark

    2012-01-01

    The video game SPORE was found to hold characteristics that stimulate higher-order thinking even though it rated poorly for accurate science. Interested in evaluating whether a scientifically inaccurate video game could be used effectively, we exposed students to SPORE during an evolution course. Students that played the game reported that they…

  6. Removal of Bacillus anthracis sterne spore from commercial unpasteurized liquid egg white using crossflow microfiltration

    Science.gov (United States)

    Current pasteurization technology used by the egg industry is ineffective for destruction of spores such as those of Bacillus anthracis (BA). The validity of a cross-flow microfiltration (MF) process for separation of the attenuated strain of BA (Sterne) spores from commercial unpasteurized liquid ...

  7. The contribution of endogenous and exogenous effects to radiation-induced damage in the bacterial spore.

    Science.gov (United States)

    Jacobs, G P; Samuni, A; Czapski, G

    1985-06-01

    Radical scavengers such as polyethylene glycol 400 and 4000 and bovine albumin have been used to define the contribution of exogenous and endogenous effects to the gamma-radiation-induced damage in aqueous buffered suspensions of Bacillus pumilus spores. The results indicate that this damage in the bacterial spore is predominantly endogenous both in the presence of 1 atmosphere of oxygen, and in anoxia.

  8. The characterisation of Bacillus spores occurring in the manufacturing of (low acid) canned products

    NARCIS (Netherlands)

    Oomes, S.J.C.M.; Zuijlen, A.C.M. van; Hehenkamp, J.O.; Witsenboer, H.; Vossen, J.M.B.M. van der; Brul, S.

    2007-01-01

    Spore-forming bacteria can be a problem in the food industry, especially in the canning industry. Spores present in ingredients or present in the processing environment severely challenge the preservation process since their thermal resistance may be very high. We therefore asked the question which

  9. Contribution of endogenous and exogenous effects to radiation-induced damage in the bacterial spore

    Energy Technology Data Exchange (ETDEWEB)

    Jacobs, G.P. (Hebrew Univ., Jerusalem (Israel). School of Pharmacy); Samuni, A. (Hebrew Univ., Jerusalem (Israel). School of Medicine); Czapski, G. (Hebrew Univ., Jerusalem (Israel). Dept. of Physical Chemistry)

    1985-06-01

    Radical scavengers such as polyethylene glycol 400 and 4000 and bovine albumin have been used to define the contribution of exogenous and endogenous effects to the gamma-radiation-induced damage in aqueous buffered suspensions of Bacillus pumilus spores. The results indicate that this damage in the bacterial spore is predominantly endogenous both in the presence of 1 atmosphere of oxygen, and in anoxia.

  10. Inactivation and ultrastructure analysis of Bacillus spp. and Clostridium perfringens spores.

    Science.gov (United States)

    Brantner, Christine A; Hannah, Ryan M; Burans, James P; Pope, Robert K

    2014-02-01

    Bacterial endospores are resistant to many environmental factors from temperature extremes to ultraviolet irradiation and are generally more difficult to inactivate or kill than vegetative bacterial cells. It is often considered necessary to treat spores or samples containing spores with chemical fixative solutions for prolonged periods of time (e.g., 1-21 days) to achieve fixation/inactivation to enable electron microscopy (EM) examination outside of containment laboratories. Prolonged exposure to chemical fixatives, however, can alter the ultrastructure of spores for EM analyses. This study was undertaken to determine the minimum amount of time required to inactivate/sterilize and fix spore preparations from several bacterial species using a universal fixative solution for EM that maintains the ultrastructural integrity of the spores. We show that a solution of 4% paraformaldehyde with 1% glutaraldehyde inactivated spore preparations of Bacillus anthracis, Bacillus cereus, Bacillus megaterium, Bacillus thuringiensis, and Clostridium perfringens in 30 min, and Bacillus subtilis in 240 min. These results suggest that this fixative solution can be used to inactivate and fix spores from several major groups of bacterial spore formers after 240 min, enabling the fixed preparations to be removed from biocontainment and safely analyzed by EM outside of biocontainment.

  11. Challenges in risk assessment and predictive microbiology of foodborne spore-forming bacteria.

    Science.gov (United States)

    Augustin, Jean-Christophe

    2011-04-01

    Mathematical description of the behavior of bacterial foodborne pathogens and concepts of risk assessment were first applied to spore-forming bacteria and specially to Clostridium botulinum with numerous works dealing with spores heat destruction to ensure the safety of canned foods or with their germination and growth probability in foods. This paper discusses two aspects which appear specific to pathogenic sporeformers in comparison to vegetative microorganisms, that is, firstly, the extreme intra-species biodiversity of spore-forming bacteria and its consequences for risk assessment and, secondly, the modeling of spore germination and outgrowth processes. The intra-species biodiversity of spore-forming bacteria has a great impact on hazard identification, exposure assessment and hazard characterization leading thus to an extremely variable individual poisoning risk for consumers. The germination and outgrowth processes were shown independent at the single cell level and although numerous studies were performed to study the effect of spores treatments and growth conditions on these two events, the mathematical modeling and the prediction of these processes is still challenging today. The difficulties to accurately assess the biodiversity and the germination and outgrowth processes of spore-forming bacteria lead to a substantial uncertainty in risk estimates related to the exposure to these microorganisms. Nevertheless, significant progress have been made these last years improving the relevance of quantitative risk assessments for spore-forming bacteria and decreasing the risk uncertainty. Despite these difficulties, risk assessment still constitutes a valuable tool to justify the implementation of management options.

  12. Spore dispersal of fetid Lysurus mokusin by feces of mycophagous insects.

    Science.gov (United States)

    Chen, Gao; Zhang, Rui-Rui; Liu, Yang; Sun, Wei-Bang

    2014-08-01

    The ecological roles and biological mechanisms of zoochory in plants have long been foci in studies of co-evolutionary processes between plants and animals. However, the dispersal of fungal spores by animals has received comparatively little attention. In this study, the dispersal of spores of a selected fetid fungus, Lysurus mokusin, via feces of mycophagous insects was explored by: collecting volatiles emitted by the fungus using dynamic headspace extraction and analyzing them by GC-MS; testing the capacity of mycophagous insects to disperse its spores by counting spores in their feces; comparing the germinability of L. mokusin spores extracted from feces of nocturnal earwigs and natural gleba of the fungus; and assessing the ability of L. mokusin volatiles to attract insects in bioassays with synthetic scent mixtures. Numerous spores were detected in insects' feces, the bioassays indicated that L. mokusin odor (similar to that of decaying substances) attracts diverse generalist mycophagous insects, and passage through the gut of Anisolabis maritima earwigs significantly enhanced the germination rate of L. mokusin spores. Therefore, nocturnal earwigs and diurnal flies probably play important roles in dispersal of L. mokusin spores, and dispersal via feces may be an important common dispersal mechanism for fungal reproductive tissue.

  13. Association and decontamination of Bacillus spores in a simulated drinking water system.

    Science.gov (United States)

    Morrow, J B; Almeida, J L; Fitzgerald, L A; Cole, K D

    2008-12-01

    The objective of this work was to elucidate the disinfectant susceptibility of Bacillus anthracis Sterne (BA) and a commercial preparation of Bacillus thuringiensis (BT) spores associated with a simulated drinking water system. Biofilms composed of indigenous water system bacteria were accumulated on copper and polyvinyl chloride (PVC) pipe material surfaces in a low-flow pipe loop and uniformly mixed tank reactor (CDC biofilm reactor). Application of a distributed shear during spore contact resulted in approximately a 1.0 and 1.6 log10 increase in the number of spores associated with copper and PVC surfaces, respectively. Decontamination of spores in both free suspension and after association with biofilm-conditioned pipe materials was attempted using free chlorine and monochloramine. Associated spores required 5- to 10-fold higher disinfectant concentrations to observe the same reduction of viable spores as in suspension. High disinfectant concentrations (103 mg/L free chlorine and 49 mg/L monochloramine) yielded less than a 2-log10 reduction in viable associated spores after 60 min. Spores associated with biofilms on copper surfaces consistently yielded higher Ct values than PVC.

  14. The Effect of Growth Medium on B. anthracis Sterne Spore Carbohydrate Content

    Energy Technology Data Exchange (ETDEWEB)

    Colburn, Heather A.; Wunschel, David S.; Antolick, Kathryn C.; Melville, Angela M.; Valentine, Nancy B.

    2011-06-01

    The expressed characteristics of biothreat agents may be impacted by variations in the culture environment, including growth medium formulation. The carbohydrate composition of B. anthracis spores has been well studied, particularly for the exosporium, which is the outermost spore structure. The carbohydrate composition of the exosporium has been demonstrated to be distinct from the vegetative form containing unique monosaccharides.

  15. Draft genome sequences of four thermophilic spore formers isolated from a dairy-processing environment

    NARCIS (Netherlands)

    Caspers, M.P.M.; Boekhorst, J.; Jong, de A.; Kort, R.; Nierop Groot, M.N.; Abee, T.

    2016-01-01

    Spores of thermophilic spore-forming bacteria are a common cause of contamination in dairy products. Here, we report draft genome sequences of four thermophilic strains from a milk-processing plant or standard milk, namely, a Geobacillus thermoglucosidans isolate (TNO-09.023), Geobacillus stearother

  16. Does spore ultrastructure mirror different dispersal strategies in mosses? A study of seven iberian orthotrichum species.

    Directory of Open Access Journals (Sweden)

    Nagore G Medina

    Full Text Available Most mosses have xerochastic dispersal (i.e., they open their capsules when conditions are dry, which is thought to favor long-distance dispersal. However, there are several species that use a hygrochastic strategy: spores are dispersed when conditions are wet. The significance of this strategy in the Mediterranean region is unknown. In this study, we explored whether ultrastructural features related to differences in spore resistance may explain these different strategies of spore dispersal. To this end, we examined the ultrastructural features of the spores of seven closely related species in the moss genus Orthotrichum. These species all grow as epiphytes in sub-Mediterranean forests, and the group includes both xerochastic and hygrochastic members. First, we found that the spore wall layers exhibit several features previously undescribed in mosses. Second, we discovered that there are only subtle differences in spore ultrastructure with regards to spore wall thickness, the degree of plastid development, or the storage substances used. We suggest that the hygrochastic dispersal in mosses from Mediterranean environments might be related to a safe-site strategy, rather than to drought avoidance, and we underscore the necessity of conducting spore ultrastructural studies on a greater number of bryophyte species.

  17. 分光光度法测定生物质水解液中糠醛、酸溶木质素、还原糖的含量%FURFURAL, ACID-SOLUBLE LIGNIN AND REDUCING SUGAR CONTENT IN BIOMASS HYDROLYSATE BY SPECTROPHOTOMETRIC METHOD

    Institute of Scientific and Technical Information of China (English)

    孙绍晖; 宋勇; 孙培勤; 陈俊武

    2013-01-01

    使用紫外可见分光光度法测定糠醛、酸溶木质素、还原糖浓度,通过选择合适的波长、空白和测定顺序,消除各组分之间的相互干扰.优化的测定方法为:首先用双波长法测定糠醛和酸溶木质素浓度,再在530nm处测定酸水解液与DNS的吸光值扣除糠醛与DNS的吸光值即为还原糖与DNS的吸光值.可简便快速准确测定生物质水解液中糠醛、酸溶木质素、还原糖浓度.%The concentrations of furfural, acid-soluble lignin and reducing sugar were detected using UV-visible spectrophotometry. The interaction between the components was eliminated by selecting the appropriate wavelength, the blank and detection order. The optimum detection method was as follows: first, detecting the concentration of furfural and acid-soluble lignin using dual-wavelength method; then, detecting the absorbance of acid hydrolysate and DNS at 530 nm, the exact absorbance of sugar and DNS was obtained by deducting absorbance of furfural and DNS. The concentration of the furfural, acid-soluble lignin, reducing sugar in woody biomass hydrolyzed solution can be accurately determined by this method.

  18. DECONTAMINATION ASSESSMENT OF BACILLUS ANTHRACIS, BACILLUS SUBTILIS, AND GEOBACILLUS STEAROTHERMOPHILUS SPORES ON INDOOR SURFACTS USING A HYDROGEN PERIOXIDE GAS GENERATOR

    Science.gov (United States)

    Aims: To evaluate the decontamination of Bacillus anthracis, Bacillus subtilis, and Geobacillus stearothermophilus spores on indoor surface materials using hydrogen peroxide gas. Methods and Results: B. anthracis, B. subtilis, and G. Stearothermophilus spores were dried on seven...

  19. Germinant-enhanced decontamination of Bacillus spores adhered to iron and cement-mortar drinking water infrastructures.

    Science.gov (United States)

    Szabo, Jeffrey G; Muhammad, Nur; Heckman, Lee; Rice, Eugene W; Hall, John

    2012-04-01

    Germination was evaluated as an enhancement to decontamination methods for removing Bacillus spores from drinking water infrastructure. Germinating spores before chlorinating cement mortar or flushing corroded iron was more effective than chlorinating or flushing alone.

  20. DESTRUCTION OF ASPERGILLUS VERSICOLOR, PENICILLIUM CRYSOGENUM, STACHYBOTRYS CHARTARUM, AND CLADOSPORIUM CLADOSPORIDES SPORES USING CHEMICAL OXIDATION TREATMENT PROCESS

    Science.gov (United States)

    The survival of aqueous suspensions of Penicillium chrysogenum, Stachybotrys chartarum, Aspergillus versicolor, and Cladosporium cladosporioides spores was evaluated using various combinations of hydrogen peroxide and iron (II) as catalyst. Spores were suspended in water and trea...