WorldWideScience

Sample records for acid-induced abnormal behavior

  1. Resveratrol Ameliorates the Depressive-Like Behaviors and Metabolic Abnormalities Induced by Chronic Corticosterone Injection

    Directory of Open Access Journals (Sweden)

    Yu-Cheng Li

    2016-10-01

    Full Text Available Chronic glucocorticoid exposure is known to cause depression and metabolic disorders. It is critical to improve abnormal metabolic status as well as depressive-like behaviors in patients with long-term glucocorticoid therapy. This study aimed to investigate the effects of resveratrol on the depressive-like behaviors and metabolic abnormalities induced by chronic corticosterone injection. Male ICR mice were administrated corticosterone (40 mg/kg by subcutaneous injection for three weeks. Resveratrol (50 and 100 mg/kg, fluoxetine (20 mg/kg and pioglitazone (10 mg/kg were given by oral gavage 30 min prior to corticosterone administration. The behavioral tests showed that resveratrol significantly reversed the depressive-like behaviors induced by corticosterone, including the reduced sucrose preference and increased immobility time in the forced swimming test. Moreover, resveratrol also increased the secretion of insulin, reduced serum level of glucose and improved blood lipid profiles in corticosterone-treated mice without affecting normal mice. However, fluoxetine only reverse depressive-like behaviors, and pioglitazone only prevent the dyslipidemia induced by corticosterone. Furthermore, resveratrol and pioglitazone decreased serum level of glucagon and corticosterone. The present results indicated that resveratrol can ameliorate depressive-like behaviors and metabolic abnormalities induced by corticosterone, which suggested that the multiple effects of resveratrol could be beneficial for patients with depression and/or metabolic syndrome associated with long-term glucocorticoid therapy.

  2. Memetics clarification of abnormal behavior

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    AIM: Biological medicine is hard to fully and scientifically explain the etiological factor and pathogenesis of abnormal behaviors; while, researches on philosophy and psychology (including memetics) are beneficial to better understand and explain etiological factor and pathogenesis of abnormal behaviors. At present, the theory of philosophy and psychology is to investigate the entity of abnormal behavior based on the views of memetics.METHODS: Abnormal behavior was researched in this study based on three aspects, including instinctive behavior disorder, poorly social-adapted behavior disorder and mental or body disease associated behavior disorder. Most main viewpoints of memetics were derived from "The Meme Machine", which was written by Susan Blackmore. When questions about abnormal behaviors induced by mental and psychological diseases and conduct disorder of teenagers were discussed, some researching achievements which were summarized by authors previously were added in this study, such as aggressive behaviors, pathologically aggressive behaviors, etc.RESULTS: The abnormal behaviors mainly referred to a part of people's substandard behaviors which were not according with the realistic social environment, culture background and the pathologic behaviors resulted from people's various psychological diseases. According to the theory of "meme", it demonstrated that the relevant behavioral obstacles of various psychological diseases, for example, the unusual behavior of schizophrenia, were caused, because the old meme was destroyed thoroughly but the new meme was unable to establish; psychoneurosis and personality disorder were resulted in hard establishment of meme; the behavioral obstacles which were ill-adapted to society, for example, various additional and homosexual behaviors, were because of the selfish replications and imitations of "additional meme" and "homosexual meme"; various instinct behavioral and congenital intelligent obstacles were not significance

  3. Attenuation of abnormalities in the lipid metabolism during experimental myocardial infarction induced by isoproterenol in rats: beneficial effect of ferulic acid and ascorbic acid.

    Science.gov (United States)

    Yogeeta, Surinder Kumar; Hanumantra, Rao Balaji Raghavendran; Gnanapragasam, Arunachalam; Senthilkumar, Subramanian; Subhashini, Rajakannu; Devaki, Thiruvengadam

    2006-05-01

    The present study aims at evaluating the effect of the combination of ferulic acid and ascorbic acid on isoproterenol-induced abnormalities in lipid metabolism. The rats were divided into eight groups: Control, isoproterenol, ferulic acid alone, ascorbic acid alone, ferulic acid+ascorbic acid, ferulic acid+isoproterenol, ascorbic acid+isoproterenol and ferulic acid+ascorbic acid+isoproterenol. Ferulic acid (20 mg/kg b.w.t.) and ascorbic acid (80 mg/kg b.w.t.) both alone and in combination was administered orally for 6 days and on the fifth and the sixth day, isoproterenol (150 mg/kg b.w.t.) was injected intraperitoneally to induce myocardial injury to rats. Induction of rats with isoproterenol resulted in a significant increase in the levels of triglycerides, total cholesterol, free fatty acids, free and ester cholesterol in both serum and cardiac tissue. A rise in the levels of phospholipids, lipid peroxides, low density lipoprotein and very low density lipoprotein-cholesterol was also observed in the serum of isoproterenol-intoxicated rats. Further, a decrease in the level of high density lipoprotein in serum and in the phospholipid levels, in the heart of isoproterenol-intoxicated rats was observed, which was paralleled by abnormal activities of lipid metabolizing enzymes: total lipase, cholesterol ester synthase, lipoprotein lipase and lecithin: cholesterol acyl transferase. Pre-cotreatment with the combination of ferulic acid and ascorbic acid significantly attenuated these alterations and restored the levels to near normal when compared to individual treatment groups. Histopathological observations were also in correlation with the biochemical parameters. These findings indicate the synergistic protective effect of ferulic acid and ascorbic acid on isoproterenol-induced abnormalities in lipid metabolism.

  4. Hepatitis B virus X protein (HBx)-induced abnormalities of nucleic acid metabolism revealed by (1)H-NMR-based metabonomics.

    Science.gov (United States)

    Dan Yue; Zhang, Yuwei; Cheng, Liuliu; Ma, Jinhu; Xi, Yufeng; Yang, Liping; Su, Chao; Shao, Bin; Huang, Anliang; Xiang, Rong; Cheng, Ping

    2016-04-14

    Hepatitis B virus X protein (HBx) plays an important role in HBV-related hepatocarcinogenesis; however, mechanisms underlying HBx-mediated carcinogenesis remain unclear. In this study, an NMR-based metabolomics approach was applied to systematically investigate the effects of HBx on cell metabolism. EdU incorporation assay was conducted to examine the effects of HBx on DNA synthesis, an important feature of nucleic acid metabolism. The results revealed that HBx disrupted metabolism of glucose, lipids, and amino acids, especially nucleic acids. To understand the potential mechanism of HBx-induced abnormalities of nucleic acid metabolism, gene expression profiles of HepG2 cells expressing HBx were investigated. The results showed that 29 genes involved in DNA damage and DNA repair were differentially expressed in HBx-expressing HepG2 cells. HBx-induced DNA damage was further demonstrated by karyotyping, comet assay, Western blotting, immunofluorescence and immunohistochemistry analyses. Many studies have previously reported that DNA damage can induce abnormalities of nucleic acid metabolism. Thus, our results implied that HBx initially induces DNA damage, and then disrupts nucleic acid metabolism, which in turn blocks DNA repair and induces the occurrence of hepatocellular carcinoma (HCC). These findings further contribute to our understanding of the occurrence of HCC.

  5. Alterations in myocardial free fatty acid clearance precede mechanical abnormalities in canine tachycardia-induced heart failure.

    Science.gov (United States)

    Freeman, G L; Colston, J T; Miller, D D

    1994-01-01

    The purpose of this study was to evaluate whether abnormalities of free fatty acid metabolism are present before the onset of overt mechanical dysfunction in dogs with tachycardia-induced heart failure. We studied six dogs chronically instrumented to allow assessment of left ventricular function in the pressure-volume plane. Free fatty acid clearance was assessed according to the washout rate of a free fatty acid analog, iodophenylpentadecanoic acid ([123I]PPA or IPPA). IPPA clearance was measured within 1 hour of the hemodynamic assessment. The animals were studied under baseline conditions and 11.7 +/- 3.6 days after ventricular pacing at a rate of 240 beats/min. Hemodynamic studies after pacing showed a nonsignificant increase in left ventricular end-diastolic pressure (11.7 +/- 4.7 to 17.4 +/- 6.5 mm Hg) and a nonsignificant decrease in the maximum derivative of pressure with respect to time (1836 +/- 164 vs 1688 +/- 422 mm Hg/sec). There was also no change in the time constant of left ventricular relaxation, which was 34.8 +/- 7.67 msec before and 35.3 +/- 7.3 msec after pacing. However, a significant prolongation in the clearance half-time of [123I]PPA, from 86.1 +/- 23.9 to 146.5 +/- 22.6 minutes (p < 0.01) was found. Thus abnormal lipid clearance appears before the onset of significant mechanical dysfunction in tachycardia-induced heart failure. This suggests that abnormal substrate metabolism may play an important role in the pathogenesis of this condition.

  6. Environmental enrichment attenuates behavioral abnormalities in valproic acid-exposed autism model mice.

    Science.gov (United States)

    Yamaguchi, Hiroshi; Hara, Yuta; Ago, Yukio; Takano, Erika; Hasebe, Shigeru; Nakazawa, Takanobu; Hashimoto, Hitoshi; Matsuda, Toshio; Takuma, Kazuhiro

    2017-08-30

    We recently demonstrated that prenatal exposure to valproic acid (VPA) at embryonic day 12.5 causes autism spectrum disorder (ASD)-like phenotypes such as hypolocomotion, anxiety-like behavior, social deficits and cognitive impairment in mice and that it decreases dendritic spine density in the hippocampal CA1 region. Previous studies show that some abnormal behaviors are improved by environmental enrichment in ASD rodent models, but it is not known whether environmental enrichment improves cognitive impairment. In the present study, we examined the effects of early environmental enrichment on behavioral abnormalities and neuromorphological changes in prenatal VPA-treated mice. We also examined the role of dendritic spine formation and synaptic protein expression in the hippocampus. Mice were housed for 4 weeks from 4 weeks of age under either a standard or enriched environment. Enriched housing was found to increase hippocampal brain-derived neurotrophic factor mRNA levels in both control and VPA-exposed mice. Furthermore, in VPA-treated mice, the environmental enrichment improved anxiety-like behavior, social deficits and cognitive impairment, but not hypolocomotion. Prenatal VPA treatment caused loss of dendritic spines in the hippocampal CA1 region and decreases in mRNA levels of postsynaptic density protein-95 and SH3 and multiple ankyrin repeat domains 2 in the hippocampus. These hippocampal changes were improved by the enriched housing. These findings suggest that the environmental enrichment improved most ASD-like behaviors including cognitive impairment in the VPA-treated mice by enhancing dendritic spine function. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Maslinic acid ameliorates NMDA receptor blockade-induced schizophrenia-like behaviors in mice.

    Science.gov (United States)

    Jeon, Se Jin; Kim, Eunji; Lee, Jin Su; Oh, Hee Kyong; Zhang, Jiabao; Kwon, Yubeen; Jang, Dae Sik; Ryu, Jong Hoon

    2017-11-01

    Schizophrenia is a chronic psychotic disorder characterized by positive, negative, and cognitive symptoms. Primary treatments for schizophrenia relieve the positive symptoms but are less effective against the negative and cognitive symptoms. In the present study, we investigated whether maslinic acid, isolated from Syzygium aromaticum (clove), can ameliorate schizophrenia-like behaviors in mice induced by MK-801, an N-methyl-d-aspartate (NMDA) receptor antagonist. After maslinic acid treatment in the MK-801 model, we examined the behavioral alteration and signaling pathways in the prefrontal cortex. Mice were treated with maslinic acid (30 mg/kg), and their behaviors were evaluated through an array of behavioral tests. The effects of maslinic acid were also examined in the signaling pathways in the prefrontal cortex. A single administration of maslinic acid blocked the MK-801-induced hyperlocomotion and reversed the MK-801-induced sensorimotor gating deficit in the acoustic startle response test. In the social novelty preference test, maslinic acid ameliorated the social behavior deficits induced by MK-801. The MK-801-induced attention and recognition memory impairments were also alleviated by a single administration of maslinic acid. Furthermore, maslinic acid normalized the phosphorylation levels of Akt-GSK-3β and ERK-CREB in the prefrontal cortex. Overall, maslinic acid ameliorated the schizophrenia-like symptoms induced by MK-801, and these effects may be partly mediated through Akt-GSK-3β and ERK-CREB activation. These findings suggest that maslinic acid could be a candidate for the treatment of several symptoms of schizophrenia, including positive symptoms, sensorimotor gating disruption, social interaction deficits, and cognitive impairments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Streptozotocin induced oxidative stress, innate immune system responses and behavioral abnormalities in male mice.

    Science.gov (United States)

    Amiri, Shayan; Haj-Mirzaian, Arya; Momeny, Majid; Amini-Khoei, Hossein; Rahimi-Balaei, Maryam; Poursaman, Simin; Rastegar, Mojgan; Nikoui, Vahid; Mokhtari, Tahmineh; Ghazi-Khansari, Mahmoud; Hosseini, Mir-Jamal

    2017-01-06

    Recent evidence indicates the involvement of inflammatory factors and mitochondrial dysfunction in the etiology of psychiatric disorders such as anxiety and depression. To investigate the possible role of mitochondrial-induced sterile inflammation in the co-occurrence of anxiety and depression, in this study, we treated adult male mice with the intracerebroventricular (i.c.v.) infusion of a single low dose of streptozotocin (STZ, 0.2mg/mouse). Using valid and qualified behavioral tests for the assessment of depressive and anxiety-like behaviors, we showed that STZ-treated mice exhibited behaviors relevant to anxiety and depression 24h following STZ treatment. We observed that the co-occurrence of anxiety and depressive-like behaviors in animals were associated with abnormal mitochondrial function, nitric oxide overproduction and, the increased activity of cytosolic phospholipase A 2 (cPLA 2 ) in the hippocampus. Further, STZ-treated mice had a significant upregulation of genes associated with the innate immune system such as toll-like receptors 2 and 4. Pathological evaluations showed no sign of neurodegeneration in the hippocampus of STZ-treated mice. Results of this study revealed that behavioral abnormalities provoked by STZ, as a cytotoxic agent that targets mitochondria and energy metabolism, are associated with abnormal mitochondrial activity and, consequently the initiation of innate-inflammatory responses in the hippocampus. Our findings highlight the role of mitochondria and innate immunity in the formation of sterile inflammation and behaviors relevant to anxiety and depression. Also, we have shown that STZ injection (i.c.v.) might be an animal model for depression and anxiety disorders based on sterile inflammation. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  9. Myocardial metabolic abnormalities in hypertrophic cardiomyopathy assessed by iodine-123-labeled beta-methyl-branched fatty acid myocardial scintigraphy and its relation to exercise-induced ischemia

    International Nuclear Information System (INIS)

    Matsuo, Shinro; Nakamura, Yasuyuki; Takahashi, Masayuki; Mitsunami, Kenichi; Kinoshita, Masahiko

    1998-01-01

    Reversible thallium-201 ( 201 Tl) abnormalities during exercise stress have been used as markers of myocardial ischemia in hypertrophic cardiomyopathy (HCM) and are most likely to identify relatively underperfused myocardium. Although metabolic abnormalities in HCM were reported, the relationship between impaired energy metabolism and exercise-induced ischemia has not been fully elucidated as yet. To assess the relationship between myocardial perfusion abnormalities and fatty acid metabolic abnormalities, 28 patients with HCM underwent exercise 201 Tl and rest 123 I-15-(p-iodophenyl)-3-methyl pentadecanoic acid (BMIPP) scintigraphy. Perfusion abnormalities were observed by exercise 201 Tl in 19/28 patients with HCM. 123 I-BMIPP uptake was decreased compared with delayed 201 Tl in 106/364 (29%) of the total myocardial segments (p 123 I-BMIPP and 201 Tl was observed more often in the 49/75 (65%) segments with reversible exercise 201 Tl defects (p 123 I-BMIPP and 201 Tl suggests that myocardial ischemia may play an important role in metabolic abnormalities in HCM. (author)

  10. Intrastriatal methylmalonic acid administration induces rotational behavior and convulsions through glutamatergic mechanisms.

    Science.gov (United States)

    de Mello, C F; Begnini, J; Jiménez-Bernal, R E; Rubin, M A; de Bastiani, J; da Costa, E; Wajner, M

    1996-05-20

    The effect of intrastriatal administration of methylmalonic acid (MMA), a metabolite that accumulates in methylmalonic aciduria, on behavior of adult male Wistar rats was investigated. After cannula placing, rats received unilateral intrastriatal injections of MMA (buffered to pH 7.4 with NaOH) or NaCl. MMA induced rotational behavior toward the contralateral side of injection and clonic convulsions in a dose-dependent manner. Rotational behavior and convulsions were prevented by intrastriatal preadministration of MK-801 and attenuated by preadministration of succinate. This study provides evidence for a participation of NMDA receptors in the MMA-induced behavioral alterations, where succinate dehydrogenase inhibition seems to have a pivotal role.

  11. Rat hippocampal alterations could underlie behavioral abnormalities induced by exposure to moderate noise levels.

    Science.gov (United States)

    Uran, S L; Aon-Bertolino, M L; Caceres, L G; Capani, F; Guelman, L R

    2012-08-30

    Noise exposure is known to affect auditory structures in living organisms. However, it should not be ignored that many of the effects of noise are extra-auditory. Previous findings of our laboratory demonstrated that noise was able to induce behavioral alterations that are mainly related to the cerebellum (CE) and the hippocampus (HC). Therefore, the aim of this work was to reveal new data about the vulnerability of developing rat HC to moderate noise levels through the assessment of potential histological changes and hippocampal-related behavioral alterations. Male Wistar rats were exposed to noise (95-97 dB SPL, 2h daily) either for 1 day (acute noise exposure, ANE) or between postnatal days 15 and 30 (sub-acute noise exposure, SANE). Hippocampal histological evaluation as well as short (ST) and long term (LT) habituation and recognition memory assessments were performed. Results showed a mild disruption in the different hippocampal regions after ANE and SANE schemes, along with significant behavioral abnormalities. These data suggest that exposure of developing rats to noise levels of moderate intensity is able to trigger changes in the HC, an extra-auditory structure of the Central Nervous System (CNS), that could underlie the observed behavioral effects. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Fatty acid-induced gut-brain signaling attenuates neural and behavioral effects of sad emotion in humans.

    Science.gov (United States)

    Van Oudenhove, Lukas; McKie, Shane; Lassman, Daniel; Uddin, Bilal; Paine, Peter; Coen, Steven; Gregory, Lloyd; Tack, Jan; Aziz, Qasim

    2011-08-01

    Although a relationship between emotional state and feeding behavior is known to exist, the interactions between signaling initiated by stimuli in the gut and exteroceptively generated emotions remain incompletely understood. Here, we investigated the interaction between nutrient-induced gut-brain signaling and sad emotion induced by musical and visual cues at the behavioral and neural level in healthy nonobese subjects undergoing functional magnetic resonance imaging. Subjects received an intragastric infusion of fatty acid solution or saline during neutral or sad emotion induction and rated sensations of hunger, fullness, and mood. We found an interaction between fatty acid infusion and emotion induction both in the behavioral readouts (hunger, mood) and at the level of neural activity in multiple pre-hypothesized regions of interest. Specifically, the behavioral and neural responses to sad emotion induction were attenuated by fatty acid infusion. These findings increase our understanding of the interplay among emotions, hunger, food intake, and meal-induced sensations in health, which may have important implications for a wide range of disorders, including obesity, eating disorders, and depression.

  13. Methamphetamine-induced dopaminergic toxicity prevented owing to the neuroprotective effects of salicylic acid.

    Science.gov (United States)

    Thrash-Williams, Bessy; Karuppagounder, Senthilkumar S; Bhattacharya, Dwipayan; Ahuja, Manuj; Suppiramaniam, Vishnu; Dhanasekaran, Muralikrishnan

    2016-06-01

    Methamphetamine (Schedule-II drug, U.S. Drug Enforcement Administration) is one of the most abused illicit drug following cocaine, marijuana, and heroin in the USA. There are numerous health impairments and substantial economic burden caused by methamphetamine abuse. Salicylic acid, potent anti-inflammatory drug and a known neuroprotectant has shown to protect against toxicity-induced by other dopaminergic neurotoxins. Hence, in this study we investigated the neuroprotective effects of salicylic acid against methamphetamine-induced toxicity in mice. The current study investigated the effects of sodium salicylate and/or methamphetamine on oxidative stress, monoamine oxidase, mitochondrial complex I & IV activities using spectrophotometric and fluorimetric methods. Behavioral analysis evaluated the effect on movement disorders-induced by methamphetamine. Monoaminergic neurotransmitter levels were evaluated using high pressure liquid chromatography-electrochemical detection. Methamphetamine caused significant generation of reactive oxygen species and decreased complex-I activity leading to dopamine depletion. Striatal dopamine depletion led to significant behavioral changes associated with movement disorders. Sodium salicylate (50 & 100mg/kg) significantly scavenged reactive oxygen species, blocked mitochondrial dysfunction and exhibited neuroprotection against methamphetamine-induced neurotoxicity. In addition, sodium salicylate significantly blocked methamphetamine-induced behavioral changes related to movement abnormalities. One of the leading causative theories in nigral degeneration associated with movement disorders such as Parkinson's disease is exposure to stimulants, drugs of abuse, insecticide and pesticides. These neurotoxic substances can induce dopaminergic neuronal insult by oxidative stress, apoptosis, mitochondrial dysfunction and inflammation. Salicylic acid due to its antioxidant and anti-inflammatory effects could provide neuroprotection against the

  14. Normal and Abnormal Behavior in Early Childhood

    OpenAIRE

    Spinner, Miriam R.

    1981-01-01

    Evaluation of normal and abnormal behavior in the period to three years of age involves many variables. Parental attitudes, determined by many factors such as previous childrearing experience, the bonding process, parental psychological status and parental temperament, often influence the labeling of behavior as normal or abnormal. This article describes the forms of crying, sleep and wakefulness, and affective responses from infancy to three years of age.

  15. Autosomal dominant inheritance of brain cardiolipin fatty acid abnormality in VM/DK mice: association with hypoxic-induced cognitive insensitivity.

    Science.gov (United States)

    Ta, Nathan L; Jia, Xibei; Kiebish, Michael; Seyfried, Thomas N

    2014-01-01

    Cardiolipin is a complex polyglycerol phospholipid found almost exclusively in the inner mitochondrial membrane and regulates numerous enzyme activities especially those related to oxidative phosphorylation and coupled respiration. Abnormalities in cardiolipin can impair mitochondrial function and bioenergetics. We recently demonstrated that the ratio of shorter chain saturated and monounsaturated fatty acids (C16:0; C18:0; C18:1) to longer chain polyunsaturated fatty acids (C18:2; C20:4; C22:6) was significantly greater in the brains of adult VM/DK (VM) inbred mice than in the brains of C57BL/6 J (B6) mice. The cardiolipin fatty acid abnormalities in VM mice are also associated with alterations in the activity of mitochondrial respiratory complexes. In this study we found that the abnormal brain fatty acid ratio in the VM strain was inherited as an autosomal dominant trait in reciprocal B6 × VM F1 hybrids. To evaluate the potential influence of brain cardiolipin fatty acid composition on cognitive sensitivity, we placed the parental B6 and VM mice and their reciprocal male and female B6VMF1 hybrid mice (3-month-old) in a hypoxic chamber (5 % O2). Cognitive awareness (conscientiousness) under hypoxia was significantly lower in the VM parental mice and F1 hybrid mice (11.4 ± 0.4  and 11.0 ± 0.4 min, respectively) than in the parental B6 mice (15.3 ± 1.4 min), indicating an autosomal dominant inheritance like that of the brain cardiolipin abnormalities. These findings suggest that impaired cognitive awareness under hypoxia is associated with abnormalities in neural lipid composition.

  16. Nonparametric Change Point Diagnosis Method of Concrete Dam Crack Behavior Abnormality

    Directory of Open Access Journals (Sweden)

    Zhanchao Li

    2013-01-01

    Full Text Available The study on diagnosis method of concrete crack behavior abnormality has always been a hot spot and difficulty in the safety monitoring field of hydraulic structure. Based on the performance of concrete dam crack behavior abnormality in parametric statistical model and nonparametric statistical model, the internal relation between concrete dam crack behavior abnormality and statistical change point theory is deeply analyzed from the model structure instability of parametric statistical model and change of sequence distribution law of nonparametric statistical model. On this basis, through the reduction of change point problem, the establishment of basic nonparametric change point model, and asymptotic analysis on test method of basic change point problem, the nonparametric change point diagnosis method of concrete dam crack behavior abnormality is created in consideration of the situation that in practice concrete dam crack behavior may have more abnormality points. And the nonparametric change point diagnosis method of concrete dam crack behavior abnormality is used in the actual project, demonstrating the effectiveness and scientific reasonableness of the method established. Meanwhile, the nonparametric change point diagnosis method of concrete dam crack behavior abnormality has a complete theoretical basis and strong practicality with a broad application prospect in actual project.

  17. Radiographic abnormalities in tricyclic acid overdose

    International Nuclear Information System (INIS)

    Varnell, R.M.; Richardson, M.L.; Vincent, J.M.; Godwin, J.D.

    1987-01-01

    Several case reports have described adult respiratory distress syndrome (ARDS) secondary to tricyclic acid (TCA) overdose. During a 1-year period 83 patients requiring intubation secondary to drug overdose were evaluated. Abnormalities on chest radiographs occurred in 26 (50%) of the 54 patients with TCA overdose, compared to six (21%) of the 29 patients overdosed with other drugs. In addition, five (9%) of the patients with TCA overdose subsequently had radiographic and clinical abnormalities meeting the criteria for ARDS. Only one (3%) of the patients with non-TCA overdose subsequently had change suggesting ARDS. TCAs should be added to the list of drugs associated with ARDS, and TCA overdose should be considered a major risk factor in the development of radiographically evident abnormalities

  18. p-Coumaric acid enhances long-term potentiation and recovers scopolamine-induced learning and memory impairments.

    Science.gov (United States)

    Kim, Hyun-Bum; Lee, Seok; Hwang, Eun-Sang; Maeng, Sungho; Park, Ji-Ho

    2017-10-21

    Due to the improvement of medical level, life expectancy increased. But the increased incidence of cognitive disorders is an emerging social problem. Current drugs for dementia treatment can only delay the progress rather than cure. p-Coumaric acid is a phenylpropanoic acid derived from aromatic amino acids and known as a precursor for flavonoids such as resveratrol and naringenin. It was shown to reduce oxidative stress, inhibit genotoxicity and exert neuroprotection. Based on these findings, we evaluated whether p-coumaric acid can protect scopolamine induced learning and memory impairment by measuring LTP in organotypic hippocampal slice and cognitive behaviors in rats. p-Coumaric acid dose-dependently increased the total activity of fEPSP after high frequency stimulation and attenuated scopolamine-induced blockade of fEPSP in the hippocampal CA1 area. In addition, while scopolamine shortened the step-through latency in the passive avoidance test and prolonged the latency as well as reduced the latency in the target quadrant in the Morris water maze test, co-treatment of p-coumaric acid improved avoidance memory and long-term retention of spatial memory in behavioral tests. Since p-coumaric acid improved electrophysiological and cognitive functional deterioration by scopolamine, it may have regulatory effects on central cholinergic synapses and is expected to improve cognitive problems caused by abnormality of the cholinergic nervous system. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Trichloroethylene exposure aggravates behavioral abnormalities in mice that are deficient in superoxide dismutase.

    Science.gov (United States)

    Otsuki, Noriyuki; Homma, Takujiro; Fujiwara, Hiroki; Kaneko, Kenya; Hozumi, Yasukazu; Shichiri, Mototada; Takashima, Mizuki; Ito, Junitsu; Konno, Tasuku; Kurahashi, Toshihiro; Yoshida, Yasukazu; Goto, Kaoru; Fujii, Satoshi; Fujii, Junichi

    2016-08-01

    Trichloroethylene (TCE) has been implicated as a causative agent for Parkinson's disease (PD). The administration of TCE to rodents induces neurotoxicity associated with dopaminergic neuron death, and evidence suggests that oxidative stress as a major player in the progression of PD. Here we report on TCE-induced behavioral abnormality in mice that are deficient in superoxide dismutase 1 (SOD1). Wild-type (WT) and SOD1-deficient (Sod1(-/-)) mice were intraperitoneally administered TCE (500 mg/kg) over a period of 4 weeks. Although the TCE-administrated Sod1(-/-) mice showed marked abnormal motor behavior, no significant differences were observed among the experimental groups by biochemical and histopathological analyses. However, treating mouse neuroblastoma-derived NB2a cells with TCE resulted in the down regulation of the SOD1 protein and elevated oxidative stress under conditions where SOD1 production was suppressed. Taken together, these data indicate that SOD1 plays a pivotal role in protecting motor neuron function against TCE toxicity. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Nervous system disruption and concomitant behavioral abnormality in early hatched pufferfish larvae exposed to heavy oil.

    Science.gov (United States)

    Kawaguchi, Masahumi; Sugahara, Yuki; Watanabe, Tomoe; Irie, Kouta; Ishida, Minoru; Kurokawa, Daisuke; Kitamura, Shin-Ichi; Takata, Hiromi; Handoh, Itsuki C; Nakayama, Kei; Murakami, Yasunori

    2011-08-01

    Spills of heavy oil (HO) over the oceans have been proven to have an adverse effect on marine life. It has been hypothesized that exposure of early larvae of sinking eggs to HO leads largely to normal morphology, whereas abnormal organization of the developing neural scaffold is likely to be found. HO-induced disruption of the nervous system, which controls animal behavior, may in turn cause abnormalities in the swimming behavior of hatched larvae. To clarify the toxicological effects of HO, we performed exposure experiments and morphological and behavioral analyses in pufferfish (Takifugu rubripes) larvae. Fertilized eggs of pufferfish were exposed to 50 mg/L of HO for 8 days and transferred to fresh seawater before hatching. The hatched larvae were observed for their swimming behavior, morphological appearance, and construction of muscles and nervous system. In HO-exposed larvae, we did not detect any anomaly of body morphology. However, they showed an abnormal swimming pattern and disorganized midbrain, a higher center controlling movement. Our results suggest that HO-exposed fishes suffer developmental disorder of the brain that triggers an abnormal swimming behavior and that HO may be selectively toxic to the brain and cause physical disability throughout the life span of these fishes.

  1. Nonparametric Change Point Diagnosis Method of Concrete Dam Crack Behavior Abnormality

    OpenAIRE

    Li, Zhanchao; Gu, Chongshi; Wu, Zhongru

    2013-01-01

    The study on diagnosis method of concrete crack behavior abnormality has always been a hot spot and difficulty in the safety monitoring field of hydraulic structure. Based on the performance of concrete dam crack behavior abnormality in parametric statistical model and nonparametric statistical model, the internal relation between concrete dam crack behavior abnormality and statistical change point theory is deeply analyzed from the model structure instability of parametric statistical model ...

  2. Reducing prefrontal gamma-aminobutyric acid activity induces cognitive, behavioral, and dopaminergic abnormalities that resemble schizophrenia.

    Science.gov (United States)

    Enomoto, Takeshi; Tse, Maric T; Floresco, Stan B

    2011-03-01

    Perturbations in gamma-aminobutyric acid (GABA)-related markers have been reported in the prefrontal cortex of schizophrenic patients. However, a preclinical assessment of how suppression of prefrontal cortex GABA activity may reflect behavioral and cognitive pathologies observed in schizophrenia is forthcoming. We assessed the effects of pharmacologic blockade of prefrontal cortex GABA(A) receptors in rats on executive functions and other behaviors related to schizophrenia, as well as neural activity of midbrain dopamine neurons. Blockade of prefrontal cortex GABA(A) receptors with bicuculline (12.5-50 ng) did not affect working memory accuracy but did increase response latencies, resembling speed of processing deficits observed in schizophrenia. Prefrontal cortex GABA(A) blockade did not impede simple discrimination or reversal learning but did impair set-shifting in a manner dependent on when these treatments were given. Reducing GABA activity before the set-shift impaired the ability to acquire a novel strategy, whereas treatment before the initial discrimination increased perseveration during the shift. Latent inhibition was unaffected by bicuculline infusions before the preexposure/conditioning phases, suggesting that reduced prefrontal cortex GABA activity does not impair "learned irrelevance." GABA(A) blockade increased locomotor activity and showed synergic effects with a subthreshold dose of amphetamine. Furthermore, reducing medial prefrontal cortex GABA activity selectively increased phasic burst firing of ventral tegmental area dopamine neurons, without altering the their overall population activity. These results suggest that prefrontal cortex GABA hypofunction may be a key contributing factor to deficits in speed of processing, cognitive flexibility, and enhanced phasic dopamine activity observed in schizophrenia. Copyright © 2011 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  3. Piroxicam attenuates 3-nitropropionic acid-induced brain oxidative stress and behavioral alteration in mice.

    Science.gov (United States)

    C, Jadiswami; H M, Megha; Dhadde, Shivsharan B; Durg, Sharanbasappa; Potadar, Pandharinath P; B S, Thippeswamy; V P, Veerapur

    2014-12-01

    3-Nitropropionic acid (3-NP) is a fungal toxin that produces Huntington's disease like symptoms in both animals and humans. Piroxicam, a non-selective cyclooxygenase (COX) inhibitor, used as anti-inflammatory agent and also known to decrease free oxygen radical production. In this study, the effect of piroxicam was evaluated against 3-NP-induced brain oxidative stress and behavioral alteration in mice. Adult male Swiss albino mice were injected with vehicle/piroxicam (10 and 20 mg/kg, i.p.) 30 min before 3-NP challenge (15 mg/kg, i.p.) regularly for 14 days. Body weights of the mice were measured on alternative days of the experiment. At the end of the treatment schedule, mice were evaluated for behavioral alterations (movement analysis, locomotor test, beam walking test and hanging wire test) and brain homogenates were used for the estimation of oxidative stress markers (lipid peroxidation, reduced glutathione and catalase). Administration of 3-NP significantly altered the behavioral activities and brain antioxidant status in mice. Piroxicam, at both the tested doses, caused a significant reversal of 3-NP-induced behavioral alterations and oxidative stress in mice. These findings suggest piroxicam protects the mice against 3-NP-induced brain oxidative stress and behavioral alteration. The antioxidant properties of piroxicam may be responsible for the observed beneficial actions.

  4. Neuroprotective Activity of Curcumin in Combination with Piperine against Quinolinic Acid Induced Neurodegeneration in Rats.

    Science.gov (United States)

    Singh, Shamsher; Kumar, Puneet

    2016-01-01

    Quinolinic acid (QA) is an excitotoxin that induces Huntington's-like symptoms in animals and humans. Curcumin (CMN) is a well-known antioxidant but the major problem is its bioavailability. Therefore, the present study was designed to investigate the effect of CMN in the presence of piperine against QA-induced excitotoxic cell death in rats. QA was administered intrastriatally at a dose of 200 nmol/2 µl saline, bilaterally. CMN (25 and 50 mg/kg/day, p.o.) and combination of CMN (25 mg/kg/day, p.o.) and with piperine (2.5 mg/kg/day, p.o.) was administered daily for the next 21 days. Body weight and behavioral parameters were observed on 1st, 7th, 14th and 21st day. On the 22nd day, animals were sacrificed and striatum was isolated for biochemical (LPO, nitrite and GSH), neuroinflammatory (interleukin (IL)-1β, IL-6 and TNF-α) and neurochemical (dopamine, norepinephrine, GABA, glutamate, 5-HT, 3,4-dihydroxyphenylacetic acid and homovanillic acid) estimation. CMN treatment showed beneficial effect against QA-induced motor deficit, biochemical and neurochemical abnormalities in rats. Combination of piperine (2.5 mg/kg/day, p.o.) with CMN (25 mg/kg/day, p.o.) significantly enhanced its protective effect as compared to treatment with CMN alone. This study has revealed that the combination of CMN and piperine showed strong antioxidant and protective effect against QA-induced behavioral and neurological alteration in rats. © 2016 S. Karger AG, Basel.

  5. Acute administration of fluoxetine normalizes rapid eye movement sleep abnormality, but not depressive behaviors in olfactory bulbectomized rats.

    Science.gov (United States)

    Wang, Yi-Qun; Tu, Zhi-Cai; Xu, Xing-Yuan; Li, Rui; Qu, Wei-Min; Urade, Yoshihiro; Huang, Zhi-Li

    2012-01-01

    In humans, depression is associated with altered rapid eye movement (REM) sleep. However, the exact nature of the relationship between depressive behaviors and sleep abnormalities is debated. In this study, bilateral olfactory bulbectomy (OBX) was carried out to create a model of depression in rats. The sleep-wake profiles were assayed using a cutting-edge sleep bioassay system, and depressive behaviors were evaluated by open field and forced swimming tests. The monoamine content and monoamine metabolite levels in the brain were determined by a HPLC-electrochemical detection system. OBX rats exhibited a significant increase in REM sleep, especially between 15:00 and 18:00 hours during the light period. Acute treatment with fluoxetine (10 mg/kg, i.p.) immediately abolished the OBX-induced increase in REM sleep, but hyperactivity in the open field test and the time spent immobile in the forced swimming test remained unchanged. Neurochemistry studies revealed that acute administration of fluoxetine increased serotonin (5-HT) levels in the hippocampus, thalamus, and midbrain and decreased levels of the 5-HT metabolite 5-hydroxyindoleacetic acid (5-HIAA). The ratio of 5-HIAA to 5-HT decreased in almost all regions of the brain. These results indicate that acute administration of fluoxetine can reduce the increase in REM sleep but does not change the depressive behaviors in OBX rats, suggesting that there was no causality between REM sleep abnormalities and depressive behaviors in OBX rats. © 2011 The Authors. Journal of Neurochemistry © 2011 International Society for Neurochemistry.

  6. Effects of resocialization on post-weaning social isolation-induced abnormal aggression and social deficits in rats.

    Science.gov (United States)

    Tulogdi, Aron; Tóth, Máté; Barsvári, Beáta; Biró, László; Mikics, Eva; Haller, József

    2014-01-01

    As previously shown, rats isolated from weaning develop abnormal social and aggressive behavior characterized by biting attacks targeting vulnerable body parts of opponents, reduced attack signaling, and increased defensive behavior despite increased attack counts. Here we studied whether this form of violent aggression could be reversed by resocialization in adulthood. During the first weak of resocialization, isolation-reared rats showed multiple social deficits including increased defensiveness and decreased huddling during sleep. Deficits were markedly attenuated in the second and third weeks. Despite improved social functioning in groups, isolated rats readily showed abnormal features of aggression in a resident-intruder test performed after the 3-week-long resocialization. Thus, post-weaning social isolation-induced deficits in prosocial behavior were eliminated by resocialization during adulthood, but abnormal aggression was resilient to this treatment. Findings are compared to those obtained in humans who suffered early social maltreatment, and who also show social deficits and dysfunctional aggression in adulthood. © 2013 Wiley Periodicals, Inc.

  7. Evidence for a role of orexin/hypocretin system in vestibular lesion-induced locomotor abnormalities in rats

    Directory of Open Access Journals (Sweden)

    Leilei Pan

    2016-07-01

    Full Text Available Vestibular damage can induce locomotor abnormalities in both animals and humans. Rodents with bilateral vestibular loss showed vestibular deficits syndrome such as circling, opisthotonus as well as locomotor and exploratory hyperactivity. Previous studies have investigated the changes in the dopamine system after vestibular loss, but the results are inconsistent and inconclusive. Numerous evidences indicate that the orexin system is implicated in central motor control. We hypothesized that orexin may be potentially involved in vestibular loss-induced motor disorders. In this study, we examined the effects of arsanilate- or 3, 3′-iminodipropionitrile (IDPN-induced vestibular lesion (AVL or IVL on the orexin-A (OXA labeling in rat hypothalamus using immunohistochemistry. The vestibular lesion-induced locomotor abnormalities were recorded and verified using a histamine H4 receptor antagonist JNJ7777120 (20 mg/kg, i.p.. The effects of the orexin receptor type 1 antagonist SB334867 (16 μg, i.c.v. on these behavior responses were also investigated. At 72 h post-AVL and IVL, animals exhibited vestibular deficit syndrome and locomotor hyperactivity in the home cages. These responses were significantly alleviated by JNJ7777120 which also eliminated AVL-induced increases in exploratory behavior in an open field. The numbers of OXA-labeled neurons in the hypothalamus were significantly increased in the AVL animals at 72 h post-AVL and in the IVL animals at 24, 48 and 72 h post-IVL. SB334867 significantly attenuated the vestibular deficit syndrome and locomotor hyperactivity at 72 h post-AVL and IVL. It also decreased exploratory behavior in the AVL animals. These results suggested that the alteration of OXA expression might contribute to locomotor abnormalities after acute vestibular lesion. The orexin receptors might be the potential therapeutic targets for vestibular disorders.

  8. Improvement by methylphenidate and atomoxetine of social interaction deficits and recognition memory impairment in a mouse model of valproic acid-induced autism.

    Science.gov (United States)

    Hara, Yuta; Ago, Yukio; Taruta, Atsuki; Katashiba, Keisuke; Hasebe, Shigeru; Takano, Erika; Onaka, Yusuke; Hashimoto, Hitoshi; Matsuda, Toshio; Takuma, Kazuhiro

    2016-09-01

    Rodents exposed prenatally to valproic acid (VPA) show autism-related behavioral abnormalities. We recently found that prenatal VPA exposure causes a reduction of dopaminergic activity in the prefrontal cortex of male, but not female, mice. This suggests that reduced prefrontal dopaminergic activity is associated with behavioral abnormalities in VPA-treated mice. In the present study, we examined whether the attention deficit/hyperactivity disorder drugs methylphenidate and atomoxetine (which increase dopamine release in the prefrontal cortex, but not striatum, in mice) could alleviate the behavioral abnormalities and changes in dendritic spine morphology induced by prenatal VPA exposure. We found that methylphenidate and atomoxetine increased prefrontal dopamine and noradrenaline release in VPA-treated mice. Acute treatment with methylphenidate or atomoxetine did not alleviate the social interaction deficits or recognition memory impairment in VPA-treated mice, while chronic treatment for 2 weeks did. Methylphenidate or atomoxetine for 2 weeks also improved the prenatal VPA-induced decrease in dendritic spine density in the prefrontal cortex. The effects of these drugs on behaviors and dendritic spine morphology were antagonized by concomitant treatment with the dopamine-D1 receptor antagonist SCH39166 or the dopamine-D2 receptor antagonist raclopride, but not by the α2 -adrenoceptor antagonist idazoxan. These findings suggest that chronic treatment with methylphenidate or atomoxetine improves abnormal behaviors and diminishes the reduction in spine density in VPA-treated mice via a prefrontal dopaminergic system-dependent mechanism. Autism Res 2016, 9: 926-939. © 2015 International Society for Autism Research, Wiley Periodicals, Inc. © 2015 International Society for Autism Research, Wiley Periodicals, Inc.

  9. Epigenetic regulation of dorsal raphe GABA(B1a) associated with isolation-induced abnormal responses to social stimulation in mice.

    Science.gov (United States)

    Araki, Ryota; Hiraki, Yosuke; Nishida, Shoji; Kuramoto, Nobuyuki; Matsumoto, Kinzo; Yabe, Takeshi

    2016-02-01

    In isolation-reared mice, social encounter stimulation induces locomotor hyperactivity and activation of the dorsal raphe nucleus (DRN), suggesting that dysregulation of dorsal raphe function may be involved in abnormal behaviors. In this study, we examined the involvement of dorsal raphe GABAergic dysregulation in the abnormal behaviors of isolation-reared mice. We also studied an epigenetic mechanism underlying abnormalities of the dorsal raphe GABAergic system. Both mRNA and protein levels of GABA(B1a), a GABA(B) receptor subunit, were increased in the DRN of isolation-reared mice, compared with these levels in group-reared mice. In contrast, mRNA levels for other GABAergic system-related genes (GABA(A) receptor α1, β2 and γ2 subunits, GABA(B) receptor 1b and 2 subunits, and glutamate decarboxylase 67 and 65) were unchanged. Intra-DRN microinjection of 0.06 nmol baclofen (a GABA(B) receptor agonist) exacerbated encounter-induced hyperactivity and aggressive behavior, while microinjection of 0.3 nmol phaclofen (a GABA(B) receptor antagonist) attenuated encounter-induced hyperactivity and aggressive behavior in isolation-reared mice. Furthermore, microinjection of 0.06 nmol baclofen elicited encounter-induced hyperactivity in group-reared mice. Neither baclofen nor phaclofen affected immobility time in the forced swim test and hyperactivity in a novel environment of isolation reared mice. Bisulfite sequence analyses revealed that the DNA methylation level of the CpG island around the transcription start site (TSS) of GABA(B1a) was decreased in the DRN of isolation-reared mice. Chromatin immunoprecipitation analysis showed that histone H3 was hyperacetylated around the TSS of GABA(B1a) in the DRN of isolation-reared mice. These findings indicate that an increase in dorsal raphe GABA(B1a) expression via epigenetic regulation is associated with abnormal responses to social stimulation such as encounter-induced hyperactivity and aggressive behavior in isolation

  10. Serum amino acid abnormalities in pediatric patients with chronic ...

    African Journals Online (AJOL)

    Background: Plasma amino acid concentrations have been reported to be abnormal in patients with chronic renal failure. L-Arginine has been used to improve endothelial function by increasing nitric oxide (NO) bioavailability. The present study aim at investigating the status of plasma amino acids in pediatric patients with ...

  11. Characterizing abnormal behavior in a large population of zoo-housed chimpanzees: prevalence and potential influencing factors

    Directory of Open Access Journals (Sweden)

    Sarah L. Jacobson

    2016-07-01

    Full Text Available Abnormal behaviors in captive animals are generally defined as behaviors that are atypical for the species and are often considered to be indicators of poor welfare. Although some abnormal behaviors have been empirically linked to conditions related to elevated stress and compromised welfare in primates, others have little or no evidence on which to base such a relationship. The objective of this study was to investigate a recent claim that abnormal behavior is endemic in the captive population by surveying a broad sample of chimpanzees (Pan troglodytes, while also considering factors associated with the origins of these behaviors. We surveyed animal care staff from 26 accredited zoos to assess the prevalence of abnormal behavior in a large sample of chimpanzees in the United States for which we had information on origin and rearing history. Our results demonstrated that 64% of this sample was reported to engage in some form of abnormal behavior in the past two years and 48% of chimpanzees engaged in abnormal behavior other than coprophagy. Logistic regression models were used to analyze the historical variables that best predicted the occurrence of all abnormal behavior, any abnormal behavior that was not coprophagy, and coprophagy. Rearing had opposing effects on the occurrence of coprophagy and the other abnormal behaviors such that mother-reared individuals were more likely to perform coprophagy, whereas non-mother-reared individuals were more likely to perform other abnormal behaviors. These results support the assertion that coprophagy may be classified separately when assessing abnormal behavior and the welfare of captive chimpanzees. This robust evaluation of the prevalence of abnormal behavior in our sample from the U.S. zoo population also demonstrates the importance of considering the contribution of historical variables to present behavior, in order to better understand the causes of these behaviors and any potential relationship to

  12. Freud Was Right. . . about the Origins of Abnormal Behavior

    Science.gov (United States)

    Muris, Peter

    2006-01-01

    Freud's psychodynamic theory is predominantly based on case histories of patients who displayed abnormal behavior. From a scientific point of view, Freud's analyses of these cases are unacceptable because the key concepts of his theory cannot be tested empirically. However, in one respect, Freud was totally right: most forms of abnormal behavior…

  13. Oseltamivir use and severe abnormal behavior in Japanese children and adolescents with influenza: Is a self-controlled case series study applicable?

    Science.gov (United States)

    Fukushima, Wakaba; Ozasa, Kotaro; Okumura, Akihisa; Mori, Masaaki; Hosoya, Mitsuaki; Nakano, Takashi; Tanabe, Takuya; Yamaguchi, Naoto; Suzuki, Hiroshi; Mori, Mitsuru; Hatayama, Hideaki; Ochiai, Hirotaka; Kondo, Kyoko; Ito, Kazuya; Ohfuji, Satoko; Nakamura, Yosikazu; Hirota, Yoshio

    2017-08-24

    Since the 1990s, self-controlled designs including self-controlled case series (SCCS) studies have been occasionally used in post-marketing evaluation of drug or vaccine safety. An SCCS study was tentatively applied to evaluate the relationship between oseltamivir use and abnormal behavior Type A (serious abnormal behavior potentially leading to an accident or harm to another person) in influenza patients. From the original prospective cohort study with approximately 10,000 Japanese children and adolescents with influenza (aged collaborating hospitals/clinics were analyzed. We hypothesized four combination patterns of the effect period (i.e., the period that effect of oseltamivir on occurrence of abnormal behavior Type A is likely) and the control period. Mantel-Haenszel rate ratio (M-H RR) and its 95% confidence interval (CI) were calculated as the relative risk estimate. Among 28 subjects in the SCCS study, 24 subjects (86%) were administered oseltamivir and 4 subjects (14%) were not. Abnormal behavior Type A was more likely to occur in the effect period than the control period in every pattern (M-H RR: 1.90-29.1). We observed the highest estimate when the effect period was set between the initial intake of oseltamivir and T max (M-H RR: 29.1, 95% CI: 4.21-201). Abnormal behavior Type A was more likely to develop up to approximately 30 times during the period between the initial intake of oseltamivir and T max . However, this period overlapped with the early period of influenza where high fever was observed. Since useful approaches to control the influence of the natural disease course of influenza were not available in this study, we could not deny the possibility that abnormal behavior was induced by influenza itself. The SCCS study was not an optimal method to evaluate the relationship between oseltamivir use and abnormal behavior. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. The Incidence of Electrolytes and Acid-Base Abnormalities in ...

    African Journals Online (AJOL)

    Diabetic patients with prolonged insulin insufficiency can present in the emergency department with life threatening ketoacidosis,el ectrolyte ... acid-base abnormalities in diabetic emergencies using the I-STAT point of care testing technique.

  15. Cocaine Self-Administration Experience Induces Pathological Phasic Accumbens Dopamine Signals and Abnormal Incentive Behaviors in Drug-Abstinent Rats.

    Science.gov (United States)

    Saddoris, Michael P; Wang, Xuefei; Sugam, Jonathan A; Carelli, Regina M

    2016-01-06

    behavior in nondrug situations. Here, rats learned about food-paired stimuli after prolonged abstinence from cocaine self-administration. Using voltammetry, we found that real-time DA signals in cocaine-experienced rats were strikingly altered relative to controls. Further, cocaine-experienced animals found reward-predictive stimuli abnormally salient and spent more time interacting with cues. Therefore, cocaine induces neuroplastic changes in the DA system that biases animals toward salient stimuli (including reward-associated cues), putting addicts at increasing risk to relapse as addiction increases in severity. Copyright © 2016 the authors 0270-6474/16/360235-16$15.00/0.

  16. Cocaine Self-Administration Experience Induces Pathological Phasic Accumbens Dopamine Signals and Abnormal Incentive Behaviors in Drug-Abstinent Rats

    Science.gov (United States)

    Wang, Xuefei; Sugam, Jonathan A.; Carelli, Regina M.

    2016-01-01

    , particularly its role in behavior in nondrug situations. Here, rats learned about food-paired stimuli after prolonged abstinence from cocaine self-administration. Using voltammetry, we found that real-time DA signals in cocaine-experienced rats were strikingly altered relative to controls. Further, cocaine-experienced animals found reward-predictive stimuli abnormally salient and spent more time interacting with cues. Therefore, cocaine induces neuroplastic changes in the DA system that biases animals toward salient stimuli (including reward-associated cues), putting addicts at increasing risk to relapse as addiction increases in severity. PMID:26740664

  17. Olfaction in eating disorders and abnormal eating behavior: a systematic review.

    Science.gov (United States)

    Islam, Mohammed A; Fagundo, Ana B; Arcelus, Jon; Agüera, Zaida; Jiménez-Murcia, Susana; Fernández-Real, José M; Tinahones, Francisco J; de la Torre, Rafael; Botella, Cristina; Frühbeck, Gema; Casanueva, Felipe F; Menchón, José M; Fernandez-Aranda, Fernando

    2015-01-01

    The study provides a systematic review that explores the current literature on olfactory capacity in abnormal eating behavior. The objective is to present a basis for discussion on whether research in olfaction in eating disorders may offer additional insight with regard to the complex etiopathology of eating disorders (ED) and abnormal eating behaviors. Electronic databases (Medline, PsycINFO, PubMed, Science Direct, and Web of Science) were searched using the components in relation to olfaction and combining them with the components related to abnormal eating behavior. Out of 1352 articles, titles were first excluded by title (n = 64) and then by abstract and fulltext resulting in a final selection of 14 articles (820 patients and 385 control participants) for this review. The highest number of existing literature on olfaction in ED were carried out with AN patients (78.6%) followed by BN patients (35.7%) and obese individuals (14.3%). Most studies were only conducted on females. The general findings support that olfaction is altered in AN and in obesity and indicates toward there being little to no difference in olfactory capacity between BN patients and the general population. Due to the limited number of studies and heterogeneity this review stresses on the importance of more research on olfaction and abnormal eating behavior.

  18. Ursolic acid improves domoic acid-induced cognitive deficits in mice

    International Nuclear Information System (INIS)

    Wu, Dong-mei; Lu, Jun; Zhang, Yan-qiu; Zheng, Yuan-lin; Hu, Bin; Cheng, Wei; Zhang, Zi-feng; Li, Meng-qiu

    2013-01-01

    Our previous findings suggest that mitochondrial dysfunction is the mechanism underlying cognitive deficits induced by domoic acid (DA). Ursolic acid (UA), a natural triterpenoid compound, possesses many important biological functions. Evidence shows that UA can activate PI3K/Akt signaling and suppress Forkhead box protein O1 (FoxO1) activity. FoxO1 is an important regulator of mitochondrial function. Here we investigate whether FoxO1 is involved in the oxidative stress-induced mitochondrial dysfunction in DA-treated mice and whether UA inhibits DA-induced mitochondrial dysfunction and cognitive deficits through regulating the PI3K/Akt and FoxO1 signaling pathways. Our results showed that FoxO1 knockdown reversed the mitochondrial abnormalities and cognitive deficits induced by DA in mice through decreasing HO-1 expression. Mechanistically, FoxO1 activation was associated with oxidative stress-induced JNK activation and decrease of Akt phosphorylation. Moreover, UA attenuated the mitochondrial dysfunction and cognitive deficits through promoting Akt phosphorylation and FoxO1 nuclear exclusion in the hippocampus of DA-treated mice. LY294002, an inhibitor of PI3K/Akt signaling, significantly decreased Akt phosphorylation in the hippocampus of DA/UA mice, which weakened UA actions. These results suggest that UA could be recommended as a possible candidate for the prevention and therapy of cognitive deficits in excitotoxic brain disorders. - Highlights: • Ursolic acid (UA) is a naturally triterpenoid compound. • UA attenuated the mitochondrial dysfunction and cognitive deficits. • Mechanistically, UA activates PI3K/Akt signaling and suppresses FoxO1 activity. • UA could be recommended as a possible candidate for anti-excitotoxic brain disorders

  19. Ursolic acid improves domoic acid-induced cognitive deficits in mice

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Dong-mei [School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou 221008, Jiangsu Province (China); Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Xuzhou Normal University, Xuzhou 221116, Jiangsu Province (China); Lu, Jun, E-mail: lu-jun75@163.com [Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Xuzhou Normal University, Xuzhou 221116, Jiangsu Province (China); Zhang, Yan-qiu [School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou 221008, Jiangsu Province (China); Zheng, Yuan-lin, E-mail: ylzheng@xznu.edu.cn [Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Xuzhou Normal University, Xuzhou 221116, Jiangsu Province (China); Hu, Bin [Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Xuzhou Normal University, Xuzhou 221116, Jiangsu Province (China); Cheng, Wei [School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou 221008, Jiangsu Province (China); Zhang, Zi-feng; Li, Meng-qiu [Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Xuzhou Normal University, Xuzhou 221116, Jiangsu Province (China)

    2013-09-01

    Our previous findings suggest that mitochondrial dysfunction is the mechanism underlying cognitive deficits induced by domoic acid (DA). Ursolic acid (UA), a natural triterpenoid compound, possesses many important biological functions. Evidence shows that UA can activate PI3K/Akt signaling and suppress Forkhead box protein O1 (FoxO1) activity. FoxO1 is an important regulator of mitochondrial function. Here we investigate whether FoxO1 is involved in the oxidative stress-induced mitochondrial dysfunction in DA-treated mice and whether UA inhibits DA-induced mitochondrial dysfunction and cognitive deficits through regulating the PI3K/Akt and FoxO1 signaling pathways. Our results showed that FoxO1 knockdown reversed the mitochondrial abnormalities and cognitive deficits induced by DA in mice through decreasing HO-1 expression. Mechanistically, FoxO1 activation was associated with oxidative stress-induced JNK activation and decrease of Akt phosphorylation. Moreover, UA attenuated the mitochondrial dysfunction and cognitive deficits through promoting Akt phosphorylation and FoxO1 nuclear exclusion in the hippocampus of DA-treated mice. LY294002, an inhibitor of PI3K/Akt signaling, significantly decreased Akt phosphorylation in the hippocampus of DA/UA mice, which weakened UA actions. These results suggest that UA could be recommended as a possible candidate for the prevention and therapy of cognitive deficits in excitotoxic brain disorders. - Highlights: • Ursolic acid (UA) is a naturally triterpenoid compound. • UA attenuated the mitochondrial dysfunction and cognitive deficits. • Mechanistically, UA activates PI3K/Akt signaling and suppresses FoxO1 activity. • UA could be recommended as a possible candidate for anti-excitotoxic brain disorders.

  20. Not All Children with Cystic Fibrosis Have Abnormal Esophageal Neutralization during Chemical Clearance of Acid Reflux.

    Science.gov (United States)

    Woodley, Frederick W; Moore-Clingenpeel, Melissa; Machado, Rodrigo Strehl; Nemastil, Christopher J; Jadcherla, Sudarshan R; Hayes, Don; Kopp, Benjamin T; Kaul, Ajay; Di Lorenzo, Carlo; Mousa, Hayat

    2017-09-01

    Acid neutralization during chemical clearance is significantly prolonged in children with cystic fibrosis, compared to symptomatic children without cystic fibrosis. The absence of available reference values impeded identification of abnormal findings within individual patients with and without cystic fibrosis. The present study aimed to test the hypothesis that significantly more children with cystic fibrosis have acid neutralization durations during chemical clearance that fall outside the physiological range. Published reference value for acid neutralization duration during chemical clearance (determined using combined impedance/pH monitoring) was used to assess esophageal acid neutralization efficiency during chemical clearance in 16 children with cystic fibrosis (3 to chemical clearance exceeded the upper end of the physiological range in 9 of 16 (56.3%) children with and in 3 of 16 (18.8%) children without cystic fibrosis ( p =0.0412). The likelihood ratio for duration indicated that children with cystic fibrosis are 2.1-times more likely to have abnormal acid neutralization during chemical clearance, and children with abnormal acid neutralization during chemical clearance are 1.5-times more likely to have cystic fibrosis. Significantly more (but not all) children with cystic fibrosis have abnormally prolonged esophageal clearance of acid. Children with cystic fibrosis are more likely to have abnormal acid neutralization during chemical clearance. Additional studies involving larger sample sizes are needed to address the importance of genotype, esophageal motility, composition and volume of saliva, and gastric acidity on acid neutralization efficiency in cystic fibrosis children.

  1. Maternal Sevoflurane Exposure Causes Abnormal Development of Fetal Prefrontal Cortex and Induces Cognitive Dysfunction in Offspring

    Directory of Open Access Journals (Sweden)

    Ruixue Song

    2017-01-01

    Full Text Available Maternal sevoflurane exposure during pregnancy is associated with increased risk for behavioral deficits in offspring. Several studies indicated that neurogenesis abnormality may be responsible for the sevoflurane-induced neurotoxicity, but the concrete impact of sevoflurane on fetal brain development remains poorly understood. We aimed to investigate whether maternal sevoflurane exposure caused learning and memory impairment in offspring through inducing abnormal development of the fetal prefrontal cortex (PFC. Pregnant mice at gestational day 15.5 received 2.5% sevoflurane for 6 h. Learning function of the offspring was evaluated with the Morris water maze test at postnatal day 30. Brain tissues of fetal mice were subjected to immunofluorescence staining to assess differentiation, proliferation, and cell cycle dynamics of the fetal PFC. We found that maternal sevoflurane anesthesia impaired learning ability in offspring through inhibiting deep-layer immature neuron output and neuronal progenitor replication. With the assessment of cell cycle dynamics, we established that these effects were mediated through cell cycle arrest in neural progenitors. Our research has provided insights into the cell cycle-related mechanisms by which maternal sevoflurane exposure can induce neurodevelopmental abnormalities and learning dysfunction and appeals people to consider the neurotoxicity of anesthetics when considering the benefits and risks of nonobstetric surgical procedures.

  2. Long-Term Evaluation of Abnormal Behavior in Adult Ex-laboratory Chimpanzees (Pan troglodytes Following Re-socialization

    Directory of Open Access Journals (Sweden)

    Karl Crailsheim

    2013-01-01

    Full Text Available Adverse rearing conditions are considered a major factor in the development of abnormal behavior. We investigated the overall levels, the prevalence and the diversity of abnormal behavior of 18 adult former laboratory chimpanzees, who spent about 20 years single caged, over a two-year period following re-socialization. According to the onset of deprivation, the individuals were classified as early deprived (EDs, mean: 1.2 years or late deprived (LDs, mean: 3.6 years. The results are based on 187.5 hours of scan sampling distributed over three sample periods: subsequent to re-socialization and during the first and second year of group-living. While the overall levels and the diversity of abnormal behavior remained stable over time in this study population, the amplifying effects of age at onset of deprivation became apparent as the overall levels of abnormal behavior of EDs were far above those of LDs in the first and second year of group-living, but not immediately after re-socialization. The most prevalent abnormal behaviors, including eating disorders and self-directed behaviors, however, varied in their occurrence within subjects across the periods. Most important, the significance of social companionship became obvious as the most severe forms of abnormal behavior, such as dissociative and self-injurious behaviors declined.

  3. Behavioral and Neurochemical Effects of Alpha-Lipoic Acid in the Model of Parkinson’s Disease Induced by Unilateral Stereotaxic Injection of 6-Ohda in Rat

    Directory of Open Access Journals (Sweden)

    Dayane Pessoa de Araújo

    2013-01-01

    Full Text Available This study aimed to investigate behavioral and neurochemical effects of α-lipoic acid (100 mg/kg or 200 mg/kg alone or associated with L-DOPA using an animal model of Parkinson’s disease induced by stereotaxic injection of 6-hydroxydopamine (6-OHDA in rat striatum. Motor behavior was assessed by monitoring body rotations induced by apomorphine, open field test and cylinder test. Oxidative stress was accessed by determination of lipid peroxidation using the TBARS method, concentration of nitrite and evaluation of catalase activity. α-Lipoic acid decreased body rotations induced by apomorphine, as well as caused an improvement in motor performance by increasing locomotor activity in the open field test and use of contralateral paw (in the opposite side of the lesion produced by 6-OHDA at cylinder test. α-lipoic acid showed antioxidant effects, decreasing lipid peroxidation and nitrite levels and interacting with antioxidant system by decreasing of endogenous catalase activity. Therefore, α-lipoic acid prevented the damage induced by 6-OHDA or by chronic use of L-DOPA in dopaminergic neurons, suggesting that α-lipoic could be a new therapeutic target for Parkinson's disease prevention and treatment.

  4. Autism Spectrum Disorder: Correlation between aberrant behaviors, EEG abnormalities and seizures

    Directory of Open Access Journals (Sweden)

    Michelle Elena Hartley-McAndrew

    2010-04-01

    Full Text Available The relationship between epilepsy, epileptiform discharges, cognitive, language and behavioral symptoms is not clearly understood. Since difficulties with socialization and maladaptive behaviors are found in children with Autism Spectrum Disorder (ASD, we inquired whether epileptiform activity and seizures are associated with adverse behavioral manifestations in this population. We reviewed our EEG database between 1999-2006, and identified 123 children with ASD. EEG abnormalities were found in 39 children (31%. A control group of age and gender matched ASD children with normal EEG’s was obtained. Packets of questionnaires including the Vineland Adaptive Behavior Scale II (VABS, Aberrant Behavior Checklist (ABC and the Childhood Autism Rating Scale (CARS were sent by mail. Out of 21 packets received, 11 had normal and 10 had abnormal EEG’s. There were no statistically significant differences in behavior between the two groups. Statistical analysis of discharge location and frequency did not reveal a significant trend. However, children with ASD and seizures had statistically significant lower scores in VABS daily living (P=0.009 and socialization (P=0.007 as compared to those without seizures. ASD children with seizures had higher ABC levels of hyperactivity and irritability. Differences in irritability scores nearly reached statistical significance (P=0.058. There was no significant difference in the degree of CARS autism rating between the groups. Our study did not reveal statistically significant differences in behaviors between ASD children with and without EEG abnormalities. However, ASD children with seizures revealed significantly worse behaviors as compared to counterparts without seizures.

  5. Specific behavioral and cellular adaptations induced by chronic morphine are reduced by dietary omega-3 polyunsaturated fatty acids.

    Directory of Open Access Journals (Sweden)

    Joshua Hakimian

    Full Text Available Opiates, one of the oldest known drugs, are the benchmark for treating pain. Regular opioid exposure also induces euphoria making these compounds addictive and often misused, as shown by the current epidemic of opioid abuse and overdose mortalities. In addition to the effect of opioids on their cognate receptors and signaling cascades, these compounds also induce multiple adaptations at cellular and behavioral levels. As omega-3 polyunsaturated fatty acids (n-3 PUFAs play a ubiquitous role in behavioral and cellular processes, we proposed that supplemental n-3 PUFAs, enriched in docosahexanoic acid (DHA, could offset these adaptations following chronic opioid exposure. We used an 8 week regimen of n-3 PUFA supplementation followed by 8 days of morphine in the presence of this diet. We first assessed the effect of morphine in different behavioral measures and found that morphine increased anxiety and reduced wheel-running behavior. These effects were reduced by dietary n-3 PUFAs without affecting morphine-induced analgesia or hyperlocomotion, known effects of this opiate acting at mu opioid receptors. At the cellular level we found that morphine reduced striatal DHA content and that this was reversed by supplemental n-3 PUFAs. Chronic morphine also increased glutamatergic plasticity and the proportion of Grin2B-NMDARs in striatal projection neurons. This effect was similarly reversed by supplemental n-3 PUFAs. Gene analysis showed that supplemental PUFAs offset the effect of morphine on genes found in neurons of the dopamine receptor 2 (D2-enriched indirect pathway but not of genes found in dopamine receptor 1(D1-enriched direct-pathway neurons. Analysis of the D2 striatal connectome by a retrogradely transported pseudorabies virus showed that n-3 PUFA supplementation reversed the effect of chronic morphine on the innervation of D2 neurons by the dorsomedial prefontal and piriform cortices. Together these changes outline specific behavioral and

  6. GABAergic influences on ORX receptor-dependent abnormal motor behaviors and neurodegenerative events in fish

    International Nuclear Information System (INIS)

    Facciolo, Rosa Maria; Crudo, Michele; Giusi, Giuseppina; Canonaco, Marcello

    2010-01-01

    At date the major neuroreceptors i.e. γ-aminobutyric acid A (GABA A R) and orexin (ORXR) systems are beginning to be linked to homeostasis, neuroendocrine and emotional states. In this study, intraperitoneal treatment of the marine teleost Thalassoma pavo with the highly selective GABA A R agonist (muscimol, MUS; 0,1 μg/g body weight) and/or its antagonist bicuculline (BIC; 1 μg/g body weight) have corroborated a GABA A ergic role on motor behaviors. In particular, MUS induced moderate (p A R was very likely responsible for very strong and strong ORXR mRNA reductions in cerebellum valvula and torus longitudinalis, respectively. Moreover these effects were linked to evident ultra-structural changes such as shrunken cell membranes and loss of cytoplasmic architecture. In contrast, MUS supplied a very low, if any, argyrophilic reaction in hypothalamic and mesencephalic regions plus a scarce level of ultra-structural damages. Interestingly, combined administrations of MUS + BIC were not related to consistent damages, aside mild neuronal alterations in motor-related areas such as optic tectum. Overall it is tempting to suggest, for the first time, a neuroprotective role of GABA A R inhibitory actions against the overexcitatory ORXR-dependent neurodegeneration and consequently abnormal swimming events in fish.

  7. Effective amino acid composition of seaweeds inducing food preference behaviors in Aplysia kurodai.

    Science.gov (United States)

    Nagahama, Tatsumi; Fujimoto, Kiyo; Takami, Shigemi; Kinugawa, Aiko; Narusuye, Kenji

    2009-07-01

    Aplysia kurodai feeds on Ulva but rejects Gelidium and Pachydictyon with distinct patterned jaw movements. We previously demonstrated that these movements are induced by taste alone. Thus some chemicals may contribute to induction of these responses. We explored the amino acids composition of Ulva, Gelidium and Pachydictyon extracts used during our taste-induced physiological experiments. These solutions contained many constituents. The concentrations of six amino acids (Asp, Asn, Glu, Gln, Phe, Tau) were obviously different in the three extract solutions. We explored patterned jaw movements following application of solutions containing a pure amino acid. We statistically compared the occurrence numbers of ingestion-like and rejection-like patterned jaw movements (positive and negative values, respectively) for each amino acid. Our results suggested that L-Asn tends to induce ingestion-like responses, likely resulting in a preference of Ulva. In contrast, L-Asp tends to induce rejection-like responses, likely resulting in aversion towards Pachydictyon. In addition, we demonstrated that L-Asn and L-Asp solutions were sufficient to induce muscle activity associated with ingestion-like or rejection-like responses in the jaw muscles of a semi-intact preparation.

  8. Reversible cold-induced abnormalities in myocardial perfusion and function in systemic sclerosis

    International Nuclear Information System (INIS)

    Alexander, E.L.; Firestein, G.S.; Weiss, J.L.; Heuser, R.R.; Leitl, G.; Wagner, H.N. Jr.; Brinker, J.A.; Ciuffo, A.A.; Becker, L.C.

    1986-01-01

    The effects of peripheral cold exposure on myocardial perfusion and function were studied in 13 patients with scleroderma without clinically evident myocardial disease. Ten patients had at least one transient, cold-induced, myocardial perfusion defect visualized by thallium-201 scintigraphy, and 12 had reversible, cold-induced, segmental left ventricular hypokinesis by two-dimensional echocardiography. The 10 patients with transient perfusion defects all had anatomically corresponding ventricular wall motion abnormalities. No one in either of two control groups (9 normal volunteers and 7 patients with chest pain and normal coronary arteriograms) had cold-induced abnormalities. This study is the first to show the simultaneous occurrence of cold-induced abnormalities in myocardial perfusion and function in patients with scleroderma. The results suggest that cold exposure in such patients may elicit transient reflex coronary vasoconstriction resulting in reversible myocardial ischemia and dysfunction. Chronic recurrent episodes of coronary spasm may lead to focal myocardial fibrosis

  9. Neonatal disruption of serine racemase causes schizophrenia-like behavioral abnormalities in adulthood: clinical rescue by d-serine.

    Directory of Open Access Journals (Sweden)

    Hiroko Hagiwara

    Full Text Available D-Serine, an endogenous co-agonist of the N-methyl-D-aspartate (NMDA receptor, is synthesized from L-serine by serine racemase (SRR. Given the role of D-serine in both neurodevelopment and the pathophysiology of schizophrenia, we examined whether neonatal disruption of D-serine synthesis by SRR inhibition could induce behavioral abnormalities relevant to schizophrenia, in later life.Neonatal mice (7-9 days were injected with vehicle or phenazine methosulfate (Met-Phen: 3 mg/kg/day, an SRR inhibitor. Behavioral evaluations, such as spontaneous locomotion, novel object recognition test (NORT, and prepulse inhibition (PPI were performed at juvenile (5-6 weeks old and adult (10-12 weeks old stages. In addition, we tested the effects of D-serine on PPI deficits in adult mice after neonatal Met-Phen exposure. Finally, we assessed whether D-serine could prevent the onset of schizophrenia-like behavior in these mice. Neonatal Met-Phen treatment reduced D-serine levels in the brain, 24 hours after the final dose. Additionally, this treatment caused behavioral abnormalities relevant to prodromal symptoms in juveniles and to schizophrenia in adults. A single dose of D-serine improved PPI deficits in adult mice. Interestingly, chronic administration of D-serine (900 mg/kg/day from P35 to P70 significantly prevented the onset of PPI deficits after neonatal Met-Phen exposure.This study shows that disruption of D-serine synthesis during developmental stages leads to behavioral abnormalities relevant to prodromal symptoms and schizophrenia, in later life. Furthermore, early pharmacological intervention with D-serine may prevent the onset of psychosis in adult.

  10. Pattern of acid base abnormalities in critically ill patinets

    International Nuclear Information System (INIS)

    Ahmad, T.M.; Mehmood, A.; Malik, T.M.

    2015-01-01

    To find out the pattern of acid base abnormalities in critically ill patients in a tertiary care health facility. Study Design: A descriptive study. Place and Duration of Study: The study was carried out in the department of pathology, Combined Military Hospital Kharian from January 2013 to June 2013. Patients and Methods: Two hundred and fifty patients suffering from various diseases and presenting with exacerbation of their clinical conditions were studied. These patients were hospitalized and managed in acute care units of the hospital. Arterial blood gases were analysed to detect acid base status and their correlation with their clinical condition. Concomitant analysis of electrolytes was carried out. Tests related to concurrent illnesses e.g. renal and liver function tests, cardiac enzymes and plasma glucose were assayed by routine end point and kinetic methods. Standard reference materials were used to ensure internal quantify control of analyses. Results: Two hundred and fifteen patients out of 250 studied suffered from acid base disorders. Gender distribution showed a higher percentage of male patients and the mean age was 70.5 ± 17.4 years. Double acid base disorders were the commonest disorders (34%) followed by metabolic acidosis (30%). Anion gap was calculated to further stratify metabolic acidosis and cases of diabetic ketoacidosis were the commonest in this category (47%). Other simple acid base disorders were relatively less frequent. Delta bicarbonate was calculated to unmask the superimposition of respiratory alkalosis or acidosis with metabolic acidosis and metabolic alkalosis. Though triple acid base disorders were noted in a small percentage of cases (05%), but were found to be the most complicated and challenging. Mixed acid base disorders were associated with high mortality. Conclusion: A large number of critically ill patients manifested acid base abnormalities over the full spectrum of these disorders. Mixed acid base disorders were

  11. Nucleic acid-induced antiviral immunity in invertebrates: an evolutionary perspective.

    Science.gov (United States)

    Wang, Pei-Hui; Weng, Shao-Ping; He, Jian-Guo

    2015-02-01

    Nucleic acids derived from viral pathogens are typical pathogen associated molecular patterns (PAMPs). In mammals, the recognition of viral nucleic acids by pattern recognition receptors (PRRs), which include Toll-like receptors (TLRs) and retinoic acid-inducible gene (RIG)-I-like receptors (RLRs), induces the release of inflammatory cytokines and type I interferons (IFNs) through the activation of nuclear factor κB (NF-κB) and interferon regulatory factor (IRF) 3/7 pathways, triggering the host antiviral state. However, whether nucleic acids can induce similar antiviral immunity in invertebrates remains ambiguous. Several studies have reported that nucleic acid mimics, especially dsRNA mimic poly(I:C), can strongly induce non-specific antiviral immune responses in insects, shrimp, and oyster. This behavior shows multiple similarities to the hallmarks of mammalian IFN responses. In this review, we highlight the current understanding of nucleic acid-induced antiviral immunity in invertebrates. We also discuss the potential recognition and regulatory mechanisms that confer non-specific antiviral immunity on invertebrate hosts. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Identifying specific prefrontal neurons that contribute to autism-associated abnormalities in physiology and social behavior

    DEFF Research Database (Denmark)

    Brumback, A C; Ellwood, I T; Kjaerby, C

    2017-01-01

    Functional imaging and gene expression studies both implicate the medial prefrontal cortex (mPFC), particularly deep-layer projection neurons, as a potential locus for autism pathology. Here, we explored how specific deep-layer prefrontal neurons contribute to abnormal physiology and behavior...... in mouse models of autism. First, we find that across three etiologically distinct models-in utero valproic acid (VPA) exposure, CNTNAP2 knockout and FMR1 knockout-layer 5 subcortically projecting (SC) neurons consistently exhibit reduced input resistance and action potential firing. To explore how altered...... SC neuron physiology might impact behavior, we took advantage of the fact that in deep layers of the mPFC, dopamine D2 receptors (D2Rs) are mainly expressed by SC neurons, and used D2-Cre mice to label D2R+ neurons for calcium imaging or optogenetics. We found that social exploration preferentially...

  13. Direct investigations on strain-induced cold crystallization behavior and structure evolutions in amorphous poly(lactic acid) with SAXS and WAXS measurements

    DEFF Research Database (Denmark)

    Zhou, Chengbo; Li, Hongfei; Zhang, Wenyang

    2016-01-01

    scanning calorimetry (DSC) measurements. The data obtained from the stretched samples within 70-90 degrees C showed that all of the formed crystals are disordered alpha' form with more compact chain packing than that of the cold crystallization. Upon stretching at 70 degrees C, the mesocrystal appears......Strain-induced cold crystallization behavior and structure evolution of amorphous poly(lactic acid) (PLA) stretched within 70-90 degrees C were investigated via in situ synchrotron small-angle X-ray scattering (SAXS) and wide-angle X-ray scattering (WAXS) measurements as well as differential...... in strain-induced crystallization behavior of amorphous PLA within 70-90 degrees C can be attributed to the competition between chain orientation caused by stretching and chain relaxation. It was proposed that the strain-induced mesocrystal/crystal and the lamellae are formed from the mesophase originally...

  14. Detection of radiation-induced genetic damage using sperm abnormality assays

    International Nuclear Information System (INIS)

    Kitazume, Masayuki; Okamoto, Masanori; Nakai, Sayaka

    1985-01-01

    A quantitative experiment on radiation-induced sperm abnormalities was made with mice, golden hamsters, and crab-eating monkeys. Sperm sites showing morphological abnormalities following irradiation were divided into head, neck, head plus neck, and others (including middle piece and tail). Local x-ray irradiation (200 KVp at a rate of 30 rad min) to the testes was undertaken in mice and golden hamsters, and local gamma-ray irradiation ( 137 Cs at a rate of 30 rad min) to the testes were undertaken in crab-eating monkeys. The head and neck were sensitive to radiation, showing morphological abnormalities. The number of abnormal sperms reached the peak at 5 - 6 wk after irradiation in mice and golden hamsters; at 6 wk with 300 rad and at 8 wk with 100 and 200 rad in crab-eating monkeys. Doubling doses for sperm abnormalities were 30 rad in mice and approximately 50 rad in golden hamsters. The dose-response curves on sperm abnormalities in crab-eating monkeys approximated to those in golden hamsters. (Namekawa, K.)

  15. Seizure-induced brain lesions: A wide spectrum of variably reversible MRI abnormalities

    International Nuclear Information System (INIS)

    Cianfoni, A.; Caulo, M.; Cerase, A.; Della Marca, G.; Falcone, C.; Di Lella, G.M.; Gaudino, S.; Edwards, J.; Colosimo, C.

    2013-01-01

    Introduction MRI abnormalities in the postictal period might represent the effect of the seizure activity, rather than its structural cause. Material and Methods Retrospective review of clinical and neuroimaging charts of 26 patients diagnosed with seizure-related MR-signal changes. All patients underwent brain-MRI (1.5-Tesla, standard pre- and post-contrast brain imaging, including DWI-ADC in 19/26) within 7 days from a seizure and at least one follow-up MRI, showing partial or complete reversibility of the MR-signal changes. Extensive clinical work-up and follow-up, ranging from 3 months to 5 years, ruled out infection or other possible causes of brain damage. Seizure-induced brain-MRI abnormalities remained a diagnosis of exclusion. Site, characteristics and reversibility of MRI changes, and association with characteristics of seizures were determined. Results MRI showed unilateral (13/26) and bilateral abnormalities, with high (24/26) and low (2/26) T2-signal, leptomeningeal contrast-enhancement (2/26), restricted diffusion (9/19). Location of abnormality was cortical/subcortical, basal ganglia, white matter, corpus callosum, cerebellum. Hippocampus was involved in 10/26 patients. Reversibility of MRI changes was complete in 15, and with residual gliosis or focal atrophy in 11 patients. Reversibility was noted between 15 and 150 days (average, 62 days). Partial simple and complex seizures were associated with hippocampal involvement (p = 0.015), status epilepticus with incomplete reversibility of MRI abnormalities (p = 0.041). Conclusions Seizure or epileptic status can induce transient, variably reversible MRI brain abnormalities. Partial seizures are frequently associated with hippocampal involvement and status epilepticus with incompletely reversible lesions. These seizure-induced MRI abnormalities pose a broad differential diagnosis; increased awareness may reduce the risk of misdiagnosis and unnecessary intervention

  16. Seizure-induced brain lesions: A wide spectrum of variably reversible MRI abnormalities

    Energy Technology Data Exchange (ETDEWEB)

    Cianfoni, A., E-mail: acianfoni@hotmail.com [Neuroradiology, Neurocenter of Italian Switzerland–Ospedale regionale Lugano, Via Tesserete 46, Lugano, 6900, CH (Switzerland); Caulo, M., E-mail: caulo@unich.it [Department of Neuroscience and Imaging, University of Chieti, Via dei Vestini 33, 6610 Chieti. Italy (Italy); Cerase, A., E-mail: alfonsocerase@gmail.com [Unit of Neuroimaging and Neurointervention NINT, Department of Neurological and Sensorineural Sciences, Azienda Ospedaliera Universitaria Senese, Policlinico “Santa Maria alle Scotte”, V.le Bracci 16, Siena (Italy); Della Marca, G., E-mail: dellamarca@rm.unicatt.it [Neurology Dept., Catholic University of Rome, L.go F Vito 1, 00100, Rome (Italy); Falcone, C., E-mail: carlo_falc@libero.it [Radiology Dept., Catholic University of Rome, L.go F Vito 1, 00100, Rome (Italy); Di Lella, G.M., E-mail: gdilella@rm.unicatt.it [Radiology Dept., Catholic University of Rome, L.go F Vito 1, 00100, Rome (Italy); Gaudino, S., E-mail: sgaudino@sirm.org [Radiology Dept., Catholic University of Rome, L.go F Vito 1, 00100, Rome (Italy); Edwards, J., E-mail: edwardjc@musc.edu [Neuroscience Dept., Medical University of South Carolina, 96J Lucas st, 29425, Charleston, SC (United States); Colosimo, C., E-mail: colosimo@rm.unicatt.it [Radiology Dept., Catholic University of Rome, L.go F Vito 1, 00100, Rome (Italy)

    2013-11-01

    Introduction MRI abnormalities in the postictal period might represent the effect of the seizure activity, rather than its structural cause. Material and Methods Retrospective review of clinical and neuroimaging charts of 26 patients diagnosed with seizure-related MR-signal changes. All patients underwent brain-MRI (1.5-Tesla, standard pre- and post-contrast brain imaging, including DWI-ADC in 19/26) within 7 days from a seizure and at least one follow-up MRI, showing partial or complete reversibility of the MR-signal changes. Extensive clinical work-up and follow-up, ranging from 3 months to 5 years, ruled out infection or other possible causes of brain damage. Seizure-induced brain-MRI abnormalities remained a diagnosis of exclusion. Site, characteristics and reversibility of MRI changes, and association with characteristics of seizures were determined. Results MRI showed unilateral (13/26) and bilateral abnormalities, with high (24/26) and low (2/26) T2-signal, leptomeningeal contrast-enhancement (2/26), restricted diffusion (9/19). Location of abnormality was cortical/subcortical, basal ganglia, white matter, corpus callosum, cerebellum. Hippocampus was involved in 10/26 patients. Reversibility of MRI changes was complete in 15, and with residual gliosis or focal atrophy in 11 patients. Reversibility was noted between 15 and 150 days (average, 62 days). Partial simple and complex seizures were associated with hippocampal involvement (p = 0.015), status epilepticus with incomplete reversibility of MRI abnormalities (p = 0.041). Conclusions Seizure or epileptic status can induce transient, variably reversible MRI brain abnormalities. Partial seizures are frequently associated with hippocampal involvement and status epilepticus with incompletely reversible lesions. These seizure-induced MRI abnormalities pose a broad differential diagnosis; increased awareness may reduce the risk of misdiagnosis and unnecessary intervention.

  17. Omega-3 fatty acid deficient male rats exhibit abnormal behavioral activation in the forced swim test following chronic fluoxetine treatment: association with altered 5-HT1A and alpha2A adrenergic receptor expression.

    Science.gov (United States)

    Able, Jessica A; Liu, Yanhong; Jandacek, Ronald; Rider, Therese; Tso, Patrick; McNamara, Robert K

    2014-03-01

    Omega-3 fatty acid deficiency during development leads to enduing alterations in central monoamine neurotransmission in rat brain. Here we investigated the effects of omega-3 fatty acid deficiency on behavioral and neurochemical responses to chronic fluoxetine (FLX) treatment. Male rats were fed diets with (CON, n = 34) or without (DEF, n = 30) the omega-3 fatty acid precursor alpha-linolenic acid (ALA) during peri-adolescent development (P21-P90). A subset of CON (n = 14) and DEF (n = 12) rats were administered FLX (10 mg/kg/d) through their drinking water for 30 d beginning on P60. The forced swimming test (FST) was initiated on P90, and regional brain mRNA markers of serotonin and noradrenaline neurotransmission were determined. Dietary ALA depletion led to significant reductions in frontal cortex docosahexaenoic acid (DHA, 22:6n-3) composition in DEF (-26%, p = 0.0001) and DEF + FLX (-32%, p = 0.0001) rats. Plasma FLX and norfluoxetine concentrations did not different between FLX-treated DEF and CON rats. During the 15-min FST pretest, DEF + FLX rats exhibited significantly greater climbing behavior compared with CON + FLX rats. During the 5-min test trial, FLX treatment reduced immobility and increased swimming in CON and DEF rats, and only DEF + FLX rats exhibited significant elevations in climbing behavior. DEF + FLX rats exhibited greater midbrain, and lower frontal cortex, 5-HT1A mRNA expression compared with all groups including CON + FLX rats. DEF + FLX rats also exhibited greater midbrain alpha2A adrenergic receptor mRNA expression which was positively correlated with climbing behavior in the FST. These preclinical data demonstrate that low omega-3 fatty acid status leads to abnormal behavioral and neurochemical responses to chronic FLX treatment in male rats. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Effects and mechanisms of caffeine to improve immunological and metabolic abnormalities in diet-induced obese rats.

    Science.gov (United States)

    Liu, Chih-Wei; Tsai, Hung-Cheng; Huang, Chia-Chang; Tsai, Chang-Youh; Su, Yen-Bo; Lin, Ming-Wei; Lee, Kuei-Chuan; Hsieh, Yun-Cheng; Li, Tzu-Hao; Huang, Shiang-Fen; Yang, Ying-Ying; Hou, Ming-Chih; Lin, Han-Chieh; Lee, Fa-Yauh; Lee, Shou-Dong

    2018-05-01

    In obesity, there are no effective therapies for parallel immune and metabolic abnormalities, including systemic/tissue insulin-resistance/inflammation, adiposity and hepatic steatosis. Caffeine has anti-inflammation, antihepatic steatosis, and anti-insulin resistance effects. In this study, we evaluated the effects and molecular mechanisms of 6 wk of caffeine treatment (HFD-caf) on immunological and metabolic abnormalities of high-fat diet (HFD)-induced obese rats. Compared with HFD vehicle (HFD-V) rats, in HFD-caf rats the suppressed circulating immune cell inflammatory [TNFα, MCP-1, IL-6, intercellular adhesion molecule 1 (ICAM-1), and nitrite] profiles were accompanied by decreased liver, white adipose tissue (WAT), and muscle macrophages and their intracellular cytokine levels. Metabolically, the increase in metabolic rates reduced lipid accumulation in various tissues, resulting in reduced adiposity, lower fat mass, decreased body weight, amelioration of hepatic steatosis, and improved systemic/muscle insulin resistance. Further mechanistic approaches revealed an upregulation of tissue lipogenic [(SREBP1c, fatty acid synthase, acetyl-CoA carboxylase)/insulin-sensitizing (GLUT4 and p-IRS1)] markers in HFD-caf rats. Significantly, ex vivo experiments revealed that the cytokine release by the cocultured peripheral blood mononuclear cell (monocyte) and WAT (adipocyte), which are known to stimulate macrophage migration and hepatocyte lipogenesis, were lower in HFD-V groups than HFD-caf groups. Caffeine treatment simultaneously ameliorates immune and metabolic pathogenic signals present in tissue to normalize immunolgical and metabolic abnormalities found in HFD-induced obese rats.

  19. Curcumin reverses the depressive-like behavior and insulin resistance induced by chronic mild stress.

    Science.gov (United States)

    Shen, Ji-Duo; Wei, Yu; Li, Yu-Jie; Qiao, Jing-Yi; Li, Yu-Cheng

    2017-08-01

    Increasing evidence has demonstrated that patients with depression have a higher risk of developing type 2 diabetes. Insulin resistance has been identified as the key mechanism linking depression and diabetes. The present study established a rat model of depression complicated by insulin resistance using a 12-week exposure to chronic mild stress (CMS) and investigated the therapeutic effects of curcumin. Sucrose intake tests were used to evaluate depressive-like behaviors, and oral glucose tolerance tests (OGTT) and intraperitoneal insulin tolerance tests (IPITT) were performed to evaluate insulin sensitivity. Serum parameters were detected using commercial kits. Real-time quantitative PCR was used to examine mRNA expression. CMS rats exhibited reduced sucrose consumption, increased serum glucose, insulin, triglyceride (TG), low density lipoprotein-cholesterol (LDL-C), non-esterified fatty acid (NEFA), glucagon, leptin, and corticosterone levels, as well as impaired insulin sensitivity. Curcumin upregulated the phosphorylation of insulin receptor substrate (IRS)-1 and protein kinase B (Akt) in the liver, enhanced insulin sensitivity, and reversed the metabolic abnormalities and depressive-like behaviors mentioned above. Moreover, curcumin increased the hepatic glycogen content by inhibiting glycogen synthase kinase (GSK)-3β and prevented gluconeogenesis by inhibiting phosphoenolpyruvate carboxykinase (PEPCK) and glucose 6-phosphatase (G6Pase). These results suggest that curcumin not only exerted antidepressant-like effects, but also reversed the insulin resistance and metabolic abnormalities induced by CMS. These data may provide evidence to support the potential use of curcumin against depression and/or metabolic disorders.

  20. Abnormal animal behavior prior to the Vrancea (Romania) major subcrustal earthquakes

    Science.gov (United States)

    Constantin, Angela; Pantea, Aurelian

    2013-04-01

    The goal of this paper is to present some observations about abnormal animal behavior prior and during of some Romanian subcrustal earthquakes. The major Vrancea earthquakes of 4 March 1977 (Mw = 7.4, Imax = IX-X MSK), 30 August 1986 (Mw = 7.1, Io = VIII-IX MSK) and 30 May 1990 (Mw = 6.9, Io = VIII MSK), were preceded by extensive occurrences of anomalous animal behavior. These data were collected immediately after the earthquakes from the areas affected by these. Some species of animals became excited, nervous and panicked before and during the earthquakes, such as: dogs (barking and running in panic), cats, snakes, mice and rats (came into the houses and have lost their fear), birds (hens, geese, parrots), horses, fishes etc. These strange manifestations of the animals were observed on the entire territory of country, especially in the extra-Carpathian area. This unusual behavior was noticed within a few hours to days before the seismic events, but for the most of cases the time of occurrence was within two hours of the quakes. We can hope that maybe one day the abnormal animal behavior will be used as a reliable seismic precursor for the intermediate depth earthquakes.

  1. Verapamil reverses PTH- or CRF-induced abnormal fatty acid oxidation in muscle

    International Nuclear Information System (INIS)

    Perna, A.F.; Smogorzewski, M.; Massry, S.G.

    1988-01-01

    Chronic renal failure (CRF) is associated with impaired long chain fatty acids (LCFA) oxidation by skeletal muscle mitochondria. This is due to reduced activity of carnitine palmitoyl transferase (CPT). These derangements were attributed to the secondary hyperparathyroidism of CRF, since prior parathyroidectomy in CRF rats reversed these abnormalities and PTH administration to normal rats reproduced them. It was proposed that these effects of PTH are mediated by its ionophoric property leading to increased entry of calcium into skeletal muscle. A calcium channel blocker may, therefore, correct these derangements. The present study examined the effects of verapamil on LCFA oxidation, CPT activity by skeletal muscle mitochondria, and 45 Ca uptake by skeletal muscle obtained from CRF rats and normal animals treated with PTH with and without verapamil. Both four days of PTH administration and 21 days of CRF produced significant (P less than 0.01) reduction in LCFA oxidation and CPT activity of skeletal muscle mitochondria, and significant (P less than 0.01) increment in 45 Ca uptake by skeletal muscle. Simultaneous treatment with verapamil corrected all these derangements. Administration of verapamil alone to normal rats did not cause a significant change in any of these parameters. The data are consistent with the proposition that the alterations in LCFA in CRF or after PTH treatment are related to the ionophoric action of the hormone and could be reversed by a calcium channel blocker

  2. Abnormal shortened diastolic time length at increasing heart rates in patients with abnormal exercise-induced increase in pulmonary artery pressure

    Directory of Open Access Journals (Sweden)

    Bombardini Tonino

    2011-11-01

    Full Text Available Abstract Background The degree of pulmonary hypertension is not independently related to the severity of left ventricular systolic dysfunction but is frequently associated with diastolic filling abnormalities. The aim of this study was to assess diastolic times at increasing heart rates in normal and in patients with and without abnormal exercise-induced increase in pulmonary artery pressure (PASP. Methods. We enrolled 109 patients (78 males, age 62 ± 13 years referred for exercise stress echocardiography and 16 controls. The PASP was derived from the tricuspid Doppler tracing. A cut-off value of PASP ≥ 50 mmHg at peak stress was considered as indicative of abnormal increase in PASP. Diastolic times and the diastolic/systolic time ratio were recorded by a precordial cutaneous force sensor based on a linear accelerometer. Results At baseline, PASP was 30 ± 5 mmHg in patients and 25 ± 4 in controls. At peak stress the PASP was normal in 95 patients (Group 1; 14 patients (Group 2 showed an abnormal increase in PASP (from 35 ± 4 to 62 ± 12 mmHg; P Conclusion The first and second heart sound vibrations non-invasively monitored by a force sensor are useful for continuously assessing diastolic time during exercise. Exercise-induced abnormal PASP was associated with reduced diastolic time at heart rates beyond 100 beats per minute.

  3. IN0523 (Urs-12-ene-3α,24β-diol) a plant based derivative of boswellic acid protect Cisplatin induced urogenital toxicity

    International Nuclear Information System (INIS)

    Singh, Amarinder; Arvinda, S; Singh, Surjeet; Suri, Jyotsna; Koul, Surinder; Mondhe, Dilip M.; Singh, Gurdarshan; Vishwakarma, Ram

    2017-01-01

    The limiting factor for the use of Cisplatin in the treatment of different type of cancers is its toxicity and more specifically urogenital toxicity. Oxidative stress is a well-known phenomenon associated with Cisplatin toxicity. However, in Cisplatin treated group, abnormal animal behavior, decreased body weight, cellular and sub-cellular changes in the kidney and sperm abnormality were observed. Our investigation revealed that Cisplatin when administered in combination with a natural product derivative (Urs-12-ene-3α,24β-diol, labeled as IN0523) resulted in significant restoration of body weight and protection against the pathological alteration caused by Cisplatin to kidney and testis. Sperm count and motility were significantly restored near to normal. Cisplatin caused depletion of defense system i.e. glutathione peroxidase, catalase and superoxide dismutase, which were restored close to normal by treatment of IN0523. Reduction in excessive lipid peroxidation induced by Cisplatin was also found by treatment with IN0523. The result suggests that IN0523 is a potential candidate for ameliorating Cisplatin induced toxicity in the kidney and testes at a dose of 100 mg/kg p.o. via inhibiting the oxidative stress/redox status imbalance and may be improving the efflux mechanism. - Highlights: • Synthesis of a novel boswellic acid derivative (IN0523) • Counter oxidative stress induced due to Cisplatin • Protect against urogenital toxicity induced by Cisplatin

  4. IN0523 (Urs-12-ene-3α,24β-diol) a plant based derivative of boswellic acid protect Cisplatin induced urogenital toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Amarinder [Academy of Scientific & Innovative Research (AcSIR), New Delhi (India); PK-PD-Toxicology and Formulation Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, J& K (India); Arvinda, S [Deptt. of Pathology, Govt. Medical College, Jammu 180001, J& K (India); Singh, Surjeet [PK-PD-Toxicology and Formulation Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, J& K (India); Suri, Jyotsna [Deptt. of Pathology, Govt. Medical College, Jammu 180001, J& K (India); Koul, Surinder [Bio-Organic Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, J& K (India); Mondhe, Dilip M. [Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, J& K (India); Singh, Gurdarshan, E-mail: singh_gd@iiim.ac.in [PK-PD-Toxicology and Formulation Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, J& K (India); Vishwakarma, Ram [Bio-Organic Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, J& K (India)

    2017-03-01

    The limiting factor for the use of Cisplatin in the treatment of different type of cancers is its toxicity and more specifically urogenital toxicity. Oxidative stress is a well-known phenomenon associated with Cisplatin toxicity. However, in Cisplatin treated group, abnormal animal behavior, decreased body weight, cellular and sub-cellular changes in the kidney and sperm abnormality were observed. Our investigation revealed that Cisplatin when administered in combination with a natural product derivative (Urs-12-ene-3α,24β-diol, labeled as IN0523) resulted in significant restoration of body weight and protection against the pathological alteration caused by Cisplatin to kidney and testis. Sperm count and motility were significantly restored near to normal. Cisplatin caused depletion of defense system i.e. glutathione peroxidase, catalase and superoxide dismutase, which were restored close to normal by treatment of IN0523. Reduction in excessive lipid peroxidation induced by Cisplatin was also found by treatment with IN0523. The result suggests that IN0523 is a potential candidate for ameliorating Cisplatin induced toxicity in the kidney and testes at a dose of 100 mg/kg p.o. via inhibiting the oxidative stress/redox status imbalance and may be improving the efflux mechanism. - Highlights: • Synthesis of a novel boswellic acid derivative (IN0523) • Counter oxidative stress induced due to Cisplatin • Protect against urogenital toxicity induced by Cisplatin.

  5. Abnormal Sexual Behavior in an Adult Male with Obsessive Compulsive Disorder

    OpenAIRE

    Raguraman, Janakiraman; Priyadharshini, Kothai R.; Chandrasekaran, R.; Vijaysagar, John

    2004-01-01

    A male patient with homosexual obsession in obsessive compulsive disorder shows a better outcome following a combination of pharmacotherapy and psychotherapy. This case report emphasizes the importance of combination therapy in obsessive compulsive disorder with abnormal sexual impulses and behavior.

  6. Glutamate receptor antibodies directed against AMPA receptors subunit 3 peptide B (GluR3B) can be produced in DBA/2J mice, lower seizure threshold and induce abnormal behavior.

    Science.gov (United States)

    Ganor, Yonatan; Goldberg-Stern, Hadassa; Cohen, Ran; Teichberg, Vivian; Levite, Mia

    2014-04-01

    Anti-GluR3B antibodies (GluR3B Ab's), directed against peptide B/aa372-395 of GluR3 subunit of glutamate/AMPA receptors, are found in ∼35% of epilepsy patients, activate glutamate/AMPA receptors, evoke ion currents, kill neurons and damage the brain. We recently found that GluR3B Ab's also associate with neurological/psychiatric/behavioral abnormalities in epilepsy patients. Here we asked if GluR3B Ab's could be produced in DBA/2J mice, and also modulate seizure threshold and/or cause behavioral/motor impairments in these mice. DBA/2J mice were immunized with the GluR3B peptide in Complete Freund's Adjuvant (CFA), or with controls: ovalbumin (OVA), CFA, or phosphate-buffer saline (PBS). GluR3B Ab's and OVA Ab's were tested. Seizures were induced in all mice by the chemoconvulsant pentylenetetrazole (PTZ) at three time points, each time with less PTZ to avoid non-specific death. Behavior was examined in Open-Field, RotaRod and Grip tests. GluR3B Ab's were produced only in GluR3B-immunized mice, while OVA Ab's were produced only in OVA-immunized mice, showing high Ab's specificity. In GluR3B Ab's negative mice, seizure severity scores and percentages of animals developing generalized seizures declined in response to decreasing PTZ doses. In contrast, both parameters remained unchanged/high in the GluR3B Ab's positive mice, showing that these mice were more susceptible to seizures. The seizure scores associated significantly with the GluR3B Ab's levels. GluR3B Ab's positive mice were also more anxious in Open-Field test, fell faster in RotaRod test, and fell more in Grip test, compared to all the control mice. GluR3B Ab's are produced in DBA/2J mice, facilitate seizures and induce behavioral/motor impairments. This animal model can therefore serve for studying autoimmune epilepsy and abnormal behavior mediated by pathogenic anti-GluR3B Ab's. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. The valproic acid-induced rodent model of autism.

    Science.gov (United States)

    Nicolini, Chiara; Fahnestock, Margaret

    2018-01-01

    Autism is a lifelong neurodevelopmental disorder characterized by impairments in social communication and interaction and by repetitive patterns of behavior, interests and activities. While autism has a strong genetic component, environmental factors including toxins, pesticides, infection and drugs are known to confer autism susceptibility, likely by inducing epigenetic changes. In particular, exposure to valproic acid (VPA) during pregnancy has been demonstrated to increase the risk of autism in children. Furthermore, rodents prenatally exposed to this drug display behavioral phenotypes characteristics of the human condition. Indeed, in utero exposure of rodents to VPA represents a robust model of autism exhibiting face, construct and predictive validity. This model might better represent the many cases of idiopathic autism which are of environmental/epigenetic origins than do transgenic models carrying mutations in single autism-associated genes. The VPA model provides a valuable tool to investigate the neurobiology underlying autistic behavior and to screen for novel therapeutics. Here we review the VPA-induced rodent model of autism, highlighting its importance and reliability as an environmentally-induced animal model of autism. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Dysglycemia induces abnormal circadian blood pressure variability

    Directory of Open Access Journals (Sweden)

    Kumarasamy Sivarajan

    2011-11-01

    Full Text Available Abstract Background Prediabetes (PreDM in asymptomatic adults is associated with abnormal circadian blood pressure variability (abnormal CBPV. Hypothesis Systemic inflammation and glycemia influence circadian blood pressure variability. Methods Dahl salt-sensitive (S rats (n = 19 after weaning were fed either an American (AD or a standard (SD diet. The AD (high-glycemic-index, high-fat simulated customary human diet, provided daily overabundant calories which over time lead to body weight gain. The SD (low-glycemic-index, low-fat mirrored desirable balanced human diet for maintaining body weight. Body weight and serum concentrations for fasting glucose (FG, adipokines (leptin and adiponectin, and proinflammatory cytokines [monocyte chemoattractant protein-1 (MCP-1 and tumor necrosis factor-α (TNF-α] were measured. Rats were surgically implanted with C40 transmitters and blood pressure (BP-both systolic; SBP and diastolic; DBP and heart rate (HR were recorded by telemetry every 5 minutes during both sleep (day and active (night periods. Pulse pressure (PP was calculated (PP = SBP-DBP. Results [mean(SEM]: The AD fed group displayed significant increase in body weight (after 90 days; p Conclusion These data validate our stated hypothesis that systemic inflammation and glycemia influence circadian blood pressure variability. This study, for the first time, demonstrates a cause and effect relationship between caloric excess, enhanced systemic inflammation, dysglycemia, loss of blood pressure control and abnormal CBPV. Our results provide the fundamental basis for examining the relationship between dysglycemia and perturbation of the underlying mechanisms (adipose tissue dysfunction induced local and systemic inflammation, insulin resistance and alteration of adipose tissue precursors for the renin-aldosterone-angiotensin system which generate abnormal CBPV.

  9. Early life seizures in female rats lead to anxiety-related behavior and abnormal social behavior characterized by reduced motivation to novelty and deficit in social discrimination.

    Science.gov (United States)

    Castelhano, Adelisandra Silva Santos; Ramos, Fabiane Ochai; Scorza, Fulvio Alexandre; Cysneiros, Roberta Monterazzo

    2015-03-01

    Previously, we demonstrated that male Wistar rats submitted to neonatal status epilepticus showed abnormal social behavior characterized by deficit in social discrimination and enhanced emotionality. Taking into account that early insult can produce different biological manifestations in a gender-dependent manner, we aimed to investigate the social behavior and anxiety-like behavior in female Wistar rats following early life seizures. Neonate female Wistar rats at 9 days postnatal were subject to pilocarpine-induced status epilepticus and the control received saline. Behavioral tests started from 60 days postnatal and were carried out only during the diestrus phase of the reproductive cycle. In sociability test experimental animals exhibited reduced motivation for social encounter and deficit in social discrimination. In open field and the elevated plus maze, experimental animals showed enhanced emotionality with no changes in basal locomotor activity. The results showed that female rats submitted to neonatal status epipepticus showed impaired social behavior, characterized by reduced motivation to novelty and deficit in social discrimination in addition to enhanced emotionality.

  10. Ferulic acid with ascorbic acid synergistically extenuates the mitochondrial dysfunction during beta-adrenergic catecholamine induced cardiotoxicity in rats.

    Science.gov (United States)

    Yogeeta, Surinder Kumar; Raghavendran, Hanumantha Rao Balaji; Gnanapragasam, Arunachalam; Subhashini, Rajakannu; Devaki, Thiruvengadam

    2006-10-27

    Disruption of mitochondria and free radical mediated tissue injury have been reported during cardiotoxicity induced by isoproterenol (ISO), a beta-adrenergic catecholamine. The present study was designed to investigate the effect of the combination of ferulic acid (FA) and ascorbic acid (AA) on the mitochondrial damage in ISO induced cardiotoxicity. Induction of rats with ISO (150 mg/kg b.wt., i.p.) for 2 days resulted in a significant decrease in the activities of respiratory chain enzymes (NADH dehydrogenase and cytochrome c-oxidase), tricarboxylic acid cycle enzymes (isocitrate dehydrogenase, succinate dehydrogenase, malate dehydrogenase, alpha-ketoglutarate dehydrogenase), mitochondrial antioxidants (GPx, GST, SOD, CAT, GSH), cytochromes (b, c, c1, aa3) and in the level of mitochondrial phospholipids. A marked elevation in mitochondrial lipid peroxidation, mitochondrial levels of cholesterol, triglycerides and free fatty acids were also observed in ISO intoxicated rats. Pre-co-treatment with the combination of FA (20 mg/kg b.wt.) and AA (80 mg/kg b.wt.) orally for 6 days significantly enhanced the attenuation of these functional abnormalities and restored normal mitochondrial function when compared to individual drug treated groups. Mitigation of ISO induced biochemical and morphological changes in mitochondria were more pronounced with a combination of FA and AA rather than the individual drug treated groups. Transmission electron microscopic observations also correlated with these biochemical parameters. Hence, these findings demonstrate the synergistic ameliorative potential of FA and AA on mitochondrial function during beta-adrenergic catecholamine induced cardiotoxicity and associated oxidative stress in rats.

  11. Intranasal cotinine improves memory, and reduces depressive-like behavior, and GFAP+ cells loss induced by restraint stress in mice.

    Science.gov (United States)

    Perez-Urrutia, Nelson; Mendoza, Cristhian; Alvarez-Ricartes, Nathalie; Oliveros-Matus, Patricia; Echeverria, Florencia; Grizzell, J Alex; Barreto, George E; Iarkov, Alexandre; Echeverria, Valentina

    2017-09-01

    Posttraumatic stress disorder (PTSD), chronic psychological stress, and major depressive disorder have been found to be associated with a significant decrease in glial fibrillary acidic protein (GFAP) immunoreactivity in the hippocampus of rodents. Cotinine is an alkaloid that prevents memory impairment, depressive-like behavior and synaptic loss when co-administered during restraint stress, a model of PTSD and stress-induced depression, in mice. Here, we investigated the effects of post-treatment with intranasal cotinine on depressive- and anxiety-like behaviors, visual recognition memory as well as the number and morphology of GFAP+ immunoreactive cells, in the hippocampus and frontal cortex of mice subjected to prolonged restraint stress. The results revealed that in addition to the mood and cognitive impairments, restraint stress induced a significant decrease in the number and arborization of GFAP+ cells in the brain of mice. Intranasal cotinine prevented these stress-derived symptoms and the morphological abnormalities GFAP+ cells in both of these brain regions which are critical to resilience to stress. The significance of these findings for the therapy of PTSD and depression is discussed. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Investigation of defect-induced abnormal body current in fin field-effect-transistors

    International Nuclear Information System (INIS)

    Liu, Kuan-Ju; Tsai, Jyun-Yu; Lu, Ying-Hsin; Liu, Xi-Wen; Chang, Ting-Chang; Chen, Ching-En; Yang, Ren-Ya; Cheng, Osbert; Huang, Cheng-Tung

    2015-01-01

    This letter investigates the mechanism of abnormal body current at the linear region in n-channel high-k/metal gate stack fin field effect transistors. Unlike body current, which is generated by impact ionization at high drain voltages, abnormal body current was found to increase with decreasing drain voltages. Notably, the unusual body leakage only occurs in three-dimensional structure devices. Based on measurements under different operation conditions, the abnormal body current can be attributed to fin surface defect-induced leakage current, and the mechanism is electron tunneling to the fin via the defects, resulting in holes left at the body terminal

  13. [DAILY AND ABNORMAL EATING BEHAVIORS IN A COMMUNITY SAMPLE OF CHILEAN ADULTS].

    Science.gov (United States)

    Oda-Montecinos, Camila; Saldaña, Carmina; Andrés Valle, Ana

    2015-08-01

    this research aimed to characterize the daily eating behavior in a sample of Chilean adults according to their Body Mass Index (BMI) and gender and to analyze the possible links between these variables and abnormal eating behaviors. 657 participants (437 women and 220 men, age range 18-64 years) were evaluated with a battery of self-administered questionnaires. Mean BMI was 25.50 kg/m2 (women 24.96 kg/m2, men 26.58 kg/m2), being significantly higher the mean of BMI in the men group, being the BMI mean of the total sample and that of the male group in the overweight range. participants with overweight (BMI ≥ 25 kg/m2), in contrast with normal-weight group, tended to do more frequently the following behaviors: skip meals, follow a diet, eat less homemade food, eat faster and in greater quantities, in addition to do a greater number of abnormal eating behaviors of various kinds and to rate significantly higher in clinical scales that evaluated eating restraint and overeating. Men showed significantly more eating behaviors linked with overeating, and women performed more behaviors related with eating restraint and emotional eating. the results suggest that, besides "what" people eat, "how" people eat, in terms of specific behaviors, may contribute to the rapid increase of overweight in Chilean population. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  14. Abnormal devitrification behavior and mechanical response of cold-rolled Mg-rich Mg-Cu-Gd metallic glasses

    International Nuclear Information System (INIS)

    Lee, J.I.; Kim, J.W.; Oh, H.S.; Park, J.S.; Park, E.S.

    2016-01-01

    Abnormal devitrification behavior and mechanical response of Mg 75 Cu 15 Gd 10 (relatively strong glass former with higher structural stability) and Mg 85 Cu 5 Gd 10 (relatively fragile glass former with lower structural stability) metallic glasses, fabricated by repeated forced cold rolling, have been investigated. When metallic glasses were cold-rolled up to a thickness reduction ratio of ∼33%, the heat of relaxation (ΔH relax. ) below T g of the cold-rolled specimens was reduced, which indicates the formation of local structural ordering via cold rolling due to stress-induced relaxation. The local structural ordering results in abnormal devitrification behavior, such as higher resistance of glass-to-supercooled liquid transition and delayed growth, in the following heat treatment due to increased nuclei density and pinning site. In particular, the fragility index, m, could assist in understanding structural stability and local structural variation by mechanical processing as well as compositional tuning. Indeed, we examine the shear avalanche size to rationalize the variation of the deformation unit size depending on the structural instability before and after cold rolling. The deformation mode in Mg 85 Cu 5 Gd 10 metallic glass might change from self-organized critical state to chaotic state by cold rolling, which results in unique hardening behavior under the condition for coexisting well distributed local structural ordering and numerous thinner shear deformed areas. These results would give us a guideline for atomic scale structural manipulation of metallic glasses, and help develop novel metallic glass matrix composites with optimal properties through effective mechanical processing as well as heat treatment.

  15. Trivalent dimethylarsenic compound induces histone H3 phosphorylation and abnormal localization of Aurora B kinase in HepG2 cells

    International Nuclear Information System (INIS)

    Suzuki, Toshihide; Miyazaki, Koichi; Kita, Kayoko; Ochi, Takafumi

    2009-01-01

    Trivalent dimethylarsinous acid [DMA(III)] has been shown to induce mitotic abnormalities, such as centrosome abnormality, multipolar spindles, multipolar division, and aneuploidy, in several cell lines. In order to elucidate the mechanisms underlying these mitotic abnormalities, we investigated DMA(III)-mediated changes in histone H3 phosphorylation and localization of Aurora B kinase, which is a key molecule in cell mitosis. DMA(III) caused the phosphorylation of histone H3 (ser10) and was distributed predominantly in mitotic cells, especially in prometaphase cells. By contrast, most of the phospho-histone H3 was found to be localized in interphase cells after treatment with inorganic arsenite [iAs(III)], suggesting the involvement of a different pathway in phosphorylation. DMA(III) activated Aurora B kinase and slightly activated ERK MAP kinase. Phosphorylation of histone H3 by DMA(III) was effectively reduced by ZM447439 (Aurora kinase inhibitor) and slightly reduced by U0126 (MEK inhibitor). By contrast, iAs(III)-dependent histone H3 phosphorylation was markedly reduced by U0126. Aurora B kinase is generally localized in the midbody during telophase and plays an important role in cytokinesis. However, in some cells treated with DMA(III), Aurora B was not localized in the midbody of telophase cells. These findings suggested that DMA(III) induced a spindle abnormality, thereby activating the spindle assembly checkpoint (SAC) through the Aurora B kinase pathway. In addition, cytokinesis was not completed because of the abnormal localization of Aurora B kinase by DMA(III), thereby resulting in the generation of multinucleated cells. These results provide insight into the mechanism of arsenic tumorigenesis.

  16. Abnormal eating behavior in video-recorded meals in anorexia nervosa.

    Science.gov (United States)

    Gianini, Loren; Liu, Ying; Wang, Yuanjia; Attia, Evelyn; Walsh, B Timothy; Steinglass, Joanna

    2015-12-01

    Eating behavior during meals in anorexia nervosa (AN) has long been noted to be abnormal, but little research has been done carefully characterizing these behaviors. These eating behaviors have been considered pathological, but are not well understood. The current study sought to quantify ingestive and non-ingestive behaviors during a laboratory lunch meal, compare them to the behaviors of healthy controls (HC), and examine their relationships with caloric intake and anxiety during the meal. A standardized lunch meal was video-recorded for 26 individuals with AN and 10 HC. Duration, frequency, and latency of 16 mealtime behaviors were coded using computer software. Caloric intake, dietary energy density (DEDS), and anxiety were also measured. Nine mealtime behaviors were identified that distinguished AN from HC: staring at food, tearing food, nibbling/picking, dissecting food, napkin use, inappropriate utensil use, hand fidgeting, eating latency, and nibbling/picking latency. Among AN, a subset of these behaviors was related to caloric intake and anxiety. These data demonstrate that the mealtime behaviors of patients with AN and HC differ significantly, and some of these behaviors may be associated with food intake and anxiety. These mealtime behaviors may be important treatment targets to improve eating behavior in individuals with AN. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Diacylglycerol kinase β knockout mice exhibit attention-deficit behavior and an abnormal response on methylphenidate-induced hyperactivity.

    Directory of Open Access Journals (Sweden)

    Mitsue Ishisaka

    Full Text Available BACKGROUND: Diacylglycerol kinase (DGK is an enzyme that phosphorylates diacylglycerol to produce phosphatidic acid. DGKβ is one of the subtypes of the DGK family and regulates many intracellular signaling pathways in the central nervous system. Previously, we demonstrated that DGKβ knockout (KO mice showed various dysfunctions of higher brain function, such as cognitive impairment (with lower spine density, hyperactivity, reduced anxiety, and careless behavior. In the present study, we conducted further tests on DGKβ KO mice in order to investigate the function of DGKβ in the central nervous system, especially in the pathophysiology of attention deficit hyperactivity disorder (ADHD. METHODOLOGY/PRINCIPAL FINDINGS: DGKβ KO mice showed attention-deficit behavior in the object-based attention test and it was ameliorated by methylphenidate (MPH, 30 mg/kg, i.p.. In the open field test, DGKβ KO mice displayed a decreased response to the locomotor stimulating effects of MPH (30 mg/kg, i.p., but showed a similar response to an N-methyl-d-aspartate (NMDA receptor antagonist, MK-801 (0.3 mg/kg, i.p., when compared to WT mice. Examination of the phosphorylation of extracellular signal-regulated kinase (ERK, which is involved in regulation of locomotor activity, indicated that ERK1/2 activation induced by MPH treatment was defective in the striatum of DGKβ KO mice. CONCLUSIONS/SIGNIFICANCE: These findings suggest that DGKβ KO mice showed attention-deficit and hyperactive phenotype, similar to ADHD. Furthermore, the hyporesponsiveness of DGKβ KO mice to MPH was due to dysregulation of ERK phosphorylation, and that DGKβ has a pivotal involvement in ERK regulation in the striatum.

  18. Studies of planning behavior of aircraft pilots in normal, abnormal, and emergency situations

    Science.gov (United States)

    Johannsen, G.; Rouse, W. B.; Hillmann, K.

    1981-01-01

    A methodology for the study of human planning behavior in complex dynamic systems is presented and applied to the study of aircraft pilot behavior in normal, abnormal and emergency situations. The method measures the depth of planning, that is the level of detail employed with respect to a specific task, according to responses to a verbal questionnaire, and compares planning depth with variables relating to time, task criticality and the probability of increased task difficulty. In two series of experiments, depth of planning was measured on a five- or ten-point scale during various phases of flight in a HFB-320 simulator under normal flight conditions, abnormal scenarios involving temporary runway closure due to snow removal or temporary CAT-III conditions due to a dense fog, and emergency scenarios involving engine shut-down or hydraulic pressure loss. Results reveal a dichotomy between event-driven and time-driven planning, different effects of automation in abnormal and emergency scenarios and a low correlation between depth of planning and workload or flight performance.

  19. The effects of 2,4-dichlorophenoxy acetic acid and isoproturon herbicides on the mitotic activity of wheat (Triticum aestivum L.) root tips

    OpenAIRE

    KUMAR, Sanjay; *, -; ARYA, Shashi Kiran; ROY, Bijoy Krishna; SINGH, Atul Kumar

    2014-01-01

    The effects of the herbicides 2,4-dichlorophenoxy acetic acid and isoproturon on 3 wheat (Triticum aestivum L.) varieties (HUW 234, HUW 468, and HUW 533) were studied with regards to mitotic abnormalities and chromosomal behavior. Pre-soaked seeds were treated with both herbicides at concentrations of 50-1200 ppm. Both 2,4-D and isoproturon were highly mito-inhibitory and induced chromosomal abnormalities, such as precocious movement, stickiness, and chromosome bridges, with and without lagga...

  20. Abnormal social behavior, hyperactivity, impaired remote spatial memory, and increased D1-mediated dopaminergic signaling in neuronal nitric oxide synthase knockout mice

    Directory of Open Access Journals (Sweden)

    Tanda Koichi

    2009-06-01

    Full Text Available Abstract Background Neuronal nitric oxide synthase (nNOS is involved in the regulation of a diverse population of intracellular messenger systems in the brain. In humans, abnormal NOS/nitric oxide metabolism is suggested to contribute to the pathogenesis and pathophysiology of some neuropsychiatric disorders, such as schizophrenia and bipolar disorder. Mice with targeted disruption of the nNOS gene exhibit abnormal behaviors. Here, we subjected nNOS knockout (KO mice to a battery of behavioral tests to further investigate the role of nNOS in neuropsychiatric functions. We also examined the role of nNOS in dopamine/DARPP-32 signaling in striatal slices from nNOS KO mice and the effects of the administration of a dopamine D1 receptor agonist on behavior in nNOS KO mice. Results nNOS KO mice showed hyperlocomotor activity in a novel environment, increased social interaction in their home cage, decreased depression-related behavior, and impaired spatial memory retention. In striatal slices from nNOS KO mice, the effects of a dopamine D1 receptor agonist, SKF81297, on the phosphorylation of DARPP-32 and AMPA receptor subunit GluR1 at protein kinase A sites were enhanced. Consistent with the biochemical results, intraperitoneal injection of a low dose of SKF81297 significantly decreased prepulse inhibition in nNOS KO mice, but not in wild-type mice. Conclusion These findings indicate that nNOS KO upregulates dopamine D1 receptor signaling, and induces abnormal social behavior, hyperactivity and impaired remote spatial memory. nNOS KO mice may serve as a unique animal model of psychiatric disorders.

  1. γ-Aminobutyric acid ameliorates fluoride-induced hypothyroidism in male Kunming mice.

    Science.gov (United States)

    Yang, Haoyue; Xing, Ronge; Liu, Song; Yu, Huahua; Li, Pengcheng

    2016-02-01

    This study evaluated the protective effects of γ-aminobutyric acid (GABA), a non-protein amino acid and anti-oxidant, against fluoride-induced hypothyroidism in mice. Light microscope sample preparation technique and TEM sample preparation technique were used to assay thyroid microstructure and ultrastructure; enzyme immunoassay method was used to assay hormone and protein levels; immunohistochemical staining method was used to assay apoptosis of thyroid follicular epithelium cells. Subacute injection of sodium fluoride (NaF) decreased blood T4, T3 and thyroid hormone-binding globulin (TBG) levels to 33.98 μg/l, 3 2.8 ng/ml and 11.67 ng/ml, respectively. In addition, fluoride intoxication induced structural abnormalities in thyroid follicles. Our results showed that treatment of fluoride-exposed mice with GABA appreciably decreased metabolic toxicity induced by fluoride and restored the microstructural and ultrastructural organisation of the thyroid gland towards normalcy. Compared with the negative control group, GABA treatment groups showed significantly upregulated T4, T3 and TBG levels (42.34 μg/l, 6.54 ng/ml and 18.78 ng/ml, respectively; Plevel and apoptosis inhibition in thyroid follicular epithelial cells. To the best of our knowledge, this is the first study to establish the therapeutic efficacy of GABA as a natural antioxidant in inducing thyroprotection against fluoride-induced toxicity. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Changes in saccharin preference behavior as a primary outcome to evaluate pain and analgesia in acetic acid-induced visceral pain in mice.

    Science.gov (United States)

    de la Puente, Beatriz; Romero-Alejo, Elizabeth; Vela, José Miguel; Merlos, Manuel; Zamanillo, Daniel; Portillo-Salido, Enrique

    2015-01-01

    Reflex-based procedures are important measures in preclinical pain studies that evaluate stimulated behaviors. These procedures, however, are insufficient to capture the complexity of the pain experience, which is often associated with the depression of several innate behaviors. While recent studies have made efforts to evidence the suppression of some positively motivated behaviors in certain pain models, they are still far from being routinely used as readouts for analgesic screening. Here, we characterized and compared the effect of the analgesic ibuprofen (Ibu) and the stimulant, caffeine, in assays of acute pain-stimulated and pain-depressed behavior. Intraperitoneal injection of acetic acid (AA) served as a noxious stimulus to stimulate a writhing response or depress saccharin preference and locomotor activity (LMA) in mice. AA injection caused the maximum number of writhes between 5 and 20 minutes after administration, and writhing almost disappeared 1 hour later. AA-treated mice showed signs of depression-like behaviors after writhing resolution, as evidenced by reduced locomotion and saccharin preference for at least 4 and 6 hours, respectively. Depression-like behaviors resolved within 24 hours after AA administration. A dose of Ibu (40 mg/kg) - inactive to reduce AA-induced abdominal writhing - administered before or after AA injection significantly reverted pain-induced saccharin preference deficit. The same dose of Ibu also significantly reverted the AA-depressed LMA, but only when it was administered after AA injection. Caffeine restored locomotion - but not saccharin preference - in AA-treated mice, thus suggesting that the reduction in saccharin preference - but not in locomotion - was specifically sensitive to analgesics. In conclusion, AA-induced acute pain attenuated saccharin preference and LMA beyond the resolution of writhing behavior, and the changes in the expression of hedonic behavior, such as sweet taste preference, can be used as a more

  3. DDT exposure of zebrafish embryos enhances seizure susceptibility: relationship to fetal p,p'-DDE burden and domoic acid exposure of California sea lions.

    Science.gov (United States)

    Tiedeken, Jessica A; Ramsdell, John S

    2009-01-01

    California sea lions have a large body burden of organochlorine pesticides, and over the last decade they have also been subject to domoic acid poisoning. Domoic acid poisoning, previously recognized in adult animals, is now viewed as a major cause of prenatal mortality. The appearance of a chronic juvenile domoic acid disease in the sea lions, characterized by behavioral abnormalities and epilepsy, is consistent with early life poisoning and may be potentiated by organochlorine burden. We investigated the interactive effect of DDT (dichlorodiphenyltrichloroethane) on neurodevelopment using a zebrafish (Danio rerio) model for seizure behavior to examine the susceptibility to domoic acid-induced seizures after completion of neurodevelopment. Embryos were exposed (6-30 hr postfertilization) to either o,p'-DDT or p,p'-DDE (dichlorodiphenyldichloroethylene) during neurodevelopment via a 0.1% dimethyl sulfoxide solution. These larval (7 days postfertilization) fish were then exposed to either the seizure-inducing drug pentylenetetrazol (PTZ) or domoic acid; resulting seizure behavior was monitored and analyzed for changes using cameras and behavioral tracking software. Embryonic exposure to DDTs enhanced PTZ seizures and caused distinct and increased seizure behaviors to domoic acid, most notably a type of head-shaking behavior. These studies demonstrate that embryonic exposure to DDTs leads to asymptomatic animals at completion of neurodevelopment with greater sensitivity to domoic acid-induced seizures. The body burden levels of p,p'-DDE are close to the range recently found in fetal California sea lions and suggest a potential interactive effect of p,p'-DDE embryonic poisoning and domoic acid toxicity.

  4. Abnormal Gait Behavior Detection for Elderly Based on Enhanced Wigner-Ville Analysis and Cloud Incremental SVM Learning

    Directory of Open Access Journals (Sweden)

    Jian Luo

    2016-01-01

    Full Text Available A cloud based health care system is proposed in this paper for the elderly by providing abnormal gait behavior detection, classification, online diagnosis, and remote aid service. Intelligent mobile terminals with triaxial acceleration sensor embedded are used to capture the movement and ambulation information of elderly. The collected signals are first enhanced by a Kalman filter. And the magnitude of signal vector features is then extracted and decomposed into a linear combination of enhanced Gabor atoms. The Wigner-Ville analysis method is introduced and the problem is studied by joint time-frequency analysis. In order to solve the large-scale abnormal behavior data lacking problem in training process, a cloud based incremental SVM (CI-SVM learning method is proposed. The original abnormal behavior data are first used to get the initial SVM classifier. And the larger abnormal behavior data of elderly collected by mobile devices are then gathered in cloud platform to conduct incremental training and get the new SVM classifier. By the CI-SVM learning method, the knowledge of SVM classifier could be accumulated due to the dynamic incremental learning. Experimental results demonstrate that the proposed method is feasible and can be applied to aged care, emergency aid, and related fields.

  5. Glucose-Dependent Insulinotropic Polypeptide Mitigates 6-OHDA-Induced Behavioral Impairments in Parkinsonian Rats

    Science.gov (United States)

    Yu, Yu-Wen; Hsueh, Shih-Chang; Lai, Jing-Huei; Chen, Yen-Hua; Kang, Shuo-Jhen; Hsieh, Tsung-Hsun; Hoffer, Barry J.; Li, Yazhou; Greig, Nigel H.; Chiang, Yung-Hsiao

    2018-01-01

    In the present study, the effectiveness of glucose-dependent insulinotropic polypeptide (GIP) was evaluated by behavioral tests in 6-hydroxydopamine (6-OHDA) hemi-parkinsonian (PD) rats. Pharmacokinetic measurements of GIP were carried out at the same dose studied behaviorally, as well as at a lower dose used previously. GIP was delivered by subcutaneous administration (s.c.) using implanted ALZET micro-osmotic pumps. After two days of pre-treatment, male Sprague Dawley rats received a single unilateral injection of 6-OHDA into the medial forebrain bundle (MFB). The neuroprotective effects of GIP were evaluated by apomorphine-induced contralateral rotations, as well as by locomotor and anxiety-like behaviors in open-field tests. Concentrations of human active and total GIP were measured in plasma during a five-day treatment period by ELISA and were found to be within a clinically translatable range. GIP pretreatment reduced behavioral abnormalities induced by the unilateral nigrostriatal dopamine (DA) lesion produced by 6-OHDA, and thus may be a novel target for PD therapeutic development. PMID:29641447

  6. Glucose-Dependent Insulinotropic Polypeptide Mitigates 6-OHDA-Induced Behavioral Impairments in Parkinsonian Rats

    Directory of Open Access Journals (Sweden)

    Yu-Wen Yu

    2018-04-01

    Full Text Available In the present study, the effectiveness of glucose-dependent insulinotropic polypeptide (GIP was evaluated by behavioral tests in 6-hydroxydopamine (6-OHDA hemi-parkinsonian (PD rats. Pharmacokinetic measurements of GIP were carried out at the same dose studied behaviorally, as well as at a lower dose used previously. GIP was delivered by subcutaneous administration (s.c. using implanted ALZET micro-osmotic pumps. After two days of pre-treatment, male Sprague Dawley rats received a single unilateral injection of 6-OHDA into the medial forebrain bundle (MFB. The neuroprotective effects of GIP were evaluated by apomorphine-induced contralateral rotations, as well as by locomotor and anxiety-like behaviors in open-field tests. Concentrations of human active and total GIP were measured in plasma during a five-day treatment period by ELISA and were found to be within a clinically translatable range. GIP pretreatment reduced behavioral abnormalities induced by the unilateral nigrostriatal dopamine (DA lesion produced by 6-OHDA, and thus may be a novel target for PD therapeutic development.

  7. Elemental redistribution behavior in tellurite glass induced by high repetition rate femtosecond laser irradiation

    International Nuclear Information System (INIS)

    Teng, Yu; Zhou, Jiajia; Khisro, Said Nasir; Zhou, Shifeng; Qiu, Jianrong

    2014-01-01

    Highlights: • Abnormal elements redistribution behavior was observed in tellurite glass. • The refractive index and Raman intensity distribution changed significantly. • The relative glass composition remained unchanged while the glass density changed. • First time report on the abnormal element redistribution behavior in glass. • The glass network structure determines the elemental redistribution behavior. - Abstract: The success in the fabrication of micro-structures in glassy materials using femtosecond laser irradiation has proved its potential applications in the construction of three-dimensional micro-optical components or devices. In this paper, we report the elemental redistribution behavior in tellurite glass after the irradiation of high repetition rate femtosecond laser pulses. The relative glass composition remained unchanged while the glass density changed significantly, which is quite different from previously reported results about the high repetition rate femtosecond laser induced elemental redistribution in silicate glasses. The involved mechanism is discussed with the conclusion that the glass network structure plays the key role to determine the elemental redistribution. This observation not only helps to understand the interaction process of femtosecond laser with glassy materials, but also has potential applications in the fabrication of micro-optical devices

  8. Amphiphile-induced heart muscle-cell (myocyte) injury: effects of intracellular fatty acid overload.

    Science.gov (United States)

    Janero, D R; Burghardt, C; Feldman, D

    1988-10-01

    Lipid amphiphile toxicity may be an important contributor to myocardial injury, especially during ischemia/reperfusion. In order to investigate directly the potential biochemical and metabolic effects of amphiphile overload on the functioning heart muscle cell (myocyte), a novel model of nonesterified fatty acid (NEFA)-induced myocyte damage has been defined. The model uses intact, beating neonatal rat myocytes in primary monolayer culture as a study object and 5-(tetradecyloxy)-2-furoic acid (TOFA) as a nonmetabolizable fatty acid. Myocytes incubated with TOFA accumulated it as NEFA, and the consequent NEFA amphiphile overload elicited a variety of cellular defects (including decreased beating rate, depletion of high-energy stores and glycogen pools, and breakdown of myocyte membrane phospholipid) and culminated in cell death. The amphiphile-induced cellular pathology could be reversed by removing TOFA from the culture medium, which resulted in intracellular TOFA "wash-out." Although the development and severity of amphiphile-induced myocyte injury could be correlated with both the intracellular TOFA/NEFA content (i.e., the level of TOFA to which the cells were exposed) and the duration of this exposure, removal of amphiphile overload did not inevitably lead to myocyte recovery. TOFA had adverse effects on myocyte mitochondrial function in situ (decoupling of oxidative phosphorylation, impairing respiratory control) and on myocyte oxidative catabolism (transiently increasing fatty acid beta oxidation, citric acid cycle flux, and glucose oxidation). The amphiphile-induced bioenergetic abnormalities appeared to constitute a state of "metabolic anoxia" underlying the progression of myocyte injury to cell death. This anoxic state could be ameliorated to some extent, but not prevented, by carbohydrate catabolism.

  9. Gamma radiation induced cytological abnormalities in Lycopersicon esculentum Mill. var. pusa ruby

    Energy Technology Data Exchange (ETDEWEB)

    Jayabalan, N.; Rao, G.R.

    1987-03-01

    Healthy dry seeds of pusa ruby variety of Lycopersicon esculentum Mill. were irradiated with gamma rays at 10 KR, 20 KR, 30 KR, 40 KR and 50 KR dose levels. Meiotic studies were made in treated plants as well as in control plants. At metaphase I, meiotic abnormalities like clumping and stickiness of chromosomes, univalents, multivalents, fragments and irregular grouping of chromosomes were observed. At anaphase I, there were laggards and unequal grouping of chromosomes at poles. Germination percentage and pollen fertility were also studied. Pollen sterility seems to be the cumulative result of various abnormal meiotic stages as well as of physiological and genetic damages induced probably by breakage of chromosomes. The frequency of meiotic abnormalities with reference to the effect of radiation doses is discussed.

  10. Abnormal occipital event-related potentials in Parkinson's disease with concomitant REM sleep behavior disorder.

    Science.gov (United States)

    Gaudreault, Pierre-Olivier; Gagnon, Jean-François; Montplaisir, Jacques; Vendette, Mélanie; Postuma, Ronald B; Gagnon, Katia; Gosselin, Nadia

    2013-02-01

    Rapid eye movement sleep behavior disorder is found in 33-46% of patients with Parkinson's disease and was shown to be associated with cognitive deficits. Our goal was to improve our understanding of the role of this sleep disorder in cerebral dysfunction occurring in Parkinson's disease using a visual cognitive task and event-related potentials. Sixteen patients with Parkinson's disease and rapid eye movement sleep behavior disorder, 15 patients with Parkinson's disease without rapid eye movement sleep behavior disorder and 16 healthy control subjects were included. The amplitude and latency of event-related potentials were compared between groups. No group differences were found for reaction times or accuracy. A Group effect was found for P2 wave amplitude; patients with rapid eye movement sleep behavior disorder had increased P2 in comparison with the control group (p disorder were associated with abnormal visual P2 component of event-related potentials. Although patients with Parkinson's disease alone were not significantly different from patients with combined Parkinson's disease and rapid eye movement sleep behavior disorder, their P2 amplitudes were not sufficiently abnormal to differ from that of control subjects. This study confirms that rapid eye movement sleep behavior disorder accentuates cerebral dysfunctions in Parkinson's disease. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Aminocaproic Acid and Tranexamic Acid Fail to Reverse Dabigatran-Induced Coagulopathy.

    Science.gov (United States)

    Levine, Michael; Huang, Margaret; Henderson, Sean O; Carmelli, Guy; Thomas, Stephen H

    In recent years, dabigatran has emerged as a popular alternative to warfarin for treatment of atrial fibrillation. If rapid reversal is required, however, no reversal agent has clearly been established. The primary purpose of this manuscript was to evaluate the efficacy of tranexamic acid and aminocaproic acid as agents to reverse dabigatran-induced coagulopathy. Rats were randomly assigned to 6 groups. Each rat received either dabigatran or oral placebo, followed by saline, tranexamic acid, or aminocaproic acid. An activated clotting test was used to measure the coagulopathy. Neither tranexamic acid nor aminocaproic acid successfully reversed dabigatran-induced coagulopathy. In this rodent model of dabigatran-induced coagulopathy, neither tranexamic acid nor aminocaproic acid were able to reverse the coagulopathy.

  12. Abnormal fatty acid pattern in the superior temporal gyrus distinguishes bipolar disorder from major depression and schizophrenia and resembles multiple sclerosis.

    Science.gov (United States)

    McNamara, Robert K; Rider, Therese; Jandacek, Ronald; Tso, Patrick

    2014-03-30

    This study investigated the fatty acid composition of the postmortem superior temporal gyrus (STG), a cortical region implicated in emotional processing, from normal controls (n=15) and patients with bipolar disorder (BD, n=15), major depressive disorder (MDD, n=15), and schizophrenia (SZ, n=15). For comparative purposes, STG fatty acid composition was determined in a separate cohort of multiple sclerosis patients (MS, n=15) and normal controls (n=15). Compared with controls, patients with BD, but not MDD or SZ, exhibited abnormal elevations in the saturated fatty acids (SFA) palmitic acid (16:0), stearic acid (18:0), the polyunsaturated fatty acids (PUFA) linoleic acid (18:2n-6), arachidonic acid (20:4n-6), and docosahexaenoic acid (22:6n-3), and reductions in the monounsaturated fatty acid (MUFA) oleic acid (18:1n-9). The total MUFA/SFA and 18:1/18:0 ratios were lower in the STG of BD patients and were inversely correlated with total PUFA composition. MS patients exhibited a pattern of fatty acid abnormalities similar to that observed in BD patients including elevated PUFA and a lower 18:1/18:0 ratio. Collectively, these data demonstrate that BD patients exhibit a pattern of fatty acid abnormalities in the STG that is not observed in MDD and SZ patients and closely resembles MS patients. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  13. Advantages of the Alpha-lipoic Acid Association with Chlorpromazine in a Model of Schizophrenia Induced by Ketamine in Rats: Behavioral and Oxidative Stress evidences.

    Science.gov (United States)

    Sampaio, Luis Rafael Leite; Cysne Filho, Francisco Maurício Sales; de Almeida, Jamily Cunha; Diniz, Danilo Dos Santos; Patrocínio, Cláudio Felipe Vasconcelos; de Sousa, Caren Nádia Soares; Patrocínio, Manoel Cláudio Azevedo; Macêdo, Danielle; Vasconcelos, Silvânia Maria Mendes

    2018-03-01

    Schizophrenia is a chronic mental disorder reported to compromise about 1% of the world's population. Although its pathophysiological process is not completely elucidated, evidence showing the presence of an oxidative imbalance has been increasingly highlighted in the literature. Thus, the use of antioxidant substances may be of importance for schizophrenia treatment. The objective of this study was to evaluate the behavioral and oxidative alterations by the combination of chlorpromazine (CP) and alpha-lipoic acid (ALA), a potent antioxidant, in the ketamine (KET) model of schizophrenia in rats. Male Wistar rats (200-300 g) were treated for 10 days with saline, CP or ALA alone or in combination with CP previous to KET and the behavioral (open field, Y-maze and PPI tests) and oxidative tests were performed on the last day of treatment. The results showed that KET induced hyperlocomotion, impaired working memory and decreased PPI. CP alone or in combination with ALA prevented KET-induced behavioral effects. In addition, the administration of KET decreased GSH and increased nitrite, lipid peroxidation and myeloperoxidase activity. CP alone or combined with ALA prevented the oxidative alterations induced by KET. In conclusion, the treatment with KET in rats induced behavioral impairments accompanied by hippocampal oxidative alterations, possibly related to NMDA receptors hypofunction. Besides that, CP alone or combined with ALA prevented these effects, showing a beneficial activity as antipsychotic agents. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.

  14. Animal model of autism induced by prenatal exposure to valproate: behavioral changes and liver parameters.

    Science.gov (United States)

    Bambini-Junior, Victorio; Rodrigues, Leticia; Behr, Guilherme Antônio; Moreira, José Cláudio Fonseca; Riesgo, Rudimar; Gottfried, Carmem

    2011-08-23

    Autism is characterized by behavioral impairments in three main domains: social interaction; language, communication and imaginative play; and range of interests and activities. This syndrome has attracted social attention by its high prevalence. The animal model induced by prenatal exposure to valproic acid (VPA) has been proposed to study autism. Several characteristics of behavioral abnormalities found in the VPA rats, such as repetitive/stereotypic-like activity and deficit in social interaction have been correlated with autism. Features like flexibility to change strategy, social memory and metabolic status of the induced rats have not been examined. Thus, the main aim of this work was to investigate additional behavioral rodent similarities with autism, as well as, liver redox parameters after prenatal exposure to VPA. Young rats from the VPA group presented aberrant approach to a stranger rat, decreased conditioned place preference to conspecifics, normal spatial learning and a lack of flexibility to change their strategy. As adults, they presented inappropriate social approach to a stranger rat, decreased preference for social novelty, apparently normal social recognition and no spatial learning deficits. Examination of the liver from the VPA group presented significantly increased (12%) levels of catalase (CAT) activity, no alteration in superoxide dismutase (SOD) activity and a decrease in the SOD/CAT ratio. TBARS, sulfhydril and carbonyl contents, and serum levels of aminotransferases remained unchanged. In summary, rats prenatally exposed to VPA presented decreased flexibility to change strategy and social impairments similar to the autism symptoms, contributing to the understanding of neurodevelopmental symptoms and oxidative imbalance associated to the autism spectrum disorder. Copyright © 2011. Published by Elsevier B.V.

  15. Blunted behavioral and c Fos responses to acidic fumes in the African naked mole-rat.

    Science.gov (United States)

    LaVinka, Pamela Colleen; Park, Thomas J

    2012-01-01

    Acidosis in the skin triggers activation of pain pathways and behaviors indicative of pain in vertebrates. The exception is the naked mole-rat, the only known vertebrate to show physiological and behavioral insensitivity to acid pain in the skin. The goal of the present study was to determine behavioral and physiological responses of this species to airborne acidic fumes, which would be expected to affect the trigeminal pain pathway in other species. Behaviorally, naked mole-rats did not avoid fumes from moderately high concentrations of acetic acid (10 and 20%), and c Fos labeling showed no increase in activity in the trigeminal nuclei and nucleus tractus solitarius. In contrast, these concentrations triggered behavioral aversion and increased Fos activity in other laboratory rodents. For a very high concentration of acetic acid (50%), naked mole-rats showed significant avoidance behavior and increased Fos labeling in the nucleus tractus solitarius caudal region, which receives vagal chemosensory information. However, there was no increase in trigeminal labeling, and in fact, activity significantly decreased. This pattern is opposite of that associated with another irritant, ammonia fumes, which elicited an increase in trigeminal but not nucleus tractus solitarius Fos labeling, and no behavioral avoidance. Behavioral avoidance of acidic fumes, but no increased labeling in the trigeminal pain nucleus is consistent with the notion of adaptations to blunt acid pain, which would be advantageous for naked mole-rats as they normally live under chronically high levels of acidosis-inducing CO(2).

  16. Blunted behavioral and c Fos responses to acidic fumes in the African naked mole-rat.

    Directory of Open Access Journals (Sweden)

    Pamela Colleen LaVinka

    Full Text Available Acidosis in the skin triggers activation of pain pathways and behaviors indicative of pain in vertebrates. The exception is the naked mole-rat, the only known vertebrate to show physiological and behavioral insensitivity to acid pain in the skin. The goal of the present study was to determine behavioral and physiological responses of this species to airborne acidic fumes, which would be expected to affect the trigeminal pain pathway in other species. Behaviorally, naked mole-rats did not avoid fumes from moderately high concentrations of acetic acid (10 and 20%, and c Fos labeling showed no increase in activity in the trigeminal nuclei and nucleus tractus solitarius. In contrast, these concentrations triggered behavioral aversion and increased Fos activity in other laboratory rodents. For a very high concentration of acetic acid (50%, naked mole-rats showed significant avoidance behavior and increased Fos labeling in the nucleus tractus solitarius caudal region, which receives vagal chemosensory information. However, there was no increase in trigeminal labeling, and in fact, activity significantly decreased. This pattern is opposite of that associated with another irritant, ammonia fumes, which elicited an increase in trigeminal but not nucleus tractus solitarius Fos labeling, and no behavioral avoidance. Behavioral avoidance of acidic fumes, but no increased labeling in the trigeminal pain nucleus is consistent with the notion of adaptations to blunt acid pain, which would be advantageous for naked mole-rats as they normally live under chronically high levels of acidosis-inducing CO(2.

  17. Autism-Like Behavior and Epigenetic Changes Associated with Autism as Consequences of In Utero Exposure to Environmental Pollutants in a Mouse Model

    Directory of Open Access Journals (Sweden)

    Denise S. Hill

    2015-01-01

    Full Text Available We tested the hypothesis that in utero exposure to heavy metals increases autism-like behavioral phenotypes in adult animals and induces epigenetic changes in genes that have roles in the etiology of autism. Mouse dams were treated with cadmium, lead, arsenate, manganese, and mercury via drinking water from gestational days (E 1–10. Valproic acid (VPA injected intraperitoneally once on (E 8.5 served as a positive control. Young male offspring were tested for behavioral deficits using four standardized behavioral assays. In this study, in utero exposure to heavy metals resulted in multiple behavioral abnormalities that persisted into adulthood. VPA and manganese induced changes in perseverative/impulsive behavior and social dominance behavior, arsenic caused changes only in perseverative/impulsive behavior, and lead induced abnormalities in social interaction in comparison to the control animals. Brain samples from Mn, Pb, and VPA treated and control animals were evaluated for changes in CpG island methylation in promoter regions and associated changes in gene expression. The Chd7 gene, essential for neural crest cell migration and patterning, was found to be hypomethylated in each experimental animal tested compared to water-treated controls. Furthermore, distinct patterns of CpG island methylation yielded novel candidate genes for further investigation.

  18. Microtubule Abnormalities Underlying Gulf War Illness in Neurons from Human-Induced Pluripotent Cells

    Science.gov (United States)

    2016-09-01

    cells derived from human induced pluripotent stem cells (hiPSCs), originating from GW...AWARD NUMBER: W81XWH-15-1-0433 TITLE: Microtubule Abnormalities Underlying Gulf War Illness in Neurons from Human- Induced Pluripotent Cells ...A simple blood sample is taken from the soldier, and then transduced, using reliable established methods , to make the cells pluripotent .

  19. Asiatic Acid Alleviates Hemodynamic and Metabolic Alterations via Restoring eNOS/iNOS Expression, Oxidative Stress, and Inflammation in Diet-Induced Metabolic Syndrome Rats

    Directory of Open Access Journals (Sweden)

    Poungrat Pakdeechote

    2014-01-01

    Full Text Available Asiatic acid is a triterpenoid isolated from Centella asiatica. The present study aimed to investigate whether asiatic acid could lessen the metabolic, cardiovascular complications in rats with metabolic syndrome (MS induced by a high-carbohydrate, high-fat (HCHF diet. Male Sprague-Dawley rats were fed with HCHF diet with 15% fructose in drinking water for 12 weeks to induce MS. MS rats were treated with asiatic acid (10 or 20 mg/kg/day or vehicle for a further three weeks. MS rats had an impairment of oral glucose tolerance, increases in fasting blood glucose, serum insulin, total cholesterol, triglycerides, mean arterial blood pressure, heart rate, and hindlimb vascular resistance; these were related to the augmentation of vascular superoxide anion production, plasma malondialdehyde and tumor necrosis factor-alpha (TNF-α levels (p < 0.05. Plasma nitrate and nitrite (NOx were markedly high with upregulation of inducible nitric oxide synthase (iNOS expression, but dowregulation of endothelial nitric oxide synthase (eNOS expression (p < 0.05. Asiatic acid significantly improved insulin sensitivity, lipid profiles, hemodynamic parameters, oxidative stress markers, plasma TNF-α, NOx, and recovered abnormality of eNOS/iNOS expressions in MS rats (p < 0.05. In conclusion, asiatic acid improved metabolic, hemodynamic abnormalities in MS rats that could be associated with its antioxidant, anti-inflammatory effects and recovering regulation of eNOS/iNOS expression.

  20. Gamma radiation induced cytological abnormalities in Lycopersicon esculentum Mill. var. pusa ruby

    International Nuclear Information System (INIS)

    Jayabalan, N.; Rao, G.R.

    1987-01-01

    Healthy dry seeds of pusa ruby variety of Lycopersicon esculentum Mill. were irradiated with gamma rays at 10 KR, 20 KR, 30 KR, 40 KR and 50 KR dose levels. Meiotic studies were made in treated plants as well as in control plants. At metaphase I, meiotic abnormalities like clumping and stickiness of chromosomes, univalents, multivalents, fragments and irregular grouping of chromosomes were observed. At anaphase I, there were laggards and unequal grouping of chromosomes at poles. Germination percentage and pollen fertility were also studied. Pollen sterility seems to be the cumulative result of various abnormal meiotic stages as well as of physiological and genetic damages induced probably by breakage of chromosomes. The frequency of meiotic abnormalities with reference to the effect of radiation doses is discussed. (author)

  1. Environmentally toxicant exposures induced intragenerational transmission of liver abnormalities in mice

    Directory of Open Access Journals (Sweden)

    Mohamed A. Al-Griw

    2017-08-01

    Full Text Available Environmental toxicants such as chemicals, heavy metals, and pesticides have been shown to promote transgenerational inheritance of abnormal phenotypes and/or diseases to multiple subsequent generations following parental and/ or ancestral exposures. This study was designed to examine the potential transgenerational action of the environmental toxicant trichloroethane (TCE on transmission of liver abnormality, and to elucidate the molecular etiology of hepatocyte cell damage. A total of thirty two healthy immature female albino mice were randomly divided into three equal groups as follows: a sham group, which did not receive any treatment; a vehicle group, which received corn oil alone, and TCE treated group (3 weeks, 100 μg/kg i.p., every 4th day. The F0 and F1 generation control and TCE populations were sacrificed at the age of four months, and various abnormalities histpathologically investigated. Cell death and oxidative stress indices were also measured. The present study provides experimental evidence for the inheritance of environmentally induced liver abnormalities in mice. The results of this study show that exposure to the TCE promoted adult onset liver abnormalities in F0 female mice as well as unexposed F1 generation offspring. It is the first study to report a transgenerational liver abnormalities in the F1 generation mice through maternal line prior to gestation. This finding was based on careful evaluation of liver histopathological abnormalities, apoptosis of hepatocytes, and measurements of oxidative stress biomarkers (lipid peroxidation, protein carbonylation, and nitric oxide in control and TCE populations. There was an increase in liver histopathological abnormalities, cell death, and oxidative lipid damage in F0 and F1 hepatic tissues of TCE treated group. In conclusion, this study showed that the biological and health impacts of environmental toxicant TCE do not end in maternal adults, but are passed on to offspring

  2. Embryological exposure to valproic acid induces social interaction deficits in zebrafish (Danio rerio): A developmental behavior analysis.

    Science.gov (United States)

    Zimmermann, Fernanda Francine; Gaspary, Karina Vidarte; Leite, Carlos Eduardo; De Paula Cognato, Giana; Bonan, Carla Denise

    2015-01-01

    Changes in social behavior are associated with brain disorders, including mood disorders, stress, schizophrenia, Alzheimer's disease, and autism spectrum disorders (ASD). Autism is a complex neurodevelopmental disorder characterized by deficits in social interaction, impaired communication, anxiety, hyperactivity, and the presence of restricted interests. Zebrafish is one of the most social vertebrates used as a model in biomedical research, contributing to an understanding of the mechanisms that underlie social behavior. Valproic acid (VPA) is used as an anti-epileptic drug and mood stabilizer; however, prenatal VPA exposure in humans has been associated with an increased incidence of autism and it can also affect fetal brain development. Therefore, we conducted a behavioral screening at different periods of zebrafish development at 6, 30, 70, and 120dpf (days postfertilization) after VPA exposure in the early development stage to investigate social behavior, locomotion, aggression, and anxiety. VPA (48μM) exposure during the first 48hpf (hours postfertilization) did not promote changes on survival, morphology, and hatching rate at 24hpf, 48hpf, and 72hpf. The behavioral patterns suggest that VPA exposure induces changes in locomotor activity and anxiety at different developmental periods in zebrafish. Furthermore, a social interaction deficit is present at 70dpf and 120dpf. VPA exposure did not affect aggression in the adult stage at 70dpf and 120dpf. This is the first study that demonstrated zebrafish exposed to VPA during the first 48h of development exhibit deficits in social interaction, anxiety, and hyperactivity at different developmental periods. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Arginase Inhibition Ameliorates Hepatic Metabolic Abnormalities in Obese Mice

    Science.gov (United States)

    Moon, Jiyoung; Do, Hyun Ju; Cho, Yoonsu; Shin, Min-Jeong

    2014-01-01

    Objectives We examined whether arginase inhibition influences hepatic metabolic pathways and whole body adiposity in diet-induced obesity. Methods and Results After obesity induction by a high fat diet (HFD), mice were fed either the HFD or the HFD with an arginase inhibitor, Nω-hydroxy-nor-L-arginine (nor-NOHA). Nor-NOHA significantly prevented HFD-induced increases in body, liver, and visceral fat tissue weight, and ameliorated abnormal lipid profiles. Furthermore, nor-NOHA treatment reduced lipid accumulation in oleic acid-induced hepatic steatosis in vitro. Arginase inhibition increased hepatic nitric oxide (NO) in HFD-fed mice and HepG2 cells, and reversed the elevated mRNA expression of hepatic genes in lipid metabolism. Expression of phosphorylated 5′ AMPK-activated protein kinase α was increased by arginase inhibition in the mouse livers and HepG2 cells. Conclusions Arginase inhibition ameliorated obesity-induced hepatic lipid abnormalities and whole body adiposity, possibly as a result of increased hepatic NO production and subsequent activation of metabolic pathways involved in hepatic triglyceride metabolism and mitochondrial function. PMID:25057910

  4. Bias-induced conformational switching of supramolecular networks of trimesic acid at the solid-liquid interface

    Science.gov (United States)

    Ubink, J.; Enache, M.; Stöhr, M.

    2018-05-01

    Using the tip of a scanning tunneling microscope, an electric field-induced reversible phase transition between two planar porous structures ("chickenwire" and "flower") of trimesic acid was accomplished at the nonanoic acid/highly oriented pyrolytic graphite interface. The chickenwire structure was exclusively observed for negative sample bias, while for positive sample bias only the more densely packed flower structure was found. We suggest that the slightly negatively charged carboxyl groups of the trimesic acid molecule are the determining factor for this observation: their adsorption behavior varies with the sample bias and is thus responsible for the switching behavior.

  5. Mechanism of gastrointestinal abnormal motor activity induced by cisplatin in conscious dogs.

    Science.gov (United States)

    Ando, Hiroyuki; Mochiki, Erito; Ohno, Tetsuro; Yanai, Mitsuhiro; Toyomasu, Yoshitaka; Ogata, Kyoichi; Tabe, Yuichi; Aihara, Ryuusuke; Nakabayashi, Toshihiro; Asao, Takayuki; Kuwano, Hiroyuki

    2014-11-14

    To investigate whether 5-hydroxytryptamine (serotonin; 5-HT) is involved in mediating abnormal motor activity in dogs after cisplatin administration. After the dogs had been given a 2-wk recovery period, all of them were administered cisplatin, and the motor activity was recorded using strain gauge force transducers. Blood and intestinal fluid samples were collected to measure 5-HT for 24 h. To determine whether 5-HT in plasma or that in intestinal fluids is more closely related to abnormal motor activity we injected 5-HT into the bloodstream and the intestinal tract of the dogs. Cisplatin given intravenously produced abnormal motor activity that lasted up to 5 h. From 3 to 4 h after cisplatin administration, normal intact dogs exhibited retropropagation of motor activity accompanied by emesis. The concentration of 5-HT in plasma reached the peak at 4 h, and that in intestinal fluids reached the peak at 3 h. In normal intact dogs with resection of the vagus nerve that were administered kytril, cisplatin given intravenously did not produce abnormal motor activity. Intestinal serotonin administration did not produce abnormal motor activity, but intravenous serotonin administration did. After the intravenous administration of cisplatin, abnormal motor activity was produced in the involved vagus nerve and in the involved serotonergic neurons via another pathway. This study was the first to determine the relationship between 5-HT and emesis-induced motor activity.

  6. REM sleep behavior disorder in Parkinson disease: association with abnormal ocular motor findings.

    Science.gov (United States)

    Kim, Young Eun; Yang, Hui June; Yun, Ji Young; Kim, Han-Joon; Lee, Jee-Young; Jeon, Beom S

    2014-04-01

    The anatomical substrates associated with generalized muscle atonia during REM sleep are located on the pontine tegmentum and medial medulla oblongata. We examined whether patients with REM sleep behavior disorder (RBD) have abnormal ocular movements suggesting brainstem or cerebellar dysfunction in Parkinson's disease (PD). Cross-sectional survey for the existence of RBD and abnormal ocular movements. Ocular movements were examined by video-oculography (VOG). A total of 202 patients were included in this study. One hundred and sixteen (57.4%) of the 202 patients have clinically probable RBD, and 28 (24.1%) of the 116 with clinically probable RBD patients had abnormal VOG findings suggesting brainstem or cerebellar dysfunction; whereas 86 of the 202 patients did not have clinically probable RBD, and only 7 (8.1%) of the 86 patients had abnormal VOG findings suggesting brainstem or cerebellar dysfunction (P=0.001). This study suggests that the presence of RBD is associated with more severe or extensive brainstem pathology or different distribution of pathology in PD. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. A Case of Habitual Neck Compression Induced Electroencephalogram Abnormalities: Differentiating from Epileptic Seizures Using a Tc-99m HMPAO SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hongyoon; Seo, Minseok; Lee, Hoyoung; Kim, Youngsoo; Yun, Changho; Kim, Sangeun; Park, Sungho [Seoul National Univ. Bundang Hospital, Seongnam (Korea, Republic of)

    2014-06-15

    Self-induced hypoxia has been reported particularly in adolescents, and it can result in neurological injury. Here, we present a case of electroencephalogram (EEG) abnormalities induced by habitual neck compression differentiated from epileptic seizures by Tc-99m HMPAO SPECT. A 19-year-old male was admitted for evaluation of recurrent generalized tonic-clonic seizures. No interictal EEG abnormality was detected; however, abnormal slow delta waves were found immediately after habitual right neck compression. To differentiate EEG abnormalities due to a hemodynamic deficit induced by habitual neck compression from an epileptic seizure, Tc-99m HMPAO SPECT was performed immediately after right carotid artery compression. Abnormal delta waves were triggered, and cerebral hypoperfusion in the right internal carotid artery territory was detected on Tc-99m HMPAO SPECT. The slow delta wave detected on the EEG resulted from the cerebral hypoperfusion because of the habitual neck compression.

  8. A Case of Habitual Neck Compression Induced Electroencephalogram Abnormalities: Differentiating from Epileptic Seizures Using a Tc-99m HMPAO SPECT

    International Nuclear Information System (INIS)

    Choi, Hongyoon; Seo, Minseok; Lee, Hoyoung; Kim, Youngsoo; Yun, Changho; Kim, Sangeun; Park, Sungho

    2014-01-01

    Self-induced hypoxia has been reported particularly in adolescents, and it can result in neurological injury. Here, we present a case of electroencephalogram (EEG) abnormalities induced by habitual neck compression differentiated from epileptic seizures by Tc-99m HMPAO SPECT. A 19-year-old male was admitted for evaluation of recurrent generalized tonic-clonic seizures. No interictal EEG abnormality was detected; however, abnormal slow delta waves were found immediately after habitual right neck compression. To differentiate EEG abnormalities due to a hemodynamic deficit induced by habitual neck compression from an epileptic seizure, Tc-99m HMPAO SPECT was performed immediately after right carotid artery compression. Abnormal delta waves were triggered, and cerebral hypoperfusion in the right internal carotid artery territory was detected on Tc-99m HMPAO SPECT. The slow delta wave detected on the EEG resulted from the cerebral hypoperfusion because of the habitual neck compression

  9. Comprehensive behavioral analysis of ENU-induced Disc1-Q31L and -L100P mutant mice

    Directory of Open Access Journals (Sweden)

    Shoji Hirotaka

    2012-02-01

    Full Text Available Abstract Background Disrupted-in-Schizophrenia 1 (DISC1 is considered to be a candidate susceptibility gene for psychiatric disorders, including schizophrenia, bipolar disorder, and major depression. A recent study reported that N-ethyl-N-nitrosourea (ENU-induced mutations in exon 2 of the mouse Disc1 gene, which resulted in the amino acid exchange of Q31L and L100P, caused an increase in depression-like behavior in 31 L mutant mice and schizophrenia-like behavior in 100P mutant mice; thus, these are potential animal models of psychiatric disorders. However, remaining heterozygous mutations that possibly occur in flanking genes other than Disc1 itself might induce behavioral abnormalities in the mutant mice. Here, to confirm the effects of Disc1-Q31L and Disc1-L100P mutations on behavioral phenotypes and to investigate the behaviors of the mutant mice in more detail, the mutant lines were backcrossed to C57BL/6JJcl through an additional two generations and the behaviors were analyzed using a comprehensive behavioral test battery. Results Contrary to expectations, 31 L mutant mice showed no significant behavioral differences when compared with wild-type control mice in any of the behavioral tests, including the Porsolt forced swim and tail suspension tests, commonly used tests for depression-like behavior. Also, 100P mutant mice exhibited no differences in almost all of the behavioral tests, including the prepulse inhibition test for measuring sensorimotor gating, which is known to be impaired in schizophrenia patients; however, 100P mutant mice showed higher locomotor activity compared with wild-type control mice in the light/dark transition test. Conclusions Although these results are partially consistent with the previous study in that there was hyperactivity in 100P mutant mice, the vast majority of the results are inconsistent with those of the previous study; this discrepancy may be explained by differences in the genetic background of the

  10. Erythrocyte abnormalities induced by chemotherapy and radiotherapy: Induction of preleukaemic states

    International Nuclear Information System (INIS)

    Renoux, M.; Bernard, J.-F.; Boivin, P.; Schlegel, N.; Amar, M.; Torres, M.; Lopez, M.

    1978-01-01

    Increased incidence of acute leukaemia (AL) following exposure to ionizing radiation is well documented. AL has also been reported with increased frequency after chemotherapy for nonmalignant diseases. The effect of chemotherapy and/or radiotherapy on the following erythrocyte parameters: pyruvate-kinase (PK) activity, phospho-fructo-kinase (PFK) activity, HbF level, red cell antigens production and bone marrow sideroblasts, has been studied in 31 patients with myelomatosis and in 33 patients with nonhaematological malignancies. We have demonstrated the apperance after chemotherapy or radiotherapy of some abnormalities usually associated with leukaemia or preleukaemic states. In patients treated for myelomatosis, a PK deficiency has been detected in 58 % of the cases, an increased HbF level in 47 %, a modification of blood groups antigens in 68 % and abnormal sideroblasts in 30 %. No PFK deficiency was found. In patients treated for solid tumors, a PK deficiency in 50 % of the cases, a PFK deficiency in 20 %, an increased HbF level in 10 %, a modification of blood group antigens in 40 % has been detected. Chemotherapy administered over a period of 3 months has been shown to induce these abnormalities. Localized radiotherapy may have a similar effect. The combination of these two factors seems to cause an increase in the frequency and intensity of these abnormalities. (author)

  11. Abnormal metabolic network activity in REM sleep behavior disorder.

    Science.gov (United States)

    Holtbernd, Florian; Gagnon, Jean-François; Postuma, Ron B; Ma, Yilong; Tang, Chris C; Feigin, Andrew; Dhawan, Vijay; Vendette, Mélanie; Soucy, Jean-Paul; Eidelberg, David; Montplaisir, Jacques

    2014-02-18

    To determine whether the Parkinson disease-related covariance pattern (PDRP) expression is abnormally increased in idiopathic REM sleep behavior disorder (RBD) and whether increased baseline activity is associated with greater individual risk of subsequent phenoconversion. For this cohort study, we recruited 2 groups of RBD and control subjects. Cohort 1 comprised 10 subjects with RBD (63.5 ± 9.4 years old) and 10 healthy volunteers (62.7 ± 8.6 years old) who underwent resting-state metabolic brain imaging with (18)F-fluorodeoxyglucose PET. Cohort 2 comprised 17 subjects with RBD (68.9 ± 4.8 years old) and 17 healthy volunteers (66.6 ± 6.0 years old) who underwent resting brain perfusion imaging with ethylcysteinate dimer SPECT. The latter group was followed clinically for 4.6 ± 2.5 years by investigators blinded to the imaging results. PDRP expression was measured in both RBD groups and compared with corresponding control values. PDRP expression was elevated in both groups of subjects with RBD (cohort 1: p abnormalities in subjects with idiopathic RBD are associated with a greater likelihood of subsequent phenoconversion to a progressive neurodegenerative syndrome.

  12. Abnormal hippocampal BDNF and miR-16 expression is associated with depression-like behaviors induced by stress during early life.

    Directory of Open Access Journals (Sweden)

    Mei Bai

    Full Text Available Some environmental stressors lead to the onset of depression via inhibiting hippocampal BDNF expression, but other environmental stressors-induced depression exhibits no change in BDNF expression. The underlying mechanisms behind the divergence remain unknown. In this study, depression-like behaviors were induced in rats by maternal deprivation (MD and chronic unpredictable stress (CUPS. Depression-like behaviors were tested by open field test, forced swimming test, and sucrose consumption test. BDNF and miR-16 expressions in the hippocampus were examined by real-time PCR. MD and CUPS rats crawled less distance, exhibited decreased vertical activity, and produced more fecal pellets than control rats in the open field test. However, MD rats crawled less distance and produced significantly less fecal pellets than CUPS rats. In the forced swimming and sucrose consumption tests, CUPS and MD rats exhibited longer floating time and consumed less sucrose than control rats, but MD rats exhibited shorter floating time and consumed less sucrose than CUPS rats. MD but not CUPS rats showed lower BDNF mRNA and higher miR-16 expression than control rats. In MD rats, BDNF mRNA expression negatively correlated with the expression of miR-16. BDNF expression positively correlated with the total distance rats crawled and vertical activity in the open field test while miR-16 expression negatively correlated the two behaviors. BDNF positively correlated with sucrose preference rate while miR-16 negatively correlated with sucrose preference rate of the sucrose consumption test. Our study suggests that MD and CUPS induced different depression-like behaviors in rats. Depression induced by MD but not CUPS was significantly associated with upregulation of miR-16 and possibly subsequent downregulation of BDNF in hippocampus.

  13. Oleanolic acid supplement attenuates liquid fructose-induced adipose tissue insulin resistance through the insulin receptor substrate-1/phosphatidylinositol 3-kinase/Akt signaling pathway in rats

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ying [Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016 (China); Wang, Jianwei, E-mail: wangjianwei1968@gmail.com [Department of Traditional Chinese Medicine, Chongqing Medical University, Chongqing 400016 (China); Gu, Tieguang [Endocrinology and Metabolism Group, Sydney Institute of Health Sciences, Sydney, NSW 2000 Australia (Australia); Yamahara, Johji [Pharmafood Institute, Kyoto 602-8136 (Japan); Li, Yuhao, E-mail: yuhao@sitcm.edu.au [Endocrinology and Metabolism Group, Sydney Institute of Health Sciences, Sydney, NSW 2000 Australia (Australia)

    2014-06-01

    Oleanolic acid, a triterpenoid contained in more than 1620 plants including various fruits and foodstuffs, has numerous metabolic effects, such as hepatoprotection. However, its underlying mechanisms remain poorly understood. Adipose tissue insulin resistance (Adipo-IR) may contribute to the development and progress of metabolic abnormalities through release of excessive free fatty acids from adipose tissue. This study investigated the effect of oleanolic acid on Adipo-IR. The results showed that supplement with oleanolic acid (25 mg/kg, once daily, by oral gavage) over 10 weeks attenuated liquid fructose-induced increase in plasma insulin concentration and the homeostasis model assessment of insulin resistance (HOMA-IR) index in rats. Simultaneously, oleanolic acid reversed the increase in the Adipo-IR index and plasma non-esterified fatty acid concentrations during the oral glucose tolerance test assessment. In white adipose tissue, oleanolic acid enhanced mRNA expression of the genes encoding insulin receptor, insulin receptor substrate (IRS)-1 and phosphatidylinositol 3-kinase. At the protein level, oleanolic acid upregulated total IRS-1 expression, suppressed the increased phosphorylated IRS-1 at serine-307, and restored the increased phosphorylated IRS-1 to total IRS-1 ratio. In contrast, phosphorylated Akt to total Akt ratio was increased. Furthermore, oleanolic acid reversed fructose-induced decrease in phosphorylated-Akt/Akt protein to plasma insulin concentration ratio. However, oleanolic acid did not affect IRS-2 mRNA expression. Therefore, these results suggest that oleanolic acid supplement ameliorates fructose-induced Adipo-IR in rats via the IRS-1/phosphatidylinositol 3-kinase/Akt pathway. Our findings may provide new insights into the mechanisms of metabolic actions of oleanolic acid. - Highlights: • Adipose insulin resistance (Adipo-IR) contributes to metabolic abnormalities. • We investigated the effect of oleanolic acid (OA) on adipo-IR in

  14. Oleanolic acid supplement attenuates liquid fructose-induced adipose tissue insulin resistance through the insulin receptor substrate-1/phosphatidylinositol 3-kinase/Akt signaling pathway in rats

    International Nuclear Information System (INIS)

    Li, Ying; Wang, Jianwei; Gu, Tieguang; Yamahara, Johji; Li, Yuhao

    2014-01-01

    Oleanolic acid, a triterpenoid contained in more than 1620 plants including various fruits and foodstuffs, has numerous metabolic effects, such as hepatoprotection. However, its underlying mechanisms remain poorly understood. Adipose tissue insulin resistance (Adipo-IR) may contribute to the development and progress of metabolic abnormalities through release of excessive free fatty acids from adipose tissue. This study investigated the effect of oleanolic acid on Adipo-IR. The results showed that supplement with oleanolic acid (25 mg/kg, once daily, by oral gavage) over 10 weeks attenuated liquid fructose-induced increase in plasma insulin concentration and the homeostasis model assessment of insulin resistance (HOMA-IR) index in rats. Simultaneously, oleanolic acid reversed the increase in the Adipo-IR index and plasma non-esterified fatty acid concentrations during the oral glucose tolerance test assessment. In white adipose tissue, oleanolic acid enhanced mRNA expression of the genes encoding insulin receptor, insulin receptor substrate (IRS)-1 and phosphatidylinositol 3-kinase. At the protein level, oleanolic acid upregulated total IRS-1 expression, suppressed the increased phosphorylated IRS-1 at serine-307, and restored the increased phosphorylated IRS-1 to total IRS-1 ratio. In contrast, phosphorylated Akt to total Akt ratio was increased. Furthermore, oleanolic acid reversed fructose-induced decrease in phosphorylated-Akt/Akt protein to plasma insulin concentration ratio. However, oleanolic acid did not affect IRS-2 mRNA expression. Therefore, these results suggest that oleanolic acid supplement ameliorates fructose-induced Adipo-IR in rats via the IRS-1/phosphatidylinositol 3-kinase/Akt pathway. Our findings may provide new insights into the mechanisms of metabolic actions of oleanolic acid. - Highlights: • Adipose insulin resistance (Adipo-IR) contributes to metabolic abnormalities. • We investigated the effect of oleanolic acid (OA) on adipo-IR in

  15. Apoptosis-inducing factor (Aif1) mediates anacardic acid-induced apoptosis in Saccharomyces cerevisiae.

    Science.gov (United States)

    Muzaffar, Suhail; Chattoo, Bharat B

    2017-03-01

    Anacardic acid is a medicinal phytochemical that inhibits proliferation of fungal as well as several types of cancer cells. It induces apoptotic cell death in various cell types, but very little is known about the mechanism involved in the process. Here, we used budding yeast Saccharomyces cerevisiae as a model to study the involvement of some key elements of apoptosis in the anacardic acid-induced cell death. Plasma membrane constriction, chromatin condensation, DNA degradation, and externalization of phosphatidylserine (PS) indicated that anacardic acid induces apoptotic cell death in S. cerevisiae. However, the exogenous addition of broad-spectrum caspase inhibitor Z-VAD-FMK or deletion of the yeast caspase Yca1 showed that the anacardic acid-induced cell death is caspase independent. Apoptosis-inducing factor (AIF1) deletion mutant was resistant to the anacardic acid-induced cell death, suggesting a key role of Aif1. Overexpression of Aif1 made cells highly susceptible to anacardic acid, further confirming that Aif1 mediates anacardic acid-induced apoptosis. Interestingly, instead of the increase in the intracellular reactive oxygen species (ROS) normally observed during apoptosis, anacardic acid caused a decrease in the intracellular ROS levels. Quantitative real-time PCR analysis showed downregulation of the BIR1 survivin mRNA expression during the anacardic acid-induced apoptosis.

  16. Bile acids in radiation-induced diarrhea

    International Nuclear Information System (INIS)

    Arlow, F.L.; Dekovich, A.A.; Priest, R.J.; Beher, W.T.

    1987-01-01

    Radiation-induced bowel disease manifested by debilitating diarrhea is an unfortunate consequence of therapeutic irradiation for pelvic malignancies. Although the mechanism for this diarrhea is not well understood, many believe it is the result of damage to small bowel mucosa and subsequent bile acid malabsorption. Excess amounts of bile acids, especially the dihydroxy components, are known to induce water and electrolyte secretion and increase bowel motility. We have directly measured individual and total bile acids in the stool samples of 11 patients with radiation-induced diarrhea and have found bile acids elevated two to six times normal in eight of them. Our patients with diarrhea and increased bile acids in their stools had prompt improvement when given cholestyramine. They had fewer stools and returned to a more normal life-style

  17. Relation between exercise-induced ventricular arrhythmias and myocardial perfusion abnormalities in patients with intermediate pretest probability of coronary artery disease

    International Nuclear Information System (INIS)

    Elhendy, A.; Sozzi, F.B.; Van Domburg, R.T.; Bax, J.J.; Roelandt, J.R.T.C.

    2000-01-01

    We studied 302 patients (mean age 54±9 years, 152 men and 150 women) with intermediate pretest probability of CAD (range=0.25- 0.80, mean=0.43±0.20) by upright bicycle exercise stress test in conjunction with technetium-99m single-photon emission tomography (SPET) imaging. Exercise-induced VAs (frequent or complex premature ventricular contractions or ventricular tachycardia) occurred in 65 patients (22%). No significant difference was found between patients with and patient without VAs regarding the pretest probability of CAD (0.45±0.21 vs 0.43±0.20). Patients with exercise-induced VAs had a higher prevalence of perfusion abnormalities (52% vs 26%, P=0.002) and ischaemic electrocardiographic changes (31% vs 16%, P<0.05) compared to patients without VAs. A higher prevalence of perfusion abnormalities in patients with VAs was observed in both men (67% vs 35%, P<0.01) and women (38% vs 16%, P<0.05). However, the positive predictive value of exercise-induced VAs for the presence of myocardial perfusion abnormalities was higher in men than in women (67% vs 38%, P<0.05). The presence of abnormal myocardial perfusion was the only independent predictor of exercise-induced VAs (OR 2.2; 95% CI, 1.2-4.2) by multivariate analysis of clinical and stress test variables. It is concluded that in patients with intermediate pretest probability of CAD, exercise-induced VAs are predictive of a higher prevalence of myocardial perfusion abnormalities in both men and women. However, the positive predictive value of exercise-induced VAs for perfusion abnormalities is higher in men. Because of the underestimation of ischaemia by electrocardiographic changes, exercise-induced VAs should be interpreted as a marker of a higher probability of CAD. (orig./MG) (orig.)

  18. Platelet Arachidonic Acid Deficiency May Contribute to Abnormal Platelet Function During Parenteral Fish Oil Monotherapy in a Piglet Model.

    Science.gov (United States)

    Turner, Justine M; Field, Catherine J; Goruk, Sue; Wizzard, Pamela; Dicken, Bryan J; Bruce, Aisha; Wales, Paul W

    2016-05-01

    Fish oil monotherapy has been an advance for treating intestinal failure-associated liver disease (IFALD). However, such patients are at risk of bleeding complications from liver disease and because fish oil can inhibit thrombosis. We have previously reported abnormal platelet function in neonatal piglets given fish oil monotherapy during parenteral nutrition (PN). The purpose of this study was to determine if abnormal fatty acid composition of the platelets could explain the prior observed antiplatelet effect. Neonatal piglets were assigned to 2 treatments: PN with fish oil monotherapy (FO; n = 4) or PN with soy oil (SO; n = 5). On day 14, plasma was collected and platelets isolated by centrifuging. The fatty acid content in plasma and platelet plug were measured using gas liquid chromatography and compared with controls (CON; n = 5). The arachidonic acid (AA) content in the FO group was on average half that of the SO group, in both the platelets (FO, 3.5% vs SO, 7.6%; P = .021; CON, 4.5%-11%) and the plasma (FO, 3.8% vs SO, 9.2%; P = .002; CON, 6.1%-9.5%). No bleeding complications were observed for any piglets during PN treatment. Using platelet mapping, we have previously shown that neonatal piglets given fish oil monotherapy have abnormal platelet function in the AA pathway. This report demonstrates that such an abnormality can be explained by platelet AA deficiency. Platelet mapping and platelet fatty acid analysis should be undertaken in human infants treated with fish oil monotherapy during PN. © 2015 American Society for Parenteral and Enteral Nutrition.

  19. Effects of Fatty Liver Induced by Excess Orotic Acid on B-Group Vitamin Concentrations of Liver, Blood, and Urine in Rats.

    Science.gov (United States)

    Shibata, Katsumi; Morita, Nobuya; Kawamura, Tomoyo; Tsuji, Ai; Fukuwatari, Tsutomu

    2015-01-01

    Fatty liver is caused when rats are given orotic acid of the pyrimidine base in large quantities. The lack of B-group vitamins suppresses the biosynthesis of fatty acids. We investigated how orotic acid-induced fatty liver affects the concentrations of liver, blood, and urine B-group vitamins in rats. The vitamin B6 and B12 concentrations of liver, blood, and urine were not affected by orotic acid-induced fatty liver. Vitamin B2 was measured only in the urine, but was unchanged. The liver, blood, and urine concentrations of niacin and its metabolites fell dramatically. Niacin and its metabolites in the liver, blood, and urine were affected as expected. Although the concentrations of vitamin B1, pantothenic acid, folate, and biotin in liver and blood were decreased by orotic acid-induced fatty liver, these urinary excretion amounts showed a specific pattern toward increase. Generally, as for the typical urinary excretion of B-group vitamins, these are excreted when the body is saturated. However, the ability to sustain vitamin B1, pantothenic acid, folate, and biotin decreased in fatty liver, which is hypothesized as a specific phenomenon. This metabolic response might occur to prevent an abnormally increased biosynthesis of fatty acids by orotic acid.

  20. The Relationship between Personality Dimensions and Resiliency to Environmental Stress in Orange-Winged Amazon Parrots (Amazona amazonica), as Indicated by the Development of Abnormal Behaviors

    Science.gov (United States)

    Cussen, Victoria A.; Mench, Joy A.

    2015-01-01

    Parrots are popular companion animals, but are frequently relinquished because of behavioral problems, including abnormal repetitive behaviors like feather damaging behavior and stereotypy. In addition to contributing to pet relinquishment, these behaviors are important as potential indicators of diminished psychological well-being. While abnormal behaviors are common in captive animals, their presence and/or severity varies between animals of the same species that are experiencing the same environmental conditions. Personality differences could contribute to this observed individual variation, as they are known risk factors for stress sensitivity and affective disorders in humans. The goal of this study was to assess the relationship between personality and the development and severity of abnormal behaviors in captive-bred orange-winged Amazon parrots (Amazona amazonica). We monitored between-individual behavioral differences in enrichment-reared parrots of known personality types before, during, and after enrichment deprivation. We predicted that parrots with higher scores for neurotic-like personality traits would be more susceptible to enrichment deprivation and develop more abnormal behaviors. Our results partially supported this hypothesis, but also showed that distinct personality dimensions were related to different forms of abnormal behavior. While neuroticism-like traits were linked to feather damaging behavior, extraversion-like traits were negatively related to stereotypic behavior. More extraverted birds showed resiliency to environmental stress, developing fewer stereotypies during enrichment deprivation and showing lower levels of these behaviors following re-enrichment. Our data, together with the results of the few studies conducted on other species, suggest that, as in humans, certain personality types render individual animals more susceptible or resilient to environmental stress. Further, this susceptibility/resiliency can have a long

  1. The Relationship between Personality Dimensions and Resiliency to Environmental Stress in Orange-Winged Amazon Parrots (Amazona amazonica, as Indicated by the Development of Abnormal Behaviors.

    Directory of Open Access Journals (Sweden)

    Victoria A Cussen

    Full Text Available Parrots are popular companion animals, but are frequently relinquished because of behavioral problems, including abnormal repetitive behaviors like feather damaging behavior and stereotypy. In addition to contributing to pet relinquishment, these behaviors are important as potential indicators of diminished psychological well-being. While abnormal behaviors are common in captive animals, their presence and/or severity varies between animals of the same species that are experiencing the same environmental conditions. Personality differences could contribute to this observed individual variation, as they are known risk factors for stress sensitivity and affective disorders in humans. The goal of this study was to assess the relationship between personality and the development and severity of abnormal behaviors in captive-bred orange-winged Amazon parrots (Amazona amazonica. We monitored between-individual behavioral differences in enrichment-reared parrots of known personality types before, during, and after enrichment deprivation. We predicted that parrots with higher scores for neurotic-like personality traits would be more susceptible to enrichment deprivation and develop more abnormal behaviors. Our results partially supported this hypothesis, but also showed that distinct personality dimensions were related to different forms of abnormal behavior. While neuroticism-like traits were linked to feather damaging behavior, extraversion-like traits were negatively related to stereotypic behavior. More extraverted birds showed resiliency to environmental stress, developing fewer stereotypies during enrichment deprivation and showing lower levels of these behaviors following re-enrichment. Our data, together with the results of the few studies conducted on other species, suggest that, as in humans, certain personality types render individual animals more susceptible or resilient to environmental stress. Further, this susceptibility/resiliency can

  2. The Relationship between Personality Dimensions and Resiliency to Environmental Stress in Orange-Winged Amazon Parrots (Amazona amazonica), as Indicated by the Development of Abnormal Behaviors.

    Science.gov (United States)

    Cussen, Victoria A; Mench, Joy A

    2015-01-01

    Parrots are popular companion animals, but are frequently relinquished because of behavioral problems, including abnormal repetitive behaviors like feather damaging behavior and stereotypy. In addition to contributing to pet relinquishment, these behaviors are important as potential indicators of diminished psychological well-being. While abnormal behaviors are common in captive animals, their presence and/or severity varies between animals of the same species that are experiencing the same environmental conditions. Personality differences could contribute to this observed individual variation, as they are known risk factors for stress sensitivity and affective disorders in humans. The goal of this study was to assess the relationship between personality and the development and severity of abnormal behaviors in captive-bred orange-winged Amazon parrots (Amazona amazonica). We monitored between-individual behavioral differences in enrichment-reared parrots of known personality types before, during, and after enrichment deprivation. We predicted that parrots with higher scores for neurotic-like personality traits would be more susceptible to enrichment deprivation and develop more abnormal behaviors. Our results partially supported this hypothesis, but also showed that distinct personality dimensions were related to different forms of abnormal behavior. While neuroticism-like traits were linked to feather damaging behavior, extraversion-like traits were negatively related to stereotypic behavior. More extraverted birds showed resiliency to environmental stress, developing fewer stereotypies during enrichment deprivation and showing lower levels of these behaviors following re-enrichment. Our data, together with the results of the few studies conducted on other species, suggest that, as in humans, certain personality types render individual animals more susceptible or resilient to environmental stress. Further, this susceptibility/resiliency can have a long

  3. Changes in saccharin preference behavior as a primary outcome to evaluate pain and analgesia in acetic acid-induced visceral pain in mice

    Directory of Open Access Journals (Sweden)

    de la Puente B

    2015-10-01

    Full Text Available Beatriz de la Puente, Elizabeth Romero-Alejo, José Miguel Vela, Manuel Merlos, Daniel Zamanillo, Enrique Portillo-Salido Department of Pharmacology, Drug Discovery and Preclinical Development, ESTEVE, Barcelona, SpainAbstract: Reflex-based procedures are important measures in preclinical pain studies that evaluate stimulated behaviors. These procedures, however, are insufficient to capture the complexity of the pain experience, which is often associated with the depression of several innate behaviors. While recent studies have made efforts to evidence the suppression of some positively motivated behaviors in certain pain models, they are still far from being routinely used as readouts for analgesic screening. Here, we characterized and compared the effect of the analgesic ibuprofen (Ibu and the stimulant, caffeine, in assays of acute pain-stimulated and pain-depressed behavior. Intraperitoneal injection of acetic acid (AA served as a noxious stimulus to stimulate a writhing response or depress saccharin preference and locomotor activity (LMA in mice. AA injection caused the maximum number of writhes between 5 and 20 minutes after administration, and writhing almost disappeared 1 hour later. AA-treated mice showed signs of depression-like behaviors after writhing resolution, as evidenced by reduced locomotion and saccharin preference for at least 4 and 6 hours, respectively. Depression-like behaviors resolved within 24 hours after AA administration. A dose of Ibu (40 mg/kg – inactive to reduce AA-induced abdominal writhing – administered before or after AA injection significantly reverted pain-induced saccharin preference deficit. The same dose of Ibu also significantly reverted the AA-depressed LMA, but only when it was administered after AA injection. Caffeine restored locomotion – but not saccharin preference – in AA-treated mice, thus suggesting that the reduction in saccharin preference – but not in locomotion – was specifically

  4. Phenotype abnormality: 31 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available 31 http://metadb.riken.jp/db/SciNetS_ria224i/cria224u1ria224u537i abnormal for trait of behavior...al quality during process named localization of cell ... abnormal ... behavioral quality

  5. Phenotype abnormality: 33 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available 33 http://metadb.riken.jp/db/SciNetS_ria224i/cria224u1ria224u539i abnormal for trait of behavior...al quality during process named response to auxin stimulus ... abnormal ... behavioral quality

  6. Prenatal phencyclidine treatment induces behavioral deficits through impairment of GABAergic interneurons in the prefrontal cortex.

    Science.gov (United States)

    Toriumi, Kazuya; Oki, Mika; Muto, Eriko; Tanaka, Junko; Mouri, Akihiro; Mamiya, Takayoshi; Kim, Hyoung-Chun; Nabeshima, Toshitaka

    2016-06-01

    We previously reported that prenatal treatment with phencyclidine (PCP) induces glutamatergic dysfunction in the prefrontal cortex (PFC), leading to schizophrenia-like behavioral deficits in adult mice. However, little is known about the prenatal effect of PCP treatment on other types of neurons. We focused on γ-aminobutyric acid (GABA)-ergic interneurons and evaluated the effect of prenatal PCP exposure on the neurodevelopment of GABAergic interneurons in the PFC. PCP was administered at the dose of 10 mg/kg/day to pregnant dams from embryonic day 6.5 to 18.5. After the pups were reared to adult, we analyzed their GABAergic system in the PFC using immunohistological, biochemical, and behavioral analyses in adulthood. The prenatal PCP treatment decreased the density of parvalbumin-positive cells and reduced the expression level of glutamic acid decarboxylase 67 (GAD67) and GABA content of the PFC in adults. Additionally, prenatal PCP treatment induced behavioral deficits in adult mice, such as hypersensitivity to PCP and prepulse inhibition (PPI) deficits. These behavioral deficits were ameliorated by pretreatment with the GABAB receptor agonist baclofen. Furthermore, the density of c-Fos-positive cells was decreased after the PPI test in the PFC of mice treated with PCP prenatally, and this effect was ameliorated by pretreatment with baclofen. These findings suggest that prenatal treatment with PCP induced GABAergic dysfunction in the PFC, which caused behavioral deficits.

  7. Thrombin impairs human endometrial endothelial angiogenesis; implications for progestin-only contraceptive-induced abnormal uterine bleeding.

    Science.gov (United States)

    Shapiro, John P; Guzeloglu-Kayisli, Ozlem; Kayisli, Umit A; Semerci, Nihan; Huang, S Joseph; Arlier, Sefa; Larsen, Kellie; Fadda, Paolo; Schatz, Frederick; Lockwood, Charles J

    2017-06-01

    Progestin-only contraceptives induce abnormal uterine bleeding, accompanied by prothrombin leakage from dilated endometrial microvessels and increased thrombin generation by human endometrial stromal cell (HESC)-expressed tissue factor. Initial studies of the thrombin-treated HESC secretome identified elevated levels of cleaved chondroitin sulfate proteoglycan 4 (CSPG4), impairing pericyte-endothelial interactions. Thus, we investigated direct and CSPG4-mediated effects of thrombin in eliciting abnormal uterine bleeding by disrupting endometrial angiogenesis. Liquid chromatography/tandem mass spectrometry, enzyme-linked immunosorbent assay (ELISA) and quantitative real-time-polymerase chain reaction (PCR) evaluated conditioned medium supernatant and cell lysates from control versus thrombin-treated HESCs. Pre- and post-Depo medroxyprogesterone acetate (DMPA)-administered endometria were immunostained for CSPG4. Proliferation, apoptosis and tube formation were assessed in human endometrial endothelial cells (HEECs) incubated with recombinant human (rh)-CSPG4 or thrombin or both. Thrombin induced CSPG4 protein expression in cultured HESCs as detected by mass spectrometry and ELISA (pabnormal uterine bleeding in DMPA users. Mass spectrometry analysis identified several HESC-secreted proteins regulated by thrombin. Therapeutic agents blocking angiogenic effects of thrombin in HESCs can prevent or minimize progestin-only contraceptive-induced abnormal uterine bleeding. Copyright © 2017. Published by Elsevier Inc.

  8. Tranexamic acid-induced fixed drug eruption

    Directory of Open Access Journals (Sweden)

    Natsuko Matsumura

    2015-01-01

    Full Text Available A 33-year-old male showed multiple pigmented patches on his trunk and extremities after he took tranexamic acid for common cold. He stated that similar eruptions appeared when he was treated with tranexamic acid for influenza 10 months before. Patch test showed positive results at 48 h and 72 h by 1% and 10% tranexamic acid at the lesional skin only. To our knowledge, nine cases of fixed drug eruption induced by tranexamic acid have been reported in Japan. Tranexamic acid is a safe drug and frequently used because of its anti-fibrinolytic and anti-inflammatory effects, but caution of inducing fixed drug eruption should be necessary.

  9. Phenotype abnormality: 42 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available 42 http://metadb.riken.jp/db/SciNetS_ria224i/cria224u1ria224u548i abnormal for trait of behavior...al quality in organ named root during process named gravitropism ... root ... abnormal ... behavioral quality

  10. Motor behavioral abnormalities and histopathological findings of Wistar rats inoculated with HTLV-1-infected MT2 cells

    Directory of Open Access Journals (Sweden)

    C.C. Câmara

    2010-07-01

    Full Text Available The objective of the present study was to describe motor behavioral changes in association with histopathological and hematological findings in Wistar rats inoculated intravenously with human T-cell lymphotropic virus type 1 (HTLV-1-infected MT2 cells. Twenty-five 4-month-old male rats were inoculated with HTLV-1-infected MT2 cells and 13 control rats were inoculated with normal human lymphocytes. The behavior of the rats was observed before and 5, 10, 15, and 20 months after inoculation during a 30-min/rat testing time for 5 consecutive days. During each of 4 periods, a subset of rats was randomly chosen to be sacrificed in order to harvest the spinal cord for histopathological analysis and to obtain blood for serological and molecular studies. Behavioral analyses of the HTLV-1-inoculated rats showed a significant decrease of climbing, walking and freezing, and an increase of scratching, sniffing, biting, licking, and resting/sleeping. Two of the 25 HTLV-1-inoculated rats (8% developed spastic paraparesis as a major behavioral change. The histopathological changes were few and mild, but in some cases there was diffuse lymphocyte infiltration. The minor and major behavioral changes occurred after 10-20 months of evolution. The long-term observation of Wistar rats inoculated with HTLV-1-infected MT2 cells showed major (spastic paraparesis and minor motor abnormalities in association with the degree of HTLV-1-induced myelopathy.

  11. Blood metabolomics analysis identifies abnormalities in the citric acid cycle, urea cycle, and amino acid metabolism in bipolar disorder.

    Science.gov (United States)

    Yoshimi, Noriko; Futamura, Takashi; Kakumoto, Keiji; Salehi, Alireza M; Sellgren, Carl M; Holmén-Larsson, Jessica; Jakobsson, Joel; Pålsson, Erik; Landén, Mikael; Hashimoto, Kenji

    2016-06-01

    Bipolar disorder (BD) is a severe and debilitating psychiatric disorder. However, the precise biological basis remains unknown, hampering the search for novel biomarkers. We performed a metabolomics analysis to discover novel peripheral biomarkers for BD. We quantified serum levels of 116 metabolites in mood-stabilized male BD patients (n = 54) and age-matched male healthy controls (n = 39). After multivariate logistic regression, serum levels of pyruvate, N-acetylglutamic acid, α-ketoglutarate, and arginine were significantly higher in BD patients than in healthy controls. Conversely, serum levels of β-alanine, and serine were significantly lower in BD patients than in healthy controls. Chronic (4-weeks) administration of lithium or valproic acid to adult male rats did not alter serum levels of pyruvate, N-acetylglutamic acid, β-alanine, serine, or arginine, but lithium administration significantly increased serum levels of α-ketoglutarate. The metabolomics analysis demonstrated altered serum levels of pyruvate, N-acetylglutamic acid, β-alanine, serine, and arginine in BD patients. The present findings suggest that abnormalities in the citric acid cycle, urea cycle, and amino acid metabolism play a role in the pathogenesis of BD.

  12. Amelioration of behavioral abnormalities in BH(4-deficient mice by dietary supplementation of tyrosine.

    Directory of Open Access Journals (Sweden)

    Sang Su Kwak

    Full Text Available This study reports an amelioration of abnormal motor behaviors in tetrahydrobiopterin (BH4-deficient Spr (-/- mice by the dietary supplementation of tyrosine. Since BH4 is an essential cofactor for the conversion of phenylalanine into tyrosine as well as the synthesis of dopamine neurotransmitter within the central nervous system, the levels of tyrosine and dopamine were severely reduced in brains of BH4-deficient Spr (-/- mice. We found that Spr (-/- mice display variable 'open-field' behaviors, impaired motor functions on the 'rotating rod', and dystonic 'hind-limb clasping'. In this study, we report that these aberrant motor deficits displayed by Spr (-/- mice were ameliorated by the therapeutic tyrosine diet for 10 days. This study also suggests that dopamine deficiency in brains of Spr (-/- mice may not be the biological feature of aberrant motor behaviors associated with BH4 deficiency. Brain levels of dopamine (DA and its metabolites in Spr (-/- mice were not substantially increased by the dietary tyrosine therapy. However, we found that mTORC1 activity severely suppressed in brains of Spr (-/- mice fed a normal diet was restored 10 days after feeding the mice the tyrosine diet. The present study proposes that brain mTORC1 signaling pathway is one of the potential targets in understanding abnormal motor behaviors associated with BH4-deficiency.

  13. Abnormal mitosis in root meristem cells of Allium cepa L. induced by ...

    African Journals Online (AJOL)

    This investigation was aimed to find mitotic abnormalities as cytological evidence induced by the dye in root tip cells of onion (Allium cepa L.) grown in different concentrations: 0.01, 0.05, 0.1, 0.5 and 1.0% (weight per volume) prepared in distilled water in separate treatment schedules for 24 and 48 h. Mitotic aberrations ...

  14. Phenotype abnormality: 47 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available 47 http://metadb.riken.jp/db/SciNetS_ria224i/cria224u1ria224u553i abnormal for trait of behavior...al quality in organ named thylakoid membrane during process named thylakoid membrane organization ... abnormal ... behavioral quality

  15. Valproic Acid-induced Agranulocytosis

    Directory of Open Access Journals (Sweden)

    Hui-Chuan Hsu

    2009-06-01

    Full Text Available Valproic acid is considered to be the most well-tolerated antiepileptic drug. However, few cases of neutropenia or leukopenia caused by valproic acid have been reported. We present a patient who took valproic acid to treat a complication of brain surgery and in whom severe agranulocytosis occurred after 2.5 months. Valproic acid was stopped immediately, and granulocyte colony-stimulating factor was administered for 2 days. The patient's white blood cell count returned to normal within 2 weeks. The result of bone marrow aspiration was compatible with drug-induced agranulocytosis. This case illustrates that patients who take valproic acid may need regular checking of complete blood cell count.

  16. Folic acid and pantothenic acid protection against valproic acid-induced neural tube defects in CD-1 mice

    Energy Technology Data Exchange (ETDEWEB)

    Dawson, Jennifer E [Department of Pharmacology and Toxicology and School of Environmental Studies, Queen' s University, Kingston, Ontario, K7L 3N6 (Canada); Raymond, Angela M [Department of Pharmacology and Toxicology and School of Environmental Studies, Queen' s University, Kingston, Ontario, K7L 3N6 (Canada); Winn, Louise M [Department of Pharmacology and Toxicology and School of Environmental Studies, Queen' s University, Kingston, Ontario, K7L 3N6 (Canada)

    2006-03-01

    In utero exposure to valproic acid (VPA) during pregnancy is associated with an increased risk of neural tube defects (NTDs). Although the mechanism by which VPA mediates these effects is unknown, VPA-initiated changes in embryonic protein levels have been implicated. The objectives of this study were to investigate the effect of in utero VPA exposure on embryonic protein levels of p53, NF-{kappa}B, Pim-1, c-Myb, Bax, and Bcl-2 in the CD-1 mouse. We also evaluated the protective effects of folic acid and pantothenic acid on VPA-induced NTDs and VPA-induced embryonic protein changes in this model. Pregnant CD-1 mice were administered a teratogenic dose of VPA prior to neural tube closure and embryonic protein levels were analyzed. In our study, VPA (400 mg/kg)-induced NTDs (24%) and VPA-exposed embryos with an NTD showed a 2-fold increase in p53, and 4-fold decreases in NF-{kappa}B, Pim-1, and c-Myb protein levels compared to their phenotypically normal littermates (P < 0.05). Additionally, VPA increased the ratio of embryonic Bax/Bcl-2 protein levels (P < 0.05). Pretreatment of pregnant dams with either folic acid or pantothenic acid prior to VPA significantly protected against VPA-induced NTDs (P < 0.05). Folic acid also reduced VPA-induced alterations in p53, NF-{kappa}B, Pim-1, c-Myb, and Bax/Bcl-2 protein levels, while pantothenic acid prevented VPA-induced alterations in NF-{kappa}B, Pim-1, and c-Myb. We hypothesize that folic acid and pantothenic acid protect CD-1 embryos from VPA-induced NTDs by independent, but not mutually exclusive mechanisms, both of which may be mediated by the prevention of VPA-induced alterations in proteins involved in neurulation.

  17. Phenotype abnormality: 44 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available 44 http://metadb.riken.jp/db/SciNetS_ria224i/cria224u1ria224u550i abnormal for trait of behavior...al quality in organ named root during process named organ development ... root ... abnormal ... organ development ... behavioral quality

  18. Phenotype abnormality: 45 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available 45 http://metadb.riken.jp/db/SciNetS_ria224i/cria224u1ria224u551i abnormal for trait of behavior...al quality in organ named stamen during process named organ development ... stamen ... abnormal ... organ development ... behavioral quality

  19. Phenotype abnormality: 37 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available 37 http://metadb.riken.jp/db/SciNetS_ria224i/cria224u1ria224u543i abnormal for trait of behavior...al quality in organ named cotyledon during process named organ development ... cotyledon ... abnormal ... organ development ... behavioral quality

  20. Phenotype abnormality: 39 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available 39 http://metadb.riken.jp/db/SciNetS_ria224i/cria224u1ria224u545i abnormal for trait of behavior...al quality in organ named flower during process named organ development ... flower ... abnormal ... organ development ... behavioral quality

  1. Cytomegalovirus induces abnormal chondrogenesis and osteogenesis during embryonic mandibular development

    Directory of Open Access Journals (Sweden)

    Bringas Pablo

    2008-03-01

    Full Text Available Abstract Background Human clinical studies and mouse models clearly demonstrate that cytomegalovirus (CMV disrupts normal organ and tissue development. Although CMV is one of the most common causes of major birth defects in humans, little is presently known about the mechanism(s underlying CMV-induced congenital malformations. Our prior studies have demonstrated that CMV infection of first branchial arch derivatives (salivary glands and teeth induced severely abnormal phenotypes and that CMV has a particular tropism for neural crest-derived mesenchyme (NCM. Since early embryos are barely susceptible to CMV infection, and the extant evidence suggests that the differentiation program needs to be well underway for embryonic tissues to be susceptible to viral infection and viral-induced pathology, the aim of this study was to determine if first branchial arch NCM cells are susceptible to mCMV infection prior to differentiation of NCM derivatives. Results E11 mouse mandibular processes (MANs were infected with mouse CMV (mCMV for up to 16 days in vitro. mCMV infection of undifferentiated embryonic mouse MANs induced micrognathia consequent to decreased Meckel's cartilage chondrogenesis and mandibular osteogenesis. Specifically, mCMV infection resulted in aberrant stromal cellularity, a smaller, misshapen Meckel's cartilage, and mandibular bone and condylar dysmorphogenesis. Analysis of viral distribution indicates that mCMV primarily infects NCM cells and derivatives. Initial localization studies indicate that mCMV infection changed the cell-specific expression of FN, NF-κB2, RelA, RelB, and Shh and Smad7 proteins. Conclusion Our results indicate that mCMV dysregulation of key signaling pathways in primarily NCM cells and their derivatives severely disrupts mandibular morphogenesis and skeletogenesis. The pathogenesis appears to be centered around the canonical and noncanonical NF-κB pathways, and there is unusual juxtaposition of abnormal stromal

  2. Mapping and reconstruction of domoic acid-induced neurodegeneration in the mouse brain.

    Science.gov (United States)

    Colman, J R; Nowocin, K J; Switzer, R C; Trusk, T C; Ramsdell, J S

    2005-01-01

    Domoic acid, a potent neurotoxin and glutamate analog produced by certain species of the marine diatom Pseudonitzschia, is responsible for several human and wildlife intoxication events. The toxin characteristically damages the hippocampus in exposed humans, rodents, and marine mammals. Histochemical studies have identified this, and other regions of neurodegeneration, though none have sought to map all brain regions affected by domoic acid. In this study, mice exposed (i.p.) to 4 mg/kg domoic acid for 72 h exhibited behavioral and pathological signs of neurotoxicity. Brains were fixed by intracardial perfusion and processed for histochemical analysis. Serial coronal sections (50 microm) were stained using the degeneration-sensitive cupric silver staining method of DeOlmos. Degenerated axons, terminals, and cell bodies, which stained black, were identified and the areas of degeneration were mapped onto Paxinos mouse atlas brain plates using Adobe Illustrator CS. The plates were then combined to reconstruct a 3-dimensional image of domoic acid-induced neurodegeneration using Amira 3.1 software. Affected regions included the olfactory bulb, septal area, and limbic system. These findings are consistent with behavioral and pathological studies demonstrating the effects of domoic acid on cognitive function and neurodegeneration in rodents.

  3. Teaching a Course in Abnormal Psychology and Behavior Intervention Skills for Nursing Home Aides.

    Science.gov (United States)

    Glenwick, David S.; Slutzsky, Mitchel R.; Garfinkel, Eric

    2001-01-01

    Describes an 11-week course given at a nursing home to nursing home aides that focused on abnormal psychology and behavior intervention skills. Discusses the course goals, class composition, and course description. Addresses the problems and issues encountered with teaching this course to a nontraditional population in an unconventional setting.…

  4. Phenotype abnormality: 49 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available 49 http://metadb.riken.jp/db/SciNetS_ria224i/cria224u1ria224u555i abnormal for trait of behavior...al quality in organ named whole plant during process named cell growth ... whole plant ... abnormal ... cell growth ... behavioral quality

  5. Phenotype abnormality: 48 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available 48 http://metadb.riken.jp/db/SciNetS_ria224i/cria224u1ria224u554i abnormal for trait of behavior...al quality in organ named vascular leaf during process named organ development ... vascular leaf ... abnormal ... organ development ... behavioral quality

  6. Salicylate-induced abnormal activity in the inferior colliculus of rats.

    Science.gov (United States)

    Chen, G D; Jastreboff, P J

    1995-02-01

    The evaluation of the spontaneous activity of 471 units from the external nucleus of the IC revealed that salicylate induces an increase of the spontaneous activity and the emergence of a bursting type of activity longer than 4 spikes. For sharply tuned units, the affected cells were from the frequency range of 10-16 kHz, which corresponds to the behaviorally measured pitch of salicylate-induced tinnitus in rats. An exogenous calcium supplement, provided under the conditions shown to attenuate the behavioral manifestation of salicylate-induced tinnitus, abolished the modification of the spontaneous activity induced by salicylate. Finally, profound changes of activity were observed for cells not responding to contralateral sound. We propose that the observed long bursts of discharges represent tinnitus-related neuronal activity. The results are consistent with the hypothesis that GABA-mediated disinhibition is involved in the processing of tinnitus-related neuronal activity.

  7. Primary prevention of neural-tube defects and some other congenital abnormalities by folic acid and multivitamins: history, missed opportunity and tasks

    Science.gov (United States)

    Bártfai, Zoltán; Bánhidy, Ferenc

    2011-01-01

    The history of intervention trials of periconception folic acid with multivitamin and folic acid supplementation in women has shown a recent breakthrough in the primary prevention of structural birth defects, namely neural-tube defects and some other congenital abnormalities. Recently, some studies have demonstrated the efficacy of this new method in reducing congenital abnormalities with specific origin; for example, in the offspring of diabetic and epileptic mothers, and in pregnancy with high fever. The benefits and drawbacks of four possible uses of periconception folate/folic acid and multivitamin supplementation are discussed: we believe there has been a missed opportunity to implement this preventive approach in medical practice. The four methods are as follows: (i) dietary intake of folate and other vitamins, (ii) periconception folic acid/multivitamin supplementation, (iii) food fortification with folic acid, and (iv) the combination of oral contraceptives with 6S-5-methytetrahydrofolate (‘folate’). PMID:25083211

  8. Myocardial fatty acid utilisation during exercise induced ischemia in patients with coronary artery disease

    International Nuclear Information System (INIS)

    Virtanen, K.S.; Nikkinen, P.; Lindroth, L.; Kuikka, J.T.

    2002-01-01

    Aim: Reversible or irreversible myocardial damage due to ischemia correlates with altered membrane functions of the cells. To compare myocardial free fatty acid (FFA) metabolism and flow during exercise induced ischemia we studied ten patients with coronary artery disease but without previous myocardial infarction. Methods: A series of post-exercise single-photon emission computed tomography (SPECT) measurements was performed after injection of 123 I labelled heptadecanoic acid (HDA). Myocardial perfusion was estimated from the separately performed exercise-redistribution thallium study. Fatty acid metabolic rate, thallium uptake and washout were calculated for anterior, lateral, posterior and septal segments. Results: The more reduced post-exercise FFA metabolic rate (-63±18%, mean ±1 SD) compared to flow (-36±16%) was related to the severity of myocardial ischemia and wall motion abnormalities. Conclusion: In this small group of patients, the reduced post-exercise FFA metabolic rate tentatively suggests a parsimonious workload of the exercising myocardium by reducing oxygen consumption in patients with coronary artery disease. (orig.) [de

  9. Uric acid induces hepatic steatosis by generation of mitochondrial oxidative stress: potential role in fructose-dependent and -independent fatty liver.

    Science.gov (United States)

    Lanaspa, Miguel A; Sanchez-Lozada, Laura G; Choi, Yea-Jin; Cicerchi, Christina; Kanbay, Mehmet; Roncal-Jimenez, Carlos A; Ishimoto, Takuji; Li, Nanxing; Marek, George; Duranay, Murat; Schreiner, George; Rodriguez-Iturbe, Bernardo; Nakagawa, Takahiko; Kang, Duk-Hee; Sautin, Yuri Y; Johnson, Richard J

    2012-11-23

    Uric acid is an independent risk factor in fructose-induced fatty liver, but whether it is a marker or a cause remains unknown. Hepatocytes exposed to uric acid developed mitochondrial dysfunction and increased de novo lipogenesis, and its blockade prevented fructose-induced lipogenesis. Rather than a consequence, uric acid induces fatty liver Hyperuricemic people are more prone to develop fructose-induced fatty liver. Metabolic syndrome represents a collection of abnormalities that includes fatty liver, and it currently affects one-third of the United States population and has become a major health concern worldwide. Fructose intake, primarily from added sugars in soft drinks, can induce fatty liver in animals and is epidemiologically associated with nonalcoholic fatty liver disease in humans. Fructose is considered lipogenic due to its ability to generate triglycerides as a direct consequence of the metabolism of the fructose molecule. Here, we show that fructose also stimulates triglyceride synthesis via a purine-degrading pathway that is triggered from the rapid phosphorylation of fructose by fructokinase. Generated AMP enters into the purine degradation pathway through the activation of AMP deaminase resulting in uric acid production and the generation of mitochondrial oxidants. Mitochondrial oxidative stress results in the inhibition of aconitase in the Krebs cycle, resulting in the accumulation of citrate and the stimulation of ATP citrate lyase and fatty-acid synthase leading to de novo lipogeneis. These studies provide new insights into the pathogenesis of hepatic fat accumulation under normal and diseased states.

  10. Omega-3 fatty acids alter behavioral and oxidative stress parameters in animals subjected to fenproporex administration.

    Science.gov (United States)

    Model, Camila S; Gomes, Lara M; Scaini, Giselli; Ferreira, Gabriela K; Gonçalves, Cinara L; Rezin, Gislaine T; Steckert, Amanda V; Valvassori, Samira S; Varela, Roger B; Quevedo, João; Streck, Emilio L

    2014-03-01

    Studies have consistently reported the participation of oxidative stress in bipolar disorder (BD). Evidences indicate that omega-3 (ω3) fatty acids play several important roles in brain development and functioning. Moreover, preclinical and clinical evidence suggests roles for ω3 fatty acids in BD. Considering these evidences, the present study aimed to investigate the effects of ω3 fatty acids on locomotor behavior and oxidative stress parameters (TBARS and protein carbonyl content) in brain of rats subjected to an animal model of mania induced by fenproporex. The fenproporex treatment increased locomotor behavior in saline-treated rats under reversion and prevention model, and ω3 fatty acids prevented fenproporex-related hyperactivity. Moreover, fenproporex increased protein carbonyls in the prefrontal cortex and cerebral cortex, and the administration of ω3 fatty acids reversed this effect. Lipid peroxidation products also are increased in prefrontal cortex, striatum, hippocampus and cerebral after fenproporex administration, but ω3 fatty acids reversed this damage only in the hippocampus. On the other hand, in the prevention model, fenproporex increased carbonyl content only in the cerebral cortex, and administration of ω3 fatty acids prevented this damage. Additionally, the administration of fenproporex resulted in a marked increased of TBARS in the prefrontal cortex, hippocampus, striatum and cerebral cortex, and prevent this damage in the prefrontal cortex, hippocampus and striatum. In conclusion, we are able to demonstrate that fenproporex-induced hyperlocomotion and damage through oxidative stress were prevented by ω3 fatty acids. Thus, the ω3 fatty acids may be important adjuvant therapy of bipolar disorder.

  11. Electro-thermal Modeling of Modern Power Devices for Studying Abnormal Operating Conditions

    DEFF Research Database (Denmark)

    Wu, Rui

    in industrial power electronic systems in the range above 10 kW. The failure of IGBTs can be generally classified as catastrophic failures and wear out failures. A wear out failure is mainly induced by accumulated degradation with time, while a catastrophic failure is triggered by a single-event abnormal....... The objective of this project has been to model and predict the electro-thermal behavior of IGBT power modules under abnormal conditions, especially short circuits. A thorough investigation on catastrophic failure modes and mechanisms of modern power semiconductor devices, including IGBTs and power diodes, has...

  12. Evaluation of tributyltin toxicity in Chinese rare minnow larvae by abnormal behavior, energy metabolism and endoplasmic reticulum stress.

    Science.gov (United States)

    Li, Zhi-Hua; Li, Ping

    2015-02-05

    Tributyltin (TBT) is a ubiquitous contaminant in aquatic environment, but the detailed mechanisms underlying the toxicity of TBT have not been fully understood. In this study, the effects of TBT on behavior, energy metabolism and endoplasmic reticulum (ER) stress were investigated by using Chinese rare minnow larvae. Fish larvae were exposed at sublethal concentrations of TBT (100, 400 and 800 ng/L) for 7 days. Compared with the control, energy metabolic parameters (RNA/DNA ratio, Na(+)-K(+)-ATPase) were significantly inhibited in fish exposed at highest concentration (800 ng/L), as well as abnormal behaviors observed. Moreover, we found that the PERK (PKR-like ER kinase)-eIF2α (eukaryotic translation initiation factor 2α) pathway, as the main branch was activated by TBT exposure in fish larvae. In short, TBT-induced physiological, biochemical and molecular responses in fish larvae were reflected in parameters measured in this study, which suggest that these biomarkers could be used as potential indicators for monitoring organotin compounds present in aquatic environment. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  13. Monomeric tartrate resistant acid phosphatase induces insulin sensitive obesity.

    Directory of Open Access Journals (Sweden)

    Pernilla Lång

    2008-03-01

    Full Text Available Obesity is associated with macrophage infiltration of adipose tissue, which may link adipose inflammation to insulin resistance. However, the impact of inflammatory cells in the pathophysiology of obesity remains unclear. Tartrate resistant acid phosphatase (TRAP is an enzyme expressed by subsets of macrophages and osteoclasts that exists either as an enzymatically inactive monomer or as an active, proteolytically processed dimer.Using mice over expressing TRAP, we show that over-expression of monomeric, but not the dimeric form in adipose tissue leads to early onset spontaneous hyperplastic obesity i.e. many small fat cells. In vitro, recombinant monomeric, but not proteolytically processed TRAP induced proliferation and differentiation of mouse and human adipocyte precursor cells. In humans, monomeric TRAP was highly expressed in the adipose tissue of obese individuals. In both the mouse model and in the obese humans the source of TRAP in adipose tissue was macrophages. In addition, the obese TRAP over expressing mice exhibited signs of a low-grade inflammatory reaction in adipose tissue without evidence of abnormal adipocyte lipolysis, lipogenesis or insulin sensitivity.Monomeric TRAP, most likely secreted from adipose tissue macrophages, induces hyperplastic obesity with normal adipocyte lipid metabolism and insulin sensitivity.

  14. Branched-chain amino acid metabolism in rat muscle: abnormal regulation in acidosis

    International Nuclear Information System (INIS)

    May, R.C.; Hara, Y.; Kelly, R.A.; Block, K.P.; Buse, M.G.; Mitch, W.E.

    1987-01-01

    Branched-chain amino acid (BCAA) metabolism is frequently abnormal in pathological conditions accompanied by chronic metabolic acidosis. To study how metabolic acidosis affects BCAA metabolism in muscle, rats were gavage fed a 14% protein diet with or without 4 mmol NH 4 Cl x 100 g body wt -1 x day -1 . Epitrochlearis muscles were incubated with L-[1- 14 C]-valine and L-[1- 14 C]leucine, and rates of decarboxylation, net transamination, and incorporation into muscle protein were measured. Plasma and muscle BCAA levels were lower in acidotic rats. Rates of valine and leucine decarboxylation and net transamination were higher in muscles from acidotic rats; these differences were associated with a 79% increase in the total activity of branched-chain α-keto acid dehydrogenase and a 146% increase in the activated form of the enzyme. They conclude that acidosis affects the regulation of BCAA metabolism by enhancing flux through the transaminase and by directly stimulating oxidative catabolism through activation of branched-chain α-keto acid dehydrogenase

  15. Branched-chain amino acid metabolism in rat muscle: abnormal regulation in acidosis

    Energy Technology Data Exchange (ETDEWEB)

    May, R.C.; Hara, Y.; Kelly, R.A.; Block, K.P.; Buse, M.G.; Mitch, W.E.

    1987-06-01

    Branched-chain amino acid (BCAA) metabolism is frequently abnormal in pathological conditions accompanied by chronic metabolic acidosis. To study how metabolic acidosis affects BCAA metabolism in muscle, rats were gavage fed a 14% protein diet with or without 4 mmol NH/sub 4/Cl x 100 g body wt/sup -1/ x day/sup -1/. Epitrochlearis muscles were incubated with L-(1-/sup 14/C)-valine and L-(1-/sup 14/C)leucine, and rates of decarboxylation, net transamination, and incorporation into muscle protein were measured. Plasma and muscle BCAA levels were lower in acidotic rats. Rates of valine and leucine decarboxylation and net transamination were higher in muscles from acidotic rats; these differences were associated with a 79% increase in the total activity of branched-chain ..cap alpha..-keto acid dehydrogenase and a 146% increase in the activated form of the enzyme. They conclude that acidosis affects the regulation of BCAA metabolism by enhancing flux through the transaminase and by directly stimulating oxidative catabolism through activation of branched-chain ..cap alpha..-keto acid dehydrogenase.

  16. Pharmacological evidence for GABAergic and glutamatergic involvement in the convulsant and behavioral effects of glutaric acid.

    Science.gov (United States)

    Lima, T T; Begnini, J; de Bastiani, J; Fialho, D B; Jurach, A; Ribeiro, M C; Wajner, M; de Mello, C F

    1998-08-17

    The effect of intrastriatal administration of glutaric acid (GTR), a metabolite that accumulates in glutaric acidemia type I (GA-I), on the behavior of adult male rats was investigated. After cannula placing, rats received unilateral intrastriatal injections of GTR buffered to pH 7.4 with NaOH or NaCl. GTR induced rotational behavior toward the contralateral side of injection and clonic convulsions in a dose-dependent manner. Rotational behavior was prevented by intrastriatal preadministration of DNQX and muscimol, but not by the preadministration of MK-801. Convulsions were prevented by intrastriatal preinjection of muscimol. This study provides evidence for a participation of glutamatergic non-NMDA and GABAergic mechanisms in the GTR-induced behavioral alterations. These findings may be of value in understanding the physiopathology of the neurological dysfunction in glutaric acidemia.

  17. Effects of vanillin on potassium bromate-induced neurotoxicity in adult mice: impact on behavior, oxidative stress, genes expression, inflammation and fatty acid composition.

    Science.gov (United States)

    Ben Saad, Hajer; Kharrat, Nadia; Driss, Dorra; Gargouri, Manel; Marrakchi, Rim; Jammoussi, Kamel; Magné, Christian; Boudawara, Tahia; Ellouz Chaabouni, Samia; Zeghal, Khaled Mounir; Hakim, Ahmed; Ben Amara, Ibtissem

    2017-07-01

    Vanillin is known to possess important antioxidant activity. The current study was conducted to establish the therapeutic efficiency of vanillin against potassium bromate (KBrO 3 )-induced depression-like behavior and oxidative stress in mice. Mice were exposed during 15 days either to potassium bromate (KBrO 3 ), KBrO 3 + vanillin or to only vanillin. Our results revealed a significant modification in the fatty acid composition of the KBrO 3 -treated mice. In addition, KBrO 3 induced a significant reduction in enzymatic activities and gene expressions, Na +  -K +  and Mg 2+ -ATPases, acetylcholinesterase and butylcholinesterase activities. The gene expression of tumor necrosis factor-α, interleukin-1β, interleukin-6 and COX 2 , significantly increased in the cerebrum of KBrO 3 -treated group. Histopathological observations were consistent with these effects. Co-treatment with vanillin significantly attenuated KBrO 3 -induced oxidative stress and inflammation. This work suggests that vanillin mitigates KBrO 3 -induced depression, and that this neuroprotective effect proceeds through anti-oxidant and anti-inflammatory activities.

  18. A Nanodot Array Modulates Cell Adhesion and Induces an Apoptosis-Like Abnormality in NIH-3T3 Cells

    Directory of Open Access Journals (Sweden)

    Hung Yao-Ching

    2009-01-01

    Full Text Available Abstract Micro-structures that mimic the extracellular substratum promote cell growth and differentiation, while the cellular reaction to a nanostructure is poorly defined. To evaluate the cellular response to a nanoscaled surface, NIH 3T3 cells were grown on nanodot arrays with dot diameters ranging from 10 to 200 nm. The nanodot arrays were fabricated by AAO processing on TaN-coated wafers. A thin layer of platinum, 5 nm in thickness, was sputtered onto the structure to improve biocompatibility. The cells grew normally on the 10-nm array and on flat surfaces. However, 50-nm, 100-nm, and 200-nm nanodot arrays induced apoptosis-like events. Abnormality was triggered after as few as 24 h of incubation on a 200-nm dot array. For cells grown on the 50-nm array, the abnormality started after 72 h of incubation. The number of filopodia extended from the cell bodies was lower for the abnormal cells. Immunostaining using antibodies against vinculin and actin filament was performed. Both the number of focal adhesions and the amount of cytoskeleton were decreased in cells grown on the 100-nm and 200-nm arrays. Pre-coatings of fibronectin (FN or type I collagen promoted cellular anchorage and prevented the nanotopography-induced programed cell death. In summary, nanotopography, in the form of nanodot arrays, induced an apoptosis-like abnormality for cultured NIH 3T3 cells. The occurrence of the abnormality was mediated by the formation of focal adhesions.

  19. Behavior of copper in acidic sulfate solution: Comparison with acidic chloride

    Energy Technology Data Exchange (ETDEWEB)

    Tromans, D.; Silva, J.C. [Univ. of British Columbia, Vancouver, British Columbia (Canada). Dept. of Metals and Materials Engineering

    1997-03-01

    The anodic polarization behavior of copper in a 0.1 M sulfuric acid (H{sub 2}SO{sub 4}) + 1 M sodium sulfate (Na{sub 2}SO{sub 4}) solution (pH = 2.0) was studied at room temperature under quiescent and stirred conditions. The behavior was compared with aqueous equilibria via construction of a potential-vs-pH (E-pH) diagram for the copper-sulfate-water (Cu-SO{sub 4}{sup 2}-H{sub 2}O) system. Interpretation of the behavior was aided by comparison with aqueous equilibria and polarization studies of copper in a 0.2 M hydrochloric acid (HCl) + 1 M sodium chloride (NaCl) solution(pH = 0.8). The initial anodic dissolution region in the acidic sulfate solution exhibited Tafel behavior with a slope consistent with formation of cupric ions (Cu{sup 2+}) whose rate of formation was charge-transfer controlled. At higher potentials, limiting current density (i{sub L}) behavior was observed under E-pH conditions that were consistent with formation of a film of copper sulfate pentahydrate (CuSO{sub 4} {degree} 5H{sub 2}O). Comparison of experimental i{sub L} values with those predicted by mass transport-controlled processes, using estimates of the diffusion layer thickness obtained from the mass transfer-influenced region of apparent Tafel behavior in the acidic chloride solution, were in sufficient agreement to indicate i{sub L} was controlled by the rate of dissolution of the CuSO{sub 4} {degree} 5H{sub 2}O film via transport of Cu{sup 2+} from the film-electrolyte interface into the bulk solution.

  20. ω-3 and folic acid act against depressive-like behavior and oxidative damage in the brain of rats subjected to early- or late-life stress.

    Science.gov (United States)

    Réus, Gislaine Z; Maciel, Amanda L; Abelaira, Helena M; de Moura, Airam B; de Souza, Thays G; Dos Santos, Thais R; Darabas, Ana Caroline; Parzianello, Murilo; Matos, Danyela; Abatti, Mariane; Vieira, Ana Carolina; Fucillini, Vanessa; Michels, Monique; Dal-Pizzol, Felipe; Quevedo, João

    2018-03-30

    To investigate the antidepressant and antioxidant effects of omega-3, folic acid and n-acetylcysteine (NAC) in rats which were subjected to early or late life stress. Early stress was induced through maternal deprivation (MD), while late life stress was induced using the chronic mild stress (CMS) protocol. Young rats which were subjected to MD and the adult rats which were subjected to CMS were treated with omega-3 fatty acids (0.72 g/kg), NAC (20 mg/kg) or folic acid (50 mg/kg) once/day, for a period of 20 days. Then, the animals' immobility times were evaluated using the forced swimming test. Oxidative stress parameters were evaluated in the brain. Depressive-like behavior induced by CMS was prevented by NAC and folic acid, and depressive-like behavior induced by MD was prevented by NAC, folic acid and omega-3. NAC, folic acid and omega-3 were able to exert antioxidant effects in the brain of rats subjected to CMS or MD. These preventive treatments decreased the levels of protein carbonylation and lipid peroxidation, and also decreased the concentrations of nitrite/nitrate and reduced the activity of myeloperoxidase activity in the rat brain which was induced by CMS or MD. NAC, folic acid and omega-3 increased superoxide dismutase and catalase activities in the rat brain subjected to early or late life stress. NAC, omega-3 and folic acid may present interesting lines of treatment based on their antioxidant properties, which cause an inhibition of behavioral and brain changes that occur from stressful life events. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. The role of apitoxin in alleviating propionic acid-induced neurobehavioral impairments in rat pups: The expression pattern of Reelin gene.

    Science.gov (United States)

    Daghestani, Maha H; Selim, Manar E; Abd-Elhakim, Yasmina M; Said, Enas N; El-Hameed, Noura E Abd; Khalil, Samah R; El-Tawil, Osama S

    2017-09-01

    The efficacy of apitoxin (bee venom; BV) in ameliorating propionic acid (PPA) -induced neurobehavioral impacts was studied. Sixty rat pups were enrolled in a split litter design to six groups: a control group, a PPA-treated group, a BV-treated group, a BV/PPA protective group, a PPA/BV therapeutic group, and a BV/PPA/BV protective and therapeutic group. Exploratory, social, locomotor, and repetitive/stereotype-like activities were assessed and prosocial, empathy, and acquired behavior were evaluated. Levels of neurotransmitter including serotonin, dopamine, and gamma-aminobutyric acid (GABA) were determined and a quantitative analysis of Reelin gene expression was performed. PPA treatment induced several behavioral alterations, as reduced exploratory activity and social behaviors, increased repetitive/stereotypic behaviors, and hyperactivity. In addition, a marked decline of neurotransmitters and down-regulation of Reelin mRNA expression were observed. BV exhibited high efficiency in ameliorating the PPA-induced neurobehavioral alterations, particularly when applied both before and after PPA administration. Overall, the results implied that BV has merit as a candidate therapeutic treatment to alleviate PPA-induced neurobehavioral disorders. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  2. Significance of retardation of abnormal uptake of iodine-123-beta-methyl-p-iodophenyl-pentadecanoic acid myocardial scintigraphy in patients with vasospastic angina

    International Nuclear Information System (INIS)

    Inoue, Fumitaka; Hashimoto, Toshio; Uemura, Shiro; Kawamoto, Atsuhiko; Dohi, Kazuhiro; Matsushima, Akihiko

    2001-01-01

    This study investigated retardation of abnormal uptake of iodine-123-beta-methyl-p-iodophenyl-pentadecanoic acid (BMIPP) scintigraphy in patients with vasospastic angina. Twenty-three patients with vasospastic angina showed abnormal uptake of BMIPP before medical treatment and had coronary vasospasm induced by acetylcholine. The patients were divided into two groups according to uptake of BMIPP after medical treatment: retardation of abnormal uptake of BMIPP (Group R, n=4) and normal uptake of BMIPP (Group N, n=19). Frequency of chest pain, medical treatment and autonomic nervous activity were compared between the two groups. Furthermore, the frequency of chest pain and uptake of BMIPP in group R were obtained after intensive medical treatment. Autonomic nervous activity was evaluated by heart rate variability on Holter electrocardiography. Heart rate variability contained high-frequency elements (HF; 0.15-0.4 Hz) and low-frequency elements (LF; 0.04-0.15 Hz). LF/HF was estimated for sympathetic nervous activity and HF was estimated for parasympathetic nervous activity. Daytime and nighttime autonomic nervous activity were compared between the two groups. The frequency of chest pain was higher in Group R than in Group N (p<0.05). Medical treatment was not different between the two groups. Circadian variation of sympathetic and parasympathetic nervous activity were absent in Group R. During the nighttime, Group R showed higher sympathetic nervous activity (p<0.05) and lower parasympathetic nervous activity (p<0.01) than Group N. The frequency of chest pain was significantly lower after intensive medical treatment (p<0.05), and uptake of BMIPP returned to normal in Group R. We suspected that the disorder in autonomic nervous activity was more severe in Group R, and thus induced coronary vasospasm. Retardation of abnormal uptake of BMIPP in patients with vasospastic angina indicates poor control of coronary vasospasm. Uptake of BMIPP is useful in the evaluation of

  3. Clinical significance of exercise-induced left ventricular wall motion abnormality occurring at a low heart rate

    International Nuclear Information System (INIS)

    Kimchi, A.; Rozanski, A.; Fletcher, C.; Maddahi, J.; Swan, H.J.; Berman, D.S.

    1987-01-01

    We studied the relationship between the heart rate at the time of onset of exercise-induced wall motion abnormality and the severity of coronary artery disease in 89 patients who underwent exercise equilibrium radionuclide ventriculography as part of their evaluation for coronary artery disease. Segmental wall motion was scored with a five-point system (3 = normal; -1 = dyskinesis); a decrease of one score defined the onset of wall motion abnormality. The onset of wall motion abnormality at less than or equal to 70% of maximal predicted heart rate had 100% predictive accuracy for coronary artery disease and higher sensitivity than the onset of ischemic ST segment depression at similar heart rate during exercise: 36% (25 of 69 patients with coronary disease) vs 19% (13 of 69 patients), p = 0.01. Wall motion abnormality occurring at less than or equal to 70% of maximal predicted heart rate was present in 49% of patients (23 of 47) with critical stenosis (greater than or equal to 90% luminal diameter narrowing), and in only 5% of patients (2 of 42) without such severe stenosis, p less than 0.001. The sensitivity of exercise-induced wall motion abnormality occurring at a low heart rate for the presence of severe coronary artery disease was similar to that of a deterioration in wall motion by more than two scores during exercise (49% vs 53%) or an absolute decrease of greater than or equal to 5% in exercise left ventricular ejection fraction (49% vs 45%)

  4. Phenotype abnormality: 35 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available 35 http://metadb.riken.jp/db/SciNetS_ria224i/cria224u1ria224u541i abnormal for trait of behavioral quality... during process named response to gravity ... abnormal ... behavioral quality

  5. Abnormal myocardial free fatty acid utilization deteriorates with morphological changes in the hypertensive heart

    International Nuclear Information System (INIS)

    Nakayama, Hiroyuki; Morozumi, Takakazu; Nanto, Shinsuke

    2001-01-01

    The left ventricle's morphological adaptation to high blood pressure is classified into 4 patterns based on mass and wall thickness. The geometric changes caused by maladaptation to pressure overload possibly relate to progression of contractile dysfunction with abnormal energy metabolism. The present study assessed whether the geometric adaptation of the left ventricle (LV) to high blood pressure relates to changes in myocardial energy metabolism, especially free fatty acid (FFA) utilization. Thirty-five patients with essential hypertension underwent echocardiography and dual isotopes myocardial scintigraphy using iodine-123 labeled 15-p-iodophenyl-3-(R,S)-methylpentadecanoic acid (BMIPP, an analogue of a FFA) and thallium-201 (Tl-201). Systolic (endocardial fractional shortening; %FS) and diastolic indices (the ratio of early to atrial filling waves; E/A) of LV function were also assessed. Quantitative myocardial BMIPP uptake was evaluated by the BMIPP/Tl-201 myocardial uptake ratio (B/T). The subjects were divided into 4 groups based on LV mass and wall thickness: concentric hypertrophy (CH), eccentric hypertrophy (EH), concentric remodeling (CR), and normal geometry (N). The %FS was lower in the EH group than in the other groups. The mitral E/A ratio in the CH group was lowest. B/T was significantly decreased in the EH group compared with the N group (p<0.05). B/T correlated with the mitral E/A ratio significantly (p<0.05, r=0.42), whereas there was no relationship between %FS and B/T. These results indicate that the geometric changes occurring in hypertensive hearts strongly correlate with alternations in cardiac function and with abnormal myocardial FFA metabolism, and that the latter is associated with diastolic abnormality, but not with systolic function. (author)

  6. Phenotype abnormality: 32 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available 32 http://metadb.riken.jp/db/SciNetS_ria224i/cria224u1ria224u538i abnormal for trait of behavioral quality... during process named organ development ... abnormal ... organ development ... behavioral quality

  7. Phenotype abnormality: 34 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available 34 http://metadb.riken.jp/db/SciNetS_ria224i/cria224u1ria224u540i abnormal for trait of behavioral quality... during process named response to cytokinin stimulus ... abnormal ... behavioral quality

  8. High-Performance Thin-Layer Chromatographic Quantification of Rosmarinic Acid and Rutin in Abnormal Savda Munziq

    Directory of Open Access Journals (Sweden)

    S. G. Tian

    2013-01-01

    Full Text Available A high-performance thin-layer chromatographic (HPTLC method has been established for simultaneous analysis of rosmarinic acid and rutin in Abnormal Savda Munziq (ASMq. A methanol extract of ASMq was used for quantification. The compounds were separated on silica gel H thin layer plate with ethyl acetate-formic acid-acetic acid-water 15 : 1 : 1 : 1.5 (v/v as a developer, trichloroethanol as the color reagent. The plates were scanned at 365 nm. The linear calibration data of rosmarinic acid and rutin were in the range of 0.0508 to 0.2540 μg (r=0.9964, 0.2707 to 1.35354 μg (r=0.9981, respectively. The recovery rate of rosmarinic acid was 99.17% (RSD = 2.92% and rutin was 95.24% (RSD = 2.38%. The method enables rapid screening, precise, selective, and sensitive quantification for pharmaceutical analysis.

  9. Uric Acid Induces Hepatic Steatosis by Generation of Mitochondrial Oxidative Stress

    Science.gov (United States)

    Lanaspa, Miguel A.; Sanchez-Lozada, Laura G.; Choi, Yea-Jin; Cicerchi, Christina; Kanbay, Mehmet; Roncal-Jimenez, Carlos A.; Ishimoto, Takuji; Li, Nanxing; Marek, George; Duranay, Murat; Schreiner, George; Rodriguez-Iturbe, Bernardo; Nakagawa, Takahiko; Kang, Duk-Hee; Sautin, Yuri Y.; Johnson, Richard J.

    2012-01-01

    Metabolic syndrome represents a collection of abnormalities that includes fatty liver, and it currently affects one-third of the United States population and has become a major health concern worldwide. Fructose intake, primarily from added sugars in soft drinks, can induce fatty liver in animals and is epidemiologically associated with nonalcoholic fatty liver disease in humans. Fructose is considered lipogenic due to its ability to generate triglycerides as a direct consequence of the metabolism of the fructose molecule. Here, we show that fructose also stimulates triglyceride synthesis via a purine-degrading pathway that is triggered from the rapid phosphorylation of fructose by fructokinase. Generated AMP enters into the purine degradation pathway through the activation of AMP deaminase resulting in uric acid production and the generation of mitochondrial oxidants. Mitochondrial oxidative stress results in the inhibition of aconitase in the Krebs cycle, resulting in the accumulation of citrate and the stimulation of ATP citrate lyase and fatty-acid synthase leading to de novo lipogeneis. These studies provide new insights into the pathogenesis of hepatic fat accumulation under normal and diseased states. PMID:23035112

  10. Resistance to ursodeoxycholic acid-induced growth arrest can also result in resistance to deoxycholic acid-induced apoptosis and increased tumorgenicity

    International Nuclear Information System (INIS)

    Powell, Ashley A; Akare, Sandeep; Qi, Wenqing; Herzer, Pascal; Jean-Louis, Samira; Feldman, Rebecca A; Martinez, Jesse D

    2006-01-01

    There is a large body of evidence which suggests that bile acids increase the risk of colon cancer and act as tumor promoters, however, the mechanism(s) of bile acids mediated tumorigenesis is not clear. Previously we showed that deoxycholic acid (DCA), a tumorogenic bile acid, and ursodeoxycholic acid (UDCA), a putative chemopreventive agent, exhibited distinct biological effects, yet appeared to act on some of the same signaling molecules. The present study was carried out to determine whether there is overlap in signaling pathways activated by tumorogenic bile acid DCA and chemopreventive bile acid UDCA. To determine whether there was an overlap in activation of signaling pathways by DCA and UDCA, we mutagenized HCT116 cells and then isolated cell lines resistant to UDCA induced growth arrest. These lines were then tested for their response to DCA induced apoptosis. We found that a majority of the cell lines resistant to UDCA-induced growth arrest were also resistant to DCA-induced apoptosis, implying an overlap in DCA and UDCA mediated signaling. Moreover, the cell lines which were the most resistant to DCA-induced apoptosis also exhibited a greater capacity for anchorage independent growth. We conclude that UDCA and DCA have overlapping signaling activities and that disregulation of these pathways can lead to a more advanced neoplastic phenotype

  11. Chemoprotective effect of omega-3 fatty acids on thioacetamide induced hepatic fibrosis in male rats

    Directory of Open Access Journals (Sweden)

    Atef M. Al-Attar

    2017-05-01

    Full Text Available The current study was designed to investigate the possible protective effect of omega-3 fatty acids from fish oil on hepatic fibrosis induced by thioacetamide (TAA in male rats. The experimental animals were divided into four groups. The first group was received saline solution and served as control. The second group was given 250 mg/kg body weight of TAA. The third group was treated with omega-3 fatty acids and TAA. The fourth group was given saline solution and supplemented with omega-3 fatty acids. Treatment of rats with TAA for three and six weeks resulted in a significant decrease in body weight gain, while the value of liver/body weight ratio was statistically increased. Furthermore, the levels of serum alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, gamma glutamyl transferase and total bilirubin were significantly increased. After three weeks of exposure to only TAA, liver sections showed an abnormal morphology characterized by noticeable fibrosis with the extracellular matrix collagen contents and damage of liver cells’ structure. Liver sections from rats treated with only TAA for six weeks revealed an obvious increase in extracellular matrix collagen content and bridging fibrosis. Treating TAA-intoxicated rats with omega-3 fatty acids significantly attenuated the severe physiological and histopathological changes. Finally, the present investigation suggests that omega-3 fatty acids could act against hepatic fibrosis induced by TAA due to its antioxidant properties, thus supporting its use in hepatic fibrosis therapy.

  12. Phenotype abnormality: 40 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available 40 http://metadb.riken.jp/db/SciNetS_ria224i/cria224u1ria224u546i abnormal for trait of behavioral quality... in organ named hypocotyl during process named gravitropism ... hypocotyl ... abnormal ... behavioral quality

  13. Phenotype abnormality: 43 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available 43 http://metadb.riken.jp/db/SciNetS_ria224i/cria224u1ria224u549i abnormal for trait of behavioral quality... in organ named root during process named growth ... root ... abnormal ... growth ... behavioral quality

  14. Ferulic acid attenuates diabetes-induced cognitive impairment in rats via regulation of PTP1B and insulin signaling pathway.

    Science.gov (United States)

    Wang, Hao; Sun, Xiaoxu; Zhang, Ning; Ji, Zhouye; Ma, Zhanqiang; Fu, Qiang; Qu, Rong; Ma, Shiping

    2017-12-01

    Cognitive impairment has been recognized as a typical characteristic of neurodegenerative disease in diabetes mellitus (DM) and this cognitive dysfunction may be a risk factor for Alzheimer's disease (AD). Ferulic acid, a phenolic compound commonly found in a range of plants, has emerged various properties including anti-inflammatory and neuroprotective effects. In the present study, the protective activities and relevant mechanisms of ferulic acid were evaluated in diabetic rats with cognitive deficits, which were induced by a high-glucose-fat (HGF) diet and low dose of streptozotocin (STZ). It was observed that ferulic acid significantly increased body weight and decreased blood glucose levels. Meanwhile, ferulic acid could markedly ameliorate spatial memory of diabetic rats in Morris water maze (MWM) and decrease AD-like pathologic changes (Aβ deposition and Tau phosphorylation) in the hippocampus, which might be correlated with the inhibition of inflammatory cytokines release and reduction of protein tyrosine phosphatase 1B (PTP1B) expression. Moreover, the levels of brain insulin signal molecules p-IRS, p-Akt and p-GSK3β were also investigated. We found that ferulic acid administration restored the alterations in insulin signaling. In conclusion, ferulic acid exhibited beneficial effects on diabetes-induced cognition lesions, which was involved in the regulation of PTP1B and insulin signaling pathway. We suppose that PTP1B inhibition may represent a promising approach to correct abnormal signaling linked to diabetes-induced cognitive impairment. Copyright © 2017. Published by Elsevier Inc.

  15. Developmental disruption of amygdala transcriptome and socioemotional behavior in rats exposed to valproic acid prenatally.

    Science.gov (United States)

    Barrett, Catherine E; Hennessey, Thomas M; Gordon, Katelyn M; Ryan, Steve J; McNair, Morgan L; Ressler, Kerry J; Rainnie, Donald G

    2017-01-01

    The amygdala controls socioemotional behavior and has consistently been implicated in the etiology of autism spectrum disorder (ASD). Precocious amygdala development is commonly reported in ASD youth with the degree of overgrowth positively correlated to the severity of ASD symptoms. Prenatal exposure to VPA leads to an ASD phenotype in both humans and rats and has become a commonly used tool to model the complexity of ASD symptoms in the laboratory. Here, we examined abnormalities in gene expression in the amygdala and socioemotional behavior across development in the valproic acid (VPA) rat model of ASD. Rat dams received oral gavage of VPA (500 mg/kg) or saline daily between E11 and 13. Socioemotional behavior was tracked across development in both sexes. RNA sequencing and proteomics were performed on amygdala samples from male rats across development. Effects of VPA on time spent in social proximity and anxiety-like behavior were sex dependent, with social abnormalities presenting in males and heightened anxiety in females. Across time VPA stunted developmental and immune, but enhanced cellular death and disorder, pathways in the amygdala relative to saline controls. At postnatal day 10, gene pathways involved in nervous system and cellular development displayed predicted activations in prenatally exposed VPA amygdala samples. By juvenile age, however, transcriptomic and proteomic pathways displayed reductions in cellular growth and neural development. Alterations in immune pathways, calcium signaling, Rho GTPases, and protein kinase A signaling were also observed. As behavioral, developmental, and genomic alterations are similar to those reported in ASD, these results lend support to prenatal exposure to VPA as a useful tool for understanding how developmental insults to molecular pathways in the amygdala give rise to ASD-related syndromes.

  16. Phenotype abnormality: 50 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available 50 http://metadb.riken.jp/db/SciNetS_ria224i/cria224u1ria224u556i abnormal for trait of behavioral quality... in organ named whole plant during process named photomorphogenesis ... whole plant ... abnormal ... behavioral quality

  17. Hypercholesterolemia causes psychomotor abnormalities in mice and alterations in cortico-striatal biogenic amine neurotransmitters: Relevance to Parkinson's disease.

    Science.gov (United States)

    Paul, Rajib; Choudhury, Amarendranath; Chandra Boruah, Dulal; Devi, Rajlakshmi; Bhattacharya, Pallab; Choudhury, Manabendra Dutta; Borah, Anupom

    2017-09-01

    The symptoms of Parkinson's disease (PD) include motor behavioral abnormalities, which appear as a result of the extensive loss of the striatal biogenic amine, dopamine. Various endogenous molecules, including cholesterol, have been put forward as putative contributors in the pathogenesis of PD. Earlier reports have provided a strong link between the elevated level of plasma cholesterol (hypercholesterolemia) and onset of PD. However, the role of hypercholesterolemia on brain functions in terms of neurotransmitter metabolism and associated behavioral manifestations remain elusive. We tested in Swiss albino mice whether hypercholesterolemia induced by high-cholesterol diet would affect dopamine and serotonin metabolism in discrete brain regions that would precipitate in psychomotor behavioral manifestations. High-cholesterol diet for 12 weeks caused a significant increase in blood total cholesterol level, which validated the model as hypercholesterolemic. Tests for akinesia, catalepsy, swimming ability and gait pattern (increased stride length) have revealed that hypercholesterolemic mice develop motor behavioral abnormalities, which are similar to the behavioral phenotypes of PD. Moreover, hypercholesterolemia caused depressive-like behavior in mice, as indicated by the increased immobility time in the forced swim test. We found a significant depletion of dopamine in striatum and serotonin in cortex of hypercholesterolemic mice. The significant decrease in tyrosine hydroxylase immunoreactivity in striatum supports the observed depleted level dopamine in striatum, which is relevant to the pathophysiology of PD. In conclusion, hypercholesterolemia-induced depleted levels of cortical and striatal biogenic amines reported hereby are similar to the PD pathology, which might be associated with the observed psychomotor behavioral abnormalities. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Swimming attenuates d-galactose-induced brain aging via suppressing miR-34a-mediated autophagy impairment and abnormal mitochondrial dynamics.

    Science.gov (United States)

    Kou, Xianjuan; Li, Jie; Liu, Xingran; Chang, Jingru; Zhao, Qingxia; Jia, Shaohui; Fan, Jingjing; Chen, Ning

    2017-06-01

    microRNAs (miRNAs) have been reported to be involved in many neurodegenerative diseases. To explore the regulatory role of miR-34a in aging-related diseases such as Alzheimer's disease (AD) during exercise intervention, we constructed a rat model with d-galactose (d-gal)-induced oxidative stress and cognitive impairment coupled with dysfunctional autophagy and abnormal mitochondrial dynamics, determined the mitigation of cognitive impairment of d-gal-induced aging rats during swimming intervention, and evaluated miR-34a-mediated functional status of autophagy and abnormal mitochondrial dynamics. Meanwhile, whether the upregulation of miR-34a can lead to dysfunctional autophagy and abnormal mitochondrial dynamics was confirmed in human SH-SY5Y cells with silenced miR-34a by the transfection of a miR-34a inhibitor. Results indicated that swimming intervention could significantly attenuate cognitive impairment, prevent the upregulation of miR-34a, mitigate the dysfunctional autophagy, and inhibit the increase of dynamin-related protein 1 (DRP1) in d-gal-induced aging model rats. In contrast, the miR-34a inhibitor in cell model not only attenuated D-gal-induced the impairment of autophagy but also decreased the expression of DRP1 and mitofusin 2 (MFN2). Therefore, swimming training can delay brain aging of d-gal-induced aging rats through attenuating the impairment of miR-34a-mediated autophagy and abnormal mitochondrial dynamics, and miR-34a could be the novel therapeutic target for aging-related diseases such as AD. NEW & NOTEWORTHY In the present study, we have found that the upregulation of miR-34a is the hallmark of aging or aging-related diseases, which can result in dysfunctional autophagy and abnormal mitochondrial dynamics. In contrast, swimming intervention can delay the aging process by rescuing the impaired functional status of autophagy and abnormal mitochondrial dynamics via the suppression of miR-34a. Copyright © 2017 the American Physiological Society.

  19. α-Lipoic Acid Mitigates Arsenic-Induced Hematological Abnormalities in Adult Male Rats

    Directory of Open Access Journals (Sweden)

    Sonali Ghosh

    2017-05-01

    Full Text Available Background: Arsenic toxicity is a major global health problem and exposure via contaminated drinking water has been associated with hematological and other systemic disorders. The present investigation has been conducted in adult male rats to evaluate the protective ability of α-lipoic acid (ALA against such hematological disorders. Methods: Twenty-four adult male Wister rats (b.wt.130±10g were grouped and accordingly group I (control received the normal diet, group II (treated was given arsenic orally for 28 consecutive days as arsenic trioxide (3 mg/kgbw/rat/day whereas group III (supplemented received the same dose of arsenic along with ALA (25 mg/kgbw/rat/day as oral supplement. Hematological profile, plasma oxidant/antioxidant status, and erythrocyte morphology were assessed. Statistical analysis was done by one-way ANOVA using SPSS software (version 16.0. Results: Arsenic exposure caused reduction of erythrocyte (P=0.021, leucocyte (P<0.001, and hemoglobin (P=0.031 associated with echinocytic transformation as evidenced by light and scanning electron microscopic studies. The other significantly altered parameters include increased mean corpuscular volume (P=0.041 and lymphocytopenia (P<0.001 with insignificant neutropenia and eosinophilia. Altered serum oxidative balance as evidenced by decreased TAS (P<0.001 and increased TOS (P<0.001 with OSI (P<0.001 was also noted. The dietary supplementation of ALA has a beneficial effect against the observed (P<0.05 arsenic toxicities. It brings about the protection by restoring the hematological redox and inflammatory status near normal in treated rats. Arsenic-induced morphological alteration of erythrocytes was also partially attenuated by ALA supplementation. Conclusion: It is concluded that arsenicosis is associated with hematological alterations and ALA co-supplementation can partially alleviate these changes in an experimental male rat model.

  20. ABNORMAL PLASMA NORADRENALINE RESPONSE AND EXERCISE INDUCED ALBUMINURIA IN TYPE-1 (INSULIN-DEPENDENT) DIABETES-MELLITUS

    NARCIS (Netherlands)

    HOOGENBERG, K; DULLAART, RPF

    1992-01-01

    Submaximal exercise provokes an abnormal elevation in albuminuria in type 1 (insulin-dependent) diabetes mellitus. Plasma catecholamines might be involved in this phenomenon by a renal vasoconstrictive effect. Twelve healthy subjects (Controls: albuminuria It is concluded that the exercise-induced

  1. Phenotype abnormality: 46 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available 46 http://metadb.riken.jp/db/SciNetS_ria224i/cria224u1ria224u552i abnormal for trait of behavior.../cria224u2ria224u38i stomatal complex ... abnormal ... response to light stimulus ... behavioral quality

  2. Prenatal ethanol exposure-induced adrenal developmental abnormality of male offspring rats and its possible intrauterine programming mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Hegui; He, Zheng; Zhu, Chunyan; Liu, Lian; Kou, Hao; Shen, Lang [Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071 (China); Wang, Hui, E-mail: wanghui19@whu.edu.cn [Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071 (China); Hubei Provincial Key Laboratory of Developmentally Originated Disorder, Wuhan 430071 (China)

    2015-10-01

    Fetal adrenal developmental status is the major determinant of fetal tissue maturation and offspring growth. We have previously proposed that prenatal ethanol exposure (PEE) suppresses fetal adrenal corticosterone (CORT) synthesis. Here, we focused on PEE-induced adrenal developmental abnormalities of male offspring rats before and after birth, and aimed to explore its intrauterine programming mechanisms. A rat model of intrauterine growth retardation (IUGR) was established by PEE (4 g/kg·d). In PEE fetus, increased serum CORT concentration and decreased insulin-like growth factor 1 (IGF1) concentration, with lower bodyweight and structural abnormalities as well as a decreased Ki67 expression (proliferative marker), were observed in the male fetal adrenal cortex. Adrenal glucocorticoid (GC)-metabolic activation system was enhanced while gene expression of IGF1 signaling pathway with steroidogenic acute regulatory protein (StAR), 3β-hydroxysteroid dehydrogenase (3β-HSD) was decreased. Furthermore, in the male adult offspring of PEE, serum CORT level was decreased but IGF1 was increased with partial catch-up growth, and Ki67 expression demonstrated no obvious change. Adrenal GC-metabolic activation system was inhibited, while IGF1 signaling pathway and 3β-HSD was enhanced with the steroidogenic factor 1 (SF1), and StAR was down-regulated in the adult adrenal. Based on these findings, we propose a “two-programming” mechanism for PEE-induced adrenal developmental toxicity: “the first programming” is a lower functional programming of adrenal steroidogenesis, and “the second programming” is GC-metabolic activation system-related GC-IGF1 axis programming. - Highlights: • Prenatal ethanol exposure induces adrenal developmental abnormality in offspring rats. • Prenatal ethanol exposure induces intrauterine programming of adrenal steroidogenesis. • Intrauterine GC-IGF1 axis programming might mediate adrenal developmental abnormality.

  3. Prenatal ethanol exposure-induced adrenal developmental abnormality of male offspring rats and its possible intrauterine programming mechanisms

    International Nuclear Information System (INIS)

    Huang, Hegui; He, Zheng; Zhu, Chunyan; Liu, Lian; Kou, Hao; Shen, Lang; Wang, Hui

    2015-01-01

    Fetal adrenal developmental status is the major determinant of fetal tissue maturation and offspring growth. We have previously proposed that prenatal ethanol exposure (PEE) suppresses fetal adrenal corticosterone (CORT) synthesis. Here, we focused on PEE-induced adrenal developmental abnormalities of male offspring rats before and after birth, and aimed to explore its intrauterine programming mechanisms. A rat model of intrauterine growth retardation (IUGR) was established by PEE (4 g/kg·d). In PEE fetus, increased serum CORT concentration and decreased insulin-like growth factor 1 (IGF1) concentration, with lower bodyweight and structural abnormalities as well as a decreased Ki67 expression (proliferative marker), were observed in the male fetal adrenal cortex. Adrenal glucocorticoid (GC)-metabolic activation system was enhanced while gene expression of IGF1 signaling pathway with steroidogenic acute regulatory protein (StAR), 3β-hydroxysteroid dehydrogenase (3β-HSD) was decreased. Furthermore, in the male adult offspring of PEE, serum CORT level was decreased but IGF1 was increased with partial catch-up growth, and Ki67 expression demonstrated no obvious change. Adrenal GC-metabolic activation system was inhibited, while IGF1 signaling pathway and 3β-HSD was enhanced with the steroidogenic factor 1 (SF1), and StAR was down-regulated in the adult adrenal. Based on these findings, we propose a “two-programming” mechanism for PEE-induced adrenal developmental toxicity: “the first programming” is a lower functional programming of adrenal steroidogenesis, and “the second programming” is GC-metabolic activation system-related GC-IGF1 axis programming. - Highlights: • Prenatal ethanol exposure induces adrenal developmental abnormality in offspring rats. • Prenatal ethanol exposure induces intrauterine programming of adrenal steroidogenesis. • Intrauterine GC-IGF1 axis programming might mediate adrenal developmental abnormality.

  4. Abnormal myocardial free fatty acid utilization deteriorates with morphological changes in the hypertensive heart

    Energy Technology Data Exchange (ETDEWEB)

    Nakayama, Hiroyuki; Morozumi, Takakazu; Nanto, Shinsuke [Kansai Rosai Hospital, Amagasaki, Hyogo (Japan)] (and others)

    2001-09-01

    The left ventricle's morphological adaptation to high blood pressure is classified into 4 patterns based on mass and wall thickness. The geometric changes caused by maladaptation to pressure overload possibly relate to progression of contractile dysfunction with abnormal energy metabolism. The present study assessed whether the geometric adaptation of the left ventricle (LV) to high blood pressure relates to changes in myocardial energy metabolism, especially free fatty acid (FFA) utilization. Thirty-five patients with essential hypertension underwent echocardiography and dual isotopes myocardial scintigraphy using iodine-123 labeled 15-p-iodophenyl-3-(R,S)-methylpentadecanoic acid (BMIPP, an analogue of a FFA) and thallium-201 (Tl-201). Systolic (endocardial fractional shortening; %FS) and diastolic indices (the ratio of early to atrial filling waves; E/A) of LV function were also assessed. Quantitative myocardial BMIPP uptake was evaluated by the BMIPP/Tl-201 myocardial uptake ratio (B/T). The subjects were divided into 4 groups based on LV mass and wall thickness: concentric hypertrophy (CH), eccentric hypertrophy (EH), concentric remodeling (CR), and normal geometry (N). The %FS was lower in the EH group than in the other groups. The mitral E/A ratio in the CH group was lowest. B/T was significantly decreased in the EH group compared with the N group (p<0.05). B/T correlated with the mitral E/A ratio significantly (p<0.05, r=0.42), whereas there was no relationship between %FS and B/T. These results indicate that the geometric changes occurring in hypertensive hearts strongly correlate with alternations in cardiac function and with abnormal myocardial FFA metabolism, and that the latter is associated with diastolic abnormality, but not with systolic function. (author)

  5. Selective cerebral perfusion prevents abnormalities in glutamate cycling and neuronal apoptosis in a model of infant deep hypothermic circulatory arrest and reperfusion

    Energy Technology Data Exchange (ETDEWEB)

    Kajimoto, Masaki; Ledee, Dolena R.; Olson, Aaron K.; Isern, Nancy G.; Robillard-Frayne, Isabelle; Des Rosiers, Christine; Portman, Michael A.

    2016-10-01

    Rationale: Deep hypothermic circulatory arrest (DHCA) is often required for the repair of complex congenital cardiac defects in infants. However, DHCA induces neuroapoptosis associated with later development of neurocognitive abnormalities. Selective cerebral perfusion (SCP) theoretically provides superior neural protection possibly through modifications in cerebral substrate oxidation and closely integrated glutamate cycling. Objectives: We tested the hypothesis that SCP modulates glucose entry into the citric acid cycle, and ameliorates abnormalities in glutamate flux which occur in association neuroapoptosis during DHCA. Methods and Results: Eighteen male Yorkshire piglets (age 34-44 days) were assigned randomly to 2 groups of 7 (DHCA or DHCA with SCP for 60 minutes at 18 °C) and 4 control pigs without cardiopulmonary bypass support. After the completion of rewarming from DHCA, 13-Carbon-labeled (13C) glucose as a metabolic tracer was infused. We used gas chromatography-mass spectrometry (GCMS) and nuclear magnetic resonance for metabolic analysis in the frontal cortex. Following 2.5 hours of cerebral reperfusion, we observed similar cerebral ATP levels, absolute levels of lactate and citric acid cycle intermediates, and 13C-enrichment. However, DHCA induced significant abnormalities in glutamate cycling resulting in reduced glutamate/glutamine and elevated γ-aminobutyric acid (GABA)/glutamate along with neuroapoptosis (TUNEL), which were all prevented by SCP. Conclusions: DHCA alone induces abnormalities in cycling of the major neurotransmitters in association with neuroapoptosis, but does not alter cerebral glucose utilization during reperfusion. The data suggest that SCP prevents these modifications in glutamate/glutamine/GABA cycling and protects the cerebral cortex from neuroapoptosis.

  6. Anti-inflammatory and ameliorative effects of gallic acid on fluoxetine-induced oxidative stress and liver damage in rats.

    Science.gov (United States)

    Karimi-Khouzani, Omid; Heidarian, Esfandiar; Amini, Sayed Asadollah

    2017-08-01

    Fluoxetine-induced liver damage is a cause of chronic liver disease. In the present study the hepatoprotective effects of gallic acid against fluoxetine-induced liver damage were examined. Forty-eight male rats were divided into six groups as follow: group 1, the control group; group 2, rats receiving fluoxetine (24mg/kg bw daily, po) without treatment; group 3, rats receiving 24mg/kg bw fluoxetine, treated with 50mg/kg bw silymarin and groups 4, 5, and 6 in which gallic acid (50, 100, and 200mg/kg bw, po, respectively) was prescribed after the consumption of fluoxetine. The histopathological changes of hepatic tissues were checked out. Fluoxetine caused a significant increase in the levels of serum glutamate oxaloacetate transaminase (GOT), serum glutamate pyruvate transaminase (GPT), lipid profiles, urea, fasting blood sugar (FBS), creatinine (Cr), protein carbonyl (PC) content, malondialdehyde (MDA), and liver TNF-α as an inflammatory element. Also, the obtained results of group 2 revealed a significant decline in ferric reducing ability of plasma (FRAP), liver catalase (CAT), superoxide dismutase (SOD), and vitamin C levels. The treatment with gallic acid showed significant ameliorations in abnormalities of fluoxetine-induced liver injury as represented by the improvement of hepatic CAT, SOD activities, vitamin C levels, serum biochemical parameters, and histopathological changes, in addition to the recovery of antioxidant defense system status. Gallic acid has inhibitory effects on fluoxetine-induced liver damage. The effect of gallic acid is derived from free radical scavenging properties and the anti-inflammatory effect related to TNF-α. Copyright © 2017. Published by Elsevier Urban & Partner Sp. z o.o.

  7. Slitrk1-deficient mice display elevated anxiety-like behavior and noradrenergic abnormalities.

    Science.gov (United States)

    Katayama, K; Yamada, K; Ornthanalai, V G; Inoue, T; Ota, M; Murphy, N P; Aruga, J

    2010-02-01

    Mutations in SLITRK1 are found in patients with Tourette's syndrome and trichotillomania. SLITRK1 encodes a transmembrane protein containing leucine-rich repeats that is produced predominantly in the nervous system. However, the role of this protein is largely unknown, except that it can modulate neurite outgrowth in vitro. To clarify the role of Slitrk1 in vivo, we developed Slitrk1-knockout mice and analyzed their behavioral and neurochemical phenotypes. Slitrk1-deficient mice exhibited elevated anxiety-like behavior in the elevated plus-maze test as well as increased immobility time in forced swimming and tail suspension tests. Neurochemical analysis revealed that Slitrk1-knockout mice had increased levels of norepinephrine and its metabolite 3-methoxy-4-hydroxyphenylglycol. Administration of clonidine, an alpha2-adrenergic agonist that is frequently used to treat patients with Tourette's syndrome, attenuated the anxiety-like behavior of Slitrk1-deficient mice in the elevated plus-maze test. These results lead us to conclude that noradrenergic mechanisms are involved in the behavioral abnormalities of Slitrk1-deficient mice. Elevated anxiety due to Slitrk1 dysfunction may contribute to the pathogenesis of neuropsychiatric diseases such as Tourette's syndrome and trichotillomania.

  8. Docosahexaenoic acid and other fatty acids induce a decrease in pHi in Jurkat T-cells

    OpenAIRE

    Aires, Virginie; Hichami, Aziz; Moutairou, Kabirou; Khan, Naim Akhtar

    2003-01-01

    Docosahexaenoic acid (DHA) induced rapid (t1/2=33 s) and dose-dependent decreases in pHi in BCECF-loaded human (Jurkat) T-cells. Addition of 5-(N,N-dimethyl)-amiloride, an inhibitor of Na+/H+ exchanger, prolonged DHA-induced acidification as a function of time, indicating that the exchanger is implicated in pHi recovery.Other fatty acids like oleic acid, arachidonic acid, eicosapentaenoic acid, but not palmitic acid, also induced a fall in pHi in these cells.To assess the role of calcium in t...

  9. Acid sphingomyelinase (aSMase) deficiency leads to abnormal microglia behavior and disturbed retinal function

    Energy Technology Data Exchange (ETDEWEB)

    Dannhausen, Katharina; Karlstetter, Marcus; Caramoy, Albert [Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, University of Cologne, Cologne (Germany); Volz, Cornelia; Jägle, Herbert [Department of Ophthalmology, University Hospital Regensburg, Regensburg (Germany); Liebisch, Gerhard [Institute for Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg (Germany); Utermöhlen, Olaf [Institute for Medical Microbiology, Immunology and Hygiene and Center for Molecular Medicine Cologne, University of Cologne, Cologne (Germany); Langmann, Thomas, E-mail: thomas.langmann@uk-koeln.de [Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, University of Cologne, Cologne (Germany)

    2015-08-21

    Mutations in the acid sphingomyelinase (aSMase) coding gene sphingomyelin phosphodiesterase 1 (SMPD1) cause Niemann-Pick disease (NPD) type A and B. Sphingomyelin storage in cells of the mononuclear phagocyte system cause hepatosplenomegaly and severe neurodegeneration in the brain of NPD patients. However, the effects of aSMase deficiency on retinal structure and microglial behavior have not been addressed in detail yet. Here, we demonstrate that retinas of aSMase{sup −/−} mice did not display overt neuronal degeneration but showed significantly reduced scotopic and photopic responses in electroretinography. In vivo fundus imaging of aSMase{sup −/−} mice showed many hyperreflective spots and staining for the retinal microglia marker Iba1 revealed massive proliferation of retinal microglia that had significantly enlarged somata. Nile red staining detected prominent phospholipid inclusions in microglia and lipid analysis showed significantly increased sphingomyelin levels in retinas of aSMase{sup −/−} mice. In conclusion, the aSMase-deficient mouse is the first example in which microglial lipid inclusions are directly related to a loss of retinal function. - Highlights: • aSMase-deficient mice show impaired retinal function and reactive microgliosis. • aSMase-deficient microglia express pro-inflammatory transcripts. • aSMase-deficient microglia proliferate and have increased cell body size. • In vivo imaging shows hyperreflective spots in the fundus of aSMase-deficient mice. • aSMase-deficient microglia accumulate sphingolipid-rich intracellular deposits.

  10. Epstein-Barr virus BGLF4 kinase retards cellular S-phase progression and induces chromosomal abnormality.

    Directory of Open Access Journals (Sweden)

    Yu-Hsin Chang

    Full Text Available Epstein-Barr virus (EBV induces an uncoordinated S-phase-like cellular environment coupled with multiple prophase-like events in cells replicating the virus. The EBV encoded Ser/Thr kinase BGLF4 has been shown to induce premature chromosome condensation through activation of condensin and topoisomerase II and reorganization of the nuclear lamina to facilitate the nuclear egress of nucleocapsids in a pathway mimicking Cdk1. However, the observation that RB is hyperphosphorylated in the presence of BGLF4 raised the possibility that BGLF4 may have a Cdk2-like activity to promote S-phase progression. Here, we investigated the regulatory effects of BGLF4 on cell cycle progression and found that S-phase progression and DNA synthesis were interrupted by BGLF4 in mammalian cells. Expression of BGLF4 did not compensate Cdk1 defects for DNA replication in S. cerevisiae. Using time-lapse microscopy, we found the fate of individual HeLa cells was determined by the expression level of BGLF4. In addition to slight cell growth retardation, BGLF4 elicits abnormal chromosomal structure and micronucleus formation in 293 and NCP-TW01 cells. In Saos-2 cells, BGLF4 induced the hyperphosphorylation of co-transfected RB, while E2F1 was not released from RB-E2F1 complexes. The E2F1 regulated activities of the cyclin D1 and ZBRK1 promoters were suppressed by BGLF4 in a dose dependent manner. Detection with phosphoamino acid specific antibodies revealed that, in addition to Ser780, phosphorylation of the DNA damage-responsive Ser612 on RB was enhanced by BGLF4. Taken together, our study indicates that BGLF4 may directly or indirectly induce a DNA damage signal that eventually interferes with host DNA synthesis and delays S-phase progression.

  11. Abnormal splenic artery diameter/hepatic artery diameter ratio in cirrhosis-induced portal hypertension

    Science.gov (United States)

    Zeng, Dao-Bing; Dai, Chuan-Zhou; Lu, Shi-Chun; He, Ning; Wang, Wei; Li, Hong-Jun

    2013-01-01

    AIM: To determine an optimal cutoff value for abnormal splenic artery diameter/proper hepatic artery diameter (S/P) ratio in cirrhosis-induced portal hypertension. METHODS: Patients with cirrhosis and portal hypertension (n = 770) and healthy volunteers (n = 31) underwent volumetric computed tomography three-dimensional vascular reconstruction to measure the internal diameters of the splenic artery and proper hepatic artery to calculate the S/P ratio. The cutoff value for abnormal S/P ratio was determined using receiver operating characteristic curve analysis, and the prevalence of abnormal S/P ratio and associations between abnormal S/P ratio and major complications of portal hypertension were studied using logistic regression. RESULTS: The receiver operating characteristic analysis showed that the cutoff points for abnormal splenic artery internal diameter and S/P ratio were > 5.19 mm and > 1.40, respectively. The sensitivity, specificity, positive predictive value, and negative predictive value were 74.2%, 45.2%, 97.1%, and 6.6%, respectively. The prevalence of an abnormal S/P ratio in the patients with cirrhosis and portal hypertension was 83.4%. Patients with a higher S/P ratio had a lower risk of developing ascites [odds ratio (OR) = 0.708, 95%CI: 0.508-0.986, P = 0.041] and a higher risk of developing esophageal and gastric varices (OR = 1.483, 95%CI: 1.010-2.175, P = 0.044) and forming collateral circulation (OR = 1.518, 95%CI: 1.033-2.230, P = 0.034). After splenectomy, the portal venous pressure and maximum and mean portal venous flow velocities were reduced, while the flow rate and maximum and minimum flow velocities of the hepatic artery were increased (P portal hypertension, and it can be used as an important marker of splanchnic hemodynamic disturbances. PMID:23483462

  12. Proliferation, differentiation, and possible radiation-induced chromosome abnormalities in circulating hemopoietic stem cells

    International Nuclear Information System (INIS)

    Amenomori, Tatsuhiko; Honda, Takeo; Matsuo, Tatsuki; Otake, Masanori; Hazama, Ryuji; Tomonaga, Yu; Tomonaga, Masao; Ichimaru, Michito.

    1986-07-01

    The effects of atomic bomb radiation on hemopoietic stem cells were studied cytogenetically and from the aspect of differentiation and proliferation, using single colonies derived from human hemopoietic stem cells. The subjects studied were A-bomb survivors in the high dose exposure group (T65D 100 + rad) with a high incidence (10 % or more) of radiation-induced chromosome abnormalities in their peripheral lymphocytes, and their controls. Examinations were performed on 21 A-bomb survivors (10 males and 11 females) and 11 controls (5 males and 6 females). Colony formation of hemopoietic stem cells (granulocyte/monocyte-colony-forming cells, GM-CFC and burst-forming unit-erythrocytes, BFU-E) was made by the methylcellulose method patterned after the methods of Iscove et al and Ogawa et al using 5 - 10 ml of peripheral blood. Chromosome specimens were prepared from single colonies by the micromethod which we have reported elsewhere. The total number of colonies analyzed in the exposed group was 131 GM-CFC and 75 BFU-E. Chromosome abnormalities were observed in 15 (11.5 %) and 9 (12.0 %) colonies, respectively. In the control group, the total number of colonies analyzed was 61 GM-CFC and 41 BFU-E, but none of the colonies showed chromosome abnormalities. A highly significant difference in chromosome abnormalities was demonstrated by an exact test with a probability of 0.3 % for GM-CFC and 1.7 % for BFU-E. The karyotypes of chromosome abnormalities obtained from the colonies of hemopoietic stem cells in the exposed group were mostly translocations, but deletion and marker chromosomes were also observed. In two individuals, such karyotypic abnormalities as observed in the peripheral lymphocytes were seen also in the hemopoietic precursor cells. This finding suggests that radiation may produce an effect even on relatively undifferentiated hemopoietic stem cells. (author)

  13. Changes in food intake and abnormal behavior using a puzzle feeder in newly acquired sub-adult rhesus monkeys (Macaca mulatta): a short term study.

    Science.gov (United States)

    Lee, Jae-Il; Lee, Chi-Woo; Kwon, Hyouk-Sang; Kim, Young-Tae; Park, Chung-Gyu; Kim, Sang-Joon; Kang, Byeong-Cheol

    2008-10-01

    The majority of newly acquired nonhuman primates encounter serious problems adapting themselves to new environments or facilities. In particular, loss of appetite and abnormal behavior can occur in response to environmental stresses. These adaptation abnormalities can ultimately have an affect on the animal's growth and well-being. In this study, we evaluated the affects of a puzzle feeder on the food intake and abnormal behavior of newly acquired rhesus monkeys for a short period. The puzzle feeder was applied to 47- to 58-month-old animals that had never previously encountered one. We found that there was no difference in the change of food intake between the bucket condition and the puzzle feeder condition. In contrast, the time spent for consumption of food was three times longer in the puzzle feeder condition than in the bucket condition. Two monkeys initially exhibited stereotypic behavior. One showed a decreasing, and the other an increasing pattern of abnormal behavior after introduction of the puzzle feeder. In conclusion, this result suggests that over a short period, the puzzle feeder can only affect the time for food consumption since it failed to affect the food intake and did not consistently influence stereotypic behaviors in newly acquired rhesus monkeys.

  14. Omnivores Going Astray: A Review and New Synthesis of Abnormal Behavior in Pigs and Laying Hens

    Science.gov (United States)

    Brunberg, Emma I.; Rodenburg, T. Bas; Rydhmer, Lotta; Kjaer, Joergen B.; Jensen, Per; Keeling, Linda J.

    2016-01-01

    Pigs and poultry are by far the most omnivorous of the domesticated farm animals and it is in their nature to be highly explorative. In the barren production environments, this motivation to explore can be expressed as abnormal oral manipulation directed toward pen mates. Tail biting (TB) in pigs and feather pecking (FP) in laying hens are examples of unwanted behaviors that are detrimental to the welfare of the animals. The aim of this review is to draw these two seemingly similar abnormalities together in a common framework, in order to seek underlying mechanisms and principles. Both TB and FP are affected by the physical and social environment, but not all individuals in a group express these behaviors and individual genetic and neurobiological characteristics play an important role. By synthesizing what is known about environmental and individual influences, we suggest a novel possible mechanism, common for pigs and poultry, involving the brain–gut–microbiota axis. PMID:27500137

  15. Suppression of radiation-induced in vitro carcinogenesis by ascorbic acid

    International Nuclear Information System (INIS)

    Tauchi, Hiroshi; Sawada, Shozo

    1993-01-01

    The effects of ascorbic acid on radiation-induced in vitro carcinogenesis have been reported using neoplastic transformation system of C3H 10T1/2 cells. In these reports, no suppressive effect on X-ray-induced transformation was observed with 6 weeks' administration of ascorbic acid (daily addition for 5 days per week) by Kennedy (1984), whereas apparent suppression was observed with daily addition for 7 days by Yasukawa et al (1989). We have tested the effects of ascorbic acid on 60 Co gamma-ray or 252 Cf fission neutron-induced transformation in Balb/c 3T3 cells. The transformation induced by both types of radiations was markedly suppressed when ascorbic acid was daily added to the medium during first 8 days of the post-irradiation period. If ascorbic acid was added for a total of 8 days but with a day's interruption in the middle, the suppression of transformation was decreased. These results suggest that continuous presence of ascorbic acid for a certain number of days is needed to suppress radiation-induced transformation. Since ascorbic acid also suppressed the promotion of radiation-induced transformation by TPA when both chemicals were added together into the medium, ascorbic acid might act on the promotion stage of transformation. Therefore, the effect of ascorbic acid on the distribution of protein kinase C activity was also investigated, and possible mechanisms of suppression of radiation-induced transformation by ascorbic acid will be discussed. (author)

  16. Oseltamivir prescription and regulatory actions vis-à-vis abnormal behavior risk in Japan: drug utilization study using a nationwide pharmacy database.

    Science.gov (United States)

    Urushihara, Hisashi; Doi, Yuko; Arai, Masaru; Matsunaga, Toshiyuki; Fujii, Yosuke; Iino, Naoko; Kawamura, Takashi; Kawakami, Koji

    2011-01-01

    In March 2007, a regulatory advisory was issued in Japan to restrict oseltamivir use in children aged 10-19 years because of safety concerns over abnormal behavior. The effectiveness and validity of regulatory risk minimization actions remain to be reviewed, despite their significant public health implications. To assess the impact of the regulatory actions on prescribing practices and safety reporting. METHODOLOY/PRINICPAL FINDINGS: In this retrospective review of a nationwide pharmacy database, we analyzed 100,344 dispensation records for oseltamivir and zanamivir for the period from November 2006 to March 2009. The time trend in dispensations for these antiviral agents was presented before and after the regulatory actions, contrasted with intensity of media coverage and the numbers of spontaneous adverse reaction reports with regard to antivirals. The 2007 regulatory actions, together with its intense media coverage, reduced oseltamivir dispensation in targeted patients in fiscal year 2008 to 20.4% of that in fiscal year 2006, although influenza activities were comparable between these fiscal years. In contrast, zanamivir dispensation increased approximately nine-fold across all age groups. The number of abnormal behavior reports associated with oseltamivir in children aged 10-19 years decreased from fiscal year 2006 to 2008 (24 to 9 cases); this decline was offset by the increased number of reports of abnormal behavior in children under age 10 (12 to 28 cases). The number of reports associated with zanamivir increased in proportion to increased dispensation of this drug (11 to 114 cases). The 2007 actions effectively reduced oseltamivir prescriptions and the number of reports of abnormal behavior in the targeted group. The observed increase in abnormal behavior reports in oseltamivir patients under age 10 and in zanamivir patients suggests that these patient groups may also be at risk, calling into question the validity of the current discrimination by age and

  17. Oseltamivir prescription and regulatory actions vis-à-vis abnormal behavior risk in Japan: drug utilization study using a nationwide pharmacy database.

    Directory of Open Access Journals (Sweden)

    Hisashi Urushihara

    Full Text Available BACKGROUND: In March 2007, a regulatory advisory was issued in Japan to restrict oseltamivir use in children aged 10-19 years because of safety concerns over abnormal behavior. The effectiveness and validity of regulatory risk minimization actions remain to be reviewed, despite their significant public health implications. To assess the impact of the regulatory actions on prescribing practices and safety reporting. METHODOLOY/PRINICPAL FINDINGS: In this retrospective review of a nationwide pharmacy database, we analyzed 100,344 dispensation records for oseltamivir and zanamivir for the period from November 2006 to March 2009. The time trend in dispensations for these antiviral agents was presented before and after the regulatory actions, contrasted with intensity of media coverage and the numbers of spontaneous adverse reaction reports with regard to antivirals. The 2007 regulatory actions, together with its intense media coverage, reduced oseltamivir dispensation in targeted patients in fiscal year 2008 to 20.4% of that in fiscal year 2006, although influenza activities were comparable between these fiscal years. In contrast, zanamivir dispensation increased approximately nine-fold across all age groups. The number of abnormal behavior reports associated with oseltamivir in children aged 10-19 years decreased from fiscal year 2006 to 2008 (24 to 9 cases; this decline was offset by the increased number of reports of abnormal behavior in children under age 10 (12 to 28 cases. The number of reports associated with zanamivir increased in proportion to increased dispensation of this drug (11 to 114 cases. CONCLUSIONS/SIGNIFICANCE: The 2007 actions effectively reduced oseltamivir prescriptions and the number of reports of abnormal behavior in the targeted group. The observed increase in abnormal behavior reports in oseltamivir patients under age 10 and in zanamivir patients suggests that these patient groups may also be at risk, calling into question

  18. Agmatine rescues autistic behaviors in the valproic acid-induced animal model of autism.

    Science.gov (United States)

    Kim, Ji-Woon; Seung, Hana; Kim, Ki Chan; Gonzales, Edson Luck T; Oh, Hyun Ah; Yang, Sung Min; Ko, Mee Jung; Han, Seol-Heui; Banerjee, Sourav; Shin, Chan Young

    2017-02-01

    Autism spectrum disorder (ASD) is an immensely challenging developmental disorder characterized primarily by two core behavioral symptoms of social communication deficits and restricted/repetitive behaviors. Investigating the etiological process and identifying an appropriate therapeutic target remain as formidable challenges to overcome ASD due to numerous risk factors and complex symptoms associated with the disorder. Among the various mechanisms that contribute to ASD, the maintenance of excitation and inhibition balance emerged as a key factor to regulate proper functioning of neuronal circuitry. Interestingly, our previous study involving the valproic acid animal model of autism (VPA animal model) has demonstrated excitatory-inhibitory imbalance (E/I imbalance) due to enhanced differentiation of glutamatergic neurons and reduced GABAergic neurons. Here, we investigated the potential of agmatine, an endogenous NMDA receptor antagonist, as a novel therapeutic candidate in ameliorating ASD symptoms by modulating E/I imbalance using the VPA animal model. We observed that a single treatment of agmatine rescued the impaired social behaviors as well as hyperactive and repetitive behaviors in the VPA animal model. We also observed that agmatine treatment rescued the overly activated ERK1/2 signaling in the prefrontal cortex and hippocampus of VPA animal models, possibly, by modulating over-excitability due to enhanced excitatory neural circuit. Taken together, our results have provided experimental evidence suggesting a possible therapeutic role of agmatine in ameliorating ASD-like symptoms in the VPA animal model of ASD. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. SU-E-J-122: Detecting Treatment-Induced Metabolic Abnormalities in Craniopharyngioma Patients Undergoing Surgery and Proton Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Hua, C; Shulkin, B; Li, Y; LI, X; Merchant, T [St. Jude Children' s Research Hospital, Memphis, TN (United States); Indelicato, D [University of Florida Proton Therapy Institute, Jacksonville, FL (United States); Boop, F [Semmes-Murphey Neurologic and Spine Institute, Memphis, TN (United States)

    2014-06-01

    Purpose: To identify treatment-induced defects in the brain of children with craniopharyngioma receiving surgery and proton therapy using fluorodeoxyglucose positron emission tomography (FDG PET). Methods: Forty seven patients were enrolled on a clinical trial for craniopharyngioma with serial imaging and functional evaluations. Proton therapy was delivered using the double-scattered beams with a prescribed dose of 54 Cobalt Gray Equivalent. FDG tracer uptake in each of 63 anatomical regions was computed after warping PET images to a 3D reference template in Talairach coordinates. Regional uptake was deemed significantly low or high if exceeding two standard deviations of normal population from the mean. For establishing the normal ranges, 132 children aged 1–20 years with noncentral nervous system related diseases and normal-appearing cerebral PET scans were analyzed. Age- and gender-dependent regional uptake models were developed by linear regression and confidence intervals were calculated. Results: Most common PET abnormality before proton therapy was significantly low uptake in the frontal lobe, the occipital lobe (particularly in cuneus), the medial and ventral temporal lobe, cingulate gyrus, caudate nuclei, and thalamus. They were related to injury from surgical corridors, tumor mass effect, insertion of a ventricular catheter, and the placement of an Ommaya reservoir. Surprisingly a significantly high uptake was observed in temporal gyri and the parietal lobe. In 13 patients who already completed 18-month PET scans, metabolic abnormalities improved in 11 patients from baseline. One patient had persistent abnormalities. Only one revealed new uptake abnormalities in thalamus, brainstem, cerebellum, and insula. Conclusion: Postoperative FDG PET of craniopharyngioma patients revealed metabolic abnormalities in specific regions of the brain. Proton therapy did not appear to exacerbate these surgery- and tumor-induced defects. In patients with persistent and

  20. SU-E-J-122: Detecting Treatment-Induced Metabolic Abnormalities in Craniopharyngioma Patients Undergoing Surgery and Proton Therapy

    International Nuclear Information System (INIS)

    Hua, C; Shulkin, B; Li, Y; LI, X; Merchant, T; Indelicato, D; Boop, F

    2014-01-01

    Purpose: To identify treatment-induced defects in the brain of children with craniopharyngioma receiving surgery and proton therapy using fluorodeoxyglucose positron emission tomography (FDG PET). Methods: Forty seven patients were enrolled on a clinical trial for craniopharyngioma with serial imaging and functional evaluations. Proton therapy was delivered using the double-scattered beams with a prescribed dose of 54 Cobalt Gray Equivalent. FDG tracer uptake in each of 63 anatomical regions was computed after warping PET images to a 3D reference template in Talairach coordinates. Regional uptake was deemed significantly low or high if exceeding two standard deviations of normal population from the mean. For establishing the normal ranges, 132 children aged 1–20 years with noncentral nervous system related diseases and normal-appearing cerebral PET scans were analyzed. Age- and gender-dependent regional uptake models were developed by linear regression and confidence intervals were calculated. Results: Most common PET abnormality before proton therapy was significantly low uptake in the frontal lobe, the occipital lobe (particularly in cuneus), the medial and ventral temporal lobe, cingulate gyrus, caudate nuclei, and thalamus. They were related to injury from surgical corridors, tumor mass effect, insertion of a ventricular catheter, and the placement of an Ommaya reservoir. Surprisingly a significantly high uptake was observed in temporal gyri and the parietal lobe. In 13 patients who already completed 18-month PET scans, metabolic abnormalities improved in 11 patients from baseline. One patient had persistent abnormalities. Only one revealed new uptake abnormalities in thalamus, brainstem, cerebellum, and insula. Conclusion: Postoperative FDG PET of craniopharyngioma patients revealed metabolic abnormalities in specific regions of the brain. Proton therapy did not appear to exacerbate these surgery- and tumor-induced defects. In patients with persistent and

  1. Cress oil modulates radiation-induced hormonal, histological, genetic disorders and sperm head abnormalities in albino rat

    International Nuclear Information System (INIS)

    Said, U.Z.; Azab, KH.SH.; Soliman, S.M.

    2005-01-01

    Watercress (Nasturtium officinale) is an aquatic perennial herb of mustard family. The plant is rich in glucosinolates, specially gluconasturtin, which can be hydrolyzed to 2- phenylethyl isothiocyanate (PEITC) and known to activate detoxification enzymes. Cress oil (0.1 ml/kg/day) was given to rats, receiving a standard diet, by gavage for 2 weeks before whole body gamma irradiation at 7 Gy (single dose) and treatment was continued one week after irradiation. The results obtained showed that cress oil treatment significantly diminished the radiation-induced alterations in levels of testosterone, luteinizing hormone (LH), follicle stimulating hormone (FSH) and prolactin in serum and also blunted the increased levels of thiobarbituric acid reactive substances (TBARS) in serum and testes. Histopathological examination of testicular tissue showed that radiation exposure leads to atrophic testis with marked loss of germ cells, remaining tall pink Sertoli cells, peri tubular fibrosis and interstitial fibrosis. Cress oil treatments ameliorated the intensity of these changes where signs of partial recovery were observed in the histological configuration of leydig cells, seminiferous tubules, spermatocytes and in the structure of interstitial cells. Moreover, administration of cress oil significantly reduced the score of sperm head abnormalities and chromosomal aberration frequencies. It could be concluded that watercress may have a bio protective effect on radiation-induced oxidative stress where phytochemicals present in watercress could protect against hormone-dependent disease

  2. Effects of Uric Acid on Exercise-induced Oxidative Stress

    OpenAIRE

    平井, 富弘

    2001-01-01

    We studied effects of uric acid on exercise― induced oxidative stress in humans based on a hypothesis that uric acid acts as an antioxidant to prevent from exercise―induced oxidative stress. Relation between uric acid level in plasma and increase of thiobarbituric acid reactive substance (TBARS)after the cycle ergometer exercise was examined. Thiobarbituricacid reactive substance in plasma increased after the ergometer exercise. High uric acid in plasma did not result in low increase of TBARS...

  3. Antioxidant Treatment with N-acetyl Cysteine Prevents the Development of Cognitive and Social Behavioral Deficits that Result from Perinatal Ketamine Treatment

    Directory of Open Access Journals (Sweden)

    Aarron Phensy

    2017-06-01

    Full Text Available Alterations of the normal redox state can be found in all stages of schizophrenia, suggesting a key role for oxidative stress in the etiology and maintenance of the disease. Pharmacological blockade of N-methyl-D-aspartic acid (NMDA receptors can disrupt natural antioxidant defense systems and induce schizophrenia-like behaviors in animals and healthy human subjects. Perinatal administration of the NMDA receptor (NMDAR antagonist ketamine produces persistent behavioral deficits in adult mice which mimic a range of positive, negative, and cognitive symptoms that characterize schizophrenia. Here we tested whether antioxidant treatment with the glutathione (GSH precursor N-acetyl-cysteine (NAC can prevent the development of these behavioral deficits. On postnatal days (PND 7, 9 and 11, we treated mice with subanesthetic doses (30 mg/kg of ketamine or saline. Two groups (either ketamine or saline treated also received NAC throughout development. In adult animals (PND 70–120 we then assessed behavioral alterations in a battery of cognitive and psychomotor tasks. Ketamine-treated animals showed deficits in a task of cognitive flexibility, abnormal patterns of spontaneous alternation, deficits in novel-object recognition, as well as social interaction. Developmental ketamine treatment also induced behavioral stereotypy in response to an acute amphetamine challenge, and it impaired sensorimotor gating, measured as reduced prepulse inhibition (PPI of the startle response. All of these behavioral abnormalities were either prevented or strongly ameliorated by NAC co-treatment. These results suggest that oxidative stress is a major factor for the development of the ketamine-induced behavioral dysfunctions, and that restoring oxidative balance during the prodromal stage of schizophrenia might be able to ameliorate the development of several major symptoms of the disease.

  4. Essential fatty acid-rich diets protect against striatal oxidative damage induced by quinolinic acid in rats.

    Science.gov (United States)

    Morales-Martínez, Adriana; Sánchez-Mendoza, Alicia; Martínez-Lazcano, Juan Carlos; Pineda-Farías, Jorge Baruch; Montes, Sergio; El-Hafidi, Mohammed; Martínez-Gopar, Pablo Eliasib; Tristán-López, Luis; Pérez-Neri, Iván; Zamorano-Carrillo, Absalom; Castro, Nelly; Ríos, Camilo; Pérez-Severiano, Francisca

    2017-09-01

    Essential fatty acids have an important effect on oxidative stress-related diseases. The Huntington's disease (HD) is a hereditary neurologic disorder in which oxidative stress caused by free radicals is an important damage mechanism. The HD experimental model induced by quinolinic acid (QUIN) has been widely used to evaluate therapeutic effects of antioxidant compounds. The aim of this study was to test whether the fatty acid content in olive- or fish-oil-rich diet prevents against QUIN-related oxidative damage in rats. Rats were fed during 20 days with an olive- or a fish-oil-rich diet (15% w/w). Posterior to diet period, rats were striatally microinjected with QUIN (240 nmol/µl) or saline solution. Then, we evaluated the neurological damage, oxidative status, and gamma isoform of the peroxisome proliferator-activated receptor (PPARγ) expression. Results showed that fatty acid-rich diet, mainly by fish oil, reduced circling behavior, prevented the fall in GABA levels, increased PPARγ expression, and prevented oxidative damage in striatal tissue. In addition none of the enriched diets exerted changes neither on triglycerides or cholesterol blood levels, nor or hepatic function. This study suggests that olive- and fish-oil-rich diets exert neuroprotective effects.

  5. Borneol, a Bicyclic Monoterpene Alcohol, Reduces Nociceptive Behavior and Inflammatory Response in Mice

    Directory of Open Access Journals (Sweden)

    Jackson Roberto Guedes da Silva Almeida

    2013-01-01

    Full Text Available Borneol, a bicyclic monoterpene, has been evaluated for antinociceptive and anti-inflammatory activities. Antinociceptive and anti-inflammatory activities were studied by measuring nociception by acetic acid, formalin, hot plate, and grip strength tests, while inflammation was prompted by carrageenan-induced peritonitis. The rotarod test was used to evaluate motor coordination. Borneol produced a significant (P<0.01 reduction of the nociceptive behavior at the early and late phases of paw licking and reduced the writhing reflex in mice (formalin and writhing tests, resp.. When the hot plate test was conducted, borneol (in higher dose produced an inhibition (P<0.05 of the nociceptive behavior. Such results were unlikely to be provoked by motor abnormality. Additionally, borneol-treated mice reduced the carrageenan-induced leukocytes migration to the peritoneal cavity. Together, our results suggest that borneol possess significant central and peripheral antinociceptive activity; it has also anti-inflammatory activity. In addition, borneol did not impair motor coordination.

  6. Antagonist effects of veratric acid against UVB-induced cell damages.

    Science.gov (United States)

    Shin, Seoung Woo; Jung, Eunsun; Kim, Seungbeom; Lee, Kyung-Eun; Youm, Jong-Kyung; Park, Deokhoon

    2013-05-10

    Ultraviolet (UV) radiation induces DNA damage, oxidative stress, and inflammatory processes in human epidermis, resulting in inflammation, photoaging, and photocarcinogenesis. Adequate protection of skin against the harmful effect of UV irradiation is essential. In recent years naturally occurring herbal compounds such as phenolic acids, flavonoids, and high molecular weight polyphenols have gained considerable attention as beneficial protective agents. The simple phenolic veratric acid (VA, 3,4-dimethoxybenzoic acid) is one of the major benzoic acid derivatives from vegetables and fruits and it also occurs naturally in medicinal mushrooms which have been reported to have anti-inflammatory and anti-oxidant activities. However, it has rarely been applied in skin care. This study, therefore, aimed to explore the possible roles of veratric acid in protection against UVB-induced damage in HaCaT cells. Results showed that veratric acid can attenuate cyclobutane pyrimidine dimers (CPDs) formation, glutathione (GSH) depletion and apoptosis induced by UVB. Furthermore, veratric acid had inhibitory effects on the UVB-induced release of the inflammatory mediators such as IL-6 and prostaglandin-E2. We also confirmed the safety and clinical efficacy of veratric acid on human skin. Overall, results demonstrated significant benefits of veratric acid on the protection of keratinocyte against UVB-induced injuries and suggested its potential use in skin photoprotection.

  7. Disease-modifying effect of anthraquinone prodrug with boswellic acid on collagenase-induced osteoarthritis in Wistar rats.

    Science.gov (United States)

    Dhaneshwar, Suneela; Dipmala, Patil; Abhay, Harsulkar; Prashant, Bhondave

    2013-08-01

    Diacerein and its active metabolite rhein are promising disease modifying agents for osteoarthritis (OA). Boswellic acid is an active ingredient of Gugglu; a herbal medicine commonly administered in osteoarthritis. Both of them possess excellent anti-inflammatory and anti-arthritic activities. It was thought interesting to conjugate rhein and boswellic acid into a mutual prodrug (DSRB) and evaluate its efficacy on collagenase-induced osteoarthritis in rats wherein the conjugate, rhein, boswellic acid and their physical mixture, were tested based on various parameters. Oral administration of 3.85 mg of rhein, 12.36 mg of boswellic acid and 15.73 mg of DSRB which would release equimolar amounts of rhein and boswellic acid, exhibited significant restoration in rat body weight as compared to the untreated arthritic control group. Increase in knee diameter (mm), due to edema was observed in group injected with collagenase, which reduced significantly with the treatment of conjugate. The hematological parameters (Hb, RBC, WBC and ESR) and biochemical parameters (CRP, SALP, SGOT and SGPT) in the osteoarthritic rats were significantly brought back to normal values on treatment with conjugate. It also showed better anti-ulcer activity than rhein. Further the histopathological studies revealed significant anti-arthritic activity of conjugate when compared with the arthritic control group. In conclusion, the conjugate at the specified dose level of 15.73 mg/kg, p. o. (BID) showed reduction in knee diameter and it could significantly normalize the hematological and biochemical abnormalities in collagenase-induced osteoarthritis in rats. Further the histopathological studies confirmed the additive anti-arthritic effect of DSRB as compared to plain rhein.

  8. Uric acid ameliorates indomethacin-induced enteropathy in mice through its antioxidant activity.

    Science.gov (United States)

    Yasutake, Yuichi; Tomita, Kengo; Higashiyama, Masaaki; Furuhashi, Hirotaka; Shirakabe, Kazuhiko; Takajo, Takeshi; Maruta, Koji; Sato, Hirokazu; Narimatsu, Kazuyuki; Yoshikawa, Kenichi; Okada, Yoshikiyo; Kurihara, Chie; Watanabe, Chikako; Komoto, Shunsuke; Nagao, Shigeaki; Matsuo, Hirotaka; Miura, Soichiro; Hokari, Ryota

    2017-11-01

    Uric acid is excreted from blood into the intestinal lumen, yet the roles of uric acid in intestinal diseases remain to be elucidated. The study aimed to determine whether uric acid could reduce end points associated with nonsteroidal anti-inflammatory drug (NSAID)-induced enteropathy. A mouse model of NSAID-induced enteropathy was generated by administering indomethacin intraperitoneally to 8-week-old male C57BL/6 mice, and then vehicle or uric acid was administered orally. A group of mice treated with indomethacin was also concurrently administered inosinic acid, a uric acid precursor, and potassium oxonate, an inhibitor of uric acid metabolism, intraperitoneally. For in vitro analysis, Caco-2 cells treated with indomethacin were incubated in the presence or absence of uric acid. Oral administration of uric acid ameliorated NSAID-induced enteropathy in mice even though serum uric acid levels did not increase. Intraperitoneal administration of inosinic acid and potassium oxonate significantly elevated serum uric acid levels and ameliorated NSAID-induced enteropathy in mice. Both oral uric acid treatment and intraperitoneal treatment with inosinic acid and potassium oxonate significantly decreased lipid peroxidation in the ileum of mice with NSAID-induced enteropathy. Treatment with uric acid protected Caco-2 cells from indomethacin-induced oxidative stress, lipid peroxidation, and cytotoxicity. Uric acid within the intestinal lumen and in serum had a protective effect against NSAID-induced enteropathy in mice, through its antioxidant activity. Uric acid could be a promising therapeutic target for NSAID-induced enteropathy. © 2017 Journal of Gastroenterology and Hepatology Foundation and John Wiley & Sons Australia, Ltd.

  9. Frequency of metabolic abnormalities in urinary stones patients.

    Science.gov (United States)

    Ahmad, Iftikhar; Pansota, Mudassar Saeed; Tariq, Muhammad; Tabassum, Shafqat Ali

    2013-11-01

    To determine the frequency of metabolic abnormalities in the serum and urine of patients with urinary stones disease. Two hundred patients with either multiple or recurrent urolithiasis diagnosed on ultrasonography and intravenous urography were included in this study. 24 hour urine sample were collected from each patient and sent for PH, specific gravity, Creatinine, uric acid, calcium, phosphate, oxalate, citrate and magnesium. In addition, blood sample of each patient was also sent for serum levels of urea, creatinine, uric acid, phosphate and calcium. Mean age of patients was 38 ± 7.75 years with male to female ratio of 2:1. The main presenting complaint was lumber pain and 82.5% patients were found to have calcium oxalate stones on chemical analysis. Metabolic abnormalities were found in 90.5% patients, whereas there were no metabolic abnormalities in 19 (9.5%) patients. Forty patients (21.5%) only had one metabolic abnormality and 157 (78.5%) patients had multiple metabolic abnormalities. Hyperoxaluria was the most commonly observed metabolic abnormality and was found in 64.5% patients. Other significant metabolic abnormalities were hypercalciuria, Hypercalcemia, hypocitraturia and hyperuricemia. This study concludes that frequency of metabolic abnormalities is very high in patients with urolithiasis and hyperoxaluria, hypercalciuria and hypocitraturia are the most important metabolic abnormalities observed in these patients.

  10. Mefenamic Acid Induced Nephrotoxicity: An Animal Model

    Directory of Open Access Journals (Sweden)

    Muhammad Nazrul Somchit

    2014-12-01

    Full Text Available Purpose: Nonsteroidal anti-inflammatory drugs (NSAIDs are used for the treatment of many joint disorders, inflammation and to control pain. Numerous reports have indicated that NSAIDs are capable of producing nephrotoxicity in human. Therefore, the objective of this study was to evaluate mefenamic acid, a NSAID nephrotoxicity in an animal model. Methods: Mice were dosed intraperitoneally with mefenamic acid either as a single dose (100 or 200 mg/kg in 10% Dimethyl sulfoxide/Palm oil or as single daily doses for 14 days (50 or 100 mg/kg in 10% Dimethyl sulfoxide/Palm oil per day. Venous blood samples from mice during the dosing period were taken prior to and 14 days post-dosing from cardiac puncture into heparinized vials. Plasma blood urea nitrogen (BUN and creatinine activities were measured. Results: Single dose of mefenamic acid induced mild alteration of kidney histology mainly mild glomerular necrosis and tubular atrophy. Interestingly, chronic doses induced a dose dependent glomerular necrosis, massive degeneration, inflammation and tubular atrophy. Plasma blood urea nitrogen was statistically elevated in mice treated with mefenamic acid for 14 days similar to plasma creatinine. Conclusion: Results from this study suggest that mefenamic acid as with other NSAIDs capable of producing nephrotoxicity. Therefore, the study of the exact mechanism of mefenamic acid induced severe nephrotoxicity can be done in this animal model.

  11. Abnormal magnetization behaviors in Sm–Ni–Fe–Cu alloys

    International Nuclear Information System (INIS)

    Yang, W.Y.; Zhang, Y.F.; Zhao, H.; Chen, G.F.; Zhang, Y.; Du, H.L.; Liu, S.Q.; Wang, C.S.; Han, J.Z.; Yang, Y.C.; Yang, J.B.

    2016-01-01

    The magnetization behaviors in Sm–Ni–Fe–Cu alloys at low temperatures have been investigated. It was found that the hysteresis loops show wasp-waisted character at low temperatures, which has been proved to be related to the existence of multi-phases, the Fe/Ni soft magnetic phases and the CaCu 5 -type hard magnetic phase. A smooth-jump behavior of the magnetization is observed at T>5 K, whereas a step-like magnetization process appears at T<5 K. The CaCu 5 -type phase is responsible for such abnormal magnetization behavior. The magnetic moment reversal model with thermal activation is used to explain the relation of the critical magnetic field (H cm ) to the temperature (T>5 K). The reversal of the moment direction has to cross over an energy barrier of about 6.6×10 −15 erg. The step-like jumps of the magnetization below 5 K is proposed to be resulted from a sharp increase of the sample temperature under the heat released by the irreversible domain wall motion. - Highlights: • Two different magnetization mechanisms, controlled by temperature, have been found in the Sm–Ni–Fe–Cu alloys. The smooth-jump behavior of the magnetization is observed at T>5 K and the step-like magnetization process appears at T<5 K. • The magnetic moment reversal model with thermal activation has been successfully used to explain the relation of the critical magnetic field (H cm ) to the temperature (T>5 K). The energy barrier for the reversal of the moment direction has been found to be about 6.6×10 −15 erg. • The transition field for the step-like jumps is very strict, independent from the magnetic sweep rate. This is remarkably different from the similar step-like jump behavior in reference [20]. • According to the SEM images and EDX analysis, two kinds of regions are found in the alloys. The Fe–Ni–Cu regions are surrounded by the 1:5 Sm–Ni–Fe–Cu regions and shows fish-bone like structure. An interesting thing is that the Fe–Ni–Cu regions are

  12. Hormesis in Cholestatic Liver Disease; Preconditioning with Low Bile Acid Concentrations Protects against Bile Acid-Induced Toxicity.

    Directory of Open Access Journals (Sweden)

    Esther M Verhaag

    Full Text Available Cholestasis is characterized by accumulation of bile acids and inflammation, causing hepatocellular damage. Still, liver damage markers are highest in acute cholestasis and drop when this condition becomes chronic, indicating that hepatocytes adapt towards the hostile environment. This may be explained by a hormetic response in hepatocytes that limits cell death during cholestasis.To investigate the mechanisms that underlie the hormetic response that protect hepatocytes against experimental cholestatic conditions.HepG2.rNtcp cells were preconditioned (24 h with sub-apoptotic concentrations (0.1-50 μM of various bile acids, the superoxide donor menadione, TNF-α or the Farsenoid X Receptor agonist GW4064, followed by a challenge with the apoptosis-inducing bile acid glycochenodeoxycholic acid (GCDCA; 200 μM for 4 h, menadione (50 μM, 6 h or cytokine mixture (CM; 6 h. Levels of apoptotic and necrotic cell death, mRNA expression of the bile salt export pump (ABCB11 and bile acid sensors, as well as intracellular GCDCA levels were analyzed.Preconditioning with the pro-apoptotic bile acids GCDCA, taurocholic acid, or the protective bile acids (tauroursodeoxycholic acid reduced GCDCA-induced caspase-3/7 activity in HepG2.rNtcp cells. Bile acid preconditioning did not induce significant levels of necrosis in GCDCA-challenged HepG2.rNtcp cells. In contrast, preconditioning with cholic acid, menadione or TNF-α potentiated GCDCA-induced apoptosis. GCDCA preconditioning specifically reduced GCDCA-induced cell death and not CM- or menadione-induced apoptosis. The hormetic effect of GCDCA preconditioning was concentration- and time-dependent. GCDCA-, CDCA- and GW4064- preconditioning enhanced ABCB11 mRNA levels, but in contrast to the bile acids, GW4064 did not significantly reduce GCDCA-induced caspase-3/7 activity. The GCDCA challenge strongly increased intracellular levels of this bile acid, which was not lowered by GCDCA

  13. Experimental Evidence that In Vivo Intracerebral Administration of L-2-Hydroxyglutaric Acid to Neonatal Rats Provokes Disruption of Redox Status and Histopathological Abnormalities in the Brain.

    Science.gov (United States)

    Ribeiro, Rafael Teixeira; Zanatta, Ângela; Amaral, Alexandre Umpierrez; Leipnitz, Guilhian; de Oliveira, Francine Hehn; Seminotti, Bianca; Wajner, Moacir

    2018-04-01

    Tissue accumulation of L-2-hydroxyglutaric acid (L-2-HG) is the biochemical hallmark of L-2-hydroxyglutaric aciduria (L-2-HGA), a rare neurometabolic inherited disease characterized by neurological symptoms and brain white matter abnormalities whose pathogenesis is not yet well established. L-2-HG was intracerebrally administered to rat pups at postnatal day 1 (P1) to induce a rise of L-2-HG levels in the central nervous system (CNS). Thereafter, we investigated whether L-2-HG in vivo administration could disturb redox homeostasis and induce brain histopathological alterations in the cerebral cortex and striatum of neonatal rats. L-2-HG markedly induced the generation of reactive oxygen species (increase of 2',7'-dichloroflurescein-DCFH-oxidation), lipid peroxidation (increase of malondialdehyde concentrations), and protein oxidation (increase of carbonyl formation and decrease of sulfhydryl content), besides decreasing the antioxidant defenses (reduced glutathione-GSH) and sulfhydryl content in the cerebral cortex. Alterations of the activities of various antioxidant enzymes were also observed in the cerebral cortex and striatum following L-2-HG administration. Furthermore, L-2-HG-induced lipid peroxidation and GSH decrease in the cerebral cortex were prevented by the antioxidant melatonin and by the classical antagonist of NMDA glutamate receptor MK-801, suggesting the involvement of reactive species and of overstimulation of NMDA receptor in these effects. Finally, L-2-HG provoked significant vacuolation and edema particularly in the cerebral cortex with less intense alterations in the striatum that were possibly associated with the unbalanced redox homeostasis caused by this metabolite. Taken together, it is presumed that these pathomechanisms may underlie the neurological symptoms and brain abnormalities observed in the affected patients.

  14. Arachidonic and oleic acid exert distinct effects on the DNA methylome

    DEFF Research Database (Denmark)

    Silva-Martínez, Guillermo A.; Rodríguez-Ríos, Dalia; Alvarado-Caudillo, Yolanda

    2016-01-01

    ABSTRACT: Abnormal fatty acid metabolism and availability are landmarks of metabolic diseases, which in turn are associated with aberrant DNA methylation profiles. To understand the role of fatty acids in disease epigenetics, we sought DNA methylation profiles specifically induced by arachidonic....... The divergent response to AA and OA was prominent within the gene body of target genes, where it correlated positively with transcription. AA-induced DNA methylation profiles were similar to the corresponding profiles described for palmitic acid, atherosclerosis, diabetes, obesity, and autism, but relatively...

  15. White-matter tract abnormalities and antisocial behavior: A systematic review of diffusion tensor imaging studies across development

    Directory of Open Access Journals (Sweden)

    Rebecca Waller

    2017-01-01

    Full Text Available Antisocial behavior (AB, including aggression, violence, and theft, is thought be underpinned by abnormal functioning in networks of the brain critical to emotion processing, behavioral control, and reward-related learning. To better understand the abnormal functioning of these networks, research has begun to investigate the structural connections between brain regions implicated in AB using diffusion tensor imaging (DTI, which assesses white-matter tract microstructure. This systematic review integrates findings from 22 studies that examined the relationship between white-matter microstructure and AB across development. In contrast to a prior hypothesis that AB is associated with greater diffusivity specifically in the uncinate fasciculus, findings suggest that adult AB is associated with greater diffusivity across a range of white-matter tracts, including the uncinate fasciculus, inferior fronto-occipital fasciculus, cingulum, corticospinal tract, thalamic radiations, and corpus callosum. The pattern of findings among youth studies was inconclusive with both higher and lower diffusivity found across association, commissural, and projection and thalamic tracts.

  16. Corrosion behavior of niobium coated 304 stainless steel in acid solution

    Energy Technology Data Exchange (ETDEWEB)

    Pan, T.J., E-mail: tjpan@cczu.edu.cn [School of Material Science and Engineering, Jiangsu Collaborative Innovation Center for Photovolatic Science and Engineering, Changzhou University, Changzhou 213164 (China); Jiangsu Key Laboratory of Material Surface Technology, Changzhou 213164 (China); Chen, Y.; Zhang, B. [School of Material Science and Engineering, Jiangsu Collaborative Innovation Center for Photovolatic Science and Engineering, Changzhou University, Changzhou 213164 (China); Hu, J. [School of Material Science and Engineering, Jiangsu Collaborative Innovation Center for Photovolatic Science and Engineering, Changzhou University, Changzhou 213164 (China); Jiangsu Key Laboratory of Material Surface Technology, Changzhou 213164 (China); Li, C. [Light Industry College of Liaoning University, Shenyang 110036 (China)

    2016-04-30

    Highlights: • The Nb coating produced by HEMAA offers good protection for 304SS in acid solution. • The coating increases corrosion potential and induces decrease of corrosion rate. • The protection of coating is ascribed to the stability of Nb in acid solution. - Abstract: The niobium coating is fabricated on the surface of AISI Type 304 stainless steel (304SS) by using a high energy micro arc alloying technique in order to improvecorrosion resistance of the steel against acidic environments. The electrochemical corrosion resistance of the niobium coating in 0.7 M sulfuric acid solutions is evaluated by electrochemical impedance spectroscopy, potentiodynamic polarization and the open circuit potential versus time. Electrochemical measurements indicate that the niobium coating increases the free corrosion potential of the substrate by 110 mV and a reduction in the corrosion rate by two orders of magnitude compared to the substrate alone. The niobium coating maintains large impedance and effectively offers good protection for the substrate during the long-term exposure tests, which is mainly ascribed to the niobium coating acting inhibiting permeation of corrosive species. Finally, the corresponding electrochemical impedance models are proposed to elucidate the corrosion resistance behavior of the niobium coating in acid solutions.

  17. Corrosion behavior of niobium coated 304 stainless steel in acid solution

    International Nuclear Information System (INIS)

    Pan, T.J.; Chen, Y.; Zhang, B.; Hu, J.; Li, C.

    2016-01-01

    Highlights: • The Nb coating produced by HEMAA offers good protection for 304SS in acid solution. • The coating increases corrosion potential and induces decrease of corrosion rate. • The protection of coating is ascribed to the stability of Nb in acid solution. - Abstract: The niobium coating is fabricated on the surface of AISI Type 304 stainless steel (304SS) by using a high energy micro arc alloying technique in order to improvecorrosion resistance of the steel against acidic environments. The electrochemical corrosion resistance of the niobium coating in 0.7 M sulfuric acid solutions is evaluated by electrochemical impedance spectroscopy, potentiodynamic polarization and the open circuit potential versus time. Electrochemical measurements indicate that the niobium coating increases the free corrosion potential of the substrate by 110 mV and a reduction in the corrosion rate by two orders of magnitude compared to the substrate alone. The niobium coating maintains large impedance and effectively offers good protection for the substrate during the long-term exposure tests, which is mainly ascribed to the niobium coating acting inhibiting permeation of corrosive species. Finally, the corresponding electrochemical impedance models are proposed to elucidate the corrosion resistance behavior of the niobium coating in acid solutions.

  18. Antagonist Effects of Veratric Acid against UVB-Induced Cell Damages

    Directory of Open Access Journals (Sweden)

    Deokhoon Park

    2013-05-01

    Full Text Available Ultraviolet (UV radiation induces DNA damage, oxidative stress, and inflammatory processes in human epidermis, resulting in inflammation, photoaging, and photocarcinogenesis. Adequate protection of skin against the harmful effect of UV irradiation is essential. In recent years naturally occurring herbal compounds such as phenolic acids, flavonoids, and high molecular weight polyphenols have gained considerable attention as beneficial protective agents. The simple phenolic veratric acid (VA, 3,4-dimethoxybenzoic acid is one of the major benzoic acid derivatives from vegetables and fruits and it also occurs naturally in medicinal mushrooms which have been reported to have anti-inflammatory and anti-oxidant activities. However, it has rarely been applied in skin care. This study, therefore, aimed to explore the possible roles of veratric acid in protection against UVB-induced damage in HaCaT cells. Results showed that veratric acid can attenuate cyclobutane pyrimidine dimers (CPDs formation, glutathione (GSH depletion and apoptosis induced by UVB. Furthermore, veratric acid had inhibitory effects on the UVB-induced release of the inflammatory mediators such as IL-6 and prostaglandin-E2. We also confirmed the safety and clinical efficacy of veratric acid on human skin. Overall, results demonstrated significant benefits of veratric acid on the protection of keratinocyte against UVB-induced injuries and suggested its potential use in skin photoprotection.

  19. Protein-Energy Malnutrition Exacerbates Stroke-Induced Forelimb Abnormalities and Dampens Neuroinflammation.

    Science.gov (United States)

    Alaverdashvili, Mariam; Caine, Sally; Li, Xue; Hackett, Mark J; Bradley, Michael P; Nichol, Helen; Paterson, Phyllis G

    2018-02-03

    Protein-energy malnutrition (PEM) pre-existing at stroke onset is believed to worsen functional outcome, yet the underlying mechanisms are not fully understood. Since brain inflammation is an important modulator of neurological recovery after stroke, we explored the impact of PEM on neuroinflammation in the acute period in relation to stroke-initiated sensori-motor abnormalities. Adult rats were fed a low-protein (LP) or normal protein (NP) diet for 28 days before inducing photothrombotic stroke (St) in the forelimb region of the motor cortex or sham surgery; the diets continued for 3 days after the stroke. Protein-energy status was assessed by a combination of body weight, food intake, serum acute phase proteins and corticosterone, and liver lipid content. Deficits in motor function were evaluated in the horizontal ladder walking and cylinder tasks at 3 days after stroke. The glial response and brain elemental signature were investigated by immunohistochemistry and micro-X-ray fluorescence imaging, respectively. The LP-fed rats reduced food intake, resulting in PEM. Pre-existing PEM augmented stroke-induced abnormalities in forelimb placement accuracy on the ladder; LP-St rats made more errors (29 ± 8%) than the NP-St rats (15 ± 3%; P < 0.05). This was accompanied by attenuated astrogliosis in the peri-infarct area by 18% and reduced microglia activation by up to 41 and 21% in the peri-infarct area and the infarct rim, respectively (P < 0.05). The LP diet altered the cortical Zn, Ca, and Cl signatures (P < 0.05). Our data suggest that proactive treatment of pre-existing PEM could be essential for optimal post-stroke recovery.

  20. Ablation of Mrds1/Ofcc1 Induces Hyper-γ-Glutamyl Transpeptidasemia without Abnormal Head Development and Schizophrenia-Relevant Behaviors in Mice

    Science.gov (United States)

    Ohnishi, Tetsuo; Yamada, Kazuo; Watanabe, Akiko; Ohba, Hisako; Sakaguchi, Toru; Honma, Yota; Iwayama, Yoshimi; Toyota, Tomoko; Maekawa, Motoko; Watanabe, Kazutada; Detera-Wadleigh, Sevilla D.; Wakana, Shigeharu; Yoshikawa, Takeo

    2011-01-01

    Mutations in the Opo gene result in eye malformation in medaka fish. The human ortholog of this gene, MRDS1/OFCC1, is a potentially causal gene for orofacial cleft, as well as a susceptibility gene for schizophrenia, a devastating mental illness. Based on this evidence, we hypothesized that this gene could perform crucial functions in the development of head and brain structures in vertebrates. To test this hypothesis, we created Mrds1/Ofcc1-null mice. Mice were examined thoroughly using an abnormality screening system referred to as “the Japan Mouse Clinic”. No malformations of the head structure, eye or other parts of the body were apparent in these knockout mice. However, the mutant mice showed a marked increase in serum γ-glutamyl transpeptidase (GGT), a marker for liver damage, but no abnormalities in other liver-related measurements. We also performed a family-based association study on the gene in schizophrenia samples of Japanese origin. We found five single nucleotide polymorphisms (SNPs) located across the gene that showed significant transmission distortion, supporting a prior report of association in a Caucasian cohort. However, the knockout mice showed no behavioral phenotypes relevant to schizophrenia. In conclusion, disruption of the Mrds1/Ofcc1 gene elicits asymptomatic hyper-γ-glutamyl-transpeptidasemia in mice. However, there were no phenotypes to support a role for the gene in the development of eye and craniofacial structures in vertebrates. These results prompt further examination of the gene, including its putative contribution to hyper-γ-glutamyl transpeptidasemia and schizophrenia. PMID:22242126

  1. Ablation of Mrds1/Ofcc1 induces hyper-γ-glutamyl transpeptidasemia without abnormal head development and schizophrenia-relevant behaviors in mice.

    Directory of Open Access Journals (Sweden)

    Tetsuo Ohnishi

    Full Text Available Mutations in the Opo gene result in eye malformation in medaka fish. The human ortholog of this gene, MRDS1/OFCC1, is a potentially causal gene for orofacial cleft, as well as a susceptibility gene for schizophrenia, a devastating mental illness. Based on this evidence, we hypothesized that this gene could perform crucial functions in the development of head and brain structures in vertebrates. To test this hypothesis, we created Mrds1/Ofcc1-null mice. Mice were examined thoroughly using an abnormality screening system referred to as "the Japan Mouse Clinic". No malformations of the head structure, eye or other parts of the body were apparent in these knockout mice. However, the mutant mice showed a marked increase in serum γ-glutamyl transpeptidase (GGT, a marker for liver damage, but no abnormalities in other liver-related measurements. We also performed a family-based association study on the gene in schizophrenia samples of Japanese origin. We found five single nucleotide polymorphisms (SNPs located across the gene that showed significant transmission distortion, supporting a prior report of association in a Caucasian cohort. However, the knockout mice showed no behavioral phenotypes relevant to schizophrenia. In conclusion, disruption of the Mrds1/Ofcc1 gene elicits asymptomatic hyper-γ-glutamyl-transpeptidasemia in mice. However, there were no phenotypes to support a role for the gene in the development of eye and craniofacial structures in vertebrates. These results prompt further examination of the gene, including its putative contribution to hyper-γ-glutamyl transpeptidasemia and schizophrenia.

  2. Effects of Trans-Resveratrol on hyperglycemia-induced abnormal spermatogenesis, DNA damage and alterations in poly (ADP-ribose) polymerase signaling in rat testis

    Energy Technology Data Exchange (ETDEWEB)

    Abdelali, Ala [Department of Anatomy, Faculty of Medicine, Kuwait University (Kuwait); Al-Bader, Maie [Department of Physiology, Faculty of Medicine, Kuwait University (Kuwait); Kilarkaje, Narayana, E-mail: knarayana@hsc.edu.kw [Department of Anatomy, Faculty of Medicine, Kuwait University (Kuwait)

    2016-11-15

    Diabetes induces oxidative stress, DNA damage and alters several intracellular signaling pathways in organ systems. This study investigated modulatory effects of Trans-Resveratrol on type 1 diabetes mellitus (T1DM)-induced abnormal spermatogenesis, DNA damage and alterations in poly (ADP-ribose) polymerase (PARP) signaling in rat testis. Trans-Resveratrol administration (5mg/kg/day, ip) to Streptozotocin-induced T1DM adult male Wistar rats from day 22–42 resulted in recovery of induced oxidative stress, abnormal spermatogenesis and inhibited DNA synthesis, and led to mitigation of 8-hydroxy-2'-deoxyguanosine formation in the testis and spermatozoa, and DNA double-strand breaks in the testis. Trans-Resveratrol aggravated T1DM-induced up-regulation of aminoacyl tRNA synthetase complex-interacting multifunctional protein 2 expression; however, it did not modify the up-regulated total PARP and down-regulated PARP1 expressions, but recovered the decreased SirT1 (Sirtuin 1) levels in T1DM rat testis. Trans-Resveratrol, when given alone, reduced the poly (ADP-ribosyl)ation (pADPr) process in the testis due to an increase in PAR glycohydrolase activity, but when given to T1DM rats it did not affect the pADPr levels. T1DM with or without Trans-Resveratrol did not induce nuclear translocation of apoptosis-inducing factor and the formation of 50 kb DNA breaks, suggesting to the lack of caspase-3-independent cell death called parthanatos. T1DM with or without Trans-Resveratrol did not increase necrotic cell death in the testis. Primary spermatocytes, Sertoli cells, Leydig cells and intra-testicular vessels showed the expression of PARP pathway related proteins. In conclusion, Trans-Resveratrol mitigates T1DM-induced sperm abnormality and DNA damage, but does not significantly modulate PARP signaling pathway, except the SirT1 expression, in the rat testis. - Highlights: • Resveratrol inhibits diabetes-induced abnormal sperm morphogenesis • Resveratrol recovers

  3. Effects of Trans-Resveratrol on hyperglycemia-induced abnormal spermatogenesis, DNA damage and alterations in poly (ADP-ribose) polymerase signaling in rat testis

    International Nuclear Information System (INIS)

    Abdelali, Ala; Al-Bader, Maie; Kilarkaje, Narayana

    2016-01-01

    Diabetes induces oxidative stress, DNA damage and alters several intracellular signaling pathways in organ systems. This study investigated modulatory effects of Trans-Resveratrol on type 1 diabetes mellitus (T1DM)-induced abnormal spermatogenesis, DNA damage and alterations in poly (ADP-ribose) polymerase (PARP) signaling in rat testis. Trans-Resveratrol administration (5mg/kg/day, ip) to Streptozotocin-induced T1DM adult male Wistar rats from day 22–42 resulted in recovery of induced oxidative stress, abnormal spermatogenesis and inhibited DNA synthesis, and led to mitigation of 8-hydroxy-2'-deoxyguanosine formation in the testis and spermatozoa, and DNA double-strand breaks in the testis. Trans-Resveratrol aggravated T1DM-induced up-regulation of aminoacyl tRNA synthetase complex-interacting multifunctional protein 2 expression; however, it did not modify the up-regulated total PARP and down-regulated PARP1 expressions, but recovered the decreased SirT1 (Sirtuin 1) levels in T1DM rat testis. Trans-Resveratrol, when given alone, reduced the poly (ADP-ribosyl)ation (pADPr) process in the testis due to an increase in PAR glycohydrolase activity, but when given to T1DM rats it did not affect the pADPr levels. T1DM with or without Trans-Resveratrol did not induce nuclear translocation of apoptosis-inducing factor and the formation of 50 kb DNA breaks, suggesting to the lack of caspase-3-independent cell death called parthanatos. T1DM with or without Trans-Resveratrol did not increase necrotic cell death in the testis. Primary spermatocytes, Sertoli cells, Leydig cells and intra-testicular vessels showed the expression of PARP pathway related proteins. In conclusion, Trans-Resveratrol mitigates T1DM-induced sperm abnormality and DNA damage, but does not significantly modulate PARP signaling pathway, except the SirT1 expression, in the rat testis. - Highlights: • Resveratrol inhibits diabetes-induced abnormal sperm morphogenesis • Resveratrol recovers

  4. A metabolomic study of fipronil for the anxiety-like behavior in zebrafish larvae at environmentally relevant levels

    International Nuclear Information System (INIS)

    Wang, Cui; Qian, Yi; Zhang, Xiaofeng; Chen, Fang; Zhang, Quan; Li, Zhuoyu; Zhao, Meirong

    2016-01-01

    Field residue of fipronil can interfere with the physiological characters of the domesticated fish; thus, lethal dose test and the general biomarker cannot delineate the low-level situation. Manipulating by video track, we observed an anxiety-like behavior including high speed and abnormal photoperiod accommodation after exposure to fipronil at environmental typical dose in zebrafish larvae. Examining the unbiased metabolomic profiles, we found perturbation in several metabolic pathways, including the increased contents of fatty acids and glycerol and the decreased levels of the glycine, serine, and branched amino acid. We presumed that observed enhanced fatty acid utility was in response to increase energy demands caused by anxiety like behavior. Additionally, the body burden of neurotransmitter such as glycine and L-glutamate may concurrently stimulate the swimming behavior. The insight of this study showed that integral perturbation such as metabolism helps us to further understand the risk to aquatic fish at the environmentally relevant levels. - Highlights: • Fipronil increased the swimming speed at 10 μg/L to zebrafish larvae. • Accommodation to light–dark photoperiod switch was disturbed by fipronil. • Metabolomics indicated an increase energy availability for anxiety-like behavior. • Anxiety-like behavior induced by fipronil may attribute to neurotransmitter changes. - Zebrafish larvae exposed to environmentally relevant concentrations of fipronil display anxiety like behavior that may attribute to observed changes in energy utilization and neurotransmitter disturbances.

  5. Mildly abnormal general movement quality in infants is associated with higher Mead acid and lower arachidonic acid and shows a U-shaped relation with the DHA/AA ratio

    NARCIS (Netherlands)

    van Goor, S. A.; Schaafsma, A.; Erwich, J. J. H. M.; Dijck-Brouwer, D. A. J.; Muskiet, F. A. J.

    We showed that docosahexaenoic acid (DHA) supplementation during pregnancy and lactation was associated with more mildly abnormal (MA) general movements (GMs) in the infants. Since this finding was unexpected and inter-individual DHA intakes are highly variable, we explored the relationship between

  6. Gallic Acid Induces Apoptosis in Human Gastric Adenocarcinoma Cells.

    Science.gov (United States)

    Tsai, Chung-Lin; Chiu, Ying-Ming; Ho, Tin-Yun; Hsieh, Chin-Tung; Shieh, Dong-Chen; Lee, Yi-Ju; Tsay, Gregory J; Wu, Yi-Ying

    2018-04-01

    Gastric cancer is one of the most common malignant cancers with a poor prognosis and high mortality rate worldwide. Current treatment of gastric cancer includes surgery and chemotherapy as the main modalities, but the potentially severe side-effects of chemotherapy present a considerable challenge. Gallic acid is a trihydroxybenzoic acid found to exert an anticancer effect against a variety of cancer cells. The purpose of this study was to determine the anti-cancer activity of Galla chinensis and its main component gallic acid on human gastric adenocarcinoma cells. MTT assay and cell death ELISA were used to determine the apoptotic effect of Gallic Chinensis and gallic acid on human gastric adenocarcinoma cells. To determine the pathway and relevant components by which gallic acid-induced apoptosis is mediated through, cells were transfected with siRNA (Fas, FasL, DR5, p53) using Lipofectamine 2000. Reults: Gallic Chinensis and gallic acid induced apoptosis of human gastric adenocarcinoma cells. Gallic acid induced up-regulation of Fas, FasL, and DR5 expression in AGS cells. Transfection of cells with Fas, FasL, or DR5 siRNA reduced gallic acid-induced cell death. In addition, p53 was shown to be involved in gallic acid-mediated Fas, FasL, and DR5 expression as well as cell apoptosis in AGS cells. These results suggest that gallic acid has a potential role in the treatment of gastric cancer. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  7. Gender difference following high cholesterol diet induced renal injury and the protective role of rutin and ascorbic acid combination in Wistar albino rats

    OpenAIRE

    Al-Rejaie, Salim Salih; Abuohashish, Hatem Mustafa; Alkhamees, Osama Abdelrahman; Aleisa, Abdulaziz Mohammed; Alroujayee, Abdulaziz S

    2012-01-01

    Abstract Background An increased interest is given to the impact of high fat diet on health worldwide. Abnormalities in lipid metabolism induced by high cholesterol diet (HCD) were reported to exacerbate renal diseases via oxidative stress pathways. Rutin and ascorbic acid showed a protective role against oxidative stress-mediated diseases. Furthermore, both lipid metabolism and tissue response to oxidative stress damage was found to vary according to animal gender. Thus, the objective of thi...

  8. Ebselen protects against behavioral and biochemical toxicities induced by 3-nitropropionic acid in rats: correlations between motor coordination, reactive species levels, and succinate dehydrogenase activity.

    Science.gov (United States)

    Wilhelm, Ethel A; Bortolatto, Cristiani F; Jesse, Cristiano R; Luchese, Cristiane

    2014-12-01

    The protective effect of ebselen was investigated against 3-nitropropionic acid (3-NP)-induced behavioral and biochemical toxicities in rats. Ebselen (10 or 25 mg/kg, intragastrically) was administered to rats 30 min before 3-NP (20 mg/kg, intraperitoneally) once a day for a period of 4 days. Locomotor activity, motor coordination, and body weight gain were determined. The striatal content of reactive oxygen species (ROS), reduced glutathione (GSH), ascorbic acid (AA), and protein carbonyl as well as catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR), and glutathione-S-transferase (GST) activities was determined 24 h after the last dose of 3-NP. Na(+)/ K(+)-ATPase, succinate dehydrogenase (SDH), and δ-aminolevulinic dehydratase (δ-ALA-D) activities were also determined. The results demonstrated that ebselen at a dose of 25 mg/kg, but not at 10 mg/kg, protected against (1) a decrease in locomotor activity, motor coordination impairment, and body weight loss; (2) striatal oxidative damage, which was characterized by an increase in ROS levels, protein carbonyl content, and GR activity, an inhibition of CAT and GPx activities, and a decrease in GSH levels; and (3) an inhibition of SDH and Na(+)/K(+)-ATPase activities, induced by 3-NP. GST activity and AA levels were not modified by ebselen or 3-NP. Ebselen was not effective against the inhibition of δ-ALA-D activity induced by 3-NP. The results revealed a significant correlation between SDH activity and ROS levels, and SDH activity and latency to fall (rotarod test). The present study highlighted the protective effect of ebselen against 3-NP-induced toxicity in rats.

  9. Behaviors induced or disrupted by complex partial seizures.

    Science.gov (United States)

    Leung, L S; Ma, J; McLachlan, R S

    2000-09-01

    We reviewed the neural mechanisms underlying some postictal behaviors that are induced or disrupted by temporal lobe seizures in humans and animals. It is proposed that the psychomotor behaviors and automatisms induced by temporal lobe seizures are mediated by the nucleus accumbens. A non-convulsive hippocampal afterdischarge in rats induced an increase in locomotor activity, which was suppressed by the injection of dopamine D(2) receptor antagonist in the nucleus accumbens, and blocked by inactivation of the medial septum. In contrast, a convulsive hippocampal or amygdala seizure induced behavioral hypoactivity, perhaps by the spread of the seizure into the frontal cortex and opiate-mediated postictal depression. Mechanisms underlying postictal psychosis, memory disruption and other long-term behavioral alterations after temporal lobe seizures, are discussed. In conclusion, many of the changes of postictal behaviors observed after temporal lobe seizures in humans may be found in animals, and the basis of the behavioral change may be explained as a change in neural processing in the temporal lobe and the connecting subcortical structures.

  10. 1-Oleoyl lysophosphatidic acid: a new mediator of emotional behavior in rats.

    Directory of Open Access Journals (Sweden)

    Estela Castilla-Ortega

    Full Text Available The role of lysophosphatidic acid (LPA in the control of emotional behavior remains to be determined. We analyzed the effects of the central administration of 1-oleoyl-LPA (LPA 18∶1 in rats tested for food consumption and anxiety-like and depression-like behaviors. For this purpose, the elevated plus-maze, open field, Y maze, forced swimming and food intake tests were performed. In addition, c-Fos expression in the dorsal periaqueductal gray matter (DPAG was also determined. The results revealed that the administration of LPA 18∶1 reduced the time in the open arms of the elevated plus-maze and induced hypolocomotion in the open field, suggesting an anxiogenic-like phenotype. Interestingly, these effects were present following LPA 18∶1 infusion under conditions of novelty but not under habituation conditions. In the forced swimming test, the administration of LPA 18∶1 dose-dependently increased depression-like behavior, as evaluated according to immobility time. LPA treatment induced no effects on feeding. However, the immunohistochemical analysis revealed that LPA 18∶1 increased c-Fos expression in the DPAG. The abundant expression of the LPA1 receptor, one of the main targets for LPA 18∶1, was detected in this brain area, which participates in the control of emotional behavior, using immunocytochemistry. These findings indicate that LPA is a relevant transmitter potentially involved in normal and pathological emotional responses, including anxiety and depression.

  11. Commensal bacteria and essential amino acids control food choice behavior and reproduction.

    Science.gov (United States)

    Leitão-Gonçalves, Ricardo; Carvalho-Santos, Zita; Francisco, Ana Patrícia; Fioreze, Gabriela Tondolo; Anjos, Margarida; Baltazar, Célia; Elias, Ana Paula; Itskov, Pavel M; Piper, Matthew D W; Ribeiro, Carlos

    2017-04-01

    Choosing the right nutrients to consume is essential to health and wellbeing across species. However, the factors that influence these decisions are poorly understood. This is particularly true for dietary proteins, which are important determinants of lifespan and reproduction. We show that in Drosophila melanogaster, essential amino acids (eAAs) and the concerted action of the commensal bacteria Acetobacter pomorum and Lactobacilli are critical modulators of food choice. Using a chemically defined diet, we show that the absence of any single eAA from the diet is sufficient to elicit specific appetites for amino acid (AA)-rich food. Furthermore, commensal bacteria buffer the animal from the lack of dietary eAAs: both increased yeast appetite and decreased reproduction induced by eAA deprivation are rescued by the presence of commensals. Surprisingly, these effects do not seem to be due to changes in AA titers, suggesting that gut bacteria act through a different mechanism to change behavior and reproduction. Thus, eAAs and commensal bacteria are potent modulators of feeding decisions and reproductive output. This demonstrates how the interaction of specific nutrients with the microbiome can shape behavioral decisions and life history traits.

  12. Decreased C-reactive protein induces abnormal vascular structure in a rat model of liver dysfunction induced by bile duct ligation

    Directory of Open Access Journals (Sweden)

    Ji Hye Jun

    2016-09-01

    Full Text Available Background/Aims Chronic liver disease leads to liver fibrosis, and although the liver does have a certain regenerative capacity, this disease is associated with dysfunction of the liver vessels. C-reactive protein (CRP is produced in the liver and circulated from there for metabolism. CRP was recently shown to inhibit angiogenesis by inducing endothelial cell dysfunction. The objective of this study was to determine the effect of CRP levels on angiogenesis in a rat model of liver dysfunction induced by bile duct ligation (BDL. Methods The diameter of the hepatic vein was analyzed in rat liver tissues using hematoxylin and eosin (H&E staining. The expression levels of angiogenic factors, albumin, and CRP were analyzed by real-time PCR and Western blotting. A tube formation assay was performed to confirm the effect of CRP on angiogenesis in human umbilical vein endothelial cells (HUVECs treated with lithocholic acid (LCA and siRNA-CRP. Results The diameter of the hepatic portal vein increased significantly with the progression of cirrhosis. The expression levels of angiogenic factors were increased in the cirrhotic liver. In contrast, the expression levels of albumin and CRP were significantly lower in the liver tissue obtained from the BDL rat model than in the normal liver. The CRP level was correlated with the expression of albumin in hepatocytes treated with LCA and siRNA-CRP. Tube formation was significantly decreased in HUVECs when they were treated with LCA or a combination of LCA and siRNA-CRP. Conclusion CRP seems to be involved in the abnormal formation of vessels in hepatic disease, and so it could be a useful diagnostic marker for hepatic disease.

  13. Decreased C-reactive protein induces abnormal vascular structure in a rat model of liver dysfunction induced by bile duct ligation.

    Science.gov (United States)

    Jun, Ji Hye; Choi, Jong Ho; Bae, Si Hyun; Oh, Seh Hoon; Kim, Gi Jin

    2016-09-01

    Chronic liver disease leads to liver fibrosis, and although the liver does have a certain regenerative capacity, this disease is associated with dysfunction of the liver vessels. C-reactive protein (CRP) is produced in the liver and circulated from there for metabolism. CRP was recently shown to inhibit angiogenesis by inducing endothelial cell dysfunction. The objective of this study was to determine the effect of CRP levels on angiogenesis in a rat model of liver dysfunction induced by bile duct ligation (BDL). The diameter of the hepatic vein was analyzed in rat liver tissues using hematoxylin and eosin (H&E) staining. The expression levels of angiogenic factors, albumin, and CRP were analyzed by real-time PCR and Western blotting. A tube formation assay was performed to confirm the effect of CRP on angiogenesis in human umbilical vein endothelial cells (HUVECs) treated with lithocholic acid (LCA) and siRNA-CRP. The diameter of the hepatic portal vein increased significantly with the progression of cirrhosis. The expression levels of angiogenic factors were increased in the cirrhotic liver. In contrast, the expression levels of albumin and CRP were significantly lower in the liver tissue obtained from the BDL rat model than in the normal liver. The CRP level was correlated with the expression of albumin in hepatocytes treated with LCA and siRNA-CRP. Tube formation was significantly decreased in HUVECs when they were treated with LCA or a combination of LCA and siRNA-CRP. CRP seems to be involved in the abnormal formation of vessels in hepatic disease, and so it could be a useful diagnostic marker for hepatic disease.

  14. Electrocardiographic left ventricular hypertrophy without echocardiographic abnormalities evaluated by myocardial perfusion and fatty acid metabolic imaging

    International Nuclear Information System (INIS)

    Narita, Michihiro; Kurihara, Tadashi

    2000-01-01

    The pathophysiologic process in patients with electrocardiographic left ventricular hypertrophy with ST, T changes but without echocardiographic abnormalities was investigated by myocardial perfusion imaging and fatty acid metabolic imaging. Exercise stress 99m Tc-methoxy-isobutyl isonitrile (MIBI) imaging and rest 123 I-beta-methyl-p-iodophenyl pentadecanoic acid (BMIPP) imaging were performed in 59 patients with electrocardiographic hypertrophy including 29 without apparent cause including hypertension and echocardiographic hypertrophy, and 30 with essential hypertension. Coronary angiography was performed in 6 patients without hypertension and 4 with hypertension and biopsy specimens were obtained from the left ventricular apex from 6 patients without hypertension. Myocardial perfusion and 123 I-BMIPP images were classified into 3 types: normal, increased accumulation of the isotope at the left ventricular apex (high uptake) and defect. Transient perfusion abnormality and apical defect observed by 123 I-BMIPP imaging were more frequent in patients without hypertension than in patients with hypertension (32% vs. 17%, p=0.04671 in perfusion; 62% vs. 30%, p=0.0236 in 123 I-BMIPP). Eighteen normotensive patients with apical defect by 123 I-BMIPP imaging included 3 of 10 patients with normal perfusion at exercise, 6 of 10 patients with high uptake and 9 of 9 patients with perfusion defect. The defect size revealed by 123 I-BMIPP imaging was greater than that of the perfusion abnormality. Coronary stenoses were not observed and myocardial specimens showed myocardial disarray with hypertrophy. Moreover, 9 patients with hypertension and apical defects by 123 I-BMIPP showed 3 different types of perfusion. Many patients without hypertension show a pathologic process similar to hypertrophic cardiomyopathy. Perfusion and 123 I-BMIPP imaging are useful for the identification of these patients. (author)

  15. Morphological and behavioral markers of environmentally induced retardation of brain development: an animal model

    International Nuclear Information System (INIS)

    Altman, J.

    1987-01-01

    In most neurotoxicological studies morphological assessment focuses on pathological effects, like degenerative changes in neuronal perikarya, axonopathy, demyelination, and glial and endothelial cell reactions. Similarly, the assessment of physiological and behavioral effects center on evident neurological symptoms, like EEG and EMG abnormalities, resting and intention tremor, abnormal gait, and abnormal reflexes. This paper reviews briefly another central nervous system target of harmful environmental agents, which results in behavioral abnormalities without any qualitatively evident neuropathology. This is called microneuronal hypoplasia, a retardation of brain development characterized by a quantitative reduction in the normal population of late-generated, short-axoned neurons in specific brain regions. Correlated descriptive and experimental neurogenetic studies in the rat have established that all the cerebellar granule cells and a very high proportion of hippocampal granule cells are produced postnatally, and that focal, low-dose X-irradiation either of the cerebellum or of the hippocampus after birth selectively interferes with the acquisition of the full complement of granule cells (microneuronal hypoplasia). Subsequent behavioral investigations showed that cerebellar microneuronal hypoplasia results in profound hyperactivity without motor abnormalities, while hippocampal microneuronal hypoplasia results in hyperactivity, as well as attentional and learning deficits. There is much indirect clinical evidence that various harmful environmental agents affecting the pregnant mother and/or the infant lead to such childhood disorders as hyperactivity and attentional and learning disorders. 109 references

  16. Protective effect of curcumin and vitamin C each alone and in combination on cisplatin-induced sperm abnormalities in male albino rats

    Directory of Open Access Journals (Sweden)

    Sabha Elsayed Elballat

    2016-08-01

    The results of the present investigation concluded that the combination between curcumin and vitamin C in cisplatin treatment afforded the best ameliorative effect on cisplatin induced sperm shape abnormalities. This may be due to the synergistic effect between curcumin and vitamin C as both of them have antioxidant properties which in turn lead to repairing of sperm abnormalities.

  17. Cerebrospinal fluid flow abnormalities in patients with neoplastic meningitis. An evaluation using 111In-DTPA ventriculography

    International Nuclear Information System (INIS)

    Grossman, S.A.; Trump, D.L.; Chen, D.C.; Thompson, G.; Camargo, E.E.

    1982-01-01

    Cerebrospinal fluid flow dynamics were evaluated by 111 In-diethylenetriamine pentaacetic acid ( 111 In-DTPA) ventriculography in 27 patients with neoplastic meningitis. Nineteen patients (70 percent) had evidence of cerebrospinal fluid flow disturbances. These occurred as ventricular outlet obstructions, abnormalities of flow in the spinal canal, or flow distrubances over the cortical convexities. Tumor histology, physical examination, cerebrospinal fluid analysis, myelograms, and computerized axial tomographic scans were not sufficient to predict cerebrospinal fluid flow patterns. These data indicate that cerebrospinal fluid flow abnormalities are common in patients with neoplastic meningitis and that 111 In-DTPA cerebrospinal fluid flow imaging is useful in characterizing these abnormalities. This technique provides insight into the distribution of intraventricularly administered chemotherapy and may provide explanations for treatment failure and drug-induced neurotoxicity in patients with neoplastic meningitis

  18. Abnormal mitochondria in Rett syndrome: one case report.

    Science.gov (United States)

    Mak, S C; Chi, C S; Chen, C H; Shian, W J

    1993-08-01

    A 6-year-9-month-old girl with the characteristic features of Rett syndrome is reported. Clinically, she had microcephaly, psychomotor arrest, deterioration of communication, autistic behaviour, loss of language development, gait apraxia and stereotyped hand washing movement. Amino acid and organic acid analysis were normal. An abnormal rise in serum lactate was noted 120 minutes after oral glucose loading. Muscle biopsy was performed and there was no specific finding noted under light microscope. Electron microscopic evaluation revealed mild accumulation of mitochondria at subsarcolemmal area with abnormal tubular cristae. The cause of Rett syndrome remains obscure. Several articles concerning abnormal mitochondrial morphology or respiratory enzymes have been reported. The exact pathogenesis requires further investigation.

  19. Endocide-Induced Abnormal Growth Forms of Invasive Giant Salvinia (Salvinia molesta).

    Science.gov (United States)

    Li, Shiyou; Wang, Ping; Su, Zushang; Lozano, Emily; LaMaster, Olivia; Grogan, Jason B; Weng, Yuhui; Decker, Thomas; Findeisen, John; McGarrity, Monica

    2018-05-22

    Giant salvinia (Salvinia molesta) is one of the most noxious invasive species in the world. The fern is known to have primary, secondary, and tertiary growth forms, which are also commonly hypothesized as growth stages. The identification of these forms is primarily based on the size and folding status of the floating leaves. However, we identified 12 forms in the greenhouse and the field. Our experiments showed that the folding of floating leaves is a reversible trait dependent on water access. The floating leaves quickly fold in response to water shortage, reducing water loss and needs, decreasing growth, and avoiding trichome damage. The leaves re-open to allow trichomes repel water and enhance growth when having adequate water supply. Larger secondary or tertiary forms do not produce small-leaf primary forms without high intensity stress. These results do not support the hypothesis that three growth forms represent sequential growth stages. The abnormal small-leaf forms are the result of endocide-induced autotoxicity and some of them never grow into other forms. The development of abnormal forms and reversible leaf folding strategy in response to high stress along with rapid asexual reproduction are major adaptive traits contributing to the invasiveness of S. molesta.

  20. Behavioral and neurochemical effects of alpha lipoic acid associated with omega-3 in tardive dyskinesia induced by chronic haloperidol in rats.

    Science.gov (United States)

    de Araújo, Dayane Pessoa; Camboim, Thaisa Gracielle Martins; Silva, Ana Patrícia Magalhães; Silva, Caio da Fonseca; de Sousa, Rebeca Canuto; Barbosa, Mabson Delâno Alves; Oliveira, Lucidio Clebeson; Cavalcanti, José Rodolfo Lopes de Paiva; Lucena, Eudes Euler de Souza; Guzen, Fausto Pierdoná

    2017-07-01

    Tardive dyskinesia (TD) is characterized by involuntary movements of the lower portion of the face being related to typical antipsychotic therapy. TD is associated with the oxidative imbalance in the basal ganglia. Lipoic acid (LA) and omega-3 (ω-3) are antioxidants acting as enzyme cofactors, regenerating antioxidant enzymes. This study aimed to investigate behavioral and neurochemical effects of supplementation with LA (100 mg/kg) and ω-3 (1 g/kg) in the treatment of TD induced by chronic use of haloperidol (HAL) (1 mg/kg) in rats. Wistar male rats were used, weighing between 180-200 g. The animals were treated chronically (31 days) with LA alone or associated with HAL or ω-3. Motor behavior was assessed by open-field test, the catalepsy test, and evaluation of orofacial dyskinesia. Oxidative stress was accessed by determination of lipid peroxidation and concentration of nitrite. LA and ω-3 alone or associated caused an improvement in motor performance by increasing locomotor activity in the open-field test and decreased the permanence time on the bar in the catalepsy test and decreased the orofacial dyskinesia. LA and ω-3 showed antioxidant effects, decreasing lipid peroxidation and nitrite levels. Thus, the use of LA associated with ω-3 reduced the extrapyramidal effects produced by chronic use of HAL.

  1. Fragile X Mental Retardation Protein Is Required to Maintain Visual Conditioning-Induced Behavioral Plasticity by Limiting Local Protein Synthesis.

    Science.gov (United States)

    Liu, Han-Hsuan; Cline, Hollis T

    2016-07-06

    Fragile X mental retardation protein (FMRP) is thought to regulate neuronal plasticity by limiting dendritic protein synthesis, but direct demonstration of a requirement for FMRP control of local protein synthesis during behavioral plasticity is lacking. Here we tested whether FMRP knockdown in Xenopus optic tectum affects local protein synthesis in vivo and whether FMRP knockdown affects protein synthesis-dependent visual avoidance behavioral plasticity. We tagged newly synthesized proteins by incorporation of the noncanonical amino acid azidohomoalanine and visualized them with fluorescent noncanonical amino acid tagging (FUNCAT). Visual conditioning and FMRP knockdown produce similar increases in FUNCAT in tectal neuropil. Induction of visual conditioning-dependent behavioral plasticity occurs normally in FMRP knockdown animals, but plasticity degrades over 24 h. These results indicate that FMRP affects visual conditioning-induced local protein synthesis and is required to maintain the visual conditioning-induced behavioral plasticity. Fragile X syndrome (FXS) is the most common form of inherited intellectual disability. Exaggerated dendritic protein synthesis resulting from loss of fragile X mental retardation protein (FMRP) is thought to underlie cognitive deficits in FXS, but no direct evidence has demonstrated that FMRP-regulated dendritic protein synthesis affects behavioral plasticity in intact animals. Xenopus tadpoles exhibit a visual avoidance behavior that improves with visual conditioning in a protein synthesis-dependent manner. We showed that FMRP knockdown and visual conditioning dramatically increase protein synthesis in neuronal processes. Furthermore, induction of visual conditioning-dependent behavioral plasticity occurs normally after FMRP knockdown, but performance rapidly deteriorated in the absence of FMRP. These studies show that FMRP negatively regulates local protein synthesis and is required to maintain visual conditioning-induced

  2. Induced resistance by cresotic acid (3-hydroxy-4-methyl methylbenzoic acid) against wilt disease of melon and cotton

    International Nuclear Information System (INIS)

    Dong, H.; Li, Z.; Zhang, D.; Li, W.; Tang, W.

    2004-01-01

    Cresotic acid (3-hydroxy-4-methylbenzoic acid) was proved be active in controlling wilt diseases of melon and cotton plants grown in the house. Soil drench with 200-1000 ppm cresotic acid induced 62-77 %, 69-79 % and 50-60 % protection against Fusarium oxysporum f.sp melonis (FOM) in melon, Fusarium oxysporum f.sp vasinfectum (FOV) and Verticillium dahliae in cotton, respectively. Since no inhibitory effect of cresotic acid on mycelial growth of these three fungual pathogens was observed in vitro, it is suggested that control of these wilt diseases with cresotic acid resulted from induced resistance. Cresotic acid induced resistance in melon plants not only against race 0, race 1, race 2 and race 1,2, but also against a mixture of these four races of FOM, suggesting a non-race- specific resistance. Level of induced resistance by cresotic acid against FOM depended on inoculum pressure applied to melon plants. At 25 day after inoculation with FOM, percentage protection induced by cresotic acid under low inoculum pressure retained a level of 51 %, while under high inoculum pressure percentage protection decreased to only 10 %. High concentrations of cresotic acid significantly reduced plant growth. Reduction in fresh weight of melon (36-51%) and cotton (42-71%) was obtained with 500-1000 ppm cresotic acid, while only less than 8% reduction occurred with 100-200 ppm. (author)

  3. Mutation of Drosophila dopamine receptor DopR leads to male-male courtship behavior.

    Science.gov (United States)

    Chen, Bin; Liu, He; Ren, Jing; Guo, Aike

    2012-07-06

    In Drosophila, dopamine plays important roles in many biological processes as a neuromodulator. Previous studies showed that dopamine level could affect fly courtship behaviors. Disturbed dopamine level leads to abnormal courtship behavior in two different ways. Dopamine up-regulation induces male-male courtship behavior, while down-regulation of dopamine level results in increased sexual attractiveness of males towards other male flies. Until now, the identity of the dopamine receptor involved in this abnormal male-male courtship behavior remains unknown. Here we used genetic approaches to investigate the role of dopamine receptors in fly courtship behavior. We found that a dopamine D1-like receptor, DopR, was involved in fly courtship behavior. DopR mutant male flies display male-male courtship behavior. This behavior is mainly due to the male's increased propensity to court other males. Expression of functional DopR successfully rescued this mutant phenotype. Knock-down of D2-like receptor D2R and another D1-like receptor, DAMB, did not induce male-male courtship behavior, indicating the receptor-type specificity of this phenomenon. Our findings provide insight into a possible link between dopamine level disturbance and the induced male-male courtship behavior. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Biaxial fatigue crack propagation behavior of perfluorosulfonic-acid membranes

    Science.gov (United States)

    Lin, Qiang; Shi, Shouwen; Wang, Lei; Chen, Xu; Chen, Gang

    2018-04-01

    Perfluorosulfonic-acid membranes have long been used as the typical electrolyte for polymer-electrolyte fuel cells, which not only transport proton and water but also serve as barriers to prevent reactants mixing. However, too often the structural integrity of perfluorosulfonic-acid membranes is impaired by membrane thinning or cracks/pinholes formation induced by mechanical and chemical degradations. Despite the increasing number of studies that report crack formation, such as crack size and shape, the underlying mechanism and driving forces have not been well explored. In this paper, the fatigue crack propagation behaviors of Nafion membranes subjected to biaxial loading conditions have been investigated. In particular, the fatigue crack growth rates of flat cracks in responses to different loading conditions are compared, and the impact of transverse stress on fatigue crack growth rate is clarified. In addition, the crack paths for slant cracks under both uniaxial and biaxial loading conditions are discussed, which are similar in geometry to those found after accelerated stress testing of fuel cells. The directions of initial crack propagation are calculated theoretically and compared with experimental observations, which are in good agreement. The findings reported here lays the foundation for understanding of mechanical failure of membranes.

  5. Brain structural abnormalities in behavior therapy-resistant obsessive-compulsive disorder revealed by voxel-based morphometry

    Directory of Open Access Journals (Sweden)

    Hashimoto N

    2014-10-01

    Full Text Available Nobuhiko Hashimoto,1 Shutaro Nakaaki,2 Akiko Kawaguchi,1 Junko Sato,1 Harumasa Kasai,3 Takashi Nakamae,4 Jin Narumoto,4 Jun Miyata,5 Toshi A Furukawa,6,7 Masaru Mimura2 1Department of Psychiatry and Cognitive-Behavioral Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan; 2Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan; 3Department of Central Radiology, Nagoya City University Hospital, Nagoya, Japan; 4Department of Psychiatry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan; 5Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan; 6Department of Health Promotion and Human Behavior, 7Department of Clinical Epidemiology, Kyoto University Graduate School of Medicine/School of Public Health, Kyoto, Japan Background: Although several functional imaging studies have demonstrated that behavior therapy (BT modifies the neural circuits involved in the pathogenesis of obsessive-compulsive disorder (OCD, the structural abnormalities underlying BT-resistant OCD remain unknown. Methods: In this study, we examined the existence of regional structural abnormalities in both the gray matter and the white matter of patients with OCD at baseline using voxel-based morphometry in responders (n=24 and nonresponders (n=15 to subsequent BT. Three-dimensional T1-weighted magnetic resonance imaging was performed before the completion of 12 weeks of BT. Results: Relative to the responders, the nonresponders exhibited significantly smaller gray matter volumes in the right ventromedial prefrontal cortex, the right orbitofrontal cortex, the right precentral gyrus, and the left anterior cingulate cortex. In addition, relative to the responders, the nonresponders exhibited significantly smaller white matter volumes in the left cingulate bundle and the left superior frontal white matter. Conclusion: These results suggest that the brain

  6. Gamma-tubulin-containing abnormal centrioles are induced by insufficient Plk4 in human HCT116 colorectal cancer cells.

    Science.gov (United States)

    Kuriyama, Ryoko; Bettencourt-Dias, Monica; Hoffmann, Ingrid; Arnold, Marc; Sandvig, Lisa

    2009-06-15

    Cancer cells frequently induce aberrant centrosomes, which have been implicated in cancer initiation and progression. Human colorectal cancer cells, HCT116, contain aberrant centrioles composed of disorganized cylindrical microtubules and displaced appendages. These cells also express unique centrosome-related structures associated with a subset of centrosomal components, including gamma-tubulin, centrin and PCM1. During hydroxyurea treatment, these abnormal structures become more abundant and undergo a change in shape from small dots to elongated fibers. Although gamma-tubulin seems to exist as a ring complex, the abnormal structures do not support microtubule nucleation. Several lines of evidence suggest that the fibers correspond to a disorganized form of centriolar microtubules. Plk4, a mammalian homolog of ZYG-1 essential for initiation of centriole biogenesis, is not associated with the gamma-tubulin-specific abnormal centrosomes. The amount of Plk4 at each centrosome was less in cells with abnormal centrosomes than cells without gamma-tubulin-specific abnormal centrosomes. In addition, the formation of abnormal structures was abolished by expression of exogenous Plk4, but not SAS6 and Cep135/Bld10p, which are downstream regulators required for the organization of nine-triplet microtubules. These results suggest that HCT116 cells fail to organize the ninefold symmetry of centrioles due to insufficient Plk4.

  7. Safety analyses for transient behavior of plasma and in-vessel components during plasma abnormal events in fusion reactor

    International Nuclear Information System (INIS)

    Honda, Takuro; Okazaki, Takashi; Bartels, H.W.; Uckan, N.A.; Seki, Yasushi.

    1997-01-01

    Safety analyses on plasma abnormal events have been performed using a hybrid code of a plasma dynamics model and a heat transfer model of in-vessel components. Several abnormal events, e.g., increase in fueling rate, were selected for the International Thermonuclear Experimental Reactor (ITER) and transient behavior of the plasma and the invessel components during the events was analyzed. The physics model for safety analysis was conservatively prepared. In most cases, the plasma is terminated by a disruption or it returns to the original operation point. When the energy confinement improves by a factor of 2.0 in the steady state, which is a hypothetical assumption under the present plasma data, the maximum fusion power reaches about 3.3 GW at about 3.6 s and the plasma is terminated due to a disruption. However, the results obtained in this study show the confinement boundary of ITER can be kept almost intact during the abnormal plasma transients, as long as the cooling system works normally. Several parametric studies are needed to comprehend the overpower transient including structure behavior, since many uncertainties are connected to the filed of the plasma physics. And, future work will need to discuss the burn control scenario considering confinement mode transition, system specifications, experimental plans and safety regulations, etc. to confirm the safety related to the plasma anomaly. (author)

  8. Hypergravity-induced altered behavior in Drosophila

    Science.gov (United States)

    Hosamani, Ravikumar; Wan, Judy; Marcu, Oana; Bhattacharya, Sharmila

    2012-07-01

    Microgravity and mechanical stress are important factors of the spaceflight environment, and affect astronaut health and behavior. Structural, functional, and behavioral mechanisms of all cells and organisms are adapted to Earth's gravitational force, 1G, while altered gravity can pose challenges to their adaptability to this new environment. On ground, hypergravity paradigms have been used to predict and complement studies on microgravity. Even small changes that take place at a molecular and genetic level during altered gravity may result in changes in phenotypic behavior. Drosophila provides a robust and simple, yet very reliable model system to understand the complexity of hypergravity-induced altered behavior, due to availability of a plethora of genetic tools. Locomotor behavior is a sensitive parameter that reflects the array of molecular adaptive mechanisms recruited during exposure to altered gravity. Thus, understanding the genetic basis of this behavior in a hypergravity environment could potentially extend our understanding of mechanisms of adaptation in microgravity. In our laboratory we are trying to dissect out the cellular and molecular mechanisms underlying hypergravity-induced oxidative stress, and its potential consequences on behavioral alterations by using Drosophila as a model system. In the present study, we employed pan-neuronal and mushroom body specific knock-down adult flies by using Gal4/UAS system to express inverted repeat transgenes (RNAi) to monitor and quantify the hypergravity-induced behavior in Drosophila. We established that acute hypergravity (3G for 60 min) causes a significant and robust decrease in the locomotor behavior in adult Drosophila, and that this change is dependent on genes related to Parkinson's disease, such as DJ-1α , DJ-1β , and parkin. In addition, we also showed that anatomically the control of this behavior is significantly processed in the mushroom body region of the fly brain. This work links a molecular

  9. Early postnatal treatment with clomipramine induces female sexual behavior and estrous cycle impairment.

    Science.gov (United States)

    Molina-Jiménez, Tania; Limón-Morales, Ofelia; Bonilla-Jaime, Herlinda

    2018-03-01

    Administration of clomipramine (CMI), a tricyclic antidepressant, in early stages of development in rats, is considered an animal model for the study of depression. This pharmacological manipulation has induced behavioral and physiological alterations, i.e., less pleasure-seeking behaviors, despair, hyperactivity, cognitive dysfunction, alterations in neurotransmitter systems and in HPA axis. These abnormalities in adult male rats are similar to the symptoms observed in major depressive disorders. One of the main pleasure-seeking behaviors affected in male rats treated with CMI is sexual behavior. However, to date, no effects of early postnatal CMI treatment have been reported on female reproductive cyclicity and sexual behavior. Therefore, we explored CMI administration in early life (8-21 PN) on the estrous cycle and sexual behavior of adult female rats. Compared to the rats in the early postnatal saline treatment (CTRL group), the CMI rats had fewer estrous cycles, fewer days in the estrous stage, and longer cycles during a 20-day period of vaginal cytology analysis. On the behavioral test, the CMI rats displayed fewer proceptive behaviors (hopping, darting) and had lower lordosis quotients. Also, they usually failed to display lordosis and only rarely manifested marginal or normal lordosis. In contrast, the CTRL rats tended to display normal lordosis. These results suggest that early postnatal CMI treatment caused long-term disruptions of the estrous cycle and female sexual behavior, perhaps by alteration in the hypothalamic-pituitary-gonadal (HPG) axes and in neuronal circuits involved in the regulation of the performance and motivational of sexual behavior as the noradrenergic and serotonergic systems. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Photoperiodism and crassulacean acid metabolism : I. Immunological and kinetic evidences for different patterns of phosphoenolpyruvate carboxylase isoforms in photoperiodically inducible and non-inducible Crassulacean acid metabolism plants.

    Science.gov (United States)

    Brulfert, J; Müller, D; Kluge, M; Queiroz, O

    1982-05-01

    Plants of Kalanchoe blossfeldiana v. Poelln. Tom Thumb and Sedum morganianum E. Walth. were grown under controlled photoperiodic conditions under either short or long days. Gaz exchange measurements confirmed that in K. blossfeldiana Crassulacean acid metabolism (CAM) was photoperiodically inducible and that S. morganianum performed CAM independently of photoperiod. With K. blossfeldiana, a comparison of catalytic and regulatory properties of phosphoenolpyruvate carboxylase (PEPC, EC 4.1.1.31) from short-day and long-day grown plants showed differences, but not with S. morganianum. Ouchterlony double diffusion tests and immunotitration experiments (using a S. morganianum PEPC antibody) established that CAM is induced in K. blossfeldiana-but not in S. morganianum-through the synthesis of a new PEPC isoform; this form shows an immunological behavior different from that prevailing under non-inductive conditions and can be considered as specific for CAM performance.

  11. [Underlying Mechanisms of Methamphetamine-Induced Self-Injurious Behavior and Lethal Effects in Mice].

    Science.gov (United States)

    Mori, Tomohisa; Sawaguchi, Toshiko

    2018-01-01

    Relatively high doses of psychostimulants induce neurotoxicity on the dopaminergic system and self-injurious behavior (SIB) in rodents. However the underlying neuronal mechanisms of SIB remains unclear. Dopamine receptor antagonists, N-methyl-D-aspartic acid (NMDA) receptor antagonists, Nitric Oxide Synthase (NOS) inhibitors and free radical scavengers significantly attenuate methamphetamine-induced SIB. These findings indicate that activation of dopamine as well as NMDA receptors followed by radical formation and oxidative stress, especially when mediated by NOS activation, is associated with methamphetamine-induced SIB. On the other hand, an increase in the incidence of polydrug abuse is a major problem worldwide. Coadministered methamphetamine and morphine induced lethality in more than 80% in mice, accompanied by an increase in the number of poly (ADP-ribose) polymerase (PARP)-immunoreactive cells in the heart, kidney and liver. The lethal effect and the increase in the incidence of rupture or PARP-immunoreactive cells induced by the coadministration of methamphetamine and morphine were significantly attenuated by pretreatment with a phospholipase A2 inhibitor or a radical scavenger, or by cooling of body from 30 to 90 min after drug administration. These results suggest that free radicals play an important role in the increased lethality induced by the coadministration of methamphetamine and morphine. Therefore, free radical scavengers and cooling are beneficial for preventing death that is induced by the coadministration of methamphetamine and morphine. These findings may help us better understand for masochistic behavior, which is a clinical phenomenon on SIB, as well as polydrug-abuse-induced acute toxicity.

  12. Ameliorative effects of polyunsaturated fatty acids against palmitic acid-induced insulin resistance in L6 skeletal muscle cells

    Directory of Open Access Journals (Sweden)

    Sawada Keisuke

    2012-03-01

    Full Text Available Abstract Background Fatty acid-induced insulin resistance and impaired glucose uptake activity in muscle cells are fundamental events in the development of type 2 diabetes and hyperglycemia. There is an increasing demand for compounds including drugs and functional foods that can prevent myocellular insulin resistance. Methods In this study, we established a high-throughput assay to screen for compounds that can improve myocellular insulin resistance, which was based on a previously reported non-radioisotope 2-deoxyglucose (2DG uptake assay. Insulin-resistant muscle cells were prepared by treating rat L6 skeletal muscle cells with 750 μM palmitic acid for 14 h. Using the established assay, the impacts of several fatty acids on myocellular insulin resistance were determined. Results In normal L6 cells, treatment with saturated palmitic or stearic acid alone decreased 2DG uptake, whereas unsaturated fatty acids did not. Moreover, co-treatment with oleic acid canceled the palmitic acid-induced decrease in 2DG uptake activity. Using the developed assay with palmitic acid-induced insulin-resistant L6 cells, we determined the effects of other unsaturated fatty acids. We found that arachidonic, eicosapentaenoic and docosahexaenoic acids improved palmitic acid-decreased 2DG uptake at lower concentrations than the other unsaturated fatty acids, including oleic acid, as 10 μM arachidonic acid showed similar effects to 750 μM oleic acid. Conclusions We have found that polyunsaturated fatty acids, in particular arachidonic and eicosapentaenoic acids prevent palmitic acid-induced myocellular insulin resistance.

  13. Gender difference following high cholesterol diet induced renal injury and the protective role of rutin and ascorbic acid combination in Wistar albino rats

    Science.gov (United States)

    2012-01-01

    Background An increased interest is given to the impact of high fat diet on health worldwide. Abnormalities in lipid metabolism induced by high cholesterol diet (HCD) were reported to exacerbate renal diseases via oxidative stress pathways. Rutin and ascorbic acid showed a protective role against oxidative stress-mediated diseases. Furthermore, both lipid metabolism and tissue response to oxidative stress damage was found to vary according to animal gender. Thus, the objective of this work was to examine possible gender-related differences and the possible protective effects of rutin and ascorbic acid supplementation on high cholesterol diet induced nephrotoxicity. Methods 96 young male and female Wistar albino rats were used. HCD supplemented animals were treated with rutin alone or in combination with ascorbic acid for 6 weeks. Creatinine plasma level was estimated. Furthermore, kidney levels of nucleic acids, total protein, malondialdehyde (MDA), reduced glutathione (GSH), total cholesterol, and triglycerides were determined. Finally, kidney tissues were used for histopathological examination. Results HCD supplementation decreased kidney level of nucleic acids, which was more prominent in female animals. Both vitamin combination significantly attenuated HCD induced decrease in nucleic acids. Moreover, kidney level of MDA was significantly altered by HCD in both genders, which was inhibited by rutin and ascorbic acid alone or in combination in male groups and by both vitamins in female groups. There was a reduction in kidney level of GSH by HCD, especially in male groups, which was attenuated by rutin and ascorbic acid combination. Kidney levels of total cholesterol and triglycerides were significantly increased by HCD supplementation in both genders. Coadministration with rutin and/or ascorbic acid protected from such increase, which was more obvious in both vitamins combination. Histopathological investigation supported vitamins protective effect, which was

  14. Gender difference following high cholesterol diet induced renal injury and the protective role of rutin and ascorbic acid combination in Wistar albino rats.

    Science.gov (United States)

    Al-Rejaie, Salim Salih; Abuohashish, Hatem Mustafa; Alkhamees, Osama Abdelrahman; Aleisa, Abdulaziz Mohammed; Alroujayee, Abdulaziz S

    2012-03-16

    An increased interest is given to the impact of high fat diet on health worldwide. Abnormalities in lipid metabolism induced by high cholesterol diet (HCD) were reported to exacerbate renal diseases via oxidative stress pathways. Rutin and ascorbic acid showed a protective role against oxidative stress-mediated diseases. Furthermore, both lipid metabolism and tissue response to oxidative stress damage was found to vary according to animal gender. Thus, the objective of this work was to examine possible gender-related differences and the possible protective effects of rutin and ascorbic acid supplementation on high cholesterol diet induced nephrotoxicity. 96 young male and female Wistar albino rats were used. HCD supplemented animals were treated with rutin alone or in combination with ascorbic acid for 6 weeks. Creatinine plasma level was estimated. Furthermore, kidney levels of nucleic acids, total protein, malondialdehyde (MDA), reduced glutathione (GSH), total cholesterol, and triglycerides were determined. Finally, kidney tissues were used for histopathological examination. HCD supplementation decreased kidney level of nucleic acids, which was more prominent in female animals. Both vitamin combination significantly attenuated HCD induced decrease in nucleic acids. Moreover, kidney level of MDA was significantly altered by HCD in both genders, which was inhibited by rutin and ascorbic acid alone or in combination in male groups and by both vitamins in female groups. There was a reduction in kidney level of GSH by HCD, especially in male groups, which was attenuated by rutin and ascorbic acid combination. Kidney levels of total cholesterol and triglycerides were significantly increased by HCD supplementation in both genders. Coadministration with rutin and/or ascorbic acid protected from such increase, which was more obvious in both vitamins combination. Histopathological investigation supported vitamins protective effect, which was more prominent in male

  15. Gender difference following high cholesterol diet induced renal injury and the protective role of rutin and ascorbic acid combination in Wistar albino rats

    Directory of Open Access Journals (Sweden)

    Al-Rejaie Salim

    2012-03-01

    Full Text Available Abstract Background An increased interest is given to the impact of high fat diet on health worldwide. Abnormalities in lipid metabolism induced by high cholesterol diet (HCD were reported to exacerbate renal diseases via oxidative stress pathways. Rutin and ascorbic acid showed a protective role against oxidative stress-mediated diseases. Furthermore, both lipid metabolism and tissue response to oxidative stress damage was found to vary according to animal gender. Thus, the objective of this work was to examine possible gender-related differences and the possible protective effects of rutin and ascorbic acid supplementation on high cholesterol diet induced nephrotoxicity. Methods 96 young male and female Wistar albino rats were used. HCD supplemented animals were treated with rutin alone or in combination with ascorbic acid for 6 weeks. Creatinine plasma level was estimated. Furthermore, kidney levels of nucleic acids, total protein, malondialdehyde (MDA, reduced glutathione (GSH, total cholesterol, and triglycerides were determined. Finally, kidney tissues were used for histopathological examination. Results HCD supplementation decreased kidney level of nucleic acids, which was more prominent in female animals. Both vitamin combination significantly attenuated HCD induced decrease in nucleic acids. Moreover, kidney level of MDA was significantly altered by HCD in both genders, which was inhibited by rutin and ascorbic acid alone or in combination in male groups and by both vitamins in female groups. There was a reduction in kidney level of GSH by HCD, especially in male groups, which was attenuated by rutin and ascorbic acid combination. Kidney levels of total cholesterol and triglycerides were significantly increased by HCD supplementation in both genders. Coadministration with rutin and/or ascorbic acid protected from such increase, which was more obvious in both vitamins combination. Histopathological investigation supported vitamins

  16. Abnormal bone formation induced by implantation of osteosarcoma-derived bone-inducing substance in the X-linked hypophosphatemic mouse

    International Nuclear Information System (INIS)

    Yoshikawa, H.; Masuhara, K.; Takaoka, K.; Ono, K.; Tanaka, H.; Seino, Y.

    1985-01-01

    The X-linked hypophosphatemic mouse (Hyp) has been proposed as a model for the human familial hypophosphatemia (the most common form of vitamin D-resistant rickets). An osteosarcoma-derived bone-inducing substance was subcutaneously implanted into the Hyp mouse. The implant was consistently replaced by cartilage tissue at 2 weeks after implantation. The cartilage matrix seemed to be normal, according to the histological examination, and 35sulphur ( 35 S) uptake was also normal. Up to 4 weeks after implantation the cartilage matrix was completely replaced by unmineralized bone matrix and hematopoietic bone marrow. Osteoid tissue arising from the implantation of bone inducing substance in the Hyp mouse showed no radiologic or histologic sign of calcification. These findings suggest that the abnormalities of endochondral ossification in the Hyp mouse might be characterized by the failure of mineralization in cartilage and bone matrix. Analysis of the effects of bone-inducing substance on the Hyp mouse may help to give greater insight into the mechanism and treatment of human familial hypophosphatemia

  17. Mechanisms of chemotherapy-induced behavioral toxicities

    Directory of Open Access Journals (Sweden)

    Elisabeth G Vichaya

    2015-04-01

    Full Text Available While chemotherapeutic agents have yielded relative success in the treatment of cancer, patients are often plagued with unwanted and even debilitating side-effects from the treatment which can lead to dose reduction or even cessation of treatment. Common side effects (symptoms of chemotherapy include (i cognitive deficiencies such as problems with attention, memory and executive functioning; (ii fatigue and motivational deficit; and (iii neuropathy. These symptoms often develop during treatment but can remain even after cessation of chemotherapy, severely impacting long-term quality of life. Little is known about the underlying mechanisms responsible for the development of these behavioral toxicities, however, neuroinflammation is widely considered to be one of the major mechanisms responsible for chemotherapy-induced symptoms. Here, we critically assess what is known in regards to the role of neuroinflammation in chemotherapy-induced symptoms. We also argue that, based on the available evidence neuroinflammation is unlikely the only mechanism involved in the pathogenesis of chemotherapy-induced behavioral toxicities. We evaluate two other putative candidate mechanisms. To this end we discuss the mediating role of damage-associated molecular patterns (DAMPs activated in response to chemotherapy-induced cellular damage. We also review the literature with respect to possible alternative mechanisms such as a chemotherapy-induced change in the bioenergetic status of the tissue involving changes in mitochondrial function in relation to chemotherapy-induced behavioral toxicities. Understanding the mechanisms that underlie the emergence of fatigue, neuropathy, and cognitive difficulties is vital to better treatment and long-term survival of cancer patients.

  18. Hypochlorous and peracetic acid induced oxidation of dairy proteins.

    Science.gov (United States)

    Kerkaert, Barbara; Mestdagh, Frédéric; Cucu, Tatiana; Aedo, Philip Roger; Ling, Shen Yan; De Meulenaer, Bruno

    2011-02-09

    Hypochlorous and peracetic acids, both known disinfectants in the food industry, were compared for their oxidative capacity toward dairy proteins. Whey proteins and caseins were oxidized under well controlled conditions at pH 8 as a function of the sanitizing concentration. Different markers for protein oxidation were monitored. The results established that the protein carbonyl content was a rather unspecific marker for protein oxidation, which did not allow one to differentiate the oxidant used especially at the lower concentrations. Cysteine, tryptophan, and methionine were proven to be the most vulnerable amino acids for degradation upon hypochlorous and peracetic acid treatment, while tyrosine was only prone to degradation in the presence of hypochlorous acid. Hypochlorous acid induced oxidation gave rise to protein aggregation, while during peracetic acid induced oxidation, no high molecular weight aggregates were observed. Protein aggregation upon hypochlorous acid oxidation could primarily be linked to tryptophan and tyrosine degradation.

  19. Mapping photothermally induced gene expression in living cells and tissues by nanorod-locked nucleic acid complexes.

    Science.gov (United States)

    Riahi, Reza; Wang, Shue; Long, Min; Li, Na; Chiou, Pei-Yu; Zhang, Donna D; Wong, Pak Kin

    2014-04-22

    The photothermal effect of plasmonic nanostructures has numerous applications, such as cancer therapy, photonic gene circuit, large cargo delivery, and nanostructure-enhanced laser tweezers. The photothermal operation can also induce unwanted physical and biochemical effects, which potentially alter the cell behaviors. However, there is a lack of techniques for characterizing the dynamic cell responses near the site of photothermal operation with high spatiotemporal resolution. In this work, we show that the incorporation of locked nucleic acid probes with gold nanorods allows photothermal manipulation and real-time monitoring of gene expression near the area of irradiation in living cells and animal tissues. The multimodal gold nanorod serves as an endocytic delivery reagent to transport the probes into the cells, a fluorescence quencher and a binding competitor to detect intracellular mRNA, and a plasmonic photothermal transducer to induce cell ablation. We demonstrate the ability of the gold nanorod-locked nucleic acid complex for detecting the spatiotemporal gene expression in viable cells and tissues and inducing photothermal ablation of single cells. Using the gold nanorod-locked nucleic acid complex, we systematically characterize the dynamic cellular heat shock responses near the site of photothermal operation. The gold nanorod-locked nucleic acid complex enables mapping of intracellular gene expressions and analyzes the photothermal effects of nanostructures toward various biomedical applications.

  20. Retinoic acid modulation of ultraviolet light-induced epidermal ornithine decarboxylase activity

    International Nuclear Information System (INIS)

    Lowe, N.J.; Breeding, J.

    1982-01-01

    Irradiation of skin with ultraviolet light of sunburn range (UVB) leads to a large and rapid induction of the polyamine biosynthetic enzyme ornithine decarboxylase in the epidermis. Induction of epidermal ornithine decarboxylase also occurs following application of the tumor promoting agent 12-0-tetradecanoylphorbol-13 acetate and topical retinoic acid is able to block both this ornithine decarboxylase induction and skin tumor promotion. In the studies described below, topical application of retinoic acid to hairless mouse skin leads to a significant inhibition of UVB-induced epidermal ornithine decarboxylase activity. The degree of this inhibition was dependent on the dose, timing, and frequency of the application of retinoic acid. To show significant inhibition of UVB-induced ornithine decarboxylase the retinoic acid had to be applied within 5 hr of UVB irradiation. If retinoic acid treatment was delayed beyond 7 hr following UVB, then no inhibition of UVB-induced ornithine decarboxylase was observed. The quantities of retinoic acid used (1.7 nmol and 3.4 nmol) have been shown effective at inhibiting 12-0-tetradecanoyl phorbol-13 acetate induced ornithine decarboxylase. The results show that these concentrations of topical retinoic acid applied either before or immediately following UVB irradiation reduces the UVB induction of epidermal ornithine decarboxylase. The effect of retinoic acid in these regimens on UVB-induced skin carcinogenesis is currently under study

  1. Low-Frequency rTMS Ameliorates Autistic-Like Behaviors in Rats Induced by Neonatal Isolation Through Regulating the Synaptic GABA Transmission

    Directory of Open Access Journals (Sweden)

    Tao Tan

    2018-02-01

    Full Text Available Patients with autism spectrum disorder (ASD display abnormalities in neuronal development, synaptic function and neural circuits. The imbalance of excitatory and inhibitory (E/I synaptic transmission has been proposed to cause the main behavioral characteristics of ASD. Repetitive transcranial magnetic stimulation (rTMS can directly or indirectly induce excitability and synaptic plasticity changes in the brain noninvasively. However, whether rTMS can ameliorate autistic-like behaviors in animal model via regulating the balance of E/I synaptic transmission is unknown. By using our recent reported animal model with autistic-like behaviors induced by neonatal isolation (postnatal days 1–9, we found that low-frequency rTMS (LF-rTMS, 1 Hz treatment for 2 weeks effectively alleviated the acquired autistic-like symptoms, as reflected by an increase in social interaction and decrease in self-grooming, anxiety- and depressive-like behaviors in young adult rats compared to those in untreated animals. Furthermore, the amelioration in autistic-like behavior was accompanied by a restoration of the balance between E/I activity, especially at the level of synaptic transmission and receptors in synaptosomes. These findings indicated that LF-rTMS may alleviate the symptoms of ASD-like behaviors caused by neonatal isolation through regulating the synaptic GABA transmission, suggesting that LF-rTMS may be a potential therapeutic technique to treat ASD.

  2. Gestational flu exposure induces changes in neurochemicals, affiliative hormones and brainstem inflammation, in addition to autism-like behaviors in mice.

    Science.gov (United States)

    Miller, V M; Zhu, Y; Bucher, C; McGinnis, W; Ryan, L K; Siegel, A; Zalcman, S

    2013-10-01

    The prevalence of neurodevelopmental disorders such as autism is increasing, however the etiology of these disorders is unclear and thought to involve a combination of genetic, environmental and immune factors. A recent epidemiological study found that gestational viral exposure during the first trimester increases risk of autism in offspring by twofold. In mice gestational viral exposures alter behavior of offspring, but the biological mechanisms which underpin these behavioral changes are unclear. We hypothesized that gestational viral exposure induces changes in affiliative hormones, brainstem autonomic nuclei and neurotransmitters which are associated with behavioral alterations in offspring. To address this hypothesis, we exposed pregnant mice to influenza A virus (H3N2) on gestational day 9 and determined behavioral, hormonal and brainstem changes in male and female offspring. We found that gestational flu exposure induced dose-dependent alterations in social and aggressive behaviors (p≤0.05) in male and female offspring and increases in locomotor behaviors particularly in male offspring (p≤0.05). We found that flu exposure was also associated with reductions in oxytocin and serotonin (p≤0.05) levels in male and female offspring and sex-specific changes in dopamine metabolism. In addition we found changes in catecholaminergic and microglia density in brainstem tissues of male flu exposed offspring only (p≤0.05). This study demonstrates that gestational viral exposure induces behavioral changes in mice, which are associated with alterations in affiliative hormones. In addition we found sex-specific changes in locomotor behavior, which may be associated with sex-specific alterations in dopamine metabolism and brainstem inflammation. Further investigations into maternal immune responses are necessary to unravel the molecular mechanisms which underpin abnormal hormonal, immune and behavioral responses in offspring after gestational viral exposure

  3. Excitatory amino acid transmitters in epilepsy.

    Science.gov (United States)

    Meldrum, B S

    1991-01-01

    For the majority of human epilepsy syndromes, the molecular and cellular basis for the epileptic activity remains largely conjectural. The principal hypotheses currently concern: defects in membrane ionic conductances or transport mechanisms; defects in gamma-aminobutyric acid (GABA)-mediated inhibitory processes; and enhanced or abnormal excitatory synaptic action. Substantial evidence exists in humans and animals for acquired abnormalities in excitatory amino acid neurotransmission that may participate in the abnormal patterns of neuronal discharge, and this could provide the morphological basis for a recurrent excitatory pathway sustaining seizure discharges in temporal lobe epilepsy. In practice, two approaches appear significant in the suppression of seizures. One is to act postsynaptically on receptors to decrease the excitation induced by glutamate, and the other is to decrease synaptic release of glutamate and aspartate. Agents acting upon adenosine or GABAB receptors decrease glutamate release in vitro but do not have significant anticonvulsant activity, probably because of their predominant actions at other sites. Lamotrigine blocks stimulated release of glutamate and shows anticonvulsant activity in a wide range of animal models.

  4. Psychological stress exposure to aged mice causes abnormal feeding patterns with changes in the bout number.

    Science.gov (United States)

    Yamada, Chihiro; Mogami, Sachiko; Hattori, Tomohisa

    2017-11-09

    Stress responses are affected by aging. However, studies on stress-related changes in feeding patterns with aging subject are minimal. We investigated feeding patterns induced by two psychological stress models, revealing characteristics of stress-induced feeding patterns as "meal" and "bout" (defined as the minimum feeding behavior parameters) in aged mice. Feeding behaviors of C57BL/6J mice were monitored for 24 h by an automatic monitoring device. Novelty stress reduced the meal amount over the 24 h in both young and aged mice, but as a result of a time course study it was persistent in aged mice. In addition, the decreased bout number was more pronounced in aged mice than in young mice. The 24-h meal and bout parameters did not change in either the young or aged mice following water avoidance stress (WAS). However, the meal amount and bout number increased in aged mice for 0-6 h after WAS exposure but remained unchanged in young mice. Our findings suggest that changes in bout number may lead to abnormal stress-related feeding patterns and may be one tool for evaluating eating abnormality in aged mice.

  5. Mildly abnormal general movement quality in infants is associated with higher Mead acid and lower arachidonic acid and shows a U-shaped relation with the DHA/AA ratio.

    Science.gov (United States)

    van Goor, S A; Schaafsma, A; Erwich, J J H M; Dijck-Brouwer, D A J; Muskiet, F A J

    2010-01-01

    We showed that docosahexaenoic acid (DHA) supplementation during pregnancy and lactation was associated with more mildly abnormal (MA) general movements (GMs) in the infants. Since this finding was unexpected and inter-individual DHA intakes are highly variable, we explored the relationship between GM quality and erythrocyte DHA, arachidonic acid (AA), DHA/AA and Mead acid in 57 infants of this trial. MA GMs were inversely related to AA, associated with Mead acid, and associated with DHA/AA in a U-shaped manner. These relationships may indicate dependence of newborn AA status on synthesis from linoleic acid. This becomes restricted during the intrauterine period by abundant de novo synthesis of oleic and Mead acids from glucose, consistent with reduced insulin sensitivity during the third trimester. The descending part of the U-shaped relation between MA GMs and DHA/AA probably indicates DHA shortage next to AA shortage. The ascending part may reflect a different developmental trajectory that is not necessarily unfavorable. Copyright 2009 Elsevier Ltd. All rights reserved.

  6. Cysteamine attenuates the decreases in TrkB protein levels and the anxiety/depression-like behaviors in mice induced by corticosterone treatment.

    Directory of Open Access Journals (Sweden)

    Ammar Kutiyanawalla

    Full Text Available OBJECTIVE: Stress and glucocorticoid hormones, which are released into the circulation following stressful experiences, have been shown to contribute significantly to the manifestation of anxiety-like behaviors observed in many neuropsychiatric disorders. Brain-derived neurotrophic factor (BDNF signaling through its receptor TrkB plays an important role in stress-mediated changes in structural as well as functional neuroplasticity. Studies designed to elucidate the mechanisms whereby TrkB signaling is regulated in chronic stress might provide valuable information for the development of new therapeutic strategies for several stress-related psychiatric disorders. MATERIALS AND METHODS: We examined the potential of cysteamine, a neuroprotective compound to attenuate anxiety and depression like behaviors in a mouse model of anxiety/depression induced by chronic corticosterone exposure. RESULTS: Cysteamine administration (150 mg/kg/day, through drinking water for 21 days significantly ameliorated chronic corticosterone-induced decreases in TrkB protein levels in frontal cortex and hippocampus. Furthermore, cysteamine treatment reversed the anxiety and depression like behavioral abnormalities induced by chronic corticosterone treatment. Finally, mice deficient in TrkB, showed a reduced response to cysteamine in behavioral tests, suggesting that TrkB signaling plays an important role in the antidepressant effects of cysteamine. CONCLUSIONS: The animal studies described here highlight the potential use of cysteamine as a novel therapeutic strategy for glucocorticoid-related symptoms of psychiatric disorders.

  7. Selective cerebral perfusion prevents abnormalities in glutamate cycling and neuronal apoptosis in a model of infant deep hypothermic circulatory arrest and reperfusion.

    Science.gov (United States)

    Kajimoto, Masaki; Ledee, Dolena R; Olson, Aaron K; Isern, Nancy G; Robillard-Frayne, Isabelle; Des Rosiers, Christine; Portman, Michael A

    2016-11-01

    Deep hypothermic circulatory arrest is often required for the repair of complex congenital cardiac defects in infants. However, deep hypothermic circulatory arrest induces neuroapoptosis associated with later development of neurocognitive abnormalities. Selective cerebral perfusion theoretically provides superior neural protection possibly through modifications in cerebral substrate oxidation and closely integrated glutamate cycling. We tested the hypothesis that selective cerebral perfusion modulates glucose utilization, and ameliorates abnormalities in glutamate flux, which occur in association with neuroapoptosis during deep hypothermic circulatory arrest. Eighteen infant male Yorkshire piglets were assigned randomly to two groups of seven (deep hypothermic circulatory arrest or deep hypothermic circulatory arrest with selective cerebral perfusion for 60 minutes at 18℃) and four control pigs without cardiopulmonary bypass support. Carbon-13-labeled glucose as a metabolic tracer was infused, and gas chromatography-mass spectrometry and nuclear magnetic resonance were used for metabolic analysis in the frontal cortex. Following 2.5 h of cerebral reperfusion, we observed similar cerebral adenosine triphosphate levels, absolute levels of lactate and citric acid cycle intermediates, and carbon-13 enrichment among three groups. However, deep hypothermic circulatory arrest induced significant abnormalities in glutamate cycling resulting in reduced glutamate/glutamine and elevated γ-aminobutyric acid/glutamate along with neuroapoptosis, which were all prevented by selective cerebral perfusion. The data suggest that selective cerebral perfusion prevents these modifications in glutamate/glutamine/γ-aminobutyric acid cycling and protects the cerebral cortex from apoptosis. © The Author(s) 2016.

  8. Alleviation of metabolic abnormalities induced by excessive fructose administration in Wistar rats by Spirulina maxima.

    Science.gov (United States)

    Jarouliya, Urmila; Zacharia, J Anish; Kumar, Pravin; Bisen, P S; Prasad, G B K S

    2012-03-01

    Diabetes mellitus is a metabolic disorder characterized by hyperglycaemia. Several natural products have been isolated and identified to restore the complications of diabetes. Spirulina maxima is naturally occurring fresh water cyanobacterium, enriched with proteins and essential nutrients. The aim of the study was to determine whether S. maxima could serve as a therapeutic agent to correct metabolic abnormalities induced by excessive fructose administration in Wistar rats. Oral administration of 10 per cent fructose solution to Wistar rats (n = 5 in each group) for 30 days resulted in hyperglycaemia and hyperlipidaemia. Aqueous suspension of S. maxima (5 or 10%) was also administered orally once daily for 30 days. The therapeutic potential of the preparation with reference to metformin (500 mg/kg) was assessed by monitoring various biochemical parameters at 10 day intervals during the course of therapy and at the end of 30 days S. maxima administration. Significant (Pmaxima aquous extract. Co-administration of S. maxima extract (5 or 10% aqueous) with 10 per cent fructose solution offered a significant protection against fructose induced metabolic abnormalities in Wistar rats. The present findings showed that S. maxima exhibited anti-hyperglycaemic, anti-hyperlipidaemic and hepatoprotective activity in rats fed with fructose. Further studies are needed to understand the mechanisms.

  9. Behavioral, Pharmacological, and Immunological Abnormalities after Streptococcal Exposure: A Novel Rat Model of Sydenham Chorea and Related Neuropsychiatric Disorders

    Science.gov (United States)

    Brimberg, Lior; Benhar, Itai; Mascaro-Blanco, Adita; Alvarez, Kathy; Lotan, Dafna; Winter, Christine; Klein, Julia; Moses, Allon E; Somnier, Finn E; Leckman, James F; Swedo, Susan E; Cunningham, Madeleine W; Joel, Daphna

    2012-01-01

    Group A streptococcal (GAS) infections and autoimmunity are associated with the onset of a spectrum of neuropsychiatric disorders in children, with the prototypical disorder being Sydenham chorea (SC). Our aim was to develop an animal model that resembled the behavioral, pharmacological, and immunological abnormalities of SC and other streptococcal-related neuropsychiatric disorders. Male Lewis rats exposed to GAS antigen exhibited motor symptoms (impaired food manipulation and beam walking) and compulsive behavior (increased induced-grooming). These symptoms were alleviated by the D2 blocker haloperidol and the selective serotonin reuptake inhibitor paroxetine, respectively, drugs that are used to treat motor symptoms and compulsions in streptococcal-related neuropsychiatric disorders. Streptococcal exposure resulted in antibody deposition in the striatum, thalamus, and frontal cortex, and concomitant alterations in dopamine and glutamate levels in cortex and basal ganglia, consistent with the known pathophysiology of SC and related neuropsychiatric disorders. Autoantibodies (IgG) of GAS rats reacted with tubulin and caused elevated calcium/calmodulin-dependent protein kinase II signaling in SK-N-SH neuronal cells, as previously found with sera from SC and related neuropsychiatric disorders. Our new animal model translates directly to human disease and led us to discover autoantibodies targeted against dopamine D1 and D2 receptors in the rat model as well as in SC and other streptococcal-related neuropsychiatric disorders. PMID:22534626

  10. Study on the abnormalities in sperm and gene mutation induced by retention of 147Pm in testis

    International Nuclear Information System (INIS)

    Zhu Shoupeng; Lun Mingyue; Yang Shuqin

    1990-05-01

    The purpose of the present study is to ascertain 147 Pm retention in testis and its radiogenotoxicological effects of gene mutation through varying radioactivities of internal exposure. Especially the accumulation of 147 Pm in testis induces the dominant lethal, dominant skeletal mutation and abnormalities in sperm. Studies indicated that the cumulative absorption dose in testis increases as the internal exposure of 147 Pm increases. The internal exposure of 147 Pm can destroy the genetic materials and raise the rates of dominant lethal and dominant mutation of skeletal abnormalities in the offspring. The relationship between the rate of dominant skeletal mutation (B) and accumulated radioactivities of 147 Pm (D) in testis can be described by a linear equation that is B 20.68 + 35.48 D. The relationship between abnormalities of the sperm and the cumulative dose from 147 Pm in testis can be expressed by the following equation: S = 10.8705 D 0.5224 + 3.1768

  11. Influence of humic acids on the migration behavior of radioactive and non-radioactive substances under conditions close to nature. Synthesis, radiometric determination of functional groups, complexation

    International Nuclear Information System (INIS)

    Pompe, S.; Bubner, M.; Schmeide, K.; Heise, K.H.; Bernhard, G.; Nitsche, H.

    2000-04-01

    The interaction behavior of humic acids with uranium(VI) and the influence of humic substances on the migration behavior of uranium was investigated. A main focus of this work was the synthesis of four different humic acid model substances and their characterization and comparison to the natural humic acid from Aldrich. A radiometric method for the determination of humic acid functional groups was applied in addition to conventional methods for the determination of the functionality of humic acids. The humic acid model substances show functional and structural properties comparable to natural humic acids. Modified humic acids with blocked phenolic OH were synthesized to determine the influence of phenolic OH groups on the complexation behavior of humic acids. A synthesis method for 14 C-labeled humic acids with high specific activity was developed. The complexation behavior of synthetic and natural humic acids with uranium(VI) was investigated by X-ray absorption spectroscopy, laser-induced fluorescence spectroscopy and FTIR spectroscopy. The synthetic model substances show an interaction behavior with uranium(VI) that is comparable to natural humic acids. This points to the fact that the synthetic humic acids simulate the functionality of their natural analogues very well. For the first time the influence of phenolic OH groups on the complexation behavior of humic acids was investigated by applying a modified humic acid with blocked phenolic OH groups. The formation of a uranyl hydroxy humate complex was identified by laserspectroscopic investigations of the complexation of Aldrich humic acid with uranium(VI) at pH7. The migration behavior of uranium in a sandy aquifer system rich in humic substances was investigated in column experiments. A part of uranium migrates non-retarded through the sediment, bound to humic colloids. The uranium migration behavior is strongly influenced by the kinetically controlled interaction processes of uranium with the humic colloids

  12. Low oleic acid-derived repression of jasmonic acid-inducible defense responses requires the WRKY50 and WRKY51 proteins

    Science.gov (United States)

    Signaling induced upon a reduction in oleic acid (18:1) levels simultaneously up-regulates salicylic acid (SA)-mediated responses and inhibits jasmonic acid (JA)-inducible defenses, resulting in enhanced resistance to biotrophs but increased susceptibility to necrotrophs. SA and the signaling compon...

  13. Cortical stimulation evokes abnormal responses in the dopamine-depleted rat basal ganglia.

    Science.gov (United States)

    Kita, Hitoshi; Kita, Takako

    2011-07-13

    The motor cortex (MC) sends massive projections to the basal ganglia. Motor disabilities in patients and animal models of Parkinson's disease (PD) may be caused by dopamine (DA)-depleted basal ganglia that abnormally process the information originating from MC. To study how DA depletion alters signal transfer in the basal ganglia, MC stimulation-induced (MC-induced) unitary responses were recorded from the basal ganglia of control and 6-hydroxydopamine-treated hemi-parkinsonian rats anesthetized with isoflurane. This report describes new findings about how DA depletion alters MC-induced responses. MC stimulation evokes an excitation in normally quiescent striatal (Str) neurons projecting to the globus pallidus external segment (GPe). After DA-depletion, the spontaneous firing of Str-GPe neurons increases, and MC stimulation evokes a shorter latency excitation followed by a long-lasting inhibition that was invisible under normal conditions. The increased firing activity and the newly exposed long inhibition generate tonic inhibition and a disfacilitation in GPe. The disfacilitation in GPe is then amplified in basal ganglia circuitry and generates a powerful long inhibition in the basal ganglia output nucleus, the globus pallidus internal segment. Intra-Str injections of a behaviorally effective dose of DA precursor l-3,4-dihydroxyphenylalanine effectively reversed these changes. These newly observed mechanisms also support the generation of pauses and burst activity commonly observed in the basal ganglia of parkinsonian subjects. These results suggest that the generation of abnormal response sequences in the basal ganglia contributes to the development of motor disabilities in PD and that intra-Str DA supplements effectively suppress abnormal signal transfer.

  14. Ultraviolet B irradiation induces changes in the distribution and release of arachidonic acid, dihomo-gamma-linolenic acid, and eicosapentaenoic acid in human keratinocytes in culture

    International Nuclear Information System (INIS)

    Punnonen, K.; Puustinen, T.; Jansen, C.T.

    1987-01-01

    There is increasing evidence that derivatives of 20-carbon polyunsaturated fatty acids, the eicosanoids, play an important role in the inflammatory responses of the human skin. To better understand the metabolic fate of fatty acids in the skin, the effect of ultraviolet B (UVB) irradiation (280-320 nm) on the distribution and release of 14 C-labeled arachidonic acid, dihomo-gamma-linolenic acid, and eicosapentaenoic acid in human keratinocytes in culture was investigated. Ultraviolet B irradiation induced the release of all three 14 C-labeled fatty acids from the phospholipids, especially from phosphatidylethanolamine, and this was accompanied by increased labeling of the nonphosphorus lipids. This finding suggests that UVB induces a significant liberation of eicosanoid precursor fatty acids from cellular phospholipids, but the liberated fatty acids are largely reincorporated into the nonphosphorus lipids. In conclusion, the present study suggests that not only arachidonic acid but also dihomo-gamma-linolenic acid, and eicosapentaenoic acid might be involved in the UVB irradiation-induced inflammatory reactions of human skin

  15. Inhibition of Tanshinone IIA, Salvianolic Acid A and Salvianolic Acid B on Areca Nut Extract-Induced Oral Submucous Fibrosis in Vitro

    Directory of Open Access Journals (Sweden)

    Jian-Ping Dai

    2015-04-01

    Full Text Available Salvia miltiorrhiza Bunge has been reported to possess excellent antifibrotic activity. In this study, we have investigated the effect and mechanism of tanshinone IIA (Tan-IIA, salvianolic acid A (Sal-A and salvianolic acid B (Sal-B, the important active compounds of Salvia miltiorrhiza Bunge, on areca nut extract (ANE-induced oral submucous fibrosis (OSF in vitro. Through human procollagen gene promoter luciferase reporter plasmid assay, hydroxyproline assay, gelatin zymography assay, qRT-PCR, ELISA and Western blot assay, the influence of these three compounds on ANE-stimulated cell viability, collagen accumulation, procollagen gene transcription, MMP-2/-9 activity, MMP-1/-13 and TIMP-1/-2 expression, cytokine secretion and the activation of PI3K/AKT, ERK/JNK/p38 MAPK and TGF-β/Smads pathways were detected. The results showed that Tan-IIA, Sal-A and Sal-B could significantly inhibit the ANE-stimulated abnormal viability and collagen accumulation of mice oral mucosal fibroblasts (MOMFs, inhibit the transcription of procollagen gene COL1A1 and COL3A1, increase MMP-2/-9 activity, decrease TIMP-1/-2 expression and inhibit the transcription and release of CTGF, TGF-β1, IL-6 and TNF-α; Tan-IIA, Sal-A and Sal-B also inhibited the ANE-induced activation of AKT and ERK MAPK pathways in MOMFs and the activation of TGF-β/Smads pathway in HaCaT cells. In conclusion, Tan-IIA, Sal-A and Sal-B possess excellent antifibrotic activity in vitro and can possibly be used to promote the rehabilitation of OSF patients.

  16. Protective effects of ebselen (Ebs) and para-aminosalicylic acid (PAS) against manganese (Mn)-induced neurotoxicity

    Energy Technology Data Exchange (ETDEWEB)

    Marreilha dos Santos, A.P., E-mail: apsantos@ff.ul.pt [I-Med.UL, Department of Toxicology and Food Sciences, Faculty of Pharmacy, University of Lisbon, Lisbon (Portugal); Lucas, Rui L.; Andrade, Vanda; Mateus, M. Luísa [I-Med.UL, Department of Toxicology and Food Sciences, Faculty of Pharmacy, University of Lisbon, Lisbon (Portugal); Milatovic, Dejan; Aschner, Michael [Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232 (United States); Batoreu, M. Camila [I-Med.UL, Department of Toxicology and Food Sciences, Faculty of Pharmacy, University of Lisbon, Lisbon (Portugal)

    2012-02-01

    Chronic, excessive exposure to manganese (Mn) may induce neurotoxicity and cause an irreversible brain disease, referred to as manganism. Efficacious therapies for the treatment of Mn are lacking, mandating the development of new interventions. The purpose of the present study was to investigate the efficacy of ebselen (Ebs) and para-aminosalicylic acid (PAS) in attenuating the neurotoxic effects of Mn in an in vivo rat model. Exposure biomarkers, inflammatory and oxidative stress biomarkers, as well as behavioral parameters were evaluated. Co-treatment with Mn plus Ebs or Mn plus PAS caused a significant decrease in blood and brain Mn concentrations (compared to rats treated with Mn alone), concomitant with reduced brain E{sub 2} prostaglandin (PGE{sub 2}) and enhanced brain glutathione (GSH) levels, decreased serum prolactin (PRL) levels, and increased ambulation and rearing activities. Taken together, these results establish that both PAS and Ebs are efficacious in reducing Mn body burden, neuroinflammation, oxidative stress and locomotor activity impairments in a rat model of Mn-induced toxicity. -- Highlights: ► The manuscript is unique in its approach to the neurotoxicity of Mn. ► The manuscript incorporates molecular, cellular and functional (behavioral) analyses. ► Both PAS and Ebs are effective in restoring Mn behavioral function. ► Both PAS and Ebs are effective in reducing Mn-induced oxidative stress. ► Both PAS and Ebs led to a decrease in Mn-induced neuro-inflammation.

  17. Protective effects of ebselen (Ebs) and para-aminosalicylic acid (PAS) against manganese (Mn)-induced neurotoxicity

    International Nuclear Information System (INIS)

    Marreilha dos Santos, A.P.; Lucas, Rui L.; Andrade, Vanda; Mateus, M. Luísa; Milatovic, Dejan; Aschner, Michael; Batoreu, M. Camila

    2012-01-01

    Chronic, excessive exposure to manganese (Mn) may induce neurotoxicity and cause an irreversible brain disease, referred to as manganism. Efficacious therapies for the treatment of Mn are lacking, mandating the development of new interventions. The purpose of the present study was to investigate the efficacy of ebselen (Ebs) and para-aminosalicylic acid (PAS) in attenuating the neurotoxic effects of Mn in an in vivo rat model. Exposure biomarkers, inflammatory and oxidative stress biomarkers, as well as behavioral parameters were evaluated. Co-treatment with Mn plus Ebs or Mn plus PAS caused a significant decrease in blood and brain Mn concentrations (compared to rats treated with Mn alone), concomitant with reduced brain E 2 prostaglandin (PGE 2 ) and enhanced brain glutathione (GSH) levels, decreased serum prolactin (PRL) levels, and increased ambulation and rearing activities. Taken together, these results establish that both PAS and Ebs are efficacious in reducing Mn body burden, neuroinflammation, oxidative stress and locomotor activity impairments in a rat model of Mn-induced toxicity. -- Highlights: ► The manuscript is unique in its approach to the neurotoxicity of Mn. ► The manuscript incorporates molecular, cellular and functional (behavioral) analyses. ► Both PAS and Ebs are effective in restoring Mn behavioral function. ► Both PAS and Ebs are effective in reducing Mn-induced oxidative stress. ► Both PAS and Ebs led to a decrease in Mn-induced neuro-inflammation.

  18. Induced pollen sterility in petunia. Mode of inheritance and tapetal behavior

    International Nuclear Information System (INIS)

    Singh, I.S.

    1975-01-01

    A study was undertaken to investigate the characteristics of different mutants for induced pollen sterility in Petunia hybrida Hort. The F 1 hybrid zygotes (TL-h 1 #female# x Sf-la #male#) were exposed to a 0.2% solution of ethyl methane sulfonate and to 0.75kR of 60 Co gamma rays. Their seeds were sown and pollen sterile plants were observed in the M 1 . The pattern of inheritance in the F 2 and the backcrosses of some selected pollen sterile M 1 mutants showed that sterility mutations had been induced. Whether the mutations are recessive or dominant is not yet known, but it has been shown that they act through the sporophytic tissues. Morphological and cytological observations on four highly sterile M 1 plants showed a similar abnormal behavior of the tapetum. The tapetum of the pollen sterile anthers was thicker, more vacuolated and did persist until a later stage than those in fertile anthers. It is suggested that the persistence of the tapetum after a certain stage blocks the trophic process required for the development of the microspore into viable pollen, and the cause of pollen abortion is sporophytic even when no inheritance of the sterility is observed [fr

  19. Ghrelin mediates stress-induced food-reward behavior in mice.

    Science.gov (United States)

    Chuang, Jen-Chieh; Perello, Mario; Sakata, Ichiro; Osborne-Lawrence, Sherri; Savitt, Joseph M; Lutter, Michael; Zigman, Jeffrey M

    2011-07-01

    The popular media and personal anecdotes are rich with examples of stress-induced eating of calorically dense "comfort foods." Such behavioral reactions likely contribute to the increased prevalence of obesity in humans experiencing chronic stress or atypical depression. However, the molecular substrates and neurocircuits controlling the complex behaviors responsible for stress-based eating remain mostly unknown, and few animal models have been described for probing the mechanisms orchestrating this response. Here, we describe a system in which food-reward behavior, assessed using a conditioned place preference (CPP) task, is monitored in mice after exposure to chronic social defeat stress (CSDS), a model of prolonged psychosocial stress, featuring aspects of major depression and posttraumatic stress disorder. Under this regime, CSDS increased both CPP for and intake of high-fat diet, and stress-induced food-reward behavior was dependent on signaling by the peptide hormone ghrelin. Also, signaling specifically in catecholaminergic neurons mediated not only ghrelin's orexigenic, antidepressant-like, and food-reward behavioral effects, but also was sufficient to mediate stress-induced food-reward behavior. Thus, this mouse model has allowed us to ascribe a role for ghrelin-engaged catecholaminergic neurons in stress-induced eating.

  20. Water-lactose behavior as a function of concentration and presence of lactic acid in lactose model systems.

    Science.gov (United States)

    Wijayasinghe, Rangani; Vasiljevic, Todor; Chandrapala, Jayani

    2015-12-01

    The presence of high amounts of lactic acid in acid whey restricts its ability to be further processed because lactose appears to remain in its amorphous form. A systematic study is lacking in this regard especially during the concentration step. Hence, the main aim of the study was to establish the structure and behavior of water molecules surrounding lactose in the presence of 1% (wt/wt) lactic acid at a concentration up to 50% (wt/wt). Furthermore, the crystallization nature of freeze-dried lactose with or without lactic acid was established using differential scanning calorimetry and Fourier transform infrared spectroscopy. Two mechanisms were proposed to describe the behavior of water molecules around lactose molecules during the concentration of pure lactose and lactose solutions with lactic acid. Pure lactose solution exhibited a water evaporation enthalpy of ~679 J·g(-1), whereas lactose+ lactic acid solution resulted in ~965 J·g(-1) at a 50% (wt/wt) concentration. This indicates a greater energy requirement for water removal around lactose in the presence of lactic acid. Higher crystallization temperatures were observed with the presence of lactic acid, indicating a delay in crystallization. Furthermore, less crystalline lactose (~12%) was obtained in the presence of lactic acid, indicating high amorphous nature compared with pure lactose where ~50% crystallinity was obtained. The Fourier transform infrared spectra revealed that the strong hydration layer consisting lactic acid and H3O(+) ions surrounded lactose molecules via strong H bonds, which restricted water mobility, induced a change in structure of lactose, or both, creating unfavorable conditions for lactose crystallization. Thus, partial or complete removal of lactic acid from acid whey may be the first step toward improving the ability of acid whey to be processed. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  1. Valproic Acid Induced Hyperammonaemic Encephalopathy

    International Nuclear Information System (INIS)

    Amanat, S.; Shahbaz, N.; Hassan, Y.

    2013-01-01

    Objective: To observe clinical and laboratory features of valproic acid-induced hyperammonaemic encephalopathy in patients taking valproic acid. Methods: Observational study was conducted at the Neurology Department, Dow University of Health Sciences, Civil Hospital, Karachi, from February 26, 2010 to March 20, 2011. Ten patients on valproic acid therapy of any age group with idiopathic or secondary epilepsy, who presented with encephalopathic symptoms, were registered and followed up during the study. Serum ammonia level, serum valproic acid level, liver function test, cerebrospinal fluid examination, electroencephalogram and brain imaging of all the patients were done. Other causes of encephalopathy were excluded after clinical and appropriate laboratory investigations. Microsoft Excel 2007 was used for statistical analysis. Results: Hyperammonaemia was found in all patients with encephalopathic symptoms. Rise in serum ammonia was independent of dose and serum level of valproic acid. Liver function was also found to be normal in 80% (n=8) of the patients. Valproic acid was withdrawn in all patients. Three (30%) patients improved only after the withdrawal of valproic acid. Six (60%) patients improved after L-Carnitine replacement, one (10%) after sodium benzoate. On followup, serum ammonia had reduced to normal in five (50%) patients and to more than half of the baseline level in two (20%) patients. Three (30%) patients were lost to followup after complete clinical improvement. Conclusion: Within therapeutic dose and serum levels, valproic acid can cause symptomatic hyperammonaemia resulting in encephalopathy. All patients taking valproic acid presenting with encephalopathic symptoms must be monitored for the condition. (author)

  2. The medical management of abnormal uterine bleeding in reproductive-aged women.

    Science.gov (United States)

    Bradley, Linda D; Gueye, Ndeye-Aicha

    2016-01-01

    In the treatment of women with abnormal uterine bleeding, once a thorough history, physical examination, and indicated imaging studies are performed and all significant structural causes are excluded, medical management is the first-line approach. Determining the acuity of the bleeding, the patient's medical history, assessing risk factors, and establishing a diagnosis will individualize their medical regimen. In acute abnormal uterine bleeding with a normal uterus, parenteral estrogen, a multidose combined oral contraceptive regimen, a multidose progestin-only regimen, and tranexamic acid are all viable options, given the appropriate clinical scenario. Heavy menstrual bleeding can be treated with a levonorgestrel-releasing intrauterine system, combined oral contraceptives, continuous oral progestins, and tranexamic acid with high efficacy. Nonsteroidal antiinflammatory drugs may be utilized with hormonal methods and tranexamic acid to decrease menstrual bleeding. Gonadotropin-releasing hormone agonists are indicated in patients with leiomyoma and abnormal uterine bleeding in preparation for surgical interventions. In women with inherited bleeding disorders all hormonal methods as well as tranexamic acid can be used to treat abnormal uterine bleeding. Women on anticoagulation therapy should consider using progestin-only methods as well as a gonadotropin-releasing hormone agonist to treat their heavy menstrual bleeding. Given these myriad options for medical treatment of abnormal uterine bleeding, many patients may avoid surgical intervention. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Oxytocin attenuates deficits in social interaction but not recognition memory in a prenatal valproic acid-induced mouse model of autism.

    Science.gov (United States)

    Hara, Yuta; Ago, Yukio; Higuchi, Momoko; Hasebe, Shigeru; Nakazawa, Takanobu; Hashimoto, Hitoshi; Matsuda, Toshio; Takuma, Kazuhiro

    2017-11-01

    Recent studies have reported that oxytocin ameliorates behavioral abnormalities in both animal models and individuals with autism spectrum disorders (ASD). However, the mechanisms underlying the ameliorating effects of oxytocin remain unclear. In this study, we examined the effects of intranasal oxytocin on impairments in social interaction and recognition memory in an ASD mouse model in which animals are prenatally exposed to valproic acid (VPA). We found that a single intranasal administration of oxytocin restored social interaction deficits for up to 2h in mice prenatally exposed to VPA, but there was no effect on recognition memory impairments. Additionally, administration of oxytocin across 2weeks improved prenatal VPA-induced social interaction deficits for at least 24h. In contrast, there were no effects on the time spent sniffing in control mice. Immunohistochemical analysis revealed that intranasal administration of oxytocin increased c-Fos expression in the paraventricular nuclei (PVN), prefrontal cortex, and somatosensory cortex, but not the hippocampal CA1 and CA3 regions of VPA-exposed mice, suggesting the former regions may underlie the effects of oxytocin. These findings suggest that oxytocin attenuates social interaction deficits through the activation of higher cortical areas and the PVN in an ASD mouse model. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Disruption of motor behavior and injury to the CNS induced by 3-thienylboronic acid in mice

    Energy Technology Data Exchange (ETDEWEB)

    Farfán-García, E.D.; Pérez-Rodríguez, M. [Academias de Fisiología Humana, Bioquímica y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, 11340 Ciudad de México (Mexico); Espinosa-García, C. [Departamento de Biología de la Reproducción, Universidad Autónoma Metropolitana (UAM), 09310 Ciudad de México (Mexico); Castillo-Mendieta, N.T.; Maldonado-Castro, M.; Querejeta, E.; Trujillo-Ferrara, J.G. [Academias de Fisiología Humana, Bioquímica y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, 11340 Ciudad de México (Mexico); and others

    2016-09-15

    The scarcity of studies on boron containing compounds (BCC) in the medicinal field is gradually being remedied. Efforts have been made to explore the effects of BCCs due to the properties that boron confers to molecules. Research has shown that the safety of some BCCs is similar to that found for boron-free compounds (judging from the acute toxicological evaluation). However, it has been observed that the administration of 3-thienylboronic acid (3TB) induced motor disruption in CD1 mice. In the current contribution we studied in deeper form the disruption of motor performance produced by the intraperitoneal administration of 3TB in mice from two strains (CD1 and C57BL6). Disruption of motor activity was dependent not only on the dose of 3TB administered, but also on the DMSO concentration in the vehicle. The ability of 3TB to enter the Central Nervous System (CNS) was evidenced by Raman spectroscopy as well as morphological effects on the CNS, such as loss of neurons yielding biased injury to the substantia nigra and striatum at doses ≥ 200 mg/kg, and involving granular cell damage at doses of 400 mg/kg but less injury in the motor cortex. Our work acquaints about the use of this compound in drug design, but the interesting profile as neurotoxic agent invite us to study it regarding the damage on the motor system. - Highlights: • Intraperitoneal 3-thienylboronic acid (3TB) induces tremor in CD1 or C57BL6 mice. • Injury on CNS as well as motor disruption is dose-dependent. • Damage is greater in basal ganglia than in cerebellum or motor cortex. • The DMSO as vehicle plays a key role in the induced effect. • Motor disruption seems to involve basal ganglia and cerebellum damage.

  5. Disruption of motor behavior and injury to the CNS induced by 3-thienylboronic acid in mice

    International Nuclear Information System (INIS)

    Farfán-García, E.D.; Pérez-Rodríguez, M.; Espinosa-García, C.; Castillo-Mendieta, N.T.; Maldonado-Castro, M.; Querejeta, E.; Trujillo-Ferrara, J.G.

    2016-01-01

    The scarcity of studies on boron containing compounds (BCC) in the medicinal field is gradually being remedied. Efforts have been made to explore the effects of BCCs due to the properties that boron confers to molecules. Research has shown that the safety of some BCCs is similar to that found for boron-free compounds (judging from the acute toxicological evaluation). However, it has been observed that the administration of 3-thienylboronic acid (3TB) induced motor disruption in CD1 mice. In the current contribution we studied in deeper form the disruption of motor performance produced by the intraperitoneal administration of 3TB in mice from two strains (CD1 and C57BL6). Disruption of motor activity was dependent not only on the dose of 3TB administered, but also on the DMSO concentration in the vehicle. The ability of 3TB to enter the Central Nervous System (CNS) was evidenced by Raman spectroscopy as well as morphological effects on the CNS, such as loss of neurons yielding biased injury to the substantia nigra and striatum at doses ≥ 200 mg/kg, and involving granular cell damage at doses of 400 mg/kg but less injury in the motor cortex. Our work acquaints about the use of this compound in drug design, but the interesting profile as neurotoxic agent invite us to study it regarding the damage on the motor system. - Highlights: • Intraperitoneal 3-thienylboronic acid (3TB) induces tremor in CD1 or C57BL6 mice. • Injury on CNS as well as motor disruption is dose-dependent. • Damage is greater in basal ganglia than in cerebellum or motor cortex. • The DMSO as vehicle plays a key role in the induced effect. • Motor disruption seems to involve basal ganglia and cerebellum damage.

  6. Neuroprotective potential of quercetin in combination with piperine against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced neurotoxicity

    Directory of Open Access Journals (Sweden)

    Shamsher Singh

    2017-01-01

    Full Text Available 1-Methy-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP is a neurotoxin that selectively damages dopaminergic neurons in the substantia nigra pars compacta and induces Parkinson's like symptoms in rodents. Quercetin (QC is a natural polyphenolic bioflavonoid with potent antioxidant and anti-inflammatory properties but lacks of clinical attraction due to low oral bioavailability. Piperine is a well established bioavailability enhancer used pre-clinically to improve the bioavailability of antioxidants (e.g., Quercetin. Therefore, the present study was designed to evaluate the neuroprotective potential of QC together with piperine against MPTP-induced neurotoxicity in rats. MPTP (100 μg/μL/rat, bilaterally was injected intranigrally on days 1, 4 and 7 using a digital stereotaxic apparatus. QC (25 and 50 mg/kg, intragastrically and QC (25 mg/kg, intragastrically in combination with piperine (2.5 mg/kg, intragastrically were administered daily for 14 days starting from day 8 after the 3rd injection of MPTP. On day 22, animals were sacrificed and the striatum was isolated for oxidative stress parameter (thiobarbituric acid reactive substances, nitrite and glutathione, neuroinflammatory cytokine (interleukin-1β, interleukin-6, and tumor necrosis factor-α and neurotransmitter (dopamine, norepinephrine, serotonin, gamma-aminobutyric acid, glutamate, 3,4-dihydroxyphenylacetic acid, homovanillic acid, and 5-hydroxyindoleacetic acid evaluations. Bilateral infusion of MPTP into substantia nigra pars compacta led to significant motor deficits as evidenced by impairments in locomotor activity and rotarod performance in open field test and grip strength and narrow beam walk performance. Both QC (25 and 50 mg/kg and QC (25 mg/kg in combination with piperine (2.5 mg/kg, in particular the combination therapy, significantly improved MPTP-induced behavioral abnormalities in rats, reversed the abnormal alterations of neurotransmitters in the striatum, and alleviated

  7. The use of docosahexaenoic acid supplementation to ameliorate the hyperactivity of rat pups induced by in utero ethanol exposure

    OpenAIRE

    Furuya, Hiroyuki; Aikawa, Hiroyuki; Yoshida, Takahiko; Okazaki, Isao

    2000-01-01

    It has been demonstrated thatin utero ethanol (EtOH) exposure induces hyperactive behavior and learning disturbances in offspring. In order to investigate the effects of docosahexaenoic acid (DHA) on these neurobehavioral dysfunctions of rat pups induced byin utero EtOH exposure, pregnant Wistar rats were divided into four treatment groups depending on the type of oil added to the diet and drinking water as follows; (a) 5% safflower oil with tap water (TW/n-6), (b) 3% safflower oil and 2% DHA...

  8. The hydroxylated form of docosahexaenoic acid (DHA-H) modifies the brain lipid composition in a model of Alzheimer's disease, improving behavioral motor function and survival.

    Science.gov (United States)

    Mohaibes, Raheem J; Fiol-deRoque, María A; Torres, Manuel; Ordinas, Margarita; López, David J; Castro, José A; Escribá, Pablo V; Busquets, Xavier

    2017-09-01

    We have compared the effect of the commonly used ω-3 fatty acid, docosahexaenoic acid ethyl ester (DHA-EE), and of its 2-hydroxylated DHA form (DHA-H), on brain lipid composition, behavior and lifespan in a new human transgenic Drosophila melanogaster model of Alzheimer's disease (AD). The transgenic flies expressed human Aβ42 and tau, and the overexpression of these human transgenes in the CNS of these flies produced progressive defects in motor function (antigeotaxic behavior) while reducing the animal's lifespan. Here, we demonstrate that both DHA-EE and DHA-H increase the longer chain fatty acids (≥18C) species in the heads of the flies, although only DHA-H produced an unknown chromatographic peak that corresponded to a non-hydroxylated lipid. In addition, only treatment with DHA-H prevented the abnormal climbing behavior and enhanced the lifespan of these transgenic flies. These benefits of DHA-H were confirmed in the well characterized transgenic PS1/APP mouse model of familial AD (5xFAD mice), mice that develop defects in spatial learning and in memory, as well as behavioral deficits. Hence, it appears that the modulation of brain lipid composition by DHA-H could have remedial effects on AD associated neurodegeneration. This article is part of a Special Issue entitled: Membrane Lipid Therapy: Drugs Targeting Biomembranes edited by Pablo V. Escribá. Copyright © 2017. Published by Elsevier B.V.

  9. Pre-cold stress increases acid stress resistance and induces amino ...

    African Journals Online (AJOL)

    Pre-cold stress increases acid stress resistance and induces amino acid homeostasis in Lactococcus lactis NZ9000. ... Purpose: To investigate the effects of pre-cold stress treatments on subsequent acid stress resistance ... from 32 Countries:.

  10. Cyclosporine A and palmitic acid treatment synergistically induce cytotoxicity in HepG2 cells

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Yi, E-mail: yi.luo@pfizer.com; Rana, Payal; Will, Yvonne

    2012-06-01

    Immunosuppressant cyclosporine A (CsA) treatment can cause severe side effects. Patients taking immunosuppressant after organ transplantation often display hyperlipidemia and obesity. Elevated levels of free fatty acids have been linked to the etiology of metabolic syndromes, nonalcoholic fatty liver and steatohepatitis. The contribution of free fatty acids to CsA-induced toxicity is not known. In this study we explored the effect of palmitic acid on CsA-induced toxicity in HepG2 cells. CsA by itself at therapeutic exposure levels did not induce detectible cytotoxicity in HepG2 cells. Co-treatment of palmitic acid and CsA resulted in a dose dependent increase in cytotoxicity, suggesting that fatty acid could sensitize cells to CsA-induced cytotoxicity at the therapeutic doses of CsA. A synergized induction of caspase-3/7 activity was also observed, indicating that apoptosis may contribute to the cytotoxicity. We demonstrated that CsA reduced cellular oxygen consumption which was further exacerbated by palmitic acid, implicating that impaired mitochondrial respiration might be an underlying mechanism for the enhanced toxicity. Inhibition of c-Jun N-terminal kinase (JNK) attenuated palmitic acid and CsA induced toxicity, suggesting that JNK activation plays an important role in mediating the enhanced palmitic acid/CsA-induced toxicity. Our data suggest that elevated FFA levels, especially saturated FFA such as palmitic acid, may be predisposing factors for CsA toxicity, and patients with underlying diseases that would elevate free fatty acids may be susceptible to CsA-induced toxicity. Furthermore, hyperlipidemia/obesity resulting from immunosuppressive therapy may aggravate CsA-induced toxicity and worsen the outcome in transplant patients. -- Highlights: ► Palmitic acid and cyclosporine (CsA) synergistically increased cytotoxicity. ► The impairment of mitochondrial functions may contribute to the enhanced toxicity. ► Inhibition of JNK activity attenuated

  11. Lysergic acid diethylamide causes photoreceptor cell damage through inducing inflammatory response and oxidative stress.

    Science.gov (United States)

    Hu, Qi-Di; Xu, Ling-Li; Gong, Yan; Wu, Guo-Hai; Wang, Yu-Wen; Wu, Shan-Jun; Zhang, Zhe; Mao, Wei; Zhou, Yu-Sheng; Li, Qin-Bo; Yuan, Jian-Shu

    2018-01-19

    Lysergic acid diethylamide (LSD), a classical hallucinogen, was used as a popular and notorious substance of abuse in various parts of the world. Its abuse could result in long-lasting abnormalities in retina and little is known about the exact mechanism. This study was to investigate the effect of LSD on macrophage activation state at non-toxic concentration and its resultant toxicity to photoreceptor cells. Results showed that cytotoxicity was caused by LSD on 661 W cells after co-culturing with RAW264.7 cells. Treatment with LSD-induced RAW264.7 cells to the M1 phenotype, releasing more pro-inflammatory cytokines, and increasing the M1-related gene expression. Moreover, after co-culturing with RAW264.7 cells, significant oxidative stress in 661 W cells treated with LSD was observed, by increasing the level of malondialdehyde (MDA) and reactive oxygen species (ROS), and decreasing the level of glutathione (GSH) and the activity of superoxide dismutase (SOD). Our study demonstrated that LSD caused photoreceptor cell damage by inducing inflammatory response and resultant oxidative stress, providing the scientific rationale for the toxicity of LSD to retina.

  12. Beneficial effects of lycopene against haloperidol induced orofacial dyskinesia in rats: Possible neurotransmitters and neuroinflammation modulation.

    Science.gov (United States)

    Datta, Swati; Jamwal, Sumit; Deshmukh, Rahul; Kumar, Puneet

    2016-01-15

    Tardive Dyskinesia is a severe side effect of chronic neuroleptic treatment consisting of abnormal involuntary movements, characterized by orofacial dyskinesia. The study was designed to investigate the protective effect of lycopene against haloperidol induced orofacial dyskinesia possibly by neurochemical and neuroinflammatory modulation in rats. Rats were administered with haloperidol (1mg/kg, i.p for 21 days) to induce orofacial dyskinesia. Lycopene (5 and 10mg/kg, p.o) was given daily 1hour before haloperidol treatment for 21 days. Behavioral observations (vacuous chewing movements, tongue protrusions, facial jerking, rotarod activity, grip strength, narrow beam walking) were assessed on 0th, 7th(,) 14th(,) 21st day after haloperidol treatment. On 22nd day, animals were killed and striatum was excised for estimation of biochemical parameters (malondialdehyde, nitrite and endogenous enzyme (GSH), pro-inflammatory cytokines [Tumor necrosis factor, Interleukin 1β, Interleukin 6] and neurotransmitters level (dopamine, serotonin, nor epinephrine, 5-Hydroxyindole acetic acid (5-HIAA), Homovanillic acid, 3,4- dihydroxyphenylacetic acid. Haloperidol treatment for 21 days impaired muscle co-ordination, motor activity and grip strength with an increased in orofacial dyskinetic movements. Further free radical generation increases MDA and nitrite levels, decreasing GSH levels in striatum. Neuroinflammatory markers were significantly increased with decrease in neurotransmitters levels. Lycopene (5 and 10mg/kg, p.o) treatment along with haloperidol significantly attenuated impairment in behavioral, biochemical, neurochemical and neuroinflammatory markers. Results of the present study attributed the therapeutic potential of lycopene in the treatment (prevented or delayed) of typical antipsychotic induced orofacial dyskinesia. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. INTRAHIPPOCAMPAL ADMINISTRATION OF IBOTENIC ACID INDUCED CHOLINERGIC DYSFUNCTION via NR2A/NR2B EXPRESSION: IMPLICATIONS OF RESVERATROL AGAINST ALZHEIMER DISEASE PATHOPHYSIOLOGY

    Directory of Open Access Journals (Sweden)

    Chennakesavan eKarthick

    2016-04-01

    Full Text Available Although several drugs revealed moderate amelioration of symptoms, none of them have sufficient potency to prevent or reverse the progression towards Alzheimer’s disease (AD pathology. Resveratrol (RSV, a polyphenolic compound has shown an outstanding therapeutic effect on a broad spectrum of diseases like age-associated neurodegeneration, inflammation etc. The present study was thus conducted to assess the therapeutic efficacy of RSV in ameliorating the deleterious effects of Ibotenic acid (IBO in male Wistar rats. Stereotactic intrahippocampal administration of IBO (5µg/µl lesioned rats impairs cholinergic transmission, learning and memory performance that is rather related to AD and thus chosen as a suitable model to understand the drug efficacy in preventing AD pathophysiology. Since IBO is an agonist of glutamate, it is expected to exhibit an excitotoxic effect by altering glutamatergic receptors like NMDA receptor. The current study displayed significant alterations in the mRNA expression of NR2A and NR2B subunits of NMDA receptors, and further it is surprising to note that cholinergic receptors decreased in expression particularly α7-nAChR with increased m1AChR. RSV administration (20mg/kg body weight, i.p significantly reduced these changes in IBO induced rats. Glutamatergic and cholinergic receptor alterations were associated with significant changes in the behavioral parameters of rats induced by IBO. While RSV improved spatial learning performance, attenuated immobility and improvised open field activity in IBO induced rats. NR2B activation in the present study might mediate cell death through oxidative stress that form the basis of abnormal behavioral pattern in IBO induced rats. Interestingly, RSV that could efficiently encounter oxidative stress have significantly decreased stress markers viz., nitrite, PCO, and MDA levels by enhancing antioxidant status. Histopathological analysis displayed significant reduction in the

  14. Longxuetongluo Capsule Improves Erythrocyte Function against Lipid Peroxidation and Abnormal Hemorheological Parameters in High Fat Diet-Induced ApoE−/− Mice

    Directory of Open Access Journals (Sweden)

    Jiao Zheng

    2016-01-01

    Full Text Available Chinese dragon’s blood, the red resin of Dracaena cochinchinensis, one of the renowned traditional medicines, has been used to facilitate blood circulation and disperse blood stasis for thousands of years. Phenolic compounds are considered to be responsible for its main biological activities. In this study, total phenolic compounds of Chinese dragon’s blood were made into capsule (Longxuetongluo Capsule, LTC and their effects on the abnormal hemorheological properties were examined by high fat diet (HFD induced ApoE−/− mice. Compared to the model group, LTC recovered the abnormal hemorheological parameters in HFD-induced ApoE−/− mice by reducing whole blood viscosity (WBV at high rate and improving erythrocyte function. In conclusion, LTC could ameliorate erythrocyte deformability and osmotic fragility through the reduction of lipid peroxidation on plasma and erythrocyte membranes in HFD-induced ApoE−/− mice, which supported the traditional uses of Chinese dragon’s blood as an effective agent for improving blood microcirculation in hypercholesterolemia.

  15. Voluntary exercise contributed to an amelioration of abnormal feeding behavior, locomotor activity and ghrelin production concomitantly with a weight reduction in high fat diet-induced obese rats.

    Science.gov (United States)

    Mifune, Hiroharu; Tajiri, Yuji; Nishi, Yoshihiro; Hara, Kento; Iwata, Shimpei; Tokubuchi, Ichiro; Mitsuzono, Ryouichi; Yamada, Kentaro; Kojima, Masayasu

    2015-09-01

    In the present study, effects of voluntary exercise in an obese animal model were investigated in relation to the rhythm of daily activity and ghrelin production. Male Sprague-Dawley rats were fed either a high fat diet (HFD) or a chow diet (CD) from four to 16 weeks old. They were further subdivided into either an exercise group (HFD-Ex, CD-Ex) with a running wheel for three days of every other week or sedentary group (HFD-Se, CD-Se). At 16 weeks old, marked increases in body weight and visceral fat were observed in the HFD-Se group, together with disrupted rhythms of feeding and locomotor activity. The induction of voluntary exercise brought about an effective reduction of weight and fat, and ameliorated abnormal rhythms of activity and feeding in the HFD-Ex rats. Wheel counts as voluntary exercise was greater in HFD-Ex rats than those in CD-Ex rats. The HFD-obese had exhibited a deterioration of ghrelin production, which was restored by the induction of voluntary exercise. These findings demonstrated that abnormal rhythms of feeding and locomotor activity in HFD-obese rats were restored by infrequent voluntary exercise with a concomitant amelioration of the ghrelin production and weight reduction. Because ghrelin is related to food anticipatory activity, it is plausible that ghrelin participates in the circadian rhythm of daily activity including eating behavior. A beneficial effect of voluntary exercise has now been confirmed in terms of the amelioration of the daily rhythms in eating behavior and physical activity in an animal model of obesity. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Neonatal blockade of GABA-A receptors alters behavioral and physiological phenotypes in adult mice.

    Science.gov (United States)

    Salari, Ali-Akbar; Amani, Mohammad

    2017-04-01

    Gamma-aminobutyric acid (GABA) plays an inhibitory role in the mature brain, and has a complex and bidirectional effect in different parts of the immature brain which affects proliferation, migration and differentiation of neurons during development. There is also increasing evidence suggesting that activation or blockade of the GABA-A receptors during early life can induce brain and behavioral abnormalities in adulthood. We investigated whether neonatal blockade of the GABA-A receptors by bicuculline can alter anxiety- and depression-like behaviors, body weight, food intake, corticosterone and testosterone levels in adult mice (postnatal days 80-95). To this end, neonatal mice were treated with either DMSO or bicuculline (70, 150 and 300μg/kg) during postnatal days 7, 9 and 11. When grown to adulthood, mice were exposed to behavioral tests to measure anxiety- (elevated plus-maze and light-dark box) and depression-like behaviors (tail suspension test and forced swim test). Stress-induced serum corticosterone and testosterone levels, body weight and food intake were also evaluated. Neonatal bicuculline exposure at dose of 300μg/kg decreased anxiety-like behavior, stress-induced corticosterone levels and increased testosterone levels, body weight and food intake, without significantly influencing depression-like behavior in adult male mice. However, no significant changes in these parameters were observed in adult females. These findings suggest that neonatal blockade of GABA-A receptors affects anxiety-like behavior, physiological and hormonal parameters in a sex-dependent manner in mice. Taken together, these data corroborate the concept that GABA-A receptors during early life have an important role in programming neurobehavioral phenotypes in adulthood. Copyright © 2017 ISDN. Published by Elsevier Ltd. All rights reserved.

  17. Salvianolic Acid-A Induces Apoptosis, Mitochondrial Membrane ...

    African Journals Online (AJOL)

    using Hoechst 33258 staining. The effect of the compound on mitochondrial membrane potential loss ... Fluorescence microscopy demonstrated that salvianolic acid-A induced dose- dependent ..... aggregation and anticancer properties. It has.

  18. Soybean Aphid Infestation Induces Changes in Fatty Acid Metabolism in Soybean.

    Directory of Open Access Journals (Sweden)

    Charles Kanobe

    Full Text Available The soybean aphid (Aphis glycines Matsumura is one of the most important insect pests of soybeans in the North-central region of the US. It has been hypothesized that aphids avoid effective defenses by inhibition of jasmonate-regulated plant responses. Given the role fatty acids play in jasmonate-induced plant defenses, we analyzed the fatty acid profile of soybean leaves and seeds from aphid-infested plants. Aphid infestation reduced levels of polyunsaturated fatty acids in leaves with a concomitant increase in palmitic acid. In seeds, a reduction in polyunsaturated fatty acids was associated with an increase in stearic acid and oleic acid. Soybean plants challenged with the brown stem rot fungus or with soybean cyst nematodes did not present changes in fatty acid levels in leaves or seeds, indicating that the changes induced by aphids are not a general response to pests. One of the polyunsaturated fatty acids, linolenic acid, is the precursor of jasmonate; thus, these changes in fatty acid metabolism may be examples of "metabolic hijacking" by the aphid to avoid the induction of effective defenses. Based on the changes in fatty acid levels observed in seeds and leaves, we hypothesize that aphids potentially induce interference in the fatty acid desaturation pathway, likely reducing FAD2 and FAD6 activity that leads to a reduction in polyunsaturated fatty acids. Our data support the idea that aphids block jasmonate-dependent defenses by reduction of the hormone precursor.

  19. SmartFABER: Recognizing fine-grained abnormal behaviors for early detection of mild cognitive impairment.

    Science.gov (United States)

    Riboni, Daniele; Bettini, Claudio; Civitarese, Gabriele; Janjua, Zaffar Haider; Helaoui, Rim

    2016-02-01

    In an ageing world population more citizens are at risk of cognitive impairment, with negative consequences on their ability of independent living, quality of life and sustainability of healthcare systems. Cognitive neuroscience researchers have identified behavioral anomalies that are significant indicators of cognitive decline. A general goal is the design of innovative methods and tools for continuously monitoring the functional abilities of the seniors at risk and reporting the behavioral anomalies to the clinicians. SmartFABER is a pervasive system targeting this objective. A non-intrusive sensor network continuously acquires data about the interaction of the senior with the home environment during daily activities. A novel hybrid statistical and knowledge-based technique is used to analyses this data and detect the behavioral anomalies, whose history is presented through a dashboard to the clinicians. Differently from related works, SmartFABER can detect abnormal behaviors at a fine-grained level. We have fully implemented the system and evaluated it using real datasets, partly generated by performing activities in a smart home laboratory, and partly acquired during several months of monitoring of the instrumented home of a senior diagnosed with MCI. Experimental results, including comparisons with other activity recognition techniques, show the effectiveness of SmartFABER in terms of recognition rates. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Tetradecylthioacetic acid prevents high fat diet induced adiposity and insulin resistance

    DEFF Research Database (Denmark)

    Madsen, Lise; Guerre-Millo, Michéle; Flindt, Esben N

    2002-01-01

    Tetradecylthioacetic acid (TTA) is a non-beta-oxidizable fatty acid analog, which potently regulates lipid homeostasis. Here we evaluate the ability of TTA to prevent diet-induced and genetically determined adiposity and insulin resistance. In Wistar rats fed a high fat diet, TTA administration...... completely prevented diet-induced insulin resistance and adiposity. In genetically obese Zucker (fa/fa) rats TTA treatment reduced the epididymal adipose tissue mass and improved insulin sensitivity. All three rodent peroxisome proliferator-activated receptor (PPAR) subtypes were activated by TTA...... that a TTA-induced increase in hepatic fatty acid oxidation and ketogenesis drains fatty acids from blood and extrahepatic tissues and that this contributes significantly to the beneficial effects of TTA on fat mass accumulation and peripheral insulin sensitivity....

  1. Unsaturated fatty acids protect trophoblast cells from saturated fatty acid-induced autophagy defects.

    Science.gov (United States)

    Hong, Ye-Ji; Ahn, Hyo-Ju; Shin, Jongdae; Lee, Joon H; Kim, Jin-Hoi; Park, Hwan-Woo; Lee, Sung Ki

    2018-02-01

    Dysregulated serum fatty acids are associated with a lipotoxic placental environment, which contributes to increased pregnancy complications via altered trophoblast invasion. However, the role of saturated and unsaturated fatty acids in trophoblastic autophagy has yet to be explored. Here, we demonstrated that prolonged exposure of saturated fatty acids interferes with the invasiveness of human extravillous trophoblasts. Saturated fatty acids (but not unsaturated fatty acids) inhibited the fusion of autophagosomes and lysosomes, resulting in the formation of intracellular protein aggregates. Furthermore, when the trophoblast cells were exposed to saturated fatty acids, unsaturated fatty acids counteracted the effects of saturated fatty acids by increasing degradation of autophagic vacuoles. Saturated fatty acids reduced the levels of the matrix metalloproteinases (MMP)-2 and MMP-9, while unsaturated fatty acids maintained their levels. In conclusion, saturated fatty acids induced decreased trophoblast invasion, of which autophagy dysfunction plays a major role. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Inhibition of NAPDH Oxidase 2 (NOX2 Prevents Oxidative Stress and Mitochondrial Abnormalities Caused by Saturated Fat in Cardiomyocytes.

    Directory of Open Access Journals (Sweden)

    Leroy C Joseph

    Full Text Available Obesity and high saturated fat intake increase the risk of heart failure and arrhythmias. The molecular mechanisms are poorly understood. We hypothesized that physiologic levels of saturated fat could increase mitochondrial reactive oxygen species (ROS in cardiomyocytes, leading to abnormalities of calcium homeostasis and mitochondrial function. We investigated the effect of saturated fat on mitochondrial function and calcium homeostasis in isolated ventricular myocytes. The saturated fatty acid palmitate causes a decrease in mitochondrial respiration in cardiomyocytes. Palmitate, but not the monounsaturated fatty acid oleate, causes an increase in both total cellular ROS and mitochondrial ROS. Palmitate depolarizes the mitochondrial inner membrane and causes mitochondrial calcium overload by increasing sarcoplasmic reticulum calcium leak. Inhibitors of PKC or NOX2 prevent mitochondrial dysfunction and the increase in ROS, demonstrating that PKC-NOX2 activation is also required for amplification of palmitate induced-ROS. Cardiomyocytes from mice with genetic deletion of NOX2 do not have palmitate-induced ROS or mitochondrial dysfunction. We conclude that palmitate induces mitochondrial ROS that is amplified by NOX2, causing greater mitochondrial ROS generation and partial depolarization of the mitochondrial inner membrane. The abnormal sarcoplasmic reticulum calcium leak caused by palmitate could promote arrhythmia and heart failure. NOX2 inhibition is a potential therapy for heart disease caused by diabetes or obesity.

  3. Glucocorticoid Antagonism Reduces Insulin Resistance and Associated Lipid Abnormalities in High-Fructose-Fed Mice.

    Science.gov (United States)

    Priyadarshini, Emayavaramban; Anuradha, Carani Venkatraman

    2017-02-01

    High intake of dietary fructose causes perturbation in lipid metabolism and provokes lipid-induced insulin resistance. A rise in glucocorticoids (GCs) has recently been suggested to be involved in fructose-induced insulin resistance. The objective of the study was to investigate the effect of GC blockade on lipid abnormalities in insulin-resistant mice. Insulin resistance was induced in mice by administering a high-fructose diet (HFrD) for 60 days. Mifepristone (RU486), a GC antagonist, was administered to HFrD-fed mice for the last 18 days, and the intracellular and extracellular GC levels, the glucocorticoid receptor (GR) activation and the expression of GC-regulated genes involved in lipid metabolism were examined. HFrD elevated the intracellular GC content in both liver and adipose tissue and enhanced the GR nuclear translocation. The plasma GC level remained unchanged. The levels of free fatty acids and triglycerides in plasma were elevated, accompanied by increased plasma insulin and glucose levels and decreased hepatic glycogen content. Treatment with RU486 reduced plasma lipid levels, tissue GC levels and the expression of GC-targeted genes involved in lipid accumulation, and it improved insulin sensitivity. This study demonstrated that HFrD-induced lipid accumulation and insulin resistance are mediated by enhanced GC in liver and adipose tissue and that GC antagonism might reduce fructose-induced lipid abnormalities and insulin resistance. Copyright © 2016 Canadian Diabetes Association. Published by Elsevier Inc. All rights reserved.

  4. Valproate induced hepatic steatosis by enhanced fatty acid uptake and triglyceride synthesis

    International Nuclear Information System (INIS)

    Bai, Xupeng; Hong, Weipeng; Cai, Peiheng; Chen, Yibei; Xu, Chuncao; Cao, Di; Yu, Weibang; Zhao, Zhongxiang; Huang, Min; Jin, Jing

    2017-01-01

    Steatosis is the characteristic type of VPA-induced hepatotoxicity and may result in life-threatening hepatic lesion. Approximately 61% of patients treated with VPA have been diagnosed with hepatic steatosis through ultrasound examination. However, the mechanisms underlying VPA-induced intracellular fat accumulation are not yet fully understood. Here we demonstrated the involvement of fatty acid uptake and lipogenesis in VPA-induced hepatic steatosis in vitro and in vivo by using quantitative real-time PCR (qRT-PCR) analysis, western blotting analysis, fatty acid uptake assays, Nile Red staining assays, and Oil Red O staining assays. Specifically, we found that the expression of cluster of differentiation 36 (CD36), an important fatty acid transport, and diacylglycerol acyltransferase 2 (DGAT2) were significantly up-regulated in HepG2 cells and livers of C57B/6J mice after treatment with VPA. Furthermore, VPA treatment remarkably enhanced the efficiency of fatty acid uptake mediated by CD36, while this effect was abolished by the interference with CD36-specific siRNA. Also, VPA treatment significantly increased DGAT2 expression as a result of the inhibition of mitogen-activated protein kinase kinase (MEK) – extracellular regulated kinase (ERK) pathway; however, DGAT2 knockdown significantly alleviated VPA-induced intracellular lipid accumulation. Additionally, we also found that sterol regulatory element binding protein-1c (SREBP-1c)-mediated fatty acid synthesis may be not involved in VPA-induced hepatic steatosis. Overall, VPA-triggered over-regulation of CD36 and DGAT2 could be helpful for a better understanding of the mechanisms underlying VPA-induced hepatic steatosis and may offer novel therapeutic strategies to combat VPA-induced hepatotoxicity. - Highlights: • VPA induced hepatic steatosis and modulated genes associated with lipid metabolism. • CD36-mediated fatty acid uptake contributed to VPA-induced lipid accumulation. • PA increased the hepatic

  5. Valproate induced hepatic steatosis by enhanced fatty acid uptake and triglyceride synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Xupeng; Hong, Weipeng; Cai, Peiheng; Chen, Yibei; Xu, Chuncao [School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou (China); Cao, Di [School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou (China); Yu, Weibang [School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou (China); Zhao, Zhongxiang [School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou (China); Huang, Min [School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou (China); Jin, Jing, E-mail: jinjing@mail.sysu.edu.cn [School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou (China)

    2017-06-01

    Steatosis is the characteristic type of VPA-induced hepatotoxicity and may result in life-threatening hepatic lesion. Approximately 61% of patients treated with VPA have been diagnosed with hepatic steatosis through ultrasound examination. However, the mechanisms underlying VPA-induced intracellular fat accumulation are not yet fully understood. Here we demonstrated the involvement of fatty acid uptake and lipogenesis in VPA-induced hepatic steatosis in vitro and in vivo by using quantitative real-time PCR (qRT-PCR) analysis, western blotting analysis, fatty acid uptake assays, Nile Red staining assays, and Oil Red O staining assays. Specifically, we found that the expression of cluster of differentiation 36 (CD36), an important fatty acid transport, and diacylglycerol acyltransferase 2 (DGAT2) were significantly up-regulated in HepG2 cells and livers of C57B/6J mice after treatment with VPA. Furthermore, VPA treatment remarkably enhanced the efficiency of fatty acid uptake mediated by CD36, while this effect was abolished by the interference with CD36-specific siRNA. Also, VPA treatment significantly increased DGAT2 expression as a result of the inhibition of mitogen-activated protein kinase kinase (MEK) – extracellular regulated kinase (ERK) pathway; however, DGAT2 knockdown significantly alleviated VPA-induced intracellular lipid accumulation. Additionally, we also found that sterol regulatory element binding protein-1c (SREBP-1c)-mediated fatty acid synthesis may be not involved in VPA-induced hepatic steatosis. Overall, VPA-triggered over-regulation of CD36 and DGAT2 could be helpful for a better understanding of the mechanisms underlying VPA-induced hepatic steatosis and may offer novel therapeutic strategies to combat VPA-induced hepatotoxicity. - Highlights: • VPA induced hepatic steatosis and modulated genes associated with lipid metabolism. • CD36-mediated fatty acid uptake contributed to VPA-induced lipid accumulation. • PA increased the hepatic

  6. Study on the abnormalities in sperm and gene mutation induced by retention of {sup 147}Pm in testis

    Energy Technology Data Exchange (ETDEWEB)

    Shoupeng, Zhu; Mingyue, Lun; Shuqin, Yang [Suzhou Medical Coll., JS (China)

    1990-05-01

    The purpose of the present study is to ascertain {sup 147}Pm retention in testis and its radiogenotoxicological effects of gene mutation through varying radioactivities of internal exposure. Especially the accumulation of {sup 147}Pm in testis induces the dominant lethal, dominant skeletal mutation and abnormalities in sperm. Studies indicated that the cumulative absorption dose in testis increases as the internal exposure of {sup 147}Pm increases. The internal exposure of {sup 147}Pm can destroy the genetic materials and raise the rates of dominant lethal and dominant mutation of skeletal abnormalities in the offspring. The relationship between the rate of dominant skeletal mutation (B) and accumulated radioactivities of {sup 147}Pm (D) in testis can be described by a linear equation that is B 20.68 + 35.48 D. The relationship between abnormalities of the sperm and the cumulative dose from {sup 147}Pm in testis can be expressed by the following equation: S = 10.8705 D{sup 0.5224} + 3.1768.

  7. Olfaction in Eating Disorders and Abnormal Eating Behaviour: A Systematic Review

    Directory of Open Access Journals (Sweden)

    Mohammed Anisul eIslam

    2015-09-01

    Full Text Available The study provides a systematic review that explores the current literature on olfactory capacity in abnormal eating behavior to present a basis for discussion on whether research in olfaction in eating disorders may offer additional insights with regard to the complex etiopathology of ED and abnormal eating behaviors. Electronic databases (Medline, PsycINFO, PubMed, Science Direct and Web of Science were searched using the components in relation to olfaction and combining them with the components related to abnormal eating behavior. Out of 1,352 articles, 14 articles were selected (820 patients and 385 control participants for this review. The highest number of existing literature on olfaction in ED were carried out with AN patients (78.6% followed by BN (35.7% and obesity (14.3%. The general findings support that olfaction is altered in AN and Obesity and indicates towards there being no differences in olfactory capacity between BN patients and the general population. Due to the limited number of studies and heterogeneity this review stresses on the importance of more research on olfaction and abnormal eating behavior.

  8. CD36 Mediated Fatty Acid-Induced Podocyte Apoptosis via Oxidative Stress.

    Directory of Open Access Journals (Sweden)

    Wei Hua

    Full Text Available Hyperlipidemia-induced apoptosis mediated by fatty acid translocase CD36 is associated with increased uptake of ox-LDL or fatty acid in macrophages, hepatocytes and proximal tubular epithelial cells, leading to atherosclerosis, liver damage and fibrosis in obese patients, and diabetic nephropathy (DN, respectively. However, the specific role of CD36 in podocyte apoptosis in DN with hyperlipidemia remains poorly investigated.The expression of CD36 was measured in paraffin-embedded kidney tissue samples (Ctr = 18, DN = 20 by immunohistochemistry and immunofluorescence staining. We cultured conditionally immortalized mouse podocytes (MPC5 and treated cells with palmitic acid, and measured CD36 expression by real-time PCR, Western blot analysis and immunofluorescence; lipid uptake by Oil red O staining and BODIPY staining; apoptosis by flow cytometry assay, TUNEL assay and Western blot analysis; and ROS production by DCFH-DA fluorescence staining. All statistical analyses were performed using SPSS 21.0 statistical software.CD36 expression was increased in kidney tissue from DN patients with hyperlipidemia. Palmitic acid upregulated CD36 expression and promoted its translocation from cytoplasm to plasma membrane in podocytes. Furthermore, palmitic acid increased lipid uptake, ROS production and apoptosis in podocytes, Sulfo-N-succinimidyloleate (SSO, the specific inhibitor of the fatty acid binding site on CD36, decreased palmitic acid-induced fatty acid accumulation, ROS production, and apoptosis in podocytes. Antioxidant 4-hydroxy-2,2,6,6- tetramethylpiperidine -1-oxyl (tempol inhibited the overproduction of ROS and apoptosis in podocytes induced by palmitic acid.CD36 mediated fatty acid-induced podocyte apoptosis via oxidative stress might participate in the process of DN.

  9. The beneficial effect of the flavonoid quercetin on behavioral changes in hemi-Parkinsonian rats

    Directory of Open Access Journals (Sweden)

    Mehdi Mehdizadeh

    2010-01-01

    Full Text Available   Abstract   Introduction: A large body of experimental evidence supports a role for oxidative stress as a mediator of nerve cell death in Parkinson's disease (PD. Flavonoids like quercetin have been reported to prevent neuronal degeneration caused by increased oxidative burden, therefore, this study examined whether quercetin administration at a high dose would attenuate behavioral abnormalities in experimental model of PD in rat.   Methods: For this purpose, unilateral intrastriatal 6-hydroxydopamine (6-OHDA-lesioned rats were pretreated with quercetin (20 mg/kg; i.p. 1 hour before surgery and treated once a day for one month. After one month, apomorphine-induced rotational behavior was measured postlesion.   Results: Apomorphine-induced rotations were counted after 4 weeks. Quercetin administration could attenuate the rotational behavior in treated lesioned rats as compared to untreated ones.   Discussion: Flavonoid quercetin administration for one month could attenuate behavioral abnormalities in 6-OHDA model of PD.

  10. The beneficial effect of the flavonoid quercetin on behavioral changes in hemi-Parkinsonian rats

    Directory of Open Access Journals (Sweden)

    Mehdi Mehdizadeh

    2010-01-01

    Full Text Available Introduction: A large body of experimental evidence supports a role for oxidative stress as a mediator of nerve cell death in Parkinson's disease (PD. Flavonoids like quercetin have been reported to prevent neuronal degeneration caused by increased oxidative burden, therefore, this study examined whether quercetin administration at a high dose would attenuate behavioral abnormalities in experimental model of PD in rat. Methods: For this purpose, unilateral intrastriatal 6-hydroxydopamine (6-OHDA-lesioned rats were pretreated with quercetin (20 mg/kg i.p. 1 hour before surgery and treated once a day for one month. After one month, apomorphine-induced rotational behavior was measured postlesion. Results: Apomorphine-induced rotations were counted after 4 weeks. Quercetin administration could attenuate the rotational behavior in treated lesioned rats as compared to untreated ones. Discussion: Flavonoid quercetin administration for one month could attenuate behavioral abnormalities in 6-OHDA model of PD.

  11. Short-chain fatty acid fermentation products of the gut microbiome: implications in autism spectrum disorders

    Science.gov (United States)

    MacFabe, Derrick F.

    2012-01-01

    Recent evidence suggests potential, but unproven, links between dietary, metabolic, infective, and gastrointestinal factors and the behavioral exacerbations and remissions of autism spectrum disorders (ASDs). Propionic acid (PPA) and its related short-chain fatty acids (SCFAs) are fermentation products of ASD-associated bacteria (Clostridia, Bacteriodetes, Desulfovibrio). SCFAs represent a group of compounds derived from the host microbiome that are plausibly linked to ASDs and can induce widespread effects on gut, brain, and behavior. Intraventricular administration of PPA and SCFAs in rats induces abnormal motor movements, repetitive interests, electrographic changes, cognitive deficits, perseveration, and impaired social interactions. The brain tissue of PPA-treated rats shows a number of ASD-linked neurochemical changes, including innate neuroinflammation, increased oxidative stress, glutathione depletion, and altered phospholipid/acylcarnitine profiles. These directly or indirectly contribute to acquired mitochondrial dysfunction via impairment in carnitine-dependent pathways, consistent with findings in patients with ASDs. Of note, common antibiotics may impair carnitine-dependent processes by altering gut flora favoring PPA-producing bacteria and by directly inhibiting carnitine transport across the gut. Human populations that are partial metabolizers of PPA are more common than previously thought. PPA has further bioactive effects on neurotransmitter systems, intracellular acidification/calcium release, fatty acid metabolism, gap junction gating, immune function, and alteration of gene expression that warrant further exploration. These findings are consistent with the symptoms and proposed underlying mechanisms of ASDs and support the use of PPA infusions in rats as a valid animal model of the condition. Collectively, this offers further support that gut-derived factors, such as dietary or enteric bacterially produced SCFAs, may be plausible environmental

  12. Short-chain fatty acid fermentation products of the gut microbiome: implications in autism spectrum disorders

    Directory of Open Access Journals (Sweden)

    Derrick F. MacFabe

    2012-08-01

    Full Text Available Recent evidence suggests potential, but unproven, links between dietary, metabolic, infective, and gastrointestinal factors and the behavioral exacerbations and remissions of autism spectrum disorders (ASDs. Propionic acid (PPA and its related short-chain fatty acids (SCFAs are fermentation products of ASD-associated bacteria (Clostridia, Bacteriodetes, Desulfovibrio. SCFAs represent a group of compounds derived from the host microbiome that are plausibly linked to ASDs and can induce widespread effects on gut, brain, and behavior. Intraventricular administration of PPA and SCFAs in rats induces abnormal motor movements, repetitive interests, electrographic changes, cognitive deficits, perseveration, and impaired social interactions. The brain tissue of PPA-treated rats shows a number of ASD-linked neurochemical changes, including innate neuroinflammation, increased oxidative stress, glutathione depletion, and altered phospholipid/acylcarnitine profiles. These directly or indirectly contribute to acquired mitochondrial dysfunction via impairment in carnitine-dependent pathways, consistent with findings in patients with ASDs. Of note, common antibiotics may impair carnitine-dependent processes by altering gut flora favoring PPA-producing bacteria and by directly inhibiting carnitine transport across the gut. Human populations that are partial metabolizers of PPA are more common than previously thought. PPA has further bioactive effects on neurotransmitter systems, intracellular acidification/calcium release, fatty acid metabolism, gap junction gating, immune function, and alteration of gene expression that warrant further exploration. These findings are consistent with the symptoms and proposed underlying mechanisms of ASDs and support the use of PPA infusions in rats as a valid animal model of the condition. Collectively, this offers further support that gut-derived factors, such as dietary or enteric bacterially produced SCFAs, may be plausible

  13. Clinical Spectrum, Risk Factors, and Behavioral Abnormalities among Dementia Subtypes in a North Indian Population: A Hospital-Based Study

    Directory of Open Access Journals (Sweden)

    Suman Kushwaha

    2017-07-01

    Full Text Available Background: As variability in the clinical profile of dementia subtypes had been reported with regional differences across the world, we conducted a retrospective hospital-based study in a North Indian population. Methods: We retrieved patient records from 2007 to 2014 for details of clinical evaluation, diagnosis, neuroimaging, biochemical investigations, and follow-up of 1,876 patients with dementia (PwD, and the data were analyzed using descriptive statistics. Results: Of the total PwD, Alzheimer disease (AD accounted for 30% followed by vascular dementia (VaD 26%, mixed dementia (MD 21%, Parkinson-related dementia 11%, frontotemporal dementia (FTD 7%, and infective dementia 5%. Of all PwD excluding the infective group (n = 1,777, 63% were men, 39% were from rural areas, 87% had behavioral abnormalities along with cognitive deficits, and 73% had impaired ADLs. Among dementia subtypes, a positive family history, cardiovascular and metabolic risk factors, and behavioral abnormalities were found to be distributed. However, there existed a predominance of specific behavioral pattern in each subtype. The mean duration of follow-up varied from 2.9 ± 2.3 (VaD to 3.6 ± 2.1 (AD and greater than 30% were found to be stable on treatment (except in dementia with Lewy body. Conclusions: This large hospital-based study provides a distribution pattern and clinical spectrum of dementia subtypes in a North Indian population.

  14. Inhibition of monoacylglycerol lipase (MAGL) enhances cue-induced reinstatement of nicotine-seeking behavior in mice.

    Science.gov (United States)

    Trigo, Jose M; Le Foll, Bernard

    2016-05-01

    Tobacco smoking is still a major population health issue. The endocannabinoid system has been shown to control drug-seeking behaviors. There are two main endocannabinoids: anandamide degraded by fatty acid amide hydrolase (FAAH) and 2-arachidonoylglycerol (2-AG) degraded by monoacylglycerol lipase (MAGL). The role of MAGL has only been explored recently, and so far, no study have been performed to evaluate the effects of MAGL inhibitor on nicotine reinforcing properties and cue-induced reinstatement of nicotine seeking. Here, we investigated the effects of the MAGL inhibitor JZL184 on nicotine self-administration under fixed and progressive-ratio schedules of reinforcement and on cue-induced reinstatement of nicotine seeking in mice. We also evaluated the effects of JZL184 on food self-administration for possible non-specific effects. JZL184 (0, 8, and 16 mg/kg) did not affect food taking, nicotine taking, or motivation for nicotine. MAGL inhibition by JZL184 (16 mg/kg) increased reinstatement of previously extinguished nicotine seeking induced by presentation of nicotine-associated cues, but did not produce reinstatement on its own. This study implicates involvement of 2-AG in nicotine-seeking behaviors.

  15. Phenolic acids potentiate colistin-mediated killing of Acinetobacter baumannii by inducing redox imbalance.

    Science.gov (United States)

    Ajiboye, Taofeek O; Skiebe, Evelyn; Wilharm, Gottfried

    2018-05-01

    Phenolic acids with catechol groups are good prooxidants because of their low redox potential. In this study, we provided data showing that phenolic acids, caffeic acid, gallic acid and protocatechuic acid, enhanced colistin-mediated bacterial death by inducing redox imbalance. The minimum inhibitory concentrations of these phenolic acids against Acinetobacter baumannii AB5075 were considerably lowered for ΔsodB and ΔkatG mutants. Checkerboard assay shows synergistic interactions between colistin and phenolic acids. The phenolic acids exacerbated colistin-induced oxidative stress in A. baumannii AB5075 through increased superoxide anion generation, NAD + /NADH and ADP/ATP ratio. In parallel, the level of reduced glutathione was significantly lowered. We conclude that phenolic acids potentiate colistin-induced oxidative stress in A. baumannii AB5075 by increasing ROS generation, energy metabolism and electron transport chain activity with a concomitant decrease in glutathione. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  16. Inhibition of acid-induced lung injury by hyperosmolar sucrose in rats.

    Science.gov (United States)

    Safdar, Zeenat; Yiming, Maimiti; Grunig, Gabriele; Bhattacharya, Jahar

    2005-10-15

    Acid aspiration causes acute lung injury (ALI). Recently, we showed that a brief intravascular infusion of hyperosmolar sucrose, given concurrently with airway acid instillation, effectively blocks the ensuing ALI. The objective of the present study was to determine the extent to which intravascular infusion of hyperosmolar sucrose might protect against acid-induced ALI when given either before or after acid instillation. Our studies were conducted in anesthetized rats and in isolated, blood-perfused rat lungs. We instilled HCl through the airway, and we quantified lung injury in terms of the extravascular lung water (EVLW) content, filtration coefficient (Kfc), and cell counts and protein concentration in the bronchoalveolar lavage. We infused hyperosmolar sucrose via the femoral vein. In anesthetized rats, airway HCl instillation induced ALI as indicated by a 52% increase of EVLW and a threefold increase in Kfc. However, a 15-min intravenous infusion of hyperosmolar sucrose given up to 1 h before or 30 min after acid instillation markedly blunted the increases in EVLW, as well as the increases in cell count, and in protein concentration in the bronchoalveolar lavage. Hyperosmolar pretreatment also blocked the acid-induced increase of Kfc. Studies in isolated perfused lungs indicated that the protective effect of hyperosmolar sucrose was leukocyte independent. We conclude that a brief period of vascular hyperosmolarity protects against acid-induced ALI when the infusion is administered shortly before, or shortly after, acid instillation in the airway. The potential applicability of hyperosmolar sucrose in therapy for ALI requires consideration.

  17. Gallic acid modulates phenotypic behavior and gene expression in oral squamous cell carcinoma cells by interfering with leptin pathway.

    Science.gov (United States)

    Santos, Eliane Macedo Sobrinho; da Rocha, Rogério Gonçalves; Santos, Hércules Otacílio; Guimarães, Talita Antunes; de Carvalho Fraga, Carlos Alberto; da Silveira, Luiz Henrique; Batista, Paulo Ricardo; de Oliveira, Paulo Sérgio Lopes; Melo, Geraldo Aclécio; Santos, Sérgio Henrique; de Paula, Alfredo Maurício Batista; Guimarães, André Luiz Sena; Farias, Lucyana Conceição

    2018-01-01

    Gallic acid is a polyphenolic compost appointed to interfere with neoplastic cells behavior. Evidence suggests an important role of leptin in carcinogenesis pathways, inducing a proliferative phenotype. We investigated the potential of gallic acid to modulate leptin-induced cell proliferation and migration of oral squamous cell carcinoma cell lines. The gallic acid effect on leptin secretion by oral squamous cell carcinoma cells, as well as the underlying molecular mechanisms, was also assessed. For this, we performed proliferation, migration, immunocytochemical and qPCR assays. The expression levels of cell migration-related genes (MMP2, MMP9, Col1A1, and E-cadherin), angiogenesis (HIF-1α, mir210), leptin signaling (LepR, p44/42 MAPK), apoptosis (casp-3), and secreted leptin levels by oral squamous cell carcinoma cells were also measured. Gallic acid decreased proliferation and migration of leptin-treated oral squamous cell carcinoma cells, and reduced mRNA expression of MMP2, MMP9, Col1A1, mir210, but did not change HIF-1α. Gallic acid decreased levels of leptin secreted by oral squamous cell carcinoma cells, accordingly with downregulation of p44/42 MAPK expression. Thus, gallic acid appears to break down neoplastic phenotype of oral squamous cell carcinoma cells by interfering with leptin pathway. Copyright © 2017 Elsevier GmbH. All rights reserved.

  18. Experimentally induced cerebral fat embolism with linoleic acid; MR imaging and pathologic correlation

    International Nuclear Information System (INIS)

    Kim, Jong Bae; Kim, Hak Jin; Kim, Yong; Lee, Suck Hong; Park, Byeong Rae

    2000-01-01

    To investigate the correlation between the MRI findings of cerebral fat embolism induced by injecting linoleic acid into ten cats, and pathologic diagnosis. Using a microcatheter, 30μ1 of linoleic acid was injeted into the internal carotid artery of ten cats. MR T2-weighted (T2WI), diffusion-weighted (DWI), and Gd-enhanced T1-weighted images(Gd-enhanced T1WI) were obtained after 30 minutes and after 2 hours of embolization. We pathlogically examined endothelial cell damage, cellular change, perivascular abnormality and fat vacuoles, and then determined the correlation between MRI and the pathologic findings. After 30 minutes of embolization, lesions of very high signal intensity were detected by T2WI in six cats, and of slightly high signal intensity in two:in the remaining two, signal intensity was normal. DWI showed lesions of very high intensity in nine animals and of slightly high intensity in one, while Gd-enhanced T1WI showed well-enhanced lesions in nine and a minimally enhanced lesion in one. After 2 hours of embolization, T2WI revealed lesions of very high signal intensity in nine cats, and of slightly high signal intensity in one, while DWI detected lesions of very high signal intensity in all cats. On Gd-enhanced T1WI, lesions in all cats were well enhanced. According to the findings of light microscopic examination, infarcted lesions mainly involved the gray matter, but also some white matter. In the lesions, neurophil matrix edema, neuronal degeneration, perivascular swelling, the widening of extracellular space, extravascular hemorrhage, and fat vacuoles were evident. During the initial two hours following injuction, MR imaging of cerebral fat embolism induced by linoleic acid through the internal carotid artery in cats showed high signal intensity on T2WI and DWI, and clear enhancement on Gd-enhanced T1WI. In cases involving cellular edema, cerebrovascular injury and extracellular space widening, the pathologic evidence suggested the coexistence of

  19. Profiling Abscisic Acid-Induced Changes in Fatty Acid Composition in Mosses.

    Science.gov (United States)

    Shinde, Suhas; Devaiah, Shivakumar; Kilaru, Aruna

    2017-01-01

    In plants, change in lipid composition is a common response to various abiotic stresses. Lipid constituents of bryophytes are of particular interest as they differ from that of flowering plants. Unlike higher plants, mosses have high content of very long-chain polyunsaturated fatty acids. Such lipids are considered to be important for survival of nonvascular plants. Here, using abscisic acid (ABA )-induced changes in lipid composition in Physcomitrella patens as an example, a protocol for total lipid extraction and quantification by gas chromatography (GC) coupled with flame ionization detector (FID) is described.

  20. Thermal behavior of potato starch and water-vaporization behavior of its paste controlled with amino acid and peptide-rich food materials.

    Science.gov (United States)

    Sakauchi, Satoshi; Hattori, Makoto; Yoshida, Tadashi; Yagishita, Takahiro; Ito, Koichi; Akemitsu, Shin-Ichi; Takahashi, Koji

    2010-03-01

    The particular effect of 4 kinds of amino acid and peptide-rich food material (APRM) containing different charged amino acid contents on the gelatinization and retrogradation behavior of potato starch granules and on the water-vaporization behavior was analyzed by differential scanning calorimetry, rapid viscoanalysis, x-ray diffractometry, thermal gravimetry-differential thermal analysis, and pulsed NMR. APRM with a high-charged amino acid content produced unique gelatinization and retrogradation behavior in terms of an elevated gelatinization temperature, reduced viscosity, higher setback, and lower retrograded starch melting enthalpy. The recovered x-ray diffraction intensity decreased with increasing charged amino acid content. APRM with high-charged amino acid content could provide an improved paste having easy vaporization of external water in the swollen starch granules due to the reduced swelling.

  1. Neurologic abnormalities in murderers.

    Science.gov (United States)

    Blake, P Y; Pincus, J H; Buckner, C

    1995-09-01

    Thirty-one individuals awaiting trial or sentencing for murder or undergoing an appeal process requested a neurologic examination through legal counsel. We attempted in each instance to obtain EEG, MRI or CT, and neuropsychological testing. Neurologic examination revealed evidence of "frontal" dysfunction in 20 (64.5%). There were symptoms or some other evidence of temporal lobe abnormality in nine (29%). We made a specific neurologic diagnosis in 20 individuals (64.5%), including borderline or full mental retardation (9) and cerebral palsy (2), among others. Neuropsychological testing revealed abnormalities in all subjects tested. There were EEG abnormalities in eight of the 20 subjects tested, consisting mainly of bilateral sharp waves with slowing. There were MRI or CT abnormalities in nine of the 19 subjects tested, consisting primarily of atrophy and white matter changes. Psychiatric diagnoses included paranoid schizophrenia (8), dissociative disorder (4), and depression (9). Virtually all subjects had paranoid ideas and misunderstood social situations. There was a documented history of profound, protracted physical abuse in 26 (83.8%) and of sexual abuse in 10 (32.3%). It is likely that prolonged, severe physical abuse, paranoia, and neurologic brain dysfunction interact to form the matrix of violent behavior.

  2. Abscisic acid-regulated protein degradation causes osmotic stress-induced accumulation of branched-chain amino acids in Arabidopsis thaliana.

    Science.gov (United States)

    Huang, Tengfang; Jander, Georg

    2017-10-01

    Whereas proline accumulates through de novo biosynthesis in plants subjected to osmotic stress, leucine, isoleucine, and valine accumulation in drought-stressed Arabidopsis thaliana is caused by abscisic acid-regulated protein degradation. In response to several kinds of abiotic stress, plants greatly increase their accumulation of free amino acids. Although stress-induced proline increases have been studied the most extensively, the fold-increase of other amino acids, in particular branched-chain amino acids (BCAAs; leucine, isoleucine, and valine), is often higher than that of proline. In Arabidopsis thaliana (Arabidopsis), BCAAs accumulate in response to drought, salt, mannitol, polyethylene glycol, herbicide treatment, and nitrogen starvation. Plants that are deficient in abscisic acid signaling accumulate lower amounts of BCAAs, but not proline and most other amino acids. Previous bioinformatic studies had suggested that amino acid synthesis, rather than protein degradation, is responsible for the observed BCAA increase in osmotically stressed Arabidopsis. However, whereas treatment with the protease inhibitor MG132 decreased drought-induced BCAA accumulation, inhibition of BCAA biosynthesis with the acetolactate synthase inhibitors chlorsulfuron and imazapyr did not. Additionally, overexpression of BRANCHED-CHAIN AMINO ACID TRANSFERASE2 (BCAT2), which is upregulated in response to osmotic stress and functions in BCAA degradation, decreased drought-induced BCAA accumulation. Together, these results demonstrate that BCAA accumulation in osmotically stressed Arabidopsis is primarily the result of protein degradation. After relief of the osmotic stress, BCAA homeostasis is restored over time by amino acid degradation involving BCAT2. Thus, drought-induced BCAA accumulation is different from that of proline, which is accumulated due to de novo synthesis in an abscisic acid-independent manner and remains elevated for a more prolonged period of time after removal of

  3. Development of Abnormality Detection System for Bathers using Ultrasonic Sensors

    Science.gov (United States)

    Ohnishi, Yosuke; Abe, Takehiko; Nambo, Hidetaka; Kimura, Haruhiko; Ogoshi, Yasuhiro

    This paper proposes an abnormality detection system for bather sitting in bathtub. Increasing number of in-bathtub drowning accidents in Japan draws attention. Behind this large number of bathing accidents, Japan's unique social and cultural background come surface. For majority of people in Japan, bathing serves purpose in deep warming up of body, relax and enjoyable time. Therefore it is the custom for the Japanese to soak in bathtub. However overexposure to hot water may cause dizziness or fainting, which is possible to cause in-bathtub drowning. For drowning prevention, the system detects bather's abnormal state using an ultrasonic sensor array. The array, which has many ultrasonic sensors, is installed on the ceiling of bathroom above bathtub. The abnormality detection system uses the following two methods: posture detection and behavior detection. The function of posture detection is to estimate the risk of drowning by monitoring bather's posture. Meanwhile, the function of behavior detection is to estimate the risk of drowning by monitoring bather's behavior. By using these methods, the system detects bathers' different state from normal. As a result of experiment with a subject in the bathtub, the system was possible to detect abnormal state using subject's posture and behavior. Therefore the system is useful for monitoring bather to prevent drowning in bathtub.

  4. Sex-specific effects of docosahexaenoic acid (DHA) on the microbiome and behavior of socially-isolated mice.

    Science.gov (United States)

    Davis, Daniel J; Hecht, Patrick M; Jasarevic, Eldin; Beversdorf, David Q; Will, Matthew J; Fritsche, Kevin; Gillespie, Catherine H

    2017-01-01

    Dietary supplementation with the long-chain omega-3 polyunsaturated fatty acid docosahexaenoic acid (DHA) has been shown to have a beneficial effect on reducing the symptoms associated with several neuropsychiatric conditions including anxiety and depression. However, the mechanisms underlying this effect remain largely unknown. Increasing evidence suggests that the vast repertoire of commensal bacteria within the gut plays a critical role in regulating various biological processes in the brain and may contribute to neuropsychiatric disease risk. The present study determined the contribution of DHA on anxiety and depressive-like behaviors through modulation of the gut microbiota in a paradigm of social isolation. Adult male and female mice were subjected to social isolation for 28days and then placed either on a control diet or a diet supplemented with 0.1% or 1.0% DHA. Fecal pellets were collected both 24h and 7days following the introduction of the new diets. Behavioral testing revealed that male mice fed a DHA diet, regardless of dose, exhibited reduced anxiety and depressive-like behaviors compared to control fed mice while no differences were observed in female mice. As the microbiota-brain-axis has been recently implicated in behavior, composition of microbial communities were analyzed to examine if these sex-specific effects of DHA may be associated with changes in the gut microbiota (GM). Clear sex differences were observed with males and females showing distinct microbial compositions prior to DHA supplementation. The introduction of DHA into the diet also induced sex-specific interactions on the GM with the fatty acid producing a significant effect on the microbial profiles in males but not in females. Interestingly, levels of Allobaculum and Ruminococcus were found to significantly correlate with the behavioral changes observed in the male mice. Predictive metagenome analysis using PICRUSt was performed on the fecal samples collected from males and

  5. Degradation of protein translation machinery by amino acid starvation-induced macroautophagy

    DEFF Research Database (Denmark)

    Gretzmeier, Christine; Eiselein, Sven; Johnson, Gregory R.

    2017-01-01

    , unbiased approaches relying on quantitative mass spectrometry-based proteomics. Macroautophagy is induced by rapamycin treatment, and by amino acid and glucose starvation in differentially, metabolically labeled cells. Protein dynamics are linked to image-based models of autophagosome turnover. Depending...... on the inducing stimulus, protein as well as organelle turnover differ. Amino acid starvation-induced macroautophagy leads to selective degradation of proteins important for protein translation. Thus, protein dynamics reflect cellular conditions in the respective treatment indicating stimulus-specific pathways...

  6. Tiagabine treatment in kainic acid induced cerebellar lesion of dystonia rat model

    Science.gov (United States)

    Wang, Tsui-chin; Ngampramuan, Sukonthar; Kotchabhakdi, Naiphinich

    2016-01-01

    Dystonia is a neurological disorder characterized by excessive involuntary muscle contractions that lead to twisting movements. The exaggerated movements have been studied and have implicated basal ganglia as the point of origin. In more recent studies, the cerebellum has also been identified as the possible target of dystonia, in the search for alternative treatments. Tiagabine is a selective GABA transporter inhibitor, which blocks the reuptake and recycling of GABA. The study of GABAergic drugs as an alternative treatment for cerebellar induced dystonia has not been reported. In our study, tiagabine was i.p. injected into kainic acid induced, cerebellar dystonic adult rats, and the effects were compared with non-tiagabine injected and sham-operated groups. Beam walking apparatus, telemetric electromyography (EMG) recording, and histological verification were performed to confirm dystonic symptoms in the rats on post-surgery treatment. Involuntary dystonic spasm was observed with repetitive rigidity, and twisting movements in the rats were also confirmed by a high score on the dystonic scoring and a high amplitude on the EMG data. The rats with tiagabine treatment were scored based on motor amelioration assessed via beam walking. The result of this study suggests and confirms that low dose of kainic acid microinjection is sufficient to induce dystonia from the cerebellar vermis. In addition, from the results of the EMG recording and the behavioral assessment through beam walking, tiagabine is demonstrated as being effective in reducing dystonic spasm and may be a possible alternative therapeutic drug in the treatment of dystonia. PMID:28337103

  7. Radiation-induced myocardial perfusion abnormalities in breast cancer patients following external beam radiation therapy.

    Science.gov (United States)

    Eftekhari, Mohammad; Anbiaei, Robabeh; Zamani, Hanie; Fallahi, Babak; Beiki, Davood; Ameri, Ahmad; Emami-Ardekani, Alireza; Fard-Esfahani, Armaghan; Gholamrezanezhad, Ali; Seid Ratki, Kazem Razavi; Roknabadi, Alireza Momen

    2015-01-01

    Radiation therapy for breast cancer can induce myocardial capillary injury and increase cardiovascular morbidity and mortality. A prospective cohort was conducted to study the prevalence of myocardial perfusion abnormalities following radiation therapy of left-sided breast cancer patients as compared to those with right-sided cancer. To minimize potential confounding factors, only those patients with low 10-year risk of coronary artery disease (based on Framingham risk scoring) were included. All patients were initially treated by modified radical mastectomy and then were managed by postoperative 3D Conformal Radiation Therapy (CRT) to the surgical bed with an additional 1-cm margin, delivered by 46-50 Gy (in 2 Gy daily fractions) over a 5-week course. The same dose-adjusted chemotherapy regimen (including anthracyclines, cyclophosphamide and taxol) was given to all patients. Six months after radiation therapy, all patients underwent cardiac SPECT for the evaluation of myocardial perfusion. A total of 71 patients with a mean age of 45.3±7.2 years [35 patients with leftsided breast cancer (exposed) and 36 patients with right-sided cancer (controls)] were enrolled. Dose-volume histogram (DVH) [showing the percentage of the heart exposed to >50% of radiation] was significantly higher in patients with left-sided breast cancer. Visual interpretation detected perfusion abnormalities in 42.9% of cases and 16.7% of controls (P=0.02, Odds ratio=1.46). In semiquantitative segmental analysis, only apical (28.6% versus 8.3%, P=0.03) and anterolateral (17.1% versus 2.8%, P=0.049) walls showed significantly reduced myocardial perfusion in the exposed group. Summed Stress Score (SSS) of>3 was observed in twelve cases (34.3%), while in five of the controls (13.9%),(Odds ratio=1.3). There was no significant difference between the groups regarding left ventricular ejection fraction. The risk of radiation induced myocardial perfusion abnormality in patients treated with CRT on the

  8. Transcriptional Elongation Factor Elongin A Regulates Retinoic Acid-Induced Gene Expression during Neuronal Differentiation

    Directory of Open Access Journals (Sweden)

    Takashi Yasukawa

    2012-11-01

    Full Text Available Elongin A increases the rate of RNA polymerase II (pol II transcript elongation by suppressing transient pausing by the enzyme. Elongin A also acts as a component of a cullin-RING ligase that can target stalled pol II for ubiquitylation and proteasome-dependent degradation. It is not known whether these activities of Elongin A are functionally interdependent in vivo. Here, we demonstrate that Elongin A-deficient (Elongin A−/− embryos exhibit abnormalities in the formation of both cranial and spinal nerves and that Elongin A−/− embryonic stem cells (ESCs show a markedly decreased capacity to differentiate into neurons. Moreover, we identify Elongin A mutations that selectively inactivate one or the other of the aforementioned activities and show that mutants that retain the elongation stimulatory, but not pol II ubiquitylation, activity of Elongin A rescue neuronal differentiation and support retinoic acid-induced upregulation of a subset of neurogenesis-related genes in Elongin A−/− ESCs.

  9. In vitro Degradation of Butanediamine-Grafted Poly(DL-Lactic acids)

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The degradation of butanediamine-grafted poly(DL-lactic acid) polymers (BDPLAs) in vitro together with PDLLA and maleic anhydride-grafted poly(DL-lactic acid) polymers (MPLAs) was investigated by observation of the changes of the pH value of incubation media, and weight loss ratio during degradation duration of 12 weeks. The results reveal that the acidity of PDLLA degradation products was weakened or neutralized by grafting butanediamine onto PDLLA. A uniform degradation of BDPLAs was observed in comparison with an acidity-induced auto-accelerating degradation featured by PDLLA and MPLAs. The biodegradation behaviors of BDPLAs can be adjusted by controlling the content of BDA. BDPLAs might be a new derivative of PDLLA-based biodegradable materials for medical applications without acidity-caused irritations and acidity-induced auto-accelerating degradation behavior as that of PDLLA.

  10. Chromosomal abnormalities in a psychiatric population

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, K.E.; Lubetsky, M.J.; Wenger, S.L.; Steele, M.W. [Univ. of Pittsburgh Medical Center, PA (United States)

    1995-02-27

    Over a 3.5 year period of time, 345 patients hospitalized for psychiatric problems were evaluated cytogenetically. The patient population included 76% males and 94% children with a mean age of 12 years. The criteria for testing was an undiagnosed etiology for mental retardation and/or autism. Cytogenetic studies identified 11, or 3%, with abnormal karyotypes, including 4 fragile X positive individuals (2 males, 2 females), and 8 with chromosomal aneuploidy, rearrangements, or deletions. While individuals with chromosomal abnormalities do not demonstrate specific behavioral, psychiatric, or developmental problems relative to other psychiatric patients, our results demonstrate the need for an increased awareness to order chromosomal analysis and fragile X testing in those individuals who have combinations of behavioral/psychiatric, learning, communication, or cognitive disturbance. 5 refs., 1 fig., 2 tabs.

  11. Metabolism of Mevalonic Acid in Vegetative and Induced Plants of Xanthium strumarium.

    Science.gov (United States)

    Bledsoe, C S

    1978-11-01

    The metabolism of mevalonic acid in Xanthium strumarium L. Chicago plants was studied to determine how mevalonate was metabolized and whether metabolism was related to induction of flowering. Leaves of vegetative, photoperiodically induced, and chemically inhibited cocklebur plants were supplied with [(14)C]mevalonic acid prior to or during a 16-hour inductive dark period. Vegetative, induced, and Tris(2-diethylaminoethyl)phosphate trihydrochloride-treated plants did not differ significantly in the amount of [(14)C]mevalonic acid they absorbed, nor in the distribution of radioactivity among the leaf blade (97%), petiole (2.3%), or shoot tip (0.7%). [(14)C]Mevalonic acid was rapidly metabolized and transported out of the leaves. Possible metabolites of mevalonate were mevalonic acid phosphates and sterols. No detectable (14)C was found in gibberellins, carotenoids, or the phytol alcohol of chlorophyll. Chemically inhibited plants accumulated (14)C compounds not found in vegetative or induced plants. When ethanol extracts of leaves, petioles, and buds were chromatographed, comparisons of chromatographic patterns did not show significant differences between vegetative and induced treatments.

  12. Caffeic acid, tyrosol and p-coumaric acid are potent inhibitors of 5-S-cysteinyl-dopamine induced neurotoxicity.

    Science.gov (United States)

    Vauzour, David; Corona, Giulia; Spencer, Jeremy P E

    2010-09-01

    Parkinson's disease is characterized by a progressive and selective loss of dopaminergic neurons in the substantia nigra. Recent investigations have shown that conjugates such as the 5-S-cysteinyl-dopamine, possess strong neurotoxicity and may contribute to the underlying progression of the disease pathology. Although the neuroprotective actions of flavonoids are well reported, that of hydroxycinnamates and other phenolic acids is less established. We show that the hydroxycinnamates caffeic acid and p-coumaric acid, the hydroxyphenethyl alcohol, tyrosol, and a Champagne wine extract rich in these components protect neurons against injury induced by 5-S-cysteinyl-dopamine in vitro. The protection induced by these polyphenols was equal to or greater than that observed for the flavonoids, (+)-catechin, (-)-epicatechin and quercetin. For example, p-coumaric acid evoked significantly more protection at 1muM (64.0+/-3.1%) than both (-)-epicatechin (46.0+/-4.1%, p<0.05) and (+)-catechin (13.1+/-3.0%, p<0.001) at the same concentration. These data indicate that hydroxycinnamates, phenolic acids and phenolic alcohol are also capable of inducing neuroprotective effects to a similar extent to that seen with flavonoids. Copyright © 2010. Published by Elsevier Inc.

  13. SPATIAL MEMORY IMPAIRMENT AND HIPPOCAMPAL CELL LOSS INDUCED BY OKADAIC ACID (EXPERIMENTAL STUDY).

    Science.gov (United States)

    Chighladze, M; Dashniani, M; Beselia, G; Kruashvili, L; Naneishvili, T

    2016-01-01

    In the present study, we evaluated and compared effect of intracerebroventricular (ICV) and intrahippocampal bilateral microinjection of okadaic acid (OA) on spatial memory function assessed in one day water maze paradigm and hippocampal structure in rats. Rats were divided in following groups: Control(icv) - rats injected with ICV and aCSF; Control(hipp) - rats injected intrahippocampally with aCSF; OAicv - rats injected with ICV and OA; OAhipp - rats injected intrahippocampally with OA. Nissl staining of hippocampal sections showed that the pyramidal cell loss in OAhipp group is significantly higher than that in the OAicv. The results of behavioral experiments showed that ICV or intrahippocampal bilateral microinjection of OA did not affect learning process and short-term spatial memory but induced impairment in spatial long-term memory assessed in probe test performance 24 h after training. OA-induced spatial memory impairment may be attributed to the hippocampal cell death. Based on these results OA induced memory deficit and hippocampal cell loss in rat may be considered as a potential animal model for preclinical evaluation of antidementic drug activity.

  14. The ventromedial hypothalamus oxytocin induces locomotor behavior regulated by estrogen.

    Science.gov (United States)

    Narita, Kazumi; Murata, Takuya; Matsuoka, Satoshi

    2016-10-01

    Our previous studies demonstrated that excitation of neurons in the rat ventromedial hypothalamus (VMH) induced locomotor activity. An oxytocin receptor (Oxtr) exists in the VMH and plays a role in regulating sexual behavior. However, the role of Oxtr in the VMH in locomotor activity is not clear. In this study we examined the roles of oxytocin in the VMH in running behavior, and also investigated the involvement of estrogen in this behavioral change. Microinjection of oxytocin into the VMH induced a dose-dependent increase in the running behavior in male rats. The oxytocin-induced running activity was inhibited by simultaneous injection of Oxtr-antagonist, (d(CH2)5(1), Try(Me)(2), Orn(8))-oxytocin. Oxytocin injection also induced running behavior in ovariectomized (OVX) female rats. Pretreatment of the OVX rats with estrogen augmented the oxytocin-induced running activity twofold, and increased the Oxtr mRNA in the VMH threefold. During the estrus cycle locomotor activity spontaneously increased in the dark period of proestrus. The Oxtr mRNA was up-regulated in the proestrus afternoon. Blockade of oxytocin neurotransmission by its antagonist before the onset of the dark period of proestrus decreased the following nocturnal locomotor activity. These findings demonstrate that Oxtr in the VMH is involved in the induction of running behavior and that estrogen facilitates this effect by means of Oxtr up-regulation, suggesting the involvement of oxytocin in the locomotor activity of proestrus female rats. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Iso-α-acids, bitter components of beer, prevent obesity-induced cognitive decline.

    Science.gov (United States)

    Ayabe, Tatsuhiro; Ohya, Rena; Kondo, Keiji; Ano, Yasuhisa

    2018-03-19

    Dementia and cognitive decline have become worldwide public health problems, and it was recently reported that life-style related diseases and obesity are key risk factors in dementia. Iso-α-acids, hop-derived bitter components of beer, have been reported to have various physiological functions via activation of peroxisome proliferator-activated receptor γ. In this report, we demonstrated that daily intake of iso-α-acids suppresses inflammations in the hippocampus and improves cognitive decline induced by high fat diet (HFD). Body weight, epididymal fat weight, and plasma triglyceride levels were increased in HFD-fed mice, and significantly decreased in iso-α-acids supplemented HFD-fed mice. HFD feeding enhances the production of inflammatory cytokines and chemokines, such as TNF-α, which was significantly suppressed by iso-α-acids administration. HFD-induced neuroinflammation caused lipid peroxidation, neuronal loss, and atrophy in hippocampus, and those were not observed in iso-α-acids-treated mice. Furthermore, iso-α-acids intake significantly improved cognitive decline induced by HFD-feeding. Iso-α-acids are food derived components that suppressing both lipid accumulation and brain inflammation, thus iso-α-acids might be beneficial for the risk of dementia increased by obesity and lifestyle-related diseases.

  16. Widespread abnormality of the γ-aminobutyric acid-ergic system in Tourette syndrome

    Science.gov (United States)

    Bagic, Anto; Simmons, Janine M.; Mari, Zoltan; Bonne, Omer; Xu, Ben; Kazuba, Diane; Herscovitch, Peter; Carson, Richard E.; Murphy, Dennis L.; Drevets, Wayne C.; Hallett, Mark

    2012-01-01

    Dysfunction of the γ-aminobutyric acid-ergic system in Tourette syndrome may conceivably underlie the symptoms of motor disinhibition presenting as tics and psychiatric manifestations, such as attention deficit hyperactivity disorder and obsessive–compulsive disorder. The purpose of this study was to identify a possible dysfunction of the γ-aminobutyric acid-ergic system in Tourette patients, especially involving the basal ganglia-thalamo-cortical circuits and the cerebellum. We studied 11 patients with Tourette syndrome and 11 healthy controls. Positron emission tomography procedure: after injection of 20 mCi of [11C]flumazenil, dynamic emission images of the brain were acquired. Structural magnetic resonance imaging scans were obtained to provide an anatomical framework for the positron emission tomography data analysis. Images of binding potential were created using the two-step version of the simplified reference tissue model. The binding potential images then were spatially normalized, smoothed and compared between groups using statistical parametric mapping. We found decreased binding of GABAA receptors in Tourette patients bilaterally in the ventral striatum, globus pallidus, thalamus, amygdala and right insula. In addition, the GABAA receptor binding was increased in the bilateral substantia nigra, left periaqueductal grey, right posterior cingulate cortex and bilateral cerebellum. These results are consistent with the longstanding hypothesis that circuits involving the basal ganglia and thalamus are disinhibited in Tourette syndrome patients. In addition, the abnormalities in GABAA receptor binding in the insula and cerebellum appear particularly noteworthy based upon recent evidence implicating these structures in the generation of tics. PMID:22577221

  17. Fluorescent nanodiamond tracking reveals intraneuronal transport abnormalities induced by brain-disease-related genetic risk factors

    Science.gov (United States)

    Haziza, Simon; Mohan, Nitin; Loe-Mie, Yann; Lepagnol-Bestel, Aude-Marie; Massou, Sophie; Adam, Marie-Pierre; Le, Xuan Loc; Viard, Julia; Plancon, Christine; Daudin, Rachel; Koebel, Pascale; Dorard, Emilie; Rose, Christiane; Hsieh, Feng-Jen; Wu, Chih-Che; Potier, Brigitte; Herault, Yann; Sala, Carlo; Corvin, Aiden; Allinquant, Bernadette; Chang, Huan-Cheng; Treussart, François; Simonneau, Michel

    2017-05-01

    Brain diseases such as autism and Alzheimer's disease (each inflicting >1% of the world population) involve a large network of genes displaying subtle changes in their expression. Abnormalities in intraneuronal transport have been linked to genetic risk factors found in patients, suggesting the relevance of measuring this key biological process. However, current techniques are not sensitive enough to detect minor abnormalities. Here we report a sensitive method to measure the changes in intraneuronal transport induced by brain-disease-related genetic risk factors using fluorescent nanodiamonds (FNDs). We show that the high brightness, photostability and absence of cytotoxicity allow FNDs to be tracked inside the branches of dissociated neurons with a spatial resolution of 12 nm and a temporal resolution of 50 ms. As proof of principle, we applied the FND tracking assay on two transgenic mouse lines that mimic the slight changes in protein concentration (∼30%) found in the brains of patients. In both cases, we show that the FND assay is sufficiently sensitive to detect these changes.

  18. Jasmonic acid signaling modulates ozone-induced hypersensitive cell death.

    Science.gov (United States)

    Rao, M V; Lee, H; Creelman, R A; Mullet, J E; Davis, K R

    2000-09-01

    Recent studies suggest that cross-talk between salicylic acid (SA)-, jasmonic acid (JA)-, and ethylene-dependent signaling pathways regulates plant responses to both abiotic and biotic stress factors. Earlier studies demonstrated that ozone (O(3)) exposure activates a hypersensitive response (HR)-like cell death pathway in the Arabidopsis ecotype Cvi-0. We now have confirmed the role of SA and JA signaling in influencing O(3)-induced cell death. Expression of salicylate hydroxylase (NahG) in Cvi-0 reduced O(3)-induced cell death. Methyl jasmonate (Me-JA) pretreatment of Cvi-0 decreased O(3)-induced H(2)O(2) content and SA concentrations and completely abolished O(3)-induced cell death. Cvi-0 synthesized as much JA as did Col-0 in response to O(3) exposure but exhibited much less sensitivity to exogenous Me-JA. Analyses of the responses to O(3) of the JA-signaling mutants jar1 and fad3/7/8 also demonstrated an antagonistic relationship between JA- and SA-signaling pathways in controlling the magnitude of O(3)-induced HR-like cell death.

  19. Neuroprotective influence of taurine on fluoride-induced biochemical and behavioral deficits in rats.

    Science.gov (United States)

    Adedara, Isaac A; Abolaji, Amos O; Idris, Umar F; Olabiyi, Bolanle F; Onibiyo, Esther M; Ojuade, TeminiJesu D; Farombi, Ebenezer O

    2017-01-05

    Epidemiological and experimental studies have demonstrated that excessive exposure to fluoride induced neurodevelopmental toxicity both in humans and animals. Taurine is a free intracellular β-amino acid with antioxidant and neuroprotective properties. The present study investigated the neuroprotective mechanism of taurine by evaluating the biochemical and behavioral characteristics in rats exposed to sodium fluoride (NaF) singly in drinking water at 15 mg/L alone or orally co-administered by gavage with taurine at 100 and 200 mg/kg body weight for 45 consecutive days. Locomotor behavior was assessed using video-tracking software during a 10-min trial in a novel environment while the brain structures namely the hypothalamus, cerebrum and cerebellum of the rats were processed for biochemical determinations. Results showed that taurine administration prevented NaF-induced locomotor and motor deficits namely decrease in total distance travelled, total body rotation, maximum speed, absolute turn angle along with weak forelimb grip, increased incidence of fecal pellets and time of grooming, immobility and negative geotaxis. The taurine mediated enhancement of the exploratory profiles of NaF-exposed rats was supported by track and occupancy plot analyses. Moreover, taurine prevented NaF-induced increase in hydrogen peroxide and lipid peroxidation levels but increased acetylcholinesterase and the antioxidant enzymes activities in the hypothalamus, cerebrum and cerebellum of the rats. Collectively, taurine protected against NaF-induced neurotoxicity via mechanisms involving the restoration of acetylcholinesterase activity and antioxidant status with concomitant inhibition of lipid peroxidation in the brain of rats. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  20. GPR40/FFAR1 deficient mice increase noradrenaline levels in the brain and exhibit abnormal behavior

    Directory of Open Access Journals (Sweden)

    Fuka Aizawa

    2016-12-01

    Full Text Available The free fatty acid receptor 1 (GPR40/FFAR1 is a G protein-coupled receptor, which is activated by long chain fatty acids. We have previously demonstrated that activation of brain GPR40/FFAR1 exerts an antinociceptive effect that is mediated by the modulation of the descending pain control system. However, it is unclear whether brain GPR40/FFAR1 contributes to emotional function. In this study, we investigated the involvement of GPR40/FFAR1 in emotional behavior using GPR40/FFAR1 deficient (knockout, KO mice. The emotional behavior in wild and KO male mice was evaluated at 9–10 weeks of age by the elevated plus-maze test, open field test, social interaction test, and sucrose preference test. Brain monoamines levels were measured using LC–MS/MS. The elevated plus-maze test and open field tests revealed that the KO mice reduced anxiety-like behavior. There were no differences in locomotor activity or social behavior between the wild and KO mice. In the sucrose preference test, the KO mice showed reduction in sucrose preference and intake. The level of noradrenaline was higher in the hippocampus, medulla oblongata, hypothalamus and midbrain of KO mice. Therefore, these results suggest that brain GPR40/FFAR1 is associated with anxiety- and depression-related behavior regulated by the increment of noradrenaline in the brain.

  1. Protective effect of minocycline, a semi-synthetic second-generation tetracycline against 3-nitropropionic acid (3-NP)-induced neurotoxicity

    International Nuclear Information System (INIS)

    Ahuja, Manuj; Bishnoi, Mahendra; Chopra, Kanwaljit

    2008-01-01

    3-Nitropropionic acid (3-NP) is an irreversible inhibitor of the electron transport enzyme succinate dehydrogenase, a mitochondrial Complex II enzyme. Minocycline is a semi-synthetic second-generation tetracycline with neuroprotective activity and has the capability to effectively cross the blood-brain barrier. We investigated the effects of minocycline on behavioral, biochemical, inflammation related and neurochemical alterations induced by the sub-chronic administration of 3-nitropropionic acid to rats. Chronic pre-administration of minocycline (50 and 100 mg/kg) dose dependently prevented 3-NP-induced dysfunction behavioral (hypoactivity, memory retention, locomotor and rota-rod activity). In addition, 3-NP produced a marked increase in lipid peroxidation levels whereas decreased the activities of catalase and succinate dehydrogenase. In contrast, pretreatment of 3-NP injected rats with minocycline resulted in the attenuation of all these alterations. A marked increase in an inflammatory cytokine TNF-α by 3-NP was also decreased by minocycline treatment. Neurochemically, the administration of 3-NP significantly decreased the levels of catecholamines in the brain homogenates (dopamine, norepinephrine and serotonin) which were reversed by pretreatment of minocycline. The present finding explains the neuroprotective effect of minocycline against 3-NP toxicity by virtue of its antioxidant and anti-inflammatory activity

  2. Caffeic Acid Induces Apoptosis in Human Cervical Cancer Cells Through the Mitochondrial Pathway

    Directory of Open Access Journals (Sweden)

    Wei-Chun Chang

    2010-12-01

    Conclusion: Caffeic acid induces apoptosis by inhibiting Bcl-2 activity, leading to release of cytochrome c and subsequent activation of caspase-3, indicating that caffeic acid induces apoptosis via the mitochondrial apoptotic pathway. This also suggests that caffeic acid has a strong anti-tumor effect and may be a promising chemopreventive or chemotherapeutic agent.

  3. Ethanol-Induced Neurodegeneration and Glial Activation in the Developing Brain

    Directory of Open Access Journals (Sweden)

    Mariko Saito

    2016-08-01

    Full Text Available Ethanol induces neurodegeneration in the developing brain, which may partially explain the long-lasting adverse effects of prenatal ethanol exposure in fetal alcohol spectrum disorders (FASD. While animal models of FASD show that ethanol-induced neurodegeneration is associated with glial activation, the relationship between glial activation and neurodegeneration has not been clarified. This review focuses on the roles of activated microglia and astrocytes in neurodegeneration triggered by ethanol in rodents during the early postnatal period (equivalent to the third trimester of human pregnancy. Previous literature indicates that acute binge-like ethanol exposure in postnatal day 7 (P7 mice induces apoptotic neurodegeneration, transient activation of microglia resulting in phagocytosis of degenerating neurons, and a prolonged increase in glial fibrillary acidic protein-positive astrocytes. In our present study, systemic administration of a moderate dose of lipopolysaccharides, which causes glial activation, attenuates ethanol-induced neurodegeneration. These studies suggest that activation of microglia and astrocytes by acute ethanol in the neonatal brain may provide neuroprotection. However, repeated or chronic ethanol can induce significant proinflammatory glial reaction and neurotoxicity. Further studies are necessary to elucidate whether acute or sustained glial activation caused by ethanol exposure in the developing brain can affect long-lasting cellular and behavioral abnormalities observed in the adult brain.

  4. Abnormal development of tapetum and microspores induced by chemical hybridization agent SQ-1 in wheat.

    Science.gov (United States)

    Wang, Shuping; Zhang, Gaisheng; Song, Qilu; Zhang, Yingxin; Li, Zheng; Guo, Jialin; Niu, Na; Ma, Shoucai; Wang, Junwei

    2015-01-01

    Chemical hybridization agent (CHA)-induced male sterility is an important tool in crop heterosis. To demonstrate that CHA-SQ-1-induced male sterility is associated with abnormal tapetal and microspore development, the cytology of CHA-SQ-1-treated plant anthers at various developmental stages was studied by light microscopy, scanning and transmission electron microscopy, in situ terminal deoxynucleotidyl transferasemediated dUTP nick end-labelling (TUNEL) assay and DAPI staining. The results indicated that the SQ-1-treated plants underwent premature tapetal programmed cell death (PCD), which was initiated at the early-uninucleate stage of microspore development and continued until the tapetal cells were completely degraded; the process of microspore development was then blocked. Microspores with low-viability (fluorescein diacetate staining) were aborted. The study suggests that premature tapetal PCD is the main cause of pollen abortion. Furthermore, it determines the starting period and a key factor in CHA-SQ-1-induced male sterility at the cell level, and provides cytological evidence to further study the mechanism between PCD and male sterility.

  5. Abnormal development of tapetum and microspores induced by chemical hybridization agent SQ-1 in wheat.

    Directory of Open Access Journals (Sweden)

    Shuping Wang

    Full Text Available Chemical hybridization agent (CHA-induced male sterility is an important tool in crop heterosis. To demonstrate that CHA-SQ-1-induced male sterility is associated with abnormal tapetal and microspore development, the cytology of CHA-SQ-1-treated plant anthers at various developmental stages was studied by light microscopy, scanning and transmission electron microscopy, in situ terminal deoxynucleotidyl transferasemediated dUTP nick end-labelling (TUNEL assay and DAPI staining. The results indicated that the SQ-1-treated plants underwent premature tapetal programmed cell death (PCD, which was initiated at the early-uninucleate stage of microspore development and continued until the tapetal cells were completely degraded; the process of microspore development was then blocked. Microspores with low-viability (fluorescein diacetate staining were aborted. The study suggests that premature tapetal PCD is the main cause of pollen abortion. Furthermore, it determines the starting period and a key factor in CHA-SQ-1-induced male sterility at the cell level, and provides cytological evidence to further study the mechanism between PCD and male sterility.

  6. A BDNF loop-domain mimetic acutely reverses spontaneous apneas and respiratory abnormalities during behavioral arousal in a mouse model of Rett syndrome

    Directory of Open Access Journals (Sweden)

    Miriam Kron

    2014-09-01

    Full Text Available Reduced levels of brain-derived neurotrophic factor (BDNF are thought to contribute to the pathophysiology of Rett syndrome (RTT, a severe neurodevelopmental disorder caused by loss-of-function mutations in the gene encoding methyl-CpG-binding protein 2 (MeCP2. In Mecp2 mutant mice, BDNF deficits have been associated with breathing abnormalities, a core feature of RTT, as well as with synaptic hyperexcitability within the brainstem respiratory network. Application of BDNF can reverse hyperexcitability in acute brainstem slices from Mecp2-null mice, suggesting that therapies targeting BDNF or its receptor, TrkB, could be effective at acute reversal of respiratory abnormalities in RTT. Therefore, we examined the ability of LM22A-4, a small-molecule BDNF loop-domain mimetic and TrkB partial agonist, to modulate synaptic excitability within respiratory cell groups in the brainstem nucleus tractus solitarius (nTS and to acutely reverse abnormalities in breathing at rest and during behavioral arousal in Mecp2 mutants. Patch-clamp recordings in Mecp2-null brainstem slices demonstrated that LM22A-4 decreases excitability at primary afferent synapses in the nTS by reducing the amplitude of evoked excitatory postsynaptic currents and the frequency of spontaneous and miniature excitatory postsynaptic currents. In vivo, acute treatment of Mecp2-null and -heterozygous mutants with LM22A-4 completely eliminated spontaneous apneas in resting animals, without sedation. Moreover, we demonstrate that respiratory dysregulation during behavioral arousal, a feature of human RTT, is also reversed in Mecp2 mutants by acute treatment with LM22A-4. Together, these data support the hypothesis that reduced BDNF signaling and respiratory dysfunction in RTT are linked, and establish the proof-of-concept that treatment with a small-molecule structural mimetic of a BDNF loop domain and a TrkB partial agonist can acutely reverse abnormal breathing at rest and in response to

  7. ENU-mutagenesis mice with a non-synonymous mutation in Grin1 exhibit abnormal anxiety-like behaviors, impaired fear memory, and decreased acoustic startle response

    Science.gov (United States)

    2013-01-01

    Background The Grin1 (glutamate receptor, ionotropic, NMDA1) gene expresses a subunit of N-methyl-D-aspartate (NMDA) receptors that is considered to play an important role in excitatory neurotransmission, synaptic plasticity, and brain development. Grin1 is a candidate susceptibility gene for neuropsychiatric disorders, including schizophrenia, bipolar disorder, and attention deficit/hyperactivity disorder (ADHD). In our previous study, we examined an N-ethyl-N-nitrosourea (ENU)-generated mutant mouse strain (Grin1Rgsc174/Grin1+) that has a non-synonymous mutation in Grin1. These mutant mice showed hyperactivity, increased novelty-seeking to objects, and abnormal social interactions. Therefore, Grin1Rgsc174/Grin1+ mice may serve as a potential animal model of neuropsychiatric disorders. However, other behavioral characteristics related to these disorders, such as working memory function and sensorimotor gating, have not been fully explored in these mutant mice. In this study, to further investigate the behavioral phenotypes of Grin1Rgsc174/Grin1+ mice, we subjected them to a comprehensive battery of behavioral tests. Results There was no significant difference in nociception between Grin1Rgsc174/Grin1+ and wild-type mice. The mutants did not display any abnormalities in the Porsolt forced swim and tail suspension tests. We confirmed the previous observations that the locomotor activity of these mutant mice increased in the open field and home cage activity tests. They displayed abnormal anxiety-like behaviors in the light/dark transition and the elevated plus maze tests. Both contextual and cued fear memory were severely deficient in the fear conditioning test. The mutant mice exhibited slightly impaired working memory in the eight-arm radial maze test. The startle amplitude was markedly decreased in Grin1Rgsc174/Grin1+ mice, whereas no significant differences between genotypes were detected in the prepulse inhibition (PPI) test. The mutant mice showed no obvious

  8. Esophageal intraluminal baseline impedance is associated with severity of acid reflux and epithelial structural abnormalities in patients with gastroesophageal reflux disease.

    Science.gov (United States)

    Zhong, Chanjuan; Duan, Liping; Wang, Kun; Xu, Zhijie; Ge, Ying; Yang, Changqing; Han, Yajing

    2013-05-01

    The esophageal intraluminal baseline impedance may be used to evaluate the status of mucosa integrity. Esophageal acid exposure decreases the baseline impedance. We aimed to compare baseline impedance in patients with various reflux events and with different acid-related parameters, and investigate the relationships between epithelial histopathologic abnormalities and baseline impedance. A total of 229 GERD patients and 34 controls underwent 24-h multichannel intraluminal impedance and pH monitoring (MII-pH monitoring), gastroendoscopy, and completed a GERD questionnaire (GerdQ). We quantified epithelial intercellular spaces (ICSs) and expression of tight junction (TJ) proteins by histologic techniques. Mean baseline values in reflux esophagitis (RE) (1752 ± 1018 Ω) and non-erosive reflux disease (NERD) (2640 ± 1143 Ω) were significantly lower than in controls (3360 ± 1258 Ω; p acid reflux group (2510 ± 1239 Ω) and mixed acid/weakly acidic reflux group (2393 ± 1009 Ω) were much lower than in controls (3360 ± 1258 Ω; p = 0.020 and p acid exposure time (AET) (r = -0.41, p acid reflux events and with longer AET have low baseline impedance. Baseline values are correlated with esophageal mucosal histopathologic changes such as dilated ICS and TJ alteration.

  9. Panic-like defensive behavior but not fear-induced antinociception is differently organized by dorsomedial and posterior hypothalamic nuclei of Rattus norvegicus (Rodentia, Muridae

    Directory of Open Access Journals (Sweden)

    A.F. Biagioni

    2012-04-01

    Full Text Available The hypothalamus is a forebrain structure critically involved in the organization of defensive responses to aversive stimuli. Gamma-aminobutyric acid (GABAergic dysfunction in dorsomedial and posterior hypothalamic nuclei is implicated in the origin of panic-like defensive behavior, as well as in pain modulation. The present study was conducted to test the difference between these two hypothalamic nuclei regarding defensive and antinociceptive mechanisms. Thus, the GABA A antagonist bicuculline (40 ng/0.2 µL or saline (0.9% NaCl was microinjected into the dorsomedial or posterior hypothalamus in independent groups. Innate fear-induced responses characterized by defensive attention, defensive immobility and elaborate escape behavior were evoked by hypothalamic blockade of GABA A receptors. Fear-induced defensive behavior organized by the posterior hypothalamus was more intense than that organized by dorsomedial hypothalamic nuclei. Escape behavior elicited by GABA A receptor blockade in both the dorsomedial and posterior hypothalamus was followed by an increase in nociceptive threshold. Interestingly, there was no difference in the intensity or in the duration of fear-induced antinociception shown by each hypothalamic division presently investigated. The present study showed that GABAergic dysfunction in nuclei of both the dorsomedial and posterior hypothalamus elicit panic attack-like defensive responses followed by fear-induced antinociception, although the innate fear-induced behavior originates differently in the posterior hypothalamus in comparison to the activity of medial hypothalamic subdivisions.

  10. Anatomic defects and behavioral abnormalities in rats irradiated in utero

    International Nuclear Information System (INIS)

    Kimler, B.F.; Norton, S.

    1987-01-01

    Pregnant rats were irradiated with 1.0 Gy whole-body doses of Cs-137 γ-rays on gestational days 11, 13, 15 and 17. Postnatal growth and preweaning behavior of the offspring were monitored prior to sacrifice or post-partuition day 28. Brain (sensory motor cortex) and pituitary tissues were processed for histological evaluation and morphometric analysis. The gestational days on which irradiation produced significant (rho<0.05) changes relative to controls are enclosed in parentheses, with the day(s) on which irradiation produced the maximum effect being underlined for the various parameters: body weight on post-partuition day 7, pituitary nuclear area, percent acidophils, and percent vacuolization, thickness of cortical layer I, II, III, IV, V, VI, and total cortical thickness; negative geotaxis, reflex suspension, continuous corridor activity, and gait. These data indicate that the critical period of development for radiation-induced alterations in post-natal growth, development, and behavior changes from the pituitary at gestational day 11 to the brain (primitive cortex) at days 13 to 17 with a peak of sensitivity at day 15

  11. Chronic Administration of Benzo(apyrene Induces Memory Impairment and Anxiety-Like Behavior and Increases of NR2B DNA Methylation.

    Directory of Open Access Journals (Sweden)

    Wenping Zhang

    Full Text Available Recently, an increasing number of human and animal studies have reported that exposure to benzo(apyrene (BaP induces neurological abnormalities and is also associated with adverse effects, such as tumor formation, immunosuppression, teratogenicity, and hormonal disorders. However, the exact mechanisms underlying BaP-induced impairment of neurological function remain unclear. The aim of this study was to examine the regulating mechanisms underlying the impact of chronic BaP exposure on neurobehavioral performance.C57BL mice received either BaP in different doses (1.0, 2.5, 6.25 mg/kg or olive oil twice a week for 90 days. Memory and emotional behaviors were evaluated using Y-maze and open-field tests, respectively. Furthermore, levels of mRNA expression were measured by using qPCR, and DNA methylation of NMDA receptor 2B subunit (NR2B was examined using bisulfate pyrosequencing in the prefrontal cortex and hippocampus.Compared to controls, mice that received BaP (2.5, 6.25 mg/kg showed deficits in short-term memory and an anxiety-like behavior. These behavioral alterations were associated with a down-regulation of the NR2B gene and a concomitant increase in the level of DNA methylation in the NR2B promoter in the two brain regions.Chronic BaP exposure induces an increase in DNA methylation in the NR2B gene promoter and down-regulates NR2B expression, which may contribute to its neurotoxic effects on behavioral performance. The results suggest that NR2B vulnerability represents a target for environmental toxicants in the brain.

  12. Arsenite promotes centrosome abnormalities under a p53 compromised status induced by 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK)

    International Nuclear Information System (INIS)

    Liao, W.-T.; Yu, H.-S.; Lin Pinpin; Chang, Louis W.

    2010-01-01

    Epidemiological evidence indicated that residents, especially cigarette smokers, in arseniasis areas had significantly higher lung cancer risk than those living in non-arseniasis areas. Thus an interaction between arsenite and cigarette smoking in lung carcinogenesis was suspected. In the present study, we investigated the interactions of a tobacco-specific carcinogen 4- (methylnitrosamino)-1-(3-pyridyl)-1-butanone (nicotine-derived nitrosamine ketone, NNK) and arsenite on lung cell transformation. BEAS-2B, an immortalized human lung epithelial cell line, was selected to test the centrosomal abnormalities and colony formation by NNK and arsenite. We found that NNK, alone, could enhance BEAS-2B cell growth at 1-5 μM. Under NNK exposure, arsenite was able to increase centrosomal abnormality as compared with NNK or arsenite treatment alone. NNK treatment could also reduce arsenite-induced G2/M cell cycle arrest and apoptosis, these cellular effects were found to be correlated with p53 dysfunction. Increased anchorage-independent growth (colony formation) of BEAS-2B cells cotreated with NNK and arsenite was also observed in soft agar. Our present investigation demonstrated that NNK could provide a p53 compromised status. Arsenite would act specifically on this p53 compromised status to induce centrosomal abnormality and colony formation. These findings provided strong evidence on the carcinogenic promotional role of arsenite under tobacco-specific carcinogen co-exposure.

  13. Omega-3 Fatty Acid Deficient Male Rats Exhibit Abnormal Behavioral Activation in the Forced Swim Test Following Chronic Fluoxetine Treatment: Association with Altered 5-HT1A and Alpha2A Adrenergic Receptor Expression

    OpenAIRE

    Able, Jessica A.; Liu, Yanhong; Jandacek, Ronald; Rider, Therese; Tso, Patrick; McNamara, Robert K.

    2013-01-01

    Omega-3 fatty acid deficiency during development leads to enduing alterations in central monoamine neurotransmission in rat brain. Here we investigated the effects of omega-3 fatty acid deficiency on behavioral and neurochemical responses to chronic fluoxetine (FLX) treatment. Male rats were fed diets with (CON, n=34) or without (DEF, n=30) the omega-3 fatty acid precursor alpha-linolenic acid (ALA) during peri-adolescent development (P21-P90). A subset of CON (n=14) and DEF (n=12) rats were ...

  14. The hallucinogen d-lysergic acid diethylamide (d-LSD) induces the immediate-early gene c-Fos in rat forebrain.

    Science.gov (United States)

    Frankel, Paul S; Cunningham, Kathryn A

    2002-12-27

    The hallucinogen d-lysergic acid diethylamide (d-LSD) evokes dramatic somatic and psychological effects. In order to analyze the neural activation induced by this unique psychoactive drug, we tested the hypothesis that expression of the immediate-early gene product c-Fos is induced in specific regions of the rat forebrain by a relatively low, behaviorally active, dose of d-LSD (0.16 mg/kg, i.p.); c-Fos protein expression was assessed at 30 min, and 1, 2 and 4 h following d-LSD injection. A time- and region-dependent expression of c-Fos was observed with a significant increase (PLSD administration. These data demonstrate a unique pattern of c-Fos expression in the rat forebrain following a relatively low dose of d-LSD and suggest that activation of these forebrain regions contributes to the unique behavioral effects of d-LSD. Copyright 2002 Elsevier Science B.V.

  15. Gallic acid induces apoptosis in EGFR-mutant non-small cell lung cancers by accelerating EGFR turnover.

    Science.gov (United States)

    Nam, Boas; Rho, Jin Kyung; Shin, Dong-Myung; Son, Jaekyoung

    2016-10-01

    Gallic acid is a common botanic phenolic compound, which is present in plants and foods worldwide. Gallic acid is implicated in various biological processes such as cell growth and apoptosis. Indeed, gallic acid has been shown to induce apoptosis in many cancer types. However, the molecular mechanisms of gallic acid-induced apoptosis in cancer, particularly lung cancer, are still unclear. Here, we report that gallic acid induces apoptosis in EGFR-mutant non-small cell lung cancer (NSCLC) cells, but not in EGFR-WT NSCLC cells. Treatment with gallic acid resulted in a significant reduction in proliferation and induction of apoptosis, only in EGFR-mutant NSCLC cells. Interestingly, treatment with gallic acid led to a robust decrease in EGFR levels, which is critical for NSCLC survival. Treatment with gallic acid had no significant effect on transcription, but induced EGFR turnover. Indeed, treatment with a proteasome inhibitor dramatically reversed gallic acid-induced EGFR downregulation. Moreover, treatment with gallic acid induced EGFR turnover leading to apoptosis in EGFR-TKI (tyrosine kinase inhibitor)-resistant cell lines, which are dependent on EGFR signaling for survival. Thus, these studies suggest that gallic acid can induce apoptosis in EGFR-dependent lung cancers that are dependent on EGFR for growth and survival via acceleration of EGFR turnover. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Identifying drug-induced repolarization abnormalities from distinct ECG patterns in congenital long QT syndrome: a study of sotalol effects on T-wave morphology

    DEFF Research Database (Denmark)

    Graff, Claus; Andersen, Mads P; Xue, Joel Q

    2009-01-01

    BACKGROUND: The electrocardiographic QT interval is used to identify drugs with potential harmful effects on cardiac repolarization in drug trials, but the variability of the measurement can mask drug-induced ECG changes. The use of complementary electrocardiographic indices of abnormal repolariz......BACKGROUND: The electrocardiographic QT interval is used to identify drugs with potential harmful effects on cardiac repolarization in drug trials, but the variability of the measurement can mask drug-induced ECG changes. The use of complementary electrocardiographic indices of abnormal...... are typical ECG patterns in LQT2. Blinded to labels, the new morphology measures were tested in a third group of 39 healthy subjects receiving sotalol. Over 3 days the sotalol group received 0, 160 and 320 mg doses, respectively, and a 12-lead Holter ECG was recorded for 22.5 hours each day. Drug...... with QTcF, p ECG patterns in LQT2 carriers effectively quantified repolarization changes induced by sotalol. Further studies are needed to validate whether this measure has...

  17. Comparison of endogenous and radiolabeled bile acid excretion in patients with idiopathic chronic diarrhea

    International Nuclear Information System (INIS)

    Schiller, L.R.; Bilhartz, L.E.; Santa Ana, C.A.

    1990-01-01

    Fecal recovery of radioactivity after ingestion of a bolus of radiolabeled bile acid is abnormally high in most patients with idiopathic chronic diarrhea. To evaluate the significance of this malabsorption, concurrent fecal excretion of both exogenous radiolabeled bile acid and endogenous (unlabeled) bile acid were measured in patients with idiopathic chronic diarrhea. Subjects received a 2.5-microCi oral dose of taurocholic acid labeled with 14C in the 24th position of the steroid moiety. Endogenous bile acid excretion was measured by a hydroxysteroid dehydrogenase assay on a concurrent 72-h stool collection. Both radiolabeled and endogenous bile acid excretion were abnormally high in most patients with chronic diarrhea compared with normal subjects, even when equivoluminous diarrhea was induced in normal subjects by ingestion of osmotically active solutions. The correlation between radiolabeled and endogenous bile acid excretion was good. However, neither radiolabeled nor endogenous bile acid excretion was as abnormal as is typically seen in patients with ileal resection, and none of these diarrhea patients responded to treatment with cholestyramine with stool weights less than 200 g. These results suggest (a) that this radiolabeled bile acid excretion test accurately reflects excess endogenous bile acid excretion; (b) that excess endogenous bile acid excretion is not caused by diarrhea per se; (c) that spontaneously occurring idiopathic chronic diarrhea is often associated with increased endogenous bile acid excretion; and (d) that bile acid malabsorption is not likely to be the primary cause of diarrhea in most of these patients

  18. Dexmedetomidine reduces lipopolysaccharide induced neuroinflammation, sickness behavior, and anhedonia.

    Directory of Open Access Journals (Sweden)

    Ching-Hua Yeh

    Full Text Available Peripheral innate immune response may induce sickness behavior through activating microglia, excessive cytokines production, and neuroinflammation. Dexmedetomidine (Dex has anti-inflammatory effect. We investigated the effects of Dex on lipopolysaccharide (LPS-induced neuroinflammation and sickness behavior in mice.BALB/c mice were intraperitoneally (i.p. injected with Dex (50 ug/kg or vehicle. One hour later, the mice were injected (i.p. with Escherichia coli LPS (0.33 mg/kg or saline (n = 6 in each group. We analyzed the food and water intake, body weight loss, and sucrose preference of the mice for 24h. We also determined microglia activation and cytokines expression in the brains of the mice. In vitro, we determine cytokines expression in LPS-treated BV-2 microglial cells with or without Dex treatment.In the Dex-pretreated mice, LPS-induced sickness behavior (anorexia, weight loss, and social withdrawal were attenuated and microglial activation was lower than vehicle control. The mRNA expression of TNF-α, MCP-1, indoleamine 2, 3 dioxygenase (IDO, caspase-3, and iNOS were increased in the brain of LPS-challenged mice, which were reduced by Dex but not vehicle.Dexmedetomidine diminished LPS-induced neuroinflammation in the mouse brain and modulated the cytokine-associated changes in sickness behavior.

  19. Neonatal erythropoietin mitigates impaired gait, social interaction and diffusion tensor imaging abnormalities in a rat model of prenatal brain injury.

    Science.gov (United States)

    Robinson, Shenandoah; Corbett, Christopher J; Winer, Jesse L; Chan, Lindsay A S; Maxwell, Jessie R; Anstine, Christopher V; Yellowhair, Tracylyn R; Andrews, Nicholas A; Yang, Yirong; Sillerud, Laurel O; Jantzie, Lauren L

    2018-04-01

    Children who are born preterm are at risk for encephalopathy of prematurity, a leading cause of cerebral palsy, cognitive delay and behavioral disorders. Current interventions are limited and none have been shown to reverse cognitive and behavioral impairments, a primary determinant of poor quality of life for these children. Moreover, the mechanisms of perinatal brain injury that result in functional deficits and imaging abnormalities in the mature brain are poorly defined, limiting the potential to target interventions to those who may benefit most. To determine whether impairments are reversible after a prenatal insult, we investigated a spectrum of functional deficits and diffusion tensor imaging (DTI) abnormalities in young adult animals. We hypothesized that prenatal transient systemic hypoxia-ischemia (TSHI) would induce multiple functional deficits concomitant with reduced microstructural white and gray matter integrity, and tested whether these abnormalities could be ameliorated using postnatal erythropoietin (EPO), an emerging neurorestorative intervention. On embryonic day 18 uterine arteries were transiently occluded for 60min via laparotomy. Shams underwent anesthesia and laparotomy for 60min. Pups were born and TSHI pups were randomized to receive EPO or vehicle via intraperitoneal injection on postnatal days 1 to 5. Gait, social interaction, olfaction and open field testing was performed from postnatal day 25-35 before brains underwent ex vivo DTI to measure fractional anisotropy, axial diffusivity and radial diffusivity. Prenatal TSHI injury causes hyperactivity, impaired gait and poor social interaction in young adult rats that mimic the spectrum of deficits observed in children born preterm. Collectively, these data show for the first time in a model of encephalopathy of prematurity that postnatal EPO treatment mitigates impairments in social interaction, in addition to gait deficits. EPO also normalizes TSHI-induced microstructural abnormalities

  20. Abscisic-acid-induced cellular apoptosis and differentiation in glioma via the retinoid acid signaling pathway.

    Science.gov (United States)

    Zhou, Nan; Yao, Yu; Ye, Hongxing; Zhu, Wei; Chen, Liang; Mao, Ying

    2016-04-15

    Retinoid acid (RA) plays critical roles in regulating differentiation and apoptosis in a variety of cancer cells. Abscisic acid (ABA) and RA are direct derivatives of carotenoids and share structural similarities. Here we proposed that ABA may also play a role in cellular differentiation and apoptosis by sharing a similar signaling pathway with RA that may be involved in glioma pathogenesis. We reported for the first time that the ABA levels were twofold higher in low-grade gliomas compared with high-grade gliomas. In glioma tissues, there was a positive correlation between the ABA levels and the transcription of cellular retinoic acid-binding protein 2 (CRABP2) and a negative correlation between the ABA levels and transcription of fatty acid-binding protein 5 (FABP5). ABA treatment induced a significant increase in the expression of CRABP2 and a decrease in the expression of peroxisome proliferator-activated receptor (PPAR) in glioblastoma cells. Remarkably, both cellular apoptosis and differentiation were increased in the glioblastoma cells after ABA treatment. ABA-induced cellular apoptosis and differentiation were significantly reduced by selectively silencing RAR-α, while RAR-α overexpression exaggerated the ABA-induced effects. These results suggest that ABA may play a role in the pathogenesis of glioma by promoting cellular apoptosis and differentiation through the RA signaling pathway. © 2015 UICC.

  1. Pre-cold stress increases acid stress resistance and induces amino ...

    African Journals Online (AJOL)

    pre-adapted to cold stress revealed induction of amino acid homeostasis and energy ... substrate, thereby reducing yeast and mould ..... spontaneous mutation of llmg_1816 (gdpp) induced by .... species to UV-B-induced damage in bacteria. J.

  2. Acetic Acid Causes Endoplasmic Reticulum Stress and Induces the Unfolded Protein Response in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Nozomi Kawazoe

    2017-06-01

    Full Text Available Since acetic acid inhibits the growth and fermentation ability of Saccharomyces cerevisiae, it is one of the practical hindrances to the efficient production of bioethanol from a lignocellulosic biomass. Although extensive information is available on yeast response to acetic acid stress, the involvement of endoplasmic reticulum (ER and unfolded protein response (UPR has not been addressed. We herein demonstrated that acetic acid causes ER stress and induces the UPR. The accumulation of misfolded proteins in the ER and activation of Ire1p and Hac1p, an ER-stress sensor and ER stress-responsive transcription factor, respectively, were induced by a treatment with acetic acid stress (>0.2% v/v. Other monocarboxylic acids such as propionic acid and sorbic acid, but not lactic acid, also induced the UPR. Additionally, ire1Δ and hac1Δ cells were more sensitive to acetic acid than wild-type cells, indicating that activation of the Ire1p-Hac1p pathway is required for maximum tolerance to acetic acid. Furthermore, the combination of mild acetic acid stress (0.1% acetic acid and mild ethanol stress (5% ethanol induced the UPR, whereas neither mild ethanol stress nor mild acetic acid stress individually activated Ire1p, suggesting that ER stress is easily induced in yeast cells during the fermentation process of lignocellulosic hydrolysates. It was possible to avoid the induction of ER stress caused by acetic acid and the combined stress by adjusting extracellular pH.

  3. Drug-induced Inhibition and Trafficking Disruption of ion Channels: Pathogenesis of QT Abnormalities and Drug-induced Fatal Arrhythmias

    Science.gov (United States)

    Cubeddu, Luigi X.

    2016-01-01

    Risk of severe and fatal ventricular arrhythmias, presenting as Torsade de Pointes (TdP), is increased in congenital and acquired forms of long QT syndromes (LQTS). Drug-induced inhibition of K+ currents, IKs, IKr, IK1, and/or Ito, delay repolarization, prolong QT, and increase the risk of TdP. Drug-induced interference with IKr is the most common cause of acquired LQTS/TdP. Multiple drugs bind to KNCH2-hERG-K+ channels affecting IKr, including antiarrythmics, antibiotics, antivirals, azole-antifungals, antimalarials, anticancer, antiemetics, prokinetics, antipsychotics, and antidepressants. Azithromycin has been recently added to this list. In addition to direct channel inhibition, some drugs interfere with the traffic of channels from the endoplasmic reticulum to the cell membrane, decreasing mature channel membrane density; e.g., pentamidine, geldalamicin, arsenic trioxide, digoxin, and probucol. Other drugs, such as ketoconazole, fluoxetine, norfluoxetine, citalopram, escitalopram, donepezil, tamoxifen, endoxifen, atazanavir, and roxitromycin, induce both direct channel inhibition and impaired channel trafficking. Although many drugs prolong the QT interval, TdP is a rare event. The following conditions increase the risk of drug-induced TdP: a) Disease states/electrolyte levels (heart failure, structural cardiac disease, bradycardia, hypokalemia); b) Pharmacogenomic variables (presence of congenital LQTS, subclinical ion-channel mutations, history of or having a relative with history of drug-induced long QT/TdP); c) Pharmacodynamic and kinetic factors (high doses, women, elderly, metabolism inhibitors, combining two or more QT prolonging drugs, drugs that prolong the QT and increase QT dispersion, and drugs with multiple actions on ion channels). Because most of these conditions are preventable, careful evaluation of risk factors and increased knowledge of drug use associated with repolarization abnormalities are strongly recommended. PMID:26926294

  4. Alterations and abnormal mitosis of wheat chromosomes induced by wheat-rye monosomic addition lines.

    Directory of Open Access Journals (Sweden)

    Shulan Fu

    Full Text Available BACKGROUND: Wheat-rye addition lines are an old topic. However, the alterations and abnormal mitotic behaviours of wheat chromosomes caused by wheat-rye monosomic addition lines are seldom reported. METHODOLOGY/PRINCIPAL FINDINGS: Octoploid triticale was derived from common wheat T. aestivum L. 'Mianyang11'×rye S. cereale L. 'Kustro' and some progeny were obtained by the controlled backcrossing of triticale with 'Mianyang11' followed by self-fertilization. Genomic in situ hybridization (GISH using rye genomic DNA and fluorescence in situ hybridization (FISH using repetitive sequences pAs1 and pSc119.2 as probes were used to analyze the mitotic chromosomes of these progeny. Strong pSc119.2 FISH signals could be observed at the telomeric regions of 3DS arms in 'Mianyang11'. However, the pSc119.2 FISH signals were disappeared from the selfed progeny of 4R monosomic addition line and the changed 3D chromosomes could be transmitted to next generation stably. In one of the selfed progeny of 7R monosomic addition line, one 2D chromosome was broken and three 4A chromosomes were observed. In the selfed progeny of 6R monosomic addition line, structural variation and abnormal mitotic behaviour of 3D chromosome were detected. Additionally, 1A and 4B chromosomes were eliminated from some of the progeny of 6R monosomic addition line. CONCLUSIONS/SIGNIFICANCE: These results indicated that single rye chromosome added to wheat might cause alterations and abnormal mitotic behaviours of wheat chromosomes and it is possible that the stress caused by single alien chromosome might be one of the factors that induced karyotype alteration of wheat.

  5. Impaired growth and neurological abnormalities in branched-chain α-keto acid dehydrogenase kinase-deficient mice

    Science.gov (United States)

    Joshi, Mandar A.; Jeoung, Nam Ho; Obayashi, Mariko; Hattab, Eyas M.; Brocken, Eric G.; Liechty, Edward A.; Kubek, Michael J.; Vattem, Krishna M.; Wek, Ronald C.; Harris, Robert A.

    2006-01-01

    The BCKDH (branched-chain α-keto acid dehydrogenase complex) catalyses the rate-limiting step in the oxidation of BCAAs (branched-chain amino acids). Activity of the complex is regulated by a specific kinase, BDK (BCKDH kinase), which causes inactivation, and a phosphatase, BDP (BCKDH phosphatase), which causes activation. In the present study, the effect of the disruption of the BDK gene on growth and development of mice was investigated. BCKDH activity was much greater in most tissues of BDK−/− mice. This occurred in part because the E1 component of the complex cannot be phosphorylated due to the absence of BDK and also because greater than normal amounts of the E1 component were present in tissues of BDK−/− mice. Lack of control of BCKDH activity resulted in markedly lower blood and tissue levels of the BCAAs in BDK−/− mice. At 12 weeks of age, BDK−/− mice were 15% smaller than wild-type mice and their fur lacked normal lustre. Brain, muscle and adipose tissue weights were reduced, whereas weights of the liver and kidney were greater. Neurological abnormalities were apparent by hind limb flexion throughout life and epileptic seizures after 6–7 months of age. Inhibition of protein synthesis in the brain due to hyperphosphorylation of eIF2α (eukaryotic translation initiation factor 2α) might contribute to the neurological abnormalities seen in BDK−/− mice. BDK−/− mice show significant improvement in growth and appearance when fed a high protein diet, suggesting that higher amounts of dietary BCAA can partially compensate for increased oxidation in BDK−/− mice. Disruption of the BDK gene establishes that regulation of BCKDH by phosphorylation is critically important for the regulation of oxidative disposal of BCAAs. The phenotype of the BDK−/− mice demonstrates the importance of tight regulation of oxidative disposal of BCAAs for normal growth and neurological function. PMID:16875466

  6. Metformin protects rat hepatocytes against bile acid-induced apoptosis.

    Directory of Open Access Journals (Sweden)

    Titia E Woudenberg-Vrenken

    Full Text Available BACKGROUND: Metformin is used in the treatment of Diabetes Mellitus type II and improves liver function in patients with non-alcoholic fatty liver disease (NAFLD. Metformin activates AMP-activated protein kinase (AMPK, the cellular energy sensor that is sensitive to changes in the AMP/ATP-ratio. AMPK is an inhibitor of mammalian target of rapamycin (mTOR. Both AMPK and mTOR are able to modulate cell death. AIM: To evaluate the effects of metformin on hepatocyte cell death. METHODS: Apoptotic cell death was induced in primary rat hepatocytes using either the bile acid glycochenodeoxycholic acid (GCDCA or TNFα in combination with actinomycin D (actD. AMPK, mTOR and phosphoinositide-3 kinase (PI3K/Akt were inhibited using pharmacological inhibitors. Apoptosis and necrosis were quantified by caspase activation, acridine orange staining and Sytox green staining respectively. RESULTS: Metformin dose-dependently reduces GCDCA-induced apoptosis, even when added 2 hours after GCDCA, without increasing necrotic cell death. Metformin does not protect against TNFα/ActD-induced apoptosis. The protective effect of metformin is dependent on an intact PI3-kinase/Akt pathway, but does not require AMPK/mTOR-signaling. Metformin does not inhibit NF-κB activation. CONCLUSION: Metformin protects against bile acid-induced apoptosis and could be considered in the treatment of chronic liver diseases accompanied by inflammation.

  7. Amino acid limitation induces down-regulation of WNT5a at transcriptional level

    International Nuclear Information System (INIS)

    Wang Zuguang; Chen Hong

    2009-01-01

    An aberrant WNT signaling contributes to the development and progression of multiple cancers. WNT5a is one of the WNT signaling molecules. This study was designed to test the hypothesis that amino acid deprivation induces changes in the WNT signaling pathway in colon cancer cells. Results showed that targets of the amino acid response pathway, ATF3 and p21, were induced in the human colon cancer cell line SW480 during amino acid limitation. There was a significant decrease in the WNT5a mRNA level following amino acid deprivation. The down-regulation of WNT5a mRNA by amino acid deprivation is not due to mRNA destabilization. There is a reduction of nuclear β-catenin protein level by amino acid limitation. Under amino acid limitation, phosphorylation of ERK1/2 was increased and the blockage of ERK1/2 by the inhibitor U0126 partially restored WNT5a mRNA level. In conclusion, amino acid limitation in colon cancer cells induces phosphorylation of ERK1/2, which then down-regulates WNT5a expression.

  8. Leaching behavior and chemical stability of copper butyl xanthate complex under acidic conditions.

    Science.gov (United States)

    Chang, Yi Kuo; Chang, Juu En; Chiang, Li Choung

    2003-08-01

    Although xanthate addition can be used for treating copper-containing wastewater, a better understanding of the leaching toxicity and the stability characteristics of the copper xanthate complexes formed is essential. This work was undertaken to evaluate the leaching behavior of copper xanthate complex precipitates by means of toxicity characteristics leaching procedure (TCLP) and semi-dynamic leaching test (SDLT) using 1 N acetic acid solution as the leachant. Also, the chemical stability of the copper xanthate complex during extraction has been examined with the studying of variation of chemical structure using UV-vis, Fourier transform infrared and X-ray photoelectron spectroscopies (XPS). Both TCLP and SDLT results showed that a negligible amount of copper ion was leached out from the copper xanthate complex precipitate, indicating that the complex exhibited a high degree of copper leaching stability under acidic conditions. Nevertheless, chemical structure of the copper xanthate complex precipitate varied during the leaching tests. XPS data suggested that the copper xanthate complex initially contained both cupric and cuprous xanthate, but the unstable cupric xanthate change to the cuprous form after acid extraction, indicating the cuprous xanthate to be the final stabilizing structure. Despite that, the changes of chemical structure did not induce the rapid leaching of copper from the copper xanthate complex.

  9. Priming by Hexanoic acid induce activation of mevalonic and linolenic pathways and promotes the emission of plant volatiles.

    Directory of Open Access Journals (Sweden)

    Eugenio eLlorens

    2016-04-01

    Full Text Available Hexanoic acid is a short natural monocarboxylic acid present in some fruits and plants. Previous studies reported that soil drench application of this acid induces effective resistance in tomato plants against Botrytis cinerea and Pseudomonas syringae and in citrus against Alternaria alternata and Xanthomonas citri. In this work, we performed an in deep study of the metabolic changes produced in citrus by the application of hexanoic acid in response to the challenge pathogen Alternaria alternata, focusing on the response of the plant. Moreover, we used 13C labeled hexanoic to analyze its behavior inside the plants. Finally, we studied the volatile emission of the treated plants after the challenge inoculation. Drench application of 13C labeled hexanoic demonstrated that this molecule stays in the roots and is not mobilized to the leaves, suggesting long distance induction of resistance. Moreover, the study of the metabolic profile showed an alteration of more than two hundred molecules differentially induced by the application of the compound and the inoculation with the fungus. Bioinformatics analysis of data showed that most of these altered molecules could be related with the mevalonic and linolenic pathways suggesting the implication of these pathways in the induced resistance mediated by hexanoic acid. Finally, the application of this compound showed an enhancement of the emission of 17 volatile metabolites. Taken together, this study indicates that after the application of hexanoic acid this compound remains in the roots, provoking molecular changes that may trigger the defensive response in the rest of the plant mediated by changes in the mevalonic and linolenic pathways and enhancing the emission of volatile compounds, suggesting for the first time the implication of mevalonic pathway in response to hexanoic application.

  10. Hygroscopic behavior of atmospheric aerosols containing nitrate salts and water-soluble organic acids

    Science.gov (United States)

    Jing, Bo; Wang, Zhen; Tan, Fang; Guo, Yucong; Tong, Shengrui; Wang, Weigang; Zhang, Yunhong; Ge, Maofa

    2018-04-01

    While nitrate salts have critical impacts on environmental effects of atmospheric aerosols, the effects of coexisting species on hygroscopicity of nitrate salts remain uncertain. The hygroscopic behaviors of nitrate salt aerosols (NH4NO3, NaNO3, Ca(NO3)2) and their internal mixtures with water-soluble organic acids were determined using a hygroscopicity tandem differential mobility analyzer (HTDMA). The nitrate salt / organic acid mixed aerosols exhibit varying phase behavior and hygroscopic growth depending upon the type of components in the particles. Whereas pure nitrate salt particles show continuous water uptake with increasing relative humidity (RH), the deliquescence transition is still observed for ammonium nitrate particles internally mixed with organic acids such as oxalic acid and succinic acid with a high deliquescence point. The hygroscopicity of submicron aerosols containing sodium nitrate and an organic acid is also characterized by continuous growth, indicating that sodium nitrate tends to exist in a liquid-like state under dry conditions. It is observed that in contrast to the pure components, the water uptake is hindered at low and moderate RH for calcium nitrate particles containing malonic acid or phthalic acid, suggesting the potential effects of mass transfer limitation in highly viscous mixed systems. Our findings improve fundamental understanding of the phase behavior and water uptake of nitrate-salt-containing aerosols in the atmospheric environment.

  11. Hygroscopic behavior of atmospheric aerosols containing nitrate salts and water-soluble organic acids

    Directory of Open Access Journals (Sweden)

    B. Jing

    2018-04-01

    Full Text Available While nitrate salts have critical impacts on environmental effects of atmospheric aerosols, the effects of coexisting species on hygroscopicity of nitrate salts remain uncertain. The hygroscopic behaviors of nitrate salt aerosols (NH4NO3, NaNO3, Ca(NO32 and their internal mixtures with water-soluble organic acids were determined using a hygroscopicity tandem differential mobility analyzer (HTDMA. The nitrate salt ∕ organic acid mixed aerosols exhibit varying phase behavior and hygroscopic growth depending upon the type of components in the particles. Whereas pure nitrate salt particles show continuous water uptake with increasing relative humidity (RH, the deliquescence transition is still observed for ammonium nitrate particles internally mixed with organic acids such as oxalic acid and succinic acid with a high deliquescence point. The hygroscopicity of submicron aerosols containing sodium nitrate and an organic acid is also characterized by continuous growth, indicating that sodium nitrate tends to exist in a liquid-like state under dry conditions. It is observed that in contrast to the pure components, the water uptake is hindered at low and moderate RH for calcium nitrate particles containing malonic acid or phthalic acid, suggesting the potential effects of mass transfer limitation in highly viscous mixed systems. Our findings improve fundamental understanding of the phase behavior and water uptake of nitrate-salt-containing aerosols in the atmospheric environment.

  12. Neuroprotective effect of undecylenic acid extracted from Ricinus communis L. through inhibition of μ-calpain.

    Science.gov (United States)

    Lee, Eunyoung; Eom, Ji-Eun; Kim, Hye-Lin; Kang, Da-Hye; Jun, Kyu-Yeon; Jung, Duk Sang; Kwon, Youngjoo

    2012-05-12

    The key neuropathological features of Alzheimer's disease are abnormal deposition of Aβ plaques and insoluble Aβ peptides in extracellular brain and intracellular neurofibril tangles induced by abnormal tau hyperphosphorylation. μ-Calpain is one of the factors that bridge these Aβ- and hyperphosphorylated tau-mediated pathological pathways. Undecylenic acid (UDA), a naturally occurring unsaturated fatty acid, was discovered as a μ-calpain inhibitor by screening a chemical library using a substrate specific μ-calpain assay method. UDA inhibited Aβ oligomerization and Aβ fibrillation and reversed Aβ-induced neuronal cell death. In addition, UDA scavenged ROS and reversed the levels of proapoptotic proteins induced by ROS in SH-SY5Y cells. UDA inhibited μ-calpain activity with better potency than the known peptide-like μ-calpain inhibitor, MDL28170, in SH-SY5Y and HEK293T cells transfected with the catalytic subunit of μ-calpain. These results suggest that UDA is a novel non-peptide-like μ-calpain inhibitor with good cell permeability and potent neuroprotective effect. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Bile acids induce arrhythmias in human atrial myocardium--implications for altered serum bile acid composition in patients with atrial fibrillation.

    Science.gov (United States)

    Rainer, Peter P; Primessnig, Uwe; Harenkamp, Sandra; Doleschal, Bernhard; Wallner, Markus; Fauler, Guenter; Stojakovic, Tatjana; Wachter, Rolf; Yates, Ameli; Groschner, Klaus; Trauner, Michael; Pieske, Burkert M; von Lewinski, Dirk

    2013-11-01

    High bile acid serum concentrations have been implicated in cardiac disease, particularly in arrhythmias. Most data originate from in vitro studies and animal models. We tested the hypotheses that (1) high bile acid concentrations are arrhythmogenic in adult human myocardium, (2) serum bile acid concentrations and composition are altered in patients with atrial fibrillation (AF) and (3) the therapeutically used ursodeoxycholic acid has different effects than other potentially toxic bile acids. Multicellular human atrial preparations ('trabeculae') were exposed to primary bile acids and the incidence of arrhythmic events was assessed. Bile acid concentrations were measured in serum samples from 250 patients and their association with AF and ECG parameters analysed. Additionally, we conducted electrophysiological studies in murine myocytes. Taurocholic acid (TCA) concentration-dependently induced arrhythmias in atrial trabeculae (14/28 at 300 µM TCA, pursodeoxycholic acid did not. Patients with AF had significantly decreased serum levels of ursodeoxycholic acid conjugates and increased levels of non-ursodeoxycholic bile acids. In isolated myocytes, TCA depolarised the resting membrane potential, enhanced Na(+)/Ca(2+) exchanger (NCX) tail current density and induced afterdepolarisations. Inhibition of NCX prevented arrhythmias in atrial trabeculae. High TCA concentrations induce arrhythmias in adult human atria while ursodeoxycholic acid does not. AF is associated with higher serum levels of non-ursodeoxycholic bile acid conjugates and low levels of ursodeoxycholic acid conjugates. These data suggest that higher levels of toxic (arrhythmogenic) and low levels of protective bile acids create a milieu with a decreased arrhythmic threshold and thus may facilitate arrhythmic events.

  14. IN0523 (Urs-12-ene-3α,24β-diol) a plant based derivative of boswellic acid protect Cisplatin induced urogenital toxicity.

    Science.gov (United States)

    Singh, Amarinder; Arvinda, S; Singh, Surjeet; Suri, Jyotsna; Koul, Surinder; Mondhe, Dilip M; Singh, Gurdarshan; Vishwakarma, Ram

    2017-03-01

    The limiting factor for the use of Cisplatin in the treatment of different type of cancers is its toxicity and more specifically urogenital toxicity. Oxidative stress is a well-known phenomenon associated with Cisplatin toxicity. However, in Cisplatin treated group, abnormal animal behavior, decreased body weight, cellular and sub-cellular changes in the kidney and sperm abnormality were observed. Our investigation revealed that Cisplatin when administered in combination with a natural product derivative (Urs-12-ene-3α,24β-diol, labeled as IN0523) resulted in significant restoration of body weight and protection against the pathological alteration caused by Cisplatin to kidney and testis. Sperm count and motility were significantly restored near to normal. Cisplatin caused depletion of defense system i.e. glutathione peroxidase, catalase and superoxide dismutase, which were restored close to normal by treatment of IN0523. Reduction in excessive lipid peroxidation induced by Cisplatin was also found by treatment with IN0523. The result suggests that IN0523 is a potential candidate for ameliorating Cisplatin induced toxicity in the kidney and testes at a dose of 100mg/kg p.o. via inhibiting the oxidative stress/redox status imbalance and may be improving the efflux mechanism. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Effects of Electroacupuncture on Methamphetamine-Induced Behavioral Changes in Mice

    Directory of Open Access Journals (Sweden)

    Tsung-Jung Ho

    2017-01-01

    Full Text Available Methamphetamine (METH is a major drug of abuse worldwide, and no efficient therapeutic strategies for treating METH addiction are currently available. Continuous METH use can cause behavioral upregulation or psychosis. The dopaminergic pathways, particularly the neural circuitry from the ventral tegmental area to the nucleus accumbens (NAc, have a critical role in this behavioral stage. Acupuncture has been used for treating diseases in China for more than 2000 years. According to a World Health Organization report, acupuncture can be used to treat several functional disorders, including substance abuse. In addition, acupuncture is effective against opioids addiction. In this study, we used electroacupuncture (EA for treating METH-induced behavioral changes and investigated the possible therapeutic mechanism. Results showed that EA at the unilateral Zhubin (KI9–Taichong (LR3 significantly reduced METH-induced behavioral sensitization and conditioned place preference. In addition, both dopamine and tyrosine hydroxylase (TH levels decreased but monoamine oxidase A (MAO-A levels increased in the NAc of the METH-treated mice receiving EA compared with those not receiving EA. EA may be a useful nonpharmacological approach for treating METH-induced behavioral changes, probably because it reduces the METH-induced TH expression and dopamine levels and raises MAO-A expression in the NAc.

  16. ABNORMAL INFLORESCENCE MERISTEM1 Functions in Salicylic Acid Biosynthesis to Maintain Proper Reactive Oxygen Species Levels for Root Meristem Activity in Rice.

    Science.gov (United States)

    Xu, Lei; Zhao, Hongyu; Ruan, Wenyuan; Deng, Minjuan; Wang, Fang; Peng, Jinrong; Luo, Jie; Chen, Zhixiang; Yi, Keke

    2017-03-01

    Root meristem activity determines root growth and root architecture and consequently affects water and nutrient uptake in plants. However, our knowledge about the regulation of root meristem activity in crop plants is very limited. Here, we report the isolation and characterization of a short root mutant in rice ( Oryza sativa ) with reduced root meristem activity. This root growth defect is caused by a mutation in ABNORMAL INFLORESCENCE MERISTEM1 ( AIM1 ), which encodes a 3-hydroxyacyl-CoA dehydrogenase, an enzyme involved in β-oxidation. The reduced root meristem activity of aim1 results from reduced salicylic acid (SA) levels and can be rescued by SA application. Furthermore, reduced SA levels are associated with reduced levels of reactive oxygen species (ROS) in aim1 , likely due to increased expression of redox and ROS-scavenging-related genes, whose increased expression is (at least in part) caused by reduced expression of the SA-inducible transcriptional repressors WRKY62 and WRKY76. Like SA, ROS application substantially increased root length and root meristem activity in aim1 These results suggest that AIM1 is required for root growth in rice due to its critical role in SA biosynthesis: SA maintains root meristem activity through promoting ROS accumulation by inducing the activity of WRKY transcriptional repressors, which repress the expression of redox and ROS-scavenging genes. © 2017 American Society of Plant Biologists. All rights reserved.

  17. GPR40/FFAR1 deficient mice increase noradrenaline levels in the brain and exhibit abnormal behavior.

    Science.gov (United States)

    Aizawa, Fuka; Nishinaka, Takashi; Yamashita, Takuya; Nakamoto, Kazuo; Kurihara, Takashi; Hirasawa, Akira; Kasuya, Fumiyo; Miyata, Atsuro; Tokuyama, Shogo

    2016-12-01

    The free fatty acid receptor 1 (GPR40/FFAR1) is a G protein-coupled receptor, which is activated by long chain fatty acids. We have previously demonstrated that activation of brain GPR40/FFAR1 exerts an antinociceptive effect that is mediated by the modulation of the descending pain control system. However, it is unclear whether brain GPR40/FFAR1 contributes to emotional function. In this study, we investigated the involvement of GPR40/FFAR1 in emotional behavior using GPR40/FFAR1 deficient (knockout, KO) mice. The emotional behavior in wild and KO male mice was evaluated at 9-10 weeks of age by the elevated plus-maze test, open field test, social interaction test, and sucrose preference test. Brain monoamines levels were measured using LC-MS/MS. The elevated plus-maze test and open field tests revealed that the KO mice reduced anxiety-like behavior. There were no differences in locomotor activity or social behavior between the wild and KO mice. In the sucrose preference test, the KO mice showed reduction in sucrose preference and intake. The level of noradrenaline was higher in the hippocampus, medulla oblongata, hypothalamus and midbrain of KO mice. Therefore, these results suggest that brain GPR40/FFAR1 is associated with anxiety- and depression-related behavior regulated by the increment of noradrenaline in the brain. Copyright © 2016 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  18. Increase of weakly acidic gas esophagopharyngeal reflux (EPR) and swallowing-induced acidic/weakly acidic EPR in patients with chronic cough responding to proton pump inhibitors.

    Science.gov (United States)

    Kawamura, O; Shimoyama, Y; Hosaka, H; Kuribayashi, S; Maeda, M; Nagoshi, A; Zai, H; Kusano, M

    2011-05-01

    Gastro-esophageal reflux disease (GERD)-related chronic cough (CC) may have multifactorial causes. To clarify the characteristics of esophagopharyngeal reflux (EPR) events in CC patients whose cough was apparently influenced by gastro-esophageal reflux (GER), we studied patients with CC clearly responding to full-dose proton pump inhibitor (PPI) therapy (CC patients). Ten CC patients, 10 GERD patients, and 10 healthy controls underwent 24-h ambulatory pharyngo-esophageal impedance and pH monitoring. Weakly acidic reflux was defined as a decrease of pH by >1 unit with a nadir pH >4. In six CC patients, monitoring was repeated after 8 weeks of PPI therapy. The number of each EPR event and the symptom association probability (SAP) were calculated. Symptoms were evaluated by a validated GERD symptom questionnaire. Weakly acidic gas EPR and swallowing-induced acidic/weakly acidic EPR only occurred in CC patients, and the numbers of such events was significantly higher in the CC group than in the other two groups (P pump inhibitor therapy abolished swallowing-induced acidic/weakly acidic EPR, reduced weakly acidic gas EPR, and improved symptoms (all P gas EPR and swallowing-induced acidic/weakly acidic EPR. A direct effect of acidic mist or liquid refluxing into the pharynx may contribute to chronic cough, while cough may also arise indirectly from reflux via a vago-vagal reflex in some patients. © 2011 Blackwell Publishing Ltd.

  19. Subchronic Arsenic Exposure Induces Anxiety-Like Behaviors in Normal Mice and Enhances Depression-Like Behaviors in the Chemically Induced Mouse Model of Depression

    Directory of Open Access Journals (Sweden)

    Chia-Yu Chang

    2015-01-01

    Full Text Available Accumulating evidence implicates that subchronic arsenic exposure causes cerebral neurodegeneration leading to behavioral disturbances relevant to psychiatric disorders. However, there is still little information regarding the influence of subchronic exposure to arsenic-contaminated drinking water on mood disorders and its underlying mechanisms in the cerebral prefrontal cortex. The aim of this study is to assess the effects of subchronic arsenic exposure (10 mg/LAs2O3 in drinking water on the anxiety- and depression-like behaviors in normal mice and in the chemically induced mouse model of depression by reserpine pretreatment. Our findings demonstrated that 4 weeks of arsenic exposure enhance anxiety-like behaviors on elevated plus maze (EPM and open field test (OFT in normal mice, and 8 weeks of arsenic exposure augment depression-like behaviors on tail suspension test (TST and forced swimming test (FST in the reserpine pretreated mice. In summary, in this present study, we demonstrated that subchronic arsenic exposure induces only the anxiety-like behaviors in normal mice and enhances the depression-like behaviors in the reserpine induced mouse model of depression, in which the cerebral prefrontal cortex BDNF-TrkB signaling pathway is involved. We also found that eight weeks of subchronic arsenic exposure are needed to enhance the depression-like behaviors in the mouse model of depression. These findings imply that arsenic could be an enhancer of depressive symptoms for those patients who already had the attribute of depression.

  20. Abnormal flow behavior and necklace microstructure of powder metallurgy superalloys with previous particle boundaries (PPBs)

    Energy Technology Data Exchange (ETDEWEB)

    Ning, Yongquan, E-mail: luckyning@nwpu.edu.cn [School of Materials Science and Engineering, Northwestern Polytechnical University, Xi’an 710072 (China); Zhou, Cong; Liang, Houquan [School of Materials Science and Engineering, Northwestern Polytechnical University, Xi’an 710072 (China); Fu, M.W., E-mail: mmmwfu@polyu.edu.hk [Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong (China)

    2016-01-15

    Powder metallurgy (P/M) has been introduced as an innovative process to manufacture high performance components with fine, homogenous and segregation-free microstructure. Unfortunately, previous particle boundary (PPB) precipitated during the powder metallurgy process. Since undesirable PPB is detrimental to mechanical properties, hot extrusion or/and isothermal forging are needed. In present research, isothermal compression tests were conducted on P/M FGH4096 superalloys with typical PPBs. Abnormal flow behavior during high-speed deformation has been quantitatively investigated. Caused by the competition mechanism between work-hardening and dynamic-softening, abnormal flow behaves typical four stages (viz., work-hardening, stable, softening and steady). Microstructure observation for hardening or/and softening mechanism has been investigated. Meanwhile, necklace microstructure was observed by scanning electron microscope, and the grain fraction analysis was performed by using electron backscatter diffraction. Transmission electron microscopy was used for characterizing the boundary structure. Necklace microstructural mechanism for processing P/M superalloys has been developed, and the dynamic recrystallization model has also been conducted. Bulge–corrugation model is the primary nucleation mechanism for P/M superalloys with PPBs. When PPB is entirely covered with new grains, necklace microstructure has formed. Bulge–corrugation mechanism can repeatedly take place in the following necklace DRX.

  1. Arginine- and Polyamine-Induced Lactic Acid Resistance in Neisseria gonorrhoeae.

    Directory of Open Access Journals (Sweden)

    Zheng Gong

    Full Text Available Microbe-derived lactic acid protects women from pathogens in their genital tract. The purpose of this study was to determine lactic acid susceptibility of Neisseria gonorrhoeae, and identify potential acid resistance mechanisms present in this pathogen. Tested in vitro, lactic acid killed all 10 gonococcal strains analyzed in a low pH-dependent manner. Full inactivation occurred at pH 4.5. At low pH, lactic acid treatment resulted in the entry of the DNA-binding fluorochrome propidium iodide into the microbial cells, suggesting that hydrogen ions from lactic acid compromise the integrity of the bacterial cell wall/membrane. Most likely, hydrogen ions also inactivate intracellular proteins since arginine rendered significant protection against lactic acid presumably through action of the gonococcal arginine decarboxylase, an enzyme located in the bacterial cytoplasm. Surprisingly, arginine also lessened lactic acid-mediated cell wall/membrane disruption. This effect is probably mediated by agmatine, a triamine product of arginine decarboxylase, since agmatine demonstrated a stronger protective effect on GC than arginine at equal molar concentration. In addition to agmatine, diamines cadaverine and putrescine, which are generated by bacterial vaginosis-associated microbes, also induced significant resistance to lactic acid-mediated GC killing and cell wall/membrane disruption. These findings suggest that the arginine-rich semen protects gonococci through both neutralization-dependent and independent mechanisms, whereas polyamine-induced acid resistance contributes to the increased risk of gonorrhea in women with bacterial vaginosis.

  2. Radiation-induced myocardial perfusion abnormalities in breast cancer patients following external beam radiation therapy

    Directory of Open Access Journals (Sweden)

    Mohammad Eftekhari

    2015-01-01

    Full Text Available Objective(s: Radiation therapy for breast cancer can induce myocardial capillary injury and increase cardiovascular morbidity and mortality. A prospective cohort was conducted to study the prevalence of myocardial perfusion abnormalities following radiation therapy of left-sided breast cancer patients as compared to those with right–sided cancer. Methods: To minimize potential confounding factors, only those patients with low 10-year risk of coronary artery disease (based on Framingham risk scoring were included. All patients were initially treated by modified radical mastectomy and then were managed by postoperative 3D Conformal Radiation Therapy (CRT to the surgical bed with an additional 1-cm margin, delivered by 46-50 Gy (in 2 Gy daily fractions over a 5-week course. The same dose-adjusted chemotherapy regimen (including anthracyclines, cyclophosphamide and taxol was given to all patients. Six months after radiation therapy, all patients underwent cardiac SPECT for the evaluation of myocardial perfusion. Results: A total of 71 patients with a mean age of 45.3±7.2 years [35 patients with leftsided breast cancer (exposed and 36 patients with right-sided cancer (controls] were enrolled. Dose-volume histogram (DVH [showing the percentage of the heart exposed to >50% of radiation] was significantly higher in patients with left-sided breast cancer. Visual interpretation detected perfusion abnormalities in 42.9% of cases and 16.7% of controls (P=0.02, Odds ratio=1.46. In semiquantitative segmental analysis, only apical (28.6% versus 8.3%, P=0.03 and anterolateral (17.1% versus 2.8%, P=0.049 walls showed significantly reduced myocardial perfusion in the exposed group. Summed Stress Score (SSS of>3 was observed in twelve cases (34.3%, while in five of the controls (13.9%,(Odds ratio=1.3. There was no significant difference between the groups regarding left ventricular ejection fraction. Conclusion: The risk of radiation induced myocardial

  3. Nicotinic acid-induced flushing is mediated by activation of epidermal langerhans cells

    NARCIS (Netherlands)

    Benyó, Zoltán; Gille, Andreas; Bennett, Clare L.; Clausen, Björn E.; Offermanns, Stefan

    2006-01-01

    The antidyslipidemic drug nicotinic acid (niacin) has been used for decades. One of the major problems of the therapeutical use of nicotinic acid is a strong cutaneous vasodilation called flushing, which develops in almost every patient taking nicotinic acid. Nicotinic acid-induced flushing has been

  4. Effect of organic acids traces on the carbon steel corrosion behavior

    International Nuclear Information System (INIS)

    Stefanescu, D.; Radulescu; Mogosan, S.

    2009-01-01

    There are many different ways in which organic matter may get in water-steam cycles. One important pathway is constituted by organic matter admitted into the system by chemical make-up water under standard operation conditions (without inverse osmosis). The high molecular weight organic matter, in particularly polysaccharides are broken in organic acids, in particular acetic and formic acid. This paper presents an overview of the investigations undertaken referring to the behavior SA106 gr. B mild steel in secondary circuit aqueous environment contaminated with formic and acetic acid traces. The samples were filmed in static autoclaves in operation conditions of secondary circuit, in contaminated environment and after that they were investigated using metallographic microscopy and SEM. In addition, an electrochemical technique videlicet impedance spectroscopy (EIS) was used to investigate the corrosion behavior of SA106 gr. B carbon steel in secondary circuit medium contaminated with formic and acetic acid traces. (authors)

  5. Improved mitochondrial function with diet-induced increase in either docosahexaenoic acid or arachidonic acid in membrane phospholipids.

    Directory of Open Access Journals (Sweden)

    Ramzi J Khairallah

    Full Text Available Mitochondria can depolarize and trigger cell death through the opening of the mitochondrial permeability transition pore (MPTP. We recently showed that an increase in the long chain n3 polyunsaturated fatty acids (PUFA docosahexaenoic acid (DHA; 22:6n3 and depletion of the n6 PUFA arachidonic acid (ARA; 20:4n6 in mitochondrial membranes is associated with a greater Ca(2+ load required to induce MPTP opening. Here we manipulated mitochondrial phospholipid composition by supplementing the diet with DHA, ARA or combined DHA+ARA in rats for 10 weeks. There were no effects on cardiac function, or respiration of isolated mitochondria. Analysis of mitochondrial phospholipids showed DHA supplementation increased DHA and displaced ARA in mitochondrial membranes, while supplementation with ARA or DHA+ARA increased ARA and depleted linoleic acid (18:2n6. Phospholipid analysis revealed a similar pattern, particularly in cardiolipin. Tetralinoleoyl cardiolipin was depleted by 80% with ARA or DHA+ARA supplementation, with linoleic acid side chains replaced by ARA. Both the DHA and ARA groups had delayed Ca(2+-induced MPTP opening, but the DHA+ARA group was similar to the control diet. In conclusion, alterations in mitochondria membrane phospholipid fatty acid composition caused by dietary DHA or ARA was associated with a greater cumulative Ca(2+ load required to induced MPTP opening. Further, high levels of tetralinoleoyl cardiolipin were not essential for normal mitochondrial function if replaced with very-long chain n3 or n6 PUFAs.

  6. Theory of mind mediates the prospective relationship between abnormal social brain network morphology and chronic behavior problems after pediatric traumatic brain injury.

    Science.gov (United States)

    Ryan, Nicholas P; Catroppa, Cathy; Beare, Richard; Silk, Timothy J; Crossley, Louise; Beauchamp, Miriam H; Yeates, Keith Owen; Anderson, Vicki A

    2016-04-01

    Childhood and adolescence coincide with rapid maturation and synaptic reorganization of distributed neural networks that underlie complex cognitive-affective behaviors. These regions, referred to collectively as the 'social brain network' (SBN) are commonly vulnerable to disruption from pediatric traumatic brain injury (TBI); however, the mechanisms that link morphological changes in the SBN to behavior problems in this population remain unclear. In 98 children and adolescents with mild to severe TBI, we acquired 3D T1-weighted MRIs at 2-8 weeks post-injury. For comparison, 33 typically developing controls of similar age, sex and education were scanned. All participants were assessed on measures of Theory of Mind (ToM) at 6 months post-injury and parents provided ratings of behavior problems at 24-months post-injury. Severe TBI was associated with volumetric reductions in the overall SBN package, as well as regional gray matter structural change in multiple component regions of the SBN. When compared with TD controls and children with milder injuries, the severe TBI group had significantly poorer ToM, which was associated with more frequent behavior problems and abnormal SBN morphology. Mediation analysis indicated that impaired theory of mind mediated the prospective relationship between abnormal SBN morphology and more frequent chronic behavior problems. Our findings suggest that sub-acute alterations in SBN morphology indirectly contribute to long-term behavior problems via their influence on ToM. Volumetric change in the SBN and its putative hub regions may represent useful imaging biomarkers for prediction of post-acute social cognitive impairment, which may in turn elevate risk for chronic behavior problems. © The Author (2016). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  7. Radiation-induced catalysis of fatty acids adsorbed onto clay minerals

    International Nuclear Information System (INIS)

    Negron-Mendoza, A.; Ramos-Bernal, S.; Colin-Garcia, M.; Mosqueira, F.G.

    2015-01-01

    We studied the behavior of small fatty (acetic acid) and dicarboxylic acids (succinic and malonic acids) adsorbed onto Na + -montmorillonite (a clay mineral) and exposed to gamma radiation. A decarboxylation reaction was found to predominate when the clay was present. This preferential synthesis promoted the formation of a compound with one less carbon atom than its target compound. In the system without clay, dimerization was the predominate outcome following radiolysis. (author)

  8. Metabolism of Mevalonic Acid in Vegetative and Induced Plants of Xanthium strumarium 1

    Science.gov (United States)

    Bledsoe, Caroline S.; Ross, Cleon W.

    1978-01-01

    The metabolism of mevalonic acid in Xanthium strumarium L. Chicago plants was studied to determine how mevalonate was metabolized and whether metabolism was related to induction of flowering. Leaves of vegetative, photoperiodically induced, and chemically inhibited cocklebur plants were supplied with [14C]mevalonic acid prior to or during a 16-hour inductive dark period. Vegetative, induced, and Tris(2-diethylaminoethyl)phosphate trihydrochloride-treated plants did not differ significantly in the amount of [14C]mevalonic acid they absorbed, nor in the distribution of radioactivity among the leaf blade (97%), petiole (2.3%), or shoot tip (0.7%). [14C]Mevalonic acid was rapidly metabolized and transported out of the leaves. Possible metabolites of mevalonate were mevalonic acid phosphates and sterols. No detectable 14C was found in gibberellins, carotenoids, or the phytol alcohol of chlorophyll. Chemically inhibited plants accumulated 14C compounds not found in vegetative or induced plants. When ethanol extracts of leaves, petioles, and buds were chromatographed, comparisons of chromatographic patterns did not show significant differences between vegetative and induced treatments. ImagesFig. 1 PMID:16660583

  9. Uric Acid Induces Renal Inflammation via Activating Tubular NF-κB Signaling Pathway

    Science.gov (United States)

    Zhou, Yang; Fang, Li; Jiang, Lei; Wen, Ping; Cao, Hongdi; He, Weichun; Dai, Chunsun; Yang, Junwei

    2012-01-01

    Inflammation is a pathologic feature of hyperuricemia in clinical settings. However, the underlying mechanism remains unknown. Here, infiltration of T cells and macrophages were significantly increased in hyperuricemia mice kidneys. This infiltration of inflammatory cells was accompanied by an up-regulation of TNF-α, MCP-1 and RANTES expression. Further, infiltration was largely located in tubular interstitial spaces, suggesting a role for tubular cells in hyperuricemia-induced inflammation. In cultured tubular epithelial cells (NRK-52E), uric acid, probably transported via urate transporter, induced TNF-α, MCP-1 and RANTES mRNA as well as RANTES protein expression. Culture media of NRK-52E cells incubated with uric acid showed a chemo-attractive ability to recruit macrophage. Moreover uric acid activated NF-κB signaling. The uric acid-induced up-regulation of RANTES was blocked by SN 50, a specific NF-κB inhibitor. Activation of NF-κB signaling was also observed in tubule of hyperuricemia mice. These results suggest that uric acid induces renal inflammation via activation of NF-κB signaling. PMID:22761883

  10. immunological arthritis Prevalence of biochemical and abnormalities ...

    African Journals Online (AJOL)

    1991-02-02

    Feb 2, 1991 ... the serum creatinine valuell and abnormalities of calcium and cholesterol have .... 16 high. Creatinine (JLmolJl). 75 - 115. 81,3 ± 20,9. 6,6 high. 7 high. 43,4 low ... acid levels without any obvious secondary cause. A raised.

  11. Effect of ascorbic acid on prevention of hypercholesterolemia induced atherosclerosis.

    Science.gov (United States)

    Das, S; Ray, R; Snehlata; Das, N; Srivastava, L M

    2006-04-01

    The notion that oxidation of lipids and propagation of free radicals may contribute to the pathogenesis of atherosclerosis is supported by a large body of evidence. To circumvent the damage caused by oxygen free radicals, antioxidants are needed which provide the much needed neutralization of free radical by allowing the pairing of electrons. In this study we have investigated the effect of ascorbic acid, a water soluble antioxidant on the development of hypercholesterolemia induced atherosclerosis in rabbits. Rabbits were made hypercholesterolemic and atherosclerotic by feeding 100 mg cholesterol/day. Different doses of ascorbic acid were administered to these rabbits. Low dose of ascorbic acid (0.5 mg/100 g body weight/day) did not have any significant effect on the percent of total area covered by atherosclerotic plaque. However, ascorbic acid when fed at a higher dose (15 mg/100 g body weight/day) was highly effective in reducing the atherogenecity. With this dose the percent of total surface area covered by atherosclerotic plaque was significantly less (p ascorbic acid may have great promise in the prevention of hypercholesterolemia induced atherosclerosis.

  12. Rai1 Haploinsufficiency Is Associated with Social Abnormalities in Mice

    Directory of Open Access Journals (Sweden)

    Nalini R. Rao

    2017-04-01

    Full Text Available Background: Autism is characterized by difficulties in social interaction, communication, and repetitive behaviors; with different degrees of severity in each of the core areas. Haploinsufficiency and point mutations of RAI1 are associated with Smith-Magenis syndrome (SMS, a genetic condition that scores within the autism spectrum range for social responsiveness and communication, and is characterized by neurobehavioral abnormalities, intellectual disability, developmental delay, sleep disturbance, and self-injurious behaviors. Methods: To investigate the relationship between Rai1 and social impairment, we evaluated the Rai1+/− mice with a battery of tests to address social behavior in mice. Results: We found that the mutant mice showed diminished interest in social odors, abnormal submissive tendencies, and increased repetitive behaviors when compared to wild type littermates. Conclusions: These findings suggest that Rai1 contributes to social behavior in mice, and prompt it as a candidate gene for the social behaviors observed in Smith-Magenis Syndrome patients.

  13. Protective effects of gallic acid against spinal cord injury-induced oxidative stress.

    Science.gov (United States)

    Yang, Yong Hong; Wang, Zao; Zheng, Jie; Wang, Ran

    2015-08-01

    The present study aimed to investigate the role of gallic acid in oxidative stress induced during spinal cord injury (SCI). In order to measure oxidative stress, the levels of lipid peroxide, protein carbonyl, reactive oxygen species and nitrates/nitrites were determined. In addition, the antioxidant status during SCI injury and the protective role of gallic acid were investigated by determining glutathione levels as well as the activities of catalase, superoxide dismutase, glutathione peroxidase and glutathione-S-transferase. Adenosine triphophatase (ATPase) enzyme activities were determined to evaluate the role of gallic acid in SCI-induced deregulation of the activity of enzymes involved in ion homeostasis. The levels of inflammatory markers such as nuclear factor (NF)-κB and cycloxygenase (COX)-2 were determined by western blot analysis. Treatment with gallic acid was observed to significantly mitigate SCI-induced oxidative stress and the inflammatory response by reducing the oxidative stress, decreasing the expression of NF-κB and COX-2 as well as increasing the antioxidant status of cells. In addition, gallic acid modulated the activity of ATPase enzymes. Thus the present study indicated that gallic acid may have a role as a potent antioxidant and anti-inflammatory agent against SCI.

  14. Valproate induced hepatic steatosis by enhanced fatty acid uptake and triglyceride synthesis.

    Science.gov (United States)

    Bai, Xupeng; Hong, Weipeng; Cai, Peiheng; Chen, Yibei; Xu, Chuncao; Cao, Di; Yu, Weibang; Zhao, Zhongxiang; Huang, Min; Jin, Jing

    2017-06-01

    Steatosis is the characteristic type of VPA-induced hepatotoxicity and may result in life-threatening hepatic lesion. Approximately 61% of patients treated with VPA have been diagnosed with hepatic steatosis through ultrasound examination. However, the mechanisms underlying VPA-induced intracellular fat accumulation are not yet fully understood. Here we demonstrated the involvement of fatty acid uptake and lipogenesis in VPA-induced hepatic steatosis in vitro and in vivo by using quantitative real-time PCR (qRT-PCR) analysis, western blotting analysis, fatty acid uptake assays, Nile Red staining assays, and Oil Red O staining assays. Specifically, we found that the expression of cluster of differentiation 36 (CD36), an important fatty acid transport, and diacylglycerol acyltransferase 2 (DGAT2) were significantly up-regulated in HepG2 cells and livers of C57B/6J mice after treatment with VPA. Furthermore, VPA treatment remarkably enhanced the efficiency of fatty acid uptake mediated by CD36, while this effect was abolished by the interference with CD36-specific siRNA. Also, VPA treatment significantly increased DGAT2 expression as a result of the inhibition of mitogen-activated protein kinase kinase (MEK) - extracellular regulated kinase (ERK) pathway; however, DGAT2 knockdown significantly alleviated VPA-induced intracellular lipid accumulation. Additionally, we also found that sterol regulatory element binding protein-1c (SREBP-1c)-mediated fatty acid synthesis may be not involved in VPA-induced hepatic steatosis. Overall, VPA-triggered over-regulation of CD36 and DGAT2 could be helpful for a better understanding of the mechanisms underlying VPA-induced hepatic steatosis and may offer novel therapeutic strategies to combat VPA-induced hepatotoxicity. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Controlling noise-induced behavior of excitable networks

    International Nuclear Information System (INIS)

    Patidar, S; Pototsky, A; Janson, N B

    2009-01-01

    The paper demonstrates the possibility to control the collective behavior of a large network of excitable stochastic units, in which oscillations are induced merely by external random input. Each network element is represented by the FitzHugh-Nagumo system under the influence of noise, and the elements are coupled through the mean field. As known previously, the collective behavior of units in such a network can range from synchronous to non-synchronous spiking with a variety of states in between. We apply the Pyragas delayed feedback to the mean field of the network and demonstrate that this technique is capable of suppressing or weakening the collective synchrony, or of inducing the synchrony where it was absent. On the plane of control parameters we indicate the areas where suppression of synchrony is achieved. To explain the numerical observations on a qualitative level, we use the semi-analytic approach based on the cumulant expansion of the distribution density within Gaussian approximation. We perform bifurcation analysis of the obtained cumulant equations with delay and demonstrate that the regions of stability of its steady state have qualitatively the same structure as the regions of synchrony suppression of the original stochastic equations. We also demonstrate the delay-induced multistability in the stochastic network. These results are relevant to the control of unwanted behavior in neural networks.

  16. Effect of melatonin on methamphetamine- and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced dopaminergic neurotoxicity and methamphetamine-induced behavioral sensitization.

    Science.gov (United States)

    Itzhak, Y; Martin, J L; Black, M D; Ali, S F

    1998-06-01

    Methamphetamine (METH)- and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced dopaminergic neurotoxicity is thought to be associated with the formation of free radicals. Since evidence suggests that melatonin may act as a free radical scavenger and antioxidant, the present study was undertaken to investigate the effect of melatonin on METH- and MPTP-induced neurotoxicity. In addition, the effect of melatonin on METH-induced locomotor sensitization was investigated. The administration of METH (5 mg kg(-1) x 3) or MPTP (20 mg kg(-1) x 3) to Swiss Webster mice resulted in 45-57% depletion in the content of striatal dopamine and its metabolites, 3,4-dihydroxyphenylacetic acid and homovanillic acid, and 57-59% depletion in dopamine transporter binding sites. The administration of melatonin (10 mg kg(-1)) before each of the three injections of the neurotoxic agents (on day 1), and thereafter for two additional days, afforded a full protection against METH-induced depletion of dopamine and its metabolites and dopamine transporter binding sites. In addition, melatonin significantly diminished METH-induced hyperthermia. However, the treatment with melatonin had no significant effect on MPTP-induced depletion of the dopaminergic markers tested. In the set of behavioral experiments, we found that the administration of 1 mg kg(-1) METH to Swiss Webster mice for 5 days resulted in marked locomotor sensitization to a subsequent challenge injection of METH, as well as context-dependent sensitization (conditioning). The pretreatment with melatonin (10 mg kg(-1)) prevented neither the sensitized response to METH nor the development of conditioned locomotion. Results of the present study indicate that melatonin has a differential effect on the dopaminergic neurotoxicity produced by METH and MPTP. Since it is postulated that METH-induced hyperthermia is related to its neurotoxic effect, while regulation of body temperature is unrelated to MPTP-induced neurotoxicity or METH-induced

  17. Perflurooctanoic Acid Induces Developmental Cardiotoxicity in Chicken Embryos and Hatchlings

    Science.gov (United States)

    Perfluorooctanoic acid (PFOA) is a widespread environmental contaminant that is detectable in serum of the general U.S. population. PFOA is a known developmental toxicant that induces mortality in mammalian embryos and is thought to induce toxicity via interaction with the peroxi...

  18. [Hysteroscopic polypectomy, treatment of abnormal uterine bleeding].

    Science.gov (United States)

    de Los Rios, P José F; López, R Claudia; Cifuentes, P Carolina; Angulo, C Mónica; Palacios-Barahona, Arlex U

    2015-07-01

    To evaluate the effectiveness of the hysteroscopic polypectomy in terms of the decrease of the abnormal uterine bleeding. A cross-sectional and analytical study was done with patients to whom a hysteroscopic polypectomy was done for treating the abnormal uterine bleeding, between January 2009 and December 2013. The response to the treatment was evaluated via a survey given to the patients about the behavior of the abnormal uterine bleeding after the procedure and about overall satisfaction. The results were obtained after a hysteroscopic polypectomy done to 128 patients and were as follows. The average time from the polypectomy applied until the survey was 30.5 months, with a standard deviation of 18 months. 67.2% of the patients reported decreased abnormal uterine bleeding and the 32.8% reported a persistence of symptoms. On average 82.8% of the. patients were satisfied with the treatment. Bivariate and multivariate analysis showed no association between the variables studied and no improvement of abnormal uterine bleeding after surgery (polypectomy). There were no complications. Hysteroscopic polypectomy is a safe surgical treatment, which decreases on two of three patients the abnormal uterine bleeding in the presence of endometrial polyps, with an acceptable level of satisfaction.

  19. Obeticholic acid protects mice against lipopolysaccharide-induced liver injury and inflammation.

    Science.gov (United States)

    Xiong, Xi; Ren, Yuqian; Cui, Yun; Li, Rui; Wang, Chunxia; Zhang, Yucai

    2017-12-01

    Cholestasis, as a main manifestation, induces liver injury during sepsis. The farnesoid X receptor (FXR) plays an important role in regulating bile acid homeostasis. Whether FXR activation by its agonist obeticholic acid (OCA) is contributed to improve sepsis-induced liver injury remains unknown. The aim of the present study was to investigate the effect of OCA on lipopolysaccharide (LPS)-induced acute liver injury in mice. 8-week old male C57BL/6J mice were randomly divided into control group, LPS group, oral OCA group and LPS plus oral OCA (LPS + OCA) group. The serum and livers were collected for further analysis. Serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), total bile acid (TBA) and total bilirubin (TBIL) were measured at indicated time after LPS administration. Liver sections were stained with hematoxylin & eosin (H&E). Orally OCA pretreatment stimulated the expression of FXR and BSEP in livers and protected mice from LPS-induced hepatocyte apoptosis and inflammatory infiltration. Consistently, LPS-induced higher serum levels of ALT, AST, TBA and TBIL were significantly reversed by OCA administration. Meanwhile, the mRNA levels of interleukin 1β (IL-1β), tumor necrosis factor α (TNF-α) and IL-6 were decreased in livers of mice in LPS + OCA group compared with LPS group. Further investigation indicated that the higher expression of ATF4 and LC3II/I were associated with the protective effect of OCA on LPS-induced liver injury. Orally OCA pretreatment protects mice from LPS-induced liver injury possibly contributed by improved bile acid homeostasis, decreased inflammatory factors and ATF4-mediated autophagy activity in hepatocytes. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  20. Solid-state thermal behavior and stability studies of theophylline–citric acid cocrystals prepared by neat cogrinding or thermal treatment

    International Nuclear Information System (INIS)

    Hsu, Po-Chun; Lin, Hong-Liang; Wang, Shun-Li; Lin, Shan-Yang

    2012-01-01

    To investigate the thermal behavior of cocrystal formed between anhydrous theophylline (TP) and anhydrous citric acid (CA) by neat manual cogrinding or thermal treatment, DSC and FTIR microspectroscopy with curve-fitting analysis were applied. The physical mixture and 60-min ground mixture were stored at 55±0.5 °C/40±2% RH condition to determine their stability behavior. Typical TP–CA cocrystals were prepared by slow solvent evaporation method. Results indicate that the cogrinding process could gradually induce the cocrystal formation between TP and CA. The IR spectral peak shift from 3495 to 3512 cm −1 and the stepwise appearance of several new IR peaks at 1731, 1712, 1676, 1651, 1557 and 1265 cm −1 with cogrinding time suggest that the mechanism of TP–CA cocrystal formation was evidenced by interacting TP with CA through the intermolecular O–H···O hydrogen bonding. The stability of 60-min ground mixture of TP–CA was confirmed at 55±0.5 °C/40±2% RH condition over a storage time of 60 days. - Garphical abstract: Cogrinding, thermal and solvent-evaporation methods might easily induce the theophylline–citric acid cocrystal formation. Highlights: ► Cogrinding process could gradually induce the cocrystal formation between TP and CA. ► The TP–CA cocrystal was formed through the intermolecular O–H···O hydrogen bonding. ► The 60-min TP–CA ground mixture was similar to the solvent-evaporated cocrystal. ► The thermal-induced TP–CA cocrystal formation was confirmed by pre-heating the physical mixture to 152 °C. ► The 60-min TP–CA ground mixture was stable at accelerated condition over a storage time of 60 days.

  1. Chronic Powder Diet After Weaning Induces Sleep, Behavioral, Neuroanatomical, and Neurophysiological Changes in Mice.

    Directory of Open Access Journals (Sweden)

    Emiko Anegawa

    Full Text Available The purpose of this study is to clarify the effects of chronic powder diet feeding on sleep patterns and other physiological/anatomical changes in mice. C57BL/6 male mice were divided into two groups from weaning: a group fed with solid food (SD and a group fed with powder food (PD, and sleep and physiological and anatomical changes were compared between the groups. PD exhibited less cranial bone structure development and a significant weight gain. Furthermore, these PD mice showed reduced number of neurogenesis in the hippocampus. Sleep analysis showed that PD induced attenuated diurnal sleep/wake rhythm, characterized by increased sleep during active period and decreased sleep during rest period. With food deprivation (FD, PD showed less enhancement of wake/locomotor activity compared to SD, indicating reduced food-seeking behavior during FD. These results suggest that powder feeding in mice results in a cluster of detrimental symptoms caused by abnormal energy metabolism and anatomical/neurological changes.

  2. Oxidized trilinoleate and tridocosahexaenoate induce pica behavior and change locomotor activity.

    Science.gov (United States)

    Kitamura, Fuki; Watanabe, Hiroyuki; Umeno, Aya; Yoshida, Yasukazu; Kurata, Kenji; Gotoh, Naohiro

    2013-01-01

    Pica behavior, a behavior that is characterized by eating a nonfood material such as kaolin and relates to the degree of discomfort in animals, and the variations of locomotor activity of rats after eating deteriorated fat and oil extracted from instant noodles were examined in our previous study. The result shows that oxidized fat and oil with at least 100 meq/kg in peroxide value (PV) increase pica behavior and decrease locomotor activity. In the present study, the same two behaviors were measured using autoxidized trilinoleate (tri-LA) and tridocosahexaenoate (tri-DHA) as a model of vegetable and fish oil, respectively, to compare fatty acid differences against the induction of two behaviors. The oxidized levels of tri-LA and tri-DHA were analyzed with PV and p-anisidine value (AnV), the method to analyze secondary oxidized products. The oxidation levels of respective triacylglycerol (TAG) samples were carefully adjusted to make them having almost the same PV and AnV. As the results, 600 or more meq/kg in PV of both TAGs significantly increased the consumption of kaolin pellets compared to the control group. Furthermore, 300 or more meq/kg in PV of tri-LA and 200 or more meq/kg in PV of tri-DHA demonstrated significant decrease in locomotor activity compared to control group. These results would indicate that the oxidized TAG having the same PV and/or AnV would induce the same type of pica behavior and locomotor activity. Furthermore, that the structure of oxidized products might not be important and the amount of hydroperoxide group and/or aldehyde group in deteriorated fats and oils might affect the pica behavior and locomotor activity were thought.

  3. Crack propagation behavior of Ti-5Ta alloy in boiling nitric acid solution

    International Nuclear Information System (INIS)

    Motooka, Takafumi; Kiuchi, Kiyoshi

    1999-05-01

    The crack propagation behavior of Ti-5Ta alloy both in boiling nitric acid solution and in air at room temperature has been investigated. The crack growth rate of Ti-5Ta alloy was measured as a function of the stress intensity factor range. After the tests, the fracture surface morphology was observed by a scanning electron microscope and the crystallographic orientation was examined by X-ray diffraction analysis. Difference in the crack growth behavior was not observed in both environments. The crack growth rate in boiling nitric acid solution was similar to that in air at room temperature. Moreover, the crystallographic orientation of Ti-5Ta alloy had little effect on the fatigue behavior, because this alloy does not have the susceptibility to SCC in nitric acid solution. (author)

  4. Screening of diseases associated with abnormal metabolites for ...

    African Journals Online (AJOL)

    Dina A. Ghoraba

    2013-12-09

    Dec 9, 2013 ... IEMs to evaluate the efficiency of HPLC in detecting abnormal metabolites in urine samples. ... the initial screening of organic acid disorders and many other disease ..... Although a chromatogram from a patient with gross.

  5. Lysophosphatidic acid induces reactive oxygen species generation by activating protein kinase C in PC-3 human prostate cancer cells

    International Nuclear Information System (INIS)

    Lin, Chu-Cheng; Lin, Chuan-En; Lin, Yueh-Chien; Ju, Tsai-Kai; Huang, Yuan-Li; Lee, Ming-Shyue; Chen, Jiun-Hong; Lee, Hsinyu

    2013-01-01

    Highlights: •LPA induces ROS generation through LPA 1 and LPA 3 . •LPA induces ROS generation by activating PLC. •PKCζ mediates LPA-induced ROS generation. -- Abstract: Prostate cancer is one of the most frequently diagnosed cancers in males, and PC-3 is a cell model popularly used for investigating the behavior of late stage prostate cancer. Lysophosphatidic acid (LPA) is a lysophospholipid that mediates multiple behaviors in cancer cells, such as proliferation, migration and adhesion. We have previously demonstrated that LPA enhances vascular endothelial growth factor (VEGF)-C expression in PC-3 cells by activating the generation of reactive oxygen species (ROS), which is known to be an important mediator in cancer progression. Using flow cytometry, we showed that LPA triggers ROS generation within 10 min and that the generated ROS can be suppressed by pretreatment with the NADPH oxidase (Nox) inhibitor diphenylene iodonium. In addition, transfection with LPA 1 and LPA 3 siRNA efficiently blocked LPA-induced ROS production, suggesting that both receptors are involved in this pathway. Using specific inhibitors and siRNA, phospholipase C (PLC) and protein kinase C (PKC) were also suggested to participate in LPA-induced ROS generation. Overall, we demonstrated that LPA induces ROS generation in PC-3 prostate cancer cells and this is mediated through the PLC/PKC/Nox pathway

  6. Lysophosphatidic acid induces reactive oxygen species generation by activating protein kinase C in PC-3 human prostate cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Chu-Cheng; Lin, Chuan-En; Lin, Yueh-Chien [Institute of Zoology, College of Life Science, National Taiwan University, Taipei, Taiwan, ROC (China); Ju, Tsai-Kai [Instrumentation Center, National Taiwan University, Taipei, Taiwan, ROC (China); Technology Commons, College of Life Science, National Taiwan University, Taipei, Taiwan, ROC (China); Huang, Yuan-Li [Department of Biotechnology, Asia University, Taichung, Taiwan, ROC (China); Lee, Ming-Shyue [Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan, ROC (China); Chen, Jiun-Hong [Institute of Zoology, College of Life Science, National Taiwan University, Taipei, Taiwan, ROC (China); Department of Life Science, College of Life Science, National Taiwan University, Taipei, Taiwan, ROC (China); Lee, Hsinyu, E-mail: hsinyu@ntu.edu.tw [Institute of Zoology, College of Life Science, National Taiwan University, Taipei, Taiwan, ROC (China); Department of Life Science, College of Life Science, National Taiwan University, Taipei, Taiwan, ROC (China); Center for Biotechnology, National Taiwan University, Taipei, Taiwan, ROC (China); Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan, ROC (China)

    2013-11-01

    Highlights: •LPA induces ROS generation through LPA{sub 1} and LPA{sub 3}. •LPA induces ROS generation by activating PLC. •PKCζ mediates LPA-induced ROS generation. -- Abstract: Prostate cancer is one of the most frequently diagnosed cancers in males, and PC-3 is a cell model popularly used for investigating the behavior of late stage prostate cancer. Lysophosphatidic acid (LPA) is a lysophospholipid that mediates multiple behaviors in cancer cells, such as proliferation, migration and adhesion. We have previously demonstrated that LPA enhances vascular endothelial growth factor (VEGF)-C expression in PC-3 cells by activating the generation of reactive oxygen species (ROS), which is known to be an important mediator in cancer progression. Using flow cytometry, we showed that LPA triggers ROS generation within 10 min and that the generated ROS can be suppressed by pretreatment with the NADPH oxidase (Nox) inhibitor diphenylene iodonium. In addition, transfection with LPA{sub 1} and LPA{sub 3} siRNA efficiently blocked LPA-induced ROS production, suggesting that both receptors are involved in this pathway. Using specific inhibitors and siRNA, phospholipase C (PLC) and protein kinase C (PKC) were also suggested to participate in LPA-induced ROS generation. Overall, we demonstrated that LPA induces ROS generation in PC-3 prostate cancer cells and this is mediated through the PLC/PKC/Nox pathway.

  7. Alterations and Abnormal Mitosis of Wheat Chromosomes Induced by Wheat-Rye Monosomic Addition Lines

    Science.gov (United States)

    Fu, Shulan; Yang, Manyu; Fei, Yunyan; Tan, Feiquan; Ren, Zhenglong; Yan, Benju; Zhang, Huaiyu; Tang, Zongxiang

    2013-01-01

    Background Wheat-rye addition lines are an old topic. However, the alterations and abnormal mitotic behaviours of wheat chromosomes caused by wheat-rye monosomic addition lines are seldom reported. Methodology/Principal Findings Octoploid triticale was derived from common wheat T. aestivum L. ‘Mianyang11’×rye S. cereale L. ‘Kustro’ and some progeny were obtained by the controlled backcrossing of triticale with ‘Mianyang11’ followed by self-fertilization. Genomic in situ hybridization (GISH) using rye genomic DNA and fluorescence in situ hybridization (FISH) using repetitive sequences pAs1 and pSc119.2 as probes were used to analyze the mitotic chromosomes of these progeny. Strong pSc119.2 FISH signals could be observed at the telomeric regions of 3DS arms in ‘Mianyang11’. However, the pSc119.2 FISH signals were disappeared from the selfed progeny of 4R monosomic addition line and the changed 3D chromosomes could be transmitted to next generation stably. In one of the selfed progeny of 7R monosomic addition line, one 2D chromosome was broken and three 4A chromosomes were observed. In the selfed progeny of 6R monosomic addition line, structural variation and abnormal mitotic behaviour of 3D chromosome were detected. Additionally, 1A and 4B chromosomes were eliminated from some of the progeny of 6R monosomic addition line. Conclusions/Significance These results indicated that single rye chromosome added to wheat might cause alterations and abnormal mitotic behaviours of wheat chromosomes and it is possible that the stress caused by single alien chromosome might be one of the factors that induced karyotype alteration of wheat. PMID:23936213

  8. Salivary a-amylase protects enamel surface against acid induced softening

    DEFF Research Database (Denmark)

    Lazovic, Maja Bruvo; Moe, Dennis; Kirkeby, Svend

    Objectives: Recently we have demonstrated individual differences in protection against acid-induced enamel softening offered by experimentally developed saliva pellicles. Although ethnicity seemed to be related to protection level, the saliva proteins responsible for the differences were not iden......Objectives: Recently we have demonstrated individual differences in protection against acid-induced enamel softening offered by experimentally developed saliva pellicles. Although ethnicity seemed to be related to protection level, the saliva proteins responsible for the differences were......, and one Chinese. After collection, saliva was dialysed and lyophilised and re-dissolved at 0.5% in Type I water. Next, four polished bovine enamel specimens were immersed into each sample under gentle and constant shaking for 12 hours. Last, specimens were exposed to an erosive challenge of pH 2.3 for 4......-TOF mass fingerprinting following trypsin digestion. Each persistent peak in the HPLC chromatograms was related to the protective effect against acid-induced enamel softening obtained by the corresponding saliva sample by multiple regression analysis. Results: One peak identified as a-amylase had...

  9. The omega-3 fatty acid eicosapentaenoic acid is required for normal alcohol response behaviors in C. elegans.

    Directory of Open Access Journals (Sweden)

    Richard C Raabe

    Full Text Available Alcohol addiction is a widespread societal problem, for which there are few treatments. There are significant genetic and environmental influences on abuse liability, and understanding these factors will be important for the identification of susceptible individuals and the development of effective pharmacotherapies. In humans, the level of response to alcohol is strongly predictive of subsequent alcohol abuse. Level of response is a combination of counteracting responses to alcohol, the level of sensitivity to the drug and the degree to which tolerance develops during the drug exposure, called acute functional tolerance. We use the simple and well-characterized nervous system of Caenorhabditis elegans to model the acute behavioral effects of ethanol to identify genetic and environmental factors that influence level of response to ethanol. Given the strong molecular conservation between the neurobiological machinery of worms and humans, cellular-level effects of ethanol are likely to be conserved. Increasingly, variation in long-chain polyunsaturated fatty acid levels has been implicated in complex neurobiological phenotypes in humans, and we recently found that fatty acid levels modify ethanol responses in worms. Here, we report that 1 eicosapentaenoic acid, an omega-3 polyunsaturated fatty acid, is required for the development of acute functional tolerance, 2 dietary supplementation of eicosapentaenoic acid is sufficient for acute tolerance, and 3 dietary eicosapentaenoic acid can alter the wild-type response to ethanol. These results suggest that genetic variation influencing long-chain polyunsaturated fatty acid levels may be important abuse liability loci, and that dietary polyunsaturated fatty acids may be an important environmental modulator of the behavioral response to ethanol.

  10. Gastric Varices with Remarkable Collateral Veins in Valpronic Acid-Induced Chronic Pancreatitis

    Directory of Open Access Journals (Sweden)

    Y. Hattori

    2008-08-01

    Full Text Available Valproic acid (VPA is a commonly prescribed and approved treatment for epilepsy, including Angelman syndrome, throughout the world. However, the long-term administration of drugs like VPA is associated with the possible development of gastric varices and splenic obstruction as a result of chronic pancreatitis. Such cases can be difficult to treat using endoscopy or interventional radiology because of hemodynamic abnormalities; therefore, surgical treatment is often necessary.

  11. Behavioral correlates of cerebrospinal fluid amino acid and biogenic amine neurotransmitter alterations in dementia.

    Science.gov (United States)

    Vermeiren, Yannick; Le Bastard, Nathalie; Van Hemelrijck, An; Drinkenburg, Wilhelmus H; Engelborghs, Sebastiaan; De Deyn, Peter P

    2013-09-01

    Behavioral and psychological signs and symptoms of dementia (BPSD) are a heterogeneous group of behavioral and psychiatric disturbances occurring in dementia patients of any etiology. Research suggests that altered activities of dopaminergic, serotonergic, (nor)adrenergic, as well as amino acid neurotransmitter systems play a role in the etiopathogenesis of BPSD. In this study we attempted to identify cerebrospinal fluid (CSF) neurochemical correlates of BPSD to provide further insight into its underlying neurochemical pathophysiological mechanisms. Patients with probable Alzheimer's disease (AD; n = 202), probable AD with cerebrovascular disease (n = 37), probable frontotemporal dementia (FTD; n = 32), and probable dementia with Lewy bodies (DLB; n = 26) underwent behavioral assessment and lumbar puncture. CSF levels of six amino acids and several biogenic amines and metabolites were analyzed using ultraperformance liquid chromatography with fluorescence detection and reversed-phase high-performance liquid chromatography with fluorescence detection. In the AD patients, CSF homovanillic acid/5-hydroxyindoleacetic acid (HVA/5HIAA) ratios correlated positively with anxieties/phobias, whereas CSF levels of taurine correlated negatively with depression and behavioral disturbances in general. In FTD patients, CSF levels of glutamate correlated negatively with verbally agitated behavior. In DLB patients, CSF levels of HVA correlated negatively with hallucinations. Several neurotransmitter systems can be linked to one specific behavioral syndrome depending on the dementia subtype. In addition to biogenic amines and metabolites, amino acids seem to play a major role in the neurochemical etiology of BPSD as well. Copyright © 2013 The Alzheimer's Association. Published by Elsevier Inc. All rights reserved.

  12. Reactions of OH-radicals with hydroxylated and methoxylated benzoic acids and cinnamic acids. Radiation-induced chemical changes in mushrooms

    International Nuclear Information System (INIS)

    Gaisberger, B.

    2001-05-01

    In the first part of this work the radiation induced chemical changes of methoxylated and hydroxylated benzoic acids and cinnamic acids were investigated. Methoxylated compounds were also used as model components for acid derivatives with no free-OH groups. The latter are essentials parts of vegetable foodstuff. A comparison of the radiolytic behaviour of single substituted methoxy- and hydroxybenzoic acids was given at first, data of literature was included. The priority of the investigation was the hydroxylation process induced by OH-radicals. The OH-adduct distribution is generally the same for the hydroxy- as well as for the methoxybenzoic acid isomers. This could be proved by oxidation of these OH-adducts with K 3 Fe(CN) 6 . In the presence of air 68-77 % of the hydroxybenzoic acids are converted into hydroxylation products, whereas with the methoxylated acids this reaction leads only to about 10%. An explanation gives the different decay pathways of the intermediate peroxylradical. The multiple methoxy- and hydroxybenzoic acids show three different reaction possibilities: hydroxylation, replacement of -OCH 3 by -OH and -in case of the cinnamic acids-oxidative decomposition of the rest of the propenic acid under formation of the corresponding benzaldehydes. All these reactions can be expected when irradiating foodstuff, containing these acid compounds. The characteristic formation of these components and their linear dose/concentration relationship make these substrates very promising for the use as markers for irradiation treatment of foodstuff. The second part of this work deals with the gamma-radiation induced chemical changes in mushrooms. The irradiated and non-irradiated samples were freeze-dried and purified from matrix components chromatographically on polyamid columns. In case of the phenolic compounds for 4-hydroxybenzoic acid and three unknown components linear dose/concentration relationships could be obtained. Two of these unknown compounds seem

  13. Sodium Butyrate, a Histone Deacetylase Inhibitor, Reverses Behavioral and Mitochondrial Alterations in Animal Models of Depression Induced by Early- or Late-life Stress.

    Science.gov (United States)

    Valvassori, Samira S; Resende, Wilson R; Budni, Josiane; Dal-Pont, Gustavo C; Bavaresco, Daniela V; Réus, Gislaine Z; Carvalho, André F; Gonçalves, Cinara L; Furlanetto, Camila B; Streck, Emilio L; Quevedo, João

    2015-01-01

    The aim of the present study was to evaluate the effects of sodium butyrate on depressive-like behavior and mitochondrial alteration parameters in animal models of depression induced by maternal deprivation or chronic mild stress in Wistar rats. maternal deprivation was established by separating pups from their mothers for 3 h daily from postnatal day 1 to day 10. Chronic mild stress was established by water deprivation, food deprivation, restraint stress, isolation and flashing lights. Sodium butyrate or saline was administered twice a day for 7 days before the behavioral tests. Depressive behavior was evaluated using the forced swim test. The activity of tricarboxylic acid cycle enzymes (succinate dehydrogenase and malate dehydrogenase) and of mitochondrial chain complexes (I, II, II-III and IV) was measured in the striatum of rats. From these analyses it can be observed that sodium butyrate reversed the depressive-like behavior observed in both animal models of depression. Additionally, maternal deprivation and chronic mild stress inhibited mitochondrial respiratory chain complexes and increased the activity of tricarboxylic acid cycle enzymes. Sodium butyrate treatment reversed -maternal deprivation and chronic mild stress- induced dysfunction in the striatum of rats. In conclusion, sodium butyrate showed antidepressant effects in maternal deprivation and chronic mild stress-treated rats, and this effect can be attributed to its action on the neurochemical pathways related to depression.

  14. Gallic acid attenuates calcium calmodulin-dependent kinase II-induced apoptosis in spontaneously hypertensive rats.

    Science.gov (United States)

    Jin, Li; Piao, Zhe Hao; Liu, Chun Ping; Sun, Simei; Liu, Bin; Kim, Gwi Ran; Choi, Sin Young; Ryu, Yuhee; Kee, Hae Jin; Jeong, Myung Ho

    2018-03-01

    Hypertension causes cardiac hypertrophy and leads to heart failure. Apoptotic cells are common in hypertensive hearts. Ca 2+ /calmodulin-dependent protein kinase II (CaMKII) is associated with apoptosis. We recently demonstrated that gallic acid reduces nitric oxide synthase inhibition-induced hypertension. Gallic acid is a trihydroxybenzoic acid and has been shown to have beneficial effects, such as anti-cancer, anti-calcification and anti-oxidant activity. The purpose of this study was to determine whether gallic acid regulates cardiac hypertrophy and apoptosis in essential hypertension. Gallic acid significantly lowered systolic and diastolic blood pressure in spontaneously hypertensive rats (SHRs). Wheat germ agglutinin (WGA) and H&E staining revealed that gallic acid reduced cardiac enlargement in SHRs. Gallic acid treatment decreased cardiac hypertrophy marker genes, including atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP), in SHRs. The four isoforms, α, β, δ and γ, of CaMKII were increased in SHRs and were significantly reduced by gallic acid administration. Gallic acid reduced cleaved caspase-3 protein as well as bax, p53 and p300 mRNA levels in SHRs. CaMKII δ overexpression induced bax and p53 expression, which was attenuated by gallic acid treatment in H9c2 cells. Gallic acid treatment reduced DNA fragmentation and the TUNEL positive cells induced by angiotensin II. Taken together, gallic acid could be a novel therapeutic for the treatment of hypertension through suppression of CaMKII δ-induced apoptosis. © 2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  15. Protection of cisplatin-induced spermatotoxicity, DNA damage and chromatin abnormality by selenium nano-particles

    Energy Technology Data Exchange (ETDEWEB)

    Rezvanfar, Mohammad Amin; Rezvanfar, Mohammad Ali [Department of Toxicology and Pharmacology, Faculty of Pharmacy, and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences (TUMS), Tehran (Iran, Islamic Republic of); Shahverdi, Ahmad Reza [Department of Pharmaceutical Biotechnology and Biotechnology Research Centre, Faculty of Pharmacy, TUMS, Tehran (Iran, Islamic Republic of); Ahmadi, Abbas [Department of Histology and Embryology, Faculty of Veterinary Medicine, Urmia University, Urmia (Iran, Islamic Republic of); Baeeri, Maryam; Mohammadirad, Azadeh [Department of Toxicology and Pharmacology, Faculty of Pharmacy, and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences (TUMS), Tehran (Iran, Islamic Republic of); Abdollahi, Mohammad, E-mail: mohammad.abdollahi@utoronto.ca [Department of Toxicology and Pharmacology, Faculty of Pharmacy, and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences (TUMS), Tehran (Iran, Islamic Republic of)

    2013-02-01

    Cisplatin (CIS), an anticancer alkylating agent, induces DNA adducts and effectively cross links the DNA strands and so affects spermatozoa as a male reproductive toxicant. The present study investigated the cellular/biochemical mechanisms underlying possible protective effect of selenium nano-particles (Nano-Se) as an established strong antioxidant with more bioavailability and less toxicity, on reproductive toxicity of CIS by assessment of sperm characteristics, sperm DNA integrity, chromatin quality and spermatogenic disorders. To determine the role of oxidative stress (OS) in the pathogenesis of CIS gonadotoxicity, the level of lipid peroxidation (LPO), antioxidant enzymes including superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px) and peroxynitrite (ONOO) as a marker of nitrosative stress (NS) and testosterone (T) concentration as a biomarker of testicular function were measured in the blood and testes. Thirty-two male Wistar rats were equally divided into four groups. A single IP dose of CIS (7 mg/kg) and protective dose of Nano-Se (2 mg/kg/day) were administered alone or in combination. The CIS-exposed rats showed a significant increase in testicular and serum LPO and ONOO level, along with a significant decrease in enzymatic antioxidants levels, diminished serum T concentration and abnormal histologic findings with impaired sperm quality associated with increased DNA damage and decreased chromatin quality. Coadministration of Nano-Se significantly improved the serum T, sperm quality, and spermatogenesis and reduced CIS-induced free radical toxic stress and spermatic DNA damage. In conclusion, the current study demonstrated that Nano-Se may be useful to prevent CIS-induced gonadotoxicity through its antioxidant potential. Highlights: ► Cisplatin (CIS) affects spermatozoa as a male reproductive toxicant. ► Effect of Nano-Se on CIS-induced spermatotoxicity was investigated. ► CIS-exposure induces oxidative sperm DNA damage

  16. PAMP-induced defense responses in potato require both salicylic acid and jasmonic acid.

    Science.gov (United States)

    Halim, Vincentius A; Altmann, Simone; Ellinger, Dorothea; Eschen-Lippold, Lennart; Miersch, Otto; Scheel, Dierk; Rosahl, Sabine

    2009-01-01

    To elucidate the molecular mechanisms underlying pathogen-associated molecular pattern (PAMP)-induced defense responses in potato (Solanum tuberosum), the role of the signaling compounds salicylic acid (SA) and jasmonic acid (JA) was analyzed. Pep-13, a PAMP from Phytophthora, induces the accumulation of SA, JA and hydrogen peroxide, as well as the activation of defense genes and hypersensitive-like cell death. We have previously shown that SA is required for Pep-13-induced defense responses. To assess the importance of JA, RNA interference constructs targeted at the JA biosynthetic genes, allene oxide cyclase and 12-oxophytodienoic acid reductase, were expressed in transgenic potato plants. In addition, expression of the F-box protein COI1 was reduced by RNA interference. Plants expressing the RNA interference constructs failed to accumulate the respective transcripts in response to wounding or Pep-13 treatment, neither did they contain significant amounts of JA after elicitation. In response to infiltration of Pep-13, the transgenic plants exhibited a highly reduced accumulation of reactive oxygen species as well as reduced hypersensitive cell death. The ability of the JA-deficient plants to accumulate SA suggests that SA accumulation is independent or upstream of JA accumulation. These data show that PAMP responses in potato require both SA and JA and that, in contrast to Arabidopsis, these compounds act in the same signal transduction pathway. Despite their inability to fully respond to PAMP treatment, the transgenic RNA interference plants are not altered in their basal defense against Phytophthora infestans.

  17. Individual differences in maternal response to immune challenge predict offspring behavior: Contribution of environmental factors

    Science.gov (United States)

    Bronson, Stefanie L.; Ahlbrand, Rebecca; Horn, Paul S.; Kern, Joseph R.; Richtand, Neil M.

    2011-01-01

    Maternal infection during pregnancy elevates risk for schizophrenia and related disorders in offspring. Converging evidence suggests the maternal inflammatory response mediates the interaction between maternal infection, altered brain development, and behavioral outcome. The extent to which individual differences in the maternal response to immune challenge influence the development of these abnormalities is unknown. The present study investigated the impact of individual differences in maternal response to the viral mimic polyinosinic:polycytidylic acid (poly I:C) on offspring behavior. We observed significant variability in body weight alterations of pregnant rats induced by administration of poly I:C on gestational day 14. Furthermore, the presence or absence of maternal weight loss predicted MK-801 and amphetamine stimulated locomotor abnormalities in offspring. MK-801 stimulated locomotion was altered in offspring of all poly I:C treated dams; however, the presence or absence of maternal weight loss resulted in decreased and modestly increased locomotion, respectively. Adult offspring of poly I:C treated dams that lost weight exhibited significantly decreased amphetamine stimulated locomotion, while offspring of poly I:C treated dams without weight loss performed similarly to vehicle controls. Social isolation and increased maternal age predicted weight loss in response to poly I:C but not vehicle injection. In combination, these data identify environmental factors associated with the maternal response to immune challenge and functional outcome of offspring exposed to maternal immune activation. PMID:21255612

  18. Treatments for Biomedical Abnormalities Associated with Autism Spectrum Disorder

    Directory of Open Access Journals (Sweden)

    Richard Eugene Frye

    2014-06-01

    Full Text Available Recent studies point to the effectiveness of novel treatments that address physiological abnormalities associated with autism spectrum disorder (ASD. This is significant because safe and effective treatments for ASD remain limited. These physiological abnormalities as well as studies addressing treatments of these abnormalities are reviewed in this article. Treatments commonly used to treat mitochondrial disease have been found to improve both core and associated ASD symptoms. Double-blind, placebo-controlled studies have investigated L-carnitine and a multivitamin containing B vitamins, antioxidants, vitamin E, and coenzyme Q10 while non-blinded studies have investigated ubiquinol. Controlled and uncontrolled studies using folinic acid, a reduced form of folate, have reported marked improvements in core and associated ASD symptoms in some children with ASD and folate related pathways abnormities. Treatments that could address redox metabolism abnormalities include methylcobalamin with and without folinic acid in open-label studies and vitamin C and N-acetyl-L-cysteine in double-blind, placebo-controlled studies. These studies have reported improved core and associated symptoms with these treatments. Lastly, both open-label and double-blind, placebo-controlled studies have reported improvement in core and associated ASD symptoms with tetrahydrobiopterin. Overall, these treatments were generally well tolerated without significant adverse effects for most children, although we review the reported adverse effects in detail. This review provides evidence for potential safe and effective treatments for core and associated symptoms of ASD that target underlying known physiological abnormalities associated with ASD. Further research is needed to define subgroups of children with ASD in which these treatments may be most effective as well as confirm their efficacy in double-blind, placebo-controlled, large-scale multicenter studies.

  19. The possible mechanisms of protocatechuic acid-induced central analgesia

    Directory of Open Access Journals (Sweden)

    Rana Arslan

    2018-05-01

    Full Text Available It is aimed to investigate the central antinociceptive effect of protocatechuic acid and the involvement of stimulation of opioidergic, serotonin 5-HT2A/2C, α2-adrenergic and muscarinic receptors in protocatechuic acid-induced central analgesia in mice. Time-dependent antinociceptive effects of protocatechuic acid at the oral doses of 75, 150 and 300 mg/kg were tested in hot-plate (integrated supraspinal response and tail-immersion (spinal reflex tests in mice. To investigate the mechanisms of action; the mice administered 300 mg/kg protocatechuic acid (p.o. were pre-treated with non-specific opioid antagonist naloxone (5 mg/kg, i.p., serotonin 5-HT2A/2C receptor antagonist ketanserin (1 mg/kg, i.p., α2-adrenoceptor antagonist yohimbine (1 mg/kg, i.p. and non-specific muscarinic antagonist atropine (5 mg/kg, i.p., respectively. The antinociceptive effect of protocatechuic acid was observed at the doses of 75, 150 and 300 mg/kg in tail-immersion test, at the doses of 150 and 300 mg/kg in hot-plate test at different time interval. The enhancement in the latency of protocatechuic acid-induced response to thermal stimuli was antagonized by yohimbine, naloxone and atropine in tail-immersion test, while it was antagonized only by yohimbine and naloxone pretreatments in hot-plate test. These results indicated that protocatechuic acid has the central antinociceptive action that is probably organized by spinal mediated cholinergic and opiodiergic, also spinal and supraspinal mediated noradrenergic modulation. However, further studies are required to understand how protocatechuic acid organizes the interactions of these modulatory systems. As a whole, these findings reinforce that protocatechuic acid is a potential agent that might be used for pain relief. Additionally, the clarification of the effect and mechanisms of action of protocatechuic acid will contribute to new therapeutic approaches and provide guidance for new drug

  20. Gamma radiations induced meiotic abnormalities in cape gosseberry (Physalis peruviana Linn.)

    International Nuclear Information System (INIS)

    Gupta, S.K.

    1987-01-01

    The cytological alterations were systematically scored in Physalis peruviana after treatment with 5 to 60 Krads of gamma radiation. In control plant diplotenediakinesis revealed 24 bivalents and cytokinesis produced normal tetrads, whereas PMCs of differently treated plants showed various anomalies viz., altered configuration of chromosomes, clumping/sickness, fragments, bridges, laggards, unequal segregation and non-orientation of chromosomes and unequal groupings of chromosomes. Abnormal karyokinesis and/or cytokinesis led to the formation of abnormal sporads which later on causes pollen and plant sterility. While every type of anomaly is dose-dependent and tend to increase with advancing dose showing a fair degree of correlation with the dose of radiation. The persistence of meiotic abnormalities with reduce d frequency in M 2 generation also bears correlation with administered dose. (author). 10 refs

  1. Protective effect of bile acid derivatives in phalloidin-induced rat liver toxicity

    International Nuclear Information System (INIS)

    Herraez, Elisa; Macias, Rocio I.R.; Vazquez-Tato, Jose; Hierro, Carlos; Monte, Maria J.; Marin, Jose J.G.

    2009-01-01

    Phalloidin causes severe liver damage characterized by marked cholestasis, which is due in part to irreversible polymerization of actin filaments. Liver uptake of this toxin through the transporter OATP1B1 is inhibited by the bile acid derivative BALU-1, which does not inhibit the sodium-dependent bile acid transporter NTCP. The aim of the present study was to investigate whether BALU-1 prevents liver uptake of phalloidin without impairing endogenous bile acid handling and hence may have protective effects against the hepatotoxicity induced by this toxin. In anaesthetized rats, i.v. administration of BALU-1 increased bile flow more than taurocholic acid (TCA). Phalloidin administration decreased basal (- 60%) and TCA-stimulated bile flow (- 55%) without impairing bile acid output. Phalloidin-induced cholestasis was accompanied by liver necrosis, nephrotoxicity and haematuria. In BALU-1-treated animals, phalloidin-induced cholestasis was partially prevented. Moreover haematuria was not observed, which was consistent with histological evidences of BALU-1-prevented injury of liver and kidney tissue. HPLC-MS/MS analysis revealed that BALU-1 was secreted in bile mainly in non-conjugated form, although a small proportion ( TCA > DHCA > UDCA. In conclusion, BALU-1 is able to protect against phalloidin-induced hepatotoxicity, probably due to an inhibition of the liver uptake and an enhanced biliary secretion of this toxin.

  2. Intracerebroventricular administration of okadaic acid induces hippocampal glucose uptake dysfunction and tau phosphorylation.

    Science.gov (United States)

    Broetto, Núbia; Hansen, Fernanda; Brolese, Giovana; Batassini, Cristiane; Lirio, Franciane; Galland, Fabiana; Dos Santos, João Paulo Almeida; Dutra, Márcio Ferreira; Gonçalves, Carlos-Alberto

    2016-06-01

    Intraneuronal aggregates of neurofibrillary tangles (NFTs), together with beta-amyloid plaques and astrogliosis, are histological markers of Alzheimer's disease (AD). The underlying mechanism of sporadic AD remains poorly understood, but abnormal hyperphosphorylation of tau protein is suggested to have a role in NFTs genesis, which leads to neuronal dysfunction and death. Okadaic acid (OKA), a strong inhibitor of protein phosphatase 2A, has been used to induce dementia similar to AD in rats. We herein investigated the effect of intracerebroventricular (ICV) infusion of OKA (100 and 200ng) on hippocampal tau phosphorylation at Ser396, which is considered an important fibrillogenic tau protein site, and on glucose uptake, which is reduced early in AD. ICV infusion of OKA (at 200ng) induced a spatial cognitive deficit, hippocampal astrogliosis (based on GFAP increment) and increase in tau phosphorylation at site 396 in this model. Moreover, we observed a decreased glucose uptake in the hippocampal slices of OKA-treated rats. In vitro exposure of hippocampal slices to OKA altered tau phosphorylation at site 396, without any associated change in glucose uptake activity. Taken together, these findings further our understanding of OKA neurotoxicity, in vivo and vitro, particularly with regard to the role of tau phosphorylation, and reinforce the importance of the OKA dementia model for studying the neurochemical alterations that may occur in AD, such as NFTs and glucose hypometabolism. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Benfotiamine attenuates nicotine and uric acid-induced vascular endothelial dysfunction in the rat.

    Science.gov (United States)

    Balakumar, Pitchai; Sharma, Ramica; Singh, Manjeet

    2008-01-01

    The study has been designed to investigate the effect of benfotiamine, a thiamine derivative, in nicotine and uric acid-induced vascular endothelial dysfunction (VED) in rats. Nicotine (2 mg kg(-1)day(-1), i.p., 4 weeks) and uric acid (150 mg kg(-1)day(-1), i.p., 3 weeks) were administered to produce VED in rats. The development of VED was assessed by employing isolated aortic ring preparation and estimating serum and aortic concentration of nitrite/nitrate. Further, the integrity of vascular endothelium was assessed using the scanning electron microscopy (SEM) of thoracic aorta. Moreover, the oxidative stress was assessed by estimating serum thiobarbituric acid reactive substances (TBARS) and aortic superoxide anion generation. The administration of nicotine and uric acid produced VED by impairing the integrity of vascular endothelium and subsequently decreasing serum and aortic concentration of nitrite/nitrate and attenuating acetylcholine-induced endothelium dependent relaxation. Further, nicotine and uric acid produced oxidative stress, which was assessed in terms of increase in serum TBARS and aortic superoxide generation. However, treatment with benfotiamine (70 mg kg(-1)day(-1), p.o.) or atorvastatin (30 mg kg(-1)day(-1) p.o., a standard agent) markedly prevented nicotine and uric acid-induced VED and oxidative stress by improving the integrity of vascular endothelium, increasing the concentration of serum and aortic nitrite/nitrate, enhancing the acetylcholine-induced endothelium dependent relaxation and decreasing serum TBARS and aortic superoxide anion generation. Thus, it may be concluded that benfotiamine reduces the oxidative stress and consequently improves the integrity of vascular endothelium and enhances the generation of nitric oxide to prevent nicotine and uric acid-induced experimental VED.

  4. Fatty acid-amino acid conjugates are essential for systemic activation of salicylic acid-induced protein kinase and accumulation of jasmonic acid in Nicotiana attenuata.

    Science.gov (United States)

    Hettenhausen, Christian; Heinrich, Maria; Baldwin, Ian T; Wu, Jianqiang

    2014-11-28

    Herbivory induces the activation of mitogen-activated protein kinases (MAPKs), the accumulation of jasmonates and defensive metabolites in damaged leaves and in distal undamaged leaves. Previous studies mainly focused on individual responses and a limited number of systemic leaves, and more research is needed for a better understanding of how different plant parts respond to herbivory. In the wild tobacco Nicotiana attenuata, FACs (fatty acid-amino acid conjugates) in Manduca sexta oral secretions (OS) are the major elicitors that induce herbivory-specific signaling but their role in systemic signaling is largely unknown. Here, we show that simulated herbivory (adding M. sexta OS to fresh wounds) dramatically increased SIPK (salicylic acid-induced protein kinase) activity and jasmonic acid (JA) levels in damaged leaves and in certain (but not all) undamaged systemic leaves, whereas wounding alone had no detectable systemic effects; importantly, FACs and wounding are both required for activating these systemic responses. In contrast to the activation of SIPK and elevation of JA in specific systemic leaves, increases in the activity of an important anti-herbivore defense, trypsin proteinase inhibitor (TPI), were observed in all systemic leaves after simulated herbivory, suggesting that systemic TPI induction does not require SIPK activation and JA increases. Leaf ablation experiments demonstrated that within 10 minutes after simulated herbivory, a signal (or signals) was produced and transported out of the treated leaves, and subsequently activated systemic responses. Our results reveal that N. attenuata specifically recognizes herbivore-derived FACs in damaged leaves and rapidly send out a long-distance signal to phylotactically connected leaves to activate MAPK and JA signaling, and we propose that FACs that penetrated into wounds rapidly induce the production of another long-distance signal(s) which travels to all systemic leaves and activates TPI defense.

  5. Evolution behavior of nanohardness after thermal-aging and hydrogen-charging on austenite and strain-induced martensite in pre-strained austenitic stainless steel

    Science.gov (United States)

    Zheng, Yuanyuan; Zhou, Chengshuang; Hong, Yuanjian; Zheng, Jinyang; Zhang, Lin

    2018-05-01

    Nanoindentation has been used to study the effects of thermal-aging and hydrogen on the mechanical property of the metastable austenitic stainless steel. Thermal-aging at 473 K decreases the nanohardness of austenite, while it increases the nanohardness of strain-induced ɑ‧ martensite. Hydrogen-charging at 473 K increases the nanohardness of austenite, while it decreases the nanohardness of strain-induced ɑ‧ martensite. The opposite effect on austenite and ɑ‧ martensite is first found in the same pre-strained sample. This abnormal evolution behavior of hardness can be attributed to the interaction between dislocation and solute atoms (carbon and hydrogen). Carbon atoms are difficult to move and redistribute in austenite compared with ɑ‧ martensite. Therefore, the difference in the diffusivity of solute atoms between austenite and ɑ‧ martensite may result in the change of hardness.

  6. S-adenosyl methionine prevents ASD like behaviors triggered by early postnatal valproic acid exposure in very young mice.

    Science.gov (United States)

    Ornoy, Asher; Weinstein-Fudim, Liza; Tfilin, Matanel; Ergaz, Zivanit; Yanai, Joseph; Szyf, Moshe; Turgeman, Gadi

    2018-01-16

    A common animal model of ASD is the one induced by valproic acid (VPA), inducing epigenetic changes and oxidative stress. We studied the possible preventive effect of the methyl donor for epigenetic enzymatic reactions, S-adenosine methionine (SAM), on ASD like behavioral changes and on redox potential in the brain and liver in this model. ICR albino mice were injected on postnatal day 4 with one dose of 300 mg/kg of VPA, with normal saline (controls) or with VPA and SAM that was given orally for 3 days at the dose of 30 mg/kg body weight. From day 50, we carried out neurobehavioral tests and assessment of the antioxidant status of the prefrontal cerebral cortex, liver assessing SOD and CAT activity, lipid peroxidation and the expression of antioxidant genes. Mice injected with VPA exhibited neurobehavioral deficits typical of ASD that were more prominent in males. Changes in the activity of SOD and CAT increased lipid peroxidation and changes in the expression of antioxidant genes were observed in the prefrontal cortex of VPA treated mice, more prominent in females, while ASD like behavior was more prominent in males. There were no changes in the redox potential of the liver. The co-administration of VPA and SAM alleviated most ASD like neurobehavioral symptoms and normalized the redox potential in the prefrontal cortex. Early postnatal VPA administration induces ASD like behavior that is more severe in males, while the redox status changes are more severe in females; SAM corrects both. VPA-induced ASD seems to result from epigenetic changes, while the redox status changes may be secondary. Copyright © 2018. Published by Elsevier Inc.

  7. Heart and bile acids - Clinical consequences of altered bile acid metabolism.

    Science.gov (United States)

    Vasavan, Tharni; Ferraro, Elisa; Ibrahim, Effendi; Dixon, Peter; Gorelik, Julia; Williamson, Catherine

    2018-04-01

    Cardiac dysfunction has an increased prevalence in diseases complicated by liver cirrhosis such as primary biliary cholangitis and primary sclerosing cholangitis. This observation has led to research into the association between abnormalities in bile acid metabolism and cardiac pathology. Approximately 50% of liver cirrhosis cases develop cirrhotic cardiomyopathy. Bile acids are directly implicated in this, causing QT interval prolongation, cardiac hypertrophy, cardiomyocyte apoptosis and abnormal haemodynamics of the heart. Elevated maternal serum bile acids in intrahepatic cholestasis of pregnancy, a disorder which causes an impaired feto-maternal bile acid gradient, have been associated with fatal fetal arrhythmias. The hydrophobicity of individual bile acids in the serum bile acid pool is of relevance, with relatively lipophilic bile acids having a more harmful effect on the heart. Ursodeoxycholic acid can reverse or protect against these detrimental cardiac effects of elevated bile acids. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Associations Among Cardiometabolic Abnormalities, Obesity, and Sociobehavioral Factors in a Southern Nevada Adult Population.

    Science.gov (United States)

    Feng, Jing; Johnson, Michael D; Iser, Joseph P

    Cardiometabolic abnormalities underlie many health risks associated with obesity. We determined the relationship between cardiometabolic abnormalities, sociodemographic characteristics, and modifiable risk factors among adults in Southern Nevada. We included 2415 participants older than 20 years from the Behavioral Risk Factor Surveillance System surveys conducted in 2011, 2013, and 2015 in Southern Nevada. Cardiometabolic abnormalities were assessed on the combined basis of blood pressure, cholesterol, and diabetes status. Logistic regression stratified by body mass index status was used to examine cardiometabolic abnormalities in different body mass index classes. Odds ratio estimates for cardiometabolic abnormalities after accounting for sociodemographic and health behavior characteristics. Cardiometabolic abnormalities followed a socioeconomic gradient, although adjustment for lifestyle variables attenuated the associative link. Non-Hispanic black (vs white) race did not elevate cardiometabolic abnormalities risk among nonobese adults, yet conferred a multivariable-adjusted odds ratio of 2.18 (95% confidence interval [CI], 1.03-4.61) among obese adults. By comparison, odds of cardiometabolic abnormalities among nonobese adults were 2.42 (95% CI, 0.99-5.92) times higher for Hispanics and 2.83 (95% CI, 1.23-6.55) times higher for other or multiracial minorities. Among obese adults, male gender (odds ratio: 1.84; 95% CI, 1.03-3.27) and former (odds ratio: 2.09; 95% CI, 1.14-3.85) smoker status were associated with cardiometabolic abnormalities independent of other covariates. The present data support intervention strategies tailored to reinforce and promote positive health behaviors among disadvantaged groups. There were variable patterns of ethnic group disparities in clustered cardiometabolic abnormalities across body mass index classes. Targeted prevention approaches incorporating an explicit health equity perspective may help mitigate observed differences.

  9. Evidence that NMDA-dependent limbic neural plasticity in the right hemisphere mediates pharmacological stressor (FG-7142)-induced lasting increases in anxiety-like behavior. Study 2--The effects on behavior of block of NMDA receptors prior to injection of FG-7142.

    Science.gov (United States)

    Adamec, R E

    1998-01-01

    The hypothesis that N-methyl-D-aspartate (NMDA) receptors mediate initiation of lasting behavioral changes induced by the anxiogenic beta-carboline, FG-7142, was supported in this study. Behavioral changes normally induced by FG-7142 were blocked when the competitive NMDA receptor blocker, 7-amino-phosphono-heptanoic acid, was given prior to administration of FG-7142. When cats were subsequently given FG-7142 alone, the drug produced lasting behavioral changes like those reported previously. Flumazenil, a benzodiazepine receptor antagonist, reversed an increase in defensiveness produced by FG-7142 alone, replicating previous findings. The data are consistent with the hypothesis that NMDA-dependent long-term potentiation in limbic pathways subserving defensive response to threat mediates lasting increases in defensiveness produced by FG-7142.

  10. Extracting foreground ensemble features to detect abnormal crowd behavior in intelligent video-surveillance systems

    Science.gov (United States)

    Chan, Yi-Tung; Wang, Shuenn-Jyi; Tsai, Chung-Hsien

    2017-09-01

    Public safety is a matter of national security and people's livelihoods. In recent years, intelligent video-surveillance systems have become important active-protection systems. A surveillance system that provides early detection and threat assessment could protect people from crowd-related disasters and ensure public safety. Image processing is commonly used to extract features, e.g., people, from a surveillance video. However, little research has been conducted on the relationship between foreground detection and feature extraction. Most current video-surveillance research has been developed for restricted environments, in which the extracted features are limited by having information from a single foreground; they do not effectively represent the diversity of crowd behavior. This paper presents a general framework based on extracting ensemble features from the foreground of a surveillance video to analyze a crowd. The proposed method can flexibly integrate different foreground-detection technologies to adapt to various monitored environments. Furthermore, the extractable representative features depend on the heterogeneous foreground data. Finally, a classification algorithm is applied to these features to automatically model crowd behavior and distinguish an abnormal event from normal patterns. The experimental results demonstrate that the proposed method's performance is both comparable to that of state-of-the-art methods and satisfies the requirements of real-time applications.

  11. Fenofibrate, a peroxisome proliferator-activated receptor α ligand, prevents abnormal liver function induced by a fasting–refeeding process

    International Nuclear Information System (INIS)

    Lee, Joon No; Dutta, Raghbendra Kumar; Kim, Seul-Gi; Lim, Jae-Young; Kim, Se-Jin; Choe, Seong-Kyu; Yoo, Kyeong-Won; Song, Seung Ryel; Park, Do-Sim; So, Hong-Seob; Park, Raekil

    2013-01-01

    Highlights: •A fasting–refeeding high fat diet (HDF) model mimics irregular eating habit. •A fasting–refeeding HFD induces liver ballooning injury. •A fasting–refeeding HDF process elicits hepatic triglyceride accumulation. •Fenofibrate, PPARα ligand, prevents liver damage induced by refeeding HFD. -- Abstract: Fenofibrate, a peroxisome proliferator-activated receptor α (PPARα) agonist, is an anti-hyperlipidemic agent that has been widely used in the treatment of dyslipidemia. In this study, we examined the effect of fenofibrate on liver damage caused by refeeding a high-fat diet (HFD) in mice after 24 h fasting. Here, we showed that refeeding HFD after fasting causes liver damage in mice determined by liver morphology and liver cell death. A detailed analysis revealed that hepatic lipid droplet formation is enhanced and triglyceride levels in liver are increased by refeeding HFD after starvation for 24 h. Also, NF-κB is activated and consequently induces the expression of TNF-α, IL1-β, COX-2, and NOS2. However, treating with fenofibrate attenuates the liver damage and triglyceride accumulation caused by the fasting–refeeding HFD process. Fenofibrate reduces the expression of NF-κB target genes but induces genes for peroxisomal fatty acid oxidation, peroxisome biogenesis and mitochondrial fatty acid oxidation. These results strongly suggest that the treatment of fenofibrate ameliorates the liver damage induced by fasting–refeeding HFD, possibly through the activation of fatty acid oxidation

  12. Fenofibrate, a peroxisome proliferator-activated receptor α ligand, prevents abnormal liver function induced by a fasting–refeeding process

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Joon No; Dutta, Raghbendra Kumar; Kim, Seul-Gi; Lim, Jae-Young; Kim, Se-Jin; Choe, Seong-Kyu [Center for Metabolic Function Regulation, and Department of Microbiology, School of Medicine, Wonkwang University, Iksan (Korea, Republic of); Yoo, Kyeong-Won [Center for Metabolic Function Regulation, and Department of Microbiology, School of Medicine, Wonkwang University, Iksan (Korea, Republic of); Immune-network Pioneer Research Center, Department of Biochemistry, College of Medicine, Dong-A University, Busan (Korea, Republic of); Song, Seung Ryel [Center for Metabolic Function Regulation, and Department of Microbiology, School of Medicine, Wonkwang University, Iksan (Korea, Republic of); Park, Do-Sim [Center for Metabolic Function Regulation, and Department of Microbiology, School of Medicine, Wonkwang University, Iksan (Korea, Republic of); Department of Laboratory of Medicine, School of Medicine, Wonkwang University, Iksan (Korea, Republic of); So, Hong-Seob [Center for Metabolic Function Regulation, and Department of Microbiology, School of Medicine, Wonkwang University, Iksan (Korea, Republic of); Park, Raekil [Center for Metabolic Function Regulation, and Department of Microbiology, School of Medicine, Wonkwang University, Iksan (Korea, Republic of)

    2013-12-06

    Highlights: •A fasting–refeeding high fat diet (HDF) model mimics irregular eating habit. •A fasting–refeeding HFD induces liver ballooning injury. •A fasting–refeeding HDF process elicits hepatic triglyceride accumulation. •Fenofibrate, PPARα ligand, prevents liver damage induced by refeeding HFD. -- Abstract: Fenofibrate, a peroxisome proliferator-activated receptor α (PPARα) agonist, is an anti-hyperlipidemic agent that has been widely used in the treatment of dyslipidemia. In this study, we examined the effect of fenofibrate on liver damage caused by refeeding a high-fat diet (HFD) in mice after 24 h fasting. Here, we showed that refeeding HFD after fasting causes liver damage in mice determined by liver morphology and liver cell death. A detailed analysis revealed that hepatic lipid droplet formation is enhanced and triglyceride levels in liver are increased by refeeding HFD after starvation for 24 h. Also, NF-κB is activated and consequently induces the expression of TNF-α, IL1-β, COX-2, and NOS2. However, treating with fenofibrate attenuates the liver damage and triglyceride accumulation caused by the fasting–refeeding HFD process. Fenofibrate reduces the expression of NF-κB target genes but induces genes for peroxisomal fatty acid oxidation, peroxisome biogenesis and mitochondrial fatty acid oxidation. These results strongly suggest that the treatment of fenofibrate ameliorates the liver damage induced by fasting–refeeding HFD, possibly through the activation of fatty acid oxidation.

  13. Moderate folic acid supplementation and MTHFD1-synthetase deficiency in mice, a model for the R653Q variant, result in embryonic defects and abnormal placental development.

    Science.gov (United States)

    Christensen, Karen E; Hou, Wenyang; Bahous, Renata H; Deng, Liyuan; Malysheva, Olga V; Arning, Erland; Bottiglieri, Teodoro; Caudill, Marie A; Jerome-Majewska, Loydie A; Rozen, Rima

    2016-11-01

    Moderately high folic acid intake in pregnant women has led to concerns about deleterious effects on the mother and fetus. Common polymorphisms in folate genes, such as methylenetetrahydrofolate dehydrogenase-methenyltetrahydrofolate cyclohydrolase-formyltetrahydrofolate synthetase (MTHFD1) R653Q, may modulate the effects of elevated folic acid intake. We investigated the effects of moderate folic acid supplementation on reproductive outcomes and assessed the potential interaction of the supplemented diet with MTHFD1-synthetase (Mthfd1S) deficiency in mice, which is a model for the R653Q variant. Female Mthfd1S +/+ and Mthfd1S +/- mice were fed a folic acid-supplemented diet (FASD) (5-fold higher than recommended) or control diets before mating and during pregnancy. Embryos and placentas were assessed for developmental defects at embryonic day 10.5 (E10.5). Maternal folate and choline metabolites and gene expression in folate-related pathways were examined. The combination of FASD and maternal MTHFD1-synthetase deficiency led to a greater incidence of defects in E10.5 embryos (diet × maternal genotype, P = 0.0016; diet × embryonic genotype, P = 0.054). The methylenetetrahydrofolate reductase (MTHFR) protein and methylation potential [ratio of S-adenosylmethionine (major methyl donor):S-adenosylhomocysteine) were reduced in maternal liver. Although 5-methyltetrahydrofolate (methylTHF) was higher in maternal circulation, the methylation potential was lower in embryos. The presence of developmental delays and defects in Mthfd1S +/- embryos was associated with placental defects (P = 0.003). The labyrinth layer failed to form properly in the majority of abnormal placentas, which compromised the integration of the maternal and fetal circulation and presumably the transfer of methylTHF and other nutrients. Moderately higher folate intake and MTHFD1-synthetase deficiency in pregnant mice result in a lower methylation potential in maternal liver and embryos and a greater

  14. Alterations of Na,K-ATPase isoenzymes in the rat diabetic neuropathy: protective effect of dietary supplementation with n-3 fatty acids.

    Science.gov (United States)

    Gerbi, A; Maixent, J M; Barbey, O; Jamme, I; Pierlovisi, M; Coste, T; Pieroni, G; Nouvelot, A; Vague, P; Raccah, D

    1998-08-01

    Diabetic neuropathy is a degenerative complication of diabetes accompanied by an alteration of nerve conduction velocity (NCV) and Na,K-ATPase activity. The present study in rats was designed first to measure diabetes-induced abnormalities in Na,K-ATPase activity, isoenzyme expression, fatty acid content in sciatic nerve membranes, and NCV and second to assess the preventive ability of a fish oil-rich diet (rich in n-3 fatty acids) on these abnormalities. Diabetes was induced by intravenous streptozotocin injection. Diabetic animals (D) and nondiabetic control animals (C) were fed the standard rat chow either without supplementation or supplemented with either fish oil (DM, CM) or olive oil (DO, CO) at a daily dose of 0.5 g/kg by gavage during 8 weeks. Analysis of the fatty acid composition of purified sciatic nerve membranes from diabetic animals showed a decreased incorporation of C16:1(n-7) fatty acids and arachidonic acids. Fish oil supplementation changed the fatty acid content of sciatic nerve membranes, decreasing C18:2(n-6) fatty acids and preventing the decreases of arachidonic acids and C18:1(n-9) fatty acids. Protein expression of Na,K-ATPase alpha subunits, Na,K-ATPase activity, and ouabain affinity were assayed in purified sciatic nerve membranes from CO, DO, and DM. Na,K-ATPase activity was significantly lower in sciatic nerve membranes of diabetic rats and significantly restored in diabetic animals that received fish oil supplementation. Diabetes induced a specific decrease of alpha1- and alpha3-isoform activity and protein expression in sciatic nerve membranes. Fish oil supplementation restored partial activity and expression to varying degrees depending on the isoenzyme. These effects were associated with a significant beneficial effect on NCV. This study indicates that fish oil has beneficial effects on diabetes-induced alterations in sciatic nerve Na,K-ATPase activity and function.

  15. Clinical usefulness of myocardial iodine-123-15-(p-iodophenyl)-3(R,S)-methyl-pentadecanoic acid distribution abnormality in patients with mitochondrial encephalomyopathy based on normal data file in bull's-eye polar map

    International Nuclear Information System (INIS)

    Takahashi, Nobukazu; Mitani, Isao; Sumita, Shinichi

    1998-01-01

    Visual interpretation of iodine-123-beta-15-(p-iodophenyl)-3(R,S)-methyl-pentadecanoic acid ( 123 I-BMIPP) myocardial images cannot easily detect mild reduction in tracer uptake. Objective assessment of myocardial 123 I-BMIPP maldistributions at rest was attempted using a bull's-eye map and its normal data file for detecting myocardial damage in patients with mitochondrial encephalomyopathy. Six patients, two with Kearns-Sayre syndrome and four with mitochondrial myopathy, encephalopathy, lactic acidosis, and strokelike episodes (MELAS), and 10 normal subjects were studied. Fractional myocardial uptake of 1 23 I-BMIPP was also measured by dynamic static imaging to assess the global myocardial free fatty acid. These data were compared with the cardiothoracic ratio measured by chest radiography and left ventricular ejection fraction assessed by echocardiography. Abnormal cardiothoracic ratio and lower ejection fraction were detected in only one patient with Kearns-Sayre syndrome. Abnormal fractional myocardial uptake was detected in two patients (1.61%, 1.91%), whereas abnormal regional 123 I-BMIPP uptake assessed by the bull's-eye map was detected in five patients (83%). All patients showed abnormal uptake in the anterior portion, and one showed progressive atrioventricular conduction abnormality and systolic dysfunction with extended 123 I-BMIPP abnormal uptake. The results suggest that assessment based on the normal data file in a bull's-eye polar map is clinically useful for detection of myocardial damage in patients with mitochondrial encephalomyopathy. (author)

  16. Abnormal meiotic behavior in three species of Crotalaria Comportamento meiótico anormal em três espécies de Crotalaria

    Directory of Open Access Journals (Sweden)

    Kátia Ferreira

    2009-12-01

    Full Text Available The objective of this work was to compare the meiotic behavior and pollen grain viability of three species of Crotalaria. Slides for meiotic analysis were prepared by the air-drying technique. Pollen grain viability was measured by three staining procedures (Alexander's solution, tetrazolium chloride and fluorescein diacetate and in vitro germination in a sucrose solution. Eight bivalents were observed, confirming previous reports on populations from other regions of Brazil, as well as from other countries. All species showed abnormal meiotic behavior as follows: in Crotalaria micans, cytomixis and abnormal chromosome pairing in diakinesis; in C. spectabilis, abnormal chromosome pairing in diplotene; in C. zanzibarica, shrunk nuclei in leptotene and zygotene. Pollen grains of all three species show low viability, which may be associated with the irregularities of the meiotic behavior.O objetivo deste trabalho foi comparar o comportamento meiótico e a viabilidade dos grãos de pólen de três espécies de Crotalaria. A análise meiótica foi realizada por meio da técnica de secagem ao ar. A viabilidade dos grãos de pólen foi avaliada por testes de coloração (corante de Alexander, cloreto de tetrazólio e diacetato de fluoresceína e por teste de germinação em solução de sacarose. Foram observados oito bivalentes, confirmando relatos prévios em populações de outras regiões do Brasil e de outros países. As três espécies apresentaram comportamento meiótico irregular: em Crotalaria micans, citomixia e pareamento irregular na diacinese; em C. spectabilis, pareamento irregular no diplóteno; e em C. zanzibarica, núcleo fortemente condensado nas fases de leptóteno e zigóteno. A viabilidade dos grãos de pólen das três espécies é baixa, o que pode estar associado às irregularidades do comportamento meiótico.

  17. Effects of 4-phenyl butyric acid on high glucose-induced alterations in dorsal root ganglion neurons.

    Science.gov (United States)

    Sharma, Dilip; Singh, Jitendra Narain; Sharma, Shyam S

    2016-12-02

    Mechanisms and pathways involving in diabetic neuropathy are still not fully understood but can be unified by the process of overproduction of reactive oxygen species (ROS) such as superoxide, endoplasmic reticulum (ER) stress, downstream intracellular signaling pathways and their modulation. Susceptibility of dorsal root ganglion (DRG) to internal/external hyperglycemic environment stress contributes to the pathogenesis and progression of diabetic neuropathy. ER stress leads to abnormal ion channel function, gene expression, transcriptional regulation, metabolism and protein folding. 4-phenyl butyric acid (4-PBA) is a potent and selective chemical chaperone; which may inhibit ER stress. It may be hypothesized that 4-PBA could attenuate via channels in DRG in diabetic neuropathy. Effects of 4-PBA were determined by applying different parameters of oxidative stress, cell viability, apoptosis assays and channel expression in cultured DRG neurons. Hyperglycemia-induced apoptosis in the DRG neuron was inhibited by 4-PBA. Cell viability of DRG neurons was not altered by 4-PBA. Oxidative stress was significantly blocked by the 4-PBA. Sodium channel expression was not altered by the 4-PBA. Our data provide evidence that the hyperglycemia-induced alteration may be reduced by the 4-PBA without altering the sodium channel expression. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. Acid-Base Behavior of Carboxylic Acid Groups Covalently Attached at the Surface of Polyethylene: The Usefulness of Contact Angle in Following the Ionization of Surface Functionality

    Science.gov (United States)

    1985-08-01

    additional check, we converted granular PE-CO 2H to granular PE-CO 2CH3 by acid -catalyzed esterification. This material had no titrable groups. Upon...Task No. NR-631-840 TECHNICAL REPORT NO. 85-1 Acid -Base Behavior of Carboxylic Acid Groups Covalently Attached at the Surface of Polyethylene: The...34I Acid -Base Behavior K-142 ofCarboxylicAcidGroupsAttached...______________________ 12. PERSIIMAL AUTHOR IS) S.R. Holmes-Farly., R.H. Reamey, T.J

  19. Proportionate Responses to Life Events Influence Clinicians' Judgments of Psychological Abnormality

    Science.gov (United States)

    Kim, Nancy S.; Paulus, Daniel J.; Gonzalez, Jeffrey S.; Khalife, Danielle

    2012-01-01

    Psychological abnormality is a fundamental concept in the "Diagnostic and Statistical Manual of Mental Disorders" ("DSM-IV-TR"; American Psychiatric Association, 2000) and in all clinical evaluations. How do practicing clinical psychologists use the context of life events to judge the abnormality of a person's current behaviors? The appropriate…

  20. Cytogenetic abnormalities and fragile-x syndrome in Autism Spectrum Disorder

    Directory of Open Access Journals (Sweden)

    Reddy Kavita S

    2005-01-01

    Full Text Available Abstract Background Autism is a behavioral disorder with impaired social interaction, communication, and repetitive and stereotypic behaviors. About 5–10 % of individuals with autism have 'secondary' autism in which an environmental agent, chromosome abnormality, or single gene disorder can be identified. Ninety percent have idiopathic autism and a major gene has not yet been identified. We have assessed the incidence of chromosome abnormalities and Fragile X syndrome in a population of autistic patients referred to our laboratory. Methods Data was analyzed from 433 patients with autistic traits tested using chromosome analysis and/or fluorescence in situ hybridization (FISH and/or molecular testing for fragile X syndrome by Southern and PCR methods. Results The median age was 4 years. Sex ratio was 4.5 males to 1 female [354:79]. A chromosome (cs abnormality was found in 14/421 [3.33 %] cases. The aberrations were: 4/14 [28%] supernumerary markers; 4/14 [28%] deletions; 1/14 [7%] duplication; 3/14 [21%] inversions; 2/14 [14%] translocations. FISH was performed on 23 cases for reasons other than to characterize a previously identified cytogenetic abnormality. All 23 cases were negative. Fragile-X testing by Southern blots and PCR analysis found 7/316 [2.2 %] with an abnormal result. The mutations detected were: a full mutation (fM and abnormal methylation in 3 [43 %], mosaic mutations with partial methylation of variable clinical significance in 3 [43%] and a permutation carrier [14%]. The frequency of chromosome and fragile-X abnormalities appears to be within the range in reported surveys (cs 4.8-1.7%, FRAX 2–4%. Limitations of our retrospective study include paucity of behavioral diagnostic information, and a specific clinical criterion for testing. Conclusions Twenty-eight percent of chromosome abnormalities detected in our study were subtle; therefore a high resolution cytogenetic study with a scrutiny of 15q11.2q13, 2q37 and Xp23

  1. Toxic cocaine- and convulsant-induced modification of forced swimming behaviors and their interaction with ethanol: comparison with immobilization stress

    Science.gov (United States)

    Hayase, Tamaki; Yamamoto, Yoshiko; Yamamoto, Keiichi

    2002-01-01

    Background Swimming behaviors in the forced swimming test have been reported to be depressed by stressors. Since toxic convulsion-inducing drugs related to dopamine [cocaine (COC)], benzodiazepine [methyl 6,7-dimethoxy-4-ethyl-β-carboline-carboxylate (DMCM)], γ-aminobutyric acid (GABA) [bicuculline (BIC)], and glutamate [N-methyl-D-aspartate (NMDA)] receptors can function as stressors, the present study compared their effects on the forced swimming behaviors with the effects of immobilization stress (IM) in rats. Their interactions with ethanol (EtOH), the most frequently coabused drug with COC which also induces convulsions as withdrawal symptoms but interferes with the convulsions caused by other drugs, were also investigated. Results Similar to the IM (10 min) group, depressed swimming behaviors (attenuated time until immobility and activity counts) were observed in the BIC (5 mg/kg IP) and DMCM (10 mg/kg IP) groups at the 5 h time point, after which no toxic behavioral symptoms were observed. However, they were normalized to the control levels at the 12 h point, with or without EtOH (1.5 g/kg IP). In the COC (60 mg/kg IP) and NMDA (200 mg/kg IP) groups, the depression occurred late (12 h point), and was normalized by the EtOH cotreatment. At the 5 h point, the COC treatment enhanced the swimming behaviors above the control level. Conclusions Although the physiological stress (IM), BIC, and DMCM also depressed the swimming behaviors, a delayed occurrence and EtOH-induced recovery of depressed swimming were observed only in the COC and NMDA groups. This might be correlated with the previously-reported delayed responses of DA and NMDA neurons rather than direct effects of the drugs, which could be suppressed by EtOH. Furthermore, the characteristic psychostimulant effects of COC seemed to be correlated with an early enhancement of swimming behaviors. PMID:12425723

  2. Reversal of Trimethyltin-Induced Learning and Memory Deficits by 3,5-Dicaffeoylquinic Acid

    Directory of Open Access Journals (Sweden)

    Jin Yong Kang

    2016-01-01

    Full Text Available The antiamnesic effect of 3,5-dicaffeoylquinic acid (3,5-diCQA as the main phenolic compound in Artemisia argyi H. extract on cognitive dysfunction induced by trimethyltin (TMT (7.1 μg/kg of body weight; intraperitoneal injection was investigated in order to assess its ameliorating function in mice. In several behavioral tests, namely, the Y-maze, passive avoidance, and Morris water maze (MWM test, 3,5-diCQA significantly ameliorated learning and memory deficits. After the behavioral tests, brain tissues from the mice were analyzed to characterize the basis of the neuroprotective effect. Acetylcholine (ACh levels increased, whereas the activity of acetylcholinesterase (AChE decreased upon administration of 3,5-diCQA. In addition, 3,5-diCQA effectively protected against an increase in malondialdehyde (MDA content, an increase in the oxidized glutathione (GSH ratio, and a decline of total superoxide dismutase (SOD level. 3,5-diCQA may prevent neuronal apoptosis through the protection of mitochondrial activities and the repression of apoptotic signaling molecules such as p-Akt, BAX, and p-tau (Ser 404.

  3. Prognostic implications of post-stress ejection fraction decrease detected by gated SPECT in the absence of stress-induced perfusion abnormalities

    Energy Technology Data Exchange (ETDEWEB)

    Dona, Manjola; Massi, Lucia; Settimo, Leonardo; Bartolini, Matteo; Gianni, Gianluca; Pupi, Alberto; Sciagra, Roberto [University of Florence, Nuclear Medicine Unit, Department of Clinical Physiopathology, Florence (Italy)

    2011-03-15

    The prognostic meaning of a post-stress ejection fraction (EF) decrease detected by perfusion gated SPECT is still unclear. We therefore followed up patients with post-stress EF decrease in the absence of stress-induced perfusion abnormalities. We prospectively enrolled 57 consecutive patients with post-stress EF drop {>=} 5 EF units and summed difference score (SDS) {<=} 1. They were followed up for more than 1 year and their outcome was compared with a group of sex- and age-matched controls with the same SDS but without EF decrease. During follow-up there were 13 events (1 cardiac death, 1 non-fatal myocardial infarction, 1 congestive heart failure and 10 late revascularizations). In the control group we registered six events. There was a significant difference (p < 0.0001) between the event-free survival curves of the two groups. The event rate of patients with post-stress EF decrease {>=} 5 EF units is relatively high and is significantly worse than that of a control group of patients with similarly normal SDS but without EF changes. Therefore, a post-stress EF decrease without stress-induced perfusion abnormalities should be cautiously interpreted. (orig.)

  4. Biodegradable polyester films from renewable aleuritic acid: surface modifications induced by melt-polycondensation in air

    International Nuclear Information System (INIS)

    Benítez, José Jesús; De Vargas-Parody, María Inmaculada; Cruz-Carrillo, Miguel Antonio; Heredia-Guerrero, José Alejandro; Morales-Flórez, Victor; De la Rosa-Fox, Nicolás; Heredia, Antonio

    2016-01-01

    Good water barrier properties and biocompatibility of long-chain biopolyesters like cutin and suberin have inspired the design of synthetic mimetic materials. Most of these biopolymers are made from esterified mid-chain functionalized ω-long chain hydroxyacids. Aleuritic (9,10,16-trihydroxypalmitic) acid is such a polyhydroxylated fatty acid and is also the major constituent of natural lac resin, a relatively abundant and renewable resource. Insoluble and thermostable films have been prepared from aleuritic acid by melt-condensation polymerization in air without catalysts, an easy and attractive procedure for large scale production. Intended to be used as a protective coating, the barrier's performance is expected to be conditioned by physical and chemical modifications induced by oxygen on the air-exposed side. Hence, the chemical composition, texture, mechanical behavior, hydrophobicity, chemical resistance and biodegradation of the film surface have been studied by attenuated total reflection–Fourier transform infrared spectroscopy (ATR–FTIR), atomic force microscopy (AFM), nanoindentation and water contact angle (WCA). It has been demonstrated that the occurrence of side oxidation reactions conditions the surface physical and chemical properties of these polyhydroxyester films. Additionally, the addition of palmitic acid to reduce the presence of hydrophilic free hydroxyl groups was found to have a strong influence on these parameters. (paper)

  5. Dielectric behavior of irradiated and nonirradiadiated deoxyribonucleic acid (DNA)-crotonic acid interaction in 5% dextrose solution

    International Nuclear Information System (INIS)

    Erginun, M.

    1980-01-01

    Deoxyribonucleic acid (DNA), ex. thymus, dissolved in 5% dextrose, was exposed to gamma radiation at doses between 0-5000 Rads. Crotonic acid dissolved in 5% dextrose was added to this irradiated DNA at t=0 and t=24 hrs after irradiation, in concentrations between 0-1.000 mg/ml. The dielectric behavior of the DNA-irradiation-crotonic acid interaction was investigated at T=20 0 C by pH, permittivity (dielectric constant) and conductivity measurements. The pH, permittivity and conductivity measurements exhibit that the effective and critical conditions for the DNA-irradiation-crotonic acid interaction are; low doses of irradiation (350 Rad.), low concentrations of crotonic acid (0.05-0.100 mg/ml) and the addition of crotonic acid 24 hours after the irradiation. These results support and are in good agreement with those results observed with mammalian cells and laboratory animals when the chemical carcinogens are given in conjunction with radiation

  6. Long-Term Intake of Uncaria rhynchophylla Reduces S100B and RAGE Protein Levels in Kainic Acid-Induced Epileptic Seizures Rats.

    Science.gov (United States)

    Tang, Nou-Ying; Lin, Yi-Wen; Ho, Tin-Yun; Cheng, Chin-Yi; Chen, Chao-Hsiang; Hsieh, Ching-Liang

    2017-01-01

    Epileptic seizures are crucial clinical manifestations of recurrent neuronal discharges in the brain. An imbalance between the excitatory and inhibitory neuronal discharges causes brain damage and cell loss. Herbal medicines offer alternative treatment options for epilepsy because of their low cost and few side effects. We established a rat epilepsy model by injecting kainic acid (KA, 12 mg/kg, i.p.) and subsequently investigated the effect of Uncaria rhynchophylla (UR) and its underlying mechanisms. Electroencephalogram and epileptic behaviors revealed that the KA injection induced epileptic seizures. Following KA injection, S100B levels increased in the hippocampus. This phenomenon was attenuated by the oral administration of UR and valproic acid (VA, 250 mg/kg). Both drugs significantly reversed receptor potentiation for advanced glycation end product proteins. Rats with KA-induced epilepsy exhibited no increase in the expression of metabotropic glutamate receptor 3, monocyte chemoattractant protein 1, and chemokine receptor type 2, which play a role in inflammation. Our results provide novel and detailed mechanisms, explaining the role of UR in KA-induced epileptic seizures in hippocampal CA1 neurons.

  7. Aminomethylphosphonic Acid and Methoxyacetic Acid Induce Apoptosis in Prostate Cancer Cells

    Directory of Open Access Journals (Sweden)

    Keshab R. Parajuli

    2015-05-01

    Full Text Available Aminomethylphosphonic acid (AMPA and its parent compound herbicide glyphosate are analogs to glycine, which have been reported to inhibit proliferation and promote apoptosis of cancer cells, but not normal cells. Methoxyacetic acid (MAA is the active metabolite of ester phthalates widely used in industry as gelling, viscosity and stabilizer; its exposure is associated with developmental and reproductive toxicities in both rodents and humans. MAA has been reported to suppress prostate cancer cell growth by inducing growth arrest and apoptosis. However, it is unknown whether AMPA and MAA can inhibit cancer cell growth. In this study, we found that AMPA and MAA inhibited cell growth in prostate cancer cell lines (LNCaP, C4-2B, PC-3 and DU-145 through induction of apoptosis and cell cycle arrest at the G1 phase. Importantly, the AMPA-induced apoptosis was potentiated with the addition of MAA, which was due to downregulation of the anti-apoptotic gene baculoviral inhibitor of apoptosis protein repeat containing 2 (BIRC2, leading to activation of caspases 7 and 3. These results demonstrate that the combination of AMPA and MAA can promote the apoptosis of prostate cancer cells, suggesting that they can be used as potential therapeutic drugs in the treatment of prostate cancer.

  8. Aminomethylphosphonic acid and methoxyacetic acid induce apoptosis in prostate cancer cells.

    Science.gov (United States)

    Parajuli, Keshab R; Zhang, Qiuyang; Liu, Sen; You, Zongbing

    2015-05-22

    Aminomethylphosphonic acid (AMPA) and its parent compound herbicide glyphosate are analogs to glycine, which have been reported to inhibit proliferation and promote apoptosis of cancer cells, but not normal cells. Methoxyacetic acid (MAA) is the active metabolite of ester phthalates widely used in industry as gelling, viscosity and stabilizer; its exposure is associated with developmental and reproductive toxicities in both rodents and humans. MAA has been reported to suppress prostate cancer cell growth by inducing growth arrest and apoptosis. However, it is unknown whether AMPA and MAA can inhibit cancer cell growth. In this study, we found that AMPA and MAA inhibited cell growth in prostate cancer cell lines (LNCaP, C4-2B, PC-3 and DU-145) through induction of apoptosis and cell cycle arrest at the G1 phase. Importantly, the AMPA-induced apoptosis was potentiated with the addition of MAA, which was due to downregulation of the anti-apoptotic gene baculoviral inhibitor of apoptosis protein repeat containing 2 (BIRC2), leading to activation of caspases 7 and 3. These results demonstrate that the combination of AMPA and MAA can promote the apoptosis of prostate cancer cells, suggesting that they can be used as potential therapeutic drugs in the treatment of prostate cancer.

  9. Edaravone abrogates LPS-induced behavioral anomalies, neuroinflammation and PARP-1.

    Science.gov (United States)

    Sriram, Chandra Shaker; Jangra, Ashok; Gurjar, Satendra Singh; Mohan, Pritam; Bezbaruah, Babul Kumar

    2016-02-01

    Poly(ADP-ribose) polymerase-1 (PARP-1) is a DNA nick-sensor enzyme that functions at the center of cellular stress response and affects the immune system at several key points, and thus modulates inflammatory diseases. Our previous study demonstrated that lipopolysaccharide (LPS)-induced depressive-like behavior in mice can be ameliorated by 3-aminobenzamide, which is a PARP-1 inhibitor. In the present study we've examined the effect of a free radical scavenger, edaravone pretreatment against LPS-induced anxiety and depressive-like behavior as well as various hippocampal biochemical parameters including PARP-1. Male Swiss albino mice were treated with edaravone (3 & 10mg/kgi.p.) once daily for 14days. On the 14th day 30min after edaravone treatment mice were challenged with LPS (1mg/kgi.p.). After 3h and 24h of LPS administration we've tested mice for anxiety and depressive-like behaviors respectively. Western blotting analysis of PARP-1 in hippocampus was carried out after 12h of LPS administration. Moreover, after 24h of LPS administration serum corticosterone, hippocampal BDNF, oxido-nitrosative stress and pro-inflammatory cytokines were estimated by ELISA. Results showed that pretreatment of edaravone (10mg/kg) ameliorates LPS-induced anxiety and depressive-like behavior. Western blotting analysis showed that LPS-induced anomalous expression of PARP-1 significantly reverses by the pretreatment of edaravone (10mg/kg). Biochemical analyses revealed that LPS significantly diminishes BDNF, increases pro-inflammatory cytokines and oxido-nitrosative stress in the hippocampus. However, pretreatment with edaravone (10mg/kg) prominently reversed all these biochemical alterations. Our study emphasized that edaravone pretreatment prevents LPS-induced anxiety and depressive-like behavior, mainly by impeding the inflammation, oxido-nitrosative stress and PARP-1 overexpression. Copyright © 2015. Published by Elsevier Inc.

  10. Biological basis of suicide and suicidal behavior

    Science.gov (United States)

    Pandey, Ghanshyam N

    2013-01-01

    Objective Suicide is a major public health concern as each year 30,000 people die by suicide in the US alone. In the teenage population, it is the second leading cause of death. There have been extensive studies of psychosocial factors associated with suicide and suicidal behavior. However, very little is known about the neurobiology of suicide. Recent research has provided some understanding of the neurobiology of suicide, which is the topic of this review. Methods Neurobiology of suicide has been studied using peripheral tissues, such as platelets, lymphocytes, and cerebral spinal fluid obtained from suicidal patients or from the postmortem brains of suicide victims. Results These studies have provided encouraging information with regard to the neurobiology of suicide. They show an abnormality of serotonergic mechanism, such as increased serotonin receptor subtypes and decreased serotonin metabolites, such as 5-hydroxyindoleacetic acid. These studies also suggest abnormalities of receptor-linked signaling mechanisms, such as phosphoinositide and adenylyl cyclase signaling mechanisms. Other biological systems that appear to be dysregulated in suicide are the hypothalamic-pituitary-adrenal (HPA) axis, and abnormalities of neurotrophins and neurotrophin receptors. More recently, several studies also indicate abnormalities of neuroimmune functions in suicide. Conclusions These studies have been discussed in detail in the following review. Some encouraging information has emerged, primarily related to some of these neurobiological mechanisms. It is hoped that neurobiological studies may eventually result in identifying appropriate biomarkers for suicidal behavior as well as appropriate therapeutic targets for its treatment. PMID:23773657

  11. Thermal Behavior and Free-Radical-Scavenging Activity of Phytic Acid Alone and Incorporated in Cosmetic Emulsions

    Directory of Open Access Journals (Sweden)

    André Luis Máximo Daneluti

    2015-07-01

    Full Text Available Phytic acid is a natural compound widely used as depigmenting agent in cosmetic emulsions. Few studies are available in the literature covering the stability and the antioxidating property of this substance, used alone or into emulsions. Therefore, the purpose of this work was to investigate the thermal behavior and antioxidant properties of phytic acid alone and into cosmetic emulsions. The thermal behavior of this substance was evaluated by thermogravimetry (TG/derivative thermogravimetry (DTG and differential scanning calorimetry (DSC and the free-radical-scavenging activity by 1,1-diphenyl-2-picrylhydrazyl (DPPH. TG/DTG and DSC curves allowed evaluation of the thermal behavior of phytic acid. These results showed that the substance presented four stages of mass loss. Thermal decomposition of the material initiated at 150 °C. Thermal behavior of the cosmetic emulsions detected that the addition of phytic acid decreased the thermal stability of the system. DPPH free-radical-scavenging activity showed that phytic acid incorporated into emulsion had no antioxidant capacity compared to BHT. In summary, we concluded that the thermoanalytical techniques (TG and DSC were efficient and reliable in the characterization of phytic acid alone and incorporated into cosmetic emulsions.

  12. ERKs and mitochondria-related pathways are essential for glycyrrhizic acid-mediated neuroprotection against glutamate-induced toxicity in differentiated PC12 cells

    International Nuclear Information System (INIS)

    Wang, D.; Guo, T.Q.; Wang, Z.Y.; Lu, J.H.; Liu, D.P.; Meng, Q.F.; Xie, J.; Zhang, X.L.; Liu, Y.; Teng, L.S.

    2014-01-01

    The present study focuses on the neuroprotective effect of glycyrrhizic acid (GA, a major compound separated from Glycyrrhiza Radix, which is a crude Chinese traditional drug) against glutamate-induced cytotoxicity in differentiated PC12 (DPC12) cells. The results showed that GA treatment improved cell viability and ameliorated abnormal glutamate-induced alterations in mitochondria in DPC12 cells. GA reversed glutamate-suppressed B-cell lymphoma 2 levels, inhibited glutamate-enhanced expressions of Bax and cleaved caspase 3, and reduced cytochrome C (Cyto C) release. Exposure to glutamate strongly inhibited phosphorylation of AKT (protein kinase B) and extracellular signal-regulated kinases (ERKs); however, GA pretreatment enhanced activation of ERKs but not AKT. The presence of PD98059 (a mitogen-activated protein/extracellular signal-regulated kinase kinase [MEK] inhibitor) but not LY294002 (a phosphoinositide 3-kinase [PI3K] inhibitor) diminished the potency of GA for improving viability of glutamate-exposed DPC12 cells. These results indicated that ERKs and mitochondria-related pathways are essential for the neuroprotective effect of GA against glutamate-induced toxicity in DPC12 cells. The present study provides experimental evidence supporting GA as a potential therapeutic agent for use in the treatment of neurodegenerative diseases

  13. ERKs and mitochondria-related pathways are essential for glycyrrhizic acid-mediated neuroprotection against glutamate-induced toxicity in differentiated PC12 cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, D. [School of Life Sciences, Jilin University, Changchun (China); The State Engineering Laboratory of AIDS Vaccine, Jilin University, Changchun (China); Guo, T.Q. [School of Life Sciences, Jilin University, Changchun (China); Wang, Z.Y. [State Key Laboratory of Theoretical and Computational Chemistry, Jilin University, Changchun (China); Lu, J.H.; Liu, D.P.; Meng, Q.F.; Xie, J. [School of Life Sciences, Jilin University, Changchun (China); Zhang, X.L. [Faculty of ScienceNational University of Singapore (Singapore); Liu, Y. [School of Life Sciences, Jilin University, Changchun (China); Teng, L.S. [School of Life Sciences, Jilin University, Changchun (China); The State Engineering Laboratory of AIDS Vaccine, Jilin University, Changchun (China)

    2014-07-25

    The present study focuses on the neuroprotective effect of glycyrrhizic acid (GA, a major compound separated from Glycyrrhiza Radix, which is a crude Chinese traditional drug) against glutamate-induced cytotoxicity in differentiated PC12 (DPC12) cells. The results showed that GA treatment improved cell viability and ameliorated abnormal glutamate-induced alterations in mitochondria in DPC12 cells. GA reversed glutamate-suppressed B-cell lymphoma 2 levels, inhibited glutamate-enhanced expressions of Bax and cleaved caspase 3, and reduced cytochrome C (Cyto C) release. Exposure to glutamate strongly inhibited phosphorylation of AKT (protein kinase B) and extracellular signal-regulated kinases (ERKs); however, GA pretreatment enhanced activation of ERKs but not AKT. The presence of PD98059 (a mitogen-activated protein/extracellular signal-regulated kinase kinase [MEK] inhibitor) but not LY294002 (a phosphoinositide 3-kinase [PI3K] inhibitor) diminished the potency of GA for improving viability of glutamate-exposed DPC12 cells. These results indicated that ERKs and mitochondria-related pathways are essential for the neuroprotective effect of GA against glutamate-induced toxicity in DPC12 cells. The present study provides experimental evidence supporting GA as a potential therapeutic agent for use in the treatment of neurodegenerative diseases.

  14. A Dietary Medium-Chain Fatty Acid, Decanoic Acid, Inhibits Recruitment of Nur77 to the HSD3B2 Promoter In Vitro and Reverses Endocrine and Metabolic Abnormalities in a Rat Model of Polycystic Ovary Syndrome.

    Science.gov (United States)

    Lee, Bao Hui; Indran, Inthrani Raja; Tan, Huey Min; Li, Yu; Zhang, Zhiwei; Li, Jun; Yong, Eu-Leong

    2016-01-01

    Hyperandrogenism is the central feature of polycystic ovary syndrome (PCOS). Due to the intricate relationship between hyperandrogenism and insulin resistance in PCOS, 50%-70% of these patients also present with hyperinsulinemia. Metformin, an insulin sensitizer, has been used to reduce insulin resistance and improve fertility in women with PCOS. In previous work, we have noted that a dietary medium-chain fatty acid, decanoic acid (DA), improves glucose tolerance and lipid profile in a mouse model of diabetes. Here, we report for the first time that DA, like metformin, inhibits androgen biosynthesis in NCI-H295R steroidogenic cells by regulating the enzyme 3β-hydroxysteroid dehydrogenase/Δ5-Δ4-isomerase type 2 (HSD3B2). The inhibitory effect on HSD3B2 and androgen production required cAMP stimulation, suggesting a mechanistic action via the cAMP-stimulated pathway. Specifically, both DA and metformin reduced cAMP-enhanced recruitment of the orphan nuclear receptor Nur77 to the HSD3B2 promoter, coupled with decreased transcription and protein expression of HSD3B2. In a letrozole-induced PCOS rat model, treatment with DA or metformin reduced serum-free testosterone, lowered fasting insulin, and restored estrous cyclicity. In addition, DA treatment lowered serum total testosterone and decreased HSD3B2 protein expression in the adrenals and ovaries. We conclude that DA inhibits androgen biosynthesis via mechanisms resulting in the suppression of HSD3B2 expression, an effect consistently observed both in vitro and in vivo. The efficacy of DA in reversing the endocrine and metabolic abnormalities of the letrozole-induced PCOS rat model are promising, raising the possibility that diets including DA could be beneficial for the management of both hyperandrogenism and insulin resistance in PCOS.

  15. Irinotecan (CPT-11)-induced elevation of bile acids potentiates suppression of IL-10 expression

    International Nuclear Information System (INIS)

    Fang, Zhong-Ze; Zhang, Dunfang; Cao, Yun-Feng; Xie, Cen; Lu, Dan; Sun, Dong-Xue; Tanaka, Naoki; Jiang, Changtao; Chen, Qianming; Chen, Yu; Wang, Haina; Gonzalez, Frank J.

    2016-01-01

    Irinotecan (CPT-11) is a first-line anti-colon cancer drug, however; CPT-11-induced toxicity remains a key factor limiting its clinical application. To search for clues to the mechanism of CPT-11-induced toxicity, metabolomics was applied using ultra-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight mass spectrometry. Intraperitoneal injection of 50 mg/kg of CPT-11 induced loss of body weight, and intestine toxicity. Changes in gallbladder morphology suggested alterations in bile acid metabolism, as revealed at the molecular level by analysis of the liver, bile, and ileum metabolomes between the vehicle-treated control group and the CPT-11-treated group. Analysis of immune cell populations further showed that CPT-11 treatment significantly decreased the IL-10-producing CD4 T cell frequency in intestinal lamina propria lymphocytes, but not in spleen or mesenteric lymph nodes. In vitro cell culture studies showed that the addition of bile acids deoxycholic acid and taurodeoxycholic acid accelerated the CPT-11-induced suppression of IL-10 secretion by activated CD4 + naive T cells isolated from mouse splenocytes. These results showed that CPT-11 treatment caused metabolic changes in the composition of bile acids that altered CPT-11-induced suppression of IL-10 expression. - Highlights: • CPT-11 is an effective anticancer drug, but induced toxicity limits its application in the clinic. • CPT-11 decreased IL-10-producing CD4 T cell frequency in intestinal lamina propria lymphocytes. • CPT-11 altered the composition of bile acid metabolites, notably DCA and TDCA in liver, bile and intestine. • DCA and TDCA potentiated CPT-11-induced suppression of IL-10 secretion by active CD4 + naive T cells.

  16. Irinotecan (CPT-11)-induced elevation of bile acids potentiates suppression of IL-10 expression

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Zhong-Ze [Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD (United States); Department of Toxicology, School of Public Health, Tianjin Medical University, Tianjin (China); Joint Center for Translational Medicine, Dalian Institute of Chemical Physics, Chinese Academy of Sciences and First Affiliated Hospital of Liaoning Medical University, Dalian (China); Zhang, Dunfang [State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu (China); Cao, Yun-Feng [Joint Center for Translational Medicine, Dalian Institute of Chemical Physics, Chinese Academy of Sciences and First Affiliated Hospital of Liaoning Medical University, Dalian (China); Xie, Cen [Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD (United States); Lu, Dan [Department of Immunology, Tianjin Key Laboratory of Cellular and Molecular Immunology, Tianjin Medical University, Tianjin (China); Sun, Dong-Xue; Tanaka, Naoki; Jiang, Changtao [Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD (United States); Chen, Qianming; Chen, Yu [State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu (China); Wang, Haina [School of Pharmaceutical Sciences, Shandong University, Jinan (China); Gonzalez, Frank J., E-mail: gonzalef@mail.nih.gov [Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD (United States)

    2016-01-15

    Irinotecan (CPT-11) is a first-line anti-colon cancer drug, however; CPT-11-induced toxicity remains a key factor limiting its clinical application. To search for clues to the mechanism of CPT-11-induced toxicity, metabolomics was applied using ultra-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight mass spectrometry. Intraperitoneal injection of 50 mg/kg of CPT-11 induced loss of body weight, and intestine toxicity. Changes in gallbladder morphology suggested alterations in bile acid metabolism, as revealed at the molecular level by analysis of the liver, bile, and ileum metabolomes between the vehicle-treated control group and the CPT-11-treated group. Analysis of immune cell populations further showed that CPT-11 treatment significantly decreased the IL-10-producing CD4 T cell frequency in intestinal lamina propria lymphocytes, but not in spleen or mesenteric lymph nodes. In vitro cell culture studies showed that the addition of bile acids deoxycholic acid and taurodeoxycholic acid accelerated the CPT-11-induced suppression of IL-10 secretion by activated CD4{sup +} naive T cells isolated from mouse splenocytes. These results showed that CPT-11 treatment caused metabolic changes in the composition of bile acids that altered CPT-11-induced suppression of IL-10 expression. - Highlights: • CPT-11 is an effective anticancer drug, but induced toxicity limits its application in the clinic. • CPT-11 decreased IL-10-producing CD4 T cell frequency in intestinal lamina propria lymphocytes. • CPT-11 altered the composition of bile acid metabolites, notably DCA and TDCA in liver, bile and intestine. • DCA and TDCA potentiated CPT-11-induced suppression of IL-10 secretion by active CD4{sup +} naive T cells.

  17. UV-induced developmental abnormalities in the filamentous blue-green alga Nostoc linckia

    International Nuclear Information System (INIS)

    Tiwari, D.N.

    1978-01-01

    Germinating spores of Nostoc linckia showed higher resistance against UV-irradiation compared to resting spores, maximal resistance being attained more rapidly in the presence of ammonium nitrogen. UV-irradiated germinating spores on further growth formed colonies consisting of abnormally large and spheroidal cells under non-photoreactivating conditions. The formation and fate of these abnormal cells was followed in detail in a mutant clone (M-5) raised from such a colony. Many of these cells formed spores which on return to growth-conducdive conditions germinated giving rise to different types of germlings from the abnormals which in certain cases proved lethal. The possibility of a transient polyenergidic and/or heterozygous state of these 'giant' cells has been discussed. (author)

  18. Effect of amiloride on experimental acid-induced heartburn in non-erosive reflux disease.

    Science.gov (United States)

    Bulsiewicz, William J; Shaheen, Nicholas J; Hansen, Mark B; Pruitt, Amy; Orlando, Roy C

    2013-07-01

    Acid-sensing ion channels (ASICs) are esophageal nociceptors that are candidates to mediate heartburn in non-erosive reflux disease (NERD). Amiloride, a diuretic, is known to inhibit ASICs. For this reason, we sought a role for ASICs in mediating heartburn by determining whether amiloride could block heartburn in NERD induced by esophageal acid perfusion. In a randomized double-blind crossover study, we perfused the esophagus with amiloride or (saline) placebo prior to eliciting acid-induced heartburn in patients with a history of proton pump inhibitor-responsive NERD. Those with NERD and positive modified Bernstein test were randomized to perfusion with amiloride, 1 mmol/l, or placebo for 5 min, followed by repeat acid-perfusion. Heartburn severity and time to onset was measured and the process repeated following crossover to the alternative agent. 14 subjects completed the study. Amiloride did not reduce the frequency (100 vs. 100 %) or severity of acid-induced heartburn (Mean 2.50 ± SEM 0.33 vs. 2.64 ± 0.45), respectively. There was a trend towards longer time to onset of heartburn for amiloride versus placebo (Mean 2.93 ± SEM 0.3 vs. 2.36 ± 0.29 min, respectively), though these differences did not reach statistical significance (p > 0.05). Amiloride had no significant effect on acid-induced heartburn frequency or severity in NERD, although there was a trend towards prolonged time to onset of symptoms.

  19. Effect of 2,4-dichlorophenoxyacetic acid on rat maternal behavior

    International Nuclear Information System (INIS)

    Stuertz, Nelson; Deis, Ricardo P.; Jahn, Graciela A.; Duffard, Ricardo; Evangelista de Duffard, Ana Maria.

    2008-01-01

    Exposure to 2,4-dichlorophenoxyacetic acid (2,4-D) has several deleterious effects on the nervous system such as alterations in the concentrations of neurotransmitters in the brain and/or behavioral changes, myelination rate, ganglioside pattern [Bortolozzi, A., Duffard, R., Antonelli, M., Evangelista de Duffard, A.M., 2002. Increased sensitivity in dopamine D(2)-like brain receptors from 2,4-dichlorophenoxyacetic acid (2,4-D)-exposed and amphetamine-challenged rats. Ann. N.Y. Acad. Sci. 965, 314-323; Duffard, R., Garcia, G., Rosso, S., Bortolozzi, A., Madariaga, M., DiPaolo, O., Evangelista de Duffard, A.M., 1996. Central nervous system myelin deficit in rats exposed to 2,4-dichlorophenoxyacetic acid throughout lactation. Neurotoxicol. Teratol. 18, 691-696; Evangelista de Duffard, A.M., Orta, C., Duffard, R., 1990. Behavioral changes in rats fed a diet containing 2,4-dichlorophenoxyacetic butyl ester. Neurotoxicology 11, 563-572; Evangelista de Duffard, A.M., Bortolozzi, A., Duffard, R.O., 1995. Altered behavioral responses in 2,4-dichlorophenoxyacetic acid treated and amphetamine challenged rats. Neurotoxicology 16, 479-488; Munro, I.C., Carlo, G.L., Orr, J.C., Sund, K., Wilson, R.M. Kennepohl, E. Lynch, B., Jablinske, M., Lee, N., 1992. A comprehensive, integrated review and evaluation of the scientific evidence relating to the safety of the herbicide 2,4-D. J. Am. Coll. Toxicol. 11, 559-664; Rosso et al., 2000], and its administration to pregnant and lactating rats adversely affects litter growth and milk quality. Since normal growth of the offspring depends on adequate maternal nursing and care, we evaluated the effect of 2,4-D on rat maternal behavior as well as the dam's monoamine levels in arcuate nucleus (AcN) and serum prolactin (PRL) levels. Wistar dams were exposed to the herbicide through the food from post partum day (PPD) 1 to PPD 7. Dams were fed either with a 2,4-D treated diet (15, 25 or 50 mg 2,4-D/kg/day bw) or with a control diet. We observed

  20. Photoreactivation of developmental abnormality in sea urchin embryos induced by UV-irradiated sperm

    International Nuclear Information System (INIS)

    Ejima, Yosuke; Shiroya, Tuguo.

    1980-01-01

    The effects of UV-irradiation of sperm on the embryonic development of sea urchins (H. pulcherrimus, Anthocidaris crassispina, Pseudocentrotus depressus, and C. japonicus) were studied. Eggs inseminated with UV-irradiated sperm developed almost normally into blastulae without arrest of cleavage or hatching, even though they showed some division delay. Morphogenesis was disturbed in and after the gastrula stage, and the formation of normal pluteus larvae was inhibited depending on the UV dose (5 - 30 J/m 2 ) given to the sperm. Morphological abnormalities observed were as follows: inhibition of gastrulation; abnormal delamination and random arrangement of primary mesenchymal cells onto the ectodermal wall; abnormal localization or an excess number of spicules; malformed skeletons. These developmental abnormalities were photoreactivated with high efficiency. Inhibition of pluteus formation to less than 5% by the UV-irradiation with 20 J/m 2 completely recovered under fluorescent light illumination with 10 klux. By treating the eggs with brief illumination at various times after insemination, a stage-dependent change of the photoreactivation (PR) efficiency was found. PR treatment after the insemination up to the onset of the first DNA synthesizing phase was highly effective for the recovery, while the PR efficiency began to decrease during the S phase, becoming zero on and after the end of the phase. In eggs fertilized with UV-irradiated sperm, mitoses were abnormal and shromosomal bridges were formed at the anaphase of the first mitosis. Their frequency increased depending on the UV dose. The mitotic abnormality was also photoreactivated with visible light treatment after fertilization. The change in PR efficiency of the illumination was very similar to that of morphological abnormality. (Author)

  1. Effect of Time-Dependent Pinning Pressure on Abnormal Grain Growth: Phase Field Simulation

    Science.gov (United States)

    Kim, Jeong Min; Min, Guensik; Shim, Jae-Hyeok; Lee, Kyung Jong

    2018-05-01

    The effect of the time-dependent pinning pressure of precipitates on abnormal grain growth has been investigated by multiphase field simulation with a simple precipitation model. The application of constant pinning pressure is problematic because it always induces abnormal grain growth or no grain growth, which is not reasonable considering the real situation. To produce time-dependent pinning pressure, both precipitation kinetics and precipitate coarsening kinetics have been considered with two rates: slow and fast. The results show that abnormal grain growth is suppressed at the slow precipitation rate. At the slow precipitation rate, the overall grain growth caused by the low pinning pressure in the early stage indeed plays a role in preventing abnormal grain growth by reducing the mobility advantage of abnormal grains. In addition, the fast precipitate coarsening rate tends to more quickly transform abnormal grain growth into normal grain growth by inducing the active growth of grains adjacent to the abnormal grains in the early stage. Therefore, the present study demonstrates that the time dependence of the pinning pressure of precipitates is a critical factor that determines the grain growth mode.

  2. Behavioral alterations in autism model induced by valproic acid and translational analysis of circulating microRNA.

    Science.gov (United States)

    Hirsch, Mauro Mozael; Deckmann, Iohanna; Fontes-Dutra, Mellanie; Bauer-Negrini, Guilherme; Della-Flora Nunes, Gustavo; Nunes, Walquiria; Rabelo, Bruna; Riesgo, Rudimar; Margis, Rogerio; Bambini-Junior, Victorio; Gottfried, Carmem

    2018-05-01

    Autism spectrum disorder (ASD) is characterized by difficulties in social interaction, communication and language, and restricted repertoire of activities and interests. The etiology of ASD remains unknown and no clinical markers for diagnosis were identified. Environmental factors, including prenatal exposure to valproic acid (VPA), may contribute to increased risk of developing ASD. MicroRNA (miRNA) are small noncoding RNA that regulate gene expression and are frequently linked to biological processes affected in neurodevelopmental disorders. In this work, we analyzed the effects of resveratrol (an antioxidant and anti-inflammatory molecule) on behavioral alterations of the VPA model of autism, as well as the levels of circulating miRNA. We also evaluated the same set of miRNA in autistic patients. Rats of the VPA model of autism showed reduced total reciprocal social interaction, prevented by prenatal treatment with resveratrol (RSV). The levels of miR134-5p and miR138-5p increased in autistic patients. Interestingly, miR134-5p is also upregulated in animals of the VPA model, which is prevented by RSV. In conclusion, our findings revealed important preventive actions of RSV in the VPA model, ranging from behavior to molecular alterations. Further evaluation of preventive mechanisms of RSV can shed light in important biomarkers and etiological triggers of ASD. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Alcohol-induced structural transitions in the acid-denatured Bacillus licheniformis α-amylase

    Directory of Open Access Journals (Sweden)

    Adyani Azizah Abd Halim

    2017-01-01

    Full Text Available Alcohol-induced structural changes in the acid-denatured Bacillus licheniformis α-amylase (BLA at pH 2.0 were studied by far-ultra violet circular dichroism, intrinsic, three-dimensional and 8-anilino-1-naphthalene sulfonic acid (ANS fluorescence, acrylamide quenching and thermal denaturation. All the alcohols used in this study produced partial refolding in the acid-denatured BLA as evident from the increased mean residue ellipticity at 222 nm, increased intrinsic fluorescence and decreased ANS fluorescence. The order of effectiveness of these alcohols to induce a partially folded state of BLA was found to be: 2,2,2-trifluoroethanol/tert-butanol > 1-propanol/2-propanol > 2-chloroethanol > ethanol > methanol. Three-dimensional fluorescence and acrylamide quenching results obtained in the presence of 5.5 M tert-butanol also suggested formation of a partially folded state in the acid-denatured BLA. However, 5.5 M tert-butanol-induced state of BLA showed a non-cooperative thermal transition. All these results suggested formation of a partially folded state of the acid-denatured BLA in the presence of these alcohols. Furthermore, their effectiveness was found to be guided by their chain length, position of methyl groups and presence of the substituents.

  4. Protective effect of vanillic acid on ovariectomy-induced ...

    African Journals Online (AJOL)

    Background: The need for an anti-osteoporotic agent is in high demand since osteoporosis contributes to high rates of disability or impairment (high osteoporotic fracture), morbidity and mortality. Hence, the present study is designed to evaluate the protective effects of vanillic acid (VA) against bilateral ovariectomy-induced ...

  5. Polyamines mediate abnormal Ca2+ transport and Ca2+-induced cardiac cell injury in the calcium paradox

    International Nuclear Information System (INIS)

    Trout, J.J.; Koenig, H.; Goldstone, A.D.; Lu, C.Y.; Fan, C.C.

    1986-01-01

    Ca 2+ -free perfusion renders heart cells Ca 2+ -sensitive so that readmission of Ca 2+ causes a sudden massive cellular injury attributed to abnormal entry of Ca 2+ into cells (Ca paradox). Hormonal stimulation of Ca 2+ fluxes was earlier shown to be mediated by polyamines (PA). 5 min perfusion of rat heart with Ca 2+ -free medium induce a prompt 40-50% decline in levels of the PA putrescine (PUT), spermidine and spermine and their rate-regulatory synthetic enzyme ornithine decarboxylase (ODC), and readmission of Ca 2+ -containing medium abruptly ( 2+ reperfusion-induced increases in ODC and PA and also prevented increased 45 Ca 2+ uptake and heart injury, manifested by loss of contractility, release of enzymes (CPK, LDH), myoglobin and protein, and E.M. lesions (contracture bands, mitochondrial changes). 1 mM PUT negated DFMO inhibition, repleted heart PA and restored Ca 2+ reperfusion-induced 45 Ca 2+ influx and cell injury. These data indicate that the Ca 2+ -directed depletion-repletion cycle of ODC and PA triggers excessive transsarcolemmal Ca 2+ transport leading to the calcium paradox

  6. Redox/methylation mediated abnormal DNA methylation as regulators of ambient fine particulate matter-induced neurodevelopment related impairment in human neuronal cells

    Science.gov (United States)

    Wei, Hongying; Liang, Fan; Meng, Ge; Nie, Zhiqing; Zhou, Ren; Cheng, Wei; Wu, Xiaomeng; Feng, Yan; Wang, Yan

    2016-09-01

    Fine particulate matter (PM2.5) has been implicated as a risk factor for neurodevelopmental disorders including autism in children. However, the underlying biological mechanism remains unclear. DNA methylation is suggested to be a fundamental mechanism for the neuronal responses to environmental cues. We prepared whole particle of PM2.5 (PM2.5), water-soluble extracts (Pw), organic extracts (Po) and carbon core component (Pc) and characterized their chemical constitutes. We found that PM2.5 induced significant redox imbalance, decreased the levels of intercellular methyl donor S-adenosylmethionine and caused global DNA hypomethylation. Furthermore, PM2.5 exposure triggered gene-specific promoter DNA hypo- or hypermethylation and abnormal mRNA expression of autism candidate genes. PM2.5-induced DNA hypermethylation in promoter regions of synapse related genes were associated with the decreases in their mRNA and protein expression. The inhibiting effects of antioxidative reagents, a methylation-supporting agent and a DNA methyltransferase inhibitor demonstrated the involvement of redox/methylation mechanism in PM2.5-induced abnormal DNA methylation patterns and synaptic protein expression. The biological effects above generally followed a sequence of PM2.5 ≥ Pwo > Po > Pw > Pc. Our results implicated a novel epigenetic mechanism for the neurodevelopmental toxicity of particulate air pollution, and that eliminating the chemical components could mitigate the neurotoxicity of PM2.5.

  7. Periventricular white matter abnormalities and restricted repetitive behavior in autism spectrum disorder

    Directory of Open Access Journals (Sweden)

    Karen Blackmon

    2016-01-01

    Full Text Available Malformations of cortical development are found at higher rates in autism spectrum disorder (ASD than in healthy controls on postmortem neuropathological evaluation but are more variably observed on visual review of in-vivo MRI brain scans. This may be due to the visually elusive nature of many malformations on MRI. Here, we utilize a quantitative approach to determine whether a volumetric measure of heterotopic gray matter in the white matter is elevated in people with ASD, relative to typically developing controls (TDC. Data from a primary sample of 48 children/young adults with ASD and 48 age-, and gender-matched TDCs, selected from the Autism Brain Imaging Data Exchange (ABIDE open-access database, were analyzed to compare groups on (1 blinded review of high-resolution T1-weighted research sequences; and (2 quantitative measurement of white matter hypointensity (WMH volume calculated from the same T1-weighted scans. Groupwise WMH volume comparisons were repeated in an independent, multi-site sample (80 ASD/80 TDC, also selected from ABIDE. Visual review resulted in equivalent proportions of imaging abnormalities in the ASD and TDC group. However, quantitative analysis revealed elevated periventricular and deep subcortical WMH volumes in ASD. This finding was replicated in the independent, multi-site sample. Periventricular WMH volume was not associated with age but was associated with greater restricted repetitive behaviors on both parent-reported and clinician-rated assessment inventories. Thus, findings demonstrate that periventricular WMH volume is elevated in ASD and associated with a higher degree of repetitive behaviors and restricted interests. Although the etiology of focal WMH clusters is unknown, the absence of age effects suggests that they may reflect a static anomaly.

  8. Facilitated beam-walking recovery during acute phase by kynurenic acid treatment in a rat model of photochemically induced thrombosis causing focal cerebral ischemia.

    Science.gov (United States)

    Abo, Masahiro; Yamauchi, Hideki; Suzuki, Masahiko; Sakuma, Mio; Urashima, Mitsuyoshi

    We previously demonstrated the presence of activated areas in the non-injured contralateral sensorimotor cortex in addition to the ipsilateral sensorimotor cortex of the area surrounding a brain infarction, using a rat model of focal photochemically induced thrombosis (PIT) and functional magnetic resonance imaging. Using this model, we next applied gene expression profiling to screen key molecules upregulated in the activated area. RNA was extracted from the ipsilateral and contralateral sensorimotor cortex to the focal brain infarction and from the sham controlled cortex, and hybridized to gene-expression profiling arrays containing 1,322 neurology-related genes. Results showed that glycine receptors were upregulated in both the ipsilateral and contralateral cortex to the focal ischemic lesion. To prove the preclinical significance of upregulated glycine receptors, kynurenic acid, an endogenous antagonist to glycine receptors on neuronal cells, was administered intrathecally. As a result, the kynurenic acid significantly improved behavioral recovery within 10 days from paralysis induced by the focal PIT (p beam walking. These results suggest that intrathecal administration of a glycine receptor antagonist may facilitate behavioral recovery during the acute phase after brain infarction. Copyright (c) 2006 S. Karger AG, Basel.

  9. Acidic microenvironments induce lymphangiogenesis and IL-8 production via TRPV1 activation in human lymphatic endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Nakanishi, Masako, E-mail: n-masako@wakayama-med.ac.jp [Department of Pathology, Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-8509 (Japan); Morita, Yoshihiro [Department of Molecular and Cellular Biochemistry, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871 (Japan); Department of Oral and Maxillofacial Surgery, Seichokai Hannan Municipal Hospital, Hannan, Osaka 599-0202 (Japan); Hata, Kenji [Department of Molecular and Cellular Biochemistry, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871 (Japan); Muragaki, Yasuteru, E-mail: ymuragak@wakayama-med.ac.jp [Department of Pathology, Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-8509 (Japan)

    2016-07-15

    Local acidosis is one of the characteristic features of the cancer microenvironment. Many reports indicate that acidosis accelerates the proliferation and invasiveness of cancer cells. However, whether acidic conditions affect lymphatic metastasis is currently unknown. In the present study, we focused on the effects of acidosis on lymphatic endothelial cells (LECs) to assess the relationship between acidic microenvironments and lymph node metastasis. We demonstrated that normal human LECs express various acid receptors by immunohistochemistry and reverse transcriptase-polymerase chain reaction (PCR). Acidic stimulation with low pH medium induced morphological changes in LECs to a spindle shape, and significantly promoted cellular growth and tube formation. Moreover, real-time PCR revealed that acidic conditions increased the mRNA expression of interleukin (IL)-8. Acidic stimulation increased IL-8 production in LECs, whereas a selective transient receptor potential vanilloid subtype 1 (TRPV1) antagonist, 5′-iodoresiniferatoxin, decreased IL-8 production. IL-8 accelerated the proliferation of LECs, and inhibition of IL-8 diminished tube formation and cell migration. In addition, phosphorylation of nuclear factor (NF)-κB was induced by acidic conditions, and inhibition of NF-κB activation reduced acid-induced IL-8 expression. These results suggest that acidic microenvironments in tumors induce lymphangiogenesis via TRPV1 activation in LECs, which in turn may promote lymphatic metastasis. - Highlights: • Acidity accelerates the growth, migration, and tube formation of LECs. • Acidic condition induces IL-8 expression in LECs. • IL-8 is critical for the changes of LECs. • IL-8 expression is induced via TRPV1 activation.

  10. Gallic acid attenuates pulmonary fibrosis in a mouse model of transverse aortic contraction-induced heart failure.

    Science.gov (United States)

    Jin, Li; Piao, Zhe Hao; Sun, Simei; Liu, Bin; Ryu, Yuhee; Choi, Sin Young; Kim, Gwi Ran; Kim, Hyung-Seok; Kee, Hae Jin; Jeong, Myung Ho

    2017-12-01

    Gallic acid, a trihydroxybenzoic acid found in tea and other plants, attenuates cardiac hypertrophy, fibrosis, and hypertension in animal models. However, the role of gallic acid in heart failure remains unknown. In this study, we show that gallic acid administration prevents heart failure-induced pulmonary fibrosis. Heart failure induced in mice, 8weeks after transverse aortic constriction (TAC) surgery, was confirmed by echocardiography. Treatment for 2weeks with gallic acid but not furosemide prevented cardiac dysfunction in mice. Gallic acid significantly inhibited TAC-induced pathological changes in the lungs, such as increased lung mass, pulmonary fibrosis, and damaged alveolar morphology. It also decreased the expression of fibrosis-related genes, including collagen types I and III, fibronectin, connective tissue growth factor (CTGF), and phosphorylated Smad3. Further, it inhibited the expression of epithelial-mesenchymal transition (EMT)-related genes, such as N-cadherin, vimentin, E-cadherin, SNAI1, and TWIST1. We suggest that gallic acid has therapeutic potential for the treatment of heart failure-induced pulmonary fibrosis. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Abnormal growth of faceted (WC) grains in a (Co) liquid matrix

    International Nuclear Information System (INIS)

    Park, Y.J.; Yoon, D.Y.

    1996-01-01

    If the grains dispersed in a liquid matrix are spherical, their surface atomic structure is expected to be rough (diffuse), and their coarsening has been observed to be controlled by diffusion in the matrix. They do not, furthermore, undergo abnormal growth. On the other hand, in some compound material systems, the grains in liquid matrices are faceted and often show abnormal coarsening behavior. Their faceted surface planes are expected to be singular (atomically flat) and therefore grow by a defect-assisted process and two-dimensional (2-D) nucleation. Contrary to the usual coarsening theories, their growth velocity is not linearly dependent on the driving force arising from the grain size difference. If the growth of the faceted grains occurs by 2-D nucleation, the rate is expected to increase abruptly at a critical supersaturation, as has been observed in crystal growth in melts and solutions. It is proposed that this growth mechanism leads to the abnormal grain coarsening. The 2-D nucleation theory predicts that there is a threshold initial grain size for the abnormal grain growth (AGG), and the propensity for AGG will increase with the heat-treatment temperature. The AGG behavior will also vary with the defects in the grains. These predictions are qualitatively confirmed in the sintered WC-Co alloy prepared from fine (0.85-microm) and coarse (5.48-microm) WC powders and their mixtures. The observed dependence of the AGG behavior on the sintering temperature and the milling of the WC powder is also qualitatively consistent with the predicted behavior

  12. Age- and Gene-Dosage–Dependent Cre-Induced Abnormalities in the Retinal Pigment Epithelium

    Science.gov (United States)

    He, Lizhi; Marioutina, Mariya; Dunaief, Joshua L.; Marneros, Alexander G.

    2015-01-01

    To conditionally inactivate genes in the retinal pigment epithelium (RPE) transgenic mouse strains have been developed, in which Cre recombinase (Cre) expression is driven by an RPE-specific gene promoter. The RPE is a quiescent epithelium, and continuous expression of Cre could affect its function. Here, we tested the hypothesis that continuous postnatal Cre expression in the RPE may lead to cellular abnormalities, which may depend on both age and Cre gene dosage. We therefore examined the eyes of homozygous and heterozygous VMD2-Cre mice at various ages. In VMD2-Cre heterozygous mice variable progressive age-dependent RPE abnormalities were noticed, including attenuation of phalloidin and cytoplasmic active β-catenin staining, reduced cell size, and loss of the typical honeycomb pattern of RPE morphology in those RPE cells that stained for Cre. These morphological RPE abnormalities were not noticed in Cre-negative RPE cells in VMD2-Cre or age-matched control mice. In addition, an abnormal number and morphology of cell nuclei were noticed in a subset of Cre-expressing RPE cells in aged heterozygous VMD2-Cre mice, whereas more severe nuclear abnormalities were observed already in young homozygous VMD2-Cre mice. Thus, continuous postnatal expression of Cre causes abnormalities in the RPE in an age- and Cre gene dosage-dependent manner, which needs to be considered in the interpretation of gene targeting studies in the RPE. PMID:24854863

  13. Substrate-induced ubiquitylation and endocytosis of yeast amino acid permeases.

    Science.gov (United States)

    Ghaddar, Kassem; Merhi, Ahmad; Saliba, Elie; Krammer, Eva-Maria; Prévost, Martine; André, Bruno

    2014-12-01

    Many plasma membrane transporters are downregulated by ubiquitylation, endocytosis, and delivery to the lysosome in response to various stimuli. We report here that two amino acid transporters of Saccharomyces cerevisiae, the general amino acid permease (Gap1) and the arginine-specific permease (Can1), undergo ubiquitin-dependent downregulation in response to their substrates and that this downregulation is not due to intracellular accumulation of the transported amino acids but to transport catalysis itself. Following an approach based on permease structural modeling, mutagenesis, and kinetic parameter analysis, we obtained evidence that substrate-induced endocytosis requires transition of the permease to a conformational state preceding substrate release into the cell. Furthermore, this transient conformation must be stable enough, and thus sufficiently populated, for the permease to undergo efficient downregulation. Additional observations, including the constitutive downregulation of two active Gap1 mutants altered in cytosolic regions, support the model that the substrate-induced conformational transition inducing endocytosis involves remodeling of cytosolic regions of the permeases, thereby promoting their recognition by arrestin-like adaptors of the Rsp5 ubiquitin ligase. Similar mechanisms might control many other plasma membrane transporters according to the external concentrations of their substrates. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  14. Resveratrol Prevents Cellular and Behavioral Sensory Alterations in the Animal Model of Autism Induced by Valproic Acid

    Directory of Open Access Journals (Sweden)

    Mellanie Fontes-Dutra

    2018-05-01

    Full Text Available Autism spectrum disorder (ASD is characterized by impairments in both social communication and interaction and repetitive or stereotyped behaviors. Although its etiology remains unknown, genetic and environmental risk factors have been associated with this disorder, including the exposure to valproic acid (VPA during pregnancy. Resveratrol (RSV is an anti-inflammatory and antioxidant molecule known to prevent social impairments in the VPA animal model of autism. This study aimed to analyze the effects of prenatal exposure to VPA, as well as possible preventive effects of RSV, on sensory behavior, the localization of GABAergic parvalbumin (PV+ neurons in sensory brain regions and the expression of proteins of excitatory and inhibitory synapses. Pregnant rats were treated daily with RSV (3.6 mg/kg from E6.5 to E18.5 and injected with VPA (600 mg/kg in the E12.5. Male pups were analyzed in Nest Seeking (NS behavior and in whisker nuisance task (WNT. At P30, the tissues were removed and analyzed by immunofluorescence and western blotting. Our data showed for the first time an altered localization of PV+-neurons in primary sensory cortex and amygdala. We also showed a reduced level of gephyrin in the primary somatosensory area (PSSA of VPA animals. The treatment with RSV prevented all the aforementioned alterations triggered by VPA. Our data shed light on the relevance of sensory component in ASD and highlights the interplay between RSV and VPA animal model as an important tool to investigate the pathophysiology of ASD.

  15. Prenatal ethanol exposure-induced adrenal developmental abnormality of male offspring rats and its possible intrauterine programming mechanisms.

    Science.gov (United States)

    Huang, Hegui; He, Zheng; Zhu, Chunyan; Liu, Lian; Kou, Hao; Shen, Lang; Wang, Hui

    2015-10-01

    Fetal adrenal developmental status is the major determinant of fetal tissue maturation and offspring growth. We have previously proposed that prenatal ethanol exposure (PEE) suppresses fetal adrenal corticosterone (CORT) synthesis. Here, we focused on PEE-induced adrenal developmental abnormalities of male offspring rats before and after birth, and aimed to explore its intrauterine programming mechanisms. A rat model of intrauterine growth retardation (IUGR) was established by PEE (4g/kg·d). In PEE fetus, increased serum CORT concentration and decreased insulin-like growth factor 1 (IGF1) concentration, with lower bodyweight and structural abnormalities as well as a decreased Ki67 expression (proliferative marker), were observed in the male fetal adrenal cortex. Adrenal glucocorticoid (GC)-metabolic activation system was enhanced while gene expression of IGF1 signaling pathway with steroidogenic acute regulatory protein (StAR), 3β-hydroxysteroid dehydrogenase (3β-HSD) was decreased. Furthermore, in the male adult offspring of PEE, serum CORT level was decreased but IGF1 was increased with partial catch-up growth, and Ki67 expression demonstrated no obvious change. Adrenal GC-metabolic activation system was inhibited, while IGF1 signaling pathway and 3β-HSD was enhanced with the steroidogenic factor 1 (SF1), and StAR was down-regulated in the adult adrenal. Based on these findings, we propose a "two-programming" mechanism for PEE-induced adrenal developmental toxicity: "the first programming" is a lower functional programming of adrenal steroidogenesis, and "the second programming" is GC-metabolic activation system-related GC-IGF1 axis programming. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Exposure of spermatozoa to dibutyl phthalate induces abnormal embryonic development in a marine invertebrate Galeolaria caespitosa (Polychaeta: Serpulidae).

    Science.gov (United States)

    Lu, Yonggang; Lin, Minjie; Aitken, Robert John

    2017-10-01

    In this study, we have investigated the impact of dibutyl phthalate (DBP) on early embryogenesis in a sessile marine invertebrate, Galeolaria caespitosa. DBP was found to induce sperm dysfunction as well as impaired and defective embryogenesis characterised by a particular pattern of abnormality. Thus, after the first cleavage, one blastomere in these abnormal embryos was able to carry out further mitoses, while the other arrested. Analysis of microtubules, chromosomes and actin filaments demonstrated that the mitotic spindles in the abnormal embryos were irregularly bent, shortened and unable to anchor to the cortex, resulting in the defective segregation of chromosomes. Within the non-dividing blastomeres, karyokinesis was found to continue at a slow pace as indicated by the presence of multiple sets of abnormal mitotic spindles. However, cytokinesis had been disrupted in these arrested cells due to a failure to assemble the contractile actin ring, as a result of which one pole of the embryos remained as one large, undivided cell. DBP was found to suppress the activity of superoxide dismutase in spermatozoa and, in association with this change, DBP-treated cells experienced oxidative stress as indicated by the presence of lipid aldehydes, such as 4-hydroxynonenal (4-HNE) in the sperm acrosome and neck. Adduction of lipid aldehydes at the level of the acrosome would be expected to impede the acrosome reaction and account for the significant decrease in fertilisation rates. 4-HNE generated as a consequence of lipid peroxidation in the sperm neck resulted in alkylation of the sperm centrioles. Such paternally damaged centrioles were inherited by the embryos and disrupted cytoskeletal protein organisation during early cleavage, generating the observed abnormalities in embryonic development. This research emphasises the vulnerability of spermatozoa to oxidative damage and highlights novel potential mechanisms for reproductive toxicity involving the alkylation of

  17. Chromium-induced membrane damage: protective role of ascorbic acid.

    Science.gov (United States)

    Dey, S K; Nayak, P; Roy, S

    2001-07-01

    Importance of chromium as environmental toxicant is largely due to impact on the body to produce cellular toxicity. The impact of chromium and their supplementation with ascorbic acid was studied on plasma membrane of liver and kidney in male Wistar rats (80-100 g body weight). It has been observed that the intoxication with chromium (i.p.) at the dose of 0.8 mg/100 g body weight per day for a period of 28 days causes significant increase in the level of cholesterol and decrease in the level of phospholipid of both liver and kidney. The alkaline phosphatase, total ATPase and Na(+)-K(+)-ATPase activities were significantly decreased in both liver and kidney after chromium treatment, except total ATPase activity of kidney. It is suggested that chromium exposure at the present dose and duration induce for the alterations of structure and function of both liver and kidney plasma membrane. Ascorbic acid (i.p. at the dose of 0.5 mg/100 g body weight per day for period of 28 days) supplementation can reduce these structural changes in the plasma membrane of liver and kidney. But the functional changes can not be completely replenished by the ascorbic acid supplementation in response to chromium exposure. So it is also suggested that ascorbic acid (nutritional antioxidant) is useful free radical scavenger to restrain the chromium-induced membrane damage.

  18. Castor oil induces laxation and uterus contraction via ricinoleic acid activating prostaglandin EP3 receptors.

    Science.gov (United States)

    Tunaru, Sorin; Althoff, Till F; Nüsing, Rolf M; Diener, Martin; Offermanns, Stefan

    2012-06-05

    Castor oil is one of the oldest drugs. When given orally, it has a laxative effect and induces labor in pregnant females. The effects of castor oil are mediated by ricinoleic acid, a hydroxylated fatty acid released from castor oil by intestinal lipases. Despite the wide-spread use of castor oil in conventional and folk medicine, the molecular mechanism by which ricinoleic acid acts remains unknown. Here we show that the EP(3) prostanoid receptor is specifically activated by ricinoleic acid and that it mediates the pharmacological effects of castor oil. In mice lacking EP(3) receptors, the laxative effect and the uterus contraction induced via ricinoleic acid are absent. Although a conditional deletion of the EP(3) receptor gene in intestinal epithelial cells did not affect castor oil-induced diarrhea, mice lacking EP(3) receptors only in smooth-muscle cells were unresponsive to this drug. Thus, the castor oil metabolite ricinoleic acid activates intestinal and uterine smooth-muscle cells via EP(3) prostanoid receptors. These findings identify the cellular and molecular mechanism underlying the pharmacological effects of castor oil and indicate a role of the EP(3) receptor as a target to induce laxative effects.

  19. Plasmodium falciparum-Derived Uric Acid Precipitates Induce Maturation of Dendritic Cells

    Science.gov (United States)

    van de Hoef, Diana L.; Coppens, Isabelle; Holowka, Thomas; Ben Mamoun, Choukri; Branch, OraLee; Rodriguez, Ana

    2013-01-01

    Malaria is characterized by cyclical fevers and high levels of inflammation, and while an early inflammatory response contributes to parasite clearance, excessive and persistent inflammation can lead to severe forms of the disease. Here, we show that Plasmodium falciparum-infected erythrocytes contain uric acid precipitates in the cytoplasm of the parasitophorous vacuole, which are released when erythrocytes rupture. Uric acid precipitates are highly inflammatory molecules that are considered a danger signal for innate immunity and are the causative agent in gout. We determined that P. falciparum-derived uric acid precipitates induce maturation of human dendritic cells, increasing the expression of cell surface co-stimulatory molecules such as CD80 and CD86, while decreasing human leukocyte antigen-DR expression. In accordance with this, uric acid accounts for a significant proportion of the total stimulatory activity induced by parasite-infected erythrocytes. Moreover, the identification of uric acid precipitates in P. falciparum- and P. vivax-infected erythrocytes obtained directly from malaria patients underscores the in vivo and clinical relevance of our findings. Altogether, our data implicate uric acid precipitates as a potentially important contributor to the innate immune response to Plasmodium infection and may provide a novel target for adjunct therapies. PMID:23405174

  20. Characteristics of weak base-induced vacuoles formed around individual acidic organelles.

    Science.gov (United States)

    Hiruma, Hiromi; Kawakami, Tadashi

    2011-01-01

    We have previously found that the weak base 4-aminopyridine induces Brownian motion of acidic organelles around which vacuoles are formed, causing organelle traffic disorder in neurons. Our present study investigated the characteristics of vacuoles induced by weak bases (NH(4)Cl, aminopyridines, and chloroquine) using mouse cells. Individual vacuoles included acidic organelles identified by fluorescent protein expression. Mitochondria and actin filaments were extruded outside the vacuoles, composing the vacuole rim. Staining with amine-reactive fluorescence showed no protein/amino acid content in vacuoles. Thus, serous vacuolar contents are probably partitioned by viscous cytosol, other organelles, and cytoskeletons, but not membrane. The weak base (chloroquine) was immunochemically detected in intravacuolar organelles, but not in vacuoles. Early vacuolization was reversible, but long-term vacuolization caused cell death. The vacuolization and cell death were blocked by the vacuolar H(+)-ATPase inhibitor and Cl--free medium. Staining with LysoTracker or LysoSensor indicated that intravacuolar organelles were strongly acidic and vacuoles were slightly acidic. This suggests that vacuolization is caused by accumulation of weak base and H(+) in acidic organelles, driven by vacuolar H(+)-ATPase associated with Cl(-) entering, and probably by subsequent extrusion of H(+) and water from organelles to the surrounding cytoplasm.

  1. Acid tolerance in Salmonella typhimurium induced by culturing in the presence of organic acids at different growth temperatures.

    Science.gov (United States)

    Alvarez-Ordóñez, Avelino; Fernández, Ana; Bernardo, Ana; López, Mercedes

    2010-02-01

    The influence of growth temperature and acidification of the culture medium up to pH 4.25 with acetic, citric, lactic and hydrochloric acids on the growth and subsequent acid resistance at pH 3.0 of Salmonella typhimurium CECT 443 was studied. The minimum pH value which allowed for S. typhimurium growth within the temperature range of 25-37 degrees C was 4.5 when the pH was reduced using citric and hydrochloric acids, and 5.4 and 6.4 when lactic acid and acetic acid were used, respectively. At high (45 degrees C) or low (10 degrees C) temperatures, the growth pH boundary was increased about 1 pH unit. The growth temperature markedly modified the acid resistance of the resulting cells. In all cases, D-values were lower for cells grown at 10 degrees C and significantly increased with increasing growth temperature up to 37 degrees C, at which D-values obtained were up to 10 times higher. Cells grown at 45 degrees C showed D-values similar to those found for cells grown at 25 degrees C. The growth of cells in acidified media, regardless of the pH value, caused an increase in their acid resistance at the four incubation temperatures, although the magnitude of the Acid Tolerance Response (ATR) observed depended on the growth temperature. Acid adapted cultures at 10 degrees C showed D-values ranging from 5.75 to 6.91 min, which turned out to be about 2 times higher than those corresponding to non-acid adapted cultures, while higher temperatures induced an increase in D-values of at least 3.5 times. Another finding was that, while at 10 and 45 degrees C no significant differences among the effect of the different acids tested in inducing an ATR were observed, when cells were grown at 25 and 37 degrees C citric acid generally turned out to be the acid which induced the strongest ATR. Results obtained in this study show that growth temperature is an important factor affecting S. typhimurium acid resistance and could contribute to find new strategies based on intelligent

  2. The role of hepatocyte nuclear factor 4-alpha in perfluorooctanoic acid- and perfluorooctanesulfonic acid-induced hepatocellular dysfunction

    Energy Technology Data Exchange (ETDEWEB)

    Beggs, Kevin M., E-mail: kbeggs2@kumc.edu [Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd, 4052 HLSIC, Kansas City, KS 66160 (United States); McGreal, Steven R., E-mail: smcgreal@kumc.edu [Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd, 4052 HLSIC, Kansas City, KS 66160 (United States); McCarthy, Alex [Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd, 4052 HLSIC, Kansas City, KS 66160 (United States); Gunewardena, Sumedha, E-mail: sgunewardena@kumc.edu [Department of Molecular and Integrative Physiology, University of Kansas Medical Center, 3901 Rainbow Blvd, 2027 HLSIC, Kansas City, KS 66160 (United States); Lampe, Jed N., E-mail: jlampe@kumc.edu [Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd, 4052 HLSIC, Kansas City, KS 66160 (United States); Lau, Christoper, E-mail: lau.christopher@epa.gov [Developmental Toxicology Branch, Toxicity Assessment Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC 27711 (United States); Apte, Udayan, E-mail: uapte@kumc.edu [Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd, 4052 HLSIC, Kansas City, KS 66160 (United States)

    2016-08-01

    Perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS), chemicals present in a multitude of consumer products, are persistent organic pollutants. Both compounds induce hepatotoxic effects in rodents, including steatosis, hepatomegaly and liver cancer. The mechanisms of PFOA- and PFOS-induced hepatic dysfunction are not completely understood. We present evidence that PFOA and PFOS induce their hepatic effects via targeting hepatocyte nuclear factor 4-alpha (HNF4α). Human hepatocytes treated with PFOA and PFOS at a concentration relevant to occupational exposure caused a decrease in HNF4α protein without affecting HNF4α mRNA or causing cell death. RNA sequencing analysis combined with Ingenuity Pathway Analysis of global gene expression changes in human hepatocytes treated with PFOA or PFOS indicated alterations in the expression of genes involved in lipid metabolism and tumorigenesis, several of which are regulated by HNF4α. Further investigation of specific HNF4α target gene expression revealed that PFOA and PFOS could promote cellular dedifferentiation and increase cell proliferation by down regulating positive targets (differentiation genes such as CYP7A1) and inducing negative targets of HNF4α (pro-mitogenic genes such as CCND1). Furthermore, in silico docking simulations indicated that PFOA and PFOS could directly interact with HNF4α in a similar manner to endogenous fatty acids. Collectively, these results highlight HNF4α degradation as novel mechanism of PFOA and PFOS-mediated steatosis and tumorigenesis in human livers. - Highlights: • PFOA and PFOS cause decreased HNF4α protein expression in human hepatocytes. • PFOA and PFOS promote changes associated with lipid metabolism and carcinogenesis. • PFOA and PFOS induced changes in gene expression associated with cellular dedifferentiation. • PFOA and PFOS induce expression of Nanog, a transcription factor involved in stem cell development.

  3. Myocardial fatty acid utilisation during exercise induced ischemia in patients with coronary artery disease

    Energy Technology Data Exchange (ETDEWEB)

    Virtanen, K.S. [First Dept. of Medicine, Helsinki Univ. Central Hospital (Finland); Nikkinen, P. [Dept. of Clinical Chemistry, Helsinki Univ. Central Hospital (Finland); Lindroth, L. [Medix Diacor Lab. Services, Ltd., Espoo (Finland); Kuikka, J.T. [Dept. of Clinical Physiology and Nuclear Medicine, Kuopio Univ. Hospital, Univ. of Kuopio and Niuvanniemi Hospital, Kuopio (Finland)

    2002-06-01

    Aim: Reversible or irreversible myocardial damage due to ischemia correlates with altered membrane functions of the cells. To compare myocardial free fatty acid (FFA) metabolism and flow during exercise induced ischemia we studied ten patients with coronary artery disease but without previous myocardial infarction. Methods: A series of post-exercise single-photon emission computed tomography (SPECT) measurements was performed after injection of {sup 123}I labelled heptadecanoic acid (HDA). Myocardial perfusion was estimated from the separately performed exercise-redistribution thallium study. Fatty acid metabolic rate, thallium uptake and washout were calculated for anterior, lateral, posterior and septal segments. Results: The more reduced post-exercise FFA metabolic rate (-63{+-}18%, mean {+-}1 SD) compared to flow (-36{+-}16%) was related to the severity of myocardial ischemia and wall motion abnormalities. Conclusion: In this small group of patients, the reduced post-exercise FFA metabolic rate tentatively suggests a parsimonious workload of the exercising myocardium by reducing oxygen consumption in patients with coronary artery disease. (orig.) [German] Ziel: Bei reversibler und irreversibler Myokardschaedigung infolge Ischaemie sind die Membranfunktionen der Zellen veraendert. Um myokardialen Metabolismus freier Fettsaeuren (FFA) und Durchblutung bei belastungsinduzierter Ischaemie zu vergleichen, untersuchten wir zehn Patienten mit Koronarinsuffizienz, aber ohne vorangegangenen Myokardinfarkt. Methoden: Nach Injektion von {sup 123}I-markierter Heptadekansaeure (HDA) wurde eine Serie von SPECT-Messungen nach Belastung aufgenommen. Die myokardiale Perfusion wurde abgeschaetzt durch die separat durchgefuehrte Thalliumverteilungsstudie nach Belastung. Fettsaeurestoffwechsel, Thallium-Uptake und -Washout wurden fuer die anterioren, posterioren und septalen Segmente berechnet. Ergebnisse: Eine eingeschraenktere FFA-Stoffwechselrate (-63{+-}18%, {+-}1 SD

  4. Antagonist Effects of Veratric Acid against UVB-Induced Cell Damages

    OpenAIRE

    Deokhoon Park; Jong-Kyung Youm; Kyung-Eun Lee; Seungbeom Kim; Eunsun Jung; Seoung Woo Shin

    2013-01-01

    Ultraviolet (UV) radiation induces DNA damage, oxidative stress, and inflammatory processes in human epidermis, resulting in inflammation, photoaging, and photocarcinogenesis. Adequate protection of skin against the harmful effect of UV irradiation is essential. In recent years naturally occurring herbal compounds such as phenolic acids, flavonoids, and high molecular weight polyphenols have gained considerable attention as beneficial protective agents. The simple phenolic veratric acid (VA, ...

  5. Antinociceptive Effect of Tephrosia sinapou Extract in the Acetic Acid, Phenyl-p-benzoquinone, Formalin, and Complete Freund’s Adjuvant Models of Overt Pain-Like Behavior in Mice

    Directory of Open Access Journals (Sweden)

    Renata M. Martinez

    2016-01-01

    Full Text Available Tephrosia toxicaria, which is currently known as Tephrosia sinapou (Buc’hoz A. Chev. (Fabaceae, is a source of compounds such as flavonoids. T. sinapou has been used in Amazonian countries traditional medicine to alleviate pain and inflammation. The purpose of this study was to evaluate the analgesic effects of T. sinapou ethyl acetate extract in overt pain-like behavior models in mice by using writhing response and flinching/licking tests. We demonstrated in this study that T. sinapou extract inhibited, in a dose (1–100 mg/kg dependent manner, acetic acid- and phenyl-p-benzoquinone- (PBQ- induced writhing response. Furthermore, it was active via intraperitoneal, subcutaneous, and peroral routes of administration. T. sinapou extract also inhibited formalin- and complete Freund’s adjuvant- (CFA- induced flinching/licking at 100 mg/kg dose. In conclusion, these findings demonstrate that T. sinapou ethyl acetate extract reduces inflammatory pain in the acetic acid, PBQ, formalin, and CFA models of overt pain-like behavior. Therefore, the potential of analgesic activity of T. sinapou indicates that it deserves further investigation.

  6. α-Lipoic acid improves abnormal behavior by mitigation of oxidative stress, inflammation, ferroptosis, and tauopathy in P301S Tau transgenic mice

    Directory of Open Access Journals (Sweden)

    Yan-Hui Zhang

    2018-04-01

    Full Text Available Alzheimer's disease (AD is the most common neurodegenerative disease and is characterized by neurofibrillary tangles (NFTs composed of Tau protein. α-Lipoic acid (LA has been found to stabilize the cognitive function of AD patients, and animal study findings have confirmed its anti-amyloidogenic properties. However, the underlying mechanisms remain unclear, especially with respect to the ability of LA to control Tau pathology and neuronal damage. Here, we found that LA supplementation effectively inhibited the hyperphosphorylation of Tau at several AD-related sites, accompanied by reduced cognitive decline in P301S Tau transgenic mice. Furthermore, we found that LA not only inhibited the activity of calpain1, which has been associated with tauopathy development and neurodegeneration via modulating the activity of several kinases, but also significantly decreased the calcium content of brain tissue in LA-treated mice. Next, we screened for various modes of neural cell death in the brain tissue of LA-treated mice. We found that caspase-dependent apoptosis was potently inhibited, whereas autophagy did not show significant changes after LA supplementation. Interestingly, Tau-induced iron overload, lipid peroxidation, and inflammation, which are involved in ferroptosis, were significantly blocked by LA administration. These results provide compelling evidence that LA plays a role in inhibiting Tau hyperphosphorylation and neuronal loss, including ferroptosis, through several pathways, suggesting that LA may be a potential therapy for tauopathies. Keywords: Tau, α-Lipoic acid, Oxidative stress, Ferroptosis, Alzheimer's disease

  7. Abscisic acid negatively regulates elicitor-induced synthesis of capsidiol in wild tobacco.

    Science.gov (United States)

    Mialoundama, Alexis Samba; Heintz, Dimitri; Debayle, Delphine; Rahier, Alain; Camara, Bilal; Bouvier, Florence

    2009-07-01

    In the Solanaceae, biotic and abiotic elicitors induce de novo synthesis of sesquiterpenoid stress metabolites known as phytoalexins. Because plant hormones play critical roles in the induction of defense-responsive genes, we have explored the effect of abscisic acid (ABA) on the synthesis of capsidiol, the major wild tobacco (Nicotiana plumbaginifolia) sesquiterpenoid phytoalexin, using wild-type plants versus nonallelic mutants Npaba2 and Npaba1 that are deficient in ABA synthesis. Npaba2 and Npaba1 mutants exhibited a 2-fold higher synthesis of capsidiol than wild-type plants when elicited with either cellulase or arachidonic acid or when infected by Botrytis cinerea. The same trend was observed for the expression of the capsidiol biosynthetic genes 5-epi-aristolochene synthase and 5-epi-aristolochene hydroxylase. Treatment of wild-type plants with fluridone, an inhibitor of the upstream ABA pathway, recapitulated the behavior of Npaba2 and Npaba1 mutants, while the application of exogenous ABA reversed the enhanced synthesis of capsidiol in Npaba2 and Npaba1 mutants. Concomitant with the production of capsidiol, we observed the induction of ABA 8'-hydroxylase in elicited plants. In wild-type plants, the induction of ABA 8'-hydroxylase coincided with a decrease in ABA content and with the accumulation of ABA catabolic products such as phaseic acid and dihydrophaseic acid, suggesting a negative regulation exerted by ABA on capsidiol synthesis. Collectively, our data indicate that ABA is not required per se for the induction of capsidiol synthesis but is essentially implicated in a stress-response checkpoint to fine-tune the amplification of capsidiol synthesis in challenged plants.

  8. 9-Cis retinoic acid protects against methamphetamine-induced neurotoxicity in nigrostriatal dopamine neurons.

    Science.gov (United States)

    Reiner, David J; Yu, Seong-Jin; Shen, Hui; He, Yi; Bae, Eunkyung; Wang, Yun

    2014-04-01

    Methamphetamine (MA) is a drug of abuse as well as a dopaminergic neurotoxin. 9-Cis retinoic acid (9cRA), a biologically active derivative of vitamin A, has protective effects against damage caused by H(2)O(2) and oxygen-glucose deprivation in vitro as well as infarction and terminal deoxynucleotidyl transferase-mediated dNTP nick-end labeling (TUNEL) labeling in ischemic brain. The purpose of this study was to examine if there was a protective role for 9cRA against MA toxicity in nigrostriatal dopaminergic neurons. Primary dopaminergic neurons, prepared from rat embryonic ventral mesencephalic tissue, were treated with MA. High doses of MA decreased tyrosine hydroxylase (TH) immunoreactivity while increasing TUNEL labeling. These toxicities were significantly reduced by 9cRA. 9cRA also inhibited the export of Nur77 from nucleus to cytosol, a response that activates apoptosis. The interaction of 9cRA and MA in vivo was next examined in adult rats. 9cRA was delivered intracerebroventricularly; MA was given (5 mg/kg, 4×) one day later. Locomotor behavior was measured 2 days after surgery for a period of 48 h. High doses of MA significantly reduced locomotor activity and TH immunoreactivity in striatum. Administration of 9cRA antagonized these changes. Previous studies have shown that 9cRA can induce bone morphogenetic protein-7 (BMP7) expression and that administration of BMP7 attenuates MA toxicity. We demonstrated that MA treatment significantly reduced BMP7 mRNA expression in nigra. Noggin (a BMP antagonist) antagonized 9cRA-induced behavioral recovery and 9cRA-induced normalization of striatal TH levels. Our data suggest that 9cRA has a protective effect against MA-mediated neurodegeneration in dopaminergic neurons via upregulation of BMP.

  9. Glycation inhibits trichloroacetic acid (TCA)-induced whey protein precipitation

    Science.gov (United States)

    Four different WPI saccharide conjugates were successfully prepared to test whether glycation could inhibit WPI precipitation induced by trichloroacetic acid (TCA). Conjugates molecular weights after glycation were analyzed with SDS-PAGE. No significant secondary structure change due to glycation wa...

  10. Effect of essential fatty acids on glucose-induced cytotoxicity to retinal vascular endothelial cells

    Directory of Open Access Journals (Sweden)

    Shen Junhui

    2012-07-01

    Full Text Available Abstract Background Diabetic retinopathy is a major complication of dysregulated hyperglycemia. Retinal vascular endothelial cell dysfunction is an early event in the pathogenesis of diabetic retinopathy. Studies showed that hyperglycemia-induced excess proliferation of retinal vascular endothelial cells can be abrogated by docosahexaenoic acid (DHA, 22:6 ω-3 and eicosapentaenoic acid (EPA, 20:5 ω-3. The influence of dietary omega-3 PUFA on brain zinc metabolism has been previously implied. Zn2+ is essential for the activity of Δ6 desaturase as a co-factor that, in turn, converts essential fatty acids to their respective long chain metabolites. Whether essential fatty acids (EFAs α-linolenic acid and linoleic acid have similar beneficial effect remains poorly understood. Methods RF/6A cells were treated with different concentrations of high glucose, α-linolenic acid and linoleic acid and Zn2+. The alterations in mitochondrial succinate dehydrogenase enzyme activity, cell membrane fluidity, reactive oxygen species generation, SOD enzyme and vascular endothelial growth factor (VEGF secretion were evaluated. Results Studies showed that hyperglycemia-induced excess proliferation of retinal vascular endothelial cells can be abrogated by both linoleic acid (LA and α-linolenic acid (ALA, while the saturated fatty acid, palmitic acid was ineffective. A dose–response study with ALA showed that the activity of the mitochondrial succinate dehydrogenase enzyme was suppressed at all concentrations of glucose tested to a significant degree. High glucose enhanced fluorescence polarization and microviscocity reverted to normal by treatment with Zn2+ and ALA. ALA was more potent that Zn2+. Increased level of high glucose caused slightly increased ROS generation that correlated with corresponding decrease in SOD activity. ALA suppressed ROS generation to a significant degree in a dose dependent fashion and raised SOD activity significantly. ALA suppressed

  11. Behavior of 15N-labelled amino acids in germinated corn

    International Nuclear Information System (INIS)

    Samukawa, Kisaburo; Yamaguchi, Masuro

    1979-01-01

    By investigating the rise and fall of 15 N-labelled amino acids in germinated corns, the behavior of amino radicals in free amino acids, the influence of the hydrolysis products of stored proteins on free amino acids and the change from heterotrophy to autotrophy of seeds were clarified. The amount of amino acid production depending on external nitrogen was very small in the early period of germination. 15 N incorporation into proline was not observed in the early period of germination, which suggested that the proline may be nitrogen-storing source. Most of the amino-state nitrogen of asparagine accumulated at the time of germination was internal nitrogen, and this fact suggested that aspartic acid serve as the acceptor of ammonia produced in the early stage of germination. 15 N content increased significantly on 9 th day after germination, and decreased on 12 th day. These facts prove that there are always active decomposition and production of protein in plant body. (Kobatake, H.)

  12. Evidence connecting old, new and neglected glucose-lowering drugs to bile acid-induced GLP-1 secretion

    DEFF Research Database (Denmark)

    Kårhus, Martin L; Brønden, Andreas; Sonne, David P

    2017-01-01

    Bile acids are amphipathic water-soluble steroid-based molecules best known for their important lipid-solubilizing role in the assimilation of fat. Recently, bile acids have emerged as metabolic integrators with glucose-lowering potential. Among a variety of gluco-metabolic effects, bile acids have...... current evidence connecting established glucose-lowering drugs to bile acid-induced GLP-1 secretion and discusses whether bile acid-induced GLP-1 secretion may constitute a new basis for understanding how metformin, inhibitors of the apical sodium-dependent bile acids transporter, and bile acid...... sequestrants - old, new and neglected glucose-lowering drugs - improve glucose metabolism....

  13. Biocompatibility of hyaluronic acid hydrogels prepared by porous hyaluronic acid microbeads

    Science.gov (United States)

    Kim, Jin-Tae; Lee, Deuk Yong; Kim, Tae-Hyung; Song, Yo-Seung; Cho, Nam-Ihn

    2014-05-01

    Hyaluronic acid hydrogels (HAHs) were synthesized by immersing HA microbeads crosslinked with divinyl sulfone in a phosphate buffered saline solution to evaluate the biocompatibility of the gels by means of cytotoxicity, genotoxicity ( in vitro chromosome aberration test, reverse mutation assay, and in vivo micronucleus test), skin sensitization, and intradermal reactivity. The HAHs induced no cytotoxicity or genotoxicity. In guinea pigs treated with grafts and prostheses, no animals died and there were no abnormal clinical signs. The sensitization scores were zero in all guinea pigs after 24 h and 48 h challenge, suggesting that the HAHs had no contact allergic sensitization in the guinea pig maximization test. No abnormal signs were found in New Zealand White rabbits during the 72 h observation period after the injection. There was no difference between the HAHs and negative control mean scores because skin reaction such as erythema or oedema was not observed after injection. Experimental results suggest that the HAHs would be suitable for soft tissue augmentation due to the absence of cytotoxicity, genotoxicity, skin sensitization, and intradermal reactivity.

  14. Obestatin Accelerates the Healing of Acetic Acid-Induced Colitis in Rats

    Directory of Open Access Journals (Sweden)

    Aleksandra Matuszyk

    2016-01-01

    Full Text Available Obestatin, a 23-amino acid peptide derived from the proghrelin, has been shown to exhibit some protective and therapeutic effects in the gut. The aim of present study was to determine the effect of obestatin administration on the course of acetic acid-induced colitis in rats. Materials and Methods. Studies have been performed on male Wistar rats. Colitis was induced by a rectal enema with 3.5% acetic acid solution. Obestatin was administered intraperitoneally twice a day at a dose of 8 nmol/kg, starting 24 h after the induction of colitis. Seven or 14 days after the induction of colitis, the healing rate of the colon was evaluated. Results. Treatment with obestatin after induction of colitis accelerated the healing of colonic wall damage and this effect was associated with a decrease in the colitis-evoked increase in mucosal activity of myeloperoxidase and content of interleukin-1β. Moreover, obestatin administration significantly reversed the colitis-evoked decrease in mucosal blood flow and DNA synthesis. Conclusion. Administration of exogenous obestatin exhibits therapeutic effects in the course of acetic acid-induced colitis and this effect is related, at least in part, to the obestatin-evoked anti-inflammatory effect, an improvement of local blood flow, and an increase in cell proliferation in colonic mucosa.

  15. Piperine Enhances the Protective Effect of Curcumin Against 3-NP Induced Neurotoxicity: Possible Neurotransmitters Modulation Mechanism.

    Science.gov (United States)

    Singh, Shamsher; Jamwal, Sumit; Kumar, Puneet

    2015-08-01

    3-Nitropropionic acid (3-NP) is a fungal toxin well established model used for inducing symptoms of Huntington's disease. Curcumin a natural polyphenol has been reported to possess neuroprotective activity by decreasing oxidative stress. The aim of present study was to investigate neuroprotective effect of curcumin with piperine (bioavailability enhancer) against 3-NP induced neurotoxicity in rats. Administration of 3-NP (10 mg/kg for 21 days) showed loss in body weight, declined motor function and changes in biochemical (LPO, nitrite and glutathione level), neuroinflammatory (TNF-α and IL-1β level) and neurochemical (DA, NE, 5-HT, DOPAC, 5-HIAA and HVA). Chronic treatment with curcumin (25 and 50 mg/kg) and curcumin (25 mg/kg) with piperine (2.5 mg/kg) once daily for 21 days prior to 3-NP administration. All the behavioral parameters were studied at 1st, 7th, 14th, and 21st day. On 22nd day all the animals was scarified and striatum was separated. Curcumin alone and combination (25 mg/kg) with piperine (2.5 mg/kg) showed beneficial effect against 3-NP induced motor deficit, biochemical and neurochemical abnormalities in rats. Piperine (2.5 mg/kg) with curcumin (25 mg/kg) significantly enhances its protective effect as compared with curcumin alone treated group. The results of the present study indicate that protective effect of curcumin potentiated in the presence of piperine (bioavailability enhancer) against 3-NP-induced behavioral and molecular alteration.

  16. Experimentally induced acute uric acid nephropathy in rabbits: Findings of high resolution gray scale and doppler ultrasonographies

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ik; Chung, Soo Young; Lee, Kyung Won; Kim, Hong Dae; Ko, Eun Young; Won, Mi Sook; Noh, Jung Woo [Hallym University College of Medicine, Seoul (Korea, Republic of); Park, Moon Hyang [Hanyang University College of Medicine, Seoul (Korea, Republic of)

    2001-12-15

    To evaluate changes of the high-resolution (HR) gray scale and doppler ultrasonographic (US) characteristics of experimentally induced acute uric acid (UA) nephropathy in rabbits. Acute UA nephropathy was induced in ten rabbits using supersaturated lithium carbonate solution. The rabbits were divided in two groups. Group I consisted of five rabbits, and they were injected with a single dose of 150 ml of saturated UA over one hour. During tis period, serial US studies of the kidneys of these rabbits were performed every ten minutes. Group II consisted of the remaining five rabbits, and three injections of 50 ml of saturated UA solution were given on the first, fifth and eight day and follow-up was done upto twenty fifth day. Sequential HR and Doppler US, renal biopsy and blood sampling were performed on day 1, 5, 8, 21, and 25 in the group II rabbits. In group I, HR and Doppler US examination revealed the normal resistive index without significant abnormality. On the other hand, US studies of group II showed poor renal corticomedullary differentiation, decreased renal blood flow and elevated resistive index. There was statistically significant correlation among US findings, histologic characteristics and chemical index (BUN, creatinine) of renal function. In addition, sequentially increased size and volume of the kidney were noted in both groups. HR gray scale and doppler US characteristics of experimentally induced acute UA nephropathy in rabbits were similar to those of acute renal failure caused by other well-known causes.

  17. Experimentally induced acute uric acid nephropathy in rabbits: Findings of high resolution gray scale and doppler ultrasonographies

    International Nuclear Information System (INIS)

    Yang, Ik; Chung, Soo Young; Lee, Kyung Won; Kim, Hong Dae; Ko, Eun Young; Won, Mi Sook; Noh, Jung Woo; Park, Moon Hyang

    2001-01-01

    To evaluate changes of the high-resolution (HR) gray scale and doppler ultrasonographic (US) characteristics of experimentally induced acute uric acid (UA) nephropathy in rabbits. Acute UA nephropathy was induced in ten rabbits using supersaturated lithium carbonate solution. The rabbits were divided in two groups. Group I consisted of five rabbits, and they were injected with a single dose of 150 ml of saturated UA over one hour. During tis period, serial US studies of the kidneys of these rabbits were performed every ten minutes. Group II consisted of the remaining five rabbits, and three injections of 50 ml of saturated UA solution were given on the first, fifth and eight day and follow-up was done upto twenty fifth day. Sequential HR and Doppler US, renal biopsy and blood sampling were performed on day 1, 5, 8, 21, and 25 in the group II rabbits. In group I, HR and Doppler US examination revealed the normal resistive index without significant abnormality. On the other hand, US studies of group II showed poor renal corticomedullary differentiation, decreased renal blood flow and elevated resistive index. There was statistically significant correlation among US findings, histologic characteristics and chemical index (BUN, creatinine) of renal function. In addition, sequentially increased size and volume of the kidney were noted in both groups. HR gray scale and doppler US characteristics of experimentally induced acute UA nephropathy in rabbits were similar to those of acute renal failure caused by other well-known causes.

  18. [Protective effect of Liuweidihuang Pills against cellphone electromagnetic radiation-induced histomorphological abnormality, oxidative injury, and cell apoptosis in rat testes].

    Science.gov (United States)

    Ma, Hui-rong; Cao, Xiao-hui; Ma, Xue-lian; Chen, Jin-jin; Chen, Jing-wei; Yang, Hui; Liu, Yun-xiao

    2015-08-01

    To observe the effect of Liuweidihuang Pills in relieving cellphone electromagnetic radiation-induced histomorphological abnormality, oxidative injury, and cell apoptosis in the rat testis. Thirty adult male SD rats were equally randomized into a normal, a radiated, and a Liuweidihuang group, the animals in the latter two groups exposed to electromagnetic radiation of 900 MHz cellphone frequency 4 hours a day for 18 days. Meanwhile, the rats in the Liuweidihuang group were treated with the suspension of Liuweidihuang Pills at 1 ml/100 g body weight and the other rats intragastrically with the equal volume of purified water. Then all the rats were killed for observation of testicular histomorphology by routine HE staining, measurement of testicular malondialdehyde (MDA) and glutathione (GSH) levels by colorimetry, and determination of the expressions of bax and bcl-2 proteins in the testis tissue by immunohistochemistry. Compared with the normal controls, the radiated rats showed obviously loose structure, reduced layers of spermatocytes, and cavitation in the seminiferous tubules. Significant increases were observed in the MDA level (P radiated rats. In comparison with the radiated rats, those of the Liuweidihuang group exhibited nearly normal testicular structure, significantly lower MDA level (P electromagnetic radiation-induced histomorphological abnormality of the testis tissue and reduce its oxidative damage and cell apoptosis.

  19. Protective Mechanisms of Nitrone Antioxidants in Kainic Acid Induced Neurodegeneration

    National Research Council Canada - National Science Library

    Bing, Guoying

    2001-01-01

    .... This model has been widely used as a model for studying human temporal lobe epilepsy. The delayed neuronal degeneration induced by kainic acid resembles CNS neuronal injury, repair, and plasticity...

  20. Protective Mechanisms of Nitrone Antioxidants in Kainic Acid Induced Neurodegeneration

    National Research Council Canada - National Science Library

    Bing, Guoying

    2000-01-01

    .... This model has been widely used as a model for studying human temporal lobe epilepsy. The delayed neuronal degeneration induced by kainic acid resembles CNS neuronal injury, repair, and plasticity...