WorldWideScience

Sample records for acid-labile temperature-responsive copolymers

  1. Acid-Labile Amphiphilic PEO-b-PPO-b-PEO Copolymers: Degradable Poloxamer Analogs.

    Science.gov (United States)

    Worm, Matthias; Kang, Biao; Dingels, Carsten; Wurm, Frederik R; Frey, Holger

    2016-05-01

    Poly ((ethylene oxide)-b-(propylene oxide)-b-(ethylene oxide)) triblock copolymers commonly known as poloxamers or Pluronics constitute an important class of nonionic, biocompatible surfactants. Here, a method is reported to incorporate two acid-labile acetal moieties in the backbone of poloxamers to generate acid-cleavable nonionic surfactants. Poly(propylene oxide) is functionalized by means of an acetate-protected vinyl ether to introduce acetal units. Three cleavable PEO-PPO-PEO triblock copolymers (Mn,total = 6600, 8000, 9150 g·mol(-1) ; Mn,PEO = 2200, 3600, 4750 g·mol(-1) ) have been synthesized using anionic ring-opening polymerization. The amphiphilic copolymers exhibit narrow molecular weight distributions (Ð = 1.06-1.08). Surface tension measurements reveal surface-active behavior in aqueous solution comparable to established noncleavable poloxamers. Complete hydrolysis of the labile junctions after acidic treatment is verified by size exclusion chromatography. The block copolymers have been employed as surfactants in a miniemulsion polymerization to generate polystyrene (PS) nanoparticles with mean diameters of ≈200 nm and narrow size distribution, as determined by dynamic light scattering and scanning electron microscopy. Acid-triggered precipitation facilitates removal of surfactant fragments from the nanoparticles, which simplifies purification and enables nanoparticle precipitation "on demand." PMID:27000789

  2. An acid-labile block copolymer of PDMAEMA and PEG as potential carrier for intelligent gene delivery systems.

    Science.gov (United States)

    Lin, Song; Du, Fusheng; Wang, Yang; Ji, Shouping; Liang, Dehai; Yu, Lei; Li, Zichen

    2008-01-01

    Intelligent gene delivery systems based on physiologically triggered reversible shielding technology have evinced enormous interest due to their potential in vivo applications. In the present work, an acid-labile block copolymer consisting of poly(ethylene glycol) and poly(2-(dimethylamino)ethyl methacrylate) segments connected through a cyclic ortho ester linkage (PEG- a-PDMAEMA) was synthesized by atom transfer radical polymerization of DMAEMA using a PEG macroinitiator with an acid-cleavable end group. PEG- a-PDMAEMA condensed with plasmid DNA formed polyplex nanoparticles with an acid-triggered reversible PEG shield. The pH-dependent shielding/deshielding effect of PEG chains on the polyplex particles were evaluated by zeta potential and size measurements. At pH 7.4, polyplexes generated from PEG- a-PDMAEMA exhibited smaller particle size, lower surface charge, reduced interaction with erythrocytes, and less cytotoxicity compared to PDMAEMA-derived polyplexes. At pH 5.0, zeta potential of polyplexes formed from PEG- a-PDMAEMA increased, leveled up after 2 h of incubation and gradual aggregation occurred in the presence of bovine serum albumin (BSA). In contrast, the stably shielded polyplexes formed by DNA and an acid-stable block copolymer, PEG- b-PDMAEMA, did not change in size and zeta potential in 6 h. In vitro transfection efficiency of the acid-labile copolymer greatly increased after 6 h incubation at pH 5.0, approaching the same level of PDMAEMA, whereas there was only slight increase in efficiency for the stable copolymer, PEG- b-PDMAEMA.

  3. PEG-detachable and acid-labile cross-linked micelles based on orthoester linked graft copolymer for paclitaxel release

    Energy Technology Data Exchange (ETDEWEB)

    Yuan Zhefan; Huang Jingyi; Liu Jing; Cheng Sixue; Zhuo Renxi; Li Feng, E-mail: lfsj2004@hotmail.com [Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Science, Wuhan University, Wuhan, 430072 (China)

    2011-08-19

    Polyethylene glycol detachable graft copolymer, mPEG-g-p(NAS-co-BMA), was synthesized by grafting 2-({omega}-methoxy)PEGyl-1,3-dioxan-5-ylamine onto poly(N-(acryloyloxy)succinimide-co-butyl methacrylate). Pseudo in situ cross-linking of the mPEG-g-p(NAS-co-BMA) was performed in dimethylformamide phosphate buffer (v/v = 1/1) by an acid-labile diamine cross-linker bearing two symmetrical cyclic orthoesters. The cross-linked (CL) micelles with different contents of mPEG segments represented different morphologies. The CL micelles containing approximately one mPEG segment exhibited 'echini' morphology whereas the CL micelle with approximately three mPEG segments formed nanowires. The hydrolysis rate of the CL micelles is highly pH-dependent and much more rapid at mild acid than physiological conditions. Hydrolyzates of the CL micelles formed vesicles because new amphiphilic copolymers were formed. Paclitaxel (PTX) was successfully loaded into the CL micelles and a controlled and pH-dependent release behavior was observed. No obvious cytotoxicity was found for the CL micelles at concentration as high as 800 mg l{sup -1}.

  4. PEG-detachable and acid-labile cross-linked micelles based on orthoester linked graft copolymer for paclitaxel release

    Science.gov (United States)

    Yuan, Zhefan; Huang, Jingyi; Liu, Jing; Cheng, Sixue; Zhuo, Renxi; Li, Feng

    2011-08-01

    Polyethylene glycol detachable graft copolymer, mPEG-g-p(NAS-co-BMA), was synthesized by grafting 2-(ω-methoxy)PEGyl-1,3-dioxan-5-ylamine onto poly(N-(acryloyloxy)succinimide-co-butyl methacrylate). Pseudo in situ cross-linking of the mPEG-g-p(NAS-co-BMA) was performed in dimethylformamide phosphate buffer (v/v = 1/1) by an acid-labile diamine cross-linker bearing two symmetrical cyclic orthoesters. The cross-linked (CL) micelles with different contents of mPEG segments represented different morphologies. The CL micelles containing approximately one mPEG segment exhibited 'echini' morphology whereas the CL micelle with approximately three mPEG segments formed nanowires. The hydrolysis rate of the CL micelles is highly pH-dependent and much more rapid at mild acid than physiological conditions. Hydrolyzates of the CL micelles formed vesicles because new amphiphilic copolymers were formed. Paclitaxel (PTX) was successfully loaded into the CL micelles and a controlled and pH-dependent release behavior was observed. No obvious cytotoxicity was found for the CL micelles at concentration as high as 800 mg l - 1.

  5. Synthesis and Properties of pH and Temperature Responsive Copolymer with Pesudorotaxane Structure

    Institute of Scientific and Technical Information of China (English)

    MA Qiang; YANG Hui; XU Wen-chao; TAN Ye-bang

    2012-01-01

    pH and temperature responsive copolymers PNAM4VBCB of N-isopropyl acrylamide(NAM) and complex pseudorotaxane monomer N1-(4-vinylbenzyl)-1,4-diaminobutane dihydrochloride with cucurbit[6]uril(CB[6])threaded(4VBCB) were prepared via free-radical polymerization in aqueous solution.The copolymers were characterized by 1H NMR,Fourier transform infrared(FTIR) spectrometry,elemental analysis,and static light scattering.The thermodynamic properties of the copolymers were studied by thermogravimetric analysis(TGA),and the effects of pH and the concentration of the copolymer on the average hydrodynamic radius(Rh) were studied by dynamic light scattering(DLS).In addition,the thermal sensitivities of the copolymers were studied by DLS and UV-Vis.The experiment data show that CB[6] beads are localized on 1,4-diaminobutane units in the side chains of the copolymer.TGA data show that thermal stability of the copolymers increases with the adding of CB[6] threaded because of the enhanced rigidity and the bulky steric hindrance of 4VBCB in the side chain of PNAM4VBCB.DLS data show that the average hydrodynamic radius of copolymer increases with the increase of the copolymer concentration and has a jump with adjusting pH due to the existing of the small size CB[6] dethreaded from the copolymer with increasing pH.Both pH and electrical conductivity curves of the solution of PNAM4VBCB-4 have a jump because CB[6] could dethread from the copolymers with the addition of NaOH.In addition,the copolymers have thermal sensitivity and their phase-change temperatures could be controlled by adjusting the molar ratio of NAM to 4VBCB in the copolymers.

  6. Temperature-Responsive Biocompatible Copolymers Incorporating Hyperbranched Polyglycerols for Adjustable Functionality

    Directory of Open Access Journals (Sweden)

    Alan J. House

    2011-08-01

    Full Text Available Temperature-triggered copolymers are proposed for a number of bio-applications but there is no ideal material platform, especially for injectable drug delivery. Options are needed for degradable biomaterials that not only respond to temperature but also easily accommodate linkage of active molecules. A first step toward realizing this goal is the design and synthesis of the novel materials reported herein. A multifunctional macromer, methacrylated hyperbranched polyglycerol (HPG-MA with an average of one acrylate unit per copolymer, was synthesized and copolymerized with N-isopropylacrylamide (NIPAAm, hydroxyethyl methacrylate-polylactide (HEMAPLA and acrylic acid (AAc. The potential to fully exploit the copolymers by modification of the multiple HPG hydroxyl groups will not be discussed here. Instead, this report focuses on the thermoresponsive, biocompatible, and degradation properties of the material. Poly(NIPAAm-co-HEMAPLA-co-AAc-co-HPG-MA displayed increasing lower critical solution temperatures (LCST as the HPG content increased over a range of macromer ratios. For the copolymer with the maximum HPG incorporation (17%, the LCST was ~30 °C. In addition, this sample showed no toxicity when human uterine fibroid cells were co-cultured with the copolymer for up to 72 h. This copolymer lost approximately 92% of its mass after 17 hours at 37 °C. Thus, the reported biomaterials offer attractive properties for the design of drug delivery systems where orthogonally triggered mechanisms of therapeutic release in relatively short time periods would be attractive.

  7. Interferon alpha associated with systemic lupus erythematosus is not intrinsically acid labile

    OpenAIRE

    1989-01-01

    The physicochemical properties of apparently acid-labile IFN-alpha from patients with SLE have been studied. The antigenicity, apparent molecular size, and isoelectric point of SLE IFN-alpha are indistinguishable from those of conventional, previously characterized, acid-stable subspecies of IFN-alpha. However, after partial purification by anion-exchange chromatography, SLE IFN-alpha no longer exhibits acid lability, suggesting that other plasma factor(s) are responsible for the acid labilit...

  8. pH-responsive biodegradable micelles based on acid-labile polycarbonate hydrophobe: synthesis and triggered drug release.

    Science.gov (United States)

    Chen, Wei; Meng, Fenghua; Li, Feng; Ji, Shun-Jun; Zhong, Zhiyuan

    2009-07-13

    pH-responsive biodegradable micelles were prepared from block copolymers comprising of a novel acid-labile polycarbonate hydrophobe and poly(ethylene glycol) (PEG). Two new cyclic aliphatic carbonate monomers, mono-2,4,6-trimethoxybenzylidene-pentaerythritol carbonate (TMBPEC, 2a) and mono-4-methoxybenzylidene-pentaerythritol carbonate (MBPEC, 2b) were designed and successfully synthesized via a two-step procedure. The ring-opening polymerization of 2a or 2b in the presence of methoxy PEG in dichloromethane at 50 °C using zinc bis[bis(trimethylsilyl)amide] as a catalyst yielded the corresponding block copolymers PEG-PTMBPEC (3a) or PEG-PMBPEC (3b) with low polydispersities (PDI 1.03-1.04). The copolymerization of D,L-lactide (DLLA) and 2a under otherwise the same conditions could also proceed smoothly to afford PEG-P(TMBPEC-co-DLLA) (3c) block copolymer. These block copolymers readily formed micelles in water with sizes of about 120 nm as determined by dynamic light scattering (DLS). The hydrolysis of the acetals of the polycarbonate was investigated using UV/vis spectroscopy. The results showed that the acetals of micelles 3a, while stable at pH 7.4 are prone to rapid hydrolysis at mildly acidic pH of 4.0 and 5.0, with a half-life of 1 and 6.5 h, respectively. The acetal hydrolysis resulted in significant swelling of micelles, as a result of change of hydrophobic polycarbonate to hydrophilic polycarbonate. In comparison, the acetals of PMBPEC of micelles 3b displayed obviously slower hydrolysis at the same pH. Both paclitaxel and doxorubicin could be efficiently encapsulated into micelles 3a achieving high drug loading content (13.0 and 11.7 wt %, respectively). The in vitro release studies showed clearly a pH dependent release behavior, that is, significantly faster drug release at mildly acidic pH of 4.0 and 5.0 compared to physiological pH. These pH-responsive biodegradable micelles are promising as smart nanovehicles for targeted delivery of anticancer drugs.

  9. Human acid-labile subunit deficiency: clinical, endocrine and metabolic consequences.

    NARCIS (Netherlands)

    Domene, H.M.; Hwa, V.; Argente, J.; Wit, J.M.; Camacho-Hubner, C.; Jasper, H.G.; Pozo, J.; Duyvenvoorde, H.A. van; Yakar, S.; Fofanova-Gambetti, O.V.; Rosenfeld, R.G.; Hermus, A.R.M.M.; Twickler, T.B.; Kempers, M.J.E.

    2009-01-01

    The majority of insulin-like growth factor (IGF)-I and IGF-II circulate in the serum as a complex with the insulin-like growth factor binding protein (IGFBP)-3 or IGFBP-5, and an acid-labile subunit (ALS). The function of ALS is to prolong the half-life of the IGF-I-IGFBP-3/IGFBP-5 binary complexes.

  10. The acid-labile subunit of the ternary insulin-like growth factor complex in cirrhosis

    DEFF Research Database (Denmark)

    Møller, S; Juul, A; Becker, U;

    2000-01-01

    In the circulation, insulin-like growth factor-I (IGF-I) is bound in a trimeric complex of 150 kDa with IGF binding protein-3 (IGFBP-3) and the acid-labile subunit (ALS). Whereas circulating IGF-I and IGFBP-3 are reported to be low in patients with chronic liver failure, the level of ALS has...... not been described in relation to hepatic dysfunction. The aim of the present study was therefore to measure circulating and hepatic venous concentrations of ALS in relation to hepatic function and the IGF axis....

  11. The acid-labile subunit of human ternary insulin-like growth factor binding protein complex in serum

    DEFF Research Database (Denmark)

    Juul, A; Møller, S; Mosfeldt-Laursen, E;

    1998-01-01

    Circulating insulin-like growth factor-I (IGF-I) is predominantly bound in the trimeric complex comprised of IGF binding protein-3 (IGFBP-3) and acid-labile subunit (ALS). Circulating concentrations of IGF-I, IGFBP-3 and ALS are believed to reflect the GH secretory status, but the clinical use of...

  12. The acid-labile subunit of the ternary insulin-like growth factor complex in cirrhosis: relation to liver dysfunction

    DEFF Research Database (Denmark)

    Møller, S; Juul, A; Becker, U;

    2000-01-01

    BACKGROUND/AIMS: In the circulation, insulin-like growth factor-I (IGF-I) is bound in a trimeric complex of 150 kDa with IGF binding protein-3 (IGFBP-3) and the acid-labile subunit (ALS). Whereas circulating IGF-I and IGFBP-3 are reported to be low in patients with chronic liver failure, the level...... of ALS has not been described in relation to hepatic dysfunction. The aim of the present study was therefore to measure circulating and hepatic venous concentrations of ALS in relation to hepatic function and the IGF axis. METHODS: Twenty-five patients with cirrhosis (Child class A/B/C:5/10/10) and 30...... controls with normal liver function were studied. During a haemodynamic investigation, blood samples were collected from the hepatic vein and femoral artery, and the plasma concentrations of ALS, IGF-I and IGFBP-3 were determined. RESULTS: Hepatic venous and arterial concentrations of ALS were...

  13. The ortho backbone amide linker (o-BAL) is an easily prepared and highly acid-labile handle for solid-phase synthesis

    DEFF Research Database (Denmark)

    Boas, Ulrik; Brask, Jesper; Christensen, J.B.;

    2002-01-01

    , followed by purification through steam distillation, Cleavage studies of Leu-enkephalin anchored to either o-BAL or p-BAL handles revealed that both handles were surprisingly acid-labile and released the peptide with dilute TFA (5% and even 1% TFA in CH2Cl2). This useful property allowed the synthesis of...

  14. Direct imaging of nanoscopic plastic deformation below bulk Tg and chain stretching in temperature-responsive block copolymer hydrogels by Cryo-TEM

    OpenAIRE

    Nykänen, Antti; Nuopponen, Markus; Hiekkataipale, Panu; Hirvonen, Sami-Pekka; Soininen, Antti; Tenhu, Heikki; Ikkala, Olli; Mezzenga, Raffaele

    2008-01-01

    This work describes the thermoresponsive transition in polystyrene-block-poly(N-isopropylacrylamide)-block-polystyrene (PS-block-PNIPAM-block-PS) triblock copolymer hydrogels, as observed by both direct and reciprocal space in-situ characterization. The hydrogel morphology was studied in both the dry and wet state, at temperatures below and beyond the coil−globule transition of PNIPAM, using vitrified ice cryo-transmission electron microscopy (cryo-TEM), in-situ freeze-drying technique, and s...

  15. A simple and inexpensive enteric-coated capsule for delivery of acid-labile macromolecules to the small intestine.

    Science.gov (United States)

    Miller, Darren S; Parsons, Anne Michelle; Bresland, John; Herde, Paul; Pham, Duc Minh; Tan, Angel; Hsu, Hung-yao; Prestidge, Clive A; Kuchel, Tim; Begg, Rezaul; Aziz, Syed Mahfuzul; Butler, Ross N

    2015-07-01

    Understanding the ecology of the gastrointestinal tract and the impact of the contents on the host mucosa is emerging as an important area for defining both wellness and susceptibility to disease. Targeted delivery of drugs to treat specific small intestinal disorders such as small bowel bacterial overgrowth and targeting molecules to interrogate or to deliver vaccines to the remote regions of the small intestine has proven difficult. There is an unmet need for methodologies to release probes/drugs to remote regions of the gastrointestinal tract in furthering our understanding of gut health and pathogenesis. In order to address this concern, we need to know how the regional delivery of a surrogate labeled test compound is handled and in turn, if delivered locally as a liquid or powder, the dynamics of its subsequent handling and metabolism. In the studies we report on in this paper, we chose (13)C sodium acetate ((13)C-acetate), which is a stable isotope probe that once absorbed in the small intestine can be readily measured non-invasively by collection and analysis of (13)CO2 in the breath. This would provide information of gastric emptying rates and an indication of the site of release and absorptive capacity. In a series of in vitro and in vivo pig experiments, we assessed the enteric-protective properties of a commercially available polymer EUDRAGIT(®) L100-55 on gelatin capsules and also on DRcaps(®). Test results demonstrated that DRcaps(®) coated with EUDRAGIT(®) L100-55 possessed enhanced enteric-protective properties, particularly in vivo. These studies add to the body of knowledge regarding gastric emptying in pigs and also begin the process of gathering specifications for the design of a simple and cost-effective enteric-coated capsule for delivery of acid-labile macromolecules to the small intestine.

  16. Development of pH-sensitive self-nanoemulsifying drug delivery systems for acid-labile lipophilic drugs.

    Science.gov (United States)

    Zhao, Tianjing; Maniglio, Devid; Chen, Jie; Chen, Bin; Migliaresi, Claudio

    2016-03-01

    Oral administration is the most convenient way of all the drug delivery routes. Orally administered bioactive compounds must resist the harsh acidic fluids or enzyme digestion in stomach, to reach their absorbed destination in small intestine. This is the case for silibinin, a drug used to protect liver cells against toxins that has also been demonstrated in vitro to possess anti-cancer effects. However, as many other drugs, silibinin can degrade in the stomach due to the action of the gastric fluid. The use of pH-sensitive self-nanoemulsifying drug delivery systems (pH-SNEDDS) could overcome the drawback due to degradation of the drug in the stomach while enhancing its solubility and dissolution rate. In this paper we have investigated pH-sensitive self-nanoemulsifying formulations containing silibinin as model drug. Pseudo-ternary phase diagrams have been constructed in order to identify the self-emulsification regions under different pH. Solubility of silibinin in selected formulations has been assessed and stability of the pure drug and of the silibinin loaded pH-SNEDDS formulations in simulated gastric fluid had been compared. Droplet size of the optimized pH-SNEDDS has been correlated to pH, volume of dilution medium and silibinin loading amount. TEM (transmission electron microscopy) studies have shown that emulsion droplets had spherical shape and narrow size distribution. In vitro drug release studies of the optimal pH-SNEDDS indicated substantial increase of the drug release and release rate in comparison to pure silibinin and to the commercial silibinin tablet. The results indicated that pH-SNEDDS have potential to improve the biopharmaceutics properties of acid-labile lipophilic drugs.

  17. Combination of acid labile detergent and C18 Empore™ disks for improved identification and sequence coverage of in-gel digested proteins.

    Science.gov (United States)

    Koehn, Henning; Lau, Benjamin; Clerens, Stefan; Plowman, Jeffrey E; Dyer, Jolon M; Ramli, Umi Salamah; Deb-Choudhury, Santanu

    2011-04-01

    A protocol for improved extraction of peptides from in-gel protein digests, using a combination of the acid labile surfactant, sodium deoxycholate (SDC) and C18 Empore™ membranes, is presented. This approach results in better mass spectrum quality, higher numbers of identified peptide peaks and improved identification scores compared to standard tryptic digestion protocols, or protocols using only SDC or only C18 Empore™ disks. The advantages of the new protocol are demonstrated for two different types of samples: Merino wool intermediate filament proteins and Elaeis guineensis (oil palm) mesocarp proteins. PMID:21327873

  18. Case report: low circulating IGF-I levels due to Acid-Labile Subunit deficiency in adulthood are not associated with early development of atherosclerosis and impaired heart function

    NARCIS (Netherlands)

    Rensing, K.L.; Duyvenvoorde, H.A. van; Cramer, M.J.; Teske, A.J.; Prokop, M.; Stroes, E.S.; Wit, J.M.; Hermus, A.R.M.M.; Twickler, T.B.

    2011-01-01

    OBJECTIVE: Decreased insulin-like growth factor-I (IGF-I) levels in adults have been associated with an increased risk of ischemic heart disease and heart failure. It is currently unknown whether patients with low circulating IGF-I levels due to a homozygous acid-labile subunit (IGFALS) gene mutatio

  19. Novel acid-labile subunit ( IGFALS ) mutation p.T145K (c.434C>A) in a patient with ALS deficiency, normal stature and immunological dysfunction.

    Science.gov (United States)

    Schreiner, Felix; Schoenberger, Stefan; Koester, Bernhard; Domené, Horacio M; Woelfle, Joachim

    2013-01-01

    We report a novel missense mutation p.T145K in the insulin-like growth factor (IGF) acid-labile subunit (IGFALS) gene identified in a Turkish patient with normal growth, transient pancytopenic episodes and signs of immunological dysfunction. Because of recurrent cutaneous mycoses and absence of pubertal development until the age of 14.75 years we determined several endocrine parameters in order to rule out autoimmune-polyendocrine syndromes. Despite a normal height between the 25th and 50th percentile we found severely decreased IGF-1 and undetectably low IGFBP-3 levels. Laboratory signs of immunological dysfunction included reduced total lymphocyte count with diminished B and T helper cell fractions, decreased serum concentrations of IgM and IgG subclass 4, and elevated antinuclear antibody and anti-dsDNA titers as well as persistently high interleukin-2-receptor levels. Further endocrine work-up revealed elevated fasting insulin and undetectably low ALS serum levels, leading to the diagnosis of ALS deficiency. Sequencing of the coding region of the IGFALS gene showed a novel homozygous missense mutation (c.434C>A; p.T145K). Since immunological abnormalities have not been reported in more than 20 ALS-deficient patients so far and our patient was born to consanguineous parents, a second autosomal recessive defect is likely to underlie the immunological phenotype, although a causative role of IGFALS p.T145K cannot be entirely ruled out. PMID:24296365

  20. Application of nanoparticles for oral delivery of acid-labile lansoprazole in the treatment of gastric ulcer: in vitro and in vivo evaluations.

    Science.gov (United States)

    Alai, Milind; Lin, Wen Jen

    2015-01-01

    The aim of this study was to develop nanoparticles for oral delivery of an acid-labile drug, lansoprazole (LPZ), for gastric ulcer therapy. LPZ-loaded positively charged Eudragit(®) RS100 nanoparticles (ERSNPs-LPZ) and negatively charged poly(lactic-co-glycolic acid) nanoparticles (PLGANPs-LPZ) were prepared. The effect of charge on nanoparticle deposition in ulcerated and non-ulcerated regions of the stomach was investigated. The cellular uptake of nanoparticles in the intestine was evaluated in a Caco-2 cell model. The pharmacokinetic performance and ulcer healing response of LPZ-loaded nanoparticles following oral administration were evaluated in Wistar rats with induced ulcers. The prepared drug-loaded ERSNPs-LPZ and PLGANPs-LPZ possessed opposite surface charge (+38.5±0.3 mV versus -27.3±0.3 mV, respectively) and the particle size was around 200 nm with a narrow size distribution. The negatively charged PLGANPs adhered more readily to the ulcerated region (7.22%±1.21% per cm(2)), whereas the positively charged ERSNPs preferentially distributed in the non-ulcerated region (8.29%±0.35% per cm(2)). Both ERSNPs and PLGANPs were prominent uptake in Caco-2 cells, too. The nanoparticles sustained and prolonged LPZ concentrations up to 24 hours, and the half-life and mean residence time of LPZ were prolonged by 3.5-fold and 4.5-fold, respectively, as compared with LPZ solution. Oral administration of LPZ-loaded nanoparticles healed 92.6%-95.7% of gastric ulcers in Wistar rats within 7 days.

  1. Application of nanoparticles for oral delivery of acid-labile lansoprazole in the treatment of gastric ulcer: in vitro and in vivo evaluations

    Directory of Open Access Journals (Sweden)

    Alai M

    2015-06-01

    Full Text Available Milind Alai,1 Wen Jen Lin1,2 1Graduate Institute of Pharmaceutical Sciences, School of Pharmacy, 2Drug Research Center, College of Medicine, National Taiwan University, Taipei, Taiwan Abstract: The aim of this study was to develop nanoparticles for oral delivery of an acid-labile drug, lansoprazole (LPZ, for gastric ulcer therapy. LPZ-loaded positively charged Eudragit® RS100 nanoparticles (ERSNPs-LPZ and negatively charged poly(lactic-co-glycolic acid nanoparticles (PLGANPs-LPZ were prepared. The effect of charge on nanoparticle deposition in ulcerated and non-ulcerated regions of the stomach was investigated. The cellular uptake of nanoparticles in the intestine was evaluated in a Caco-2 cell model. The pharmacokinetic performance and ulcer healing response of LPZ-loaded nanoparticles following oral administration were evaluated in Wistar rats with induced ulcers. The prepared drug-loaded ERSNPs-LPZ and PLGANPs-LPZ possessed opposite surface charge (+38.5±0.3 mV versus -27.3±0.3 mV, respectively and the particle size was around 200 nm with a narrow size distribution. The negatively charged PLGANPs adhered more readily to the ulcerated region (7.22%±1.21% per cm2, whereas the positively charged ERSNPs preferentially distributed in the non-ulcerated region (8.29%±0.35% per cm2. Both ERSNPs and PLGANPs were prominent uptake in Caco-2 cells, too. The nanoparticles sustained and prolonged LPZ concentrations up to 24 hours, and the half-life and mean residence time of LPZ were prolonged by 3.5-fold and 4.5-fold, respectively, as compared with LPZ solution. Oral administration of LPZ-loaded nanoparticles healed 92.6%–95.7% of gastric ulcers in Wistar rats within 7 days. Keywords: nanoparticles, lansoprazole, Eudragit® RS100, PLGA

  2. Effects of short-term caloric restriction on circulating free IGF-I, acid-labile subunit, IGF-binding proteins (IGFBPs)-1-4, and IGFBPs-1-3 protease activity in obese subjects

    DEFF Research Database (Denmark)

    Rasmussen, Michael Højby; Juul, Anders; Kjems, Lise Lund;

    2006-01-01

    Decreased levels of GH and total IGF-I have been reported in obesity. It has been hypothesized that increased free (biologically active) IGF-I levels generated from IGF-binding protein (IGFBP) protease activity could be the mechanism for the low GH release in dieting obese subjects. However, no...... published data exist on free IGF-I levels, acid labile subunit (ALS), or IGFBP protease activity in relation to GH release during a hypocaloric diet. The main purpose of this study was to determine free IGF-I, ALS, IGFBPs-1-4, and IGFBPs-1-3 protease activity in relation to 24-h GH release before and after...

  3. Effects of short-term caloric restriction on circulating free IGF-I, acid-labile subunit, IGF-binding proteins (IGFBPs)-1-4, and IGFBPs-1-3 protease activity in obese subjects

    DEFF Research Database (Denmark)

    Rasmussen, Michael Højby; Juul, Anders; Kjems, Lise Lund;

    2006-01-01

    Decreased levels of GH and total IGF-I have been reported in obesity. It has been hypothesized that increased free (biologically active) IGF-I levels generated from IGF-binding protein (IGFBP) protease activity could be the mechanism for the low GH release in dieting obese subjects. However, no...... published data exist on free IGF-I levels, acid labile subunit (ALS), or IGFBP protease activity in relation to GH release during a hypocaloric diet. The main purpose of this study was to determine free IGF-I, ALS, IGFBPs-1-4, and IGFBPs-1-3 protease activity in relation to 24-h GH release before and after...... a short-term very low-calorie diet (VLCD)....

  4. Temperature-responsive intelligent interfaces for biomolecular separation and cell sheet engineering.

    Science.gov (United States)

    Nagase, Kenichi; Kobayashi, Jun; Okano, Teruo

    2009-06-01

    Temperature-responsive intelligent surfaces, prepared by the modification of an interface with poly(N-isopropylacrylamide) and its derivatives, have been used for biomedical applications. Such surfaces exhibit temperature-responsive hydrophilic/hydrophobic alterations with external temperature changes, which, in turn, result in thermally modulated interactions with biomolecules and cells. In this review, we focus on the application of these intelligent surfaces to chromatographic separation and cell cultures. Chromatographic separations using several types of intelligent surfaces are mentioned briefly, and various effects related to the separation of bioactive compounds are discussed, including wettability, copolymer composition and graft polymer architecture. Similarly, we also summarize temperature-responsive cell culture substrates that allow the recovery of confluent cell monolayers as contiguous living cell sheets for tissue-engineering applications. The key factors in temperature-dependent cell adhesion/detachment control are discussed from the viewpoint of grafting temperature-responsive polymers, and new methodologies for effective cell sheet culturing and the construction of thick tissues are summarized. PMID:19324682

  5. Meth math: modeling temperature responses to methamphetamine.

    Science.gov (United States)

    Molkov, Yaroslav I; Zaretskaia, Maria V; Zaretsky, Dmitry V

    2014-04-15

    Methamphetamine (Meth) can evoke extreme hyperthermia, which correlates with neurotoxicity and death in laboratory animals and humans. The objective of this study was to uncover the mechanisms of a complex dose dependence of temperature responses to Meth by mathematical modeling of the neuronal circuitry. On the basis of previous studies, we composed an artificial neural network with the core comprising three sequentially connected nodes: excitatory, medullary, and sympathetic preganglionic neuronal (SPN). Meth directly stimulated the excitatory node, an inhibitory drive targeted the medullary node, and, in high doses, an additional excitatory drive affected the SPN node. All model parameters (weights of connections, sensitivities, and time constants) were subject to fitting experimental time series of temperature responses to 1, 3, 5, and 10 mg/kg Meth. Modeling suggested that the temperature response to the lowest dose of Meth, which caused an immediate and short hyperthermia, involves neuronal excitation at a supramedullary level. The delay in response after the intermediate doses of Meth is a result of neuronal inhibition at the medullary level. Finally, the rapid and robust increase in body temperature induced by the highest dose of Meth involves activation of high-dose excitatory drive. The impairment in the inhibitory mechanism can provoke a life-threatening temperature rise and makes it a plausible cause of fatal hyperthermia in Meth users. We expect that studying putative neuronal sites of Meth action and the neuromediators involved in a detailed model of this system may lead to more effective strategies for prevention and treatment of hyperthermia induced by amphetamine-like stimulants.

  6. Acid-labile sulfides in shallow marine bottom sediments: A review of the impact on ecosystems in the Azov Sea, the NE Black Sea shelf and NW Adriatic lagoons

    Science.gov (United States)

    Sorokin, Yu. I.; Zakuskina, O. Yu

    2012-02-01

    Acid-labile sulfides (LS) increase in bottom sediments at sites in the Azov Sea, at the NE Black Sea shelf and in the coastal lagoons of NW Adriatic Sea experiencing direct impacts of anthropogenic pollution. Fresh anthropogenic organic matter stimulates the bacterial sulfate reduction and here the rate of the LS production overcomes their loss during the oxidation and pyritization. This results in the expansion of reduced sediment layer up to the bottom surface. The LS concentration in the reduced sediments varies between 300 and 2000 mg S l -1 of wet silt depending on the size of pollution loading and on the rate of sedimentation. In the oxidized sediments away from the direct pollution impact, the LS concentration did not exceed 100-150 mg S l -1. Being a strong cytochrome toxin, the LS adversely affect the coastal ecosystems. The concentrations over 600 mg S l -1 result in quasi total benthic mortality whereas >300-400 mg S l -1 depletes the benthic faunal abundance and taxonomic diversity. Accumulation of the LS in sediments also induces nocturnal hypoxia and stimulates domination of toxic cyanobacteria in the pelagic phytocenoses.

  7. Novel temperature-responsive polymer brushes with carbohydrate residues facilitate selective adhesion and collection of hepatocytes

    Directory of Open Access Journals (Sweden)

    Naokazu Idota, Mitsuhiro Ebara, Yohei Kotsuchibashi, Ravin Narain and Takao Aoyagi

    2012-01-01

    Full Text Available Temperature-responsive glycopolymer brushes were designed to investigate the effects of grafting architectures of the copolymers on the selective adhesion and collection of hypatocytes. Homo, random and block sequences of N-isopropylacrylamide and 2-lactobionamidoethyl methacrylate were grafted on glass substrates via surface-initiated atom transfer radical polymerization. The galactose/lactose-specific lectin RCA120 and HepG2 cells were used to test for specific recognition of the polymer brushes containing galactose residues over the lower critical solution temperatures (LCSTs. RCA120 showed a specific binding to the brush surfaces at 37 °C. These brush surfaces also facilitated the adhesion of HepG2 cells at 37 °C under nonserum conditions, whereas no adhesion was observed for NIH-3T3 fibroblasts. When the temperature was decreased to 25 °C, almost all the HepG2 cells detached from the block copolymer brush, whereas the random copolymer brush did not release the cells. The difference in releasing kinetics of cells from the surfaces with different grafting architectures can be explained by the correlated effects of significant changes in LCST, mobility, hydrophilicity and mechanical properties of the grafted polymer chains. These findings are important for designing 'on–off' cell capture/release substrates for various biomedical applications such as selective cell separation.

  8. Amphiphilic block copolymers bearing six-membered ortho ester ring in side chains as potential drug carriers: synthesis, characterization, and in vivo toxicity evaluation.

    Science.gov (United States)

    Luo, Shi; Tao, Yangyang; Tang, Rupei; Wang, Rui; Ji, Weihang; Wang, Chun; Zhao, Youliang

    2014-07-01

    A new type of amphiphilic block copolymers, poly(ethylene glycol)-block-poly(2-methyl-acrylicacid 2-methoxy-5-methyl-[1,3]dioxin-5-ylmethyl ester) (PEG-b-PMME), bearing acid-labile six-membered ortho ester rings in side chains was synthesized by reversible addition-fragmentation chain-transfer polymerization, and the influence of chain length of the hydrophobic PMME block on micelle properties was investigated. The PEG-b-PMME micelles were stable in aqueous buffer at physiological pH with a low critical micelle concentration. Nile Red as a model drug was encapsulated into the micelles to explore the release profiles. The Nile Red-loaded polymeric micelles showed rapid release of Nile Red in weakly acidic environments (pH 5) but slow release under physiological condition (pH 7.4), due to different hydrolysis rate of ortho ester side chains of PEG-b-PMME. The Paclitaxel (PTX)-loaded micelles retained potency in killing lung cancer cells (A549), compared with the free PTX. No obvious toxicity was found in vitro and in vivo after intraperitoneal injection of the micelles, which confirms that the PEG-b-PMME micelles with unique acid-labile characteristic have great potential as nano-scaled carriers for drug delivery.

  9. Silicone/Acrylate Copolymers

    Science.gov (United States)

    Dennis, W. E.

    1982-01-01

    Two-step process forms silicone/acrylate copolymers. Resulting acrylate functional fluid is reacted with other ingredients to produce copolymer. Films of polymer were formed by simply pouring or spraying mixture and allowing solvent to evaporate. Films showed good weatherability. Durable, clear polymer films protect photovoltaic cells.

  10. Antimicrobial Graft Copolymer Gels.

    Science.gov (United States)

    Harvey, Amanda C; Madsen, Jeppe; Douglas, C W Ian; MacNeil, Sheila; Armes, Steven P

    2016-08-01

    In view of the growing worldwide rise in microbial resistance, there is considerable interest in designing new antimicrobial copolymers. The aim of the current study was to investigate the relationship between antimicrobial activity and copolymer composition/architecture to gain a better understanding of their mechanism of action. Specifically, the antibacterial activity of several copolymers based on 2-(methacryloyloxy)ethyl phosphorylcholine [MPC] and 2-hydroxypropyl methacrylate (HPMA) toward Staphylococcus aureus was examined. Both block and graft copolymers were synthesized using either atom transfer radical polymerization or reversible addition-fragmentation chain transfer polymerization and characterized via (1)H NMR, gel permeation chromatography, rheology, and surface tensiometry. Antimicrobial activity was assessed using a range of well-known assays, including direct contact, live/dead staining, and the release of lactate dehydrogenase (LDH), while transmission electron microscopy was used to study the morphology of the bacteria before and after the addition of various copolymers. As expected, PMPC homopolymer was biocompatible but possessed no discernible antimicrobial activity. PMPC-based graft copolymers comprising PHPMA side chains (i.e. PMPC-g-PHPMA) significantly reduced both bacterial growth and viability. In contrast, a PMPC-PHPMA diblock copolymer comprising a PMPC stabilizer block and a hydrophobic core-forming PHPMA block did not exhibit any antimicrobial activity, although it did form a biocompatible worm gel. Surface tensiometry studies and LDH release assays suggest that the PMPC-g-PHPMA graft copolymer exhibits surfactant-like activity. Thus, the observed antimicrobial activity is likely to be the result of the weakly hydrophobic PHPMA chains penetrating (and hence rupturing) the bacterial membrane. PMID:27409712

  11. Silicon containing copolymers

    CERN Document Server

    Amiri, Sahar; Amiri, Sanam

    2014-01-01

    Silicones have unique properties including thermal oxidative stability, low temperature flow, high compressibility, low surface tension, hydrophobicity and electric properties. These special properties have encouraged the exploration of alternative synthetic routes of well defined controlled microstructures of silicone copolymers, the subject of this Springer Brief. The authors explore the synthesis and characterization of notable block copolymers. Recent advances in controlled radical polymerization techniques leading to the facile synthesis of well-defined silicon based thermo reversible blo

  12. Preparation of temperature responsive fragrance release membranes by UV curing

    International Nuclear Information System (INIS)

    The authors have studied the preparation and the function of intelligent drug release membranes by UV curing. Temperature responsive fragrance release membranes were prepared by UV curing process and the release functions were investigated as the function of thickness and composition of membrane. Microscopic observations were used to prove the postulated release mechanism

  13. Preparation of temperature responsive fragrance release membranes by UV curing

    Energy Technology Data Exchange (ETDEWEB)

    Nakayama, Hiroshi E-mail: nakayama@ned.kindai.ac.jp; Kaetsu, Isao; Uchida, Kumao; Okuda, Jyunya; Kitami, Toshiaki; Matsubara, Yoshio

    2003-06-01

    The authors have studied the preparation and the function of intelligent drug release membranes by UV curing. Temperature responsive fragrance release membranes were prepared by UV curing process and the release functions were investigated as the function of thickness and composition of membrane. Microscopic observations were used to prove the postulated release mechanism.

  14. Synthesis and Characterization of Stimuli Responsive Block Copolymers, Self-Assembly Behavior and Applications

    Energy Technology Data Exchange (ETDEWEB)

    Determan, Michael Duane [Iowa State Univ., Ames, IA (United States)

    2005-12-17

    The central theme of this thesis work is to develop new block copolymer materials for biomedical applications. While there are many reports of stimuli-responsive amphiphilic [19-21] and crosslinked hydrogel materials [22], the development of an in situ gel forming, pH responsive pentablock copolymer is a novel contribution to the field, Figure 1.1 is a sketch of an ABCBA pentablock copolymer. The A blocks are cationic tertiary amine methacrylates blocked to a central Pluronic F127 triblock copolymer. In addition to the prerequisite synthetic and macromolecular characterization of these new materials, the self-assembled supramolecular structures formed by the pentablock were experimentally evaluated. This synthesis and characterization process serves to elucidate the important structure property relationships of these novel materials, The pH and temperature responsive behavior of the pentablock copolymer were explored especially with consideration towards injectable drug delivery applications. Future synthesis work will focus on enhancing and tuning the cell specific targeting of DNA/pentablock copolymer polyplexes. The specific goals of this research are: (1) Develop a synthetic route for gel forming pentablock block copolymers with pH and temperature sensitive properties. Synthesis of these novel copolymers is accomplished with ATRP, yielding low polydispersity and control of the block copolymer architecture. Well defined macromolecular characteristics are required to tailor the phase behavior of these materials. (2) Characterize relationship between the size and shape of pentablock copolymer micelles and gel structure and the pH and temperature of the copolymer solutions with SAXS, SANS and CryoTEM. (3) Evaluate the temperature and pH induced phase separation and macroscopic self-assembly phenomenon of the pentablock copolymer. (4) Utilize the knowledge gained from first three goals to design and formulate drug delivery formulations based on the multi

  15. Bactericidal block copolymer micelles.

    Science.gov (United States)

    Vyhnalkova, Renata; Eisenberg, Adi; van de Ven, Theo

    2011-05-12

    Block copolymer micelles with bactericidal properties were designed to deactivate pathogens such as E. coli bacteria. The micelles of PS-b-PAA and PS-b-P4VP block copolymers were loaded with biocides TCMTB or TCN up to 20 or 30 wt.-%, depending on the type of antibacterial agent. Bacteria were exposed to loaded micelles and bacterial deactivation was evaluated. The micelles loaded with TCN are bactericidal; bacteria are killed in less than two minutes of exposure. The most likely interpretation of the data is that the biocide is transferred to the bacteria by repeated micelle/bacteria contacts, and not via the solution. PMID:21275041

  16. Block coordination copolymers

    Energy Technology Data Exchange (ETDEWEB)

    Koh, Kyoung Moo; Wong-Foy, Antek G; Matzger, Adam J; Benin, Annabelle I; Willis, Richard R

    2014-11-11

    The present invention provides compositions of crystalline coordination copolymers wherein multiple organic molecules are assembled to produce porous framework materials with layered or core-shell structures. These materials are synthesized by sequential growth techniques such as the seed growth technique. In addition, the invention provides a simple procedure for controlling functionality.

  17. Block coordination copolymers

    Science.gov (United States)

    Koh, Kyoung Moo; Wong-Foy, Antek G; Matzger, Adam J; Benin, Annabelle I; Willis, Richard R

    2012-11-13

    The present invention provides compositions of crystalline coordination copolymers wherein multiple organic molecules are assembled to produce porous framework materials with layered or core-shell structures. These materials are synthesized by sequential growth techniques such as the seed growth technique. In addition, the invention provides a simple procedure for controlling functionality.

  18. Block copolymer battery separator

    Energy Technology Data Exchange (ETDEWEB)

    Wong, David; Balsara, Nitash Pervez

    2016-04-26

    The invention herein described is the use of a block copolymer/homopolymer blend for creating nanoporous materials for transport applications. Specifically, this is demonstrated by using the block copolymer poly(styrene-block-ethylene-block-styrene) (SES) and blending it with homopolymer polystyrene (PS). After blending the polymers, a film is cast, and the film is submerged in tetrahydrofuran, which removes the PS. This creates a nanoporous polymer film, whereby the holes are lined with PS. Control of morphology of the system is achieved by manipulating the amount of PS added and the relative size of the PS added. The porous nature of these films was demonstrated by measuring the ionic conductivity in a traditional battery electrolyte, 1M LiPF.sub.6 in EC/DEC (1:1 v/v) using AC impedance spectroscopy and comparing these results to commercially available battery separators.

  19. STUDY ON PET-PA66 COPOLYMER

    Institute of Scientific and Technical Information of China (English)

    WU Rongrui; SHI Weitong

    1992-01-01

    In this work the PET-PA66 copolymers are obtained. The characterization of chemical structure of copolymer chain by NMR method is also given . It is shown that when the 66 Nylon salt is added in the copolycondensation, the adipic acid and hexamethylenediamine reacted mainly by itself and the obtained copolymer is a random copolymer, and when the Nylon 66 oligomer is added, the obtained copolymer is a block copolymer. The result of NMR analysis is demonstrated by properties investigation.

  20. Synthesis and Thermosensitive Behavior of Polyacrylamide Copolymers and Their Applications in Smart Textiles

    Directory of Open Access Journals (Sweden)

    Tao Chen

    2015-05-01

    Full Text Available We tuned the lower critical solution temperature (LCST of amphiphilic poly(N-isopropylacrylamide (PNIPAAm via copolymerization with a hydrophilic comonomer of N-hydroxymethyl acrylamide (NHMAAm. A series of copolymers P(NIPAAm-co-NHMAAm were synthesized by atom transfer radical polymerization (ATRP using CuBr/(N,N,N',N',N''-Pentamethyldiethylenetriamine (PMDETA as a catalyst system and 2-bromo ethyl isobutyrate (EBiB as an initiator. The copolymers were well characterized by Fourier transform infrared spectroscopy (FT-IR, 1H Nuclear magnetic resonance (NMR, and Thermogravimetric analysis (TGA. The copolymers followed a simple rule in their thermosensitive behaviors and have a linear increase in the LCST as a function of NHMAAm mol%. The thermosensitive properties of the copolymer films were investigated and demonstrated hydrophilic-hydrophobic transitions. Finally, the copolymer was grafted onto cotton fabrics using citric acid (CA as a crosslinking agent and sodium hypophosphite (SHP as a catalyst following a two dipping, two padding process. The large number of hydroxyl groups in the copolymer makes grafting convenient and firm. The grafted cotton fabrics show obvious thermosensitive behaviors. The results demonstrate that the cotton fabrics become more hydrophobic when the temperature is higher than the LCST. This study presents a valuable route towards temperature-responsive smart textiles and their potential applications.

  1. Rheological and Mechanical behaviour of Block copolymers, Multigraft copolymers and Block copolymer Nanocomposites

    OpenAIRE

    Thunga, Mahendra

    2009-01-01

    Block copolymers are commercially significant and fundamentally interesting class of polymeric materials. The ability to undergo interfacial thermodynamics-controlled microphase separation from a completely disordered state in the melt to a specifically defined ordered structure through self-organization makes the block copolymers based materials unique. Block copolymer are strongly replacing many of the commercially available polymers due to their unique microstructure and properties. The mo...

  2. Controlled Delivery of Human Cells by Temperature Responsive Microcapsules

    Directory of Open Access Journals (Sweden)

    W.C. Mak

    2015-06-01

    Full Text Available Cell therapy is one of the most promising areas within regenerative medicine. However, its full potential is limited by the rapid loss of introduced therapeutic cells before their full effects can be exploited, due in part to anoikis, and in part to the adverse environments often found within the pathologic tissues that the cells have been grafted into. Encapsulation of individual cells has been proposed as a means of increasing cell viability. In this study, we developed a facile, high throughput method for creating temperature responsive microcapsules comprising agarose, gelatin and fibrinogen for delivery and subsequent controlled release of cells. We verified the hypothesis that composite capsules combining agarose and gelatin, which possess different phase transition temperatures from solid to liquid, facilitated the destabilization of the capsules for cell release. Cell encapsulation and controlled release was demonstrated using human fibroblasts as model cells, as well as a therapeutically relevant cell line—human umbilical vein endothelial cells (HUVECs. While such temperature responsive cell microcapsules promise effective, controlled release of potential therapeutic cells at physiological temperatures, further work will be needed to augment the composition of the microcapsules and optimize the numbers of cells per capsule prior to clinical evaluation.

  3. Polyether/Polyester Graft Copolymers

    Science.gov (United States)

    Bell, Vernon L., Jr.; Wakelyn, N.; Stoakley, D. M.; Proctor, K. M.

    1986-01-01

    Higher solvent resistance achieved along with lower melting temperature. New technique provides method of preparing copolymers with polypivalolactone segments grafted onto poly (2,6-dimethyl-phenylene oxide) backbone. Process makes strong materials with improved solvent resistance and crystalline, thermally-reversible crosslinks. Resulting graft copolymers easier to fabricate into useful articles, including thin films, sheets, fibers, foams, laminates, and moldings.

  4. PEG-b-PCL copolymer micelles with the ability of pH-controlled negative-to-positive charge reversal for intracellular delivery of doxorubicin.

    Science.gov (United States)

    Deng, Hongzhang; Liu, Jinjian; Zhao, Xuefei; Zhang, Yuming; Liu, Jianfeng; Xu, Shuxin; Deng, Liandong; Dong, Anjie; Zhang, Jianhua

    2014-11-10

    The application of PEG-b-PCL micelles was dampened by their inherent low drug-loading capability and relatively poor cell uptake efficiency. In this study, a series of novel PEG-b-PCL copolymers methoxy poly(ethylene glycol)-b-poly(ε-caprolactone-co-γ-dimethyl maleamidic acid -ε-caprolactone) (mPEG-b-P(CL-co-DCL)) bearing different amounts of acid-labile β-carboxylic amides on the polyester moiety were synthesized. The chain structure and chemical composition of copolymers were characterized by (1)H NMR, Fourier transform infrared spectroscopy (FT-IR), and gel permeation chromatography (GPC). mPEG-b-P(CL-co-DCL) with critical micellar concentrations (CMCs) of 3.2-6.3 μg/mL could self-assemble into stable micelles in water with diameters of 100 to 150 nm. Doxorubicin (DOX), a cationic hydrophobic drug, was successfully encapsulated into the polymer micelles, achieving a very high loading content due to electrostatic interaction. Then the stability, charge-conversional behavior, loading and release profiles, cellular uptake and in vitro cytotoxicity of free drug and drug-loaded micelles were evaluated. The β-carboxylic amides functionalized polymer micelles are negatively charged and stable in neutral solution but quickly become positively charged at pH 6.0, due to the hydrolysis of β-carboxylic amides in acidic conditions. The pH-triggered negative-to-positive charge reversal not only resulted in a very fast drug release in acidic conditions, but also effectively enhanced the cellular uptake by electrostatic absorptive endocytosis. The MTT assay demonstrated that mPEG-b-P(CL-co-DCL) micelles were biocompatible to HepG2 cells while DOX-loaded micelles showed significant cytotoxicity. In sum, the introduction of acid-labile β-carboxylic amides on the polyester block in mPEG-b-P(CL-co-DCL) exhibited great potentials for the modifications in the stability in blood circulation, drug solubilization, and release properties, as well as cell internalization and

  5. Block copolymer patterns and templates

    Directory of Open Access Journals (Sweden)

    Mingqi Li

    2006-09-01

    Full Text Available This review describes the chemical and physical aspects of patternable block copolymers and their use for nanostructure fabrication. The patternability of block copolymers results from their ability to self-assemble into microdomains and the manipulation of these patterns by a variety of physical and chemical means. Procedures for achieving long-range lateral order, as well as orientation order of microdomain patterns, are discussed. The level of control that these strategies afford has enabled block copolymers to be used as templates for fabricating a variety of nanostructures.

  6. Tensile actuators of carbon nanotube coiled yarn based on polydiacetylene–pluronic copolymers as temperature indicators

    Science.gov (United States)

    Lee, Hee Uk; Kim, Hyunsoo; Chun, Kyoung-Yong; Kwon, Cheong Hoon; Lima, Márcio D.; Baughman, Ray H.; Kim, Seon Jeong

    2016-07-01

    Most polydiacetylenes (PDAs) have been studied as chromatic sensors or temperature indicators because of their phase transition that is accompanied by a color change from blue to red. Here, we focus on the structural change based on the polydiacetylene phase transition for a temperature-responsive tensile actuator at low temperature using a copolymer composed of PDA and pluronic in a multi-walled carbon nanotube (MWCNT) coiled yarn. In this paper, we do not focus on the general color change phenomenon of PDA. We demonstrate that the volume change of PDA in the MWCNT coiled yarn provides ∼180% tensile strain at low temperature (∼53 °C). Insertion of the pluronic copolymer into the coiled yarn composed of PDA and MWCNT caused the tensile actuation temperature to decrease by ∼6 °C (with tensile actuation of ∼230%) compared to an actuator without pluronic copolymer. Furthermore, we could verify that the large tensile actuation was also predominantly affected by the melting of the nonpolymerized diacetylene (DA) monomer and the pluronic copolymer. MWCNT coiled yarn actuators with PDA-pluronic copolymer can be easily prepared, have a large tensile actuation, and are actuated at low temperature. It could be used as temperature indicators in the food, drugs, and medical fields.

  7. Skin delivery by block copolymer nanoparticles (block copolymer micelles).

    Science.gov (United States)

    Laredj-Bourezg, Faiza; Bolzinger, Marie-Alexandrine; Pelletier, Jocelyne; Valour, Jean-Pierre; Rovère, Marie-Rose; Smatti, Batoule; Chevalier, Yves

    2015-12-30

    Block copolymer nanoparticles often referred to as "block copolymer micelles" have been assessed as carriers for skin delivery of hydrophobic drugs. Such carriers are based on organic biocompatible and biodegradable materials loaded with hydrophobic drugs: poly(lactide)-block-poly(ethylene glycol) copolymer (PLA-b-PEG) nanoparticles that have a solid hydrophobic core made of glassy poly(d,l-lactide), and poly(caprolactone)-block-poly(ethylene glycol) copolymer (PCL-b-PEG) nanoparticles having a liquid core of polycaprolactone. In vitro skin absorption of all-trans retinol showed a large accumulation of retinol in stratum corneum from both block copolymer nanoparticles, higher by a factor 20 than Polysorbate 80 surfactant micelles and by a factor 80 than oil solution. Additionally, skin absorption from PLA-b-PEG nanoparticles was higher by one order of magnitude than PCL-b-PEG, although their sizes (65nm) and external surface (water-swollen PEG layer) were identical as revealed by detailed structural characterizations. Fluorescence microscopy of histological skin sections provided a non-destructive picture of the storage of Nile Red inside stratum corneum, epidermis and dermis. Though particle cores had a different physical states (solid or liquid as measured by (1)H NMR), the ability of nanoparticles for solubilization of the drug assessed from their Hildebrand solubility parameters appeared the parameter of best relevance regarding skin absorption.

  8. Xanthate-Functional Temperature-Responsive Polymers: Effect on Lower Critical Solution Temperature Behavior and Affinity toward Sulfide Surfaces.

    Science.gov (United States)

    Ng, Wei Sung; Forbes, Elizaveta; Franks, George V; Connal, Luke A

    2016-08-01

    Xanthate-functional polymers represent an exciting opportunity to provide temperature-responsive materials with the ability to selectively attach to specific metals, while also modifying the lower critical solution temperature (LCST) behavior. To investigate this, random copolymers of poly(N-isopropylacrylamide) (PNIPAM) with xanthate incorporations ranging from 2 to 32% were prepared via free radical polymerization. Functionalization with 2% xanthate increased the LCST by 5 °C relative to the same polymer without xanthate. With increasing xanthate composition, the transition temperature increased and the transition range broadened until a critical composition of the hydrophilic xanthate groups (≥18%) where the transition disappeared completely. The adsorption of the polymers at room temperature onto chalcopyrite (CuFeS2) surfaces increased with xanthate composition, while adsorption onto quartz (SiO2) was negligible. These findings demonstrate the affinity of these functional smart polymers toward copper iron sulfide relative to quartz surfaces, presumably due to the interactions between xanthate and specific metal centers. PMID:27434760

  9. "Giant surfactants" created by the fast and efficient functionalization of a DNA tetrahedron with a temperature-responsive polymer.

    Science.gov (United States)

    Wilks, Thomas R; Bath, Jonathan; de Vries, Jan Willem; Raymond, Jeffery E; Herrmann, Andreas; Turberfield, Andrew J; O'Reilly, Rachel K

    2013-10-22

    Copper catalyzed azide-alkyne cycloaddition (CuAAC) was employed to synthesize DNA block copolymers (DBCs) with a range of polymer blocks including temperature-responsive poly(N-isoproylacrylamide) (poly(NIPAM)) and highly hydrophobic poly(styrene). Exceptionally high yields were achieved at low DNA concentrations, in organic solvents, and in the absence of any solid support. The DNA segment of the DBC remained capable of sequence-specific hybridization: it was used to assemble a precisely defined nanostructure, a DNA tetrahedron, with pendant poly(NIPAM) segments. In the presence of an excess of poly(NIPAM) homopolymer, the tetrahedron-poly(NIPAM) conjugate nucleated the formation of large, well-defined nanoparticles at 40 °C, a temperature at which the homopolymer precipitated from solution. These composite nanoparticles were observed by dynamic light scattering and cryoTEM, and their hybrid nature was confirmed by AFM imaging. As a result of the large effective surface area of the tetrahedron, only very low concentrations of the conjugate were required in order for this surfactant-like behavior to be observed.

  10. Non-monotonic temperature response of polymer mediated interactions.

    Science.gov (United States)

    Xie, Fei; Woodward, Clifford E; Forsman, Jan

    2016-01-21

    In a recent publication, Feng et al. [Feng et al., Nat. Mater., 2015, 14, 61] reported a very interesting re-entrant solidification behaviour of colloidal particles in an aqueous solution containing polyethylene oxide (PEO). In this system, a crystalline colloidal phase, which is present at low temperatures, melts to a homogeneous fluid upon increasing the temperature. Further raising the temperature, however, eventually gives rise to a flocculated colloidal phase. Feng et al. proposed that the low-temperature crystalline phase is caused by polymer depletion while, at higher temperature, an increased attraction between polymers and particles leads to bridging attractions, and colloidal flocculation. The intermediate temperature regime sees the colloidal interactions dominated by charge repulsion, giving rise to a fluid phase. In the model by Feng et al., polymers are treated as hard spheres, which interact with the colloids via a phenomenological, temperature dependent potential. In this work, we develop a more detailed polymer density functional treatment, based on a model for aqueous PEO solutions that was originally developed by Karlström [Karlström, J. Phys. Chem., 1985, 89, 4962] for bulk solutions. In this model, monomers are assumed to be in either of two classes of states, labelled A and B, where B is more solvophobic than A. On the other hand, the degeneracy of the B states exceed that of A, causing the population of solvophobic monomers to increase with temperature. If the colloidal particles are also solvophobic, then this model displays the same qualitative temperature response as was observed by Feng et al. That is, at low temperatures, A type monomers predominate and one observes depletion interactions, whereas polymer bridging dominates at higher temperatures, due to the attraction between B-type monomers and the colloidal surface. Interestingly, the intermediate temperature regime is characterized by a polymer mediated interaction between colloids

  11. BARRIER PROPERTIES OF VINYLIDENE CHLORIDE COPOLYMERS

    Institute of Scientific and Technical Information of China (English)

    LI Yuesheng; WENG Zhixue; HUANG Zhiming; PAN Zuren

    1996-01-01

    The permeability coefficients of a series of copolymers of vinylidene chloride (VDC)with methyl acrylate (MA), butyl acrylate (BA) or vinyl chloride (VC) (as comonomer)to oxygen and carbon dioxide have been measured at 1.0 MPa and 30℃, while those to water vapor have been measured at 30℃ and 100% relative humidity. All the copolymers are semicrystalline. VDC/MA copolymers have lower melting temperature compared with VDC/BA copolymers, while that melting temperature of VDC/VC copolymer is higher than that of VDC/acrylate copolymers with the same VDC content. The barrier property of the copolymers is predominantly controlled by crystallite, free volume fraction, and cohesive energy. The permeability coefficients of VDC/MA copolymers to oxygen, carbon dioxide, and water vapor were successfully correlated with the ratio of free volume to cohesive energy.

  12. Gyroid Membranes made from Nanoporous Blck Copolymers

    DEFF Research Database (Denmark)

    Szewczykowski, Piotr Plzemystaw; Vigild, Martin Etchells; Ndoni, Sokol;

    2007-01-01

    Nanoporous materials are interesting and exciting materials in view of their many potential applications, especially as ultrafiltration membranes. One way of preparing nanoporous polymeric materials is to use block copolymers. Block copolymers have the great advantage that they organize them...

  13. 21 CFR 173.65 - Divinylbenzene copolymer.

    Science.gov (United States)

    2010-04-01

    ... CONSUMPTION Polymer Substances and Polymer Adjuvants for Food Treatment § 173.65 Divinylbenzene copolymer. Divinylbenzene copolymer may be used for the removal of organic substances from aqueous foods under the following... contacting the polymer is maintained at 79.4 °C (175 °F) or less. (d) The copolymer may be used in...

  14. Greenland temperature response to climate forcing during the last deglaciation

    Science.gov (United States)

    Buizert, C.; Gkinis, V.; Severinghaus, J. P.; He, F.; Lecavalier, B.; Kindler, P.; Leuenberger, M.; Carlson, A. E.; Vinther, B.; White, J. W.; Liu, Z.; Otto-Bliesner, B. L.; Brook, E.

    2013-12-01

    Much of the regional and global climate variability during the last glacial termination (19-11 ka BP) can be explained as the superposition of two distinct modes (1, 2); a spatially uniform increase in global temperature correlated with greenhouse gas forcing, and a redistribution of heat associated with variability in the Atlantic meridional overturning circulation (AMOC) strength. The latter mode is expressed most clearly in the abrupt climate shifts recorded in the precipitation isotopic composition (δ18O) of Greenland ice cores, which are now widely used as a template for abrupt change in the northern hemisphere. Greenland δ18O is influenced by many factors, including source temperature, moisture transport and origin, and precipitation seasonality, complicating reconstruction of past temperatures. Here we use three non-δ18O temperature reconstructions from three ice cores and a general circulation model (GCM) to elucidate the (often abrupt) Greenland surface temperature response to external (insolation) and internal (CO2, AMOC, ice topography) climate forcings during the last termination. Our reconstructions are based on δ15N (NEEM, GISP2) and water isotope diffusion (NGRIP), both of which depend on physical processes in the firn column. The GCM and our reconstructions show excellent agreement on several key features. First, we find that the Younger Dryas (YD) period was 4-6oC warmer than the Oldest Dryas (OD) period in response to increased summer insolation and CO2 forcing. By contrast, δ18O-based reconstrucions from Greenland summit suggest the YD to be the colder of the two periods. Our finding is consistent with non-ice core NH proxy reconstructions, as well as with East Greenland deglacial moraine sequences that suggest only a modest glacial re-advance during the YD. Second, the YD-OD temperature difference shows a polar amplification signal, with warming being greatest at the northernmost NEEM site. By isolating different forcings in the GCM, we

  15. Micellization and Dynamics of a Block Copolymer

    DEFF Research Database (Denmark)

    Hvidt, Søren

    2006-01-01

    Triblock copolymers of the type EPE, where E and P denote ethylene oxide and propylene oxide blocks, respectively, are industrially important copolymers often called Pluronics or Poloxamers. EPE copolymers form micelles with a core of P blocks and different micellar shapes depending on block length...... copolymer mixtures, and evidence in favor of a multi-equilibria unimer-micelle model will be presented. Results obtained by liquid chromatographic methods will be shown and it will be demonstrated that commercial EPE copolymers are inhomogeneous at several levels and many of their unusual properties reflect...

  16. Polyether-polyester graft copolymer

    Science.gov (United States)

    Bell, Vernon L. (Inventor)

    1987-01-01

    Described is a polyether graft polymer having improved solvent resistance and crystalline thermally reversible crosslinks. The copolymer is prepared by a novel process of anionic copolymerization. These polymers exhibit good solvent resistance and are well suited for aircraft parts. Previous aromatic polyethers, also known as polyphenylene oxides, have certain deficiencies which detract from their usefulness. These commercial polymers are often soluble in common solvents including the halocarbon and aromatic hydrocarbon types of paint thinners and removers. This limitation prevents the use of these polyethers in structural articles requiring frequent painting. In addition, the most popular commercially available polyether is a very high melting plastic. This makes it considerably more difficult to fabricate finished parts from this material. These problems are solved by providing an aromatic polyether graft copolymer with improved solvent resistance and crystalline thermally reversible crosslinks. The graft copolymer is formed by converting the carboxyl groups of a carboxylated polyphenylene oxide polymer to ionic carbonyl groups in a suitable solvent, reacting pivalolactone with the dissolved polymer, and adding acid to the solution to produce the graft copolymer.

  17. Impacts of Repeat Unit Structure and Copolymer Architecture on Thermal and Solution Properties in Homopolymers, Copolymers, and Copolymer Blends

    Science.gov (United States)

    Marrou, Stephen Raye

    Gradient copolymers are a relatively new type of copolymer architecture in which the distribution of comonomers gradually varies over the length of the copolymer chain, resulting in a number of unusual properties derived from the arrangement of repeat units. For example, nanophase-segregated gradient copolymers exhibit extremely broad glass transition temperatures (Tgs) resulting from the wide range of compositions present in the nanostructure. This dissertation presents a number of studies on how repeat unit structure and copolymer architecture dictate bulk and solution properties, specifically taking inspiration from the gradient copolymer architecture and comparing the response from this compositionally heterogeneous material to other more conventional materials. The glass transition behavior of a range of common homopolymers was studied to determine the effects of subunit structure on Tg breadth, observing a significant increase in T g breadth with increasing side chain length in methacrylate-based homopolymers and random copolymers. Additionally, increasing the composition distribution of copolymers, either by blending individual random copolymers of different overall composition or synthesizing random copolymers to high conversion, resulted in significant increases to Tg breadth. Plasticization of homopolymers and random copolymers with low molecular weight additives also served to increase the Tg breadth; the most dramatic effect was observed in the selective plasticization of a styrene/4-vinylpyridine gradient copolymer with increases in T g breadth to values above 100 °C. In addition, the effects of repeat unit structure and copolymer architecture on other polymer properties besides Tg were also investigated. The intrinsic fluorescence of styrene units in styrene-containing copolymers was studied, noting the impact of repeat unit structure and copolymer architecture on the resulting fluorescence spectra in solution. The impact of repeat unit structure on

  18. The role of spatial scale and background climate in the latitudinal temperature response to deforestation

    OpenAIRE

    Li, Y.; de Noblet-Ducoudré, N.; E. L. Davin; Zeng, N; S. Motesharrei; S.C. Li; Kalnay, E.

    2015-01-01

    Previous modeling and empirical studies have shown that the biophysical impact of deforestation is to warm the tropics and cool the extra-tropics. In this study, we use an earth system model to investigate how deforestation at various spatial scales affects ground temperature, with an emphasis on the latitudinal temperature response and its underlying mechanisms. Results show that the latitudinal pattern of temperature response depends non-linearly on the s...

  19. The role of spatial scale and background climate in the latitudinal temperature response to deforestation

    OpenAIRE

    Li, Yan; De Noblet-Ducoudré, Nathalie; Davin, Edouard L.; Motesharrei, Safa; Zeng, Ning; Li, Shuangcheng; Kalnay, Eugenia

    2016-01-01

    Previous modeling and empirical studies have shown that the biophysical impact of deforestation is to warm the tropics and cool the extratropics. In this study, we use an earth system model of intermediate complexity to investigate how deforestation on various spatial scales affects ground temperature, with an emphasis on the latitudinal temperature response and its underlying mechanisms. Results show that the latitudinal pattern of temperature response depends nonlinearly o...

  20. A simple and inexpensive enteric-coated capsule for delivery of acid-labile macromolecules to the small intestine%题目:一种用于递送酸度敏感大分子到小肠的简易且廉价的肠溶胶囊

    Institute of Scientific and Technical Information of China (English)

    Darren S MILLER; Rezaul BEGG; Syed Mahfuzul AZIZ; Ross N BUTLER; Anne Michelle PARSONS; John BRESLAND; Paul HERDE; Duc Minh PHAM; Angel TAN; Hung-yao HSU; Clive A PRESTIDGE; Tim KUCHEL

    2015-01-01

    Understanding the ecology of the gastrointestinal tract and the impact of the contents on the host mucosa is emerging as an important area for defining both welness and susceptibility to disease. Targeted delivery of drugs to treat specific smal intestinal disorders such as smal bowel bacterial overgrowth and targeting molecules to interrogate or to deliver vaccines to the remote regions of the smal intestine has proven difficult. There is an unmet need for methodologies to release probes/drugs to remote regions of the gastrointestinal tract in furthering our understanding of gut health and pathogenesis. In order to address this concern, we need to know how the regional delivery of a sur-rogate labeled test compound is handled and in turn, if delivered localy as a liquid or powder, the dynamics of its subsequent handling and metabolism. In the studies we report on in this paper, we chose13C sodium acetate (13C-acetate), which is a stable isotope probe that once absorbed in the smal intestine can be readily measured non-invasively by colection and analysis of13CO2 in the breath. This would provide information of gastric emptying rates and an indication of the site of release and absorptive capacity. In a series ofin vitro andin vivo pig experiments, we assessed the enteric-protective properties of a commercialy available polymer EUDRAGIT® L100-55 on gelatin capsules and also on DRcaps®. Test results demonstrated that DRcaps® coated with EUDRAGIT® L100-55 possessed enhanced enteric-protective properties, particularlyin vivo. These studies add to the body of knowledge regarding gastric emptying in pigs and also begin the process of gathering specifications for the design of a simple and cost-effective enteric-coated capsule for delivery of acid-labile macromolecules to the smal intestine.%目的:通过开展胃肠道远端释放药物的研究,以增加对肠道健康和发病机制的理解。创新点:本研究选择了13C醋酸钠作为同位素探针,

  1. A simple and inexpensive enteric-coated capsule for delivery of acid-labile macromolecules to the small intestine%题目:一种用于递送酸度敏感大分子到小肠的简易且廉价的肠溶胶囊

    Institute of Scientific and Technical Information of China (English)

    Darren S MILLER; Rezaul BEGG; Syed Mahfuzul AZIZ; Ross N BUTLER; Anne Michelle PARSONS; John BRESLAND; Paul HERDE; Duc Minh PHAM; Angel TAN; Hung-yao HSU; Clive A PRESTIDGE; Tim KUCHEL

    2015-01-01

    enteric-protective properties of a commercialy available polymer EUDRAGIT® L100-55 on gelatin capsules and also on DRcaps®. Test results demonstrated that DRcaps® coated with EUDRAGIT® L100-55 possessed enhanced enteric-protective properties, particularlyin vivo. These studies add to the body of knowledge regarding gastric emptying in pigs and also begin the process of gathering specifications for the design of a simple and cost-effective enteric-coated capsule for delivery of acid-labile macromolecules to the smal intestine.

  2. Kinking mechanisms in block copolymers

    Science.gov (United States)

    Polis, Daniel L.; Winey, Karen I.

    1998-03-01

    Two of the primary models proposed for kink formation are fixed hinge rotation and boundary migration. Our results regarding steady shear induced kink bands in an aligned lamellar poly(styrene-b-ethylene propylene) diblock copolymer are consistent with a fixed hinge rotation mechanism. When the shear strain is above a critical strain, a range of kink widths and kink angles are produced at each shear rate studied. Moreover, the kink widths are independent of rate and strain, having a characteristic size similar to that of remaining defects in the initially aligned block copolymer. Rounded folds, similar in size, shape, and orientation to kink bands, are produced at these residual defects at shear strains below the critical stain. These rounded folds may sharpen into angular folds or kink bands with additional strain.

  3. Photo-Induced Micellization of Block Copolymers

    OpenAIRE

    Satoshi Kuwayama; Eri Yoshida

    2010-01-01

    We found novel photo-induced micellizations through photolysis, photoelectron transfer, and photo-Claisen rearrangement. The photolysis-induced micellization was attained using poly(4-tert-butoxystyrene)-block-polystyrene diblock copolymer (PBSt-b-PSt). BSt-b-PSt showed no self-assembly in dichloromethane and existed as isolated copolymers. Dynamic light scattering demonstrated that the copolymer produced spherical micelles in this solvent due to irradiation with a high-pressure mercury lamp ...

  4. The influence of chain stretching on the phase behavior of multiblock copolymer and comb copolymer melts

    NARCIS (Netherlands)

    Angerman, HJ; ten Brinke, G

    2003-01-01

    The subject of this paper is inspired by microphase-separated copolymer melts in which a small-scale structure is present inside one of the phases of a large-scale structure. Such a situation can arise in a diblock copolymer melt, if one of the blocks of the diblock is in itself a multiblock copolym

  5. Blends of Styrene-Butadiene-Styrene Triblock Copolymer with Random Styrene-Maleic Anhydride Copolymers

    NARCIS (Netherlands)

    Piccini, Maria Teresa; Ruggeri, Giacomo; Passaglia, Elisa; Picchioni, Francesco; Aglietto, Mauro

    2002-01-01

    Blends of styrene-butadiene-styrene triblock copolymer (SBS) with random styrene-maleic anhydride copolymers (PS-co-MA), having different MA content, were prepared in a Brabender Plastigraph mixer. The presence of polystyrene (PS) blocks in the SBS copolymer and the high styrene content (93 and 86 w

  6. Copolymers of fluorinated polydienes and sulfonated polystyrene

    Science.gov (United States)

    Mays, Jimmy W.; Gido, Samuel P.; Huang, Tianzi; Hong, Kunlun

    2009-11-17

    Copolymers of fluorinated polydienes and sulfonated polystyrene and their use in fuel cell membranes, batteries, breathable chemical-biological protective materials, and templates for sol-gel polymerization.

  7. A study on fabrication of polyester copolymers(IV): Physical properties of PET/BPA copolymer

    Energy Technology Data Exchange (ETDEWEB)

    Hyun, E.J.; Lee, S.H. [Yeungnam University, Kyongsan (Korea); Gal, Y.S. [Kyungil Univeristy, Kyongsan (Korea); Jang, S.H. [Kumi College, Kumi (Korea); Choi, H.K. [Sangju National University, Sangju (Korea); Shin, B.Y.; Sur, G.S.; Kim, B.S. [Yeungnam University, Kyongsan (Korea)

    2001-03-01

    PET/BPA copolymer of terephthalic acid, bisphenol-A and ethylene glycol was melt-pressed and quenched in ice water. This copolymer film was drawn by capillary rheometer. Shrinkage, crystallinity, morphology, thermal, dynamic mechanical, and mechanical properties of these copolymer films were investigated. The PET/BPA copolymer film exhibited T{sub m} lower than that of PET film. The crystallinity and density of these drawn copolymer films increased with draw ratio and draw rate but decreased with draw temperature. The tensile strength and tensile modulus of the copolymer films increased with draw ratio but decreased with draw temperature. Shrinkage of the drawn copolymer film decreased with draw ratio and draw rate. (author). 32 refs., 17 figs.

  8. Thermochemical characteristics of chitosan-polylactide copolymers

    Science.gov (United States)

    Goruynova, P. E.; Larina, V. N.; Smirnova, N. N.; Tsverova, N. E.; Smirnova, L. A.

    2016-05-01

    The energies of combustion of chitosan and its block-copolymers with different polylactide contents are determined in a static bomb calorimeter. Standard enthalpies of combustion and formation are calculated for these substances. The dependences of the thermochemical characteristics on block-copolymer composition are determined and discussed.

  9. Copolymers at the solid-liquid interface.

    NARCIS (Netherlands)

    Wijmans, C.M.

    1994-01-01

    Copolymers consisting of both adsorbing and nonadsorbing segments can show an adsorption behaviour which is very different from that of homopolymers. We have mainly investigated the adsorption of AB diblock copolymers, which have one adsorbing block (anchor) and one nonadsorbing block (buoy). The an

  10. PEO-related block copolymer surfactants

    DEFF Research Database (Denmark)

    Mortensen, K.

    2001-01-01

    Non-ionic block copolymer systems based on hydrophilic poly(ethylene oxide) and more hydrophobic co-polymer blocks are used intensively in a variety of industrial and personal applications. A brief description on the applications is presented. The physical properties of more simple model systems...

  11. STUDY ON POLYSULFONE-POLYESTER BLOCK COPOLYMERS

    Institute of Scientific and Technical Information of China (English)

    DING Youjun; QI Daquan

    1988-01-01

    Synthesis and characterization of a series of Polysulfone (PSF)-Polyester (PEs) block copolymers were studied.The degree of randomness (B) of these block copolymers was calculated from the intensities of their proton signals in 1H NMR spectra and lies in the region of 0 < B < 1. It was shown that the degree of randomness (B) and the average sequence length (L) in block copolymers were relatively dependent on the reaction conditions, various feed ratios and structure of diols.The phenomenon was observed, when the PSF-PEs block copolymers dissolved in different solvents they had different viscosities and molecular conformations.The PSF-PEs block copolymers had better solvent resistance than homo-polysulfone.

  12. Copolymer Melts in Disordered Media

    OpenAIRE

    Stepanow, S.; Dobrynin, A.; Vilgis, T.; Binder, K.

    1996-01-01

    We have considered a symmetric AB block copolymer melt in a gel matrix with preferential adsorption of A monomers on the gel. Near the point of the microphase separation transition such a system can be described by the random field Landau-Brazovskii model, where randomness is built into the system during the polymerization of the gel matrix. By using the technique of the 2-nd Legendre transform, the phase diagram of the system is calculated. We found that preferential adsorption of the copoly...

  13. Preparation and Investigation of Poly (N-isopropylacrylamide-acrylamide Membranes in Temperature Responsive Drug Delivery

    Directory of Open Access Journals (Sweden)

    Elham Khodaverdi

    2010-06-01

    Full Text Available Objective(sPhysiological changes in the body may be utilized as potential triggers for controlled drug delivery. Based on these mechanisms, stimulus–responsive drug delivery has been developed.Materials and MethodsIn this study, a kind of poly (N-isopropylacrylamide-acrylamide membrane was prepared by radical copolymerization. Changes in swelling ratios and diameters of the membrane were investigated in terms of temperature. On-off regulation of drug permeation through the membrane was then studied at temperatures below and above the phase transition temperature of the membrane. Two drugs, vitamin B12 and acetaminophen were chosen as models of high and low molecular weights here, respectively. ResultsIt was indicated that at temperatures below the phase transition temperature of the membrane, copolymer was in a swollen state. Above the phase transition temperature, water was partially expelled from the functional groups of the copolymer. Permeation of high molecular weight drug models such as vitamin B12 was shown to be much more distinct at temperatures below the phase transition temperature when the copolymer was in a swollen state. At higher temperatures when the copolymer was shrunken, drug permeation through the membrane was substantially decreased. However for acetaminophen, such a big change in drug permeation around the phase transition temperature of the membrane was not observed. ConclusionAccording to the pore mechanism of drug transport through hydrogels, permeability of solutes decreased with increasing molecular size. As a result, the relative permeability, around the phase transition temperature of the copolymer, was higher for solutes of high molecular weight.

  14. Rapid self-assembly of block copolymers to photonic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Yan; Sveinbjornsson, Benjamin R; Grubbs, Robert H; Weitekamp, Raymond; Miyake, Garret M; Atwater, Harry A; Piunova, Victoria; Daeffler, Christopher Scot; Hong, Sung Woo; Gu, Weiyin; Russell, Thomas P.

    2016-07-05

    The invention provides a class of copolymers having useful properties, including brush block copolymers, wedge-type block copolymers and hybrid wedge and polymer block copolymers. In an embodiment, for example, block copolymers of the invention incorporate chemically different blocks comprising polymer size chain groups and/or wedge groups that significantly inhibit chain entanglement, thereby enhancing molecular self-assembly processes for generating a range of supramolecular structures, such as periodic nanostructures and microstructures. The present invention also provides useful methods of making and using copolymers, including block copolymers.

  15. NANOSTRUCTURES OF FUNCTIONAL BLOCK COPOLYMERS

    Institute of Scientific and Technical Information of China (English)

    Guojun Liu

    2000-01-01

    Nanostructure fabrication from block copolymers in my group normally involves polymer design, synthesis, selfassembly, selective domain crosslinking, and sometimes selective domain removal. Preparation of thin films with nanochannels was used to illustrate the strategy we took. In this particular case, a linear triblock copolymer polyisopreneblock-poly(2-cinnamoylethyl methacrylate)-block-poly(t-butyl acrylate), PI-b-PCEMA-b-PtBA, was used. Films, 25 to50μm thick, were prepared from casting on glass slides a toluene solution of PI-b-PCEMA-b-PtBA and PtBA homopolymer,hPtBA, where hPtBA is shorter than the PtBA block. At the hPtBA mass fraction of 20% relative to the triblock or the total PtBA (hPtBA and PtBA block) volume fraction of 0.44, hPtBA and PtBA formed a seemingly continuous phase in the matrix of PCEMA and PI. Such a block segregation pattern was locked in by photocrosslinking the PCEMA domain. Nanochannels were formed by extracting out hPtBA with solvent. Alternatively, larger channels were obtained from extracting out hPtBA and hydrolyzing the t-butyl groups of the PtBA block. Such membranes were not liquid permeable but had gas permeability constants ~6 orders of magnitude higher than that of low-density polyethylene films.

  16. Block copolymer membranes for aqueous solution applications

    KAUST Repository

    Nunes, Suzana Pereira

    2016-03-22

    Block copolymers are known for their intricate morphology. We review the state of the art of block copolymer membranes and discuss perspectives in this field. The main focus is on pore morphology tuning with a short introduction on non-porous membranes. The two main strategies for pore formation in block copolymer membranes are (i) film casting and selective block sacrifice and (ii) self-assembly and non-solvent induced phase separation (SNIPS). Different fundamental aspects involved in the manufacture of block copolymer membranes are considered, including factors affecting the equilibrium morphology in solid films, self-assembly of copolymer in solutions and macrophase separation by solvent-non-solvent exchange. Different mechanisms are proposed for different depths of the SNIPS membrane. Block copolymer membranes can be prepared with much narrower pore size distribution than homopolymer membranes. Open questions and indications of what we consider the next development steps are finally discussed. They include the synthesis and application of new copolymers and specific functionalization, adding characteristics to respond to stimuli and chemical environment, polymerization-induced phase separation, and the manufacture of organic-inorganic hybrids.

  17. Germination rates of Solanum sisymbriifolium: temperature response models, effects of temperature fluctuations and soil water potential

    NARCIS (Netherlands)

    Timmermans, B.G.H.; Vos, J.; Nieuwburg, van J.G.W.; Stomph, T.J.; Putten, van der P.E.L.

    2007-01-01

    Four temperature response models were compared describing the emergence rate of Solanum sisymbriifolium (L.) over a broad range of suboptimal temperatures and at different soil water potentials. In the laboratory, the effects were tested on germination rates at constant (9.1-21.8 degrees C) and diur

  18. Spectroelectrochemistry of aniline-o-aminophenol copolymers

    Energy Technology Data Exchange (ETDEWEB)

    Shah, Anwar-ul-Haq Ali [Institute fuer Chemie, AG Elektrochemie, Technische Universitaet Chemnitz, 09107 Chemnitz (Germany); Holze, Rudolf [Institute fuer Chemie, AG Elektrochemie, Technische Universitaet Chemnitz, 09107 Chemnitz (Germany)]. E-mail: rudolf.holze@chemie.tu-chemnitz.de

    2006-11-12

    Electroactive copolymers of aniline and o-aminophenol (OAP) with varying concentration ratios prepared by potential cycling in acidic aqueous solutions of the monomers on indium-doped tin oxide (ITO) coated glass and gold electrodes were studied with in situ UV-vis and Raman spectroscopy. Characteristic UV-vis and Raman features have been identified and their dependencies on the electrode potential are discussed. Spectroelectrochemical results reveal the formation of polyaniline-based copolymers at low concentration of OAP in the feed but incorporation of more OAP units into the copolymer with higher concentration of OAP in the comonomer feed. Spectroelectrochemical features are significantly different from those of both homopolymers.

  19. Silica reinforced triblock copolymer gels

    DEFF Research Database (Denmark)

    Theunissen, E.; Overbergh, N.; Reynaers, H.;

    2004-01-01

    The effect of silica and polymer coated silica particles as reinforcing agents on the structural and mechanical properties of polystyrene-poly(ethylene/butylene)-polystyrene (PS-PEB-PS) triblock gel has been investigated. Different types of chemically modified silica have been compared in order...... to evaluate the influence of the compatibility between gel and filler. Time-resolved SANS and small-angle X-ray scattering (SAXS) shows that the presence of silica particles affects the ordering of the polystyrene domains during gelsetting. The scattering pattern of silica-reinforced gels reveals strong...... scattering at very low q, but no structure and formfactor information. However, on heating above the viscoelastic to plastic transition, the 'typical' scattering pattern of the copolymer gel builds-up. All reinforced gels are strengthened by the addition of the reinforcing agent. The transitions from...

  20. TRANSITION IN THE MELT OF FEP COPOLYMER

    Institute of Scientific and Technical Information of China (English)

    SHI Guanyi; YUE Junshi

    1983-01-01

    The nature of the transition in molten FEP copolymer was examined in relation to the enthalpy change, mechanical damping and melt viscosity. For a pre-heat-treated FEP copolymer sample a small endothermic peak appeared at 309-312 ℃ in DSC trace with enthalpy change 0.03-0.05cal/g. A peak was also detected in damping versus temperature curve at the same temperature range.The rheological property of FEP copolymer melt was similar to that of liquid crystal, but no birefrigence was viewed in the melt. Therefore the transition was explained as the melting of small crystallites which persist in typical copolymer beyond its melting temperature. These crystallites can act as nuclei for crystallization upon cooling.

  1. Silicone containing copolymers: Synthesis, properties and applications

    OpenAIRE

    Yılgör, Emel; Yılgör, İskender

    2013-01-01

    Accepted Manuscript Title: Silicone containing copolymers: Synthesis, properties and applications Author: Emel Yilgor Iskender Yilgor PII: S0079-6700(13)00141-X DOI: http://dx.doi.org/doi:10.1016/j.progpolymsci.2013.11.003 Reference: JPPS 848 To appear in: Progress in Polymer Science Received date: 1-8-2013 Revised date: 4-11-2013 Accepted date: 8-11-2013 Please cite this article as: Yilgor E, Yilgor I, Silicone containing copolymers: Synthesis, properties ...

  2. Functional Nanoporous Polymers from Block Copolymer Precursors

    OpenAIRE

    Guo, Fengxiao

    2010-01-01

    Abstract Self-assembly of block copolymers provides well-defined morphologies with characteristic length scales in the nanometer range. Nanoporous polymers prepared by selective removal of one block from self-assembled block copolymers offer great technological promise due to their many potential applications as, e.g., membranes for separation and purification, templates for nanostructured materials, sensors, substrates for catalysis, low dielectric constant materials, photonic materials, and...

  3. Responsive Copolymers for Enhanced Petroleum Recovery

    Energy Technology Data Exchange (ETDEWEB)

    McCormick, C.; Hester, R.

    2001-02-27

    The objectives of this work was to: synthesize responsive copolymer systems; characterize molecular structure and solution behavior; measure rheological properties of aqueous fluids in fixed geometry flow profiles; and to tailor final polymer compositions for in situ rheology control under simulated conditions. This report focuses on the synthesis and characterization of novel stimuli responsive copolymers, the investigation of dilute polymer solutions in extensional flow and the design of a rheometer capable of measuring very dilute aqueous polymer solutions at low torque.

  4. Closely related freshwater macrophyte species, Ceratophyllum demersum and C. submersum, differ in temperature response

    DEFF Research Database (Denmark)

    Hyldgaard, Benita; Sorrell, Brian Keith; Brix, Hans

    2014-01-01

    in the short term, inhibited photosynthesis in the long term and resulted in lower growth rates of C. submersum, both compared to C. demersum and to growth rates at intermediate temperatures (18 and 25 °C). 3. The long-term acclimation strategy differed between the two species. Ceratophyllum demersum achieved...... optimum. Hence, this study highlights key issues that need to be examined carefully to improve models predicting future temperature responses of aquatic plants.......1. The importance of temperature responses of photosynthesis and respiration in determining species distributions was compared in two closely related freshwater macrophytes, Ceratophyllum demersum and C. submersum. The two species differed significantly in response to temperature in the short...

  5. Temperature response of a number of plastic dosimeters for radiation processing

    Science.gov (United States)

    Sohrabpour, M.; Kazemi, A. A.; Mousavi, H.; Solati, K.

    1993-10-01

    Various plastic dosemeters are employed for dosimetry control of radiation processing within gamma and electron irradiation facilities. The temperature response of a dosimeter is important when the dose to such a dosimeter is accumulated under varying irradiation temperatures. Such measurements would be significant for proper assessment of the dose for better process control, as well as, performance evaluation of dosimetry systems. In this work we have developed a high current peltier junction temperature controller system for our Gammacell-220. This system has been designed to regulate the operating temperature of the irradiation chamber in the range of 0 to 80 C this system has been applied to measure the temperature response of the red perspex, a local clear PMMA, Gammex, Gammachrome, and Gafchromic dosimeters. The curves of relative performance or variation of the induced optical densities of the above dosemeters versus the irradiation temperature at fixed dose values are obtained.

  6. Convergence in the temperature response of leaf respiration across biomes and plant functional types.

    Science.gov (United States)

    Heskel, Mary A; O'Sullivan, Odhran S; Reich, Peter B; Tjoelker, Mark G; Weerasinghe, Lasantha K; Penillard, Aurore; Egerton, John J G; Creek, Danielle; Bloomfield, Keith J; Xiang, Jen; Sinca, Felipe; Stangl, Zsofia R; Martinez-de la Torre, Alberto; Griffin, Kevin L; Huntingford, Chris; Hurry, Vaughan; Meir, Patrick; Turnbull, Matthew H; Atkin, Owen K

    2016-04-01

    Plant respiration constitutes a massive carbon flux to the atmosphere, and a major control on the evolution of the global carbon cycle. It therefore has the potential to modulate levels of climate change due to the human burning of fossil fuels. Neither current physiological nor terrestrial biosphere models adequately describe its short-term temperature response, and even minor differences in the shape of the response curve can significantly impact estimates of ecosystem carbon release and/or storage. Given this, it is critical to establish whether there are predictable patterns in the shape of the respiration-temperature response curve, and thus in the intrinsic temperature sensitivity of respiration across the globe. Analyzing measurements in a comprehensive database for 231 species spanning 7 biomes, we demonstrate that temperature-dependent increases in leaf respiration do not follow a commonly used exponential function. Instead, we find a decelerating function as leaves warm, reflecting a declining sensitivity to higher temperatures that is remarkably uniform across all biomes and plant functional types. Such convergence in the temperature sensitivity of leaf respiration suggests that there are universally applicable controls on the temperature response of plant energy metabolism, such that a single new function can predict the temperature dependence of leaf respiration for global vegetation. This simple function enables straightforward description of plant respiration in the land-surface components of coupled earth system models. Our cross-biome analyses shows significant implications for such fluxes in cold climates, generally projecting lower values compared with previous estimates.

  7. Preparation and properties of fast temperature-responsive soy protein/PNIPAAm IPN hydrogels

    Directory of Open Access Journals (Sweden)

    Liu Yong

    2014-01-01

    Full Text Available The interpenetrating polymer network of fast temperature-responsive hydrogels based on soy protein and poly(N-isopropylacrylamide were successfully prepared using the sodium bicarbonate (NaHCO3 solutions as the reaction medium. The structure and properties of the hydrogels were characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, differential scanning calorimetry and thermal gravimetric analysis. The swelling and deswelling kinetics were also investigated in detail. The results have shown that the proposed hydrogels had high porous structure, good miscibility and thermal stability, and fast temperature responsivity. The presence of NaHCO3 had little effect on the volume phase transition temperature (VPTT of the hydrogels, and the VPTTs were at about 32°C. Compared with the traditional hydrogels, the proposed hydrogels had much faster swelling and deswelling rate. The swelling mechanism of the hydrogels was the non-Fickian diffusion. This fast temperature-responsive hydrogels may have potential applications in the field of biomedical materials.

  8. Convergence in the temperature response of leaf respiration across biomes and plant functional types.

    Science.gov (United States)

    Heskel, Mary A; O'Sullivan, Odhran S; Reich, Peter B; Tjoelker, Mark G; Weerasinghe, Lasantha K; Penillard, Aurore; Egerton, John J G; Creek, Danielle; Bloomfield, Keith J; Xiang, Jen; Sinca, Felipe; Stangl, Zsofia R; Martinez-de la Torre, Alberto; Griffin, Kevin L; Huntingford, Chris; Hurry, Vaughan; Meir, Patrick; Turnbull, Matthew H; Atkin, Owen K

    2016-04-01

    Plant respiration constitutes a massive carbon flux to the atmosphere, and a major control on the evolution of the global carbon cycle. It therefore has the potential to modulate levels of climate change due to the human burning of fossil fuels. Neither current physiological nor terrestrial biosphere models adequately describe its short-term temperature response, and even minor differences in the shape of the response curve can significantly impact estimates of ecosystem carbon release and/or storage. Given this, it is critical to establish whether there are predictable patterns in the shape of the respiration-temperature response curve, and thus in the intrinsic temperature sensitivity of respiration across the globe. Analyzing measurements in a comprehensive database for 231 species spanning 7 biomes, we demonstrate that temperature-dependent increases in leaf respiration do not follow a commonly used exponential function. Instead, we find a decelerating function as leaves warm, reflecting a declining sensitivity to higher temperatures that is remarkably uniform across all biomes and plant functional types. Such convergence in the temperature sensitivity of leaf respiration suggests that there are universally applicable controls on the temperature response of plant energy metabolism, such that a single new function can predict the temperature dependence of leaf respiration for global vegetation. This simple function enables straightforward description of plant respiration in the land-surface components of coupled earth system models. Our cross-biome analyses shows significant implications for such fluxes in cold climates, generally projecting lower values compared with previous estimates. PMID:27001849

  9. Ion and temperature sensitive polypeptide block copolymer.

    Science.gov (United States)

    Joo, Jae Hee; Ko, Du Young; Moon, Hyo Jung; Shinde, Usha Pramod; Park, Min Hee; Jeong, Byeongmoon

    2014-10-13

    A poly(ethylene glycol)/poly(L-alanine) multiblock copolymer incorporating ethylene diamine tetraacetic acid ([PA-PEG-PA-EDTA(m)) was synthesized as an ion/temperature dual stimuli-sensitive polymer, where the effect of different metal ions (Cu(2+), Zn(2+), and Ca(2+)) on the thermogelation of the polymer aqueous solution was investigated. The dissociation constants between the metal ions and the multiblock copolymer were calculated to be 1.2 × 10(-7), 6.6 × 10(-6), and 1.2 × 10(-4) M for Cu(2+), Zn(2+), and Ca(2+), respectively, implying that the binding affinity of the multiblock copolymer for Cu(2+) is much greater than that for Zn(2+) or Ca(2+). Atomic force microscopy and dynamic light scattering of the multiblock copolymer containing metal ions suggested micelle formation at low temperature, which aggregated as the temperature increased. Circular dichroism spectra suggested that changes in the α-helical secondary structure of the multiblock copolymer were more pronounced by adding Cu(2+) than other metal ions. The thermogelation of the multiblock copolymer aqueous solution containing Cu(2+) was observed at a lower temperature, and the modulus of the gel was significantly higher than that of the system containing Ca(2+) or Zn(2+), in spite of the same concentration of the metal ions and their same ionic valence of +2. The above results suggested that strong ionic complexes between Cu(2+) and the multiblock copolymer not only affected the secondary structure of the polymer but also facilitated the thermogelation of the polymer aqueous solution through effective salt-bridge formation even in a millimolar range of the metal ion concentration. Therefore, binding affinity of metal ions for polymers should be considered first in designing an effective ion/temperature dual stimuli-sensitive polymer. PMID:25178662

  10. 21 CFR 177.1320 - Ethylene-ethyl acrylate copolymers.

    Science.gov (United States)

    2010-04-01

    ... percent by weight unless it is blended with polyethylene or with one or more olefin copolymers complying with § 177.1520 or with a mixture of polyethylene and one or more olefin copolymers, in...

  11. Thermoreversible copolymer gels for extracellular matrix.

    Science.gov (United States)

    Vernon, B; Kim, S W; Bae, Y H

    2000-07-01

    To improve the properties of a reversible synthetic extracellular matrix based on a thermally reversible polymer, copolymers of N-isopropylacrylamide and acrylic acid were prepared in benzene with varying contents of acrylic acid (0 to 3%) and the thermal properties were evaluated. The poly(N-isopropylacrylamide) and copolymers made with acrylic acid had molecular weights from 0.8 to 1.7 x10(6) D. Differential scanning calorimetry (DSC) showed the high-molecular-weight acrylic acid copolymers had similar onset temperatures to the homopolymers, but the peak width was considerably increased with increasing acrylic acid content. DSC and cloud point measurements showed that polymers with 0 to 3% acrylic acid exhibit a lower critical solution temperature (LCST) transition between 30 degrees and 37 degrees C. In swelling studies, the homopolymer showed significant syneresis at temperatures above 31 degrees C. Copolymers with 1 and 1.5% showed syneresis beginning at 32 degrees and 37 degrees C, respectively. At 37 degrees C the copolymers with 1.5-3% acrylic acid showed little or no syneresis. Due to the high water content and a transition near physiologic conditions (below 37 degrees C), the polymers with 1.5-2.0% acrylic acid exhibited properties that would be useful in the development of a refillable synthetic extracellular matrix. Such a matrix could be applied to several cell types, including islets of Langerhans, for a biohybrid artificial pancreas.

  12. Chain exchange in block copolymer micelles

    Science.gov (United States)

    Lu, Jie; Bates, Frank; Lodge, Timothy

    2014-03-01

    Block copolymer micelles are aggregates formed by self-assembly of amphiphilic copolymers dispersed in a selective solvent, driven by unfavorable interactions between the solvent and the core-forming block. Due to the relatively long chains being subject to additional thermodynamic and dynamic constraints (e.g., entanglements, crystallinity, vitrification), block copolymer micelles exhibit significantly slower equilibration kinetics than small molecule surfactants. As a result, details of the mechanism(s) of equilibration in block copolymer micelles remain unclear. This present works focuses on the chain exchange kinetics of poly(styrene-b-ethylenepropylene) block copolymers in squalane (C30H62) using time-resolved small angle neutron scattering (TR-SANS). A mixture of h-squalane and d-squalane is chosen so that it contrast matches a mixed 50/50 h/d polystyrene micelle core. When the temperature is appropriate and isotopically labeled chains undergo mixing, the mean core contrast with respect to the solvent decreases, and the scattering intensity is therefore reduced. This strategy allows direct probing of chain exchange rate from the time dependent scattering intensity I(q, t).

  13. Dynamic Processes in Diblock Copolymer Micelles

    Science.gov (United States)

    Robertson, Megan; Singh, Avantika

    2013-03-01

    Diblock copolymers, which form micelle structures in selective solvents, offer advantages of robustness and tunability of micelle characteristics as compared to small molecule surfactants. Diblock copolymer micelles in water have been a subject of great interest in drug delivery applications based on their high loading capacity and targeted drug delivery. The aim of this work is to understand the dynamic processes which underlie the self-assembly of diblock copolymer micelle systems which have a semi-crystalline core. Due to the large size of the molecules, the self-assembly of block copolymer micelles occurs on significantly longer time scales than small molecule analogues. The present work focuses on amphiphilic diblock copolymers containing blocks of poly(ethylene oxide) (a hydrophilic polymer) and polycaprolactone (a hydrophobic, semi-crystalline polymer), which spontaneously self-assemble into spherical micelles in water. A variety of experimental techniques are used to probe the kinetic processes relevant to micelle self-assembly, including time-resolved neutron scattering, dynamic light scattering, pulsed field gradient nuclear magnetic resonance, and fluorescence resonance energy transfer experiments.

  14. Oil recovery with vinyl sulfonic acid-acrylamide copolymers

    Energy Technology Data Exchange (ETDEWEB)

    Norton, C.J.; Falk, D.O.

    1973-12-18

    An aqueous polymer flood containing sulfomethylated alkali metal vinyl sulfonate-acrylamide copolymers was proposed for use in secondary or tertiary enhanced oil recovery. The sulfonate groups on the copolymers sustain the viscosity of the flood in the presence of brine and lime. Injection of the copolymer solution into a waterflooded Berea core, produced 30.5 percent of the residual oil. It is preferred that the copolymers are partially hydrolyzed.

  15. Metallo-supramolecular block copolymers : from synthesis to smart nanomaterials

    OpenAIRE

    Guillet, Pierre

    2008-01-01

    Supramolecular copolymers have become of increasing interest in recent years for the search of new materials with tunable properties. In particular, metallo-supramolecular block copolymers have seen important progresses since the last five years. In this thesis, a library of metallo-supramolecular amphiphilic block copolymers containing a hydrophilic block, linked to a hydrophobic block, through a metal-ligand complex has been investigated. The micelles formed in water from these copolymers...

  16. pH-sensitive methacrylic copolymers and the production thereof

    Science.gov (United States)

    Mallapragada, Surya K.; Anderson, Brian C.; Bloom, Paul D.; Sheares Ashby, Valerie V.

    2007-01-09

    The present invention provides novel multi-functional methacrylic copolymers that exhibit cationic pH-sensitive behavior as well as good water solubility under acidic conditions. The copolymers are constructed from tertiary amine methacrylates and poly(ethylene glycol) containing methacrylates. The copolymers are useful as gene vectors, pharmaceutical carriers, and in protein separation applications.

  17. Adsorption of graft copolymers onto silica and titania.

    NARCIS (Netherlands)

    Bijsterbosch, H.D.; Cohen Stuart, M.A.; Fleer, G.J.

    1998-01-01

    The adsorption of graft copolymers of poly(acrylamide) (PAAm, backbone) and poly(ethylene oxide) (PEO, side chains) from aqueous solution onto silica and titania was studied with reflectometry. Two high-molar-mass copolymers were used with different PEO graft densities (10 and 18% w/w PEO in copolym

  18. 21 CFR 177.1211 - Cross-linked polyacrylate copolymers.

    Science.gov (United States)

    2010-04-01

    ... polyacrylate copolymers consist of: (1) The grafted copolymer of cross-linked sodium polyacrylate identified as... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Cross-linked polyacrylate copolymers. 177.1211... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1211 Cross-linked...

  19. 21 CFR 175.210 - Acrylate ester copolymer coating.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Acrylate ester copolymer coating. 175.210 Section... COATINGS Substances for Use as Components of Coatings § 175.210 Acrylate ester copolymer coating. Acrylate ester copolymer coating may safely be used as a food-contact surface of articles intended for...

  20. SCATTERING BY CYCLIC POLYMERS AND COPOLYMERS AT LARGE SCATTERING VECTORS

    NARCIS (Netherlands)

    KOSMAS, M; BENOIT, H; HADZIIOANNOU, G

    1994-01-01

    General formulae allowing the evaluation of the form factors of cyclic block copolymers are established and graphs for cyclic copolymers of the form (A-B)(N) are shown. When N is large, the linear and the cyclic copolymer have the same behaviour. It is possible to extend at large angle an analytical

  1. Studies on the application of temperature-responsive ion exchange polymers with whey proteins.

    Science.gov (United States)

    Maharjan, Pankaj; Campi, Eva M; De Silva, Kirthi; Woonton, Brad W; Jackson, W Roy; Hearn, Milton T W

    2016-03-18

    Several new types of temperature-responsive ion exchange resins of different polymer composition have been prepared by grafting the products from the co-polymerisation of N-phenylacrylamide, N-iso-propylacrylamide and acrylic acid derivatives onto cross-linked agarose. Analysis of the binding isotherms for these different resins obtained under batch adsorption conditions indicated that the resin based on N-iso-propylacrylamide containing 5% (w/w) N-phenylacrylamide and 5% (w/w) acrylic acid resulted in the highest adsorption capacity, Bmax, for the whey protein, bovine lactoferrin, e.g. 14 mg bovine lactoferrin/mL resin at 4 °C and 62 mg bovine lactoferrin/mL resin at 40 °C, respectively. Under dynamic loading conditions at 40 °C, 94% of the loaded bovine lactoferrin on a normalised mg protein per mL resin basis was adsorbed by this new temperature-responsive ion-exchanger, and 76% was eluted by a single cycle temperature shift to 4 °C without varying the composition of the 10mM sodium dihydrogen phosphate buffer, pH 6.5, or the flow rate. The binding characteristics of these different ion exchange resins with bovine lactoferrin were also compared to results obtained using other resins based on N-isopropylacrylamide but contained N-tert-butylacrylamide rather than N-phenylacrylamide, where the corresponding dynamic capture and release properties for bovine lactoferrin required different temperature conditions of 20 °C and 50 °C, respectively for optimal desorption/adsorption. The cationic protein, bovine lactoperoxidase, was also adsorbed and desorbed with these temperature-responsive resins under similar conditions of changing temperature, whereas the anionic protein, bovine β-lactoglobulin, was not adsorbed under this regime of temperature conditions but instead eluted in the flow-through. PMID:26905884

  2. Differences between rice and wheat in temperature responses of photosynthesis and plant growth.

    Science.gov (United States)

    Nagai, Takeshi; Makino, Amane

    2009-04-01

    The temperature responses of photosynthesis (A) and growth were examined in rice and wheat grown hydroponically under day/night temperature regimes of 13/10, 19/16, 25/19, 30/24 and 37/31 degrees C. Irrespective of growth temperature, the maximal rates of A were found to be at 30-35 degrees C in rice and at 25-30 degrees C in wheat. Below 25 degrees C the rates were higher in wheat, while above 30 degrees C they were higher in rice. However, in both species, A measured at the growth temperature remained almost constant irrespective of temperature. Biomass production and relative growth rate (RGR) were greatest in rice grown at 30/24 degrees C and in wheat grown at 25/19 degrees C. Although there was no difference between the species in the optimal temperature of the leaf area ratios (LARs), the net assimilation rate (NAR) in rice decreased at low temperature (19/16 degrees C) while the NAR in wheat decreased at high temperature (37/31 degrees C). For both species, the N-use efficiency (NUE) for growth rate (GR), estimated by dividing the NAR by leaf-N content, correlated with GR and with biomass production. Similarly, when NUE for A at growth temperature was estimated, the temperature response of NUE for A was similar to that of NUE for GR in both species. The results suggest that the difference between rice and wheat in the temperature response of biomass production depends on the difference in temperature dependence of NUE for A.

  3. Regional and global temperature response to anthropogenic SO2 emissions from China in three climate models

    Science.gov (United States)

    Kasoar, Matthew; Voulgarakis, Apostolos; Lamarque, Jean-François; Shindell, Drew T.; Bellouin, Nicolas; Collins, William J.; Faluvegi, Greg; Tsigaridis, Kostas

    2016-08-01

    We use the HadGEM3-GA4, CESM1, and GISS ModelE2 climate models to investigate the global and regional aerosol burden, radiative flux, and surface temperature responses to removing anthropogenic sulfur dioxide (SO2) emissions from China. We find that the models differ by up to a factor of 6 in the simulated change in aerosol optical depth (AOD) and shortwave radiative flux over China that results from reduced sulfate aerosol, leading to a large range of magnitudes in the regional and global temperature responses. Two of the three models simulate a near-ubiquitous hemispheric warming due to the regional SO2 removal, with similarities in the local and remote pattern of response, but overall with a substantially different magnitude. The third model simulates almost no significant temperature response. We attribute the discrepancies in the response to a combination of substantial differences in the chemical conversion of SO2 to sulfate, translation of sulfate mass into AOD, cloud radiative interactions, and differences in the radiative forcing efficiency of sulfate aerosol in the models. The model with the strongest response (HadGEM3-GA4) compares best with observations of AOD regionally, however the other two models compare similarly (albeit poorly) and still disagree substantially in their simulated climate response, indicating that total AOD observations are far from sufficient to determine which model response is more plausible. Our results highlight that there remains a large uncertainty in the representation of both aerosol chemistry as well as direct and indirect aerosol radiative effects in current climate models, and reinforces that caution must be applied when interpreting the results of modelling studies of aerosol influences on climate. Model studies that implicate aerosols in climate responses should ideally explore a range of radiative forcing strengths representative of this uncertainty, in addition to thoroughly evaluating the models used against

  4. The role of spatial scale and background climate in the latitudinal temperature response to deforestation

    Directory of Open Access Journals (Sweden)

    Y. Li

    2015-10-01

    Full Text Available Previous modeling and empirical studies have shown that the biophysical impact of deforestation is to warm the tropics and cool the extra-tropics. In this study, we use an earth system model to investigate how deforestation at various spatial scales affects ground temperature, with an emphasis on the latitudinal temperature response and its underlying mechanisms. Results show that the latitudinal pattern of temperature response depends non-linearly on the spatial extent of deforestation and the fraction of vegetation change. Compared with regional deforestation, temperature change in global deforestation is greatly amplified in temperate and boreal regions, but is dampened in tropical regions. Incremental forest removal leads to increasingly larger cooling in temperate and boreal regions, while the temperature increase saturates in tropical regions. The latitudinal and spatial patterns of the temperature response are driven by two processes with competing temperature effects: decreases in absorbed shortwave radiation due to increased albedo and decreases in evapotranspiration. These changes in the surface energy balance reflect the importance of the background climate on modifying the deforestation impact. Shortwave radiation and precipitation have an intrinsic geographical distribution that constrains the effects of biophysical changes and therefore leads to temperature changes that are spatially varying. For example, wet (dry climate favors larger (smaller evapotranspiration change, thus warming (cooling is more likely to occur. Further analysis on the contribution of individual biophysical factors (albedo, roughness, and evapotranspiration efficiency reveals that the latitudinal signature embodied in the temperature change probably result from the background climate conditions rather than the initial biophysical perturbation.

  5. Functionalization of Block Copolymer Vesicle Surfaces

    Directory of Open Access Journals (Sweden)

    Wolfgang Meier

    2011-01-01

    Full Text Available In dilute aqueous solutions certain amphiphilic block copolymers self-assemble into vesicles that enclose a small pool of water with a membrane. Such polymersomes have promising applications ranging from targeted drug-delivery devices, to biosensors, and nanoreactors. Interactions between block copolymer membranes and their surroundings are important factors that determine their potential biomedical applications. Such interactions are influenced predominantly by the membrane surface. We review methods to functionalize block copolymer vesicle surfaces by chemical means with ligands such as antibodies, adhesion moieties, enzymes, carbohydrates and fluorophores. Furthermore, surface-functionalization can be achieved by self-assembly of polymers that carry ligands at their chain ends or in their hydrophilic blocks. While this review focuses on the strategies to functionalize vesicle surfaces, the applications realized by, and envisioned for, such functional polymersomes are also highlighted.

  6. Functional Nanoporous Polymers from Block Copolymer Precursors

    DEFF Research Database (Denmark)

    Guo, Fengxiao

    Abstract Self-assembly of block copolymers provides well-defined morphologies with characteristic length scales in the nanometer range. Nanoporous polymers prepared by selective removal of one block from self-assembled block copolymers offer great technological promise due to their many potential...... applications as, e.g., membranes for separation and purification, templates for nanostructured materials, sensors, substrates for catalysis, low dielectric constant materials, photonic materials, and depots for controlled drug delivery. The development of nanoporous polymers with well controlled pore wall...... functionalities remains a great challenge due to the limitation of available polymer synthesis and the nanoscale confinement of the porous cavities. The main topic of this thesis is to develop methods for fabrication of functional nanoporous polymers from block copolymer precursors. A method has been developed...

  7. Micellization and Characterization of Block Copolymer Detergents

    DEFF Research Database (Denmark)

    Hvidt, Søren

    Triblock copolymers of the type EPE, where E and P denote ethylene oxide and propylene oxide blocks, respectively, are used widely in industry as emulsifiers, anti-foaming agents, and in delayed drug release. EPE copolymers form micelles with a core of P blocks and different micellar shapes...... depending on block length ratios and temperature. The micellization process with increasing temperature or concentration has been followed by a number of techniques including differential scanning calorimetry and surface tension measurements. The detailed micellar mechanism is not well understood and...... different models have been proposed. Results obtained by a range of liquid chromatographic methods will be shown and it will be demonstrated that commercial EPE copolymers are inhomogeneous at several levels and many of their unusual properties reflect the presence of impurities....

  8. Biosensor for Pesticides Based on Valerolacton Copolymer

    Directory of Open Access Journals (Sweden)

    Yotova L.

    2007-12-01

    Full Text Available A construction of amperometric biosensor based on immobilized acetycholinesterase and cholin oxidase is described and its application in the detection of organophosphate pesticides through enzyme inhibition measurements is discussed. The bioactive component of the sensor consists of acetycholinesterase or cholin oxidase covalently immobilized on two types new polymeric synthetic membranes. Two types of the copolymers were used for the synthesis of membranes - the copolymer of polyacrylamide and acrylonitrile and the new copolymer of poly- (hexanlactam-co-block-poly-(delta-valerolactone with aliphatic polyester. It is investigated the technical characteristics of biosensor like, response time, linear range and operating stability. The factors affecting the inhibition and reactivation processes were investigated too.

  9. Blends of Styrene-Butadiene-Styrene Triblock Copolymer with Random Styrene-Maleic Anhydride Copolymers

    OpenAIRE

    Piccini, Maria Teresa; Ruggeri, Giacomo; Passaglia, Elisa; Picchioni, Francesco; Aglietto, Mauro

    2002-01-01

    Blends of styrene-butadiene-styrene triblock copolymer (SBS) with random styrene-maleic anhydride copolymers (PS-co-MA), having different MA content, were prepared in a Brabender Plastigraph mixer. The presence of polystyrene (PS) blocks in the SBS copolymer and the high styrene content (93 and 86 wt.-%, respectively) in the two kinds of used PS-co-MA samples afforded a good compatibility between the PS phases of the two polymers. On the other hand, the presence of polar anhydride groups allo...

  10. [Hydrodynamic properties of exopolysaccharide-acrylamide copolymer].

    Science.gov (United States)

    Votselko, S K

    2000-01-01

    The method for producing copolymer EPAA of exopolysaccharide (EPS)--polyacrylamide (PAA) has been presented which was based on microbial exopolysaccharides (enposane, xampane), their mixture and model EPS (xanthane sigma, rodopol P-23). The copolymer was produced by acrylamide polymerization in 1-2% water solutions of polysaccharides, the concentration of acrylamide in the reaction mixture being 4.7-2% and that of polysaccharides 0.1-1% of the weight. Hydrodynamic parameters of the studied polymers have been determined, their heterogenity as to molecular-weight characteristics has been demonstrated. Molecular-weight distribution of copolymers showed that the content of low-molecular fractions decreased, thus the Mw values were (0.08-0.2) x 10(6) Da in contrast to that of exopolysaccharides possessing Mw (1.2-0.4) x 10(6) Da and of polyacrylamide possessing Mw within (2-30) x 10(6) Da. The value of efficient viscosity of copolymers ranged from 120 to 131 mPa.s that was lower than that of polyacrylamide (500 mPa.s), and higher than that of exopolysaccharides (42 mPa.s), and it depended on the sample, raw material, production conditions. A possibility has been shown to produce a new copolymer based on microbial polysaccharides enposane and xampane in the process of acrylamide polymerization. It has been found out that the studied copolymers EPAA differ from initial ones as to their hydrodynamical properties, which determines their preference: better solubility, good glueing properties, prolonged term of preservation, resistance to bacterial pollution. PMID:11300081

  11. Dynamics of Block Copolymer Nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Mochrie, Simon G. J.

    2014-09-09

    A detailed study of the dynamics of cadmium sulfide nanoparticles suspended in polystyrene homopolymer matrices was carried out using X-ray photon correlation spectroscopy for temperatures between 120 and 180 °C. For low molecular weight polystyrene homopolymers, the observed dynamics show a crossover from diffusive to hyper-diffusive behavior with decreasing temperatures. For higher molecular weight polystyrene, the nanoparticle dynamics appear hyper-diffusive at all temperatures studied. The relaxation time and characteristic velocity determined from the measured hyper-diffusive dynamics reveal that the activation energy and underlying forces determined are on the order of 2.14 × 10-19 J and 87 pN, respectively. We also carried out a detailed X-ray scattering study of the static and dynamic behavior of a styrene– isoprene diblock copolymer melt with a styrene volume fraction of 0.3468. At 115 and 120 °C, we observe splitting of the principal Bragg peak, which we attribute to phase coexistence of hexagonal cylindrical and cubic double- gyroid structure. In the disordered phase, above 130 °C, we have characterized the dynamics of composition fluctuations via X-ray photon correlation spectroscopy. Near the peak of the static structure factor, these fluctuations show stretched-exponential relaxations, characterized by a stretching exponent of about 0.36 for a range of temperatures immediately above the MST. The corresponding characteristic relaxation times vary exponentially with temperature, changing by a factor of 2 for each 2 °C change in temperature. At low wavevectors, the measured relaxations are diffusive with relaxation times that change by a factor of 2 for each 8 °C change in temperature.

  12. Dynamics of Block Copolymer Nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Mochrie, Simon G. J.

    2014-09-09

    A detailed study of the dynamics of cadmium sulfide nanoparticles suspended in polystyrene homopolymer matrices was carried out using X-ray photon correlation spectroscopy for temperatures between 120 and 180 °C. For low molecular weight polystyrene homopolymers, the observed dynamics show a crossover from diffusive to hyper-diffusive behavior with decreasing temperatures. For higher molecular weight polystyrene, the nanoparticle dynamics appear hyper-diffusive at all temperatures studied. The relaxation time and characteristic velocity determined from the measured hyper-diffusive dynamics reveal that the activation energy and underlying forces determined are on the order of 2.14 × 10−19 J and 87 pN, respectively. We also carried out a detailed X-ray scattering study of the static and dynamic behavior of a styrene– isoprene diblock copolymer melt with a styrene volume fraction of 0.3468. At 115 and 120 °C, we observe splitting of the principal Bragg peak, which we attribute to phase coexistence of hexagonal cylindrical and cubic double- gyroid structure. In the disordered phase, above 130 °C, we have characterized the dynamics of composition fluctuations via X-ray photon correlation spectroscopy. Near the peak of the static structure factor, these fluctuations show stretched-exponential relaxations, characterized by a stretching exponent of about 0.36 for a range of temperatures immediately above the MST. The corresponding characteristic relaxation times vary exponentially with temperature, changing by a factor of 2 for each 2 °C change in temperature. At low wavevectors, the measured relaxations are diffusive with relaxation times that change by a factor of 2 for each 8 °C change in temperature.

  13. Co-polymer Films for Sensors

    Science.gov (United States)

    Ryan, Margaret A. (Inventor); Homer, Margie L. (Inventor); Yen, Shiao-Pin S. (Inventor); Kisor, Adam (Inventor); Jewell, April D. (Inventor); Shevade, Abhijit V. (Inventor); Manatt, Kenneth S. (Inventor); Taylor, Charles (Inventor); Blanco, Mario (Inventor); Goddard, William A. (Inventor)

    2012-01-01

    Embodiments include a sensor comprising a co-polymer, the co-polymer comprising a first monomer and a second monomer. For some embodiments, the first monomer is poly-4-vinyl pyridine, and the second monomer is poly-4-vinyl pyridinium propylamine chloride. For some embodiments, the first monomer is polystyrene and the second monomer is poly-2-vinyl pyridinium propylamine chloride. For some embodiments, the first monomer is poly-4-vinyl pyridine, and the second monomer is poly-4-vinyl pyridinium benzylamine chloride. Other embodiments are described and claimed.

  14. Substrate tolerant direct block copolymer nanolithography

    DEFF Research Database (Denmark)

    Li, Tao; Wang, Zhongli; Schulte, Lars;

    2016-01-01

    Block copolymer (BC) self-assembly constitutes a powerful platform for nanolithography. However, there is a need for a general approach to BC lithography that critically considers all the steps from substrate preparation to the final pattern transfer. We present a procedure that significantly sim...... plasma treatment enables formation of the oxidized PDMS hard mask, PS block removal and polymer or graphene substrate patterning....... simplifies the main stream BC lithography process, showing a broad substrate tolerance and allowing for efficient pattern transfer over wafer scale. PDMS-rich poly(styrene-b-dimethylsiloxane) (PS-b-PDMS) copolymers are directly applied on substrates including polymers, silicon and graphene. A single oxygen...

  15. Positively charged co-polymers for use as antimicrobial agents

    DEFF Research Database (Denmark)

    2016-01-01

    The present invention provides a positively charged co-polymer for use as an antimicrobial agent, wherein said positively charged co-polymer is composed of amino acids and/or derivatives thereof and wherein at least 75 molar percent of said amino acids are selected from the group consisting...... of alanine, lysine, glutamate, arginine and tyrosine and/or derivatives thereof. The present invention also provides methods for treating, preventing or ameliorating a microbial infection comprising administration of positively charged random co-polymers as well as a pharmaceutical composition comprising...... said co-polymer. The invention further provides a kit of parts comprising the positively charged random co-polymer....

  16. BARRIER PROPERTIES OF VINYLIDENE CHLORIDE/METHYL ACRYLATE COPOLYMER

    Institute of Scientific and Technical Information of China (English)

    LI Yuesheng; WENG Zhixue; PAN Zuren

    1997-01-01

    A series of vinylidene dichloride (VDC) copolymers with methyl acrylate (MA) as comonomer (3-12 wt%), was prepared by free-radical suspension copolymerization. The permeability coefficients of the copolymers to oxygen and carbon dioxide were measured at1.0 MPa and at 30℃, and those to water vapor were measured at 30℃ and 100% relative humidity. All the VDC/MA copolymers studied are semicrystalline. As the MA content increases, the permeability coefficients of the copolymers to oxygen, carbon dioxide, and water vapor are progressively increased, caused by decrease in crystalline fraction and increase in free volume of VDC/MA copolymers.

  17. Global Temperature Response to the Major Volcanic Eruptions in Multiple Reanalysis Datasets

    Science.gov (United States)

    Fujiwara, M.; Hibino, T.; Mehta, S. K.; Gray, L. J.; Mitchell, D.; Anstey, J.

    2015-12-01

    Global temperature response to the eruptions of Mount Agung in 1963, El Chichón in 1982 and Mount Pinatubo in 1991 is investigated using nine reanalysis datasets (JRA-55, MERRA, ERA-Interim, NCEP-CFSR, JRA-25, ERA-40, NCEP-1, NCEP-2, and 20CR). Multiple linear regression is applied to the zonal and monthly mean time series of temperature for two periods, 1979-2009 (for eight reanalysis datasets) and 1958-2001 (for four reanalysis datasets), by considering explanatory factors of seasonal harmonics, linear trends, Quasi-Biennial Oscillation, solar cycle, and El Niño Southern Oscillation. The residuals are used to define the volcanic signals for the three eruptions separately. In response to the Mount Pinatubo eruption, most reanalysis datasets show strong warming signals (up to 2-3 K for one-year average) in the tropical lower stratosphere and weak cooling signals (down to -1 K) in the subtropical upper troposphere. For the El Chichón eruption, warming signals in the tropical lower stratosphere are somewhat smaller than those for the Mount Pinatubo eruption. The response to the Mount Agung eruption is asymmetric about the equator with strong warming in the Southern Hemisphere midlatitude upper troposphere to lower stratosphere. Comparison of the results from several different reanalysis datasets confirms the atmospheric temperature response to these major eruptions qualitatively, but also shows quantitative differences even among the most recent reanalysis datasets.

  18. Modeling and Experimental Analysis on the Temperature Response of AlN-Film Based SAWRs.

    Science.gov (United States)

    Chen, Shuo; You, Zheng

    2016-01-01

    The temperature responses of aluminum nitride (AlN) based surface acoustic wave resonator (SAWR) are modeled and tested. The modeling of the electrical performance is based on a modified equivalent circuit model introduced in this work. For SAWR consisting of piezoelectric film and semiconducting substrate, parasitic parameters from the substrate is taken into consideration for the modeling. By utilizing the modified model, the high temperature electrical performance of the AlN/Si and AlN/6H-SiC based SAWRs can be predicted, indicating that a substrate with a wider band gap will lead to a more stable high temperature behavior, which is further confirmed experimentally by high temperature testing from 300 K to 725 K with SAWRs having a wavelength of 12 μm. Temperature responses of SAWR's center frequency are also calculated and tested, with experimental temperature coefficient factors (TCF) of center frequency being -29 ppm/K and -26 ppm/K for the AlN/Si and AlN/6H-SiC based SAWRs, which are close to the predicted values. PMID:27483286

  19. Temperature response of methane production in liquid manures and co-digestates.

    Science.gov (United States)

    Elsgaard, Lars; Olsen, Anne B; Petersen, Søren O

    2016-01-01

    Intensification of livestock production makes correct estimation of methanogenesis in liquid manure increasingly important for inventories of CH4 emissions. Such inventories currently rely on fixed methane conversion factors as knowledge gaps remain with respect to detailed temperature responses of CH4 emissions from liquid manure. Here, we describe the temperature response of CH4 production in liquid cattle slurry, pig slurry, and fresh and stored co-digested slurry from a thermophilic biogas plant. Subsamples of slurry were anoxically incubated at 20 temperatures from 5-52°C in a temperature gradient incubator and CH4 production was measured by gas chromatographic analysis of headspace gas after a 17-h incubation period. Methane production potentials at 5-37°C were described by the Arrhenius equation (modelling efficiencies, 79.2-98.1%), and the four materials showed a consistent activation energy (Ea) which averaged 81.0kJmol(-1) (95% confidence interval, 74.9-87.1kJmol(-1)) corresponding to a temperature sensitivity (Q10) of 3.4. In contrast, the frequency factor (A) differed among the slurry materials (30.1temperature sensitivity parameters may be applicable to dynamic modelling of CH4 emissions from livestock manure.

  20. Mathematical model of cycad cones' thermogenic temperature responses: inverse calorimetry to estimate metabolic heating rates.

    Science.gov (United States)

    Roemer, R B; Booth, D; Bhavsar, A A; Walter, G H; Terry, L I

    2012-12-21

    A mathematical model based on conservation of energy has been developed and used to simulate the temperature responses of cones of the Australian cycads Macrozamia lucida and Macrozamia. macleayi during their daily thermogenic cycle. These cones generate diel midday thermogenic temperature increases as large as 12 °C above ambient during their approximately two week pollination period. The cone temperature response model is shown to accurately predict the cones' temperatures over multiple days as based on simulations of experimental results from 28 thermogenic events from 3 different cones, each simulated for either 9 or 10 sequential days. The verified model is then used as the foundation of a new, parameter estimation based technique (termed inverse calorimetry) that estimates the cones' daily metabolic heating rates from temperature measurements alone. The inverse calorimetry technique's predictions of the major features of the cones' thermogenic metabolism compare favorably with the estimates from conventional respirometry (indirect calorimetry). Because the new technique uses only temperature measurements, and does not require measurements of oxygen consumption, it provides a simple, inexpensive and portable complement to conventional respirometry for estimating metabolic heating rates. It thus provides an additional tool to facilitate field and laboratory investigations of the bio-physics of thermogenic plants.

  1. Surveying Rubisco Diversity and Temperature Response to Improve Crop Photosynthetic Efficiency1[OPEN

    Science.gov (United States)

    Andralojc, P. John

    2016-01-01

    The threat to global food security of stagnating yields and population growth makes increasing crop productivity a critical goal over the coming decades. One key target for improving crop productivity and yields is increasing the efficiency of photosynthesis. Central to photosynthesis is Rubisco, which is a critical but often rate-limiting component. Here, we present full Rubisco catalytic properties measured at three temperatures for 75 plants species representing both crops and undomesticated plants from diverse climates. Some newly characterized Rubiscos were naturally “better” compared to crop enzymes and have the potential to improve crop photosynthetic efficiency. The temperature response of the various catalytic parameters was largely consistent across the diverse range of species, though absolute values showed significant variation in Rubisco catalysis, even between closely related species. An analysis of residue differences among the species characterized identified a number of candidate amino acid substitutions that will aid in advancing engineering of improved Rubisco in crop systems. This study provides new insights on the range of Rubisco catalysis and temperature response present in nature, and provides new information to include in models from leaf to canopy and ecosystem scale. PMID:27342312

  2. Block Copolymers of Ethylene Oxide and Styrene Oxide.New Copolymer Surfactants(Ⅱ)

    Institute of Scientific and Technical Information of China (English)

    Zhuo Yang; David Attwood; Colin Booth

    2003-01-01

    @@ 3.2. Association Number Figure 5 shows the dependence of the weight-average association number (Nw,measured by static light scattering, solution temperature 30 °C) on hydrophobe block length for ES and ESEblock copolymers.

  3. Molecular Interaction Control in Diblock Copolymer Blends and Multiblock Copolymers with Opposite Phase Behaviors

    Science.gov (United States)

    Cho, Junhan

    2014-03-01

    Here we show how to control molecular interactions via mixing AB and AC diblock copolymers, where one copolymer exhibits upper order-disorder transition and the other does lower disorder-order transition. Linear ABC triblock copolymers possessing both barotropic and baroplastic pairs are also taken into account. A recently developed random-phase approximation (RPA) theory and the self-consistent field theory (SCFT) for general compressible mixtures are used to analyze stability criteria and morphologies for the given systems. It is demonstrated that the copolymer systems can yield a variety of phase behaviors in their temperature and pressure dependence upon proper mixing conditions and compositions, which is caused by the delicate force fields generated in the systems. We acknowledge the financial support from National Research Foundation of Korea and Center for Photofunctional Energy Materials.

  4. LEDs based on conjugated PPV block copolymers

    NARCIS (Netherlands)

    Brouwer, H.J.; Hilberer, A.; Krasnikov, V.V.; Werts, M.; Wildeman, J.; Hadziioannou, G.

    1997-01-01

    A way to control the bandgap in semi-conducting polymers is by preparing polymers with a partially conjugated backbone. In our laboratory, three conjugated copolymers containing PPV trimers as light emitting chromophores have been synthesized, which emit in the blue, green and orange wavelength regi

  5. CONJUGATED BLOCK-COPOLYMERS FOR ELECTROLUMINESCENT DIODES

    NARCIS (Netherlands)

    Hilberer, A; Gill, R.E; Herrema, J.K; Malliaras, G.G; Wildeman, J.; Hadziioannou, G

    1995-01-01

    In this article we review results obtained in our laboratory on the design and study of new light-emitting polymers. We are interested in the synthesis and characterisation of block copolymers with regularly alternating conjugated and non conjugated sequences. The blocks giving rise to luminescence

  6. Shear instability of a gyroid diblock copolymer

    DEFF Research Database (Denmark)

    Eskimergen, Rüya; Mortensen, Kell; Vigild, Martin Etchells

    2005-01-01

    -induced destabilization is discussed in relation to analogous observations on shear-induced order-to-order and disorder-to-order transitions observed in related block copolymer systems and in microemulsions. It is discussed whether these phenomena originate in shear-reduced fluctuations or shear-induced dislocations....

  7. Glycine/Glycolic acid based copolymers

    NARCIS (Netherlands)

    Veld, in 't Peter J.A.; Shen, Zheng-Rong; Takens, Gijsbert A.J.; Dijkstra, Pieter J.; Feijen, Jan

    1994-01-01

    Glycine/glycolic acid based biodegradable copolymers have been prepared by ring-opening homopolymerization of morpholine-2,5-dione, and ring-opening copolymerization of morpholine-2,5-dione and glycolide. The homopolymerization of morpholine-2,5-dione was carried out in the melt at 200°C for 3 min u

  8. Kuosheng BWR/6 containment pressure and temperature responses after recirculation line break using GOTHIC code

    International Nuclear Information System (INIS)

    In this study, we presented the calculated results of the containment P/T (pressure and temperature) response after the recirculation line break (RCLB) accident of a GE-designed twin-unit BWR/6 plant, which can be served as the design basis for the containment system. During the simulation, a power of SPU (stretch power uprate) range was used and a model of the Mark III type containment was built using the GOTHIC (Generation of Thermal-Hydraulic Information for Containments) code. The calculated results, similar to the FSAR (Final Safety Analysis Report) results, indicate the GOTHIC code has the capability to simulate the containment P/T response to the RCLB accident. (author)

  9. Temperature-Responsive Tensile Actuator Based on Multi-walled Carbon Nanotube Yarn

    Institute of Scientific and Technical Information of China (English)

    Hyunsoo Kim; Jae Ah Lee; Hyeon Jun Sim; Ma rcio D Lima; Ray H Baughman; Seon Jeong Kim

    2016-01-01

    Many temperature indicators or sensors show color changes for materials used in food and medical fields. However, they are not helpful for a color-blind person or children who lack judgment. In this paper, we introduce simply fabricated and more useful low-temperature indicator (*30 ?C) for devices that actuates using paraffin-infiltrated multi-walled carbon nanotube (MWCNT) coiled yarn. The density difference of MWCNT yarn provides large strain (*330%) when heat causes the melted polymer to move. Furthermore, the MWCNT yarn decreases the melting point of paraffin. These properties allow control of the actuating temperature. In addition, mechanical strength was enhanced by MWCNT than previously reported temperature-responsive actuators based on shape memory polymers. This simply fabricated temperature indicator can be applied in latching devices for medical and biological fields.

  10. The High Temperature Response of the TRACE 171 Angstrom and 195 Angstrom Channels

    Science.gov (United States)

    Phillips, K. J. H.; Chifor, C.; Landi, E.

    2005-01-01

    The CHIANTI spectral code is used to estimate line and continuum intensity contributions to the TRACE 171 Angstrom and 195 Angstrom channels, widely used for imaging a variety of solar features and phenomena, including quiet Sun and active region loops and solar flares. It is shown that the 171 Angstrom channel has a high-temperature response, so high-temperature (approx. 10 MK) features in flares, prominent in TRACE 195 approx.\\AA\\ images as well as X-ray images from Yohkoh and RHESSI, are sometimes visible in images made in the 171 Angstrom channel. Such features consist of hot loop-top emission, either confined spots or 'spine' structures in loop arcades. This is illustrated with TRACE and X-ray flare images.

  11. Global temperature response to the major volcanic eruptions in multiple reanalysis datasets

    Directory of Open Access Journals (Sweden)

    M. Fujiwara

    2015-05-01

    Full Text Available Global temperature response to the eruptions of Mount Agung in 1963, El Chichón in 1982 and Mount Pinatubo in 1991 is investigated using nine reanalysis datasets (JRA-55, MERRA, ERA-Interim, NCEP-CFSR, JRA-25, ERA-40, NCEP-1, NCEP-2, and 20CR. Multiple linear regression is applied to the zonal and monthly mean time series of temperature for two periods, 1979–2009 (for eight reanalysis datasets and 1958–2001 (for four reanalysis datasets, by considering explanatory factors of seasonal harmonics, linear trends, Quasi-Biennial Oscillation, solar cycle, and El Niño Southern Oscillation. The residuals are used to define the volcanic signals for the three eruptions separately. In response to the Mount Pinatubo eruption, most reanalysis datasets show strong warming signals (up to 2–3 K for one-year average in the tropical lower stratosphere and weak cooling signals (down to −1 K in the subtropical upper troposphere. For the El Chichón eruption, warming signals in the tropical lower stratosphere are somewhat smaller than those for the Mount Pinatubo eruption. The response to the Mount Agung eruption is asymmetric about the equator with strong warming in the Southern Hemisphere midlatitude upper troposphere to lower stratosphere. The response to three other smaller-scale eruptions in the 1960s and 1970s is also investigated. Comparison of the results from several different reanalysis datasets confirms the atmospheric temperature response to these major eruptions qualitatively, but also shows quantitative differences even among the most recent reanalysis datasets.

  12. Long- and short-term temperature responses of microbially-mediated boreal soil organic matter transformations

    Science.gov (United States)

    Min, K.; Buckeridge, K. M.; Edwards, K. A.; Ziegler, S. E.; Billings, S. A.

    2015-12-01

    Microorganisms use exoenzymes to decay soil organic matter into assimilable substrates, some of which are transformed into CO2. Microbial CO2 efflux contributes up to 60% of soil respiration, a feature that can change with temperature due to altered exoenzyme activities (short-term) and microbial communities producing different exoenzymes (longer-term). Often, however, microbial temperature responses are masked by factors that also change with temperature in soil, making accurate projections of microbial CO2 efflux with warming challenging. Using soils along a natural climate gradient similar in most respects except for temperature regime (Newfoundland Labrador Boreal Ecosystem Latitudinal Transect), we investigated short-vs. long-term temperature responses of microbially-mediated organic matter transformations. While incubating soils at 5, 15, and 25°C for 84 days, we measured exoenzyme activities, CO2 efflux rates and biomass, and extracted DNA at multiple times. We hypothesized that short-term, temperature-induced increases in exoenzyme activities and CO2 losses would be smaller in soils from warmer regions, because microbes presumably adapted to warmer regions should use assimilable substrates more efficiently and thus produce exoenzymes at a lower rate. While incubation temperature generally induced greater exoenzyme activities (pDNA sequencing will reveal how microbial community abundance and composition change with short-vs. longer-term temperature change. Though short-term microbial responses to temperature suggest higher CO2 efflux and thus lower efficiency of resource use with warming, longer-term adaptations of microbial communities to warmer climates remain unknown; this work helps fill that knowledge gap.

  13. Temperature response functions introduce high uncertainty in modelled carbon stocks in cold temperature regimes

    Directory of Open Access Journals (Sweden)

    H. Portner

    2009-08-01

    Full Text Available Models of carbon cycling in terrestrial ecosystems contain formulations for the dependence of respiration on temperature, but the sensitivity of predicted carbon pools and fluxes to these formulations and their parameterization is not understood. Thus, we made an uncertainty analysis of soil organic matter decomposition with respect to its temperature dependency using the ecosystem model LPJ-GUESS.

    We used five temperature response functions (Exponential, Arrhenius, Lloyd-Taylor, Gaussian, Van't Hoff. We determined the parameter uncertainty ranges of the functions by nonlinear regression analysis based on eight experimental datasets from northern hemisphere ecosystems. We sampled over the uncertainty bounds of the parameters and run simulations for each pair of temperature response function and calibration site. The uncertainty in both long-term and short-term soil carbon dynamics was analyzed over an elevation gradient in southern Switzerland.

    The function of Lloyd-Taylor turned out to be adequate for modelling the temperature dependency of soil organic matter decomposition, whereas the other functions either resulted in poor fits (Exponential, Arrhenius or were not applicable for all datasets (Gaussian, Van't Hoff. There were two main sources of uncertainty for model simulations: (1 the uncertainty in the parameter estimates of the response functions, which increased with increasing temperature and (2 the uncertainty in the simulated size of carbon pools, which increased with elevation, as slower turn-over times lead to higher carbon stocks and higher associated uncertainties. The higher uncertainty in carbon pools with slow turn-over rates has important implications for the uncertainty in the projection of the change of soil carbon stocks driven by climate change, which turned out to be more uncertain for higher elevations and hence higher latitudes, which are of key importance for the global terrestrial carbon

  14. Responsive copolymers for enhanced petroleum recovery. Quarterly technical progress report, December 22, 1993--March 21, 1994

    Energy Technology Data Exchange (ETDEWEB)

    McCormick, C.; Hester, R.

    1994-06-01

    The overall goal of this research is the development of advanced water-soluble copolymers for use in enhanced oil recovery. This report summarizes technical progress for the following tasks: advanced copolymer synthesis; and characterization of molecular structure of copolymers.

  15. COMPOSITIONAL HETEROGENEITY OF ETHYLENE OXIDE-BUTYLENE TEREPHTHALATE SEGMENTED COPOLYMER

    Institute of Scientific and Technical Information of China (English)

    De-zhu Ma; Dong-sheng Li; Ming-chuan Zhao; Mo-zhen Wang; Ran Ye; Xiao-lie Luo

    1999-01-01

    A series of ethylene oxide-butylene terephthalate (EOBT) segmented copolymers with different soft segment length and hard segment content were synthesized. The compositional heterogeneity was studied by solvent extraction. The results show that the compositional heterogeneity increases when soft segment length and hard segment content increase. The compositional heterogeneity is also reflected in the crystallization behavior and morphology of soft and hard segment in EOBT segmented copolymer. The more compositional heterogeneous the EOBT segmented copolymer is, the more different the morphology and the crystallization behavior between separated fractions. Compared with ethylene oxide-ethylene terephthalate (EOET) segmented copolymer, compositional heterogeneity in EOBT segmented copolymer is weaker. But the compositional heterogeneity in EOBT segmented copolymer with long soft segment and high hard segment content is still obvious.

  16. Synthesis and Characterization of New Poly(silole-fluorene) Copolymers.

    Science.gov (United States)

    Lee, Yun-Ji; Park, Jeong Cheol; Yun, Hui-Jun; Park, Jong-Man; Kim, Yun-Hi

    2015-02-01

    New poly(silole-fluorene) copolymers were designed and synthesized. Copolymers were obtained by Suzuki coupling reaction with different ratio of fluorene and silole. The obtained copolymers were characterized by the spectroscopic methods such as FT-IR and 1H-NMR spectroscopies. The resulting copolymers were soluble in common organic solvents such as toluene, tetrahydrofurane, chloroform, chlorobenzene, etc. The obtained copolymers showed thermal stabilities, which were characterized by TGA and DSC. PLEDs with device configurations of ITO/PEDOT:PSS/Copolymer I~VI/LiF/AI. The best device performances, with maximum brightness of 231.5 cd/m2 at a current density (J) of 408.3 mA/cm2, and a maximum luminance efficiency of 0.115 cd/A, were achieved in the composition of fluorene and silole moiety (0.9:0.1). PMID:26353724

  17. A temperature response function for modeling leaf growth and development of the African violet (Saintpaulia ionantha Wendl.

    Directory of Open Access Journals (Sweden)

    Streck Nereu Augusto

    2004-01-01

    Full Text Available Response functions used in crop simulation models are usually different for different physiological processes and cultivars, resulting in many unknown coefficients in the response functions. This is the case of African violet (Saintpaulia ionantha Wendl., where a generalized temperature response for leaf growth and development has not been developed yet. The objective of this study was to develop a generalized nonlinear temperature response function for leaf appearance rate and leaf elongation rate in African violet. The nonlinear function has three coefficients, which are the cardinal temperatures (minimum, optimum, and maximum temperatures. These coefficients were defined as 10, 24, and 33ºC, based on the cardinal temperatures of other tropical species. Data of temperature response of leaf appearance rate and leaf elongation rate in African violet, cultivar Utah, at different light levels, which are from published research, were used as independent data for evaluating the performance of the nonlinear temperature response function. The results showed that a generalized nonlinear response function can be used to describe the temperature response of leaf growth and development in African violet. These results imply that a reduction in the number of input data required in African violet simulation models is possible.

  18. An isotopic investigation of the temperature response of young and old soil organic matter respiration

    Science.gov (United States)

    Burns, Nancy; Cloy, Joanna; Garnett, Mark; Reay, David; Smith, Keith; Otten, Wilfred

    2010-05-01

    The effect of temperature on rates of soil respiration is critical to our understanding of the terrestrial carbon cycle and potential feedbacks to climate change. The relative temperature sensitivity of labile and recalcitrant soil organic matter (SOM) is still controversial; different studies have produced contrasting results, indicating limited understanding of the underlying relationships between stabilisation processes and temperature. Current global carbon cycle models still rely on the assumption that SOM pools with different decay rates have the same temperature response, yet small differences in temperature response between pools could lead to very different climate feedbacks. This study examined the temperature response of soil respiration and the age of soil carbon respired from radiocarbon dated fractions of SOM (free, intra-aggregate and mineral-bound) and whole soils (organic and mineral layers). Samples were collected from a peaty gley soil from Harwood Forest, Northumberland, UK. SOM fractions were isolated from organic layer (5 - 17 cm) material using high density flotation and ultrasonic disaggregation - designated as free ( 1.8 g cm-3) and mineral-bound (> 1.8 g cm-3) SOM. Fractions were analysed for chemical composition (FTIR, CHN analysis, ICP-OES), 14C (AMS), δ13C and δ15N (MS) and thermal properties (DSC). SOM fractions and bulk soil from the organic layer and the mineral layer (20 - 30 cm) were incubated in sealed vessels at 30 ° C and 10 ° C for 3 or 9 months to allow accumulation of CO2 sufficient for sampling. Accumulated respired CO2 samples were collected on zeolite molecular sieve cartridges and used for AMS radiocarbon dating. In parallel, material from the same fractions and layers were incubated at 10 ° C, 15 ° C, 25 ° C and 30 ° C for 6 months and sampled weekly for CO2 flux measurements using GC chromatography. Initial data have shown radiocarbon ages ranging from modern to 219 y BP in bulk soil from the organic layer (5

  19. Mechanism of Molecular Exchange in Copolymer Micelles

    Science.gov (United States)

    Choi, Soo-Hyung; Lodge, Timothy; Bates, Frank

    2010-03-01

    Compared to thermodynamic structure, much less has been known about the kinetics of block copolymer micelles which should underlay the attainment of thermodynamic equilibrium. In this presentation, molecular exchange between spherical micelles formed by isotopically labeled diblock copolymers was investigated using time-resolved small-angle neutron scattering. Two pairs of structurally matched poly(styrene-b-ethylene-alt-propylene) (PS-PEP) were synthesized and dispersed in isotopic mixture of squalane, highly selective to PEP block. Each pair includes polymers with fully deuterated (dPS-PEP) and a normal (hPS-PEP) PS blocks. Temperature dependence of the micelle exchange rate R(t) is consistent with melt dynamics for the core polymer. Furthermore, R(t) is significantly sensitive to the core block length N due to the thermodynamic penalty associated with ejecting a core block into the solvent. This hypersensitivity, combined with modest polydispersity in N, leads to an approximately logarithmic decay in R(t).

  20. Ordering phenomena in ABA triblock copolymer gels

    DEFF Research Database (Denmark)

    Reynders, K.; Mischenko, N.; Kleppinger, R.;

    1997-01-01

    Temperature and concentration dependencies of the degree of order in ABA triblock copolymer gels are discussed. Two factors can influence the ordering phenomena: the conformation of the midblocks (links of the network) and the polydispersity of the endblock domains (nodes of the network). The lat......Temperature and concentration dependencies of the degree of order in ABA triblock copolymer gels are discussed. Two factors can influence the ordering phenomena: the conformation of the midblocks (links of the network) and the polydispersity of the endblock domains (nodes of the network...... crystalline lattice with close-packed spheres or with cubic (presumably BCC) equilibrium morphology. The appearance of the latter is never detected in the gels with a stretched conformation of the midblock....

  1. Nanostructured Polysulfone-Based Block Copolymer Membranes

    KAUST Repository

    Xie, Yihui

    2016-05-01

    The aim of this work is to fabricate nanostructured membranes from polysulfone-based block copolymers through self-assembly and non-solvent induced phase separation. Block copolymers containing polysulfone are novel materials for this purpose providing better mechanical and thermal stability to membranes than polystyrene-based copolymers, which have been exclusively used now. Firstly, we synthesized a triblock copolymer, poly(tert-butyl acrylate)-b-polsulfone-b-poly(tert-butyl acrylate) through polycondensation and reversible addition-fragmentation chain-transfer polymerization. The obtained membrane has a highly porous interconnected skin layer composed of elongated micelles with a flower-like arrangement, on top of the graded finger-like macrovoids. Membrane surface hydrolysis was carried out in a combination with metal complexation to obtain metal-chelated membranes. The copper-containing membrane showed improved antibacterial capability. Secondly, a poly(acrylic acid)-b-polysulfone-b-poly(acrylic acid) triblock copolymer obtained by hydrolyzing poly(tert-butyl acrylate)-b-polsulfone-b-poly(tert-butyl acrylate) formed a thin film with cylindrical poly(acrylic acid) microdomains in polysulfone matrix through thermal annealing. A phase inversion membrane was prepared from the same polymer via self-assembly and chelation-assisted non-solvent induced phase separation. The spherical micelles pre-formed in a selective solvent mixture packed into an ordered lattice in aid of metal-poly(acrylic acid) complexation. The space between micelles was filled with poly(acrylic acid)-metal complexes acting as potential water channels. The silver0 nanoparticle-decorated membrane was obtained by surface reduction, having three distinct layers with different particle sizes. Other amphiphilic copolymers containing polysulfone and water-soluble segments such as poly(ethylene glycol) and poly(N-isopropylacrylamide) were also synthesized through coupling reaction and copper0-mediated

  2. Hybrid, Nanoscale Phospholipid/Block Copolymer Vesicles

    Directory of Open Access Journals (Sweden)

    Bo Liedberg

    2013-09-01

    Full Text Available Hybrid phospholipid/block copolymer vesicles, in which the polymeric membrane is blended with phospholipids, display interesting self-assembly behavior, incorporating the robustness and chemical versatility of polymersomes with the softness and biocompatibility of liposomes. Such structures can be conveniently characterized by preparing giant unilamellar vesicles (GUVs via electroformation. Here, we are interested in exploring the self-assembly and properties of the analogous nanoscale hybrid vesicles (ca. 100 nm in diameter of the same composition prepared by film-hydration and extrusion. We show that the self-assembly and content-release behavior of nanoscale polybutadiene-b-poly(ethylene oxide (PB-PEO/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine (POPC hybrid phospholipid/block copolymer vesicles can be tuned by the mixing ratio of the amphiphiles. In brief, these hybrids may provide alternative tools for drug delivery purposes and molecular imaging/sensing applications and clearly open up new avenues for further investigation.

  3. Free energy of a copolymer in a micro-emulsion

    OpenAIRE

    den Hollander, F.; Petrelis, N.

    2012-01-01

    In this paper we consider a two-dimensional model of a copolymer consisting of a random concatenation of hydrophilic and hydrophobic monomers, immersed in a micro-emulsion of random droplets of oil and water. The copolymer interacts with the micro-emulsion through an interaction Hamiltonian that favors matches and disfavors mismatches between the monomers and the solvents, in such a way that the interaction with the oil is stronger than with the water. The configurations of the copolymers are...

  4. Reversible geling co-polymer and method of making

    Science.gov (United States)

    Gutowska, Anna

    2005-12-27

    The present invention is a thereapeutic agent carrier having a thermally reversible gel or geling copolymer that is a linear random copolymer of an [meth-]acrylamide derivative and a hydrophilic comonomer, wherein the linear random copolymer is in the form of a plurality of linear chains having a plurality of molecular weights greater than or equal to a minimum geling molecular weight cutoff and a therapeutic agent.

  5. Protein-Reactive, Thermoresponsive Copolymers with High Flexibility and Biodegradability

    OpenAIRE

    Guan, Jianjun; Hong, Yi; Ma, Zuwei; Wagner, William R.

    2008-01-01

    A family of injectable, biodegradable, and thermosensitive copolymers based on N-isopropylacrylamide, acrylic acid, N-acryloxysuccinimide, and a macromer polylactide–hydroxyethyl methacrylate were synthesized by free radical polymerization. Copolymers were injectable at or below room temperature and formed robust hydrogels at 37 °C. The effects of monomer ratio, polylactide length, and AAc content on the chemical and physical properties of the hydrogel were investigated. Copolymers exhibited ...

  6. Ion Transport in Nanostructured Block Copolymer/Ionic Liquid Membranes

    OpenAIRE

    Hoarfrost, Megan Lane

    2012-01-01

    Incorporating an ionic liquid into one block copolymer microphase provides a platform for combining the outstanding electrochemical properties of ionic liquids with a number of favorable attributes provided by block copolymers. In particular, block copolymers thermodynamically self-assemble into well-ordered nanostructures, which can be engineered to provide a durable mechanical scaffold and template the ionic liquid into continuous ion-conducting nanochannels. Understanding how the additio...

  7. Global temperature response to the major volcanic eruptions in multiple reanalysis data sets

    Directory of Open Access Journals (Sweden)

    M. Fujiwara

    2015-12-01

    Full Text Available The global temperature responses to the eruptions of Mount Agung in 1963, El Chichón in 1982, and Mount Pinatubo in 1991 are investigated using nine currently available reanalysis data sets (JRA-55, MERRA, ERA-Interim, NCEP-CFSR, JRA-25, ERA-40, NCEP-1, NCEP-2, and 20CR. Multiple linear regression is applied to the zonal and monthly mean time series of temperature for two periods, 1979–2009 (for eight reanalysis data sets and 1958–2001 (for four reanalysis data sets, by considering explanatory factors of seasonal harmonics, linear trends, Quasi-Biennial Oscillation, solar cycle, and El Niño Southern Oscillation. The residuals are used to define the volcanic signals for the three eruptions separately, and common and different responses among the older and newer reanalysis data sets are highlighted for each eruption. In response to the Mount Pinatubo eruption, most reanalysis data sets show strong warming signals (up to 2–3 K for 1-year average in the tropical lower stratosphere and weak cooling signals (down to −1 K in the subtropical upper troposphere. For the El Chichón eruption, warming signals in the tropical lower stratosphere are somewhat smaller than those for the Mount Pinatubo eruption. The response to the Mount Agung eruption is asymmetric about the equator with strong warming in the Southern Hemisphere midlatitude upper troposphere to lower stratosphere. Comparison of the results from several different reanalysis data sets confirms the atmospheric temperature response to these major eruptions qualitatively, but also shows quantitative differences even among the most recent reanalysis data sets. The consistencies and differences among different reanalysis data sets provide a measure of the confidence and uncertainty in our current understanding of the volcanic response. The results of this intercomparison study may be useful for validation of climate model responses to volcanic forcing and for assessing proposed

  8. Global temperature response to the major volcanic eruptions in multiple reanalysis data sets

    Science.gov (United States)

    Fujiwara, M.; Hibino, T.; Mehta, S. K.; Gray, L.; Mitchell, D.; Anstey, J.

    2015-12-01

    The global temperature responses to the eruptions of Mount Agung in 1963, El Chichón in 1982, and Mount Pinatubo in 1991 are investigated using nine currently available reanalysis data sets (JRA-55, MERRA, ERA-Interim, NCEP-CFSR, JRA-25, ERA-40, NCEP-1, NCEP-2, and 20CR). Multiple linear regression is applied to the zonal and monthly mean time series of temperature for two periods, 1979-2009 (for eight reanalysis data sets) and 1958-2001 (for four reanalysis data sets), by considering explanatory factors of seasonal harmonics, linear trends, Quasi-Biennial Oscillation, solar cycle, and El Niño Southern Oscillation. The residuals are used to define the volcanic signals for the three eruptions separately, and common and different responses among the older and newer reanalysis data sets are highlighted for each eruption. In response to the Mount Pinatubo eruption, most reanalysis data sets show strong warming signals (up to 2-3 K for 1-year average) in the tropical lower stratosphere and weak cooling signals (down to -1 K) in the subtropical upper troposphere. For the El Chichón eruption, warming signals in the tropical lower stratosphere are somewhat smaller than those for the Mount Pinatubo eruption. The response to the Mount Agung eruption is asymmetric about the equator with strong warming in the Southern Hemisphere midlatitude upper troposphere to lower stratosphere. Comparison of the results from several different reanalysis data sets confirms the atmospheric temperature response to these major eruptions qualitatively, but also shows quantitative differences even among the most recent reanalysis data sets. The consistencies and differences among different reanalysis data sets provide a measure of the confidence and uncertainty in our current understanding of the volcanic response. The results of this intercomparison study may be useful for validation of climate model responses to volcanic forcing and for assessing proposed geoengineering by stratospheric

  9. Static wetting behaviour of diblock copolymers

    OpenAIRE

    Ausserre, D.; Raghunathan, V.; Maaloum, M.

    1993-01-01

    Thin liquid films of ordered diblock copolymers deposited on a solid substrate form a multilayer stacking parallel to the solid surface. A multilayer with a finite extend can be stable, metastable, or unstable, depending on the relative values of the surface energies of the various interfaces. The spreading parameter and chemical potential of a n-layer are derived, and used for classifying all possible situations. It is shown that only mono- and bilayers can be stable, and that non-wetting mu...

  10. Comparing Fluid and Elastic Block Copolymer Shells

    Science.gov (United States)

    Rozairo, Damith; Croll, Andrew B.

    2014-03-01

    Emulsions can be stabilized with the addition of an amphiphilic diblock copolymer, resulting in droplets surrounded and protected by a polymer monolayer. Such droplets show considerable promise as advanced cargo carriers in pharmaceuticals or cosmetics due to their strength and responsiveness. Diblock copolymer interfaces remain mostly fluid and may not be able to attain the mechanical performance desired by industry. To strengthen block copolymer emulsion droplets we have developed a novel method for creating thin elastic shells using polystyrene-b-poly(acrylic acid)-b-polystyrene (PS-PAA-PS). Characterization of the fluid filled elastic shells is difficult with traditional means which lead us to develop a new and general method of mechanical measurement. Specifically, we use laser scanning confocal microscopy to achieve a high resolution measure of the deformation of soft spheres under the influence of gravity. To prove the resilience of the technique we examine both a polystyrene-b-poly(ethylene oxide) (PS-PEO) stabilized emulsion and the PS-PAA-PS emulsion. The mechanical measurement allows the physics of the polymer at the interface to be examined, which will ultimately lead to the rational development of these technologies.

  11. Block and Graft Copolymers of Polyhydroxyalkanoates

    Science.gov (United States)

    Marchessault, Robert H.; Ravenelle, François; Kawada, Jumpei

    2004-03-01

    Polyhydroxyalkanoates (PHAs) were modified for diblock copolymer and graft polymer by catalyzed transesterification in the melt and by chemical synthesis to extend the side chains of the PHAs, and the polymers were studied by transmission electron microscopy (TEM) X-ray diffraction, thermal analysis and nuclear magnetic resonance (NMR). Catalyzed transesterification in the melt is used to produce diblock copolymers of poly[3-hydroxybutyrate] (PHB) and monomethoxy poly[ethylene glycol] (mPEG) in a one-step process. The resulting diblock copolymers are amphiphilic and self-assemble into sterically stabilized colloidal suspensions of PHB crystalline lamellae. Graft polymer was synthesized in a two-step chemical synthesis from biosynthesized poly[3-hydroxyoctanoate-co-3-hydroxyundecenoate] (PHOU) containing ca. 25 mol chains. 11-mercaptoundecanoic acid reacts with the side chain alkenes of PHOU by the radical addition creating thioether linkage with terminal carboxyl functionalities. The latter groups were subsequently transformed into the amide or ester linkage by tridecylamine or octadecanol, respectively, producing new graft polymers. The polymers have different physical properties than poly[3-hydroxyoctanoate] (PHO) which is the main component of the PHOU, such as non-stickiness and higher thermal stability. The combination of biosynthesis and chemical synthesis produces a hybrid thermoplastic elastomer with partial biodegradability.

  12. Solubility and self-assembly of amphiphilic gradient and block copolymers in supercritical CO2

    International Nuclear Information System (INIS)

    This work aims at demonstrating the interest of gradient copolymers in supercritical CO2 in comparison with block copolymers. Gradient copolymers exhibit a better solubility in supercritical CO2 than block copolymers, as attested by cloud point data. The self-assembly of gradient and block copolymers in dense CO2 has been characterized by Small-Angle Neutron Scattering (SANS); and it is shown that it is not fundamentally modified when changing from block copolymers to gradient copolymers. Therefore, gradient copolymers are advantageous thanks to their easier synthesis and their solubility at lower pressure while maintaining a good ability for self-organization in dense CO2. (authors)

  13. Temperature responsive complex coacervate core micelles with a PEO and PNIPAAm corona.

    Science.gov (United States)

    Voets, Ilja K; Moll, Puck M; Aqil, Abdelhafid; Jérôme, Christine; Detrembleur, Christophe; Waard, Pieter de; Keizer, Arie de; Stuart, Martien A Cohen

    2008-09-01

    In aqueous solutions at room temperature, poly( N-methyl-2-vinyl pyridinium iodide)- block-poly(ethylene oxide), P2MVP 38- b-PEO 211 and poly(acrylic acid)- block-poly(isopropyl acrylamide), PAA 55- b-PNIPAAm 88 spontaneously coassemble into micelles, consisting of a mixed P2MVP/PAA polyelectrolyte core and a PEO/PNIPAAm corona. These so-called complex coacervate core micelles (C3Ms), also known as polyion complex (PIC) micelles, block ionomer complexes (BIC), and interpolyelectrolyte complexes (IPEC), respond to changes in solution pH and ionic strength as their micellization is electrostatically driven. Furthermore, the PNIPAAm segments ensure temperature responsiveness as they exhibit lower critical solution temperature (LCST) behavior. Light scattering, two-dimensional 1H NMR nuclear Overhauser effect spectrometry, and cryogenic transmission electron microscopy experiments were carried out to investigate micellar structure and solution behavior at 1 mM NaNO 3, T = 25, and 60 degrees C, that is, below and above the LCST of approximately 32 degrees C. At T = 25 degrees C, C3Ms were observed for 7 coacervate shell, and a PEO corona.

  14. Seasonal temperature responses to land-use change in the western United States

    Science.gov (United States)

    Kueppers, L.M.; Snyder, M.A.; Sloan, L.C.; Cayan, D.; Jin, J.; Kanamaru, H.; Kanamitsu, M.; Miller, N.L.; Tyree, Mary; Du, H.; Weare, B.

    2008-01-01

    In the western United States, more than 79 000??km2 has been converted to irrigated agriculture and urban areas. These changes have the potential to alter surface temperature by modifying the energy budget at the land-atmosphere interface. This study reports the seasonally varying temperature responses of four regional climate models (RCMs) - RSM, RegCM3, MM5-CLM3, and DRCM - to conversion of potential natural vegetation to modern land-cover and land-use over a 1-year period. Three of the RCMs supplemented soil moisture, producing large decreases in the August mean (- 1.4 to - 3.1????C) and maximum (- 2.9 to - 6.1????C) 2-m air temperatures where natural vegetation was converted to irrigated agriculture. Conversion to irrigated agriculture also resulted in large increases in relative humidity (9% to 36% absolute change). Modeled changes in the August minimum 2-m air temperature were not as pronounced or consistent across the models. Converting natural vegetation to urban land-cover produced less pronounced temperature effects in all models, with the magnitude of the effect dependent upon the preexisting vegetation type and urban parameterizations. Overall, the RCM results indicate that the temperature impacts of land-use change are most pronounced during the summer months, when surface heating is strongest and differences in surface soil moisture between irrigated land and natural vegetation are largest. ?? 2007 Elsevier B.V. All rights reserved.

  15. Temperature-responsive self-assembled monolayers of oligo(ethylene glycol): control of biomolecular recognition.

    Science.gov (United States)

    Zareie, Hadi M; Boyer, Cyrille; Bulmus, Volga; Nateghi, Ebrahim; Davis, Thomas P

    2008-04-01

    Self-assembled monolayers (SAMs) of oligo(ethylene glycol) (OEG)-tethered molecules on gold are important for various biorelevant applications ranging from biomaterials to bioanalytical devices, where surface resistance to nonspecific protein adsorption is needed. Incorporation of a stimuli-responsive character to the OEG SAMs enables the creation of nonfouling surfaces with switchable functionality. Here we present an OEG-derived structure that is highly responsive to temperature changes in the vicinity of the physiological temperature, 37 degrees C. The temperature-responsive solution behavior of this new compound was demonstrated by UV-vis and nuclear magnetic resonance spectroscopy. Its chemisorption onto gold(111), and the retention of responsive behavior after chemisorption have been demonstrated by surface plasmon resonance (SPR), X-ray photoelectron spectroscopy (XPS), and atomic force and scanning tunneling microscopy. The OEG-derived SAMs have been shown to reversibly switch the wettability of the surface, as determined by contact angle measurements. More importantly, SPR and AFM studies showed that the OEG SAMs can be utilized to control the affinity binding of streptavidin to the biotin-tethered surface in a temperature-dependent manner while still offering the nonspecific protein-resistance to the surface.

  16. Light- and temperature-responsive liposomes incorporating cinnamoyl Pluronic F127.

    Science.gov (United States)

    Wang, MinHui; Kim, Jin-Chul

    2014-07-01

    Light- and temperature-responsive liposomes were prepared by immobilizing cinnamoyl Pluronic F127 (CP F127) on the surface of egg phosphatidylcholine liposomes. CP F127 was prepared by a condensation reaction, and the molar ratio of cinnamoyl group to Pluronic F127 was calculated to be 1:1.4 on (1)H NMR spectrum. The cinnamoyl group of CP F127 was readily dimerized under the irradiation of a UV light (254 nm, 6 W). CP F127 decreased the absolute value of the zeta potential of liposome possibly because it can shift the hydrodynamic plane away from the liposome surface. The size of liposome decorated with CP F127, measured on a dynamic light scattering machine and observed on a TEM, was larger than that of bare liposome. The liposome bearing CP F127 seemed to fuse and aggregate each other. The liposome released calcein, a fluorescence dye, in response to a UV irradiation, possibly because the photo-dimerization of cinnamoyl group perturbs the liposomal membrane. Moreover, the liposome released the dye in response to a temperature change, possible due to the phase transition of Pluronic F127 layer on the liposomal surface or the hydrophobic interaction of the polymer with liposomal membrane. PMID:24709213

  17. The use of infrared thermography to detect the skin temperature response to physical activity

    Science.gov (United States)

    Tanda, G.

    2015-11-01

    Physical activity has a noticeable effect on skin blood flow and temperature. The thermal regulatory and hemodynamic processes during physical activity are controlled by two conflicting mechanisms: the skin vasoconstriction induced by the blood flow demand to active muscles and the skin vasodilation required by thermoregulation to increase warm blood flow and heat conduction to the skin. The time-evolution of skin temperature during exercise can give useful information about the adaptation of the subject as a function of specific type, intensity and duration of exercise. In this paper, infrared thermography is used to investigate the thermal response of skin temperature during running exercise on treadmill for a group of seven healthy and trained runners. Two different treadmill exercises are considered: a graded load exercise and a constant load exercise; for both exercises the duration was 30 minutes. Within the limits due to the relatively small size of the sample group, results typically indicate a fall in skin temperature during the initial stage of running exercise. As the exercise progresses, the dynamics of the skin temperature response depends on the type of exercise (graded versus constant load) and probably on the level of training of the subject.

  18. Highly temperature responsive core-shell magnetic particles: synthesis, characterization and colloidal properties.

    Science.gov (United States)

    Rahman, Md Mahbubor; Chehimi, Mohamed M; Fessi, Hatem; Elaissari, Abdelhamid

    2011-08-15

    Temperature responsive magnetic polymer submicron particles were prepared by two step seed emulsion polymerization process. First, magnetic seed polymer particles were obtained by emulsion polymerization of styrene using potassium persulfate (KPS) as an initiator and divinylbenzne (DVB) as a cross-linker in the presence of oil-in-water magnetic emulsion (organic ferrofluid droplets). Thereafter, DVB cross-linked magnetic polymer particles were used as seed in the precipitation polymerization of N-isopropylacrylamide (NIPAM) to induce thermosensitive PNIPAM shell onto the hydrophobic polymer surface of the cross-linked magnetic polymer particles. To impart cationic functional groups in the thermosensitive PNIPAM backbone, the functional monomer aminoethylmethacrylate hydrochloride (AEMH) was used to polymerize with NIPAM while N,N'-methylenebisacrylamide (MBA) and 2, 2'-azobis (2-methylpropionamidine) dihydrochloride (V-50) were used as a cross-linker and as an initiator respectively. The effect of seed to monomer (w/w) ratio along with seed nature on the final particle morphology was investigated. Dynamic light scattering (DLS) results demonstrated particles swelling at below volume phase transition temperature (VPTT) and deswelling above the VPTT. The perfect core (magnetic) shell (polymer) structure of the particles prepared was confirmed by Transmission Electron Microscopy (TEM). The chemical composition of the particles were determined by thermogravimetric analysis (TGA). The effect of temperature, pH, ionic strength on the colloidal properties such as size and zeta potential of the micron sized thermo-sensitive magnetic particles were also studied. In addition, a short mechanistic discussion on the formation of core-shell morphology of magnetic polymer particles has also been discussed. PMID:21570083

  19. Temperature response of carbon isotope discrimination and mesophyll conductance in tobacco.

    Science.gov (United States)

    Evans, John R; von Caemmerer, Susanne

    2013-04-01

    The partial pressure of CO2 at the sites of carboxylation within chloroplasts depends on the conductance to CO2 diffusion from intercellular airspace to the sites of carboxylation, termed mesophyll conductance (gm ). We investigated the temperature response of gm in tobacco (Nicotiana tabacum) by combining gas exchange in high light, ambient CO2 in either 2 or 21% O2 with carbon isotope measurements using tuneable diode laser spectroscopy. The gm increased linearly with temperature in 2 or 21% O2 . In 21% O2 , isotope discrimination associated with gm decreased from 5.0 ± 0.2 to 1.8 ± 0.2‰ as temperature increased from 15 to 40 °C, but the photorespiratory contribution to the isotopic signal is significant. While the fractionation factor for photorespiration (f = 16.2 ± 0.7‰) was independent of temperature between 20 and 35 °C, discrimination associated with photorespiration increased from 1.1 ± 0.01 to 2.7 ± 0.02‰ from 15 to 40 °C. Other mitochondrial respiration contributed around 0.2 ± 0.03‰. The drawdown in CO2 partial pressure from ambient air to intercellular airspaces was nearly independent of leaf temperature. By contrast, the increase in gm with increasing leaf temperature resulted in the drawdown in CO2 partial pressure between intercellular airspaces and the sites of carboxylation decreasing substantially at high temperature. PMID:22882584

  20. Temperature responsive hydrogel magnetic nanocomposites for hyperthermia and metal extraction applications

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, N. Narayana, E-mail: nagireddynarayana@gmail.com [Center for Advanced Biomaterials for Healthcare, Istituto Italiano di Tecnologia@CRIB, Largo Barsanti e Matteucci 53, 80125 Napoli (Italy); Ravindra, S. [Department of Physics, College of Science, Engineering and Technology, University of South Africa, Johannesburg 1709 (South Africa); Reddy, N. Madhava [Department of Environmental Science, Gates Institute of Technology, NH-7, Gooty, Anantapuram, Andhra Pradesh (India); Rajinikanth, V. [Department of Physics, College of Science, Engineering and Technology, University of South Africa, Johannesburg 1709 (South Africa); Raju, K. Mohana [Synthetic Polymer Laboratory, Department of Polymer Science & Technology, S.K. University, Anantapuram, Andhra Pradesh (India); Vallabhapurapu, Vijaya Srinivasu [Department of Physics, College of Science, Engineering and Technology, University of South Africa, Johannesburg 1709 (South Africa)

    2015-11-15

    The present work deals with the development of temperature and magnetic responsive hydrogel networks based on poly (N-isopropylacrylamide)/acrylamido propane sulfonic acid. The hydrogel matrices are synthesized by polymerizing N-isopropylacrylamide (NIPAM) monomer in the presence of acrylamido propane sulphonicacid (AMPS) using a cross-linker (N,N-methylenebisacrylamide, MBA) and redox initiating system [ammonium persulphate (APS)/tetramethylethylenediamine (TMEDA)]. The magnetic nanoparticles are generated throughout the hydrogel networks using in situ method by incorporating iron ions and subsequent treatment with ammonia. A series of hydrogel-magnetic nanocomposites (HGMNC) are developed by varying AMPS composition. The synthesized hydrogel magnetic nanocomposites (HGMNC) are characterized by using Fourier Transform Infrared (FTIR) Spectroscopy, X-ray diffraction (XRD), Thermal Analyses and Electron Microscopy analysis (Scanning and Transmission Electron Microscope). The metal extraction capacities of the prepared hydrogel (HG) and hydrogel magnetic nanocomposites (HGMNC) were studied at different temperatures. The results suggest that HGMNCs have higher extraction capacity compared to HG and HG loaded iron ions. This data also reveals that the extraction of metals by hydrogel magnetic nanocomposites (HGMNCs) is higher at higher temperatures than room temperature. The prepared HGMNCs are also subjected to hyperthermia (cancer therapy) studies. - Highlights: • We have developed temperature responsive hydrogel magnetic nanocomposites. • Addition of AMPS monomer to this magnetic hydrogel enhances the temperature sensitivity to 40–43 °C. • Similarly the sulfonic groups present in the AMPS units enhances the swelling ratio of magnetic hydrogels. • AMPS acts as good stabilizing agent for nanoparticles in the magnetic nanogel.

  1. Temperature responses of carbon monoxide and hydrogen uptake by vegetated and unvegetated volcanic cinders

    Science.gov (United States)

    King, Caitlin E; King, Gary M

    2012-01-01

    Ecosystem succession on a large deposit of volcanic cinders emplaced on Kilauea Volcano in 1959 has resulted in a mosaic of closed-canopy forested patches and contiguous unvegetated patches. Unvegetated and unshaded surface cinders (Bare) experience substantial diurnal temperature oscillations ranging from moderate (16 °C) to extreme (55 °C) conditions. The surface material of adjacent vegetated patches (Canopy) experiences much smaller fluctuations (14–25 °C) due to shading. To determine whether surface material from these sites showed adaptations by carbon monoxide (CO) and hydrogen (H2) consumption to changes in ambient temperature regimes accompanying succession, we measured responses of CO and H2 uptake to short-term variations in temperature and long-term incubations at elevated temperature. Based on its broader temperature optimum and lower activation energy, Canopy H2 uptake was less sensitive than Bare H2 uptake to temperature changes. In contrast, Bare and Canopy CO uptake responded similarly to temperature during short-term incubations, indicating no differences in temperature sensitivity. However, during extended incubations at 55 °C, CO uptake increased for Canopy but not Bare material, which indicated that the former was capable of thermal adaptation. H2 uptake for material from both sites was completely inhibited at 55 °C throughout extended incubations. These results indicated that plant development during succession did not elicit differences in short-term temperature responses for Bare and Canopy CO uptake, in spite of previously reported differences in CO oxidizer community composition, and differences in average daily and extreme temperatures. Differences associated with vegetation due to succession did, however, lead to a notable capacity for thermophilic CO uptake by Canopy but not Bare material. PMID:22258097

  2. Evolution of temperature responses in the Cladophora vagabunda complex and the C-albida/sericea complex (Chlorophyta)

    NARCIS (Netherlands)

    Breeman, AM; Oh, YS; Hwang, MS; Van den Hoek, C

    2002-01-01

    Differentiation in temperature responses (survival and growth) was investigated among isolates of two tropical to temperate green algal lineages: the Cladophora vagabunda complex and the C. albida/sericea complex. The results were analysed in relation to published data on 18S rRNA and ITS sequence d

  3. Antimicrobial activity of poly(acrylic acid) block copolymers

    Energy Technology Data Exchange (ETDEWEB)

    Gratzl, Günther, E-mail: guenther.gratzl@jku.at [Johannes Kepler University Linz, Institute for Chemical Technology of Organic Materials, Altenberger Str. 69, 4040 Linz (Austria); Paulik, Christian [Johannes Kepler University Linz, Institute for Chemical Technology of Organic Materials, Altenberger Str. 69, 4040 Linz (Austria); Hild, Sabine [Johannes Kepler University Linz, Institute of Polymer Science, Altenberger Str. 69, 4040 Linz (Austria); Guggenbichler, Josef P.; Lackner, Maximilian [AMiSTec GmbH and Co. KG, Leitweg 13, 6345 Kössen, Tirol (Austria)

    2014-05-01

    The increasing number of antibiotic-resistant bacterial strains has developed into a major health problem. In particular, biofilms are the main reason for hospital-acquired infections and diseases. Once formed, biofilms are difficult to remove as they have specific defense mechanisms against antimicrobial agents. Antimicrobial surfaces must therefore kill or repel bacteria before they can settle to form a biofilm. In this study, we describe that poly(acrylic acid) (PAA) containing diblock copolymers can kill bacteria and prevent from biofilm formation. The PAA diblock copolymers with poly(styrene) and poly(methyl methacrylate) were synthesized via anionic polymerization of tert-butyl acrylate with styrene or methyl methacrylate and subsequent acid-catalyzed hydrolysis of the tert-butyl ester. The copolymers were characterized via nuclear magnetic resonance spectroscopy (NMR), size-exclusion chromatography (SEC), Fourier transform infrared spectroscopy (FTIR), elemental analysis, and acid–base titrations. Copolymer films with a variety of acrylic acid contents were produced by solvent casting, characterized by atomic force microscopy (AFM) and tested for their antimicrobial activity against Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. The antimicrobial activity of the acidic diblock copolymers increased with increasing acrylic acid content, independent of the copolymer-partner, the chain length and the nanostructure. - Highlights: • Acrylic acid diblock copolymers are antimicrobially active. • The antimicrobial activity depends on the acrylic acid content in the copolymer. • No salts, metals or other antimicrobial agents are needed.

  4. Piezoelectric Properties of Non-Polar Block Copolymers

    Energy Technology Data Exchange (ETDEWEB)

    Pester, Christian [RWTH Aachen University; Ruppel, Markus A [ORNL; Schoberth, Heiko [University of Bayreuth; Schmidt, K. [Universitat Bayreuth; Liedel, Clemens [RWTH Aachen University; Van Rijn, Patrick [RWTH Aachen University; Littrell, Ken [ORNL; Schindler, Kerstin [RWTH Aachen University; Hiltl, Stephanie [RWTH Aachen University; Czubak, Thomas [RWTH Aachen University; Mays, Jimmy [ORNL; Urban, Volker S [ORNL; Boker, Alexander [RWTH Aachen University

    2011-01-01

    Piezoelectric properties in non-polar block copolymers are a novelty in the field of electroactive polymers. The piezoelectric susceptibility of poly(styrene-b-isoprene) block copolymer lamellae is found to be up to an order of magnitude higher when compared to classic piezoelectric materials. The electroactive response increases with temperature and is found to be strongest in the disordered phase.

  5. Morphological studies on block copolymer modified PA 6 blends

    Energy Technology Data Exchange (ETDEWEB)

    Poindl, M., E-mail: marcus.poindl@ikt.uni-stuttgart.de, E-mail: christian.bonten@ikt.uni-stuttgart.de; Bonten, C., E-mail: marcus.poindl@ikt.uni-stuttgart.de, E-mail: christian.bonten@ikt.uni-stuttgart.de [Institut für Kunststofftechnik, University of Stuttgart (Germany)

    2014-05-15

    Recent studies show that compounding polyamide 6 (PA 6) with a PA 6 polyether block copolymers made by reaction injection molding (RIM) or continuous anionic polymerization in a reactive extrusion process (REX) result in blends with high impact strength and high stiffness compared to conventional rubber blends. In this paper, different high impact PA 6 blends were prepared using a twin screw extruder. The different impact modifiers were an ethylene propylene copolymer, a PA PA 6 polyether block copolymer made by reaction injection molding and one made by reactive extrusion. To ensure good particle matrix bonding, the ethylene propylene copolymer was grafted with maleic anhydride (EPR-g-MA). Due to the molecular structure of the two block copolymers, a coupling agent was not necessary. The block copolymers are semi-crystalline and partially cross-linked in contrast to commonly used amorphous rubbers which are usually uncured. The combination of different analysis methods like atomic force microscopy (AFM), transmission electron microscopy (TEM) and scanning electron microscopy (SEM) gave a detailed view in the structure of the blends. Due to the partial cross-linking, the particles of the block copolymers in the blends are not spherical like the ones of ethylene propylene copolymer. The differences in molecular structure, miscibility and grafting of the impact modifiers result in different mechanical properties and different blend morphologies.

  6. Fast & scalable pattern transfer via block copolymer nanolithography

    DEFF Research Database (Denmark)

    Li, Tao; Wang, Zhongli; Schulte, Lars;

    2015-01-01

    A fully scalable and efficient pattern transfer process based on block copolymer (BCP) self-assembling directly on various substrates is demonstrated. PS-rich and PDMS-rich poly(styrene-b-dimethylsiloxane) (PS-b-PDMS) copolymers are used to give monolayer sphere morphology after spin-casting of s...

  7. From Block Copolymers to Nano-porous Materials

    DEFF Research Database (Denmark)

    Vigild, Martin Etchells; Ndoni, Sokol; Berg, Rolf Henrik

    2003-01-01

    Quantitative etching of the polydimethylsiloxane block in a series of polystyrene-polydimethylsiloxane (PS-PDMS) block copolymers is reported. Reacting the block copolymer with anhydrous hydrogen fluoride (HF) renders a nanoporous material with the remaining PS maintaining the original morphology...

  8. Microphase separation of diblock copolymers with amphiphilic segment

    NARCIS (Netherlands)

    Kriksin, Yury A.; Khalatur, Pavel G.; Erukhimovich, Igor Ya.; ten Brinke, Gerrit; Khokhlov, Alexei R.

    2009-01-01

    We present a statistical mechanical approach for predicting the self-assembled morphologies of amphiphilic diblock copolymers in the melt. We introduce two conformationally asymmetric linear copolymer models with a local structural asymmetry, one of a "comb-tail'' type and another that we call "cont

  9. Siloxane modified polyurea and polyurethane urea segmented copolymers

    OpenAIRE

    Kim, Regina H.

    1989-01-01

    High molecular weight polyether urea copolymers were synthesized using perfectly difunctional aromatic amine terminated polypropylene oxide (PPO) (2800 ) prepared via aluminum porphorin initiated coordination polymerization. The resulting segmented copolymer showed much higher tensile strength and better thermal stability than polyureas based on commercial PPO which contains some terminal unsaturation. This was attributed to the achievement of both higher molecular weight and t...

  10. Self-assembled materials from thermosensitive and biohybrid block copolymers

    NARCIS (Netherlands)

    de Graaf, A.J.

    2012-01-01

    In this research, several block copolymers were synthesized and characterized with regard to possible pharmaceutical applications. All block copolymers were thermosensitive and self-assembled at 37 °C into structures like micelles and hydrogels, which can be used for innovative drug delivery purpose

  11. Surface morphology of PS-PDMS diblock copolymer films

    DEFF Research Database (Denmark)

    Andersen, T.H.; Tougaard, S.; Larsen, N.B.;

    2001-01-01

    Spin coated thin films (∼400 Å) of poly(styrene)–poly(dimethylsiloxane) (PS–PDMS) diblock copolymers have been investigated using X-ray Photoelectron Spectroscopy and Atomic Force Microscopy. Surface segregation of the poly(dimethylsiloxane) blocks was studied for five diblock copolymers which ra...

  12. Functional Block Copolymers via Anionic Polymerization for Electroactive Membranes

    OpenAIRE

    Schultz, Alison

    2013-01-01

           Ion-containing block copolymers blend ionic liquid properties with well-defined polymer architectures. This provides conductive materials with robust mechanical stability, efficient processability, and tunable macromolecular design. Conventional free radical polymerization and anion exchange achieved copolymers containing n-butyl acrylate and phosphonium ionic liquids. These compositions incorporated vinylbenzyl triphenyl phosphonium and vinylbenzyl tricyclohexyl phosphonium cations be...

  13. Stereo block copolymers of L- and D-lactides

    NARCIS (Netherlands)

    Yui, Nobuhiko; Dijkstra, Pieter J.; Feijen, Jan

    1990-01-01

    Sequential diblock copolymers composed of L- and D-lactic acid residues were synthesized through a living ring-opening polymerization of L- and D-lactide initiated by aluminium tris(2-propanolate). The composition of the block copolymers was varied by changing the reaction conditions and monomer ove

  14. PREPARATION AND SURFACE PROPERTIES OF ACRYLIC COPOLYMERS CONTAINING FLUORINATED MONOMERS

    Institute of Scientific and Technical Information of China (English)

    Tai-jiang Gui; Hao Wei; Ying Zhao; Xiu-lin Wang; Du-jin Wang; Duan-fu Xu

    2006-01-01

    A series of copolymers comprising butylmethacrylate, styrene, butylacrylate, hydroxypropyl acrylate and perfluoroalkyl methacrylate were synthesized by the free radical polymerization using BPO as an initiator. The surface property of the copolymer films was subsequently characterized. The contact angle measurements and energy dispersive analysis of X-ray (EDAX) show that the length and content ofperfluoroalkyl side chains in the copolymers are crucial for the preparation of the film with low surface energy. At a given content of fluorinated monomers in the copolymers, the longer the perfluoroalkyl side chain, the larger the water contact angle of the copolymer films will be. On the other hand, the higher the content of fluorinated monomers, the lower the surface energy is. The water contact angle increases with the increase of the fluorinated monomer content and reaches a plateau at 3 wt% of fluorinated monomer content.

  15. Electric Field Induced Selective Disordering in Lamellar Block Copolymers

    Energy Technology Data Exchange (ETDEWEB)

    Ruppel, Markus A [ORNL; Pester, Christian W [ORNL; Langner, Karol M [Leiden Institute of Chemistry, Leiden University, The Netherlands; Sevink, Geert [Leiden Institute of Chemistry, Leiden University, The Netherlands; Schoberth, Heiko [University of Bayreuth; Schmidt, Kristin [ORNL; Urban, Volker S [ORNL; Mays, Jimmy [ORNL; Boker, Alexander [RWTH Aachen University

    2013-01-01

    External electric fields align nanostructured block copolymers by either rotation of grains or nucleation and growth depending on how strongly the chemically distinct block copolymer components are segregated. In close vicinity to the orderdisorder transition, theory and simulations suggest a third mechanism: selective disordering. We present a time-resolved small-angle X-ray scattering study that demonstrates how an electric field can indeed selectively disintegrate ill-aligned lamellae in a lyotropic block copolymer solution, while lamellae with interfaces oriented parallel to the applied field prevail. The present study adds an additional mechanism to the experimentally corroborated suite of mechanistic pathways, by which nanostructured block copolymers can align with an electric field. Our results further unveil the benefit of electric field assisted annealing for mitigating orientational disorder and topological defects in block copolymer mesophases, both in close vicinity to the orderdisorder transition and well below it.

  16. Sulfomethylated graft copolymers of xanthan gum and polyacrylamide

    Energy Technology Data Exchange (ETDEWEB)

    Cottrell, I.W.; Empey, R.A.; Racciato, J.S.

    1978-08-08

    A water-soluble anionic graft copolymer of xanthan gum and polyacrylamide is described in which at least part of the amide function of the acrylamide portion of the copolymer is sulfomethylated and the xanthan gum portion of the copolymer is unreacted with formaldehyde. The copolymer is sulfomethylated by reaction with formaldehyde and sodium metabisulfite. The formaldehyde does not cause any appreciable cross-linking between hydroxyl groups of the xanthan moieties. The sulfomethylation of the acrylamido group takes place at temperatures from 35 to 70 C. The pH is 10 or higher, typically from 12 to 13. The degree of anionic character may be varied by adjusting the molar ratio of formaldehyde and sodium metabisulfite with respect to the copolymer. 10 claims.

  17. Structure and Mechanical Properties of Ethylene-butene Copolymers

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The crystallinity of ethylene-butene copolymers prepared by copolymerization of ethylene and butene in the presence of a new highly active catalyst was studied by means of DSC, WAXD and DMA. The results show that the melting temperature, the crystallinity and the crystallite size decreased with increasing the content of butene in the copolymers. The copolymers have a high degree of branching, the butene segments are mainly in the amorphous regions of the copolymers, while the polyethylene sequence forms crystal phase acting as crosslinking bondage between the molecules at room temperature. The ethylene-butene copolymers have a low modulus, a low stress and a high strain analogous to the stress-strain behavior of non-cross thermoplastic elastomer.

  18. Multicompartment Micelles From π-Shaped ABC Block Copolymers

    Institute of Scientific and Technical Information of China (English)

    XIA Jun; ZHONG Chong-Li

    2007-01-01

    Dissipative particle dynamics simulations were performed on the morphology and structure of multicompartment micelles formed from n-shaped ABC block copolymers in water. The influences of chain architectures were studied in a systematic way, and a rich variety of morphologies were observed, such as spherical, wormlike,X-shaped, Y-shaped, ribbon-like, layered rod-like, layered disk-like, as well as network morphologies. The simulations show that the distance between the two grafts plays an important role in control of the morphology. Since π-shaped ABC block copolymers can be reduced to linear ABC and star ABC block copolymers, they are good model copolymers for studying the self-assembly of complex block copolymers into micelles. The knowledge obtained in this work as well as the new morphologies identified provide useful information for future rational design and synthesis of novel multicompartment micelles.

  19. Preparation of Impact and Weather Resistant Copolymer

    Institute of Scientific and Technical Information of China (English)

    LIANG; Tao

    2001-01-01

    Synthesis method of the resin is that crosslinked polybutyl acrylate latex is used as base latex. Styrene (St) and acrylonitrile (AN) are grafted onto polybutyl acrylate latex particle and turn into core-shell copolymer. The resin is a good resin's impact modifier. There are study of influence regularity about additive emulsifier, initiator, monomer concentration, the ratio of St to AN, chain transfer to graft polymerization. A kind of core-shell resin used as impact modifier is obtained. (A) Preparation of Crosslinked Butyl Acrylate Rubber Latex  ……

  20. Preparation of Impact and Weather Resistant Copolymer

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    @@ Synthesis method of the resin is that crosslinked polybutyl acrylate latex is used as base latex. Styrene (St) and acrylonitrile (AN) are grafted onto polybutyl acrylate latex particle and turn into core-shell copolymer. The resin is a good resin's impact modifier. There are study of influence regularity about additive emulsifier, initiator, monomer concentration, the ratio of St to AN, chain transfer to graft polymerization. A kind of core-shell resin used as impact modifier is obtained. (A) Preparation of Crosslinked Butyl Acrylate Rubber Latex

  1. Surface tension of micellar block copolymer films

    International Nuclear Information System (INIS)

    Surface tensions of micellar block copolymers of poly(styrene-b-dimethylsiloxane) (PS-b-PDMS) films are obtained by X-ray diffuse scattering. PS-b-PDMS films on Si substrates with the thicknesses from 36 to 588 nm were investigated at temperatures of 30 - 215 .deg. C. The surface tension reflects the concentration of PDMS micelles which are preferably located at the surface. The molar fraction of PDMS micelles near the surface is estimated by using angle-resolved X-ray photoelectron spectroscopy.

  2. Small domain-size multiblock copolymer electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Pistorino, Jonathan; Eitouni, Hany Basam

    2016-09-20

    New block polymer electrolytes have been developed which have higher conductivities than previously reported for other block copolymer electrolytes. The new materials are constructed of multiple blocks (>5) of relatively low domain size. The small domain size provides greater protection against formation of dendrites during cycling against lithium in an electrochemical cell, while the large total molecular weight insures poor long range alignment, which leads to higher conductivity. In addition to higher conductivity, these materials can be more easily synthesized because of reduced requirements on the purity level of the reagents.

  3. A NOVEL THERMOSENSITIVE POLYMER WITH pH-DEPENDENT DEGRADATION FOR DRUG DELIVERY

    OpenAIRE

    Garripelli, Vivek Kumar; Kim, Jin-Ki; Namgung, Ran; Kim, Won Jong; Repka, Michael A.; Jo, Seongbong

    2009-01-01

    A class of thermosensitive biodegradable multiblock copolymers with acid-labile acetal linkages were synthesized from Pluronic® triblock copolymers (Pluronic® P85 and P104) and di-(ethylene glycol) divinyl ether. The novel polymers were engineered to form thermogels at body temperature and degrade in acidic environment. The Pluronic®-based acid-labile polymers were characterized using nuclear magnetic resonance, gel permeation chromatography and differential scanning calorimetry. In vitro bio...

  4. Chain exchange in triblock copolymer micelles

    Science.gov (United States)

    Lu, Jie; Lodge, Timothy; Bates, Frank

    2015-03-01

    Block polymer micelles offer a host of technological applications including drug delivery, viscosity modification, toughening of plastics, and colloidal stabilization. Molecular exchange between micelles directly influences the stability, structure and access to an equilibrium state in such systems and this property recently has been shown to be extraordinarily sensitive to the core block molecular weight in diblock copolymers. The dependence of micelle chain exchange dynamics on molecular architecture has not been reported. The present work conclusively addresses this issue using time-resolved small-angle neutron scattering (TR-SANS) applied to complimentary S-EP-S and EP-S-EP triblock copolymers dissolved in squalane, a selective solvent for the EP blocks, where S and EP refer to poly(styrene) and poly(ethylenepropylene), respectively. Following the overall SANS intensity as a function of time from judiciously deuterium labelled polymer and solvent mixtures directly probes the rate of molecular exchange. Remarkably, the two triblocks display exchange rates that differ by approximately ten orders of magnitude, even though the solvophobic S blocks are of comparable size. This discovery is considered in the context of a model that successfully explains S-EP diblock exchange dynamics.

  5. Block copolymer ion gels for gas separation

    Science.gov (United States)

    Gu, Yuanyan; Lodge, Timothy

    2012-02-01

    Carbon dioxide removal from light gases (eg. N2, CH4, and H2) is a very important technology for industrial applications such as natural gas sweetening, CO2 capture from coal-fire power plant exhausts and hydrogen production. Current CO2 separation method uses amine-absorption, which is energy-intensive and requires frequent maintenance. Membrane separation is a cost-effective solution to this problem, especially in small-scale applications. Ionic liquids have recently received increasing interest in this area because of their selective solubility for CO2 and non-volatility. However, ionic liquid itself lacks the persistent structure and mechanical integrity to withstand the high pressure for gas separation. Here, we report the development and gas separation performances of physically crosslinked ion gels based on self-assembly of ABA-triblock copolymers in ionic liquids. Three different types of polymers was used to achieve gelation in ionic liquids. Specifically, a triblock copolymer ion gel with a polymerized ionic liquid mid-block shows performances higher than the upper bound of well-known ``Robeson Plot'' for CO2/N2.

  6. Tribological Behavior of Aqueous Copolymer Lubricant in Mixed Lubrication Regime.

    Science.gov (United States)

    Ta, Thi D; Tieu, A Kiet; Zhu, Hongtao; Zhu, Qiang; Kosasih, Prabouno B; Zhang, Jie; Deng, Guanyu

    2016-03-01

    Although a number of experiments have been attempted to investigate the lubrication of aqueous copolymer lubricant, which is applied widely in metalworking operations, a comprehensive theoretical investigation at atomistic level is still lacking. This study addresses the influence of loading pressure and copolymer concentration on the structural properties and tribological performance of aqueous copolymer solution of poly(propylene oxide)-poly(ethylene oxide)-poly(propylene oxide) (PPO-PEO-PPO) at mixed lubrication using a molecular dynamic (MD) simulation. An effective interfacial potential, which has been derived from density functional theory (DFT) calculations, was employed for the interactions between the fluid's molecules and iron surface. The simulation results have indicated that the triblock copolymer is physisorption on iron surface. Under confinement by iron surfaces, the copolymer molecules form lamellar structure in aqueous solution and behave differently from its bulk state. The lubrication performance of aqueous copolymer lubricant increases with concentration, but the friction reduction is insignificant at high loading pressure. Additionally, the plastic deformation of asperity is dependent on both copolymer concentration and loading pressure, and the wear behavior shows a linear dependence of friction force on the number of transferred atoms between contacting asperities. PMID:26828119

  7. A Preliminary Study on Mechanisms of Well Water Temperature Responses Based on the Modes of Stress Loading

    Institute of Scientific and Technical Information of China (English)

    Chen Daqing; Wan Yongfang

    2011-01-01

    Based on the studies of the predecessors, and contrasting the modes of stress loading with water level and water temperature response characteristics of a well-aquifer system, this paper draws a preliminary conclusion on the mechanisms of water temperature responses in a well caused by three modes of stress loading, i.e. gas escape, heat dispersion and cold water penetration mechanisms for elastic seismic wave stress loading; the fracture seepage mechanism for seismic wave stress loading and the hydrodynamic mechanism for earth tide stress loading and stress-dissipative heat mechanism for long period slow stress loading in the earthquake preparation stage. This paper illustrates the typical observation examples for each mode of stress loading and makes a preliminary study on their mechanisms.

  8. Temperature response of litter and soil organic matter decomposition is determined by chemical composition of organic material.

    Science.gov (United States)

    Erhagen, Björn; Öquist, Mats; Sparrman, Tobias; Haei, Mahsa; Ilstedt, Ulrik; Hedenström, Mattias; Schleucher, Jürgen; Nilsson, Mats B

    2013-12-01

    The global soil carbon pool is approximately three times larger than the contemporary atmospheric pool, therefore even minor changes to its integrity may have major implications for atmospheric CO2 concentrations. While theory predicts that the chemical composition of organic matter should constitute a master control on the temperature response of its decomposition, this relationship has not yet been fully demonstrated. We used laboratory incubations of forest soil organic matter (SOM) and fresh litter material together with NMR spectroscopy to make this connection between organic chemical composition and temperature sensitivity of decomposition. Temperature response of decomposition in both fresh litter and SOM was directly related to the chemical composition of the constituent organic matter, explaining 90% and 70% of the variance in Q10 in litter and SOM, respectively. The Q10 of litter decreased with increasing proportions of aromatic and O-aromatic compounds, and increased with increased contents of alkyl- and O-alkyl carbons. In contrast, in SOM, decomposition was affected only by carbonyl compounds. To reveal why a certain group of organic chemical compounds affected the temperature sensitivity of organic matter decomposition in litter and SOM, a more detailed characterization of the (13) C aromatic region using Heteronuclear Single Quantum Coherence (HSQC) was conducted. The results revealed considerable differences in the aromatic region between litter and SOM. This suggests that the correlation between chemical composition of organic matter and the temperature response of decomposition differed between litter and SOM. The temperature response of soil decomposition processes can thus be described by the chemical composition of its constituent organic matter, this paves the way for improved ecosystem modeling of biosphere feedbacks under a changing climate. PMID:23907960

  9. Radiation-induced oxidation of polyethylene, ethylene-butene copolymer, and ethylene-propylene copolymer

    International Nuclear Information System (INIS)

    Oxygen consumption and yield of oxidation products during ν-irradiation were studied on five types of polyethylene (PE), ethylene-butene copolymer (EB), and ethylene-propylene copolymer (EPR) using gas chromatography, mass spectrography, and high-resolution NMR. Samples were irradiated in oxygen under pressure from 0 to 500 torr by 60Co ν-rays up to 20 Mrad at 22-250C. In enough oxygen, oxygen consumption and yield of oxidation products are independent of oxygen pressure for low-density PE, EB, and EPR. The G values of oxygen consumption were 14-18.4 for PE, 11.6 for EB at 1 x 106 rad/h, and 8.3 for EPR at 2 x 105 rad/h. The oxidation products determined were carboxylic acid (-CH2-CO-OH), H2O, CO2, and CO. The oxygen consumption and oxidation products for PE were found to increase with increasing crystallinity

  10. Synthesis and properties of polystyrene/polydimethylsiloxane graft copolymers

    Institute of Scientific and Technical Information of China (English)

    Wu Ningjing; Huang Likan; Zheng Anna

    2006-01-01

    Polystyrene-graft-polydimethylsiloxane (PS-g-PDMS) copolymers with different PDMS content were synthesized by the radical bulk copolymerization of PDMS macromonomer and styrene.The copolymers were characterized by Fourier transform infrared (FT-IR),1H-nuclear magnetic resonance (NMR),thermogravimetric analysis (TGA),dynamic mechanical analysis (DMA),transmission electron microscopy (TEM) and the mechanical properties of the copolymers were also carried out.It was indicated that the notched impact strength and elongation at break of the polymers increased with the increase of PDMS content.The thermal stability of PS-g-PDMS is better than that of PS.

  11. Phase Transition Induced by Small Molecules in Confined Copolymer Films

    Institute of Scientific and Technical Information of China (English)

    ZHOU Ling

    2007-01-01

    We investigate the phase transition induced by small molecules in confined copolymer films by using density functional theory.It is found that the addition of small molecules can effectively promote the phase separation of copolymers.In a symmetric diblock copolymer film,the affinity and concentration of small molecules play an important role in the structure transjtions.The disordered-lamellar transitions lamellar-lamellar transitions and the re-entrant transitions of the same structures are observed.Our results have potential applications in the fabrication of new functional materials.

  12. Improvement in transdermal drug delivery performance by graphite oxide/temperature-responsive hydrogel composites with micro heater

    International Nuclear Information System (INIS)

    Transdermal drug delivery system (TDDS) was prepared with temperature-responsive hydrogel. The graphite was oxidized and incorporated into hydrogel matrix to improve the thermal response of hydrogel. The micro heater was fabricated to control the temperature precisely by adopting a joule heating method. The drug in hydrogel was delivered through a hairless mouse skin by controlling temperature. The efficiency of drug delivery was improved obviously by incorporation of graphite oxide due to the excellent thermal conductivity and the increased interfacial affinity between graphite oxide and hydrogel matrix. The fabricated micro heater was effective in controlling the temperature over lower critical solution temperature of hydrogel precisely with a small voltage less than 1 V. The cell viability test on graphite oxide composite hydrogel showed enough safety for using as a transdermal drug delivery patch. The performance of TDDS could be improved noticeably based on temperature-responsive hydrogel, thermally conductive graphite oxide, and efficient micro heater. - Graphical abstract: The high-performance transdermal drug delivery system could be prepared by combining temperature-responsive hydrogel, thermally conductive graphite oxide with improved interfacial affinity, and efficient micro heater fabricated by a joule heating method. Highlights: ► High performance of transdermal drug delivery system with an easy control of voltage. ► Improved thermal response of hydrogel by graphite oxide incorporation. ► Efficient micro heater fabricated by a joule heating method.

  13. A method for achieving monotonic frequency-temperature response for langasite surface-acoustic-wave high-temperature sensor

    Science.gov (United States)

    Shaoming, Bao; Yabing, Ke; Yanqing, Zheng; Lina, Cheng; Honglang, Li

    2016-02-01

    To achieve the monotonic frequency-temperature response for a high-temperature langasite (LGS) surface-acoustic-wave (SAW) sensor in a wide temperature range, a method utilizing two substrate cuts with different propagation angles on the same substrate plane was proposed. In this method, the theory of effective permittivity is adopted to calculate the temperature coefficients of frequency (TCF), electromechanical coupling coefficients (k2), and power flow angle (PFA) for different propagation angles on the same substrate plane, and then the two substrate cuts were chosen to have large k2 and small PFA, as well as the difference in their TCFs (ΔTCF) to always have the same sign of their values. The Z-cut LGS substrate plane was taken as an example, and the two suitable substrate cuts with propagation angles of 74 and 80° were chosen to derive a monotonic frequency-temperature response for LGS SAW sensors at -50 to 540 °C. Experiments on a LGS SAW sensor using the above two substrate cuts were designed, and its measured frequency-temperature response at -50 to 540 °C agreed well with the theory, demonstrating the high accuracy of the proposed method.

  14. Temperature response of denitrification and anaerobic ammonium oxidation rates and microbial community structure in Arctic fjord sediments.

    Science.gov (United States)

    Canion, Andy; Overholt, Will A; Kostka, Joel E; Huettel, Markus; Lavik, Gaute; Kuypers, Marcel M M

    2014-10-01

    The temperature dependency of denitrification and anaerobic ammonium oxidation (anammox) rates from Arctic fjord sediments was investigated in a temperature gradient block incubator for temperatures ranging from -1 to 40°C. Community structure in intact sediments and slurry incubations was determined using Illumina SSU rRNA gene sequencing. The optimal temperature (Topt ) for denitrification was 25-27°C, whereas anammox rates were optimal at 12-17°C. Both denitrification and anammox exhibited temperature responses consistent with a psychrophilic community, but anammox bacteria may be more specialized for psychrophilic activity. Long-term (1-2 months) warming experiments indicated that temperature increases of 5-10°C above in situ had little effect on the microbial community structure or the temperature response of denitrification and anammox. Increases of 25°C shifted denitrification temperature responses to mesophilic with concurrent community shifts, and anammox activity was eliminated above 25°C. Additions of low molecular weight organic substrates (acetate and lactate) caused increases in denitrification rates, corroborating the hypothesis that the supply of organic substrates is a more dominant control of respiration rates than low temperature. These results suggest that climate-related changes in sinking particulate flux will likely alter rates of N removal more rapidly than warming. PMID:25115991

  15. Nanostructure controlled sustained delivery of human growth hormone using injectable, biodegradable, pH/temperature responsive nanobiohybrid hydrogel

    Science.gov (United States)

    Singh, Narendra K.; Nguyen, Quang Vinh; Kim, Bong Sup; Lee, Doo Sung

    2015-02-01

    The clinical efficacy of a therapeutic protein, the human growth hormone (hGH), is limited by its short plasma half-life and premature degradation. To overcome this limitation, we proposed a new protein delivery system by the self-assembly and intercalation of a negatively charged hGH onto a positively charged 2D-layered double hydroxide nanoparticle (LDH). The LDH-hGH ionic complex, with an average particle size of approximately 100 nm, retards hGH diffusion. Nanobiohybrid hydrogels (PAEU/LDH-hGH) were prepared by dispersing the LDH-hGH complex into a cationic pH- and temperature-sensitive injectable PAEU copolymer hydrogel to enhance sustained hGH release by dual ionic interactions. Biodegradable copolymer hydrogels comprising poly(β-amino ester urethane) and triblock poly(ε-caprolactone-lactide)-poly(ethylene glycol)-poly-(ε-caprolactone-lactide) (PCLA-PEG-PCLA) were synthesized and characterized. hGH was self-assembled and intercalated onto layered LDH nanoparticles through an anion exchange technique. X-ray diffraction and zeta potential results showed that the LDH-hGH complex was prepared successfully and that the PAEU/LDH-hGH nanobiohybrid hydrogel had a disordered intercalated nanostructure. The biocompatibility of the nanobiohybrid hydrogel was confirmed by an in vitro cytotoxicity test. The in vivo degradation of pure PAEU and its nanobiohybrid hydrogels was investigated and it showed a controlled degradation of the PAEU/LDH nanobiohybrids compared with the pristine PAEU copolymer hydrogel. The LDH-hGH loaded injectable hydrogels suppressed the initial burst release of hGH and extended the release period for 13 days in vitro and 5 days in vivo. The developed nanohybrid hydrogel has the potential for application as a protein carrier to improve patient compliance.The clinical efficacy of a therapeutic protein, the human growth hormone (hGH), is limited by its short plasma half-life and premature degradation. To overcome this limitation, we proposed a new

  16. Concentration Dependent Structure of Block Copolymer Solutions

    Science.gov (United States)

    Choi, Soohyung; Bates, Frank S.; Lodge, Timothy P.

    2015-03-01

    Addition of solvent molecules into block copolymer can induce additional interactions between the solvent and both blocks, and therefore expands the range of accessible self-assembled morphologies. In particular, the distribution of solvent molecules plays a key role in determining the microstructure and its characteristic domain spacing. In this study, concentration dependent structures formed by poly(styrene-b-ethylene-alt-propylene) (PS-PEP) solution in squalane are investigated using small-angle X-ray scattering. This reveals that squalane is essentially completely segregated into the PEP domains. In addition, the conformation of the PS block changes from stretched to nearly fully relaxed (i.e., Gaussian conformation) as amounts of squalane increases. NRF

  17. Mechanical properties of weakly segregated block copolymers : 1. Synergism on tensile properties of poly(styrene-b-n-butylmethacrylate) diblock copolymers

    NARCIS (Netherlands)

    Weidisch, R.; Michler, G.H.; Fischer, H.; Arnold, M.; Hofmann, S.; Stamm, M.

    1999-01-01

    Mechanical properties of poly(styrene-b-n-butylmethacrylate) diblock copolymers, PS-b-PBMA, with different lengths of the polystyrene block were investigated. The copolymers display a composition range where the tensile strength of the block copolymers exceeds the values of the corresponding homopol

  18. Heat exchanger temperature response for duty-cycle transients in the NGNP/HTE

    International Nuclear Information System (INIS)

    Control system studies were performed for the Next Generation Nuclear Plant (NGNP) interfaced to the High Temperature Electrolysis (HTE) plant. Temperature change and associated thermal stresses are important factors in determining plant lifetime. In the NGNP the design objective of a 40 year lifetime for the Intermediate Heat Exchanger (IHX) in particular is seen as a challenge. A control system was designed to minimize temperature changes in the IHX and more generally at all high-temperature locations in the plant for duty-cycle transients. In the NGNP this includes structures at the reactor outlet and at the inlet to the turbine. This problem was approached by identifying those high-level factors that determine temperature rates of change. First are the set of duty cycle transients over which the control engineer has little control but which none-the-less must be addressed. Second is the partitioning of the temperature response into a quasi-static component and a transient component. These two components are largely independent of each other and when addressed as such greater understanding of temperature change mechanisms and how to deal with them is achieved. Third is the manner in which energy and mass flow rates are managed. Generally one aims for a temperature distribution that minimizes spatial non-uniformity of thermal expansion in a component with time. This is can be achieved by maintaining a fixed spatial temperature distribution in a component during transients. A general rule of thumb for heat exchangers is to maintain flow rate proportional to thermal power. Additionally the product of instantaneous flow rate and heat capacity should be maintained the same on both sides of the heat exchanger. Fourth inherent mechanisms for stable behavior should not be compromised by active controllers that can introduce new feedback paths and potentially create under-damped response. Applications of these principles to the development of a plant control strategy for

  19. Nanopatterned articles produced using surface-reconstructed block copolymer films

    Energy Technology Data Exchange (ETDEWEB)

    Russell, Thomas P.; Park, Soojin; Wang, Jia-Yu; Kim, Bokyung

    2016-06-07

    Nanopatterned surfaces are prepared by a method that includes forming a block copolymer film on a substrate, annealing and surface reconstructing the block copolymer film to create an array of cylindrical voids, depositing a metal on the surface-reconstructed block copolymer film, and heating the metal-coated block copolymer film to redistribute at least some of the metal into the cylindrical voids. When very thin metal layers and low heating temperatures are used, metal nanodots can be formed. When thicker metal layers and higher heating temperatures are used, the resulting metal structure includes nanoring-shaped voids. The nanopatterned surfaces can be transferred to the underlying substrates via etching, or used to prepare nanodot- or nanoring-decorated substrate surfaces.

  20. Synthesis of Amylose-b-P2 VP Block Copolymers.

    Science.gov (United States)

    Kumar, Kamlesh; Woortman, Albert J J; Loos, Katja

    2015-12-01

    A new class of rod-coil block copolymers is synthesized by chemoenzymatic polymerization. In the first step, maltoheptaose, which acts as a primer for the synthesis of amylose, is attached to poly(2-vinyl pyridine) (P2 VP). The enzymatic polymerization of maltoheptaose is carried out by phosphorylase to obtain amylose-b-P2 VP block copolymers. The block copolymer is characterized by Fourier transform infrared spectroscopy, nuclear magnetic resonance, gel permeation chromatography, and wide-angle X-ray scattering techniques. The designed molecules combine the inclusion complexation ability of amylose with the supramolecular complexation ability of P2 VP and therefore this kind of rod-coil block copolymers can be used to generate well-organized novel self-assembled structures. PMID:26437256

  1. CHARACTERIZATION OF IMPACT POLYPROPYLENE COPOLYMERS BY SOLVENT FRACTIONATION

    Institute of Scientific and Technical Information of China (English)

    Xiao-ying Lu; Jian-jun Yi; Shang-tao Chen; Feng-hua Zu; Rong-bo Li

    2012-01-01

    The compositional heterogeneity of two impact polypropylcne copolymers (IPCs) was studied by a combinatory investigation of temperature rising elution fractionation (TREF) and solvent fractionation.The chain structures and composition of fractions obtained from solvent fractionation were examined in detail.The TREF results shows that there are much more E-P segmented copolymer and more uniform distribution of ethylene sequence in IPC-1,which is responsible for its better comprehensive mechanical performance.The fractions from hexane and heptane are ethylene-propylene rubber phase and E-P block copolymers respectively.The result of solvent fractionation method also shows that custom hexane or heptaae extractions can not extract the E-P copolymer completely.

  2. Synthesis and interfacial behavior of polystyrene-polysaccharide diblock copolymers

    NARCIS (Netherlands)

    Bosker, W.T.E.; Ágoston, K.; Cohen Stuart, M.A.; Norde, W.; Timmermans, J.W.; Slaghek, T.M.

    2003-01-01

    Linear block copolymers of polystyrene and polysaccharide were synthesized using a block synthesis method with amino-terminated polystyrene and sodium cyanoborohydride as reducing agent. Different types of polysaccharides, dextrans, and maltodextrins with various molecular weights were used. IR spec

  3. HPMA and HEMA copolymer bead interactions with eukaryotic cells

    Directory of Open Access Journals (Sweden)

    Cristina D. Vianna-Soares

    2004-09-01

    Full Text Available Two different hydrophilic acrylate beads were prepared via aqueous suspension polymerization. Beads produced of a hydroxypropyl methacrylate (HPMA and ethyleneglycol methacrylate (EDMA copolymer were obtained using a polyvinyl alcohol suspending medium. Copolymers of 2hydroxyethyl methacrylate (HEMA, methyl methacrylate (MMA and ethyleneglycol methacrylate (EDMA beads were obtained using magnesium hydroxide as the suspending agent. Following characterization by scanning electron microscopy (SEM, nitrogen sorption analysis (NSA and mercury intrusion porosimetry (MIP, the beads were cultured with monkey fibroblasts (COS7 to evaluate their ability to support cell growth, attachment and adhesion. Cell growth behavior onto small HPMA/EDMA copolymer beads and large HEMA/MMA/EDMA copolymer beads is evaluated regarding their hidrophilicity/hidrophobicity and surface roughness.

  4. BARRIER PROPERTY AND STRUCTURE OF ACRYLONITRILE/ACRYLIC COPOLYMERS

    Institute of Scientific and Technical Information of China (English)

    YANG Zhenghua; LI Yuesheng

    1997-01-01

    A series of acrylonitrile (AN) copolymers with methyl acrylate (MA) or ethyl acrylate (EA) as comonomer (5-23 wt%) was prepared by free-radical copolymerization. The permeability coefficients of the copolymers to oxygen and carbon dioxide were measured at 1.0 MPa and at 30 ℃, and those to water vapor also measured at 100% relative humidity and at 30 ℃. All the AN/acrylic copolymers are semicrystalline. As the acrylate content increase, the permeability coefficients of the copolymers to oxygen and carbon dioxide are increased progressively, but those to water vapor are decreased progressively. The gas permeability coefficients of the polymers were correlated with free-volume fractions or the ratio of free volume to cohesive energy.

  5. Synthesis of CO2 Copolymer Based Polyurethane Foams

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    CO2-copolymer based polyurethane foams were synthesized and characterized in this paper. The foams were found to have higher strength and lower heat of combustion than the conventional polyether polyurethane foams. They may find wide applications in many fields.

  6. Thermal Stability of Poly (acrylonitrile-methyl acrylate) Copolymers

    Institute of Scientific and Technical Information of China (English)

    HAN Na; ZHANG Xing-xiang; WANG Xue-chen

    2008-01-01

    Poly (acrylonitrile-methyl acrylate) copolymer was synthesized by water depositing polymerization and has a typical feed ratio of 85/15. And then 1 - 3 wt% lauryl alcohol maleic anhydride (LAM) was adopted as stabilizer to mix with the acrylonitrile based copolymer. The mixtures were characterized by using Fourier Transform Infrared Spectroscopy (FTIR), Nuclear Magnetic Resonance (1H NMR ), Gel Permeation Chromatography ( GPC ), Differential Scanning Calorimetry (DSC), optic microscope and Ubbelohde viscosimetryr etc. The melting point (Tm) and glass transition temperature (Tg) of the 85/15 AN/MA copolymer mixed with LAM all decrease with the increase of stabilizer content. The lowest Tg and Tm were 116.1 ℃ and 209. 1℃ respectively at the heating rate of 100℃/min when the content of LAM is 2 wt%. The 85°/15 AN/MA copolymer mixed with 1 - 3 w t% LAM possess good thermal stability up to 30 min at 220 ℃.

  7. Synthesis of Polyacrylate/Polysiloxane Copolymer and Its Damping Performance

    Institute of Scientific and Technical Information of China (English)

    夏宇正; 石淑先; 焦书科; 李素青

    2003-01-01

    The copolymer of polyacrylate/polysiloxane for vibration damping materials was synthesized through emulsion polymerization. The effects of the amount of methyl methacrylate (MMA),polysiloxane containing vinyl, initiator and emulsifier on the conversion, stability of polyacrylate/polysiloxane emulsion were discussed when the emulsion was prepared by pre-emulsifying half continuous method. The graft copolymer has good vibration damping performance. The widest glass transition region of the copolymer spans 100℃, and the highest value of tanδ reached 2.0. The glass transition of the samples was examined by dynamic mechanical analysis (DMA). The vibration damping performance of the graft copolymer was affected by the amount of poly-vinyl dimethylsiloxane (PVMS).

  8. Preparation and modification of itaconic anhydride–methyl methacrylate copolymers

    Directory of Open Access Journals (Sweden)

    MILOS B. MILOVANOVIC

    2007-12-01

    Full Text Available The free radical copolymerisation of itaconic anhydride and methyl methacrylate in solution was studied at 60 °C. The copolymer composition was determined by 1H-NMR spectroscopy and the obtained monomer reactivity ratios were calculated, rITA = 1.35±0.11; rMMA = 0.22±0.22 (by the Fineman–Ross method and rITA = 1.27±0.38; rMMA = 0.10±0.05 (by the Mayo–Lewis method. The synthesised copolymers were modified by reaction with di-n-butyl amine. The copolymer composition after amidation was determined by elemental analysis via the nitrogen content. Amidation of the anhydride units in the copolymers with di-n-butyl amine resulted in complete conversion to itaconamic acid.

  9. Synthesis and characterization of HPMA copolymer-5-FU conjugates

    Institute of Scientific and Technical Information of China (English)

    Fang Yuan; Fu Chen; Qing Yu Xiang; Xuan Qin; Zhi Rong Zhang; Yuan Huang

    2008-01-01

    N-(2-Hydroxypropyl)methacrylamide copolymer-5-fluorouracil (PHPMA-FU)conjugates were synthesized by a novel and simplified synthetic mute,and characterized by UV,FTIR and HPLC analyses.The conjugated content of 5-fluorouracil (5-FU)was 3.41 ± 0.07 wt%.The stabilities of PHPMA-FU conjugates under different conditions were studied.The results showed that HPMA copolymer was a potential carrier for tumor-targeting delivery of 5-FU.

  10. Phase diagram for a copolymer in a micro-emulsion

    OpenAIRE

    den Hollander, F.; Petrelis, N.

    2013-01-01

    In this paper we study a model describing a copolymer in a micro-emulsion. The copolymer consists of a random concatenation of hydrophobic and hydrophilic monomers, the micro-emulsion consists of large blocks of oil and water arranged in a percolation-type fashion. The interaction Hamiltonian assigns energy $-\\alpha$ to hydrophobic monomers in oil and energy &-\\beta$ to hydrophilic monomers in water, where $\\alpha,\\beta$ are parameters that without loss of generality are taken to lie in the c...

  11. SYNTHESIS OF A NEW SILICONE-CONTAINING BISMALEIMIDE COPOLYMER RESIN

    Institute of Scientific and Technical Information of China (English)

    KUANG Wenfeng; CAI Xingxian; JIANG Luxia

    1997-01-01

    A copolymer of bismaleimide-diallylbisphenol A-diphenylsilandiol was synthesized and the copolymerization was studied by using N-phenylmaleimide, bisphenol A and diphenylsilandiol as model compounds. The copolymer could be well cured around 200 ℃, and the cured resins had good thermal stability. In the range of 170-210 ℃, a higher curing temperature was favorable to obtain more thermal stable resin by reducing the content of diphenylsilandiol cyclo-homopolymer in resin which would spoil its thermal stability.

  12. Blends of caprolactam/caprolactone copolymers and chlorinated polymers

    OpenAIRE

    Alberda van Ekenstein, G.O.R.; Deuring, H.; ten Brinke, G.; Ellis, T. S.

    1997-01-01

    The phase behaviour of blends of chlorinated polyethylene, polyvinyl chloride (PVC) and chlorinated PVC with random copolymers of caprolactone and caprolactam has been investigated and the results correlated with a binary interaction model. The known miscibility of polycaprolactone in the chlorinated polymers is not compromised until a relatively high lactam content in the copolymer is attained. The incorporation of segmental interaction parameters, derived from separate studies involving pol...

  13. Synthesis and Characterization of Novel Magnetite Nanoparticle Block Copolymer Complexes

    OpenAIRE

    Zhang, Qian

    2007-01-01

    Superparamagnetic Magnetite (Fe3O4) nanoparticles were synthesized and complexed with carboxylate-functionalized block copolymers, and aqueous dispersions of the complexes were investigated as functions of their chemical and morphological structures. The block copolymer dispersants possessed either poly(ethylene oxide), poly(ethylene oxide-co-propylene oxide), or poly(ethylene oxide-b-propylene oxide) outer blocks, and all contained a polyurethane center block with pendant carboxylate functi...

  14. Self-assembled materials from thermosensitive and biohybrid block copolymers

    OpenAIRE

    De Graaf, A.J.

    2012-01-01

    In this research, several block copolymers were synthesized and characterized with regard to possible pharmaceutical applications. All block copolymers were thermosensitive and self-assembled at 37 °C into structures like micelles and hydrogels, which can be used for innovative drug delivery purposes. Some of the synthesized polymers were biohybrid, in the sense that they contained peptide segments which enabled their cleavage by enzymes that are upregulated in diseased tissues. First, method...

  15. Electrosynthesis and characterization of viologen cross linked thiophene copolymer

    International Nuclear Information System (INIS)

    Highlights: • Electrochemical copolymerization of OOT and HOT-CNP. • Further reductive coupling of cyanopyridine from HOT-CNP into viologen during cathodic scan. • Redox response of copolymer along with spectral studies confirms formation of viologen. • Spectroelectrochemical analysis of copolymer film indicates its future incorporation into practically usable electrochromic devices. -- Abstract: Electrochemical copolymerization of 3-octyloxy-4-methylthiophene (OOT) and 1-[6-[(4-methyl-3-thienyl) oxy] hexyl]-4-cyanopyridinium bromide (HOT-CNP) was carried out using tetrabutylammonium hexafluorophosphate and acetonitrile (TBAPF6/ACN) as electrolyte. The cyanopyridine functionalized HOT-CNP undergoes further electrochemical reductive coupling to viologen. Both polymer (POOT) and copolymer P(OOT-co-HOT-CNP) were characterized by cyclic voltammetry (CV), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), and in situ UV–vis spectroscopy. The effect of the monomer concentration ratio and the scan rate on the electrochemical properties of the copolymer was studied by the CV technique. The electrochemical redox response of the copolymer together with FTIR analysis further confirms the formation of viologen. The surface morphology was studied using SEM analysis. The polymer POOT revealed color changes between violet and bright blue, whereas the copolymer showed the most vivid change of color between purple and greenish blue in its fully reduced and oxidized states respectively. The results showed that copolymerization is a valuable approach in order to achieve desired electrochromic and redox properties

  16. MALDI-ToF Analysis of Model Copolymer Blends

    Science.gov (United States)

    Pan, David; Arnould, Mark

    2008-03-01

    MALDI-ToF mass spectrometry was used to determine the composition of a low MW styrene (S) / n-butyl acrylate (nBA) copolymer. Bernoullian chain statistics were used to predict the copolymer distribution and confirm that MALDI-ToF detects the correct composition. The copolymer was blended with a low MW polystyrene homopolymer having the same end group as the copolymer at several levels to determine if MALDI-ToF could be used to calculate the amount of homopolymer by subtracting homopolymer peak areas. It is found that, while MALDI-ToF can be used to monitor the amount of homopolymer blended into the copolymer, the observed increase is always greater than the actual amount added, e.g. up to 13% error. This could be due to the fact that the homopolymer ionizes more efficiently than the low MW copolymer. A model to improve the accuracy of the calculated amount of homopolymer in the blend is discussed.

  17. Complex nanostructured materials from segmented copolymers prepared by ATRP.

    Science.gov (United States)

    Kowalewski, T; McCullough, R D; Matyjaszewski, K

    2003-01-01

    The development of new controlled/living radical polymerization processes, such as Atom Transfer Radical Polymerization (ATRP) and other techniques such as nitroxide mediated polymerization and degenerative transfer processes, including RAFT, opened the way to the use of radical polymerization for the synthesis of well-defined, complex functional nanostructures. The development of such nanostructures is primarily dependent on self-assembly of well-defined segmented copolymers. This article describes the fundamentals of ATRP, relevant to the synthesis of such systems. The self-assembly of block copolymers prepared by ATRP is illustrated by three examples. In the first, block copolymers of poly(butyl acrylate) with polyacrylonitrile phase separate, leading to spherical, cylindrical or lamellar morphologies, depending on the block copolymer composition. At a higher temperature, polyacrylonitrile block converts to nanostructured carbon clusters, whereas poly(butyl acrylate) block serves as a sacrificial block, aiding the development of designed nanostructures. In the second example, conductive nanoribbons of poly(n-hexylthiophene) surrounded by a matrix of organic polymers are formed from block copolymers prepared by ATRP. The third example describes an inorganic-organic hybrid system consisting of hard nanocolloidal silica particles (approximately 20 nm) grafted by ATRP with well-defined polystyrene-poly(benzyl acrylate) block copolymer chains (approximately 1000 chains per particle). Silica cores in this system are surrounded by a rigid polystyrene inner shell and softer polyacrylate outer shell. PMID:15011074

  18. Influence of copolymer composition on the transport properties of conducting copolymers: poly(aniline-co-o-anisidine)

    Indian Academy of Sciences (India)

    S S Umare; A D Borkar; M C Gupta

    2002-06-01

    The effect of different compositions of monomers on the transport properties of copolymers by various techniques such as optical, electrical and magnetic has been investigated and compared with the homopolymers. The UV-visible absorption spectra show a hypsochromic shift with an increase in the o-anisidine content in copolymers indicating a decrease in the extent for conjugation (i.e. an increase in the bandgap). From temperature dependence of electrical conductivity the transport parameters such as charge localization length and average hopping distance are calculated and also the effect of the monomeric composition on the coherence length has been discussed. The magnetic studies show the paramagnetic and diamagnetic nature of homopolymers and copolymers. The X-ray diffraction pattern indicates that the copolymers are of amorphous nature.

  19. LOW DENSITY POLYETHYLENE/CLAY NANOCOMPOSITES MODIFIED BY ETHYLENE COPOLYMERS: EFFECTS OF FUNCTIONALIZED SEGMENTS ON MORPHOLOGY

    Institute of Scientific and Technical Information of China (English)

    Bo Xu; Yi-hu Song; Yong-gang ShangGuan; Qiang Zheng

    2006-01-01

    Melt extrusion was used to prepare binary nanocomposites of ethylene copolymers and organoclay and trinary nanocomposites of low-density polyethylene (LDPE), ethylene copolymer and organoclay. X-ray diffraction (XRD) and transmission electron microscopy (TEM) were used to analyze the structure of the clay phase and the morphology of the nanocomposites. Influences of the comonomer in the copolymer and the content of the copolymer on the morphology of the resulting nanocomposites were discussed. The binary and the trinary composites may form intercalated or exfoliated structures depending on the interaction between the copolymer and the clay layers and the content of the copolymer.

  20. Real-time monitoring of the penetration of amphiphilic acrylate copolymer in leather using a fluorescent copolymer as tracer.

    Science.gov (United States)

    Du, Jin-Xia; Shi, Lu; Peng, Bi-Yu

    2015-12-01

    A fluorescent tracer, poly (acrylic-co-stearyl acrylate-co-3-acryloyl fluorescein) [poly (AA-co-SA-co-Ac-Flu)], used for real-time monitoring the penetration of amphiphilic acrylate copolymer, poly (acrylic-co-stearyl acrylate) [poly (AA-co-SA)], in leather was synthesized by radical polymerization of acrylic, stearyl acrylate and fluorescent monomer, 3-acryloyl fluorescein (Ac-Flu). The structure, molecular weight, introduced fluorescent group content and fluorescent characteristics of the fluorescent tracer and target copolymer, amphiphilic acrylate copolymer, were also characterized. The results show that the tracer presents the similar structural characteristics to the target and enough fluorescence intensity with 1.68 wt % of the fluorescent monomer introduced amount. The vertical section of the leather treated with the target copolymer mixing with 7% of the tracer exhibits evident fluorescence, and the change of fluorescence intensity along with the vertical section with treating time increasing can reflect the penetration depth of the target copolymer. The introduction of the fluorescent group in polymer structure through copolymerization with a limited amount of fluorescent monomer, Ac-Flu, is an effective way to make a tracer to monitor the penetration of the target in leather, which provides a new thought for the penetration research of syntans such as vinyl copolymer materials in leather manufacture.

  1. Ion Transport in Nanostructured Block Copolymer/Ionic Liquid Membranes

    Science.gov (United States)

    Hoarfrost, Megan Lane

    Incorporating an ionic liquid into one block copolymer microphase provides a platform for combining the outstanding electrochemical properties of ionic liquids with a number of favorable attributes provided by block copolymers. In particular, block copolymers thermodynamically self-assemble into well-ordered nanostructures, which can be engineered to provide a durable mechanical scaffold and template the ionic liquid into continuous ion-conducting nanochannels. Understanding how the addition of an ionic liquid affects the thermodynamic self-assembly of block copolymers, and how the confinement of ionic liquids to block copolymer nanodomains affects their ion-conducting properties is essential for predictable structure-property control. The lyotropic phase behavior of block copolymer/ionic liquid mixtures is shown to be reminiscent of mixtures of block copolymers with selective molecular solvents. A variety of ordered microstructures corresponding to lamellae, hexagonally close-packed cylinders, body-centered cubic, and face-centered cubic oriented micelles are observed in a model system composed of mixtures of imidazolium bis(trifluoromethylsulfonyl)imide ([Im][TFSI]) and poly(styrene- b-2-vinyl pyridine) (PS-b-P2VP). In contrast to block copolymer/molecular solvent mixtures, the interfacial area occupied by each PS-b-P2VP chain decreases upon the addition of [Im][TFSI], indicating a considerable increase in the effective segregation strength of the PS-b-P2VP copolymer with ionic liquid addition. The relationship between membrane structure and ionic conductivity is illuminated through the development of scaling relationships that describe the ionic conductivity of block copolymer/ionic liquid mixtures as a function of membrane composition and temperature. It is shown that the dominant variable influencing conductivity is the overall volume fraction of ionic liquid in the mixture, which means there is incredible freedom in designing the block copolymer architecture

  2. New adhesive systems based on functionalized block copolymers

    Energy Technology Data Exchange (ETDEWEB)

    Kent, M.; Saunders, R.; Hurst, M.; Small, J.; Emerson, J.; Zamora, D.

    1997-05-01

    The goal of this work was to evaluate chemically-functionalized block copolymers as adhesion promoters for metal/thermoset resin interfaces. Novel block copolymers were synthesized which contain pendant functional groups reactive toward copper and epoxy resins. In particular, imidazole and triazole functionalities that chelate with copper were incorporated onto one block, while secondary amines were incorporated onto the second block. These copolymers were found to self-assemble from solution onto copper surfaces to form monolayers. The structure of the adsorbed monolayers were studied in detail by neutron reflection and time-of-flight secondary ion mass spectrometry. The monolayer structure was found to vary markedly with the solution conditions and adsorption protocol. Appropriate conditions were found for which the two blocks form separate layers on the surface with the amine functionalized block exposed at the air surface. Adhesion testing of block copolymer-coated copper with epoxy resins was performed in both lap shear and peel modes. Modest enhancements in bond strengths were observed with the block copolymer applied to the native oxide. However, it was discovered that the native oxide is the weak link, and that by simply removing the native oxide, and then applying an epoxy resin before the native oxide can reform, excellent bond strength in the as-prepared state as well as excellent retention of bond strength after exposure to solder in ambient conditions are obtained. It is recommended that long term aging studies be performed with and without the block copolymer. In addition, the functionalized block copolymer method should be evaluated for another system that has inherently poor bonding, such as the nickel/silicone interface, and for systems involving metals and alloys which form oxides very rapidly, such as aluminum and stainless steel, where bonding strategies involve stabilizing the native oxide.

  3. Comment on "Tropospheric temperature response to stratospheric ozone recovery in the 21st century" by Hu et al. (2011

    Directory of Open Access Journals (Sweden)

    C. McLandress

    2011-12-01

    Full Text Available In a recent paper Hu et al. (2011 suggest that the recovery of stratospheric ozone during the first half of this century will significantly enhance free tropospheric and surface warming caused by the anthropogenic increase of greenhouse gases, with the effects being most pronounced in Northern Hemisphere middle and high latitudes. These surprising results are based on a multi-model analysis of IPCC AR4 model simulations with and without prescribed stratospheric ozone recovery. Hu et al. suggest that in order to properly quantify the tropospheric and surface temperature response to stratospheric ozone recovery, it is necessary to run coupled atmosphere-ocean climate models with stratospheric ozone chemistry. The results of such an experiment are presented here, using a state-of-the-art chemistry-climate model coupled to a three-dimensional ocean model. In contrast to Hu et al., we find a much smaller Northern Hemisphere tropospheric temperature response to ozone recovery, which is of opposite sign. We argue that their result is an artifact of the incomplete removal of the large effect of greenhouse gas warming between the two different sets of models.

  4. Characterization of chondrocyte sheets prepared using a co-culture method with temperature-responsive culture inserts.

    Science.gov (United States)

    Kokubo, Mami; Sato, Masato; Yamato, Masayuki; Mitani, Genya; Kutsuna, Toshiharu; Ebihara, Goro; Okano, Teruo; Mochida, Joji

    2016-06-01

    Conventional culture methods using temperature-responsive culture dishes require 4-5 weeks to prepare layered chondrocyte sheets that can be used in articular cartilage repair and regeneration. This study investigated whether the use of synovial tissue obtained from the same joint as the chondrocyte nutritive supply source could more quickly facilitate the preparation of chondrocyte sheets. After culturing derived synoviocytes and chondrocytes together (i.e. combined culture or co-culture) on temperature-responsive inserts, chondrocyte growth was assessed and a molecular analysis of the chondrocyte sheets was performed. Transplantable tissue could be obtained more quickly using this method (average 10.5 days). Real-time polymerase chain reaction and immunostaining of the three-layer chondrocyte sheets confirmed the significant expression of genes critical to cartilage maintenance, including type II collagen (COL2), aggrecan-1 and tissue metallopeptidase inhibitor 1. However, the expression of COL1, matrix metalloproteinase 3 (MMP3), MMP13 and A-disintegrin and metalloproteinase with thrombospondin motifs 5 was suppressed. The adhesive factor fibronectin-1 (FN1) was observed in all sheet layers, whereas in sheets generated using conventional preparation methods positive FN1 immunostaining was observed only on the surface of the sheets. The results indicate that synoviocyte co-cultures provide an optimal environment for the preparation of chondrocyte sheets for tissue transplantation and are particularly beneficial for shortening the required culture period. Copyright © 2013 John Wiley & Sons, Ltd. PMID:23868865

  5. The Temperature Response and Aggressiveness of Peyronellaea pinodes Isolates Originating from Wild and Domesticated Pisum sp. in Israel.

    Science.gov (United States)

    Golani, M; Abbo, S; Sherman, A; Frenkel, O; Shtienberg, D

    2016-08-01

    Domesticated pea fields are grown in relatively close proximity to wild pea species in Israel. Despite the major role attributed to ascochyta blight in causing yield losses in domesticated pea, very limited information is available on the pathogens prevailing in natural ecosystems. The objectives of this study were (i) to identify the species causing ascochyta blight symptoms on leaves, stems, and petioles of domesticated pea and wild Pisum plants in Israel, and (ii) to quantify the temperature response(s) and aggressiveness of such pathogens originating from Pisum plants growing in sympatric and allopatric contexts. Eighteen fungal isolates were examined and identified; three of them were sampled from Pisum sativum, 11 from Pisum fulvum, and four from Pisum elatius. All isolates were identified as Peyronellaea pinodes. Spore germination and mycelial growth took place over a wide range of temperatures, the lower and upper cardinal temperatures being 2 to 9 and 33 to 38°C, respectively; the optimal temperatures ranged from 22 to 26°C. At an optimal temperature, disease severity was significantly higher for plants maintained under moist conditions for 24 h postinoculation than for those exposed to humidity for 5 or 10 h. Analyses of the data revealed that temperature responses, spore germination rates, and aggressiveness of isolates sampled from domesticated pea plants did not differ from those of isolates sampled from adjacent or distant wild populations. Host specificity was not observed. These observations suggest that Israel may be inhabited by a single metapopulation of P. pinodes. PMID:27050578

  6. Fabrication and evaluation of temperature responsive molecularly imprinted sorbents based on surface of yeast via surface-initiated AGET ATRP

    Science.gov (United States)

    Pan, Jianming; Hang, Hui; Li, Xiuxiu; Zhu, Wenjing; Meng, Minjia; Dai, Xiaohui; Dai, Jiangdong; Yan, Yongsheng

    2013-12-01

    Temperature responsive molecularly imprinted polymers (T-MIPs) were prepared based on the surface of yeast by electron transfer atom transfer radical polymerization (AGET ATRP). The as-prepared T-MIPs were charcterized by FT-IR, SEM, TGA and elemental analysis, which indicated that T-MIPs exhibited thermal stability and composed of temperature responsive imprinted layer. Then T-MIPs were evaluated as sorbents to selectively recognise and release cefalexin (CFX) molecules. The results suggested binding properties of T-MIPs were related to the testing temperature. The maximum adsorption capacity of T-MIPs at 303 K was 59.4 mg g-1, and the maximum release proportion for T-MIPs at 293 K in water for 24 h was 71.08%. The selective recognition experiments demonstrated high affinity and selectivity of T-MIPs towards CFX over competitive compounds, and the specific recognition of binding sites may be based on the distinct size, structure and functional group to the template molecules.

  7. Fabrication and evaluation of temperature responsive molecularly imprinted sorbents based on surface of yeast via surface-initiated AGET ATRP

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Jianming, E-mail: pjm@ujs.edu.cn; Hang, Hui; Li, Xiuxiu; Zhu, Wenjing; Meng, Minjia; Dai, Xiaohui; Dai, Jiangdong; Yan, Yongsheng

    2013-12-15

    Temperature responsive molecularly imprinted polymers (T-MIPs) were prepared based on the surface of yeast by electron transfer atom transfer radical polymerization (AGET ATRP). The as-prepared T-MIPs were charcterized by FT-IR, SEM, TGA and elemental analysis, which indicated that T-MIPs exhibited thermal stability and composed of temperature responsive imprinted layer. Then T-MIPs were evaluated as sorbents to selectively recognise and release cefalexin (CFX) molecules. The results suggested binding properties of T-MIPs were related to the testing temperature. The maximum adsorption capacity of T-MIPs at 303 K was 59.4 mg g{sup −1}, and the maximum release proportion for T-MIPs at 293 K in water for 24 h was 71.08%. The selective recognition experiments demonstrated high affinity and selectivity of T-MIPs towards CFX over competitive compounds, and the specific recognition of binding sites may be based on the distinct size, structure and functional group to the template molecules.

  8. Comment on "Tropospheric temperature response to stratospheric ozone recovery in the 21st century" by Hu et al. (2011

    Directory of Open Access Journals (Sweden)

    C. McLandress

    2012-03-01

    Full Text Available In a recent paper Hu et al. (2011 suggest that the recovery of stratospheric ozone during the first half of this century will significantly enhance free tropospheric and surface warming caused by the anthropogenic increase of greenhouse gases, with the effects being most pronounced in Northern Hemisphere middle and high latitudes. These surprising results are based on a multi-model analysis of CMIP3 model simulations with and without prescribed stratospheric ozone recovery. Hu et al. suggest that in order to properly quantify the tropospheric and surface temperature response to stratospheric ozone recovery, it is necessary to run coupled atmosphere-ocean climate models with stratospheric ozone chemistry. The results of such an experiment are presented here, using a state-of-the-art chemistry-climate model coupled to a three-dimensional ocean model. In contrast to Hu et al., we find a much smaller Northern Hemisphere tropospheric temperature response to ozone recovery, which is of opposite sign. We suggest that their result is an artifact of the incomplete removal of the large effect of greenhouse gas warming between the two different sets of models.

  9. Effect of Water Vapor and Surface Morphology on the Low Temperature Response of Metal Oxide Semiconductor Gas Sensors

    Directory of Open Access Journals (Sweden)

    Konrad Maier

    2015-09-01

    Full Text Available In this work the low temperature response of metal oxide semiconductor gas sensors is analyzed. Important characteristics of this low-temperature response are a pronounced selectivity to acid- and base-forming gases and a large disparity of response and recovery time constants which often leads to an integrator-type of gas response. We show that this kind of sensor performance is related to the trend of semiconductor gas sensors to adsorb water vapor in multi-layer form and that this ability is sensitively influenced by the surface morphology. In particular we show that surface roughness in the nanometer range enhances desorption of water from multi-layer adsorbates, enabling them to respond more swiftly to changes in the ambient humidity. Further experiments reveal that reactive gases, such as NO2 and NH3, which are easily absorbed in the water adsorbate layers, are more easily exchanged across the liquid/air interface when the humidity in the ambient air is high.

  10. Dual pH and temperature responsive hydrogels based on β-cyclodextrin derivatives for atorvastatin delivery.

    Science.gov (United States)

    Yang, Kaiwen; Wan, Sicheng; Chen, Binbin; Gao, Wenxia; Chen, Jiuxi; Liu, Miaochang; He, Bin; Wu, Huayue

    2016-01-20

    2-Methylacrylic acid modified β-cyclodextrin was copolymerized with 2-methylacrylic acid and N,N'-methylene diacrylamide to fabricate dual pH and temperature responsive hydrogels for the controlled release of atorvastatin. The swelling behaviors, pH and temperature responsive atorvastatin release profiles of the hydrogels were investigated. The results indicated that the hydrogel prepared in DMSO exhibited the best swelling rate, which was 51 for 10 min and 252 for 16 h when immersed in medium of buffer solution with pH=8.06. The media with low (pH ≤ 3.84) and high (pH ≥ 10.34) pH values would reduce the swelling rate of hydrogels. The swelling of the hydrogel was increased with increasing temperature from 30 °C to 45 °C. Atorvastatin was loaded in the hydrogel for drug release investigation. The cumulative release rate of atorvastatin was as high as 90.5% in pH=8.06 buffer solution. The solubility of atorvastatin was improved from 0.13 to 1.2mg/mL in the hydrogel. PMID:26572359

  11. Functionalization of graphene and grafting of temperature-responsive surfaces from graphene by ATRP 'on water'

    Energy Technology Data Exchange (ETDEWEB)

    Ren Lulu; Huang Shu; Zhang Chao; Wang Ruiyu [Fudan University, State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science (China); Tjiu, Weng Weei [Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A-STAR) (Singapore); Liu Tianxi, E-mail: txliu@fudan.edu.cn [Fudan University, State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science (China)

    2012-06-15

    Water-dispersible graphene with temperature-responsive surfaces has successfully been synthesized by grafting poly(N-isopropylacrylamide) (PNIPAM) from graphene via surface-initiated atom transfer radical polymerization (ATRP). First, graphene surfaces are functionalized with aminophenol groups by diazonium reaction on water. Subsequently, bromoisobutyrate groups are covalently attached to the phenol-functionalized graphene (G-OH) surface by esterification of 2-bromoisobutyrate with the hydroxyl groups, forming bromoisobutyrate-functionalized graphene (G-Br). Finally, PNIPAM is then grafted from G-Br via ATRP. Data from Raman spectroscopy, {sup 1}H NMR, and transmission electron microscopy (TEM) confirm that PNIPAM chains grow from graphene by ATRP. Thermogravimetric analysis shows that the amount of PNIPAM grown from the graphene increases with the increase of monomer ratios. TEM images also show that functionalized polymer structures (PNIPAM cluster or agglutination) on graphene sheets can be well tuned by controlled polymerization. The obtained graphene-PNIPAM (G-PNIPAM) composite has PNIPAM surface which is highly sensitive to the temperature change. This temperature-responsive and water-dispersible G-PNIPAM composite may find potential applications in environmental devices as well as controlled release drug delivery.

  12. A noninvasive transfer system for polarized renal tubule epithelial cell sheets using temperature-responsive culture dishes

    Directory of Open Access Journals (Sweden)

    Kushida A.

    2005-08-01

    Full Text Available We used temperature-responsive culture dishes onto which the temperature-responsive polymer, poly(Nisopropylacrylamide, was covalently grafted for tissue engineering. Confluent cells harvested as intact sheets from these surfaces by simple temperature reduction can be transferred to various surfaces including additional culture dishes, other cell sheets, and tissues. In order to examine the maintenance of cell polarity, Madin-Darby canine kidney cells and human primary renal proximal tubule epithelial cells which had developed apical-basal cell polarity in culture, were subjected to cell sheet transfer. This functional and structural cell polarity, which is susceptible to treatment with trypsin, was examined by immunohistochemistry and transmission electron microscopy. Using our cell-sheet method, the noninvasive transfer of these cell sheets retaining typical distributions of Na+/K+-ATPase, GLUT-1, SGLT-1, aquaporin-1, neutral endopeptidase and dipeptidylendopeptidase IV, could be achieved. The transferred cell sheets also developed numerous microvilli and tight junctions at the apical and lateral membranes, respectively. For biochemical analysis, immunoblotting of occludin, a transmembrane protein that composes tight junctions, was conducted and results confirmed that occludin remained intact after cell sheet transfer. This two-dimensional cell sheet manipulation method promises to be useful for tissue engineering as well as in the investigation of epithelial cell polarity.

  13. Molecular Exchange in Ordered Diblock Copolymer Micelles

    Science.gov (United States)

    Choi, Soo-Hyung; Lodge, Timothy; Bates, Frank

    2011-03-01

    Previously, molecular exchange between spherical micelles in dilute solution (1 vol% polymer) was investigated using time-resolved small-angle neutron scattering (TR-SANS). As the concentration of spherical micelles formed by the diblock copolymers increases, the micelles begin to overlap and eventually pack onto body-centered cubic (BCC) lattice. In this study, concentrated, ordered micelles (15 vol% polymers) prepared by dispersing isotopically labeled poly(styrene- b -ethylene-alt-propylene) in an isotopic squalane mixture was investigated to understand the micellar concentration dependence of the molecular exchange. Perfectly random mixing of isotopically labeled micelles on the BCC lattice was confirmed by SANS patterns where the interparticle contribution vanishes, resulting in an intensity that directly relates to the exchange kinetics. The measured molecular exchange process for the concentrated, ordered system is qualitatively consistent with the previous observations, but the rate is more than an order of magnitude slower than that for the dilute, disordered system. Infineum(IPrime), MRSEC(NSF), NIST.

  14. Molecular Exchange Dynamics in Block Copolymer Micelles

    Science.gov (United States)

    Bates, Frank; Lu, Jie; Choi, Soohyung; Lodge, Timothy

    2012-02-01

    Poly(styrene-b-ethylene propylene) (PS-PEP) diblock copolymers were mixed with squalane (C30H62) at 1% by weight resulting in the formation of spherical micelles. The structure and dynamics of molecular exchange were characterized by synchrotron small-angle x-ray scattering (SAXS) and time resolved small-angle neutron scattering (TR-SANS), respectively, between 100 C and 160 C. TR-SANS measurements were performed with solutions initially containing deuterium labeled micelle cores and normal cores dispersed in a contrast matched squalane. Monitoring the reduction in scattering intensity as a function of time at various temperatures revealed molecular exchange dynamics highly sensitive to the core molecular weight and molecular weight distribution. Time-temperature superposition of data acquired at different temperatures produced a single master curve for all the mixtures. Experiments conducted with isotopically labeled micelle cores, each formed from two different but relatively mondisperse PS blocks, confirmed a simple dynamical model based on first order kinetics and core Rouse single chain relaxation. These findings demonstrate a dramatic transition to nonergodicity with increasing micelle core molecular weight and confirm the origins of the logarithmic exchange kinetics in such systems.

  15. Hot embossing of cyclic olefin copolymers

    International Nuclear Information System (INIS)

    The hot embossing properties of cyclic olefin copolymer (COC) have been examined as a function of comonomer content. Six standard grades of COC with varying norbornene content (61–82 wt%) were used in these experiments in order to provide a range of glass transition temperatures, Tg. All grades of COC exhibited sharp increases in embossed depth over a critical range of temperature. The transition temperature in embossed depth increased linearly with norbornene content for both 35 and 70 µm deep structures. At temperatures above this transition, the dimensions of the embossed patterns were essentially independent of the COC grade, the applied pressure and duration of loading. Channels formed above the transition in a regime of viscous liquid flow were extremely smooth in morphology for all grades. The average surface roughness, Ra, measured at the base of the channels decreased sharply at the transition temperature, with a levelling off at higher temperatures. Grades of COC with a higher norbornene content exhibited extensive micro-cracking during embossing at temperatures close to the transition temperature

  16. Monte Carlo simulations of the phase separation of a copolymer blend in a thin film

    KAUST Repository

    Wang, Zhexiao

    2014-12-11

    Monte Carlo simulations were carried out to study the phase separation of a copolymer blend comprising an alternating copolymer and/or block copolymer in a thin film, and a phase diagram was constructed with a series of composed recipes. The effects of composition and segregation strength on phase separation were discussed in detail. The chain conformation of the block copolymer and alternating copolymer were investigated with changes of the segregation strength. Our simulations revealed that the segment distribution along the copolymer chain and the segregation strength between coarse-grained beads are two important parameters controlling phase separation and chain conformation in thin films of a copolymer blend. A well-controlled phase separation in the copolymer blend can be used to fabricate novel nanostructures.

  17. Nanostructured Amphiphilic Star-Hyperbranched Block Copolymers for Drug Delivery.

    Science.gov (United States)

    Seleci, Muharrem; Seleci, Didem Ag; Ciftci, Mustafa; Demirkol, Dilek Odaci; Stahl, Frank; Timur, Suna; Scheper, Thomas; Yagci, Yusuf

    2015-04-21

    A robust drug delivery system based on nanosized amphiphilic star-hyperbranched block copolymer, namely, poly(methyl methacrylate-block-poly(hydroxylethyl methacrylate) (PMMA-b-PHEMA) is described. PMMA-b-PHEMA was prepared by sequential visible light induced self-condensing vinyl polymerization (SCVP) and conventional vinyl polymerization. All of the synthesis and characterization details of the conjugates are reported. To accomplish tumor cell targeting property, initially cell-targeting (arginylglycylaspactic acid; RGD) and penetrating peptides (Cys-TAT) were binding to each other via the well-known EDC/NHS chemistry. Then, the resulting peptide was further incorporated to the surface of the amphiphilic hyperbranched copolymer via a coupling reaction between the thiol (-SH) group of the peptide and the hydroxyl group of copolymer by using N-(p-maleinimidophenyl) isocyanate as a heterolinker. The drug release property and targeting effect of the anticancer drug (doxorobucin; DOX) loaded nanostructures to two different cell lines were evaluated in vitro. U87 and MCF-7 were chosen as integrin αvβ3 receptor positive and negative cells for the comparison of the targeting efficiency, respectively. The data showed that drug-loaded copolymers exhibited enhanced cell inhibition toward U87 cells in compared to MCF-7 cells because targeting increased the cytotoxicity of drug-loaded copolymers against integrin αvβ3 receptor expressing tumor cells. PMID:25816726

  18. Preparation and characterization of novel dicyanate/benzoxazine/bismaleimide copolymer

    International Nuclear Information System (INIS)

    Highlights: • The isoconversional method was used to describe the curing kinetics parameters of the modified systems. • The mechanical and thermal properties of the copolymers were found to be a higher than that of BOZ/BMI system. • The moisture absorption of the blends was found to be lower than that of the BOZ/BMI system. - Abstract: In this paper, we reported the dicyanate/benzoxazine/bismaleimide copolymers using bisphenol A dicyanate (BADCy), 4,4′-bismaleimidodiphenyl methane (BMI) and bisphenol A benzoxazine (BOZ). BOZ/BMI was copolymerized with BADCy to improve toughness and processability. The non-isothermal curing kinetics of BADCy/BOZ/BMI copolymer was studied by the differential scanning calorimetry (DSC) at various heating rates, and the isoconversional method was used to describe the apparent activation energy of the modified system. The properties of BADCy/BOZ/BMI copolymers, such as mechanical properties, thermal properties and moisture absorption, were systemically investigated in detail by mechanical measurement, scanning electron microscope (SEM) and thermo-gravimetric analysis (TGA). The results showed that the addition of the appropriate amount of BADCy could improve the impact strength and the flexural strength of the BADCy/BOZ/BMI copolymer, which could form an interpenetrating polymer network in the system. The thermal stability of the blends was found to be higher than that of the BOZ/BMI system, and the moisture absorption of the blends was found to be lower than that of the BOZ/BMI system

  19. Perpendicularly Aligned, Anion Conducting Nanochannels in Block Copolymer Electrolyte Films

    Energy Technology Data Exchange (ETDEWEB)

    Arges, Christopher G.; Kambe, Yu; Suh, Hyo Seon; Ocola, Leonidas E.; Nealey, Paul F.

    2016-03-08

    Connecting structure and morphology to bulk transport properties, such as ionic conductivity, in nanostructured polymer electrolyte materials is a difficult proposition because of the challenge to precisely and accurately control order and the orientation of the ionic domains in such polymeric films. In this work, poly(styrene-block-2-vinylpyridine) (PSbP2VP) block copolymers were assembled perpendicularly to a substrate surface over large areas through chemical surface modification at the substrate and utilizing a versatile solvent vapor annealing (SVA) technique. After block copolymer assembly, a novel chemical vapor infiltration reaction (CVIR) technique selectively converted the 2-vinylpyridine block to 2-vinyl n-methylpyridinium (NMP+ X-) groups, which are anion charge carriers. The prepared block copolymer electrolytes maintained their orientation and ordered nanostructure upon the selective introduction of ion moieties into the P2VP block and post ion-exchange to other counterion forms (X- = chloride, hydroxide, etc.). The prepared block copolymer electrolyte films demonstrated high chloride ion conductivities, 45 mS cm(-1) at 20 degrees C in deionized water, the highest chloride ion conductivity for anion conducting polymer electrolyte films. Additionally, straight-line lamellae of block copolymer electrolytes were realized using chemoepitaxy and density multiplication. The devised scheme allowed for precise and accurate control of orientation of ionic domains in nanostructured polymer electrolyte films and enables a platform for future studies that examines the relationship between polymer electrolyte structure and ion transport.

  20. Photoreversible gelation of a triblock copolymer in an ionic liquid.

    Science.gov (United States)

    Ueki, Takeshi; Nakamura, Yutaro; Usui, Ryoji; Kitazawa, Yuzo; So, Soonyong; Lodge, Timothy P; Watanabe, Masayoshi

    2015-03-01

    The reversible micellization and sol-gel transition of block copolymer solutions in an ionic liquid (IL) triggered by a photostimulus is described. The ABA triblock copolymer employed, denoted P(AzoMA-r-NIPAm)-b-PEO-b-P(AzoMA-r-NIPAm)), has a B block composed of an IL-soluble poly(ethylene oxide) (PEO). The A block consists of a random copolymer including thermosensitive N-isopropylacrylamide (NIPAm) units and a methacrylate with an azobenzene chromophore in the side chain (AzoMA). A phototriggered reversible unimer-to-micelle transition of a dilute ABA triblock copolymer (1 wt%) was observed in an IL, 1-butyl-3-methylimidazolium hexafluorophosphate ([C4mim]PF6), at an intermediate "bistable" temperature (50 °C). The system underwent a reversible sol-gel transition cycle at the bistable temperature (53 °C), with reversible association/fragmentation of the polymer network resulting from the phototriggered self-assembly of the ABA triblock copolymer (20 wt%) in [C4 mim]PF6. PMID:25613353

  1. Design of block copolymer membranes using segregation strength trend lines

    KAUST Repository

    Sutisna, Burhannudin

    2016-05-18

    Block copolymer self-assembly and non-solvent induced phase separation are now being combined to fabricate membranes with narrow pore size distribution and high porosity. The method has the potential to be used with a broad range of tailor-made block copolymers to control functionality and selectivity for specific separations. However, the extension of this process to any new copolymer is challenging and time consuming, due to the complex interplay of influencing parameters, such as solvent composition, polymer molecular weights, casting solution concentration, and evaporation time. We propose here an effective method for designing new block copolymer membranes. The method consists of predetermining a trend line for the preparation of isoporous membranes, obtained by computing solvent properties, interactions and copolymer block sizes for a set of successful systems and using it as a guide to select the preparation conditions for new membranes. We applied the method to membranes based on poly(styrene-b-ethylene oxide) diblocks and extended it to newly synthesized poly(styrene-b-2-vinyl pyridine-b-ethylene oxide) (PS-b-P2VP-b-PEO) terpolymers. The trend line method can be generally applied to other new systems and is expected to dramatically shorten the path of isoporous membrane manufacture. The PS-b-P2VP-b-PEO membrane formation was investigated by in situ Grazing Incident Small Angle X-ray Scattering (GISAXS), which revealed a hexagonal micelle order with domain spacing clearly correlated to the membrane interpore distances.

  2. Controlling block copolymer phase behavior using ionic surfactant

    Science.gov (United States)

    Ray, D.; Aswal, V. K.

    2016-05-01

    The phase behavior of poly(ethylene oxide)-poly(propylene oxide-poly(ethylene oxide) PEO-PPO-PEO triblock copolymer [P85 (EO26PO39EO26)] in presence of anionic surfactant sodium dodecyl sulfate (SDS) in aqueous solution as a function of temperature has been studied using dynamic light scattering (DLS) and small-angle neutron scattering (SANS). The measurements have been carried out for fixed concentrations (1 wt%) of block copolymer and surfactants. Each of the individual components (block copolymer and surfactant) and the nanoparticle-surfactant mixed system have been examined at varying temperature. The block copolymer P85 forms spherical micelles at room temperature whereas shows sphere-to-rod like micelle transition at higher temperatures. On the other hand, SDS surfactant forms ellipsoidal micelles over a wide temperature range. Interestingly, it is found that phase behavior of mixed micellar system (P85 + SDS) as a function of temperature is drastically different from that of P85, giving the control over the temperature-dependent phase behavior of block copolymers.

  3. Synthesis, characterization and antimicrobial activity of important heterocyclic acrylic copolymers

    Directory of Open Access Journals (Sweden)

    2008-10-01

    Full Text Available The acrylate monomer, 7-acryloyloxy-4-methyl coumarin (AMC has been synthesized by reacting 7-hydroxy-4-methyl coumarin, with acryloyl chloride in the presence of NaOH at 0–5°C. Copolymers of 7-acryloyloxy-4-methyl coumarin (AMC with vinyl acetate (VAc were synthesized in DMF (dimethyl formamide solution at 70±1°C using 2,2′-azobisisobutyronitrile (AIBN as an initiator with different monomer-to-monomer ratios in the feed. The copolymers were characterized by Fourier transform infra red (FTIR spectroscopy. The copolymer composition was evaluated by 1H-NMR (proton nuclear magnetic resonance and was further used to determine reactivity ratios. The monomer reactivity ratios for AMC (M1-VAc (M2 pair were determined by the application of conventional linearization methods such as Fineman-Ross (r1 = 0.6924; r2 = 0.6431, Kelen-Tüdõs (r1 = 0.6776; r2 = 0.6374 and extended Kelen-Tüdõs (r1 = 0.6657; r2 = 0.6256. Thermo gravimetric analysis showed that thermal decomposition of the copolymers occurred in single stage in the temperature range of 263–458°C. The molecular weights of the polymers were determined using gel permeation chromatography. The homo and copolymers were tested for their antimicrobial properties against selected microorganisms.

  4. Highly conductive side chain block copolymer anion exchange membranes.

    Science.gov (United States)

    Wang, Lizhu; Hickner, Michael A

    2016-06-28

    Block copolymers based on poly(styrene) having pendent trimethyl styrenylbutyl ammonium (with four carbon ring-ionic group alkyl linkers) or benzyltrimethyl ammonium groups with a methylene bridge between the ring and ionic group were synthesized by reversible addition-fragmentation radical (RAFT) polymerization as anion exchange membranes (AEMs). The C4 side chain polymer showed a 17% increase in Cl(-) conductivity of 33.7 mS cm(-1) compared to the benzyltrimethyl ammonium sample (28.9 mS cm(-1)) under the same conditions (IEC = 3.20 meq. g(-1), hydration number, λ = ∼7.0, cast from DMF/1-propanol (v/v = 3 : 1), relative humidity = 95%). As confirmed by small angle X-ray scattering (SAXS), the side chain block copolymers with tethered ammonium cations showed well-defined lamellar morphologies and a significant reduction in interdomain spacing compared to benzyltrimethyl ammonium containing block copolymers. The chemical stabilities of the block copolymers were evaluated under severe, accelerated conditions, and degradation was observed by (1)H NMR. The block copolymer with C4 side chain trimethyl styrenylbutyl ammonium motifs displayed slightly improved stability compared to that of a benzyltrimethyl ammonium-based AEM at 80 °C in 1 M NaOD aqueous solution for 30 days. PMID:27216558

  5. Relaxation processes in a lower disorder order transition diblock copolymer

    Energy Technology Data Exchange (ETDEWEB)

    Sanz, Alejandro; Ezquerra, Tiberio A.; Nogales, Aurora, E-mail: aurora.nogales@csic.es [Instituto de Estructura de la Materia, IEM-CSIC. C/ Serrano 121, Madrid 28006 (Spain); Hernández, Rebeca [Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC. C/ Juan de la Cierva 3, Madrid 28006 (Spain); Sprung, Michael [Petra III at DESY, Notkestr. 85, 22607 Hamburg (Germany)

    2015-02-14

    The dynamics of lower disorder-order temperature diblock copolymer leading to phase separation has been observed by X ray photon correlation spectroscopy. Two different modes have been characterized. A non-diffusive mode appears at temperatures below the disorder to order transition, which can be associated to compositional fluctuations, that becomes slower as the interaction parameter increases, in a similar way to the one observed for diblock copolymers exhibiting phase separation upon cooling. At temperatures above the disorder to order transition T{sub ODT}, the dynamics becomes diffusive, indicating that after phase separation in Lower Disorder-Order Transition (LDOT) diblock copolymers, the diffusion of chain segments across the interface is the governing dynamics. As the segregation is stronger, the diffusive process becomes slower. Both observed modes have been predicted by the theory describing upper order-disorder transition systems, assuming incompressibility. However, the present results indicate that the existence of these two modes is more universal as they are present also in compressible diblock copolymers exhibiting a lower disorder-order transition. No such a theory describing the dynamics in LDOT block copolymers is available, and these experimental results may offer some hints to understanding the dynamics in these systems. The dynamics has also been studied in the ordered state, and for the present system, the non-diffusive mode disappears and only a diffusive mode is observed. This mode is related to the transport of segment in the interphase, due to the weak segregation on this system.

  6. Synthesis of Diblock Copolymer Consisting of Poly(4-butyltriphenylamine) and Morphological Control in Photovoltaic Application

    OpenAIRE

    Malee Songeun; Takeshi Shimomura; Kenji Ogino; Kousuke Tsuchiya; Tatsuro Kikuchi

    2011-01-01

    The diblock copolymer PTPA-b-PS consisting of poly(4-butyltripheneylamine) (PTPA) and polystyrene was prepared by atom transfer radical polymerization followed by C–N coupling polymerization. Three types of block copolymers with different contents of polystyrene segment were prepared. The formation of block copolymer was confirmed by 1H NMR spectra and gel permeation chromatography (GPC) profiles. Time of flight (TOF) measurement revealed that the block copolymer showed higher hole mobility u...

  7. Contrast variation SANS experiments to the study of detergent-induced micellization of block copolymers

    Indian Academy of Sciences (India)

    V K Aswal; J Kohlbrecher

    2004-08-01

    PEO-PPO-PEO triblock copolymer P85 [(EO)26 (PO)39 (EO)26] dissolves as unimers and detergent sodium dodecyl sulfate (SDS) forms micelles in aqueous solution at 20°C. The mixing of detergent with triblock copolymer induces the micellization of triblock copolymers. Contrast variation small-angle neutron scattering measurements show that triblock copolymer forms mixed micelles with detergent and the mixing of two components in the mixed micelles is uniform.

  8. Polystyrene-b-polyethylene oxide block copolymer membranes, methods of making, and methods of use

    KAUST Repository

    Peinemann, Klaus-Viktor

    2015-04-16

    Embodiments of the present disclosure provide for polystyrene-b-polyethylene oxide (PS-b-PEO) block copolymer nanoporous membranes, methods of making a PS-b-PEO block copolymer nanoporous membrane, methods of using PS-b-PEO block copolymer nanoporous membranes, and the like.

  9. Trimethylene Carbonate and epsilon-Caprolactone Based (co)Polymer Networks : Mechanical Properties and Enzymatic Degradation

    NARCIS (Netherlands)

    Bat, Erhan; Plantinga, Josee A.; Harmsen, Martin C.; van Luyn, Marja J. A.; Zhang, Zheng; Grijpma, Dirk W.; Feijen, Jan

    2008-01-01

    High molecular weight trimethylene carbonate (TMC) and epsilon-caprolactone (CL) (co)polymers were synthesized. Melt pressed (co)polymer films were cross-linked by gamma irradiation (25 kGy or 50 kGy) in vacuum, yielding gel fractions of up to 70%. The effects of copolymer composition and irradiatio

  10. Trimethylene Carbonate and -Caprolactone Based (co)Polymer Networks: Mechanical Properties and Enzymatic Degradation

    NARCIS (Netherlands)

    Bat, Erhan; Plantinga, Josée A.; Harmsen, Martin C.; Luyn, van Marja J.A.; Zhang, Zheng; Grijpma, Dirk W.; Feijen, Jan

    2008-01-01

    High molecular weight trimethylene carbonate (TMC) and -caprolactone (CL) (co)polymers were synthesized. Melt pressed (co)polymer films were cross-linked by gamma irradiation (25 kGy or 50 kGy) in vacuum, yielding gel fractions of up to 70%. The effects of copolymer composition and irradiation dose

  11. 40 CFR 721.10179 - Copolymers of phenol and aromatic hydocarbon (generic).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Copolymers of phenol and aromatic... Specific Chemical Substances § 721.10179 Copolymers of phenol and aromatic hydocarbon (generic). (a... generically as copolymers of phenol and aromatic hydocarbon (PMNs P-04-346 and P-04-347) are subject...

  12. STUDY ON THE SYNTHESIS OF COPOLYMER CONTAINING N-SUBSTITUTED ACRYLAMIDE COMPONENT

    Institute of Scientific and Technical Information of China (English)

    LI Xuefen; WANG Shenguo; LI Zhifen

    1984-01-01

    In this paper the synthesis of linear and crosslinked N-substituted acrylamide copolymer is reported. In order to obtain the terpolymer with appropriate hydrophilicity, the conditions of aminolysis of St-MMA copolymer have been selected.It is shown that the copolymer with predictable hydrophilicity possesses good blood compatibility.

  13. Bandgap determination of P(VDF–TrFE) copolymer film by electron energy loss spectroscopy

    Indian Academy of Sciences (India)

    Dipankar Mandal; K Henkel; K Müller; D Schmeißer

    2010-08-01

    The ferroelectric of poly(vinylidene fluoride trifluoroethylene), P(VDF–TrFE) is confirmed for 100 nm thickness spin coated copolymer film. The homogeneous coverage of the copolymer film is investigated by the help of X-ray photoelectron spectroscopy (XPS). Most importantly, the existing bandgap in the crystalline phase of the copolymer is determined directly from the electron energy loss spectroscopy (EELS).

  14. 77 FR 22847 - National Emission Standards for Hazardous Air Pollutants for Polyvinyl Chloride and Copolymers...

    Science.gov (United States)

    2012-04-17

    ... Hazardous Air Pollutants for Polyvinyl Chloride and Copolymers Production; Final Rule #0;#0;Federal Register... Polyvinyl Chloride and Copolymers Production AGENCY: Environmental Protection Agency (EPA). ACTION: Final... Polyvinyl Chloride and Copolymers Production. The final rules establish emission standards that apply at...

  15. Hypoxia-Responsive Copolymer for siRNA Delivery.

    Science.gov (United States)

    Perche, Federico; Biswas, Swati; Patel, Niravkumar R; Torchilin, Vladimir P

    2016-01-01

    A wide variety of nanomedicine has been designed for cancer therapy. Herein, we describe the synthesis and evaluation of a hypoxia-responsive copolymer for siRNA delivery (Perche et al., Angew Chem Int Ed Engl 53:3362-3366, 2014). The synthesis is achieved using established coupling chemistry and accessible purification procedures. A polyelectrolyte-lipid conjugate (polyethyleneimine 1.8 kDa-dioleyl-phosphatidylinositol, PEI-PE) and polyethylene glycol 2000 (PEG) were assembled via the hypoxia-sensitive azobenzene (Azo) unit to obtain the PEG-Azo-PEI-DOPE copolymer. This copolymer can condense siRNA and shows hypoxia-induced cellular internalization and reporter gene downregulation in vitro and tumor accumulation in vivo after parenteral administration (Perche et al., Angew Chem Int Ed Engl 53:3362-3366, 2014). We also detail procedures to evaluate hypoxia-targeted polymers both in monolayer cultures, cancer cell spheroids and in tumor xenografts murine models. PMID:26530922

  16. Performance behavior of modified cellulosic fabrics using polyurethane acrylate copolymer.

    Science.gov (United States)

    Zuber, Mohammad; Shah, Sayyed Asim Ali; Jamil, Tahir; Asghar, Muhammad Irfan

    2014-06-01

    The surface of the cellulosic fabrics was modified using self-prepared emulsions of polyurethane acrylate copolymers (PUACs). PUACs were prepared by varying the molecular weight of polycaprolactone diol (PCL). The PCL was reacted with isophorone diisocyanate (IPDI) and chain was extended with 2-hydroxy ethyl acrylate (HEA) to form vinyl terminated polyurethane (VTPU) preploymer. The VTPU was further co-polymerized through free radical polymerization with butyl acrylate in different proportions. The FT-IR spectra of monomers, prepolymers and copolymers assured the formation of proposed PUACs structure. The various concentrations of prepared PUACs were applied onto the different fabric samples using dip-padding techniques. The results revealed that the application of polyurethane butyl acrylate copolymer showed a pronounced effect on the tear strength and pilling resistance of the treated fabrics.

  17. A Photosensitive Copolymer for UV-curable Eleetrodeposition Coatings

    Institute of Scientific and Technical Information of China (English)

    LIU Ren; LI Xiaojie; AN Fenglci; ZHANG Shengwen; LIU Xiaoya

    2011-01-01

    A series of photosensitive random copolymers (UPDHES) were prepared by introducing acrylate groups onto the side chain of the copolymer backbone of N,N-domethyl amimethyl methacrylate (DMAEMA),2-hydroxypropyl acrylate (HEA),2-ethylhexyl acrylate (EHA),and styrene (St) (PDHES).The molecular structure of UPDHES was characterized by FTIR,1HNMR and GPC.The photopolymerization kinetics of UPDHES with different C=C content was investigated using real time FTIR in which it was found that the UPDHES system had notable photosensitivity.The effect of C=C content on the properties of cured films were studied by evaluating various film properties such as thermal stability,glass transition temperature and tensile properties.The thermal degradation of cured films was investigated via thermogravimetric analysis/infrared spectrometry (TGA-IR).Thus a series of UV-curable electrodeposition coatings with good photosensitivity and mechanical properties were prepared from a low-cost photosensitive random copolymer.

  18. Structure of Block Copolymer Hydrogel Formed by Complex Coacervate Process

    Science.gov (United States)

    Choi, Soohyung; Ortony, Julia; Krogstad, Daniel; Spruell, Jason; Lynd, Nathaniel; Han, Songi; Kramer, Edward

    2012-02-01

    Complex coacervation occurs when oppositely charged polyelectrolytes associate in solution, forming dense micron-sized droplets. Hydrogels with coacervate block domains were formed by mixing two ABA and A'BA' triblock copolymer solutions in water where the A and A' blocks are oppositely charged. Small-angle neutron scattering (SANS) was used to investigate the structure of hydrogels formed by ABA triblock copolymers (A block: poly(allyl glycidyl ether) functionalized with guanidinium (A) or sulfonate (A'), B block: poly(ethylene oxide)). By using an appropriate fitting model, structural information such as coacervate core block radius and water volume fraction w can be extracted from SANS data. The results reveal that w in the coacervate core block was significantly higher than in conventional triblock copolymer hydrogels where microphase separation is driven by the hydrophobicity of the core-forming blocks.

  19. STRUCTURE OF CRYSTALLINE DOMAINS IN SEMICRYSTALLINE BLOCK COPOLYMER THIN FILMS

    Institute of Scientific and Technical Information of China (English)

    Guo-dong Liang; Jun-ting Xu; Zhi-qiang Fan

    2006-01-01

    Thin film morphology of a symmetric semicrystalline oxyethylene/oxybutylene diblock copolymer (E76B38) on silicon was investigated by tapping mode atomic force microscopy (AFM). It is found that the nascent thin film is composed of multiple polymer layers having mixed thicknesses of L ≈ L0 and L ≈ L0/2 (L0 is the long period of the block copolymer in bulk) besides the first layer near the substrate. This shows that the crystalline domain in the block copolymer consists of double poly(oxyethylene) layers. Annealing leads to disappearance of the polymer layers with thickness L ≈ L0/2, indicating that such polymer layers are metastable.

  20. Characterization of Lithium Polysulfide Salts in Homopolymers and Block Copolymers

    Science.gov (United States)

    Wang, Dunyang; Wujcik, Kevin; Balsara, Nitash

    Ion-conducting polymers are important for solid-state batteries due to the promise of better safety and the potential to produce higher energy density batteries. Nanostructured block copolymer electrolytes can provide high ionic conductivity and mechanical strength through microphase separation. One of the potential use of block copolymer electrolytes is in lithium-sulfur batteries, a system that has high theoretical energy density wherein the reduction of sulfur leads to the formation of lithium polysulfide intermediates. In this study we investigate the effect of block copolymer morphology on the speciation and transport properties of the polysulfides. The morphology and conductivities of polystyrene-b-poly(ethylene oxide) (SEO) containing lithium polysulfides were studies using small-angle X-ray scattering and ac impedance spectroscopy. UV-vis spectroscopy is being used to determine nature of the polysulfide species in poly(ethylene oxide) and SEO. Department of Energy, Soft Matter Electron Microscopy Program and Battery Materials Research Program.

  1. Modification of ethylene-norbornene copolymer by Gamma irradiation

    Directory of Open Access Journals (Sweden)

    Kačarević-Popović Zorica M.

    2006-01-01

    Full Text Available The possibility of modifying polyethylene and many other polymers with high energy radiation has led to many useful applications. Due to their new combination of properties and the shortage of experimental data, the radiolysis of a new class of materials, cyclo-olefin copolymers (COC, polymerised from norbornene and ethylene using metallocene catalysts, is of great interest to the study of radiation chemistry and the physics of polymeric systems. Ethylenenorbornene copolymer, pristine and containing an antioxidant were subjected to gamma irradiation in the presence of air and in water. The irradiated copolymer was studied using IR and UV-vis spectrophotometric analysis. The radiation-induced changes in the molecular structure were correlated to changes in the glass transition temperature measured by the DSC method.

  2. Performance behavior of modified cellulosic fabrics using polyurethane acrylate copolymer.

    Science.gov (United States)

    Zuber, Mohammad; Shah, Sayyed Asim Ali; Jamil, Tahir; Asghar, Muhammad Irfan

    2014-06-01

    The surface of the cellulosic fabrics was modified using self-prepared emulsions of polyurethane acrylate copolymers (PUACs). PUACs were prepared by varying the molecular weight of polycaprolactone diol (PCL). The PCL was reacted with isophorone diisocyanate (IPDI) and chain was extended with 2-hydroxy ethyl acrylate (HEA) to form vinyl terminated polyurethane (VTPU) preploymer. The VTPU was further co-polymerized through free radical polymerization with butyl acrylate in different proportions. The FT-IR spectra of monomers, prepolymers and copolymers assured the formation of proposed PUACs structure. The various concentrations of prepared PUACs were applied onto the different fabric samples using dip-padding techniques. The results revealed that the application of polyurethane butyl acrylate copolymer showed a pronounced effect on the tear strength and pilling resistance of the treated fabrics. PMID:24661889

  3. CRYSTALLIZATION SEGREGATION DSC STUDIES OF PP/PE COPOLYMERS

    Institute of Scientific and Technical Information of China (English)

    Yu Ma; Ying Wang; Shan-nong Zhu; Mao Xu

    2001-01-01

    The structural analysis of two PP/PE copolymer samples, I and 2, was conducted by using 13C-NMR, GPC and crystallization segregation DSC (CSDSC) techniques. A pure polypropylene sample was also used for comparison. It was found that the two copolymer samples are very close in composition (the ethylene mol content is 4.3% and 4.5%,respectively), stereoregularity (96% and 97%) and molecular weight (Mw, = 7.0 x 104 and 7.3x104; Mw/Mn = 5.0 and 6.1,respectively). While the CSDSC thermograms of the two samples are quite different from each other. Sample 1 shows a higher average melting temperature and a broader distribution of its thermogram. These phenomena were explained as an indication of a less uniform distribution of ethylene units along the PP chains for sample 1. It was noted that CSDSC is a very sensitive and convenient technique for structural studies of copolymers.

  4. Block copolymer/homopolymer dual-layer hollow fiber membranes

    KAUST Repository

    Hilke, Roland

    2014-12-01

    We manufactured the first time block copolymer dual-layer hollow fiber membranes and dual layer flat sheet membranes manufactured by double solution casting and phase inversion in water. The support porous layer was based on polystyrene and the selective layer with isopores was formed by micelle assembly of polystyrene-. b-poly-4-vinyl pyridine. The dual layers had an excellent interfacial adhesion and pore interconnectivity. The dual membranes showed pH response behavior like single layer block copolymer membranes with a low flux for pH values less than 3, a fast increase between pH4 and pH6 and a constant high flux level for pH values above 7. The dry/wet spinning process was optimized to produce dual layer hollow fiber membranes with polystyrene internal support layer and a shell block copolymer selective layer.

  5. Phase Behavior and Significantly Enhanced Toughness in Polylactide Graft Copolymers

    Science.gov (United States)

    Robertson, Megan; Theryo, Grayce; Jing, Feng; Hillmyer, Marc

    2011-03-01

    Polylactide (PLA), a biodegradable polyester derived from plant sugars, is commercially available and used in a variety of applications ranging from serviceware to resorbable sutures. One limitation to diversifying the applications of the material is its inherent brittleness. Graft copolymers containing PLA arms and a rubbery aliphatic polymer backbone were synthesized by a combination of ring-opening metathesis and ring-opening transesterification polymerizations. The high degree of incompatibility between the arms and backbone resulted in microphase separation of the graft copolymer at increasingly low fractions of the backbone polymer, as evidenced by small-angle x-ray scattering. In graft copolymers with a rubbery content of only 5 wt percent, the tensile strain at break was observed to be as high as twenty times that of neat PLA. Studies are underway to provide insight into the critical polymer molecular parameters for enhanced toughness and the deformation mechanisms.

  6. Studies on N-vinylformamide cross-linked copolymers

    Science.gov (United States)

    Świder, Joanna; Tąta, Agnieszka; Sokołowska, Katarzyna; Witek, Ewa; Proniewicz, Edyta

    2015-12-01

    Copolymers of N-vinylformamide (NVF) cross-linked with three multifunctional monomers, including divinylbenzene (DVB), ethylene glycol dimethacrylate (EGDMA), and N,N‧-methylenebisacrylamide (MBA) were synthetized by a three-dimensional free radical polymerization in inverse suspension using 2,2‧-azobis(2-methylpropionamide) dihydrochloride (AIBA) as an initiator. Methyl silicon oil was used as the continuous phase during the polymerization processes. Fourier-transform adsorption infrared (FT-IR) spectra revealed the presence of silicone oil traces and suggested that silicone oil strongly interacted with the copolymers surface. Purification procedure allowed to completely remove the silicon oil traces from P(NVF-co-DVB) only. The morphology and the structure of the investigated copolymers were examined by optical microscopy, FT-IR, and FT-Raman (Fourier-transform Raman spectroscopy) methods.

  7. Solubility of dense CO2 in two biocompatible acrylate copolymers

    Directory of Open Access Journals (Sweden)

    A. R. C. Duarte

    2006-06-01

    Full Text Available Biocompatible polymers and copolymers are frequently being used as part of controlled delivery systems. These systems can be prepared using a "clean and environment friendly" technology like supercritical fluids. One great advantage of this process is that compressed carbon dioxide has excellent plasticizing properties and can swell most biocompatible polymeric matrixes, thus promoting drug impregnation processes. Mass sorption of two acrylate biocompatible copolymers contact with supercritical carbon dioxide is reported. Equilibrium solubility of dense carbon dioxide in poly(methylmethacrylate-co-ethylhexylacrylate and poly(methylmethacrylate-co-ethylhexylacrylate-co-ethyleneglycoldimethacrylate was studied by a static method at 10.0 MPa and 313 K. The reticulated copolymer had Fickean behavior and its diffusion coefficient was calculated, under operating conditions.

  8. Preparation and icephobic properties of polymethyltrifluoropropylsiloxane–polyacrylate block copolymers

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiaohui; Zhao, Yunhui [School of Materials Science and Engineering, and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300072 (China); Li, Hui [School of Chemistry and Chemical Engineering, Shandong Key Laboratory of Fluorine Chemistry and Chemical Engineering Materials, University of Jinan, Jinan 250022 (China); Yuan, Xiaoyan, E-mail: xyuan28@yahoo.com [School of Materials Science and Engineering, and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300072 (China)

    2014-10-15

    Highlights: • PMTFPS–b-polyacrylate copolymers in five different compositions were synthesized. • Enrichment of PMTFPS amounts at the surface made high F/Si value. • Icing delay time was related to the surface roughness. • Ice shear strength was decreased by the synergistic effect of silicone and fluorine. - Abstract: Five polymethyltrifluoropropylsiloxane (PMTFPS)–polyacrylate block copolymers (PMTFPS–b-polyacrylate) were synthesized by free radical polymerization of methyl methacrylate, n-butyl acrylate and hydroxyethyl methacrylate using PMTFPS macroazoinitiator (PMTFPS-MAI) in range of 10–50 mass percentages. The morphology, surface chemical composition and wettability of the prepared copolymer films were investigated by transmission electron microscopy, atomic force microscopy, X-ray photoelectron spectroscopy, and water contact angle measurement. Delayed icing time and ice shear strength of the films were also detected for the icephobic purpose. The surface morphologies of the copolymers were different from those of the bulk because of the migration of the PMTFPS segments to the air interface during the film formation. Maximal delayed icing time (186 s at −15 °C) and reduction of the ice shear strength (301 ± 10 kPa) which was significantly lower than that of polyacrylates (804 ± 37 kPa) were achieved when the content of PMTFPS-MAI was 20 wt%. The icephobicity of the copolymers was attributed primarily to the enrichment of PMTFPS on the film surface and synergistic effect of both silicone and fluorine. Thus, the results show that the PMTFPS–b-polyacrylate copolymer can be used as icephobic coating materials potentially.

  9. Stability of ordered phases in block copolymer melts and solutions

    Indian Academy of Sciences (India)

    Kell Mortensen

    2008-11-01

    Block copolymer melts and solutions assemble into nanosized objects that order into a variety of phases, depending on molecular parameters and mutual interactions. Beyond the classical phases of lamella ordered sheets, hexagonally ordered cylinders and cubic ordered spheres, the complex bicontinuous gyroid phase and the modulated lamellar phase are observed near the phase boundaries. The stability of these phases has been discussed on the basis of theoretical calculations. Here, we will discuss new experimental results showing that the given ordered phase depends critically on both molecular purity and mechanical treatment of the sample. While a variety of block copolymer micellar systems have been shown to undergo the liquid-to-bcc-to-fcc phase sequence upon varying micellar parameters (or temperature), we find for a purified system a different sequence, namely liquid-to-fcc-to-bcc [1]. The latter sequence is by the way the one predicted for pure block copolymer melts. External fields like shear or stress may also affect the ordered phase. Applying well-controlled large-amplitude oscillatory shear can be used to effectively control the texture of soft materials in the ordered states. As an example, we present results on a body-centred-cubic phase of a block copolymer system, showing how a given texture can be controlled with the application of specific shear rate and shear amplitude [2,3]. Shear may however also affect the thermodynamic ground state, causing shear-induced ordering and disordering (melting), and shear-induced order–order transitions. We will present data showing that the gyroid state of diblock copolymer melts is unstable when exposed to large amplitude/frequency shear, transforming into the hexagonal cylinder phase [4]. The transformation is completely reversible. With the rather slow kinetics in the transformation of copolymer systems, it is possible in detail to follow the complex transformation process, where we find transient ordered

  10. Responsive copolymers for enhanced petroleum recovery. Second annual report

    Energy Technology Data Exchange (ETDEWEB)

    McCormick, C.; Hester, R.

    1995-05-01

    The authors describe second year efforts in synthesis, characterization, and rheology to develop polymers with significantly improved efficiency in mobility control and conformance. These advanced polymer systems would maintain high viscosities or behave as virtual gels under low shear conditions and at elevated electrolyte concentrations. At high fluid shear rates, associates would deaggregate yielding low viscosity solutions, reducing problems of shear degradation or face plugging during injection. Polymeric surfactants were also developed with potential for use in higher salt, higher temperature reservoirs for mobilization of entrapped oil. Chapters include: Ampholytic terpolymers of acrylamide with sodium 3-acrylamido-3-methylbutanoate and 2-acrylamido-2-methylpropanetrimethylammonium chloride; Hydrophilic sulfobetaine copolymers of acrylamide and 3-(2-acrylamido-methylpropane-dimethylammonio)-1-propanesulfonate; Copolymerization of maleic anhydride and N-vinylformamide; Reactivity ratio of N-vinylformamide with acrylamide, sodium acrylate, and n-butyl acrylate; Effect of the distribution of the hydrophobic cationic monomer dimethyldodecyl(2-acrylamidoethyl)ammonium bromide on the solution behavior of associating acrylamide copolymers; Effect of surfactants on the solution properties of amphipathic copolymers of acrylamide and N,N-dimethyl-N-dodecyl-N-(2-acrylamidoethyl)ammonium bromide; Associative interactions and photophysical behavior of amphiphilic terpolymers prepared by modification of maleic anhydride/ethyl vinyl ether copolymers; Copolymer compositions of high-molecular-weight functional acrylamido water-soluble polymers using direct-polarization magic-angle spinning {sup 13}C NMR; Use of factorial experimental design in static and dynamic light scattering characterization of water soluble polymers; and Porous medium elongational rheometer studies of NaAMB/AM copolymer solutions.

  11. Photoexcitation dynamics in an alternating polyfluorene copolymer

    Science.gov (United States)

    Westerling, M.; Aarnio, H.; Österbacka, R.; Stubb, H.; King, S. M.; Monkman, A. P.; Andersson, M. R.; Jespersen, K.; Kesti, T.; Yartsev, A.; Sundström, V.

    2007-06-01

    We have used transient photoinduced absorption on femtosecond to nanosecond time scales as well as delayed fluorescence up to microseconds to study the photogeneration and recombination of charges in thin films of the alternating polyfluorene copolymer poly[2,7-(9,9-dioctylfluorene)-alt-5,5-( 4',7' -di-2-thienyl- 2',1',3' -benzothiadiazole)]. We interpret the results using a coupled rate equation model and find that we can fit all our experimental results with a single set of parameters. The model includes prompt (polaron pairs, respectively. The intrachain polaron pairs are promptly generated from vibronically excited (hot) primary singlet excitons S1* and recombine geminately back to the lowest singlet exciton state S1 with a lifetime distribution having a mean lifetime of ˜2.4ps . The interchain polaron pairs, which can be seen as precursors to free charges, are formed via two channels: via singlet excitons being dissociated with a linear rate constant of ˜5ns as well as via a time-dependent bimolecular exciton-exciton annihilation process generating higher-energy exciton states Sn* of which a fraction subsequently dissociates into interchain polaron pairs. We observe a total yield of 12%-23% interchain polaron pairs (a precursor to free polarons), depending on the excitation intensity used. This also defines the upper limit of the free polaron yield at zero electric field in this material. The long-lived interchain polaron pairs recombine geminately back to the ground state or to singlet excitons with a broad distribution of lifetimes having a mean lifetime of ˜0.27μs . The fraction of interchain polaron pairs recombining back to singlet excitons, with subsequent radiative decay back to the ground state, gives rise to delayed fluorescence extending to microsecond time scales.

  12. Investigation on the structure of temperature-responsive N-isopropylacrylamide microgels containing a new hydrophobic crosslinker

    Directory of Open Access Journals (Sweden)

    G. Roshan Deen

    2015-12-01

    Full Text Available Temperature-responsive poly(N-isopropylacrylamide microgels crosslinked with a new hydrophobic chemical crosslinker was prepared by surfactant-mediated precipitation emulsion polymerization. The temperature-responsive property of the microgel and the influence of the crosslinker on the swelling behaviour was studied systematically by light scattering and small-angle X-ray scattering (SAXS. The radius of gyration (Rg and the hydrodynamic radius (Rh of the microgels decreased with increase in temperature due to the volume-phase transition from a swollen to a collapsed state. The ratio of Rg/Rh below the transition temperature was lower than that of hard-spheres due to the lower crosslinking density of the microgels. The SAXS data were analysed by a model in which the microgels were modelled as core-shell particles with a graded interface. The model at intermediate temperatures included a central core and a more diffuse outer layer describing pending polymer chains with a low crosslinking density. In the fully swollen state, the microgels were modelled with a single component with a broad graded surface. In the collapsed state, they were modelled as homogeneous and relatively compact particles. The polymer volume fraction inside the microgel was also derived based on the model and was found to increase with increase in the temperature as a result of collapse of the microgel to compact particles. The polymer volume fraction in the core of the microgel in the collapsed state was about 60% which is higher than that of similar microgels crosslinked with hydrophilic and flexible crosslinkers.

  13. Block Copolymer Nanocomposites in Electric Fields: Kinetics of Alignment

    Energy Technology Data Exchange (ETDEWEB)

    Liedel, Clemens [RWTH Aachen University; Pester, Christian [RWTH Aachen University; Ruppel, Markus A [ORNL; Lewin, Christian [RWTH Aachen University; Pavan, Mariela J. [Hebrew University of Jerusalem; Urban, Volker S [ORNL; Shenhar, Roy [Hebrew University of Jerusalem; Bosecke, Peter [European Synchrotron Radiation Facility (ESRF); Boker, Alexander [RWTH Aachen University

    2013-01-01

    We investigate the kinetics of block copolymer/nanoparticle composite alignment in an electric field using in situ transmission small-angle X-ray scattering. As a model system, we employ a lamellae forming polystyrene-block-poly(2-vinyl pyridine) block copolymer with different contents of gold nanoparticles in thick films under solvent vapor annealing. While the alignment improves with increasing nanoparticle fraction, the kinetics slows down. This is explained by changes in the degree of phase separation and viscosity. Our findings provide extended insights into the basics of nanocomposite alignment.

  14. A shear stabilized biaxial texture in a lamellar block copolymer

    Energy Technology Data Exchange (ETDEWEB)

    Polis, D.L.; Pinheiro, B.S.; Winey, K.I.; Lakis, R.E. [Univ. of Pennsylvania, Philadelphia, PA (United States)

    1996-12-31

    Block copolymers spontaneously self-assemble into a variety of morphologies. Recent studies have produced a biaxial texture in poly(styrene-b-ethylene propylene), SEP, diblock copolymers by applying oscillatory shear. This biaxial texture consists of {open_quotes}parallel{close_quotes} lamellae (normal to lamellae aligned perpendicular to shearing surfaces) and {open_quotes}transverse{close_quotes} lamellae (normal to lamellae aligned parallel to shearing direction) according to small-angle X-ray scattering, SAXS. The present study has determined how these two populations of lamellae are arranged and how they relax upon quiescent annealing by examining the superstructure via FE-SEM.

  15. Novel block, graft and random copolymers for biomedical applications

    DEFF Research Database (Denmark)

    Javakhishvili, Irakli; Jankova Atanasova, Katja; Tanaka, Masaru;

    roles for this [2]. An artificial lung (oxygenator), already in use, is coated with high MW PMEA prepared by radical polymerization with AIBN [2]. To broaden the possibilities for designing biomedical devices [3] and inspired from these findings we first prepared homo polymers of MEA and their block...... copolymers with MMA [4] utilizing ATRP. Here we present other block, graft and random copolymers of MEA intended for biomedical applications. These macromolecular architectures have been constructed by employing controlled radical polymerization methods such as RAFT and ATRP....

  16. Stereo block copolymers of L- and D-lactides

    OpenAIRE

    Yui, Nobuhiko; Pieter J. Dijkstra; Feijen, Jan

    1990-01-01

    Sequential diblock copolymers composed of L- and D-lactic acid residues were synthesized through a living ring-opening polymerization of L- and D-lactide initiated by aluminium tris(2-propanolate). The composition of the block copolymers was varied by changing the reaction conditions and monomer over initiator ratio and confirmed by 1H NMR analysis, molecular weight determination and optical rotation measurements. Molecular weights ranged from 1,3 to 2,0 · 104 with 1,2 < Mw/Mn < 1,4. Stereoco...

  17. Synthesis of Amphiphilic Block Copolymers for Use in Biomedical Applications

    OpenAIRE

    Carmichael-Baranauskas, Anita Yvonne

    2010-01-01

    The research presented in this thesis focuses on the synthesis of three amphiphilic block copolymer systems containing poly(ethylene oxide) (PEO) blocks. The polymer systems were developed for use in biomedical applications. The first of these is a series of poly(ethylene oxide-b¬-oxazoline) (PEO-b-POX) diblock copolymers for use in the progress towards novel non-viral gene transfer vectors. Poly(ethylene oxide-b¬-2-ethyl-2-oxazoline) (PEO-b-PEOX) and poly(ethylene oxide-b¬-2-methyl-2-o...

  18. Synthesis and Characterization of Organotin Containing Copolymers: Reactivity Ratio Studies

    Directory of Open Access Journals (Sweden)

    Mohamed H. El-Newehy

    2010-03-01

    Full Text Available Organotin monomers containing dibutyltin groups – dibutyltin citraconate (DBTC as a new monomer and dibutyltin maleate (DBTM – were synthesized. Free radical copolymerizations of the organotin monomers with styrene (ST and butyl acrylate (BA were performed. The overall conversion was kept low (≤15% wt/wt for all studied samples and the copolymers composition was determined from tin analysis using the Gillman and Rosenberg method. The reactivity ratios were calculated from the copolymer composition using the Fineman-Ross (FR method. The synthesized monomers were characterized by elemental analysis, 1H-, 13C-NMR and FTIR spectroscopy.

  19. SYNTHESIS AND CHARACTERIZATION OF HYDROPHOBIC-HYDROPHILIC MULTIBLOCK COPOLYMERS FOR BIOMEDICAL APPLICATIONS

    Institute of Scientific and Technical Information of China (English)

    Yong Kiel Sung; Yong Joo Kim; Sung Wan Kim

    1999-01-01

    The synthesis and characterization of amphiphilic copolymers of poly(dimethyl siloxane)(PDMS),poly(ethylene oxide)(PEO), and heparin(Hep) were investigated. These multiblock copolymers were identified using 1H-NMR, FTIR, end group analysis, and sulfur elemental analysis. The multiblock copolymers were characterized by using DSC and X-ray diffractometry. The glass transition temperature,crystalline melting characteristics, annealing effect, and cold crystallization of the block copolymers were determined by DSC. The crystallinity of the block copolymers was also determined by X-ray diffraction method.

  20. STUDIES ON POLY (ETHYLENE TEREPHTHALATE)- POLY ( TETRAMETHYLENE ETHER ) MULTIBLOCK COPOLYMER.Ⅰ. COM POSITIONAL HOMOGENEITY

    Institute of Scientific and Technical Information of China (English)

    ZHAN Yongjian; YING Qicong; WU Meiyan; QIAN Renyuan

    1991-01-01

    The compositional homogeneity of a poly (ethylene terephthalate )-poly (tetramethylene ether)multiblock copolymer sample with low content of hard segment was examined by GPC, TLC, and solubility method. The copolymer sample was found to have a uniform composition as a function of elution volume over the major portion of sample from GPC method. However within one elution fraction, the copolymer chains, although having the same hydrodynamic volume, may have some difference in composition. Two fractions with different composition were obtained by precipitation in ethanol. Some low molar mass copolymers were also separated by a TLC technique from the copolymer sample.

  1. Synthesis and interactions with blood of polyetherurethaneurea/polypeptide block copolymers.

    Science.gov (United States)

    Ito, Y; Miyashita, K; Kashiwagi, T; Imanishi, Y

    1993-01-01

    Polyurethane/polypeptide block copolymers were synthesized. Infrared spectroscopy and differential scanning calorimetry revealed that in the block copolymers both segments undergo phase-mixing, while in polyurethane/polypeptide blend both components undergo phase-separation. Contact angle measurement showed that in the block copolymers polyurethane segments tended to appear on the membrane surface, whereas in polyurethane/polypeptide blend polypeptide components appeared on the membrane surface. In vitro nonthrombogenicity of the block copolymers was similar to that of homopolymers or polymer blends, though adhesion and deformation of platelets were suppressed on the block copolymer membranes. PMID:8260582

  2. Studies on Preparation of Poly(3,4-Dihydroxyphenylalanine-Polylactide Copolymers and the Effect of the Structure of the Copolymers on Their Properties

    Directory of Open Access Journals (Sweden)

    Dongjian Shi

    2016-03-01

    Full Text Available Properties of copolymers are generally influenced by the structure of the monomers and polymers. For the purpose of understanding the effect of polymer structure on the properties, two kinds of copolymers, poly(3,4-dihydroxyphenylalanine-g-polylactide and poly(3,4-dihydroxyphenylalanine-b-polylactide (PDOPA-g-PLA and PDOPA-b-PLA were designed and prepared by ring-opening polymerization of lactide with pre-prepared PDOPA as the initiator and the amidation of the functional PLA and PDOPA oligomer, respectively. The molecular weight and composition of the copolymers could be adjusted by changing the molar ratio of LA and DOPA and were confirmed by gel permeation chromatography (GPC and proton nuclear magnetic resonance (1H NMR spectra. The obtained copolymers with graft and block structures showed high solubility even in common organic solvents. The effects of the graft and block structures on the thermal and degradation properties were also detected. The PDOPA-g-PLA copolymers showed higher thermal stability than the PDOPA-b-PLA copolymers, due to the PDOPA-g-PLA copolymers with regular structure and strong π-π stacking interactions among the intermolecular and intramolecular chains. In addition, the degradation results showed that the PDOPA-g-PLA copolymers and the copolymers with higher DOPA composition had quicker degradation speeds. Interestingly, both two kinds of copolymers, after degradation, became undissolved in the organic solvents because of the oxidation and crosslinking formation of the catechol groups in the DOPA units during degradation in alkaline solution. Moreover, fluorescent microscopy results showed good biocompatibility of the PDOPA-g-PLA and PDOPA-b-PLA copolymers. The PDOPA and PLA copolymers have the potential applications to the biomedical and industrial fields.

  3. Anhydric maleic functionalization and polyethylene glycol grafting of lactide-co-trimethylene carbonate copolymers

    Energy Technology Data Exchange (ETDEWEB)

    Díaz, A.; Valle, L.; Franco, L. del [Departament d' Enginyeria Química, Universitat Politècnica de Catalunya, Av. Diagonal 647, Barcelona E-08028 (Spain); Sarasua, J.R. [Department of Mining-Metallurgy Engineering and Materials Science, University of the Basque Country (UPV/EHU), Bilbao (Spain); Estrany, F. [Departament d' Enginyeria Química, Universitat Politècnica de Catalunya, Av. Diagonal 647, Barcelona E-08028 (Spain); Puiggalí, J., E-mail: Jordi.Puiggali@upc.es [Department of Mining-Metallurgy Engineering and Materials Science, University of the Basque Country (UPV/EHU), Bilbao (Spain)

    2014-09-01

    Lactide and trimethylene carbonate copolymers were successfully grafted with polyethylene glycol via previous functionalization with maleic anhydride and using N,N′-diisopropylcarbodiimide as condensing agent. Maleinization led to moderate polymer degradation. Specifically, the weight average molecular weight decreased from 36,200 to 30,200 g/mol for the copolymer having 20 mol% of trimethylene carbonate units. Copolymers were characterized by differential scanning calorimetry, thermogravimetry and X-ray diffraction. Morphology of spherulites and lamellar crystals was evaluated with optical and atomic force microscopies, respectively. The studied copolymers were able to crystallize despite the randomness caused by the trimethylene carbonate units and the lateral groups. Contact angle measurements indicated that PEG grafted copolymers were more hydrophilic than parent copolymers. This feature justified that enzymatic degradation in lipase medium and proliferation of both epithelial-like and fibroblast-like cells were enhanced. Grafted copolymers were appropriate to prepare regular drug loaded microspheres by the oil-in-water emulsion method. Triclosan release from loaded microspheres was evaluated in two media. - Highlights: • Pegylated copolymers of lactide and trimethylene carbonate have been synthesized. • Grafting with polyethylene glycol was able via maleic anhydride functionalization. • Drug-loaded microspheres could be prepared from new pegylated copolymers. • Hydrophilicity of lactide/trimethylene carbonate copolymers increased by pegylation. • New pegylated copolymers supported cell adhesion and proliferation.

  4. Vinyl Dimethyl Azlactone-Containing Copolymers: Towards Bio-Inspired Surfaces/Polymer-Protein Conjugates

    Energy Technology Data Exchange (ETDEWEB)

    Messman, Jamie M [ORNL; Banaszak, Abigail [Clemson University; Barrninger, Joshua [Clemson University; Mays, Jimmy [ORNL; Kilbey, II, S Michael [ORNL

    2007-01-01

    Stimuli-responsive, vinyl dimethyl azlactone/vinyl pyrrolidone (VDMA/VP) copolymers have been prepared using free radical polymerization techniques. These copolymers are subsequently the basis for the design of polymer brushes where the system is composed of a polystyrene (PS) block and a VDMA/VP copolymer block. Copolymers have been prepared using reversible addition fragmentation chain transfer (RAFT) polymerization technique. Using a solvent that is selective for the VDMA/VP block, these PS-block-P[VDMA/VP] copolymers can be preferentially adsorbed at the solid-fluid interface through the PS block to form a polymer "brush". Because VDMA is known to quantitatively react with amines, exposure of the copolymer to a solution containing amino acids (e.g. glycine) yields a bio-functionalized polymer brush. In this paper we will report on the synthesis and characterization of VDMA/VP copolymers including compositional analysis using FTIR and NMR spectroscopies.

  5. Copolymer adsorption and the effect on colloidal stability.

    NARCIS (Netherlands)

    Bijsterbosch, H.D.

    1998-01-01

    The main aim of the work described in this thesis is to study the effect of different types of copolymers on the stability of aqueous oxide dispersions. Such dispersions are a major component in water-borne paints. In order to obtain a better insight in steric stabilisation we first investigated the

  6. Electrochromic properties of a novel low band gap conductive copolymer

    Energy Technology Data Exchange (ETDEWEB)

    Yigitsoy, Basak; Varis, Serhat; Tanyeli, Cihangir; Akhmedov, Idris M.; Toppare, Levent [Department of Chemistry, Middle East Technical University, 06531 Ankara (Turkey)

    2007-07-10

    A copolymer of 2,5-di(thiophen-2-yl)-1-p-tolyl-1H-pyrrole (DTTP) with 3,4-ethylene dioxythiophene (EDOT) was electrochemically synthesized. The resultant copolymer P(DTTP-co-EDOT) was characterized via cyclic voltammetry, FTIR, SEM, conductivity measurements and spectroelectrochemistry. Copolymer film has distinct electrochromic properties. It has four different colors (chestnut, khaki, camouflage green, and blue). At the neutral state {lambda}{sub max} due to the {pi}-{pi}{sup *} transition was found to be 487 nm and E{sub g} was calculated as 1.65 eV. Double potential step chronoamperometry experiment shows that copolymer film has good stability, fast switching time (less than 1 s) and good optical contrast (20%). An electrochromic device based on P(DTTP-co-EDOT) and poly(3,4-ethylenedioxythiophene) (PEDOT) was constructed and characterized. The device showed reddish brown color at -0.6 V when the P(DTTP-co-EDOT) layer was in its reduced state; whereas blue color at 2.0 V when PEDOT was in its reduced state and P(DTTP-co-EDOT) layer was in its oxidized state. At 0.2 V intermediate green state was observed. Maximum contrast (%{delta}T) and switching time of the device were measured as 18% and 1 s at 615 nm. ECD has good environmental and redox stability. (author)

  7. CHARACTERIZATION OF RADIATION GRAFT COPOLYMER OF INORGANIC COMPOUND ONTO ALKENE

    Institute of Scientific and Technical Information of China (English)

    ZhangWanxi; CheJitai; 等

    1995-01-01

    In this paper,the radiation graft copolymer of MgO,SiO2 and Y-molecular sieve onto organic compounds,such as methacrylate,styrene and acrylomitrile obtained by per-radiation method were characterized by X-ray diffraction,pyrolysis gas chromatography,GPC and X-ray photoelectron spectroscopy.

  8. Phase behaviors of supramolecular graft copolymers with reversible bonding

    Science.gov (United States)

    Zhang, Xu; Wang, Liquan; Jiang, Tao; Lin, Jiaping

    2013-11-01

    Phase behaviors of supramolecular graft copolymers with reversible bonding interactions were examined by the random-phase approximation and real-space implemented self-consistent field theory. The studied supramolecular graft copolymers consist of two different types of mutually incompatible yet reactive homopolymers, where one homopolymer (backbone) possesses multifunctional groups that allow second homopolymers (grafts) to be placed on. The calculations carried out show that the bonding strength exerts a pronounced effect on the phase behaviors of supramolecular graft copolymers. The length ratio of backbone to graft and the positions of functional groups along the backbone are also of importance to determine the phase behaviors. Phase diagrams were constructed at high bonding strength to illustrate this architectural dependence. It was found that the excess unbounded homopolymers swell the phase domains and shift the phase boundaries. The results were finally compared with the available experimental observations, and a well agreement is shown. The present work could, in principle, provide a general understanding of the phase behaviors of supramolecular graft copolymers with reversible bonding.

  9. Reversible Tuning of a Block Copolymer Nanostructure via Electric Fields

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, K. [Universitat Bayreuth; Schoberth, Heiko [University of Bayreuth; Ruppel, Markus A. [Universitat Bayreuth; Zettl, H [University of Bayreuth; Weiss, Thomas [European Synchrotron Radiation Facility (ESRF); Urban, Volker S [ORNL; Krausch, G [University of Bayreuth; Boker, A. [Universitat Bayreuth

    2007-01-01

    Block copolymers consisting of incompatible components self-assemble into microphase-separated domains yielding highly regular structures with characteristic length scales of the order of several tens of nanometres. Therefore, in the past decades, block copolymers have gained considerable potential for nanotechnological applications, such as in nanostructured networks and membranes, nanoparticle templates and high-density data storage media. However, the characteristic size of the resulting structures is usually determined by molecular parameters of the constituent polymer molecules and cannot easily be adjusted on demand. Here, we show that electric d.c. fields can be used to tune the characteristic spacing of a block-copolymer nanostructure with high accuracy by as much as 6% in a fully reversible way on a timescale in the range of several milliseconds. We discuss the influence of various physical parameters on the tuning process and study the time response of the nanostructure to the applied field. A tentative explanation of the observed effect is given on the basis of anisotropic polarizabilities and permanent dipole moments of the monomeric constituents. This electric-field-induced effect further enhances the high technological potential of block-copolymer-based soft-lithography applications.

  10. Segmented copolymers with polyesteramide units of uniform length: structure analysis

    NARCIS (Netherlands)

    Hutten, van P.F.; Mangnus, R.M.; Gaymans, R.J.

    1993-01-01

    Segmented poly(ether esteramide) copolymers with short (M = 382) partially aromatic esteramide units of uniform length and segments of poly(tetramethylene oxide) (PTMO) have beem synthesized in the melt. The polymers show phase separation into two or three phases. The influence of the PTMO segment l

  11. Micellization kinetics in block copolymer solutions : Scaling model

    NARCIS (Netherlands)

    Dormidontova, EE

    1999-01-01

    The kinetics of micelle evolution of diblock copolymers from unimers toward the equilibrium state is studied analytically on the basis of consideration of the kinetic equations. The association/dissociation rate constants for unimer insertion/expulsion and micelle fusion/fission are calculated by ap

  12. Heparin-containing block copolymers, Part I: Surface characterization

    NARCIS (Netherlands)

    Vulić, I.; Pijpers, A.P.; Okano, T.; Kim, S.W.; Feijen, J.

    1993-01-01

    Newly synthesized heparin-containing block copolymers, consisting of a hydrophobic block of polystyrene (PS), a hydrophilic spacer-block of poly(ethylene oxide) (PEO) and covalently bound heparin (Hep) as bioactive block, were coated on aluminium, glass, polydimethylsiloxane (PDMS), PS or Biomer sub

  13. Tough, semiconducting polyethylene-poly(3-hexylthiophene) diblock copolymers

    DEFF Research Database (Denmark)

    Müller, C.; Goffri, S.; Breiby, Dag Werner;

    2007-01-01

    Semiconducting diblock copolymers of polyethylene (PE) and regioregular poly(3-hexylthiophene) (P3HT) are demonstrated to exhibit a rich phase behaviour, judicious use of which permitted us to fabricate field-effect transistors that show saturated charge carrier mobilities, mu(FET), as high as 2 x...

  14. Organisation and shape of micellar solutions of block-copolymers

    NARCIS (Netherlands)

    Gaspard, J.P.; Creutz, S.; Bouchat, P.; Jerome, R.; Cohen Stuart, M.A.

    1997-01-01

    Diblock copolymers of polymethacrylic acid sodium salt, forming the hair, and styrene derivatives have been studied in aqueous solutions by SANS and SAXS. The influence of both the chemical nature and the length of the hydrophobic bloxk on the size and shape of micelles have been investigated. The m

  15. Optical fibre Bragg grating recorded in TOPAS cyclic olefin copolymer

    DEFF Research Database (Denmark)

    Johnson, I.P.; Yuan, Scott Wu; Stefani, Alessio;

    2011-01-01

    A report is presented on the inscription of a fibre Bragg grating into a microstructured polymer optical fibre fabricated from TOPAS cyclic olefin copolymer. This material offers two important advantages over poly (methyl methacrylate), which up to now has formed the basis for polymer fibre Bragg...

  16. Synthesis and properties of acrylic copolymers for ocular implants

    Science.gov (United States)

    Reboul, Adam C.

    There is a need for flexible polymers with higher refractive index and extended UV absorbing properties for improved intraocular lenses (IOLs). This research was devoted to the synthesis of new acrylic copolymers for foldable IOLs and to studies concerning IOL polymer properties. New polymers were synthesized from phenylated acrylates copolymerized with N-vinyl carbazole derivatives using bulk free radical addition methods. The copolymers had low Tg values, high refractive index, and were flexible. The N-vinyl carbazole derivatives were characterized by NMR and copolymers were characterized by DSC, UV-Vis, and refractometry. New phenothiazine based UV absorbers with high extinction coefficients were also synthesized for incorporation into ocular materials. Patent disclosures on UV absorbers and high refractive index polymers were prepared. A so called "glistening" phenomenon that occurs in all foldable intraocular lenses currently in clinical use is poorly understood and was studied. Research on this microvoid forming behavior included studies and development of methods to inhibit glistening in low Tg acrylic based copolymers. Glistenings were characterized using SEM and optical microscopy. A novel technique for inhibiting glistening was found and a patent disclosure was prepared.

  17. Blends of caprolactam/caprolactone copolymers and chlorinated polymers

    NARCIS (Netherlands)

    Alberda van Ekenstein, G.O.R.; Deuring, H.; ten Brinke, G.; Ellis, T.S.

    1997-01-01

    The phase behaviour of blends of chlorinated polyethylene, polyvinyl chloride (PVC) and chlorinated PVC with random copolymers of caprolactone and caprolactam has been investigated and the results correlated with a binary interaction model. The known miscibility of polycaprolactone in the chlorinate

  18. Pressure and temperature effects in homopolymer blends and diblock copolymers

    DEFF Research Database (Denmark)

    Frielinghaus, H.; Schwahn, D.; Mortensen, K.;

    1997-01-01

    Thermal composition fluctuations in homopolymer mer blends and diblock copolymers were studied with SANS in varying pressure and temperature fields. For homopolymers we find a quite consistent behavior: The dominating effect of compressibility or packing leads to a reduction of the entropic...

  19. 21 CFR 177.1820 - Styrene-maleic anhydride copolymers.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Styrene-maleic anhydride copolymers. 177.1820 Section 177.1820 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances for Use as Basic Components of Single and Repeated...

  20. 21 CFR 172.775 - Methacrylic acid-divinylbenzene copolymer.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Methacrylic acid-divinylbenzene copolymer. 172.775 Section 172.775 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... HUMAN CONSUMPTION Other Specific Usage Additives § 172.775 Methacrylic acid-divinylbenzene...

  1. EXPERIMENTAL STUDY ON TRIBOLOGICAL PROPERTIES OF FULLERENE COPOLYMER NANOBALL

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A novel fullerenestyrenemaleic anhydride copolymer is reported.TEM analyses shows it is water-soluble nanoball of average diameter of about 83nm.The tribological behavior is evaluated by fourball machine.It was found that addition of fullerene copolymer to base stock (2%triethanolamine aqueous solution)resulted in a raise in loadcarrying ability(F value)from 130 N to maximum 480 N,and a reduction in coefficient of friction from 0.235 to minimum 0.063.SEM analyses indicates that the wear scars obtained with fullerene copolymer exhibited mild scratches, while sharp grooving and serious pullout phenomnon were observed in the presence of base stock without additive .The improvements in friction,wear and loadcarrying capacity are probably due to the presence of fullerene copolymer nanoballs,which may act as molecule ball bearings,which in turn lead to elastic rolling lubrication.

  2. Copolymers at selective interfaces: settled issues and open problems

    CERN Document Server

    Caravenna, Francesco; Toninelli, Fabio Lucio

    2010-01-01

    We review the literature on the localization transition for the class of polymers with random potentials that goes under the name of copolymers near selective interfaces. We outline the results, sketch some of the proofs and point out the open problems in the field. We also present in detail some alternative proofs that simplify what one can find in the literature.

  3. Complexes of block copolymers in solution: tree approximation

    NARCIS (Netherlands)

    Geurts, Bernard J.; Damme, van Ruud

    1989-01-01

    We determine the statistical properties of block copolymer complexes in solution. These complexes are assumed to have the topological structure of (i) a tree or of (ii) a line-dressed tree. In case the structure is that of a tree, the system is shown to undergo a gelation transition at sufficiently

  4. Free energy of a copolymer in a micro-emulsion

    CERN Document Server

    Hollander, Frank den

    2012-01-01

    In this paper we consider a two-dimensional model of a copolymer consisting of a random concatenation of hydrophilic and hydrophobic monomers, immersed in a micro-emulsion of random droplets of oil and water. The copolymer interacts with the micro-emulsion through an interaction Hamiltonian that favors matches and disfavors mismatches between the monomers and the solvents, in such a way that the interaction with the oil is stronger than with the water. The configurations of the copolymers are directed self-avoiding paths in which only steps up, down and right are allowed. The configurations of the micro-emulsion are square blocks with oil and water arranged in percolation-type fashion. The only restriction imposed on the path is that in every column of blocks its vertical displacement on the block scale is bounded. The way in which the copolymer enters and exits successive columns of blocks is a directed self-avoiding path as well, but on the block scale. We refer to this path as the coarse-grained self-avoid...

  5. Segmented block copolymers with polyesteramide blocks of uniform length: synthesis

    NARCIS (Netherlands)

    Gaymans, R.J.; Haan, de J.L.

    1993-01-01

    Segmented copolymers were synthesized from poly(tetramethylene oxide) with hydroxy end-groups or aliphatic diols and a short-chain diester diamide with a uniform length. The diester diamide (N,N'-bis(p-carbomethoxybenzoyl)butanediamine) (Tm = 257°C) used is made from butanediamine and an excess of d

  6. Synthesis and photooxidation of styrene copolymer bearing camphorquinone pendant groups

    Directory of Open Access Journals (Sweden)

    Branislav Husár

    2012-03-01

    Full Text Available (±-10-Methacryloyloxycamphorquinone (MCQ was synthesized from (±-10-camphorsulfonic acid either by a known seven-step synthetic route or by a novel, shorter five-step synthetic route. MCQ was copolymerized with styrene (S and the photochemical behavior of the copolymer MCQ/S was compared with that of a formerly studied copolymer of styrene with monomers containing the benzil (BZ moiety (another 1,2-dicarbonyl. Irradiation (λ > 380 nm of aerated films of styrene copolymers with monomers containing the BZ moiety leads to the insertion of two oxygen atoms between the carbonyl groups of BZ and to the formation of benzoyl peroxide (BP as pendant groups on the polymer backbone. An equivalent irradiation of MCQ/S led mainly to the insertion of only one oxygen atom between the carbonyl groups of camphorquinone (CQ and to the formation of camphoric anhydride (11 covalently bound to the polymer backbone. While the decomposition of pendant BP groups formed in irradiated films of styrene copolymers with pendant BZ groups leads to crosslinking, only small molecular-weight changes in irradiated MCQ/S were observed.

  7. Physical properties of copolymer layers : Morphology, forces and rheology

    NARCIS (Netherlands)

    Stamouli, Amalia

    2000-01-01

    The aim of this thesis was to get a better understanding of the normal and lateral interactions of adsorbed diblock copolymer monolayers. The goal was to couple these interaction with the microscopic structural properties of the polymer layers. Therefore, two instruments were used, the Atomic Force

  8. Physical properties of copolymer layers : morphology, forces and rheology

    NARCIS (Netherlands)

    Stamouli, Amalia

    2000-01-01

    The aim of this thesis was to get a better understanding of the normal and lateral interactions of adsorbed diblock copolymer monolayers. The goal was to couple these interaction with the microscopic structural properties of the polymer layers. Therefore, two instruments were used, the Atomic Force

  9. Biodegradable PELA block copolymers: in vitro degradation and tissue reaction.

    Science.gov (United States)

    Younes, H; Nataf, P R; Cohn, D; Appelbaum, Y J; Pizov, G; Uretzky, G

    1988-01-01

    Degradation of, and tissue reaction elicited by a series of polyethylene oxide (PEO)/polylactic acid (PLA) PELA block copolymers were studied in vitro and in vivo. In particular, the effect of pH, temperature and enzymatic activity was addressed. The mass loss was faster, the more basic the media, while, expectedly, PELA copolymers degraded faster with the higher temperature. The addition of an enzyme (carboxylic ester hydrolase) had no effect. The degradation process strongly affected the mechanical properties of the materials under investigation, the elongation at break dropping drastically after two days of degradation. After seven days, only gross observation of the extensively degraded samples was possible. The in vivo studies compared the tissue reaction elicited by various PELA copolymers to that evoked by PLA. Evaluation of tissue reaction observed with a PELA sample after sterilization with gamma radiation showed acute inflammation with considerable dispersion of the material, 12 days after implantation. The granulomatous reaction observed with PELA copolymers after ethylene oxide sterilization was identical to the reaction observed with PLA. PMID:3064826

  10. Asymmetric block copolymers confined in a thin film

    NARCIS (Netherlands)

    Huinink, HP; Brokken-Zijp, JCM; van Dijk, MA; Sevink, GJA

    2000-01-01

    We have used a dynamic density functional theory (DDFT) for polymeric systems, to simulate the formation of micro phases in a melt of an asymmetric block copolymer, A(n)B(m)(f(A) = 1/3), both in the bulk and in a thin film. In the DDFT model a polymer is represented as a chain of springs and beads.

  11. Morphology diagram of a diblock copolymer - aluminosilicate nanoparticle system

    NARCIS (Netherlands)

    Garcia, B.C.; Kamperman, M.M.G.; Ulrich, R.; Jain, A.; Gruner, S.M.; Wiesner, U.

    2009-01-01

    We explore the morphology space of nanocomposites prepared from poly(isoprene-block-ethylene oxide) (PI-b-PEO) diblock copolymers as structure directing agents for aluminosilicate nanoparticles prepared from (3-glycidyloxypropyl)trimethoxysilane (GLYMO) and aluminum(III) sec-butoxide. The results of

  12. HIGH-STRENGTH POLY(METH)ACRYLAMIDE COPOLYMER HYDROGELS

    NARCIS (Netherlands)

    WIERSMA, JA; SOS, M; PENNINGS, AJ

    1994-01-01

    The hydrogels described here are copolymers of acrylamide and methacrylamide highly cross-linked with piperazine diacrylamide or 4,7,10-trioxa-1,13-tridecanediamine diacrylamide by radical polymerisation in highly concentrated aqueous and aqueous gelatin solutions. The hydrogels were characterised b

  13. Unexpected phase behavior of an asymmetric diblock copolymer

    DEFF Research Database (Denmark)

    Papadakis, Christine Maria; Almdal, Kristoffer; Mortensen, Kell;

    1999-01-01

    We report on measurements of the transmitted depolarized light intensity and on small-angle neutron scattering (SANS) measurements on a compositionally asymmetric poly(ethylene propylene)-poly(dimethylsiloxane) diblock copolymer studied in the bulk. SANS measurements were made both on isotropic a...

  14. Responsive copolymers for enhanced petroleum recovery. Annual report

    Energy Technology Data Exchange (ETDEWEB)

    McCormick, C.; Hester, R.

    1994-08-01

    A coordinated research program involving synthesis, characterization, and rheology has been undertaken to develop advanced polymer system which should be significantly more efficient than polymers presently used for mobility control and conformance. Unlike the relatively inefficient, traditional EOR polymers, these advanced polymer systems possess microstructural features responsive to temperature, electrolyte concentration, and shear conditions. Contents of this report include the following chapters. (1) First annual report responsive copolymers for enhanced oil recovery. (2) Copolymers of acrylamide and sodium 3-acrylamido-3-methylbutanoate. (3) Terpolymers of NaAMB, Am, and n-decylacrylamide. (4) Synthesis and characterization of electrolyte responsive terpolymers of acrylamide, N-(4-butyl)phenylacrylamide, and sodium acrylate, sodium-2-acrylamido-2-methylpropanesulphonate or sodium-3-acrylamido-3-methylbutanoate. (5) Synthesis and solution properties of associative acrylamido copolymers with pyrensulfonamide fluorescence labels. (6) Photophysical studies of the solution behavior of associative pyrenesulfonamide-labeled polyacrylamides. (7) Ampholytic copolymers of sodium 2-(acrylamido)-2-methylpropanesulfonate with [2-(acrylamido)-2-methypropyl]trimethylammonium chloride. (8) Ampholytic terpolymers of acrylamide with sodium 2-acrylamido-2-methylpropanesulphoante and 2-acrylamido-2-methylpropanetrimethyl-ammonium chloride and (9) Polymer solution extensional behavior in porous media.

  15. Block copolymer-nanoparticle hybrid self-assembly

    KAUST Repository

    Hoheisel, Tobias N.

    2015-01-01

    © 2014 Published by Elsevier Ltd. Polymer-inorganic hybrid materials provide exciting opportunities as they may display favorable properties from both constituents that are desired in applications including catalysis and energy conversion and storage. For the preparation of hybrid materials with well-defined morphologies, block copolymer-directed nanoparticle hybrids present a particularly promising approach. As will be described in this review, once the fundamental characteristics for successful nanostructure formation at or close to the thermodynamic equilibrium of these nanocomposites are identified, the approach can be generalized to various materials classes. In addition to the discussion of recent materials developments based on the use of AB diblock copolymers as well as ABC triblock terpolymers, this review will therefore emphasize progress in the fundamental understanding of the underlying formation mechanisms of such hybrid materials. To this end, critical experiments for, as well as theoretical progress in the description of these nanostructured block copolymer-based hybrid materials will be discussed. Rather than providing a comprehensive overview, the review will emphasize work by the Wiesner group at Cornell University, US, on block copolymer-directed nanoparticle assemblies as well as their use in first potential application areas. The results provide powerful design criteria for wet-chemical synthesis methodologies for the generation of functional nanomaterials for applications ranging from microelectronics to catalysis to energy conversion and storage.

  16. Biocompatibility of poly (DL-lactic acid/glycine) copolymers

    NARCIS (Netherlands)

    Schakenraad, J.M.; Dijkstra, P.J.

    1991-01-01

    In this review the authors discuss the polymer chemical, physical and cell biological aspects of poly (DL-lactic acid/glycine) copolymers, both in vitro and in vivo. The mechanism and rate of degradation and the degree of foreign body reaction were evaluated as a function of the molecular compositi

  17. Meter-long multiblock copolymer microfibers via interfacial bioorthogonal polymerization.

    Science.gov (United States)

    Liu, Shuang; Zhang, Han; Remy, Roddel A; Deng, Fei; Mackay, Michael E; Fox, Joseph M; Jia, Xinqiao

    2015-05-01

    High-molecular-weight multiblock copolymers are synthesized as robust polymer fibers via interfacial bioorthogonal polymerization employing the rapid cycloaddition of s-tetrazines with strained trans-cyclooctenes. When cell-adhesive peptide is incorporated in the tetrazine monomer, the resulting protein-mimetic polymer fibers provide guidance cues for cell attachment and elongation.

  18. Comment on "Tropospheric temperature response to stratospheric ozone recovery in the 21st century" by Hu et al. (2011

    Directory of Open Access Journals (Sweden)

    M. Previdi

    2012-01-01

    Full Text Available Stratospheric ozone recovery is expected to figure prominently in twenty-first century climate change. In a recent paper, Hu et al. (2011 argue that one impact of ozone recovery will be to enhance the warming of the surface-troposphere system produced by increases in well-mixed greenhouse gases; furthermore, this enhanced warming would be strongest in the Northern Hemisphere, which is surprising since previous studies have consistently shown the effects of stratospheric ozone changes to be most pronounced in the Southern Hemisphere. Hu et al. (2011 base their claims largely on differences in the simulated temperature change between two groups of IPCC climate models, one group which included stratospheric ozone recovery in its twenty-first century simulations and a second group which did not. Both groups of models were forced with the same increases in well-mixed greenhouse gases according to the A1B emissions scenario. In the current work, we compare the surface temperature responses of the same two groups of models in a different experiment in which atmospheric CO2 was increased by 1% per year until doubling. We find remarkably similar differences in the simulated surface temperature change between the two sets of models as Hu et al. (2011 found for the A1B experiment, suggesting that the enhanced warming which they attribute to stratospheric ozone recovery is actually a reflection of different responses of the two model groups to greenhouse gas forcing.

  19. Flocculation of copper(II) and tetracycline from water using a novel pH- and temperature-responsive flocculants.

    Science.gov (United States)

    Yang, Zhen; Jia, Shuying; Zhuo, Ning; Yang, Weiben; Wang, Yuping

    2015-12-01

    Insufficient research is available on flocculation of combined pollutants of heavy metals and antibiotics, which widely exist in livestock wastewaters. Aiming at solving difficulties in flocculation of this sort of combined pollution, a novel pH- and temperature-responsive biomass-based flocculant, carboxymethyl chitosan-graft-poly(N-isoproyl acrylamide-co-diallyl dimethyl ammonium chloride) (denoted as CND) with two responsive switches [lower critical solution temperature (LCST) and isoelectric point (IEP)], was designed and synthesized. Its flocculation performance at different temperatures and pHs was evaluated using copper(II) and tetracycline (TC) as model contaminants. CND exhibited high efficiency for coremoval of both contaminants, whereas two commercial flocculants (polyaluminum chloride and polyacrylamide) did not. Especially, flocculation performance of the dual-responsive flocculant under conditions of temperature>LCST and IEP(contaminants)

  20. Co-seismic Water Level and Temperature Responses of Some Wells to Far-Field Strong Earthquakes and Their Mechanisms

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The observation of water temperature in deep wells has been carried out for more than 20 years in China. However, study on the mechanism of water temperature response to earthquakes is inadequate. During the study of the co-seismic response characteristics of water level and temperature in 121 wells within the China subsurface fluid monitoring network at the time of the December 26, 2004, Ms8.7 Indonesia earthquake, we found regular response characteristics, that is, when the water level in a deep well oscillates, the water temperature in the same well will mostly experience a cycle from dropping to restoration at the same time. The process will continue for dozens of minutes to several hours. In order to confirm the observed phenomenon, we collected the digital water level and temperature observation data for 39 farfield strong earthquakes from the Tangshan well in Hebei Province (with the data set beginning in 2001). The same response characteristics were observed. Based on the analysis of the influencing factors that may cause the water temperature drop, the authors suggest the gas escape mechanism for co-seismic water temperature drop and posit two main factors that influence the water temperature drop during the process of gas escape. Finally, the authors provide a rational explanation of some observed phenomena based on the mechanism.

  1. Dominant role of wormlike micelles in temperature-responsive viscoelastic properties of their mixtures with polymeric chains

    KAUST Repository

    Molchanov, Vyacheslav S.

    2013-03-01

    Temperature effects on the rheological properties of viscoelastic solutions containing entangled wormlike micelles of potassium oleate and hydrophobically modified polyacrylamide were studied in a wide range of polymer concentrations. A very pronounced drop of viscosity by four orders of magnitude was observed at heating from 20 to 78 °C both in the presence and in the absence of polymer indicating that the wormlike micelles are mainly responsible for this effect. The highly thermosensitive behavior was attributed to the shortening of micellar chains induced by heating. Although the decrease in viscosity is almost the same for both surfactant and surfactant/polymer systems, the absolute values of the viscosity in the presence of polymer are by few orders of magnitude higher, which is due to the formation of a common network of entangled polymer and micellar chains. As a result, the added polymer allows one to get highly temperature responsive system that keeps viscoelastic properties in a much wider range of temperatures, which makes it very promising for various practical applications. © 2012 Elsevier Inc.

  2. Temperature response of mesophyll conductance. Implications for the determination of Rubisco enzyme kinetics and for limitations to photosynthesis in vivo.

    Science.gov (United States)

    Bernacchi, Carl J; Portis, Archie R; Nakano, Hiromi; von Caemmerer, Susanne; Long, Stephen P

    2002-12-01

    CO(2) transfer conductance from the intercellular airspaces of the leaf into the chloroplast, defined as mesophyll conductance (g(m)), is finite. Therefore, it will limit photosynthesis when CO(2) is not saturating, as in C3 leaves in the present atmosphere. Little is known about the processes that determine the magnitude of g(m). The process dominating g(m) is uncertain, though carbonic anhydrase, aquaporins, and the diffusivity of CO(2) in water have all been suggested. The response of g(m) to temperature (10 degrees C-40 degrees C) in mature leaves of tobacco (Nicotiana tabacum L. cv W38) was determined using measurements of leaf carbon dioxide and water vapor exchange, coupled with modulated chlorophyll fluorescence. These measurements revealed a temperature coefficient (Q(10)) of approximately 2.2 for g(m), suggesting control by a protein-facilitated process because the Q(10) for diffusion of CO(2) in water is about 1.25. Further, g(m) values are maximal at 35 degrees C to 37.5 degrees C, again suggesting a protein-facilitated process, but with a lower energy of deactivation than Rubisco. Using the temperature response of g(m) to calculate CO(2) at Rubisco, the kinetic parameters of Rubisco were calculated in vivo from 10 degrees C to 40 degrees C. Using these parameters, we determined the limitation imposed on photosynthesis by g(m). Despite an exponential rise with temperature, g(m) does not keep pace with increased capacity for CO(2) uptake at the site of Rubisco. The fraction of the total limitations to CO(2) uptake within the leaf attributable to g(m) rose from 0.10 at 10 degrees C to 0.22 at 40 degrees C. This shows that transfer of CO(2) from the intercellular air space to Rubisco is a very substantial limitation on photosynthesis, especially at high temperature. PMID:12481082

  3. Temperature response of soil respiration in a Chinese pine plantation: hysteresis and seasonal vs. diel Q10.

    Science.gov (United States)

    Jia, Xin; Zha, Tianshan; Wu, Bin; Zhang, Yuqing; Chen, Wenjing; Wang, Xiaoping; Yu, Haiqun; He, Guimei

    2013-01-01

    Although the temperature response of soil respiration (Rs ) has been studied extensively, several issues remain unresolved, including hysteresis in the Rs -temperature relationship and differences in the long- vs. short-term Rs sensitivity to temperature. Progress on these issues will contribute to reduced uncertainties in carbon cycle modeling. We monitored soil CO2 efflux with an automated chamber system in a Pinus tabulaeformis plantation near Beijing throughout 2011. Soil temperature at 10-cm depth (Ts ) exerted a strong control over Rs , with the annual temperature sensitivity (Q10) and basal rate at 10°C (Rs10) being 2.76 and 1.40 µmol m(-2) s(-1), respectively. Both Rs and short-term (i.e., daily) estimates of Rs10 showed pronounced seasonal hysteresis with respect to Ts , with the efflux in the second half of the year being larger than that early in the season for a given temperature. The hysteresis may be associated with the confounding effects of microbial population dynamics and/or litter input. As a result, all of the applied regression models failed to yield unbiased estimates of Rs over the entire annual cycle. Lags between Rs and Ts were observed at the diel scale in the early and late growing season, but not in summer. The seasonality in these lags may be due to the use of a single Ts measurement depth, which failed to represent seasonal changes in the depth of CO2 production. Daily estimates of Q10 averaged 2.04, smaller than the value obtained from the seasonal relationship. In addition, daily Q10 decreased with increasing Ts , which may contribute feedback to the climate system under global warming scenarios. The use of a fixed, universal Q10 is considered adequate when modeling annual carbon budgets across large spatial extents. In contrast, a seasonally-varying, environmentally-controlled Q10 should be used when short-term accuracy is required. PMID:23469089

  4. Novel fluorescent amphiphilic block copolymers: photophysics behavior and interactions with DNA

    Directory of Open Access Journals (Sweden)

    2007-06-01

    Full Text Available In this study, novel amphiphilic fluorescent copolymers poly(N-vinylpyrrolidone-b-poly(N-methacryloyl-N'-(α-naphthylthiourea (PVP-b-PNT were synthesized via ATRP with poly(N-vinylpyrrolidone-Cl as macroinitiator and N-methacryloyl-N'-α-naphthylthiourea (NT as hydrophobic segment. PVP-b-PNT copolymers were characterized by 1H NMR, GPC-MALLS and fluorescence measurements. The aggregation behavior of PVP-b-PNT in water was investigated by transmission electron microscope (TEM and dynamic light scattering (DLS measurement. The photophysics behavior of PVP-b-PNT showed that block copolymer formed strong excimer. The interaction of DNA with the block copolymer made the excimer of block copolymer quench. The cytotoxicity result of PVP-b-PNT in cell culture in vitro indicated that this copolymer PVP-b-PNT had good biocompatibility.

  5. Topology and Shape Control for Assemblies of Block Copolymer Blends in Solution

    KAUST Repository

    Moreno, Nicolas

    2015-10-27

    We study binary blends of asymmetric diblock copolymers (AB/AC) in selective solvents with a mesoscale model. We investigate the morphological transitions induced by the concentration of the AC block copolymer and the difference in molecular weight between the AB and AC copolymers, when segments B and C exhibit hydrogen-bonding interactions. To the best of our knowledge, this is the first work modeling mixtures of block copolymers with large differences in molecular weight. The coassembly mechanism localizes the AC molecules at the interface of A and B domains and induces the swelling of the B-rich domains. The coil size of the large molecular weight block copolymer depends only on the concentration of the short block copolymer (AC or AB), regardless of the B–C interactions. However, the B–C interactions control the morphological transitions that occur in these blends.

  6. SYNTHESIS OF MACROPOROUS COPOLYMER OF VCA AND DVB

    Institute of Scientific and Technical Information of China (English)

    ZhuChangying; ZuoJu; 等

    1998-01-01

    The reactivity ratios of vinyl acetate(VAc) and divinyl benzene (DVB) were calculated from the Q and e values.The possibility of the copolymerization of these two monomers was predicted and the copolymerization was carried out by suspension polymerization technique in the presence of pore producing agent (toluene and gasoine).The relative ratio of acetoxy group and benzene ring in the copolymer were monitored by IR measurement during the polymerization.The variation of pore properties,such as spectific surface area,porosity and average pore diameter,with polymerization time were determined.The copolymers at various polymerization time were alcoholyzed and thus the variation of the hydroxyl group content with polymerization time was studied.

  7. Low molecular weight block copolymers as plasticizers for polystyrene

    DEFF Research Database (Denmark)

    Hansen, Kristoffer Karsten; Nielsen, Charlotte Juel; Hvilsted, Søren

    2005-01-01

    Polystyrene-b-alkyl, polystyrene-b-polybutadiene-b-polystyrene, and polystyrene-b-poly(propylene glycol)monotridecyl ether were synthesized using macro initiators and atom transfer radical polymerization or by esterifications of homopolymers. The aim was a maximum molecular weight of 4 kg....../mol and minimum polystyrene content of 50 w/w%, which by us is predicted as the limits for solubility of polystyrene-b-alkyl in polystyrene. DSC showed polystyrene was plasticized, as seen by a reduction in glass transition temperature, by block copolymers consisting of a polystyrene block with molecular weight...... of approximately 1 kg/mol and an alkyl block with a molecular weight of approximately of 0.3 kg/mol. The efficiency of the block copolymers as plasticizers increases with decreasing molecular weight and polystyrene content. In addition, polystyrene-b-alkyl is found to be an efficient plasticizer also...

  8. Biocompatibility of epoxidized styrene-butadiene-styrene block copolymer membrane

    International Nuclear Information System (INIS)

    Styrene-butadiene-styrene block copolymer (SBS) membrane was prepared by solution casting method and then was epoxidized with peroxyformic acid generated in situ to yield the epoxidized styrene-butadiene-styrene block copolymer membrane (ESBS). The structure and properties of ESBS were characterized with infrared spectroscopy, Universal Testing Machine, differential scanning calorimetry (DSC), and thermogravimetry analysis (TGA). The performances of contact angle, water content, protein adsorption, and water vapor transmission rate on ESBS membrane were determined. After epoxidation, the hydrophilicity of the membrane increased. The water vapor transmission rate of ESBS membrane is similar to human skin. The biocompatibility of ESBS membrane was evaluated with the cell culture of fibroblasts on the membrane. It revealed that the cells not only remained viable but also proliferated on the surface of the various ESBS membranes and the population doubling time for fibroblast culture decreased.

  9. Multilayer light emitting diodes using a PPV based copolymer

    Science.gov (United States)

    Nguyen, T. P.; Chen, L. C.; Wang, X.; Huang, Z.

    1998-01-01

    We have investigated the electrical and optical properties of poly((2,5-(dimethoxy) p-phenylene vinylene)- p-phenylene vinylene) (PDMeOPV/PPV) copolymer used as an emitting layer in light emitting diodes. With p-phenylene vinylene (PPV) used as a hole transport layer and polyphenylquinoxaline (PPQ) as an electron transport layer, the emission intensity of the devices has substantially increased without alteration of the transport property. The different conduction mechanisms in the diodes were examined and discussed in terms of the energy band diagrams of the polymer layers. A balance of the injected charge carriers confined in the copolymer could explain the enhancement of the performance of the multilayer diodes.

  10. Styrene-Based Copolymer for Polymer Membrane Modifications

    Directory of Open Access Journals (Sweden)

    Harsha Srivastava

    2016-05-01

    Full Text Available Poly(vinylidene fluoride (PVDF was modified with a styrene-based copolymer. The crystalline behavior, phase, thermal stability, and surface morphology of the modified membranes were analyzed. The membrane surface roughness showed a strong dependence on the styrene-acrylonitrile content and was reduced to 34% for a PVDF/styrene-acrylonitrile blend membrane with a 40/60 ratio. The thermal and crystalline behavior confirmed the blend miscibility of both polymers. It was observed in X-ray diffraction (XRD experiments that the modified PVDF membranes show a drastic reduction in their crystallinity. The neat PVDF membrane has the highest degradation rate, which decreased with the addition of the styrene-based copolymer.

  11. Design and Application of Nanoscale Actuators Using Block-Copolymers

    Directory of Open Access Journals (Sweden)

    Paul D. Topham

    2010-10-01

    Full Text Available Block copolymers are versatile designer macromolecules where a “bottom-up” approach can be used to create tailored materials with unique properties. These simple building blocks allow us to create actuators that convert energy from a variety of sources (such as chemical, electrical and heat into mechanical energy. In this review we will discuss the advantages and potential pitfalls of using block copolymers to create actuators, putting emphasis on the ways in which these materials can be synthesised and processed. Particular attention will be given to the theoretical background of microphase separation and how the phase diagram can be used during the design process of actuators. Different types of actuation will be discussed throughout.

  12. Synthesis and Characterization of a Novel Acrylonitrile Copolymer Containing Glucose Pendants

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    In this work, a novel sugar-containing copolymer was synthesized by the copolymerization of α-allyl glucoside (AG) with acrylonitrile (AN). The copolymers were characterized by NMR spectroscopy. It was found that acrylonitrile-based copolymers containing as high as 22wt.% of α-allyl glucoside can be synthesized by the free radical solution copolymerization of the two monomers in DMSO with AIBN as initiator.

  13. Adsorption of polyelectrolytes and charged block copolymers on oxides. Consequences for colloidal stability.

    OpenAIRE

    Hoogeveen, N.G.

    1996-01-01

    The aim of the study described in this thesis was to examine the adsorption properties of polyelectrolytes and charged block copolymers on oxides, and the effect of these polymers on the colloidal stability of oxidic dispersions. For this purpose the interaction of some well-characterised polyelectrolytes and block copolymers with oxidic substrates has been systematically studied. A set of block copolymers with one charged block and one neutral water-soluble block had to be synthesised becaus...

  14. SYNTHESIS AND CHARACTERIZATION OF POLY(PHTHALAZINONE ETHER NITRILE) COPOLYMERS WITH HYDROPHOBIC SURFACE

    OpenAIRE

    Dong, L M; G. X. LIAO; Liu, C; Yang, S.S.; X. G. JIAN

    2008-01-01

    Poly(phthalazinone ether nitrile) (PPEN) block copolymers containing polysiloxane were prepared so as to create a strongly hydrophobic polymer surface. The copolymers were synthesized from eugenol end-capped polydimethylsiloxane (PDMS) and fluoro-terminated PPEN oligomers by the aromatic nucleophilic substitution polycondensation in the presence of dimethyl sulfoxide/o-dichlorobenzene and K2CO3 as solvents and catalyst, respectively. The resultant copolymers were characterized by FTIR, 1H NMR...

  15. Hybrid - block copolymer nanocomposites. characterization of nanostructure by small-angle X-ray scattering (SAXS)

    OpenAIRE

    A. Romo-Uribe

    2007-01-01

    The nanoscopic order of a series of block copolymer-inorganic nanocomposites was characterized using small-angle X-ray scattering (SAXS). The nanostructures were obtained via a diblock copolymer directed sol-gel synthesis. The copolymer consists of blocks of poly(isoprene) -PI- and blocks of poly(ethylene oxide) -PEO. The inorganic material consists of a crosslinked sol of 3-glycidoxypropyltrimethoxysilane and aluminum-tri-sec-butoxide in a 4:1 mole ratio, to generate an aluminosilicate ceram...

  16. Study of the Morphology and Optical Properties of Propylene/Ethylene Copolymer Films

    OpenAIRE

    Fratini, Christopher M.

    2006-01-01

    The development of a new catalyst system by The Dow Chemical Company has resulted in the production of isotactic polypropylene and propylene/ethylene copolymers with a unique defect and comonomer distribution. This work investigated the morphology and optical properties of cast and compression molded films made from the homopolymer and copolymers with up to 20 mol% ethylene comonomer. The defect distribution of the Dow Chemical copolymers resulted in materials with lower crystallinity than Zi...

  17. Crosslinking Characteristics and Mechanical Properties of an Injectable Biomaterial Composed of Polypropylene fumarate and Polycaprolactone Copolymer

    OpenAIRE

    Yan, Jun; Li, Jianmin; Runge, M. Brett; Dadsetan, Mahrokh; Chen, Qingshan; Lu, Lichun; Yaszemski, Michael J.

    2010-01-01

    In this work, a series of copolymers of polypropylene fumarate-co-polycaprolactone (PPF-co-PCL) were synthesized via a three-step polycondensation reaction of oligomeric polypropylene fumarate (PPF) with polycaprolactone (PCL). The effects of PPF precursor molecular weight, PCL precursor molecular weight, and PCL fraction in the copolymer (PCL feed ratio) on the maximum crosslinking temperature, gelation time, and mechanical properties of the crosslinked copolymers were investigated. The maxi...

  18. SYNTHESIS OF AMPHIPHILIC COMB-SHAPED COPOLYMERS USED FOR SURFACE MODIFICATION OF PVDF MEMBRANES

    Institute of Scientific and Technical Information of China (English)

    徐又一

    2009-01-01

    The synthesis of a novel amphiphilic comb-shaped copolymer consisting of a main chain of styrene-(N-(4- hydroxyphenyl) maleimide)(SHMI) copolymer and poly(ethylene glycol) methyl ether methacrylate(PEGMA) side groups was achieved by atom transfer radical polymerization(ATRP).The amphiphilic copolymers were characterized by ~1H-NMR, Fourier transform infrared(FTIR) spectroscopy and gel permeation chromatography(GPC).From thermogravimetric analysis (TGA),the decomposition temperature of SHMI-g-PEGMA is low...

  19. Beyond Orientation: The Impact of Electric Fields on Block Copolymers

    Energy Technology Data Exchange (ETDEWEB)

    Liedel, Clemens [RWTH Aachen University; Boker, A. [Universitat Bayreuth; Pester, Christian [RWTH Aachen University; Ruppel, Markus A [ORNL; Urban, Volker S [ORNL

    2012-01-01

    Since the first report on electric field-induced alignment of block copolymers (BCPs) in 1991, electric fields have been shown not only to direct the orientation of BCP nanostructures in bulk, solution, and thin films, but also to reversibly induce order-order transitions, affect the order-disorder transition temperature, and control morphologies' dimensions with nanometer precision. Theoretical and experimental results of the past years in this very interesting field of research are summarized and future perspectives are outlined.

  20. Transient instability upon temperature quench in weakly ordered block copolymers

    OpenAIRE

    Qi, Shuyan; Wang, Zhen-Gang

    1999-01-01

    We report a novel transient instability upon temperature quench in weakly ordered block copolymer microphases possessing a soft direction or directions, such as the lamellar and hexagonal cylinder (HEX) phases. We show that reequilibration of the order parameter is accompanied by transient long wavelength undulation of the layers or cylinders—with an initial wavelength that depends on the depth of the temperature quench—that eventually disappears as the structure reaches its equilibrium at th...

  1. Hole schubweg in FEP (fluorinated ethylene propylene copolymer)

    Science.gov (United States)

    Wintle, H. J.

    We discuss four models to account for observations of a constant hole schubweg in FEP (fluorinated ethylene propylene copolymer). Inhomogeneity in the sample and one-dimensional chain transport seem unlikely, while conventional semiconductor theory demands a particular combination of properties. Tunnelling, influenced by the field to yield essentially unidirectional transport, matches the observations and gives a reasonable trap density ( N ≈ 10 19 cm -3, with wide limits of uncertainty).

  2. Host-Guest Self-assembly in Block Copolymer Blends

    OpenAIRE

    Woon Ik Park; YongJoo Kim; Jae Won Jeong; Kyungho Kim; Jung-Keun Yoo; Yoon Hyung Hur; Jong Min Kim; Thomas, Edwin L.; Alfredo Alexander-Katz; Yeon Sik Jung

    2013-01-01

    Ultrafine, uniform nanostructures with excellent functionalities can be formed by self-assembly of block copolymer (BCP) thin films. However, extension of their geometric variability is not straightforward due to their limited thin film morphologies. Here, we report that unusual and spontaneous positioning between host and guest BCP microdomains, even in the absence of H-bond linkages, can create hybridized morphologies that cannot be formed from a neat BCP. Our self-consistent field theory (...

  3. Structure of strongly interacting polyelectrolyte diblock copolymer micelles

    OpenAIRE

    Korobko, A.V.; Jesse, W.; Lapp, A.; Egelhaaf, S. U.; van der Maarel, J. R. C.

    2004-01-01

    The structure of spherical micelles of the diblock poly(styrene-block-acrylic acid) [PS-b-PA] copolymer in water was investigated up to concentrations where the polyelectrolyte coronal layers have to shrink and/or interpenetrate in order to accommodate the micelles in the increasingly crowded volume. We obtained the partial structure factors pertaining to the core and corona density correlations with small angle neutron scattering (SANS) and contrast matching in the water. The counterion stru...

  4. Novel multiarm star block copolymer ionomers as proton conductive membranes

    OpenAIRE

    Demirel, Adem Levent; Erdoğan, Tuba; Bilir, Çiğdem; Ünveren, Elif; Tunca, Ümit

    2014-01-01

    A series of well-defined novel multiarm star block copolymer ionomers with an average of 6, 11 and 15 arms, sulfonated polystyrene-block-poly(2,2,3,3,3-pentafluoropropyl methacrylate) (SPS-b-PFPMA), were prepared via a combination of atom transfer radical polymerization (ATRP), Diels–Alder click reaction and postsulfonation reaction. First, multiarm star polymer with anthracene functionality as reactive periphery groups was prepared by a cross-linking reaction of divinyl benzene using ?-anthr...

  5. Non-Surface Activity of Cationic Amphiphilic Diblock Copolymers

    Energy Technology Data Exchange (ETDEWEB)

    Nayak, Rati Ranjan; Yamada, Tasuku; Matsuoka, Hideki, E-mail: ratiranjan@immt.res.in, E-mail: matsuoka@star.polym.kyoto-u.ac.jp [Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510 (Japan)

    2011-09-19

    Cationic amphiphilic diblock copolymers containing quaternized poly (2-vinylpyridine) chain as a hydrophilic segment (PIp-b-PNMe2VP) were synthesized by living anionic polymerization. By IR measurement, we confirmed the quaternization of the polymer (PIp-b-PNMe2VP), and determined the degree of quaternization by conductometric titration. The surface tension experiment showed that the polymers are non-surface active in nature. The foam formation of the polymer solutions was also investigated with or without added salt. Almost no foam formation behavior was observed without added salt, while a little foam was observed in the presence of 1M NaCl. The critical micelle concentration (cmc) of the diblock copolymers with 3 different chain lengths was measured by the static light scattering method. The cmc values obtained in this study were much lower than the values obtained for anionic non-surface active diblock polymers studied previously. The hydrodynamic radii of the polymer micelle increased slightly in the presence of 1 M NaCl. The transmission electron microscopic images revealed spherical micelles in pure water. In the presence of salt, the cmc values increased as was the case for anionic polymers, which is unlike conventional surfactant systems but consistent with non-surface active anionic block copolymers. The microviscosity of the micelle core was evaluated using Coumarin-153 as a fluorescent anisotropy probe using steady-sate fluorescence depolarization. Non-surface activity has been proved to be universal for ionic amphiphilic block copolymers both for anionic and cationic. Hence, the origin of non-surface activity is not the charged state of water surface itself, but should be an image charge repulsion at the air/water interface.

  6. Functional Block Copolymers as Compatibilizers for Nanoclays in Polypropylene Nanocomposites

    DEFF Research Database (Denmark)

    Jankova Atanasova, Katja; Daugaard, Anders Egede; Stribeck, Norbert;

    With the aim of creating tough nanocomposits (NC) [1] based on polypropylene (PP) and nanoclay (NCl) in the framework of the 7th EU program NANOTOUGH we have designed amphiphilic block copolymers utilizing Atom Transfer Radical Polymerization (ATRP) [2]. They consist of a hydrophobic block...... crystallites) is replaced by alien-reinforcement (of the MMT). Furthermore, the results from the impact strength and cyclic test of the prepared PP nanocomposites [3] are promicing....

  7. Synthesis of PET and Its Copolymer with Rare Earth Catalysts

    Institute of Scientific and Technical Information of China (English)

    张天骄; 武荣瑞

    2003-01-01

    A new catalyst system was used in the synthesis of polyethylene terephthalate(PET) and its copolymers, which involved a Ln3+ containing compound. The catalytic effects were studied, and it was found that the direct esterification reaction of terephthalate acid(TPA) with ethylene glycol(EG) can be accelerated by the addition of Ln3+ containing compound, which acts as a promoter of the catalyst Sb2O3 in polycondensation of bis hydroxyethyl terephthalate(BHET).

  8. Donor-Acceptor Block Copolymers: Synthesis and Solar Cell Applications

    Directory of Open Access Journals (Sweden)

    Kazuhiro Nakabayashi

    2014-04-01

    Full Text Available Fullerene derivatives have been widely used for conventional acceptor materials in organic photovoltaics (OPVs because of their high electron mobility. However, there are also considerable drawbacks for use in OPVs, such as negligible light absorption in the visible-near-IR regions, less compatibility with donor polymeric materials and high cost for synthesis and purification. Therefore, the investigation of non-fullerene acceptor materials that can potentially replace fullerene derivatives in OPVs is increasingly necessary, which gives rise to the possibility of fabricating all-polymer (polymer/polymer solar cells that can deliver higher performance and that are potentially cheaper than fullerene-based OPVs. Recently, considerable attention has been paid to donor-acceptor (D-A block copolymers, because of their promising applications as fullerene alternative materials in all-polymer solar cells. However, the synthesis of D-A block copolymers is still a challenge, and therefore, the establishment of an efficient synthetic method is now essential. This review highlights the recent advances in D-A block copolymers synthesis and their applications in all-polymer solar cells.

  9. Nanostructured diblock copolymer films with embedded magnetic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Xia Xin; Metwalli, Ezzeldin; Ruderer, Matthias A; Koerstgens, Volker; Mueller-Buschbaum, Peter [Lehrstuhl fuer Funktionelle Materialien, Physik-Department E13, Technische Universitaet Muenchen, James-Franck-Strasse 1, 85747 Garching (Germany); Busch, Peter [Juelich Centre for Neutron Science, Forschungszentrum Juelich GmbH, Outstation at FRM II, Lichtenbergstrasse 1, 85747 Garching (Germany); Boeni, Peter, E-mail: muellerb@ph.tum.de [Lehrstuhl fuer Neutronenstreuung, Physik-Department E21, Technische Universitaet Muenchen, James-Franck-Strasse 1, 85747 Garching (Germany)

    2011-06-29

    Nanostructured diblock copolymer films with embedded magnetic nanoparticles are prepared by solution casting. The diblock copolymer polystyrene-block-polymethylmethacrylate with a fully deuterated polystyrene block of a weight ratio of 0.22 is used as a structure-directing matrix. Maghemite nanoparticles ({gamma}-Fe{sub 2}O{sub 3}) are coated with polystyrene and thus have a selective affinity to the minority block of the diblock copolymer. The hybrid film morphology is investigated as a function of nanoparticle concentration. The surface structure is probed with atomic force microscopy and scanning electron microscopy. The inner film structure and the structure at the polymer-substrate interface are detected with grazing incidence small angle neutron scattering (GISANS). Irrespective of the nanoparticle concentration a well developed micro-phase separation structure is present. From the Bragg peaks observed in the GISANS data a linear nanoparticle concentration dependence of the inter-domain spacing of the micro-phase separation structure is determined. The superparamagnetic and blocking behavior can be explained with a generalized Stoner-Wohlfarth-Neel theory which includes either an elastic torque being exerted on the nanoparticles by the field or a broad distribution of anisotropy constants.

  10. Removal of Industrial Pollutants From Wastewater's By Graft Copolymers

    International Nuclear Information System (INIS)

    Graft copolymers that obtained by radiation grafting of acrylic acid and acrylamide onto LDPE film were converted to N-hydroxy ethyl amide and hydroxamic acid derivatives respectively. The possible application for the different prepared chemical derivatives of LDPE graft copolymers in metal adsorption from solutions containing a single cation or simulated medium active waste has been investigated. The results showed that the adsorption of Cu(II) metal by different chemical derivatives was greatly affected by different factors such as graft yield, ph value, concentration of metal in the feed solution, immersion time and treatment temperature. The affinity of N-hydroxy ethyl amide derivative toward the different metals was found to be in the order of; Cu(II) >Pd(II) > Cd(II)> Co(II). However, for hydroxamic acid derivative , the affinity order was: Cd(II) > Cu(II) > Co(II). The ESR and IR analysis revealed that the metal ions are chelated through the lone pair of electrons on the -OH and -NH- groups forming a ring structure. The measured metal ion uptake from simulated medium active waste mixture by N-hydroxy ethyl amide derivative was found to follow the following order: Fe> U> Ni> Zr> Zn> Cr. On the other hand, the measured metal uptake by hydroxamic acid derivative was found to follow: Fe>U> Zr> Ca. It is concluded that the prepared grafted copolymers are of interest for metal chelation and could be applied in the field of waste treatment

  11. Dielectric relaxation dynamics of high-temperature piezoelectric polyimide copolymers

    Science.gov (United States)

    Maceiras, A.; Costa, C. M.; Lopes, A. C.; San Sebastián, M.; Laza, J. M.; Vilas, J. L.; Ribelles, J. L. Gómez; Sabater i Serra, R.; Andrio Balado, A.; Lanceros-Méndez, S.; León, L. M.

    2015-08-01

    Polyimide copolymers have been prepared based on different diamines as comonomers: a diamine without CN groups and a novel synthesized diamine with two CN groups prepared by polycondensation reaction followed by thermal cyclodehydration. Dielectric spectroscopy measurements were performed, and the dielectric complex function, ac conductivity and electric modulus of the copolymers were investigated as a function of CN group content in the frequency range from 0.1 to 107 Hz at temperatures from 25 to 260 °C. For all samples and temperatures above 150 °C, the dielectric constant increases with increasing temperature due to increasing conductivity. The α-relaxation is just detected for the sample without CN groups, being this relaxation overlapped by the electrical conductivity contributions in the remaining samples. For the copolymer samples and the polymer with CN groups, an important Maxwell-Wagner-Sillars contribution is detected. The mechanisms responsible for the dielectric relaxation, conduction process and electric modulus response have been discussed as a function of the CN group content present in the samples.

  12. Surface Modification Using Photo-Crosslinkable Random Copolymers

    Science.gov (United States)

    Bae, Joonwon; Bang, Joona; Lowenhielm, Peter; Spiessberger, Christian; Russell, Thomas P.; Hawker, Craig J.

    2006-03-01

    We recently reported that poly(styrene-r-methyl methacrylate) (PS-r-PMMA) random copolymers containing benzocyclobutene (BCB) group can be used to modify the surface effectively by thermal crosslinking. It was demonstrated that this method is simple, rapid, and robust, and can be applied to various surfaces. However, it requires the large amount of heat for processing, and the BCB monomer itself involves a hard chemistry. An alternative way that can replace BCB with easier chemistry and lower cost, if possible, is highly desirable. We introduce the new functional group, azide group, which can be crosslinked simply by UV irradiation, for this purpose. PS-r-PMMA random copolymers, containing various amounts of azide groups, were synthesized via controlled living-radical polymerization. It was demonstrated that even after 1 minute of the UV irradiation can crosslink the materials effectively, so that they can be used as crosslinked random copolymer mat to control the surface energy. However, it was observed that the longer irradiation time causes the damages on the surface due to the other side reactions. Depending on the UV intensity, the UV irradiation time, and the amount of azide group, the effective processing window that leads to the crosslinking without any surface damages was optimized.

  13. Morphology and Proton Transport in Humidified Phosphonated Peptoid Block Copolymers

    Science.gov (United States)

    2016-01-01

    Polymers that conduct protons in the hydrated state are of crucial importance in a wide variety of clean energy applications such as hydrogen fuel cells and artificial photosynthesis. Phosphonated and sulfonated polymers are known to conduct protons at low water content. In this paper, we report on the synthesis phosphonated peptoid diblock copolymers, poly-N-(2-ethyl)hexylglycine-block-poly-N-phosphonomethylglycine (pNeh-b-pNpm), with volume fractions of pNpm (ϕNpm) values ranging from 0.13 to 0.44 and dispersity (Đ) ≤ 1.0003. The morphologies of the dry block copolypeptoids were determined by transmission electron microscopy and in both the dry and hydrated states by synchrotron small-angle X-ray scattering. Dry samples with ϕNpm > 0.13 exhibited a lamellar morphology. Upon hydration, the lowest molecular weight sample transitioned to a hexagonally packed cylinder morphology, while the others maintained their dry morphologies. Water uptake of all of the ordered samples was 8.1 ± 1.1 water molecules per phosphonate group. In spite of this, the proton conductivity of the ordered pNeh-b-pNpm copolymers ranged from 0.002 to 0.008 S/cm. We demonstrate that proton conductivity is maximized in high molecular weight, symmetric pNeh-b-pNpm copolymers. PMID:27134312

  14. Gas Permeation through Polystyrene-Poly(ethylene oxide) Block Copolymers

    Science.gov (United States)

    Hallinan, Daniel, Jr.; Minelli, Matteo; Giacinti-Baschetti, Marco; Balsara, Nitash

    2013-03-01

    Lithium air batteries are a potential technology for affordable energy storage. They consist of a lithium metal anode and a porous air cathode separated by a solid polymer electrolyte membrane, such as PEO/LiTFSI (PEO = poly(ethylene oxide), LiTFSI = lithium bis-trifluoromethane sulfonimide). For extended operation of such a battery, the polymer electrolyte must conduct lithium ions while blocking electrons and gases present in air. In order to maintain a pressure difference the membrane must be mechanically robust, which can be achieved by incorporating the PEO into a block copolymer with a glassy block such as PS (PS = polystyrene). To protect the lithium electrode, the membrane must have low permeability to gases in air such as CO2, N2, and O2. We have therefore studied the permeation of pure gases through a PS-PEO block copolymer. A high molecular weight, symmetric block copolymer with a lamellar morphology was used to cast free-standing membranes. Gas permeability was measured through these membranes with a standard, pressure-based technique. A model was developed to account for transport through the polymer membrane consisting of semi-crystalline PEO lamellae and amorphous PS lamellae. PEO crystallinity was extracted from the permeation model and compares well with values from differential scanning calorimetry measurements.

  15. Non-Classical Order in Sphere Forming ABAC Tetrablock Copolymers

    Science.gov (United States)

    Zhang, Jingwen; Sides, Scott; Bates, Frank

    2013-03-01

    AB diblock and ABC triblock copolymers have been studied thoroughly. ABAC tetrablock copolymers, representing the simplest variation from ABC triblock by breaking the molecular symmetry via inserting some of the A block in between B and C blocks, have been studied systematically in this research. The model system is poly(styrene-b-isoprene-b-styrene-b-ethylene oxide) (SISO) tetrablock terpolymers and the resulting morphologies were characterized by nuclear magnetic resonance, gel permeation chromatography, small-angle X-ray scattering, transmission electron microscopy, differential scanning calorimetry and dynamic mechanical spectroscopy. Two novel phases are first discovered in a single component block copolymers: hexagonally ordered spherical phase and tentatively identified dodecagonal quasicrystalline (QC) phase. In particular, the discovery of QC phase bridges the world of soft matters to that of metals. These unusual sets of morphologies will be discussed in the context of segregation under the constraints associated with the tetrablock molecular architecture. Theoretical calculations based on the assumption of Gaussian chain statistics provide valuable insights into the molecular configurations associated with these morphologies. the U.S. Department of Energy, Basic Energy Sciences, Division of Materials Science and Engineering, under contract number DEAC05-00OR22725 with UT-Battelle LLC at Oak Ridge National Lab.

  16. Electrically Tunable Soft-Solid Block Copolymer Structural Color.

    Science.gov (United States)

    Park, Tae Joon; Hwang, Sun Kak; Park, Sungmin; Cho, Sung Hwan; Park, Tae Hyun; Jeong, Beomjin; Kang, Han Sol; Ryu, Du Yeol; Huh, June; Thomas, Edwin L; Park, Cheolmin

    2015-12-22

    One-dimensional photonic crystals based on the periodic stacking of two different dielectric layers have been widely studied, but the fabrication of mechanically flexible polymer structural color (SC) films, with electro-active color switching, remains challenging. Here, we demonstrate free-standing electric field tunable ionic liquid (IL) swollen block copolymer (BCP) films. Placement of a polymer/ionic liquid film-reservoir adjacent to a self-assembled poly(styrene-block-quaternized 2-vinylpyridine) (PS-b-QP2VP) copolymer SC film allowed the development of red (R), green (G), and blue (B) full-color SC block copolymer films by swelling of the QP2VP domains by the ionic liquid associated with water molecules. The IL-polymer/BCP SC film is mechanically flexible with excellent color stability over several days at ambient conditions. The selective swelling of the QP2VP domains could be controlled by both the ratio of the IL to a polymer in the gel-like IL reservoir layer and by an applied voltage in the range of -3 to +6 V using a metal/IL reservoir/SC film/IL reservoir/metal capacitor type device. PMID:26505787

  17. Formation and Characterization of Anisotropic Block Copolymer Gels

    Science.gov (United States)

    Liaw, Chya Yan; Joester, Derk; Burghardt, Wesley; Shull, Kenneth

    2012-02-01

    Cylindrical micelles formed from block copolymer solutions closely mimic biological fibers that are presumed to guide mineral formation during biosynthesis of hard tissues like bone. The goal of our work is to use acrylic block copolymers as oriented templates for studying mineral formation reactions in model systems where the structure of the underlying template is well characterized and reproducible. Self-consistent mean field theory is first applied to investigate the thermodynamically stable micellar morphologies as a function of temperature and block copolymer composition. Small-angle x-ray scattering, optical birefringence and shear rheometry are used to study the morphology development during thermal processing. Initial experiments are based on a thermally-reversible alcohol-soluble system that can be converted to an aqueous gel by hydrolysis of a poly(t-butyl methacrylate) block to a poly(methacrylic acid) block. Aligned cylindrical domains are formed in the alcohol-based system when shear is applied in an appropriate temperature regime, which is below the critical micelle temperature but above the temperature at which the relaxation time of the gels becomes too large. Processing strategies for producing the desired cylindrical morphologies are being developed that account for both thermodynamic and kinetic effects.

  18. Charge injection and transport in fluorene-based copolymers.

    Science.gov (United States)

    Fong, Hon Hang; Malliaras, George G.; Lu, Tianjian; Dunlap, David

    2007-03-01

    Fluorene-based copolymer is considered to be one of the most promising hole transporting and blue light-emitting conjugated polymers used in polymeric light-emitting diodes (PLEDs). Time-of-flight (TOF) technique has been employed to evaluate the charge drift mobility under a temperature range between 200 - 400 K at the thick film regime (1-10 micron). Meanwhile, contact ohmicity is studied by Dark Current Space Charge Limited Conduction (DISCLC) technique. Charge injection efficiencies from different electrical contacts are also studied and the corresponding injection barriers are independently investigated by photoemission and electroabsorption spectroscopies. Results show that the copolymers exhibit non-dispersive charge transport behavior and possess superior mobilities of up to 0.01cm^2V-1s-1 while single-carrier devices from various electrical contacts such as PEDOT:PSS are varied, depending on the chemical structure of amine component in the fluorene-triarylamine copolymers. Results will shed light on the enhancement of device efficiency and stability in the future polymer electronic devices.

  19. The weak coupling limit of disordered copolymer models

    CERN Document Server

    Caravenna, Francesco

    2009-01-01

    A copolymer is a chain of repetitive units (monomers) that are almost identical, but they differ in their degree of affinity for certain solvents. This difference leads to striking phenomena when the polymer fluctuates in a non-homogeneous medium, for example made up by two solvents separated by an interface. One may observe, for instance, the localization of the polymer at the interface between the two solvents. A discrete model of such system, based on the simple symmetric random walk on Z, has been investigated in [Bolthausen and den Hollander, Ann. Probab. 25 (1997), 1334-1366], notably in the weak polymer-solvent coupling limit, where the convergence of the discrete model toward a continuum model, based on Brownian motion, has been established. This result is remarkable because it strongly suggests a universal feature of copolymer models. In this work we prove that this is indeed the case. More precisely, we determine the weak coupling limit for a general class of discrete copolymer models, obtaining as ...

  20. Synthesis and thermal behavior of polyacrylonitrile/vinylidene chloride copolymer

    Directory of Open Access Journals (Sweden)

    Robson Fleming

    2014-06-01

    Full Text Available Polyacrylonitrile fiber encompasses a broad range of products based on acrylonitrile (AN which is readily copolymerized with a wide range of ethylenic unsaturated monomers giving rise to polymers with different characteristics and applications. Such products can be designed for cost-effective, flame and heat resistant solutions for the textile industry, aircraft and automotive markets. In the present work acrylonitrile was copolymerized with vinylidene chloride (VDC by conventional suspension polymerization process via redox system, with an initial content of 10%/mass of the VDC monomer. The copolymer average molecular weight was obtained by Gel Permeation Chromatography (GPC and by intrinsic viscosity analysis. To control the polymerization process continuously, qualitative and quantitative analysis of the chloride content in the PAN AN/VDC copolymer structure was accomplished by using X-ray fluorescence and potentiometric titration techniques. A good correlation was found between these two techniques, leading to a straightforward verification of VDC in the polymer structure. The thermal behavior of PAN AN/VDC copolymer was performed by Differential Scanning Calorimetry (DSC and Thermogravimetric Analysis (TGA. The results showed that VDC monomers exhibited a nearly stoichiometric reaction with acrylonitrile, copolymerizing about 90% of its initial mass. VDC changed significantly the polyacrylonitrile thermal behavior, decreasing the polymer degradation temperature by about 40-50°C.

  1. PTCR effect in carbon black/copolymer composites

    Science.gov (United States)

    Costa, L. C.; Chakki, A.; Achour, M. E.; Graça, M. P. F.

    2011-01-01

    Some materials show an abrupt increase in resistivity when the temperature changes only over a few degrees. This phenomenon, known as PTCR effect (positive temperature coefficient of resistivity), has been largely studied in the last few years, due to its potential applications in industry. Particularly, it can be used in auto controlled heaters, temperature sensors, protection circuits and in security systems for power electronic circuits. In this work we present the study of the electrical properties of the percolating system carbon black particles filled with ethylene butylacrylate copolymer composite (EBA), in the temperature range from -100 to 100 °C and in frequencies between 10 Hz and 100 kHz. The PTCR effect was observed at temperatures slightly above the room temperature, for concentrations higher than that of the percolation critical concentration. The mechanism responsible for the change in resistivity, at this stage, is predominantly tunnelling, wherein the conductive filler particles are not in physical contact, and the electrons tunnel through the insulating gap between them. At low temperatures, such as below and close to the glass transition temperature, the DC conductivity obeys the Arrhenius law. The calculated activation energy values are independent of carbon black contents inside the copolymer matrix, suggesting that these particles do not interact significantly with the chain segments of the macromolecules in the EBA copolymer.

  2. Using tethered triblock copolymers to mediate the interaction between substrates

    International Nuclear Information System (INIS)

    Using scaling analysis and a self-consistent field (SCF) theory, we compress two copolymer-coated surfaces and isolate conditions that yield multiple, distinct minima in the interaction profile. We focus on planar surfaces that are coated with ABC triblock copolymers. Tethered to the surface by the last monomer in the C block, the copolymers are grafted at relatively low densities. The surrounding solution is a poor solvent for both the A and C blocks, and is a good solvent for the B blocks. Through scaling theory, we pinpoint the parameters that yield two minima in the interaction profile. The SCF calculations reveal the changes in the morphology of the polymers as the layers are compressed. Through both studies, we determine how the morphological changes give rise to the observed surface interactions. The results provide guidelines for creating polymer-coated colloidal systems that can form two stable crystal structures. Such systems could be used for bistable, optical switches. The findings also yield a prescription for creating systems that exhibit additional minima in the free energy of interaction. copyright 1998 American Institute of Physics

  3. STUDY ON STYRENE-BUTADIENE BLOCK COPOLYMER FOR THE MODIFICATION OF TIRE TREAD

    Institute of Scientific and Technical Information of China (English)

    WANG Yan; CHEN Weijie; MU Ruifeng; WANG Yongwei; YU Fengnian; LIU Qing

    1996-01-01

    This paper mainly deals with the design and synthesis of a novel styrene-butadiene block copolymer. When this copolymer is used in the tread portion of tyres, it can improve wet skid resistance and reduce rolling resistance without sacrificing its general physicalmechanical properties. The visco-elastic curve of tire tread using the novel copolymer as its rubber portion was showed. Reactivity ratios for two monomers in the polymerizing system were calculated. The diagrams of differential, integral and finite difference calculi throughout the whole molecular chain were presented. The influence of the micro- and macro-structure of the copolymer chain on wet skid resistance and rolling resistance was discussed.

  4. STUDY ON SOME PROPERTIES OF Si-CONTAINING POLYESTER-POLYETHER MULTIBLOCK COPOLYMERS

    Institute of Scientific and Technical Information of China (English)

    LI Zhenyi; ZHU Jin

    1997-01-01

    Some physical properties of the polyester-polyether multiblock copolymers with Si-containing hard segment were further examined by a series of physical methods. The hydrophobicity of the copolymers was improved with the incorporation of increasing amount of orgauosilicone, XPS test proved that silicon element was enriched at the surface of the Si-containing polyester-polyether copolymers. It was also found that their heat resistance and gas permeability for O2 and N2 were greatly improved. The study on semipermeability of films made of the Si-containing copolymers was also followed with interest.

  5. STUDIES ON THE REGULAR COPOLYMERS OF POLY (1,4-PHENYLENETEREPHTHALAMIDE)

    Institute of Scientific and Technical Information of China (English)

    BAO Jingsheng; WANG Bing; XU Chaochou

    1991-01-01

    Two types of the regular copolymer of poly (1,4-phenyleneterephthalamide) were synthesized by the low temperature solution polycondensation in NMP-CaCl2 solvent system, using the piperazine or 2,5-dimethylpiperazine as the third components introduced in the main chain of poly (1,4-phenyleneterephthalamide). The properties of copolymers were characterized by IR, SEM, X-RAY diffraction, polarizing microscopy, TGA and solubilities.Experimental results showed that the copolymers had good solubility and thermal stability, the concentrated sulfuric acid (~ 98%) solution of regular PPTA copolymers had liquid crystalline properties.

  6. Application of Thermosensitive Peptide Copolymer Gels to Removal of Endocrine Disruptor

    Directory of Open Access Journals (Sweden)

    Satoshi Tanimoto

    2009-01-01

    Full Text Available Poly(L-leucine-block-poly(ethylene glycol-block-poly(L-leucine triblock copolymers were synthesized by a ring-opening polymerization of α-amino acid N-carboxyanhydride with amino-terminated PEG as an initiator. The chloroform solution of these peptide copolymers showed a thermo-sensitive sol-gel transition. The transition temperature varied as a function of the length of peptide segments. Additionally, we used these peptide copolymers to remove an endocrine disruptor such as bisphenol A from its aqueous solution. As a result, it became clear that the peptide copolymer gel used in this study could capture bisphenol A efficiently.

  7. CHARACTERISTICS OF STRUCTURE OF IMPACT COPOLYMERS OF POLYPROPYLENE WITH LOW ETHYLENE CONTENTS

    Institute of Scientific and Technical Information of China (English)

    MA Dezhu; LI Xiqiang; ZHANG Ruiyun; HONG Kunlun; LUO Xiaolie

    1994-01-01

    In the present work, the structure and impact properties of copolymers of polypropylene with low ethylene contents have been investigated. Based on the results of 13C-NMR, FTIR,WAXD, DSC, PLM and SEM, the relationship between impact properties and morphology of the copolymers has been discussed. The high impact properties of copolymer ICP2 may attribute to the relatively higher ethylene content and homogeneous ethylene unit distribution. The size and its distribution of spherulite in the copolymers and cycloid cavities dispersed in polypropylene continue phase may also be two important factors which affect the impact properties of these materials.

  8. Self-assembly of block copolymers on topographically patterned polymeric substrates

    Energy Technology Data Exchange (ETDEWEB)

    Russell, Thomas P.; Park, Soojin; Lee, Dong Hyun; Xu, Ting

    2016-05-10

    Highly-ordered block copolymer films are prepared by a method that includes forming a polymeric replica of a topographically patterned crystalline surface, forming a block copolymer film on the topographically patterned surface of the polymeric replica, and annealing the block copolymer film. The resulting structures can be used in a variety of different applications, including the fabrication of high density data storage media. The ability to use flexible polymers to form the polymeric replica facilitates industrial-scale processes utilizing the highly-ordered block copolymer films.

  9. Synthesis of PCEC Copolymers with Controlled Molecular Weight Using Full Factorial Methodology

    Directory of Open Access Journals (Sweden)

    Leila Barghi

    2015-03-01

    Full Text Available Purpose: Polycaprolactone (PCL is a biodegradable polyester and has attracted attention as a suitable carrier for development of controlled drug delivery due to its non-toxicity and biocompatibility. It has been reported that the biodegradability of PCL can be enhanced by copolymerization with PEG. Molecular weight (Mw and CL block lengths optimization in a series of synthesized PCEC copolymers was the main purpose of this study. Methods: The composition of copolymers was designed using full factorial methodology. Molecular weight of used PEG (4 levels and weight ratio of epsilon-caprolactone/PEG (3 levels were selected as independent variables. The PCEC copolymers were synthesized by ring opening polymerization. Formation of copolymers was confirmed by FT-IR spectroscopy as well as H-NMR. The Mn of PCEC copolymers was calculated from HNMR spectra. The thermal behavior of copolymers was characterized on differential scanning calorimeter. Results: Molecular weight of twelve synthesized copolymers was ranged from 1782 to 9264. In order to evaluate the effect of selected variables on the copolymers composition and Mw, a mathematical model for each response parameter with p-value less than 0.001were obtained. Average percent error for prediction of total Mn of copolymers and Mn of CL blocks were 13.81% and 14.88% respectively. Conclusion: In conclusion, the proposed model is significantly valid due to obtained low percent error in Mn prediction of test sets.

  10. CRYSTALLIZATION KINETICS OF ETHYLENE-PROPYLENE COPOLYMERS PREPARED BY LIVING COORDINATION POLYMERIZATION

    Institute of Scientific and Technical Information of China (English)

    Zi-xiu Du; Jun-ting Xu; Zhi-qiang Fan

    2008-01-01

    In this paper,crystallization kinetics of a series of ethylene-propylene copolymers prepared by living polymerization coordination catalyzed by a fluorinated bis(phenoxyimine)Ti catalyst(FI-EP copolymers)was studied,and was compared with that of ethylene-propylene copolymers prepared by a conventional Ziegler-Natta catalyst (ZN-EP copolymers).It IS found that,the Avrami exponent and the crystallization rate constant of the FI-EP and ZN-EP copolymer show similar dependence on crystallization temperature,but the FI-EP copolymers exhibit a larger Avrami exponent than corresponding ZN-EP copolymers at high crystallization temperature and at low propylene content level The crystallization temperature,equilibrium melting temperature and crystallinity of the FI-EP copolymers decrease more rapidly with propylene content than those of the ZN-EP copolymers.This can be attributed to their different comonomer distributions and partially to the different molecular weight distributions at low propylene content level.

  11. Ambient temperature influences core body temperature response in rat lines bred for differences in sensitivity to 8-hydroxy-dipropylaminotetralin.

    Science.gov (United States)

    Nicholas, Andrea C; Seiden, Lewis S

    2003-04-01

    Agonist-induced decrease in core body temperature has commonly been used as a measure of serotonin1A (5-HT(1A)) receptor sensitivity in mood disorder. The thermoregulatory basis for 5-HT(1A) receptor agonist-induced temperature responses in humans and rats remains unclear. Therefore, the influence of ambient temperature on 5-HT(1A) receptor-mediated decreases in core body temperature were measured in rat lines bred for high (HDS) or low (LDS) sensitivity to the selective 5-HT(1A) receptor agonist 8-hydroxy-dipropylaminotetralin (8-OH-DPAT). HDS and LDS rats were injected with either saline, 0.25 or 0.50 mg/kg 8-OH-DPAT at ambient temperatures of 10.5, 24, 30, or 37.5 degrees C, and core temperature was measured by radiotelemetry. For both lines, the thermic response to acute 8-OH-DPAT was greatest at 10.5 degrees C and decreased in magnitude as ambient temperature increased to 30 degrees C, consistent with hypothermia. HDS rats displayed a greater hypothermic response than LDS rats at 10.5, 24, and 30 degrees C. At 37.5 degrees C, LDS rats showed a lethal elevation of temperature in response to 0.50 mg/kg 8-OH-DPAT. All thermic responses to 8-OH-DPAT, including the lethality, were effectively blocked by pretreatment with the 5-HT(1A) receptor antagonist WAY100635, suggesting line differences in thermoregulatory circuits that are influenced by 5-HT(1A) receptor activation. Following repeated injection of 8-OH-DPAT, the magnitude of the hypothermic response decreased in both lines at 10.5 degrees C, but increased in HDS rats treated with 0.50 mg/kg 8-OH-DPAT at 30 and 37.5 degrees C. This pattern was reversed in HDS rats following 8-OH-DPAT challenge at 24 degrees C, suggesting that a compensatory thermoregulatory response accounts for changes in the hypothermic response to chronic 8-OH-DPAT. PMID:12649391

  12. Temperature response of photosynthesis in C3, C4, and CAM plants: temperature acclimation and temperature adaptation.

    Science.gov (United States)

    Yamori, Wataru; Hikosaka, Kouki; Way, Danielle A

    2014-02-01

    Most plants show considerable capacity to adjust their photosynthetic characteristics to their growth temperatures (temperature acclimation). The most typical case is a shift in the optimum temperature for photosynthesis, which can maximize the photosynthetic rate at the growth temperature. These plastic adjustments can allow plants to photosynthesize more efficiently at their new growth temperatures. In this review article, we summarize the basic differences in photosynthetic reactions in C3, C4, and CAM plants. We review the current understanding of the temperature responses of C3, C4, and CAM photosynthesis, and then discuss the underlying physiological and biochemical mechanisms for temperature acclimation of photosynthesis in each photosynthetic type. Finally, we use the published data to evaluate the extent of photosynthetic temperature acclimation in higher plants, and analyze which plant groups (i.e., photosynthetic types and functional types) have a greater inherent ability for photosynthetic acclimation to temperature than others, since there have been reported interspecific variations in this ability. We found that the inherent ability for temperature acclimation of photosynthesis was different: (1) among C3, C4, and CAM species; and (2) among functional types within C3 plants. C3 plants generally had a greater ability for temperature acclimation of photosynthesis across a broad temperature range, CAM plants acclimated day and night photosynthetic process differentially to temperature, and C4 plants was adapted to warm environments. Moreover, within C3 species, evergreen woody plants and perennial herbaceous plants showed greater temperature homeostasis of photosynthesis (i.e., the photosynthetic rate at high-growth temperature divided by that at low-growth temperature was close to 1.0) than deciduous woody plants and annual herbaceous plants, indicating that photosynthetic acclimation would be particularly important in perennial, long-lived species that

  13. Block copolymers for alkaline fuel cell membrane materials

    Science.gov (United States)

    Li, Yifan

    Alkaline fuel cells (AFCs) using anion exchange membranes (AEMs) as electrolyte have recently received considerable attention. AFCs offer some advantages over proton exchange membrane fuel cells, including the potential of non-noble metal (e.g. nickel, silver) catalyst on the cathode, which can dramatically lower the fuel cell cost. The main drawback of traditional AFCs is the use of liquid electrolyte (e.g. aqueous potassium hydroxide), which can result in the formation of carbonate precipitates by reaction with carbon dioxide. AEMs with tethered cations can overcome the precipitates formed in traditional AFCs. Our current research focuses on developing different polymer systems (blend, block, grafted, and crosslinked polymers) in order to understand alkaline fuel cell membrane in many aspects and design optimized anion exchange membranes with better alkaline stability, mechanical integrity and ionic conductivity. A number of distinct materials have been produced and characterized. A polymer blend system comprised of poly(vinylbenzyl chloride)-b-polystyrene (PVBC-b-PS) diblock copolymer, prepared by nitroxide mediated polymerization (NMP), with poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) or brominated PPO was studied for conversion into a blend membrane for AEM. The formation of a miscible blend matrix improved mechanical properties while maintaining high ionic conductivity through formation of phase separated ionic domains. Using anionic polymerization, a polyethylene based block copolymer was designed where the polyethylene-based block copolymer formed bicontinuous morphological structures to enhance the hydroxide conductivity (up to 94 mS/cm at 80 °C) while excellent mechanical properties (strain up to 205%) of the polyethylene block copolymer membrane was observed. A polymer system was designed and characterized with monomethoxy polyethylene glycol (mPEG) as a hydrophilic polymer grafted through substitution of pendent benzyl chloride groups of a PVBC

  14. Structure-Property Relationships of Poly(lactide)-based Triblock and Multiblock Copolymers

    Science.gov (United States)

    Panthani, Tessie Rose

    Replacing petroleum-based plastics with alternatives that are degradable and synthesized from annually renewable feedstocks is a critical goal for the polymer industry. Achieving this goal requires the development of sustainable analogs to commodity plastics which have equivalent or superior properties (e.g. mechanical, thermal, optical etc.) compared to their petroleum-based counterparts. This work focuses on improving and modulating the properties of a specific sustainable polymer, poly(lactide) (PLA), by incorporating it into triblock and multiblock copolymer architectures. The multiblock copolymers in this work are synthesized directly from dihydroxy-terminated triblock copolymers by a simple step-growth approach: the triblock copolymer serves as a macromonomer and addition of stoichiometric quantities of either an acid chloride or diisocyanate results in a multiblock copolymer. This work shows that over wide range of compositions, PLA-based multiblock copolymers have superior mechanical properties compared to triblock copolymers with equivalent chemical compositions and morphologies. The connectivity of the blocks within the multiblock copolymers has other interesting consequences on properties. For example, when crystallizable poly(L-lactide)-based triblock and multiblock copolymers are investigated, it is found that the multiblock copolymers have much slower crystallization kinetics. Additionally, the total number of blocks connected together is found to effect the linear viscoelastic properties as well as the alignment of lamellar domains under uniaxial extension. Finally, the synthesis and characterization of pressure-sensitive adhesives based upon renewable PLA-containing triblock copolymers and a renewable tackifier is detailed. Together, the results give insight into the effect of chain architecture, composition, and morphology on the mechanical behavior, thermal properties, and rheological properties of PLA-based materials.

  15. Morphology and Crystallization of Thin Films of Asymmetric Organic-Organometallic Diblock Copolymers of Isoprene and Ferrocenyldimethylsilane

    NARCIS (Netherlands)

    Lammertink, Rob G.H.; Hempenius, Mark A.; Vancso, G. Julius

    2000-01-01

    The morphology of thin films of asymmetric block copolymers of poly(isoprene-block-ferrocenyldimethylsilane) was studied using atomic force microscopy, transmission electron microscopy, and optical microscopy. Block copolymers with the organometallic (ferrocenylsilane) phase between 20 and 28 vol %

  16. The structure and phase transitions in polymer blends, diblock copolymers and liquid crystalline polymers: the Landau-Ginzburg approach

    OpenAIRE

    Holyst, Robert; Vilgis, T. A.

    1996-01-01

    The polymer systems are discussed in the framework of the Landau-Ginzburg model. The model is derived from the mesoscopic Edwards hamiltonian via the conditional partition function. We discuss flexible, semiflexible and rigid polymers. The following systems are studied: polymer blends, flexible diblock and multi-block copolymer melts, random copolymer melts, ring polymers, rigid-flexible diblock copolymer melts, mixtures of copolymers and homopolymers and mixtures of liquid crystalline polyme...

  17. The synthesis and characterization of organometallic copolymers with Mn-Re binuclear transition-metal group in the side chain

    Institute of Scientific and Technical Information of China (English)

    XU Zhi; FENG Gang; BAI Zhifeng; MA Yongqiang; CHANG Weixing; LI Jing

    2006-01-01

    Novel organometallic copolymers with Mn-Re binuclear transition-metal groups in the side chain are synthesized and characterized. The structure and properties of the copolymers are characterized by GPC, DSC, TG, NMR, FT-IR, UV-Vis spectra and elemental analysis. The glass transition temperature and UV-Vis spectra properties of these three organometallic copolymers are found to be different from the normal polystyrene. New synthetic strategy for the synthesis of organometallic copolymer is developed.

  18. Biological materials: (Part A): Temperature-responsive polymers and drug delivery, and, (Part B): Polymer modification of fish scale and their nano-mechanical properties

    Science.gov (United States)

    Xiang, Xu

    This research has three parts. Two parts deal with novel nanoparticle assemblies for drug delivery, and are described in Part A, while the third part looks at properties of fish scales, an abundant and little-used waste resource, that can be modified to have value in medical and other areas. Part A describes fundamental research into the affects of block sequence of amphiphilic block copolymers prepared from on a new and versatile class of monomers, oligo(ethylene glycol) methyl ether acrylate (OEGA) and the more hydrophobic di(ethylene glycol) methyl ether methacrylate (DEGMA). Polymers from these monomers are biologically safe and give polymers with thermoresponsive properties that can be manipulated over a broader temperature range than the more researched N-isopropylacrylamide polymers. Using RAFT polymerization and different Chain Transfer Agents (CTAs) amphiphilic block copolymers were prepared to study the effect of block sequence (hydrophilic OEGA and more hydrophobic DEGMA) on their thermo-responsive properties. Pairing hydrophilic chain ends to a hydrophobic DEGMA block and hydrophobic chain ends to hydrophilic blocks ("mis-matched polarity") significantly affected thermoresponsive properties for linear and star diblock copolymers, but little affected symmetric triblock copolymers. Specifically matching polarity in diblock copolymers yielded nanoparticles with higher cloud points (CP), narrow temperature ranges for coil collapse above CP, and smaller hydrodynamic diameter than mis-matched polarity. Using this knowledge two linear OEGA/DEGMA diblock copolymers were prepared with thiol end groups and assembled into hybrid nanoparticles with a gold nanoparticle core (GNP-polymer hybrids). This design was made using the hypothesis that a hybrid polymer drug carrier with a high CP (50-60 °C) and a diblock structure could be designed with low levels of drug release below 37 °C (body temperature) allowing the drug carrier to reach a target (tumor) site with

  19. Temperature-Responsive Poly(ε-caprolactone) Cell Culture Platform with Dynamically Tunable Nano-Roughness and Elasticity for Control of Myoblast Morphology

    OpenAIRE

    Koichiro Uto; Mitsuhiro Ebara; Takao Aoyagi

    2014-01-01

    We developed a dynamic cell culture platform with dynamically tunable nano-roughness and elasticity. Temperature-responsive poly(ε-caprolactone) (PCL) films were successfully prepared by crosslinking linear and tetra-branched PCL macromonomers. By optimizing the mixing ratios, the crystal-amorphous transition temperature (Tm) of the crosslinked film was adjusted to the biological relevant temperature (~33 °C). While the crosslinked films are relatively stiff (50 MPa) below the Tm, they sudde...

  20. Synthesis and Characterization of a Biodegradable Copolymer: RGD Peptide Modification of Poly (lactic acid-co-lysine)

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The poly ( lactic acid- co-lysine ) was synthesized using IR and 1 H NMR to characterize the copolymer. And then the RGD modification copolymer RGD-PLAL was prepared. The contact angles were used to see the RGD modification occurrence. Also high molecular weight polymer was controlled to the reaction of polymerization of copolymer.

  1. PREPARATION AND PROPERTIES OF ABSORBABLE FIBERS FROM L-LACTIDE COPOLYMERS

    NARCIS (Netherlands)

    PENNING, JP; PENNINGS, AJ

    1993-01-01

    Absorbable fibres have been prepared from various copolymers Of L-lactide with either D-lactide or epsilon-caprolactone. The lower crystallinity of these copolymers, compared with the homopolymer, is desirable in the light of their potential use as an absorbable suture material and has a pronounced

  2. Poly(L-lactide)-Poly(ethylene glycol) Multiblock Copolymers: Synthesis and Properties

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Poly (L-lactide)-poly(ethylene glycol) multiblock copolymers with predetermined block lengths were synthesized by polycondensation of PLA diols and PEG diacids. These copolymers presented special properties, such as better miscibility between the two components, low crystallinity and better hydrophilicity, which can be modulated by adjusting the block lengths of the two components.

  3. Polarizability of DNA Block Copolymer Nanoparticles Observed by Electrostatic Force Microscopy

    NARCIS (Netherlands)

    Sowwan, Mukhles; Faroun, Maryam; Mentovich, Elad; Ibrahim, Imad; Haboush, Shayma; Alemdaroglu, Fikri Emrah; Kwak, Minseok; Richter, Shachar; Herrmann, Andreas

    2010-01-01

    In this study, DNA block copolymer (DBC) micelles with a polystyrene (PS) core and a single-stranded (ss) DNA shell were doped with ferrocene (Fc) molecules. Tapping mode atomic force microscopy (AFM) was used to study the morphology of the doped and undoped block copolymer aggregates. We show that

  4. PRECISE SYNTHESIS OF OLEFIN BLOCK COPOLYMERS USING A SYNDIOSPECIFIC LIVING POLYMERIZATION SYSTEM

    Institute of Scientific and Technical Information of China (English)

    Zheng-guo Cai; Hai-hui Su; Takeshi Shiono

    2013-01-01

    This feature article summarizes the synthesis of novel olefin block copolymers using fast syndiospecific living homo-and copolymerization of propylene,higher 1-alkene,and norbomene with ansa-fluorenylamidodimethyltitaniumbased catalyst according to the authors' recent results.The catalytic synthesis of monodisperse polyolefin and olefin block copolymer was also described using this living system.

  5. Thermo-Responsive Hydrogels Based on Branched Poly(L-lactide)-poly(ethylene glycol) Copolymers

    NARCIS (Netherlands)

    Velthoen, Ingrid W.; Tijsma, Edze J.; Dijkstra, Pieter J.; Feijen, Jan

    2008-01-01

    Branched poly(L-lactide)-poly(ethylene glycol) (PLLA-PEG) block copolymers were synthesized from trifunctional PLLA and amine functionalized methoxy poly(ethylene glycol)s. The copolymers in water formed hydrogels that showed thermo-responsive behavior. The hydrogels underwent a gel to sol transitio

  6. Block copolymer self-assembly : homopolymer additives and multiple length scales

    NARCIS (Netherlands)

    Klymko, Tetyana Romanivna

    2008-01-01

    This thesis is devoted to a theoretical study of self-assembly in specific block-copolymer systems. The ability of block copolymer-based systems to organize at the nanoscale level depends on several parameters, such as volume fraction of the different components, their molar masses and the strength

  7. 40 CFR 721.7210 - Epoxidized copolymer of phenol and substituted phenol.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Epoxidized copolymer of phenol and substituted phenol. 721.7210 Section 721.7210 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.7210 Epoxidized copolymer of phenol and substituted phenol. (a)...

  8. Synthesis, Characterization and Photoinduction of Optical Anisotropy in Liquid Crystalline Diblock Azo-Copolymers

    DEFF Research Database (Denmark)

    Forcén, P; Oriol, L; Sánchez, C;

    2007-01-01

    behavior similar to that of the azo homopolymers. Thin films of these copolymers were characterized by transmission elevtron microscopy (TEM). A lamellar nanostructure was observed for azo content down to 20 wt %, while no structure is observed for the copolymer with a 7% azo content. The optical...

  9. Synthesis of telechelic vinyl/allyl functional siloxane copolymers with structural control

    DEFF Research Database (Denmark)

    Madsen, Frederikke Bahrt; Javakhishvili, Irakli; Jensen, Rasmus Egekjær;

    2014-01-01

    Multifunctional siloxane copolymers with terminal vinyl or allyl functional groups are synthesised through the borane-catalysed polycondensation of hydrosilanes and alkoxysilanes. Copolymers of varying mole- cular weights ( M ̄ w =13200 – 70 300 g mol − 1 ), spatially well-distributed functional...

  10. Self-consistent field predictions for quenched spherical biocompatible triblock copolymer micelle

    NARCIS (Netherlands)

    Lebouille, J.G.J.L.; Tuinier, R.; Vleugels, L.F.W.; Cohen Stuart, M.A.; Leermakers, F.A.M.

    2013-01-01

    We have used the Scheutjens–Fleer self-consistent field (SF-SCF) method to predict the self-assembly of triblock copolymers with a solvophilic middle block and sufficiently long solvophobic outer blocks. We model copolymers consisting of polyethylene oxide (PEO) as the solvophilic block and poly(lac

  11. Segmented copolymers of uniform tetra-amide units and poly(phenylene oxide) by direct coupling

    NARCIS (Netherlands)

    Krijgsman, J.; Biemond, G.J.E.; Gaymans, R.J.

    2007-01-01

    Segmented copolymers with telechelic poly(2,6-dimethyl-1,4-phenylene ether) (PPE) segments and crystallizable bisester tetra-amide units (two-and-a-half repeating unit of nylon-6,T) were studied. The copolymers were synthesized by reacting bifunctional PPE with hydroxylic end groups with an average

  12. POLYMERIZATION TEMPERATURE EFFECTS ON THE PROPERTIES OF L-LACTIDE AND EPSILON-CAPROLACTONE COPOLYMERS

    NARCIS (Netherlands)

    GRIJPMA, DW; PENNINGS, AJ

    1991-01-01

    The large difference in reactivity of L-lactide and epsilon-caprolactone in ring opening polymerization with stannous octoate, leads to the formation of copolymers with blocky structures. By varying the polymerization temperature, copolymers with different average sequence lengths and molecular weig

  13. Supramolecular Routes to Hierarchical Structures : Comb-Coil Diblock Copolymers Organized with Two Length Scales

    NARCIS (Netherlands)

    Ruokolainen, J.; Saariaho, M.; Ikkala, O.; Brinke, G. ten; Thomas, E.L.; Torkkeli, M.; Serimaa, R.

    1999-01-01

    We show that polymeric materials characterized by two length scales are obtained if diblock copolymers are mixed with amphiphilic selective solvents, leading to self-organization which combines the “block copolymer length scale” with a much shorter “nanoscale”. In this work, the amphiphilic compound

  14. Dilute gels with exceptional rigidity from self-assembling silk-collagen-like block copolymers

    NARCIS (Netherlands)

    Martens, A.A.; Gucht, van der J.; Eggink, G.; Wolf, de F.A.; Cohen Stuart, M.A.

    2009-01-01

    Rheological data on monodisperse block copolymer hydrogels are rare because the amounts produced with various methods usually are not sufficient for materials testing. By biotechnological means, expression of a block copolymer encoding gene in the yeast Pichia pastoris, we produced enough protein bl

  15. 76 FR 30604 - National Emission Standards for Hazardous Air Pollutants for Polyvinyl Chloride and Copolymers...

    Science.gov (United States)

    2011-05-26

    ... Polyvinyl Chloride and Copolymers Production AGENCY: Environmental Protection Agency (EPA). ACTION: Proposed..., the proposed rule, National Emission Standards for Hazardous Air Pollutants for Polyvinyl Chloride and... Polyvinyl Chloride and Copolymers Production, under Docket ID No. EPA-HQ-OAR-2002-0037 (available at...

  16. 76 FR 42613 - National Emission Standards for Hazardous Air Pollutants for Polyvinyl Chloride and Copolymers...

    Science.gov (United States)

    2011-07-19

    ... Polyvinyl Chloride and Copolymers Production; Extension of Comment Period AGENCY: Environmental Protection... for Hazardous Air Pollutants for Polyvinyl Chloride and Copolymers Production is being extended for 14... extend the public comment period for the May 20, 2011, Proposed Polyvinyl Chloride and...

  17. 76 FR 29527 - National Emission Standards for Hazardous Air Pollutants for Polyvinyl Chloride and Copolymers...

    Science.gov (United States)

    2011-05-20

    ... Hazardous Air Pollutants for Polyvinyl Chloride and Copolymers Production; Proposed Rule #0;#0;Federal.... SUMMARY: EPA is proposing National Emission Standards for Hazardous Air Pollutants for Polyvinyl Chloride... pollutants from polyvinyl chloride and copolymers production located at major and area sources. The...

  18. Effect of nanoscale morphology on selective ethanol transport through block copolymer membranes

    Science.gov (United States)

    We report on the effect of block copolymer domain size on transport of liquid mixtures through the membranes by presenting pervaporation data of an 8 wt% ethanol/water mixture through A-B-A and B-A-B triblock copolymer membranes. The A-block was chosen to facilitate ethanol transport while the B-blo...

  19. Fabrication of high-performance flexible alkaline batteries by implementing multiwalled carbon nanotubes and copolymer separator.

    Science.gov (United States)

    Wang, Zhiqian; Wu, Zheqiong; Bramnik, Natalia; Mitra, Somenath

    2014-02-12

    A flexible alkaline battery with multiwalled carbon nanotube (MWCNT) enhanced composite electrodes and polyvinyl alcohol (PVA)-poly (acrylic acid) (PAA) copolymer separator has been developed. Purified MWCNTs appear to be the most effective conductive additive, while the flexible copolymer separator not only enhances flexibility but also serves as electrolyte storage. PMID:24510667

  20. 21 CFR 175.365 - Vinylidene chloride copolymer coatings for polycarbonate film.

    Science.gov (United States)

    2010-04-01

    ... polycarbonate film. 175.365 Section 175.365 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH... chloride copolymer coatings for polycarbonate film. Vinylidene chloride copolymer coatings identified in this section and applied on polycarbonate film may be safely used as food-contact surfaces,...

  1. Controlling sub-microdomain structure in microphase-ordered block copolymers and their nanocomposites

    Science.gov (United States)

    Bowman, Michelle Kathleen

    Block copolymers exhibit a wealth of morphologies that continue to find ubiquitous use in a diverse variety of mature and emergent (nano)technologies, such as photonic crystals, integrated circuits, pharmaceutical encapsulents, fuel cells and separation membranes. While numerous studies have explored the effects of molecular confinement on such copolymers, relatively few have examined the sub-microdomain structure that develops upon modification of copolymer molecular architecture or physical incorporation of nanoscale objects. This work will address two relevant topics in this vein: (i) bidisperse brushes formed by single block copolymer molecules and (ii) copolymer nanocomposites formed by addition of molecular or nanoscale additives. In the first case, an isomorphic series of asymmetric poly(styrene-b -isoprene-b-styrene) (S1IS2) triblock copolymers of systematically varied chain length has been synthesized from a parent SI diblock copolymer. Small-angle x-ray scattering, coupled with dynamic rheology and self-consistent field theory (SCFT), reveals that the progressively grown S2 block initially resides in the I-rich matrix and effectively reduces the copolymer incompatibility until a critical length is reached. At this length, the S2 block co-locates with the S1 block so that the two blocks generate a bidisperse brush (insofar as the S1 and S2 lengths differ). This single-molecule analog to binary block copolymer blends affords unique opportunities for materials design at sub-microdomain length scales and provides insight into the transition from diblock to triblock copolymer (and thermoplastic elastomeric nature). In the second case, I explore the distribution of molecular and nanoscale additives in microphase-ordered block copolymers and demonstrate via SCFT that an interfacial excess, which depends strongly on additive concentration, selectivity and relative size, develops. These predictions are in agreement with experimental findings. Moreover, using a

  2. The acid-labile subunit of human ternary insulin-like growth factor binding protein complex in serum

    DEFF Research Database (Denmark)

    Juul, A; Møller, S; Mosfeldt-Laursen, E;

    1998-01-01

    deficiency (GHD). We found: 1) no significant arteriovenous gradient over the liver ofALS, IGF-I, and IGFBP-3; 2) the diurnal variation of ALS was 12% (mean coefficient of variation percent); 3) ALS levels increased throughout childhood with maximal levels in puberty, with a subsequent decrease with age...... of ALS determination is not known. We therefore, determined the: 1) hepatosplanchnic release of ALS by liver vein catheterization (n=30); 2) 24-h diurnal variation of ALS (n=8); 3) normal age-related ranges of circulating ALS (n=1158); 4) diagnostic value of ALS in 108 patients with childhood-onset GH...... is not measurable by this approach or, alternatively, that the liver is not the primary source of circulating ALS, IGF-I, or IGFBP-3 in humans. In conclusion, we have provided extensive normal data for a novel ALS assay and found that circulating ALS levels exhibit minor diurnal variation. We suggest that ALS...

  3. High intensity focused ultrasound responsive metallo-supramolecular block copolymer micelles.

    Science.gov (United States)

    Liang, Bo; Tong, Rui; Wang, Zhenhua; Guo, Shengwei; Xia, Hesheng

    2014-08-12

    The metal-supramolecular diblock copolymer containing mechano-labile bis(terpyridine)-Cu(II) complex linkage in the junction point was synthesized. These metal-ligand containing amphiphilic copolymers are able to self-assemble in aqueous solution to form spherical micelles with poly(propylene glycol) block forming the hydrophobic core. It is found that high intensity focused ultrasound can open the copolymer micelles and trigger the release of the payload in the micelle. The micellar properties and release kinetics of encapsulated guest molecule in response to ultrasound stimuli were investigated. The weak Cu(II)-terpyridine dynamic bond in the copolymer chain can be cleaved under ultrasound and thus leads to the disruption of the copolymer micelle and the release of loaded cargo. This study will open up a new way for the molecular design of ultrasound modulated drug delivery systems. PMID:25072274

  4. Understanding the ordering mechanisms of self-assembled nanostructures of block copolymers during zone annealing.

    Science.gov (United States)

    Cong, Zhinan; Zhang, Liangshun; Wang, Liquan; Lin, Jiaping

    2016-03-21

    A theoretical method based on dynamic version of self-consistent field theory is extended to investigate directed self-assembly behaviors of block copolymers subjected to zone annealing. The ordering mechanisms and orientation modulation of microphase-separated nanostructures of block copolymers are discussed in terms of sweep velocity, wall preference, and Flory-Huggins interaction parameter. The simulated results demonstrate that the long-range ordered nanopatterns are achieved by lowering the sweep velocity of zone annealing due to the incorporation of templated ordering of block copolymers. The surface enrichment by one of the two polymer species induces the orientation modulation of defect-free nanostructures through finely tuning the composition of block copolymers and the preference of walls. Additionally, the Flory-Huggins interaction parameters of block copolymers in the distinct regions are main factors to design the zone annealing process for creating the highly ordered nanostructures with single orientation. PMID:27004895

  5. Phase behavior of multi-arm star-shaped polystyrene-block-poly(methyl methacrylate) copolymer

    Science.gov (United States)

    Jang, Sangshin; Moon, Hong Chul; Bae, Dusik; Kwak, Jonghen; Kim, Jin Kon

    2013-03-01

    We synthesized star-shaped polystyrene-block-poly(methyl methacrylate) copolymer (PS- b-PMMA) by utilizing α-cyclodextrin (α-CD) as a core of the star-shaped block copolymer. Eighteen hydroxyl groups on α-CD were transformed to bromine by the reaction with α-bromoisobutyryl bromide. We found that the number of bromine substituted arms per one α-CD was higher than 16, which was determined by nuclear magnetic resonance and Matrix-assisted laser desorption/ionization. We could control molecular weight of block copolymers by changing polymerization times. The block copolymers were characterized by gel permeation chromatography and nuclear magnetic resonance. Phase behaviors of these star-shaped block copolymers were investigated by small angle X-ray scattering and transmission electron microscopy.

  6. Synthesis of Diblock Copolymer Consisting of Poly(4-butyltriphenylamine and Morphological Control in Photovoltaic Application

    Directory of Open Access Journals (Sweden)

    Malee Songeun

    2011-07-01

    Full Text Available The diblock copolymer PTPA-b-PS consisting of poly(4-butyltripheneylamine (PTPA and polystyrene was prepared by atom transfer radical polymerization followed by C–N coupling polymerization. Three types of block copolymers with different contents of polystyrene segment were prepared. The formation of block copolymer was confirmed by 1H NMR spectra and gel permeation chromatography (GPC profiles. Time of flight (TOF measurement revealed that the block copolymer showed higher hole mobility up to 1.3 × 10−4 cm2/Vs compared with PTPA homopolymer. The surface morphology of block copolymer films blended with [6,6]-phenyl-C61-butyric acid methyl ester (PCBM was investigated by Atomic force microscopy (AFM. Introduction of polystyrene segment provided microphase-separated structures with domain sizes of around 20 nm. The photovoltaic device based on PTPA-b-PS, PTPA, and PCBM exhibited higher efficiency than that of homopolymer blend system.

  7. Microtome Sliced Block Copolymers and Nanoporous Polymers as Masks for Nanolithography

    DEFF Research Database (Denmark)

    Shvets, Violetta; Schulte, Lars; Ndoni, Sokol

    2014-01-01

    Introduction. Block copolymers self-assembling properties are commonly used for creation of very fine nanostructures [1]. Goal of our project is to test new methods of the block-copolymer lithography mask preparation: macroscopic pieces of block-copolymers or nanoporous polymers with cross......-linked phase are sliced with microtome and pattern is transfered from flakes to substrate by plasma etching. Experimental Section. Group of Self-organized Nanoporous Materials in Technical University of Denmark has developed series of block copolymers of Polybutadiene-b-Polydimethylsiloxane (PB...... PDMS can be chemically etched from the PB matrix by tetrabutylammonium fluoride in tetrahydrofuran and macroscopic nanoporous PB piece is obtained. Both block-copolymer piece and nanoporous polymer piece were sliced with cryomicrotome perpendicular to the axis of cylinder alignment and flakes...

  8. PERVAPORATION FOR SEPARATING BENZENE/CYCLOHEXANE MIXTURE BY P(AA-MA) COPOLYMER MEMBRANES

    Institute of Scientific and Technical Information of China (English)

    Gao-fei Xu; Wei-pu Zhu

    2011-01-01

    P(AA-MA) copolymers composed of acrylic acid and methyl acrylate with different molecular weights and sequence structures were synthesized by combination of ATRP and selective hydrolysis. These copolymers were used as membrane materials to separate benzene/cyclohexane mixture by pervaporation. The effects of molecular weight and sequence structure of the copolymers on the pervaporation performance were investigated in detail. For the random copolymers, the permeate flux decreased rapidly with the increasing of molecular weight. The separation factor was also influenced by the molecular weight, which was changed from no selectivity to cyclohexane selectivity with increasing the molecular weight. Contrarily, the block copolymer membrane showed good benzene selectivity with separation factor of 4.3 and permeate flux of 157 g/(m2h) to 50 wt% benzene/cyclohexane mixture.

  9. Branched Rod-Coil Polyimide-Poly(Alkylene Oxide) Copolymers and Electrolyte Compositions

    Science.gov (United States)

    Meador, Maryann B. (Inventor); Tigelaar, Dean M. (Inventor)

    2014-01-01

    Crosslinked polyimide-poly(alkylene oxide) copolymers capable of holding large volumes of liquid while maintaining good dimensional stability. Copolymers are derived at ambient temperatures from amine endcapped amic-acid oligomers subsequently imidized in solution at increased temperatures, followed by reaction with trifunctional compounds in the presence of various additives. Films of these copolymers hold over four times their weight at room temperature of liquids such as ionic liquids (RTIL) and/or carbonate solvents. These rod-coil polyimide copolymers are used to prepare polymeric electrolytes by adding to the copolymers various amounts of compounds such as ionic liquids (RTIL), lithium trifluoromethane-sulfonimide (LiTFSi) or other lithium salts, and alumina.

  10. Synthesis and phosphorescent properties of the copolymers of N-vinylcarbazole, methyl methacrylate and iridium complex

    Science.gov (United States)

    Wang, Wen; Zhou, Minglu; Liang, Luying; Lin, Meijuan; Ling, Qidan

    2014-06-01

    The copolymers containing carbazole unit and iridium complexes, such as (Ir(bpy)2Cl, Ir(mbpy)2Cl and Ir(Brbpy)2Cl, were synthesized via radical copolymerization of N-vinylcarbazole, methyl methacrylate and iridium complex. The synthesized copolymers were characterized by FT-IR, UV-Vis absorption spectroscopy and photoluminescence (PL) spectroscopy, respectively. According to the results, the copolymers (Ir(Brbpy)2Cl/PVK and Ir(mbpy)2Cl/PVK) exhibit yellow phosphorescence with an emission peak at around 553 nm under UV-visible light in the solid state. The results also reveal almost complete energy transfer from the host carbazole segments to the guest Ir complex in the copolymer film when the Ir content reaches 1.0 wt.%. The synthesized copolymers are good candidates as blue or yellow phosphorescent materials for PLED applications.

  11. Crosslinking of metallocenic α-olefin propylene copolymers by vacuum gamma irradiation

    International Nuclear Information System (INIS)

    Metallocenic polypropylene and copolymers with 3.7, and 9.2 mol% of hexene and 3.0 mol% of octadecene comonomer content were synthesized without the presence of additives and irradiated with 60Co gamma radiation under vacuum at room temperature. Size Exclusion Cromatography and gel extraction data showed that scission reactions predominate over crosslinking in the homopolymer and that there is a dose from where crosslinking started to increase considerably, in the irradiated copolymers. Rheology also showed evidence of chain-enlargements on the copolymers by means of an increase in the viscoelastic properties of the irradiated material. - Highlight: ► Vacuum gamma irradiation of metallocenic isotactic propylene copolymers. ► We examine the radioinduced changes in rheological properties and molecular weights. ► Radioinduced crosslinking in the copolymers, without the presence of additives. ► Dependence of crosslinking with copolymer′s length and amount of short branches.

  12. Thermal Degradation Studies on Polyaniline-Polypyrrole Copolymers Prepared by Microemulsion Methods

    Science.gov (United States)

    Prasannan, A.; Somanathan, N.; Hong, Po-Da

    2010-05-01

    Solvent- and water-based microemulsions of aniline and pyrrole copolymers were synthesized, and the thermal degradation properties of the copolymers were studied. The morphology of the copolymers prepared using solvent-based microemulsions containing 80 % aniline in the feed showed highly oriented, crystalline, ordered long nano-fibers which were even more structured than that of pure aniline prepared by the same method. The influence of the degree of crystallinity calculated from X-ray diffraction and morphology had an overlap with thermal degradation and activation energies of different transitions. Copolymers prepared with water-based microemulsions were thermally less stable than the ones prepared using solvent-based microemulsions. The concentration of pyrrole and aniline mutually influenced the thermal properties of the copolymers.

  13. Tough Block Copolymer Organogels and Elastomers as Short Fiber Composites

    Science.gov (United States)

    Kramer, Edward J.

    2012-02-01

    The origins of the exceptional toughness and elastomeric properties of gels and elastomers from block copolymers with semicrystalline syndiotactic polypropylene blocks will be discussed. Using synchrotron X-radiation small angle (SAXS) and wide angle X-ray scattering (WAXS) experiments were simultaneously performed during step cycle tensile deformation of these elastomers and gels. From these results the toughness can be attributed to the formation, orientation and elongation of the crystalline fibrils along the tensile direction. The true stress and true strain ɛH during each cycle were recorded, including the true strain at zero load ɛH,p after each cycle that resulted from the plastic deformation of the sPP crystals in the gel or elastomer. The initial Young's modulus Einit and maximum tangent modulus Emax in each cycle undergo dramatic changes as a function of ɛH,p, with Einit decreasing for ɛH,p 100 to 1000 at the highest maximum (nominal) strain. Based on SAXS patterns from the deformed and relaxed gels, as well as on previous results on deformation of semicrystalline random copolymers by Strobl and coworkers, we propose that the initial decrease in Einit and increase in Emax with ɛH,p are due to a breakup of the network of the original sPP crystal lamellae and the conversion of the sPP lamellae into fibrils whose aspect ratio increases with further plastic deformation, respectively. The gel elastic properties can be understood quantitatively as those of a short fiber composite with a highly deformable matrix. At zero stress the random copolymer midblock chains that connect the fibrils cause these to make all angles to the tensile axis (low Einit), while at the maximum strain the stiff, crystalline sPP fibrils align with the tensile axis producing a strong, relatively stiff gel. The evolution of the crystalline structure during deformation is confirmed by WAXS and FTIR measurements.

  14. PREPARATION AND PROPERTIES OF SILICONE-ACRYLATE COPOLYMER LATEX

    Institute of Scientific and Technical Information of China (English)

    Mu-jie Yang; Wei Zhang

    2004-01-01

    Silicone-acrylate copolymer latex was prepared through three different polymerization processes, i.e., the batch process, preemulsified monomer addition and the monomer addition process. The results revealed that the monomer addition process is a desirable approach to produce narrow particle size distribution latex with higher polymerization conversion and less amount of coagulum. The effect of silicone content on the glossiness and water absorption of latex film was investigated and the results showed that the glossiness of latex film is improved up to a silicone content of 10% of total monomers, but becomes impaired thereafter, whereas water absorption is reduced accordingly.

  15. Analysis of Photosensitivity of Copolymer Optical Fibre Preform

    Institute of Scientific and Technical Information of China (English)

    MA Hui; LI Zeng-Chang; MING Hai; ZHANG Qi-Jin; TAM Hwa-Yaw; ZHANG Yong-Sheng; ZHANG Tao; WANG Pei; XIE Jian-Ping

    2004-01-01

    @@ The photosensitivity of copolymer optical fibre preform is analysed in comparison with the doped one. The effects of write conditions such as pump power and pump time have been studied. Then, the preform is drawn into single mode polymer optical fibre with core refractive index of 1.499, and core-cladding refractive-index difference of 0.008. Long-period birefringence gratings with period of 120um are fabricated in the fibre. The duty cycle is 50%, and the refractive index change in the exposed area is about 1 × 10-3.

  16. Redox-controlled micellization of organometallic block copolymers.

    Science.gov (United States)

    Rider, David A; Winnik, Mitchell A; Manners, Ian

    2007-11-21

    Polystyrene-block-polyferrocenylsilane (PS-b-PFS) diblock copolymers were stoichiometrically oxidized in solution using salts of the one-electron oxidant tris(4-bromophenyl)ammoniumyl. Due to a redox-induced polarity change for the PFS block, self-assembly into well-defined spherical micelles occurs. The micelles are composed of a core of partially oxidized PFS segments and a corona of PS. When the micellar solutions were treated with the reducing agent decamethylcobaltocene, the spherical micelles disassemble and regenerate unassociated and pristine PS-b-PFS free chains. PMID:17971963

  17. Gamma radiation induced degradation in PE-PP block copolymer

    Energy Technology Data Exchange (ETDEWEB)

    Ravi, H. R.; Sreepad, H. R.; Ahmed, Khaleel; Govindaiah, T. N. [P.G. Department of Physics, Government College (Autonomous), Mandya - 571401, Karnataka State (India)

    2012-06-05

    In the present investigation, effect of gamma irradiation on the PP-PE block copolymer has been studied. The polymer has been subjected to gamma irradiation from 100 to 500 Mrad dosages. Characterization of the polymer using XRD and FTIR was done both before irradiation and after irradiation in each step. Effect of irradiation on the electrical properties of the material has also been studied. FTIR study shows that the sample loses C - C stretching mode of vibration but gains C=C stretching mode of vibration after irradiation. Present investigation clearly indicates that though the electrical conductivity increases in the material, it undergoes degradation and shows brittleness due to irradiation.

  18. Characterization and micellization of a poloxamer block copolymer

    DEFF Research Database (Denmark)

    Hvidt, S.; Pedersen, Walther Batsberg

    2007-01-01

    Several poloxamers that are symmetrical EPE block copolymers (E and P are ethylene and propylene oxide, respectively) have been characterized by size exclusion chromatography on Superose columns in water. The poloxamers contain between 12 and 26 wt% of smaller-size UV-absorbing impurities....... Poloxamer P94 (E28P48E28) forms micelles with increasing temperature, and micellization was investigated by eluent gel permeation chromatography (EGPC). EGPC results demonstrate that P94 impurities are not incorporated into the micelles up to 38°C. The importance of poloxamer heterogeneity for thermodynamic...

  19. Self-assembly in casting solutions of block copolymer membranes

    KAUST Repository

    Marques, Debora S.

    2013-01-01

    Membranes with exceptional pore regularity and high porosity were obtained from block copolymer solutions. We demonstrate by small-angle X-ray scattering that the order which gives rise to the pore morphology is already incipient in the casting solution. Hexagonal order was confirmed in PS-b-P4VP 175k-b-65k solutions in DMF/THF/dioxane with concentrations as high as 24 wt%, while lamellar structures were obtained in more concentrated solutions in DMF or DMF/dioxane. The change in order has been understood with the support of dissipative particle dynamic modeling. © 2013 The Royal Society of Chemistry.

  20. Metal Nanoparticle/Block Copolymer Composite Assembly and Disassembly

    OpenAIRE

    Li, Zihui; Sai, Hiroaki; Warren, Scott C.; Kamperman, Marleen; Arora, Hitesh; Gruner, Sol M.; Wiesner, Ulrich

    2009-01-01

    Ligand-stabilized platinum nanoparticles (Pt NPs) were self-assembled with poly(isoprene-block-dimethylaminoethyl methacrylate) (PI-b-PDMAEMA) block copolymers to generate organic-inorganic hybrid materials. High loadings of NPs in hybrids were achieved through usage of N,N-di-(2-(allyloxy)ethyl)-N-3-mercaptopropyl-N-3-methylammonium chloride as the ligand, which provided high solubility of NPs in various solvents as well as high affinity to PDMAEMA. From NP synthesis, existence of sub-1 nm P...

  1. Perspective: Evolutionary design of granular media and block copolymer patterns

    Science.gov (United States)

    Jaeger, Heinrich M.; de Pablo, Juan J.

    2016-05-01

    The creation of new materials "by design" is a process that starts from desired materials properties and proceeds to identify requirements for the constituent components. Such process is challenging because it inverts the typical modeling approach, which starts from given micro-level components to predict macro-level properties. We describe how to tackle this inverse problem using concepts from evolutionary computation. These concepts have widespread applicability and open up new opportunities for design as well as discovery. Here we apply them to design tasks involving two very different classes of soft materials, shape-optimized granular media and nanopatterned block copolymer thin films.

  2. STUDY ON ACRYLAMIDE-SODIUM ACRYLATE COPOLYMER GELS

    Institute of Scientific and Technical Information of China (English)

    ZHOU Maotang; LI Qian; XU Jiping

    1990-01-01

    Acrylamide-sodium acrylate copolymer hydrogels have been obtained by radiation techniques.Two different methods have been used to introduce -COONa groups into polymer chains of the gels: (1) by partial hydrolysis of acrylamide homopolymer gel; (2) by direct copolymerization and crosslinking of acrylamide and sodium acrylate in aqueous solutions. It was found that the gels obtained in different ways had different properties, the swelling character of the gels obtained by partial hydrolysis were more sensitive to pH of swelling aqueous media. In order to explain these differences,13 C-NMR techniques were used to investigate the sequence distribution of monomer units of both gels.

  3. Photoresponsive Block Copolymers Containing Azobenzenes and Other Chromophores

    Directory of Open Access Journals (Sweden)

    Takaomi Kobayashi

    2010-01-01

    Full Text Available Photoresponsive block copolymers (PRBCs containing azobenzenes and other chromophores can be easily prepared by controlled polymerization. Their photoresponsive behaviors are generally based on photoisomerization, photocrosslinking, photoalignment and photoinduced cooperative motions. When the photoactive block forms mesogenic phases upon microphase separation of PRBCs, supramolecular cooperative motion in liquid-crystalline PRBCs enables them to self-organize into hierarchical structures with photoresponsive features. This offers novel opportunities to photocontrol microphase-separated nanostructures of well-defined PRBCs and extends their diverse applications in holograms, nanotemplates, photodeformed devices and microporous films.

  4. Stability of the fcc structure in block copolymer systems.

    Science.gov (United States)

    Nonomura, Makiko

    2008-11-19

    The stability of the face-centered cubic (fcc) structure in microphase separated copolymers is investigated by a coarse-grained approach. Direct simulations of the equation for the microphase separation in three dimensions indicate that there is a narrow area above a certain degree of segregation in the phase diagram, where the fcc structure is the most stable structure. By employing the mode expansion, we have confirmed that the fcc structure can form as a metastable structure even in the weak segregation regime.

  5. Facile synthesis and characterization of novel biodegradable amphiphilic block copolymers bearing pendant hydroxyl groups

    International Nuclear Information System (INIS)

    Novel amphiphilic block copolymers bearing pendant hydroxyl groups polylactide-b–poly(3,3-bis(Hydroxymethyl–triazolylmethyl) oxetane)-b–polylactide (PLA-b–PHMTYO-b–PLA) were synthesized via a facile and efficient method. First, the block copolymer intermediates polylactide-b–poly(3,3-Diazidomethyloxetane)-b–polylactide (PLA-b–PBAMO-b–PLA) were synthesized through ring-opening polymerization of lactide using PBAMO as a macroinitiator. Following “Click” reaction of PLA-b–PBAMO-b–PLA with propargyl alcohol provided the targeted amphiphilic block copolymers PLA-b–PHMTYO-b–PLA with pendant hydroxyl groups. The composition and structure of prepared copolymers were characterized by 1H nuclear magnetic resonance (1H NMR) spectroscopy, Fourier transform infrared (FT-IR) and gel permeation chromatography (GPC). The self-assembly behavior of the copolymers in water was investigated by transmission electron microscope (TEM), dynamic light scattering (DLS) and static light scattering (SLS). The results showed that the novel copolymers PLA-b–PHMTYO-b–PLA self-assembled into spherical micelles with diameters ranging from 100 nm to 200 nm in aqueous solution. These copolymers also exhibited low critical micellar concentrations (CMC: 6.9 × 10−4 mg/mL and 3.9 × 10−5 mg/mL, respectively). In addition, the in vitro cytotoxicity of these copolymers was determined in the presence of L929 cells. The results showed that the block copolymers PLA-b–PHMTYO-b–PLA exhibited better biocompatibility. Therefore, these well-defined copolymers are expected to find some applications in drug delivery or tissue engineering. - Highlights: • The method to synthesize PLA-b–PHMTYO-b–PLA is relatively facile and efficient. • PLA-b–PHMTYO-b–PLA self-assembles into spherical micelles with low CMC in water. • PLA-b–PHMTYO-b–PLA exhibits better biocompatibility and biodegradability

  6. Facile synthesis and characterization of novel biodegradable amphiphilic block copolymers bearing pendant hydroxyl groups.

    Science.gov (United States)

    Hu, Gaicen; Fan, Xiaoshan; Xu, Bingcan; Zhang, Delong; Hu, Zhiguo

    2014-10-01

    Novel amphiphilic block copolymers bearing pendant hydroxyl groups polylactide-b-poly(3,3-bis(Hydroxymethyl-triazolylmethyl) oxetane)-b-polylactide (PLA-b-PHMTYO-b-PLA) were synthesized via a facile and efficient method. First, the block copolymer intermediates polylactide-b-poly(3,3-Diazidomethyloxetane)-b-polylactide (PLA-b-PBAMO-b-PLA) were synthesized through ring-opening polymerization of lactide using PBAMO as a macroinitiator. Following "Click" reaction of PLA-b-PBAMO-b-PLA with propargyl alcohol provided the targeted amphiphilic block copolymers PLA-b-PHMTYO-b-PLA with pendant hydroxyl groups. The composition and structure of prepared copolymers were characterized by (1)H nuclear magnetic resonance ((1)H NMR) spectroscopy, Fourier transform infrared (FT-IR) and gel permeation chromatography (GPC). The self-assembly behavior of the copolymers in water was investigated by transmission electron microscope (TEM), dynamic light scattering (DLS) and static light scattering (SLS). The results showed that the novel copolymers PLA-b-PHMTYO-b-PLA self-assembled into spherical micelles with diameters ranging from 100 nm to 200 nm in aqueous solution. These copolymers also exhibited low critical micellar concentrations (CMC: 6.9 × 10(-4)mg/mL and 3.9 × 10(-5)mg/mL, respectively). In addition, the in vitro cytotoxicity of these copolymers was determined in the presence of L929 cells. The results showed that the block copolymers PLA-b-PHMTYO-b-PLA exhibited better biocompatibility. Therefore, these well-defined copolymers are expected to find some applications in drug delivery or tissue engineering. PMID:25175206

  7. Facile synthesis and characterization of novel biodegradable amphiphilic block copolymers bearing pendant hydroxyl groups

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Gaicen; Fan, Xiaoshan; Xu, Bingcan; Zhang, Delong; Hu, Zhiguo, E-mail: zghu@htu.cn

    2014-10-01

    Novel amphiphilic block copolymers bearing pendant hydroxyl groups polylactide-b–poly(3,3-bis(Hydroxymethyl–triazolylmethyl) oxetane)-b–polylactide (PLA-b–PHMTYO-b–PLA) were synthesized via a facile and efficient method. First, the block copolymer intermediates polylactide-b–poly(3,3-Diazidomethyloxetane)-b–polylactide (PLA-b–PBAMO-b–PLA) were synthesized through ring-opening polymerization of lactide using PBAMO as a macroinitiator. Following “Click” reaction of PLA-b–PBAMO-b–PLA with propargyl alcohol provided the targeted amphiphilic block copolymers PLA-b–PHMTYO-b–PLA with pendant hydroxyl groups. The composition and structure of prepared copolymers were characterized by {sup 1}H nuclear magnetic resonance ({sup 1}H NMR) spectroscopy, Fourier transform infrared (FT-IR) and gel permeation chromatography (GPC). The self-assembly behavior of the copolymers in water was investigated by transmission electron microscope (TEM), dynamic light scattering (DLS) and static light scattering (SLS). The results showed that the novel copolymers PLA-b–PHMTYO-b–PLA self-assembled into spherical micelles with diameters ranging from 100 nm to 200 nm in aqueous solution. These copolymers also exhibited low critical micellar concentrations (CMC: 6.9 × 10{sup −4} mg/mL and 3.9 × 10{sup −5} mg/mL, respectively). In addition, the in vitro cytotoxicity of these copolymers was determined in the presence of L929 cells. The results showed that the block copolymers PLA-b–PHMTYO-b–PLA exhibited better biocompatibility. Therefore, these well-defined copolymers are expected to find some applications in drug delivery or tissue engineering. - Highlights: • The method to synthesize PLA-b–PHMTYO-b–PLA is relatively facile and efficient. • PLA-b–PHMTYO-b–PLA self-assembles into spherical micelles with low CMC in water. • PLA-b–PHMTYO-b–PLA exhibits better biocompatibility and biodegradability.

  8. New amphiphilic diblock copolymers: surfactant properties and solubilization in their micelles.

    Science.gov (United States)

    Garnier, Sébastien; Laschewsky, André

    2006-04-25

    Several series of amphiphilic diblock copolymers are investigated as macrosurfactants in comparison to reference low-molar-mass and polymeric surfactants. The various copolymers share poly(butyl acrylate) as a common hydrophobic block but are distinguished by six different hydrophilic blocks (one anionic, one cationic, and four nonionic hydrophilic blocks) with various compositions. Dynamic light scattering experiments indicate the presence of micelles over the whole concentration range from 10(-4) to 10 g x L(-1). Accordingly, the critical micellization concentrations are very low. Still, the surface tension of aqueous solutions of block copolymers decreases slowly but continuously with increasing concentration, without exhibiting a plateau. The longer the hydrophobic block, the shorter the hydrophilic block, and the less hydrophilic the monomer of the hydrophilic block is, the lower the surface tension is. However, the effects are small, and the copolymers reduce the surface tension much less than standard low-molar-mass surfactants. Also, the copolymers foam much less and even act as anti-foaming agents in classical foaming systems composed of standard surfactants. The copolymers stabilize O/W emulsions made of methyl palmitate as equally well as standard surfactants but are less efficient for O/W emulsions made of tributyrine. However, the copolymer micelles exhibit a high solubilization power for hydrophobic dyes, probably at their core-corona interface, in dependence on the initial geometry of the micelles and the composition of the block copolymers. Whereas micelles of copolymers with strongly hydrophilic blocks are stable upon solubilization, solubilization-induced micellar growth is observed for copolymers with moderately hydrophilic blocks. PMID:16618143

  9. Perfluorocyclobutyl-containing Amphiphilic Block Copolymers Synthesized by RAFT Polymerization

    Institute of Scientific and Technical Information of China (English)

    LI, Yongjun; ZHANG, Sen; FENG, Chun; ZHANG, Yaqin; LI, Qingnuan; LI, Wenxin; HUANG, Xiaoyu

    2009-01-01

    Amphiphilic block copolymers containing hydrophobic perfluorocyclobutyl-based (PFCB) polyacrylate and hydrophilic poly(ethylene glycol) (PEG) segments were prepared via reversible addition-fragmentation chain transfer (RAP-T) polymerization. The PFCB-containing acrylate monomer, p-(2-(p-tolyloxy)perfluorocyclobutoxy)phenyl acrylate, was first synthesized from commercially available compounds in good yields, and this kind of acrylate monomer can be homopolymerized by free radical polymerization or RAFT polymerization. Kinetic study showed the 2,2'-azobis(isobutyronitrile) (AIBN) initiated and cumyl dithiobenzoate (CDB) mediated RAFT polymerization was in a living fashion, as suggested by the fact that the number-average molecular weights (M_n) increased linearly with the conversions of the monomer, while the polydispersity indices kept less than 1.10. The block polymers with narrow molecular weight distributions (M_w/M_n≤1.21) were prepared through RAFT polymerization using PEG monomethyl ether capped with 4-cyanopentanoic acid dithiobenzoate end group as the macro chain transfer agent (mPEG-CTA). The length of the hydrophobic segment can be tuned by the feed ratio of the PFCB-based acrylate monomer and the extending of the polymerization time. The micellization behavior of the block copolymers in aqueous media was investigated by the fluorescence probe technique.

  10. Responsive block copolymer photonics triggered by protein-polyelectrolyte coacervation.

    Science.gov (United States)

    Fan, Yin; Tang, Shengchang; Thomas, Edwin L; Olsen, Bradley D

    2014-11-25

    Ionic interactions between proteins and polyelectrolytes are demonstrated as a method to trigger responsive transitions in block copolymer (BCP) photonic gels containing one neutral hydrophobic block and one cationic hydrophilic block. Poly(2-vinylpyridine) (P2VP) blocks in lamellar poly(styrene-b-2-vinylpyridine) block copolymer thin films are quaternized with primary bromides to yield swollen gels that show strong reflectivity peaks in the visible range; exposure to aqueous solutions of various proteins alters the swelling ratios of the quaternized P2VP (QP2VP) gel layers in the PS-QP2VP materials due to the ionic interactions between proteins and the polyelectrolyte. Parameters such as charge density, hydrophobicity, and cross-link density of the QP2VP gel layers as well as the charge and size of the proteins play significant roles on the photonic responses of the BCP gels. Differences in the size and pH-dependent charge of proteins provide a basis for fingerprinting proteins based on their temporal and equilibrium photonic response. The results demonstrate that the BCP gels and their photonic effect provide a robust and visually interpretable method to differentiate different proteins.

  11. Molecular exchange in block copolymer micelles: when corona chains overlap

    Science.gov (United States)

    Lu, Jie; Lodge, Timothy; Bates, Frank; Choi, Soohyung

    2013-03-01

    The chain exchange kinetics of poly(styrene-b-ethylenepropylene) (PS-PEP) diblock copolymer micelles in squalane (C30H62) was investigated using time-resolved small angle neutron scattering (TR-SANS). The solvent is a mixture of h-squalane and d-squalane that contrast-matches a mixed 50/50 h/d PS micelle core. As isotope labeled chains exchange, the core contrast decreases, leading to a reduction in scattering intensity. This strategy therefore allows direct probing of the chain exchange rate. Separate copolymer micellar solutions containing either deuterium labeled (dPS) or normal (hPS) poly(styrene) core blocks were prepared and mixed at room temperature, below the core glass transition temperature. The samples were heated to several temperatures (around 100 °C) and monitored by TR-SANS every 5 min. As polymer concentration was increased from 1% to 15% by volume, we observed a significant slowing down of chain exchange rate. Similar retarded kinetics was found when part of the solvent in the 1% solution was replaced by homopolymer PEP (comparable size as corona block). Furthermore, if all the solvent is replaced with PEP, no exchange was detected for up to 3hr at 200 °C. These results will be discussed in terms of a molecular model for chain exchange Infineum, Iprime, NIST, ORNL

  12. Rapid synthesis of graft copolymers from natural cellulose fibers.

    Science.gov (United States)

    Thakur, Vijay Kumar; Thakur, Manju Kumari; Gupta, Raju Kumar

    2013-10-15

    Cellulose is the most abundant natural polysaccharide polymer, which is used as such or its derivatives in a number of advanced applications, such as in paper, packaging, biosorption, and biomedical. In present communication, in an effort to develop a proficient way to rapidly synthesize poly(methyl acrylate)-graft-cellulose (PMA-g-cellulose) copolymers, rapid graft copolymerization synthesis was carried out under microwave conditions using ferrous ammonium sulfate-potassium per sulfate (FAS-KPS) as redox initiator. Different reaction parameters such as microwave radiation power, ratio of monomer, solvent and initiator concentrations were optimized to get the highest percentage of grafting. Grafting percentage was found to increase with increase in microwave power up to 70%, and maximum 36.73% grafting was obtained after optimization of all parameters. Fourier transforms infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) and thermogravimetric analysis (TGA/DTA/DTG) analysis were used to confirm the graft copolymerization of poly(methyl acrylate) (PMA) onto the mercerized cellulose. The grafted cellulosic polymers were subsequently subjected to the evaluation of different physico-chemical properties in order to access their application in everyday life, in a direction toward green environment. The grafted copolymers demonstrated increased chemical resistance, and higher thermal stability. PMID:23987417

  13. Metal Nanoparticle/Block Copolymer Composite Assembly and Disassembly.

    Science.gov (United States)

    Li, Zihui; Sai, Hiroaki; Warren, Scott C; Kamperman, Marleen; Arora, Hitesh; Gruner, Sol M; Wiesner, Ulrich

    2009-01-01

    Ligand-stabilized platinum nanoparticles (Pt NPs) were self-assembled with poly(isoprene-block-dimethylaminoethyl methacrylate) (PI-b-PDMAEMA) block copolymers to generate organic-inorganic hybrid materials. High loadings of NPs in hybrids were achieved through usage of N,N-di-(2-(allyloxy)ethyl)-N-3-mercaptopropyl-N-3-methylammonium chloride as the ligand, which provided high solubility of NPs in various solvents as well as high affinity to PDMAEMA. From NP synthesis, existence of sub-1 nm Pt NPs was confirmed by high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM) images. Estimations of the Pt NP ligand head group density based on HAADF-STEM images and thermogravimetric analysis (TGA) data yielded results comparable to what has been found for alkanethiol self-assembled monolayers (SAMs) on flat Pt {111} surfaces. Changing the volume fraction of Pt NPs in block copolymer-NP composites yielded hybrids with spherical micellar, wormlike micellar, lamellar and inverse hexagonal morphologies. Disassembly of hybrids with spherical, wormlike micellar, and lamellar morphologies generated isolated metal-NP based nano-spheres, cylinders and sheets, respectively. Results suggest the existence of powerful design criteria for the formation of metal-based nanostructures from designer blocked macromolecules.

  14. Transport of Water in Semicrystalline Block Copolymer Membranes

    Science.gov (United States)

    Hallinan, Daniel; Oparaji, Onyekachi

    Poly(styrene)-block-poly(ethylene oxide) (PS- b-PEO) is a semicrystalline block copolymer (BCP) with interesting properties. It is mechanically tough, amphiphilic, and has a polar phase. The mechanical toughness is due to the crystallinity of PEO and the high glass transition temperature of PS, as well as the morphological structure of the BCP. The polymer has high CO2, water, and salt solubility that derive from the polar PEO component. Potential applications include CO2 separation, water purification, and lithium air batteries. In all of the aforementioned applications, water transport is an important parameter. The presence of water can also affect thermal and mechanical properties. Water transport and thermal and mechanical properties of a lamellar PS- b-PEO copolymer have been measured as a function of water activity. Water transport can be affected by the heterogeneous nature of a semicrystalline BCP. Therefore, Fourier transform infrared - attenuated total reflectance (FTIR-ATR) spectroscopy has been employed, because water transport and polymer swelling can be measured simultaneously. The effect of BCP structure on transport has been investigated by comparing water transport in PS- b-PEO to a PEO homopolymer. The crystalline content of the PEO and the presence of glassy PS lamellae will be used to explain the transport results.

  15. Superparamagnetic-oil-filled nanocapsules of a ternary graft copolymer.

    Science.gov (United States)

    Miao, Lei; Liu, Feng; Lin, Shudong; Hu, Jiwen; Liu, Guojun; Yang, Yang; Tu, Yuanyuan; Hou, Chengmin; Li, Fei; Hu, Meilong; Luo, Hongsheng

    2014-04-15

    Stearic and oleic acid-coated Fe3O4 nanoparticles were dispersed in decahydronaphthalene (DN). This oil phase was dispersed in water using ternary graft copolymer poly(glycidyl methacrylate)-graft-[polystyrene-ran-(methoxy polyethylene glycol)-ran-poly(2-cinnamoyloxyethyl methacrylate)] or PGMA-g-(PS-r-MPEG-r-PCEMA) to yield capsules. The walls of these capsules were composed of PCEMA chains that were soluble in neither water nor DN, and the DN-soluble PS chains stretched into the droplet phase and the water-soluble MPEG chains extended into the aqueous phase. Structurally stable capsules were prepared by photolyzing the capsules with UV light to cross-link the PCEMA layer. Both the magnetite particles and the magnetite-containing capsules were superparamagnetic. The sizes of the capsules increased as they were loaded with more magnetite nanoparticles, reaching a maximal loading of ~0.5 mg of ligated magnetite nanoparticles per mg of copolymer. But the radii of the capsules were always oil-filled polymer nanocapsules--was prepared. The more heavily loaded capsules were readily captured by a magnet and could be redispersed via shaking. Although the cross-linked capsules survived this capturing and redispersing treatment many times, the un-cross-linked capsules ruptured after four cycles. These results suggest the potential to tailor-make capsules with tunable wall stability for magnetically controlled release applications. PMID:24684287

  16. Clear antismudge unimolecular coatings of diblock copolymers on glass plates.

    Science.gov (United States)

    Macoretta, Danielle; Rabnawaz, Muhammad; Grozea, Claudia M; Liu, Guojun; Wang, Yu; Crumblehulme, Alison; Wyer, Martin

    2014-12-10

    Two poly[3-(triisopropyloxysilyl)propyl methacrylate]-block-poly[2-(perfluorooctyl)ethyl methacrylate] (PIPSMA-b-PFOEMA) samples and one poly(perfluoropropylene oxide)-block-poly-[3-(triisopropyloxysilyl)propyl methacrylate] (PFPO-b-PIPSMA) sample were synthesized, characterized, and used to coat glass plates. These coatings were formed by evaporating a dilute polymer solution containing HCl, which catalyzed PIPSMA's sol-gel chemistry. Polymer usage was minimized by targeting at diblock copolymer unimolecular (brush) layers that consisted of a sol-gelled grafted PIPSMA layer and an oil- and water-repellant fluorinated surface layer. Investigated is the effect of varying the catalyst amount, polymer amount, as well as block copolymer type and composition on the structure, morphology, and oil- and water-repellency of the coatings. Under optimized conditions, the prepared coatings were optically clear and resistant to writing by a permanent marker. The marker's trace was the faintest on PFPO-b-PIPSMA coatings. In addition, the PFPO-b-PIPSMA coatings were far more wear-resistant than the PIPSMA-b-PFOEMA coatings.

  17. Phase Separation in Poly(urethane urea) Multiblock Copolymers

    Science.gov (United States)

    Garrett, J. T.; Xu, R.; Cho, J.; Runt, J.

    2002-03-01

    The current paper is a continuation of our research on microdomain morphology and phase separation of model poly(urethane urea) copolymers, complimenting our previous AFM and small-angle x-ray scattering studies. Phase transitions were monitored using both dynamic mechanical analysis and DSC, taking care to keep the temperature below where chemical degradation becomes significant. Surprisingly, soft phase Tgs were found to consistently decrease in temperature with increasing hard segment content in the copolymers. This is seemingly in contrast with an increase in unlike segment mixing in the domains with increasing hard segment content, as determined from SAXS. Several possible explanations for this behavior are proposed. The nature of the hard domains was also characterized using wide-angle x-ray diffraction experiments. Evidence of very weak crystalline diffraction peak(s) where found, superimposed on the amorphous halo. Finally, we also evaluated the sensitivity of Fourier transform infrared spectroscopy to hard/soft segment phase separation in these systems.

  18. Clear antismudge unimolecular coatings of diblock copolymers on glass plates.

    Science.gov (United States)

    Macoretta, Danielle; Rabnawaz, Muhammad; Grozea, Claudia M; Liu, Guojun; Wang, Yu; Crumblehulme, Alison; Wyer, Martin

    2014-12-10

    Two poly[3-(triisopropyloxysilyl)propyl methacrylate]-block-poly[2-(perfluorooctyl)ethyl methacrylate] (PIPSMA-b-PFOEMA) samples and one poly(perfluoropropylene oxide)-block-poly-[3-(triisopropyloxysilyl)propyl methacrylate] (PFPO-b-PIPSMA) sample were synthesized, characterized, and used to coat glass plates. These coatings were formed by evaporating a dilute polymer solution containing HCl, which catalyzed PIPSMA's sol-gel chemistry. Polymer usage was minimized by targeting at diblock copolymer unimolecular (brush) layers that consisted of a sol-gelled grafted PIPSMA layer and an oil- and water-repellant fluorinated surface layer. Investigated is the effect of varying the catalyst amount, polymer amount, as well as block copolymer type and composition on the structure, morphology, and oil- and water-repellency of the coatings. Under optimized conditions, the prepared coatings were optically clear and resistant to writing by a permanent marker. The marker's trace was the faintest on PFPO-b-PIPSMA coatings. In addition, the PFPO-b-PIPSMA coatings were far more wear-resistant than the PIPSMA-b-PFOEMA coatings. PMID:25399630

  19. Complexation Between Cationic Diblock Copolymers and Plasmid DNA

    Science.gov (United States)

    Jung, Seyoung; Reineke, Theresa; Lodge, Timothy

    Deoxyribonucleic acids (DNA), as polyanions, can spontaneously bind with polycations to form polyelectrolyte complexes. When the polycation is a diblock copolymer with one cationic block and one uncharged hydrophilic block, the polyelectrolyte complexes formed with plasmid DNA (pDNA) are often colloidally stable, and show great promise in the field of polymeric gene therapy. While the resulting properties (size, stability, and toxicity to biological systems) of the complexes have been studied for numerous cationic diblocks, the fundamentals of the pDNA-diblock binding process have not been extensively investigated. Herein, we report how the cationic block content of a diblock influences the pDNA-diblock interactions. pDNA with 7164 base pairs and poly(2-deoxy-2-methacrylamido glucopyranose)-block-poly(N-(2-aminoethyl) methacrylamide) (PMAG-b-PAEMA) are used as the model pDNA and cationic diblock, respectively. To vary the cationic block content, two PMAG-b-PAEMA copolymers with similar PMAG block lengths but distinct PAEMA block lengths and a PAEMA homopolymer are utilized. We show that the enthalpy change from pDNA-diblock interactions is dependent on the cationic diblock composition, and is closely associated with both the binding strength and the pDNA tertiary structure.

  20. Responsive block copolymer photonics triggered by protein-polyelectrolyte coacervation.

    Science.gov (United States)

    Fan, Yin; Tang, Shengchang; Thomas, Edwin L; Olsen, Bradley D

    2014-11-25

    Ionic interactions between proteins and polyelectrolytes are demonstrated as a method to trigger responsive transitions in block copolymer (BCP) photonic gels containing one neutral hydrophobic block and one cationic hydrophilic block. Poly(2-vinylpyridine) (P2VP) blocks in lamellar poly(styrene-b-2-vinylpyridine) block copolymer thin films are quaternized with primary bromides to yield swollen gels that show strong reflectivity peaks in the visible range; exposure to aqueous solutions of various proteins alters the swelling ratios of the quaternized P2VP (QP2VP) gel layers in the PS-QP2VP materials due to the ionic interactions between proteins and the polyelectrolyte. Parameters such as charge density, hydrophobicity, and cross-link density of the QP2VP gel layers as well as the charge and size of the proteins play significant roles on the photonic responses of the BCP gels. Differences in the size and pH-dependent charge of proteins provide a basis for fingerprinting proteins based on their temporal and equilibrium photonic response. The results demonstrate that the BCP gels and their photonic effect provide a robust and visually interpretable method to differentiate different proteins. PMID:25393374

  1. Metal Nanoparticle/Block Copolymer Composite Assembly and Disassembly.

    Science.gov (United States)

    Li, Zihui; Sai, Hiroaki; Warren, Scott C; Kamperman, Marleen; Arora, Hitesh; Gruner, Sol M; Wiesner, Ulrich

    2009-01-01

    Ligand-stabilized platinum nanoparticles (Pt NPs) were self-assembled with poly(isoprene-block-dimethylaminoethyl methacrylate) (PI-b-PDMAEMA) block copolymers to generate organic-inorganic hybrid materials. High loadings of NPs in hybrids were achieved through usage of N,N-di-(2-(allyloxy)ethyl)-N-3-mercaptopropyl-N-3-methylammonium chloride as the ligand, which provided high solubility of NPs in various solvents as well as high affinity to PDMAEMA. From NP synthesis, existence of sub-1 nm Pt NPs was confirmed by high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM) images. Estimations of the Pt NP ligand head group density based on HAADF-STEM images and thermogravimetric analysis (TGA) data yielded results comparable to what has been found for alkanethiol self-assembled monolayers (SAMs) on flat Pt {111} surfaces. Changing the volume fraction of Pt NPs in block copolymer-NP composites yielded hybrids with spherical micellar, wormlike micellar, lamellar and inverse hexagonal morphologies. Disassembly of hybrids with spherical, wormlike micellar, and lamellar morphologies generated isolated metal-NP based nano-spheres, cylinders and sheets, respectively. Results suggest the existence of powerful design criteria for the formation of metal-based nanostructures from designer blocked macromolecules. PMID:21103025

  2. Monte Carlo Simulation for the Adsorption of Symmetric Triblock Copolymers

    Institute of Scientific and Technical Information of China (English)

    彭昌军; 李健康; 刘洪来; 胡英

    2004-01-01

    The adsorption behavior of symmetric triblock copolymers, Am/2BnAm/2, from a nonselective solvent at solid-liquid interface has been studied by Monte Carlo simulations on a simple lattice model. Either segment A or segment B is attractive, while the other is non-attractive to the surface. Influences of the adsorption energy,bulk concentration, chain composition and chain length on the microstructure of adsorbed layers are presented.The results show that the total surface coverage and the adsorption amount increases monotonically as the bulk concentration increases. The larger the adsorption energy and the higher the fraction of adsorbing segments, the higher the total surface coverage is exhibited. The product of surface coverage and the proportion of non-attractive segments are nearly independent of the chain length, and the logarithm of the adsorption amount is a linear function of the reciprocal of the reduced temperature. When the adsorption energy is larger, the adsorption amount exhibits a maximum as the fraction of adsorbing segment increases. The adsorption isotherms of copolymers with different length of non-attractive segments can be mapped onto a single curve under given adsorption energy. The adsorption layer thickness decreases as the adsorption energy and the fraction of adsorbing segments increases, but it increhses as the length of non-attractive segments increases. The tails mainly govern the adsorption layer thickness.

  3. Ion transport mediated by copolymers composed of polyoxyethylene and polyoxypropylene

    International Nuclear Information System (INIS)

    Block copolymers composed of polyoxyethylene and polyoxypropylene were found to increase the influx of Na+ and the efflux of K+ from human erythrocytes. They were, however, ineffective at promoting the transport of 45Ca2+. The size of the ion fluxes induced by the copolymers correlated with their efficacy in stimulating inflammation. These compounds were also found to induce conductance increases in planar lipid bilayers in a nonvoltage dependent and nonstepwise manner. In both experimental systems, ion transport was facilitated only under temperature and ionic-strength conditions in which the polymers form aggregates in aqueous solution. In neither system did the concentration dependence of transport activity exhibit a pronounced cooperativity. These observations are consistent with the view that aqueous monomers of these surface active agents partition into the membrane, where they facilitate the conductive movement of monovalent cations by means of a carrier type mechanism. As a novel class of ionophores, these substances are of practical interest because they can be water soluble and are potentially reversible

  4. DEFORMATION OF COPOLYMER MICELLES INDUCED BY AMPHIPHILIC DIMER PARTICLES

    Institute of Scientific and Technical Information of China (English)

    Xiao-chun Qin; Chun-lai Ren

    2012-01-01

    Combining self-consistent-field theory and density-functional theory,we systematically study the deformation of copolymer micelles induced by the presence of amphiphilic dimer particles.Due to the amphiphilic nature,dimer particles tend to accumulate onto the interface of the copolymer micelle.With increasing concentration of the symmetric dimer particles,which are made of two identical spherical particles,the micelle deforms from the initial sphere to ellipse,dumbbell,and finally separates into two micelles.Furthermore,asymmetric dimer particles,composed by two particles with different sizes,are considered to investigate the influence of geometry of dimer particles on the deformation of the micelle.It is found that the micelle inclines to deform into dumbbell due to the additional curvature originating in the gathering of asymmetric dimer particles onto the interface of the micelle.The present study on the deformation of micelles is useful to understand the possible shape variation in the course of cell division/fusion.

  5. Monte Carlo simulation of AB-copolymers with saturating bonds

    CERN Document Server

    Chertovich, A V; Khokhlov, A R; Bohr, J

    2003-01-01

    Structural transitions in a single AB-copolymer chain where saturating bonds can be formed between A-and B-units are studied by means of Monte Carlo computer simulations using the bond fluctuation model. Three transitions are found, coil-globule, coil-hairpin and globule-hairpin, depending on the nature of a particular AB-sequence: statistical random sequence, diblock sequence and 'random-complementary' sequence (one-half of such an AB-sequence is random with Bernoulli statistics while the other half is complementary to the first one). The properties of random-complementary sequences are closer to those of diblock sequences than to the properties of random sequences. The model (although quite rough) is expected to represent some basic features of real RNA molecules, i.e. the formation of secondary structure of RNA due to hydrogen bonding of corresponding bases and stacking interactions of the base pairs in helixes. We introduce the notation of RNA-like copolymers and discuss in what sense the sequences studie...

  6. Crystalline free energies of micelles of diblock copolymer solutions

    CERN Document Server

    D'Adamo, Giuseppe; 10.1063/1.3509391

    2012-01-01

    We report a characterization of the relative stability and structural behavior of various micellar crystals of an athermal model of AB-diblock copolymers in solution. We adopt a previously devel- oped coarse-graining representation of the chains which maps each copolymer on a soft dumbbell. Thanks to this strong reduction of degrees of freedom, we are able to investigate large aggregated systems, and for a specific length ratio of the blocks f = MA/(MA + MB) = 0.6, to locate the order-disorder transition of the system of micelles. Above the transition, mechanical and thermal properties are found to depend on the number of particles per lattice site in the simulation box, and the application of a recent methodology for multiple occupancy crystals (B.M. Mladek et al., Phys. Rev. Lett. 99, 235702 (2007)) is necessary to correctly define the equilibrium state. Within this scheme we have performed free energy calculations at two reduced density {\\rho}/{\\rho}\\ast = 4,5 and for several cubic structures as FCC,BCC,A1...

  7. Nanowire polarizers by guided self-assembly of block copolymers

    Science.gov (United States)

    Roberts, Philip M. S.; Baum, Alexandra; Karamath, James; Evans, Allan; Shibata, Satoshi; Walton, Harry

    2014-01-01

    Wire-grid polarizers (WGPs) are currently limited by their wafer-scale manufacturing methods to sizes of approximately 12 to 18 in. For large-size displays, a new method for the production of large-area WGPs is required. Large-area WGPs were simulated using the finite-difference-time-domain method, and a scaleable method for their production based on a block copolymer (BCP)-nanostructured template was implemented. The nanostructured template is globally aligned through the use of a cylinder-forming liquid crystal (LC) diblock copolymer, which is first aligned on a rubbed polyimide substrate. A surface-relief template is produced using the differential dry etch rates of the cylinder-forming component and LC polymer matrix component of the BCP. The template is metalized to produce a WGP. Polarizers of arbitrary size with polarization efficiency up to 0.6 have been made in close agreement with calculated values for idealized structures. The choice of the cylinder-forming polymer is critical to the degree of alignment of the template, and the thermal stability of the LC polymer matrix is critical to the stability of the template during etching.

  8. Ethylene-Octene Copolymers/Organoclay Nanocomposites: Preparation and Properties

    Directory of Open Access Journals (Sweden)

    Alice Tesarikova

    2016-01-01

    Full Text Available Two ethylene-octene copolymers with 17 and 45 wt.% of octene (EOC-17 and EOC-45 were compared in nanocomposites with Cloisite 93A. EOC-45 nanocomposites have a higher elongation at break. Dynamical mechanical analysis (DMA showed a decrease of tan⁡δ with frequency for EOC-17 nanocomposites, but decrease is followed by an increase for EOC-45 nanocomposites; DMA showed also increased modulus for all nanocomposites compared to pure copolymers over a wide temperature range. Barrier properties were improved about 100% by addition of organoclay; they were better for EOC-17 nanocomposites due to higher crystallinity. X-ray diffraction (XRD together with transmission electron microscopy (TEM showed some intercalation for EOC-17 but much better dispersion for EOC-45 nanocomposites. Differential scanning calorimetry (DSC showed increased crystallization temperature Tc for EOC-17 nanocomposite (aggregates acted as nucleation agents but decrease Tc for EOC-45 nanocomposite together with greatly influenced melting peak. Accelerated UV aging showed smaller C=O peak for EOC-45 nanocomposites.

  9. Designing block copolymer architectures for targeted membrane performance

    KAUST Repository

    Dorin, Rachel Mika

    2014-01-01

    Using a combination of block copolymer self-assembly and non-solvent induced phase separation, isoporous ultrafiltration membranes were fabricated from four poly(isoprene-b-styrene-b-4-vinylpyridine) triblock terpolymers with similar block volume fractions but varying in total molar mass from 43 kg/mol to 115 kg/mol to systematically study the effect of polymer size on membrane structure. Small-angle X-ray scattering was used to probe terpolymer solution structure in the dope. All four triblocks displayed solution scattering patterns consistent with a body-centered cubic morphology. After membrane formation, structures were characterized using a combination of scanning electron microscopy and filtration performance tests. Membrane pore densities that ranged from 4.53 × 1014 to 1.48 × 1015 pores/m 2 were observed, which are the highest pore densities yet reported for membranes using self-assembly and non-solvent induced phase separation. Hydraulic permeabilities ranging from 24 to 850 L m-2 h-1 bar-1 and pore diameters ranging from 7 to 36 nm were determined from permeation and rejection experiments. Both the hydraulic permeability and pore size increased with increasing molar mass of the parent terpolymer. The combination of polymer characterization and membrane transport tests described here demonstrates the ability to rationally design macromolecular structures to target specific performance characteristics in block copolymer derived ultrafiltration membranes. © 2013 Elsevier Ltd. All rights reserved.

  10. Indirect rapid prototyping of antibacterial acid anhydride copolymer microneedles

    International Nuclear Information System (INIS)

    Microneedles are needle-like projections with microscale features that may be used for transdermal delivery of a variety of pharmacologic agents, including antibacterial agents. In the study described in this paper, an indirect rapid prototyping approach involving a combination of visible light dynamic mask micro-stereolithography and micromolding was used to prepare microneedle arrays out of a biodegradable acid anhydride copolymer, Gantrez® AN 169 BF. Fourier transform infrared spectroscopy, energy dispersive x-ray spectrometry and nanoindentation studies were performed to evaluate the chemical and mechanical properties of the Gantrez® AN 169 BF material. Agar plating studies were used to evaluate the in vitro antimicrobial performance of these arrays against Bacillus subtilis, Candida albicans, Enterococcus faecalis, Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. Large zones of growth inhibition were noted for Escherichia coli, S. aureus, Enterococcus faecalis and B. subtilis. The performance of Gantrez® AN 169 BF against several bacteria suggests that biodegradable acid anhydride copolymer microneedle arrays prepared using visible light dynamic mask micro-stereolithography micromolding may be useful for treating a variety of skin infections. (communication)

  11. Continuous concentric lamellar block copolymer nanofibers with long range order.

    Science.gov (United States)

    Ma, Minglin; Titievsky, Kirill; Thomas, Edwin L; Rutledge, Gregory C

    2009-04-01

    Fibers with long-range ordered internal structures have applications in various areas such as photonic band gap fibers, optical waveguides, wearable power, sensors, and sustained drug release. Up to now, such fibers have been formed by melt extrusion or drawing from a macroscopic preformed rod and were typically limited to diameters >10 microm with internal features >1 microm (Abouraddy, A. F.; et al. Nat. Mater. 2007, 6, 336). We describe a new class of continuous fibers and fibrous membranes with long-range ordered concentric lamellar structure that have fiber diameters and feature sizes 2-3 orders of magnitude smaller than those made by conventional methods. These fibers are created through confined self-assembly of block copolymers within core-shell electrospun filaments. In contrast to the copolymer in bulk or thin films, the domains of the concentric lamellar structure are shown here to vary quantitatively with (radial) position and to exhibit a novel dislocation that accommodates variations in fiber diameter robustly, permitting for the first time the realization of long-range order in technologically meaningful, continuous fibers with approximately 300 nm diameter and 50 nm radial period. PMID:19351195

  12. Hollow ZIF-8 Nanoworms from Block Copolymer Templates

    KAUST Repository

    Yu, Haizhou

    2015-10-16

    Recently two quite different types of “nano-containers” have been recognized as attractive potential drug carriers; these are wormlike filamenteous micelles (“filomicelles”) on the one hand and metal organic frameworks on the other hand. In this work we combine these two concepts. We report for the first time the manufacturing of metal organic framework nanotubes with a hollow core. These worm-like tubes are about 200 nm thick and several μm long. The preparation is simple: we first produce long and flexible filament-shaped micelles by block copolymer self-assembly. These filomicelles serve as templates to grow a very thin layer of interconnected ZIF-8 crystals on their surface. Finally the block copolymer is removed by solvent extraction and the hollow ZIF-8 nanotubes remain. These ZIF-NTs are surprisingly stable and withstand purification by centrifugation. The synthesis method is straightforward and can easily be applied for other metal organic framework materials. The ZIF-8 NTs exhibit high loading capacity for the model anti cancer drug doxorubicin (DOX) with a pH-triggered release. Hence, a prolonged circulation in the blood stream and a targeted drug release behavior can be expected.

  13. Fabrication of Bioactive Surfaces by Functionalization of Electroactive and Surface-Active Block Copolymers

    Directory of Open Access Journals (Sweden)

    Omotunde Olubi

    2014-08-01

    Full Text Available Biofunctional block copolymers are becoming increasingly attractive materials as active components in biosensors and other nanoscale electronic devices. We have described two different classes of block copolymers with biofuctional properties. Biofunctionality for block copolymers is achieved through functionalization with appropriate biospecific ligands. We have synthesized block copolymers of electroactive poly(3-decylthiophene and 2-hydroxyethyl methacrylate by atom transfer radical polymerization. The block copolymers were functionalized with the dinitrophenyl (DNP groups, which are capable of binding to Immunoglobulin E (IgE on cell surfaces. The block copolymers were shown to be redox active. Additionally, the triblock copolymer of α, ω-bi-biotin (poly(ethylene oxide-b-poly (styrene-b-poly(ethylene oxide was also synthesized to study their capacity to bind fluorescently tagged avidin. The surface-active property of the poly(ethylene oxide block improved the availability of the biotin functional groups on the polymer surfaces. Fluorescence microscopy observations confirm the specific binding of biotin with avidin.

  14. Anti-plasticizing effect of amorphous indomethacin induced by specific intermolecular interactions with PVA copolymer.

    Science.gov (United States)

    Ueda, Hiroshi; Aikawa, Shohei; Kashima, Yousuke; Kikuchi, Junko; Ida, Yasuo; Tanino, Tadatsugu; Kadota, Kazunori; Tozuka, Yuichi

    2014-09-01

    The mechanism of how poly(vinyl alcohol-co-acrylic acid-co-methyl methacrylate) (PVA copolymer) stabilizes an amorphous drug was investigated. Solid dispersions of PVA copolymer, poly(vinyl pyrrolidone) (PVP), and poly(vinyl pyrrolidone-co-vinyl acetate) (PVPVA) with indomethacin (IMC) were prepared. The glass transition temperature (Tg)-proportion profiles were evaluated by differential scanning calorimetry (DSC). General Tg profiles decreasing with the IMC ratio were observed for IMC-PVP and IMC-PVPVA samples. An interesting antiplasticizing effect of IMC on PVA copolymer was observed; Tg increased up to 20% IMC ratio. Further addition of IMC caused moderate reduction with positive deviation from theoretical values. Specific hydrophilic and hydrophobic interactions between IMC and PVA copolymer were revealed by infrared spectra. The indole amide of IMC played an important role in hydrogen bonding with PVA copolymer, but not with PVP and PVPVA. X-ray diffraction findings and the endotherm on DSC profiles suggested that PVA copolymer could form a semicrystalline structure and a possibility of correlation of the crystallographic nature with its low hygroscopicity was suggested. PVA copolymer was able to prevent crystallization of amorphous IMC through both low hygroscopicity and the formation of a specific intermolecular interaction compared with that with PVP and PVPVA.

  15. Synthesis, Micellization and Characterization of Novel Amphiphilic β-Cyclodextrin/Poly(L-aspartate) Copolymer

    Institute of Scientific and Technical Information of China (English)

    GUO Yan-ling; CUI Zhao-shan; HAN Min

    2013-01-01

    A novel amphiphilic β-cyclodextrin/poly(L-aspartate)(β-CD-PASP) copolymer was prepared by ringopening polymerization of polysuccinimide(PSI).This copolymer bears β-CD units along the macromolecular chain and the structure was characterized by infrared(IR) and proton nuclear magnetic resonance(1H NMR).The molecular weight of the copolymer was determined by gel permeation chromatography(GPC).The copolymer micelle were prepared by direct dissolution method.The critical micelle concentration(CMC) of the copolymer micelle was measured by flourescence technique with pyrene as probe.The size distribution of micelle was characterized on a dynamic laser light scattering particle size analyzer and its shape was observed by transmission electron microscopy(TEM).The results show that the copolymer could self-assemble into micelle with a low CMC,and the effective diameter of the micelle was 116.3 nm.The methotrexate(MTX)-loaded micelle were prepared and the drug loading content(DLC) was 22.86%.The MTX-loaded copolymer exhibited a better water-solubility than the free drug.

  16. Morphology and electrical properties of electrochemically synthesized pyrrole-formyl pyrrole copolymer

    Science.gov (United States)

    Gholami, Mehrdad; Nia, Pooria Moozarm; Alias, Yatimah

    2015-12-01

    A direct electrochemical copolymerization of pyrrole-formyl pyrrole (Py-co-FPy) was carried out by oxidative copolymerization of formyl pyrrole and pyrrole in LiClO4 aqueous solution through galvanostatic method. The (Py-co-FPy) copolymer was characterized using Fourier-transform infrared spectroscopy (FT-IR), field emission scanning electron microscope (FESEM), energy-filtering transmission electron microscope (EFTEM), thermal gravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The FESEM images showed that the synthesized copolymer had a hollow whelk-like helixes structure, which justifies the enhancement of charge transportation through the copolymer film. Cyclic voltammetry studies revealed that the electrocatalytic activity of synthesized copolymer has improved and the surface coverage in copolymer enhanced 1.6 times compared to polypyrrole alone. Besides, (Py-co-FPy) copolymer showed 2.5 times lower electrochemical charge transfer resistance (Rct) value in impedance spectroscopy. Therefore, this copolymer has a strong potential to be used in several applications such as sensor applications.

  17. Copolymer semiconductors comprising thiazolothiazole or benzobisthiazole, or benzobisoxazole electron acceptor subunits, and electron donor subunits, and their uses in transistors and solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Jenekhe, Samson A; Subramaniyan, Selvam; Ahmed, Eilaf; Xin, Hao; Kim, Felix Sunjoo

    2014-10-28

    The inventions disclosed, described, and/or claimed herein relate to copolymers comprising copolymers comprising electron accepting A subunits that comprise thiazolothiazole, benzobisthiazole, or benzobisoxazoles rings, and electron donating subunits that comprise certain heterocyclic groups. The copolymers are useful for manufacturing organic electronic devices, including transistors and solar cells. The invention also relates to certain synthetic precursors of the copolymers. Methods for making the copolymers and the derivative electronic devices are also described.

  18. SYNTHESIS AND PROPERTIES OF COPOLYMERS CONTAINING CUCURBIT[6]URIL-BASED PSEUDOROTAXANE STRUCTURE

    Institute of Scientific and Technical Information of China (English)

    Qiang Ma; Hui Yang; Kimoon Kim; Ye-bang Tan

    2012-01-01

    Novel copolymers based on acrylamide (AM) and complex pseudorotaxane monomer N'-(3-vinylbenzyl)-l,4-diaminobutane dihydrochloride with cucurbit[6]uril (CB[6]) (3VBCB) were prepared via free-radical polymerization in aqueous solution,and characterized by 1H-NMR,FT-IR,elemental analysis and static light scattering.The compositions of the copolymers (PAM3VBCB) with pseudorotaxane units were determined by 1H-NMR and elemental analysis.Thermal properties of the copolymers were studied by TGA,and the effects of the copolymer concentration and pH on the average hydrodynamic radius (Rh) of the copolymer molecules were studied by dynamic light scattering (DLS).The experiment data show that CB[6] beads are localized on 1,4-diaminobutane units in side chains of the copolymers.TGA results show that thermal stability of the copolymer increases with increasing the content of pseudorotaxane unit because of the enhanced rigidity and the bulky steric hindrance of 3VBCB in side chains of PAM3VBCB.DLS data show that the average hydrodynamic radius of copolymer molecules increases with the increase in the copolymer concentration,and both the pH and electrical conductivity of PAM3VBCB solutions demonstrate an acute change with addition of NaOH because of CB[6]dethreading from the side chains of PAM3VBCB.CB[6] threading and dethreading of PAM3VBCB could be controlled by addition of BaCl2 and Na2SO4.

  19. Fluorosilicone multi-block copolymers tethering quaternary ammonium salt groups for antimicrobial purpose

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Fang; Qin, Xiaoshuai; Li, Yancai; Ren, Lixia; Zhao, Yunhui, E-mail: zhaoyunhui@tju.edu.cn; Yuan, Xiaoyan

    2015-08-30

    Highlights: • QAS-containing fluorosilicone multi-block copolymers were synthesized. • The block length of PHFBMA in the copolymers was tailored via RAFT polymerization. • Surface roughness of the copolymers decreased with the increased PHFBMA content. • A certain length of PHFBMA block enhanced C−N{sup +} percentage on the surface. - Abstract: Symmetrically structured fluorosilicone multi-block copolymers containing poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) and poly(hexafluorobutyl methacrylate) (PHFBMA) were sequentially synthesized via reversible addition–fragmentation chain transfer polymerization, using a polydimethylsiloxane (PDMS) chain transfer agent with dithiocarbonate groups at both ends. Then, the CBABC-type block copolymers were quaternized with n-octyliodide to tether quaternary ammonium salt (QAS) groups in the PDMAEMA blocks for the antimicrobial use. The obtained fluorosilicone copolymers showed clear variations in the C-N{sup +} composition and surface morphology on their films depending on the content of the PHFBMA blocks, which were characterized by X-ray photoelectron spectroscopy and atomic force microscopy, respectively. The results indicated that the symmetrical CBABC structure favored PDMS and QAS tethered blocks migrating to the film surface. With the mass percentage of the PHFBMA increased from 0 to 32.5%, the surface roughness of the copolymer film decreased gradually with a tendency to form a smooth surface. Owing to the surface properties, fluorosilicone multi-block copolymers containing a certain amount of PHFBMA with higher C-N{sup +} content and relatively smooth morphology demonstrated obvious antimicrobial activity against Gram-positive bacteria, Bacillus subtilis and Gram-negative bacteria, Escherichia coli. The functionalized multi-block copolymers based on fluorosilicone and QAS groups would have potential applications in antimicrobial coatings.

  20. Morphologies of diblock copolymer confined in a slit with patterned surfaces studied by dissipative particle dynamics

    Institute of Scientific and Technical Information of China (English)

    FENG Jian; HUANG Yongmin; LIU Honglai; HU Ying

    2007-01-01

    Diblock copolymers with ordered mesophase structures have been used as templates for nano-fabrication.Unfortunately,the ordered structure only exists at micrometerscale areas,which precludes its use in many advanced applications.To overcome this disadvantage,the diblock copolymer confined in a restricted system with a patterned surface is proved to be an effective means to prohibit the formation of defects and obtain perfect ordered domains.In this work,the morphologies of a thin film of diblock copolymer confined between patterned and neutral surfaces were studied by dissipative particle dynamics.It is shown that the morphology of the symmetric diblock copolymer is affected by the ratio of the pattern period on the surface to the lamellar period of the symmetric diblock copolymer and by the repulsion parameters between blocks and wall particles.To eliminate the defects in the lamellar phase,the pattern period on the surface must match the lamellar period.The difference in the interface energy of different compartments of the pattern should increase with increasing film thickness.The pattern period on the surface has a scaling relationship with the chain length,which is the same as that between the lamellar period and the chain length.The lamellar period is also affected by the polydispersity of the symmetric diblock copolymer.The total period is the average of the period of each component multiplied by the weight of its volume ratio.The morphologies of asymmetric diblock copolymers are also affected by the pattern on the surface,especially when the matching period of the asymmetric diblock copolymer is equal to the pattern period,which is approximately equal to the lamellar period of a symmetric diblock copolymer with the same chain length.

  1. Preparation and Characterization of Copolymer Micelles Formed by Poly(ethylene glycol)-Polylactide Block Copolymers as Novel Drug Carriers

    Institute of Scientific and Technical Information of China (English)

    姜维; 王运东; 甘泉; 张建铮; 赵秀文; 费维扬; 贝建中; 王身国

    2006-01-01

    Diblock copolymer poly(ethylene glycol) methyl ether-polylactide (MePEG-PLA) micelles were prepared by dialysis against water. Indomethacin (IMC) as a model drug was entrapped into the micelles by dialysis method. The critical micelle concentration (CMC) of the prepared micelles in distilled water investigated by fluorescence spectroscopy was 0.0051mg/mL which is lower than that of common low molecular weight surfactants. The diameters of MePEG-PLA micelles and IMC loaded MePEG-PLA micelles in a number-averaged scale measured by dynamic light scattering were 52.4 and 53.7 nm respectively. The observation with transmission electron microscope and scanning electron microscope showed that the appearance of MePEG-PLA micelles was in a spherical shape. The content of IMC incorporated in the core portion of the micelles was 18% (ω). The effects of the synthesis method of the copolymer on the polydispersity of the micelles and the yield of the micelles formation were discussed.

  2. POTENTIAL USE OF GRAFT COPOLYMERS OF MERCERIZED FLAX AS FILLER IN POLYSTYRENE COMPOSITE MATERIALS

    Directory of Open Access Journals (Sweden)

    Susheel Kalia

    2008-11-01

    Full Text Available Graft copolymerization of binary vinyl monomers onto mercerized flax fiber was carried out for the enhancement of mechanical properties of polystyrene composites. Binary vinyl monomer mixture of AA+AN has been found to show maximum grafting (33.55% onto mercerized flax. Graft copolymers thus synthesized were characterized with FT-IR spectroscopy, SEM, and TGA techniques. Mercerized flax (MF showed maximum thermal stability in comparison to graft copolymers. It has been found that polystyrene composites reinforced with graft copolymers showed improvement in mechanical properties such as wear resistance, compressive strength, and tensile strength.

  3. Electric-Field-Induced Alignment of Block Copolymer/Nanoparticle Blends

    Energy Technology Data Exchange (ETDEWEB)

    Liedel, Clemens [RWTH Aachen University; Schindler, Kerstin [RWTH Aachen University; Pavan, Mariela J. [Hebrew University of Jerusalem; Lewin, Christian [RWTH Aachen University; Pester, Christian W [ORNL; Ruppel, Markus A [ORNL; Urban, Volker S [ORNL; Shenhar, Roy [Hebrew University of Jerusalem; Boker, Alexander [RWTH Aachen University

    2013-01-01

    External electric fi elds readily align birefringent block-copolymer mesophases. In this study the effect of gold nanoparticles on the electric-fi eld-induced alignment of a lamellae-forming polystyrene- block -poly(2-vinylpyridine) copolymer is assessed. Nanoparticles are homogeneously dispersed in the styrenic phase and promote the quantitative alignment of lamellar domains by substantially lowering the critical field strength above which alignment proceeds. The results suggest that the electric-fi eldassisted alignment of nanostructured block copolymer/nanoparticle composites may offer a simple way to greatly mitigate structural and orientational defects of such fi lms under benign experimental conditions.

  4. First observation of an ordered microphase in melts of poly(oxyethylene)-poly(oxypropylene) block copolymers

    DEFF Research Database (Denmark)

    Patrick, J.; Fairclough, J.P.A.; Yu, G.E.;

    2000-01-01

    The first observation of ordered microphase structures in poly(oxyethylene)-poly(oxypropylene) diblock copolymers melts is reported. Two diblock copolymers were synthesised by anionic polymerisation, i.e. E130P58 and E107P69 where E represents an oxyethylene unit, OCH2CH2, and P an oxypropylene...... triblock copolymer with perdeuterated P blocks, E(33)dP(42)E(33), was synthesised and studied in the melt phase by small-angle neutron scattering. This allowed determination of the temperature dependence of the Flory-Huggins interaction parameter for the poly(oxyethylene)-poly(oxypropylene) system, i...

  5. Application of Thermosensitive Peptide Copolymer Gels to Removal of Endocrine Disruptor

    OpenAIRE

    Satoshi Tanimoto; Naoto Yagi; Hitoshi Yamaoka

    2009-01-01

    Poly(L-leucine)-block-poly(ethylene glycol)-block-poly(L-leucine) triblock copolymers were synthesized by a ring-opening polymerization of α-amino acid N-carboxyanhydride with amino-terminated PEG as an initiator. The chloroform solution of these peptide copolymers showed a thermo-sensitive sol-gel transition. The transition temperature varied as a function of the length of peptide segments. Additionally, we used these peptide copolymers to remove an endocrine disruptor such as bisphenol A fr...

  6. Synthesis and characterization of polyimide copolymers containing ladder-like polysiloxane

    Science.gov (United States)

    Feng, Linqian

    This research is focused on the synthesis, development, analysis and evaluation of properties of polyurea-b-polyimide (PUI) copolymers containing ladder-like polysiloxane. PUI block copolymers were successfully synthesized by condensation polymerization methods. The structure and properties of the copolymers were controlled by controlling the (i) co-monomer concentration and (ii) curing temperature. Thermally controlled self-assembly of semi-crystalline copolymers occurred at higher annealing temperatures T ≥ 150°C, resulting in remarkable enhancement in their thermomechanical properties. The observed improvement in the structure and mechanical properties of the copolymers annealed at higher temperature is believed to be due to the development of inter and intra-hydrogen bonding interactions between adjacent copolymer chains. The dynamic mechanical property of the copolymers was determined by dynamic mechanical analysis (DMA) using solution cast thin films. Fourier transform infrared spectroscopy, FTIR and Wide angle X-ray diffraction (WAXD) method were used to study the composition and structure of the copolymers. The presence of hydrogen-bonded (H-bonded) polyimide units in the copolymer resulted in a significant enhancement in the corrosion protection of aluminum alloy 2024-T3. The corrosion performance of PUI coatings was studied by direct current polarization method (DCP) and electrochemical impedance spectroscopy (EIS) in a 3.5wt% NaCl solution. Corrosion performance was remarkably increased by increasing (i) polyurea concentration and (ii) annealing temperature. The coating lifetime was evaluated by using information from time-based Bode plot as well as gravimetric weight gain analysis. The surface energy and diffusivity of PUI copolymers were remarkably decreased as polyurea concentration increased. Semi-crystalline ladder-like polysiloxanes (LPS) containing both mercapto and fluoride side groups were synthesized by using both the sol-gel and monomer

  7. GRAFTED STYRENE-DIVINYLBENZENE COPOLYMERS CONTAINING BENZALDEHYDES AND THEIR WITTIG REACTIONS WITH VARIOUS PHOSPHONIUM SALTS

    Institute of Scientific and Technical Information of China (English)

    Adriana Popa; Gheorghe Ilia; Aurelia Pascariu; Smaranda Iliescu; Nicoleta Plesu

    2005-01-01

    A chloromethylated styrene-divinylbenzene copolymer support system functionalized with 4-benzaldehyde and 2-benzaldehyde was prepared. The degree of functionalization with aldehyde groups is well suited for the subsequent use of the products as Wittig reagents. The polymer bound aldehyde was reacted with Wittig reagents to give olefin groups grafted on styrene-divinylbenzene copolymers. The reactions were carried out in phase transfer catalysis conditions. A simple procedure for the calculation of the degree of functionalization and the statistical modeling of the structural repetitive unit of the copolymer are reported.

  8. Compositional Analysis of the High Molecular Weight Ethylene Oxide Propylene Oxide Copolymer by MALDI Mass Spectrometry

    CERN Document Server

    Houshia, Orwa Jaber

    2012-01-01

    The composition of narrow distribution poly ethylene oxide-propylene oxide copolymer (Mw ~ 8700 Da) was studied using matrix assisted laser desorption ionization (MALDI) mass spectrometry. The ethylene oxide-propylene oxide copolymer produced oligomers separated by 14 Da. The average resolving power over the entire spectrum was 28,000. Approximately 448 isotopically resolved peaks representing about 56 oligomers are identified. Although agreement between experimental and calculated isotopic distributions was strong, the compositional assignment was difficult. This is due to the large number of possible isobaric components. The purpose of this research is to resolve and study the composition of high mass copolymer such as ethylene oxide-propylene oxide.

  9. THE EFFECTS OF PATTERNED SURFACES ON THE PHASE SEPARATION FOR DIBLOCK COPOLYMERS

    Institute of Scientific and Technical Information of China (English)

    Lin-li He; Lin-xi Zhang

    2009-01-01

    The phase behaviors of symmetric diblock copolymer thin films confined between two hard, parallel and diversified patterned surfaces are investigated by three-dimensional dissipative particle dynamics (DPD) simulations. The induction of diversified patterned surfaces on phase separation of symmetric diblock copolymer films in snapshots, density profiles and concentration diagrams of the simulated systems are presented. The phase separations can be controlled by the patterned surfaces. In the meantime, the mean-square end-to-end distance of the confined polymer chains (R2) is also discussed. Surface-induced phase separation for diblock copolymers can help us to create novel and controlled nanostructured materials.

  10. Radical-initiated controlled synthesis of homo- and copolymers based on acrylonitrile

    Science.gov (United States)

    Grishin, D. F.; Grishin, I. D.

    2015-07-01

    Data on the controlled synthesis of polyacrylonitrile and acrylonitrile copolymers with other (meth)acrylic and vinyl monomers upon radical initiation and metal complex catalysis are analyzed. Primary attention is given to the use of metal complexes for the synthesis of acrylonitrile-based (co)polymers with defined molecular weight and polydispersity in living mode by atom transfer radical polymerization. The prospects for using known methods of controlled synthesis of macromolecules for the preparation of acrylonitrile homo- and copolymers as carbon fibre precursors are estimated. The major array of published data analyzed in the review refers to the last decade. The bibliography includes 175 references.

  11. Crosslinking of metallocenic α-olefin propylene copolymers by vacuum gamma irradiation

    Science.gov (United States)

    Satti, A. J.; Andreucetti, N. A.; Quijada, R.; Vallés, E. M.

    2012-12-01

    Metallocenic polypropylene and copolymers with 3.7, and 9.2 mol% of hexene and 3.0 mol% of octadecene comonomer content were synthesized without the presence of additives and irradiated with 60Co gamma radiation under vacuum at room temperature. Size Exclusion Cromatography and gel extraction data showed that scission reactions predominate over crosslinking in the homopolymer and that there is a dose from where crosslinking started to increase considerably, in the irradiated copolymers. Rheology also showed evidence of chain-enlargements on the copolymers by means of an increase in the viscoelastic properties of the irradiated material.

  12. STUDY ON THE SYNTHESIS AND PROPERTIES OF POLY(ESTER-IMIDE-ETHER) MULTIBLOCK COPOLYMERS

    Institute of Scientific and Technical Information of China (English)

    Zu-yao Shan; Zhen-yi Li

    2000-01-01

    A new class of poly(ester-imide-ether) multiblock copolymers was synthesized by transes-terification and melt copolymerization of dimethyl terephthalate (DMT) and N-(4-carbomethoxyphenyl)-4-(carbomethoxy)-phthalimide with ethylene glycol (EG) and polytetramethylene glycol (PTMG). The structure of the above copolymers was characterized by 1H-NMR and IR spectroscopy. Some properties of the coplymers were also examined. It was found that their mechanical properties and heat stability, compared with poly(ether-ester) copolymers, were obviously improved.

  13. Bulk modification of PDMS microchips by an amphiphilic copolymer.

    Science.gov (United States)

    Xiao, Yan; Yu, Xiao-Dong; Xu, Jing-Juan; Chen, Hong-Yuan

    2007-09-01

    A simple and rapid bulk-modification method based on adding an amphiphilic copolymer during the fabrication process was employed to modify PDMS microchips. Poly(lactic acid)-poly(ethylene glycol) (PLA-PEG) was used as the additive substance. Compared to the native PDMS microchips, both the contact angle and the EOF of the bulk-modified PDMS microchips decreased. The effects of the additive loading and the pH on the EOF were investigated in detail. The bulk-modified PDMS microchips exhibited reproducible and stable EOF behavior. The application of the bulk-modified PDMS microchips was also studied and the results indicated that they could be successfully used to separate amino acids and to suppress protein adsorption.

  14. Nanometer TiO2 Modified Polyacrylic Copolymer Sizing Agent

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A series of new-type nanometer TiO2 modified polyacrylic copolymer sizing agent were synthesized from acrylic acid, ethyl acrylate, nanometer TiO2, oleic acid etc.by orthogonal design method. Results of the studies show that the synthetic method used in this paper was a new way and had never been found in the synthesis of acrylate sizing agent, and that the properties of those new-type size-agent were be improved, which had potential for substituting PVA (polyvinyl alcohol) sizing agent. The technology for solving the problem of nano-scale powder agglomeration and dispersion were also studied. The transmission electron microscope (TEM) observation showed that nano-TiO2 had good dispersion and stability in aqueous solution and in sizing agent solution.

  15. PRELIMINARY STUDY OF EXTRACTABLE PROTEIN BINDING USING MALEIC ANHYDRIDE COPOLYMER

    Institute of Scientific and Technical Information of China (English)

    Thirawan Nipithakul; Ladawan Watthanachote; Nanticha Kalapat

    2012-01-01

    A preliminary study of using maleic anhydride copolymer for protein binding has been carried out.The polymeric films were prepared by compression of the purified resin and annealing the film to induce efficient back formation of the anhydride groups.The properties of the film surface were analyzed by attenuated total reflection Fourier transforms infrared spectroscopy and water contact angle measurements.The protein content was determined by Bradford assay.To obtain optimum conditions,immersion time for protein binding was examined.Results revealed that proteins can be successfully immobilized onto the film surface via covalent linkage.The efficiency of the covalent binding of the extractable protein to maleic anhydride-polyethylene film was estimated at 69.87 μtg/cm2,although the film had low anhydride content (3%) on the surface.

  16. Ultrafast Optical Response from a Novel Tri-Branched Copolymer

    Institute of Scientific and Technical Information of China (English)

    李波; 米君; 孟凡顺; 田禾; 钱士雄

    2004-01-01

    A novel tri-branched copolymer is synthesized to show strong two-photon absorption and intense two-photon absorption induced fluorescence emission under the excitation of the femtosecond laser pulses at wavelength of 800 nm. The dynamics of the excited state was measured by the pump-probe technique. In a one-colour pump-probe experiment at 800 nm, there was an ultrafast transient absorption, followed by other two relaxation processes. The two-photon absorption process could be one origin for this ultrafast photoabsorption signal, which was further proven by two-colour pump-probe experiments. The other two decaying processes in the transient absorption dynamics have lifetime of about 15 ps and 129ps, which reflect the intraband vibrational relaxation and the decay of two-photon excited state, respectively.

  17. Rapid Mercury(II Removal by Electrospun Sulfur Copolymers

    Directory of Open Access Journals (Sweden)

    Michael W. Thielke

    2016-07-01

    Full Text Available Electrospinning was performed with a blend of commercially available poly(methyl methacrylate (PMMA and a sulfur-rich copolymer based on poly(sulfur-statistical-diisopropenylbenzene, which was synthesized via inverse vulcanization. The polysulfide backbone of sulfur-containing polymers is known to bind mercury from aqueous solutions and can be utilized for recycling water. Increasing the surface area by electrospinning can maximize the effect of binding mercury regarding the rate and maximum uptake. These fibers showed a mercury decrease of more than 98% after a few seconds and a maximum uptake of 440 mg of mercury per gram of electrospun fibers. These polymeric fibers represent a new class of efficient water filtering systems that show one of the highest and fastest mercury uptakes for electrospun fibers reported.

  18. Correlative infrared nanospectroscopic and nanomechanical imaging of block copolymer microdomains.

    Science.gov (United States)

    Pollard, Benjamin; Raschke, Markus B

    2016-01-01

    Intermolecular interactions and nanoscale phase separation govern the properties of many molecular soft-matter systems. Here, we combine infrared vibrational scattering scanning near-field optical microscopy (IR s-SNOM) with force-distance spectroscopy for simultaneous characterization of both nanoscale optical and nanomechanical molecular properties through hybrid imaging. The resulting multichannel images and correlative analysis of chemical composition, spectral IR line shape, modulus, adhesion, deformation, and dissipation acquired for a thin film of a nanophase separated block copolymer (PS-b-PMMA) reveal complex structural variations, in particular at domain interfaces, not resolved in any individual signal channel alone. These variations suggest that regions of multicomponent chemical composition, such as the interfacial mixing regions between microdomains, are correlated with high spatial heterogeneity in nanoscale material properties. PMID:27335750

  19. Ultraporous films with uniform nanochannels by block copolymer micelles assembly

    KAUST Repository

    Nunes, Suzana Pereira

    2010-10-12

    Films with high pore density and regularity that are easy to manufacture by conventional large-scale technology are key components aimed for fabrication of new generations of magnetic arrays for storage media, medical scaffolds, and artificial membranes. However, potential manufacture strategies like the self-assembly of block copolymers, which lead to amazing regular patterns, could be hardly reproduced up to now using commercially feasible methods. Here we report a unique production method of nanoporous films based on the self-assembly of copper(II) ion-polystyrene-b-poly(4-vinylpyridine) complexes and nonsolvent induced phase separation. Extremely high pore densities and uniformity were achieved. Water fluxes of 890 L m-2 h-1 bar-1 were obtained, which are at least 1 order of magnitude higher than those of commercially available membranes with comparable pore size. The pores are also stimuli (pH)-responsive. © 2010 American Chemical Society.

  20. Characterizing the interfaces of block copolymers with high χ

    Science.gov (United States)

    Sunday, Daniel; Maher, Michael; Blachut, Gregory; Asano, Yusuke; Tein, Summer; Willson, C. Grant; Ellison, Christopher; Kline, R. Joseph

    In order for block copolymer (BCP) directed self-assembly (DSA) to be able to pattern features below 10 nm there must be materials which can spontaneously assembly at the required length scales. For the smallest features this will require phase separation where the total chain lengths are under 50 monomer units, demanding very large interaction parameters (χ) to have an order-disorder transition. One of the key parameters for DSA will be the interfacial width between the blocks, which is expected to be correlated to the interaction parameter and will help determine the line edge roughness (LER). We have used resonant soft X-ray reflectivity to investigate a series of high χ BCPs with different compositions and molecular weights to determine the interfacial width and degree of phase separation. We use these results to estimate the value of χ and determine relationships between χ and the interfacial mixing.

  1. Swelling behavior of poly (2-hydroxyethyl methacrylate copolymer gels

    Directory of Open Access Journals (Sweden)

    Sari S.M. Chabane

    2013-09-01

    Full Text Available Hydrogels based on 2-hydroxyethyl methacrylate/dimethyl-aminoethyl methacrylate copolymers were prepared by gamma radiation-inducedco-polymerization at low temperature (−78°C. The swelling behavior of hydrogels was studied by immersion of the polymer discs in buffered solutions at pH from 2 to 10. The hydration process was followed gravimetrically by measuring the water uptake of the discs as a function of time. The results obtained have shown that the swelling behavior is reversible and depends on the polymer nature. Moreover, polymeric discs exhibited a good stability after repeating cycles of hydration in different buffer solutions. Scanning electron microscopy analysis reveals that hydrogel porosity can be controlled.

  2. Polarization curves of Langmuir-Blodgett PVDF-copolymer films

    International Nuclear Information System (INIS)

    In addition to our previous work, we report on further experimental results concerning Langmuir-Blodgett polyvinylidenefluoride-copolymer thin films. Polarization hysteresis loops and polarization switching behaviour of samples with thicknesses below 3 nm were measured. Also, the time and temperature comportments of the remanent polarization were investigated for various film thicknesses, ranging from 2.7 up to 63.8 nm. The remanent polarization shows a loss of about 10% over 3 decades of time, ranging from 100 to 2 · 105 s. For thinner films, the remanent polarization exhibits the typical behaviour of a first-order transition, whereas for thicker samples a diffuse transition is found. Initial polarization curves obtained from the unpolarized state were finally measured. They are temperature and thickness dependent

  3. Synthesis and Flocculation Property of Chitosan-Acrylamide Graft Copolymer

    Institute of Scientific and Technical Information of China (English)

    LI Liu-zhu; MAO Lu-yuan; WANG Xiu-li; YANG Yong; ZHUANG Yin-feng

    2004-01-01

    Chitosan, as a kind of natural polymer, has many advantages, such as abundant sources, biological degradation, no secondary contamination and facile modification. In this work, we prepared modified chitosan flocculants with double electrical behavior via polymerizing chitosan, acrylamide and sodium carboxymethyl cellulose together by using ammonium persulfate as the indicator in water. The product is a comb-type of chitosan copolymer and a polymeric ampholyte. And then we studied the product by FTIR, UV-Vis, TG, DSC spectrometeries and viscometry, etc. We also performed CACM′s water treat experiment. The effects of pH values, reaction time and dose of the new floccalant on treating various of waste water have been investigated, too.

  4. Mechanical contrast in block copolymers manifested as kink band defects

    Science.gov (United States)

    Winey, Karen I.; Polis, Daniel L.

    1998-03-01

    Kink bands are an established defect structure found in materials with a preferential slip plane, such as select crystalline solids and foliated rocks. Kink bands are induced by steady shear in a predominately parallel-oriented, lamellar poly(styrene-b-ethylene propylene) diblock copolymer. Steady shear induces kink bands which have their boundaries oriented at 45^o relative to the shearing direction. The lamellar orientations inside and outside the kink bands are asymmetric with respect to the kink band boundaries. This asymmetry is due to a lamellar dilation inside the kink band relative to lamellae outside the kink band. A comparison of the zero shear viscosities of homopolystyrene and homopoly(ethylene-propylene) suggest that the PS microdomains deform preferentially. The presence of a preferential slip plane is consistent with the formation of kink bands. Furthermore, estimates of the number of entanglements in the interpenetration zone between opposing brushes suggest an even larger disparity between PS and PEP relaxation times.

  5. Aligned nanowires and nanodots by directed block copolymer assembly

    Energy Technology Data Exchange (ETDEWEB)

    Xiao Shuaigang; Yang Xiaomin; Lee, Kim Y; Ver der Veerdonk, Rene J M; Kuo, David [Seagate Technology, 47010 Kato Road, Fremont, CA 94538 (United States); Russell, Thomas P, E-mail: shuaigang.xiao@seagate.com [Department of Polymer Science and Engineering, University of Massachusetts, 120 Governors Drive, Amherst, MA 01003 (United States)

    2011-07-29

    The directed self-assembly of block copolymers (BCPs) is a promising route to generate highly ordered arrays of sub-10 nm features. Ultradense arrays of a monolayer of spherical microdomains or cylindrical microdomains oriented parallel to the surface have been produced where the lateral ordering is guided by surface patterning and the lattice defined by the patterning can be commensurate or incommensurate with the natural period of the BCP. Commensurability between the two can be used to elegantly manipulate the lateral ordering and orientation of the BCP microdomains so as to form well-aligned arrays of 1D nanowires or 2D addressable nanodots. No modification of the substrate surface, aside from the patterning, was used, making the influence of lattice mismatch and pattern amplification on the size, shape and pitch of the BCP microdomains more transparent. A skew angle between incommensurate lattices, defining a stretching or compression of the BCP chains to compensate for the lattice mismatch, is presented.

  6. On the localization transition of random copolymers near selective interfaces.

    CERN Document Server

    Bodineau, T

    2004-01-01

    In this note we consider the (de)localization transition for random directed $(1+1)$--dimensional copolymers in the proximity of an interface separating selective solvents. We derive a rigorous lower bound on the free energy that yields a substantial improvement on the bounds from below on the critical line that were known so far. This implies a lower bound on the critical curve which coincides with the critical curve conjectured by C. Monthus on the base of a renormalization group analysis. We discuss this result in the light of the (rigorous and non rigorous) approaches present in the literature and, by making an analogy with a particular asymptotics of a disordered wetting model, we propose a simplified framework in which the question of identifying the critical curve, as well as understanding the nature of the transition, may be approached.

  7. Asymptotically periodic L^2 minimizers in strongly segregating diblock copolymers

    CERN Document Server

    Chmaj, Adam

    2009-01-01

    Using the delta correction to the standard free energy \\cite{bc} in the elastic setting with a quadratic foundation term and some parameters, we introduce a one dimension only model for strong segregation in diblock copolymers, whose sharp interface periodic microstructure is consistent with experiment in low temperatures. The Green's function pattern forming nonlocality is the same as in the Ohta-Kawasaki model. Thus we complete the statement in [31,p.349]: ``The detailed analysis of this model will be given elsewhere. Our preliminary results indicate that the new model exhibits periodic minimizers with sharp interfaces.'' We stress that the result is unexpected, as the functional is not well posed, moreover the instabilities in $L^2$ typically occur only along continuous nondifferentiable ``hairs''. We also improve the derivation done by van der Waals and use it and the above to show the existence of a phase transition with Maxwell's equal area rule. However, this model does not predict the universal critic...

  8. Microstructural organization of polydimethylsiloxane based polyurethane block copolymers

    Science.gov (United States)

    Hernandez, Rebeca; Weksler, Jadwiga; Padsalgikar, Ajay; Runt, James

    2007-03-01

    Microphase separation was investigated for polyurethane block copolymers synthesized from MDI and 1,4 butanediol as the hard segments, and poly(hexamethyleneoxide) (MW ˜ 700) and bis(6-hydroxyethoxypropyl) poly(dimethylsiloxane) as soft segments (MW ˜ 1000). The neat PDMS-based diol presents two segmental relaxations corresponding to the principle siloxane repeat unit and to the hydroxyethoxypropyl end group segments, respectively. When incorporated in the polyurethane, the siloxane units form a phase without intermixing with hard segments and the polyether end group segments are mixed with the second macrodiol and some short hard segment sequences. The microdomain morphology was characterized by atomic force microscopy and small-angle X-ray scattering, and the scattering data were analyzed using an approach based on a modified core-shell model. The model includes core hard segment particles (MDI-BDO), surrounded by a mixed polyether shell (PHMO and hydroxyethoxypropyl end group segments), and a matrix composed of the siloxane units.

  9. Fabrication of biomolecule copolymer hybrid nanovesicles as energy conversion systems

    Science.gov (United States)

    Ho, Dean; Chu, Benjamin; Lee, Hyeseung; Brooks, Evan K.; Kuo, Karen; Montemagno, Carlo D.

    2005-12-01

    This work demonstrates the integration of the energy-transducing proteins bacteriorhodopsin (BR) from Halobacterium halobium and cytochrome c oxidase (COX) from Rhodobacter sphaeroides into block copolymeric vesicles towards the demonstration of coupled protein functionality. An ABA triblock copolymer-based biomimetic membrane possessing UV-curable acrylate endgroups was synthesized to serve as a robust matrix for protein reconstitution. BR-functionalized polymers were shown to generate light-driven transmembrane pH gradients while pH gradient-induced electron release was observed from COX-functionalized polymers. Cooperative behaviour observed from composite membrane functionalized by both proteins revealed the generation of microamp-range currents with no applied voltage. As such, it has been shown that the fruition of technologies based upon bio-functionalizing abiotic materials may contribute to the realization of high power density devices inspired by nature.

  10. Silver-enhanced block copolymer membranes with biocidal activity

    KAUST Repository

    Madhavan, Poornima

    2014-11-12

    Silver nanoparticles were deposited on the surface and pore walls of block copolymer membranes with highly ordered pore structure. Pyridine blocks constitute the pore surfaces, complexing silver ions and promoting a homogeneous distribution. Nanoparticles were then formed by reduction with sodium borohydride. The morphology varied with the preparation conditions (pH and silver ion concentration), as confirmed by field emission scanning and transmission electron microscopy. Silver has a strong biocide activity, which for membranes can bring the advantage of minimizing the growth of bacteria and formation of biofilm. The membranes with nanoparticles prepared under different pH values and ion concentrations were incubated with Pseudomonas aeruginosa and compared with the control. The strongest biocidal activity was achieved with membranes containing membranes prepared under pH 9. Under these conditions, the best distribution with small particle size was observed by microscopy.

  11. Multiple ordered phases in a block copolymer melt

    DEFF Research Database (Denmark)

    Almdal, K.; Koppi, K.A.; Bates, F.S.;

    1992-01-01

    -order based on discontinuities in the SANS pattern symmetries and intensities and dynamic elastic moduli. At the lowest experimental temperatures the material exhibits a (rippled) lamellar phase. At intermediate temperatures two new ordered phases appear. Above the order-disorder transition temperature a......A poly(ethylenepropylene)-poly(ethylethylene) (PEP-PEE) diblock copolymer containing 65% by volume PEP was investigated using small-angle neutron scattering (SANS) and rheological measurements. Four distinct phases have been identified as a function of temperature: three ordered phases at low...... temperatures and a disordered phase at elevated temperatures. Evaluation of the ordered phases was facilitated by the introduction of long-range order using a shear-orientation technique. SANS data were acquired as a function of temperature for three specimen orientations corresponding to the principle...

  12. Collaborative Research: Process-Resolving Decomposition of the Global Temperature Response to Modes of Low Frequency Variability in a Changing Climate

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Yi

    2014-11-24

    DOE-GTRC-05596 11/24/2104 Collaborative Research: Process-Resolving Decomposition of the Global Temperature Response to Modes of Low Frequency Variability in a Changing Climate PI: Dr. Yi Deng (PI) School of Earth and Atmospheric Sciences Georgia Institute of Technology 404-385-1821, yi.deng@eas.gatech.edu El Niño-Southern Oscillation (ENSO) and Annular Modes (AMs) represent respectively the most important modes of low frequency variability in the tropical and extratropical circulations. The projection of future changes in the ENSO and AM variability, however, remains highly uncertain with the state-of-the-science climate models. This project conducted a process-resolving, quantitative evaluations of the ENSO and AM variability in the modern reanalysis observations and in climate model simulations. The goal is to identify and understand the sources of uncertainty and biases in models’ representation of ENSO and AM variability. Using a feedback analysis method originally formulated by one of the collaborative PIs, we partitioned the 3D atmospheric temperature anomalies and surface temperature anomalies associated with ENSO and AM variability into components linked to 1) radiation-related thermodynamic processes such as cloud and water vapor feedbacks, 2) local dynamical processes including convection and turbulent/diffusive energy transfer and 3) non-local dynamical processes such as the horizontal energy transport in the oceans and atmosphere. In the past 4 years, the research conducted at Georgia Tech under the support of this project has led to 15 peer-reviewed publications and 9 conference/workshop presentations. Two graduate students and one postdoctoral fellow also received research training through participating the project activities. This final technical report summarizes key scientific discoveries we made and provides also a list of all publications and conference presentations resulted from research activities at Georgia Tech. The main findings include

  13. Stereocomplex micelle from nonlinear enantiomeric copolymers efficiently transports antineoplastic drug

    Science.gov (United States)

    Wang, Jixue; Shen, Kexin; Xu, Weiguo; Ding, Jianxun; Wang, Xiaoqing; Liu, Tongjun; Wang, Chunxi; Chen, Xuesi

    2015-05-01

    Nanoscale polymeric micelles have attracted more and more attention as a promising nanocarrier for controlled delivery of antineoplastic drugs. Herein, the doxorubicin (DOX)-loaded poly(D-lactide)-based micelle (PDM/DOX), poly(L-lactide)-based micelle (PLM/DOX), and stereocomplex micelle (SCM/DOX) from the equimolar mixture of the enantiomeric four-armed poly(ethylene glycol)-polylactide (PEG-PLA) copolymers were successfully fabricated. In phosphate-buffered saline (PBS) at pH 7.4, SCM/DOX exhibited the smallest hydrodynamic diameter ( D h) of 90 ± 4.2 nm and the slowest DOX release compared with PDM/DOX and PLM/DOX. Moreover, PDM/DOX, PLM/DOX, and SCM/DOX exhibited almost stable D hs of around 115, 105, and 90 nm at above normal physiological condition, respectively, which endowed them with great potential in controlled drug delivery. The intracellular DOX fluorescence intensity after the incubation with the laden micelles was different degrees weaker than that incubated with free DOX · HCl within 12 h, probably due to the slow DOX release from micelles. As the incubation time reached to 24 h, all the cells incubated with the laden micelles, especially SCM/DOX, demonstrated a stronger intracellular DOX fluorescence intensity than free DOX · HCl-cultured ones. More importantly, all the DOX-loaded micelles, especially SCM/DOX, exhibited potent antineoplastic efficacy in vitro, excellent serum albumin-tolerance stability, and satisfactory hemocompatibility. These encouraging data indicated that the loading micelles from nonlinear enantiomeric copolymers, especially SCM/DOX, might be promising in clinical systemic chemotherapy through intravenous injection.

  14. A neutron scattering study of triblock copolymer micelles

    International Nuclear Information System (INIS)

    The thesis describes the neutron scattering experiments performed on poly(ethylene oxide)/poly(propylene oxide)/poly(ethylene oxide) triblock copolymer micelles in aqueous solution. The studies concern the non-ionic triblock copolymer P85 which consists of two outer segments of 25 monomers of ethylene oxide attached to a central part of 40 monomers of propylene oxide. The amphiphilic character of P85 leads to formation of various structures in aqueous solution such as spherical micelles, rod-like structures, and a BCC liquid-crystal mesophase of spherical micelles. The present investigations are centered around the micellar structures. In the first part of this thesis a model for the micelle is developed for which an analytical scattering form factor can be calculated. The micelle is modeled as a solid sphere with tethered Gaussian chains. Good agreement was found between small-angle neutron scattering experiments and the form factor of the spherical P85 micelles. Above 60 deg. C some discrepancies were found between the model and the data which is possibly due to an elongation of the micelles. The second part focuses on the surface-induced ordering of the various micellar aggregates in the P85 concentration-temperature phase diagram. In the spherical micellar phase, neutron reflection measurements indicated a micellar ordering at the hydrophilic surface of quartz. Extensive modeling was performed based on a hard sphere description of the micellar interaction. By convolution of the distribution of hard spheres at a hard wall, obtained from Monte Carlo simulations, and the projected scattering length density of the micelle, a numerical expression was obtained which made it possible to fit the data. The hard-sphere-hard-wall model gave an excellent agreement in the bulk micellar phase. However, for higher concentrations (25 wt % P85) close to the transition from the micellar liquid into a micellar cubic phase, a discrepancy was found between the model and the

  15. Initial endosseous healing response to lactide/glycolide copolymer

    Directory of Open Access Journals (Sweden)

    João César ZIELAK

    2009-06-01

    Full Text Available Introduction: The search for less invasive treatments, with fast and effective bone regeneration, has lead to the development of synthetic bioresorbable alternatives for bone graft. The commercial product FisiograftTM gel (Ghimas Spa, Italy, based on lactide-glycolide copolymer, is used as an injectable biocompatible and bioresorbable material for filling bone defects in dental surgery applications. These polymers are also used in the production of suture threads, pins and plates for bone fixation, and barriers for guided tissue regeneration. Objective: The main objective of this pilot study was to observe the initial bone healing response after the application of polylactide-glycolide graft material in adult animals. Material and methods: Bone defects were prepared in right and left femora of 12 month-old male Wistar rats. The defects in one leg received the synthetic graft material and the contra-lateral defects did not receive any treatment. After four days, the animals were subjected to euthanasia, the femora were removed, and tissue blocks were prepared for histological analysis. Results: Blood clot remained in the centre of control defects with initial connective tissue organization on the edges. The graft material was observed in the centre of the treated defects, restricted to the area where it was applied, with neovascularization next to the graft material. The pattern of bone healing did not differ between groups, starting from the margins of the defects and from bone fragments, with neovascularization followed by deposition of non-mineralized bone matrix towards the centre. Conclusion: The results indicate that the lactide-glycolide copolymer gel was effective as a filling and osteoconductive material, allowing tissue healing during its resorption process. Additional studies are necessary to verify its capacity to promote bone regeneration.

  16. Globules of annealed amphiphilic copolymers: Surface structure and interactions

    Science.gov (United States)

    Jarkova, E.; Johner, A.; Maresov, E. A.; Semenov, A. N.

    2006-12-01

    A mean-field theory of globules of random amphiphilic copolymers in selective solvents is developed for the case of an annealed copolymer sequence: each unit can be in one of two states, H (insoluble) or P (soluble or less insoluble). The study is focussed on the regime when H and P units tend to form long blocks, and when P units dominate in the dilute phase, but are rare in the globule core. A first-order coil-to-globule transition is predicted at some T = Tcg. The globule core density at the transition point increases as the affinity of P units to the solvent, tildeɛ, is increased. Two collapse transitions, coil → “loose” globule and “loose” globule → “dense” globule, are predicted if tildeɛ is high enough and P units are marginally soluble or weakly insoluble. H and P concentration profiles near the globule surface are obtained and analyzed in detail. It is shown that the surface excess of P units rises as tildeɛ is increased. The surface tension decreases in parallel. Considering the interaction between close enough surfaces of two globules, we show that they always attract each other at a complete equilibrium. It is pointed out, however, that such equilibrium may be difficult to reach, so that partially equilibrium structures (defined by the condition that a chain forming one globule does not penetrate into the core of the other globule) are relevant. It is shown that at such partial equilibrium the interaction is repulsive, so the globules may be stabilized from aggregation. The strongest repulsion is predicted at the coil-to-globule transition point Tcg: the repulsion force decreases with the distance between the surfaces according to a power law. In the general case (apart from Tcg) the force vs. distance decay becomes exponential; the decay length ξ diverges as T → Tcg. The developed theory explains certain anomalous properties observed for globules of amphiphilic homopolymers.

  17. Amine-containing block copolymers: long-term adhesion promoters and corrosion resistant coatings

    Energy Technology Data Exchange (ETDEWEB)

    Small, J.H.; Saunders, R.S.; Kent, M.S.

    1996-07-01

    Arylamine-containing diblock copolymers were prepared via ring- opening metathesis polymerization (ROMP) to afford well-defined phase- separated materials. Alteration of the functionaity in a block, as well as the size of the blocks, allowed for the synthesis of self- assembled monolayers on a copper surface. The arylamine-containing block exhibited a strong binding affinity for the copper surface as seen by neutron reflectivity experiments. In addition, neutron reflectivity data verifies the self-assembly of block copolymer monolayers normal to the copper surface. Block copolymers prepared in this manner allow for the preparation of a wide range of adhesives and corrosion resistant materials. The use of ring-opening metathesis polymerization is important because it permits the synthesis of a variety of functionalized block copolymers.

  18. Synthesis and Characterization of Surfactant PEG Macromonomers with Fluorocarbon End-capped Groups and its Copolymers

    Institute of Scientific and Technical Information of China (English)

    LIU, Shou-Ping; ZHUANG, Dong-Qing; ZHANG, Yun-Xiang; CHEN, Jun-Yan; JIANG, Ming; WU, Shu-Guang; SWIFT, Graham

    2001-01-01

    Fluorocarbon (RF) or hydrocarbon (RH) end-capped PEG macromonomers were prepared by coupling method. Several factors that affect the synthesis were studied and optimum condition was obtained. The critical micelle concentrations (CMC) of these macromonomers were determined by fluorescence method. A new type of fluorocarbon-containing hydrophobically modified alkali swellable/soluble copolymers were obtained by copolymerization of RF or RH alkyl endcapped PEG macromonomers with acrylic acid in organic solvent. The preliminary researches on viscosity property of these copolymer solutions were conducted under different conditions, such as various macromonomer content in the copolymer, polymer concentration, shear rate, pH value and temperature. All the results proved that there existed a very strong hydrophobic association among hydrophobes in these copolymer solutions.

  19. Well-Defined Triblock Copolymer Containing Perfluoro- cyclobutyl Aryl Ether and Poly(acrylic acid) Segments

    Institute of Scientific and Technical Information of China (English)

    陆国林; 张森; 李永军; 黄晓宇

    2011-01-01

    A novel well-defined triblock copolymer containing perfluorocyclobutyl group was prepared by the combination of mechanism transformation strategy, thermal cycloaddition [2π+2π] polymerization and atom transfer radical polymerization (ATRP). Firstly, a macroinitiator with two ATRP initiating end groups was synthesized by thermal polymerization of 4,4'-bis-(trifluorovinyloxy)biphenyl (BTFVBP) and sequential end-capping with a difunctional compound containing trifluorovinyl and ATRP initiation group. Secondly, this macroinitiator initiated ATRP of t-butyl acrylate to synthesize PtBA-b-PBTFVBP-b-PtBA triblock copolymer. This copolymer was hydrolyzed to afford PAA-b-PBTFVBP-b-PAA amphiphilic triblock copolymer. This kind of fluorine-containing well-defined structure should benefit the study of self-assembly behaviors.

  20. Synthesis and characterization of a new type of levan-graft-polystyrene copolymer.

    Science.gov (United States)

    Kekez, Branka; Gojgić-Cvijović, Gordana; Jakovljević, Dragica; Pavlović, Vladimir; Beškoski, Vladimir; Popović, Aleksandar; Vrvić, Miroslav M; Nikolić, Vladimir

    2016-12-10

    Novel macromolecular graft copolymers were synthesized by reaction of the hydroxyl groups of the microbial polysaccharide levan, produced using Bacillus licheniformis, with polystyrene (Lev-g-PS). Synthesis was performed by the free radical reaction using potassium persulfate (PPS) as initiator. The prepared copolymer was characterized by FTIR, SEM, TG/DTA, XRD and (13)C NMR. The influence of the different conditions (reaction temperature, air or nitrogen atmosphere, reaction time, type of amines and ascorbic acid (AA) concentration) on the grafting reaction was investigated. Results showed that maximum percentage of grafting (58.1%) was achieved at a reaction temperature 70°C, in a nitrogen atmosphere and using dimethylethanolamine (DMEA) as the amine activator. On the basis of the obtained results, the likely reaction mechanism was proposed. Synthesized copolymers have better thermal stability in comparison with their initial components. Copolymers such as Lev-g-PS could potentially have many applications, such as compatibilizers and material for membranes.