WorldWideScience

Sample records for acid-assisted phosphine catalysis

  1. Phosphine catalysis of allenes with electrophiles.

    Science.gov (United States)

    Wang, Zhiming; Xu, Xingzhu; Kwon, Ohyun

    2014-05-07

    Nucleophilic phosphine catalysis of allenes with electrophiles is one of the most powerful and straightforward synthetic strategies for the generation of highly functionalized carbocycle or heterocycle structural motifs, which are present in a wide range of bioactive natural products and medicinally important substances. The reaction topologies can be controlled through a judicious choice of the phosphine catalyst and the structural variations of starting materials. This Tutorial Review presents selected examples of nucleophilic phosphine catalysis using allenes and electrophiles.

  2. Advances in nucleophilic phosphine catalysis of alkenes, allenes, alkynes, and MBHADs.

    Science.gov (United States)

    Fan, Yi Chiao; Kwon, Ohyun

    2013-12-25

    In nucleophilic phosphine catalysis, tertiary phosphines undergo conjugate additions to activated carbon-carbon multiple bonds to form β-phosphonium enolates, β-phosphonium dienolates, β-phosphonium enoates, and vinyl phosphonium ylides as intermediates. When these reactive zwitterionic species react with nucleophiles and electrophiles, they may generate carbo- and heterocycles with multifarious molecular architectures. This article describes the reactivities of these phosphonium zwitterions, the applications of phosphine catalysis in the syntheses of biologically active compounds and natural products, and recent developments in the enantioselective phosphine catalysis.

  3. Dynamic control of chirality in phosphine ligands for enantioselective catalysis

    NARCIS (Netherlands)

    Zhao, Depeng; Neubauer, Thomas M; Feringa, Ben L

    2015-01-01

    Chirality plays a fundamental role in biology and chemistry and the precise control of chirality in a catalytic conversion is a key to modern synthesis most prominently seen in the production of pharmaceuticals. In enantioselective metal-based catalysis, access to each product enantiomer is commonly

  4. Immobilization of Homogeneous Catalysis on Phosphinated MCM-41

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    @@ Homogeneous catalysis Rh(PPh3)3Cl immobilized on MCM-41 modified with (OEt)3Si(CH2)3PPh2 results in a stable hydrogenation catalyst with turn over frequency (TOF) three times higher than that of Rh(PPh3)3C1 in the hydrogenation of cyclohexene. Leaching of the catalyst is only a minor factor with leaching rate 0.04 % for each cycle. However, immobilization of Rh(PPh3)2(CO)C1 on similar support can only have catalytic hydroformylation properties for the first few cycles. Decay of the catalyst is due to largh leaching rate with totally 22.4 % of Rh leached for the first three cycles.

  5. Immobilization of Homogeneous Catalysis on Phosphinated MCM-41

    Institute of Scientific and Technical Information of China (English)

    SHYU; Shin-Guang

    2001-01-01

    Homogeneous catalysis Rh(PPh3)3Cl immobilized on MCM-41 modified with (OEt)3Si(CH2)3PPh2 results in a stable hydrogenation catalyst with turn over frequency (TOF) three times higher than that of Rh(PPh3)3C1 in the hydrogenation of cyclohexene. Leaching of the catalyst is only a minor factor with leaching rate 0.04 % for each cycle. However, immobilization of Rh(PPh3)2(CO)C1 on similar support can only have catalytic hydroformylation properties for the first few cycles. Decay of the catalyst is due to largh leaching rate with totally 22.4 % of Rh leached for the first three cycles.  ……

  6. Advances in Homogeneous Catalysis Using Secondary Phosphine Oxides (SPOs): Pre-ligands for Metal Complexes.

    Science.gov (United States)

    Achard, Thierry

    2016-01-01

    The secondary phosphine oxides are known to exist in equilibrium between the pentavalent phosphine oxides (SPO) and the trivalent phosphinous acids (PA). This equilibrium can be displaced in favour of the trivalent tautomeric form upon coordination to late transition metals. This tutorial review provides the state of the art of the use of secondary phosphine oxides as pre-ligands in transition metal-catalysed reactions. Using a combination of SPOs and several metals such as Pd, Pt, Ru, Rh and Au, a series of effective and original transformations have been obtained and will be discussed here.

  7. Cooperative titanocene and phosphine catalysis: accelerated C-X activation for the generation of reactive organometallics.

    Science.gov (United States)

    Fleury, Lauren M; Kosal, Andrew D; Masters, James T; Ashfeld, Brandon L

    2013-01-18

    The study presented herein describes a reductive transmetalation approach toward the generation of Grignard and organozinc reagents mediated by a titanocene catalyst. This method enables the metalation of functionalized substrates without loss of functional group compatibility. Allyl zinc reagents and allyl, vinyl, and alkyl Grignard reagents were generated in situ and used in the addition to carbonyl substrates to provide the corresponding carbinols in yields up to 99%. It was discovered that phosphine ligands effectively accelerate the reductive transmetalation event to enable the metalation of C-X bonds at temperatures as low as -40 °C. Performing the reactions in the presence of chiral diamines and amino alcohols led to the enantioselective allylation of aldehydes.

  8. Catalytic Phosphination and Arsination

    Institute of Scientific and Technical Information of China (English)

    Kwong Fuk Yee; Chan Kin Shing

    2004-01-01

    The catalytic, user-friendly phosphination and arsination of aryl halides and triflates by triphenylphosphine and triphenylarsine using palladium catalysts have provided a facile synthesis of functionalized aryl phosphines and arsines in neutral media. Modification of the cynaoarisne yielded optically active N, As ligands which will be screened in various asymmetric catalysis.

  9. Insights into functional-group-tolerant polymerization catalysis with phosphine-sulfonamide palladium (II) complexes

    KAUST Repository

    Jian, Zhongbao

    2014-12-08

    Two series of cationic palladium(II) methyl complexes {[(2-MeOC6H4)2PC6H4SO2NHC6H3(2,6-R1,R2)]PdMe}2[A]2 (X1+-A: R1=R2=H: H1+-A; R1=R2=CH(CH3)2: DIPP1+-A; R1=H, R2=CF3: CF31+-A; A=BF4 or SbF6) and neutral palladium(II) methyl complexes {[(2-MeOC6H4)2PC6H4SO2NC6H3(2,6-R1,R2)]PdMe(L)} (X1-acetone: L=acetone; X1-dmso: L=dimethyl sulfoxide; X1-pyr: L=pyridine) chelated by a phosphine-sulfonamide were synthesized and fully characterized. Stoichiometric insertion of methyl acrylate (MA) into all complexes revealed that a 2,1 regiochemistry dominates in the first insertion of MA. Subsequently, for the cationic complexes X1+-A, β-H elimination from the 2,1-insertion product X2+-AMA-2,1 is overwhelmingly favored over a second MA insertion to yield two major products X4+-AMA-1,2 and X5+-AMA. By contrast, for the weakly coordinated neutral complexes X1-acetone and X1-dmso, a second MA insertion of the 2,1-insertion product X2MA-2,1 is faster than β-H elimination and gives X3MA as major products. For the strongly coordinated neutral complexes X1-pyr, no second MA insertion and no β-H elimination (except for DIPP2-pyrMA-2,1) were observed for the 2,1-insertion product X2-pyrMA-2,1. The cationic complexes X1+-A exhibited high catalytic activities for ethylene dimerization, affording butenes (C4) with a high selectivity of up to 97.7% (1-butene: 99.3%). Differences in activities and selectivities suggest that the phosphine-sulfonamide ligands remain coordinated to the metal center in a bidentate fashion in the catalytically active species. By comparison, the neutral complexes X1-acetone, X1-dmso, and X1-pyr showed very low activity towards ethylene to give traces of oligomers. DFT analyses taking into account the two possible coordination modes (O or N) of the sulfonamide ligand for the cationic system CF31+ suggested that the experimentally observed high activity in ethylene dimerization is the result of a facile first ethylene insertion into the O-coordinated PdMe isomer and

  10. Reduction of secondary and tertiary phosphine oxides to phosphines.

    Science.gov (United States)

    Hérault, Damien; Nguyen, Duc Hanh; Nuel, Didier; Buono, Gérard

    2015-04-21

    Achiral or chiral phosphines are widely used in two main domains: ligands in organometallic catalysis and organocatalysis. For this reason, the obtention of optically pure phosphine has always been challenging in the development of asymmetric catalysis. The simplest method to obtain phosphines is the reduction of phosphine oxides. The essential difficulty is the strength of the P=O bond which involves new procedures to maintain a high chemio- and stereoselectivity. The reduction can occur with retention or inversion of the stereogenic phosphorus atom depending on the nature of the reducing agent and the presence of additives. In fact, the reactivity of the phosphine oxides and the mechanism of the reduction are not always well understood. Since the first work in the 1950's, numerous studies have been realised in order to develop methodologies with different reagents or to understand the mechanism of the reaction. In the last decade, efficient stereospecific methodologies have been developed to obtain optically pure tertiary phosphines from P-stereogenic phosphine oxides. In this review, we intend to provide a comprehensive and critical overview of these methodologies.

  11. Preparation of phosphines through C–P bond formation

    Directory of Open Access Journals (Sweden)

    Iris Wauters

    2014-05-01

    Full Text Available Phosphines are an important class of ligands in the field of metal-catalysis. This has spurred the development of new routes toward functionalized phosphines. Some of the most important C–P bond formation strategies were reviewed and organized according to the hybridization of carbon in the newly formed C–P bond.

  12. Mechanisms of Phosphine Toxicity

    OpenAIRE

    Nisa S. Nath; Ishita Bhattacharya; Andrew G. Tuck; Schlipalius, David I.; Paul R. Ebert

    2011-01-01

    Fumigation with phosphine gas is by far the most widely used treatment for the protection of stored grain against insect pests. The development of high-level resistance in insects now threatens its continued use. As there is no suitable chemical to replace phosphine, it is essential to understand the mechanisms of phosphine toxicity to increase the effectiveness of resistance management. Because phosphine is such a simple molecule (PH3), the chemistry of phosphorus is central to its toxicity...

  13. Phosphine modified cobalt hydroformylation

    Energy Technology Data Exchange (ETDEWEB)

    Rensburg, H. van; Tooze, R.P.; Foster, D.F. [Sasol Technology UK, St. Andrews (United Kingdom); Janse van Rensburg, W. [Sasol Technology, Sasolburg (South Africa)

    2006-07-01

    An ongoing challenge in phosphine modified cobalt hydroformylation is the fundamental understanding of the electronic and steric properties of phosphine ligands that influence the selectivity and activity of the catalytic reaction. A series of acyclic and cyclic phosphines have been prepared and tested in phosphine modified cobalt hydroformylation of 1-octene. Molecular modelling on a series of phospholanes showed some interesting theoretical and experimental correlations. We also evaluated the use of N-heterocyclic carbenes as an alternative for phosphines in modified cobalt hydroformylation. (orig.)

  14. Phosphine in various matrixes

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Matrix-bound phosphine was determined in the Jiaozhou Bay coastal sediment, in prawn-pond bottom soil, in the eutrophic lake Wulongtan, in the sewage sludge and in paddy soil as well. Results showed that matrix-bound phosphine levels in freshwater and coastal sediment, as well as in sewage sludge, are significantly higher than that in paddy soil. The correlation between matrix bound phosphine concentrations and organic phosphorus contents in sediment samples is discussed.

  15. Iridium-catalysed dehydrocoupling of aryl phosphine-borane adducts: synthesis and characterisation of high molecular weight poly(phosphinoboranes).

    Science.gov (United States)

    Paul, Ursula S D; Braunschweig, Holger; Radius, Udo

    2016-06-30

    The thermal dehydrogenative coupling of aryl phosphine-borane adducts with iridium complexes bearing a bis(phosphinite) pincer ligand is reported. This catalysis produces high molecular weight poly(phosphinoboranes) [ArPH-BH2]n (Ar = Ph, (p)Tol, Mes). Furthermore, we investigated the reactivity of these pincer complexes towards primary phosphines and their respective borane adducts on a stoichiometric scale.

  16. Mechanisms of Phosphine Toxicity

    Directory of Open Access Journals (Sweden)

    Nisa S. Nath

    2011-01-01

    Full Text Available Fumigation with phosphine gas is by far the most widely used treatment for the protection of stored grain against insect pests. The development of high-level resistance in insects now threatens its continued use. As there is no suitable chemical to replace phosphine, it is essential to understand the mechanisms of phosphine toxicity to increase the effectiveness of resistance management. Because phosphine is such a simple molecule (PH3, the chemistry of phosphorus is central to its toxicity. The elements above and below phosphorus in the periodic table are nitrogen (N and arsenic (As, which also produce toxic hydrides, namely, NH3 and AsH3. The three hydrides cause related symptoms and similar changes to cellular and organismal physiology, including disruption of the sympathetic nervous system, suppressed energy metabolism and toxic changes to the redox state of the cell. We propose that these three effects are interdependent contributors to phosphine toxicity.

  17. Mechanisms of phosphine toxicity.

    Science.gov (United States)

    Nath, Nisa S; Bhattacharya, Ishita; Tuck, Andrew G; Schlipalius, David I; Ebert, Paul R

    2011-01-01

    Fumigation with phosphine gas is by far the most widely used treatment for the protection of stored grain against insect pests. The development of high-level resistance in insects now threatens its continued use. As there is no suitable chemical to replace phosphine, it is essential to understand the mechanisms of phosphine toxicity to increase the effectiveness of resistance management. Because phosphine is such a simple molecule (PH(3)), the chemistry of phosphorus is central to its toxicity. The elements above and below phosphorus in the periodic table are nitrogen (N) and arsenic (As), which also produce toxic hydrides, namely, NH(3) and AsH(3). The three hydrides cause related symptoms and similar changes to cellular and organismal physiology, including disruption of the sympathetic nervous system, suppressed energy metabolism and toxic changes to the redox state of the cell. We propose that these three effects are interdependent contributors to phosphine toxicity.

  18. Mechanisms of Phosphine Toxicity

    Science.gov (United States)

    Nath, Nisa S.; Bhattacharya, Ishita; Tuck, Andrew G.; Schlipalius, David I.; Ebert, Paul R.

    2011-01-01

    Fumigation with phosphine gas is by far the most widely used treatment for the protection of stored grain against insect pests. The development of high-level resistance in insects now threatens its continued use. As there is no suitable chemical to replace phosphine, it is essential to understand the mechanisms of phosphine toxicity to increase the effectiveness of resistance management. Because phosphine is such a simple molecule (PH3), the chemistry of phosphorus is central to its toxicity. The elements above and below phosphorus in the periodic table are nitrogen (N) and arsenic (As), which also produce toxic hydrides, namely, NH3 and AsH3. The three hydrides cause related symptoms and similar changes to cellular and organismal physiology, including disruption of the sympathetic nervous system, suppressed energy metabolism and toxic changes to the redox state of the cell. We propose that these three effects are interdependent contributors to phosphine toxicity. PMID:21776261

  19. Emission sources of atmospheric phosphine and simulation of phosphine formation

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Preliminary results on the emission sources of atmospheric phosphine and the types of its precursors in the environment are described. Sunlight plays a more important role than oxygen in its degradation. The vertical profile of phosphine levels in ambient air has been measured. Laboratory simulation of phosphine formation under anaerobic conditions shows that addition of chicken manure, bone powder, or lecithin leads to an increment in phosphine emission. Phosphine can also be adsorbed to soil matrix and thus can survive in soil and sediment. Adsorption and light degradation explain the low ambient levels of phosphine.

  20. Nucleophilic phosphine organocatalysis: a practical synthetic strategy for the drug-like nitrogen heterocyclic framework construction.

    Science.gov (United States)

    Wang, Yurong; Pan, Jingjing; Chen, Zhidong; Sun, Xiaoqiang; Wang, Zhiming

    2013-05-01

    Nucleophilic phosphine catalysis has proven to be a practical and powerful synthetic strategy in organic chemistry, which can provide easy access to five-, six-, seven-, and eight-membered nitrogen heterocyclic compounds. The reaction topologies can be controlled by a proper choice of the phosphine catalysts, as well as the functionalization of the reaction substrates. In many cases, the reactions take place smoothly at room temperature, with high efficiency and atom economy. This mini-review presents the recent advances in nucleophilic phosphine catalysis for the synthesis of drug-like nitrogen heterocylic compounds. The nitrogen heterocyclic compounds with significant biological activities derived from the library based on nucleophilic phosphine-catalyzed annulation reactions are also highlighted.

  1. Supported ionic liquid-phase (SILP) catalysis

    DEFF Research Database (Denmark)

    Riisager, Anders; Fehrmann, Rasmus; Wasserscheid, P.

    2005-01-01

    The concept of supported ionic liquid-phase (SILP) catalysis has been demonstrated for gas- and liquid-phase continuous fixed-bed reactions using rhodium phosphine catalyzed hydroformylation of propene and 1-octene as examples. The nature of the support had important influence on both the catalytic...

  2. Balancing phosphine in manure fermentation.

    Science.gov (United States)

    Eismann, F; Glindemann, D; Bergmann, A; Kuschk, P

    1997-11-01

    The evolution of phosphine gas during the anaerobic batch fermentation of fresh swine manure was detected and correlated to the production of methane and hydrogen sulphide. A close temporal relationship between phosphine liberation and methane formation was found. However, the gaseous phosphine released from manure during fermentation only represents a tiny fraction of the overall phosphine balance. The majority of phosphine is captured in solid manure constituents. This matrix-bound phosphine is eliminated by more than 50% during anaerobic batch-fermentation. Seasonally determined phosphine concentrations in biogas and manure from two large-scale manure treatment plants also revealed net losses of phosphine in fermentation. Consequently, manure has to be considered more as a sink of phosphine rather than a phosphine-generating medium. Furthermore, a close relationship between phosphine in the feed of swine and manure of these swine was observed, implying that phosphine residues in the feed (possibly as a result of grain fumigation) represent an important source of phosphine in manure technologies that is relevant before the faecals of swine enter manure treatment plants.

  3. Catalytic Asymmetric Synthesis of Phosphine Boronates

    NARCIS (Netherlands)

    Hornillos, Valentin; Vila, Carlos; Otten, Edwin; Feringa, Ben L.

    2015-01-01

    The first catalytic enantioselective synthesis of ambiphilic phosphine boronate esters is presented. The asymmetric boration of ,-unsaturated phosphine oxides catalyzed by a copper bisphosphine complex affords optically active organoboronate esters that bear a vicinal phosphine oxide group in good y

  4. Heterogeneous Catalysis.

    Science.gov (United States)

    Vannice, M. A.

    1979-01-01

    Described is a graduate course in catalysis offered at Penn State University. A detailed course outline with 30 lecture topics is presented. A list of 42 references on catalysis used in place of a textbook is provided. (BT)

  5. CONFIRMATION OF CIRCUMSTELLAR PHOSPHINE

    Energy Technology Data Exchange (ETDEWEB)

    Agúndez, M.; Cernicharo, J. [Instituto de Ciencia de Materiales de Madrid, CSIC, C/ Sor Juana Inés de la Cruz 3, E-28049 Cantoblanco (Spain); Decin, L. [Sterrenkundig Instituut Anton Pannekoek, University of Amsterdam, Science Park 904, NL-1098 Amsterdam (Netherlands); Encrenaz, P. [LERMA, Observatoire de Paris, 61 Av. de l' Observatoire, F-75014 Paris (France); Teyssier, D. [European Space Astronomy Centre, Urb. Villafranca del Castillo, P.O. Box 50727, E-28080 Madrid (Spain)

    2014-08-01

    Phosphine (PH{sub 3}) was tentatively identified a few years ago in the carbon star envelopes IRC +10216 and CRL 2688 from observations of an emission line at 266.9 GHz attributable to the J = 1-0 rotational transition. We report the detection of the J = 2-1 rotational transition of PH{sub 3} in IRC +10216 using the HIFI instrument on board Herschel, which definitively confirms the identification of PH{sub 3}. Radiative transfer calculations indicate that infrared pumping in excited vibrational states plays an important role in the excitation of PH{sub 3} in the envelope of IRC +10216, and that the observed lines are consistent with phosphine being formed anywhere between the star and 100 R {sub *} from the star, with an abundance of 10{sup –8} relative to H{sub 2}. The detection of PH{sub 3} challenges chemical models, none of which offer a satisfactory formation scenario. Although PH{sub 3} holds just 2% of the total available phosphorus in IRC +10216, it is, together with HCP, one of the major gas phase carriers of phosphorus in the inner circumstellar layers, suggesting that it could also be an important phosphorus species in other astronomical environments. This is the first unambiguous detection of PH{sub 3} outside the solar system, and is a further step toward a better understanding of the chemistry of phosphorus in space.

  6. Confirmation of circumstellar phosphine

    CERN Document Server

    Agundez, M; Decin, L; Encrenaz, P; Teyssier, D

    2014-01-01

    Phosphine (PH3) was tentatively identified a few years ago in the carbon star envelopes IRC+10216 and CRL2688 from observations of an emission line at 266.9 GHz attributable to the J=1-0 rotational transition. We report the detection of the J=2-1 rotational transition of PH3 in IRC+10216 using the HIFI instrument on board Herschel, which definitively confirms the identification of PH3. Radiative transfer calculations indicate that infrared pumping to excited vibrational states plays an important role in the excitation of PH3 in the envelope of IRC+10216, and that the observed lines are consistent with phosphine being formed anywhere between the star and 100 R* from the star, with an abundance of 1e-8 relative to H2. The detection of PH3 challenges chemical models, none of which offers a satisfactory formation scenario. Although PH3 locks just 2 % of the total available phosphorus in IRC+10216, it is together with HCP, one of the major gas phase carriers of phosphorus in the inner circumstellar layers, suggest...

  7. Phosphine oxide surfactants revisited.

    Science.gov (United States)

    Stubenrauch, Cosima; Preisig, Natalie; Laughlin, Robert G

    2016-04-01

    This review summarizes everything we currently know about the nonionic surfactants alkyl dimethyl (C(n)DMPO) and alkyl diethyl (C(n)DEPO) phosphine oxide (PO surfactants). The review starts with the synthesis and the general properties (Section 2) of these compounds and continues with their interfacial properties (Section 3) such as surface tension, surface rheology, interfacial tension and adsorption at solid surfaces. We discuss studies on thin liquid films and foams stabilized by PO surfactants (Section 4) as well as studies on their self-assembly into lyotropic liquid crystals and microemulsions, respectively (Section 5). We aim at encouraging colleagues from both academia and industry to take on board PO surfactants whenever possible and feasible because of their broad variety of excellent properties.

  8. Simple unprecedented conversion of phosphine oxides and sulfides to phosphine boranes using sodium borohydride.

    Science.gov (United States)

    Rajendran, Kamalraj V; Gilheany, Declan G

    2012-01-21

    A variety of phosphine oxides and sulfides can be efficiently converted directly to the corresponding phosphine boranes using oxalyl chloride followed by sodium borohydride. Optically active P-stereogenic phosphine oxides can be converted stereospecifically to phosphine boranes with inversion of configuration by treatment with Meerwein's salt followed by sodium borohydride.

  9. Catalytic Asymmetric Synthesis of Phosphine Boronates.

    Science.gov (United States)

    Hornillos, Valentín; Vila, Carlos; Otten, Edwin; Feringa, Ben L

    2015-06-26

    The first catalytic enantioselective synthesis of ambiphilic phosphine boronate esters is presented. The asymmetric boration of α,β-unsaturated phosphine oxides catalyzed by a copper bisphosphine complex affords optically active organoboronate esters that bear a vicinal phosphine oxide group in good yields and high enantiomeric excess. The synthetic utility of the products is demonstrated through stereospecific transformations into multifunctional optically active compounds.

  10. Relativistic effects in homogeneous gold catalysis.

    Science.gov (United States)

    Gorin, David J; Toste, F Dean

    2007-03-22

    Transition-metal catalysts containing gold present new opportunities for chemical synthesis, and it is therefore not surprising that these complexes are beginning to capture the attention of the chemical community. Cationic phosphine-gold(i) complexes are especially versatile and selective catalysts for a growing number of synthetic transformations. The reactivity of these species can be understood in the context of theoretical studies on gold; relativistic effects are especially helpful in rationalizing the reaction manifolds available to gold catalysts. This Review draws on experimental and computational data to present our current understanding of homogeneous gold catalysis, focusing on previously unexplored reactivity and its application to the development of new methodology.

  11. Enantioconvergent catalysis

    Directory of Open Access Journals (Sweden)

    Justin T. Mohr

    2016-09-01

    Full Text Available An enantioconvergent catalytic process has the potential to convert a racemic starting material to a single highly enantioenriched product with a maximum yield of 100%. Three mechanistically distinct approaches to effecting enantioconvergent catalysis are identified, and recent examples of each are highlighted. These processes are compared to related, non-enantioconvergent methods.

  12. Simple unprecedented conversion of phosphine oxides and sulfides to phosphine boranes using sodium borohydride

    OpenAIRE

    2012-01-01

    A variety of phosphine oxides and sulfides can be efficiently converted directly to the corresponding phosphine boranes using oxalyl chloride followed by sodium borohydride. Optically active P-stereogenic phosphine oxides can be converted stereospecifically to phosphine boranes with inversion of configuration by treatment with Meerwein's salt followed by sodium borohydride.

  13. Carbonylation of Ethene Catalysed by Pd(II-Phosphine Complexes

    Directory of Open Access Journals (Sweden)

    Gianni Cavinato

    2014-09-01

    Full Text Available This review deals with olefin carbonylation catalysed by Pd(II-phosphine complexes in protic solvents. In particular, the results obtained in the carbonylation with ethene are reviewed. After a short description of the basic concepts relevant to this catalysis, the review treats in greater details the influence of the bite angle, skeletal rigidity, electronic and steric bulk properties of the ligand on the formation of the products, which range from high molecular weight perfectly alternating polyketones to methyl propanoate. It is shown that the steric bulk plays a major role in directing the selectivity. Particular emphasis is given to the factors governing the very active and selective catalysis to methyl propanoate, including the mechanism of the catalytic cycles with diphosphine- and monophosphine-catalysts. A brief note on the synthesis of methyl propanoate using a “Lucite” type catalyst in ionic liquids is also illustrated. A chapter is dedicated to the carbonylation of olefins in aqueous reaction media. The nonalternating CO-ethene copolymerization is also treated.

  14. Zeolites and Catalysis

    Science.gov (United States)

    1999-12-15

    Handbook of Heterogeneous Catalysis ,Vol. als: State of the Art 1994, Studies in Surface Science and 5, Wiley-VCH, Weinheim, 1997, p. 2329. Catalysis, Vol...Weitkamp (Eds.), in Zeolite and Microporous Materials, Studies in Surface Handbook of Heterogeneous Catalysis , Vol. 4, Wiley-VCH, Science and Catalysis

  15. New class of phosphine oxide donor-based supramolecular coordination complexes from an in situ phosphine oxidation reaction or phosphine oxide ligands.

    Science.gov (United States)

    Shankar, Bhaskaran; Elumalai, Palani; Shanmugam, Ramasamy; Singh, Virender; Masram, Dhanraj T; Sathiyendiran, Malaichamy

    2013-09-16

    A one-pot, multicomponent, coordination-driven self-assembly approach was used to synthesize the first examples of neutral bridging phosphine oxide donor-based supramolecular coordination complexes. The complexes were self-assembled from a fac-Re(CO)3 acceptor, an anionic bridging O donor, and a neutral soft phosphine or hard phosphine oxide donor.

  16. Simple tertiary phosphines to hexaphosphane ligands: Syntheses, transition metal chemistry and their catalytic applications

    Indian Academy of Sciences (India)

    Maravanji S Balakrishna; Sowmya Rao; Bimba Choubey

    2012-11-01

    Designing efficient phosphorus-based ligands to make catalysts for homogeneous catalysis has been a great challenge for chemists. Despite a plethora of phosphorus ligands ranging from simple tertiary phosphines to polyphosphines are known, the enthusiasm to generate new ones is mainly due to the demand from industry for economical and robust catalytic system operational under normal atmospheric conditions. In this context, we have developed new synthetic methodologies for making unusual inorganic ring systems containing trivalent phosphorus centres, novel phosphorus-based multidentate and hybrid ligands and explored their rich transition metal chemistry and catalytic applications. We have also fine tuned a few existing ligand systems with donor functionalities to employ them in homogeneous catalysis. The details are summarized in this account.

  17. Phosphine photochemistry in Saturn's atmosphere

    Science.gov (United States)

    Kaye, J. A.; Strobel, D. F.

    1983-01-01

    The phosphine photochemistry on Saturn is studied with a 1D photochemical model. The PH3 concentration is rapidly depleted with height (scale height 3.5 km) in the upper troposphere. Formation of P, a probable precursor of P4, (a potential red chromophore in the atmosphere), is highly improbable unless the rate constant for the recombination reaction PH + H2 + M yields PH3 + M is less than 10 to the -41st cm exp 6/molecule-squared sec. Coupling of PH3 and hydrocarbon photochemistry, specifically the C2H2 catalyzed photodissociation of CH, is important. Column production rates of the organophosphorus compounds CH3PH2 and HCP of 3 x 10 to the 8th/sq cm sec are predicted, with potentially observable column densities of greater than 1 x 10 to the 17th/sq cm.

  18. Palladium phosphine complexes for the telomerization of butadiene

    DEFF Research Database (Denmark)

    2010-01-01

    A phosphine ligand suitable for use in telomerizing butadiene comprises two phenyl groups and a xanthene moiety.......A phosphine ligand suitable for use in telomerizing butadiene comprises two phenyl groups and a xanthene moiety....

  19. Catalysis of Photochemical Reactions.

    Science.gov (United States)

    Albini, A.

    1986-01-01

    Offers a classification system of catalytic effects in photochemical reactions, contrasting characteristic properties of photochemical and thermal reactions. Discusses catalysis and sensitization, examples of catalyzed reactions of excepted states, complexing ground state substrates, and catalysis of primary photoproducts. (JM)

  20. Improvement of phosphine fumigation by the use of Speedbox

    OpenAIRE

    Kostyukovsky, M.; Trostanetsky, A.; Yasinov, G.; Menasherov, M; Hazan, T.

    2010-01-01

    Today, phosphine is turning to be a major fumigant for controlling insects in stored products. However, few limitations, such as low temperatures and relatively long exposure time, limit the phosphine use. In order to improve phosphine application, a special devise, containing a heater and a ventilator, called "Speedbox" has been developed by Detia Degesch GmbH Germany. For studying the effectiveness of phosphine fumigation using Speedbox, we have conducted two kinds of experiments: one in a ...

  1. Phosphine-Catalyzed Annulations of Azomethine Imines: Allene-Dependent [3 + 2], [3 + 3], [4 + 3], and [3 + 2 + 3] Pathways

    Science.gov (United States)

    Na, Risong; Jing, Chengfeng; Xu, Qihai; Jiang, Hui; Wu, Xi; Shi, Jiayan; Zhong, Jiangchun; Wang, Min; Benitez, Diego; Tkatchouk, Ekaterina; Goddard, William A.; Guo, Hongchao; Kwon, Ohyun

    2011-01-01

    In this paper we describe the phosphine-catalyzed [3 + 2], [3 + 3], [4 + 3], and [3 + 2 + 3] annulations of azomethine imines and allenoates. These processes mark the first use of azomethine imines in nucleophilic phosphine catalysis, producing dinitrogen-fused heterocycles, including tetrahydropyrazolo-pyrazolones, -pyridazinones, -diazepinones, and -diazocinones. Counting the two different reaction modes in the [3 + 3] cyclizations, there are five distinct reaction pathways—the choice of which depends on the structure and chemical properties of the allenoate. All reactions are operationally simple and proceed smoothly under mild reaction conditions, affording a broad range of 1,2-dinitrogen–containing heterocycles in moderate to excellent yields. A zwitterionic intermediate formed from a phosphine and two molecules of ethyl 2,3-butadienoate acted as a 1,5-dipole in the annulations of azomethine imines, leading to the [3 + 2 + 3] tetrahydropyrazolodiazocinone products. The incorporation of two molecules of an allenoate into an eight-membered-ring product represents a new application of this versatile class of molecules in nucleophilic phosphine catalysis. The salient features of this protocol—the facile access to a diverse range of nitrogen-containing heterocycles and the simple preparation of azomethine imine substrates—suggest that it might find extensive applications in heterocycle synthesis. PMID:21812448

  2. Phosphine-catalyzed annulations of azomethine imines: allene-dependent [3 + 2], [3 + 3], [4 + 3], and [3 + 2 + 3] pathways.

    Science.gov (United States)

    Na, Risong; Jing, Chengfeng; Xu, Qihai; Jiang, Hui; Wu, Xi; Shi, Jiayan; Zhong, Jiangchun; Wang, Min; Benitez, Diego; Tkatchouk, Ekaterina; Goddard, William A; Guo, Hongchao; Kwon, Ohyun

    2011-08-31

    In this paper we describe the phosphine-catalyzed [3 + 2], [3 + 3], [4 + 3], and [3 + 2 + 3] annulations of azomethine imines and allenoates. These processes mark the first use of azomethine imines in nucleophilic phosphine catalysis, producing dinitrogen-fused heterocycles, including tetrahydropyrazolo-pyrazolones, -pyridazinones, -diazepinones, and -diazocinones. Counting the two different reaction modes in the [3 + 3] cyclizations, there are five distinct reaction pathways-the choice of which depends on the structure and chemical properties of the allenoate. All reactions are operationally simple and proceed smoothly under mild reaction conditions, affording a broad range of 1,2-dinitrogen-containing heterocycles in moderate to excellent yields. A zwitterionic intermediate formed from a phosphine and two molecules of ethyl 2,3-butadienoate acted as a 1,5-dipole in the annulations of azomethine imines, leading to the [3 + 2 + 3] tetrahydropyrazolo-diazocinone products. The incorporation of two molecules of an allenoate into an eight-membered-ring product represents a new application of this versatile class of molecules in nucleophilic phosphine catalysis. The salient features of this protocol--the facile access to a diverse range of nitrogen-containing heterocycles and the simple preparation of azomethine imine substrates--suggest that it might find extensive applications in heterocycle synthesis.

  3. 40 CFR 721.10087 - Substituted alkyl phosphine oxide (generic).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Substituted alkyl phosphine oxide... Specific Chemical Substances § 721.10087 Substituted alkyl phosphine oxide (generic). (a) Chemical... as substituted alkyl phosphine oxide (PMN P-06-332) is subject to reporting under this section...

  4. Worker exposure standard for phosphine gas.

    Science.gov (United States)

    Pepelko, Bill; Seckar, Joel; Harp, Paul R; Kim, James H; Gray, David; Anderson, Elizabeth L

    2004-10-01

    The 1998 U.S. Environmental Protection Agency Office of Pesticide Programs (OPP) re-registration eligibility decision (RED) for phosphine fumigants has generated much interest in defining safe levels of exposure for workers and worker bystanders. This report summarizes the pertinent literature on phosphine toxicity, including animal inhalation studies and human epidemiology studies, and also describes a margin-of-exposure (MOE) analysis based on available worker exposure data. In addition, a safe occupational exposure limit is estimated using typical OPP assumptions, after determination of appropriate uncertainty factors, based on quality of data in the principal study and pharmacokinetic considerations. While a conservative 8-hour time-weighted average (TWA) of 0.1 ppm was calculated, the overall weight of evidence, from a risk-management perspective, supports a conclusion that an occupational TWA of 0.3 ppm provides adequate health protection. In addition, a 15-minute short-term exposure limit (STEL) of 3 ppm was estimated. Finally, in contrast to the MOE analysis described in the OPP's phosphine RED, the MOE analysis described herein does not indicate that fumigation workers are currently being exposed to unacceptable levels of phosphine. Collectively, these findings support the occupational exposure limits of 0.3 ppm (8-hour TWA) and 1 ppm (STEL) established in the updated applicator's manuals for phosphine-generating products, which recently received approval from OPP.

  5. Recyclability of water-soluble ruthenium–phosphine complex catalysts in multiphase selective hydrogenation of cinnamaldehyde using toluene and pressurized carbon dioxide

    OpenAIRE

    Fujita, Shin-ichiro; Akihara, Shuji; Arai, Masahiko

    2006-01-01

    The recyclability of water-soluble ruthenium–phosphine complex catalysts was investigated in water–toluene and in water–pressurized carbon dioxide systems for selective hydrogenation of trans-cinnamaldehyde (CAL). For the first hydrogenation run, the selectivity for cinnamyl alcohol (COL) is high for both toluene and dense CO2, because of interfacial catalysis in which the reaction mainly occurs at the interface between the aqueous phase and the other toluene or dense CO2 phase. The total CAL...

  6. Advances in catalysis

    CERN Document Server

    Gates, Bruce C

    2012-01-01

    Advances in Catalysis fills the gap between the journal papers and the textbooks across the diverse areas of catalysis research. For more than 60 years Advances in Catalysis has been dedicated to recording progress in the field of catalysis and providing the scientific community with comprehensive and authoritative reviews. This series in invaluable to chemical engineers, physical chemists, biochemists, researchers and industrial chemists working in the fields of catalysis and materials chemistry. * In-depth, critical, state-of-the-art reviews * Comprehensive, covers of all as

  7. Advances in catalysis

    CERN Document Server

    Jentoft, Friederike C

    2014-01-01

    Advances in Catalysis fills the gap between the journal papers and the textbooks across the diverse areas of catalysis research. For more than 60 years Advances in Catalysis has been dedicated to recording progress in the field of catalysis and providing the scientific community with comprehensive and authoritative reviews. This series is invaluable to chemical engineers and chemists working in the field of catalysis in academia or industry. Authoritative reviews written by experts in the field. Topics selected to reflect progress of the field. Insightful and critical articles, fully edite

  8. Phosphine-directed C-H borylation reactions: facile and selective access to ambiphilic phosphine boronate esters.

    Science.gov (United States)

    Crawford, Kristina M; Ramseyer, Timothy R; Daley, Christopher J A; Clark, Timothy B

    2014-07-14

    Ambiphilic ligands have received considerable attention over the last two decades due to their unique reactivity as organocatalysts and ligands. The iridium-catalyzed C-H borylation of phosphines is described in which the phosphine is used as a directing group to provide selective formation of arylboronate esters with unique scaffolds of ambiphilic compounds. A variety of aryl and benzylic phosphines were subjected to the reaction conditions, selectively providing stable, isolable boronate esters upon protection of the phosphine as the borane complex. After purification, the phosphine-substituted boronate esters could be deprotected and isolated in pure form.

  9. Reducing injury of lettuce from phosphine fumigation

    Science.gov (United States)

    Low temperature fumigation with pure phosphine free of ammonia has been used in recent years for postharvest pest control on some fresh fruits and vegetables. However, long fumigation treatments cause injuries to lettuce. It is unknown what factors contributed to the injuries. It is important to min...

  10. Consecutive dynamic resolutions of phosphine oxides

    NARCIS (Netherlands)

    Kortmann, Felix A.; Chang, Mu Chieh; Otten, Edwin; Couzijn, Erik P A; Lutz, Martin; Minnaard, Adriaan J.

    2014-01-01

    A crystallization-induced asymmetric transformation (CIAT) involving a radical-mediated racemization provides access to enantiopure secondary phosphine oxides. A consecutive CIAT is used to prepare enantio- and diastereo-pure tert-butyl(hydroxyalkyl)phenylphosphine oxides. © 2014 The Royal Society o

  11. Mitochondrial modulation of phosphine toxicity and resistance in Caenorhabditis elegans.

    Science.gov (United States)

    Zuryn, Steven; Kuang, Jujiao; Ebert, Paul

    2008-03-01

    Phosphine is a fumigant used to protect stored commodities from infestation by pest insects, though high-level phosphine resistance in many insect species threatens the continued use of the fumigant. The mechanisms of toxicity and resistance are not clearly understood. In this study, the model organism, Caenorhabditis elegans, was employed to investigate the effects of phosphine on its proposed in vivo target, the mitochondrion. We found that phosphine rapidly perturbs mitochondrial morphology, inhibits oxidative respiration by 70%, and causes a severe drop in mitochondrial membrane potential (DeltaPsim) within 5 h of exposure. We then examined the phosphine-resistant strain of nematode, pre-33, to determine whether resistance was associated with any changes to mitochondrial physiology. Oxygen consumption was reduced by 70% in these mutant animals, which also had more mitochondrial genome copies than wild-type animals, a common response to reduced metabolic capacity. The mutant also had an unexpected increase in the basal DeltaPsim, which protected individuals from collapse of the membrane potential following phosphine treatment. We tested whether directly manipulating mitochondrial function could influence sensitivity toward phosphine and found that suppression of mitochondrial respiratory chain genes caused up to 10-fold increase in phosphine resistance. The current study confirms that phosphine targets the mitochondria and also indicates that direct alteration of mitochondrial function may be related to phosphine resistance.

  12. Multicatalyst system in asymmetric catalysis

    CERN Document Server

    Zhou, Jian

    2014-01-01

    This book introduces multi-catalyst systems by describing their mechanism and advantages in asymmetric catalysis.  Helps organic chemists perform more efficient catalysis with step-by-step methods  Overviews new concepts and progress for greener and economic catalytic reactions  Covers topics of interest in asymmetric catalysis including bifunctional catalysis, cooperative catalysis, multimetallic catalysis, and novel tandem reactions   Has applications for pharmaceuticals, agrochemicals, materials, and flavour and fragrance

  13. The lithiation and acyl transfer reactions of phosphine oxides, sulfides and boranes in the synthesis of cyclopropanes

    DEFF Research Database (Denmark)

    Clarke, Celia; Fox, David J; Pedersen, Daniel Sejer;

    2009-01-01

    Phosphine oxides are lithiated much faster than phosphine sulfides and phosphine boranes. Phosphine sulfides are in turn lithiated much more readily than phosphine boranes. It was possible to trap a phosphine sulfide THF in one case which upon treatment with t-BuOK gave cyclopropane, showing that...

  14. Kinetics and Catalysis Demonstrations.

    Science.gov (United States)

    Falconer, John L.; Britten, Jerald A.

    1984-01-01

    Eleven videotaped kinetics and catalysis demonstrations are described. Demonstrations include the clock reaction, oscillating reaction, hydrogen oxidation in air, hydrogen-oxygen explosion, acid-base properties of solids, high- and low-temperature zeolite reactivity, copper catalysis of ammonia oxidation and sodium peroxide decomposition, ammonia…

  15. Catalysis seen in action

    NARCIS (Netherlands)

    Tromp, M.

    2015-01-01

    Synchrotron radiation techniques are widely applied in materials research and heterogeneous catalysis. In homogeneous catalysis, its use so far is rather limited despite its high potential. Here, insights in the strengths and limitations of X-ray spectroscopy technique in the field of homogeneous ca

  16. Concepts in Heterogeneous Catalysis

    Science.gov (United States)

    1974-06-01

    The group Vill metals have vacant atomic d-orbilals (holes in the d-band) which were ex- peeled to promote celuemiorplion and catalysisA by...Houston, Texas, February 24.26 1971. Mango , F. D., Advances in Catalysis, 19 (1969). Mango , F. D. and i. H. Schachtschnelder, J. Am. Chem. Soc., 89

  17. Palladium-catalyzed α-arylation of benzylic phosphine oxides.

    Science.gov (United States)

    Montel, Sonia; Jia, Tiezheng; Walsh, Patrick J

    2014-01-03

    A novel approach to prepare diarylmethyl phosphine oxides from benzyl phosphine oxides via deprotonative cross-coupling processes (DCCP) is reported. The optimization of the reaction was guided by High-Throughput Experimentation (HTE) techniques. The Pd(OAc)2/Xantphos-based catalyst enabled the reaction between benzyl diphenyl or dicyclohexyl phosphine oxide derivatives and aryl bromides in good to excellent yields (51-91%).

  18. Enantioselective Cu-Catalyzed Arylation of Secondary Phosphine Oxides with Diaryliodonium Salts toward the Synthesis of P-Chiral Phosphines

    Science.gov (United States)

    2016-01-01

    Catalytic synthesis of nonracemic P-chiral phosphine derivatives remains a significant challenge. Here we report Cu-catalyzed enantioselective arylation of secondary phosphine oxides with diaryliodonium salts for the synthesis of tertiary phosphine oxides with high enantiomeric excess. The new process is demonstrated on a wide range of substrates and leads to products that are well-established P-chiral catalysts and ligands. PMID:27689432

  19. Cationic ruthenium alkylidene catalysts bearing phosphine ligands.

    Science.gov (United States)

    Endo, Koji; Grubbs, Robert H

    2016-02-28

    The discovery of highly active catalysts and the success of ionic liquid immobilized systems have accelerated attention to a new class of cationic metathesis catalysts. We herein report the facile syntheses of cationic ruthenium catalysts bearing bulky phosphine ligands. Simple ligand exchange using silver(i) salts of non-coordinating or weakly coordinating anions provided either PPh3 or chelating Ph2P(CH2)nPPh2 (n = 2 or 3) ligated cationic catalysts. The structures of these newly reported catalysts feature unique geometries caused by ligation of the bulky phosphine ligands. Their activities and selectivities in standard metathesis reactions were also investigated. These cationic ruthenium alkylidene catalysts reported here showed moderate activity and very similar stereoselectivity when compared to the second generation ruthenium dichloride catalyst in ring-closing metathesis, cross metathesis, and ring-opening metathesis polymerization assays.

  20. Occupational phosphine exposure in Indian workers.

    Science.gov (United States)

    Misra, U K; Bhargava, S K; Nag, D; Kidwai, M M; Lal, M M

    1988-09-01

    To evaluate the health effects of occupational phosphine exposure, 22 workers engaged in fumigation of stored grains were subjected to a clinical and environmental study. These workers were used to placing aluminum phosphide tablets on the stacks of grains and covering it with a gas-proof plastic cover. The mean age of the workers was 48 years (range 24-60) and mean duration of exposure 11.1 years (range 0.5-29). After fumigation they reported minor symptoms, which included cough (18.2%), dyspnoea (31.8%), tightness around the chest (27.3%), headache (31.8%), giddiness, numbness and lethargy (13.6% each), anorexia and epigastric pain (18.2% each). The abnormal physical signs included bilateral diffuse rhonchi and absent ankle reflex each occurring in one worker. Motor nerve conduction velocity of median and peroneal nerves, and sensory conduction velocity of median and sural nerves were normal. Phosphine concentration in the work environment ranged from 0.17 to 2.11 ppm. Occupational phosphine exposure in the workers was associated with mild to moderate symptoms, which were transient. However, to assess the chronic effects, long-term follow-up is recommended.

  1. Molecular water oxidation catalysis

    CERN Document Server

    Llobet, Antoni

    2014-01-01

    Photocatalytic water splitting is a promising strategy for capturing energy from the sun by coupling light harvesting and the oxidation of water, in order to create clean hydrogen fuel. Thus a deep knowledge of the water oxidation catalysis field is essential to be able to come up with useful energy conversion devices based on sunlight and water splitting. Molecular Water Oxidation Catalysis: A Key Topic for New Sustainable Energy Conversion Schemes presents a comprehensive and state-of-the-art overview of water oxidation catalysis in homogeneous phase, describing in detail the most importan

  2. Surface and nanomolecular catalysis

    CERN Document Server

    Richards, Ryan

    2006-01-01

    Using new instrumentation and experimental techniques that allow scientists to observe chemical reactions and molecular properties at the nanoscale, the authors of Surface and Nanomolecular Catalysis reveal new insights into the surface chemistry of catalysts and the reaction mechanisms that actually occur at a molecular level during catalysis. While each chapter contains the necessary background and explanations to stand alone, the diverse collection of chapters shows how developments from various fields each contributed to our current understanding of nanomolecular catalysis as a whole. The

  3. Catalysis seen in action.

    Science.gov (United States)

    Tromp, Moniek

    2015-03-06

    Synchrotron radiation techniques are widely applied in materials research and heterogeneous catalysis. In homogeneous catalysis, its use so far is rather limited despite its high potential. Here, insights in the strengths and limitations of X-ray spectroscopy technique in the field of homogeneous catalysis are given, including new technique developments. A relevant homogeneous catalyst, used in the industrially important selective oligomerization of ethene, is taken as a worked-out example. Emphasis is placed on time-resolved operando X-ray absorption spectroscopy with outlooks to novel high energy resolution and emission techniques. All experiments described have been or can be done at the Diamond Light Source Ltd (Didcot, UK).

  4. Research on Catalysis.

    Science.gov (United States)

    Bartholomew, Calvin H.; Hecker, William C.

    1984-01-01

    The objectives and philosophy of the Catalysis Laboratory at Brigham Young University are discussed. Also discusses recent and current research activities at the laboratory as well as educational opportunities, research facilities, and sources of research support. (JN)

  5. Phosphine-induced physiological and biochemical responses in rice seedlings.

    Science.gov (United States)

    Mi, Lina; Niu, Xiaojun; Lu, Meiqing; Ma, Jinling; Wu, Jiandong; Zhou, Xingqiu

    2014-04-01

    Paddy fields have been demonstrated to be one of the major resources of atmospheric phosphine and may have both positive and negative effects on rice plants. To elucidate the physiological and biochemical responses of rice plants to phosphine, rice seedlings (30 d old) were selected as a model plant and were treated with different concentrations of phosphine (0, 1.4, 4.2, and 7.0 mg m(-3)). Antioxidant enzymes, including superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), and lipid peroxidation measured via malondialdehyde (MDA) were determined as indicators of the physiological and biochemical responses of the rice seedlings to phosphine exposure. Increasing concentrations of phosphine treatment enhanced the activity of SOD, POD, and CAT. In addition, the MDA content increased with increasing concentrations of phosphine. These results suggested that antioxidant enzymes played important roles in protecting rice seedlings from ROS damage. Moreover, rice seedlings were able to cope with the oxidative stress induced by low concentrations of phosphine via an increase in antioxidant enzymatic activities. However, oxidative stress may not fully be prevented when the plants were exposed to higher concentrations of phosphine.

  6. Tris(pyrazolyl)phosphine oxide and Tris(triazolyl)phosphine oxide scorpion ligands

    NARCIS (Netherlands)

    Tazelaar, Cornelis G J; Lyaskovskyy, Volodymyr; Van Doorn, Ilana M.; Schaapkens, Xander; Lutz, Martin; Ehlers, Andreas W.; Slootweg, Jack; Lammertsma, Koop

    2014-01-01

    DFT calculations were performed on copper(I) complexes of neutral scorpion ligands based on either pyrazolyl (Pz) or triazolyl (Tz) rings with both methane and phosphine oxide apexes, that is, HC(Pz)3, OP(Pz)3, HC(Tz)3, and OP(Tz)3. The analyses reveal that all four ligands have similar donor proper

  7. Tris(pyrazolyl)phosphine oxide and Tris(triazolyl)phosphine oxide scorpion ligands

    NARCIS (Netherlands)

    Tazelaar, Cornelis G J; Lyaskovskyy, Volodymyr; Van Doorn, Ilana M.; Schaapkens, Xander; Lutz, Martin; Ehlers, Andreas W.; Slootweg, Jack; Lammertsma, Koop

    2014-01-01

    DFT calculations were performed on copper(I) complexes of neutral scorpion ligands based on either pyrazolyl (Pz) or triazolyl (Tz) rings with both methane and phosphine oxide apexes, that is, HC(Pz)3, OP(Pz)3, HC(Tz)3, and OP(Tz)3. The analyses reveal that all four ligands have similar donor proper

  8. Asymmetric synthesis of trans-disubstituted cyclopropanes using phosphine oxides and phosphine boranes

    DEFF Research Database (Denmark)

    Clarke, Celia; Foussat, Stéphanie; Fox, David J;

    2009-01-01

    The stereocontrolled synthesis of trans-disubstituted cyclopropylketones has been achieved from beta-alkyl, gamma-benzoyl phosphine oxides via a three-step cascade reaction incorporating an acyl transfer, phosphinoyl transfer and cyclisation to form the cyclopropane. Using Evans' chiral oxazolidi...

  9. Quantifying ligand effects in high-oxidation-state metal catalysis

    Science.gov (United States)

    Billow, Brennan S.; McDaniel, Tanner J.; Odom, Aaron L.

    2017-09-01

    Catalysis by high-valent metals such as titanium(IV) impacts our lives daily through reactions like olefin polymerization. In any catalysis, optimization involves a careful choice of not just the metal but also the ancillary ligands. Because these choices dramatically impact the electronic structure of the system and, in turn, catalyst performance, new tools for catalyst development are needed. Understanding ancillary ligand effects is arguably one of the most critical aspects of catalyst optimization and, while parameters for phosphines have been used for decades with low-valent systems, a comparable system does not exist for high-valent metals. A new electronic parameter for ligand donation, derived from experiments on a high-valent chromium species, is now available. Here, we show that the new parameters enable quantitative determination of ancillary ligand effects on catalysis rate and, in some cases, even provide mechanistic information. Analysing reactions in this way can be used to design better catalyst architectures and paves the way for the use of such parameters in a host of high-valent processes.

  10. Phosphine and phosphine oxide groups in metal-organic frameworks detected by P K-edge XAS.

    Science.gov (United States)

    Morel, F L; Pin, S; Huthwelker, T; Ranocchiari, M; van Bokhoven, J A

    2015-02-07

    Phosphine metal-organic frameworks (P-MOFs) are crystalline porous coordination polymers that contain phosphorus functional groups within their pores. We present the use of X-ray absorption spectroscopy (XAS) at the P K-edge to determine the phosphine to phosphine oxide ratio in two P-MOFs with MIL-101 topology. The phosphorus oxidation state is of particular interest as it strongly influences the coordination affinity of these materials for transition metals. This method can determine the oxidation state of phosphorus even when the material contains paramagnetic nuclei, differently from NMR spectroscopy. We observed that phosphine in LSK-15 accounts for 72 ± 4% of the total phosphorus groups and that LSK-12 contains only phosphine oxide.

  11. Sublethal exposure to phosphine decreases offspring production in strongly phosphine resistant female red flour beetles, Tribolium castaneum (Herbst.

    Directory of Open Access Journals (Sweden)

    Andrew W Ridley

    Full Text Available The red flour beetle is a cosmopolitan pest of stored grain and stored grain products. The pest has developed resistance to phosphine, the primary chemical used for its control. The reproductive output of survivors from a phosphine treatment is an important element of resistance development but experimental data are lacking. We exposed mated resistant female beetles to 0.135 mg/L of phosphine for 48 h at 25 °C. Following one week of recovery we provided two non-exposed males to half of the phosphine exposed females and to half of the non-exposed control females. Females that had been exposed produced significantly fewer offspring than non-exposed females. Females that remained isolated produced significantly fewer offspring than both exposed females with access to males and non-exposed controls (P<0.05. Some females were permanently damaged from exposure to phosphine and did not reproduce even when given access to males. We also examined the additional effects of starvation prior to phosphine exposure on offspring production. Non-exposed starved females experienced a small reduction in mean offspring production in the week following starvation, followed by a recovery in the second week. Females that were starved and exposed to phosphine demonstrated a very significant reduction in offspring production in the first week following exposure which remained significantly lower than that of starved non-exposed females (P<0.05. These results demonstrate a clear sublethal effect of phosphine acting on the female reproductive system and in some individuals this can lead to permanent reproductive damage. Pest population rebound after a fumigation may be slower than expected which may reduce the rate of phosphine resistance development. The results presented strongly suggest that phosphine resistance models should include sublethal effects.

  12. Communication: Tunnelling splitting in the phosphine molecule

    Science.gov (United States)

    Sousa-Silva, Clara; Tennyson, Jonathan; Yurchenko, Sergey N.

    2016-09-01

    Splitting due to tunnelling via the potential energy barrier has played a significant role in the study of molecular spectra since the early days of spectroscopy. The observation of the ammonia doublet led to attempts to find a phosphine analogous, but these have so far failed due to its considerably higher barrier. Full dimensional, variational nuclear motion calculations are used to predict splittings as a function of excitation energy. Simulated spectra suggest that such splittings should be observable in the near infrared via overtones of the ν2 bending mode starting with 4ν2.

  13. Tunnelling splitting in the phosphine molecule

    CERN Document Server

    Sousa-Silva, Clara; Yurchenko, Sergey N

    2016-01-01

    Splitting due to tunnelling via the potential energy barrier has played a significant role in the study of molecular spectra since the early days of spectroscopy. The observation of the ammonia doublet led to attempts to find a phosphine analogous, but these have so far failed due to its considerably higher barrier. Full dimensional, variational nuclear motion calculations are used to predict splittings as a function of excitation energy. Simulated spectra suggest that such splittings should be observable in the near infrared via overtones of the $\

  14. Homogeneous, Heterogeneous, and Enzymatic Catalysis.

    Science.gov (United States)

    Oyama, S. Ted; Somorjai, Gabor A.

    1988-01-01

    Discusses three areas of catalysis: homegeneous, heterogeneous, and enzymatic. Explains fundamentals and economic impact of catalysis. Lists and discusses common industrial catalysts. Provides a list of 107 references. (MVL)

  15. Catalysis for alternative energy generation

    CERN Document Server

    2012-01-01

    Summarizes recent problems in using catalysts in alternative energy generation and proposes novel solutions  Reconsiders the role of catalysis in alternative energy generation  Contributors include catalysis and alternative energy experts from across the globe

  16. Asymmetric catalysis with helical polymers

    NARCIS (Netherlands)

    Megens, Rik P.; Roelfes, Gerard

    Inspired by nature, the use of helical biopolymer catalysts has emerged over the last years as a new approach to asymmetric catalysis. In this Concept article the various approaches and designs and their application in asymmetric catalysis will be discussed.

  17. Asymmetric catalysis with helical polymers

    NARCIS (Netherlands)

    Megens, Rik P.; Roelfes, Gerard

    2011-01-01

    Inspired by nature, the use of helical biopolymer catalysts has emerged over the last years as a new approach to asymmetric catalysis. In this Concept article the various approaches and designs and their application in asymmetric catalysis will be discussed.

  18. Production and emission of phosphine gas from wetland ecosystems.

    Science.gov (United States)

    Han, Chao; Gu, Xueyuan; Geng, Jinju; Hong, Yuning; Zhang, Rui; Wang, Xiaorong; Gao, Shixiang

    2010-01-01

    Phosphine is a part of an atmospheric link of phosphorus cycle on earth, which could be an important pathway for phosphorus transport in environment. Wetland ecosystems are important locations for global biogeochemical phosphorus cycle. In this study, production and emission fluxes of free phosphine from four wetlands types in southern China were observed in different seasons. The results showed that the concentration of phosphine liberated from wetlands was at pg/m3-ng/m3 level. The emission concentrations of different wetlands followed the sequence: paddy field (51.83 +/- 3.06) ng/m3 > or = marsh (46.54 +/- 20.55) ng/m3 > lake (37.05 +/- 22.74) ng/m3 > coastal wetland (1.71 +/- 0.73) ng/m3, the positive phosphine emission flux occurred in rice paddy field (6.67 +/- 5.18) ng/(m2 x hr) and marsh (6.23 +/- 26.9) ng/(m2 x hr), while a negative phosphine flux of (-13.11 +/- 35.04) ng/(m2 x hr) was observed on the water-air interface of Lake Taihu, suggesting that paddy field and marsh may be important sources for phosphine gas in atmosphere, while lake may be a sink of atmospheric phosphine gas during the sampling period. Atmospheric phosphine levels and emission flux from Yancheng marsh and rice paddy field varied in different seasons and vegetational zones. Both diffusion resistance in aqueous phase and temperature were dominating factors for the production and transportation of phosphine to atmosphere.

  19. Preface: Catalysis Today

    DEFF Research Database (Denmark)

    Li, Yongdan

    2016-01-01

    This special issue of Catalysis Today with the theme “Sustain-able Energy” results from a great success of the session “Catalytic Technologies Accelerating the Establishment of Sustainable and Clean Energy”, one of the two sessions of the 1st International Symposium on Catalytic Science and Techn......This special issue of Catalysis Today with the theme “Sustain-able Energy” results from a great success of the session “Catalytic Technologies Accelerating the Establishment of Sustainable and Clean Energy”, one of the two sessions of the 1st International Symposium on Catalytic Science...... and Technology in Sustainable Energy and Environment, held in Tianjin, China during October8–10, 2014. This biennial symposium offers an international forum for discussing and sharing the cutting-edge researches and the most recent breakthroughs in energy and environmental technologies based on catalysis...

  20. Mitsunobu Reactions Catalytic in Phosphine and a Fully Catalytic System.

    Science.gov (United States)

    Buonomo, Joseph A; Aldrich, Courtney C

    2015-10-26

    The Mitsunobu reaction is renowned for its mild reaction conditions and broad substrate tolerance, but has limited utility in process chemistry and industrial applications due to poor atom economy and the generation of stoichiometric phosphine oxide and hydrazine by-products that complicate purification. A catalytic Mitsunobu reaction using innocuous reagents to recycle these by-products would overcome both of these shortcomings. Herein we report a protocol that is catalytic in phosphine (1-phenylphospholane) employing phenylsilane to recycle the catalyst. Integration of this phosphine catalytic cycle with Taniguchi's azocarboxylate catalytic system provided the first fully catalytic Mitsunobu reaction.

  1. Isotopes in heterogeneous catalysis

    CERN Document Server

    Hargreaves, Justin SJ

    2006-01-01

    The purpose of this book is to review the current, state-of-the-art application of isotopic methods to the field of heterogeneous catalysis. Isotopic studies are arguably the ultimate technique in in situ methods for heterogeneous catalysis. In this review volume, chapters have been contributed by experts in the field and the coverage includes both the application of specific isotopes - Deuterium, Tritium, Carbon-14, Sulfur-35 and Oxygen-18 - as well as isotopic techniques - determination of surface mobility, steady state transient isotope kinetic analysis, and positron emission profiling.

  2. Nanomaterials in catalysis

    CERN Document Server

    Serp, Philippe; Somorjai, Gabor A; Chaudret, Bruno

    2012-01-01

    Nanocatalysis has emerged as a field at the interface between homogeneous and heterogeneous catalysis and offers unique solutions to the demanding requirements for catalyst improvement. Heterogeneous catalysis represents one of the oldest commercial applications of nanoscience and nanoparticles of metals, semiconductors, oxides, and other compounds have been widely used for important chemical reactions. The main focus of this fi eld is the development of well-defined catalysts, which may include both metal nanoparticles and a nanomaterial as the support. These nanocatalysts should display the

  3. Pollution Control by Catalysis

    DEFF Research Database (Denmark)

    Eriksen, Kim Michael; Fehrmann, Rasmus

    1998-01-01

    The report summarises the results of two years of collaboration supported by INTAS between Department of Chemistry,DTU,DK , IUSTI,Universite de Provence,FR, ICE/HT University 6of Patras,GR, and Boreskov Institute of Catalysis,RU.The project has been concerned with mechanistic studies of deNOx and...

  4. Pollution Control by Catalysis

    DEFF Research Database (Denmark)

    Eriksen, Kim Michael; Fehrmann, Rasmus

    1998-01-01

    The report summarises the results of two years of collaboration supported by INTAS between Department of Chemistry,DTU,DK , IUSTI,Universite de Provence,FR, ICE/HT University 6of Patras,GR, and Boreskov Institute of Catalysis,RU.The project has been concerned with mechanistic studies of deNOx and...

  5. A core metabolic enzyme mediates resistance to phosphine gas.

    Science.gov (United States)

    Schlipalius, David I; Valmas, Nicholas; Tuck, Andrew G; Jagadeesan, Rajeswaran; Ma, Li; Kaur, Ramandeep; Goldinger, Anita; Anderson, Cameron; Kuang, Jujiao; Zuryn, Steven; Mau, Yosep S; Cheng, Qiang; Collins, Patrick J; Nayak, Manoj K; Schirra, Horst Joachim; Hilliard, Massimo A; Ebert, Paul R

    2012-11-09

    Phosphine is a small redox-active gas that is used to protect global grain reserves, which are threatened by the emergence of phosphine resistance in pest insects. We find that polymorphisms responsible for genetic resistance cluster around the redox-active catalytic disulfide or the dimerization interface of dihydrolipoamide dehydrogenase (DLD) in insects (Rhyzopertha dominica and Tribolium castaneum) and nematodes (Caenorhabditis elegans). DLD is a core metabolic enzyme representing a new class of resistance factor for a redox-active metabolic toxin. It participates in four key steps of core metabolism, and metabolite profiles indicate that phosphine exposure in mutant and wild-type animals affects these steps differently. Mutation of DLD in C. elegans increases arsenite sensitivity. This specific vulnerability may be exploited to control phosphine-resistant insects and safeguard food security.

  6. Anion-π catalysis.

    Science.gov (United States)

    Zhao, Yingjie; Beuchat, César; Domoto, Yuya; Gajewy, Jadwiga; Wilson, Adam; Mareda, Jiri; Sakai, Naomi; Matile, Stefan

    2014-02-05

    The introduction of new noncovalent interactions to build functional systems is of fundamental importance. We here report experimental and theoretical evidence that anion-π interactions can contribute to catalysis. The Kemp elimination is used as a classical tool to discover conceptually innovative catalysts for reactions with anionic transition states. For anion-π catalysis, a carboxylate base and a solubilizer are covalently attached to the π-acidic surface of naphthalenediimides. On these π-acidic surfaces, transition-state stabilizations up to ΔΔGTS = 31.8 ± 0.4 kJ mol(-1) are found. This value corresponds to a transition-state recognition of KTS = 2.7 ± 0.5 μM and a catalytic proficiency of 3.8 × 10(5) M(-1). Significantly increasing transition-state stabilization with increasing π-acidity of the catalyst, observed for two separate series, demonstrates the existence of "anion-π catalysis." In sharp contrast, increasing π-acidity of the best naphthalenediimide catalysts does not influence the more than 12 000-times weaker substrate recognition (KM = 34.5 ± 1.6 μM). Together with the disappearance of Michaelis-Menten kinetics on the expanded π-surfaces of perylenediimides, this finding supports that contributions from π-π interactions are not very important for anion-π catalysis. The linker between the π-acidic surface and the carboxylate base strongly influences activity. Insufficient length and flexibility cause incompatibility with saturation kinetics. Moreover, preorganizing linkers do not improve catalysis much, suggesting that the ideal positioning of the carboxylate base on the π-acidic surface is achieved by intramolecular anion-π interactions rather than by an optimized structure of the linker. Computational simulations are in excellent agreement with experimental results. They confirm, inter alia, that the stabilization of the anionic transition states (but not the neutral ground states) increases with the π-acidity of the

  7. Oxygen enhances phosphine toxicity for postharvest pest control.

    Science.gov (United States)

    Liu, Yong-Biao

    2011-10-01

    Phosphine fumigations under superatmospheric oxygen levels (oxygenated phosphine fumigations) were significantly more effective than the fumigations under the normal 20.9% atmospheric oxygen level against western flower thrips [Frankliniella occidentalis (Pergande)] adults and larvae, leafminer Liriomyza langei Frick pupae, grape mealybug [Pseudococcus maritimus (Ehrhorn)] eggs, and Indianmeal moth [Plodia interpunctella (Hübner)] eggs and pupae. In 5-h fumigations with 1,000 ppm phosphine at 5 degrees C, mortalities of western flower thrips increased significantly from 79.5 to 97.7% when oxygen was increased from 20.9 to 40% and reached 99.3% under 80% O2. Survivorships of leafminer pupae decreased significantly from 71.2% under 20.9% O2 to 16.2% under 40% O2 and reached 1.1% under 80% O2 in 24-h fumigations with 500 ppm phosphine at 5 degrees C. Complete control of leafminer pupae was achieved in 24-h fumigations with 1,000 ppm phosphine at 5 degrees C under 60% O2 or higher. Survivorships of grape mealybug eggs also decreased significantly in 48-h fumigations with 1,000 ppm phosphine at 2 degrees C under 60% O2 compared with the fumigations under 20.9% O2. Indian meal moth egg survivorships decreased significantly from 17.4 to 0.5% in responses to an oxygen level increase from 20.9 to 40% in 48-h fumigations with 1,000 ppm phosphine at 10 degrees C and reached 0.2% in fumigations under 80% O2. When the oxygen level was reduced from 20.9 to 15 and 10% in fumigations, survivorships of Indianmeal moth eggs increased significantly from 17.4 to 32.9 and 39.9%, respectively. Increased O2 levels also resulted in significantly lower survival rates of Indianmeal moth pupae in response to 24-h fumigations with 500 and 1,000 ppm phosphine at 10 degrees C and a complete control was achieved in the 1,000 ppm phosphine fumigations under 60% O2. Oxygenated phosphine fumigations have marked potential to improve insecticidal efficacy. Advantages and limitations of oxygenated

  8. Tris[2-(deuteriomethylsulfanylphenyl]phosphine deuteriochloroform 0.125-solvate

    Directory of Open Access Journals (Sweden)

    Seik Weng Ng

    2008-05-01

    Full Text Available The title deuterated tripodal phosphine, C21H12D9PS3·0.125CDCl3, crystallizes as two independent molecules, one of which lies on a general position and the other about a threefold rotation axis, and as a deuteriochloroform solvate. The solvent molecule is disordered about a site of symmetry 3, so that the ratio of phosphine to solvent is 8:1. The P atom adopts a pyramidal coordination geometry.

  9. Imide/Arylene Ether Copolymers Containing Phosphine Oxide

    Science.gov (United States)

    Jensen, Brian J.; Partos, Richard D.

    1993-01-01

    Phosphine oxide groups react with oxygen to form protective phosphate surface layers. Series of imide/arylene ether block copolymers containing phosphine oxide units in backbone synthesized and characterized. In comparison with commercial polyimide, these copolymers display better resistance to etching by oxygen plasma. Tensile strengths and tensile moduli greater than those of polyarylene ether homopolymer. Combination of properties makes copolymers attractive for films, coatings, adhesives, and composite matrices where resistance to atomic oxygen needed.

  10. Oxidative alkoxylation of phosphine in alcohol solutions of copper halides

    Science.gov (United States)

    Polimbetova, G. S.; Borangazieva, A. K.; Ibraimova, Zh. U.; Bugubaeva, G. O.; Keynbay, S.

    2016-08-01

    The phosphine oxidation reaction with oxygen in alcohol solutions of copper (I, II) halides is studied. Kinetic parameters, intermediates, and by-products are studied by means of NMR 31P-, IR-, UV-, and ESR- spectroscopy; and by magnetic susceptibility, redox potentiometry, gas chromatography, and elemental analysis. A reaction mechanism is proposed, and the optimum conditions are found for the reaction of oxidative alkoxylation phosphine.

  11. Resistance of stored-product insects to phosphine

    OpenAIRE

    2008-01-01

    The objectives of this work were to assess phosphine resistance in insect populations (Tribolium castaneum, Rhyzopertha dominica, Sitophilus zeamais and Oryzaephilus surinamensis) from different regions of Brazil and to verify if the prevailing mechanism of phosphine resistance in these populations involves reduced respiration rates. Sixteen populations of T. castaneum, 15 of R. dominica, 27 of S. zeamais and eight of O. surinamensis were collected from 36 locations over seven Brazilian state...

  12. Metal-Free Reduction of Phosphine Oxides Using Polymethylhydrosiloxane

    Directory of Open Access Journals (Sweden)

    Emmanuel Nicolas

    2016-11-01

    Full Text Available A simple protocol is presented here for the use of inexpensive polymethylhydrosiloxane (PMHS, a waste product of the silicon industry, as stoichiometric reducing agent for phosphine oxides to phosphines, a highly desirable reaction to recover P-based ligands from their spent form. The reactions were studied by screening parameters, such as substrate to reductant ratio, temperature and reaction time, achieving good conversions and selectivities.

  13. Synthesis, characterization, and activity of yttrium(III) nitrate complexes bearing tripodal phosphine oxide and mixed phosphine-phosphine oxide ligands.

    Science.gov (United States)

    Sues, Peter E; Lough, Alan J; Morris, Robert H

    2012-09-03

    A series of four tripodal phosphine oxide ligands, (OPR(2))(2)CHCH(2)POR(2) (1a-1d), and four mixed phosphine-phosphine oxide ligands, (OPR(2))(2)CHCH(2)PR(2) (3a-3d), were synthesized and coordinated to yttrium to produce Y(NO(3))(3)[(OPR(2))(2)CHCH(2)POR(2)] (2a-2d) and Y(NO(3))(3)[(OPR(2))(2)CHCH(2)PR(2)](OPPh(3)) (4a-4d) complexes. The previously reported ligand 1a and unknown phosphine oxide ligands 1b-1d were generated in an unprecedented trisubstitution reaction of bromoacetaldehyde diethyl acetal, while the novel partially reduced ligands 3a-3d were synthesized from 1a-1d according to a known literature protocol for the selective monoreduction of bisphosphine oxides. The neutral yttrium complexes 2a-2d are nine-coordinate and display a tricapped trigonal-prismatic geometry. Complexes 4a-4d are also neutral, nine-coordinate species and have a pendant phosphine functionality, which provides the potential to form bimetallic early-late transition-metal complexes. Additionally, yttrium complexes 2a-2d were activated with base and tested for the ring-opening polymerization of ε-caprolactone, but the results showed that base by itself was significantly more effective than the yttrium species investigated.

  14. Proteomic analysis of peach fruit moth larvae treated with phosphine.

    Science.gov (United States)

    Liu, Tao; Li, Li; Li, Baishu; Zhang, Fanhua; Wang, Yuejin

    2012-01-01

    Phosphine has been used worldwide for the control of stored-product insects for many years. However, the molecular mechanism of its toxicity is not clearly understood. In the current study, larvae of the peach fruit moth were fumigated with phosphine. Proteomic analysis was then performed to identify the regulated proteins. Our results confirmed the phosphine toxicity on the peach fruit moth. The median lethal time LT50 was 38.5 h at 330 ppm at 25 degrees C. During fumigation, the respiration of the peach fruit moth was extremely inhibited. Of the 26 regulated proteins, 16 were identified by MALDI-TOF mass spectrometry after a 24 h treatment. The proteins were classified as related to metabolism (25 %), anti-oxidation (6 %), signal transduction (38 %), or defense (19 %). The rest (13 %) were unclassified. Phosphine regulation of ATP and glutathione contents, as well as of ATP synthase and glutathione S-transferase 2 activities were confirmed by enzyme activity analysis. These results demonstrate that complex transcriptional regulations underlie phosphine fumigation. New theories on the mechanism of phosphine toxicity may also be established based on these results.

  15. Toxicity of phosphine fumigation against Bactrocera tau at low temperature.

    Science.gov (United States)

    Li, Li; Liu, Tao; Li, Baishu; Zhang, Fanhua; Dong, Shujun; Wang, Yuejin

    2014-04-01

    Bactrocera tau (Walker) is one of the most harmful pests to fruits and vegetables. To counteract this pest, the development of phytosanitary treatment is required to comply with the pest regulation requirements of certain countries. This study investigated the toxicity of phosphine fumigation against B. tau under low temperature conditions. Different growth stages (eggs and instars) of B. tau were exposed to 1.07 mg/liter phosphine for 1-10 d at 5 degrees C, and compared with unfumigated flies at 5 degrees C. The results showed that tolerance to cold treatment alone or phosphine fumigation at low temperatures generally increased with the stage of insect development. However, eggs incubated for 12 h at 25 degrees C represented the most tolerant growth stage to phosphine fumigation at 5 degrees C. Furthermore, 8.56- to 2.18-d exposure periods were required to achieve 99% mortality with a range of phosphine concentrations from 0.46 to 3.81 mg/liter. C0.62 t = k expression was obtained from the LT99 values, indicating that the exposure time was more important than the phosphine concentration.

  16. Phosphine sampling and analysis using silver nitrate impregnated filters.

    Science.gov (United States)

    Demange, M; Elcabache, J M; Grzebyk, M; Peltier, A; Proust, N; Thénot, D; Ducom, P; Fritsch, J

    2000-10-01

    In the field of industrial hygiene, besides the necessity of monitoring phosphine with direct reading apparatus to prevent accidents, there is a need for a method of sampling and analysing phosphine to control workers' exposure. The use of filters impregnated with silver nitrate to collect arsine, phosphine and stibine in workplace air has been described in the literature. Having previously chosen this type of filter to collect arsine, we studied its characteristics for phosphine capture. A filter impregnated with sodium carbonate was used both as a prefilter to collect the particles and to trap arsenic trioxide. After dissolving the silver compounds in nitric acid, ICP emission spectrometry was used to carry out the analysis. This article describes the comparative sampling we performed in a microelectronic laboratory and in a fumigation chamber (130 samples) to determine the concentration of AgNO3 impregnation solution to be used, the detection limit of the method and the retention capacity of the impregnated filters. Interference with other gases reacting with silver nitrate was studied and the storage time for sampled filters and analysis solutions was checked. The detection limit of the adopted method is better than 1 microg per filter, and the retention capacity exceeds 300 microg per filter. The problem of how to sample phosphine when H2S, NH3, or HCl is present has been solved, but the problem of sampling phosphine in atmospheres where acetylene evolves remains. Sampled filters and filter solutions are stable for more than three months at ambient temperature.

  17. Sublethal exposure to phosphine decreases offspring production in strongly phosphine resistant female red flour beetles, Tribolium castaneum (Herbst).

    Science.gov (United States)

    Ridley, Andrew W; Magabe, Seymour; Schlipalius, David I; Rafter, Michelle A; Collins, Patrick J

    2012-01-01

    The red flour beetle is a cosmopolitan pest of stored grain and stored grain products. The pest has developed resistance to phosphine, the primary chemical used for its control. The reproductive output of survivors from a phosphine treatment is an important element of resistance development but experimental data are lacking. We exposed mated resistant female beetles to 0.135 mg/L of phosphine for 48 h at 25 °C. Following one week of recovery we provided two non-exposed males to half of the phosphine exposed females and to half of the non-exposed control females. Females that had been exposed produced significantly fewer offspring than non-exposed females. Females that remained isolated produced significantly fewer offspring than both exposed females with access to males and non-exposed controls (Pphosphine and did not reproduce even when given access to males. We also examined the additional effects of starvation prior to phosphine exposure on offspring production. Non-exposed starved females experienced a small reduction in mean offspring production in the week following starvation, followed by a recovery in the second week. Females that were starved and exposed to phosphine demonstrated a very significant reduction in offspring production in the first week following exposure which remained significantly lower than that of starved non-exposed females (Pphosphine acting on the female reproductive system and in some individuals this can lead to permanent reproductive damage. Pest population rebound after a fumigation may be slower than expected which may reduce the rate of phosphine resistance development. The results presented strongly suggest that phosphine resistance models should include sublethal effects.

  18. Sublethal Exposure to Phosphine Decreases Offspring Production in Strongly Phosphine Resistant Female Red Flour Beetles, Tribolium castaneum (Herbst)

    Science.gov (United States)

    Ridley, Andrew W.; Magabe, Seymour; Schlipalius, David I.; Rafter, Michelle A.; Collins, Patrick J.

    2012-01-01

    The red flour beetle is a cosmopolitan pest of stored grain and stored grain products. The pest has developed resistance to phosphine, the primary chemical used for its control. The reproductive output of survivors from a phosphine treatment is an important element of resistance development but experimental data are lacking. We exposed mated resistant female beetles to 0.135 mg/L of phosphine for 48 h at 25°C. Following one week of recovery we provided two non-exposed males to half of the phosphine exposed females and to half of the non-exposed control females. Females that had been exposed produced significantly fewer offspring than non-exposed females. Females that remained isolated produced significantly fewer offspring than both exposed females with access to males and non-exposed controls (Pphosphine and did not reproduce even when given access to males. We also examined the additional effects of starvation prior to phosphine exposure on offspring production. Non-exposed starved females experienced a small reduction in mean offspring production in the week following starvation, followed by a recovery in the second week. Females that were starved and exposed to phosphine demonstrated a very significant reduction in offspring production in the first week following exposure which remained significantly lower than that of starved non-exposed females (Pphosphine acting on the female reproductive system and in some individuals this can lead to permanent reproductive damage. Pest population rebound after a fumigation may be slower than expected which may reduce the rate of phosphine resistance development. The results presented strongly suggest that phosphine resistance models should include sublethal effects. PMID:23300916

  19. A BRIEF HISTORY OF INDUSTRIAL CATALYSIS

    Energy Technology Data Exchange (ETDEWEB)

    Heinemann, Heinz

    1979-06-01

    This history covers: catalytic cracking and other acid catalysed reactions; zeolite catalysis; dual functional catalysis; hydrogenation catalysis and hydrogen production; catalytic hydrocarbon dehydrogenation; catalytic alkylation and dealkylation; catalytic coal liquefaction and gasification; heterogeneous oxidation, arnmoxidation, chlorination, and oxychlorination catalysis; olefin disproportionation catalysis; industrial homogeneous catalysis; catalytic polymerization; catalysis for motor vehicle emission control; fuel cell catalysis; and the profession of the catalytic chemist or engineer. The discussion is mostly limited to the rapid growth of industrial catalysis between the second World War and 1978.

  20. Polymer versus phosphine stabilized Rh nanoparticles as components of supported catalysts: implication in the hydrogenation of cyclohexene model molecule.

    Science.gov (United States)

    Ibrahim, M; Garcia, M A S; Vono, L L R; Guerrero, M; Lecante, P; Rossi, L M; Philippot, K

    2016-11-28

    The solution synthesis of rhodium nanoparticles (Rh NPs) was achieved from the organometallic complex [Rh(η(3)-C3H5)3] under mild reaction conditions in the presence of a polymer (PVP), a monophosphine (PPh3) and a diphosphine (dppb) as a stabilizer, leading to very small Rh NPs of 2.2, 1.3 and 1.7 nm mean size, with PVP, PPh3 and dppb, respectively. The surface properties of these nanoparticles were compared using a model catalysis reaction namely, hydrogenation of cyclohexene, first under colloidal conditions and then under supported conditions after their immobilization onto an amino functionalized silica-coated magnetite support. PVP-stabilized Rh NPs were the most active catalyst whatever the catalytic conditions as a result of a strong coordination of the phosphine ligands at the metal surface that blocks some surface atoms even after several recycles of the supported nanocatalysts and limit the reactivity of the metallic surface.

  1. Magnetic Catalysis in Graphene

    CERN Document Server

    Winterowd, Christopher; Zafeiropoulos, Savvas

    2015-01-01

    One of the most important developments in condensed matter physics in recent years has been the discovery and characterization of graphene. A two-dimensional layer of Carbon arranged in a hexagonal lattice, graphene exhibits many interesting electronic properties, most notably that the low energy excitations behave as massless Dirac fermions. These excitations interact strongly via the Coulomb interaction and thus non-perturbative methods are necessary. Using methods borrowed from lattice QCD, we study the graphene effective theory in the presence of an external magnetic field. Graphene, along with other $(2+1)$-dimensional field theories, has been predicted to undergo spontaneous breaking of flavor symmetry including the formation of a gap as a result of the external magnetic field. This phenomenon is known as magnetic catalysis. Our study investigates magnetic catalysis using a fully non-perturbative approach.

  2. Solid Base Catalysis

    CERN Document Server

    Ono, Yoshio

    2011-01-01

    The importance of solid base catalysts has come to be recognized for their environmentally benign qualities, and much significant progress has been made over the past two decades in catalytic materials and solid base-catalyzed reactions. The book is focused on the solid base. Because of the advantages over liquid bases, the use of solid base catalysts in organic synthesis is expanding. Solid bases are easier to dispose than liquid bases, separation and recovery of products, catalysts and solvents are less difficult, and they are non-corrosive. Furthermore, base-catalyzed reactions can be performed without using solvents and even in the gas phase, opening up more possibilities for discovering novel reaction systems. Using numerous examples, the present volume describes the remarkable role solid base catalysis can play, given the ever increasing worldwide importance of "green" chemistry. The reader will obtain an overall view of solid base catalysis and gain insight into the versatility of the reactions to whic...

  3. Catalysis and biocatalysis program

    Science.gov (United States)

    Ingham, J. D.

    1993-01-01

    This final report presents a summary of research activities and accomplishments for the Catalysis and Biocatalysis Program, which was renamed the Biological and Chemical Technologies Research (BCTR) Program, currently of the Advanced Industrial Concepts Division (AICD), Office of Industrial Technologies of the Department of Energy (DOE). The Program was formerly under the Division of Energy Conversion and Utilization Technologies (ECUT) until the DOE reorganization in April, 1990. The goals of the BCTR Program are consistent with the initial ECUT goals, but represent an increased effort toward advances in chemical and biological technology transfer. In addition, the transition reflects a need for the BCTR Program to assume a greater R&D role in chemical catalysis as well as a need to position itself for a more encompassing involvement in a broader range of biological and chemical technology research. The mission of the AICD is to create a balanced Program of high risk, long-term, directed interdisciplinary research and development that will improve energy efficiency and enhance fuel flexibility in the industrial sector. Under AICD, the DOE Catalysis and Biocatalysis Program sponsors research and development in furthering industrial biotechnology applications and promotes the integrated participation of universities, industrial companies, and government research laboratories.

  4. Phosphine in paddy fields and the effects of environmental factors.

    Science.gov (United States)

    Niu, Xiaojun; Wei, Aishu; Li, Yadong; Mi, Lina; Yang, Zhiquan; Song, Xiaofei

    2013-11-01

    Ambient levels of phosphine (PH3) in the air, phosphine emission fluxes from paddy fields and rice plants, and the distribution of matrix-bound phosphine (MBP) in paddy soils were investigated throughout the growing stages of rice. The relationships between MBP and environmental factors were analyzed to identify the principal factors determining the distribution of MBP. The phosphine ambient levels ranged from 2.368±0.6060 ng m(-3) to 24.83±6.529 ng m(-3) and averaged 14.25±4.547 ng m(-3). The highest phosphine emission flux was 22.54±3.897 ng (m(2)h)(-1), the lowest flux was 7.64±4.83 ng (m(2)h)(-1), and the average flux was 14.17±4.977 ng (m(2)h)(-1). Rice plants transport a significant portion of the phosphine emitted from the paddy fields. The highest contribution rate of rice plants to the phosphine emission fluxes reached 73.73% and the average contribution was 43.00%. The average MBP content of 111.6 ng kg(-1)fluctuated significantly in different stages of rice growth and initially increased then decreased with increasing depth. The peak MBP content in each growth stage occurred approximately 10 cm under the surface of paddy soils. Pearson correlation analyses and stepwise multiple regression analysis showed that soil temperature (Ts), acid phosphatase (ACP) and total phosphorus (TP) were the principal environmental factors, with correlative rankings of Ts>ACP>TP.

  5. Fumigation with phosphine under gas-proof sheets (ODNRI Bulletin No. 26)

    OpenAIRE

    Friendship, R

    1989-01-01

    Although fumigation with phosphine is a simple technique, results, in terms of insect mortality, are often unsatisfactory. This is because complete insect control can only be achieved if an insecticidal concentration of phosphine is maintained for a sufficient length of time. Where multiple fumigations with phosphine have failed to meet these criteria insect resistance to phosphine has become established. This bulletin describes the formulations, equipment, application techniques and safety c...

  6. Responses of phosphate transporter gene and alkaline phosphatase in Thalassiosira pseudonana to phosphine.

    Science.gov (United States)

    Fu, Mei; Song, Xiuxian; Yu, Zhiming; Liu, Yun

    2013-01-01

    Phosphine, which is released continuously from sediment, can affect the eco-physiological strategies and molecular responses of phytoplankton. To examine the effects of phosphine on phosphorus uptake and utilization in Thalassiosira pseudonana, we examined the transcriptional level of the phosphate transporter gene (TpPHO) and the activity of alkaline phosphatase (AKP) in relation to supplement of various concentrations of phosphine. TpPHO expression was markedly promoted by phosphine in both the phosphate-deficient and phosphate-4 µM culture. However, high phosphine concentrations can inhibit TpPHO transcription in the declining growth phase. AKP activity was also higher in the phosphine treatment groups than that of the control. It increased with increasing phosphine concentration in the range of 0 to 0.056 µM but was inhibited by higher levels of phosphine. These responses revealed that phosphine can affect phosphate uptake and utilization in T. pseudonana. This result was consistent with the effect of phosphine on algal growth, while TpPHO expression and AKP were even more sensitive to phosphine than algal growth. This work provides a basic understanding for further research about how phosphine affects phytoplankton.

  7. Organocatalysis: Fundamentals and Comparisons to Metal and Enzyme Catalysis

    Directory of Open Access Journals (Sweden)

    Pierre Vogel

    2016-08-01

    Full Text Available Catalysis fulfills the promise that high-yielding chemical transformations will require little energy and produce no toxic waste. This message is carried by the study of the evolution of molecular catalysis of some of the most important reactions in organic chemistry. After reviewing the conceptual underpinnings of catalysis, we discuss the applications of different catalysts according to the mechanism of the reactions that they catalyze, including acyl group transfers, nucleophilic additions and substitutions, and C–C bond forming reactions that employ umpolung by nucleophilic additions to C=O and C=C double bonds. We highlight the utility of a broad range of organocatalysts other than compounds based on proline, the cinchona alkaloids and binaphthyls, which have been abundantly reviewed elsewhere. The focus is on organocatalysts, although a few examples employing metal complexes and enzymes are also included due to their significance. Classical Brønsted acids have evolved into electrophilic hands, the fingers of which are hydrogen donors (like enzymes or other electrophilic moieties. Classical Lewis base catalysts have evolved into tridimensional, chiral nucleophiles that are N- (e.g., tertiary amines, P- (e.g., tertiary phosphines and C-nucleophiles (e.g., N-heterocyclic carbenes. Many efficient organocatalysts bear electrophilic and nucleophilic moieties that interact simultaneously or not with both the electrophilic and nucleophilic reactants. A detailed understanding of the reaction mechanisms permits the design of better catalysts. Their construction represents a molecular science in itself, suggesting that sooner or later chemists will not only imitate Nature but be able to catalyze a much wider range of reactions with high chemo-, regio-, stereo- and enantioselectivity. Man-made organocatalysts are much smaller, cheaper and more stable than enzymes.

  8. Comparative Toxicity of Fumigants and a Phosphine Synergist Using a Novel Containment Chamber for the Safe Generation of Concentrated Phosphine Gas

    Science.gov (United States)

    Valmas, Nicholas; Ebert, Paul R.

    2006-01-01

    Background With the phasing out of ozone-depleting substances in accordance with the United Nations Montreal Protocol, phosphine remains as the only economically viable fumigant for widespread use. However the development of high-level resistance in several pest insects threatens the future usage of phosphine; yet research into phosphine resistance mechanisms has been limited due to the potential for human poisoning in enclosed laboratory environments. Principal Findings Here we describe a custom-designed chamber for safely containing phosphine gas generated from aluminium phosphide tablets. In an improvement on previous generation systems, this chamber can be completely sealed to control the escape of phosphine. The device has been utilised in a screening program with C. elegans that has identified a phosphine synergist, and quantified the efficacy of a new fumigant against that of phosphine. The phosphine-induced mortality at 20°C has been determined with an LC50 of 732 ppm. This result was contrasted with the efficacy of a potential new botanical pesticide dimethyl disulphide, which for a 24 hour exposure at 20°C is 600 times more potent than phosphine (LC50 1.24 ppm). We also found that co-administration of the glutathione depletor diethyl maleate (DEM) with a sublethal dose of phosphine (70 ppm, phosphine in a laboratory environment has now been substantially reduced by the implementation of our novel gas generation chamber. We have also identified a novel phosphine synergist, the glutathione depletor DEM, suggesting an effective pathway to be targeted in future synergist research; as well as quantifying the efficacy of a potential alternative to phosphine, dimethyl disulphide. PMID:17205134

  9. Lewis acidity enhancement of triarylborane by appended phosphine oxide groups.

    Science.gov (United States)

    Kwak, Jaewoo; Nghia, Nguyen Van; Lee, Junseong; Kim, Hyoseok; Park, Myung Hwan; Lee, Min Hyung

    2015-03-14

    A series of mono-, di-, and tri-phosphine oxide substituted triarylboranes, Mes2BAr (1), MesBAr2 (2), and BAr3 (3) (Ar = 4-(Ph2PO)-2,6-Me2-C6H2) were prepared to investigate the effect of a phosphine oxide group (Ph2PO) on Lewis acidity enhancement of triarylboranes. The X-ray crystal structure of 3 revealed peripheral decoration of Ph2PO groups with a C3-axis perpendicular to the trigonal boron center. UV/Vis absorption and PL spectra indicated a significant contribution of π(Mes or phenylene) → pπ(B) charge transfer in the lower-energy electronic transition. The reduction potential measured by cyclic voltammetry showed apparent LUMO stabilization by introduction of phosphine oxide groups, the extent of which gradually increased with the increasing number of phosphine oxide groups. Lewis acidity enhancement was also supported by the gradual increase in fluoride ion affinity in the order 3 > 2 > 1. Theoretical calculations suggest that introduction of a Ph2PO group into a triarylborane significantly enhances the Lewis acidity of the boron center via an inductive electron-withdrawing effect and this effect is additive for multiple phosphine oxide groups.

  10. Inorganic Reaction Mechanisms Part II: Homogeneous Catalysis

    Science.gov (United States)

    Cooke, D. O.

    1976-01-01

    Suggests several mechanisms for catalysis by metal ion complexes. Discusses the principal factors of importance in these catalysis reactions and suggests reactions suitable for laboratory study. (MLH)

  11. Tentative detection of phosphine in IRC+10216

    CERN Document Server

    Agúndez, M; Pardo, J R; Guélin, M; Phillips, T G

    2008-01-01

    The J,K = 1,0-0,0 rotational transition of phosphine (PH3) at 267 GHz has been tentatively identified with a T_MB = 40 mK spectral line observed with the IRAM 30-m telescope in the C-star envelope IRC+10216. A radiative transfer model has been used to fit the observed line profile. The derived PH3 abundance relative to H2 is 6 x 10^(-9), although it may have a large uncertainty due to the lack of knowledge about the spatial distribution of this species. If our identification is correct, it implies that PH3 has a similar abundance to that reported for HCP in this source, and that these two molecules (HCP and PH3) together take up about 5 % of phosphorus in IRC+10216. The abundance of PH3, as that of other hydrides in this source, is not well explained by conventional gas phase LTE and non-LTE chemical models, and may imply formation on grain surfaces.

  12. Mechanism of phosphine borane deprotection with amines: the effects of phosphine, solvent and amine on rate and efficiency.

    Science.gov (United States)

    Lloyd-Jones, Guy C; Taylor, Nicholas P

    2015-03-27

    The kinetics of borane transfer from simple tertiary phosphine borane adducts to a wide range of amines have been determined. All data obtained, including second-order kinetics, lack of cross-over, and negative entropies of activation for reaction of triphenylphosphine borane with quinuclidine and triethylamine, are consistent with a direct (SN 2-like) transfer process, rather than a dissociative (SN 1-like) process. The identities of the amine, phosphine, and solvent all impact substantially on the rate (k) and equilibrium (K) of the transfer, which in some cases vary by many orders of magnitude. P-to-N transfer is more efficient with cyclic amines in apolar solvents due to reduced entropic costs and ground-state destabilisation. Taken as a whole, the data allow informed optimisation of the deprotection step from the stand-point of rate, or synthetic convenience. In all cases, both reactants should be present at high initial concentration to gain kinetic benefit from the bimolecularity of the process. Ultimately, the choice of amine is dictated by the identity of the phosphine borane complex. Aryl-rich phosphine boranes are sufficiently reactive to allow use of diethylamine or pyrrolidine as a volatile low polarity solvent and reactant, whereas more alkyl-rich phosphines benefit from the use of more reactive amines, such as 1,4-diaza[2.2.2]bicyclooctane (DABCO), in apolar solvents at higher temperatures.

  13. Mechanochemistry, catalysis, and catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Butyagin, P.Yu.

    1987-07-01

    The physical basis of mechanochemistry and the reasons for the initiation and acceleration of chemical reactions upon the mechanical treatment of solids have been considered. The phenomenon of mechanical catalysis has been described in the example case of the oxidation of CO on oxide surfaces, and the nature of the active sites and the laws governing the mechanically activated chemisorption of gases on cleavage and friction surfaces of solids have been examined. The possibilities of the use of the methods of mechanochemistry in processes used to prepare catalysts have been analyzed in examples of decomposition reactions of inorganic compounds and solid-phase synthesis.

  14. Electron Transfer Chain Catalysis

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    @@ Electron-transfer chain (ETC) catalysis belongs to the family of chain reactions where the electron is the catalyst. The ETC mechanism could be initiated by chemical activation, electrochemistry, or photolysis. If this pathway is applied to the preparation of organometallic complexes, it utilizes the greatly enhanced reactivity of organometallic 17e and 19e radicals. The chemical propagation is followed by the cross electron-transfer while the electron-transfer step is also followed by the chemical propagation, creating a loop in which reactants are facilely transformed into products. Interestingly the overall reaction is without any net redox change.

  15. Electron Transfer Chain Catalysis

    Institute of Scientific and Technical Information of China (English)

    LIU; LingKang

    2001-01-01

    Electron-transfer chain (ETC) catalysis belongs to the family of chain reactions where the electron is the catalyst. The ETC mechanism could be initiated by chemical activation, electrochemistry, or photolysis. If this pathway is applied to the preparation of organometallic complexes, it utilizes the greatly enhanced reactivity of organometallic 17e and 19e radicals. The chemical propagation is followed by the cross electron-transfer while the electron-transfer step is also followed by the chemical propagation, creating a loop in which reactants are facilely transformed into products. Interestingly the overall reaction is without any net redox change.  ……

  16. Catalysis and prebiotic RNA synthesis

    Science.gov (United States)

    Ferris, James P.

    1993-01-01

    The essential role of catalysis for the origins of life is discussed. The status of the prebiotic synthesis of 2',5'- and 3'5'-linked oligomers of RNA is reviewed. Examples of the role of metal ion and mineral catalysis in RNA oligomer formation are discussed.

  17. Parameterization of phosphine ligands reveals mechanistic pathways and predicts reaction outcomes

    Science.gov (United States)

    Niemeyer, Zachary L.; Milo, Anat; Hickey, David P.; Sigman, Matthew S.

    2016-06-01

    The mechanistic foundation behind the identity of a phosphine ligand that best promotes a desired reaction outcome is often non-intuitive, and thus has been addressed in numerous experimental and theoretical studies. In this work, multivariate correlations of reaction outcomes using 38 different phosphine ligands were combined with classic potentiometric analyses to study a Suzuki reaction, for which the site selectivity of oxidative addition is highly dependent on the nature of the phosphine. These studies shed light on the generality of hypotheses regarding the structural influence of different classes of phosphine ligands on the reaction mechanism(s), and deliver a methodology that should prove useful in future studies of phosphine ligands.

  18. Synthesis of Functionalized Furans via Chemoselective Reduction/Wittig Reaction Using Catalytic Triethylamine and Phosphine.

    Science.gov (United States)

    Lee, Chia-Jui; Chang, Tzu-Hsiu; Yu, Jhen-Kuei; Madhusudhan Reddy, Ganapuram; Hsiao, Ming-Yu; Lin, Wenwei

    2016-08-05

    An efficient protocol for the synthesis of highly functionalized furans via intramolecular Wittig reaction has been developed using catalytic amounts of phosphine and triethylamine. Silyl chloride served as the initial promoter to activate the phosphine oxide. Reduction of the activated phosphine oxide by hydrosilane resulted in generation of phosphine, while decomposition of Et3N·HCl resulted in regeneration of base, which mediated formation of phosphorus ylide. Remarkably, the in situ generated byproduct, Et3N·HCl, also catalyzes reduction of phosphine oxide.

  19. A superior method for the reduction of secondary phosphine oxides.

    Science.gov (United States)

    Busacca, Carl A; Lorenz, Jon C; Grinberg, Nelu; Haddad, Nizar; Hrapchak, Matt; Latli, Bachir; Lee, Heewon; Sabila, Paul; Saha, Anjan; Sarvestani, Max; Shen, Sherry; Varsolona, Richard; Wei, Xudong; Senanayake, Chris H

    2005-09-15

    [reaction: see text] Diisobutylaluminum hydride (DIBAL-H) and triisobutylaluminum have been found to be outstanding reductants for secondary phosphine oxides (SPOs). All classes of SPOs can be readily reduced, including diaryl, arylalkyl, and dialkyl members. Many SPOs can now be reduced at cryogenic temperatures, and conditions for preservation of reducible functional groups have been found. Even the most electron-rich and sterically hindered phosphine oxides can be reduced in a few hours at 50-70 degrees C. This new reduction has distinct advantages over existing technologies.

  20. Air-stable platinum and palladium complexes featuring bis[2,4-bis(trifluoromethyl)phenyl]phosphinous acid ligands.

    Science.gov (United States)

    Kurscheid, Boris; Neumann, Beate; Stammler, Hans-Georg; Hoge, Berthold

    2011-12-23

    Secondary phosphane oxides, R(2)P(O)H, are commonly used as preligands for transition-metal complexes of phosphinous acids, R(2)P-OH (R=alkyl, aryl), which are relevant as efficient catalysts in cross-coupling processes. In contrast to previous work by other groups, we are interested in the ligating properties of an electron-deficient phosphinous acid, (R(f))(2)P-OH, bearing the strongly electron-withdrawing and sterically demanding 2,4-bis(trifluoromethyl)phenyl group towards catalysis-relevant metals, such as palladium and platinum. The preligand bis[2,4-bis(trifluoromethyl)phenyl]phosphane oxide, (R(f))(2)P(O)H, reacts smoothly with solid platinum(II) dichloride yielding the trans-configured phosphinous acid platinum complex trans-[PtCl(2)({2,4-(CF(3))(2)C(6)H(3)}(2)POH)(2)]. The deprotonation of one phosphinous acid ligand with an appropriate base leads to the cis-configured monoanion complex cis-[PtCl(2)({2,4-(CF(3))(2)C(6)H(3)}(2)PO)(2)H](-), featuring the quasi-chelating phosphinous acid phosphinito unit, (R(f))(2)P-O-H···O=P(R(f))(2), which exhibits a strong hydrogen bridge substantiated by an O···O distance of 245.1(4) pm. The second deprotonation step is accompanied by a rearrangement to afford the trans-configured dianion trans-[PtCl(2)({2,4-(CF(3))(2)C(6)H(3)}(2)PO)(2)](2-). The reaction of (R(f))(2)P(O)H with solid palladium(II) dichloride initially yields a mononuclear palladium complex [PdCl(2)({2,4-(CF(3))(2)C(6)H(3)}(2)POH)(2)], which condenses under liberation of HCl to the neutral dinuclear palladium complex [Pd(2)(μ-Cl)(2){({2,4-(CF(3))(2)C(6)H(3)}(2)PO)(2)H}(2)]. The equilibrium between the mononuclear [PdCl(2)({2,4-(CF(3))(2)C(6)H(3)}(2)POH)(2)] and dinuclear [Pd(2)(μ-Cl)(2){({2,4-(CF(3))(2)C(6)H(3)}(2)PO)(2)H}(2)] palladium complexes is reversible and can be shifted in each direction by the addition of base or HCl, respectively. Treatment of palladium(II) hexafluoroacetylacetonate, [Pd(F(6)acac)(2)], with a slight excess of (R(f))(2)P

  1. Oxygenated phosphine fumigation for control of Nasonovia ribisnigri (Homoptera: Aphididae) on harvested lettuce.

    Science.gov (United States)

    Liu, Yong-Biao

    2012-06-01

    Low temperature regular phosphine fumigations under the normal oxygen level and oxygenated phosphine fumigations under superatmospheric oxygen levels were compared for efficacy against the aphid, Nasonovia ribisnigri (Mosley), and effects on postharvest quality of romaine and head lettuce. Low temperature regular phosphine fumigation was effective against the aphid. However, a 3 d treatment with high phosphine concentrations of > or = 2,000 ppm was needed for complete control of the aphid. Oxygen greatly increased phosphine toxicity and significantly reduced both treatment time and phosphine concentration for control of N. ribisnigri. At 1,000 ppm phosphine, 72 h regular fumigations at 6 degrees C did not achieve 100% mortality of the aphid. The 1,000 ppm phosphine fumigation under 60% O2 killed all aphids in 30 h. Both a 72 h regular fumigation with 2,200 ppm phosphine and a 48 h oxygenated fumigation with 1,000 ppm phosphine under 60% O2 were tested on romaine and head lettuce at 3 degrees C. Both treatments achieved complete control of N. ribisnigri. However, the 72 h regular fumigation resulted in significantly higher percentages of lettuce with injuries and significantly lower lettuce internal quality scores than the 48 h oxygenated phosphine fumigation. Although the oxygenated phosphine fumigation also caused injuries to some treated lettuce, lettuce quality remained very good and the treatment is not expected to have a significant impact on marketability of the lettuce. This study demonstrated that oxygenated phosphine fumigation was more effective and less phytotoxic for controlling N. ribisnigri on harvested lettuce than regular phosphine fumigation and is promising for practical use.

  2. Spin-modified catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Choudhary, R. [Department of Physics and Astronomy and NCMN, University of Nebraska, Lincoln, Nebraska 68588 (United States); School of Basic Sciences, Indian Institute of Technology Mandi, Mandi 175001, Himachal Pradesh (India); Manchanda, P.; Enders, A.; Balamurugan, B.; Sellmyer, D. J.; Skomski, R., E-mail: rskomski@unl.edu [Department of Physics and Astronomy and NCMN, University of Nebraska, Lincoln, Nebraska 68588 (United States); Kashyap, A. [School of Basic Sciences, Indian Institute of Technology Mandi, Mandi 175001, Himachal Pradesh (India); Sykes, E. C. H. [Department of Chemistry, Pearson Chemistry Laboratory, Tufts University, Medford, Massachusetts 02155 (United States)

    2015-05-07

    First-principle calculations are used to explore the use of magnetic degrees of freedom in catalysis. We use the Vienna Ab-Initio Simulation Package to investigate both L1{sub 0}-ordered FePt and CoPt bulk materials and perform supercell calculations for FePt nanoclusters containing 43 atoms. As the catalytic activity of transition-metal elements and alloys involves individual d levels, magnetic alloying strongly affects the catalytic performance, because it leads to shifts in the local densities of states and to additional peaks due to magnetic-moment formation. The peak shift persists in nanoparticles but is surface-site specific and therefore depends on cluster size. Our research indicates that small modifications in stoichiometry and cluster size are a useful tool in the search for new catalysts.

  3. Simulations of chemical catalysis

    Science.gov (United States)

    Smith, Gregory K.

    This dissertation contains simulations of chemical catalysis in both biological and heterogeneous contexts. A mixture of classical, quantum, and hybrid techniques are applied to explore the energy profiles and compare possible chemical mechanisms both within the context of human and bacterial enzymes, as well as exploring surface reactions on a metal catalyst. A brief summary of each project follows. Project 1 - Bacterial Enzyme SpvC The newly discovered SpvC effector protein from Salmonella typhimurium interferes with the host immune response by dephosphorylating mitogen-activated protein kinases (MAPKs) with a beta-elimination mechanism. The dynamics of the enzyme substrate complex of the SpvC effector is investigated with a 3.2 ns molecular dynamics simulation, which reveals that the phosphorylated peptide substrate is tightly held in the active site by a hydrogen bond network and the lysine general base is positioned for the abstraction of the alpha hydrogen. The catalysis is further modeled with density functional theory (DFT) in a truncated active-site model at the B3LYP/6-31 G(d,p) level of theory. The truncated model suggested the reaction proceeds via a single transition state. After including the enzyme environment in ab initio QM/MM studies, it was found to proceed via an E1cB-like pathway, in which the carbanion intermediate is stabilized by an enzyme oxyanion hole provided by Lys104 and Tyr158 of SpvC. Project 2 - Human Enzyme CDK2 Phosphorylation reactions catalyzed by kinases and phosphatases play an indispensable role in cellular signaling, and their malfunctioning is implicated in many diseases. Ab initio quantum mechanical/molecular mechanical studies are reported for the phosphoryl transfer reaction catalyzed by a cyclin-dependent kinase, CDK2. Our results suggest that an active-site Asp residue, rather than ATP as previously proposed, serves as the general base to activate the Ser nucleophile. The corresponding transition state features a

  4. Asymmetric trienamine catalysis: new opportunities in amine catalysis.

    Science.gov (United States)

    Kumar, Indresh; Ramaraju, Panduga; Mir, Nisar A

    2013-02-07

    Amine catalysis, through HOMO-activating enamine and LUMO-activating iminium-ion formation, is receiving increasing attention among other organocatalytic strategies, for the activation of unmodified carbonyl compounds. Particularly, the HOMO-raising activation concept has been applied to the greatest number of asymmetric transformations through enamine, dienamine, and SOMO-activation strategies. Recently, trienamine catalysis, an extension of amine catalysis, has emerged as a powerful tool for synthetic chemists with a novel activation strategy for polyenals/polyenones. In this review article, we discuss the initial developments of trienamine catalysis for highly asymmetric Diels-Alder reactions with different dienophiles and emerging opportunities for other types of cycloadditions and cascade reactions.

  5. Resistance of Lasioderma serricorne (Coleoptera: Anobiidae) to Fumigation with Phosphine.

    Science.gov (United States)

    Sağlam, Özgür; Edde, Peter A; Phillips, Thomas W

    2015-10-01

    Lasioderma serricorne (F.) is a serious pest of stored products that is known to be resistant to the fumigant pesticide gas phosphine. This study investigated resistance in populations from the southeastern United States, and determined if a recommended treatment schedule could kill resistant insects. A laboratory assay for adult insects was developed that used a discriminating concentration of 50 ppm phosphine applied to insects for 20 h at 25°C followed by 7 d of recovery in air. Survivors were classified as resistant. L. serricorne from six different field populations associated with stored tobacco were surveyed with the assay and all had resistant individuals. Four populations had greater than 90% of their insects resistant. Two industry-recommended treatment schedules were evaluated in laboratory fumigations against mixed life stage cultures of the four most resistant populations: the first at 200 ppm for 4 d at 25°C for controlling phosphine-susceptible L. serricorne and the second at 600 ppm for 6 d at 25°C intended to control phosphine-resistant beetles. The four populations with the highest frequency of resistant individuals from the field sampling study were not controlled by the "normal" treatment intended for susceptible insects. The higher concentration treatment greatly reduced beetle progeny from mixed-stage colony jars, but there were substantial numbers of surviving adults from all four highly resistant populations that represented unacceptable levels of control.

  6. Hydrogen Bonding in Phosphine Oxide/Phosphate-Phenol Complexes

    NARCIS (Netherlands)

    Cuypers, R.; Sudhölter, E.J.R.; Zuilhof, H.

    2010-01-01

    To develop a new solvent-impregnated resin (SIR) system for the removal of phenols and thiophenols from water, complex formation by hydrogen bonding of phosphine oxides and phosphates is studied using isothermal titration calorimetry (ITC) and quantum chemical modeling. Six different computational m

  7. 7 CFR 305.7 - Phosphine treatment schedules.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 5 2010-01-01 2010-01-01 false Phosphine treatment schedules. 305.7 Section 305.7 Agriculture Regulations of the Department of Agriculture (Continued) ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE PHYTOSANITARY TREATMENTS Chemical Treatments § 305.7...

  8. Phosphine-catalyzed [3+2] annulation of cyanoallenes

    NARCIS (Netherlands)

    Kinderman, S.S.; van Maarseveen, J.H.; Hiemstra, H.

    2011-01-01

    Cyanoallenes were successfully used in organophosphine-catalyzed [3+2]-type annulation to give cyano-substituted dihydropyrroles in good yield. Chiral phosphines were also screened, leading to some initial results in the asymmetric version of cyano­allene-based annulations.

  9. Development of catalysts and ligands for enantioselective gold catalysis.

    Science.gov (United States)

    Wang, Yi-Ming; Lackner, Aaron D; Toste, F Dean

    2014-03-18

    During the past decade, the use of Au(I) complexes for the catalytic activation of C-C π-bonds has been investigated intensely. Over this time period, the development of homogeneous gold catalysis has been extraordinarily rapid and has yielded a host of mild and selective methods for the formation of carbon-carbon and carbon-heteroatom bonds. The facile formation of new bonds facilitated by gold naturally led to efforts toward rendering these transformations enantioselective. In this Account, we survey the development of catalysts and ligands for enantioselective gold catalysis by our research group as well as related work by others. We also discuss some of our strategies to address the challenges of enantioselective gold(I) catalysis. Early on, our work with enantioselective gold-catalyzed transformations focused on bis(phosphinegold) complexes derived from axially chiral scaffolds. Although these complexes were highly successful in some reactions like cyclopropanation, the careful choice of the weakly coordinating ligand (or counterion) was necessary to obtain high levels of enantioselectivity for the case of allene hydroamination. These counterion effects led us to use the anion itself as a source of chirality, which was successful in the case of allene hydroalkoxylation. In general, these tactics enhance the steric influence around the reactive gold center beyond the two-coordinate ligand environment. The use of binuclear complexes allowed us to use the second gold center and its associated ligand (or counterion) to exert a further steric influence. In a similar vein, we employed a chiral anion (in place of or in addition to a chiral ligand) to move the chiral information closer to the reactive center. In order to expand the scope of reactions amenable to enantioselective gold catalysis to cycloadditions and other carbocyclization processes, we also developed a new class of mononuclear phosphite and phosphoramidite ligands to supplement the previously widely

  10. [Effects of free-air CO2 enrichment on phosphine emission from rice field].

    Science.gov (United States)

    Zhang, Rui; Yang, Xiao-Di; Geng, Jin-Ju; Hong, Yu-Ning; Gu, Xue-Yuan; Wang, Xiao-Rong; Wang, Rui; Zhu, Jian-Guo

    2009-09-15

    Phosphine, a trace gas, has been proved to commonly exist in environment. Under free air carbon dioxide enrichment (FACE) condition, the phosphine fluxes were investigated on the function of different nitrogen fertilizer application, NN (normal N, 250 kg/hm2) and LN (low N, 125 kg/hm2). Results showed that phosphine fluxes and concentrations in flourishing stages, both tillering stage and elongation stage, were higher than in slowly growing stages. The highest phosphine flux of (155.2 +/- 22.71) ng/(m2 x h) was observed in tillering stage in NN zone of the FACE area. The highest average phosphine flux of (41.72 +/- 7.006) ng/(m2 x h) was observed in NN zone of FACE area, while the lowest average phosphine flux of (- 1.485 +/- 6.229) ng/(m2 x h) could be detected in LN zone of the ambient area. CO2 enrichment can obviously improve the phospine emission. The nitrogen fertilizing level doesn't play an important role in phosphine emission. Both net fluxes and concentrations of phosphine had obviously positive correlation with temperature. A one-day phosphine flux and concentration experiment was carried out in ripening stage. The result showed that light was the prominent factor influencing phosphine concentration in daytime.

  11. Amino acids assisted hydrothermal synthesis of hierarchically structured ZnO with enhanced photocatalytic activities

    Science.gov (United States)

    Guo, Yanxia; Lin, Siwen; Li, Xuan; Liu, Yuping

    2016-10-01

    Novel hierarchically structured ZnO, including rose-like, dandelion-like and flower-like, have been synthesized through a simple hydrothermal process using different amino acids (glutamine, histidine and glycine) as structure-directing agents and urea as deposition agent, followed by subsequent calcination. Amino acids played a crucial role in the formation of hierarchically structured ZnO, and different amino acids could induce different exquisite shapes and assembly ways, as well as more oxygen defects. The prepared hierarchically structured ZnO exhibited excellent photocatalytic activities for the photodegradation of Rhodamine B, which was associated with their special hierarchical structures, large BET surface area and the existence of more oxygen defects. Amino acid-assisted growth mechanism of hierarchically structured ZnO was also discussed.

  12. DNA-based hybrid catalysis.

    Science.gov (United States)

    Rioz-Martínez, Ana; Roelfes, Gerard

    2015-04-01

    In the past decade, DNA-based hybrid catalysis has merged as a promising novel approach to homogeneous (asymmetric) catalysis. A DNA hybrid catalysts comprises a transition metal complex that is covalently or supramolecularly bound to DNA. The chiral microenvironment and the second coordination sphere interactions provided by the DNA are key to achieve high enantioselectivities and, often, additional rate accelerations in catalysis. Nowadays, current efforts are focused on improved designs, understanding the origin of the enantioselectivity and DNA-induced rate accelerations, expanding the catalytic scope of the concept and further increasing the practicality of the method for applications in synthesis. Herein, the recent developments will be reviewed and the perspectives for the emerging field of DNA-based hybrid catalysis will be discussed.

  13. A Survey Course in Catalysis.

    Science.gov (United States)

    Skaates, J. M.

    1982-01-01

    Describes a 10-week survey course in catalysis for chemical engineering and chemistry students designed to show how modern chemistry and chemical engineering interact in the ongoing development of industrial catalysts. Includes course outline and instructional strategies. (Author/JN)

  14. Asymmetric cation-binding catalysis

    DEFF Research Database (Denmark)

    Oliveira, Maria Teresa; Lee, Jiwoong

    2017-01-01

    and KCN, are selectively bound to the catalyst, providing exceptionally high enantioselectivities for kinetic resolutions, elimination reactions (fluoride base), and Strecker synthesis (cyanide nucleophile). Asymmetric cation-binding catalysis was recently expanded to silicon-based reagents, enabling...... solvents, thus increasing their applicability in synthesis. The expansion of this concept to chiral polyethers led to the emergence of asymmetric cation-binding catalysis, where chiral counter anions are generated from metal salts, particularly using BINOL-based polyethers. Alkali metal salts, namely KF...

  15. Editorial: Nanoscience makes catalysis greener

    KAUST Repository

    Polshettiwar, Vivek

    2012-01-09

    Green chemistry by nanocatalysis: Catalysis is a strategic field of science because it involves new ways of meeting energy and sustainability challenges. The concept of green chemistry, which makes the science of catalysis even more creative, has become an integral part of sustainability. This special issue is at the interface of green chemistry and nanocatalysis, and features excellent background articles as well as the latest research results. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Aerobic addition of secondary phosphine oxides to vinyl sulfides: a shortcut to 1-hydroxy-2-(organosulfanyl)ethyl(diorganyl)phosphine oxides.

    Science.gov (United States)

    Malysheva, Svetlana F; Artem'ev, Alexander V; Gusarova, Nina K; Belogorlova, Nataliya A; Albanov, Alexander I; Liu, C W; Trofimov, Boris A

    2015-01-01

    Secondary phosphine oxides react with vinyl sulfides (both alkyl- and aryl-substituted sulfides) under aerobic and solvent-free conditions (80 °C, air, 7-30 h) to afford 1-hydroxy-2-(organosulfanyl)ethyl(diorganyl)phosphine oxides in 70-93% yields.

  17. Entropy and Enzyme Catalysis.

    Science.gov (United States)

    Åqvist, Johan; Kazemi, Masoud; Isaksen, Geir Villy; Brandsdal, Bjørn Olav

    2017-02-21

    The role played by entropy for the enormous rate enhancement achieved by enzymes has been debated for many decades. There are, for example, several confirmed cases where the activation free energy is reduced by around 10 kcal/mol due to entropic effects, corresponding to a rate enhancement of ∼10(7) compared to the uncatalyzed reaction. However, despite substantial efforts from both the experimental and theoretical side, no real consensus has been reached regarding the origin of such large entropic contributions to enzyme catalysis. Another remarkable instance of entropic effects is found in enzymes that are adapted by evolution to work at low temperatures, near the freezing point of water. These cold-adapted enzymes invariably show a more negative entropy and a lower enthalpy of activation than their mesophilic orthologs, which counteracts the exponential damping of reaction rates at lower temperature. The structural origin of this universal phenomenon has, however, remained elusive. The basic problem with connecting macroscopic thermodynamic quantities, such as activation entropy and enthalpy derived from Arrhenius plots, to the 3D protein structure is that the underlying detailed (microscopic) energetics is essentially inaccessible to experiment. Moreover, attempts to calculate entropy contributions by computer simulations have mostly focused only on substrate entropies, which do not provide the full picture. We have recently devised a new approach for accessing thermodynamic activation parameters of both enzyme and solution reactions from computer simulations, which turns out to be very successful. This method is analogous to the experimental Arrhenius plots and directly evaluates the temperature dependence of calculated reaction free energy profiles. Hence, by extensive molecular dynamics simulations and calculations of up to thousands of independent free energy profiles, we are able to extract activation parameters with sufficient precision for making

  18. Experimental and theoretical investigations of the stereoselective synthesis of p-stereogenic phosphine oxides.

    Science.gov (United States)

    Copey, Laurent; Jean-Gérard, Ludivine; Framery, Eric; Pilet, Guillaume; Robert, Vincent; Andrioletti, Bruno

    2015-06-15

    An efficient enantioselective strategy for the synthesis of variously substituted phosphine oxides has been developed, incorporating the use of (1S,2S)-2-aminocyclohexanol as the chiral auxiliary. The method relies on three key steps: 1) Highly diastereoselective formation of P(V) oxazaphospholidine, rationalized by a theoretical study; 2) highly diastereoselective ring-opening of the oxazaphospholidine oxide with organometallic reagents that takes place with inversion of configuration at the P atom; 3) enantioselective synthesis of phosphine oxides by cleavage of the remaining P-O bond. Interestingly, the use of a P(III) phosphine precursor afforded a P-epimer oxazaphospholidine. Hence, the two enantiomeric phosphine oxides can be synthesized starting from either a P(V) or a P(III) phosphine precursor, which constitutes a clear advantage for the stereoselective synthesis of sterically hindered phosphine oxides.

  19. Mechanisms of RNA catalysis.

    Science.gov (United States)

    Lilley, David M J

    2011-10-27

    Ribozymes are RNA molecules that act as chemical catalysts. In contemporary cells, most known ribozymes carry out phosphoryl transfer reactions. The nucleolytic ribozymes comprise a class of five structurally-distinct species that bring about site-specific cleavage by nucleophilic attack of the 2'-O on the adjacent 3'-P to form a cyclic 2',3'-phosphate. In general, they will also catalyse the reverse reaction. As a class, all these ribozymes appear to use general acid-base catalysis to accelerate these reactions by about a million-fold. In the Varkud satellite ribozyme, we have shown that the cleavage reaction is catalysed by guanine and adenine nucleobases acting as general base and acid, respectively. The hairpin ribozyme most probably uses a closely similar mechanism. Guanine nucleobases appear to be a common choice of general base, but the general acid is more variable. By contrast, the larger ribozymes such as the self-splicing introns and RNase P act as metalloenzymes.

  20. Enhanced Micellar Catalysis LDRD.

    Energy Technology Data Exchange (ETDEWEB)

    Betty, Rita G.; Tucker, Mark D; Taggart, Gretchen; Kinnan, Mark K.; Glen, Crystal Chanea; Rivera, Danielle; Sanchez, Andres; Alam, Todd Michael

    2012-12-01

    The primary goals of the Enhanced Micellar Catalysis project were to gain an understanding of the micellar environment of DF-200, or similar liquid CBW surfactant-based decontaminants, as well as characterize the aerosolized DF-200 droplet distribution and droplet chemistry under baseline ITW rotary atomization conditions. Micellar characterization of limited surfactant solutions was performed externally through the collection and measurement of Small Angle X-Ray Scattering (SAXS) images and Cryo-Transmission Electron Microscopy (cryo-TEM) images. Micellar characterization was performed externally at the University of Minnesotas Characterization Facility Center, and at the Argonne National Laboratory Advanced Photon Source facility. A micellar diffusion study was conducted internally at Sandia to measure diffusion constants of surfactants over a concentration range, to estimate the effective micelle diameter, to determine the impact of individual components to the micellar environment in solution, and the impact of combined components to surfactant phase behavior. Aerosolized DF-200 sprays were characterized for particle size and distribution and limited chemical composition. Evaporation rates of aerosolized DF-200 sprays were estimated under a set of baseline ITW nozzle test system parameters.

  1. Action of phosphine on production of aflatoxins by various Aspergillus strains isolated from foodstuffs.

    Science.gov (United States)

    Leitao, J; de Saint-Blanquat, G; Bailly, J R

    1987-01-01

    Phosphine is a food fumigant, used until now as an insecticide and rodenticide. The present work researches the action of phosphine treatment on growth and aflatoxin production of 23 Aspergillus strains. Production of aflatoxins B1, B2, G1, and G2 decreased in almost all cases by a ratio of 10 to 100. Phosphine treatment therefore seems favorable to prevent growth of various Aspergillus strains, in the context of keeping food safe. PMID:3426212

  2. Generation of phosphine gas for the control of grain storage pests

    OpenAIRE

    Zhao, B.X.

    2010-01-01

    The phosphine generator is a device for rapid production of phosphine (PH₃) gas to be introduced into grain storage. The aluminum phosphide (ALP) tablets are used as raw material and its effective constituent is 56%. When the aluminum phosphide and water are brought into contact a hydrolyzation reaction takes place to produce the phosphine gas. Controlling the reaction temperature, reaction pressure and the dosage of aluminum phosphide immersed in the water, the hydrolyzation reaction can be ...

  3. Stimulation of gaseous phosphine production from Antarctic seabird guanos and ornithogenic soils

    Institute of Scientific and Technical Information of China (English)

    ZHU Renbin; LIU Yashu; SUN Jianjun; SUN Liguang; GENG Jinju

    2009-01-01

    Matrix-bound phosphine (MBP) is a general term used to indicate non-gaseous reduced phosphorus compounds that are transformed into phosphine gas upon reaction with bases or acids. Antarctic seabird guanos and ornithogenic soils were used as materials to compare the different digestion methods for transforming matrix-bound phosphine into phosphine gas. The results demonstrated that more phosphine gas in most of Antarctic environmental materials was formed of matrix-bound phosphine by caustic digestion than by acidic digestion. The comparative study on different digestion methods also revealed that the fraction of MBP converted to gaseous phosphine during the digestion depended on the temperature. The optimal digestion temperature was close to 70℃ and the optimal digestion time was about 20 min. Acidic conditions were more favorable for the release of matrix-bound phosphine compared to the central[u1] conditions. The proper additional water dilution can increase the production and emission of phosphine from the Antarctic penguin guanos.

  4. Physiological and biochemical responses of rice seeds to phosphine exposure during germination.

    Science.gov (United States)

    Niu, Xiaojun; Mi, Lina; Li, Yadong; Wei, Aishu; Yang, Zhiquan; Wu, Jiandong; Zhang, Di; Song, Xiaofei

    2013-11-01

    Rice seeds (Tianyou, 3618) were used to examine the physiological and biochemical responses to phosphine exposure during germination. A control (0 mg m(-3)) and four concentrations of phosphine (1.4 mg m(-3), 4.2 mg m(-3), 7.0 mg m(-3) and 13.9 mg m(-3)) were used to treat the rice seeds. Each treatment was applied for 90 min once per day for five days. The germination rate (GR); germination potential (GP); germination index (GI); antioxidant enzymes, including superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT); and lipid peroxidation measured through via malondialdehyde (MDA) were determined as indicators of the physiological and biochemical responses of the rice seeds to phosphine exposure. These indicators were determined once per day for five days. The results indicated that the GR, GP and GI of the rice seeds markedly decreased after phosphine exposure. The changes in the activities of the antioxidant enzymes due to the phosphine exposure were also significant. The exposure lowered the CAT and SOD activities and increased POD activity in the treated rice seeds compared with controls. The MDA content exhibited a slow increase trend with the increase of phosphine concentration. These results suggest that phosphine has inhibitory effects on seed germination. In addition, phosphine exposure caused oxidative stress in the seeds. The antioxidant enzymes could play a pivotal role against oxidative injury. Overall, the effect of phosphine on rice seeds is different from what has been reported previously for insects and mammals.

  5. Influences of sediment dessication on phosphorus transformations in an intertidal marsh: formation and release of phosphine.

    Science.gov (United States)

    Hou, Lijun; Liu, Min; Ding, Pingxing; Zhou, Junliang; Yang, Yi; Zhao, Di; Zheng, Yanli

    2011-05-01

    This study investigated the effects of sediment dewatering on the phosphorus transformations concerning about the production and emission of phosphine in the intertidal marsh of the Yangtze Estuary. The concentrations of matrix-bound phosphine ranged from 18.62-72.53 ng kg(-1) and 31.14-61.22 ng kg(-1) within the August and January exposure incubations, respectively. The responses of matrix-bound phosphine concentrations to sediment dessication demonstrate that the production (or accumulation) of matrix-bound phosphine significantly increased with water loss at the start of the emersion incubations. However, further dehydration inhibited the formation of matrix-bound phosphine in sediments. The significant correlations of matrix-bound phosphine with the organic-P bacteria abundance and alkaline phosphatase activities implicate that the production of matrix-bound phosphine within the dessication incubations was linked closely to the microbial decomposition of organic P. The emissions of phosphine generally decreased with sediment dewatering, with the fluxes of 7.51-96.73 ng m(-2)h(-1) and 5.34-77.74 ng m(-2)h(-1) over the exposure incubations of both August and January, respectively. Also, it is observed that the releases of phosphine during the entire exposure periods were affected not only by its production but also by sediment water and redox conditions.

  6. Effects of phosphine on the neural regulation of gas exchange in Periplaneta americana.

    Science.gov (United States)

    Woodman, James D; Haritos, Victoria S; Cooper, Paul D

    2008-04-01

    Phosphine is used for fumigating stored commodities, however an understanding of the physiological response to phosphine in insects is limited. Here we show how the central pattern generator for ventilation in the central nervous system (CNS) responds to phosphine and influences normal resting gas exchange. Using the American cockroach, Periplaneta americana, that perform discontinuous gas exchange (DGE) at rest, we simultaneously measure ventilatory nervous output from the intact CNS, VCO(2) and water loss from live specimens. Exposure to 800 ppm phosphine at 25 degrees C for 2 h (n=13) during recording did not cause any mortality or obvious sub-lethal effects. Within 60 s of introducing phosphine into the air flow, all animals showed a distinct CNS response accompanied by a burst release of CO(2). The initial ventilatory response to phosphine displaced DGE and was typically followed by low, stable and continuous CO(2) output. CNS output was highest and most orderly under normoxic conditions during DGE. Phosphine caused a series of ventilatory CNS spikes preceding almost complete cessation of CNS output. Minimal CNS output was maintained during the 2 h normoxic recovery period and DGE was not reinstated. VCO(2) was slightly reduced and water loss significantly lower during the recovery period compared with those rates prior to phosphine exposure. A phosphine narcosis effect is rejected based on animals remaining alert at all times during exposure.

  7. Nanoconfinement Effects in Catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Kung, Harold H. [Northwestern Univ., Evanston, IL (United States)

    2016-09-19

    neighboring Sn-O-Si bond. The resulting acidic silanol is active in epoxide ring opening and acetalization reactions. The open structure of the Sn center makes it accessible to larger molecules, including cellobiose which can be converted to 5-(hydroxymethyl)-furfural. The third structure is a support planted with functional group pairing of a known separation distance. Using a precursor molecule that contains a hydrolysable silyl ester bond, and making use of known chemistry to convert silanol groups into amino/pyridyl and phosphinyl groups, silica surfaces with carboxylic acid/silanol, carboxylic acid/amine, carboxylic acid/pyridine, and carboxylic acid/phosphine pairs can be constructed. The amino groups paired with carboxylic acid on such a surface is more active in the Henry reaction of 4-nitobenzaldehyde with nitromethane.

  8. Iron-Catalyzed Ortho C-H Methylation of Aromatics Bearing a Simple Carbonyl Group with Methylaluminum and Tridentate Phosphine Ligand.

    Science.gov (United States)

    Shang, Rui; Ilies, Laurean; Nakamura, Eiichi

    2016-08-17

    Iron-catalyzed C-H functionalization of aromatics has attracted widespread attention from chemists in recent years, while the requirement of an elaborate directing group on the substrate has so far hampered the use of simple aromatic carbonyl compounds such as benzoic acid and ketones, much reducing its synthetic utility. We describe here a combination of a mildly reactive methylaluminum reagent and a new tridentate phosphine ligand for metal catalysis, 4-(bis(2-(diphenylphosphanyl)phenyl)phosphanyl)-N,N-dimethylaniline (Me2N-TP), that allows us to convert an ortho C-H bond to a C-CH3 bond in aromatics and heteroaromatics bearing simple carbonyl groups under mild oxidative conditions. The reaction is powerful enough to methylate all four ortho C-H bonds in benzophenone. The reaction tolerates a variety of functional groups, such as boronic ester, halide, sulfide, heterocycles, and enolizable ketones.

  9. Multi-Nuclear NMR Investigation of Nickel(II), Palladium(II), Platinum(II) and Ruthenium(II) Complexes of an Asymmetrical Ditertiary Phosphine

    Energy Technology Data Exchange (ETDEWEB)

    Raj, Joe Gerald Jesu [Institut National de la Recherche Scientifique, Quebec (China); Pathak, Devendra Deo [Indian School of Mines, Dhanbad (India); Kapoor, Pramesh N. [Univ. of Delhi, Delhi (India)

    2013-12-15

    Complexes synthesized by reacting alkyl and aryl phosphines with different transition metals are of great interest due to their catalytic properties. Many of the phosphine complexes are soluble in polar solvents as a result they find applications in homogeneous catalysis. In our present work we report, four transition metal complexes of Ni(II), Pd(II), Pt(II) and Ru(II) with an asymmetrical ditertiaryphosphine ligand. The synthesized ligand bears a less electronegative substituent such as methyl group on the aromatic nucleus hence makes it a strong σ-donor to form stable complexes and thus could effectively used in catalytic reactions. The complexes have been completely characterized by elemental analyses, FTIR, {sup 1}HNMR, {sup 31}PNMR and FAB Mass Spectrometry methods. Based on the spectroscopic evidences it has been confirmed that Ni(II), Pd(II) and Pt(II) complexes with the ditertiaryphosphine ligand showed cis whereas the Ru(II) complex showed trans geometry in their molecular structure.

  10. Toward the formation of alkylphosphonic acids in phosphine ices

    Science.gov (United States)

    Turner, Andrew; Kaiser, Ralf-Ingo

    2016-10-01

    Phosphorus is one of the elemental building blocks of life on Earth and is important for information storage (RNA/DNA), energy transfer (ATP), cell membranes (phospholipids), and structure (bones & teeth). Due to the poor bioavailability of highly oxidized phosphorus (P(V)) found in ubiquitous phosphate (PO43-) minerals, reduced oxidation state (P(III)) compounds have been proposed as a phosphorus source for early life on Earth. Among these, the alkylphosphonic acids, which are the only phosphorus-containing organic compounds discovered in the Murchison meteorite, are a suggested exogenous source of prebiotic phosphorus. Phosphine (PH3) is a known component of the atmospheres of Jupiter and Saturn, and the confirmation of circumstellar phosphine in the carbon-rich envelop of IRC +10216 along with the recent detection of phosphorus in the comet 67P/Churyumov-Gerasimenko provide an additional foundation for studying extraterrestrial phosphorus chemistry and the origins of the alkylphosphonic acids. In the present study, reactions of phosphine ices with water (H2O), carbon dioxide (CO2), and methane (CH4) were investigated using Fourier transform infrared spectroscopy (FTIR), quadrupole mass spectrometry (QMS), and most notably, reflectron time-of-flight mass spectrometry using tunable photoionization (PI-ReTOF-MS). Experiments were conducted at ultra-high vacuum pressures and cryogenic temperatures to better understand reaction pathways and products of phosphorus-containing compounds under icy conditions found in comets or the interstellar medium. The results of this study can provide support to the hypothesis that the alkylphosphonic acids were formed from interstellar phosphine and incorporated into meteorites such as Murchison.

  11. Retrievals of Jovian Tropospheric Phosphine from Cassini/CIRS

    Science.gov (United States)

    Irwin, P. G. J.; Parrish, P.; Fouchet, T.; Calcutt, S. B.; Taylor, F. W.; Simon-Miller, A. A.; Nixon, C. A.

    2004-01-01

    On December 30th 2000, the Cassini-Huygens spacecraft reached the perijove milestone on its continuing journey to the Saturnian system. During an extended six-month encounter, the Composite Infrared Spectrometer (CIRS) returned spectra of the Jovian atmosphere, rings and satellites from 10-1400 cm(exp -1) (1000-7 microns) at a programmable spectral resolution of 0.5 to 15 cm(exp -1). The improved spectral resolution of CIRS over previous IR instrument-missions to Jupiter, the extended spectral range, and higher signal-to-noise performance provide significant advantages over previous data sets. CIRS global observations of the mid-infrared spectrum of Jupiter at medium resolution (2.5 cm(exp -1)) have been analysed both with a radiance differencing scheme and an optimal estimation retrieval model to retrieve the spatial variation of phosphine and ammonia fractional scale height in the troposphere between 60 deg S and 60 deg N at a spatial resolution of 6 deg. The ammonia fractional scale height appears to be high over the Equatorial Zone (EZ) but low over the North Equatorial Belt (NEB) and South Equatorial Belt (SEB) indicating rapid uplift or strong vertical mixing in the EZ. The abundance of phosphine shows a similar strong latitudinal variation which generally matches that of the ammonia fractional scale height. However while the ammonia fractional scale height distribution is to a first order symmetric in latitude, the phosphine distribution shows a North/South asymmetry at mid latitudes with higher amounts detected at 40 deg N than 40 deg S. In addition the data show that while the ammonia fractional scale height at this spatial resolution appears to be low over the Great Red Spot (GRS), indicating reduced vertical mixing above the approx. 500 mb level, the abundance of phosphine at deeper levels may be enhanced at the northern edge of the GRS indicating upwelling.

  12. Effects of environmental factors on the production and release of matrix-bound phosphine from lake sediments

    Institute of Scientific and Technical Information of China (English)

    GENG Jinju; WANG Qiang; NIU Xiaojun; WANG Xiaorong

    2007-01-01

    Effects of pH,temperature,and oxygen on the production and release of phosphine in eutrophic lake sediments were investigated under laboratory tests.Results indicated that the elimination of matrix-bound phosphine was accelerated under initial pH 1 or 12.Phosphine levels could reach maximum under initial pH 10.The contents of phosphine increased with the addition of alkali under pH 4-12]The rates of phosphine production and release from lake sediments varied with temperature.20℃ was the most favorable temperature for the production of matrix-bound phosphine.Oxygen showed little effect on matrix-bound phosphine.Matrix-bound phosphine concentrations in lake sediments were concluded to be dependent on a balance of natural generation and depletion processes.

  13. Nonlinear effects in asymmetric catalysis.

    Science.gov (United States)

    Satyanarayana, Tummanapalli; Abraham, Susan; Kagan, Henri B

    2009-01-01

    There is a need for the preparation of enantiomerically pure compounds for various applications. An efficient approach to achieve this goal is asymmetric catalysis. The chiral catalyst is usually prepared from a chiral auxiliary, which itself is derived from a natural product or by resolution of a racemic precursor. The use of non-enantiopure chiral auxiliaries in asymmetric catalysis seems unattractive to preparative chemists, since the anticipated enantiomeric excess (ee) of the reaction product should be proportional to the ee value of the chiral auxiliary (linearity). In fact, some deviation from linearity may arise. Such nonlinear effects can be rich in mechanistic information and can be synthetically useful (asymmetric amplification). This Review documents the advances made during the last decade in the use of nonlinear effects in the area of organometallic and organic catalysis.

  14. Operando research in heterogeneous catalysis

    CERN Document Server

    Groot, Irene

    2017-01-01

    This book is devoted to the emerging field of techniques for visualizing atomic-scale properties of active catalysts under actual working conditions, i.e. high gas pressures and high temperatures. It explains how to understand these observations in terms of the surface structures and dynamics and their detailed interplay with the gas phase. This provides an important new link between fundamental surface physics and chemistry, and applied catalysis. The book explains the motivation and the necessity of operando studies, and positions these with respect to the more traditional low-pressure investigations on the one hand and the reality of industrial catalysis on the other. The last decade has witnessed a rapid development of new experimental and theoretical tools for operando studies of heterogeneous catalysis. The book has a strong emphasis on the new techniques and illustrates how the challenges introduced by the harsh, operando conditions are faced for each of these new tools. Therefore, one can also read th...

  15. Genes related to mitochondrial functions are differentially expressed in phosphine-resistant and -susceptible Tribolium castaneum.

    Science.gov (United States)

    Oppert, Brenda; Guedes, Raul N C; Aikins, Michael J; Perkin, Lindsey; Chen, Zhaorigetu; Phillips, Thomas W; Zhu, Kun Yan; Opit, George P; Hoon, Kelly; Sun, Yongming; Meredith, Gavin; Bramlett, Kelli; Hernandez, Natalie Supunpong; Sanderson, Brian; Taylor, Madison W; Dhingra, Dalia; Blakey, Brandon; Lorenzen, Marcé; Adedipe, Folukemi; Arthur, Frank

    2015-11-18

    Phosphine is a valuable fumigant to control pest populations in stored grains and grain products. However, recent studies indicate a substantial increase in phosphine resistance in stored product pests worldwide. To understand the molecular bases of phosphine resistance in insects, we used RNA-Seq to compare gene expression in phosphine-resistant and susceptible laboratory populations of the red flour beetle, Tribolium castaneum. Each population was evaluated as either phosphine-exposed or no phosphine (untreated controls) in triplicate biological replicates (12 samples total). Pairwise analysis indicated there were eight genes differentially expressed between susceptible and resistant insects not exposed to phosphine (i.e., basal expression) or those exposed to phopshine (>8-fold expression and 90 % C.I.). However, 214 genes were differentially expressed among all four treatment groups at a statistically significant level (ANOVA, p < 0.05). Increased expression of 44 cytochrome P450 genes was found in resistant vs. susceptible insects, and phosphine exposure resulted in additional increases of 21 of these genes, five of which were significant among all treatment groups (p < 0.05). Expression of two genes encoding anti-diruetic peptide was 2- to 8-fold reduced in phosphine-resistant insects, and when exposed to phosphine, expression was further reduced 36- to 500-fold compared to susceptible. Phosphine-resistant insects also displayed differential expression of cuticle, carbohydrate, protease, transporter, and many mitochondrial genes, among others. Gene ontology terms associated with mitochondrial functions (oxidation biological processes, monooxygenase and catalytic molecular functions, and iron, heme, and tetrapyyrole binding) were enriched in the significantly differentially expressed dataset. Sequence polymorphism was found in transcripts encoding a known phosphine resistance gene, dihydrolipoamide dehydrogenase, in both susceptible and resistant

  16. Chiral magnesium BINOL phosphate-catalyzed phosphination of imines: access to enantioenriched α-amino phosphine oxides.

    Science.gov (United States)

    Ingle, Gajendrasingh K; Liang, Yuxue; Mormino, Michael G; Li, Guilong; Fronczek, Frank R; Antilla, Jon C

    2011-04-15

    A new method to synthesize chiral α-amino phosphine oxides is reported. The reaction combines N-substituted imines and diphenylphosphine oxide and is catalyzed by a chiral magnesium phosphate salt. A wide variety of aliphatic and aromatic aldimines substituted by electron-neutral benzhydryl or dibenzocycloheptene groups were excellent substrates for the addition reaction. The dibenzocycloheptene protected imines afforded improved enantioselectivity in the resulting products. Substituted diphenylphosphine oxide nucleophiles also showed good reactivity.

  17. Photoredox Catalysis in Organic Chemistry

    Science.gov (United States)

    2016-01-01

    In recent years, photoredox catalysis has come to the forefront in organic chemistry as a powerful strategy for the activation of small molecules. In a general sense, these approaches rely on the ability of metal complexes and organic dyes to convert visible light into chemical energy by engaging in single-electron transfer with organic substrates, thereby generating reactive intermediates. In this Perspective, we highlight the unique ability of photoredox catalysis to expedite the development of completely new reaction mechanisms, with particular emphasis placed on multicatalytic strategies that enable the construction of challenging carbon–carbon and carbon–heteroatom bonds. PMID:27477076

  18. Photoredox Catalysis in Organic Chemistry.

    Science.gov (United States)

    Shaw, Megan H; Twilton, Jack; MacMillan, David W C

    2016-08-19

    In recent years, photoredox catalysis has come to the forefront in organic chemistry as a powerful strategy for the activation of small molecules. In a general sense, these approaches rely on the ability of metal complexes and organic dyes to convert visible light into chemical energy by engaging in single-electron transfer with organic substrates, thereby generating reactive intermediates. In this Perspective, we highlight the unique ability of photoredox catalysis to expedite the development of completely new reaction mechanisms, with particular emphasis placed on multicatalytic strategies that enable the construction of challenging carbon-carbon and carbon-heteroatom bonds.

  19. Catalysis and sustainable (green) chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Centi, Gabriele; Perathoner, Siglinda [Dipartimento di Chimica Industriale ed Ingegneria dei Materiali, University of Messina, Salita Sperone 31, 98166 Messina (Italy)

    2003-01-15

    Catalysis is a key technology to achieve the objectives of sustainable (green) chemistry. After introducing the concepts of sustainable (green) chemistry and a brief assessment of new sustainable chemical technologies, the relationship between catalysis and sustainable (green) chemistry is discussed and illustrated via an analysis of some selected and relevant examples. Emphasis is also given to the concept of catalytic technologies for scaling-down chemical processes, in order to develop sustainable production processes which reduce the impact on the environment to an acceptable level that allows self-depuration processes of the living environment.

  20. EMSL and Institute for Integrated Catalysis (IIC) Catalysis Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, Charles T.; Datye, Abhaya K.; Henkelman, Graeme A.; Lobo, Raul F.; Schneider, William F.; Spicer, Leonard D.; Tysoe, Wilfred T.; Vohs, John M.; Baer, Donald R.; Hoyt, David W.; Thevuthasan, Suntharampillai; Mueller, Karl T.; Wang, Chong M.; Washton, Nancy M.; Lyubinetsky, Igor; Teller, Raymond G.; Andersen, Amity; Govind, Niranjan; Kowalski, Karol; Kabius, Bernd C.; Wang, Hongfei; Campbell, Allison A.; Shelton, William A.; Bylaska, Eric J.; Peden, Charles HF; Wang, Yong; King, David L.; Henderson, Michael A.; Rousseau, Roger J.; Szanyi, Janos; Dohnalek, Zdenek; Mei, Donghai; Garrett, Bruce C.; Ray, Douglas; Futrell, Jean H.; Laskin, Julia; DuBois, Daniel L.; Kuprat, Laura R.; Plata, Charity

    2011-05-24

    Within the context of significantly accelerating scientific progress in research areas that address important societal problems, a workshop was held in November 2010 at EMSL to identify specific and topically important areas of research and capability needs in catalysis-related science.

  1. EMSL and Institute for Integrated Catalysis (IIC) Catalysis Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, Charles T.; Datye, Abhaya K.; Henkelman, Graeme A.; Lobo, Raul F.; Schneider, William F.; Spicer, Leonard D.; Tysoe, Wilfred T.; Vohs, John M.; Baer, Donald R.; Hoyt, David W.; Thevuthasan, Suntharampillai; Mueller, Karl T.; Wang, Chong M.; Washton, Nancy M.; Lyubinetsky, Igor; Teller, Raymond G.; Andersen, Amity; Govind, Niranjan; Kowalski, Karol; Kabius, Bernd C.; Wang, Hongfei; Campbell, Allison A.; Shelton, William A.; Bylaska, Eric J.; Peden, Charles HF; Wang, Yong; King, David L.; Henderson, Michael A.; Rousseau, Roger J.; Szanyi, Janos; Dohnalek, Zdenek; Mei, Donghai; Garrett, Bruce C.; Ray, Douglas; Futrell, Jean H.; Laskin, Julia; DuBois, Daniel L.; Kuprat, Laura R.; Plata, Charity

    2011-05-24

    Within the context of significantly accelerating scientific progress in research areas that address important societal problems, a workshop was held in November 2010 at EMSL to identify specific and topically important areas of research and capability needs in catalysis-related science.

  2. Complexation of Diphenyl(phenylacetenyl)phosphine to Rhodium(III) Tetraphenyl Porphyrins : Synthesis and Structural, Spectroscopic, and Thermodynamic Studies

    NARCIS (Netherlands)

    Stulz, Eugen; Scott, Sonya M.; Bond, Andrew D.; Otto, Sijbren; Sanders, Jeremy K.M.

    2003-01-01

    The coordination of diphenyl(phenylacetenyl)phosphine (DPAP) to (X)RhIIITPP (X = I or Me (3); TPP = tetraphenyl porphyrin) was studied in solution and in the solid state. The iodide is readily displaced by the phosphine, leading to the bis-phosphine complex [(DPAP)2Rh(TPP)](I) (4). The methylide on

  3. Complexation of Diphenyl(phenylacetenyl)phosphine to Rhodium(III) Tetraphenyl Porphyrins : Synthesis and Structural, Spectroscopic, and Thermodynamic Studies

    NARCIS (Netherlands)

    Stulz, Eugen; Scott, Sonya M.; Bond, Andrew D.; Otto, Sijbren; Sanders, Jeremy K.M.

    2003-01-01

    The coordination of diphenyl(phenylacetenyl)phosphine (DPAP) to (X)RhIIITPP (X = I or Me (3); TPP = tetraphenyl porphyrin) was studied in solution and in the solid state. The iodide is readily displaced by the phosphine, leading to the bis-phosphine complex [(DPAP)2Rh(TPP)](I) (4). The methylide on

  4. Action of phosphine (PH3) on production of sterigmatocystin by various fungal strains isolated from foodstuffs.

    Science.gov (United States)

    Leitao, J; Bailly, J R; de Saint Blanquat, G

    1990-01-01

    Phosphine is a food fumigant, used until now as an insecticide and rodenticide. The present work researches the action of phosphine treatment on growth and sterigmatocystin production of several fungal strains. Production of sterigmatocystin decreased by a ratio of 100 to 500 or was abolished.

  5. Oxygenated phosphine fumigation for control of Nasonovia ribisnigri (Homoptera: Aphididae) on harvested lettuce

    Science.gov (United States)

    A laboratory study was conducted to compare phosphine fumigations under the normal and superatmospheric oxygen levels on toxicity against Nasonovia ribisnigri (Mosley) and effects on postharvest quality of romaine and head lettuce. Low temperature phosphine fumigation was effective against the aphi...

  6. [Distribution of matrix-bound phosphine in surface sediments of Jinpu Bay].

    Science.gov (United States)

    You, Li-Li; Zong, Hai-Bo; Zhang, Shu-Fang; Yin, Guo-Yu; Li, Tao; Hou, Li-Jun

    2013-10-01

    This work investigated the distribution of matrix-bound phosphine in surface sediments of Jinpu Bay and associated environmental factors in summer, using the gas chromatography combined with a pulsed flame detector (GC-PFPD). It showed that phosphine ubiquitously presented in the sediments of Jinpu Bay. Contents of matrix-bound phosphine varied between 62. 58 and 190. 81 ng.kg-1, with the average value of 114.42 ng.kg-1. In addition, the spatial distribution of matrix-bound phosphine indicated that matrix-bound phosphine in inshore sediments had relatively higher contents than those in offshore sediments. Statistical analysis showed that matrix-bound phosphine significantly related to organic phosphorus and alkaline phosphatase activity ( R = 0. 882, P = 0. 01; R = 0. 819, P =0. 023). However, there were no correlations between matrix-bound phosphine and organic nitrogen, inorganic phosphorus and sediment grain sizes. These results implied that accumulation and distribution of matrix-bound phosphined were mainly affected by the decomposition of organic phosphorus by microorganisms.

  7. Resistance of stored-product insects to phosphine; Resistencia de insetos de produtos armazenados a fosfina

    Energy Technology Data Exchange (ETDEWEB)

    Pimentel, Marco Aurelio Guerra [Universidade Federal de Vicosa (UFV), MG (Brazil). Dept. de Biologia Animal. Setor de Entomologia]. E-mail: marcoagp@gmail.com; Faroni, Leda Rita D' Antonino; Batista, Maurilio Duarte; Silva, Felipe Humberto da [Universidade Federal de Vicosa (UFV), MG (Brazil). Dept. de Engenharia Agricola. Setor de Armazenamento]. E-mail: lfaroni@ufv.br; mauriliodbatista@yahoo.com.br; felipehumberto@gmail.com

    2008-12-15

    The objectives of this work were to assess phosphine resistance in insect populations (Tribolium castaneum, Rhyzopertha dominica, Sitophilus zeamais and Oryzaephilus surinamensis) from different regions of Brazil and to verify if the prevailing mechanism of phosphine resistance in these populations involves reduced respiration rates. Sixteen populations of T. castaneum, 15 of R. dominica, 27 of S. zeamais and eight of O. surinamensis were collected from 36 locations over seven Brazilian states. Each population was tested for resistance to phosphine, based on the response of adults to discriminating concentrations, according to FAO standard method. For each insect species, the production of carbon dioxide of the most resistant and of the most susceptible populations was inversely related to their phosphine resistance. The screening tests identified possible phosphine resistant populations. R. dominica and O. surinamensis were less susceptible to phosphine than the other two species. The populations with lower respiration rate showed a lower mortality at discriminating concentration, possibly related to a phosphine resistance mechanism. Phosphine resistance occurs in stored-product insects, in different regions of Brazil, and the resistance mechanism involves reduced respiration rate. (author)

  8. Tris(pyrazolyl)phosphines with copper(i) : from monomers to polymers

    NARCIS (Netherlands)

    Tazelaar, Cornelis G J; Nicolas, Emmanuel; van Dijk, Tom; Broere, Daniël L J; Cardol, Mitchel; Lutz, Martin; Gudat, Dietrich; Slootweg, J Chris; Lammertsma, Koop

    2016-01-01

    The parent tris(pyrazolyl)phosphine and its 3,5-Me2, 3-Ph, and 3-t-Bu derivatives have been prepared by a simple procedure and show modest Lewis basicity of the phosphorus apex as was established by the magnitude of the (1)JP,Se coupling constant of the phosphine selenides. Because of the chelating

  9. Ion-molecule reactions of tritiated phenyl cations with organic amines and phosphines

    Energy Technology Data Exchange (ETDEWEB)

    Nefedov, V.D.; Toropova, M.A.; Shchepina, N.E. [St. Petersburg State Univ. (Russian Federation)] [and others

    1995-03-01

    Ion-molecule reactions of free multiply tritiated phenyl cations produced by a nuclear chemical method with organic amines and phosphines are studied. The product yields of the ion-molecule reactions of phenyl cations with arylalkylamines and -phosphines are determined by both the nature of the heteroatom and the organic radicals bonded to it.

  10. Additive Effects on Asymmetric Catalysis.

    Science.gov (United States)

    Hong, Liang; Sun, Wangsheng; Yang, Dongxu; Li, Guofeng; Wang, Rui

    2016-03-23

    This review highlights a number of additives that can be used to make asymmetric reactions perfect. Without changing other reaction conditions, simply adding additives can lead to improved asymmetric catalysis, such as reduced reaction time, improved yield, or/and increased selectivity.

  11. Binding Energy and Enzymatic Catalysis.

    Science.gov (United States)

    Hansen, David E.; Raines, Ronald T.

    1990-01-01

    Discussed is the fundamental role that the favorable free energy of binding of the rate-determining transition state plays in catalysis. The principle that all of the catalytic factors discussed are realized by the use of this binding energy is reviewed. (CW)

  12. Effects of phosphine fumigation on survivorship of Epiphyas postvittana (Lepidoptera: Tortricidae) eggs.

    Science.gov (United States)

    Liu, Yong-Biao; Liu, Samuel S; Simmons, Gregory; Walse, Spencer S; Myers, Scott W

    2013-08-01

    Light brown apple moth, Epiphyas postvittana (Walker), eggs were subjected to phosphine fumigations under normal atmospheric and elevated oxygen levels in laboratory-scale chamber experiments to compare their susceptibilities to the two different fumigation methods. In fumigations conducted under atmospheric oxygen at 5 and 10 degrees C, egg survivorship decreased with increase in phosphine concentration but then increased at a concentration of 3,000 ppm; this increase was significant at 10 degrees C. Based on egg survivorship data, phosphine fumigations conducted in a 60% oxygen atmosphere were significantly more effective than those conducted under atmospheric oxygen conditions. Oxygenated phosphine fumigations at 5 and 10 degrees C killed all 1,998 and 2,213 E. postvittana eggs treated, respectively, after 72 h of exposure. These results indicate the great potential of oxygenated phosphine fumigation for the control of E. postvittana eggs.

  13. Complexation of diphenyl(phenylacetenyl)phosphine to rhodium(III) tetraphenyl porphyrins

    DEFF Research Database (Denmark)

    Stulz, Eugen; Scott, Sonya M; Bond, Andrew D

    2003-01-01

    ). The methylide on rhodium in 3 is not displaced, leading selectively to the mono-phosphine complex (DPAP)(Me)Rh(TPP) (5). The first and second association constants, as determined by isothermal titration calorimetry and UV-vis titrations, are in the range 10(4)-10(7) M(-1) (in CH(2)Cl(2)). Using LDI-TOF mass....... The largest values of DeltaG degrees are found for 6. The thermodynamic and UV-vis data reveal that the methylide and the phosphine ligand have an almost identical electronic trans-influence on the sixth ligand....... spectrometry, the mono-phosphine complexes can be detected but not the bis-phosphine complexes. The electronic spectrum of 4 is similar to those previously reported with other tertiary phosphine ligands, whereas (DPAP)(I)Rh(TPP) (6) displays a low energy B-band absorption and a high energy Q-band absorption...

  14. Mono- and bis-phosphine-ligated H93G myoglobin: spectral models for ferrous-phosphine and ferrous-CO cytochrome P450.

    Science.gov (United States)

    Sun, Shengfang; Sono, Masanori; Dawson, John H

    2013-10-01

    To further investigate the properties of phosphines as structural and functional probes of heme proteins, mono- and bis-phosphine [tris(hydroxymethyl)phosphine, THMP] adducts of H93G myoglobin (Mb) have been prepared by stepwise THMP titrations of exogenous ligand-free ferric and ferrous H93G Mb, respectively. Bubbling with CO or stepwise titration with imidazole (Im) of the bis-THMP-ligated ferrous protein generated a mixed ligand (THMP/CO or THMP/Im, respectively) ferrous complexes. Stable oxyferrous H93G(THMP) Mb was formed at -40°C by bubbling the mono-THMP-Fe(II) protein with O2. A THMP-ligated ferryl H93G Mb moiety has been partially formed upon addition of H2O2 to the ferric mono-THMP adduct. All the species prepared above have been characterized with UV-visible (UV-vis) absorption and magnetic circular dichroism (MCD) spectroscopy in this study. The six-coordinate ferrous bis-phosphine and mono-phosphine/CO complexes of H93G Mb exhibit characteristic spectral features (red-shifted Soret/unique-shaped MCD visible bands and hyperporphyrin spectra, respectively) that only have been seen for the analogous phosphine or CO-complexes of thiolate-ligated heme proteins such as cytochrome P450 (P450) and Caldariomyces fumago chloroperoxidase (CPO). However, such resemblance is not seen in phosphine-ligated ferric H93G Mb even though phosphine-bound ferric P450 and CPO display hyperporphyrin spectra. In fact, bis-THMP-bound ferric H93G Mb exhibits MCD and UV-vis absorption spectra that are similar to those of bis-amine- and bis-thioether-ligated H93G Mb complexes. This study also further demonstrates the utility of the H93G cavity mutant for preparing novel heme iron coordination structures. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Molecular catalysis science: Perspective on unifying the fields of catalysis.

    Science.gov (United States)

    Ye, Rong; Hurlburt, Tyler J; Sabyrov, Kairat; Alayoglu, Selim; Somorjai, Gabor A

    2016-05-10

    Colloidal chemistry is used to control the size, shape, morphology, and composition of metal nanoparticles. Model catalysts as such are applied to catalytic transformations in the three types of catalysts: heterogeneous, homogeneous, and enzymatic. Real-time dynamics of oxidation state, coordination, and bonding of nanoparticle catalysts are put under the microscope using surface techniques such as sum-frequency generation vibrational spectroscopy and ambient pressure X-ray photoelectron spectroscopy under catalytically relevant conditions. It was demonstrated that catalytic behavior and trends are strongly tied to oxidation state, the coordination number and crystallographic orientation of metal sites, and bonding and orientation of surface adsorbates. It was also found that catalytic performance can be tuned by carefully designing and fabricating catalysts from the bottom up. Homogeneous and heterogeneous catalysts, and likely enzymes, behave similarly at the molecular level. Unifying the fields of catalysis is the key to achieving the goal of 100% selectivity in catalysis.

  16. Isocyanide and Phosphine Oxide Coordination in Binuclear Chromium Pacman Complexes.

    Science.gov (United States)

    Stevens, Charlotte J; Nichol, Gary S; Arnold, Polly L; Love, Jason B

    2013-12-01

    The new binuclear chromium Pacman complex [Cr2(L)] of the Schiff base pyrrole macrocycle H4L has been synthesized and structurally characterized. Addition of isocyanide, C≡NR (R = xylyl, (t)Bu), or triphenylphosphine oxide donors to [Cr2(L)] gives contrasting chemistry with the formation of the new coordination compounds [Cr2(μ-CNR)(L)], in which the isocyanides bridge the two Cr(II) centers, and [Cr2(OPPh3)2(L)], a Cr(II) phosphine oxide adduct with the ligands exogenous to the cleft.

  17. Acute Oral Toxicity Potential of 4-Nitrophenyl Methkyl Phenyl Phosphinate.

    Science.gov (United States)

    1982-09-01

    methyl phenyl phosphinate Chemical Abstract Service Registry No.: None Molecular structure: C Ii NO P 13 12 4 .0 0~ NO., CH3 o o...C 56.33 56.17 H 4.36 4.28 N 5.05 5.14 P 11.17 11.25 2. Chemical Name: Polysorbate 80 (Tween 80) Chemical Abstract Service Registry No.: 9005-65-6...administration particularly in chronic toxicity studies in experimental data. 3. Chemical Name: Citric Acid, monohydrate Chemical Abstract Service

  18. Phosphine on Jupiter and implications for the Great Red Spot

    Science.gov (United States)

    Prinn, R. G.; Lewis, J. S.

    1975-01-01

    A study of the chemistry and photochemistry of the recently discovered phosphine in the atmosphere of Jupiter suggests that the red colorations on this planet result from photochemical production of red phosphorus particles. Chemical-dynamical models of this red phosphorus haze imply that the intensity of the red coloration is a strong function of the strength of vertical turbulent mixing in the atmosphere. If the Jovian Great Red Spot is a region of considerable dynamical activity our model provides a self-consistent explanation for the redness of this region in comparison to the rest of the planet.

  19. Diphenyl[2-(2-pyridylaminomethylphenyl]phosphine oxide

    Directory of Open Access Journals (Sweden)

    Simón Hernández-Ortega

    2010-05-01

    Full Text Available The title compound, C24H21N2OP, was obtained by reacting 2-aminopyridine and 2-(diphenylphosphinylbenzaldehyde in ethanol. It crystallizes with two crystallographically independent molecules in the asymmetric unit. The aminopyridine units and the benzene ring bonded to the phosphine oxide P atom form dihedral angles of 88.58 (7 and 82.47 (9° in the two molecules. The crystal structure displays strong N—H...O and weak C—H...O hydrogen bonds along the b axis and C—H...π aromatic intra- and intermolecular interactions.

  20. Effects of phosphine fumigation on the quality of soybean seeds.

    OpenAIRE

    Krzyzanowski,Francisco Carlos; Lorini,Irineu; França-Neto,José de Barros; Henning,Ademir Assis

    2013-01-01

    Fumigation is a technique employed to eliminate insect pests in stored seeds by using gas. The aim of the experiment was to evaluate the effect of the gas phosphine on germination and on vigor (accelerated aging and seedling length) of soybean seeds. Soybean seeds of two cultivars with two vigor levels were used. Each treatment was replicated four times and each experimental unit consisted of two kilograms of seeds, which were placed in individual 1 m³ gas-tight capacity chambers with phosphi...

  1. Toxicity of phosphine to Carposina niponensis (Lepidoptera: Carposinadae) at low temperature.

    Science.gov (United States)

    Bo, Liu; Fanhua, Zhang; Yuejin, Wang

    2010-12-01

    Carposina niponensis Matsumura (Lepidoptera: Carposinadae), is widely distributed in pome fruit production areas in China and presents a problem in some export markets because it is considered a quarantine pest by some countries. Methyl bromide is the only fumigant used for fumigation of apples (Malus spp.) for export. However, phosphine is a candidate replacement that can be applied directly at low temperature. Here, laboratory tests showed that tolerance of different stages of C. niponensis to phosphine fumigation at 0 degrees C differed greatly; first-second-instar larvae were the least tolerant stage and the mature fifth instars were the most tolerant stage. In the mature larvae, fumigation tests, with a range of phosphine concentrations from 0.42 to 1.95 mg/liters and exposure periods of 24 h to 14 d at 0 degrees C indicated narcosis when phosphine concentration was > or = 1.67 mg/liter and that a 15.52-8.14-d fumigation period was required to achieve 99% mortality with different phosphine concentrations. The expression of C(0.7)T = k was obtained, which indicated that exposure time was much more important than concentration of phosphine in mortality of mature larvae of C. niponensis. All results suggested that phosphine fumigation at low temperature offers promising control of C. niponensis infestation in pome fruit.

  2. Occurrence of matrix-bound phosphine in intertidal sediments of the Yangtze Estuary.

    Science.gov (United States)

    Hou, L J; Chen, H; Yang, Y; Jiang, J M; Lin, X; Liu, M

    2009-08-01

    This study investigated the levels and potential transformation of matrix-bound phosphine in the intertidal sediments (0-5cm) of the Yangtze Estuary. Matrix-bound phosphine concentrations in sediments ranged from 0.65 to 3.25ngkg(-1), with an annual average of 1.53ngkg(-1). In freshwater sediments, the concentrations of matrix-bound phosphine were significantly higher than in the brackish sediments. The maximum concentrations of matrix-bound phosphine appeared in July (1.17-3.25ngkg(-1)), followed by May (0.92-3.01ngkg(-1)), November (0.65-2.41ngkg(-1)) and January (0.51-1.42ngkg(-1)). Matrix-bound phosphine derived probably from the mechanochemical reduction of apatite-bound phosphate and the microbial conversion of organic phosphorus in the intertidal sediments. Its spatial and seasonal distributions, however, were regulated by salinity and sediment temperature. Compared with other aquatic systems (e.g. rivers, lakes and coastal seas), a low level of matrix-bound phosphine was observed in the intertidal sediments, probably implicating a relatively rapid turnover of phosphine in the system.

  3. Proposing an Antidote for Poisonous Phosphine in View of Mitochondrial Eectrochemistry Facts

    Directory of Open Access Journals (Sweden)

    Mohammad Abdollahi

    2012-01-01

    Full Text Available Metal phosphides in general are potent pesticides that are a common cause of human poisoning. Various salts of phosphides produce highly toxic phosphine in exposure to gastric acid that results in multi-organ damage and death. There is no antidote for phosphine poisoning and most of human poisoned cases do not survive. All we know so far is that phosphine is a mitochondrial toxin that inhibits cellular respiration and induces oxidative stress. Mechanistically, phosphine as a reducing agent interacts with metal ion cofactors at the active site of enzymes and inhibits key enzymes such as cytochrome C oxidase that lead to inhibition of mitochondrial respiration. Phosphine (E0 = −1.18 V as a reducing agent gives electrons to cytochrome C oxidase (E0 = +0.29 V. Metal phosphides with lower reduction potential are stronger electron donors and thus stronger poisons. Our hypothesis is that if an electron receiver stronger than cytochrome C oxidase is used then it would compete with cytochrome C oxidase in interaction with phosphine. This competition might prevent or reduce the inhibition of cellular respiration. This idea can be tested in an animal model of phosphine toxicity by monitoring cardiovascular state and measuring the cardiac mitochondrial function.

  4. Effect of the phosphine steric and electronic profile on the Rh-promoted dehydrocoupling of phosphine-boranes.

    Science.gov (United States)

    Hooper, Thomas N; Huertos, Miguel A; Jurca, Titel; Pike, Sebastian D; Weller, Andrew S; Manners, Ian

    2014-04-07

    The electronic and steric effects in the stoichiometric dehydrocoupling of secondary and primary phosphine-boranes H3B·PR2H [R = 3,5-(CF3)2C6H3; p-(CF3)C6H4; p-(OMe)C6H4; adamantyl, Ad] and H3B·PCyH2 to form the metal-bound linear diboraphosphines H3B·PR2BH2·PR2H and H3B·PRHBH2·PRH2, respectively, are reported. Reaction of [Rh(L)(η(6)-FC6H5)][BAr(F)4] [L = Ph2P(CH2)3PPh2, Ar(F) = 3,5-(CF3)2C6H3] with 2 equiv of H3B·PR2H affords [Rh(L)(H)(σ,η-PR2BH3)(η(1)-H3B·PR2H)][BAr(F)4]. These complexes undergo dehydrocoupling to give the diboraphosphine complexes [Rh(L)(H)(σ,η(2)-PR2·BH2PR2·BH3)][BAr(F)4]. With electron-withdrawing groups on the phosphine-borane there is the parallel formation of the products of B-P cleavage, [Rh(L)(PR2H)2][BAr(F)4], while with electron-donating groups no parallel product is formed. For the bulky, electron rich, H3B·P(Ad)2H no dehydrocoupling is observed, but an intermediate Rh(I) σ phosphine-borane complex is formed, [Rh(L){η(2)-H3B·P(Ad)2H}][BAr(F)4], that undergoes B-P bond cleavage to give [Rh(L){η(1)-H3B·P(Ad)2H}{P(Ad)2H}][BAr(F)4]. The relative rates of dehydrocoupling of H3B·PR2H (R = aryl) show that increasingly electron-withdrawing substituents result in faster dehydrocoupling, but also suffer from the formation of the parallel product resulting from P-B bond cleavage. H3B·PCyH2 undergoes a similar dehydrocoupling process, and gives a mixture of stereoisomers of the resulting metal-bound diboraphosphine that arise from activation of the prochiral P-H bonds, with one stereoisomer favored. This diastereomeric mixture may also be biased by use of a chiral phosphine ligand. The selectivity and efficiencies of resulting catalytic dehydrocoupling processes are also briefly discussed.

  5. Insights into enzymatic thiamin catalysis

    OpenAIRE

    Wikner, Christer

    1997-01-01

    Thiamin diphosphate, the biologically active form of vitamin B,, functions as a cofactor in various enzymes in the cell. The protein enhances the reactivity of the cofactor by binding it in a very specific manner. In this work, based upon information from the crystal structure, the mechanism of the thiamin dependent enzyme transketolase from yeast has been investigated by various methods. In enzymatic thiamin catalysis, the protein has three major tasks in the formation of a...

  6. Reaction Selectivity in Heterogeneous Catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Somorjai, Gabor A.; Kliewer, Christopher J.

    2009-02-02

    The understanding of selectivity in heterogeneous catalysis is of paramount importance to our society today. In this review we outline the current state of the art in research on selectivity in heterogeneous catalysis. Current in-situ surface science techniques have revealed several important features of catalytic selectivity. Sum frequency generation vibrational spectroscopy has shown us the importance of understanding the reaction intermediates and mechanism of a heterogeneous reaction, and can readily yield information as to the effect of temperature, pressure, catalyst geometry, surface promoters, and catalyst composition on the reaction mechanism. DFT calculations are quickly approaching the ability to assist in the interpretation of observed surface spectra, thereby making surface spectroscopy an even more powerful tool. HP-STM has revealed three vitally important parameters in heterogeneous selectivity: adsorbate mobility, catalyst mobility, and selective site-blocking. The development of size controlled nanoparticles from 0.8 to 10 nm, of controlled shape, and of controlled bimetallic composition has revealed several important variables for catalytic selectivity. Lastly, DFT calculations may be paving the way to guiding the composition choice for multi-metallic heterogeneous catalysis for the intelligent design of catalysts incorporating the many factors of selectivity we have learned.

  7. Oxygenated phosphine fumigation for control of Epiphyas postvittana (Lepidoptera: Tortricidae) eggs on lettuce.

    Science.gov (United States)

    Liu, Samuel S; Liu, Yong-Biao; Simmons, Gregory S

    2014-08-01

    Light brown apple moth, Epiphyas postvittana (Walker), is a quarantined pest in most countries. Its establishment in California and potential spread to other parts of the state and beyond make it urgent to develop effective postharvest treatments to control the pest on fresh commodities. Fumigation with cylindered phosphine at low temperature has emerged to be a practical methyl bromide alternative treatment for postharvest pest control on fresh commodities. However, its use to control E. postvittana eggs on sensitive commodities such as lettuce is problematic. E. postvittana eggs are tolerant of phosphine and long phosphine treatment also injures lettuce. In the current study, E. postvittana eggs were subjected to oxygenated phosphine fumigations to develop an effective treatment at a low storage temperature of 2 degrees C. In addition, soda lime as a CO2 absorbent was tested to determine its effects in reducing and preventing injuries to lettuce associated with phosphine fumigations. Three-day fumigation with 1,000 ppm phosphine under 60% O2 achieved 100% mortality of E. postvittana eggs in small-scale laboratory tests. In the presence of the CO2 absorbent, a 3-d large-scale fumigation of lettuce with 1,700 ppm phosphine under 60% O2 resulted in a relative egg mortality of 99.96% without any negative effect on lettuce quality. The 3-d fumigation treatment without the CO2 absorbent, however, resulted in significant injuries to lettuce and consequential quality reductions. The study demonstrated that oxygenated phosphine fumigation has the potential to control E. postvittana eggs and the CO2 absorbent has the potential to prevent injuries and quality reductions of lettuce associated with long-term oxygenated phosphine fumigation.

  8. Selective Hydrogenation of Avermectin Catalyzed by Iridium-Phosphine Complexes

    Institute of Scientific and Technical Information of China (English)

    MA, Xiao-Yan; WANG, Kun; ZHANG, Lei; LI, Xian-Jun; LI, Rui-Xiang

    2007-01-01

    A series of new iridium complexes, IrCl(COD)(TMOPP) (1) [COD=1,5-cyclooctadiene, TMOPP=tris(4-methoxyphenyl)phosphine], IrCl(COD)(TFMPP) (2) [TFMPP = tris(4-trifluoromethylphenyl)phosphine], IrCl-(COD)(BDNA) (3) [BDNA=1,8-bis(diphenylphosphinomethyl)naphthalene], IrCl(COD)(BISBI) (4) [BISBI=2,2'-bis(diphenylphosphinomethyl)biphenyl] and IrCl(COD)(BDPB) (5) [BDPB = 1,2-bis(diphenylphosphinomethyl)benzene], were synthesized and characterized by NMR spectra and elemental analyses. In order to obtain the relationships between complex structures and their catalytic properties, IrCl(COD)(DPPM) (6) [DPPM=bis(diphenylphosphino)methane], IrCl(COD)(DPPE) (7) [DPPE= 1,2-bis(diphenylphosphino)ethane], IrCl(COD)-(DPPP) (8) [DPPP=1,3-bis(diphenylphosphino)propane] and IrCl(COD)(TPP) (9) [TPP=triphenylphosphine],were also synthesized according to the reported methods. The hydrogenation results showed that the low electronic density at the central metal was favorable to increase the catalytic activity for the hydrogenation of avermectin, but decrease the selectivity to ivermectin. The complex with a large chelating ring and a bulky chelating backbone would easily cause the cleavage of C-O bond in avermectin to give a byproduct avermectin aglycon.

  9. Do phosphine resistance genes influence movement and dispersal under starvation?

    Science.gov (United States)

    Kaur, Ramandeep; Ebert, Paul R; Walter, Gimme H; Swain, Anthony J; Schlipalius, David I

    2013-10-01

    Phosphine resistance alleles might be expected to negatively affect energy demanding activities such as walking and flying, because of the inverse relationship between phosphine resistance and respiration. We used an activity monitoring system to quantify walking of Rhyzopertha dominica (F.) and a flight chamber to estimate their propensity for flight initiation. No significant difference in the duration of walking was observed between the strongly resistant, weakly resistant, and susceptible strains of R. dominica we tested, and females walked significantly more than males regardless of genotype. The walking activity monitor revealed no pattern of movement across the day and no particular time of peak activity despite reports of peak activity of R. dominica and Tribolium castaneum (Herbst) under field conditions during dawn and dusk. Flight initiation was significantly higher for all strains at 28 degrees C and 55% relative humidity than at 25, 30, 32, and 35 degrees C in the first 24 h of placing beetles in the flight chamber. Food deprivation and genotype had no significant effect on flight initiation. Our results suggest that known resistance alleles in R. dominica do not affect insect mobility and should therefore not inhibit the dispersal of resistant insects in the field.

  10. Preparation of New Chiral Ferroceny Phosphine Ligands and Their Application to Organic Synthesis

    Institute of Scientific and Technical Information of China (English)

    S.Fukuzawa

    2007-01-01

    1 Results The unique structure of chiral ferrocenes allows one to design a variety of chiral phosphine ligands,which are useful tools for metal catalyzed asymmetric reactions.Although some useful chiral ferrocenyl phosphine ligands have already been reported,it is still an challenging subject tocreate new ferrocenyl phosphine ligands in order to cover asymmetric reactions in which conventional ligands do not effectively work[1].We happned to discover that 1,5-dilithiation of o-TMS blocked ferrocene 1 pr...

  11. A novel approach to limit the development of phosphine resistance in Western Australia

    OpenAIRE

    2010-01-01

    Escalating development of resistance to phosphine is of concern to grain storage operators world wide. In Western Australia 85% of grain produced is exported with a guarantee through legislation that it is free of all grain insects. Phosphine plays a vital part in shore-based fumigations to achieve this insectfree status but it is also available for unrestricted use by growers for grain stored on farms. For more than 20 years a campaign has been in place to encourage better use of phosphine. ...

  12. Nanometallic chemistry: deciphering nanoparticle catalysis from the perspective of organometallic chemistry and homogeneous catalysis.

    Science.gov (United States)

    Yan, Ning; Yuan, Yuan; Dyson, Paul J

    2013-10-07

    Nanoparticle (NP) catalysis is traditionally viewed as a sub-section of heterogeneous catalysis. However, certain properties of NP catalysts, especially NPs dispersed in solvents, indicate that there could be benefits from viewing them from the perspective of homogeneous catalysis. By applying the fundamental approaches and concepts routinely used in homogeneous catalysis to NP catalysts it should be possible to rationally design new nanocatalysts with superior properties to those currently in use.

  13. Cosmic strings and baryon decay catalysis

    Science.gov (United States)

    Gregory, Ruth; Perkins, W. B.; Davis, A.-C.; Brandenberger, R. H.

    1989-01-01

    Cosmic strings, like monopoles, can catalyze proton decay. For integer charged fermions, the cross section for catalysis is not amplified, unlike in the case of monopoles. The catalysis processes are reviewed both in the free quark and skyrmion pictures and the implications for baryogenesis are discussed. A computation of the cross section for monopole catalyzed skyrmion decay is presented using classical physics. Also discussed are some effects which can screen catalysis processes.

  14. Cosmic strings and baryon decay catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Gregory, R.; Perkins, W.B.; Davis, A.C.; Brandenberger, R.H. (Fermi National Accelerator Lab., Batavia, IL (USA); Cambridge Univ. (UK); Brown Univ., Providence, RI (USA). Dept. of Physics)

    1989-09-01

    Cosmic strings, like monopoles, can catalyze proton decay. For integer charged fermions, the cross section for catalysis is not amplified, unlike in the case of monopoles. We review the catalysis processes both in the free quark and skyrmion pictures and discuss the implications for baryogenesis. We present a computation of the cross section for monopole catalyzed skyrmion decay using classical physics. We also discuss some effects which can screen catalysis processes. 32 refs., 1 fig.

  15. Cosmic strings and baryon decay catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Gregory, R.; Perkins, W.B.; Davis, A.C.; Brandenberger, R.H. (Fermi National Accelerator Lab., Batavia, IL (USA); Cambridge Univ. (UK); Brown Univ., Providence, RI (USA). Dept. of Physics)

    1989-09-01

    Cosmic strings, like monopoles, can catalyze proton decay. For integer charged fermions, the cross section for catalysis is not amplified, unlike in the case of monopoles. We review the catalysis processes both in the free quark and skyrmion pictures and discuss the implications for baryogenesis. We present a computation of the cross section for monopole catalyzed skyrmion decay using classical physics. We also discuss some effects which can screen catalysis processes. 32 refs., 1 fig.

  16. Cooperative catalysis designing efficient catalysts for synthesis

    CERN Document Server

    Peters, René

    2015-01-01

    Written by experts in the field, this is a much-needed overview of the rapidly emerging field of cooperative catalysis. The authors focus on the design and development of novel high-performance catalysts for applications in organic synthesis (particularly asymmetric synthesis), covering a broad range of topics, from the latest progress in Lewis acid / Br?nsted base catalysis to e.g. metal-assisted organocatalysis, cooperative metal/enzyme catalysis, and cooperative catalysis in polymerization reactions and on solid surfaces. The chapters are classified according to the type of cooperating acti

  17. Solid acid catalysis from fundamentals to applications

    CERN Document Server

    Hattori, Hideshi

    2014-01-01

    IntroductionTypes of solid acid catalystsAdvantages of solid acid catalysts Historical overviews of solid acid catalystsFuture outlookSolid Acids CatalysisDefinition of acid and base -Brnsted acid and Lewis acid-Acid sites on surfacesAcid strengthRole of acid sites in catalysisBifunctional catalysisPore size effect on catalysis -shape selectivity-Characterization of Solid Acid Catalysts Indicator methodTemperature programmed desorption (TPD) of ammoniaCalorimetry of adsorption of basic moleculesInfrare

  18. Mitochondrial uncouplers act synergistically with the fumigant phosphine to disrupt mitochondrial membrane potential and cause cell death.

    Science.gov (United States)

    Valmas, Nicholas; Zuryn, Steven; Ebert, Paul R

    2008-10-30

    Phosphine is the most widely used fumigant for the protection of stored commodities against insect pests, especially food products such as grain. However, pest insects are developing resistance to phosphine and thereby threatening its future use. As phosphine inhibits cytochrome c oxidase (complex IV) of the mitochondrial respiratory chain and reduces the strength of the mitochondrial membrane potential (DeltaPsi(m)), we reasoned that mitochondrial uncouplers should act synergistically with phosphine. The mitochondrial uncouplers FCCP and PCP caused complete mortality in populations of both wild-type and phosphine-resistant lines of Caenorhabditis elegans simultaneously exposed to uncoupler and phosphine at concentrations that were individually nonlethal. Strong synergism was also observed with a third uncoupler DNP. We have also tested an alternative complex IV inhibitor, azide, with FCCP and found that this also caused a synergistic enhancement of toxicity in C. elegans. To investigate potential causes of the synergism, we measured DeltaPsi(m), ATP content, and oxidative damage (lipid hydroperoxides) in nematodes subjected to phosphine-FCCP treatment and found that neither an observed 50% depletion in ATP nor oxidative stress accounted for the synergistic effect. Instead, a synergistic reduction in DeltaPsi(m) was observed upon phosphine-FCCP co-treatment suggesting that this is directly responsible for the subsequent mortality. These results support the hypothesis that phosphine-induced mortality results from the in vivo disruption of normal mitochondrial activity. Furthermore, we have identified a novel pathway that can be targeted to overcome genetic resistance to phosphine.

  19. Comparative effects of gamma irradiation and phosphine fumigation on the quality of white ginseng

    Science.gov (United States)

    Kwon, J.-H. J.-H.; Byun, M.-W. M.-W.; Kim, K.-S. K.-S.; Kang, I.-J. I.-J.

    2000-03-01

    The hygienic, physicochemical, and organoleptic qualities of white ginseng were monitored during 6 months under accelerated conditions (40°C, 90% r.h.) by observing its microbial populations, disinfestation, and some quality attributes following either gamma irradiation at 2.5-10 kGy or commercial phosphine (PH 3) fumigation. In a comparative study, both treatments were found to be effective for disinfecting the stored samples. Phosphine showed no appreciable decontaminating effects on microorganisms contaminated including coliforms, while 5 kGy irradiation was sufficient to control all microorganisms related to the quality of the packed samples. Irradiation at 5 kGy caused negligible changes in physicochemical attributes of the samples, such as ginsenosides, amino acids, fatty acids, and organoleptic properties, whereas phosphine fumigation was found detrimental to sensory flavor ( Pphosphine-, and 2.5-5 kGy-treated samples. Accordingly, irradiation at phosphine fumigation for white ginseng.

  20. Effects of phosphine fumigation on survivorship of Epiphyas postvittana (Lepidoptera: Tortricidae) eggs

    Science.gov (United States)

    Light brown apple moth (LBAM), Epiphyas postvittana (Walker), eggs were subjected to regular and oxygenated phosphine fumigations at different temperatures to compare their susceptibilities to the two different fumigation methods and determine effective treatments in laboratory tests. LBAM eggs wer...

  1. Hydroxymethyl phosphine compounds for use as diagnostic and therapeutic pharmaceuticals and method of making same

    Science.gov (United States)

    Katti, Kattesh V.; Karra, Srinivasa Rao; Berning, Douglas E.; Smith, C. Jeffrey; Volkert, Wynn A.; Ketring, Alan R.

    1999-01-01

    A compound and method of making a compound for use as a diagnostic or therapeutic pharmaceutical comprises at least one functionalized hydroxyalkyl phosphine donor group and one or more sulfur or nitrogen donor and a metal combined with the ligand.

  2. Phosphine-free conversion of alcohols into alkyl thiocyanates using trichloroisocyanuric acid/NH4SCN

    Institute of Scientific and Technical Information of China (English)

    Roya Azadi; Babak Mokhtari; Mohamad-Ali Makaremi

    2012-01-01

    A convenient and efficient phosphine-free procedure for the one-pot conversion of primary,secondary and tertiary alcohols into the corresponding alkyl thiocyanates or alkyl isothiocyanates is described using trichloroisocyanuric acid/NH4SCN.

  3. Formation And Stabilization Of Silver Nanoparticles In Ethanol By Phosphinic Acid

    Directory of Open Access Journals (Sweden)

    Kim J.-K.

    2015-06-01

    Full Text Available Although phosphinic acid (H3PO2 has a powerful reduction potential, the reduction of silver ions by phosphinic acid salt has not yet been reported. In this work, colloidal silver has successfully synthesized by reducing silver ions in ethanol with phosphinic acid as a reducing agent. The effects of [AgNO3]/[H3PO2] ratios and reaction temperature were considered. Spherical silver nanoparticles with cubic structure were successfully prepared and their diameters were measured to be 8.5±0.9 nm − 11.3±0.2 nm. Half-life analysis showed that the reduction of silver ions proceeded with the reaction order of 1.30 on concentration of phosphinic acid and activation energy of 120.7 kJ/mol.

  4. A New Class of Atomically Precise, Hydride-Rich Silver Nanoclusters Co-Protected by Phosphines

    KAUST Repository

    Bootharaju, Megalamane Siddaramappa

    2016-10-10

    Thiols and phosphines are the most widely used organic ligands to attain atomically precise metal nanoclusters (NCs). Here, we used simple hydrides (e.g., H–) as ligands along with phosphines, such as triphenylphosphine (TPP), 1,2-bis(diphenylphosphino)ethane [DPPE], and tris(4-fluorophenyl)phosphine [TFPP] to design and synthesize a new class of hydride-rich silver NCs. This class includes [Ag18H16(TPP)10]2+, [Ag25H22(DPPE)8]3+, and [Ag26H22(TFPP)13]2+. Our work reveals a new family of atomically precise NCs protected by H– ligands and labile phosphines, with potentially more accessible active metal sites for functionalization and provides a new set of stable NC sizes with simpler ligand–metal bonding for researchers to explore both experimentally and computationally.

  5. Bis(phosphine)boronium salts. Synthesis, structures and coordination chemistry.

    Science.gov (United States)

    Shuttleworth, Timothy A; Huertos, Miguel A; Pernik, Indrek; Young, Rowan D; Weller, Andrew S

    2013-09-28

    The synthesis of a range of bis(phosphine)boronium salts is reported [(R2HP)2BH2][X] (R = Ph, (t)Bu, Cy) in which the counter anion is also varied (X(-) = Br(-), [OTf](-), [BAr(F)4](-), Ar(F) = 3,5-(CF3)2C6H3). Characterization in the solid-state by X-ray diffraction suggests there are weak hydrogen bonds between the PH units of the boronium cation and the anion (X(-) = Br(-), [OTf](-)), while solution NMR spectroscopy also reveals hydrogen bonding occurs in the order [BAr(F)4](-) < [OTf](-) < Br(-). [(Ph2HP)2BH2][BAr(F)4] reacts with RhH(PPh3)3, by elimination of H2, forming [Rh(κ(1),η-PPh2BH2·PPh2H)(PPh3)2][BAr(F)4] which shows a β-B-agostic interaction from the resulting base stabilised phosphino-borane ligand. Alternatively such ligands can be assembled directly on the metal centre by reaction of in situ generated {Rh(PPh3)3}(+) and Ph2HP·BH3 to afford [Rh(κ(1),η-PPh2BH2·PPh3)(PPh3)2][BAr(F)4], which was characterised by X-ray crystallography. Addition of H3B·PPh2H to the well-defined 16-electron "T-shaped" complex [Rh(P(i)Bu3)2(PPh3)][BAr(F)4] (characterised by X-ray crystallography) formed of a mixture of base-stabilised phosphino borane ligated complexes [Rh(κ(1),η-PR2BH2·PR3)(PR3)2][BAr(F)4] (R = (i)Bu or Ph). These last observations may lend clues to the formation of bis(phosphine)boronium salts in the catalytic dehydrocoupling reaction of phosphine boranes as mediated by Rh(I) compounds.

  6. Sources of matrix-bound phosphine in advanced wastewater treatment system

    Institute of Scientific and Technical Information of China (English)

    DING Lili; LIANG Hanwen; ZHU Yixin; MO Weiheng; WANG Qiang; REN Hongqiang; WANG Xiaorong; M.Edwards; D.Glindemann

    2005-01-01

    @@ Phosphine (PH3), a highly toxic and reductive gas, has been explored in biogases[1,2] and it proves also to be ubiquitous even in remote atmospheric air at a concentration in the order of (pg--ng) /m3 [3]. For more than one hundred years, sources and mechanisms of biological phosphine formation in natural and engineered environments have been investigated and discussed[4].

  7. Phosphine resistance, respiration rate and fitness consequences in stored-product insects.

    Science.gov (United States)

    Pimentel, Marco Aurélio G; Faroni, Lêda Rita D'A; Tótola, Marcos R; Guedes, Raul Narciso C

    2007-09-01

    Resistance to fumigants has been frequently reported in insect pests of stored products and is one of the obstacles in controlling these pests. The authors studied phosphine resistance and its physiological basis in adult insects of 12 populations of Tribolium castaneum (Herbst) (Tenebrionidae), ten populations of Rhyzopertha dominica (F.) (Bostrichidae) and eight populations of Oryzaephilus surinamensis L. (Silvanidae) from Brazil, and the possible existence of fitness costs associated with phosphine resistance in the absence of this fumigant. The bioassays for the detection of phosphine resistance followed the FAO standard method. The production of carbon dioxide and the instantaneous rate of population increase (r(i)) of each population of each species were correlated with their resistance ratios at the LC(50). The resistance ratio at LC(50) in T. castaneum ranged from 1.0- to 186.2-fold, in R. dominica from 2.0- to 71.0-fold and in O. surinamensis from 1.9- to 32.2-fold. Ten populations of T. castaneum, nine populations of R. dominica and seven populations of O. surinamensis were resistant to phosphine. In all three species there was significant association (P phosphine resistance. The populations with lower carbon dioxide production showed a higher resistance ratio, suggesting that the lower respiration rate is the physiological basis of phosphine resistance by reducing the fumigant uptake in the resistant insects. Conversely, populations with higher r(i) showed lower resistance ratios, which could indicate a lower rate of reproduction of the resistant populations compared with susceptible populations. Thus, management strategies based on the interruption of phosphine fumigation may result in reestablishment of susceptibility, and shows good potential for more effective management of phosphine-resistant populations.

  8. Stereoselective Synthesis of Highly Functionalized 2,3-Dihydro-4-pyranones Using Phosphine Oxide as Catalyst.

    Science.gov (United States)

    Kotani, Shunsuke; Miyazaki, Shiki; Kawahara, Kazuya; Shimoda, Yasushi; Sugiura, Masaharu; Nakajima, Makoto

    2016-01-01

    2,3-Dihydro-4-pyranones were synthesized stereoselectively using a chiral phosphine oxide as the catalyst. The phosphine oxide sequentially activated silicon tetrachloride and promoted the double aldol reaction of 4-methoxy-3-buten-2-one with aldehydes. Subsequent stereoselective cyclization afforded the corresponding highly functionalized 2,3-dihydro-4-pyranones bearing three contiguous chiral centers in good yields and with high diastereo- and enantioselectivities.

  9. Rationale behind the resistance of dialkylbiaryl phosphines toward oxidation by molecular oxygen.

    Science.gov (United States)

    Barder, Timothy E; Buchwald, Stephen L

    2007-04-25

    Electron-rich dialkylbiaryl phosphines, which comprise a common class of supporting ligands for Pd-catalyzed cross-coupling reactions, are highly resistant toward oxidation by molecular oxygen. Presented herein are possible reasons why this class of phosphine ligands manifests this property. Experimental and theoretical data suggest that the two alkyl substituents on the phosphorus center and the 2' and 6' positions of the biaryl backbone play an important role in inhibiting oxidation of this class of ligands.

  10. Life stage and resistance effects in modelling phosphine fumigation of Rhyzopertha dominica (F.)

    OpenAIRE

    Thorne, J.; Fulford, G.; Ridley, A.; Schlipalius, D.; P. Collins

    2010-01-01

    Resistance to phosphine in insect pests of stored grain is a serious problem and there is a world-wide need for the development of sustainable resistance management strategies. Here we introduce results from a new mathematical model of resistance development that includes all life stages, rates of oviposition, natural mortality and mortality under fumigation in relation to resistant genotype. The example we discuss is phosphine resistance in the lesser grain borer, Rhyzopertha dominica where ...

  11. Fundamental concepts in heterogeneous catalysis

    CERN Document Server

    Norskov, Jens K; Abild-Pedersen, Frank; Bligaard, Thomas

    2014-01-01

    This book is based on a graduate course and suitable as a primer for any newcomer to the field, this book is a detailed introduction to the experimental and computational methods that are used to study how solid surfaces act as catalysts.   Features include:First comprehensive description of modern theory of heterogeneous catalysisBasis for understanding and designing experiments in the field   Allows reader to understand catalyst design principlesIntroduction to important elements of energy transformation technologyTest driven at Stanford University over several semesters

  12. Indenylmetal Catalysis in Organic Synthesis.

    Science.gov (United States)

    Trost, Barry M; Ryan, Michael C

    2017-03-06

    Synthetic organic chemists have a long-standing appreciation for transition metal cyclopentadienyl complexes, of which many have been used as catalysts for organic transformations. Much less well known are the contributions of the benzo-fused relative of the cyclopentadienyl ligand, the indenyl ligand, whose unique properties have in many cases imparted differential reactivity in catalytic processes toward the synthesis of small molecules. In this Review, we present examples of indenylmetal complexes in catalysis and compare their reactivity to their cyclopentadienyl analogues, wherever possible. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Cobalt particle size effects in catalysis

    NARCIS (Netherlands)

    den Breejen, J.P.

    2010-01-01

    Aim of the work described in this thesis was first to investigate cobalt particle size effects in heterogeneous catalysis. The main focus was to provide a deeper understanding of the origin of the cobalt particle size effects in Fischer-Tropsch (FT) catalysis in which synthesis gas (H2/CO) is conver

  14. DOE Laboratory Catalysis Research Symposium - Abstracts

    Energy Technology Data Exchange (ETDEWEB)

    Dunham, T.

    1999-02-01

    The conference consisted of two sessions with the following subtopics: (1) Heterogeneous Session: Novel Catalytic Materials; Photocatalysis; Novel Processing Conditions; Metals and Sulfides; Nuclear Magnetic Resonance; Metal Oxides and Partial Oxidation; Electrocatalysis; and Automotive Catalysis. (2) Homogeneous Catalysis: H-Transfer and Alkane Functionalization; Biocatalysis; Oxidation and Photocatalysis; and Novel Medical, Methods, and Catalyzed Reactions.

  15. Cobalt particle size effects in catalysis

    NARCIS (Netherlands)

    den Breejen, J.P.

    2010-01-01

    Aim of the work described in this thesis was first to investigate cobalt particle size effects in heterogeneous catalysis. The main focus was to provide a deeper understanding of the origin of the cobalt particle size effects in Fischer-Tropsch (FT) catalysis in which synthesis gas (H2/CO) is

  16. Asymmetric catalysis : ligand design and microwave acceleration

    OpenAIRE

    Bremberg, Ulf

    2000-01-01

    This thesis deals partly with the design and synthesis ofligands for use in asymmetric catalysis, and partly with theapplication of microwave heating on metal-based asymmetriccatalytic reactions. Enantiomerically pure pyridyl alcohols and bipyridylalcohols were synthesized from the chiral pool for future usein asymmetric catalysis. Lithiated pyridines were reacted withseveral chiral electrophiles, yielding diastereomeric mixturesthat could be separated without the use of resolutiontechniques....

  17. Effect of Low-Temperature Phosphine Fumigation on the Survival of Bactrocera correcta (Diptera: Tephritidae).

    Science.gov (United States)

    Liu, Tao; Li, Li; Zhang, Fanhua; Gong, Shaorun; Li, Tianxiu; Zhan, Guoping; Wang, Yuejin

    2015-08-01

    This laboratory-based study examined the effects of low-temperature phosphine fumigation on the survival of the eggs and larvae of the guava fruit fly, Bactrocera correcta (Bezzi). Individual flies at different developmental stages, from 6-h-old eggs to third instars, were exposed to 0.92 mg/liter phosphine for 1-7 d at 5°C. We found that 12-h-old eggs and third instars were the most tolerant to phosphine. Increasing phosphine concentrations from 0.46 to 4.56 mg/liter increased mortality in these two stages. However, increased exposure times were required to achieve equal mortality rates in 12-h-old eggs and third instars when phosphine concentrations were ≥4.56 and ≥3.65 mg/liter, respectively. C(n)t = k expression was obtained at 50, 90, and 99% mortality levels, and the toxicity index (n) ranged from 0.43 to 0.77 for the two stages. The synergistic effects of a controlled atmosphere (CA) with elevated CO(2) levels were also investigated, and we found that a CO(2) concentration between 10% and 15% under CA conditions was optimal for low-temperature phosphine fumigation.

  18. Biomimetic peptide-based models of [FeFe]-hydrogenases: utilization of phosphine-containing peptides.

    Science.gov (United States)

    Roy, Souvik; Nguyen, Thuy-Ai D; Gan, Lu; Jones, Anne K

    2015-09-07

    Two synthetic strategies for incorporating diiron analogues of [FeFe]-hydrogenases into short peptides via phosphine functional groups are described. First, utilizing the amine side chain of lysine as an anchor, phosphine carboxylic acids can be coupled via amide formation to resin-bound peptides. Second, artificial, phosphine-containing amino acids can be directly incorporated into peptides via solution phase peptide synthesis. The second approach is demonstrated using three amino acids each with a different phosphine substituent (diphenyl, diisopropyl, and diethyl phosphine). In total, five distinct monophosphine-substituted, diiron model complexes were prepared by reaction of the phosphine-peptides with diiron hexacarbonyl precursors, either (μ-pdt)Fe2(CO)6 or (μ-bdt)Fe2(CO)6 (pdt = propane-1,3-dithiolate, bdt = benzene-1,2-dithiolate). Formation of the complexes was confirmed by UV/Vis, FTIR and (31)P NMR spectroscopy. Electrocatalysis by these complexes is reported in the presence of acetic acid in mixed aqueous-organic solutions. Addition of water results in enhancement of the catalytic rates.

  19. Fixed-charge phosphine ligands to explore gas-phase coinage metal-mediated decarboxylation reactions.

    Science.gov (United States)

    Vikse, Krista; Khairallah, George N; McIndoe, J Scott; O'Hair, Richard A J

    2013-05-14

    A combination of multistage mass spectrometry experiments and density functional theory (DFT) calculations were used to examine the decarboxylation reactions of a series of metal carboxylate complexes bearing a fixed-charge phosphine ligand, [(O3SC6H4)(C6H5)2PM(I)O2CR](-) (M = Cu, Ag, Au; R = Me, Et, benzyl, Ph). Collision-induced dissociation (CID) of these complexes using an LTQ linear ion mass spectrometer results in three main classes of reactions being observed: (1) decarboxylation; (2) loss of the phosphine ligand; (3) loss of carboxylic acid. The gas-phase unimolecular chemistry of the resultant decarboxylated organometallic ions, [(O3SC6H4)(C6H5)2PM(I)R](-), were also explored using CID experiments, and fragment primarily via loss of the phosphine ligand. Energy-resolved CID experiments on [(O3SC6H4)(C6H5)2PM(I)O2CR](-) (M = Cu, Ag, Au; R = Me, Et, benzyl, Ph) using a Q-TOF mass spectrometer were performed to gain a more detailed understanding of the factors influencing coinage metal-catalyzed decarboxylation and DFT calculations on the major fragmentation pathways aided in interpretation of the experimental results. Key findings are that: (1) the energy required for loss of the phosphine ligand follows the order Ag phosphine ligand on decarboxylation is also considered in comparison with previous studies on metal carboxylates that do not contain a phosphine ligand.

  20. Matrix-bound phosphine in Ny-(A)lesund Area of Arctic

    Institute of Scientific and Technical Information of China (English)

    Feng Ying; Wang Qiang; Yao Ziwei; Geng Jinju

    2009-01-01

    Phosphine, a ubiquitous trace gas in the atmosphere, acts as a carrier of gasous phosphorus in the biogeochemical cycle. The research of phosphine will show new light on the mechanisms of how the phosphorus supplement influence the biogeochemical cycle and global warming. In this paper, we detect the phosphine in Arctic Pole area for the first time. The result shows that matrix-bound phosphine(MBP) exists in all the samplings. Phosphine distributions varied with different environmental origins. Average phosphine concentrations in tundra soil, lake sediments, sea sediments, seabird-droppings and deer guanos were 14.17ng/kg dry, 35.44 kg dry, 67.20 kg dry, 32.9 ng/kg dry, and 25.52 ng/kg dry respectively. Correlation analysis shows that there is an obviously positive correlation between Porg and MBP. It could be concluded that anaerobic decomposition of Porg and the mechano-chemistry action of the rock probably are the possible reasons explaining the mechanism of MBP production in Arctic Pole area.

  1. A Computed Room Temperature Line List for Phosphine

    CERN Document Server

    Sousa-Silva, Clara; Tennyson, Jonathan

    2013-01-01

    An accurate and comprehensive room temperature rotation-vibration transition line list for phosphine (31PH3) is computed using a newly refined potential energy surface and a previously constructed ab initio electric dipole moment surface. Energy levels, Einstein A coefficients and transition intensities are computed using these surfaces and a variational approach to the nuclear motion problem as implemented in the program TROVE. A ro-vibrational spectrum is computed, covering the wavenumber range 0 to 8000 cm-1. The resulting line list, which is appropriate for temperatures up to 300 K, consists of a total of 137 million transitions between 5.6 million energy levels. Several of the band centres are shifted to better match experimental transition frequencies. The line list is compared to the most recent HITRAN database and other laboratorial sources. Transition wavelengths and intensities are generally found to be in good agreement with the existing experimental data, with particularly close agreement for the ...

  2. Reaction paths of phosphine dissociation on silicon (001)

    Science.gov (United States)

    Warschkow, O.; Curson, N. J.; Schofield, S. R.; Marks, N. A.; Wilson, H. F.; Radny, M. W.; Smith, P. V.; Reusch, T. C. G.; McKenzie, D. R.; Simmons, M. Y.

    2016-01-01

    Using density functional theory and guided by extensive scanning tunneling microscopy (STM) image data, we formulate a detailed mechanism for the dissociation of phosphine (PH3) molecules on the Si(001) surface at room temperature. We distinguish between a main sequence of dissociation that involves PH2+H, PH+2H, and P+3H as observable intermediates, and a secondary sequence that gives rise to PH+H, P+2H, and isolated phosphorus adatoms. The latter sequence arises because PH2 fragments are surprisingly mobile on Si(001) and can diffuse away from the third hydrogen atom that makes up the PH3 stoichiometry. Our calculated activation energies describe the competition between diffusion and dissociation pathways and hence provide a comprehensive model for the numerous adsorbate species observed in STM experiments.

  3. Reaction paths of phosphine dissociation on silicon (001)

    Energy Technology Data Exchange (ETDEWEB)

    Warschkow, O.; McKenzie, D. R. [Centre for Quantum Computation and Communication Technology, School of Physics, The University of Sydney, Sydney, NSW 2006 (Australia); Curson, N. J. [Centre for Quantum Computation and Communication Technology, School of Physics, The University of New South Wales, Sydney, NSW 2052 (Australia); London Centre for Nanotechnology and Department of Electronic and Electrical Engineering, University College London, 17-19 Gordon Street, London WC1H 0AH (United Kingdom); Schofield, S. R. [Centre for Quantum Computation and Communication Technology, School of Physics, The University of New South Wales, Sydney, NSW 2052 (Australia); London Centre for Nanotechnology and Department of Physics and Astronomy, University College, 17-19 Gordon Street, London WC1H 0AH (United Kingdom); Marks, N. A. [Centre for Quantum Computation and Communication Technology, School of Physics, The University of Sydney, Sydney, NSW 2006 (Australia); Discipline of Physics & Astronomy, Curtin University, GPO Box U1987, Perth, WA (Australia); Wilson, H. F. [Centre for Quantum Computation and Communication Technology, School of Physics, The University of Sydney, Sydney, NSW 2006 (Australia); CSIRO Virtual Nanoscience Laboratory, Parkville, VIC 3052 (Australia); School of Applied Sciences, RMIT University, Melbourne, VIC 3000 (Australia); Radny, M. W.; Smith, P. V. [School of Mathematical and Physical Sciences, The University of Newcastle, Callaghan, NSW 2308 (Australia); Reusch, T. C. G.; Simmons, M. Y. [Centre for Quantum Computation and Communication Technology, School of Physics, The University of New South Wales, Sydney, NSW 2052 (Australia)

    2016-01-07

    Using density functional theory and guided by extensive scanning tunneling microscopy (STM) image data, we formulate a detailed mechanism for the dissociation of phosphine (PH{sub 3}) molecules on the Si(001) surface at room temperature. We distinguish between a main sequence of dissociation that involves PH{sub 2}+H, PH+2H, and P+3H as observable intermediates, and a secondary sequence that gives rise to PH+H, P+2H, and isolated phosphorus adatoms. The latter sequence arises because PH{sub 2} fragments are surprisingly mobile on Si(001) and can diffuse away from the third hydrogen atom that makes up the PH{sub 3} stoichiometry. Our calculated activation energies describe the competition between diffusion and dissociation pathways and hence provide a comprehensive model for the numerous adsorbate species observed in STM experiments.

  4. Cu-catalyzed arylation of phosphinic amide facilitated by (±)-trans-cyclohexane-1,2-diamine

    Institute of Scientific and Technical Information of China (English)

    Juan Li; Song Lin Zhang; Chuan Zhou Tao; Yao Fu; Qing Xiang Guo

    2007-01-01

    Cu-catalyzed cross coupling between phosphinic amides and aryl halides was accomplished for the first time by using (±)-transcyclohexane-1,2-diamine as the ligand. This reaction provided a novel approach for synthesizing arylated phosphinic amides. Both kinetic measurement and theoretical calculation indicated that phosphinic amides were much less reactive than amides by about 10times in Cu-catalyzed cross coupling.

  5. Synthesis and Thermal Rearrangement of Tetramethyldisilane-bridged Bis(cyclopentadienyl) Diiron Complexes with Bis(phosphine)Substitution

    Institute of Scientific and Technical Information of China (English)

    孙秀丽; 王佰全; 等

    2003-01-01

    Photolysis of [Me2SiSiMe2)[C5H4Fe(CO2)]2with a series of bis(phosphine)ligands Ph2P(CH2)n PPh2(n=1-4) leads to the formation of the corresponding diiron complexes with intramolecular and intermolecular bis(phosphine) substitution.When these complexes were heated in refluxing xylene.only in the complexes with intermolecular bis(phosphine )substitution the thermal rearrangement reaction occurred.

  6. Distinction between coordination and phosphine ligand oxidation: interactions of di- and triphosphines with Pn(3+) (Pn = P, As, Sb, Bi).

    Science.gov (United States)

    Chitnis, Saurabh S; Vos, Kevin A; Burford, Neil; McDonald, Robert; Ferguson, Michael J

    2016-01-14

    Reactions of polydentate phosphines with sources of Pn(3+) (Pn = P, As, Sb, Bi) yield complexes of Pn(1+) (Pn = P, As) or Pn(3+) (Pn = Sb, Bi) acceptors. The distinction between coordination of a phosphine center to Pn and oxidation of a phosphine ligand is dependent on Pn. The first structurally verified triphosphine complexes of Sb(III) and Bi(III) acceptors are reported.

  7. "Nanocrystal bilayer for tandem catalysis"

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Yusuke; Tsung, Chia Kuang; Huang, Wenyu; Huo, Ziyang; E.Habas, Susan E; Soejima, Tetsuro; Aliaga, Cesar E; Samorjai, Gabor A; Yang, Peidong

    2011-01-24

    Supported catalysts are widely used in industry and can be optimized by tuning the composition and interface of the metal nanoparticles and oxide supports. Rational design of metal-metal oxide interfaces in nanostructured catalysts is critical to achieve better reaction activities and selectivities. We introduce here a new class of nanocrystal tandem catalysts that have multiple metal-metal oxide interfaces for the catalysis of sequential reactions. We utilized a nanocrystal bilayer structure formed by assembling platinum and cerium oxide nanocube monolayers of less than 10 nm on a silica substrate. The two distinct metal-metal oxide interfaces, CeO2-Pt and Pt-SiO2, can be used to catalyse two distinct sequential reactions. The CeO2-Pt interface catalysed methanol decomposition to produce CO and H2, which were subsequently used for ethylene hydroformylation catalysed by the nearby Pt-SiO2 interface. Consequently, propanal was produced selectively from methanol and ethylene on the nanocrystal bilayer tandem catalyst. This new concept of nanocrystal tandem catalysis represents a powerful approach towards designing high-performance, multifunctional nanostructured catalysts

  8. Nanocrystal bilayer for tandem catalysis.

    Science.gov (United States)

    Yamada, Yusuke; Tsung, Chia-Kuang; Huang, Wenyu; Huo, Ziyang; Habas, Susan E; Soejima, Tetsuro; Aliaga, Cesar E; Somorjai, Gabor A; Yang, Peidong

    2011-05-01

    Supported catalysts are widely used in industry and can be optimized by tuning the composition and interface of the metal nanoparticles and oxide supports. Rational design of metal-metal oxide interfaces in nanostructured catalysts is critical to achieve better reaction activities and selectivities. We introduce here a new class of nanocrystal tandem catalysts that have multiple metal-metal oxide interfaces for the catalysis of sequential reactions. We utilized a nanocrystal bilayer structure formed by assembling platinum and cerium oxide nanocube monolayers of less than 10 nm on a silica substrate. The two distinct metal-metal oxide interfaces, CeO(2)-Pt and Pt-SiO(2), can be used to catalyse two distinct sequential reactions. The CeO(2)-Pt interface catalysed methanol decomposition to produce CO and H(2), which were subsequently used for ethylene hydroformylation catalysed by the nearby Pt-SiO(2) interface. Consequently, propanal was produced selectively from methanol and ethylene on the nanocrystal bilayer tandem catalyst. This new concept of nanocrystal tandem catalysis represents a powerful approach towards designing high-performance, multifunctional nanostructured catalysts.

  9. Palladium-catalyzed air-based oxidative coupling of arylboronic acids with H-phosphine oxides leading to aryl phosphine oxides.

    Science.gov (United States)

    Fu, Tingting; Qiao, Hongwei; Peng, Zhimin; Hu, Gaobo; Wu, Xueji; Gao, Yuxing; Zhao, Yufen

    2014-05-14

    We present a novel and highly efficient methodology that allows for the construction of C-P bonds via the palladium-catalyzed air-based oxidative coupling of various commercially available arylboronic acids with easily oxidized H-phosphine oxides leading to valuable aryl phosphine oxides, particularly triarylphosphine oxides, with the use of air as the green oxidant, broad substrate applicability and good to excellent yields. The described catalytic system should be an efficient complement to the Chan-Lam type reaction and be useful in synthetic programs.

  10. Phosphine-initiated cation exchange for precisely tailoring composition and properties of semiconductor nanostructures: old concept, new applications.

    Science.gov (United States)

    Gui, Jing; Ji, Muwei; Liu, Jiajia; Xu, Meng; Zhang, Jiatao; Zhu, Hesun

    2015-03-16

    Phosphine-initiated cation exchange is a well-known inorganic chemistry reaction. In this work, different phosphines have been used to modulate the thermodynamic and kinetic parameters of the cation exchange reaction to synthesize complex semiconductor nanostructures. Besides preserving the original shape and size, phosphine-initiated cation exchange reactions show potential to precisely tune the crystallinity and composition of metal/semiconductor core-shell and doped nanocrystals. Furthermore, systematic studies on different phosphines and on the elementary reaction mechanisms have been performed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. A novel tridentate bis(phosphinic acid)phosphine oxide based europium(III)-selective Nafion membrane luminescent sensor.

    Science.gov (United States)

    Sainz-Gonzalo, F J; Popovici, C; Casimiro, M; Raya-Barón, A; López-Ortiz, F; Fernández, I; Fernández-Sánchez, J F; Fernández-Gutiérrez, A

    2013-10-21

    A new europium(III) membrane luminescent sensor based on a new tridentate bis(phosphinic acid)phosphine oxide (3) system has been developed. The synthesis of this new ligand is described and its full characterization by NMR, IR and elemental analyses is provided. The luminescent complex formed between europium(III) chloride and ligand 3 was evaluated in solution, observing that its spectroscopic and chemical characteristics are excellent for measuring in polymer inclusion membranes. Included in a Nafion membrane, all the parameters (ligand and ionic additives) that can affect the sensitivity and selectivity of the sensing membrane as well as the instrumental conditions were carefully optimized. The best luminescence signal (λexc = 229.06 nm and λem = 616.02 nm) was exhibited by the sensing film having a Nafion : ligand composition of 262.3 : 0.6 mg mL(-1). The membrane sensor showed a short response time (t95 = 5.0 ± 0.2 min) and an optimum working pH of 5.0 (25 mM acetate buffer solution). The membrane sensor manifested a good selectivity toward europium(III) ions with respect to other trivalent metals (iron, chromium and aluminium) and lanthanide(III) ions (lanthanum, samarium, terbium and ytterbium), although a small positive interference of terbium(III) ions was observed. It provided a linear range from 1.9 × 10(-8) to 5.0 × 10(-6) M with a very low detection limit (5.8 × 10(-9) M) and sensitivity (8.57 × 10(-7) a.u. per M). The applicability of this sensing film has been demonstrated by analyzing different kinds of spiked water samples obtaining recovery percentages of 95-97%.

  12. Detection and characterisation of strong resistance to phosphine in Brazilian Rhyzopertha dominica (F.) (Coleoptera: Bostrychidae).

    Science.gov (United States)

    Lorini, Irineu; Collins, Patrick J; Daglish, Gregory J; Nayak, Manoj K; Pavic, Hervoika

    2007-04-01

    As failure to control Rhyzopertha dominica (F.) with phosphine is a common problem in the grain-growing regions of Brazil, a study was undertaken to investigate the frequency, distribution and strength of phosphine resistance in R. dominica in Brazil. Nineteen samples of R. dominica were collected between 1991 and 2003 from central storages where phosphine fumigation had failed to control this species. Insects were cultured without selection until testing in 2005. Each sample was tested for resistance to phosphine on the basis of the response of adults to discriminating concentrations of phosphine (20 and 48 h exposures) and full dose-response assays (48 h exposure). Responses of the Brazilian R. dominica samples were compared with reference susceptible, weak-resistance and strong-resistance strains from Australia in parallel assays. All Brazilian population samples showed resistance to phosphine: five were diagnosed with weak resistance and 14 with strong resistance. Five samples showed levels of resistance similar to the reference strong-resistance strain. A representative highly resistant sample was characterised by exposing mixed-age cultures to a range of constant concentrations of phosphine for various exposure periods. Time to population extinction (TPE) and time to 99.9% suppression of population (LT(99.9)) values of this sample were generally similar to those of the reference strong-resistance strain. For example, at 0.1, 0.5 and 1.0 mg L(-1), LT(99.9) values for BR33 and the reference strong-resistance strain were respectively 21, 6.4 and 3.7 days and 17, 6.2 and 3.8 days. With both strains, doubling phosphine concentrations to 2 mg L(-1) resulted in increased LT(99.9) and TPE. High level and frequency of resistance in all population samples, some of which had been cultured without selection for up to 12 years, suggest little or no fitness deficit associated with phosphine resistance. The present research indicates that widespread phosphine resistance may

  13. Cyclam Derivatives with a Bis(phosphinate) or a Phosphinato-Phosphonate Pendant Arm: Ligands for Fast and Efficient Copper(II) Complexation for Nuclear Medical Applications.

    Science.gov (United States)

    David, Tomáš; Kubíček, Vojtěch; Gutten, Ondrej; Lubal, Přemysl; Kotek, Jan; Pietzsch, Hans-Jürgen; Rulíšek, Lubomír; Hermann, Petr

    2015-12-21

    Cyclam derivatives bearing one geminal bis(phosphinic acid), -CH2PO2HCH2PO2H2 (H2L(1)), or phosphinic-phosphonic acid, -CH2PO2HCH2PO3H2 (H3L(2)), pendant arm were synthesized and studied as potential copper(II) chelators for nuclear medical applications. The ligands showed good selectivity for copper(II) over zinc(II) and nickel(II) ions (log KCuL = 25.8 and 27.7 for H2L(1) and H3L(2), respectively). Kinetic study revealed an unusual three-step complex formation mechanism. The initial equilibrium step leads to out-of-cage complexes with Cu(2+) bound by the phosphorus-containing pendant arm. These species quickly rearrange to an in-cage complex with cyclam conformation II, which isomerizes to another in-cage complex with cyclam conformation I. The first in-cage complex is quantitatively formed in seconds (pH ≈5, 25 °C, Cu:L = 1:1, cM ≈ 1 mM). At pH >12, I isomers undergo nitrogen atom inversion, leading to III isomers; the structure of the III-[Cu(HL(2))] complex in the solid state was confirmed by X-ray diffraction analysis. In an alkaline solution, interconversion of the I and III isomers is mutual, leading to the same equilibrium isomeric mixture; such behavior has been observed here for the first time for copper(II) complexes of cyclam derivatives. Quantum-chemical calculations showed small energetic differences between the isomeric complexes of H3L(2) compared with analogous data for isomeric complexes of cyclam derivatives with one or two methylphosphonic acid pendant arm(s). Acid-assisted dissociation proved the kinetic inertness of the complexes. Preliminary radiolabeling of H2L(1) and H3L(2) with (64)Cu was fast and efficient, even at room temperature, giving specific activities of around 70 GBq of (64)Cu per 1 μmol of the ligand (pH 6.2, 10 min, ca. 90 equiv of the ligand). These specific activities were much higher than those of H3nota and H4dota complexes prepared under identical conditions. The rare combination of simple ligand synthesis, very

  14. Performance of phosphine in fumigation of bagged paddy rice in indoor and outdoor stores.

    Science.gov (United States)

    Rajendran, S; Muralidharan, N

    2001-10-01

    Phosphine fumigation trials were carried out on bag-stacks of paddy rice to study the differences in gas loss rates and concentration-time (Ct) products achieved during the treatment of indoor and outdoor stacks. Stacks (89-132t) were fumigated singly under 250&mgr;m thick polyethylene sheeting, which was sealed with a double layer of sand-snakes to the concrete floor. Phosphine was applied as an aluminium phosphide formulation and the fumigations continued for 7 days. In the first experiment, stacks of paddy rice with moisture contents ranging from 12.2 to 13.7% were held in either indoor or in outdoor storage and subjected to fumigation at the rate of 2, 3 or 4g of phosphine/tonne. The outdoor stacks held relatively low levels of phosphine with Ct products for the indoor stacks of 135, 171 and 294gh/m(3), respectively, whilst the corresponding values for the outdoor stacks were 70, 85 and 166gh/m(3) only. The average gas loss rate was 14.5% per day for the indoor stacks and 29.5% for the outdoor stacks. In the second experiment, old stacks of paddy rice inside a godown, one each with grains at 8.8 and 9.8% moisture content, were fumigated at 3g phosphine/tonne. Release of phosphine was delayed and fumigant sorption was less and therefore higher Ct products of 204 and 216gh/m(3) were achieved. In the stacks built outdoors, the resident infestations of Rhyzopertha dominica, Cryptolestes sp. and Oryzaephilus surinamensis were completely controlled despite lower Ct products. On the other hand, in the stacks of old paddy, R. dominica survived the treatment. Subsequent testing showed that the population had a degree of resistance to phosphine.

  15. Palladium catalysis for energy applications

    Energy Technology Data Exchange (ETDEWEB)

    Pfefferle, L. D.; Datye, Abhaya

    2001-03-01

    Palladium (Pd) is an attractive catalyst for a range of new combustion applications comprising primary new technologies for future industrial energy needs, including gas turbine catalytic combustion, auto exhaust catalysts, heating and fuel cells. Pd poses particular challenges because it changes both chemical state and morphology as a function of temperature and reactant environment and those changes result in positive and negative changes in activity. Interactions with the support, additives, water, and contaminants as well as carbon formation have also been observed to affect Pd catalyst performance. This report describes the results of a 3.5 year project that resolves some of the conflicting reports in the literature about the performance of Pd-based catalysis.

  16. Nanocrystal assembly for tandem catalysis

    Science.gov (United States)

    Yang, Peidong; Somorjai, Gabor; Yamada, Yusuke; Tsung, Chia-Kuang; Huang, Wenyu

    2014-10-14

    The present invention provides a nanocrystal tandem catalyst comprising at least two metal-metal oxide interfaces for the catalysis of sequential reactions. One embodiment utilizes a nanocrystal bilayer structure formed by assembling sub-10 nm platinum and cerium oxide nanocube monolayers on a silica substrate. The two distinct metal-metal oxide interfaces, CeO.sub.2--Pt and Pt--SiO.sub.2, can be used to catalyze two distinct sequential reactions. The CeO.sub.2--Pt interface catalyzed methanol decomposition to produce CO and H.sub.2, which were then subsequently used for ethylene hydroformylation catalyzed by the nearby Pt--SiO.sub.2 interface. Consequently, propanal was selectively produced on this nanocrystal bilayer tandem catalyst.

  17. Inverse Magnetic/Shear Catalysis

    CERN Document Server

    McInnes, Brett

    2015-01-01

    It is well known that very large magnetic fields are generated when the Quark-Gluon Plasma is formed during peripheral heavy-ion collisions. Lattice, holographic, and other studies strongly suggest that these fields may, for observationally relevant field values, induce ``inverse magnetic catalysis'', signalled by a lowering of the critical temperature for the chiral/deconfinement transition. The theoretical basis of this effect has recently attracted much attention; yet so far these investigations have not included another, equally dramatic consequence of the peripheral collision geometry: the QGP acquires a large angular momentum vector, parallel to the magnetic field. Here we use holographic techniques to argue that the angular momentum can also, independently, have an effect on transition temperatures, and we obtain a rough estimate of the relative effects of the presence of both a magnetic field and an angular momentum density. We find that the shearing angular momentum reinforces the effect of the magne...

  18. Asymmetric catalysis with short-chain peptides.

    Science.gov (United States)

    Lewandowski, Bartosz; Wennemers, Helma

    2014-10-01

    Within this review article we describe recent developments in asymmetric catalysis with peptides. Numerous peptides have been established in the past two decades that catalyze a wide variety of transformations with high stereoselectivities and yields, as well as broad substrate scope. We highlight here catalytically active peptides, which have addressed challenges that had thus far remained elusive in asymmetric catalysis: enantioselective synthesis of atropoisomers and quaternary stereogenic centers, regioselective transformations of polyfunctional substrates, chemoselective transformations, catalysis in-flow and reactions in aqueous environments.

  19. Acetic acid-assisted hydrothermal fractionation of empty fruit bunches for high hemicellulosic sugar recovery with low byproducts.

    Science.gov (United States)

    Kim, Dong Young; Um, Byung Hwan; Oh, Kyeong Keun

    2015-07-01

    Xylose, mannose, and galactose (xmg) recovery from empty fruit bunches using acetic acid-assisted hydrothermal (AAH) fractionation method was investigated. Acetic acid has been demonstrated to be effective in xmg recovery in comparison with the liquid hot-water (LHW) fractionation. The maximum xmg recovery yield (50.7 %) from the empty fruit bunch (EFB) was obtained using AAH fractionation at optimum conditions (6.9 wt.% acetic acid at 170 °C and for 18 min); whereas, only 16.2 % of xmg recovery was obtained from the LHW fractionation at the same reaction conditions (170 °C and 18 min). Releasing out the glucose from EFB was kept at low level (<1.0 %) through all tested conditions and consequently negligible 5-HMF and formic acid were analyzed in the hydrolyzate. The production of furfural was also resulted with extremely low level (1.0 g/L).

  20. Photoelectrochemical properties of WO{sub 3} nanoparticulate thin films prepared by carboxylic acid-assisted electrodeposition

    Energy Technology Data Exchange (ETDEWEB)

    Kwong, W.L., E-mail: w.l.kwong@student.unsw.edu.au [School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052 (Australia); Nakaruk, A. [School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052 (Australia); Department of Industrial Engineering, Faculty of Engineering, Naresuan University, Phitsanulok 65000 (Thailand); Koshy, P.; Sorrell, C.C. [School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052 (Australia)

    2013-10-01

    Optimisation of particle sizes of WO{sub 3} films is important for photoelectrochemical applications. However, most of the developed size-controlled synthesis techniques involve complicated instruments or vacuum systems. The present work presents an alternative method using carboxylic acid-assisted electrodeposition where WO{sub 3} thin films were deposited from peroxotungstic acid (PTA) solution containing different carboxylic acids (formic, oxalic, citric). The effects of carboxylic acids on the electrodeposition and the resultant morphological, mineralogical, optical, and photoelectrochemical properties of the WO{sub 3} films were investigated. The analysis showed that the films consisted of equiaxed nanoparticulate monoclinic WO{sub 3}. The deposition thicknesses and the average grain (individual particle and agglomerate) sizes of the films were dependent on the amount of hydronium ions and the molecular weight and associated sizes of the conjugate bases released upon the dissociation of carboxylic acids in the PTA solutions, which result in hydrogen bond formation and molecular dispersion. The photocurrent densities of the films deposited with carboxylic acids were greater than that of the film deposited from pure PTA. These differences were attributed to improvements in (1) grain size, which controls photogenerated electron-hole transport, and (2) effective grain boundary area, which controls the numbers of active reaction sites and electron-hole recombination sites. - Highlights: • Carboxylic acid-assisted electrodeposition of WO{sub 3} films from peroxotungstic acid. • The types of carboxylic acids control the deposition rates and microstructure. • WO{sub 3} grain sizes and effective grain boundary areas determine the photocurrents. • Maximal photocurrent measured in the smallest-aggregate films (∼ 83 nm)

  1. Synthesis of p-aminophenyl aryl H-phosphinic acids and esters via cross-coupling reactions: elaboration to phosphinic acid pseudopeptide analogues of pteroyl glutamic acid and related antifolates.

    Science.gov (United States)

    Yang, Yonghong; Coward, James K

    2007-07-20

    The synthesis of suitably protected p-aminophenyl H-phosphinic acids and esters from the corresponding para-substituted aryl halides has been accomplished via the Pd-catalyzed cross-coupling reaction of anilinium hypophosphite, either in the absence or presence of a tetraalkyl orthosilicate, to provide the free H-phosphinic acid or the corresponding ester, respectively. Subsequent conjugate addition of either a PIII species or phosphorus anion, generated in situ from either the free H-phosphinic acid or ester, to a 2-methylene glutaric acid ester provided the aryl phosphinic acid analogue of p-aminobenzoyl glutamic acid. Alkylation of these suitably protected p-aminophenyl phosphinic acid esters with a 6-(bromomethyl)pteridine or the corresponding (bromomethyl)pyridopyrmidine, followed by hydrolytic removal of protecting groups, provided the target aryl phosphinic acid analogues of folic acid and related antifolates. Alternatively, for the synthesis of the folate or 5-deazafolate analogues on a slightly larger scale, reductive amination with either N2-acetyl or N2-pivaloyl-6-formylpterin or the corresponding formylpyridopyrmidine and the same suitably protected p-aminophenyl phosphinic acid esters, followed by removal of protecting groups, is preferred. In the course of this research, it was observed that the nucleophilicity of both the aniline nitrogen and various PIII species derived from p-aminophenyl phosphinic acid derivatives is significantly reduced compared to that of the unsubstituted counterpart.

  2. Micelle Catalysis of an Aromatic Substitution Reaction

    Science.gov (United States)

    Corsaro, Gerald; Smith J. K.

    1976-01-01

    Describes an experiment in which the iodonation of aniline reaction is shown to undergo catalysis in solution of sodium lauryl sulfate which forms micelles with negatively charged pseudo surfaces. (MLH)

  3. A Course in Kinetics and Catalysis.

    Science.gov (United States)

    Bartholomew, C. H.

    1981-01-01

    Describes a one-semester, three-credit hour course integrating the fundamentals of kinetics and the scientific/engineering principles of heterogeneous catalysis. Includes course outline, list of texts, background readings, and topical journal articles. (SK)

  4. Current trends of surface science and catalysis

    CERN Document Server

    Park, Jeong Young

    2014-01-01

    Including detail on applying surface science in renewable energy conversion, this book covers the latest results on model catalysts including single crystals, bridging "materials and pressure gaps", and hot electron flows in heterogeneous catalysis.

  5. Bioorthogonal catalysis: Rise of the nanobots

    Science.gov (United States)

    Unciti-Broceta, Asier

    2015-07-01

    Bioorthogonal catalysis provides new ways of mediating artificial transformations in living environs. Now, researchers have developed a nanodevice whose catalytic activity can be regulated by host-guest chemistry.

  6. Special section on Nano-Catalysis

    CSIR Research Space (South Africa)

    Makgwane, PR

    2013-01-01

    Full Text Available This special issue on nano-catalysis was devoted to the development and application of nanosized structured catalysts materials in various fields such as chemical transformation, environmental cleaning and energy generation supply as a concept tool...

  7. Phosphine fumigation and residues in dry-cured ham in commercial applications.

    Science.gov (United States)

    Zhao, Y; Abbar, S; Phillips, T W; Schilling, M W

    2015-09-01

    Dry-cured hams often become infested with ham mites (Tyrophagus putrescentiae) during the aging process. Methyl bromide has been used to fumigate dry cured ham plants and is the only available fumigant that is effective at controlling ham mite infestations. However, methyl bromide will eventually be phased out of all industries. This research was designed to determine the efficacy of phosphine fumigation at controlling ham mites and red-legged beetles and any impact of phosphine fumigation on the sensory quality and safety of dry cured hams. Fumigation trials were conducted in simulated ham aging houses and commercial ham aging houses. Mite postembryonic mortality was 99.8% in the simulated aging houses and >99.9% in commercial aging houses three weeks post fumigation. Sensory tests with trained panelists indicated that there were no detectable differences (P > 0.05) between phosphine fumigated and control hams. In addition, residual phosphine concentration was below the legal limit of 0.01 ppm in ham slices that were taken from phosphine fumigated hams.

  8. Comparative effects of gamma irradiation and phosphine fumigation on the quality of white ginseng

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, J.-H.Joong-Ho; Byun, M.-W.Myung-Woo; Kim, K.-S.Kang-Soo; Kang, I.-J.Il-Jun

    2000-03-01

    The hygienic, physicochemical, and organoleptic qualities of white ginseng were monitored during 6 months under accelerated conditions (40 deg. C, 90% r.h.) by observing its microbial populations, disinfestation, and some quality attributes following either gamma irradiation at 2.5-10 kGy or commercial phosphine (PH{sub 3}) fumigation. In a comparative study, both treatments were found to be effective for disinfecting the stored samples. Phosphine showed no appreciable decontaminating effects on microorganisms contaminated including coliforms, while 5 kGy irradiation was sufficient to control all microorganisms related to the quality of the packed samples. Irradiation at 5 kGy caused negligible changes in physicochemical attributes of the samples, such as ginsenosides, amino acids, fatty acids, and organoleptic properties, whereas phosphine fumigation was found detrimental to sensory flavor (P<0.01). Quality deterioration occurred in the commercially-packed samples was in the following order: the control, 10 kGy-, phosphine-, and 2.5-5 kGy-treated samples. Accordingly, irradiation at <5 kGy was found to be an effective alternative to phosphine fumigation for white ginseng. (author)

  9. [PH3 residues in hazelnuts, soybeans and wheat following phosphine fumigation with non-constant concentrations].

    Science.gov (United States)

    Noack, S; Wohlgemuth, R

    1985-02-01

    In model tests hazelnuts, soy beans and wheat were fumigated with phosphine (PH3) at non constant concentrations. The influence of different concentration characteristics on the fumigation and the decomposition of phosphine residues was investigated in accordance with the fumigation technique. At the beginning the concentration increases, and after attaining the maximum gradually decreases to zero. The level of residues during the fumigation as well as the behaviour of residues during the storage of the fumigated products was monitored with a gas chromatographic method. The residues correlate with the concentration of phosphine, they also pass through a peak. The rate of decomposition of residues which had been formed in the phase of increasing concentration is greater than the rate of residues of equal magnitude which had been formed during the decreasing phase. When the concentration is even the maximum residue occurs later than the maximum concentration; when there is a steep trend both maximums coincide. This behaviour can be explained by the sorption and diffusion of phosphine. A comparison is made with the phosphine concentration which occurs during fumigation in practice. The parameters which produce a constant concentration trend with only one maximum and a non constant trend with an often increasing and decreasing concentration are discussed. The different behaviour of residues in these cases is described. Conclusions are drawn for the practice of fumigation.

  10. Henry's Law constant for phosphine in seawater: determination and assessment of influencing factors

    Institute of Scientific and Technical Information of China (English)

    FU Mei; YU Zhiming; LU Guangyuan; SONG Xiuxian

    2013-01-01

    The Henry's Law constant (k) for phosphine in seawater was determined by multiple phase equilibration combined with headspace gas chromatography.The effects of pH,temperature,and salinity on k were studied.The k value for phosphine in natural seawater was 6.415 at room temperature (approximately 23℃).This value increases with increases in temperature and salinity,but no obvious change was observed at different pH levels.At the same temperature,there was no significant difference between the k for phosphine in natural seawater and that in artificial seawater.This implies that temperature and salinity are major determining factors for k in marine environment.Double linear regression with Henry's Law constants for phosphine as a function of temperature and salinity confirmed our observations.These results provide a basis for the measurement of trace phosphine concentrations in seawater,and will be helpful for future research on the status ofphosphine in the oceanic biogeochemical cycle of phosphorus.

  11. Phosphine-gold(I) compounds as anticancer agents: general description and mechanisms of action.

    Science.gov (United States)

    Lima, João Carlos; Rodriguez, Laura

    2011-12-01

    Gold complexes have been explored as metallodrugs with great potential applications as antitumoral agents. In particular, gold-phosphine derivatives seemed quite promising since the use of the antiarthritic auranofin drug (thiolate-Au-PEt3 complex) presented also biological activity against different cancer cells. So, different auranofin analogues have been explored within this context and for this reason, the main number of phosphine-gold complexes developed with this goal contain thiolate ligands. Other complexes have been also studied such as tetrahedral bis(phosphine)gold(I) and phosphine-gold-halides. Very recently, phosphine-gold-alkynyl complexes have also shown very interesting biological activities although few reports are published related to them. Their mechanism of action seems to be clearly different that the used by platinum drugs (DNA intercalating processes) and recent studies point to be related to the inhibition of Trx reductase. Cellular uptake and biodistribution studies are well reported in the original works but the use of luminescence techniques is relatively less explored. For this, the use of these techniques is also specifically reported in this review.

  12. Spread of phosphine resistance among brazilian populations of three species of stored product insects.

    Science.gov (United States)

    Pimentel, Marco A G; Faroni, Lêda R D'A; Silva, Felipe H da; Batista, Maurílio D; Guedes, Raul N C

    2010-01-01

    The resistance to fumigant insecticides in stored-products insects is often recorded. Several factors influence the evolution of insecticide resistance. Among these, the frequency of applications and the migration of resistant populations are of primary importance for the stored-product insects. The aim of this study was to characterize the spectrum and investigate the status of phosphine resistance in Brazil, in 13 populations of the Coleoptera Tribolium castaneum Herbst (Tenebrionidae), ten populations of Rhyzopertha dominica (Fabr.) (Bostrichidae), and eight populations of Oryzaephilus surinamensis (L.) (Silvanidae). The pattern of resistance dispersion in the populations of these species was also verified. The bioassays for the detection of phosphine resistance followed the FAO standard method. To test the influence of migration in the evolution of the phosphine resistance, the difference of mortality in the discriminating concentration and the geographical distance among each pair wise combination of collection sites were correlated. None of the populations exhibited mortality above 90% in the discriminating concentration, for the three species. Mortality in the discriminating concentration increased with the geographical distance for R.dominica and O.surinamensis. However, no significant linear response was observed among the variables for T.castaneum populations. These results suggest that the dispersion of insects and the local selection are relevant in the evolution of the phosphine resistance in populations of R.dominica and O.surinamensis. In contrast, grain trade and local selection are probably the factors that determine the evolution of the phosphine resistance in populations of T. castaneum.

  13. Biomolecule conjugation strategy using novel water-soluble phosphine-based chelating agents

    Science.gov (United States)

    Katti, Kattesh V.; Gali, Hariprasad; Volkert, Wynn A.

    2004-08-24

    This invention describes a novel strategy to produce phosphine-functionalized biomolecules (e.g. peptides or proteins) for potential use in the design and development of site-specific radiopharmaceuticals for diagnosis or therapy of specific cancers. Hydrophilic alkyl phosphines, in general, tend to be oxidatively unstable. Therefore, incorporation of such phosphine functionalities on peptide (and other biomolecule) backbones, without oxidizing the P.sup.III centers, is difficult. In this context this discovery reports on a new technology by which phosphines, in the form of bifunctional chelating agents, can be directly incorporated on biomolecular backbones using manual synthetic or solid phase peptide synthesis methodologies. The superior ligating abilities of phosphine ligands, with various diagnostically (e.g. TC-99m) or therapeutically (e.g. Re186/188, Rh-105, Au-199) useful radiometals, coupled with the findings that the resulting complexes demonstrate high in vivo stability makes this approach useful in the development of radiolabeled biomolecules for applications in the design of tumor-specific radiopharmaceuticals.

  14. Hydroformylation of propene and 1-hexene catalysed by a alpha-zirconium phosphate supported rhodium-phosphine complex

    DEFF Research Database (Denmark)

    Karlsson, Magnus; Andersson, C; Hjortkjær, Jes

    2001-01-01

    The reaction of the amphiphilic ligand {4-[bis(diethylaminoethyl)aminomethyl]diphenyl}phosphine with alpha -zirconium phosphate, of intermediate surface area (24m(2) g(-1)), provided a phosphine functionalised support in which electrostatic interaction between ammonium groups on the ligand and de...

  15. Loop residues and catalysis in OMP synthase

    DEFF Research Database (Denmark)

    Wang, Gary P.; Hansen, Michael Riis; Grubmeyer, Charles

    2012-01-01

    (preceding paper in this issue, DOI 10.1021/bi300083p)]. The full expression of KIEs by H105A and E107A may result from a less secure closure of the catalytic loop. The lower level of expression of the KIE by K103A suggests that in these mutant proteins the major barrier to catalysis is successful closure...... of the catalytic loop, which when closed, produces rapid and reversible catalysis....

  16. Advancing Sustainable Catalysis with Magnetite Surface ...

    Science.gov (United States)

    This article surveys the recent developments in the synthesis, surface modification, and synthetic applications of magnetitenanoparticles. The emergence of iron(II,III) oxide (triiron tetraoxide or magnetite; Fe3O4, or FeO•Fe2O3) nanoparticles as a sustainable support in heterogeneous catalysis is highlighted. Use of an oxide of earth-abundant iron for various applications in catalysis and environmental remediation.

  17. Recent advances in homogeneous nickel catalysis.

    Science.gov (United States)

    Tasker, Sarah Z; Standley, Eric A; Jamison, Timothy F

    2014-05-15

    Tremendous advances have been made in nickel catalysis over the past decade. Several key properties of nickel, such as facile oxidative addition and ready access to multiple oxidation states, have allowed the development of a broad range of innovative reactions. In recent years, these properties have been increasingly understood and used to perform transformations long considered exceptionally challenging. Here we discuss some of the most recent and significant developments in homogeneous nickel catalysis, with an emphasis on both synthetic outcome and mechanism.

  18. Phosphine absorption in the 5-micron window of Jupiter

    Science.gov (United States)

    Beer, R.; Taylor, F. W.

    1979-01-01

    Since the original suggestion by Gillett et al. (1969) it has generally been assumed that the region of partial transparency near 5 micron in Jupiter's atmosphere (the 5-micron window) is bounded by the nu sub 4 NH3 at 6.1 micron and the nu sub 3 CH4 band at 3.3 micron. New measurements of Jupiter and of laboratory phosphine (PH3) samples show that PH3 is a significant contributor to the continuum opacity in the window and in fact defines its short-wavelength limit. This has important implications for the use of 5-micron observations as a means to probe the deep atmospheric structure of Jupiter. The abundance of PH3 which results from a comparison of Jovian and laboratory spectra is about 3 to 5 cm-am. This is five to eight times less than that found by Larson et al. (1977) in the same spectral region, but is in good agreement with the result of Tokunaga et al. (1979) from 10-micron observations.

  19. Phosphine-induced oxidative damage in rats: attenuation by melatonin.

    Science.gov (United States)

    Hsu, C; Han, B; Liu, M; Yeh, C; Casida, J E

    2000-02-15

    Phosphine (PH(3)), from hydrolysis of aluminum, magnesium and zinc phosphide, is an insecticide and rodenticide. Earlier observations on PH(3)-poisoned insects, mammals and a mammalian cell line led to the proposed involvement of oxidative damage in the toxic mechanism. This investigation focused on PH(3)-induced oxidative damage in rats and antioxidants as candidate protective agents. Male Wistar rats were treated ip with PH(3) at 2 mg/kg. Thirty min later the brain, liver, and lung were analyzed for glutathione (GSH) levels and lipid peroxidation (as malondialdehyde and 4-hydroxyalkenals) and brain and lung for 8-hydroxydeoxyguanosine (8-OH-dGuo) in DNA. PH(3) caused a significant decrease in GSH concentration and elevation in lipid peroxidation in brain (36-42%), lung (32-38%) and liver (19-25%) and significant increase of 8-OH-dGuo in DNA of brain (70%) and liver (39%). Antioxidants administered ip 30 min before PH(3) were melatonin, vitamin C, and beta-carotene at 10, 30, and 6 mg/kg, respectively. The PH(3)-induced changes were significantly or completely blocked by melatonin while vitamin C and beta-carotene were less effective or inactive. These findings establish that PH(3) induces and melatonin protects against oxidative damage in the brain, lung and liver of rats and suggest the involvement of reactive oxygen species in the genotoxicity of PH(3).

  20. Sorption of Perfluoroalkyl Phosphonates and Perfluoroalkyl Phosphinates in Soils.

    Science.gov (United States)

    Lee, Holly; Mabury, Scott Andrew

    2017-02-22

    Perfluoroalkyl phosphonates (PFPAs) and perfluoroalkyl phosphinates (PFPiAs) are recently discovered perfluoroalkyl acids (PFAAs) that have been widely detected in house dust, aquatic biota, surface water, and wastewater environments. The sorption of C6, C8, and C10 monoalkylated PFPAs and C6/C6, C6/C8, and C8/C8 dialkylated PFPiAs was investigated in seven soils of varying geochemical parameters. Mean distribution coefficients, logKd*, ranged from 0.2 to 2.1 for the PFPAs and PFPiAs and were generally observed to increase with perfluoroalkyl chain length. The logKd* of PFPiAs calculated here (1.6-2.1) were similar to those previously measured for the longer-chain perfluorodecane sulfonate (1.9, PFDS) and perfluoroundecanoate (1.7, PFUnA) in sediments, but overall when compared as a class, were greater than those for the perfluoroalkane sulfonates (-0.8-1.9, PFSAs), perfluoroalkyl carboxylates (-0.4-1.7, PFCAs), and PFPAs (0.2-1.5). No single soil-specific parameter, such as pH and organic carbon content, was observed to control the sorption of PFPAs and PFPiAs, the lack of which may be attributed to competing interferences in the naturally heterogeneous soils. The PFPAs were observed to desorb to a greater extent and likely circulate as aqueous contaminants in the environment, while the more sorptive PFPiAs would be preferentially retained by environmental solid phases.

  1. A computed room temperature line list for phosphine

    Science.gov (United States)

    Sousa-Silva, Clara; Yurchenko, Sergei N.; Tennyson, Jonathan

    2013-06-01

    An accurate and comprehensive room temperature rotation-vibration transition line list for phosphine (31PH3) is computed using a newly refined potential energy surface and a previously constructed ab initio electric dipole moment surface. Energy levels, Einstein A coefficients and transition intensities are computed using these surfaces and a variational approach to the nuclear motion problem as implemented in the program TROVE. A ro-vibrational spectrum is computed, covering the wavenumber range 0-8000 cm-1. The resulting line list, which is appropriate for temperatures up to 300 K, consists of a total of 137 million transitions between 5.6 million energy levels. Several of the band centres are shifted to better match experimental transition frequencies. The line list is compared to the most recent HITRAN database and other laboratorial sources. Transition wavelengths and intensities are generally found to be in good agreement with the existing experimental data, with particularly close agreement for the rotational spectrum. An analysis of the comparison between the theoretical data created and the existing experimental data is performed, and suggestions for future improvements and assignments to the HITRAN database are made.

  2. New developments in oxidation catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Rosowski, F. [BASF SE, Ludwigshafen (Germany)

    2011-07-01

    The impact of heterogeneous catalysis on the economy can be depicted by the global revenue of the chemical industry in 2006, which accounted for 2200 billion Euros with a share of all chemical products produced applying heterogeneous catalysis of about two thirds. [1] The range of products is enormous and they contribute greatly to the quality of our lifes. The advancement in the development of basic and intermediate chemical products is crucially dependent on either the further development of existing catalyst systems or the development of new catalysts and key to success for the chemical industry. Within the context of oxidation catalysis, the following driving forces are guiding research activities: There is a continuous desire to increase the selectivity of a given process in response to both economic as well as ecological needs and taking advantage of higher efficiencies in terms of cost savings and a better utilization of raw materials. A second motivation focuses on raw material change to all abundant and competitive feedstocks requiring both new developments in catalyst design as well as process technology. A more recent motivation refers to the use of metal oxide redox systems which are key to success for the development of novel technologies allowing for the separation of carbon dioxide and the use of carbon dioxide as a feedstock molecule as well as storing renewable energy in a chemical. To date, general ab initio approaches are known for the design of novel catalytic materials only for a few chemical reactions, whereas most industrial catalytic processes have been developed by empirical methods. [2] The development of catalytic materials are either based on the targeted synthesis of catalytic lead structures as well as high throughput methods that allow for the screening of a large range of parameters. [3 - 5] The successful development of catalysts together with reactor technology has led to both significant savings in raw materials and emissions. The

  3. Stereoselective Synthesis of α-Amino-C-phosphinic Acids and Derivatives

    Directory of Open Access Journals (Sweden)

    José Luis Viveros-Ceballos

    2016-08-01

    Full Text Available α-Amino-C-phosphinic acids and derivatives are an important group of compounds of synthetic and medicinal interest and particular attention has been dedicated to their stereoselective synthesis in recent years. Among these, phosphinic pseudopeptides have acquired pharmacological importance in influencing physiologic and pathologic processes, primarily acting as inhibitors for proteolytic enzymes where molecular stereochemistry has proven to be critical. This review summarizes the latest developments in the asymmetric synthesis of acyclic and phosphacyclic α-amino-C-phosphinic acids and derivatives, following in the first case an order according to the strategy used, whereas for cyclic compounds the nitrogen embedding in the heterocyclic core is considered. In addition selected examples of pharmacological implications of title compounds are also disclosed.

  4. P-Stereogenic Phosphines for the Stabilisation of Metal Nanoparticles. A Surface State Study

    Directory of Open Access Journals (Sweden)

    Eva Raluy

    2016-12-01

    Full Text Available Palladium and ruthenium nanoparticles have been prepared following the organometallic precursor decomposition methodology, under dihydrogen pressure and in the presence of borane protected P-stereogenic phosphines. NMR (Nuclear Magnetic Resonance monitoring of the corresponding syntheses has permitted to determine the optimal metal/ligand ratio for leading to small and well-dispersed nanoparticles. Exchange ligand reactions of the as-prepared materials have proven the strong interaction of the phosphines with the metal surface; only oxidative treatment using hydrogen peroxide could release the phosphine-based stabiliser from the metal surface. Pd and Ru nanoparticles have been evaluated in hydrogenation reactions, confirming the robustness of the stabilisers, which selectively permitted the hydrogenation of exocyclic C=C bonds, preventing the coordination of the aromatic rings and as a result, their hydrogenation.

  5. Specific acid catalysis and Lewis acid catalysis of Diels–Alder reactions in aqueous media

    NARCIS (Netherlands)

    Mubofu, Egid B.; Engberts, Jan B.F.N.

    2004-01-01

    A comparative study of specific acid catalysis and Lewis acid catalysis of Diels–Alder reactions between dienophiles (1, 4 and 6) and cyclopentadiene (2) in water and mixed aqueous media is reported. The reactions were performed in water with copper(II) nitrate as the Lewis acid catalyst whereas

  6. Specific acid catalysis and Lewis acid catalysis of Diels-Alder reactions in aqueous media

    NARCIS (Netherlands)

    Mubofu, E.B.; Engberts, J.B.F.N.

    A comparative study of specific acid catalysis and Lewis acid catalysis of Diells-Alder reactions between dienophiles (1, 4 and 6) and cyclopentadiene (2) in water and mixed aqueous media is reported. The reactions were performed in water with copper(II) nitrate as the Lewis acid catalyst whereas

  7. Acceptorless Dehydrogenation of N-Heterocycles by Merging Visible-Light Photoredox Catalysis and Cobalt Catalysis.

    Science.gov (United States)

    He, Ke-Han; Tan, Fang-Fang; Zhou, Chao-Zheng; Zhou, Gui-Jiang; Yang, Xiao-Long; Li, Yang

    2017-03-06

    Herein, the first acceptorless dehydrogenation of tetrahydroquinolines (THQs), indolines, and other related N-heterocycles, by merging visible-light photoredox catalysis and cobalt catalysis at ambient temperature, is described. The potential applications to organic transformations and hydrogen-storage materials are demonstrated. Primary mechanistic investigations indicate that the catalytic cycle occurs predominantly by an oxidative quenching pathway.

  8. Specific acid catalysis and Lewis acid catalysis of Diels-Alder reactions in aqueous media

    NARCIS (Netherlands)

    Mubofu, E.B.; Engberts, J.B.F.N.

    2004-01-01

    A comparative study of specific acid catalysis and Lewis acid catalysis of Diells-Alder reactions between dienophiles (1, 4 and 6) and cyclopentadiene (2) in water and mixed aqueous media is reported. The reactions were performed in water with copper(II) nitrate as the Lewis acid catalyst whereas hy

  9. Specific acid catalysis and Lewis acid catalysis of Diels–Alder reactions in aqueous media

    NARCIS (Netherlands)

    Mubofu, Egid B.; Engberts, Jan B.F.N.

    2004-01-01

    A comparative study of specific acid catalysis and Lewis acid catalysis of Diels–Alder reactions between dienophiles (1, 4 and 6) and cyclopentadiene (2) in water and mixed aqueous media is reported. The reactions were performed in water with copper(II) nitrate as the Lewis acid catalyst whereas hyd

  10. Phosphine resistance in Tribolium castaneum and Rhyzopertha dominica from stored wheat in Oklahoma.

    Science.gov (United States)

    Opit, G P; Phillips, T W; Aikins, M J; Hasan, M M

    2012-08-01

    Phosphine gas, or hydrogen phosphide (PH3), is the most common insecticide applied to durable stored products worldwide and is routinely used in the United States for treatment of bulk-stored cereal grains and other durable stored products. Research from the late 1980s revealed low frequencies of resistance to various residual grain protectant insecticides and to phosphine in grain insect species collected in Oklahoma. The present work, which used the same previously established discriminating dose bioassays for phosphine toxicity as in the earlier study, evaluated adults of nine different populations of red flour beetle, Tribolium castaneum (Herbst), and five populations of lesser grain borer, Rhyzopertha dominica (F.) collected from different geographic locations in Oklahoma. One additional population for each species was a laboratory susceptible strain. Discriminating dose assays determined eight out of the nine T. castaneum populations, and all five populations of R. dominica, contained phosphine-resistant individuals, and highest resistance frequencies were 94 and 98%, respectively. Dose-response bioassays and logit analyses determined that LC99 values were approximately 3 ppm for susceptible and 377 ppm for resistant T. castaneum, and approximately 2 ppm for susceptible and 3,430 ppm for resistant R. dominica. The most resistant T. castaneum population was 119-fold more resistant than the susceptible strain and the most resistant R. dominica population was over 1,500-fold more resistant. Results suggest a substantial increase in phosphine resistance in these major stored-wheat pests in the past 21 yr, and these levels of resistance to phosphine approach those reported for other stored-grain pest species in other countries.

  11. ISOTOPE METHODS IN HOMOGENEOUS CATALYSIS.

    Energy Technology Data Exchange (ETDEWEB)

    BULLOCK,R.M.; BENDER,B.R.

    2000-12-01

    The use of isotope labels has had a fundamentally important role in the determination of mechanisms of homogeneously catalyzed reactions. Mechanistic data is valuable since it can assist in the design and rational improvement of homogeneous catalysts. There are several ways to use isotopes in mechanistic chemistry. Isotopes can be introduced into controlled experiments and followed where they go or don't go; in this way, Libby, Calvin, Taube and others used isotopes to elucidate mechanistic pathways for very different, yet important chemistries. Another important isotope method is the study of kinetic isotope effects (KIEs) and equilibrium isotope effect (EIEs). Here the mere observation of where a label winds up is no longer enough - what matters is how much slower (or faster) a labeled molecule reacts than the unlabeled material. The most careti studies essentially involve the measurement of isotope fractionation between a reference ground state and the transition state. Thus kinetic isotope effects provide unique data unavailable from other methods, since information about the transition state of a reaction is obtained. Because getting an experimental glimpse of transition states is really tantamount to understanding catalysis, kinetic isotope effects are very powerful.

  12. Zwitterion enhanced performance in palladium-​phosphine catalyzed ethylene methoxycarbonylation

    DEFF Research Database (Denmark)

    Khokarale, Santosh Govind; Garcia-Suarez, Eduardo J.; Xiong, Jianmin;

    2014-01-01

    Zwitterions were used for the first time as promoters in ethylene methoxycarbonylation for the production of methyl propionate. They were found to improve the catalytic performance of the Pd–phosphine system. The presence of zwitterions could contribute to stabilize transition states and active...... catalytic Pd intermediates. The beneficial effect of the zwitterions was found to be most pronounced, when low amount of a strong acid (MeSO3H) was used with respect to palladium (below 2 equiv.). Under these conditions, phosphine ligand alkylation and reaction vessel corrosion are also anticipated...

  13. Preliminary investigation on the role of microorganisms in the production of phosphine

    Institute of Scientific and Technical Information of China (English)

    Liu Zhipei; Jia Shengfen; Wang Baojun; Zhang Tao; Liu Shuangjiang

    2008-01-01

    The relationships between the phosphine content and various microbial populations, activities of different enzymes were investigated firstly. The results indicated that the phosphine content of samples from various environments was positively related to total anaerobic microorganisms, organic phosphate compound-dissolving bacteria, denitrifying bacteria, and the activities of alkaline phosphatase and dehydrogenase, with correlation coefficients (R2) up to 0.93, 0.90, 0.69, 0.79, and 0.82, respectively. Results also showed that the phosphine content was not related to total aerobic microorganisms, inorganic phosphate compound-dissolving bacteria, sulfate-reducing bacteria, and the acidic phosphatase activity. Nutrients such as yeast extract and glucose were added, at a time and individually, to normal or autoclaved soil samples. The soil samples were inoculated with sulfate-reducing bacterial enrichments (SRB) and/or denitrifying bacterial enrichment (DNB). After incubation for one month at 30℃, the phosphane content of these samples was analyzed. The results indicated that the addition of glucose or yeast extract could greatly increase the phosphane content. Moreover, it was revealed that inoculation with SRB or DNB could also promote the formation of phosphine. The DNB, however, was more efficient in this regard. The highest phosphine content, about 5 times that of the control, was detected in the sample that was added with both glucose and yeast extract and inoculated with SRB and DNB simultaneously. SRB and DNB were enriched for several generations and the phosphane content of different generations was analyzed. Furthermore, SRB and DNB enrichments were inoculated into different media, in the beginning of enriching, the phosphane content was about the same for different enrichments, and differed more significantly as the enrichment process was carried further. In forth generation, the phosphane content of DNB enrichment was about 3 times of that of SRB

  14. The first determination of atmospheric phosphine in Antarctica

    Institute of Scientific and Technical Information of China (English)

    ZHU RenBin; KONG DeMing; SUN LiGuang; GENG JinJu; WANG XiaoRong

    2007-01-01

    It is generally thought that phosphine (PH3) concentrations exist at the low ng/m3 level during the night and at the pg/m3 level during daylight in the remote atmosphere of the lower troposphere. The first determination of gaseous PH3 on the Antarctic Millor Peninsula is reported in this paper. No PH3 was detected in the air samples around 10:00 when it was sunny. However, PH3 was found in all the 10:00 air samples when it was cloudy or light snow with the average of 75.3±28.8 ng/m3 (n=5). It was also found in nearly all the samples around 22:00 with the average of 87.2±70.9 ng/m3 (n=11). Atmospheric PH3 concentrations around 22:00 were generally higher than those around 10:00 in January and they were almost the same in February. In addition, PH3 concentrations around 22:00 showed a downtrend with the decreasing air temperature, suggesting that light intensity and air temperature had an important effect on atmospheric PH3 concentration. It is very surprising to have found that high concentrations of PH3 exist in the Antarctic atmosphere under the influence of strong UV-radiation and light intensity. The tentative analyses show that dry, cold and very clean atmosphere may be very suitable for the PH3 survival and cause the concentration to increase and accumulate in the local atmosphere. New approaches for the PH3 formation and the process of atmospheric chemistry may exist under such an extreme environment. Atmospheric PH3 may also be from the emissions of local sources.

  15. Phosphine-induced oxidative damage in rats: role of glutathione.

    Science.gov (United States)

    Hsu, Ching-Hung; Chi, Bei-Ching; Liu, Ming-Yie; Li, Jih-Heng; Chen, Chiou-Jong; Chen, Ruey-Yu

    2002-09-30

    Phosphine (PH(3)), generated from aluminium, magnesium and zinc phosphide, is a widely used pesticide. PH(3) induces oxidative stress in insects, mammalian cells, animals, and humans. The involvement of glutathione (GSH) in PH(3)-induced oxidative toxicity is controversial. GSH levels in various tested tissues were reduced in aluminium phosphide-poisoned rats and humans, while the levels remained unchanged in insects and mammalian cells. This study examines the effectiveness of endogenous GSH as a protective agent against PH(3)-induced oxidative damage in rats. The association of PH(3)-induced nephrotoxicity and cardiotoxicity with free radical production was also tested. Male Wistar rats, administered intraperitoneally (I.P.) with PH(3) at 4 mg/kg, were evaluated 30 min after treatment for PH(3) toxicity to organs. PH(3) significantly decreased GSH, GSH peroxidase and catalase, while significantly increased lipid peroxidation (as malondialdehyde and 4-hydroxyalkenals), DNA oxidation (as 8-hydroxydeoxyguaonsoine) and superoxide dismutase (SOD) levels in kidney and heart. These changes were significantly alleviated by melatonin (10 mg/kg I.P., 30 min before PH(3)), with the exception of SOD activity in heart tissue. The study also found that buthionine sulfoximine (1 g/kg I.P., 24 h before PH(3)) significantly enhanced the effect of PH(3) on GSH loss and lipid peroxidation elevation in lung. These findings indicate that (1) endogenous GSH plays a crucial role as a protective factor in modulating PH(3)-induced oxidative damage, and (2) PH(3) could injure kidney and heart (as noted earlier with brain, liver and lung) via oxidative stress and the antioxidant melatonin effectively prevents the damage.

  16. Insights into amine binding to biaryl phosphine palladium oxidative addition complexes and reductive elimination from biaryl phosphine arylpalladium amido complexes via density functional theory.

    Science.gov (United States)

    Barder, Timothy E; Buchwald, Stephen L

    2007-10-03

    We present results on the binding of a variety amines to monoligated oxidative addition complexes of the type L1Pd(Ar)Cl, where L is 2-dicyclohexylphosphino-2',6'-dimethoxybiphenyl (SPhos, 1) or 2-dicyclohexylphosphino-2',4',6'-tri-ispropylbiphenyl (XPhos, 2). The binding of an amine to oxidative addition complexes composed of 1 and 2 is more complex than with smaller ligands as intermediate Pd(II) complexes with bulky biaryl phosphine ligands disfavor amine binding to favorable conformations of oxidative addition complexes. Additionally, thermodynamic and kinetic parameters for reductive elimination from complexes of the type L1Pd(amido)Ph (where amido = EtNH, Me2N, PhNH) are discussed. From this data, we suggest a possible mechanism for (biaryl phosphine) Pd-catalyzed amination reactions that is more intricate than previously thought.

  17. Molecular modeling of heterogeneous catalysis

    Science.gov (United States)

    Gislason, Jason Joseph

    A novel method for modeling heterogeneous catalysis was developed to further facilitate the understanding of catalytic reactor mechanisms. The method employs molecular dynamics simulations, statistical mechanical, and Unity Bond Index - Quadratic Exponential Potential (UBI-QEP) calculations to calculate the rate constants for reactions on metal surfaces. The primary difficulty of molecular dynamics simulations on metal surfaces has been the lack of reliable reactive potential energy surfaces. We have overcome this through the development of the Normalized Bond Index - Reactive Potential Function (NBI-RPF), which can accurately describe the reaction of adsorbates on metal surfaces. The first calculations of rate constants for a reaction on a metal surface using molecular dynamics simulations are presented. This method is applied to the determination of the mechanism for selective hydrogenation of acetylene in an ethylene rich flow. It was determined that the selectivity for acetylene hydrogenation is attributable to the higher reactivity of acetylene versus ethylene with respect to hydrogenation by molecular hydrogen. It was shown that hydrogen transfer from the carbonaceous layer to acetylene or ethylene is insignificant in the hydrogenation process. Molecular dynamics simulations and molecular mechanics calculations were used to determine the diffusion rate constants for dimethylnaphthalene isomers is mordenite. 2,6-dimethylnaphthalene and 2,7-dimethylnaphthalene were found to have similar diffusion rate constants. Grand canonical Monte Carlo calculations were performed on the competitive adsorption of 2,6-dimethylnaphthalene and 2,7-dimethylnaphthalene in type X zeolites exchanged individually with barium, calcium, potassium, and rubidium ions, calcium exchanged MCM-22, and hydrogen form mordenite (MOR), X zeolite, Y zeolite, hypBEB, ZSM- 12, and MCM-22. These calculations showed that barium exchanged X zeolite was the most selective toward 2

  18. Copper-catalyzed tandem phosphination-decarboxylation-oxidation of alkynyl acids with H-phosphine oxides: a facile synthesis of β-ketophosphine oxides.

    Science.gov (United States)

    Zhang, Pengbo; Zhang, Liangliang; Gao, Yuzhen; Xu, Jian; Fang, Hua; Tang, Guo; Zhao, Yufen

    2015-05-07

    The general method for the tandem phosphination-decarboxylation-oxidation of alkynyl acids under aerobic conditions has been developed. In the presence of CuSO4·5H2O and TBHP, the reactions provide a novel access to β-ketophosphine oxides in good to excellent yields. This transformation allows the direct formation of a P-C bond and the construction of a keto group in one reaction.

  19. Asymmetric catalysis based on tropos ligands.

    Science.gov (United States)

    Aikawa, Kohsuke; Mikami, Koichi

    2012-11-21

    All enantiopure atropisomeric (atropos) ligands essentially require enantiomeric resolution or synthetic transformation from a chiral pool. In sharp contrast, the use of tropos (chirally flexible) ligands, which are highly modular, versatile, and easy to synthesize without enantiomeric resolution, has recently been the topic of much interest in asymmetric catalysis. Racemic catalysts bearing tropos ligands can be applied to asymmetric catalysis through enantiomeric discrimination by the addition of a chiral source, which preferentially transforms one catalyst enantiomer into a highly activated catalyst enantiomer. Additionally, racemic catalysts bearing tropos ligands can also be utilized as atropos enantiopure catalysts obtained via the control of chirality by a chiral source followed by the memory of chirality. In this feature article, our results on the asymmetric catalysis via the combination of various central metals and tropos ligands are summarized.

  20. Geometrically induced magnetic catalysis and critical dimensions

    CERN Document Server

    Flachi, Antonino; Vitagliano, Vincenzo

    2015-01-01

    We discuss the combined effect of magnetic fields and geometry in interacting fermionic systems. At leading order in the heat-kernel expansion, the infrared singularity (that in flat space leads to the magnetic catalysis) is regulated by the chiral gap effect and the catalysis is deactivated by effect of the curvature. We discover that an infrared singularity may reappear from higher-order terms in the heat kernel expansion leading to a novel form of geometrically induced magnetic catalysis (absent in flat space). The dynamical mass squared is then modified not only due to the chiral gap effect by an amount proportional to the curvature, but also by a magnetic shift $\\propto (4-D)eB$ where $D$ represents the number of space-time dimensions. We argue that $D=4$ is a critical dimension across which the behaviour of the magnetic shift changes qualitatively.

  1. Progress towards bioorthogonal catalysis with organometallic compounds.

    Science.gov (United States)

    Völker, Timo; Dempwolff, Felix; Graumann, Peter L; Meggers, Eric

    2014-09-22

    The catalysis of bioorthogonal transformations inside living organisms is a formidable challenge--yet bears great potential for future applications in chemical biology and medicinal chemistry. We herein disclose highly active organometallic ruthenium complexes for bioorthogonal catalysis under biologically relevant conditions and inside living cells. The catalysts uncage allyl carbamate protected amines with unprecedented high turnover numbers of up to 270 cycles in the presence of water, air, and millimolar concentrations of thiols. By live-cell imaging of HeLa cells and with the aid of a caged fluorescent probe we could reveal a rapid development of intense fluorescence within the cellular cytoplasm and therefore support the proposed bioorthogonality of the catalysts. In addition, to illustrate the manifold applications of bioorthogonal catalysis, we developed a method for catalytic in-cell activation of a caged anticancer drug, which efficiently induced apoptosis in HeLa cells.

  2. Green chemistry by nano-catalysis

    KAUST Repository

    Polshettiwar, Vivek

    2010-01-01

    Nano-materials are important in many diverse areas, from basic research to various applications in electronics, biochemical sensors, catalysis and energy. They have emerged as sustainable alternatives to conventional materials, as robust high surface area heterogeneous catalysts and catalyst supports. The nano-sized particles increase the exposed surface area of the active component of the catalyst, thereby enhancing the contact between reactants and catalyst dramatically and mimicking the homogeneous catalysts. This review focuses on the use of nano-catalysis for green chemistry development including the strategy of using microwave heating with nano-catalysis in benign aqueous reaction media which offers an extraordinary synergistic effect with greater potential than these three components in isolation. To illustrate the proof-of-concept of this "green and sustainable" approach, representative examples are discussed in this article. © 2010 The Royal Society of Chemistry.

  3. Request for Symposia Support: Advances in Olefin Polymerization Catalysis

    Science.gov (United States)

    2014-11-24

    included, but were not limited to, heterogeneous catalysis , homogeneous catalysis , advances in catalyst activation, methods for polymer topological...SECURITY CLASSIFICATION OF: This Advances in Olefin Polymerization Catalysis symposium was held at the 247th ACS National Meeting and Exposition...March 19, 2014 in Dallas, Texas and consisted of twelve (12) invited/contributed talks. The hosting ACS division was the Division of Catalysis Science

  4. Phosphinate stabilised ZnO and Cu colloidal nanocatalysts for CO2 hydrogenation to methanol.

    Science.gov (United States)

    Brown, N J; Weiner, J; Hellgardt, K; Shaffer, M S P; Williams, C K

    2013-12-07

    Colloidal solutions of ZnO-Cu nanoparticles can be used as catalysts for the reduction of carbon dioxide with hydrogen. The use of phosphinate ligands for the synthesis of the nanoparticles from organometallic precursors improves the reductive stability and catalytic activity of the system.

  5. Fumigation with Phosphine for Postharvest Insect Control on Lettuce, Broccoli, and Strawberries

    Science.gov (United States)

    U.S. exported lettuce, broccoli, and strawberries often harbor western flower thrips (Frankliniella occidentalis), a quarantined pest in Taiwan, and therefore require quarantine treatment. Pure phosphine fumigation at a low temperature of 2°C was studied as an alternative to methyl bromide to contro...

  6. Inheritance and Characterization of Strong Resistance to Phosphine in Sitophilus oryzae (L.)

    Science.gov (United States)

    Nguyen, Tam T.; Collins, Patrick J.; Ebert, Paul R.

    2015-01-01

    Sitophilus oryzae (Linnaeus) is a major pest of stored grain across Southeast Asia and is of increasing concern in other regions due to the advent of strong resistance to phosphine, the fumigant used to protect stored grain from pest insects. We investigated the inheritance of genes controlling resistance to phosphine in a strongly resistant S. oryzae strain (NNSO7525) collected in Australia and find that the trait is autosomally inherited and incompletely recessive with a degree of dominance of -0.66. The strongly resistant strain has an LC50 52 times greater than a susceptible reference strain (LS2) and 9 times greater than a weakly resistant strain (QSO335). Analysis of F2 and backcross progeny indicates that two or more genes are responsible for strong resistance, and that one of these genes, designated So_rph1, not only contributes to strong resistance, but is also responsible for the weak resistance phenotype of strain QSO335. These results demonstrate that the genetic mechanism of phosphine resistance in S. oryzae is similar to that of other stored product insect pests. A unique observation is that a subset of the progeny of an F1 backcross generation are more strongly resistant to phosphine than the parental strongly resistant strain, which may be caused by multiple alleles of one of the resistance genes. PMID:25886629

  7. LOW TEMPERATURE PHOSPHINE FUMIGATION FOR POSTHARVEST PEST CONTROL ON FRESH VEGETABLES

    Science.gov (United States)

    U.S. exported lettuce, broccoli, asparagus, and strawberries often harbor western flower thrips (Frankliniella occidentalis), a quarantined pest in Taiwan, and therefore require quarantine treatment. Fumigation with pure phosphine at a low temperature of 2°C was studied to control western flower t...

  8. Oxygenated phosphine fumigation for postharvest control of light brown apple moth on lettuce

    Science.gov (United States)

    Postharvest treatment for light brown apple moth (LBAM), Epiphyas postvittana (Walker), is needed to safe guard domestic distribution and export of U.S. fresh fruits and vegetables including lettuce as the pest becomes established in California with risk of potential spread. Oxygenated phosphine fu...

  9. Inheritance and characterization of strong resistance to phosphine in Sitophilus oryzae (L..

    Directory of Open Access Journals (Sweden)

    Tam T Nguyen

    Full Text Available Sitophilus oryzae (Linnaeus is a major pest of stored grain across Southeast Asia and is of increasing concern in other regions due to the advent of strong resistance to phosphine, the fumigant used to protect stored grain from pest insects. We investigated the inheritance of genes controlling resistance to phosphine in a strongly resistant S. oryzae strain (NNSO7525 collected in Australia and find that the trait is autosomally inherited and incompletely recessive with a degree of dominance of -0.66. The strongly resistant strain has an LC50 52 times greater than a susceptible reference strain (LS2 and 9 times greater than a weakly resistant strain (QSO335. Analysis of F2 and backcross progeny indicates that two or more genes are responsible for strong resistance, and that one of these genes, designated So_rph1, not only contributes to strong resistance, but is also responsible for the weak resistance phenotype of strain QSO335. These results demonstrate that the genetic mechanism of phosphine resistance in S. oryzae is similar to that of other stored product insect pests. A unique observation is that a subset of the progeny of an F1 backcross generation are more strongly resistant to phosphine than the parental strongly resistant strain, which may be caused by multiple alleles of one of the resistance genes.

  10. Inheritance and characterization of strong resistance to phosphine in Sitophilus oryzae (L.).

    Science.gov (United States)

    Nguyen, Tam T; Collins, Patrick J; Ebert, Paul R

    2015-01-01

    Sitophilus oryzae (Linnaeus) is a major pest of stored grain across Southeast Asia and is of increasing concern in other regions due to the advent of strong resistance to phosphine, the fumigant used to protect stored grain from pest insects. We investigated the inheritance of genes controlling resistance to phosphine in a strongly resistant S. oryzae strain (NNSO7525) collected in Australia and find that the trait is autosomally inherited and incompletely recessive with a degree of dominance of -0.66. The strongly resistant strain has an LC50 52 times greater than a susceptible reference strain (LS2) and 9 times greater than a weakly resistant strain (QSO335). Analysis of F2 and backcross progeny indicates that two or more genes are responsible for strong resistance, and that one of these genes, designated So_rph1, not only contributes to strong resistance, but is also responsible for the weak resistance phenotype of strain QSO335. These results demonstrate that the genetic mechanism of phosphine resistance in S. oryzae is similar to that of other stored product insect pests. A unique observation is that a subset of the progeny of an F1 backcross generation are more strongly resistant to phosphine than the parental strongly resistant strain, which may be caused by multiple alleles of one of the resistance genes.

  11. Supported Rh-phosphine complex catalysts for continuous gas-phase decarbonylation of aldehydes

    DEFF Research Database (Denmark)

    Malcho, Phillip; Garcia-Suarez, Eduardo J.; Mentzel, Uffe Vie;

    2014-01-01

    Heterogeneous silica supported rhodium-phosphine complex catalysts are employed for the first time in the catalytic decarbonylation of aldehydes in continuous gas-phase. The reaction protocol is exemplified for the decarbonylation of p-tolualdehyde to toluene and further extended to other aromatic...

  12. The mechanism of the phosphine-free palladium-catalyzed hydroarylation of alkynes

    DEFF Research Database (Denmark)

    Ahlquist, Mårten Sten Gösta; Fabrizi, G.; Cacchi, S.;

    2006-01-01

    The mechanism of the Pd-catalyzed hydroarylation and hydrovinylation reaction of alkynes has been studied by a combination of experimental and theoretical methods (B3LYP), with an emphasis on the phosphine-free version. The regioselectivity of the hydroarylation and hydrovinylation shows unexpected...

  13. Hydroxyalkyl phosphine gold complexes for use as diagnostic and therapeutic pharmaceuticals and method of making same

    Science.gov (United States)

    Katti, Kattesh V.; Berning, Douglas E.; Volkert, Wynn A.; Ketring, Alan R.

    1998-01-01

    A complex and method for making same for use as a diagnostic or therapeutic pharmaceutical includes a ligand comprising at least one hydroxyalkyl phosphine donor group bound to a gold atom to form a gold-ligand complex that is stable in aqueous solutions containing oxygen, serum and other body fluids.

  14. Penguins significantly increased phosphine formation and phosphorus contribution in maritime Antarctic soils.

    Science.gov (United States)

    Zhu, Renbin; Wang, Qing; Ding, Wei; Wang, Can; Hou, Lijun; Ma, Dawei

    2014-11-14

    Most studies on phosphorus cycle in the natural environment focused on phosphates, with limited data available for the reduced phosphine (PH3). In this paper, matrix-bound phosphine (MBP), gaseous phosphine fluxes and phosphorus fractions in the soils were investigated from a penguin colony, a seal colony and the adjacent animal-lacking tundra and background sites. The MBP levels (mean 200.3 ng kg(-1)) in penguin colony soils were much higher than those in seal colony soils, animal-lacking tundra soils and the background soils. Field PH3 flux observation and laboratory incubation experiments confirmed that penguin colony soils produced much higher PH3 emissions than seal colony soils and animal-lacking tundra soils. Overall high MBP levels and PH3 emissions were modulated by soil biogeochemical processes associated with penguin activities: sufficient supply of the nutrients phosphorus, nitrogen, and organic carbon from penguin guano, high soil bacterial abundance and phosphatase activity. It was proposed that organic or inorganic phosphorus compounds from penguin guano or seal excreta could be reduced to PH3 in the Antarctic soils through the bacterial activity. Our results indicated that penguin activity significantly increased soil phosphine formation and phosphorus contribution, thus played an important role in phosphorus cycle in terrestrial ecosystems of maritime Antarctica.

  15. Effects of Outside Air Temperature on Movement of Phosphine Gas in Concrete Elevator Bins

    Science.gov (United States)

    Studies that measured the movement and concentration of phosphine gas in upright concrete bins over time indicated that fumigant movement was dictated by air currents, which in turn, were a function of the difference between the average grain temperature and the average outside air temperature durin...

  16. Hessian fly mortality by phosphine-carbon dioxide fumigation and postharvest drying

    Science.gov (United States)

    Hessian fly, Mayetiola destructor (Say), puparia, the stage of regulatory concern that may be found in weeds contaminating exported hay, may be controlled with a phosphine and carbon dioxide gas mixture dispensed from cylinders at a minimum dose of 750 ppm, temperature of 20°C (68°F) or higher, and ...

  17. Factors Affecting Energy Barriers for Pyramidal Inversion in Amines and Phosphines: A Computational Chemistry Lab Exercise

    Science.gov (United States)

    Montgomery, Craig D.

    2013-01-01

    An undergraduate exercise in computational chemistry that investigates the energy barrier for pyramidal inversion of amines and phosphines is presented. Semiempirical calculations (PM3) of the ground-state and transition-state energies for NR[superscript 1]R[superscript 2]R[superscript 3] and PR[superscript 1]R[superscript 2]R[superscript 3] allow…

  18. Structure and spectroscopy of uranyl and thorium complexes with substituted phosphine oxide ligands

    Energy Technology Data Exchange (ETDEWEB)

    Breshears, Andrew T.; Barnes, Charles L.; Wagle, Durgesh V.; Baker, Gary A.; Walensky, Justin R. [Missouri Univ., Columbia, MO (United States). Dept. of Chemistry; Takase, Michael K. [California Institute of Technology, Pasadena, CA (United States). Beckman Institute

    2015-05-01

    Phosphine oxide ligands are important in the chemistry of the nuclear fuel cycle. We have synthesized and characterized a series of phosphine oxide ligands with polycyclic aromatic hydrocarbon (PAH) groups to enhance the spectroscopic features of uranyl, UO{sub 2}{sup 2+}, and to make detection more efficient. Complexation of OPPh{sub 2}R, R = C{sub 10}H{sub 7} (naphthyl); C{sub 14}H{sub 9} (phenanthrenyl); C{sub 14}H{sub 9} (anthracenyl); and C{sub 16}H{sub 9} (pyrenyl), to UO{sub 2}(NO{sub 3}){sub 2} afforded the eight-coordinate complexes, UO{sub 2}(NO{sub 3}){sub 2}(OPPh{sub 2}R){sub 2}. An eleven-coordinate complex, Th(NO{sub 3}){sub 4}[OPPh{sub 2}(C{sub 14}H{sub 9})]{sub 3}, C{sub 14}H{sub 9} = phenanthrenyl, was structurally characterized, and was found to be the first thorium compound isolated with three phosphine oxide ligands bound. The phosphine oxide ligands were not fluorescent but the anthracenyl-substituted ligand showed broad, red-shifted emission at approximately 50 nm relative to typical anthracene, making this ligand set a possibility for use in detection. The synthesis and spectroscopy of the uranyl and thorium complexes are presented.

  19. Asymmetric α-amination of 3-substituted oxindoles using chiral bifunctional phosphine catalysts

    Directory of Open Access Journals (Sweden)

    Qiao-Wen Jin

    2016-04-01

    Full Text Available A highly enantioselective α-amination of 3-substituted oxindoles with azodicarboxylates catalyzed by amino acids-derived chiral phosphine catalysts is reported. The corresponding products containing a tetrasubstituted carbon center attached to a nitrogen atom at the C-3 position of the oxindole were obtained in high yields and with up to 98% ee.

  20. Tris(pyrazolyl)phosphine Oxides. Synthesis and Coordination Chemistry with Copper(I)

    NARCIS (Netherlands)

    Tazelaar, C.G.J.; Lyaskovskyy, V.; van Dijk, T.; Broere, D.L.J.; Kolfschoten, L.A.; Khiar, R.O.H.; Lutz, M.; Slootweg, J.C.; Lammertsma, K.

    2012-01-01

    A set of substituted tris(pyrazolyl)phosphine oxides (OP(pzx)3) has been prepared in high yield and applied as neutral scorpion-type ligands. The P apex provides a convenient spectroscopic handle. Substitution at the 3-position of the pyrazolyl ring influences the steric demands of the ligand, while

  1. Tri(t-butyl)phosphine-assisted selective hydrosilylation of terminal alkynes

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    A highly efficient and regio-/stereoselective method of hydrosilylating terminal alkynes was developed using Pt(DVDS)-tri(t-butyl) phosphine catalyst system at room temperature.Trans-products or alpha-products were obtained almost exclusively depending on the alkynes and silanes employed.

  2. Intermediates in the Rh-catalysed dehydrocoupling of phosphine-borane.

    Science.gov (United States)

    Huertos, Miguel A; Weller, Andrew S

    2012-07-21

    Active species, product distributions and a suggested catalytic cycle are reported for the dehydrocoupling of the phosphine-borane H(3)B·P(t)Bu(2)H to give HP(t)Bu(2)BH(2)P(t)Bu(2)BH(3) using the [Rh(COD)(2)][BAr(F)(4)] pre-catalyst.

  3. Penguins significantly increased phosphine formation and phosphorus contribution in maritime Antarctic soils

    Science.gov (United States)

    Zhu, Renbin; Wang, Qing; Ding, Wei; Wang, Can; Hou, Lijun; Ma, Dawei

    2014-01-01

    Most studies on phosphorus cycle in the natural environment focused on phosphates, with limited data available for the reduced phosphine (PH3). In this paper, matrix-bound phosphine (MBP), gaseous phosphine fluxes and phosphorus fractions in the soils were investigated from a penguin colony, a seal colony and the adjacent animal-lacking tundra and background sites. The MBP levels (mean 200.3 ng kg−1) in penguin colony soils were much higher than those in seal colony soils, animal-lacking tundra soils and the background soils. Field PH3 flux observation and laboratory incubation experiments confirmed that penguin colony soils produced much higher PH3 emissions than seal colony soils and animal-lacking tundra soils. Overall high MBP levels and PH3 emissions were modulated by soil biogeochemical processes associated with penguin activities: sufficient supply of the nutrients phosphorus, nitrogen, and organic carbon from penguin guano, high soil bacterial abundance and phosphatase activity. It was proposed that organic or inorganic phosphorus compounds from penguin guano or seal excreta could be reduced to PH3 in the Antarctic soils through the bacterial activity. Our results indicated that penguin activity significantly increased soil phosphine formation and phosphorus contribution, thus played an important role in phosphorus cycle in terrestrial ecosystems of maritime Antarctica. PMID:25394572

  4. Nucleoside-O-Methyl-(H)-Phosphinates: Novel Monomers for the Synthesis of Methylphosphonate Oligonucleotides Using H-Phosphonate Chemistry.

    Science.gov (United States)

    Kostov, Ondřej; Páv, Ondřej; Rosenberg, Ivan

    2017-09-18

    This unit comprises the straightforward synthesis of protected 2'-deoxyribonucleoside-O-methyl-(H)-phosphinates in both 3'- and 5'-series. These compounds represent a new class of monomers compatible with the solid-phase synthesis of oligonucleotides using H-phosphonate chemistry and are suitable for the preparation of both 3'- and 5'-O-methylphosphonate oligonucleotides. The synthesis of 4-toluenesulfonyloxymethyl-(H)-phosphinic acid as a new reagent for the preparation of O-methyl-(H)-phosphinic acid derivatives is described. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  5. Experimental and numerical techniques to assess catalysis

    Science.gov (United States)

    Herdrich, G.; Fertig, M.; Petkow, D.; Steinbeck, A.; Fasoulas, S.

    2012-01-01

    Catalytic heating can be a significant portion of the thermal load experienced by a body during re-entry. Under the auspices of the NATO Research and Technology Organisation Applied Vehicle Technologies Panel Task Group AVT-136 an assessment of the current state-of-the-art in the experimental characterization and numerical simulation of catalysis on high-temperature material surfaces has been conducted. This paper gives an extraction of the final report for this effort, showing the facilities and capabilities worldwide to assess catalysis data. A corresponding summary for the modeling activities is referenced in this article.

  6. RNA catalysis and the origins of life

    Science.gov (United States)

    Orgel, Leslie E.

    1986-01-01

    The role of RNA catalysis in the origins of life is considered in connection with the discovery of riboszymes, which are RNA molecules that catalyze sequence-specific hydrolysis and transesterification reactions of RNA substrates. Due to this discovery, theories positing protein-free replication as preceding the appearance of the genetic code are more plausible. The scope of RNA catalysis in biology and chemistry is discussed, and it is noted that the development of methods to select (or predict) RNA sequences with preassigned catalytic functions would be a major contribution to the study of life's origins.

  7. Catalysis by nonmetals rules for catalyst selection

    CERN Document Server

    Krylov, Oleg V

    1970-01-01

    Catalysis by Non-metals: Rules of Catalyst Selection presents the development of scientific principles for the collection of catalysts. It discusses the investigation of the mechanism of chemosorption and catalysis. It addresses a series of properties of solid with catalytic activity. Some of the topics covered in the book are the properties of a solid and catalytic activity in oxidation-reduction reactions; the difference of electronegativities and the effective charges of atoms; the role of d-electrons in the catalytic properties of a solid; the color of solids; and proton-acid and proton-ba

  8. Bioinspired catalysis metal-sulfur complexes

    CERN Document Server

    Weigand, Wolfgang

    2014-01-01

    The growing interest in green chemistry calls for new, efficient and cheap catalysts. Living organisms contain a wide range of remarkably powerful enzymes, which can be imitated by chemists in the search for new catalysts. In bioinspired catalysis, chemists use the basic principles of biological enzymes when creating new catalyst analogues. In this book, an international group of experts cover the topic from theoretical aspects to applications by including a wide variety of examples of different systems. This valuable overview of bioinspired metal-sulfur catalysis is a must-have for all sci

  9. Keynotes in energy-related catalysis

    CERN Document Server

    Kaliaguine, S

    2011-01-01

    Catalysis by solid acids, which includes (modified) zeolites, is of special relevance to energy applications. Acid catalysis is highly important in modern petroleum refining operations - large-scale processes such as fluid catalytic cracking, catalytic reforming, alkylation and olefin oligomerization rely on the transformation of hydrocarbons by acid catalysts. (Modified) zeolites are therefore essential for the improvement of existing processes and for technical innovations in the conversion of crude. There can be little doubt that zeolite-based catalysts will play a major role in the futu

  10. Heterogeneous catalysis at nanoscale for energy applications

    CERN Document Server

    Tao, Franklin (Feng); Kamat, Prashant V

    2015-01-01

    This book presents both the fundamentals concepts and latest achievements of a field that is growing in importance since it represents a possible solution for global energy problems.  It focuses on an atomic-level understanding of heterogeneous catalysis involved in important energy conversion processes. It presents a concise picture for the entire area of heterogeneous catalysis with vision at the atomic- and nano- scales, from synthesis, ex-situ and in-situ characterization, catalytic activity and selectivity, to mechanistic understanding based on experimental exploration and theoretical si

  11. Coinage metal coordination chemistry of stable primary, secondary and tertiary ferrocenylethyl-based phosphines.

    Science.gov (United States)

    Azizpoor Fard, M; Rabiee Kenaree, A; Boyle, P D; Ragogna, P J; Gilroy, J B; Corrigan, J F

    2016-02-21

    Ferrocene-based phosphines constitute an important auxiliary ligand in inorganic chemistry. Utilizing the (ferrocenylethyl)phosphines (FcCH2CH2)3-nHnP (Fc = ferrocenyl; n = 2, 1; n = 1, 2; n = 0, 3) the synthesis of a series of coordination complexes [(FcCH2CH2)3-nHnPCuCl]4 (n = 2, 1-CuCl; n = 0, 3-CuCl), [(FcCH2CH2)2HPCuCl] (2-CuCl), {[(FcCH2CH2)H2P]2AgCl}2 (1-AgCl), [(FcCH2CH2)2HPAgCl] (2-AgCl), [(FcCH2CH2)3PAgCl]4 (3-AgCl), [(FcCH2CH2)3PM(OAc)]4 (M = Cu, 3-CuOAc M = Ag, 3-AgOAc), [(FcCH2CH2)3-nHnPAuCl] (n = 1, 2-AuCl; n = 0, 3-AuCl), via the reaction between the free phosphine and MX (M = Cu, Ag and Au; X = Cl, OAc), is described. The reaction between the respective phosphine with a suspension of metal-chloride or -acetate in a 1 : 1 ratio in THF at ambient temperature affords coordinated phosphine-coinage metal complexes. Varying structural motifs are observed in the solid state, as determined via single crystal X-ray analysis of 1-CuCl, 3-CuCl, 1-AgCl, 3-AgCl, 3-CuOAc, 3-AgOAc, 2-AuCl and 3-AuCl. Complexes 1-CuCl and 3-CuCl are tetrameric Cu(i) cubane-like structures with a Cu4Cl4 core, whereas silver complexes with primary and tertiary phosphine reveal two different structural types. The structure of 1-AgCl, unlike the rest, displays the coordination of two phosphines to each silver atom and shows a quadrangle defined by two Ag and two Cl atoms. In contrast, 3-AgCl is distorted from a cubane structure via elongation of one of the ClAg distances. 3-CuOAc and 3-AgOAc are isostructural with step-like cores, while complexes 2-AuCl and 3-AuCl reveal a linear geometry of a phosphine gold(i) chloride devoid of any aurophilic interactions. All of the complexes were characterized in solution by multinuclear (1)H, (13)C{(1)H} and (31)P NMR spectroscopic techniques; the redox chemistry of the series of complexes was examined using cyclic voltammetry. This class of complexes has been found to exhibit one reversible Fe(ii)/Fe(iii) oxidation couple, suggesting the

  12. Synthesis and coordination chemistry of tridentate (PNN) amine enamido phosphine ligands with ruthenium.

    Science.gov (United States)

    Wambach, T C; Lenczyk, C; Patrick, B O; Fryzuk, M D

    2016-04-07

    Tridentate amine-imine-phosphine ligands, R2PC5H7NC2H4NEt2 [(R)PNN(H)], where R = Pr(i) or Bu(t) are synthesized using a straightforward protocol of condensation, deprotonation, and addition of a chlorodialkylphosphine. Multinuclear NMR spectroscopy shows the ligands exist exclusively in the enamine tautomeric form in solution. Treating these ligands with RuHCl(PPr(i)3)2(CO) forms the desired coordination compounds, RuHCl[(R)PNN(H)](CO), where the imine tautomeric form of the ligands coordinates to ruthenium. Deuterium labelling experiments show Ru-H/N-D scrambling occurs during ligand coordination. Treating the RuHCl[(R)PNN(H)](CO) precursors with potassium tert-butoxide allows for the synthesis of two new ruthenium enamido-phosphine complexes, RuH[(R)PNN](CO), which were fully characterized. The structure of one of the derivatives was confirmed by X-ray crystallography (R = Pr(i)). The reactivity of the enamido-phosphine complexes with H2 and benzyl alcohol is also reported. For the enamido phosphine complex where R = Pr(i), the reaction with H2 is reversible and forms (RuH(CO)[(Pri)PNN(H)])2(μ-H)2, a hydride-bridged dimer that results from cooperative activation of H2. The reactivity of both amine-enamido-phosphine ruthenium compounds with benzyl alcohol establishes that the complexes are catalyst precursors for acceptorless dehydrogenation (AD), although the turnover frequencies measured using both catalyst precursors are modest.

  13. Laboratory Studies of Phosphine Chemistry Relevant to the Jovian and Saturnian Atmospheres

    Science.gov (United States)

    Liu, Yingdi; Matsiev, Daniel; Robertson, Robert; White, Jason

    2016-10-01

    The photochemistry of phosphine (PH3) in the tropospheres of Saturn and Jupiter is initiated by ultraviolet (UV) radiation and then follows a cascade of chemical reactions that result in P-H hydrides as well as the condensed chromophore red phosphorus (P4). A key intermediate in this pathway is diphosphine (P2H4). The rate constants for the photodissociation of phosphine into initial phosphino radicals and consequently into formation of diphosphine are currently unavailable, limiting their applicability to observational measurements. The condensation of diphosphine to ice in the cold tropospheres is also poorly understood due to the difficulties in synthesizing, handling, and analyzing the compound.Our presentation will describe two experiments at SRI International to produce rate constants for the photochemistry initiated by UV light interacting with phosphine and diphosphine and properties related to the condensed phases of these species. One study seeks to produce property values for application in photochemical and cloud/haze models. Specifically, we extend the measured vapor pressure curve for diphosphine to temperatures relevant to temperatures of Saturn and Jupiter. A sophisticated vapor pressure cell has been constructed and tested and is coupled to a Fourier transform infrared (FTIR) and mass spectrometer for high-fidelity species diagnostics. A companion study investigates phosphine photochemistry to measure the rate constants of key intermediate species related to the loss of PH3 and the formation of P2H4. The experiments employ laser photolysis at 193 nm followed by time-resolved mid-IR laser-based species detection of reactants, and the products provide basic chemical kinetic data useful for interpreting phosphine photochemistry in planetary atmospheres.These two studies are intended to supply basic physical measurements to aid in the interpretation of outer planet atmospheric observations. For both studies, we will present our latest laboratory

  14. Silica with immobilized phosphinic acid-derivative for uranium extraction

    Energy Technology Data Exchange (ETDEWEB)

    Budnyak, Tetyana M., E-mail: tetyanabudnyak@yahoo.com [Chuiko Institute of Surface Chemistry of National Academy of Sciences of Ukraine, 17 General Naumov Str., 03164 Kyiv (Ukraine); Strizhak, Alexander V. [Taras Shevchenko National University of Kyiv, 64/13, Volodymyrska Street, 01601 Kyiv (Ukraine); Gładysz-Płaska, Agnieszka; Sternik, Dariusz [Maria Curie Skłodowska University, 2 M. Curie Skłodowska Sq., 20-031 Lublin (Poland); Komarov, Igor V. [Taras Shevchenko National University of Kyiv, 64/13, Volodymyrska Street, 01601 Kyiv (Ukraine); Kołodyńska, Dorota; Majdan, Marek [Maria Curie Skłodowska University, 2 M. Curie Skłodowska Sq., 20-031 Lublin (Poland); Tertykh, Valentin A. [Chuiko Institute of Surface Chemistry of National Academy of Sciences of Ukraine, 17 General Naumov Str., 03164 Kyiv (Ukraine)

    2016-08-15

    Highlights: • A novel benzoimidazol-2-yl-phenylphosphinic acid-silica gel material was prepared. • U(VI) ions are sorbed on the studied adsorbent from the acidic solution. • U(VI) ions form a stable complex with the grafted phosphinic ligand. - Abstract: A novel adsorbent benzoimidazol-2-yl-phenylphosphinic acid/aminosilica adsorbent (BImPhP(O)(OH)/SiO{sub 2}NH{sub 2}) was prepared by carbonyldiimidazole-mediated coupling of aminosilica with 1-carboxymethylbenzoimidazol-2-yl-phenylphosphinic acid. It was obtained through direct phosphorylation of 1-cyanomethylbenzoimidazole by phenylphosphonic dichloride followed by basic hydrolysis of the nitrile. The obtained sorbent was well characterized by physicochemical methods, such as differential scanning calorimetry-mass spectrometry (DSC-MS), surface area and pore distribution analysis (ASAP), scanning electron microscopy (SEM), X-ray photoelectron (XPS) and Fourier transform infrared (FTIR) spectroscopies. The adsorption behavior of the sorbent and initial silica gel as well as aminosilica gel with respect to uranium(VI) from the aqueous media has been studied under varying operating conditions of pH, concentration of uranium(VI), contact time, and desorption in different media. The synthesized material was found to show an increase in adsorption activity with respect to uranyl ions in comparison with the initial compounds. In particular, the highest adsorption capacity for the obtained modified silica was found at the neutral pH, where one gram of the adsorbent can extract 176 mg of uranium. Under the same conditions the aminosilica extracts 166 mg/g, and the silica – 144 mg/g of uranium. In the acidic medium, which is common for uranium nuclear wastes, the synthesized adsorbent extracts 27 mg/g, the aminosilica – 16 mg/g, and the silica – 14 mg/g of uranium. It was found that 15% of uranium ions leached from the prepared material in acidic solutions, while 4% of uranium can be removed in a phosphate

  15. Five-coordinate [Pt(II)(bipyridine)2(phosphine)](n+) complexes: long-lived intermediates in ligand substitution reactions of [Pt(bipyridine)2](2+) with phosphine ligands.

    Science.gov (United States)

    Lo, Warrick K C; Cavigliasso, Germán; Stranger, Robert; Crowley, James D; Blackman, Allan G

    2014-04-07

    The reaction of [Pt(N-N)2](2+) [N-N = 2,2'-bipyridine (bpy) or 4,4'-dimethyl-2,2'-bipyridine (4,4'-Me2bpy)] with phosphine ligands [PPh3 or PPh(PhSO3)2(2-)] in aqueous or methanolic solutions was studied by multinuclear ((1)H, (13)C, (31)P, and (195)Pt) NMR spectroscopy, X-ray crystallography, UV-visible spectroscopy, and high-resolution mass spectrometry. NMR spectra of solutions containing equimolar amounts of [Pt(N-N)2](2+) and phosphine ligand give evidence for rapid formation of long-lived, 5-coordinate [Pt(II)(N-N)2(phosphine)](n+) complexes. In the presence of excess phosphine ligand, these intermediates undergo much slower entry of a second phosphine ligand and loss of a bpy ligand to give [Pt(II)(N-N)(phosphine)2](n+) as the final product. The coordination of a phosphine ligand to the Pt(II) ion in the intermediate [Pt(N-N)2(phosphine)](n+) complexes is supported by the observation of (31)P-(195)Pt coupling in the (31)P NMR spectra. The 5-coordinate nature of [Pt(bpy)2{PPh(PhSO3)2}] is confirmed by X-ray crystallography. X-ray crystal structural analysis shows that the Pt(II) ion in [Pt(bpy)2{PPh(PhSO3)2}]·5.5H2O displays a distorted square pyramidal geometry, with one bpy ligand bound asymmetrically. These results provide strong support for the widely accepted associative ligand substitution mechanism for square planar Pt(II) complexes. X-ray structural characterization of the distorted square planar complex [Pt(bpy)(PPh3)2](ClO4)2 confirms this as the final product of the reaction of [Pt(bpy)2](2+) with PPh3 in CD3OD. The results of density functional calculations on [Pt(bpy)2](2+), [Pt(bpy)2(phosphine)](n+), and [Pt(bpy)(phosphine)2](n+) indicate that the bonding energy follows the trend of [Pt(bpy)(phosphine)2](n+) > [Pt(bpy)2(phosphine)](n+) > [Pt(bpy)2](2+) for stability and that the formation reactions of [Pt(bpy)2(phosphine)](n+) from [Pt(bpy)2](2+) and [Pt(bpy)(phosphine)2](n+) from [Pt(bpy)2(phosphine)](n+) are energetically favorable. These

  16. Direct sp(3)C-H acroleination of N-aryl-tetrahydroisoquinolines by merging photoredox catalysis with nucleophilic catalysis.

    Science.gov (United States)

    Feng, Zhu-Jia; Xuan, Jun; Xia, Xu-Dong; Ding, Wei; Guo, Wei; Chen, Jia-Rong; Zou, You-Quan; Lu, Liang-Qiu; Xiao, Wen-Jing

    2014-04-07

    Sequence catalysis merging photoredox catalysis (PC) and nucleophilic catalysis (NC) has been realized for the direct sp(3) C-H acroleination of N-aryl-tetrahydroisoquinoline (THIQ). The reaction was performed under very mild conditions and afforded products in 50-91% yields. A catalytic asymmetric variant was proved to be successful with moderate enantioselectivities (up to 83 : 17 er).

  17. Diffusion and Surface Reaction in Heterogeneous Catalysis

    Science.gov (United States)

    Baiker, A.; Richarz, W.

    1978-01-01

    Ethylene hydrogenation on a platinum catalyst, electrolytically applied to a tube wall, is a good system for the study of the interactions between diffusion and surface reaction in heterogeneous catalysis. Theoretical background, apparatus, procedure, and student performance of this experiment are discussed. (BB)

  18. Homogeneous Catalysis by Transition Metal Compounds.

    Science.gov (United States)

    Mawby, Roger

    1988-01-01

    Examines four processes involving homogeneous catalysis which highlight the contrast between the simplicity of the overall reaction and the complexity of the catalytic cycle. Describes how catalysts provide circuitous routes in which all energy barriers are relatively low rather than lowering the activation energy for a single step reaction.…

  19. Surface temperature excess in heterogeneous catalysis

    NARCIS (Netherlands)

    Zhu, L.

    2005-01-01

    In this dissertation we study the surface temperature excess in heterogeneous catalysis. For heterogeneous reactions, such as gas-solid catalytic reactions, the reactions take place at the interfaces between the two phases: the gas and the solid catalyst. Large amount of reaction heats are released

  20. Supported Ionic Liquid Phase (SILP) catalysis

    DEFF Research Database (Denmark)

    Riisager, Anders; Fehrmann, Rasmus; Haumann, Marco;

    2006-01-01

    Applications of ionic liquids to replace conventional solvents in homogeneous transition-metal catalysis have increased significantly during the last decade. Biphasic ionic liquid/organic liquid systems offer advantages with regard to product separation, catalyst stability, and recycling but util...

  1. Hydroxide catalysis bonding of silicon carbide

    NARCIS (Netherlands)

    Veggel, A.A. van; Ende, D.A. van den; Bogenstahl, J.; Rowan, S.; Cunningham, W.; Gubbels, G.H.M.; Nijmeijer, H.

    2008-01-01

    For bonding silicon carbide optics, which require extreme stability, hydroxide catalysis bonding is considered [Rowan, S., Hough, J. and Elliffe, E., Silicon carbide bonding. UK Patent 040 7953.9, 2004. Please contact Mr. D. Whiteford for further information: D.Whiteford@admin.gla.ac.uk]. This techn

  2. Surface temperature excess in heterogeneous catalysis

    NARCIS (Netherlands)

    Zhu, L.

    2005-01-01

    In this dissertation we study the surface temperature excess in heterogeneous catalysis. For heterogeneous reactions, such as gas-solid catalytic reactions, the reactions take place at the interfaces between the two phases: the gas and the solid catalyst. Large amount of reaction heats are released

  3. On the Resolution of Secondary Phosphine Oxides via Diastereomeric Complex Formation : The Case of tert-Butylphenylphosphine Oxide

    NARCIS (Netherlands)

    Holt, Jarle; Maj, Anna M.; Schudde, Ebe P.; Pietrusiewicz, K. Michal; Sieron, Lelsaw; Wieczorek, Wanda; Jerphagnon, Thomas; Arends, Isabel W. C. E.; Hanefeld, Ulf; Minnaard, Adriaan J.

    2009-01-01

    The secondary phosphine oxide, t-BuPhHP=O most prominent chiral member of this compound class, has been re solved in high yield and with excellent ee. This resolution discloses ail efficient route to enantiopure phosphorus compounds.

  4. Synthesis of 3-Allyl-4-phosphachromones by Cyclized Coupling of Ethyl o-Hydroxyphenyl(ethynyl)phosphinate with Allyl Bromide

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    3-Allyl-4-phosphachromones as the phosphorus analogues of chromone were firstly prepared in good yields and high regioselectivity by the palladium(Ⅱ)-catalyzed cyclized coupling reaction of ethyl o-hydroxyphenyl(ethynyl)-phosphinate with allyl bromide.

  5. Resistance of stored-product insects to phosphine Resistência de insetos de produtos armazenados à fosfina

    OpenAIRE

    2008-01-01

    The objectives of this work were to assess phosphine resistance in insect populations (Tribolium castaneum, Rhyzopertha dominica, Sitophilus zeamais and Oryzaephilus surinamensis) from different regions of Brazil and to verify if the prevailing mechanism of phosphine resistance in these populations involves reduced respiration rates. Sixteen populations of T. castaneum, 15 of R. dominica, 27 of S. zeamais and eight of O. surinamensis were collected from 36 locations over seven Brazilian state...

  6. Influence of bidentate structure of an aryl phosphine oxide ligand on photophysical properties of its Eu~Ⅲ complex

    Institute of Scientific and Technical Information of China (English)

    许辉; 魏莹; 赵保敏; 黄维

    2010-01-01

    The bidentate phosphine oxide ligand 1,8-bis(diphenylphosphino) naphthalene oxide (NAPO) and its EuⅢ complex 1 Eu(TTA)3(NAPO) (TTA=2-thenoyltrifluoroacetonate) were chosen to study the effect of bidentate phosphine oxide ligand on the photophysical properties of the corresponding complex. The intramolecular energy transfer processes of 1 were studied. The investigation showed that with bidentate structure NAPO could suppress solvent-induced quenching by enforcing the ligand-ligand interaction and the rigidi...

  7. L-Threonine-derived novel bifunctional phosphine-sulfonamide catalyst-promoted enantioselective aza-morita-Baylis-Hillman reaction

    KAUST Repository

    Zhong, Fangrui

    2011-03-18

    A series of novel bifunctional phosphine-sulfonamide organic catalysts were designed and readily prepared from natural amino acids, and they were utilized to promote enantioselective aza-Morita-Baylis-Hillman (MBH) reactions. l-Threonine-derived phosphine-sulfonamide 9b was found to be the most efficient catalyst, affording the desired aza-MBH adducts in high yields and with excellent enantioselectivities. © 2011 American Chemical Society.

  8. Oxygenated Phosphine Fumigation for Control of Light Brown Apple Moth (Lepidoptera: Tortricidae) Eggs on Cut-Flowers.

    Science.gov (United States)

    Liu, Samuel S; Liu, Yong-Biao; Simmons, Gregory S

    2015-08-01

    Light brown apple moth, Epiphyas postvittana (Walker), eggs were subjected to oxygenated phosphine fumigation treatments under 70% oxygen on cut flowers to determine efficacy and safety. Five cut flower species: roses, lilies, tulips, gerbera daisy, and pompon chrysanthemums, were fumigated in separate groups with 2,500 ppm phosphine for 72 h at 5°C. Egg mortality and postharvest quality of cut flowers were determined after fumigation. Egg mortalities of 99.7-100% were achieved among the cut flower species. The treatment was safe to all cut flowers except gerbera daisy. A 96-h fumigation treatment with 2,200 ppm phosphine of eggs on chrysanthemums cut flowers also did not achieve complete control of light brown apple moth eggs. A simulation of fumigation in hermetically sealed fumigation chambers with gerbera daisy showed significant accumulations of carbon dioxide and ethylene by the end of 72-h sealing. However, oxygenated phosphine fumigations with carbon dioxide and ethylene absorbents did not reduce the injury to gerbera daisy, indicating that it is likely that phosphine may directly cause the injury to gerbera daisy cut flowers. The study demonstrated that oxygenated phosphine fumigation is effective against light brown apple moth eggs. However, it may not be able to achieve the probit9 quarantine level of control and the treatment was safe to most of the cut flower species.

  9. Continuous real-time monitoring of phosphine concentrations in air using electrochemical detectors interfaced by radio telemetry.

    Science.gov (United States)

    Thorn, Tommy G; Chodyniecki, Edward M; Ingold, Kenneth W; Long, Gerald A; Miller, Charles D; Robinson, Edward A; Cowan, F Scott; Thomas, Robert L

    2002-05-01

    This work involves the novel use of a radio telemetry-based system that continuously monitors phosphine using two different types of electrochemical detectors (ECD/RT). The ECD/RT units were used to monitor phosphine inside and at varying distances from large tobacco storage warehouses. A master controller unit transferred the data to a personal computer that received and displayed the data. Supervisory control and data acquisition software assimilated the data from each ECD/RT unit, displayed and updated it as new transmissions were received, and stored the data in secure databases. Phosphine concentrations outside five warehouses simultaneously under fumigation and at the facility boundaries were Phosphine levels ranged from 0 to 580 ppm inside sealed warehouses. A comparison was made between the data collected at an ECD/RT unit approximately 4 m downwind of a sealed warehouse and a colorimetric tube at the same location. The final phosphine concentration from the colorimetric method was 0.05 ppm and the average over the 20-minute collection period for the ECD/RT was 0.13 ppm. This system allows for continuous, remote monitoring around warehouses under fumigation and superior time resolution allowing timely response to fugitive emissions of phosphine.

  10. Bimetallic redox synergy in oxidative palladium catalysis.

    Science.gov (United States)

    Powers, David C; Ritter, Tobias

    2012-06-19

    Polynuclear transition metal complexes, which are embedded in the active sites of many metalloenzymes, are responsible for effecting a diverse array of oxidation reactions in nature. The range of chemical transformations remains unparalleled in the laboratory. With few noteworthy exceptions, chemists have primarily focused on mononuclear transition metal complexes in developing homogeneous catalysis. Our group is interested in the development of carbon-heteroatom bond-forming reactions, with a particular focus on identifying reactions that can be applied to the synthesis of complex molecules. In this context, we have hypothesized that bimetallic redox chemistry, in which two metals participate synergistically, may lower the activation barriers to redox transformations relevant to catalysis. In this Account, we discuss redox chemistry of binuclear Pd complexes and examine the role of binuclear intermediates in Pd-catalyzed oxidation reactions. Stoichiometric organometallic studies of the oxidation of binuclear Pd(II) complexes to binuclear Pd(III) complexes and subsequent C-X reductive elimination from the resulting binuclear Pd(III) complexes have confirmed the viability of C-X bond-forming reactions mediated by binuclear Pd(III) complexes. Metal-metal bond formation, which proceeds concurrently with oxidation of binuclear Pd(II) complexes, can lower the activation barrier for oxidation. We also discuss experimental and theoretical work that suggests that C-X reductive elimination is also facilitated by redox cooperation of both metals during reductive elimination. The effect of ligand modification on the structure and reactivity of binuclear Pd(III) complexes will be presented in light of the impact that ligand structure can exert on the structure and reactivity of binuclear Pd(III) complexes. Historically, oxidation reactions similar to those discussed here have been proposed to proceed via mononuclear Pd(IV) intermediates, and the hypothesis of mononuclear Pd

  11. Triphenyl Phosphine-Functionalized Chitosan Nanoparticles Enhanced Antitumor Efficiency Through Targeted Delivery of Doxorubicin to Mitochondria

    Science.gov (United States)

    Hou, Jiahui; Yu, Xiwei; Shen, Yaping; Shi, Yijie; Su, Chang; Zhao, Liang

    2017-02-01

    Mitochondria as an important organ in eukaryotic cells produced energy through oxidative phosphorylation and also played an important role in regulating the apoptotic signal transduction process. Importantly, mitochondria like nuclei also contained the functional DNA and were very sensitive to anticancer drugs which could effectively inhibit the synthesis of nucleic acid, especially the production of DNA. In this work, we designed novel triphenyl phosphine (TPP)-conjugated chitosan (CS) nanoparticles (NPs) for efficient drug delivery to cell mitochondria. The results showed that compared with free doxorubicin (Dox), Dox-loaded TPP-NPs were specifically distributed in mitochondria of tumor cells and interfered with the function of mitochondria, thus resulted in the higher cytotoxicity and induced the significant cell apoptosis effect. Taken together, triphenyl phosphine-conjugated chitosan nanoparticles may become a promising mitochondria-targeting nanocarrier candidate for enhancing antitumor effects.

  12. Acute phosphine poisoning aboard a grain freighter. Epidemiologic, clinical, and pathological findings.

    Science.gov (United States)

    Wilson, R; Lovejoy, F H; Jaeger, R J; Landrigan, P L

    1980-07-11

    Two children and 29 of 31 crew members aboard a grain freighter became acutely ill after inhaling the toxic fumigant phosphine; one child died. Predominant symptoms were headache, fatigue, nausea, vomiting, cough, and shortness of breath. Abnormal physical findings included jaundice, paresthesias, ataxia, intention tremor, and diplopia. Focal myocardial infiltration with necrosis, pulmonary edema, and widespread small-vessel injury were found at postmortem examination of the dead child. The surviving child showed ECG and echocardiographic evidence of myocardial injury and transient elevation of the MB fraction of serum creatinine phosphokinase. Illness was significantly associated with living or working amidships or on the forward deck areas of the vessel. Phosphine gas was found to have escaped from the holds through a cable housing located near the midships ventilation intake and around hatch covers on the forward deck. The outbreak illustrates the hazards associated with shipboard fumigation.

  13. Residue formations of phosphorus hydride polymers and phosphorus oxyacids during phosphine gas fumigations of stored products.

    Science.gov (United States)

    Flora, Jason W; Byers, Loran E; Plunkett, Susan E; Faustini, Daryl L

    2006-01-11

    With the extent of international usage and the critical role phosphine gas (PH3) plays in commercial pest control, identification of the residual components deposited during fumigation is mandatory. It has been postulated that these infrequent residues are primarily composed of phosphoric acid or reduced forms of phosphoric acid [hypophosphorous acid (H3PO2) and phosphorous acid (H3PO3)], due to the oxidative degradation of phosphine. Using environmental scanning electron microscopy, gas phase Fourier transform infrared spectroscopy, and X-ray fluorescence spectroscopy, the structural elucidation and formation mechanism of the yellow amorphous polyhydric phosphorus polymers (P(x)H(y)) that occur in addition to the lower oxyacids of phosphorus in residues deposited during PH3 fumigations of select tobacco commodities are explored. This research determined that nitric oxide gas (or nitrogen dioxide) initiates residue formation of phosphorus hydride polymers and phosphorus oxyacids during PH3 fumigations of stored products.

  14. Rate constant for the reaction of atomic oxygen with phosphine at 298 K

    Science.gov (United States)

    Stief, L. J.; Payne, W. A.; Nava, D. F.

    1987-01-01

    The rate constant for the reaction of atomic oxygen with phosphine has been measured at 298 K using flash photolysis combined with time-resolved detection of O(3P) via resonance fluorescence. Atomic oxygen was produced by flash photolysis of N2O or NO highly diluted in argon. The results were shown to be independent of (PH3), (O), total pressure and the source of O(3P). The mean value of all the experiments is k1 = (3.6 + or -0.8) x 10 to the -11th cu cm/s (1 sigma). Two previous measurements of k1 differed by more than an order of magnitude, and the results support the higher value obtained in a discharge flow-mass spectrometry study. A comparison with rate data for other atomic and free radical reactions with phosphine is presented, and the role of these reactions in the aeronomy or photochemistry of Jupiter and Saturn is briefly considered.

  15. Recent Advances in the Application of Chiral Phosphine Ligands in Pd-Catalysed Asymmetric Allylic Alkylation

    Directory of Open Access Journals (Sweden)

    Erika Martin

    2011-01-01

    Full Text Available One of the most powerful approaches for the formation of simple and complex chiral molecules is the metal-catalysed asymmetric allylic alkylation. This reaction has been broadly studied with a great variety of substrates and nucleophiles under different reaction conditions and it has promoted the synthesis of new chiral ligands to be evaluated as asymmetric inductors. Although the mechanism as well as the active species equilibria are known, the performance of the catalytic system depends on the fine tuning of factors such as type of substrate, nucleophile nature, reaction medium, catalytic precursor and type of ligand used. Particularly interesting are chiral phosphines which have proved to be effective asymmetric inductors in several such reactions. The present review covers the application of phosphine-donor ligands in Pd-catalysed asymmetric allylic alkylation in the last decade.

  16. Transition metal catalysis in confined spaces.

    Science.gov (United States)

    Leenders, Stefan H A M; Gramage-Doria, Rafael; de Bruin, Bas; Reek, Joost N H

    2015-01-21

    Transition metal catalysis plays an important role in both industry and in academia where selectivity, activity and stability are crucial parameters to control. Next to changing the structure of the ligand, introducing a confined space as a second coordination sphere around a metal catalyst has recently been shown to be a viable method to induce new selectivity and activity in transition metal catalysis. In this review we focus on supramolecular strategies to encapsulate transition metal complexes with the aim of controlling the selectivity via the second coordination sphere. As we will discuss, catalyst confinement can result in selective processes that are impossible or difficult to achieve by traditional methods. We will describe the template-ligand approach as well as the host-guest approach to arrive at such supramolecular systems and discuss how the performance of the catalyst is enhanced by confining it in a molecular container.

  17. Inverse magnetic catalysis in dense holographic matter

    CERN Document Server

    Preis, Florian; Schmitt, Andreas

    2010-01-01

    We study the chiral phase transition in a magnetic field at finite temperature and chemical potential within the Sakai-Sugimoto model, a holographic top-down approach to (large-N_c) QCD. We consider the limit of a small separation of the flavor D8-branes, which corresponds to a dual field theory comparable to a Nambu-Jona Lasinio (NJL) model. Mapping out the surface of the chiral phase transition in the parameter space of magnetic field strength, quark chemical potential, and temperature, we find that for small temperatures the addition of a magnetic field decreases the critical chemical potential for chiral symmetry restoration - in contrast to the case of vanishing chemical potential where, in accordance with the familiar phenomenon of magnetic catalysis, the magnetic field favors the chirally broken phase. This "inverse magnetic catalysis" (IMC) appears to be associated with a previously found magnetic phase transition within the chirally symmetric phase that shows an intriguing similarity to a transition ...

  18. ELECTROCHEMICAL PROMOTED CATALYSIS: TOWARDS PRACTICAL UTILIZATION

    Directory of Open Access Journals (Sweden)

    DIMITRIOS TSIPLAKIDES

    2008-07-01

    Full Text Available Electrochemical promotion (EP of catalysis has already been recognized as “a valuable development in catalytic research” (J. Pritchard, 1990 and as “one of the most remarkable advances in electrochemistry since 1950” (J. O’M. Bockris, 1996. Laboratory studies have clearly elucidated the phenomenology of electrochemical promotion and have proven that EP is a general phenomenon at the interface of catalysis and electrochemistry. The major progress toward practical utilization of EP is surveyed in this paper. The focus is given on the electropromotion of industrial ammonia synthesis catalyst, the bipolar EP and the development of a novel monolithic electropromoted reactor (MEPR in conjunction with the electropromotion of thin sputtered metal films. Future perspectives of electrochemical promotion applications in the field of hydrogen technologies are discussed.

  19. Tandem Catalysis Utilizing Olefin Metathesis Reactions.

    Science.gov (United States)

    Zieliński, Grzegorz K; Grela, Karol

    2016-07-01

    Since olefin metathesis transformation has become a favored synthetic tool in organic synthesis, more and more distinct non-metathetical reactions of alkylidene ruthenium complexes have been developed. Depending on the conditions applied, the same olefin metathesis catalysts can efficiently promote isomerization reactions, hydrogenation of C=C double bonds, oxidation reactions, and many others. Importantly, these transformations can be carried out in tandem with olefin metathesis reactions. Through addition of one portion of a catalyst, a tandem process provides structurally advanced products from relatively simple substrates without the need for isolation of the intermediates. These aspects not only make tandem catalysis very attractive from a practical point of view, but also open new avenues in (retro)synthetic planning. However, in the literature, the term "tandem process" is sometimes used improperly to describe other types of multi-reaction sequences. In this Concept, a number of examples of tandem catalysis involving olefin metathesis are discussed with an emphasis on their synthetic value.

  20. Heterogenous catalysis mediated by plasmon heating.

    Science.gov (United States)

    Adleman, James R; Boyd, David A; Goodwin, David G; Psaltis, Demetri

    2009-12-01

    We introduce a new method for performing and miniaturizing many types of heterogeneous catalysis involving nanoparticles. The method makes use of the plasmon resonance present in nanoscale metal catalysts to provide the necessary heat of reaction when illuminated with a low-power laser. We demonstrate our approach by reforming a flowing, liquid mixture of ethanol and water over gold nanoparticle catalysts in a microfluidic channel. Plasmon heating of the nanoparticles provides not only the heat of reaction but the means to generate both water and ethanol vapor locally over the catalysts, which in turn allows the chip and the fluid lines to remain at room temperature. The measured products of the reaction, CO(2), CO, and H(2), are consistent with catalytic steam reforming of ethanol. The approach, which we refer to as plasmon-assisted catalysis, is general and can be used with a variety of endothermic catalytic processes involving nanoparticles.

  1. Effect of zinc and cerium addition on property of copper-based adsorbents for phosphine adsorption

    Institute of Scientific and Technical Information of China (English)

    宁平; 易红宏; 余琼粉; 唐晓龙; 杨丽萍; 叶智青

    2010-01-01

    A series of copper-based activated carbon (AC) adsorbents were prepared in order to investigate the effect of Zn, Ce addition on Cu-based AC adsorbent for phosphine (PH3) adsorption removal from yellow phosphorous tail gas. N2 adsorption isotherm and X-ray diffrac-tion (XRD) results suggested that the addition of Zn could increase the adsorbent ultramicropores, decrease the adsorbent supermicropores and the adsorbent average pore diameter. Therefore it enhanced the PH3 adsorption capacity. Appropriate amoun...

  2. Redox reactions of [FeFe]-hydrogenase models containing an internal amine and a pendant phosphine.

    Science.gov (United States)

    Zheng, Dehua; Wang, Mei; Chen, Lin; Wang, Ning; Sun, Licheng

    2014-02-03

    A diiron dithiolate complex with a pendant phosphine coordinated to one of the iron centers, [(μ-SCH2)2N(CH2C6H4-o-PPh2){Fe2(CO)5}] (1), was prepared and structurally characterized. The pendant phosphine is dissociated together with a CO ligand in the presence of excess PMe3, to afford [(μ-SCH2)2N(CH2C6H4-o-PPh2){Fe(CO)2(PMe3)}2] (2). Redox reactions of 2 and related complexes were studied in detail by in situ IR spectroscopy. A series of new Fe(II)Fe(I) ([3](+) and [6](+)), Fe(II)Fe(II) ([4](2+)), and Fe(I)Fe(I) (5) complexes relevant to Hox, Hox(CO), and Hred states of the [FeFe]-hydrogenase active site were detected. Among these complexes, the molecular structures of the diferrous complex [4](2+) with the internal amine and the pendant phosphine co-coordinated to the same iron center and the triphosphine diiron complex 5 were determined by X-ray crystallography. To make a comparison, the redox reactions of an analogous complex, [(μ-SCH2)2N(CH2C6H5){Fe(CO)2(PMe3)}2] (7), were also investigated by in situ IR spectroscopy in the absence or presence of extrinsic PPh3, which has no influence on the oxidation reaction of 7. The pendant phosphine in the second coordination sphere makes the redox reaction of 2 different from that of its analogue 7.

  3. Selective Hydrogenation of Nitriles to Primary Amines by using a Cobalt Phosphine Catalyst.

    Science.gov (United States)

    Adam, Rosa; Bheeter, Charles Beromeo; Cabrero-Antonino, Jose R; Junge, Kathrin; Jackstell, Ralf; Beller, Matthias

    2017-03-09

    A general procedure for the catalytic hydrogenation of nitriles to primary amines by using a non-noble metal-based system is presented. Co(acac)3 in combination with tris[2-(dicyclohexylphosphino)ethyl]phosphine efficiently catalyzes the selective hydrogenation of a wide range of (hetero)aromatic and aliphatic nitriles to give the corresponding amines. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Electron-rich linear triplatinum complexes stabilized by a spinning tetraphosphine, tris(diphenylphosphinomethyl)phosphine.

    Science.gov (United States)

    Tanase, Tomoaki; Koike, Kanako; Uegaki, Miho; Hatada, Satoko; Nakamae, Kanako; Kure, Bunsho; Ura, Yasuyuki; Nakajima, Takayuki

    2016-05-01

    Linear triplatinum complexes with 48e(-), [Pt3(μ-tdpmp)2(RNC)2](PF6)2 (R = 2,6-xylyl (3), (t)Bu (4)), were synthesized by using a branched tetraphosphine, tris(diphenylphosphinomethyl)phosphine (tdpmp), and characterized by crystallographic and spectroscopic analyses to show their novel dynamic behaviour in the solution state, in which the linear Pt3 unit was stabilized by two spinning tetraphosphine ligands.

  5. Synthesis and Structural Studies of Calcium and Magnesium Phosphinate and Phosphonate Compounds

    Science.gov (United States)

    Bampoh, Victoria Naa Kwale

    The work presented herein describes synthetic methodologies leading to the design of a wide array of magnesium and calcium based phosphinate and phosphonates with possible applications as bone scaffolding materials or additives to bone cements. The challenge to the chemistry of the alkaline earth phosphonate target compounds includes poor solubility of compounds, and poorly understood details on the control of the metal's coordination environment. Hence, less is known on phosphonate based alkaline earth metal organic frameworks as compared to transition metal phosphonates. Factors governing the challenges in obtaining crystalline, well-defined magnesium and calcium solids lie in the large metal diameters, the absence of energetically available d-orbitals to direct metal geometry, as well as the overall weakness of the metal-ligand bonds. A significant part of this project was concerned with the development of suitable reaction conditions to obtain X-ray quality crystals of the reaction products to allow for structural elucidation of the novel compounds. Various methodologies to aid in crystal growth including hydrothermal methods and gel crystallization were employed. We have used phosphinate and phosphonate ligands with different number of phosphorus oxygen atoms as well as diphosphonates with different linker lengths to determine their effects on the overall structural features. An interesting correlation is observed between the dimensionality of products and the increasing number of donor oxygen atoms in the ligands as we progress from phosphinic acid to the phosphorous acids. As an example, monophosphinate ligand only yielded one-dimensional compounds, whereas the phosphonates crystallize as one and two-dimensional compounds, and the di- and triphosphonate based compounds display two or three-dimensional geometries. This thesis provides a selection of calcium and magnesium compounds with one-dimensional geometry, as represented in a calcium phosphinate to novel

  6. Emission and distribution of phosphine in paddy fields and its relationship with greenhouse gases.

    Science.gov (United States)

    Chen, Weiyi; Niu, Xiaojun; An, Shaorong; Sheng, Hong; Tang, Zhenghua; Yang, Zhiquan; Gu, Xiaohong

    2017-12-01

    Phosphine (PH3), as a gaseous phosphide, plays an important role in the phosphorus cycle in ecosystems. In this study, the emission and distribution of phosphine, carbon dioxide (CO2) and methane (CH4) in paddy fields were investigated to speculate the future potential impacts of enhanced greenhouse effect on phosphorus cycle involved in phosphine by the method of Pearson correlation analysis and multiple linear regression analysis. During the whole period of rice growth, there was a significant positive correlation between CO2 emission flux and PH3 emission flux (r=0.592, p=0.026, n=14). Similarly, a significant positive correlation of emission flux was also observed between CH4 and PH3 (r=0.563, p=0.036, n=14). The linear regression relationship was determined as [PH3]flux=0.007[CO2]flux+0.063[CH4]flux-4.638. No significant differences were observed for all values of matrix-bound phosphine (MBP), soil carbon dioxide (SCO2), and soil methane (SCH4) in paddy soils. However, there was a significant positive correlation between MBP and SCO2 at heading, flowering and ripening stage. The correlation coefficients were 0.909, 0.890 and 0.827, respectively. In vertical distribution, MBP had the analogical variation trend with SCO2 and SCH4. Through Pearson correlation analysis and multiple stepwise linear regression analysis, pH, redox potential (Eh), total phosphorus (TP) and acid phosphatase (ACP) were identified as the principal factors affecting MBP levels, with correlative rankings of Eh>pH>TP>ACP. The multiple stepwise regression model ([MBP]=0.456∗[ACP]+0.235∗[TP]-1.458∗[Eh]-36.547∗[pH]+352.298) was obtained. The findings in this study hold great reference values to the global biogeochemical cycling of phosphorus in the future. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. P-chiral phosphine-sulfonate/palladium-catalyzed asymmetric copolymerization of vinyl acetate with carbon monoxide.

    Science.gov (United States)

    Nakamura, Akifumi; Kageyama, Takeharu; Goto, Hiroki; Carrow, Brad P; Ito, Shingo; Nozaki, Kyoko

    2012-08-01

    Utilization of palladium catalysts bearing a P-chiral phosphine-sulfonate ligand enabled asymmetric copolymerization of vinyl acetate with carbon monoxide. The obtained γ-polyketones have head-to-tail and isotactic polymer structures. The origin of the regio- and stereoregularities was elucidated by stoichiometric reactions of acylpalladium complexes with vinyl acetate. The present report for the first time demonstrates successful asymmetric coordination-insertion (co)polymerization of vinyl acetate.

  8. Nanoscale Advances in Catalysis and Energy Applications

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yimin; Somorjai, Gabor A.

    2010-05-12

    In this perspective, we present an overview of nanoscience applications in catalysis, energy conversion, and energy conservation technologies. We discuss how novel physical and chemical properties of nanomaterials can be applied and engineered to meet the advanced material requirements in the new generation of chemical and energy conversion devices. We highlight some of the latest advances in these nanotechnologies and provide an outlook at the major challenges for further developments.

  9. Catalysis in micellar and macromoleular systems

    CERN Document Server

    Fendler, Janos

    1975-01-01

    Catalysis in Micellar and Macromolecular Systems provides a comprehensive monograph on the catalyses elicited by aqueous and nonaqueous micelles, synthetic and naturally occurring polymers, and phase-transfer catalysts. It delineates the principles involved in designing appropriate catalytic systems throughout. Additionally, an attempt has been made to tabulate the available data exhaustively. The book discusses the preparation and purification of surfactants; the physical and chemical properties of surfactants and micelles; solubilization in aqueous micellar systems; and the principles of

  10. Spatially Assisted Schwinger Mechanism and Magnetic Catalysis

    CERN Document Server

    Copinger, Patrick

    2016-01-01

    Using the worldline formalism we compute an effective action for fermions under a temporally modulated electric field and a spatially modulated magnetic field. It is known that the former leads to an enhanced Schwinger Mechanism, while we find that the latter can also result in enhanced particle production and even cause a reorganization of the vacuum to acquire a larger dynamical mass in equilibrium which spatially assists the Magnetic Catalysis.

  11. Spatially Assisted Schwinger Mechanism and Magnetic Catalysis

    Science.gov (United States)

    Copinger, Patrick; Fukushima, Kenji

    2016-08-01

    Using the worldline formalism we compute an effective action for fermions under a temporally modulated electric field and a spatially modulated magnetic field. It is known that the former leads to an enhanced Schwinger mechanism, while we find that the latter can also result in enhanced particle production and even cause a reorganization of the vacuum to acquire a larger dynamical mass in equilibrium which spatially assists the magnetic catalysis.

  12. Spatially Assisted Schwinger Mechanism and Magnetic Catalysis.

    Science.gov (United States)

    Copinger, Patrick; Fukushima, Kenji

    2016-08-19

    Using the worldline formalism we compute an effective action for fermions under a temporally modulated electric field and a spatially modulated magnetic field. It is known that the former leads to an enhanced Schwinger mechanism, while we find that the latter can also result in enhanced particle production and even cause a reorganization of the vacuum to acquire a larger dynamical mass in equilibrium which spatially assists the magnetic catalysis.

  13. USD Catalysis Group for Alternative Energy

    Energy Technology Data Exchange (ETDEWEB)

    Hoefelmeyer, James D.; Koodali, Ranjit; Sereda, Grigoriy; Engebretson, Dan; Fong, Hao; Puszynski, Jan; Shende, Rajesh; Ahrenkiel, Phil

    2012-03-13

    The South Dakota Catalysis Group (SDCG) is a collaborative project with mission to develop advanced catalysts for energy conversion with two primary goals: (1) develop photocatalytic systems in which polyfunctionalized TiO2 are the basis for hydrogen/oxygen synthesis from water and sunlight (solar fuels group), (2) develop new materials for hydrogen utilization in fuel cells (fuel cell group). In tandem, these technologies complete a closed chemical cycle with zero emissions.

  14. Folded biomimetic oligomers for enantioselective catalysis

    OpenAIRE

    Maayan, Galia; Michael D. Ward; Kirshenbaum, Kent

    2009-01-01

    Many naturally occurring biopolymers (i.e., proteins, RNA, DNA) owe their unique properties to their well-defined three-dimensional structures. These attributes have inspired the design and synthesis of folded architectures with functions ranging from molecular recognition to asymmetric catalysis. Among these are synthetic oligomeric peptide (“foldamer”) mimics, which can display conformational ordering at short chain lengths. Foldamers, however, have not been explored as platforms for asymme...

  15. Heterogenous Catalysis Mediated by Plasmon Heating

    OpenAIRE

    Adleman, J.R.; Boyd, D. A.; Goodwin, D. G.; Psaltis, D.

    2009-01-01

    We introduce a new method for performing and miniaturizing many types of heterogeneous catalysis involving nanoparticles. The method makes use of the plasmon resonance present in nanoscale metal catalysts to provide the necessary heat of reaction when illuminated with a low-power laser. We demonstrate our approach by reforming a flowing, liquid mixture of ethanol and water over gold nanoparticle catalysts in a microfluidic channel. Plasmon heating of the nanoparticles provides not only the he...

  16. Heterogeneous Catalysis on a Disordered Surface

    OpenAIRE

    Frachebourg, L.; Krapivsky, P. L.; Redner, S

    1995-01-01

    We introduce a simple model of heterogeneous catalysis on a disordered surface which consists of two types of randomly distributed sites with different adsorption rates. Disorder can create a reactive steady state in situations where the same model on a homogeneous surface exhibits trivial kinetics with no steady state. A rich variety of kinetic behaviors occur for the adsorbate concentrations and catalytic reaction rate as a function of model parameters.

  17. Predictive Modeling in Actinide Chemistry and Catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ping [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-05-16

    These are slides from a presentation on predictive modeling in actinide chemistry and catalysis. The following topics are covered in these slides: Structures, bonding, and reactivity (bonding can be quantified by optical probes and theory, and electronic structures and reaction mechanisms of actinide complexes); Magnetic resonance properties (transition metal catalysts with multi-nuclear centers, and NMR/EPR parameters); Moving to more complex systems (surface chemistry of nanomaterials, and interactions of ligands with nanoparticles); Path forward and conclusions.

  18. Evaluation of phosphine genotoxicity at occupational levels of exposure in New South Wales, Australia.

    Science.gov (United States)

    Barbosa, A; Bonin, A M

    1994-10-01

    Phosphine has been claimed to cause chromosomal damage at exposures close to the current time weighted average exposure standard of 0.3 ppm (0.4 mg/m3). The current study involved 31 phosphine fumigators and 21 controls during the high fumigation season. All were volunteers and were evaluated for genotoxicity variables, including micronuclei in peripheral blood lymphocytes and urine mutagenicity. In parallel, all fumigators and 17 controls were evaluated for full haematology, multiple biochemical analysis, whole blood organochlorines, and whole blood and serum cholinesterase activity. The results for micronuclei showed no significant differences between fumigators and controls, but detected a strong association between age and increased frequency of micronuclei. Measurement of urine mutagenicity did not show any significant difference between fumigators and controls, but did show increased excretion of mutagens in smokers. All haematological and biochemical variables were within normal ranges, except for some non-specific changes in biochemistry. At monitored occupational exposures of phosphine exposure and genotoxic or toxicological effects in fumigators.

  19. Evaluation of phosphine genotoxicity at occupational levels of exposure in New South Wales, Australia.

    Science.gov (United States)

    Barbosa, A; Bonin, A M

    1994-01-01

    Phosphine has been claimed to cause chromosomal damage at exposures close to the current time weighted average exposure standard of 0.3 ppm (0.4 mg/m3). The current study involved 31 phosphine fumigators and 21 controls during the high fumigation season. All were volunteers and were evaluated for genotoxicity variables, including micronuclei in peripheral blood lymphocytes and urine mutagenicity. In parallel, all fumigators and 17 controls were evaluated for full haematology, multiple biochemical analysis, whole blood organochlorines, and whole blood and serum cholinesterase activity. The results for micronuclei showed no significant differences between fumigators and controls, but detected a strong association between age and increased frequency of micronuclei. Measurement of urine mutagenicity did not show any significant difference between fumigators and controls, but did show increased excretion of mutagens in smokers. All haematological and biochemical variables were within normal ranges, except for some non-specific changes in biochemistry. At monitored occupational exposures of phosphine exposure and genotoxic or toxicological effects in fumigators. PMID:8000496

  20. Decomposition Products of Phosphine Under Pressure: PH2 Stable and Superconducting?

    Science.gov (United States)

    Shamp, Andrew; Terpstra, Tyson; Bi, Tiange; Falls, Zackary; Avery, Patrick; Zurek, Eva

    2016-02-17

    Evolutionary algorithms (EAs) coupled with density functional theory (DFT) calculations have been used to predict the most stable hydrides of phosphorus (PHn, n = 1-6) at 100, 150, and 200 GPa. At these pressures phosphine is unstable with respect to decomposition into the elemental phases, as well as PH2 and H2. Three metallic PH2 phases were found to be dynamically stable and superconducting between 100 and 200 GPa. One of these contains five formula units in the primitive cell and has C2/m symmetry (5FU-C2/m). It comprises 1D periodic PH3-PH-PH2-PH-PH3 oligomers. Two structurally related phases consisting of phosphorus atoms that are octahedrally coordinated by four phosphorus atoms in the equatorial positions and two hydrogen atoms in the axial positions (I4/mmm and 2FU-C2/m) were the most stable phases between ∼160-200 GPa. Their superconducting critical temperatures (Tc) were computed as 70 and 76 K, respectively, via the Allen-Dynes modified McMillan formula and using a value of 0.1 for the Coulomb pseudopotential, μ*. Our results suggest that the superconductivity recently observed by Drozdov, Eremets, and Troyan when phosphine was subject to pressures of 207 GPa in a diamond anvil cell may result from these, and other, decomposition products of phosphine.

  1. Synthesis and Optical Properties of a Dithiolate/Phosphine-Protected Au28 Nanocluster

    KAUST Repository

    Aljuhani, Maha A.

    2016-12-17

    While monothiols and simple phosphines are commonly exploited for size-controlled synthesis of atomically precise gold nanoclusters (NCs), dithiols or dithiol-phosphine combinations are seldom applied. Herein, we used a dithiol (benzene-1,3-dithiol, BDT) and a phosphine (triphenylphosphine, TPP) together as ligands and synthesized an atomically precise gold NC with the formula [Au28(BDT)4(TPP)9]2+. This NC exhibited multiple absorption features and a charge of +2, which are distinctly different from the reported all-thiolated [Au28(SR)20]0 NC (SR: monothiolate). The composition of [Au28(BDT)4(TPP)9]2+ NC was deduced from high-resolution electrospray ionization mass spectrometry (ESI MS) and it was further corroborated by thermogravimetric analysis (TGA). Differential pulse voltammetry (DPV) revealed a HOMO–LUMO gap of 1.27 eV, which is in good agreement with the energy gap of 1.3 eV obtained from its UV–vis spectrum. The successful synthesis of atomically precise, dithiol-protected Au28 NC would stimulate theoretical and experimental research into bidentate ligands as a new path for expanding the library of different metal NCs, which have so far been dominated by monodentate thiols.

  2. Intracellular disulfide reduction by phosphine-borane complexes: Mechanism of action for neuroprotection.

    Science.gov (United States)

    Niemuth, Nicholas J; Thompson, Alex F; Crowe, Megan E; Lieven, Christopher J; Levin, Leonard A

    2016-10-01

    Phosphine-borane complexes are novel cell-permeable drugs that protect neurons from axonal injury in vitro and in vivo. These drugs activate the extracellular signal-regulated kinases 1/2 (ERK1/2) cell survival pathway and are therefore neuroprotective, but do not scavenge superoxide. In order to understand the interaction between superoxide signaling of neuronal death and the action of phosphine-borane complexes, their biochemical activity in cell-free and in vitro assays was studied by electron paramagnetic resonance (EPR) spectrometry and using an intracellular dithiol reporter that becomes fluorescent when its disulfide bond is cleaved. These studies demonstrated that bis(3-propionic acid methyl ester) phenylphosphine-borane complex (PB1) and (3-propionic acid methyl ester) diphenylphosphine-borane complex (PB2) are potent intracellular disulfide reducing agents which are cell permeable. EPR and pharmacological studies demonstrated reducing activity but not scavenging of superoxide. Given that phosphine-borane complexes reduce cell injury from mitochondrial superoxide generation but do not scavenge superoxide, this implies a mechanism where an intracellular superoxide burst induces downstream formation of protein disulfides. The redox-dependent cleavage of the disulfides is therefore a novel mechanism of neuroprotection.

  3. Computer-Aided Molecular Design of Bis-phosphine Oxide Lanthanide Extractants.

    Science.gov (United States)

    McCann, Billy W; Silva, Nuwan De; Windus, Theresa L; Gordon, Mark S; Moyer, Bruce A; Bryantsev, Vyacheslav S; Hay, Benjamin P

    2016-06-20

    Computer-aided molecular design and high-throughput screening of viable host architectures can significantly reduce the efforts in the design of novel ligands for efficient extraction of rare earth elements. This paper presents a computational approach to the deliberate design of bis-phosphine oxide host architectures that are structurally organized for complexation of trivalent lanthanides. Molecule building software, HostDesigner, was interfaced with molecular mechanics software, PCModel, providing a tool for generating and screening millions of potential R2(O)P-link-P(O)R2 ligand geometries. The molecular mechanics ranking of ligand structures is consistent with both the solution-phase free energies of complexation obtained with density functional theory and the performance of known bis-phosphine oxide extractants. For the case where the link is -CH2-, evaluation of the ligand geometry provides the first characterization of a steric origin for the "anomalous aryl strengthening" effect. The design approach has identified a number of novel bis-phosphine oxide ligands that are better organized for lanthanide complexation than previously studied examples.

  4. Shape-controlled nanostructures in heterogeneous catalysis.

    Science.gov (United States)

    Zaera, Francisco

    2013-10-01

    Nanotechnologies have provided new methods for the preparation of nanomaterials with well-defined sizes and shapes, and many of those procedures have been recently implemented for applications in heterogeneous catalysis. The control of nanoparticle shape in particular offers the promise of a better definition of catalytic activity and selectivity through the optimization of the structure of the catalytic active site. This extension of new nanoparticle synthetic procedures to catalysis is in its early stages, but has shown some promising leads already. Here, we survey the major issues associated with this nanotechnology-catalysis synergy. First, we discuss new possibilities associated with distinguishing between the effects originating from nanoparticle size versus those originating from nanoparticle shape. Next, we survey the information available to date on the use of well-shaped metal and non-metal nanoparticles as active phases to control the surface atom ensembles that define the catalytic site in different catalytic applications. We follow with a brief review of the use of well-defined porous materials for the control of the shape of the space around that catalytic site. A specific example is provided to illustrate how new selective catalysts based on shape-defined nanoparticles can be designed from first principles by using fundamental mechanistic information on the reaction of interest obtained from surface-science experiments and quantum-mechanics calculations. Finally, we conclude with some thoughts on the state of the field in terms of the advances already made, the future potentials, and the possible limitations to be overcome.

  5. Hybrid Amyloid Membranes for Continuous Flow Catalysis.

    Science.gov (United States)

    Bolisetty, Sreenath; Arcari, Mario; Adamcik, Jozef; Mezzenga, Raffaele

    2015-12-29

    Amyloid fibrils are promising nanomaterials for technological applications such as biosensors, tissue engineering, drug delivery, and optoelectronics. Here we show that amyloid-metal nanoparticle hybrids can be used both as efficient active materials for wet catalysis and as membranes for continuous flow catalysis applications. Initially, amyloid fibrils generated in vitro from the nontoxic β-lactoglobulin protein act as templates for the synthesis of gold and palladium metal nanoparticles from salt precursors. The resulting hybrids possess catalytic features as demonstrated by evaluating their activity in a model catalytic reaction in water, e.g., the reduction of 4-nitrophenol into 4-aminophenol, with the rate constant of the reduction increasing with the concentration of amyloid-nanoparticle hybrids. Importantly, the same nanoparticles adsorbed onto fibrils surface show improved catalytic efficiency compared to the same unattached particles, pointing at the important role played by the amyloid fibril templates. Then, filter membranes are prepared from the metal nanoparticle-decorated amyloid fibrils by vacuum filtration. The resulting membranes serve as efficient flow catalysis active materials, with a complete catalytic conversion achieved within a single flow passage of a feeding solution through the membrane.

  6. Continuous-variable entanglement via multiphoton catalysis

    Science.gov (United States)

    Hu, Liyun; Liao, Zeyang; Zubairy, M. Suhail

    2017-01-01

    We theoretically investigate the performance of multiphoton catalysis applied on the two-mode squeezed state by examining the entropy of entanglement, logarithmic negativity, Eistein-Podolsky-Rosen (EPR), and Hillery-Zubairy (HZ) correlations, and the fidelity of teleportation. It is found that the entanglement increases with the number of catalysis operations if the squeezing parameter is low initially. Our comparisons show that the HZ correlation presents a better performance than the EPR correlation for detecting the entanglement, and the improvement of HZ correlation definitely results in the improvement of entropy of entanglement rather than negativity; the region of enhanced EPR correlation is a subregion of all other entanglement properties. In addition, we consider the performances of the fidelity by comparing such operations applied before or after the amplitude damping channel. It is shown that the catalysis operation of m =n =1 before the channel presents the best performance in the initial-low squeezing regime. This may provide a useful insight for a long-distance quantum communication.

  7. Computational approaches to homogeneous gold catalysis.

    Science.gov (United States)

    Faza, Olalla Nieto; López, Carlos Silva

    2015-01-01

    Homogenous gold catalysis has been exploding for the last decade at an outstanding pace. The best described reactivity of Au(I) and Au(III) species is based on gold's properties as a soft Lewis acid, but new reactivity patterns have recently emerged which further expand the range of transformations achievable using gold catalysis, with examples of dual gold activation, hydrogenation reactions, or Au(I)/Au(III) catalytic cycles.In this scenario, to develop fully all these new possibilities, the use of computational tools to understand at an atomistic level of detail the complete role of gold as a catalyst is unavoidable. In this work we aim to provide a comprehensive review of the available benchmark works on methodological options to study homogenous gold catalysis in the hope that this effort can help guide the choice of method in future mechanistic studies involving gold complexes. This is relevant because a representative number of current mechanistic studies still use methods which have been reported as inappropriate and dangerously inaccurate for this chemistry.Together with this, we describe a number of recent mechanistic studies where computational chemistry has provided relevant insights into non-conventional reaction paths, unexpected selectivities or novel reactivity, which illustrate the complexity behind gold-mediated organic chemistry.

  8. Photon-Ion Catalysis Synergy Material and Its Application

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The co-operation action mechanism and model of photon-ion catalysis synergy material composed of thallium and valency-variable rare earth elements and semiconductor oxide were proposed. The radiation catalysis reactions of water and oxygen assisted by the synergy material that could largely increase electron, free radical and negative ion products were discussed. The applications of photon-ion catalysis synergy material in areas of air cleaning material, antibacterial material, healthy material and energy resource material were suggested.

  9. A new era of catalysis: efficiency, value, and sustainability.

    Science.gov (United States)

    Cheng, Soofin; Lin, Shawn D

    2014-06-01

    Value proposition: Global warming and climate change urge the chemical industry to develop new processes, in which sustainability is a necessity and requirement. Catalysis is recognized to be one of the key technologies in enabling sustainability. This special issue, assembled by guest editors Soofing Chen and Shawn D. Lin, highlights some of the best work presented at "The 6th Asia-Pacific Congress on Catalysis (APCAT-6)", with as major theme "New Era of Catalysis: Efficiency, Value, and Sustainability".

  10. Special Issue: Coinage Metal (Copper, Silver, and Gold Catalysis

    Directory of Open Access Journals (Sweden)

    Sónia Alexandra Correia Carabineiro

    2016-06-01

    Full Text Available The subject of catalysis by coinage metals (copper, silver, and gold comes up increasingly day-by-day. This Special Issue aims to cover the numerous aspects of the use of these metals as catalysts for several reactions. It deals with synthesis and characterization of copper, silver and gold based catalysis, their characterization and use, both for heterogeneous and homogeneous catalysis, and some of their potential applications.

  11. Density functional theory studies of transition metal nanoparticles in catalysis

    DEFF Research Database (Denmark)

    Greeley, Jeffrey Philip; Rankin, Rees; Zeng, Zhenhua

    2013-01-01

    Periodic Density Functional Theory calculations are capable of providing powerful insights into the structural, energetics, and electronic phenomena that underlie heterogeneous catalysis on transition metal nanoparticles. Such calculations are now routinely applied to single crystal metal surfaces...... and to subnanometer metal clusters. Descriptions of catalysis on truly nanosized structures, however, are generally not as well developed. In this talk, I will illustrate different approaches to analyzing nanocatalytic phenomena with DFT calculations. I will describe case studies from heterogeneous catalysis...

  12. Organically functionalized mesoporous silica as a support for synthesis and catalysis

    Science.gov (United States)

    McEleney, Kevin Andrew

    Mesoporous silicates are excellent materials for supported catalysis due to their ease of functionalization, tunable pore size and high surface areas. Mesoporous silicates have been utilized in a variety of applications such as drug delivery scaffolds and catalyst supports. Functionalization of the surface can be achieved by either grafting of alkoxy silanes or co-condensation of the organosilane with the inorganic silica source. My research in this area can be divided into two components. In the first, we address the significant issue of metal contamination after reactions that are catalyzed by transition metals. In the second, we examine the design of new catalysts based on organic/inorganic composites. Ruthenium catalyzed processes such as olefin metathesis or asymmetric hydrogenation, are often underutilized due to the difficulty of removing the ruthenium by-products. Attempts to remove ruthenium involve treating the solution with a scavenging reagent followed by silica chromatography. Often these scavenging agents are expensive phosphines or toxic agents like lead tetra-acetate. SBA-15 functionalized with aminopropyl triethoxysilane displays a high affinity for ruthenium. Furthermore, it can be utilized to remove ruthenium by-products from olefin metathesis or hydrogenation reactions without the need for silica chromatography. We have also prepared sulfur-functionalized mesoporous silicates that have a high affinity for palladium. The materials after loading prove to be active catalysts for a variety of palladium catalyzed processes such as Suzuki-Miyaura and Sonogashira couplings. The catalysts are recyclable with moderate loss of activity and structure, depending on the method of incorporation of the thiol. We have characterized the as-synthesized and used catalysts by nitrogen sorption, TEM, X-ray photoelectron spectroscopy (XPS) and a variety of homogeneity tests were performed on the catalysts. Periodic mesoporous organosilicates (PMOs) are a well known

  13. Neutrons for Catalysis: A Workshop on Neutron Scattering Techniques for Studies in Catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Overbury, Steven {Steve} H [ORNL; Coates, Leighton [ORNL; Herwig, Kenneth W [ORNL; Kidder, Michelle [ORNL

    2011-10-01

    This report summarizes the Workshop on Neutron Scattering Techniques for Studies in Catalysis, held at the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory (ORNL) on September 16 and 17, 2010. The goal of the Workshop was to bring experts in heterogeneous catalysis and biocatalysis together with neutron scattering experimenters to identify ways to attack new problems, especially Grand Challenge problems in catalysis, using neutron scattering. The Workshop locale was motivated by the neutron capabilities at ORNL, including the High Flux Isotope Reactor (HFIR) and the new and developing instrumentation at the SNS. Approximately 90 researchers met for 1 1/2 days with oral presentations and breakout sessions. Oral presentations were divided into five topical sessions aimed at a discussion of Grand Challenge problems in catalysis, dynamics studies, structure characterization, biocatalysis, and computational methods. Eleven internationally known invited experts spoke in these sessions. The Workshop was intended both to educate catalyst experts about the methods and possibilities of neutron methods and to educate the neutron community about the methods and scientific challenges in catalysis. Above all, it was intended to inspire new research ideas among the attendees. All attendees were asked to participate in one or more of three breakout sessions to share ideas and propose new experiments that could be performed using the ORNL neutron facilities. The Workshop was expected to lead to proposals for beam time at either the HFIR or the SNS; therefore, it was expected that each breakout session would identify a few experiments or proof-of-principle experiments and a leader who would pursue a proposal after the Workshop. Also, a refereed review article will be submitted to a prominent journal to present research and ideas illustrating the benefits and possibilities of neutron methods for catalysis research.

  14. Magnetic catalysis and inverse magnetic catalysis in nonlocal chiral quark models

    Science.gov (United States)

    Pagura, V. P.; Gómez Dumm, D.; Noguera, S.; Scoccola, N. N.

    2017-02-01

    We study the behavior of strongly interacting matter under an external constant magnetic field in the context of nonlocal chiral quark models within the mean field approximation. We find that at zero temperature the behavior of the quark condensates shows the expected magnetic catalysis effect, our predictions being in good quantitative agreement with lattice QCD results. On the other hand, in contrast to what happens in the standard local Nambu-Jona-Lasinio model, when the analysis is extended to the case of finite temperature, our results show that nonlocal models naturally lead to the inverse magnetic catalysis effect.

  15. Magnetic catalysis and inverse magnetic catalysis in nonlocal chiral quark models

    CERN Document Server

    Pagura, V P; Noguera, S; Scoccola, N N

    2016-01-01

    We study the behavior of strongly interacting matter under an external constant magnetic field in the context of nonlocal chiral quark models within the mean field approximation. We find that at zero temperature the behavior of the quark condensates shows the expected magnetic catalysis effect, our predictions being in good quantitative agreement with lattice QCD results. On the other hand, in contrast to what happens in the standard local Nambu-Jona-Lasinio model, when the analysis is extended to the case of finite temperature our results show that nonlocal models naturally lead to the Inverse Magnetic Catalysis effect.

  16. Controllable Catalysis with Nanoparticles: Bimetallic Alloy Systems and Surface Adsorbates

    KAUST Repository

    Chen, Tianyou

    2016-05-16

    Transition metal nanoparticles are privileged materials in catalysis due to their high specific surface areas and abundance of active catalytic sites. While many of these catalysts are quite useful, we are only beginning to understand the underlying catalytic mechanisms. Opening the “black box” of nanoparticle catalysis is essential to achieve the ultimate goal of catalysis by design. In this Perspective we highlight recent work addressing the topic of controlled catalysis with bimetallic alloy and “designer” adsorbate-stabilized metal nanoparticles.

  17. Synthesis of phosphine and antibody-azide probes for in vivo Staudinger ligation in a pretargeted imaging and therapy approach.

    Science.gov (United States)

    Vugts, Danielle J; Vervoort, Annelies; Stigter-van Walsum, Marijke; Visser, Gerard W M; Robillard, Marc S; Versteegen, Ron M; Vulders, Roland C M; Herscheid, J Koos D M; van Dongen, Guus A M S

    2011-10-19

    The application of intact monoclonal antibodies (mAbs) as targeting agents in nuclear imaging and radioimmunotherapy is hampered by the slow pharmacokinetics of these molecules. Pretargeting with mAbs could be beneficial to reduce the radiation burden to the patient, while using the excellent targeting capacity of the mAbs. In this study, we evaluated the applicability of the Staudinger ligation as pretargeting strategy using an antibody-azide conjugate as tumor-targeting molecule in combination with a small phosphine-containing imaging/therapeutic probe. Up to 8 triazide molecules were attached to the antibody without seriously affecting its immunoreactivity, pharmacokinetics, and tumor uptake in tumor bearing nude mice. In addition, two (89)Zr- and (67/68)Ga-labeled desferrioxamine (DFO)-phosphines, a (177)Lu-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA)-phosphine and a (123)I-cubyl phosphine probe were synthesized and characterized for their pharmacokinetic behavior in nude mice. With respect to the phosphine probes, blood levels at 30 min after injection were phosphine, relative to the azide, in aqueous solution resulted in 20-25% efficiency after 2 h. The presence of 37% human serum resulted in a reduced ligation efficiency (reduction max. 30% at 2 h), while the phosphines were still >80% intact. No in vivo Staudinger ligation was observed in a mouse model after injection of 500 μg antibody-azide, followed by 68 μg DFO-phosphine at t = 2 h, and evaluation in blood at t = 7 h. To explain negative results in mice, Staudinger ligation was performed in vitro in mouse serum. Under these conditions, a side product with the phosphine was formed and ligation efficiency was severely reduced. It is concluded that in vivo application of the Staudinger ligation in a pretargeting approach in mice is not feasible, since this ligation reaction is not bioorthogonal and efficient enough. Slow reaction kinetics will also severely restrict the applicability

  18. Low temperature phosphine fumigation for postharvest control of western flower thrips (Thysanoptera: Thripidae) on lettuce, broccoli, asparagus, and strawberry.

    Science.gov (United States)

    Liu, Yong-Biao

    2008-12-01

    U.S. exported lettuce, broccoli, asparagus, and strawberries often harbor western flower thrips, Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae), a quarantined pest in Taiwan, and therefore require quarantine treatment. Fumigation with diluted pure phosphine at a low temperature of 2 degrees C was studied to control western flower thrips and to determine effects on the quality of the treated products. Total thrips control was achieved in > or = 18-h fumigation treatments with > or = 250 ppm phosphine. One day fumigation treatment with 1,000 ppm phosphine was tested on lettuce and broccoli. One-day fumigation treatments with 500 ppm and 1,000 ppm phosphine were tested on asparagus and strawberry. Visual quality of lettuce, broccoli, and asparagus was evaluated after 2-wk posttreatment storage. Strawberry quality was evaluated immediately after fumigation and after 1-wk posttreatment storage. For all the products, there were no significant differences between the treatments and the controls in postharvest quality, and there were no injuries caused by the fumigation treatments. Therefore, phosphine fumigation at low temperature was promising for postharvest control of western flower thrips on lettuce, broccoli, asparagus, and strawberry.

  19. Synthesis and Coordination Chemistry of a Phosphine-Decorated Fluorescein: "Double Turn-On" Sensing of Gold(III) Ions in Water.

    Science.gov (United States)

    Christianson, Anna M; Gabbaï, François P

    2016-06-20

    Although phosphine ligands are ubiquitous in transition metal chemistry, few reports of fluorescent phosphines exist that explore the effect of metal coordination on the photophysical properties of a phosphine-bound fluorescent group. The coordination chemistry of a derivative of fluorescein decorated with an o-phenylene-linked phosphine group has been studied with late transition metals. An Au(I) complex of the phosphine-decorated fluorescein has been structurally characterized, showing that the metal center is held closely over the plane of the fluorophore. Despite the presence of the heavy metal center, however, the phosphine-gold complex displays greatly increased fluorescence compared to the free ligand, in which photoelectron transfer from the lone-pair-bearing phosphine causes low emission. The phosphine-decorated fluorescein ligand was tested in a simple sensing system for metal ions in aqueous solution and shows a "turn-on" response to Au, Ag, and Hg, with an especially dramatic response to Au(III) species. The selectivity for Au(III) was determined to be the result of a "double turn-on" response that is both reaction- and coordination-based.

  20. Rapid synthesis of an electron-deficient t-BuPHOX ligand: cross-coupling of aryl bromides with secondary phosphine oxides

    KAUST Repository

    McDougal, Nolan T.

    2010-10-01

    Herein an efficient and direct copper-catalyzed coupling of oxazoline-containing aryl bromides with electron-deficient secondary phosphine oxides is reported. The resulting tertiary phosphine oxides can be reduced to prepare a range of PHOX ligands. The presented strategy is a useful alternative to known methods for constructing PHOX derivatives.

  1. Supramolecular control of selectivity in transition metal catalysis: Substrate preorganization & cofactor-steered catalysis

    NARCIS (Netherlands)

    Dydio, P.F.

    2013-01-01

    The selectivity displayed by transition metal catalysts is one of the key elements in catalysis, and various tools to control this by ligand modification have been reported. Some selectivity issues are, however, difficult to solve using the traditional methods. Therefore we have an interest in the

  2. Next-Generation Catalysis for Renewables: Combining Enzymatic with Inorganic Heterogeneous Catalysis for Bulk Chemical Production

    DEFF Research Database (Denmark)

    Vennestrøm, Peter Nicolai Ravnborg; Christensen, C.H.; Pedersen, S.

    2010-01-01

    of combination involves one-pot cascade catalysis with active sites from bio- and inorganic catalysts. In this article the emphasis is placed specifically on oxidase systems involving the coproduction of hydrogen peroxide, which can be used to create new in situ collaborative oxidation reactions for bulk...

  3. Molecular catalysis of rare-earth elements

    Energy Technology Data Exchange (ETDEWEB)

    Roesky, Peter W. (ed.) [Karlsruhe Institute of Technology (KIT) (Germany). Inst. of Inorganic Chemistry

    2010-07-01

    This volume reviews the recent developments in the use of molecular rare-earth metal compounds in catalysis. Most of the applications deal with homogenous catalysis but in some cases, heterogeneous systems are also mentioned. The rare-earth elements, which are the lanthanides and their close relatives - scandium and yttrium - have not been in the focus of molecular chemistry for a long time and therefore have also not been considered as homogenous catalysts. Although the first organometallic compounds of the lanthanides, which are tris(cyclopentadienyl) lanthanide complexes, were already prepared in the 1950s, it was only in the late 1970s and early 1980s when a number of research groups began to focus on this class of compounds. One reason for the development was the availability of single crystal X-ray diffraction techniques, which made it possible to characterize these compounds.Moreover, new laboratory techniques to handle highly air and moisture sensitive compounds were developed at the same time. Concomitant with the accessibility of this new class of compounds, the application in homogenous catalysis was investigated. One of the first applications in this field was the use of lanthanide metallocenes for the catalytic polymerization of ethylene in the early 1980s. In the last two or three decades, a huge number of inorganic and organometallic compounds of the rare-earth elements were synthesized and some of them were also used as catalysts. Although early work in homogenous catalysis basically focused only on the hydrogenation and polymerization of olefins, the scope for catalytic application today is much broader. Thus, a large number of catalytic {sigma}-bond metathesis reactions, e.g. hydroamination, have been reported in the recent years. This book contains four chapters in which part of the recent development of the use of molecular rare-earth metal compounds in catalysis is covered. To keep the book within the given page limit, not all aspects could be

  4. Catalysis of Schwinger Vacuum Pair Production

    CERN Document Server

    Dunne, Gerald V; Schützhold, Ralf

    2009-01-01

    We propose a new catalysis mechanism for non-perturbative vacuum electron-positron pair production, by superimposing a plane-wave X-ray probe beam with a strongly focused optical laser pulse, such as is planned at the Extreme Light Infrastructure (ELI) facility. We compute the absorption coefficient arising from vacuum polarization effects for photons below threshold in a strong electric field. This set-up should facilitate the (first) observation of this non-perturbative QED effect with planned light sources such as ELI yielding an envisioned intensity of order 10^{26}W/cm^2.

  5. New strategies in chemical synthesis and catalysis

    CERN Document Server

    Pignataro, Bruno

    2012-01-01

    Providing a comprehensive overview of the essential topics, this book covers the core areas of organic, inorganic, organometallic, biochemical synthesis and catalysis.The authors are among the rising stars in European chemistry, a selection of participants in the 2010 European Young Chemists Award competition, and their contributions deal with most of the frontier issues in chemical synthesis. They give an account of the latest research results in chemistry in Europe, as well as the state of the art in their field of research and the outlook for the future.

  6. Surface Science Foundations of Catalysis and Nanoscience

    CERN Document Server

    Kolasinski, Kurt K

    2012-01-01

    Surface science has evolved from being a sub-field of chemistry or physics, and has now established itself as an interdisciplinary topic. Knowledge has developed sufficiently that we can now understand catalysis from a surface science perspective. No-where is the underpinning nature of surface science better illustrated than with nanoscience. Now in its third edition, this successful textbook aims to provide students with an understanding of chemical transformations and the formation of structures at surfaces. The chapters build from simple to more advanced principles with each featuring exerc

  7. Concepts of Modern Catalysis and Kinetics

    CERN Document Server

    Chorkendorff, I

    2003-01-01

    Until now, the literature has offered a rather limited approach to the use of fundamental kinetics and their application to catalytic reactions. Subsequently, this book spans the full range from fundamentals of kinetics and heterogeneous catalysis via modern experimental and theoretical results of model studies to their equivalent large-scale industrial production processes. The result is key knowledge for students at technical universities and professionals already working in industry. "...such an enterprise will be of great value to the community, to professionals as well as graduate an

  8. Catalysis on cobalt oxide-based nanocatalysts

    Science.gov (United States)

    Zhang, Shiran

    Heterogeneous catalysis, being the focus of attention in the realm of catalysis, plays a vital role in modern chemical and energy industries. A prototype of heterogeneous catalyst consists of metal nanoparticles dispersed and supported on a substrate. Transition metal oxide is one of the key components of heterogeneous catalyst and is frequently used as catalyst support for noble metal nanoparticle catalysts due to low cost. As a result of the high cost of noble metal elements, it is particularly favorable to design and develop transition metal oxide-based nanocatalysts mainly made of earthabundant elements with no or less noble metal with comparable or better catalytic performance than noble metal-based nanocatalysts in a catalytic reaction. In some cases, surface chemistry and structure of nanocatalysts are not invariable during catalysis. They evolve in terms of surface restructuring or phase change, which contributes to the complexity of catalyst surface under different catalytic conditions. Transition metal oxides, especially reducible transition metal oxides, have multiple cationic valence states and crystallographic structures. New catalytic active phases or sites could be formed upon surface restructuring under certain catalytic conditions while they may not be preserved if exposed to ambient conditions. Thus, it is essential to characterize catalyst surface under reaction conditions so that chemistry and structure of catalyst surface could be correlated with the corresponding catalytic performance. It also suggests a new route to design nanocatalysts through restructuring catalyst precursor under certain catalytic conditions tracked with in-situ analytical techniques. Catalysis occurs on catalyst surface. For noble metal nanoparticle catalysts, only atoms exposed on surface participate in catalytic processes, while atoms in bulk do not. In order to make full use of noble metal atoms, it is crucial to maximize the dispersion. A configuration of noble metal

  9. Nutritional and toxicological effects of long-term ingestion of phosphine-fumigated diet by the rat.

    Science.gov (United States)

    Cabrol Telle, A M; de Saint Blanquat, G; Derache, R; Hollande, E; Periquet, B; Thouvenot, J P

    1985-11-01

    The fumigation of stored foodstuffs with phosphine (PH3) is likely to become widely used in the future because of its technological efficiency and the rapid desorption of the fumigant. In a long-term feeding study of a phosphine-fumigated diet, rats were monitored for weight gain, food intake, plasma chemistry, haematology and urinary changes. Histopathological studies, including organ-weight determinations, were carried out after treatment of the rats for 1 and 2 yr. The results show that ingestion of a phosphine-fumigated diet by the rat for 2 yr does not cause any marked modification of growth, food intake, nitrogen balance, body composition, functional behaviour or the incidence or type of tumours.

  10. Influence of phosphine on hatching of Cryptolestes ferrugineus (Coleoptera: Cucujidae), Lasioderma serricorne (Coleoptera: Anobiidae) and Oryzaephilus surinamensis (Coleoptera: Silvanidae).

    Science.gov (United States)

    Rajendran, Somiahnadar; Parveen, Hajira; Begum, Khamrunissa; Chethana, Ramesh

    2004-11-01

    The hatching and mortality response of 0- to 48-h-old eggs of field strains of the stored-product insects Cryptolestes ferrugineus (Stephens), Lasioderma serricorne (F) and Oryzaephilus surinamensis (L) following phosphine fumigation for 24, 48 or 120 h at 27 (+/- 2) degrees C was investigated. Hatching was delayed and reduced in the first few days in a phosphine-resistant strain of C ferrugineus that was treated with 2.0-7.0 mg litre(-1) doses for 48 h (5-80% mortality) and with 1.0-2.0 mg litre(-1) for 120 h (44-84% mortality). In both the exposures there were significant increases in hatching on later days when compared with the corresponding controls. Developmental delay was, however, not evident in susceptible strains of C ferrugineus, L serricorne and O surinamensis that were exposed to phosphine for 24 h.

  11. LI Can elected president of int'l catalysis association

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ Prof.LI Can,vice directorgeneral of the CAS Dalian Institute of Chemical Physics,was elected new president of the Executive Committee of the International Association for Catalysis Societies (IACS) at the 14th International Congress on Catalysis held from 13 to 18 July in Seoul,ROK.It is the first time for a Chinese scientist to serve the post.

  12. Heterogeneous Catalysis with Renewed Attention: Principles, Theories, and Concepts

    Science.gov (United States)

    Dumeignil, Franck; Paul, Jean-Francois; Paul, Sebastien

    2017-01-01

    With the development of a strong bioeconomy sector related to the creation of next-generation biorefineries, heterogeneous catalysis is receiving renewed attention. Indeed, catalysis is at the core of biorefinery design, and many new catalysts and catalytic processes are being developed. On the one hand, they are based on knowledge acquired during…

  13. The nature of the active site in heterogeneous metal catalysis

    DEFF Research Database (Denmark)

    Nørskov, Jens Kehlet; Bligaard, Thomas; Larsen, Britt Hvolbæk

    2008-01-01

    This tutorial review, of relevance for the surface science and heterogeneous catalysis communities, provides a molecular-level discussion of the nature of the active sites in metal catalysis. Fundamental concepts such as "Bronsted-Evans-Polanyi relations'' and "volcano curves'' are introduced...

  14. Factors Affecting the Relative Efficiency of General Acid Catalysis

    Science.gov (United States)

    Kwan, Eugene E.

    2005-01-01

    A simple framework for evaluating experimental kinetic data to provide support for Specific Acid Catalysis (SAC) and General Acid Catalysis (GAC) is described based on the factors affecting their relative efficiency. Observations reveal that increasing the SAC-to-GAC rate constant ratio reduces the effective pH range for GAC.

  15. Photophysical properties of endohedral amine-functionalized bis(phosphine) Pt(II) complexes as models for emissive metallacycles.

    Science.gov (United States)

    Pollock, J Bryant; Cook, Timothy R; Schneider, Gregory L; Lutterman, Daniel A; Davies, Andrew S; Stang, Peter J

    2013-08-19

    The photophysical properties of bis(phosphine) Pt(II) complexes constructed from 2,6-bis(pyrid-3-ylethynyl) aniline and 2,6-bis(pyrid-4-ylethynyl) aniline vary significantly, even though the complexes differ only in the position of the coordinating nitrogen. By capping the ligands with an aryl bis(phosphine) Pt(II) metal acceptor, the photophysical properties of the two isomeric systems were directly compared, revealing that the low-energy absorption and emission bands of the two systems were separated by 30 nm (1804 cm(-1)) and 39 nm (1692 cm(-1)), respectively. From the analysis of time-dependent density functional (TD-DFT) calculations and excited-state lifetime measurements, it was determined that the nature of the Pt-N bond in the HOMO and the sums of the radiative (k(rad)) and nonradiative (k(nr)) rate constants were significantly different in the two systems. As the dominant nonradiative decay pathway in aniline systems is relaxation from the triplet state through intersystem crossing (ISC), the difference in k(nr) can be ascribed to changes in ISC between isomers of the bis(phosphine) Pt(II)-capped 2,6-bis(pyrid-3-ylethynyl) aniline system. It was also determined that the photophysical properties of these capped systems can be altered by functionalizing the aryl capping ligand on the bis(phosphine) Pt(II) metal center, which perturbs the molecular orbitals involved in the observed optical transitions. In addition, an isoelectronic bis(phosphine) Pd(II)-capped system was prepared for comparison with the bis(phosphine) Pt(II) suite of complexes. The Pd(II) system showed significant changes in its low-energy absorption band, but preserved the characteristic emissive properties of its Pt(II) analogue with an even higher quantum yield.

  16. Transition metal chemistry of cyclodiphosphanes containing phosphine and amide-phosphine functionalities: formation of a stable dipalladium(II) complex containing a Pd-P σ-bond.

    Science.gov (United States)

    Balakrishna, Maravanji S; Venkateswaran, Ramalingam; Mague, Joel T

    2010-12-14

    Cyclodiphosphazanes containing phosphine or phosphine plus amide functionalities {((t)BuNP(OC(6)H(4)PPh(2)-o)}(2) (3), {(t)BuNP(OCH(2)CH(2)PPh(2))}(2) (4), {(t)BuHN((t)BuNP)(2)OC(6)H(4)PPh(2)-o} (5), and {(t)BuHN((t)BuNP)(2)OCH(2)CH(2)PPh(2)} (6) were synthesized by reacting cis-{(t)BuNPCl}(2) (1) and cis-[(t)BuHN((t)BuNP)(2)Cl] (2) with corresponding phosphine substituted nucleophiles. The reactions of 3 and 5 with excess of elemental sulfur or selenium produce the corresponding tetra and trichalcogenides, {((t)BuNP(E)(OC(6)H(4)P(E)Ph(2)-o)}(2) (7, E = S; 8, E = Se) and {(t)BuHN((t)BuNP)(2)OC(6)H(4)P(E)Ph(2)-o} (9, E = S; 10, E = Se), respectively, in quantitative yields. The reactions between 3 and [Rh(COD)Cl](2) or [M(COD)Cl](2) (M = Pd or Pt) afford bischelated complexes [Rh(CO)Cl{(t)BuNP(OC(6)H(4)PPh(2)-o)}](2) (11), and [MCl(2){(t)BuNP(OC(6)H(4)PPh(2)-o)}](2) (12, M = Pd; 13, M = Pt) in good yield. The 1 : 2 reaction between 3 and [PdCl(η(3)-C(3)H(5))](2) in dichloromethane resulted initially in the formation of a tripalladium complex of the type [Pd(3)Cl(4)(η(3)-C(3)H(5))(2){(t)BuNPOC(6)H(4)PPh(2)}(2)] (14a) which readily reacts with moisture to form an interesting binuclear complex, [Cl(2)Pd{μ-(PPh(2)C(6)H(4)OP(μ-(t)BuN)(2)P(O)}(μ-Cl)Pd(OC(6)H(4)PPh(2))] (14b). One of the palladium(II) atoms forms a simple six-membered chelate ring, whereas the other palladium(II) atom facilitates the moisture assisted cleavage of one of the endocyclic P-O bonds followed by the oxidation of P(III) to P(V) thus forming a Pd-P σ-bond. The broken ortho-phosphine substituted phenoxide ion forms a five-membered palladacycle with the same palladium(II) atom. Similar reaction of 5 with [PdCl(η(3)-C(3)H(5))](2) also affords a binuclear complex [{PdCl(η(3)-C(3)H(5))}(t)BuNH{(t)BuNP}(2)OC(6)H(4)PPh(2){PdCl(2)}] (15) containing a PdCl(2) moiety which forms a six-membered chelate ring via ring-phosphorus and PPh(2) moieties on one side and a PdCl(η(3)-C(3)H(5)) fragment

  17. Chloromethylation of 2-chloroethylbenzene catalyzed by micellar catalysis

    Institute of Scientific and Technical Information of China (English)

    LIU QiFa; LU Ming; WEI Wei

    2009-01-01

    The chloromethylation reaction of 2-chloroethylbenzene was performed successfully by micellar catalysis in the biphasic oil/water system.The effects of anionic,cationic and non-ionic surfactants on the reaction were compared.The mechanism of chloromethyiation reaction and the mechanism of micellar catalysis were investigated.The results show that the micellar catalysis is an effective way to realize the chloromethylation of 2-chloroethylbenzene,and the cationic surfactant shows the most effectiveness.The longer the hydrophobic chain of the cationic surfactant is,the better the catalysis effect will be,and the addition of inorganic electrolyte into the aqueous phase can markedly promote the catalysis effect.

  18. Loss of phosphine from unsealed bins of wheat at six combinations of grain temperature and grain moisture content.

    Science.gov (United States)

    Reed; Pan

    2000-07-01

    Hard red winter wheat (1.4 t) at 11.1 or 13.5% moisture content (wet basis) and 20, 25, or 30 degrees C was fumigated with tablets of an aluminum phosphide formulation in unsealed, cylindrical grain bins of corrugated metal. The fumigant leakage rate was manipulated to approximate that commonly encountered in farm and commercial-scale bins of this type. Phosphine concentration profiles were recorded and phosphine loss and sorption were characterized to determine which conditions provided the greatest probability of successful fumigation in these bins. Phosphine leakage and sorption were both positively related to grain temperature and moisture content. The fumigant concentration profiles were compared with previously-published data relating temperature to the developmental rate and fumigant susceptibility of lesser grain borer eggs, which are phosphine-resistant but become less resistant as they age. The mean phosphine concentration observed at the time corresponding to one-half of the calculated egg development time was compared to the lethal concentration (LC(99)) for a 2-day exposure at each temperature-moisture combination. In the low-moisture grain at 20 degrees C, the observed fumigant concentration was below the lethal concentration, due to the long development time under these conditions. At 25 and 30 degrees C in the low-moisture wheat, the likelihood of complete kill appeared more favorable because the fumigant concentration remained above the published LC(99) for more than half of the egg development time. In the wheat with 13.5% moisture content, rapid fumigant sorption and loss resulted in phosphine concentrations below the LC(99) at one-half of the development time at 20 or 25 degrees C. At 30 degrees C, due to the very rapid development rate, the observed phosphine concentration exceeded the LC(99) half-way through the egg development period despite the rapid rate of fumigant sorption and loss. Repeated fumigation of the same grain reduced the rate

  19. Gas chromatography of alkylphosphonic and dialkyl phosphinic acids; Cromatografia en fase gaseosa de acidos alquifosfonicos y dialquilfosinicos

    Energy Technology Data Exchange (ETDEWEB)

    Gasco Sanchez, L.; Barrera Peniero, R.; Ramirez Caceres, A.; Marin Munoz, M.

    1978-07-01

    After carrying out an optimization study on the separation conditions for the TMSr- derivatives, of the hexyl-, cyclohexyl-, heptyl-, and octyl-phosphonic acids; dihexyl dicyclohexyl-, heptyl-, and octyl-phosphinic acids, and dioctyl phosphine oxide, their retention indices (I) at two temperatures and on the OV-1 and OV-17 stationary phase were determined. Correlations between I and molecular structure were established. Calibration factors of these compounds in the flame ionization detector were studied, and the results analyzed taking into account the variables affecting the quantitative results, These results were unbiased but they had a lower precision than that usually achievable in gas chromatography. (Author) 24 refs.

  20. Mechanical catalysis on the centimetre scale.

    Science.gov (United States)

    Miyashita, Shuhei; Audretsch, Christof; Nagy, Zoltán; Füchslin, Rudolf M; Pfeifer, Rolf

    2015-03-06

    Enzymes play important roles in catalysing biochemical transaction paths, acting as logical machines through the morphology of the processes. A key challenge in elucidating the nature of these systems, and for engineering manufacturing methods inspired by biochemical reactions, is to attain a comprehensive understanding of the stereochemical ground rules of enzymatic reactions. Here, we present a model of catalysis that can be performed magnetically by centimetre-sized passive floating units. The designed system, which is equipped with permanent magnets only, passively obeys the local causalities imposed by magnetic interactions, albeit it shows a spatial behaviour and an energy profile analogous to those of biochemical enzymes. In this process, the enzyme units trigger physical conformation changes of the target by levelling out the magnetic potential barrier (activation potential) to a funnel type and, thus, induce cascading conformation changes of the targeted substrate units reacting in parallel. The inhibitor units, conversely, suppress such changes by increasing the potential. Because the model is purely mechanical and established on a physics basis in the absence of turbulence, each performance can be explained by the morphology of the unit, extending the definition of catalysis to systems of alternative scales.

  1. Transition Metal Catalysis Using Functionalized Dendrimers.

    Science.gov (United States)

    Oosterom, G. Eric; Reek, Joost N. H.; Kamer, Paul C. J.; van Leeuwen, Piet W. N. M.

    2001-05-18

    Dendrimers are well-defined hyperbranched macromolecules with characteristic globular structures for the larger systems. These novel polymers have inspired many chemists to develop new materials and several applications have been explored, catalysis being one of them. The recent impressive strides in synthetic procedures increased the accessibility of functionalized dendrimers, resulting in a rapid development of dendrimer chemistry. The position of the catalytic site(s) as well as the spatial separation of the catalysts appears to be of crucial importance. Dendrimers that are functionalized with transition metals in the core potentially can mimic the properties of enzymes, their efficient natural counterparts, whereas the surface-functionalized systems have been proposed to fill the gap between homogeneous and heterogeneous catalysis. This might yield superior catalysts with novel properties, that is, special reactivity or stability. Both the core and periphery strategies lead to catalysts that are sufficiently larger than most substrates and products, thus separation by modern membrane separation techniques can be applied. These novel homogeneous catalysts can be used in continuous membrane reactors, which will have major advantages particularly for reactions that benefit from low substrate concentrations or suffer from side reactions of the product. Here we review the recent progress and breakthroughs made with these promising novel transition metal functionalized dendrimers that are used as catalysts, and we will discuss the architectural concepts that have been applied.

  2. Improved fumigation process for stored foodstuffs by using phosphine in sealed chambers.

    Science.gov (United States)

    Formato, Andrea; Naviglio, Daniele; Pucillo, Gian Pio; Nota, Giorgio

    2012-01-11

    In this paper we present an innovative device designed and constructed to improve the fumigation process for stored foodstuffs with the use of phosphine gas in sealed chambers. The device allowed a considerable reduction in phosphine production time (from about 5 to 7 days for traditional systems to 2 days for the equipment considered), maintaining the system below the inflammability threshold, and at the same time achieving the total exhaustion of aluminum (or magnesium) phosphide so as to avoid toxic residues at the end of the process. With the standard device currently available on the market, after the normal 5-7 day fumigating period, the powder residue contains as much as 1-2% (w/w) of phosphide. Thus the residues, according to current legislation, have to be considered toxic and harmful. To overcome this disadvantage, appropriate modifications were made to the cylindrical tray used for the fumigation process: a nebulizer was installed, which has the function of increasing the moisture of the air spreading around the phosphide pellets and allowing a more rapid reaction with phosphide. Moreover, the cylindrical tray was also heated by means of an electrical resistance, and temperature was checked by a thermostat, so as to always obtain the same efficiency, independently of outside temperature, for both hot and cold periods, since reaction speed depends on the system temperature considered. In addition, a control device for air saturation allows condensation processes to be avoided. Using the modified cylindrical tray we performed tests to determine the best values of humidity and temperature for the process concerned, avoiding phosphine concentrations that might result in a fire hazard, and the remixing of phosphide pellets inside the cylindrical tray. Our experimental data allowed us to obtain a mathematical model used to gain an insight into the process in question.

  3. The relation between phosphine sorption and terminal gas concentrations in successful fumigation of food commodities.

    Science.gov (United States)

    Reddy, Palvai Vanitha; Rajashekar, Yellappa; Begum, Khamrunissa; Leelaja, Bhadravathi Chandrappa; Rajendran, Somiahnadar

    2007-01-01

    Owing to increased tolerance and the development of resistance in stored product insects to the fumigant phosphine, in recent years there has been a shift in the target terminal concentration from 100 ppm (100 mL m(-3)) to a higher level of 1000 ppm to achieve 100% insect mortality in 7 day commodity treatments. Therefore, there is a need to investigate whether the revised target concentration could be achieved for food commodities fumigated with phosphine at the standard dose of 2 g m(-3) for 7 days under airtight conditions at > or = 25 degrees C. When different types of food commodity (total 74) were fumigated (300 g per replicate) with phosphine at 2 g m(-3) for 7 days, the terminal gas concentrations in the free space of the commodities varied from 0 to > 2000 ppm. In chambers containing no substrate, a 1417 ppm concentration was recorded. Paddy rice, most of the oilseeds, shelled tree nuts, butter beans, cardamom, green gram splits, coriander powder, rice bran and cocoa powder were more sorptive (> or =60%), such that the target concentration of 1000 ppm was not achieved at the end of 7 days. For these commodities, increased doses of 3-6 g m(-3) were required to attain 1000 ppm. In-shell almonds, green cardamom, in-shell peanuts, leaf tea, tamarind pulp and sunflower seeds were exceptionally sorptive (>90%), so that 0, 41, 112, 168, 203 and 217 ppm respectively were noted at the end of 7 days; the dose must exceed 6 g m(-3) for effective fumigation of these commodities.

  4. Genetic Conservation of Phosphine Resistance in the Rice Weevil Sitophilus oryzae (L.).

    Science.gov (United States)

    Nguyen, Tam T; Collins, Patrick J; Duong, Tu M; Schlipalius, David I; Ebert, Paul R

    2016-05-01

    High levels of resistance to phosphine in the rice weevil Sitophilus oryzae have been detected in Asian countries including China and Vietnam, however there is limited knowledge of the genetic mechanism of resistance in these strains. We find that the genetic basis of strong phosphine resistance is conserved between strains of S. oryzae from China, Vietnam, and Australia. Each of 4 strongly resistant strains has an identical amino acid variant in the encoded dihydrolipoamide dehydrogenase (DLD) enzyme that was previously identified as a resistance factor in Rhyzopertha dominica and Tribolium castaneum. The unique amino acid substitution, Asparagine > Threonine (N505T) of all strongly resistant S. oryzae corresponds to the position of an Asparagine > Histidine variant (N506H) that was previously reported in strongly resistant R. dominica. Progeny (F16 and F18) from 2 independent crosses showed absolute linkage of N505T to the strong resistance phenotype, indicating that if N505T was not itself the resistance variant that it resided within 1 or 2 genes of the resistance factor. Non-complementation between the strains confirmed the shared genetic basis of strong resistance, which was supported by the very similar level of resistance between the strains, with LC50 values ranging from 0.20 to 0.36 mg L(-1) for a 48-h exposure at 25 °C. Thus, the mechanism of high-level resistance to phosphine is strongly conserved between R. dominica, T. castaneum and S. oryzae. A fitness cost associated with strongly resistant allele was observed in segregating populations in the absence of selection.

  5. Methylene-bis[(aminomethyl)phosphinic acids]: synthesis, acid-base and coordination properties.

    Science.gov (United States)

    David, Tomáš; Procházková, Soňa; Havlíčková, Jana; Kotek, Jan; Kubíček, Vojtěch; Hermann, Petr; Lukeš, Ivan

    2013-02-21

    Three symmetrical methylene-bis[(aminomethyl)phosphinic acids] bearing different substituents on the central carbon atom, (NH(2)CH(2))PO(2)H-C(R(1))(R(2))-PO(2)H(CH(2)NH(2)) where R(1) = OH, R(2) = Me (H(2)L(1)), R(1) = OH, R(2) = Ph (H(2)L(2)) and R(1),R(2) = H (H(2)L(3)), were synthesized. Acid-base and complexing properties of the ligands were studied in solution as well as in the solid state. The ligands show unusually high basicity of the nitrogen atoms (log K(1) = 9.5-10, log K(2) = 8.5-9) if compared with simple (aminomethyl)phosphinic acids and, consequently, high stability constants of the complexes with studied divalent metal ions. The study showed the important role of the hydroxo group attached to the central carbon atom of the geminal bis(phosphinate) moiety. Deprotonation of the hydroxo group yields the alcoholate anion which tends to play the role of a bridging ligand and induces formation of polynuclear complexes. Solid-state structures of complexes [H(2)N=C(NH(2))(2)][Cu(2)(H(-1)L(2))(2)]CO(3)·10H(2)O and Li(2)[Co(4)(H(-1)L(1))(3)(OH)]·17.5H(2)O were determined by X-ray diffraction. The complexes show unexpected geometries forming dinuclear and cubane-like structures, respectively. The dinuclear copper(II) complex contains a bridging μ(2)-alcoholate group with the (-)O-P(=O)-CH(2)-NH(2) fragments of each ligand molecule chelated to the different central ion. In the cubane cobalt(II) complex, one μ(3)-hydroxide and three μ(3)-alcoholate anions are located in the cube vertices and both phosphinate groups of one ligand molecule are chelating the same cobalt(II) ion while each of its amino groups are bound to different neighbouring metal ions. All such three metal ions are bridged by the alcoholate group of a given ligand.

  6. Inhalation of phosphine gas following a fire associated with fumigation of processed pistachio nuts.

    Science.gov (United States)

    O'Malley, Michael; Fong, Harvard; Sánchez, Martha E; Roisman, Rachel; Nonato, Yvette; Mehler, Louise

    2013-01-01

    On December 10, 2009, a fumigation stack containing aluminum phosphide became soaked with rain water and caught fire at a pistachio processing plant in Kern County, California. Untrained plant personnel responding to the fire had exposure to pyrolysis by-products, particulates, and extinguisher ingredients. Ten workers taken for medical evaluation had respiratory and nonspecific systemic symptoms consistent with exposure to phosphine gas. Six of the 10 workers had respiratory distress, indicated by chest pain, shortness of breath, elevated respiratory rate, or decreased oxygen saturation. Recommendations are made for the management of similar illnesses and prevention of similar exposures.

  7. Accidental phosphine gas poisoning with fatal myocardial dysfunction in two families.

    Science.gov (United States)

    Akhtar, Saleem; Rehman, Arshalooz; Bano, Surraya; Haque, Anwarul

    2015-05-01

    Aluminum phosphide is commonly used as a rodenticide and insecticide and is one of the most fatal poisons. The active ingredient is Phosphine gas which inhibits cytochrome oxidase and cellular oxygen utilization. The clinical symptoms are due to multiorgan involvement including cardiac toxicity which is the most common cause of mortality. Severity of clinical manifestations depends upon the amount of the gas to which a person is exposed. There is no specific antidote available. High index of suspicion and early aggressive treatment is the key to success. We report 2 cases of aluminum phosphide toxicity in 2 families due to incidental exposure after fumigation.

  8. Synthesis, Characterisation and Reactions of Phosphine-Substituted Alkynylboronates and Alkynyltrifluoroborate Salts

    Directory of Open Access Journals (Sweden)

    Jérôme F. Vivat

    2014-12-01

    Full Text Available The synthesis and structural characterisation of phosphine-substituted alkynylboronates is reported. A P(III-centred alkynylboronate (2 was prepared that showed little evidence for the conjugation of the P-lone pair to the boron via the alkyne π-system, as judged by X-ray crystallography studies of 2 and a related P(V compound, 3. In addition, corresponding alkynyltrifluoroborate salts were prepared that showed improved stability by comparison to their boronic ester counterparts. These salts undergo Pd-catalysed cross-coupling reactions with aryl halides.

  9. D301 resin as a solid base for phosphine-free Heck reactions with heteroaryl halides

    Institute of Scientific and Technical Information of China (English)

    Wen Pei; Xiang Mei Wu

    2008-01-01

    A new and practical method of the D301 resin,a weak basic anion exchange resin with secondary amine functionality (Grade Matrix Structure:Styrene-DVB D301R),used as base to Heck reactions catalyzed by palladium reagent without phosphine compound as ligand is described.It was found that the D301 resin used as base is an efficient and reusable base and can be regenerated and recycled in the reaction.The olefination of heteroaryl halides prepared the corresponding products in good yields using D301 resin as base.

  10. Reduction of 4-azidonaphthalimide with different phosphine ligands and exploration of their spectroscopic properties

    Science.gov (United States)

    Xu, Shou De; Fang, Cheng Hui; Tian, Guang Xuan; Chen, Yi; Dou, Ye Hong; Kou, Jun Feng; Wu, Xiang Hua

    2015-12-01

    A convenient, high efficient method for the reduction of 4-azidonaphthalimide to 4-aminonaphthalimide (1) by using PMe3 has been developed. Several 4-substituted 1,8-naphthalimide iminophosphoranes were also successfully synthesized. Their structures were characterized by NMR and MS analyses. The structures of compounds 2 and 3 were also confirmed by single crystal X-ray diffraction analysis. Their optoelectronic properties of these naphthalimides were investigated. The results indicated that their optical properties could be tuned by different phosphine ligands, which make them novel potential organic luminescent materials.

  11. Permanent magnetism in phosphine- and chlorine-capped gold: from clusters to nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Munoz-Marquez, Miguel A., E-mail: miguel.angel@icmse.csic.es; Guerrero, Estefania; Fernandez, Asuncion [Instituto de Ciencia de Materiales de Sevilla (CSIC-US) (Spain); Crespo, Patricia; Hernando, Antonio [Instituto de Magnetismo Aplicado (UCM-ADIF-CSIC) (Spain); Lucena, Raquel; Conesa, Jose C. [Instituto de Catalisis y Petroleoquimica (CSIC) (Spain)

    2010-05-15

    Magnetometry results have shown that gold NPs ({approx}2 nm in size) protected with phosphine and chlorine ligands exhibit permanent magnetism. When the NPs size decreases down to the subnanometric size range, e.g. undecagold atom clusters, the permanent magnetism disappears. The near edge structure of the X-ray absorption spectroscopy data points out that charge transfer between gold and the capping system occurs in both cases. These results strongly suggest that nearly metallic Au bonds are also required for the induction of a magnetic response. Electron paramagnetic resonance observations indicate that the contribution to magnetism from eventual iron impurities can be disregarded.

  12. Preparation of Highly Crystalline TiO2 Nanostructures by Acid-assisted Hydrothermal Treatment of Hexagonal-structured Nanocrystalline Titania/Cetyltrimethyammonium Bromide Nanoskeleton

    Directory of Open Access Journals (Sweden)

    Sakai Hideki

    2010-01-01

    Full Text Available Abstract Highly crystalline TiO2 nanostructures were prepared through a facile inorganic acid-assisted hydrothermal treatment of hexagonal-structured assemblies of nanocrystalline titiania templated by cetyltrimethylammonium bromide (Hex-ncTiO2/CTAB Nanoskeleton as starting materials. All samples were characterized by X-ray diffraction (XRD and transmission electron microscopy (TEM. The influence of hydrochloric acid concentration on the morphology, crystalline and the formation of the nanostructures were investigated. We found that the morphology and crystalline phase strongly depended on the hydrochloric acid concentrations. More importantly, crystalline phase was closely related to the morphology of TiO2 nanostructure. Nanoparticles were polycrystalline anatase phase, and aligned nanorods were single crystalline rutile phase. Possible formation mechanisms of TiO2 nanostructures with various crystalline phases and morphologies were proposed.

  13. Low-temperature synthesis and characterization of anatase TiO{sub 2} nanoparticles by an acid assisted sol–gel method

    Energy Technology Data Exchange (ETDEWEB)

    Leyva-Porras, C. [Centro de Investigación en Materiales DIP-CUCEI, Universidad de Guadalajara, Av. Revolución # 1500, Col. Olímpica, C.P. 44430, Guadalajara (Mexico); Centro de Investigación en Materiales Avanzados, S.C. (CIMAV), Alianza Norte No. 202, Parque de Investigación e Innovación Tecnológica (PIIT), Carretera Aeropuerto km. 10, C.P. 66600, Apodaca, N.L. (Mexico); Toxqui-Teran, A.; Vega-Becerra, O. [Centro de Investigación en Materiales Avanzados, S.C. (CIMAV), Alianza Norte No. 202, Parque de Investigación e Innovación Tecnológica (PIIT), Carretera Aeropuerto km. 10, C.P. 66600, Apodaca, N.L. (Mexico); Miki-Yoshida, M. [Centro de Investigación en Materiales Avanzados, S.C. (CIMAV), Miguel de Cervantes No. 120, Parque Industrial Chihuahua, C.P. 31109, Chihuahua (Mexico); Rojas-Villalobos, M.; García-Guaderrama, M. [Centro de Investigación en Materiales DIP-CUCEI, Universidad de Guadalajara, Av. Revolución # 1500, Col. Olímpica, C.P. 44430, Guadalajara (Mexico); and others

    2015-10-25

    The synthesis of anatase TiO{sub 2} nanoparticles by an acid-assisted sol–gel method at 25 and 80 °C is described. Specifically, acetic acid (AA) was used and the evolution of the anatase phase with the amount of AA was observed. The results of X-ray diffraction (XRD) and transmission electron microscopy (TEM) both showed that a pure anatase phase was obtained with particle size smaller than 5 nm. Structural refinements and quantitative determination of phase composition was achieved by using the Rietveld method. The particle size distribution became slightly narrower as the amount of AA was increased. Raman spectroscopy showed that when the amount of AA was increased a small amount of brookite was present at the contamination level. The anatase phase was studied by differential thermal analysis (DTA), providing phase stability up to 600 °C. These and other results were discussed in terms of particle size and structure. Likewise, the formation of the anatase phase under these synthesis conditions was explained. - Highlights: • Synthesis of anatase TiO{sub 2} nanoparticles by an acid assisted sol–gel method at mild conditions. • Microstructure characterization by XRD, TEM and Raman spectroscopy. • Observation of the formation and evolution of the anatase phase as acetic acid was increased. • Anatase thermal stability up to 600 °C and band gap range between 3.2 and 3.5 eV. • A simplified method which can be considered as a green chemistry process.

  14. Magnetic catalysis (and inverse catalysis) at finite temperature in two-color lattice QCD

    CERN Document Server

    Ilgenfritz, E -M; Petersson, B; Schreiber, A

    2013-01-01

    Two-color lattice QCD with N_f=4 staggered fermion degrees of freedom (no rooting trick is applied) with equal electric charge q is studied in a homogeneous magnetic background field B and at non-zero temperature T. In order to circumvent renormalization as a function of the bare coupling we apply a fixed-scale approach. We study the influence of the magnetic field on the critical temperature. At rather small pseudo-scalar meson mass (m_pi \\approx 175 MeV \\approx T_c(B=0)) we confirm magnetic catalysis for sufficiently strong magnetic field strength, while at T=195 MeV and weak magnetic field (qB {\\lesssim} 0.8 GeV^2) we find a rise of the Polyakov loop with qB and thus, indications for an inverse magnetic catalysis.

  15. Organic photoredox catalysis for the oxidation of silicates: applications in radical synthesis and dual catalysis.

    Science.gov (United States)

    Lévêque, Christophe; Chenneberg, Ludwig; Corcé, Vincent; Ollivier, Cyril; Fensterbank, Louis

    2016-08-01

    Metal free photooxidation of alkyl bis(catecholato)silicates with the organic dye 1,2,3,5-tetrakis(carbazol-9-yl)-4,6-dicyano-benzene (4CzIPN) allows the smooth formation of alkyl radicals. The latter can be efficiently engaged either with radical acceptors to provide homolytic addition products or in photoredox/nickel dual catalysis reactions to obtain cross-coupling products.

  16. Efficacies of spinosad and a combination of chlorpyrifos-methyl and deltamethrin against phosphine-resistant Rhyzopertha dominica (Coleoptera: Bostrichidae) and Tribolium castaneum (Coleoptera: Tenebrionidae) on wheat.

    Science.gov (United States)

    Bajracharya, N S; Opit, George P; Talley, J; Jones, C L

    2013-10-01

    Highly phosphine-resistant populations of Rhyzopertha dominica (F.) (Coleoptera: Bostrichidae) and Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae) have recently been found in Oklahoma grain storage facilities. These findings necessitate development of a phosphine resistance management strategy to ensure continued effective use of phosphine. Therefore, we investigated the efficacies of two grain insecticides, namely, spinosad applied at label rate of 1 ppm and a mixture of chlorpyrifos-methyl and deltamethrin applied at label rates of 3 and 0.5 ppm, respectively, against highly phosphine-resistant R. dominica and T. castaneum. Adult mortality and progeny production suppression of spinosad- or chlorpyrifos-methyl + deltamethrin mixture-treated wheat that had been stored for 2, 84, 168, 252, and 336 d posttreatment were assessed. We found that both spinosad and chlorpyrifos-methyl + deltamethrin were effective against phosphine-resistant R. dominica and caused 83-100% mortality and also caused total progeny production suppression for all storage periods. Spinosad was not effective against phosphine-resistant T. castaneum; the highest mortality observed was only 3% for all the storage periods. Chlorpyrifos-methyl + deltamethrin was effective against phosphine-resistant T. castaneum only in treated wheat stored for 2 and 84 d, where it caused 93-99% mortality. However, chlorpyrifos-methyl + deltamethrin was effective and achieved total suppression of progeny production in T. castaneum for all the storage periods. Spinosad was not as effective as chlorpyrifos-methyl + deltamethrin mixture at suppressing progeny production of phosphine-resistant T. castaneum. These two insecticides can be used in a phosphine resistance management strategy for R. dominica and T. castaneum in the United States.

  17. Magnetometry and electron paramagnetic resonance studies of phosphine- and thiol-capped gold nanoparticles

    Science.gov (United States)

    Guerrero, E.; Muñoz-Márquez, M. A.; Fernández, A.; Crespo, P.; Hernando, A.; Lucena, R.; Conesa, J. C.

    2010-03-01

    In the last years, the number of studies performed by wholly independent research groups that confirm the permanent magnetism, first observed in our research lab, for thiol-capped Au nanoparticles (NPs) has rapidly increased. Throughout the years, the initial magnetometry studies have been completed with element-specific magnetization measurements based on, for example, the x-ray magnetic circular dichroism technique that have allowed the identification of gold as the magnetic moment carrier. In the research work here presented, we have focused our efforts in the evaluation of the magnetic behavior and iron impurities content in the synthesized samples by means of superconducting quantum interference device magnetometry and electron paramagnetic resonance spectrometry, respectively. As a result, hysteresis cycles typical of a ferromagnetic material have been measured from nominally iron-free gold NPs protected with thiol, phosphine, and chlorine ligands. It is also observed that for samples containing both, capped gold NPs and highly diluted iron concentrations, the magnetic behavior of the NPs is not affected by the presence of paramagnetic iron impurities. The hysteresis cycles reported for phosphine-chlorine-capped gold NPs confirm that the magnetic behavior is not exclusively for the metal-thiol system.

  18. Copper(i) complexes with phosphine derived from sparfloxacin. Part I - structures, spectroscopic properties and cytotoxicity.

    Science.gov (United States)

    Komarnicka, Urszula K; Starosta, Radosław; Kyzioł, Agnieszka; Jeżowska-Bojczuk, Małgorzata

    2015-07-28

    In this paper we present new copper(i) iodide or copper(i) thiocyanate complexes with hydroxymethyldiphenylphosphine (PPh2(CH2OH)) or phosphine derivatives of sparfloxacin, a 3(rd) generation fluoroquinolone antibiotic agent (PPh2(CH2-Sf)) and 2,9-dimethyl-1,10-phenanthroline (dmp) or 2,2'-biquinoline (bq) auxiliary ligands. The synthesised complexes were fully characterised by NMR and UV-Vis spectroscopy as well as by mass spectrometry. Selected structures were additionally analysed using X-ray and DFT methods. All complexes proved to be stable in solution in the presence of water and atmospheric oxygen for several days. The cytotoxic activity of the complexes was tested against two cancer cell lines (CT26 - mouse colon carcinoma and A549 - human lung adenocarcinoma). Applying two different incubation times, the studies enabled a preliminary estimation of the dependence of the selectivity and the mechanism of action on the type of diimine and phosphine ligands. The results obtained showed that complexes with PPh2(CH2-Sf) are significantly more active than those with PPh2(CH2OH). On the other hand, the relative impact of diimine on cytotoxicity is less pronounced. However, the dmp complexes are characterised by strong inhibitory properties, while the bq ones are rather not. This confirms the interesting and promising biological properties of the investigated group of copper(i) complexes, which undoubtedly are worthy of further biological studies.

  19. Effects of Phosphine-Carbene Substitutions on the Electrochemical and Thermodynamic Properties of Nickel Complexes

    Energy Technology Data Exchange (ETDEWEB)

    Galan, Brandon R.; Wiedner, Eric S.; Helm, Monte L.; Linehan, John C.; Appel, Aaron M.

    2014-05-12

    Nickel(II) complexes containing chelating N-heterocyclic carbene-phosphine ligands ([NiL2](BPh4)2, for which L = [MeIm(CH2)2PR2]) have been synthesized for the purpose of studying how this class of ligand effects the electrochemical properties compared to the nickel bis- diphosphine analogues. The nickel complexes were synthesized and characterized by x-ray crystallography and electrochemical methods. Based on the half wave potentials (E1/2), substitution of an NHC for one of the phosphines in a diphoshine ligand results in shifts in potential to 0.6 V to 1.2 V more negative than the corresponding nickel bis-diphosphine complexes. These quantitative results highlight the substantial effect that NHC ligands can have upon the electronic properties of the metal complexes. BRG, JCL, and AMA acknowledge the support by the US Department of Energy Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. MLH acknoledges the support of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.

  20. Substituted tertiary phosphine Ru(II) organometallics: catalytic utility on the hydrolysis of etofibrate in pharmaceuticals.

    Science.gov (United States)

    Reddy, P Muralidhar; Shanker, Kanne; Rohini, Rondla; Sarangapani, M; Ravinder, Vadde

    2008-10-01

    Some new organometallics of ruthenium(II) of the type [RuCl2(COD)(CO)L] (1a-f) and [RuCl2(COD)L2] (2a-f) (where L is substituted tertiary phosphines), have been synthesized by using precursors [RuCl2(COD)(CO)(CH3CN)] (1) and [RuCl2(COD)(CH3CN)2] (2) with the substituted tertiary phosphine ligands in 1:1 and 1:2 molar ratio. The organometallics (2a-f) have been further reacted with carbonmonoxide to produce compounds of the type [RuCl2(CO)L2] (3a-f). These compounds were characterized by elemental analysis, IR, NMR (1H, 13C and 31P), mass and electronic spectral data. The catalytic activity of all these organometallics were studied and found that they are efficient catalysts for hydrolysis of etofibrate. The hydrolyzed product was separated by column chromatography and the percent yields are found in the range of 98.6-99.1%.

  1. Matrix-bound phosphine:A new form of phosphorus found in sediment of Jiaozhou Bay

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Matrix-bound phosphine (PH3), a new form of phosphorus, was found in sediment of Jiaozhou Bay in December 2001. Concentration and distribution of PH3 in different layers of sediment with different stations were analyzed. The results show that PH3 concentrations are various with different layers and different stations. PH3 concentrations in the bottom layer of sediment (20-30 cm) are usually higher than those in the surface layer (0-4 cm). The highest PH3 concentration in our investigation reaches 685 ng/kg (dry), which is much higher than those in terrestrial paddy soil, marsh and landfill that have been reported up to now. The correlation analysis indicates that there is no apparent correlation between the concentrations of PH3 and inorganic phosphorus in sediment. However, the correlation between the concentrations of phosphine and organic phosphorus in the bottom layer of sediment is remarkable (R2=0.83). It is considered that PH3 in sediment of Jiaozhou Bay is mainly produced from the decomposition of organic phosphorus in the anaerobic condition, and so PH3 concentrations are related to organic phosphorus concentration and anaerobic environment in sediment. The discovery of PH3 in sediment will give people some new ideas on the mechanisms of phosphorus supplement and biogeochemical cycle in Jiaozhou Bay.

  2. Fabrication and thermal stability studies of polyamide 66 containing triaryl phosphine oxide

    Indian Academy of Sciences (India)

    Xiaofeng Yang; Qiaoling Li; Zhiping Chen; Hongli Han

    2009-08-01

    An intrinsically halogen-free flame retardant polyamide 66 (FR-PA66) was fabricated successfully by two-step polymerization reaction with adipic acid hexamethylene salt (AH salt) and bis(4-carboxyphenyl) phenyl phosphine oxide (BCPPO) as raw materials. The structure, combustion properties and thermal stability were characterized by means of intrinsic viscosity, Fourier transform infrared spectroscopy (FTIR), combustion testing, differential scanning calorimetry (DSC), thermogravimetric analysis (TG) and scanning electron microscope (SEM). Experiments show that BCPPO have excellent copolymerization properties with AH salt. And incorporation of triaryl phosphine oxide (TPO) did not transform the crystal phase structure of PA66. During fabrication of FR-PA66, melt polymerization time exhibits more surprising influence on intrinsic viscosity than aqueous solution polymerization time. The LOI value of FR-PA66 with 9 wt% TPO reaches 27.2, and corresponding UL94 rating reaches V-0. Improved thermo-stability of FR-PA66 can be attributed to both forming of compact char protective layer and further consolidation effect of / synergistic system.

  3. Synthesis of tetrakis (hydroxymethyl) phosphonium chloride by high-concentration phosphine in industrial off-gas.

    Science.gov (United States)

    Huang, Xiaofeng; Wei, Yanfu; Zhou, Tao; Qin, Yangsong; Gao, Kunyang; Ding, Xinyue

    2013-01-01

    With increasing consumption of phosphate rock and acceleration of global phosphate production, the shortage of phosphate resources is increasing with the development and utilization of phosphate. China's Ministry of Land and Resources has classified phosphate as a mineral that cannot meet China's growing demand for phosphate rock in 2010. The phosphorus chemical industry is one of the important economic pillars for Yunnan province. Yellow phosphorus production in enterprises has led to a significant increase in the amount of phosphorus sludge. This paper focuses on phosphine generation in the process of phosphoric sludge utilization, where the flame retardant tetrakis (hydroxymethyl) phosphonium chloride (THPC) is synthesized by high concentrations of phosphine. The optimum conditions are determined at a space velocity of 150 h(-1), a reaction temperature of 60 °C, 0.75 g of catalyst, and a ratio of raw materials of 4:1. Because of the catalytic oxidation of copper chloride (CuCl2), the synthesis of THPC was accelerated significantly. In conclusion, THPC can be efficiently synthesized under optimal conditions and with CuCl2 as a catalyst.

  4. Electronic Structure and Catalysis on Metal Surfaces

    Science.gov (United States)

    Greeley, Jeff; Norskov, Jens K.; Mavrikakis, Manos

    2002-10-01

    The powerful computational resources available to scientists today, together with recent improvements in electronic structure calculation algorithms, are providing important new tools for researchers in the fields of surface science and catalysis. In this review, we discuss first principles calculations that are now capable of providing qualitative and, in many cases, quantitative insights into surface chemistry. The calculations can aid in the establishment of chemisorption trends across the transition metals, in the characterization of reaction pathways on individual metals, and in the design of novel catalysts. First principles studies provide an excellent fundamental complement to experimental investigations of the above phenomena and can often allow the elucidation of important mechanistic details that would be difficult, if not impossible, to determine from experiments alone.

  5. Magnetic Catalysis in Graphene Effective Field Theory

    CERN Document Server

    DeTar, Carleton; Zafeiropoulos, Savvas

    2016-01-01

    We report on the first observation of magnetic catalysis at zero temperature in a fully nonperturbative simulation of the graphene effective field theory. Using lattice gauge theory, a nonperturbative analysis of the theory of strongly-interacting, massless, (2+1)-dimensional Dirac fermions in the presence of an external magnetic field is performed. We show that in the zero-temperature limit, a nonzero value for the chiral condensate is obtained which signals the spontaneous breaking of chiral symmetry. This result implies a nonzero value for the dynamical mass of the Dirac quasiparticle. This in turn has been posited to account for the quantum-Hall plateaus that are observed at large magnetic fields.

  6. A simplified electrostatic model for hydrolase catalysis.

    Science.gov (United States)

    Pessoa Filho, Pedro de Alcantara; Prausnitz, John M

    2015-07-01

    Toward the development of an electrostatic model for enzyme catalysis, the active site of the enzyme is represented by a cavity whose surface (and beyond) is populated by electric charges as determined by pH and the enzyme's structure. The electric field in the cavity is obtained from electrostatics and a suitable computer program. The key chemical bond in the substrate, at its ends, has partial charges with opposite signs determined from published force-field parameters. The electric field attracts one end of the bond and repels the other, causing bond tension. If that tension exceeds the attractive force between the atoms, the bond breaks; the enzyme is then a successful catalyst. To illustrate this very simple model, based on numerous assumptions, some results are presented for three hydrolases: hen-egg white lysozyme, bovine trypsin and bovine ribonuclease. Attention is given to the effect of pH.

  7. Asymmetric Aminalization via Cation-Binding Catalysis

    DEFF Research Database (Denmark)

    Park, Sang Yeon; Liu, Yidong; Oh, Joong Suk

    2017-01-01

    Asymmetric cation-binding catalysis, in principle, can generate "chiral" anionic nucleophiles, where the counter cations are coordinated within chiral environments. Nitrogen-nucleophiles are intrinsically basic, therefore, its use as nucleophiles is often challenging and limiting the scope...... of the reaction. Particularly, a formation of configurationally labile aminal centers with alkyl substituents has been a formidable challenge due to the enamine/imine equilibrium of electrophilic substrates. Herein, we report enantioselective nucleophilic addition reactions of potassium phthalimides to Boc......-protected alkyl- and aryl-substituted α-amido sulfones. In-situ generated imines smoothly reacted with the nitrogen nucleophiles to corresponding aminals with good to excellent enantioselectivitiy under mild reaction conditions. In addition, transformation of aminal products gave biologically relevant...

  8. Relation between Hydrogen Evolution and Hydrodesulfurization Catalysis

    DEFF Research Database (Denmark)

    Šaric, Manuel; Moses, Poul Georg; Rossmeisl, Jan

    2016-01-01

    A relation between hydrogen evolution and hydrodesulfurization catalysis was found by density functional theory calculations. The hydrogen evolution reaction and the hydrogenation reaction in hydrodesulfurization share hydrogen as a surface intermediate and, thus, have a common elementary step......, which indicates that the same catalyst should perform well for both hydrogen evolution and hydrogenation. If that catalyst also fulfills additional criteria for breaking carbon–sulfur bonds and releasing hydrogen sulfide, it will be a good hydrodesulfurization catalyst. The hydrogen evolution reaction...... is normally performed at room temperature and standard pressure, whereas the hydrodesulfurization reaction is driven by high temperature and pressure. Owing to the very different operating conditions, the adsorption free energy of hydrogen differs between hydrodesulfurization and the hydrogen evolution...

  9. Heterogeneous catalysis in highly sensitive microreactors

    DEFF Research Database (Denmark)

    Olsen, Jakob Lind

    This thesis present a highly sensitive silicon microreactor and examples of its use in studying catalysis. The experimental setup built for gas handling and temperature control for the microreactor is described. The implementation of LabVIEW interfacing for all the experimental parts makes...... automated experiments and data collection possible. An argon ush at the O-rings (used to interface the silicon microreactor with the gas system), which was developed, is presented. It enables experiments with temperatures up to 400., and up to 500. for short periods of time. The CO oxidation reaction...... of adsorbates readily converted to methanol as the source of the transient increase in methanol production, is eliminated. A study of mass selected ruthenium nanoparticles from a magnetron-sputter gas-aggregation source, deposited in microreactors, is presented. It is, shown that CO methanation can be measured...

  10. Catalysis in solid oxide fuel cells.

    Science.gov (United States)

    Gorte, R J; Vohs, J M

    2011-01-01

    Solid oxide fuel cells (SOFCs) and solid oxide electrolyzers (SOEs) hold much promise as highly efficient devices for the direct interconversion of chemical and electrical energy. Commercial application of these devices, however, requires further improvements in their performance and stability. Because the performance of SOFC and SOE electrodes depends on their microstructures, electronic and ionic conductivities, and chemical reactivities, the needed improvements require the expertise of various disciplines, with catalytic science playing an important role. Highly active and thermally stable catalysts are required to limit the internal losses in the devices, increase the range of fuels they can use, and decrease the temperatures at which they operate. In this article we review some of the most important recent advances in catalysis for SOFC and SOE electrodes and highlight additional improvements that are needed.

  11. Prebiotic RNA Synthesis by Montmorillonite Catalysis

    Science.gov (United States)

    Jheeta, Sohan; Joshi, Prakash C.

    2014-08-01

    This review summarizes our recent findings on the role of mineral salts in prebiotic RNA synthesis, which is catalyzed by montmorillonite clay minerals. The clay minerals not only catalyze the synthesis of RNA but also facilitate homochiral selection. Preliminary data of these findings have been presented at the "Horizontal Gene Transfer and the Last Universal Common Ancestor (LUCA)" conference at the Open University, Milton Keynes, UK, 5-6 September 2013. The objective of this meeting was to recognize the significance of RNA in LUCA. We believe that the prebiotic RNA synthesis from its monomers must have been a simple process. As a first step, it may have required activation of the 5'-end of the mononucleotide with a leaving group, e.g., imidazole in our model reaction (Figure 1). Wide ranges of activating groups are produced from HCN under plausible prebiotic Earth conditions. The final step is clay mineral catalysis in the presence of mineral salts to facilitate selective production of functional RNA. Both the clay minerals and mineral salts would have been abundant on early Earth. We have demonstrated that while montmorillonite (pH 7) produced only dimers from its monomers in water, addition of sodium chloride (1 M) enhanced the chain length multifold, as detected by HPLC. The effect of monovalent cations on RNA synthesis was of the following order: Li+ > Na+ > K+. A similar effect was observed with the anions, enhancing catalysis in the following order: Cl- > Br- > I-. The montmorillonite-catalyzed RNA synthesis was not affected by hydrophobic or hydrophilic interactions. We thus show that prebiotic synthesis of RNA from its monomers was a simple process requiring only clay minerals and a small amount of salt.

  12. Prebiotic RNA Synthesis by Montmorillonite Catalysis

    Directory of Open Access Journals (Sweden)

    Sohan Jheeta

    2014-08-01

    Full Text Available This review summarizes our recent findings on the role of mineral salts in prebiotic RNA synthesis, which is catalyzed by montmorillonite clay minerals. The clay minerals not only catalyze the synthesis of RNA but also facilitate homochiral selection. Preliminary data of these findings have been presented at the “Horizontal Gene Transfer and the Last Universal Common Ancestor (LUCA” conference at the Open University, Milton Keynes, UK, 5–6 September 2013. The objective of this meeting was to recognize the significance of RNA in LUCA. We believe that the prebiotic RNA synthesis from its monomers must have been a simple process. As a first step, it may have required activation of the 5'-end of the mononucleotide with a leaving group, e.g., imidazole in our model reaction (Figure 1. Wide ranges of activating groups are produced from HCN under plausible prebiotic Earth conditions. The final step is clay mineral catalysis in the presence of mineral salts to facilitate selective production of functional RNA. Both the clay minerals and mineral salts would have been abundant on early Earth. We have demonstrated that while montmorillonite (pH 7 produced only dimers from its monomers in water, addition of sodium chloride (1 M enhanced the chain length multifold, as detected by HPLC. The effect of monovalent cations on RNA synthesis was of the following order: Li+ > Na+ > K+. A similar effect was observed with the anions, enhancing catalysis in the following order: Cl− > Br− > I−. The montmorillonite-catalyzed RNA synthesis was not affected by hydrophobic or hydrophilic interactions. We thus show that prebiotic synthesis of RNA from its monomers was a simple process requiring only clay minerals and a small amount of salt.

  13. Inhibition of egg development by phosphine in the cosmopolitan pest of stored products Liposcelis bostrychophila (Psocoptera: Liposcelididae).

    Science.gov (United States)

    Nayak, Manoj K; Collins, Patrick J; Pavic, Hervoika; Kopittke, Rosemary A

    2003-11-01

    Phosphine-induced delay in development of eggs was investigated as a mechanism of resistance to this fumigant in Liposcelis bostrychophila Badonnel. One-day-old eggs of a susceptible and a strongly resistant strain of L bostrychophila were exposed to a range of phosphine concentrations for 6days at 30 (+/- 1) degrees C and 70 (+/- 2)% RH. Delay in mean hatching period occurred in both susceptible and resistant eggs, although it was more pronounced in the latter. A maximum delay of 2.65 days was recorded for eggs of the susceptible strain at 0.01 mg litre(-1) (the highest concentration at which eggs survived) and 13.39 days for the resistant strain at 1 mg litre(-1) (the highest concentration tested). Delay in egg development time was positively correlated with increasing phosphine concentration. Our results reveal that the most successful strategy to control resistant L bostrychophila is to apply relatively low concentrations of phosphine for extended exposure times (eg 0.05 mg litre(-1) for 16 days) that allow all eggs to hatch to the much less tolerant nymph stage.

  14. Determination of phosphine: comparison of rates of desorption by purge-and-trap method and by sulfuric acid treatment.

    Science.gov (United States)

    Saeed, T; Abu-Tabanja, R

    1985-01-01

    Two methods were compared for quantitative determination of phosphine present on fumigated food and materials. The rate of desorption of PH3 by using a purge-and-trap method was shown to be much slower when compared with sulfuric acid treatment and was also simpler. Application of the modified sulfuric acid treatment for real samples is described.

  15. Oxygenated phosphine fumigation for control of light brown apple moth, Epiphyas postvittana (Lepidoptera: Tortricidae), eggs on cut-flowers

    Science.gov (United States)

    Light brown apple moth, Epiphyas postvittana, eggs were subjected to oxygenated phosphine fumigation treatments on cut flowers to determine efficacy and safety. Five cut flower species: roses, lilies, tulips, gerbera daisy, and pompon chrysanthemums, were fumigated in separate groups with 2500 ppm ...

  16. Pure phosphine fumigation treatment at low temperature for postharvest control of western flower thrips on lettuce, broccoli, asparagus, and strawberries

    Science.gov (United States)

    U.S. exported lettuce, broccoli, asparagus, and strawberries often harbor western flower thrips (Frankliniella occidentalis), a quarantined pest in Taiwan, and therefore require quarantine treatment. Pure phosphine fumigation at a low temperature of 2°C was studied as an alternative fumigant to meth...

  17. Advances in postharvest pest control on perishable commodities using ultralow oxygen treatment and low temperature phosphine funigation

    Science.gov (United States)

    Recent research in postharvest pest control on fresh fruits and vegetables for export to markets have resulted in promising ultralow oxygen (ULO) treatments and low temperature phosphine fumigation treatments for a variety of pests on different commodities. Lettuce aphid (Nasonovia ribisnigri), wes...

  18. Effects of phosphine and methyl bromide fumigation on the volatile flavor profile and sensory quality of dry cured ham.

    Science.gov (United States)

    Sekhon, R K; Schilling, M W; Phillips, T W; Aikins, M J; Hasan, M M; Corzo, A; Mikel, W B

    2010-10-01

    In separate experiments, randomized complete block designs with three replications were utilized to evaluate the effects of phosphine (PH(3)) (0, 200 and 1000ppm for 48h) and methyl bromide (MB) (0, 4, 8, 16, and 32mg/L for 48h) fumigation concentration on the volatile flavor compound concentrations in dry cured ham. Minimal differences existed (P>0.05) in the presence and concentration of aroma active compounds in both PH(3) and MB fumigated hams but sulfur and oxidation compounds were more prevalent (Pfumigated treatments when compared to the control. As phosphine fumigation concentration increased, the residual concentration of phosphine also increased in the hams (Pphosphine allowed in stored food products (0.01ppm) in the United States. A triangle test (n=56) indicated that consumers could not discriminate (P>0.75) between the control hams and those that were fumigated with PH(3). Minimal aroma/flavor differences existed among MB, PH3 and control hams, and dry cured ham that was fumigated with PH(3) was safe for consumption based on residual phosphine concentrations in the meat tissue.

  19. Phosphine resistance in India is characterised by a dihydrolipoamide dehydrogenase variant that is otherwise unobserved in eukaryotes.

    Science.gov (United States)

    Kaur, R; Subbarayalu, M; Jagadeesan, R; Daglish, G J; Nayak, M K; Naik, H R; Ramasamy, S; Subramanian, C; Ebert, P R; Schlipalius, D I

    2015-09-01

    Phosphine (PH3) fumigation is the primary method worldwide for controlling insect pests of stored commodities. Over-reliance on phosphine, however, has led to the emergence of strong resistance. Detailed genetic studies previously identified two loci, rph1 and rph2, that interact synergistically to create a strong resistance phenotype. We compared the genetics of phosphine resistance in strains of Rhyzopertha dominica and Tribolium castaneum from India and Australia, countries having similar pest species but widely differing in pest management practices. Sequencing analysis of the rph2 locus, dihydrolipoamide dehydrogenase (dld), identified two structurally equivalent variants, Proline49>Serine (P49S) in one R. dominica strain and P45S in three strains of T. castaneum from India. These variants of the DLD protein likely affect FAD cofactor interaction with the enzyme. A survey of insects from storage facilities across southern India revealed that the P45/49S variant is distributed throughout the region at very high frequencies, in up to 94% of R. dominica and 97% of T. castaneum in the state of Tamil Nadu. The abundance of the P45/49S variant in insect populations contrasted sharply with the evolutionary record in which the variant was absent from eukaryotic DLD sequences. This suggests that the variant is unlikely to provide a strong selective advantage in the absence of phosphine fumigation.

  20. Phosphine resistance in India is characterised by a dihydrolipoamide dehydrogenase variant that is otherwise unobserved in eukaryotes

    Science.gov (United States)

    Kaur, R; Subbarayalu, M; Jagadeesan, R; Daglish, G J; Nayak, M K; Naik, H R; Ramasamy, S; Subramanian, C; Ebert, P R; Schlipalius, D I

    2015-01-01

    Phosphine (PH3) fumigation is the primary method worldwide for controlling insect pests of stored commodities. Over-reliance on phosphine, however, has led to the emergence of strong resistance. Detailed genetic studies previously identified two loci, rph1 and rph2, that interact synergistically to create a strong resistance phenotype. We compared the genetics of phosphine resistance in strains of Rhyzopertha dominica and Tribolium castaneum from India and Australia, countries having similar pest species but widely differing in pest management practices. Sequencing analysis of the rph2 locus, dihydrolipoamide dehydrogenase (dld), identified two structurally equivalent variants, Proline49>Serine (P49S) in one R. dominica strain and P45S in three strains of T. castaneum from India. These variants of the DLD protein likely affect FAD cofactor interaction with the enzyme. A survey of insects from storage facilities across southern India revealed that the P45/49S variant is distributed throughout the region at very high frequencies, in up to 94% of R. dominica and 97% of T. castaneum in the state of Tamil Nadu. The abundance of the P45/49S variant in insect populations contrasted sharply with the evolutionary record in which the variant was absent from eukaryotic DLD sequences. This suggests that the variant is unlikely to provide a strong selective advantage in the absence of phosphine fumigation. PMID:25853517

  1. 1,3-Dicarbonyl compounds as phosphine-free ligands for Pd-catalyzed Heck and Suzuki reactions

    Institute of Scientific and Technical Information of China (English)

    Xin Cui; Juan Li; Lei Liu; Qing Xiang Guo

    2007-01-01

    Some 1,3-dicarbonyl compounds (such as pentane-2,4-dione and 3-oxo-N-phenylbutanamide) were found to constitute highly efficient, yet low-priced and phosphine-free ligands for the Pd-catalyzed Heck and Suzuki reactions of aryl bromides and iodides with very high turnover numbers (ca.103-104).

  2. Synthesis of novel chiral phosphine-triazine ligand derived from α-phenylethylamine for Pd-catalyzed asymmetric allylic alkylation

    Institute of Scientific and Technical Information of China (English)

    Jia Di Huang; Xiang Ping Hu; Zhuo Zheng

    2008-01-01

    A novel chiral phosphine-triazine ligand was synthesized from chiral model reaction of Pd-catalyzed allylic alkylation of rac-l,3-diphenylprop-2-en-l-yl pivalate with dimethyl malonate, good enantioselectivity (90% e.e.) was obtained by using this ligand.

  3. Aerobic addition of secondary phosphine oxides to vinyl sulfides: a shortcut to 1-hydroxy-2-(organosulfanylethyl(diorganylphosphine oxides

    Directory of Open Access Journals (Sweden)

    Svetlana F. Malysheva

    2015-10-01

    Full Text Available Secondary phosphine oxides react with vinyl sulfides (both alkyl- and aryl-substituted sulfides under aerobic and solvent-free conditions (80 °C, air, 7–30 h to afford 1-hydroxy-2-(organosulfanylethyl(diorganylphosphine oxides in 70–93% yields.

  4. SYNTHESIS OF 1—(N—BENZYLOXYCARBONYLAMINO)ALKANEPHOSPHATES AND—PHOSPHINIC ACIDS CATALYZED BY A CATION EXCHANGE RESIN

    Institute of Scientific and Technical Information of China (English)

    ZHANGYuehua; HUANGWenqiang; 等

    1993-01-01

    An improved method is developed by using strongly acidic cation exchange resin(001×1,H+ form) as a catalyst for the synthesis of diphenyl 1-(N-benzyloxycarbonyl-amino) alkanephosphonates and 1-(N-benzyloxycarbonylamino) alkanephenyl phosphinic acids in high yields.

  5. Treatment of California stone fruit with methyl bromide or phosphine to eliminate peach twig borer, Anarsia lineatella

    Science.gov (United States)

    The goal of this project is to develop postharvest chamber fumigations that ensure complete mortality of peach twig borer (PTB) in California stone fruit exports; results from preliminary toxicological and phytotoxicological research are presented. Fumigations with 1500 ppm phosphine over a 24 h ex...

  6. Anticancer Agents: Does a Phosphonium Behave Like a Gold(I) Phosphine Complex? Let a "Smart" Probe Answer!

    Science.gov (United States)

    Ali, Moussa; Dondaine, Lucile; Adolle, Anais; Sampaio, Carla; Chotard, Florian; Richard, Philippe; Denat, Franck; Bettaieb, Ali; Le Gendre, Pierre; Laurens, Véronique; Goze, Christine; Paul, Catherine; Bodio, Ewen

    2015-06-11

    Gold phosphine complexes, such as auranofin, have been recognized for decades as antirheumatic agents. Clinical trials are now underway to validate their use in anticancer or anti-HIV treatments. However, their mechanisms of action remain unclear. A challenging question is whether the gold phosphine complex is a prodrug that is administered in an inactive precursor form or rather that the gold atom remains attached to the phosphine ligand during treatment. In this study, we present two novel gold complexes, which we compared to auranofin and to their phosphonium analogue. The chosen ligand is a phosphine-based smart probe, whose strong fluorescence depends on the presence of the gold atom. The in vitro biological action of the gold complexes and the phosphonium derivative were investigated, and a preliminary in vivo study in healthy zebrafish larvae allowed us to evaluate gold complex biodistribution and toxicity. The different analyses carried out showed that these gold complexes were stable and behaved differently from phosphonium and auranofin, both in vitro and in vivo. Two-photon microscopy experiments demonstrated that the cellular targets of these gold complexes are not the same as those of the phosphonium analogue. Moreover, despite similar IC50 values in some cancer cell lines, gold complexes displayed a low toxicity in vivo, in contrast to the phosphonium salt. They are therefore suitable for future in vivo investigations.

  7. Total Synthesis of (±)-Hirsutine: Application of Phosphine-Catalyzed Imine–Allene [4 + 2] Annulation

    Science.gov (United States)

    Villa, Reymundo A.; Xu, Qihai; Kwon, Ohyun

    2012-01-01

    The total synthesis of the indole alkaloid hirsutine has been achieved, with a key step being the application of our phosphine-catalyzed [4 + 2] annulation of an imine with ethyl α-methylallenoate. From commercially available indole-2-carboxaldehyde, the target was synthesized in 14 steps and 6.7% overall yield. PMID:22920858

  8. Total synthesis of (±)-hirsutine: application of phosphine-catalyzed imine-allene [4 + 2] annulation.

    Science.gov (United States)

    Villa, Reymundo A; Xu, Qihai; Kwon, Ohyun

    2012-09-07

    The total synthesis of the indole alkaloid hirsutine has been achieved, with a key step being the application of our phosphine-catalyzed [4 + 2] annulation of an imine with ethyl α-methylallenoate. From commercially available indole-2-carboxaldehyde, the target was synthesized in 14 steps and 6.7% overall yield.

  9. Application of monodentate secondary phosphine oxides, a new class of chiral ligands, in Ir(I)-catalyzed asymmetric imine hydrogenation

    NARCIS (Netherlands)

    Jiang, X.B.; Minnaard, A.J.; Hessen, B.; Feringa, B.L.; Duchateau, A.L.L.; Andrien, J.G.O.; Boogers, J.A.F.; de Vries, J.G.; L. L. Duschateau, A.

    2003-01-01

    Secondary phosphine oxides were prepared from R1PCl2 and R2MgBr, followed by hydrolysis. They were obtained in an enantiopure form by preparative chiral HPLC. These new monodentate ligands were tested in the iridium-catalyzed hydrogenation of imines at 25 bar. Enantioselectivities up to 76% were obt

  10. Phosphine-catalyzed [4 + 1] annulation between α,β-unsaturated imines and allylic carbonates: synthesis of 2-pyrrolines.

    Science.gov (United States)

    Tian, Junjun; Zhou, Rong; Sun, Haiyun; Song, Haibin; He, Zhengjie

    2011-04-01

    In this report, a phosphine-catalyzed [4 + 1] annulation between α,β-unsaturated imines and allylic carbonates is described. This reaction represents the first realization of catalytic [4 + 1] cyclization of 1,3-azadienes with in situ formed phosphorus ylides, which provides highly efficient and diastereoselective synthesis of 2-pyrrolines.

  11. Phosphine resistance in the rust red flour beetle, Tribolium castaneum (Coleoptera: Tenebrionidae): inheritance, gene interactions and fitness costs.

    Science.gov (United States)

    Jagadeesan, Rajeswaran; Collins, Patrick J; Daglish, Gregory J; Ebert, Paul R; Schlipalius, David I

    2012-01-01

    The recent emergence of heritable high level resistance to phosphine in stored grain pests is a serious concern among major grain growing countries around the world. Here we describe the genetics of phosphine resistance in the rust red flour beetle Tribolium castaneum (Herbst), a pest of stored grain as well as a genetic model organism. We investigated three field collected strains of T. castaneum viz., susceptible (QTC4), weakly resistant (QTC1012) and strongly resistant (QTC931) to phosphine. The dose-mortality responses of their test- and inter-cross progeny revealed that most resistance was conferred by a single major resistance gene in the weakly (3.2×) resistant strain. This gene was also found in the strongly resistant (431×) strain, together with a second major resistance gene and additional minor factors. The second major gene by itself confers only 12-20× resistance, suggesting that a strong synergistic epistatic interaction between the genes is responsible for the high level of resistance (431×) observed in the strongly resistant strain. Phosphine resistance is not sex linked and is inherited as an incompletely recessive, autosomal trait. The analysis of the phenotypic fitness response of a population derived from a single pair inter-strain cross between the susceptible and strongly resistant strains indicated the changes in the level of response in the strong resistance phenotype; however this effect was not consistent and apparently masked by the genetic background of the weakly resistant strain. The results from this work will inform phosphine resistance management strategies and provide a basis for the identification of the resistance genes.

  12. Studies on the effects of phosphine on Salmonella enterica serotype Enteritidis in culture medium and in black pepper (Piper nigrum).

    Science.gov (United States)

    Castro, M F P M; Rezende, A C B; Benato, E A; Valentini, S R T; Furlani, R P Z; Tfouni, S A V

    2011-04-01

    The effect of phosphine on Salmonella enterica serotype Enteritidis inoculated in culture medium and in black pepper grains (Piper nigrum), as well as on the reduction of the microbial load of the dried and moisturized product, was verified. The postfumigation effect was verified in inoculated samples with 0.92 and 0.97 water activity (a(w)) exposed to 6 g/m(3) phosphine for 72 h, dried to 0.67 a(w), and stored for 24, 48, and 72 h. No decreases were observed in Salmonella Enteritidis populations in culture medium when fumigant concentrations up to 6 g/m(3) were applied for 48 h at 35°C. However, the colonies showed reductions in size and atypical coloration as the phosphine concentration increased. No reduction in Salmonella counts occurred on the inoculated dried samples after fumigation. On the other hand, when phosphine at concentrations of 6 g/m(3) was applied on moisturized black pepper for 72 h, decreases in Salmonella counts of around 80% were observed. The counts of total aerobic mesophilic bacterium populations of the dried and moisturized black pepper were not affected by the fumigant treatment. The results of the postfumigation studies indicated that Salmonella Enteritidis was absent in the fumigated grains after drying and storage for 72 h, indicating a promising application for this technique. It was concluded that for Salmonella Enteritidis control, phosphine fumigation could be applied to black pepper grains before drying and the producers should rigidly follow good agricultural practices, mainly during the drying process, in order to avoid product recontamination. Additional work is needed to confirm the findings with more Salmonella serotypes and strains.

  13. Catalysis of Radical Reactions: A Radical Chemistry Perspective.

    Science.gov (United States)

    Studer, Armido; Curran, Dennis P

    2016-01-04

    The area of catalysis of radical reactions has recently flourished. Various reaction conditions have been discovered and explained in terms of catalytic cycles. These cycles rarely stand alone as unique paths from substrates to products. Instead, most radical reactions have innate chains which form products without any catalyst. How do we know if a species added in "catalytic amounts" is a catalyst, an initiator, or something else? Herein we critically address both catalyst-free and catalytic radical reactions through the lens of radical chemistry. Basic principles of kinetics and thermodynamics are used to address problems of initiation, propagation, and inhibition of radical chains. The catalysis of radical reactions differs from other areas of catalysis. Whereas efficient innate chain reactions are difficult to catalyze because individual steps are fast, both inefficient chain processes and non-chain processes afford diverse opportunities for catalysis, as illustrated with selected examples.

  14. Applications of metal-organic frameworks in heterogeneous supramolecular catalysis.

    Science.gov (United States)

    Liu, Jiewei; Chen, Lianfen; Cui, Hao; Zhang, Jianyong; Zhang, Li; Su, Cheng-Yong

    2014-08-21

    This review summarizes the use of metal-organic frameworks (MOFs) as a versatile supramolecular platform to develop heterogeneous catalysts for a variety of organic reactions, especially for liquid-phase reactions. Following a background introduction about catalytic relevance to various metal-organic materials, crystal engineering of MOFs, characterization and evaluation methods of MOF catalysis, we categorize catalytic MOFs based on the types of active sites, including coordinatively unsaturated metal sites (CUMs), metalloligands, functional organic sites (FOS), as well as metal nanoparticles (MNPs) embedded in the cavities. Throughout the review, we emphasize the incidental or deliberate formation of active sites, the stability, heterogeneity and shape/size selectivity for MOF catalysis. Finally, we briefly introduce their relevance into photo- and biomimetic catalysis, and compare MOFs with other typical porous solids such as zeolites and mesoporous silica with regard to their different attributes, and provide our view on future trends and developments in MOF-based catalysis.

  15. Nanostructured Membranes for Enzyme Catalysis and Green Synthesis of Nanoparticles

    Science.gov (United States)

    Macroporous membranes functionalized with ionizable macromolecules provide promising applications in toxic metal capture at high capacity, nanoparticle synthesis, and catalysis. Our low-pressure membrane approach is marked by reaction and separation selectivity and their tunabil...

  16. Bridging heterogeneous and homogeneous catalysis concepts, strategies, and applications

    CERN Document Server

    Li, Can

    2014-01-01

    This unique handbook fills the gap in the market for an up-to-date work that links both homogeneous catalysis applied to organic reactions and catalytic reactions on surfaces of heterogeneous catalysts.

  17. Nanostructured Membranes for Enzyme Catalysis and Green Synthesis of Nanoparticles

    Science.gov (United States)

    Macroporous membranes functionalized with ionizable macromolecules provide promising applications in toxic metal capture at high capacity, nanoparticle synthesis, and catalysis. Our low-pressure membrane approach is marked by reaction and separation selectivity and their tunabil...

  18. Selective Oxidation and Ammoxidation of Olefins by Heterogeneous Catalysis.

    Science.gov (United States)

    Grasselli, Robert K.

    1986-01-01

    Shows how the ammoxidation of olefins can be understood in terms of free radicals and surface bound organometallic intermediates. Also illustrates the close intellectual relationships between heterogeneous catalysis and organometallic chemistry. (JN)

  19. 3. International conference on catalysis in membrane reactors

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-09-01

    The 3. International Conference on Catalysis in Membrane Reactors, Copenhagen, Denmark, is a continuation of the previous conferences held in Villeurbanne 1994 and Moscow 1996 and will deal with the rapid developments taking place within membranes with emphasis on membrane catalysis. The approx. 80 contributions in form of plenary lectures and posters discuss hydrogen production, methane reforming into syngas, selectivity and specificity of various membranes etc. The conference is organised by the Danish Catalytic Society under the Danish Society for Chemical Engineering. (EG)

  20. Dedicated Beamline Facilities for Catalytic Research. Synchrotron Catalysis Consortium (SCC)

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jingguang [Columbia Univ., New York, NY; Frenkel, Anatoly [Yeshiva Univ., New York, NY (United States); Rodriguez, Jose [Brookhaven National Lab. (BNL), Upton, NY (United States); Adzic, Radoslav [Brookhaven National Lab. (BNL), Upton, NY (United States); Bare, Simon R. [UOP LLC, Des Plaines, IL (United States); Hulbert, Steve L. [Brookhaven National Lab. (BNL), Upton, NY (United States); Karim, Ayman [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Mullins, David R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Overbury, Steve [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-03-04

    Synchrotron spectroscopies offer unique advantages over conventional techniques, including higher detection sensitivity and molecular specificity, faster detection rate, and more in-depth information regarding the structural, electronic and catalytic properties under in-situ reaction conditions. Despite these advantages, synchrotron techniques are often underutilized or unexplored by the catalysis community due to various perceived and real barriers, which will be addressed in the current proposal. Since its establishment in 2005, the Synchrotron Catalysis Consortium (SCC) has coordinated significant efforts to promote the utilization of cutting-edge catalytic research under in-situ conditions. The purpose of the current renewal proposal is aimed to provide assistance, and to develop new sciences/techniques, for the catalysis community through the following concerted efforts: Coordinating the implementation of a suite of beamlines for catalysis studies at the new NSLS-II synchrotron source; Providing assistance and coordination for catalysis users at an SSRL catalysis beamline during the initial period of NSLS to NSLS II transition; Designing in-situ reactors for a variety of catalytic and electrocatalytic studies; Assisting experimental set-up and data analysis by a dedicated research scientist; Offering training courses and help sessions by the PIs and co-PIs.

  1. Low temperature phosphine fumigation of pre-chilled iceberg lettuce under insulation cover for postharvest control of western flower thrips, Frankliniella occidentalis (Thysanoptera: Thripidae).

    Science.gov (United States)

    Fumigation of chilled iceberg lettuce under an insulation cover was studied to develop economical alternatives to conduct low temperature phosphine fumigation for control of western flower thrips, Frankliniella occidentalis (Pergande), on exported lettuce. Vacuum cooled commercial iceberg lettuce o...

  2. Effect of Electronic Factor in Ru-phosphine-diamine Complexes on Selective Hydrogenation of C=C and C-O Bonds

    Institute of Scientific and Technical Information of China (English)

    ZHANG,Yu; Yu,Xiaojun; YU,Changbin; XIA,Yuqing; LI,Ruixiang; CHEN,Hua; LI,Xianjun

    2009-01-01

    A series of ruthenium complexes bearing different phosphines and diamines were synthesized and their compo-nents and structures were characterized by NMR spectra and elemental analyses. The catalytic properties of these complexes for the hydrogenation of benzylideneacetone and the mixture of acetophenone and styrene were investi-gated. The results showed that the basicity increase of phosphine or diamine dramatically facilitates the hydrogena-tion activity and selectivity to C=O double bond. On the contrary, the basicity decrease of phosphine or diamine not only slows down the catalytic activity, but also significantly suppresses the hydrogenation selectivity to C=O double bond. Based on the effect of electron factors of these complexes on the hydrogenation activity and selectiv-ity of benzylideneacetone and the mixture of styrene and acetophenone, the activation mechanism of dihydrogen in ruthenium-phosphine-diamine system was proposed.

  3. Synthesis of iridium and rhodium complexes with new chiral phosphine-NHC ligands based on 1,1'-binaphthyl framework and their application in asymmetric hydrogenation.

    Science.gov (United States)

    Gu, Peng; Zhang, Jun; Xu, Qin; Shi, Min

    2013-10-07

    The first series of chiral phosphine-imidazole carbene ligands based on a 1,1'-binaphthyl framework were synthesized from (R)-2-amine-2'-(diphenylphosphino)-1,1'-binaphthyl (1) in a four-step pathway. After deprotonation of these phosphine-imidazolium salts with LiO(t)Bu, and subsequent complexation with [Ir(COD)Cl]2 and anion exchange with NaBArF, phosphine-carbene chelated iridium complexes (R)-6a and (R)-6b were obtained. Their structures have been characterized by NMR and X-ray diffraction analysis. The NHC-phosphine rhodium complex (R)-6c has been also obtained by a similar synthetic method. These iridium complexes have been applied to catalyze the asymmetric hydrogenation of alkenes to give the corresponding products in moderate to excellent conversion (up to 99%) and moderate enantioselectivities under mild conditions (up to 61% ee).

  4. Alkynyl functionalized iminopyridine copper(I) phosphine complexes: Synthesis, spectroscopic characterization and photophysical properties

    Energy Technology Data Exchange (ETDEWEB)

    Jadhav, A.N.; Chavan, S.S., E-mail: sanjaycha2@rediffmail.com

    2014-04-15

    Some copper(I) complexes of type [Cu(L{sub 1})(PPh{sub 3}){sub 2}/(dppe)]X (1a–6a) and [Cu(L{sub 2})(PPh{sub 3}){sub 2}/(dppe)]X (1b–6b) [where L{sub 1}=N-(2-pyridylmethylene)-4-(trimethylsilylethynyl)aniline, L{sub 2}=N-(2-pyridylmethylene)-4-(phenylethynyl)aniline, PPh{sub 3}=triphenylphosphine, dppe=1,2-bis(diphenylphosphino)ethane, and X=ClO{sub 4}{sup −}, BF{sub 4}{sup −} and PF{sub 6}{sup −}] have been prepared and characterized on the basis of their elemental analyses and spectroscopic studies (IR, UV–visible, {sup 1}H NMR and {sup 31}P NMR). The representative complex of the series [Cu(L{sub 2})(PPh{sub 3}){sub 2}]ClO{sub 4}{sup −} (1b) has been characterized by single crystal X-ray diffraction which reveals that in the complex the central copper(I) ion assumes highly distorted-tetrahedral geometry. The UV–visible spectra indicate that the ancillary phosphine ligands significantly perturb the MLCT state of copper(I) complexes. Room temperature luminescence is observed for all copper(I) complexes in dichloromethane solution, indicating that alkynyl functionality on iminopyridine ligands enhances the emission property of copper(I) complexes and varies considerably with ancillary phosphine ligands. The thermal behavior of complexes revealed that copper(I) complexes with dppe ligand are thermally more stable than PPh{sub 3} complexes. All the complexes exhibit a quasireversible redox behavior corresponding to Cu(I)/Cu(II) couple and are sensitive to phosphine ligand. -- Highlights: • Synthesis of copper(I) complexes of alkynyl functionalized Schiff base. • Characterization by elemental analyses, IR, {sup 1}H NMR and {sup 31}P NMR spectral studies. • Electrochemical properties indicate a quasireversible redox behavior for all copper(I) complexes • All the copper(I) complexes exhibit intraligand (π→π{sup ⁎}) luminescence in dichloromethane.

  5. Improved Modeling of Transition Metals, Applications to Catalysis and Technetium Chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Cundari, T. R.

    2004-03-05

    There is considerable impetus for identification of aqueous OM catalysts as water is the ultimate ''green'' solvent. In collaboration with researchers at Ames Lab, we investigated effective fragment and Monte Carlo techniques for aqueous-phase hydroformylation (HyF). The Rh of the HyF catalyst is weakly aquated, in contrast to the hydride of the Rh-H bond. As the insertion of the olefin C=C into Rh-H determines the linear-to-branched aldehyde ratio, it is reasonable to infer that solvent plays an important role in regiochemistry. Studies on aqueous-phase organometallic catalysis were complemented in studies of the gas-phase reaction. A Rh-carbonyl-phosphine catalyst was investigated. Two of the most important implications of this research include (a) pseudorotation among five-coordinate intermediates is significant in HyF, and (b) CO insertion is the rate-determining step. The latter is in contrast to experimental deductions, highlighting the need for more accurate modeling. To this end, we undertook studies of (a) experimentally relevant PR{sub 3} co-ligands (PMe{sub 3}, PPh{sub 3}, P(p-PhSO{sub 3{sup -}}){sub 3}, etc.), and (b) HyF of propene. For the propylene research, simulations indicated that the linear: branched aldehyde ratio (linear is more desirable) is determined by thermodynamic discrimination of two distinct pathways. Other projects include a theory-experiment study of C-H activation by early transition metal systems, which establishes that weakly-bound adducts play a key role in activity selectivity. By extension, more selective catalysts for functionalization of methane (major component of natural gas) will require better understanding of these adducts, which are greatly affected by steric interactions with the ligands. In the de novo design of Tc complexes, we constructed (and are now testing) a coupled quantum mechanics-molecular mechanics protocol. Initial research shows it to be capable of accurately predicting structure

  6. SYNTHESIS AND PROPERTIES OF SOLUBLE AROMATIC COPOLYAMIDES CONTAINING PHOSPHINE OXIDE MOIETY

    Institute of Scientific and Technical Information of China (English)

    Xiao-ting Chen; Ming Zhang; Xu-dong Tang

    2008-01-01

    Aromatic copolyamides were synthesized by the Yamazaki phosphorylation method starting from bis(4-carboxyphenyl) phenyl phosphine oxide,terephthalic acid and 4,4'-diaminodiphenyl methane.The copolymers with inherent viscosities of 0.52-0.99 dL/g were obtained.The structures of the copolyamides were characterized by elemental analysis,FTIR and NMR.The glass transition temperatures were measured by DSC and DMA,respectively,and the results showed that the Tgs of the polymers were higher than 287℃.Thermal decomposition temperatures of the copolyamides at 5% weight loss were found in the range of 423-469℃ by TGA.Most of the copolymers were readily soluble in a variety of organic solvents such as NMP,DMAc,m-cresol and so on.The tensile experiments of the thin films showed that the polymers had good mechanical properties.

  7. Nickel Phosphine Catalysts with Pendant Amines for Electrocatalytic Oxidation of Alcohols

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, Charles J.; Wiedner, Eric S.; Roberts, John A.; Appel, Aaron M.

    2015-01-01

    Nickel phosphine complexes with pendant amines have been found to be electrocatalysts for the oxidation of primary and secondary alcohols, with turnover frequencies as high as 3.3 s-1. These complexes are the first electrocatalysts for alcohol oxidation based on non-precious metals, which will be critical for use in fuel cells. The research by CJW, ESW, and AMA was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. The research by JASR was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.

  8. Observations of the J = 10 manifold of the pure rotational band of phosphine on Saturn

    Science.gov (United States)

    Haas, M. R.; Erickson, E. F.; Goorvitch, D.; Mckibbin, D. D.; Rank, D. M.

    1986-01-01

    Saturn was observed in the vicinity of the J = 10 manifold of the pure rotational band of phosphine on 1984 July 10 and 12 from NASA's Kuiper Airborne Observatory with the facility far-infrared cooled grating spectrometer. On each night observations of the full disk plus rings were made at 4 to 6 discrete wavelengths which selectively sampled the manifold and the adjacent continuum. The previously reported detection of this manifold is confirmed. After subtraction of the flux due to the rings, the data are compared with disk-averaged models of Saturn. It is found that PH3 must be strongly depleted above the thermal inversion (approx. 70 mbar). The best fitting models consistent with other observational constaints indicate that PH3 is significantly depleted at even deeper atmospheric levels ( or = 500 mbar), implying an eddy diffusion coefficient for Saturn of 10 to the 4 cm sq/sec.

  9. Hydroformylation of olefins with cobalt/phosphonate- and cobalt/sufonate-phosphines

    Energy Technology Data Exchange (ETDEWEB)

    Martin, A.; Kant, M. [Leibniz-Institut fuer Katalyse e.V., Berlin (Germany); Giuffrida, G.; Rosano, S. [Sasol Italy S.p.A., Paderno Dugnano (Italy)

    2006-07-01

    The hydroformylation of an industrial decene mixture with cobalt/phosphonate- and cobalt/sulfonate-phosphines used as catalysts was carried out. Highest aldehyde yield of ca. 60-65 mol% beside 2-5 mol% decane, 1-5 mol% decenes and 2-5 mol% of other oxoproducts was obtained at 170 C, 160-200 bar syngas pressure and a reaction time of 12-16 h. The reminder is a fraction of non-GC-detectable heavy oligomers (15-20 %). Best olefin conversion was reached with Ph{sub 2}P(p-C{sub 6}H{sub 4}-SO{sub 3}Li) and TPPTS as ligands, best stability of biphasic system with TPPTS and Ph{sub 2}P-(CH{sub 2}){sub 3}-SO{sub 3}Li. The terminal aldehyde selectivity amounted to 36-42 mol% of the aldehyde pool. (orig.)

  10. Suzuki Reaction of Aryl Bromides Using a Phosphine-Free Magnetic Nanoparticle-Supported Palladium Catalyst

    Institute of Scientific and Technical Information of China (English)

    Nghia T. BUI; Trung B. DANG; Ha V. LE; Nam T. S. PHAN

    2011-01-01

    A palladium catalyst immobilized on superparaganetic nanoparticles was prepared with a palladium loading of 0.30 mmol/g.The catalyst was characterized using X-ray diffraction,scanning electron microscopy,transmission electron microscopy,vibrating sample magnetometry,thermogravimetric analysis,Fourier transform infrared,atomic absorption spectrophotometry,and nitrogen adsorption.The immobilized palladium catalyst was an efficient catalyst without added phosphine ligands for the Suzuki cross-coupling reaction of several aryl bromides with phenylboronic acid.The recovery of catalyst was simply by magnetic decantation in the presence of a magnet.The immobilized palladium catalyst can be reused many times without significant degradation in catalytic activity.No leaching of active palladium species into the reaction solution was detected.

  11. Electrochemical chiral recognition by microparticle coatings of Pd complexes with bridging cyclometalated phosphines

    Energy Technology Data Exchange (ETDEWEB)

    Domenech, Antonio [Departament de Quimica Analitica, Facultat de Quimica, Universitat de Valencia, Dr. Moliner 50, 46100 Burjassot, Valencia (Spain)], E-mail: antonio.domenech@uv.es; Koshevoy, Igor O.; Penno, Dirk; Ubeda, Maria Angeles [Departament de Quimica Inorganica, Facultat de Quimica, Universitat de Valencia, Dr. Moliner 50, 46100 Burjassot, Valencia (Spain)

    2008-03-10

    The palladium(II) dinuclear complex with bridging cyclometalated phosphines, {l_brace}Pd{sub 2}[{mu}-(C{sub 6}H{sub 4})PPh{sub 2}]{sub 2}({mu}-O{sub 2}CCH{sub 3}){sub 2}{r_brace} (Pd{sub 2}L{sub 2}), having a paddlewheel structure, is reversibly oxidized in CH{sub 2}Cl{sub 2} to a dinuclear palladium(III) analogue via two successive one-electron steps. Solid state voltammetry of Pd{sub 2}L{sub 2} in contact with aqueous electrolytes produce as one-electron oxidation with two competing mechanisms involving anion intercalation/anion binding between/to metal centres, chloride ions acting as inhibitors for the first pathway. R- and S-Pd{sub 2}L{sub 2} produces a significant stereoselective electrocatalytic activity with respect to the oxidation of L- and D-glutamic acid in alkaline media.

  12. Palladium(II) complexes supported by a bidentate bis(secondary)phosphine linked by pyridine

    KAUST Repository

    Winston, Matthew S.

    2014-10-01

    A series of complexes of the type (PNP-H2)PdX2 (X=Cl, Br, I) have been synthesized, where PNP-H2 is a bis(secondary)phosphine ligand linked by a pyridine, 2,6-(2\\'-(Ph(H)P)(C6H4))2(C5H3N). Due to chirality at phosphorus, the parent ligand exists as a mixture of nearly equivalent rac and meso diastereomers non-interconverting at room temperature. When ligated to Pd(II) halides, however, the diastereomeric ratio is dependent upon the halide. The chloro, bromo, and iodo complexes have been characterized crystallographically. Conformationally similar meso diastereomers of each dihalide are roughly C s symmetric in the solid state, while the rac diastereomers (identified only for X=Br, I) show substantially different solid-state conformations. © 2014 Elsevier B.V.

  13. Substrate catalysis enhances single-enzyme diffusion.

    Science.gov (United States)

    Muddana, Hari S; Sengupta, Samudra; Mallouk, Thomas E; Sen, Ayusman; Butler, Peter J

    2010-02-24

    We show that diffusion of single urease enzyme molecules increases in the presence of urea in a concentration-dependent manner and calculate the force responsible for this increase. Urease diffusion measured using fluorescence correlation spectroscopy increased by 16-28% over buffer controls at urea concentrations ranging from 0.001 to 1 M. This increase was significantly attenuated when urease was inhibited with pyrocatechol, demonstrating that the increase in diffusion was the result of enzyme catalysis of urea. Local molecular pH changes as measured using the pH-dependent fluorescence lifetime of SNARF-1 conjugated to urease were not sufficient to explain the increase in diffusion. Thus, a force generated by self-electrophoresis remains the most plausible explanation. This force, evaluated using Brownian dynamics simulations, was 12 pN per reaction turnover. These measurements demonstrate force generation by a single enzyme molecule and lay the foundation for a further understanding of biological force generation and the development of enzyme-driven nanomotors.

  14. Constant domain-regulated antibody catalysis.

    Science.gov (United States)

    Sapparapu, Gopal; Planque, Stephanie; Mitsuda, Yukie; McLean, Gary; Nishiyama, Yasuhiro; Paul, Sudhir

    2012-10-19

    Some antibodies contain variable (V) domain catalytic sites. We report the superior amide and peptide bond-hydrolyzing activity of the same heavy and light chain V domains expressed in the IgM constant domain scaffold compared with the IgG scaffold. The superior catalytic activity of recombinant IgM was evident using two substrates, a small model peptide that is hydrolyzed without involvement of high affinity epitope binding, and HIV gp120, which is recognized specifically by noncovalent means prior to the hydrolytic reaction. The catalytic activity was inhibited by an electrophilic phosphonate diester, consistent with a nucleophilic catalytic mechanism. All 13 monoclonal IgMs tested displayed robust hydrolytic activities varying over a 91-fold range, consistent with expression of the catalytic functions at distinct levels by different V domains. The catalytic activity of polyclonal IgM was superior to polyclonal IgG from the same sera, indicating that on average IgMs express the catalytic function at levels greater than IgGs. The findings indicate a favorable effect of the remote IgM constant domain scaffold on the integrity of the V-domain catalytic site and provide a structural basis for conceiving antibody catalysis as a first line immune function expressed at high levels prior to development of mature IgG class antibodies.

  15. Catalysis of Forster Resonances in Rubidium

    Science.gov (United States)

    Win, A. L.; Williams, W. D.; Sukenik, C. I.

    2016-05-01

    When two ultracold Rydberg atoms collide they may change their quantum state if the total electronic energy of the two atoms before and after the collision is about the same. This process can be made resonant by tuning the energy levels of the atoms with an electric field, via the Stark shift, so that the energy difference between incoming and outgoing channels vanishes. This condition is known as a ``Forster resonance.'' We have studied a particular Forster resonance in rubidium: 34p + 34p --> 34s + 35s, by investigating the time dependence of the state change in an ultracold environment. Furthermore, we have added 34d state atoms to the mix and observed an enhancement of 34s atom production. We attribute this enhancement to a catalysis effect whereby the 34d atoms alter the spatial distribution of 34p atoms that participate in the energy transfer interaction. We will present results from the experiment and compare them to model calculations. Present address: Department of Physics, Smith College, Northampton, MA.

  16. Ferroelectric based catalysis: Switchable surface chemistry

    Science.gov (United States)

    Kakekhani, Arvin; Ismail-Beigi, Sohrab

    2015-03-01

    We describe a new class of catalysts that uses an epitaxial monolayer of a transition metal oxide on a ferroelectric substrate. The ferroelectric polarization switches the surface chemistry between strongly adsorptive and strongly desorptive regimes, circumventing difficulties encountered on non-switchable catalytic surfaces where the Sabatier principle dictates a moderate surface-molecule interaction strength. This method is general and can, in principle, be applied to many reactions, and for each case the choice of the transition oxide monolayer can be optimized. Here, as a specific example, we show how simultaneous NOx direct decomposition (into N2 and O2) and CO oxidation can be achieved efficiently on CrO2 terminated PbTiO3, while circumventing oxygen (and sulfur) poisoning issues. One should note that NOx direct decomposition has been an open challenge in automotive emission control industry. Our method can expand the range of catalytically active elements to those which are not conventionally considered for catalysis and which are more economical, e.g., Cr (for NOx direct decomposition and CO oxidation) instead of canonical precious metal catalysts. Primary support from Toyota Motor Engineering and Manufacturing, North America, Inc.

  17. Scalable noninjection phosphine-free synthesis and optical properties of tetragonal-phase CuInSe2 quantum dots

    Science.gov (United States)

    Liu, Feng; Zhu, Jun; Xu, Yafeng; Zhou, Li; Dai, Songyuan

    2016-05-01

    Phosphine-free synthesis of CISe quantum dots (QDs) is highly desirable, yet it has been challenging. The main difficulty lies in achieving phosphine-free Se precursors. Most reported protocols for the synthesis of size-confined CISe QDs highly depend on the use of air-sensitive, toxic, and expensive alkylphosphines to prepare reactive Se precursors and to confine particle growth. Herein, we present a new amine/thiol combination-based route to Se precursors that may enable a general synthesis of phosphine-free selenide QDs. What's more, instead of the traditional ``hot-injection'' method, we also report the first one-pot noninjection synthesis of high quality CISe QDs enabled by our strategy. A very high chemical yield of ~95% is demonstrated, as well as the facile gram-scale production of monodisperse CISe QDs. By simply adjusting the amount of 1-dodecanethiol used in the synthesis, we are able to produce CISe QDs with continuous tunability of the particle size from ~2 nm to ~10 nm, and hence their intrinsic optical properties.Phosphine-free synthesis of CISe quantum dots (QDs) is highly desirable, yet it has been challenging. The main difficulty lies in achieving phosphine-free Se precursors. Most reported protocols for the synthesis of size-confined CISe QDs highly depend on the use of air-sensitive, toxic, and expensive alkylphosphines to prepare reactive Se precursors and to confine particle growth. Herein, we present a new amine/thiol combination-based route to Se precursors that may enable a general synthesis of phosphine-free selenide QDs. What's more, instead of the traditional ``hot-injection'' method, we also report the first one-pot noninjection synthesis of high quality CISe QDs enabled by our strategy. A very high chemical yield of ~95% is demonstrated, as well as the facile gram-scale production of monodisperse CISe QDs. By simply adjusting the amount of 1-dodecanethiol used in the synthesis, we are able to produce CISe QDs with continuous tunability

  18. Synthesis, characterization, and crystal structure of mercury(II) complex containing new phosphine oxide salt

    Science.gov (United States)

    Samiee, Sepideh; Kooti, Nadieh; Gable, Robert W.

    2017-02-01

    The reaction of new phosphonium-phosphine oxide salt [P(O)Ph2(CH2)2PPh2CH2C(O)C6H4NO2]Br (1) with mercury(II) iodide in a methanolic solution yielded [P(O)Ph2(CH2)2PPh2CH2C(O)C6H4NO2]2[Hg2I5Br](2). These two compounds were fully characterized by elemental analysis, IR, 1H, 31P, and 13C NMR spectra. Crystal and molecular structure of 2 has been determined by means of X-ray diffraction. In mercury compound, the phosphine oxide salt is found as a counter ion letting the mercury(II) ion to bound halides to all four coordination sites and to give dimermercurate(II) ions as the structure-constructing species. The neighboring [P(O)Ph2(CH2)2PPh2CH2C(O)C6H4NO2]2+cations are joined together by intramolecular Csbnd H⋯O hydrogen bonds to give a 1-D chain structure along the crystallographic b-axis. The [Hg2I5Br]2-anions act as cross-linkers between neighbouring strands extending the supramolecular structure into 2D layers in (110) planes as well as balances the charge of the complex. The significant effects of Csbnd H⋯X (Xdbnd O, Br and I) and π⋯π aromatic interactions play a major role in the crystal packing of compound 2.

  19. Phosphinic acid functionalized polyazacycloalkane chelators for radiodiagnostics and radiotherapeutics: unique characteristics and applications.

    Science.gov (United States)

    Notni, Johannes; Šimeček, Jakub; Wester, Hans-Jürgen

    2014-06-01

    Given the wide application of positron emission tomography (PET), positron-emitting metal radionuclides have received much attention recently. Of these, gallium-68 has become particularly popular, as it is the only PET nuclide commercially available from radionuclide generators, therefore allowing local production of PET radiotracers independent of an on-site cyclotron. Hence, interest in optimized bifunctional chelators for the elaboration of (68) Ga-labeled bioconjugates has been rekindled as well, resulting in the development of improved triazacyclononane-triphosphinate (TRAP) ligand structures. The most remarkable features of these ligands are unparalleled selectivity for Ga(III) , rapid Ga(III) complexation kinetics, extraordinarily high thermodynamic stability, and kinetic inertness of the respective Ga(III) chelates. As a result, TRAP chelators exhibit very favorable (68) Ga-labeling properties. Based on the scaffolds NOPO (1,4,7-triazacyclononane-1,4-bis[methylene(hydroxymethyl)phosphinic acid]-7-[methylene(2-carboxyethyl)phosphinic acid]) and TRAP-Pr, tailored for convenient preparation of (68) Ga-labeled monomeric and multimeric bioconjugates, a variety of novel (68) Ga radiopharmaceuticals have been synthesized. These include bisphosphonates, somatostatin receptor ligands, prostate-specific membrane antigen (PSMA)-targeting peptides, and cyclic RGD pentapeptides, for in vivo PET imaging of bone, neuroendocrine tumors, prostate cancer, and integrin expression, respectively. Furthermore, TRAP-based (68) Ga-labeled gadolinium(III) complexes have been proposed as bimodal probes for PET/MRI, and a cyclen-based analogue of TRAP-Pr has been suggested for the elaboration of targeted radiotherapeutics comprising radiolanthanide ions. Thus, polyazacycloalkane-based polyphosphinic acid chelators are a powerful toolbox for pharmaceutical research, particularly for the development of (68) Ga radiopharmaceuticals. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Bioconversion of sawdust into ethanol using dilute sulfuric acid-assisted continuous twin screw-driven reactor pretreatment and fed-batch simultaneous saccharification and fermentation.

    Science.gov (United States)

    Kim, Tae Hyun; Choi, Chang Ho; Oh, Kyeong Keun

    2013-02-01

    Ethanol production from poplar sawdust using sulfuric acid-assisted continuous twin screw-driven reactor (CTSR) pretreatment followed by simultaneous saccharification and fermentation (SSF) was investigated. Pretreatment with high acid concentration increased the cellulose content in the pretreated solid (74.9-76.9% in the range of 4.0-5.5wt.% H(2)SO(4)). The sugar content (XMG; xylan+mannan+galactan) in the treated-solid was 11.1-15.2% and 0.9-5.7% with 0.5wt.% and 7.0wt.%, respectively. The XMG recovery yield of the sample treated with 4.0wt.% H(2)SO(4) at 185°C was maximized at 88.6%. Enzymatic hydrolysis test showed a cellulose digestibility of 67.1%, 70.1%, and 73.6% with 15, 30, and 45FPU/g-cellulose, respectively. In the fed-batch SSF tests with initial enzyme addition, the ethanol yield of each stage almost reached a maximum at 28h, 48h, and 56h, respectively, with yields of 63.9% (16.5g/L), 78.4% (30.1g/L), and 81.7% (39.9g/L), respectively.

  1. A non-acid-assisted and non-hydroxyl-radical-related catalytic ozonation with ceria supported copper oxide in efficient oxalate degradation in water

    KAUST Repository

    Zhang, Tao

    2012-06-01

    Oxalate is usually used as a refractory model compound that cannot be effectively removed by ozone and hydroxyl radical oxidation in water. In this study, we found that ceria supported CuO significantly improved oxalate degradation in reaction with ozone. The optimum CuO loading amount was 12%. The molar ratio of oxalate removed/ozone consumption reached 0.84. The catalytic ozonation was most effective in a neutral pH range (6.7-7.9) and became ineffective when the water solution was acidic or alkaline. Moreover, bicarbonate, a ubiquitous hydroxyl radical scavenger in natural waters, significantly improved the catalytic degradation of oxalate. Therefore, the degradation relies on neither hydroxyl radical oxidation nor acid assistance, two pathways usually proposed for catalytic ozonation. These special characters of the catalyst make it suitable to be potentially used for practical degradation of refractory hydrophilic organic matter and compounds in water and wastewater. With in situ characterization, the new surface Cu(II) formed from ozone oxidation of the trace Cu(I) of the catalyst was found to be an active site in coordination with oxalate forming multi-dentate surface complex. It is proposed that the complex can be further oxidized by molecular ozone and then decomposes through intra-molecular electron transfer. The ceria support enhanced the activity of the surface Cu(I)/Cu(II) in this process. © 2012 Elsevier B.V.

  2. Characterization and x-ray absorption spectroscopy of ilmenite nanoparticles derived from natural ilmenite ore via acid-assisted mechanical ball-milling process

    Science.gov (United States)

    Phoohinkong, Weerachon; Pavasupree, Sorapong; Wannagon, Anucha; Sanguanpak, Samunya; Boonyarattanakalin, Kanokthip; Mekprasart, Wanichaya; Pecharapa, Wisanu

    2017-09-01

    In this work activated ilmenite nanoparticles were prepared by chemical-assisted in mechanical ball-milling process from ilmenite ore as starting raw material. The effect of milling process on their phase composition, particle size, surface morphology and local structure were investigated. Phase identification and crystalline structure of ilmenite mineral, milled samples and subsequent leached residues were characterized by x-ray diffraction (XRD). Meanwhile, the distorted octahedral structure and the oxidation state of relevant elements in ilmenite ore and activated ilmenite obtained by different process conditions were analyzed by x-ray absorption spectroscopy (XAS). Particle size and morphologies of the samples were monitored by field emission scanning electron microscope (FESEM) and transmission electron microscope (TEM). Three dominant peaks of TiO2 rutile, FeTiO3, and Fe2TiO4 are obviously adulterated in XRD patterns after mechanical milling with water and acid solution when comparing to precursor mineral. However, the contaminated phase of FeTiO3 and Fe2TiO4 was readily decreased by acid-assisted mechanical ball-milling. The enhancement in leaching process of ilmenite residue after milling can be obtained with sulfuric acid. This result suggests that iron contaminated phase could be leached from the sample resulting to the decrease in Fe environment around Ti atom. Invited talk at 5th Thailand International Nanotechnology Conference (Nano Thailand-2016), 27-29 November 2016, Nakhon Ratchasima, Thailand.

  3. Inverse Magnetic Catalysis in Bottom-Up Holographic QCD

    CERN Document Server

    Evans, Nick; Scott, Marc

    2016-01-01

    We explore the effect of magnetic field on chiral condensation in QCD via a simple bottom up holographic model which inputs QCD dynamics through the running of the anomalous dimension of the quark bilinear. Bottom up holography is a form of effective field theory and we use it to explore the dependence on the coefficients of the two lowest order terms linking the magnetic field and the quark condensate. In the massless theory, we identify a region of parameter space where magnetic catalysis occurs at zero temperature but inverse magnetic catalysis at temperatures of order the thermal phase transition. The model shows similar non-monotonic behaviour in the condensate with B at intermediate T as the lattice data. This behaviour is due to the separation of the meson melting and chiral transitions in the holographic framework. The introduction of quark mass raises the scale of B where inverse catalysis takes over from catalysis until the inverse catalysis lies outside the regime of validity of the effective descr...

  4. Kinetic evolutionary behavior of catalysis-select migration

    Institute of Scientific and Technical Information of China (English)

    Wu Yuan-Gang; Lin Zhen-Quan; Ke Jian-Hong

    2012-01-01

    We propose a catalysis-select migration driven evolution model of two-species (A- and B-species) aggregates,where one unit of species A migrates to species B under the catalysts of species C,while under the catalysts of species D the reaction will become one unit of species B migrating to species A.Meanwhile the catalyst aggregates of species C perform self-coagulation,as do the species D aggregates.We study this catalysis-select migration driven kinetic aggregation phenomena using the generalized Smoluchowski rate equation approach with C species catalysis-select migration rate kernel K(k;i,j) =Kkij and D species catalysis-select migration rate kernel J(k;i,j) =Jkij.The kinetic evolution behaviour is found to be dominated by the competition between the catalysis-select immigration and emigration,in which the competition is between JD0 and KC0 (D0 and C0 are the initial numbers of the monomers of species D and C,respectively).When JD0 - KC0 > 0,the aggregate size distribution of species A satisfies the conventional scaling form and that of species B satisfies a modified scaling form.And in the case of JDo - KCo < 0,species A and B exchange their aggregate size distributions as in the above JD0 - KC0 > 0 case.

  5. Remote plasma enhanced chemical vapor deposition of GaP with in situ generation of phosphine precursors

    Science.gov (United States)

    Choi, S. W.; Lucovsky, G.; Bachmann, K. J.

    1992-01-01

    Thin homoepitaxial films of gallium phosphide (GaP) have been grown by remote plasma enhanced chemical vapor deposition utilizing in situ-generated phosphine precursors. The GaP forming reaction is kinetically controlled with an activation energy of 0.65 eV. The increase of the growth rate with increasing radio frequency (RF) power between 20 and 100 W is due to the combined effects of increasingly complete excitation and the spatial extension of the glow discharge toward the substrate; however, the saturation of the growth rate at even higher RF power indicates the saturation of the generation rate of phosphine precursors at this condition. Slight interdiffusion of P into Si and Si into GaP is indicated from GaP/Si heterostructures grown under similar conditions as the GaP homojunctions.

  6. Remote plasma enhanced chemical vapor deposition of GaP with in situ generation of phosphine precursors

    Science.gov (United States)

    Choi, S. W.; Lucovsky, G.; Bachmann, Klaus J.

    1993-01-01

    Thin homoepitaxial films of gallium phosphide (GaP) were grown by remote plasma enhanced chemical vapor deposition utilizing in situ generated phosphine precursors. The GaP forming reaction is kinetically controlled with an activation energy of 0.65 eV. The increase of the growth rate with increasing radio frequency (rf) power between 20 and 100 W is due to the combined effects of increasingly complete excitation and the spatial extension of the glow discharge toward the substrate, however, the saturation of the growth rate at even higher rf power indicates the saturation of the generation rate of phosphine precursors at this condition. Slight interdiffusion of P into Si and Si into GaP is indicated from GaP/Si heterostructures grown under similar conditions as the GaP homojunctions.

  7. Resistance of stored-product insects to phosphine Resistência de insetos de produtos armazenados à fosfina

    Directory of Open Access Journals (Sweden)

    Marco Aurélio Guerra Pimentel

    2008-12-01

    Full Text Available The objectives of this work were to assess phosphine resistance in insect populations (Tribolium castaneum, Rhyzopertha dominica, Sitophilus zeamais and Oryzaephilus surinamensis from different regions of Brazil and to verify if the prevailing mechanism of phosphine resistance in these populations involves reduced respiration rates. Sixteen populations of T. castaneum, 15 of R. dominica, 27 of S. zeamais and eight of O. surinamensis were collected from 36 locations over seven Brazilian states. Each population was tested for resistance to phosphine, based on the response of adults to discriminating concentrations, according to FAO standard method. For each insect species, the production of carbon dioxide of the most resistant and of the most susceptible populations was inversely related to their phosphine resistance. The screening tests identified possible phosphine resistant populations. R. dominica and O. surinamensis were less susceptible to phosphine than the other two species. The populations with lower respiration rate showed a lower mortality at discriminating concentration, possibly related to a phosphine resistance mechanism. Phosphine resistance occurs in stored-product insects, in different regions of Brazil, and the resistance mechanism involves reduced respiration rate.Os objetivos deste trabalho foram avaliar a resistência à fosfina, em populações de insetos (Tribolium castaneum, Rhyzopertha dominica, Sitophilus zeamais e Oryzaephilus surinamensis, de diferentes regiões do Brasil, e verificar se o mecanismo predominante de resistência à fosfina, nessas populações, envolve a redução das taxas respiratórias. Dezesseis populações de T. castaneum, 15 de R. dominica, 27 de S. zeamais e oito de O. surinamensis foram coletadas em 36 locais de sete estados brasileiros. Cada população foi testada quanto à resistência à fosfina, com base na resposta dos adultos à concentração discriminante, de acordo com o método padr

  8. Pd-catalyzed amidation of aryl chlorides using monodentate biaryl phosphine ligands: a kinetic, computational, and synthetic investigation.

    Science.gov (United States)

    Ikawa, Takashi; Barder, Timothy E; Biscoe, Mark R; Buchwald, Stephen L

    2007-10-31

    We present results on the amidation of aryl halides and sulfonates utilizing a monodentate biaryl phosphine-Pd catalyst. Our results are in accord with a previous report that suggests that the formation of kappa(2)-amidate complexes is deleterious to the effectiveness of a catalyst for this transformation and that their formation can be prevented by the use of appropriate bidentate ligands. We now provide data that suggest that the use of certain monodentate ligands can also prevent the formation of the kappa(2)-amidate complexes and thereby generate more stable catalysts for the amination of aryl chlorides. Furthermore, computational studies shed light on the importance of the key feature(s) of the biaryl phosphines (a methyl group ortho to the phosphorus center) that enable the coupling to occur. The use of ligands that possess a methyl group ortho to the phosphorus center allows a variety of aryl and heteroaryl chlorides with various amides to be coupled in high yield.

  9. The reductive P-P coupling of primary and secondary phosphines mediated by N-heterocyclic carbenes.

    Science.gov (United States)

    Schneider, Heidi; Schmidt, David; Radius, Udo

    2015-06-25

    The dehydrogenative coupling of primary and secondary phosphines with the N-heterocyclic carbene iPr2Im (1,3-di-isopropyl-imidazolin-2-ylidene) has been reported. The dehydrogenation of R2PH affords diphosphines R2P-PR2. The reaction of iPr2Im with ArPH2 leads to the formation of NHC phosphinidene adducts iPr2Im[double bond, length as m-dash]PAr and cyclic oligophosphines P4Ar4, P5Ar5 and P6Ar6, depending on the stoichiometry used. The NHC acts in these reactions as a phosphine activator and hydrogen acceptor.

  10. The phosphine oxides Cyanex 921 and Cyanex 923 as carriers for facilitated transport of chromium (VI)-chloride aqueous solutions.

    Science.gov (United States)

    Alguacil, Francisco José; López-Delgado, Aurora; Alonso, Manuel; Sastre, Ana Maria

    2004-11-01

    The behaviour of the phosphine oxides Cyanex 921 and Cyanex 923 in the facilitated transport of chromium (VI) from chloride solutions is described. Transport is studied as a function of several variables such as stirring speeds of the aqueous phases, membrane phase diluent, hydrochloric acid concentration in the source phase and chromium and carrier concentrations. The separation of chromium (VI) from other metals presented in the source phase as well as the behaviour of phosphine oxides with respect to other neutral organophosphorous derivatives (tri-n-butylphosphate (TBP) and dibutyl butylphosphonate (DBBP)) are also investigated. Moreover, by using hydrazine sulphate in the receiving phase, Cr(VI) is immediately reduced to the less toxic Cr(III).

  11. Center for Catalysis at Iowa State University

    Energy Technology Data Exchange (ETDEWEB)

    Kraus, George A.

    2006-10-17

    The overall objective of this proposal is to enable Iowa State University to establish a Center that enjoys world-class stature and eventually enhances the economy through the transfer of innovation from the laboratory to the marketplace. The funds have been used to support experimental proposals from interdisciplinary research teams in areas related to catalysis and green chemistry. Specific focus areas included: • Catalytic conversion of renewable natural resources to industrial materials • Development of new catalysts for the oxidation or reduction of commodity chemicals • Use of enzymes and microorganisms in biocatalysis • Development of new, environmentally friendly reactions of industrial importance These focus areas intersect with barriers from the MYTP draft document. Specifically, section 2.4.3.1 Processing and Conversion has a list of bulleted items under Improved Chemical Conversions that includes new hydrogenation catalysts, milder oxidation catalysts, new catalysts for dehydration and selective bond cleavage catalysts. Specifically, the four sections are: 1. Catalyst development (7.4.12.A) 2. Conversion of glycerol (7.4.12.B) 3. Conversion of biodiesel (7.4.12.C) 4. Glucose from starch (7.4.12.D) All funded projects are part of a soybean or corn biorefinery. Two funded projects that have made significant progress toward goals of the MYTP draft document are: Catalysts to convert feedstocks with high fatty acid content to biodiesel (Kraus, Lin, Verkade) and Conversion of Glycerol into 1,3-Propanediol (Lin, Kraus). Currently, biodiesel is prepared using homogeneous base catalysis. However, as producers look for feedstocks other than soybean oil, such as waste restaurant oils and rendered animal fats, they have observed a large amount of free fatty acids contained in the feedstocks. Free fatty acids cannot be converted into biodiesel using homogeneous base-mediated processes. The CCAT catalyst system offers an integrated and cooperative catalytic

  12. High-Spin Cobalt Hydrides for Catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Holland, Patrick L. [Univ. of Rochester, NY (United States)

    2013-08-29

    Organometallic chemists have traditionally used catalysts with strong-field ligands that give low-spin complexes. However, complexes with a weak ligand field have weaker bonds and lower barriers to geometric changes, suggesting that they may lead to more rapid catalytic reactions. Developing our understanding of high-spin complexes requires the use of a broader range of spectroscopic techniques, but has the promise of changing the mechanism and/or selectivity of known catalytic reactions. These changes may enable the more efficient utilization of chemical resources. A special advantage of cobalt and iron catalysts is that the metals are more abundant and cheaper than those currently used for major industrial processes that convert unsaturated organic molecules and biofeedstocks into useful chemicals. This project specifically evaluated the potential of high-spin cobalt complexes for small-molecule reactions for bond rearrangement and cleavage reactions relevant to hydrocarbon transformations. We have learned that many of these reactions proceed through crossing to different spin states: for example, high-spin complexes can flip one electron spin to access a lower-energy reaction pathway for beta-hydride elimination. This reaction enables new, selective olefin isomerization catalysis. The high-spin cobalt complexes also cleave the C-O bond of CO2 and the C-F bonds of fluoroarenes. In each case, the detailed mechanism of the reaction has been determined. Importantly, we have discovered that the cobalt catalysts described here give distinctive selectivities that are better than known catalysts. These selectivities come from a synergy between supporting ligand design and electronic control of the spin-state crossing in the reactions.

  13. Catalysis-by-design impacts assessment

    Energy Technology Data Exchange (ETDEWEB)

    Fassbender, L L; Young, J K [Pacific Northwest Lab., Richland, WA (USA); Sen, R K [Sen (R.K.) and Associates, Washington, DC (USA)

    1991-05-01

    Catalyst researchers have always recognized the need to develop a detailed understanding of the mechanisms of catalytic processes, and have hoped that it would lead to developing a theoretical predictive base to guide the search for new catalysts. This understanding allows one to develop a set of hierarchical models, from fundamental atomic-level ab-initio models to detailed engineering simulations of reactor systems, to direct the search for optimized, efficient catalyst systems. During the last two decades, the explosions of advanced surface analysis techniques have helped considerably to develop the building blocks for understanding various catalytic reactions. An effort to couple these theoretical and experimental advances to develop a set of hierarchical models to predict the nature of catalytic materials is a program entitled Catalysis-by-Design (CRD).'' In assessing the potential impacts of CBD on US industry, the key point to remember is that the value of the program lies in developing a novel methodology to search for new catalyst systems. Industrial researchers can then use this methodology to develop proprietary catalysts. Most companies involved in catalyst R D have two types of ongoing projects. The first type, what we call market-driven R D,'' are projects that support and improve upon a company's existing product lines. Project of the second type, technology-driven R D,'' are longer term, involve the development of totally new catalysts, and are initiated through scientists' research ideas. The CBD approach will impact both types of projects. However, this analysis indicates that the near-term impacts will be on market-driven'' projects. The conclusions and recommendations presented in this report were obtained by the authors through personal interviews with individuals involved in a variety of industrial catalyst development programs and through the three CBD workshops held in the summer of 1989. 34 refs., 7 figs., 7 tabs.

  14. Biodiesel forming reactions using heterogeneous catalysis

    Science.gov (United States)

    Liu, Yijun

    Biodiesel synthesis from biomass provides a means for utilizing effectively renewable resources, a way to convert waste vegetable oils and animal fats to a useful product, a way to recycle carbon dioxide for a combustion fuel, and production of a fuel that is biodegradable, non-toxic, and has a lower emission profile than petroleum-diesel. Free fatty acid (FFA) esterification and triglyceride (TG) transesterification with low molecular weight alcohols constitute the synthetic routes to prepare biodiesel from lipid feedstocks. This project was aimed at developing a better understanding of important fundamental issues involved in heterogeneous catalyzed biodiesel forming reactions using mainly model compounds, representing part of on-going efforts to build up a rational base for assay, design, and performance optimization of solid acids/bases in biodiesel synthesis. As FFA esterification proceeds, water is continuously formed as a byproduct and affects reaction rates in a negative manner. Using sulfuric acid (as a catalyst) and acetic acid (as a model compound for FFA), the impact of increasing concentrations of water on acid catalysis was investigated. The order of the water effect on reaction rate was determined to be -0.83. Sulfuric acid lost up to 90% activity as the amount of water present increased. The nature of the negative effect of water on esterification was found to go beyond the scope of reverse hydrolysis and was associated with the diminished acid strength of sulfuric acid as a result of the preferential solvation by water molecules of its catalytic protons. The results indicate that as esterification progresses and byproduct water is produced, deactivation of a Bronsted acid catalyst like H2SO4 occurs. Using a solid composite acid (SAC-13) as an example of heterogeneous catalysts and sulfuric acid as a homogeneous reference, similar reaction inhibition by water was demonstrated for homogeneous and heterogeneous catalysis. This similarity together with

  15. Fourteen-Day Subchronic Oral Toxicity Study of 4-Nitrophenyl Methyl (Phenyl) Phosphinate in Male and Female Rats.

    Science.gov (United States)

    1982-09-01

    Lewis-- 14 a ~1 A Lewis--15 TEST SUBSTANCE 1. Chemical name: 4-Nitrophenyl Methyl (Phenyl) Phosphinate Chemical Abstract Service Registry No.: None...11.25 2. Chemical name: Polysorbate 80 (Tween 80) Chemical Abstract Service Registry No.: 9005-65-6 Molecular structure: HO(C 2 40) ( C 2 H 4 )XOH...particularly in chronic toxicity studies in experimental data. APPENDIX A (Cant) Lewis--17 3. Chemical name: Citric Acid, monohydrate Chemical Abstract Service

  16. Metal–Organic Frameworks Stabilize Mono(phosphine)–Metal Complexes for Broad-Scope Catalytic Reactions

    Energy Technology Data Exchange (ETDEWEB)

    Sawano, Takahiro; Lin, Zekai; Boures, Dean; An, Bing; Wang, Cheng; Lin, Wenbin (UC); (Xiamen)

    2016-08-10

    Mono(phosphine)–M (M–PR3; M = Rh and Ir) complexes selectively prepared by postsynthetic metalation of a porous triarylphosphine-based metal–organic framework (MOF) exhibited excellent activity in the hydrosilylation of ketones and alkenes, the hydrogenation of alkenes, and the C–H borylation of arenes. The recyclable and reusable MOF catalysts significantly outperformed their homogeneous counterparts, presumably via stabilizing M–PR3 intermediates by preventing deleterious disproportionation reactions/ligand exchanges in the catalytic cycles.

  17. Diagnostic Molecular Markers for Phosphine Resistance in U.S. Populations of Tribolium castaneum and Rhyzopertha dominica

    Science.gov (United States)

    Chen, Zhaorigetu; Schlipalius, David; Opit, George; Subramanyam, Bhadriraju; Phillips, Thomas W.

    2015-01-01

    Stored product beetles that are resistant to the fumigant pesticide phosphine (hydrogen phosphide) gas have been reported for more than 40 years in many places worldwide. Traditionally, determination of phosphine resistance in stored product beetles is based on a discriminating dose bioassay that can take up to two weeks to evaluate. We developed a diagnostic cleaved amplified polymorphic sequence method, CAPS, to detect individuals with alleles for strong resistance to phosphine in populations of the red flour beetle, Tribolium castaneum, and the lesser grain borer, Rhyzopertha dominica, according to a single nucleotide mutation in the dihydrolipoamide dehydrogenase (DLD) gene. We initially isolated and sequenced the DLD genes from susceptible and strongly resistant populations of both species. The corresponding amino acid sequences were then deduced. A single amino acid mutation in DLD in populations of T. castaneum and R. dominica with strong resistance was identified as P45S in T. castaneum and P49S in R. dominica, both collected from northern Oklahoma, USA. PCR products containing these mutations were digested by the restriction enzymes MboI and BstNI, which revealed presence or absence, respectively of the resistant (R) allele and allowed inference of genotypes with that allele. Seven populations of T. castaneum from Kansas were subjected to discriminating dose bioassays for the weak and strong resistance phenotypes. Application of CAPS to these seven populations confirmed the R allele was in high frequency in the strongly resistant populations, and was absent or at a lower frequency in populations with weak resistance, which suggests that these populations with a low frequency of the R allele have the potential for selection of the strong resistance phenotype. CAPS markers for strong phosphine resistance will help to detect and confirm resistant beetles and can facilitate resistance management actions against a given pest population. PMID:25826251

  18. Diagnostic molecular markers for phosphine resistance in U.S. populations of Tribolium castaneum and Rhyzopertha dominica.

    Science.gov (United States)

    Chen, Zhaorigetu; Schlipalius, David; Opit, George; Subramanyam, Bhadriraju; Phillips, Thomas W

    2015-01-01

    Stored product beetles that are resistant to the fumigant pesticide phosphine (hydrogen phosphide) gas have been reported for more than 40 years in many places worldwide. Traditionally, determination of phosphine resistance in stored product beetles is based on a discriminating dose bioassay that can take up to two weeks to evaluate. We developed a diagnostic cleaved amplified polymorphic sequence method, CAPS, to detect individuals with alleles for strong resistance to phosphine in populations of the red flour beetle, Tribolium castaneum, and the lesser grain borer, Rhyzopertha dominica, according to a single nucleotide mutation in the dihydrolipoamide dehydrogenase (DLD) gene. We initially isolated and sequenced the DLD genes from susceptible and strongly resistant populations of both species. The corresponding amino acid sequences were then deduced. A single amino acid mutation in DLD in populations of T. castaneum and R. dominica with strong resistance was identified as P45S in T. castaneum and P49S in R. dominica, both collected from northern Oklahoma, USA. PCR products containing these mutations were digested by the restriction enzymes MboI and BstNI, which revealed presence or absence, respectively of the resistant (R) allele and allowed inference of genotypes with that allele. Seven populations of T. castaneum from Kansas were subjected to discriminating dose bioassays for the weak and strong resistance phenotypes. Application of CAPS to these seven populations confirmed the R allele was in high frequency in the strongly resistant populations, and was absent or at a lower frequency in populations with weak resistance, which suggests that these populations with a low frequency of the R allele have the potential for selection of the strong resistance phenotype. CAPS markers for strong phosphine resistance will help to detect and confirm resistant beetles and can facilitate resistance management actions against a given pest population.

  19. Rh-Catalyzed Asymmetric Hydrogenation of a-Enol Ester Phosphonates with 1-Phenylethylamine-Derived Phosphine- Phosphoramidite Ligands

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    HU Juan, WANG Dao-yong, ZHENG Zhuo, HU Xiang-ping J. Mol. Catal. (China) 2012, 26(6), 487 ~492 Chiral phosphine-phosphoramidite ligand, ( So, S,, )-2b, was found to be highly efficient in the Rh-catalyzed asymmetric hydrogenation of various α-enol ester phosphonates, in which excellent enantioselectivities (up to 〉99% ee) and high catalyticactivity ( S/C up to 5000) were achieved.

  20. Gene interactions constrain the course of evolution of phosphine resistance in the lesser grain borer, Rhyzopertha dominica.

    Science.gov (United States)

    Schlipalius, D I; Chen, W; Collins, P J; Nguyen, T; Reilly, P E B; Ebert, P R

    2008-05-01

    Phosphine, a widely used fumigant for the protection of stored grain from insect pests, kills organisms indirectly by inducing oxidative stress. High levels of heritable resistance to phosphine in the insect pest of stored grain, Rhyzopertha dominica have been detected in Asia, Australia and South America. In order to understand the evolution of phosphine resistance and to isolate the responsible genes, we have undertaken genetic linkage analysis of fully sensitive (QRD14), moderately resistant (QRD369) and highly resistant (QRD569) strains of R. dominica collected in Australia. We previously determined that two loci, rph1 and rph2, confer high-level resistance on strain QRD569, which was collected in 1997. We have now confirmed that rph1 is responsible for the moderate resistance of strain QRD369, which was collected in 1990, and is shared with a highly resistant strain from the same geographical region, QRD569. In contrast, rph2 by itself confers only very weak resistance, either as a heterozygote or as a homozygote and was not discovered in the field until weak resistance (probably due to rph1) had become ubiquitous. Thus, high-level resistance against phosphine has evolved via stepwise acquisition of resistance alleles, first at rph1 and thereafter at rph2. The semi-dominance of rph2 together with the synergistic interaction between rph1 and rph2 would have led to rapid selection for homozygosity. A lack of visible fitness cost associated with alleles at either locus suggests that the resistance phenotype will persist in the field.