WorldWideScience

Sample records for acid type herbicides

  1. Adsorption of chloroacetanilide herbicides on soil and its components. III. Influence of clay acidity, humic acid coating and herbicide structure on acetanilide herbicide adsorption on homoionic clays.

    Science.gov (United States)

    Liu, Wei-ping; Fang, Zhuo; Liu, Hui-jun; Yang, Wei-chun

    2002-04-01

    Adsorption of chloroacetanilide herbicides on homoionic montmorillonite, soil humic acid, and their mixtures was studied by coupling batch equilibration and FT-IR analysis. Adsorption isotherms of acetochlor, alachlor, metolachlor and propachlor on Ca(2+)-, Mg(2+)-, Al(3+)- and Fe(3+)-saturated clays were well described by the Freundlich equation. Regardless of the type of exchange cations, Kf decreased in the order of metolachlor > acetolachlor > alachlor > propachlor on the same clay. FT-IR spectra showed that the carbonyl group of the herbicide molecule was involved in binding, probably via H-bond with water molecules in the clay interlayer. The type and position of substitutions around the carbonyl group may have affected the electronegativity of oxygen, thus influencing the relative adsorption of these herbicides. For the same herbicide, adsorption on clay increased in the order of Mg2+ < Ca2+ < Al3+ < or = Fe3+ which coincided with the increasing acidity of homoionic clays. Acidity of cations may have affected the protonation of water, and thus the strength of H-bond between the clay water and herbicide. Complexation of clay and humic acid resulted in less adsorption than that expected from independent adsorption by the individual constituents. The effect varied with herbicides, but the greatest decrease in adsorption occurred at a 60:40 clay-to-humic acid ratio for all the herbicides. Causes for the decreased adsorption need to be characterized to better understand adsorption mechanisms and predict adsorption from soil compositions.

  2. Influence of herbicide structure, clay acidity, and humic acid coating on acetanilide herbicide adsorption on homoionic clays.

    Science.gov (United States)

    Liu, Weiping; Gan, Jianying; Yates, Scott R

    2002-07-03

    Adsorption of chloroacetanilide herbicides on homoionic montmorillonite was studied by coupling batch equilibration and FT-IR analysis. Adsorption decreased in the order metolachlor > acetochlor > alachlor > propachlor on Ca(2+)- or Mg(2+)-saturated clays and in the order metolachlor > alachlor > acetachlor > propachlor on Al(3+)- or Fe(3+)-saturated clays. FT-IR spectra showed that the carbonyl group of the herbicide molecule was involved in bonding. For the same herbicide, adsorption of alachlor, acetachlor, and metolachlor on clay followed the order Ca(2+) approximately Mg(2+) < Al(3+) < or = Fe(3+), which coincided with the increasing acidity of homoionic clays. Adsorption of propachlor, however, showed an opposite dependence, suggesting a different governing interaction. In clay and humic acid mixtures, herbicide adsorption was less than that expected from independent additive adsorption by the individual constituents, and the deviation was dependent on the clay-to-humic acid ratio, with the greatest deviation consistently occurring at a 60:40 clay-to-humic acid ratio.

  3. Adsorption of imidazolinone herbicides on smectite-humic acid and smectite-ferrihydrite associations.

    Science.gov (United States)

    Leone, P; Nègre, M; Gennari, M; Boero, V; Celis, R; Cornejo, J

    2002-01-16

    Adsorption of imazapyr (IMZ), imazethapyr (IMZT), and imazaquin (IMZQ) was studied on two smectite-humic acid and two smectite-ferrihydrite binary systems prepared by treating a Wyoming smectite with a humic acid extracted from soil (4 and 8% w/w of the smectite) and with just-precipitated synthetic ferrihydrite (8 and 16% w/w of the smectite). Adsorption of the three herbicides on the smectite was not measurable at pH >4.5, presumably because of negative charges on the surface of the smectite. Adsorption on the smectite-humic acid systems was also not measurable, presumably because of negative charges on the surface, despite the high affinity of the three herbicides for humic acid, the adsorption order of which was IMZ smectite-ferrihydrite systems and IMZQ smectite cannot adsorb herbicides, it modifies the adsorption capacity of ferrihydrite. The mutual interaction of active phases such as humic acid, ferrihydrite, and smectite alters the characteristics of the resulting surface and hence the adsorption process. Investigations of herbicide adsorption have been seen to produce more reliable results if conducted on polyphasic systems rather than on single soil components.

  4. Assessment of Envi-Carb™ as a passive sampler binding phase for acid herbicides without pH adjustment.

    Science.gov (United States)

    Seen, Andrew; Bizeau, Oceane; Sadler, Lachlan; Jordan, Timothy; Nichols, David

    2014-05-01

    The graphitised carbon solid phase extraction (SPE) sorbent Envi-Carb has been used to fabricate glass fibre filter- Envi-Carb "sandwich" disks for use as a passive sampler for acid herbicides. Passive sampler uptake of a suite of herbicides, including the phenoxyacetic acid herbicides 4-chloro-o-tolyloxyacetic acid (MCPA), 2,4-dichlorophenoxyacetic acid (2,4-D) and 3,6-dichloro-2-methoxybenzoic acid (Dicamba), was achieved without pH adjustment, demonstrating for the first time a suitable binding phase for passive sampling of acid herbicides at neutral pH. Passive sampling experiments with Duck River (Tasmania, Australia) water spiked at 0.5 μg L(-1) herbicide concentration over a 7 d deployment period showed that sampling rates in Duck River water decreased for seven out of eight herbicides, and in the cases of 3,6-dichloro-2-pyridinecarboxylic acid (Clopyralid) and Dicamba no accumulation of the herbicides occurred in the Envi-Carb over the deployment period. Sampling rates for 4-amino-3,5,6-trichloro-2-pyridinecarboxylic acid (Picloram), 2,4-D and MCPA decreased to approximately 30% of the sampling rates in ultrapure water, whilst sampling rates for 2-(4,6-dimethylpyrimidin-2-ylcarbamoylsulfamoyl) benzoic acid, methyl ester (Sulfometuron-methyl) and 3,5,6-Trichloro-2-pyridinyloxyacetic acid (Triclopyr) were approximately 60% of the ultrapure water sampling rate. For methyl N-(2,6-dimethylphenyl)-N-(methoxyacetyl)-D-alaninate (Metalaxyl-M) there was little variation in sampling rate between passive sampling experiments in ultrapure water and Duck River water. SPE experiments undertaken with Envi-Carb disks using ultrapure water and filtered and unfiltered Duck River water showed that not only is adsorption onto particulate matter in Duck River water responsible for a reduction in herbicide sampling rate, but interactions of herbicides with dissolved or colloidal matter (matter able to pass through a 0.2 μm membrane filter) also reduces the herbicide sampling

  5. Chemoproteomic Profiling of Acetanilide Herbicides Reveals Their Role in Inhibiting Fatty Acid Oxidation.

    Science.gov (United States)

    Counihan, Jessica L; Duckering, Megan; Dalvie, Esha; Ku, Wan-Min; Bateman, Leslie A; Fisher, Karl J; Nomura, Daniel K

    2017-03-17

    Acetanilide herbicides are among the most widely used pesticides in the United States, but their toxicological potential and mechanisms remain poorly understood. Here, we have used chemoproteomic platforms to map proteome-wide cysteine reactivity of acetochlor (AC), the most widely used acetanilide herbicide, in vivo in mice. We show that AC directly reacts with >20 protein targets in vivo in mouse liver, including the catalytic cysteines of several thiolase enzymes involved in mitochondrial and peroxisomal fatty acid oxidation. We show that the fatty acids that are not oxidized, due to impaired fatty acid oxidation, are instead diverted into other lipid pathways, resulting in heightened free fatty acids, triglycerides, cholesteryl esters, and other lipid species in the liver. Our findings show the utility of chemoproteomic approaches for identifying novel mechanisms of toxicity associated with environmental chemicals like acetanilide herbicides.

  6. Electrochemical incineration of chloromethylphenoxy herbicides in acid medium by anodic oxidation with boron-doped diamond electrode

    International Nuclear Information System (INIS)

    Boye, Birame; Brillas, Enric; Marselli, Beatrice; Michaud, Pierre-Alain; Comninellis, Christos; Farnia, Giuseppe; Sandona, Giancarlo

    2006-01-01

    The electrochemical degradation of saturated solutions of herbicides 4-chloro-2-methylphenoxyacetic acid, 2-(4-chlorophenoxy)-2-methylpropionic acid and 2-(4-chloro-2-methylphenoxy)propionic acid in 1 M HClO 4 on a boron-doped diamond (BDD) thin film anode has been studied by chronoamperometry, cyclic voltammetry and bulk electrolysis. At low anodic potentials polymeric products are formed causing the fouling and deactivation of BDD. This is reactivated at high potentials when water decomposes producing hydroxyl radical as strong oxidant of organics. Electrolyses in a batch recirculation system at constant current density ≥8 mA cm -2 yielded overall decontamination of all saturated solution. The effect of current density and herbicide concentration on the degradation rate of each compound, the specific charge required for its total mineralization and instantaneous current efficiency have been investigated. Experimental results have been compared with those predicted by a theoretical model based on a fast anodic oxidation of initial herbicides, showing that at 30 mA cm -2 their degradation processes are completely controlled by mass transfer. Kinetic analysis of the change of herbicide concentration with time during electrolysis, determined by high-performance liquid chromatography, revealed that all compounds follow a pseudo first-order reaction. Aromatic intermediates and generated carboxylic acids have been identified using this technique and a general pathway for the electrochemical incineration of all herbicides on BDD is proposed

  7. Magnetic polyethyleneimine functionalized reduced graphene oxide as a novel magnetic solid-phase extraction adsorbent for the determination of polar acidic herbicides in rice

    International Nuclear Information System (INIS)

    Li, Na; Chen, Juan; Shi, Yan-Ping

    2017-01-01

    A novel magnetic polyethyleneimine modified reduced graphene oxide (Fe 3 O 4 @PEI-RGO) had been fabricated based on a self-assemble approach between positive charged magnetic polyethyleneimine (Fe 3 O 4 @PEI) and negative charged GO sheets via electrostatic interaction followed by chemical reduction of GO to RGO. The as-prepared Fe 3 O 4 @PEI-RGO was characterized by transmission electron microscopy (TEM), Fourier transform infrared spectrometry (FT-IR), X-ray diffraction (XRD), thermal gravimetric analyzer (TGA), vibrating sample magnetometer (VSM) and zeta potential analysis, and then was successfully applied to determine four phenoxy acid herbicides and dicamba in rice coupled with high performance liquid chromatography (HPLC). As a surface modifier of RGO, PEI not only effectually affected the surface property of RGO (e.g. zeta potential), but also changed the polarity of RGO and offered anion exchange groups to polar acidic herbicides, which would directly influence the type of adsorbed analytes. Compared with Fe 3 O 4 @PEI, Fe 3 O 4 /RGO and Fe 3 O 4 @PEI-GO, the as-prepared Fe 3 O 4 @PEI-RGO, integrating the superiority of PEI and RGO, showed higher extraction efficiency for polar acidic herbicides. Besides, the adsorption mechanism was investigated as well. It turned out that electrostatic interaction and π-π interaction were considered to be two major driving force for the adsorption process. Response surface methodology (RSM), a multivariate experimental design technique, was used to optimize experimental parameters affecting the extraction efficiency in detail. Under the optimal conditions, a satisfactory performance was obtained. The calibration curves were linear over the concentration ranging from 2 to 300 ng g −1 with correlation coefficients (r) between 0.9985 and 0.9994. The limits of detection (LODs) were in the range of 0.67–2 ng g −1 . The recoveries ranged from 87.41% to 102.52% with relative standard deviations (RSDs) less than 8

  8. Removal of 2,4-Dichlorophenolyxacetic acid (2,4-D) herbicide in the aqueous phase using modified granular activated carbon.

    Science.gov (United States)

    Dehghani, Mansooreh; Nasseri, Simin; Karamimanesh, Mojtaba

    2014-01-10

    Low cost 2,4-Dichlorophenolyxacetic acid (2,4-D) widely used in controlling broad-leafed weeds is frequently detected in water resources. The main objectives of this research were focused on evaluating the feasibility of using granular activated carbon modified with acid to remove 2,4-D from aqueous phase, determining its removal efficiency and assessing the adsorption kinetics. The present study was conducted at bench-scale method. The influence of different pH (3-9), the effect of contact time (3-90 min), the amount of adsorbent (0.1-0.4 g), and herbicide initial concentration (0.5-3 ppm) on 2,4-D removal efficiency by the granular activated carbon were investigated. Based on the data obtained in the present study, pH of 3 and contact time of 60 min is optimal for 2,4-D removal. 2,4-D reduction rate increased rapidly by the addition of the adsorbent and decreased by herbicide initial concentration (63%). The percent of 2,4-D reduction were significantly enhanced by decreasing pH and increasing the contact time. The adsorption of 2,4-D onto the granular activated carbon conformed to Langmuir and Freundlich models, but was best fitted to type II Langmuir model (R2 = 0.999). The second order kinetics was the best for the adsorption of 2,4-D by modified granular activated carbon with R2 > 0.99. Regression analysis showed that all of the variables in the process have been statistically significant effect (p granular activated carbon modified with acid is an appropriate method for reducing the herbicide in the polluted water resources.

  9. Urea Fertilizer and pH Influence on Sorption Process of Flumetsulam and MCPA Acidic Herbicides in a Volcanic Soil.

    Science.gov (United States)

    Palma, Graciela; Jorquera, Milko; Demanet, Rolando; Elgueta, Sebastian; Briceño, Gabriela; de la Luz Mora, María

    2016-01-01

    The aim of this study was to evaluate the influence of urea fertilizer and pH on the sorption process of two acidic herbicides, flumetsulam (2',6'-difluoro-5-methyl[1,2,4]triazolo[1,5-a]pyrimidine-2-sulfonanilide) and MCPA (4-chloro--tolyloxyacetic acid), on an Andisol. Urea reduced the adsorption of MCPA but not that of flumetsulam. The Freundlich parameter of MCPA decreased from 8.5 to 5.1 mg L kg. This finding could be attributed to an increase in dissolved organic C due to an initial increase in soil pH for urea application. The higher acidic character of MCPA compared with that of flumetsulam produced a greater hydrolysis of urea, leading to a further pH increase. A marked effect of pH on the adsorption of both herbicides was observed. The organic C distribution coefficient () values for flumetsulam were in the range of 74 to 10 L kg, while those of MCPA were in the range of 208 to 45 L kg. In the kinetic studies, the pseudo-second-order model appeared to fit the data best ( > 0.994). The initial adsorption rates () ranged from 20.00 to 4.59 mg kg h for flumetsulam and from 125.00 to 25.60 mg kg hfor MCPA. Both herbicides were adsorbed rapidly during the first stage of the sorption process, and the rates of sorption were dependent on pH. The application of the Elovich and Weber-Morris models led us to conclude that mass transfer through the boundary layer and, to a lesser degree, intraparticle diffusion were influenced by the chemical character of the herbicide. These results suggest that urea application could increase leaching of acid herbicides in soils. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  10. Magnetic polyethyleneimine functionalized reduced graphene oxide as a novel magnetic solid-phase extraction adsorbent for the determination of polar acidic herbicides in rice

    Energy Technology Data Exchange (ETDEWEB)

    Li, Na [Key Laboratory of Chemistry of Northwestern Plant Resources of the CAS and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000 (China); University of Chinese Academy of Sciences, Beijing, 100039 (China); Chen, Juan, E-mail: chenjuan@licp.cas.cn [Key Laboratory of Chemistry of Northwestern Plant Resources of the CAS and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000 (China); Shi, Yan-Ping, E-mail: shiyp@licp.cas.cn [Key Laboratory of Chemistry of Northwestern Plant Resources of the CAS and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000 (China)

    2017-01-01

    A novel magnetic polyethyleneimine modified reduced graphene oxide (Fe{sub 3}O{sub 4}@PEI-RGO) had been fabricated based on a self-assemble approach between positive charged magnetic polyethyleneimine (Fe{sub 3}O{sub 4}@PEI) and negative charged GO sheets via electrostatic interaction followed by chemical reduction of GO to RGO. The as-prepared Fe{sub 3}O{sub 4}@PEI-RGO was characterized by transmission electron microscopy (TEM), Fourier transform infrared spectrometry (FT-IR), X-ray diffraction (XRD), thermal gravimetric analyzer (TGA), vibrating sample magnetometer (VSM) and zeta potential analysis, and then was successfully applied to determine four phenoxy acid herbicides and dicamba in rice coupled with high performance liquid chromatography (HPLC). As a surface modifier of RGO, PEI not only effectually affected the surface property of RGO (e.g. zeta potential), but also changed the polarity of RGO and offered anion exchange groups to polar acidic herbicides, which would directly influence the type of adsorbed analytes. Compared with Fe{sub 3}O{sub 4}@PEI, Fe{sub 3}O{sub 4}/RGO and Fe{sub 3}O{sub 4}@PEI-GO, the as-prepared Fe{sub 3}O{sub 4}@PEI-RGO, integrating the superiority of PEI and RGO, showed higher extraction efficiency for polar acidic herbicides. Besides, the adsorption mechanism was investigated as well. It turned out that electrostatic interaction and π-π interaction were considered to be two major driving force for the adsorption process. Response surface methodology (RSM), a multivariate experimental design technique, was used to optimize experimental parameters affecting the extraction efficiency in detail. Under the optimal conditions, a satisfactory performance was obtained. The calibration curves were linear over the concentration ranging from 2 to 300 ng g{sup −1} with correlation coefficients (r) between 0.9985 and 0.9994. The limits of detection (LODs) were in the range of 0.67–2 ng g{sup −1}. The recoveries ranged from 87

  11. Enterobacter sp. I-3, a bio-herbicide inhibits gibberellins biosynthetic pathway and regulates abscisic acid and amino acids synthesis to control plant growth.

    Science.gov (United States)

    Radhakrishnan, Ramalingam; Park, Jae-Man; Lee, In-Jung

    2016-12-01

    Very few bacterial species were identified as bio-herbicides for weed control. The present research was focused to elucidate the plant growth retardant properties of Enterobacter sp. I-3 during their interaction by determining the changes in endogenous photosynthetic pigments, plant hormones and amino acids. The two bacterial isolates I-4-5 and I-3 were used to select the superior bacterium for controlling weed seeds (Echinochloa crus-galli L. and Portulaca oleracea L.) germination. The post-inoculation of I-3 (Enterobacter sp. I-3) significantly inhibited the weeds seed germination than their controls. The mechanism of bacterium induced plant growth reduction was identified in lettuce treated with I-3 bacterium and compared their effects with known chemical herbicide, trinexapac-ethyl (TE). The treatment of I-3 and TE showed a significant inhibitory effect on shoot length, leaf number, leaf length, leaf width, shoot weight, root weight and chlorophyll content in lettuce seedlings. The endogenous gibberellins (GAs) and abscisic acid (ABA) analysis showed that Enterobacter sp. I-3 treated plants had lower levels of GAs (GA 12 , GA 19 , GA 20 and GA 8 ) and GAs/ABA ratio and then, the higher level of ABA when compared to their controls. Indeed, the individual amino acids ie., aspartic acid, glutamic acid, glycine, threonine, alanine, serine, leucine, isoleucine and tyrosine were declined in TE and I-3 exposed plants. Our results suggest that the utilization of Enterobacter sp. I-3 inhibits the GAs pathway and amino acids synthesis in weeds to control their growth can be an alternative to chemical herbicides. Copyright © 2016 Elsevier GmbH. All rights reserved.

  12. Potential organic herbicides for squash production: Pelargonic acid herbicides AXXE (registered trademark) and Scythe (registered trademark)

    Science.gov (United States)

    Organic squash (Cucurbita pepo L.) producers need appropriate herbicides that can effectively provide season- long weed control. Research was conducted in southeast Oklahoma (Atoka County, Lane, OK) to determine the impact of potential organic herbicides on weed control efficacy, crop injury, and y...

  13. Simultaneous determination of low-molecular-weight organic acids and chlorinated acid herbicides in environmental water by a portable CE system with contactless conductivity detection.

    Science.gov (United States)

    Xu, Yan; Wang, Weilong; Li, Sam Fong Yau

    2007-05-01

    This report describes a method to simultaneously determine 11 low-molecular-weight (LMW) organic acids and 16 chlorinated acid herbicides within a single run by a portable CE system with contactless conductivity detection (CCD) in a poly(vinyl alcohol) (PVA)-coated capillary. Under the optimized condition, the LODs of CE-CCD ranged from 0.056 to 0.270 ppm, which were better than for indirect UV (IUV) detection of the 11 LMW organic acids or UV detection of the 16 chlorinated acid herbicides. Combined with an on-line field-amplified sample stacking (FASS) procedure, sensitivity enhancement of 632- to 1078-fold was achieved, with satisfactory reproducibility (RSDs of migration times less than 2.2%, and RSDs of peak areas less than 5.1%). The FASS-CE-CCD method was successfully applied to determine the two groups of acidic pollutants in two kinds of environmental water samples. The portable CE-CCD system shows advantages such as simplicity, cost effectiveness, and miniaturization. Therefore, the method presented in this report has great potential for onsite analysis of various pollutants at the trace level.

  14. Investigation of Amino Acids As Herbicides for Control of Orobanche minor Parasitism in Red Clover.

    Science.gov (United States)

    Fernández-Aparicio, Mónica; Bernard, Alexandre; Falchetto, Laurent; Marget, Pascal; Chauvel, Bruno; Steinberg, Christian; Morris, Cindy E; Gibot-Leclerc, Stephanie; Boari, Angela; Vurro, Maurizio; Bohan, David A; Sands, David C; Reboud, Xavier

    2017-01-01

    Certain amino acids induce inhibitory effects in plant growth due to feedback inhibition of metabolic pathways. The inhibition patterns depend on plant species and the plant developmental stage. Those amino acids with inhibitory action on specific weeds could be utilized as herbicides, however, their use for weed control has not been put into practice. Orobanche minor is a weed that parasitizes red clover. O. minor germination is stimulated by clover root exudates. The subsequent seedling is an obligated parasite that must attach quickly to the clover root to withdraw its nutrients. Early development of O. minor is vulnerable to amino acid inhibition and therefore, a series of in vitro , rhizotron, and field experiments were conducted to investigate the potential of amino acids to inhibit O. minor parasitism. In in vitro experiments it was found that among a collection of 20 protein amino acids, lysine, methionine and tryptophan strongly interfere with O. minor early development. Field research confirmed their inhibitory effect but revealed that methionine was more effective than lysine and tryptophan, and that two successive methionine applications at 308 and 543 growing degree days inhibited O. minor emergence in red clover up to 67%. We investigated additional effects with potential to influence the practical use of amino acids against broomrape weeds, whether the herbicidal effect may be reversible by other amino acids exuded by host plants or may be amplified by inducing host resistance barriers against O. minor penetration. This paper suggests that amino acids may have the potential to be integrated into biorational programs of broomrape management.

  15. Investigation of Amino Acids As Herbicides for Control of Orobanche minor Parasitism in Red Clover

    Directory of Open Access Journals (Sweden)

    Mónica Fernández-Aparicio

    2017-05-01

    Full Text Available Certain amino acids induce inhibitory effects in plant growth due to feedback inhibition of metabolic pathways. The inhibition patterns depend on plant species and the plant developmental stage. Those amino acids with inhibitory action on specific weeds could be utilized as herbicides, however, their use for weed control has not been put into practice. Orobanche minor is a weed that parasitizes red clover. O. minor germination is stimulated by clover root exudates. The subsequent seedling is an obligated parasite that must attach quickly to the clover root to withdraw its nutrients. Early development of O. minor is vulnerable to amino acid inhibition and therefore, a series of in vitro, rhizotron, and field experiments were conducted to investigate the potential of amino acids to inhibit O. minor parasitism. In in vitro experiments it was found that among a collection of 20 protein amino acids, lysine, methionine and tryptophan strongly interfere with O. minor early development. Field research confirmed their inhibitory effect but revealed that methionine was more effective than lysine and tryptophan, and that two successive methionine applications at 308 and 543 growing degree days inhibited O. minor emergence in red clover up to 67%. We investigated additional effects with potential to influence the practical use of amino acids against broomrape weeds, whether the herbicidal effect may be reversible by other amino acids exuded by host plants or may be amplified by inducing host resistance barriers against O. minor penetration. This paper suggests that amino acids may have the potential to be integrated into biorational programs of broomrape management.

  16. Enhanced degradation of Herbicide Isoproturon in wheat rhizosphere by salicylic acid.

    Science.gov (United States)

    Lu, Yi Chen; Zhang, Shuang; Miao, Shan Shan; Jiang, Chen; Huang, Meng Tian; Liu, Ying; Yang, Hong

    2015-01-14

    This study investigated the herbicide isoproturon (IPU) residues in soil, where wheat was cultivated and sprayed with salicylic acid (SA). Provision of SA led to a lower level of IPU residues in rhizosphere soil compared to IPU treatment alone. Root exudation of tartaric acid, malic acid, and oxalic acids was enhanced in rhizosphere soil with SA-treated wheat. We examined the microbial population (e.g., biomass and phospholipid fatty acid), microbial structure, and soil enzyme (catalase, phenol oxidase, and dehydrogenase) activities, all of which are associated with soil activity and were activated in rhizosphere soil of SA-treated wheat roots. We further assessed the correlation matrix and principal component to figure out the association between the IPU degradation and soil activity. Finally, six IPU degraded products (derivatives) in rhizosphere soil were characterized using ultraperformance liquid chromatography with a quadrupole-time-of-flight tandem mass spectrometer (UPLC/Q-TOF-MS/MS). A relatively higher level of IPU derivatives was identified in soil with SA-treated wheat than in soil without SA-treated wheat plants.

  17. Sarmentine, a natural herbicide from Piper species with multiple herbicide mechanisms of action

    Directory of Open Access Journals (Sweden)

    Franck Emmanuel Dayan

    2015-04-01

    Full Text Available Sarmentine, 1-(1-pyrrolidinyl-(2E,4E-2,4-decadien-1-one, is a natural amide isolated from the fruits of Piper species. The compound has a number of interesting biological properties, including its broad-spectrum activity on weeds as a contact herbicide. Initial studies highlighted a similarity in response between plants treated with sarmentine and herbicidal soaps such as pelargonic acid (nonanoic acid. However, little was known about the mechanism of action leading to the rapid desiccation of foliage treated by sarmentine. In cucumber cotyledon disc-assays, sarmentine induced rapid light-independent loss of membrane integrity at 100 µM or higher concentration, whereas 3 mM pelargonic acid was required for a similar effect. Sarmentine was between 10 and 30 times more active than pelargonic acid on wild mustard, velvetleaf, redroot pigweed and crabgrass. Additionally, the potency of 30 µM sarmentine was greatly stimulated by light, suggesting that this natural product may also interfere with photosynthetic processes. This was confirmed by observing a complete inhibition of photosynthetic electron transport at that concentration. Sarmentine also acted as an inhibitor of photosystem II on isolated thylakoid membranes by competing for the binding site of plastoquinone. This can be attributed in part to structural similarities between herbicides like sarmentine and diuron. While this mechanism of action accounts for the light stimulation of the activity of sarmentine, it does not account for its ability to destabilize membranes in darkness. In this respect, sarmentine has some structural similarity to crotonoyl-CoA, the substrate of enoyl-ACP reductase, a key enzyme in the early steps of fatty acid synthesis. Inhibitors of this enzyme, such as triclosan, cause rapid loss of membrane integrity in the dark. Sarmentine inhibited the activity of enoyl-ACP reductase, with an I50app of 18.3 µM. Therefore, the herbicidal activity of sarmentine appears to

  18. Application of natural attenuation to ground water contaminated by phenoxy acid herbicides at an old landfill in Sjoelund

    DEFF Research Database (Denmark)

    Tuxen, Nina; Ejlskov, P.; Albrechtsen, Hans-Jørgen

    2003-01-01

    Investigations of geology, hydrogeology, and ground water chemistry in the aquifer downgradient from Sjoelund Landfill, Denmark, formed the basis for an evaluation of natural attenuation as a remediation technology for phenoxy acid herbicides at the site. Concentrations of phenoxy acids were up......, such as specific metabolites, changes in enantiomeric fractions, compound-specific stable carbon isotope ratios, or microbial fingerprints....

  19. Analysis and detection of the herbicides dimethenamid and flufenacet and their sulfonic and oxanilic acid degradates in natural water

    Science.gov (United States)

    Zimmerman, L.R.; Schneider, R.J.; Thurman, E.M.

    2002-01-01

    Dimethenamid [2-chloro-N-(2,4-dimethyl-3-thienyl)-N-(2-methoxy-1-methylethyl)acetamide] and flufenacet [N-(4-fluorophenyl)-N-(1-methylethyl)-2-(5-(trifluoromethyl)-1,3,4- thiadiazol-2-yl)oxy] were isolated by C-18 solid-phase extraction and separated from their ethanesulfonic acid (ESA) and oxanilic acid (OXA) degradates during their elution using ethyl acetate for the parent compound, followed by methanol for the polar degradates. The parent compounds were detected using gas chromatography-mass spectrometry in selected-ion mode. The ESA and OXA degradates were detected using high-performance liquid chromatography-electrospray mass spectrometry (HPLC-ESPMS) in negative-ion mode. The method detection limits for a 123-mL sample ranged from 0.01 to 0.07 μg/L. These methods are compatible with existing methods and thus allow for analysis of 17 commonly used herbicides and 18 of their degradation compounds with one extraction. In a study of herbicide transport near the mouth of the Mississippi River during 1999 and 2000, dimethenamid and its ESA and OXA degradates were detected in surface water samples during the annual spring flushes. For flufenacet, the only detections at the study site were for the ESA degradates in samples collected at the peak of the herbicide spring flush in 2000. The low frequency of detections in surface water likely is due to dimethenamid and flufenacet being relatively new herbicides. In addition, detectable amounts of the stable degradates have not been detected in ground water.

  20. Degradation of the Herbicide (2,4-Dichlorophenoxyacetic Acid) Using a Photoreactor with Exciplex Lamps

    Science.gov (United States)

    Vershinin, N. O.; Sokolova, I. V.; Tchaikovskaya, O. N.

    2013-09-01

    We present the results of tests of a compact flow-through reactor for neutralization of a broad class of persistent toxic compounds. As the toxicant we used the herbicide 2,4-dichlorophenoxyacetic acid, and we used exciplex lamps with different emission wave lengths (λ ~ 222 nm and 172 nm). We show the experimental decrease in the amount of organic compounds vs. irradiation time as obtained from the absorption spectra.

  1. New synthesis of carbamate, thiocarbamate and urea type herbicides: preparation of 14C-labelled diuron and EPTC

    International Nuclear Information System (INIS)

    Volford, J.; Horvath, L.

    1981-01-01

    N,N-dialkyl-carbamic acid-trimethylsilyl-esters were synthesized starting with 14 CO 2 . The new synthesis route is simple and provides good radiochemical yield. Silyl-carbaminates directly or through carbamoyl-halogenides may be used for preparation of labelled herbicides: carbamates, thiocarbamates and ureas. (author)

  2. Degradation and enantiomeric fractionation of mecoprop in soil previously exposed to phenoxy acid herbicides - New insights for bioremediation

    Czech Academy of Sciences Publication Activity Database

    Frková, Zuzana; Johansen, A.; de Jonge, L.W.; Olsen, P.; Gosewinkel, U.; Bester, K.

    2016-01-01

    Roč. 569, November (2016), s. 1457-1465 ISSN 0048-9697 Institutional support: RVO:60077344 Keywords : phenoxy acids * nitrate-reducing conditions * herbicide biodegradation * enantioselectivity * biostimulation Subject RIV: DK - Soil Contamination ; De-contamination incl. Pesticides Impact factor: 4.900, year: 2016

  3. Herbicide Persistence in Seawater Simulation Experiments.

    Directory of Open Access Journals (Sweden)

    Philip Mercurio

    Full Text Available Herbicides are detected year-round in marine waters, including those of the World Heritage listed Great Barrier Reef (GBR. The few previous studies that have investigated herbicide persistence in seawater generally reported half-lives in the order of months, and several studies were too short to detect significant degradation. Here we investigated the persistence of eight herbicides commonly detected in the GBR or its catchments in standard OECD simulation flask experiments, but with the aim to mimic natural conditions similar to those found on the GBR (i.e., relatively low herbicide concentrations, typical temperatures, light and microbial communities. Very little degradation was recorded over the standard 60 d period (Experiment 1 so a second experiment was extended to 365 d. Half-lives of PSII herbicides ametryn, atrazine, diuron, hexazinone and tebuthiuron were consistently greater than a year, indicating high persistence. The detection of atrazine and diuron metabolites and longer persistence in mercuric chloride-treated seawater confirmed that biodegradation contributed to the breakdown of herbicides. The shortest half-life recorded was 88 d for growth-regulating herbicide 2,4-D at 31°C in the dark, while the fatty acid-inhibitor metolachlor exhibited a minimum half-life of 281 d. The presence of moderate light and elevated temperatures affected the persistence of most of the herbicides; however, the scale and direction of the differences were not predictable and were likely due to changes in microbial community composition. The persistence estimates here represent some of the first appropriate data for application in risk assessments for herbicide exposure in tropical marine systems. The long persistence of herbicides identified in the present study helps explain detection of herbicides in nearshore waters of the GBR year round. Little degradation of these herbicides would be expected during the wet season with runoff and associated

  4. Herbicide Persistence in Seawater Simulation Experiments

    Science.gov (United States)

    Mercurio, Philip; Mueller, Jochen F.; Eaglesham, Geoff; Flores, Florita; Negri, Andrew P.

    2015-01-01

    Herbicides are detected year-round in marine waters, including those of the World Heritage listed Great Barrier Reef (GBR). The few previous studies that have investigated herbicide persistence in seawater generally reported half-lives in the order of months, and several studies were too short to detect significant degradation. Here we investigated the persistence of eight herbicides commonly detected in the GBR or its catchments in standard OECD simulation flask experiments, but with the aim to mimic natural conditions similar to those found on the GBR (i.e., relatively low herbicide concentrations, typical temperatures, light and microbial communities). Very little degradation was recorded over the standard 60 d period (Experiment 1) so a second experiment was extended to 365 d. Half-lives of PSII herbicides ametryn, atrazine, diuron, hexazinone and tebuthiuron were consistently greater than a year, indicating high persistence. The detection of atrazine and diuron metabolites and longer persistence in mercuric chloride-treated seawater confirmed that biodegradation contributed to the breakdown of herbicides. The shortest half-life recorded was 88 d for growth-regulating herbicide 2,4-D at 31°C in the dark, while the fatty acid-inhibitor metolachlor exhibited a minimum half-life of 281 d. The presence of moderate light and elevated temperatures affected the persistence of most of the herbicides; however, the scale and direction of the differences were not predictable and were likely due to changes in microbial community composition. The persistence estimates here represent some of the first appropriate data for application in risk assessments for herbicide exposure in tropical marine systems. The long persistence of herbicides identified in the present study helps explain detection of herbicides in nearshore waters of the GBR year round. Little degradation of these herbicides would be expected during the wet season with runoff and associated flood plumes

  5. The Effect of Herbicides on Hydrogen Peroxide Generation in Isolated Vacuoles of Red Beet Root (Beta vulgaris L.

    Directory of Open Access Journals (Sweden)

    E.V. Pradedova

    2015-12-01

    Full Text Available Influence of herbicides on the hydrogen peroxide generation in vacuolar extracts of red beet root (Beta vulgaris L. was investigated. Belonging to different chemical classes of herbicide compounds have been used. Herbicides differ from each other in the mechanism of effects on plants. Clopyralid (aromatic acid herbicide, derivative of picolinic acid and 2.4-D (phenoxyacetic herbicide, characterized by hormone-like effects, contributed to the formation of H2O2 in vacuolar extracts. Fluorodifen (nitrophenyl ether herbicide and diuron (urea herbicide also have increased contents H2O2. These compounds inhibit the electron transport, photosynthesis, and photorespiration in sensitive plants. Herbicidal effect of glyphosate (organophosphorus herbicide is due to the inhibition of amino acid synthesis in plant cells. Glyphosate did not affect the content of H2O2 in vacuolar extracts. Herbicide dependent H2O2-generation did not occur with oxidoreductase inhibitors, potassium cyanide and sodium azide. The results suggest that the formation of ROS in the vacuoles due to activity of oxidoreductases, which could interact with herbicides.

  6. Maize, switchgrass, and ponderosa pine biochar added to soil increased herbicide sorption and decreased herbicide efficacy.

    Science.gov (United States)

    Clay, Sharon A; Krack, Kaitlynn K; Bruggeman, Stephanie A; Papiernik, Sharon; Schumacher, Thomas E

    2016-08-02

    Biochar, a by-product of pyrolysis made from a wide array of plant biomass when producing biofuels, is a proposed soil amendment to improve soil health. This study measured herbicide sorption and efficacy when soils were treated with low (1% w/w) or high (10% w/w) amounts of biochar manufactured from different feedstocks [maize (Zea mays) stover, switchgrass (Panicum vigatum), and ponderosa pine (Pinus ponderosa)], and treated with different post-processing techniques. Twenty-four hour batch equilibration measured sorption of (14)C-labelled atrazine or 2,4-D to two soil types with and without biochar amendments. Herbicide efficacy was measured with and without biochar using speed of seed germination tests of sensitive species. Biochar amended soils sorbed more herbicide than untreated soils, with major differences due to biochar application rate but minor differences due to biochar type or post-process handling technique. Biochar presence increased the speed of seed germination compared with herbicide alone addition. These data indicate that biochar addition to soil can increase herbicide sorption and reduce efficacy. Evaluation for site-specific biochar applications may be warranted to obtain maximal benefits without compromising other agronomic practices.

  7. Gas chromatographic determination of acid herbicides in surface water samples with electron-capture detection and mass spectrometric confirmation

    NARCIS (Netherlands)

    Vink, M.; Poll, J.M. van der

    1996-01-01

    The development of a multi-residue method for the determination of eight polar acidic herbicides (MCPA, MCPB, mecoprop, 2,4-D, dichlorprop, bentazone, dicamba and dikegulac) in surface water is described. The method involves an off-line solid-phase extraction (SPE) procedure prior to instrumental

  8. Methods for Rapid Screening in Woody Plant Herbicide Development

    Directory of Open Access Journals (Sweden)

    William Stanley

    2014-07-01

    Full Text Available Methods for woody plant herbicide screening were assayed with the goal of reducing resources and time required to conduct preliminary screenings for new products. Rapid screening methods tested included greenhouse seedling screening, germinal screening, and seed screening. Triclopyr and eight experimental herbicides from Dow AgroSciences (DAS 313, 402, 534, 548, 602, 729, 779, and 896 were tested on black locust, loblolly pine, red maple, sweetgum, and water oak. Screening results detected differences in herbicide and species in all experiments in much less time (days to weeks than traditional field screenings and consumed significantly less resources (<500 mg acid equivalent per herbicide per screening. Using regression analysis, various rapid screening methods were linked into a system capable of rapidly and inexpensively assessing herbicide efficacy and spectrum of activity. Implementation of such a system could streamline early-stage herbicide development leading to field trials, potentially freeing resources for use in development of beneficial new herbicide products.

  9. Occurrence and fate of the herbicide glyphosate and its degradate aminomethylphosphonic acid in the atmosphere

    Science.gov (United States)

    Chang, Feng-Chih; Simcik, M.F.; Capel, P.D.

    2011-01-01

    This is the first report on the ambient levels of glyphosate, the most widely used herbicide in the United States, and its major degradation product, aminomethylphosphonic acid (AMPA), in air and rain. Concurrent, weekly integrated air particle and rain samples were collected during two growing seasons in agricultural areas in Mississippi and Iowa. Rain was also collected in Indiana in a preliminary phase of the study. The frequency of glyphosate detection ranged from 60 to 100% in both air and rain. The concentrations of glyphosate ranged from 3 and from <0.1 to 2.5 µg/L in air and rain samples, respectively. The frequency of detection and median and maximum concentrations of glyphosate in air were similar or greater to those of the other high-use herbicides observed in the Mississippi River basin, whereas its concentration in rain was greater than the other herbicides. It is not known what percentage of the applied glyphosate is introduced into the air, but it was estimated that up to 0.7% of application is removed from the air in rainfall. Glyphosate is efficiently removed from the air; it is estimated that an average of 97% of the glyphosate in the air is removed by a weekly rainfall ≥30 mm.

  10. NOVEL CHROMATOGRAPHIC SEPARATION AND CARBON SOLID PHASE EXTRACTION OF ACETANILIDE HERBICIDE DEGRADATION PRODUCTS

    Science.gov (United States)

    Six acetanilide herbicides are currently registered for use in the U.S. Over the past several years, ethanesufonic acid (ESA) and oxanilic acid (OA) degradatoin products of these acetanilide herbicides have been found in U.S. ground waters and surface waters. "Alachlor ESA and ...

  11. A 3D-Printed, Portable, Optical-Sensing Platform for Smartphones Capable of Detecting the Herbicide 2,4-Dichlorophenoxyacetic Acid

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yijia [School; College; Zeinhom, Mohamed M. A. [School; Food; Yang, Mingming [School; Sun, Rongrong [School; Wang, Shengfu [College; Smith, Jordan N. [Health; amp, Exposure Science, Pacific Northwest National Laboratory, Richland, Washington 99352, United States; Timchalk, Charles [Health; amp, Exposure Science, Pacific Northwest National Laboratory, Richland, Washington 99352, United States; Li, Lei [School; Lin, Yuehe [School; Du, Dan [School

    2017-08-14

    Onsite rapid detection of herbicide and herbicide residuals in environmental and biological specimens is important for agriculture, environment, food safety, and health care. Traditional method for herbicide detection requires expensive laboratory equipment and a long turn-round time. In this work, we developed a single-stripe microliter plate smartphone colorimetric device for rapid and low-cost in-field test. This portable smartphone platform is capable of screening 8 samples in a microplate single-stripe. The device combined the advantages of small size (50×100×160 mm3) and low cost ($10). The platform was calibrated by using two different dye solutions, i.e. methyl blue (MB) and Rhodamine B, for green and red channels. The results showed good correlation with results attained from a traditional laboratory reader. We demonstrated the application of this platform for an herbicide, 2,4-Dichlorophenoxyacetic acid detection in the range of 1 ppb to 80 ppb. Spiked samples of tap water, rat serum, plasma and human serum were tested by our device. Recoveries obtained varied from 95.6% to 105.2% for all spiked samples using the microplate reader and from 93.7% to 106.9% using the smartphone device. This work validated that the smartphone optical sensing platform is comparable to the commercial microplate reader, it is eligible for onsite rapid and low-cost detection of herbicide for environmental evaluation and biological monitoring.

  12. Photostabilization of the herbicide norflurazon microencapsulated with ethylcellulose in the soil-water system

    Energy Technology Data Exchange (ETDEWEB)

    Sopena, Fatima, E-mail: fsopenav@irnase.csic.es [Institute of Natural Resources and Agrobiology (CSIC), Reina Mercedes 10, Apdo 1052, 41080 Seville, ES (Spain); Villaverde, Jaime; Maqueda, Celia; Morillo, Esmeralda [Institute of Natural Resources and Agrobiology (CSIC), Reina Mercedes 10, Apdo 1052, 41080 Seville, ES (Spain)

    2011-11-15

    Highlights: {yields} Herbicide photodegradation studies using ethylcellulose-microencapsulated formulations (ECF) in soil and water. {yields} Greater herbicide photo-protection observed from EFC than from its commercial form. {yields} Photo-protective effect due to the gradual herbicide release and the presence of ethylcellulose. {yields} Herbicide photo-stability conditioned by soil colloidal components, especially by goethite and humic acids. {yields} EFC could reduce the field herbicide losses by photolysis. - Abstract: Ethylcellulose-microencapsulated formulations (ECFs) of norflurazon have been shown to reduce leaching, maintaining a threshold concentration in the topsoil than the commercial formulation (CF). Since photodegradation contributes to field dissipation of norflurazon, the objective of the present work was to study if such formulations can also protect from its photodescomposition. For this purpose, aqueous solutions of CF and ECFs, containing the most important soil components (goethite, humic and fulvic acids and montmorillonite) were tested. To get a more realistic approach, studies in soil were also performed. The results were well explained by a simple first order model. DT{sub 50} value was 3 h for CF under irradiation, which was considerably lower than those corresponding to the systems where ECF was used (35 h for ECF; 260 h for ECF-goethite; 53 h for ECF-humic acids; 33 h for ECF-montmorillonite; and 28 h for ECF-fulvic acids). ECF protected against photodegradation in both aqueous solution and soil due to the gradual release of the herbicide, which reduced the herbicide available to be photodegraded. These lab-scale findings proved that ECF could reduce the herbicide dosage, minimizing its photolysis, which would be especially advantageous during the first hours after foliar and soil application.

  13. Photostabilization of the herbicide norflurazon microencapsulated with ethylcellulose in the soil-water system

    International Nuclear Information System (INIS)

    Sopena, Fatima; Villaverde, Jaime; Maqueda, Celia; Morillo, Esmeralda

    2011-01-01

    Highlights: → Herbicide photodegradation studies using ethylcellulose-microencapsulated formulations (ECF) in soil and water. → Greater herbicide photo-protection observed from EFC than from its commercial form. → Photo-protective effect due to the gradual herbicide release and the presence of ethylcellulose. → Herbicide photo-stability conditioned by soil colloidal components, especially by goethite and humic acids. → EFC could reduce the field herbicide losses by photolysis. - Abstract: Ethylcellulose-microencapsulated formulations (ECFs) of norflurazon have been shown to reduce leaching, maintaining a threshold concentration in the topsoil than the commercial formulation (CF). Since photodegradation contributes to field dissipation of norflurazon, the objective of the present work was to study if such formulations can also protect from its photodescomposition. For this purpose, aqueous solutions of CF and ECFs, containing the most important soil components (goethite, humic and fulvic acids and montmorillonite) were tested. To get a more realistic approach, studies in soil were also performed. The results were well explained by a simple first order model. DT 50 value was 3 h for CF under irradiation, which was considerably lower than those corresponding to the systems where ECF was used (35 h for ECF; 260 h for ECF-goethite; 53 h for ECF-humic acids; 33 h for ECF-montmorillonite; and 28 h for ECF-fulvic acids). ECF protected against photodegradation in both aqueous solution and soil due to the gradual release of the herbicide, which reduced the herbicide available to be photodegraded. These lab-scale findings proved that ECF could reduce the herbicide dosage, minimizing its photolysis, which would be especially advantageous during the first hours after foliar and soil application.

  14. Selectivity of herbicides in Camelina (Camelina sativa (L. Crtz.

    Directory of Open Access Journals (Sweden)

    Scheliga, Maria

    2016-02-01

    Full Text Available Camelina (Camelina sativa (L. Crtz. is a cruciferous plant. As an oilseed crop camelina is mainly grown for oil production. After the 1960s, however, the cultivation has become less important. Only in recent years, interest in this culture was awakened in the search for new sources of omega 3 fatty acids, natural antioxidants and a potential crop for the production of biofuels. The use of camelina oil for different purposes within the framework of the material use of renewable raw materials is of particular interest due to the high levels of linoleic and linolenic acid. For the establishment of camelina as a crop in agricultural crop rotation systems weed control should not be disregarded despite the rather good competitive ability against weeds. Based on greenhouse experiments a field trial in 2015 with different herbicide strategies was carried out. Besides Butisan Top (metazachlor + quinmerac, Devrinol FL (napropamide and Stomp Aqua (pendimethalin and also Betasana SC (phenmedipham has been tested in various amounts and combinations. Using assessments to weed density and herbicide tolerance different herbicide strategies were compared with each other. Though, it is difficult to find a compromise between satisfactory herbicidal effect and a slight injury to the crop plant. The herbicide selection, the application rate and the combination of different herbicides have an effect on the crop. To confirm the data obtained further tests are necessary.

  15. The effects of 2,4-dichlorophenoxy acetic acid and isoproturon herbicides on the mitotic activity of wheat (Triticum aestivum L.) root tips

    OpenAIRE

    KUMAR, Sanjay; *, -; ARYA, Shashi Kiran; ROY, Bijoy Krishna; SINGH, Atul Kumar

    2014-01-01

    The effects of the herbicides 2,4-dichlorophenoxy acetic acid and isoproturon on 3 wheat (Triticum aestivum L.) varieties (HUW 234, HUW 468, and HUW 533) were studied with regards to mitotic abnormalities and chromosomal behavior. Pre-soaked seeds were treated with both herbicides at concentrations of 50-1200 ppm. Both 2,4-D and isoproturon were highly mito-inhibitory and induced chromosomal abnormalities, such as precocious movement, stickiness, and chromosome bridges, with and without lagga...

  16. Mineralization of herbicide 3,6-dichloro-2-methoxybenzoic acid in aqueous medium by anodic oxidation, electro-Fenton and photoelectro-Fenton

    International Nuclear Information System (INIS)

    Brillas, Enric; Banos, Miguel Angel; Garrido, Jose Antonio

    2003-01-01

    The mineralization of acidic aqueous solutions with 230 and 115 ppm of herbicide 3,6-dichloro-2-methoxybenzoic acid (dicamba) in 0.05 M Na 2 SO 4 of pH 3.0 has been studied by electro-Fenton and photoelectro-Fenton using a Pt anode and an O 2 -diffusion cathode, where oxidizing hydroxyl radicals are produced from Fenton's reaction between added Fe 2+ and H 2 O 2 generated by the cathode. While electro-Fenton only yields 60-70% mineralization, photoelectro-Fenton allows a fast and complete depollution of herbicide solutions, even at low currents, by the action of UV irradiation. In both treatments, the initial chlorine is rapidly released to the medium as chloride ion. Comparative electrolyses by anodic oxidation in the absence and presence of electrogenerated H 2 O 2 give very poor degradation. The dicamba decay follows a pseudo-first-order reaction, as determined by reverse-phase chromatography. Formic, maleic and oxalic acids have been detected in the electrolyzed solutions by ion-exclusion chromatography. In electro-Fenton, all formic acid is transformed into CO 2 , and maleic acid is completely converted into oxalic acid, remaining stable Fe 3+ -oxalato complexes in the solution. The fast mineralization of such complexes by UV light explains the highest oxidative ability of photoelectro-Fenton

  17. Photosynthetic Performance of the Imidazolinone Resistant Sunflower Exposed to Single and Combined Treatment by the Herbicide Imazamox and an Amino Acid Extract

    Directory of Open Access Journals (Sweden)

    Dobrinka Anastasova Balabanova

    2016-10-01

    Full Text Available The herbicide imazamox may provoke temporary yellowing and growth retardation in IMI-R sunflower hybrids, more often under stressful environmental conditions. Although photosynthetic processes are not the primary sites of imazamox action, they might be influenced; therefore, more information about the photosynthetic performance of the herbicide-treated plants could be valuable for a further improvement of the Clearfield technology. Plant biostimulants have been shown to ameliorate damages caused by different stress factors on plants, but very limited information exists about their effects on herbicide-stressed plants. In order to characterize photosynthetic performance of imazamox-treated sunflower IMI-R plants, we carried out experiments including both single and combined treatments by imazamox and a plant biostimulants containing amino acid extract. We found that imazamox application in a rate of 132 μg per plant (equivalent of 40 g active ingredient ha-1 induced negative effects on both light-light dependent photosynthetic redox reactions and leaf gas exchange processes, which was much less pronounced after the combined application of imazamox and amino acid extract.

  18. Derivatisation/solid-phase microextraction followed by gas chromatography-mass spectrometry for the analysis of phenoxy acid herbicides in aqueous samples

    DEFF Research Database (Denmark)

    Nilsson, Torben; Baglio, Daniela; Galdo-Miguez, Isabel

    1998-01-01

    Different combinations of derivatisation and solid-phase microextraction followed by gas chromatography-mass spectrometry were optimised and evaluated for the analysis of phenoxy acid herbicides in water. The most successful derivatisation approach was aqueous-phase derivatisation with benzyl...

  19. A 3D-Printed, Portable, Optical-Sensing Platform for Smartphones Capable of Detecting the Herbicide 2,4-Dichlorophenoxyacetic Acid.

    Science.gov (United States)

    Wang, Yijia; Zeinhom, Mohamed M A; Yang, Mingming; Sun, Rongrong; Wang, Shengfu; Smith, Jordan N; Timchalk, Charles; Li, Lei; Lin, Yuehe; Du, Dan

    2017-09-05

    Onsite rapid detection of herbicides and herbicide residuals in environmental and biological specimens are important for agriculture, environmental concerns, food safety, and health care. The traditional method for herbicide detection requires expensive laboratory equipment and a long turnaround time. In this work, we developed a single-stripe microliter plate smartphone-based colorimetric device for rapid and low-cost in-field tests. This portable smartphone platform is capable of screening eight samples in a single-stripe microplate. The device combined the advantages of small size (50 × 100 × 160 mm 3 ) and low cost ($10). The platform was calibrated by using two different dye solutions, i.e. methyl blue (MB) and rhodamine B, for the red and green channels. The results showed good correlation with results attained from a traditional laboratory reader. We demonstrated the application of this platform for detection of the herbicide 2,4-dichlorophenoxyacetic acid in the range of 1 to 80 ppb. Spiked samples of tap water, rat serum, plasma, and human serum were tested by our device. Recoveries obtained varied from 95.6% to 105.2% for all of the spiked samples using the microplate reader and from 93.7% to 106.9% for all of the samples using the smartphone device. This work validated that the smartphone optical-sensing platform is comparable to the commercial microplate reader; it is eligible for onsite, rapid, and low-cost detection of herbicides for environmental evaluation and biological monitoring.

  20. EFFECT OF CRUDE CASSAVA WATER EXTRACT AS A NATURAL HERBICIDE ON PROXIMATE COMPOSITION AND BIOACCUMULATION OF HYDROCYANIC ACID IN FOOD COMPONENTS OF COWPEA -VIGNA UNGUICULATA (L WALP

    Directory of Open Access Journals (Sweden)

    Olajumoke Oke FAYINMINNU

    2013-06-01

    Full Text Available This study was a field trial of two experiments to examine the effect of crude cassava water extract (CCWE as a natural post-emergence herbicide on nutritional quality and bioaccumulation of hydrocyanic acid in cowpea seeds. The spraying of CCWE on cowpea plants was carried out weekly for 5weeks. Treatments of CCWE at 25 and 50% concentrations of MS6 (Manihot Selection, TMS30555 (Tropical Manihot Selection and Bulk CCWE (different cassava varieties, hand weeded and unweeded (controls were laid in randomised complete block design with three replications respectively. At maturity, dry samples of cowpea `Ife brown` seeds were ground to fine powder and the proximate composition and bioaccumulation of hydrocyanic acid in the two experiments were determined. Significant variations (p0.05 among the herbicide treatments. It was therefore recommended that CCWE could be used as a natural post-emergence herbicide in cowpea production without altering the nutritional quality and residue of hydrocyanic acid in cowpea seeds.

  1. Selectivity and stability of herbicides and herbicide combinations for the grain yield of maize (Zea Mays L.

    Directory of Open Access Journals (Sweden)

    T. Barakova

    2016-09-01

    Full Text Available Abstract. The research was conducted during 2012 - 2014 on pellic vertisol soil type. Under investigation was cycloxydim tolerant maize hybrid Ultrafox duo (Zea mays L.. Factor A included the years of investigation. Factor B included no treated check and 3 soil-applied herbicides – Adengo 465 SC (isoxaflutol + tiencarbazon – 440 ml/ha, Wing P (pendimethalin + dimethenamid – 4 l/ha and Lumax 538 SC (S-metolachlor + terbuthylazine + mesotrione – 4 l/ha. Factor C included no treated check and 5 foliar-applied herbicides – Stellar 210 SL (topramezon + dicamba – 1 l/ha, Principal plus (nicosulfuron + rimsulfuron + dicamba – 380 g/ha, Ventum WG (foramsulfuron + iodosulfuron – 150 g/ha, Monsun active OD (foramsulfuron + tiencarbazon – 1.5 l/ha and Laudis OD (tembotrione – 2 l/ha. In addition to these variants by conventional technology for maize growing one variant by Duo system technology is also included in the experiment. It includes soil-applied herbicide Merlin flex 480 SC (isoxaflutole – 420 g/ha and tank mixture of antigraminaceous herbicide Focus ultra (cycloxydim - 2 l/ha + antibroadleaved herbicide Kalam (tritosulfuron + dicamba – 300 g/ha. It is found that herbicide combination of soil-applied herbicide Merlin flex with tank mixture Focus ultra + Kalam by Duo system technology leads to obtaining high grain yield. High yields of maize grain are also obtained by herbicide combinations Lumax + Principal plus, Lumax + Laudis and Wing + Principal plus. The most unstable are the non-treated check and single use of soilapplied herbicides Adengo, Wing and Lumax. Technologically the most valuable are herbicide combination Merlin flex + Focus ultra + Kalam by Duo system technology, followed by combinations of foliar-applied herbicides Principal plus and Laudis with soil-applied herbicides Adengo, Wing and Lumax by conventional technology. Single use of herbicides has low estimate due to must to combine soil-applied with foliar

  2. Comparative environmental impacts of glyphosate and conventional herbicides when used with glyphosate-tolerant and non-tolerant crops

    International Nuclear Information System (INIS)

    Mamy, Laure; Gabrielle, Benoit; Barriuso, Enrique

    2010-01-01

    The introduction of glyphosate-tolerant (GT) crops is expected to mitigate the environmental contamination by herbicides because glyphosate is less persistent and toxic than the herbicides used on non-GT crops. Here, we compared the environmental balances of herbicide applications for both crop types in three French field trials. The dynamic of herbicides and their metabolites in soil, groundwater and air was simulated with PRZM model and compared to field measurements. The associated impacts were aggregated with toxicity potentials calculated with the fate and exposure model USES for several environmental endpoints. The impacts of GT systems were lower than those of non-GT systems, but the accumulation in soils of one glyphosate metabolite (aminomethylphosphonic acid) questions the sustainability of GT systems. The magnitude of the impacts depends on the rates and frequency of glyphosate application being highest for GT maize monoculture and lowest for combination of GT oilseed rape and non-GT sugarbeet crops. - The impacts of herbicide applications on glyphosate-tolerant crops could be higher than expected due to the accumulation of a metabolite of glyphosate in soils.

  3. Comparative environmental impacts of glyphosate and conventional herbicides when used with glyphosate-tolerant and non-tolerant crops

    Energy Technology Data Exchange (ETDEWEB)

    Mamy, Laure, E-mail: laure.mamy@versailles.inra.f [INRA-AgroParisTech, UMR 1091 Environnement et Grandes Cultures, 78850 Thiverval-Grignon (France); Gabrielle, Benoit, E-mail: benoit.gabrielle@agroparistech.f [INRA-AgroParisTech, UMR 1091 Environnement et Grandes Cultures, 78850 Thiverval-Grignon (France); Barriuso, Enrique, E-mail: barriuso@grignon.inra.f [INRA-AgroParisTech, UMR 1091 Environnement et Grandes Cultures, 78850 Thiverval-Grignon (France)

    2010-10-15

    The introduction of glyphosate-tolerant (GT) crops is expected to mitigate the environmental contamination by herbicides because glyphosate is less persistent and toxic than the herbicides used on non-GT crops. Here, we compared the environmental balances of herbicide applications for both crop types in three French field trials. The dynamic of herbicides and their metabolites in soil, groundwater and air was simulated with PRZM model and compared to field measurements. The associated impacts were aggregated with toxicity potentials calculated with the fate and exposure model USES for several environmental endpoints. The impacts of GT systems were lower than those of non-GT systems, but the accumulation in soils of one glyphosate metabolite (aminomethylphosphonic acid) questions the sustainability of GT systems. The magnitude of the impacts depends on the rates and frequency of glyphosate application being highest for GT maize monoculture and lowest for combination of GT oilseed rape and non-GT sugarbeet crops. - The impacts of herbicide applications on glyphosate-tolerant crops could be higher than expected due to the accumulation of a metabolite of glyphosate in soils.

  4. Herbicide Orange Site Characterization Study, Eglin AFB

    Science.gov (United States)

    1987-01-01

    F THIS PAGE Availabilit o this r is sp f o.n" the reverse of fo cove* . - .’.r. 717 CSAT CO ES ’SU JEC TE MS Coninu onrevrseif ece~ar an idntiy b...of Hardstand 7 and Surface Water Drainages ......... 4 3 Hardstand 7 Herbicide Oran&e Storage Locations .............. 5 4 Concentrations (in ppb) of...insoluble in water . The formula contained an approximate 50/50 mixture of the herbicides 2,4-dichlorophenoxyacetic acid (2,4,-D) and 2,4,5

  5. Quaternary herbicides retention by the amendment of acid soils with a bentonite-based waste from wineries.

    Science.gov (United States)

    Pateiro-Moure, M; Nóvoa-Muñoz, J C; Arias-Estévez, M; López-Periago, E; Martínez-Carballo, E; Simal-Gándara, J

    2009-05-30

    The agronomic utility of a solid waste, waste bentonite (WB), from wine companies was assessed. In this sense, the natural characteristics of the waste were measured, followed by the monitoring of its effects on the adsorption/desorption behaviour of three quaternary herbicides in acid soils after the addition of increasing levels of waste. This was done with the intention of studying the effect of the added organic matter on their adsorption. The high content in C (294 g kg(-1)), N (28 g kg(-1)), P (584 mg kg(-1)) and K (108 g kg(-1)) of WB turned it into an appropriate amendment to increase soil fertility, solving at the same time its disposal. WB also reduced the potential Cu phytotoxicity due to a change in Cu distribution towards less soluble fractions. The adsorption of the herbicides paraquat, diquat and difenzoquat by acid soils amended with different ratios of WB was measured. In all cases, Langmuir equation was fitted to the data. Paraquat (PQ) and diquat (DQ) were adsorbed and retained more strongly than difenzoquat (DFQ) in the acid soil studied. However, the lowest retention of DFQ in an acid soil can be increased by amendment with organic matter through a solid waste from wineries, and it is enough for duplicate retention a dosage rate of 10t/ha. Anyway, detritivores ecology can still be affected. Detritivores are the organisms that consume organic material, and in doing so contribute to decomposition and the recycling of nutrients. The term can also be applied to certain bottom-feeders in wet environments, which play a crucial role in benthic ecosystems, forming essential food chains and participating in the nitrogen cycle.

  6. Selectivity and stability of new herbicides and herbicide combinations for the seed yields of some field crops I. Effect at Coriander (Coriandrum Sativum L.)

    OpenAIRE

    G. Delchev

    2016-01-01

    Abstract. . The research was conducted during 2013 – 2015 on pellic vertisol soil type. Under investigation was Bulgarian coriander cultivar Lozen 1 (Coriandrum sativum L.). The purpose of the investigation was to establish the selectivity and stability of some herbicides, herbicide combinations and herbicide tank mixtures on the coriander. Factor A included the years of investigation. Factor B included no treated check, 6 soil-applied herbicides – Tendar EC, Silba SC, Sharpen 33 EC,...

  7. Discharge of landfill leachate to streambed sediments impacts the mineralization potential of phenoxy acid herbicides depending on the initial abundance of tfdA gene classes

    DEFF Research Database (Denmark)

    Pazarbasi, Meric Batioglu; Milosevic, Nemanja; Malaguerra, Flavio

    2013-01-01

    discharge to SM3, and lower herbicide mass discharges to SM1 and SM2 were determined due to groundwater discharge rates and herbicide concentrations. SM1-sediment with the lowest abundance of tfdA gene classes had the slowest mineralization, whereas SM2- and SM3-sediments with more abundant tfdA genes had......To understand the role of abundance of tfdA gene classes belonging to β- and γ-proteobacteria on phenoxy acid herbicide degradation, streambed sediments were sampled around three seepage meters (SMs) installed in a landfill-impacted groundwater–surface water interface. Highest herbicide mass...... faster mineralization. The observed difference in mineralization rates between discharge zones was simulated by a Monod-based kinetic model, which confirmed the role of abundance of tfdA gene classes. This study suggests presence of specific degraders adapted to slow growth rate and high yield strategy...

  8. Glufosinate (phosphinothricin), a natural amino acid with unexpected herbicidal properties.

    Science.gov (United States)

    Hoerlein, G

    1994-01-01

    Glufosinate ammonium (phosphinothricin ammonium) (GLA) is the active ingredient of Basta and several other herbicides used worldwide. It is produced as part of the tripeptide L-phosphinothricyl-L-alanyl-L-alanin, which was first isolated from Streptomyces viridichromogenes or Streptomyces hygroscopicus. Its structure is confirmed by degradation and synthesis. Several processes for the preparation of D,L- and L-phosphinothricin are described. Glufosinate is a structural analog of glutamate and inhibits the glutamine synthetase. The result is a rapid build-up of a high ammonia level and a concomitant depletion of glutamine and several other amino acids in the plant. These effects are accompanied by a rapid decline of photosynthetic CO2-fixation and are followed by chlorosis and desiccation. The results of numerous toxicological studies show that glufosinate ammonium and its commercial formulations are safe for users and consumers under the conditions of recommended use. The fast and complete degradation in soil and surface water prevents movement of residues into groundwater. The toxicological threshold levels for all the nontarget organisms tested are well above the potential exposure levels and therefore do not reflect any hazard for nontarget organisms in the ecosystem. Basta is a nonselective foliar applied herbicide for the control of undesirable mono- and dicotyledonous plants in orchards, vineyards, and plantations for minimum tillage, and as a harvest aid. A synthetic phosphinothricin acetyltransferase (PAT) gene has been introduced via Agrobacterium tumefaciens into dicot crops, such as like tobacco, tomato, spring and winter rapeseed, alfalfa, and several horticultural crops. The PAT gene was also successfully introduced into maize protoplasts that could be regenerated into fertile plants. All transgenic crop plants tolerated a two- to threefold field dosage of Basta.

  9. Biodegradation of acetanilide herbicides acetochlor and butachlor in soil.

    Science.gov (United States)

    Ye, Chang-ming; Wang, Xing-jun; Zheng, He-hui

    2002-10-01

    The biodegradation of two acetanilide herbicides, acetochlor and butachlor in soil after other environmental organic matter addition were measured during 35 days laboratory incubations. The herbicides were applied to soil alone, soil-SDBS (sodium dodecylbenzene sulfonate) mixtures and soil-HA (humic acid) mixtures. Herbicide biodegradation kinetics were compared in the different treatment. Biodegradation products of herbicides in soil alone samples were identified by GC/MS at the end of incubation. Addition of SDBS and HA to soil decreased acetochlor biodegradation, but increased butachlor biodegradation. The biodegradation half-life of acetochlor and butachlor in soil alone, soil-SDBS mixtures and soil-HA mixtures were 4.6 d, 6.1 d and 5.4 d and 5.3 d, 4.9 d and 5.3 d respectively. The biodegradation products were hydroxyacetochlor and 2-methyl-6-ethylaniline for acetochlor, and hydroxybutachlor and 2,6-diethylaniline for butachlor.

  10. Biotransformation of benzonitrile herbicides via the nitrile hydratase-amidase pathway in rhodococci.

    Science.gov (United States)

    Veselá, Alicja B; Pelantová, Helena; Sulc, Miroslav; Macková, Martina; Lovecká, Petra; Thimová, Markéta; Pasquarelli, Fabrizia; Pičmanová, Martina; Pátek, Miroslav; Bhalla, Tek Chand; Martínková, Ludmila

    2012-12-01

    The aim of this work was to determine the ability of rhodococci to transform 3,5-dichloro-4-hydroxybenzonitrile (chloroxynil), 3,5-dibromo-4-hydroxybenzonitrile (bromoxynil), 3,5-diiodo-4-hydroxybenzonitrile (ioxynil) and 2,6-dichlorobenzonitrile (dichlobenil); to identify the products and determine their acute toxicities. Rhodococcus erythropolis A4 and Rhodococcus rhodochrous PA-34 converted benzonitrile herbicides into amides, but only the former strain was able to hydrolyze 2,6-dichlorobenzamide into 2,6-dichlorobenzoic acid, and produced also more of the carboxylic acids from the other herbicides compared to strain PA-34. Transformation of nitriles into amides decreased acute toxicities for chloroxynil and dichlobenil, but increased them for bromoxynil and ioxynil. The amides inhibited root growth in Lactuca sativa less than the nitriles but more than the acids. The conversion of the nitrile group may be the first step in the mineralization of benzonitrile herbicides but cannot be itself considered to be a detoxification.

  11. Rationale for a natural products approach to herbicide discovery.

    Science.gov (United States)

    Dayan, Franck E; Owens, Daniel K; Duke, Stephen O

    2012-04-01

    Weeds continue to evolve resistance to all the known modes of herbicidal action, but no herbicide with a new target site has been commercialized in nearly 20 years. The so-called 'new chemistries' are simply molecules belonging to new chemical classes that have the same mechanisms of action as older herbicides (e.g. the protoporphyrinogen-oxidase-inhibiting pyrimidinedione saflufenacil or the very-long-chain fatty acid elongase targeting sulfonylisoxazoline herbicide pyroxasulfone). Therefore, the number of tools to manage weeds, and in particular those that can control herbicide-resistant weeds, is diminishing rapidly. There is an imminent need for truly innovative classes of herbicides that explore chemical spaces and interact with target sites not previously exploited by older active ingredients. This review proposes a rationale for a natural-products-centered approach to herbicide discovery that capitalizes on the structural diversity and ingenuity afforded by these biologically active compounds. The natural process of extended-throughput screening (high number of compounds tested on many potential target sites over long periods of times) that has shaped the evolution of natural products tends to generate molecules tailored to interact with specific target sites. As this review shows, there is generally little overlap between the mode of action of natural and synthetic phytotoxins, and more emphasis should be placed on applying methods that have proved beneficial to the pharmaceutical industry to solve problems in the agrochemical industry. Published 2012 by John Wiley & Sons, Ltd.

  12. Simultaneous Expression of PDH45 with EPSPS Gene Improves Salinity and Herbicide Tolerance in Transgenic Tobacco Plants.

    Science.gov (United States)

    Garg, Bharti; Gill, Sarvajeet S; Biswas, Dipul K; Sahoo, Ranjan K; Kunchge, Nandkumar S; Tuteja, Renu; Tuteja, Narendra

    2017-01-01

    To cope with the problem of salinity- and weed-induced crop losses, a multi-stress tolerant trait is need of the hour but a combinatorial view of such traits is not yet explored. The overexpression of PDH45 (pea DNA helicase 45) and EPSPS (5-enoylpruvyl shikimate-3-phosphate synthase) genes have been reported to impart salinity and herbicide tolerance. Further, the understanding of mechanism and pathways utilized by PDH45 and EPSPS for salinity and herbicide tolerance will help to improve the crops of economical importance. In the present study, we have performed a comparative analysis of salinity and herbicide tolerance to check the biochemical parameters and antioxidant status of tobacco transgenic plants. Collectively, the results showed that PDH45 overexpressing transgenic lines display efficient tolerance to salinity stress, while PDH45+EPSPS transgenics showed tolerance to both the salinity and herbicide as compared to the control [wild type (WT) and vector control (VC)] plants. The activities of the components of enzymatic antioxidant machinery were observed to be higher in the transgenic plants indicating the presence of an efficient antioxidant defense system which helps to cope with the stress-induced oxidative-damages. Photosynthetic parameters also showed significant increase in PDH45 and PDH45+EPSPS overexpressing transgenic plants in comparison to WT, VC and EPSPS transgenic plants under salinity stress. Furthermore, PDH45 and PDH45+EPSPS synergistically modulate the jasmonic acid and salicylic acid mediated signaling pathways for combating salinity stress. The findings of our study suggest that pyramiding of the PDH45 gene with EPSPS gene renders host plants tolerant to salinity and herbicide by enhancing the antioxidant machinery thus photosynthesis.

  13. Herbicidal and Plant-growth Stimulating Effects of Phenolic Compounds Isolated from Lichens

    Directory of Open Access Journals (Sweden)

    Marize Terezinha Lopes Pereira Peres

    2015-09-01

    Full Text Available The depsides atranorin (7 and diffractaic acid (1, the depsidones hypostictic (2 protocetraric (3, salazinic (4 acids, the xanthone secalonic acid (5, and usnic acid (6 were evaluated for their phytotoxic potentials against the target species Allium cepa cv. Baia periforme (onion, Monocotyledoneae. The bioassays, carried out under laboratory conditions, revealed that diffractaic (1 and hypostictic (2 acids stimulated plant growth; secalonic acid (5 stimulated seed germination and radicle growth, while reducing coleoptile length. Usnic acid (6 promoted seed germination and stronger inhibition of radicle and coleoptile growth. Protocetraric (3 and salazinic (4 acids and atranorin (7 exhibited a herbicidal effect, inhibiting seed germination and reducing radicle and coleoptile growth—features that suggest their utility as natural herbicides. These results invite further investigation to elucidate the mode of action of these compounds and to synthesize them for field experiments. DOI: http://dx.doi.org/10.17807/orbital.v7i3.756 

  14. Photochemical oxidation processes for the elimination of phenyl-urea herbicides in waters

    International Nuclear Information System (INIS)

    Benitez, F. Javier; Real, Francisco J.; Acero, Juan L.; Garcia, Carolina

    2006-01-01

    Four phenyl-urea herbicides (linuron, chlorotoluron, diuron, and isoproturon) were individually photooxidized by monochromatic UV radiation in ultra-pure aqueous solutions. The influence of pH and temperature on the photodegradation process was established, and the first-order rate constants and quantum yields were evaluated. The sequence of photodecomposition rates was: linuron > chlorotoluron > diuron > isoproturon. The simultaneous photooxidation of mixtures of the selected herbicides in several types of waters was then performed by means of UV radiation alone, and by UV radiation combined with hydrogen peroxide. The types of waters used were: ultra-pure water, a commercial mineral water, a groundwater, and a lake water. The influence of the independent variables in these processes - the presence or absence of tert-butyl alcohol, types of herbicide and waters, and concentration of hydrogen peroxide - were established and discussed. A kinetic study was performed using a competitive kinetic model that allowed various rate constants to be evaluated for each herbicide. This kinetic model allows one to predict the elimination of these phenyl-urea herbicides in contaminated waters by the oxidation systems used (UV alone and combined UV/H 2 O 2 ). The herbicide concentrations predicted by this model agree well with the experimental results that were obtained

  15. Photochemical oxidation processes for the elimination of phenyl-urea herbicides in waters

    Energy Technology Data Exchange (ETDEWEB)

    Benitez, F. Javier [Departamento de Ingenieria Quimica y Energetica, Universidad de Extremadura, 06071 Badajoz (Spain)]. E-mail: javben@unex.es; Real, Francisco J. [Departamento de Ingenieria Quimica y Energetica, Universidad de Extremadura, 06071 Badajoz (Spain); Acero, Juan L. [Departamento de Ingenieria Quimica y Energetica, Universidad de Extremadura, 06071 Badajoz (Spain); Garcia, Carolina [Departamento de Ingenieria Quimica y Energetica, Universidad de Extremadura, 06071 Badajoz (Spain)

    2006-11-16

    Four phenyl-urea herbicides (linuron, chlorotoluron, diuron, and isoproturon) were individually photooxidized by monochromatic UV radiation in ultra-pure aqueous solutions. The influence of pH and temperature on the photodegradation process was established, and the first-order rate constants and quantum yields were evaluated. The sequence of photodecomposition rates was: linuron > chlorotoluron > diuron > isoproturon. The simultaneous photooxidation of mixtures of the selected herbicides in several types of waters was then performed by means of UV radiation alone, and by UV radiation combined with hydrogen peroxide. The types of waters used were: ultra-pure water, a commercial mineral water, a groundwater, and a lake water. The influence of the independent variables in these processes - the presence or absence of tert-butyl alcohol, types of herbicide and waters, and concentration of hydrogen peroxide - were established and discussed. A kinetic study was performed using a competitive kinetic model that allowed various rate constants to be evaluated for each herbicide. This kinetic model allows one to predict the elimination of these phenyl-urea herbicides in contaminated waters by the oxidation systems used (UV alone and combined UV/H{sub 2}O{sub 2}). The herbicide concentrations predicted by this model agree well with the experimental results that were obtained.

  16. Synthesis, herbicidal, fungicidal and insecticidal evaluation of 3-(dichlorophenyl)- isocoumarins and (±)-3-(dichlorophenyl)-3,4-dihydroisocoumarins

    International Nuclear Information System (INIS)

    Qadeer, Ghulam; Rama, Nasim Hasan; Fan, Zhi-Jin; Liu, Bin; Liu, Xiu-Feng

    2007-01-01

    This is the first report showing that 3-(dichlorophenyl)isocoumarins and (±)-3,4-dihydroisocoumarins are plant and plant fungus growth inhibitors. 3-Dichlorophenylisocoumarins were synthesized by condensation of homophthalic acid with dichlorobenzoyl chlorides. The alkaline hydrolysis of these isocoumarins afforded keto acids. Racemic 3-(Dichlorophenyl)-3,4-dihydroisocoumarins were obtained by reduction of keto acids to racemic hydroxy acids, followed by cyclodehydration using acetic anhydride. The herbicidal, fungicidal and insecticidal activities of the synthesized compounds have been evaluated. Some of the synthesized compounds show excellent herbicidal and fungicidal activities but none of the synthesized compounds presented any insecticidal effects on the test insects. The findings of this study suggest that isocoumarins and related compounds may serve as lead compounds towards the design of bioactive herbicides and fungicides. (author)

  17. Genetically Modified Herbicide-Tolerant Crops, Weeds, and Herbicides: Overview and Impact

    Science.gov (United States)

    Bonny, Sylvie

    2016-01-01

    Genetically modified (GM) crops have been and continue to be a subject of controversy despite their rapid adoption by farmers where approved. For the last two decades, an important matter of debate has been their impact on pesticide use, particularly for herbicide-tolerant (HT) crops. Some claim that these crops bring about a decrease in herbicide use, while others claim the opposite. In fact, since 1996, most cultivated GMOs have been GMHT crops, which involve the use of an associated herbicide, generally glyphosate. In their very first years of adoption, HT crops often led to some decrease in herbicide use. However, the repetition of glyphosate-tolerant crops and of glyphosate only applications in the same fields without sufficient alternation and herbicide diversity has contributed to the appearance of glyphosate-resistant weeds. These weeds have resulted in a rise in the use of glyphosate and other herbicides. This article explores this situation and the impacts of herbicide-resistant weeds, using an interdisciplinary approach and drawing on recent data. The paper analyzes the spread of GMHT crops worldwide and their consequences on herbicide use in the USA in particular. It then addresses the global development of glyphosate-resistant weeds and their impact, particularly focusing on the USA. Finally, the last section explores how industry, farmers, and weed scientists are coping with the spread of resistant weeds. The concluding comments deal more widely with trends in GM crops.

  18. Herbicides interfere with antigrazer defenses in Scenedesmus obliquus.

    Science.gov (United States)

    Zhu, Xuexia; Sun, Yunfei; Zhang, Xingxing; Heng, Hailu; Nan, Haihong; Zhang, Lu; Huang, Yuan; Yang, Zhou

    2016-11-01

    The extensive application of herbicides has led to a serious threat of herbicide contamination to aquatic ecosystem. Herbicide exposure affects aquatic communities not only by exerting toxicity on single species but also by changing interspecific interactions. This study investigated the antigrazer defenses of the common green alga Scenedesmus obliquus against different herbicides [glyphosate, 2,4-dichlorophenoxyacetic acid (2,4-D), and atrazine] at various concentrations (0-2.0 mg L(-1)). In the presence of grazer (Daphnia)-derived cues, S. obliquus populations without herbicides formed high proportions of multicelled (e.g., four- and eight-celled) colonies. This result confirms that S. obliquus exhibits a morphological defense against grazing risk. At the low concentration range of 0.002-0.02 mg L(-1), the three herbicides exerted no influence on the growth and photosynthetic efficiency of S. obliquus, and multicelled colonies showed constant proportions. At the high concentration range of 0.20-2.0 mg L(-1), atrazine significantly inhibited the algal growth and photosynthesis whereas glyphosate or 2,4-D did not. Nonetheless, these levels of glyphosate or 2,4-D remarkably decreased the proportion of multicelled colonies, with reduced numbers of cells per particle in Daphnia filtrate-treated population. No eight-celled colony was formed after treatment with atrazine at 0.20-2.0 mg L(-1) despite the addition of Daphnia filtrate. These results suggest that herbicide exposure impairs antigrazer colonial morphs in phytoplankton although it is not sufficient to hamper algal growth. This phenomenon can increase the risk of predation by herbivores, thereby disrupting the inducible phytoplankton community. Furthermore, the predator-prey interactions between herbivores and phytoplankton can be potentially changed more seriously than previously considered. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. A review of methods for the analysis of orphan and difficult pesticides: glyphosate, glufosinate, quaternary ammonium and phenoxy acid herbicides, and dithiocarbamate and phthalimide fungicides.

    Science.gov (United States)

    Raina-Fulton, Renata

    2014-01-01

    This article reviews the chromatography/MS methodologies for analysis of pesticide residues of orphan and difficult chemical classes in a variety of sample matrixes including water, urine, blood, and food. The review focuses on pesticide classes that are not commonly included in multiresidue analysis methods such as highly polar or ionic herbicides including glyphosate, glufosinate, quaternary ammonium, and phenoxy acid herbicides, and some of their major degradation or metabolite products. In addition, dithiocarbamate and phthalimide fungicides, which are thermally unstable and have stability issues in some solvents or sample matrixes, are also examined due to their special needs in residue analysis.

  20. A composite transcriptional signature differentiates responses towards closely related herbicides in Arabidopsis thaliana and brassica napus

    Science.gov (United States)

    In this study, genome-wide expression profiling based on Affymetrix ATH1 arrays was used to identify discriminating responses of Arabidopsis thaliana to five herbicides, which contain active ingredients targeting two different branches of amino acid biosynthesis. One herbicide co...

  1. Solar photoelectro-Fenton degradation of the herbicide 4-chloro-2-methylphenoxyacetic acid optimized by response surface methodology

    International Nuclear Information System (INIS)

    Garcia-Segura, Sergi; Almeida, Lucio Cesar; Bocchi, Nerilso; Brillas, Enric

    2011-01-01

    Highlights: → The herbicide MCPA is quickly mineralized by solar photoelectro-Fenton. → A CCRD allowed the optimization of current, Fe 2+ content and solution pH. → TOC, MCE and energy consumption are described by response surface methodology. → Generated hydroxyl radical destroys MCPA and its aromatic oxidation by-products. → UV light of solar irradiation photolyzes the Fe(III)-carboxylate complexes produced. - Abstract: A central composite rotatable design and response surface methodology (RSM) were used to optimize the experimental variables of the solar photoelectro-Fenton (SPEF) treatment of the herbicide 4-chloro-2-methylphenoxyacetic acid (MCPA). The experiments were made with a flow plant containing a Pt/air-diffusion reactor coupled to a solar compound parabolic collector (CPC) under recirculation of 10 L of 186 mg L -1 MCPA solutions in 0.05 M Na 2 SO 4 at a liquid flow rate of 180 L h -1 with an average UV irradiation intensity of about 32 W m -2 . The optimum variables found for the SPEF process were 5.0 A, 1.0 mM Fe 2+ and pH 3.0 after 120 min of electrolysis. Under these conditions, 75% of mineralization with 71% of current efficiency and 87.7 kWh kg -1 TOC of energy consumption were obtained. MCPA decayed under the attack of generated hydroxyl radicals following a pseudo-first-order kinetics. Hydroxyl radicals also destroyed 4-chloro-2-methylphenol, methylhydroquinone and methyl-p-benzoquinone detected as aromatic by-products. Glycolic, maleic, fumaric, malic, succinic, tartronic, oxalic and formic acids were identified as generated carboxylic acids, which form Fe(III) complexes that are quickly photodecarboxylated by the UV irradiation of sunlight at the CPC photoreactor. A reaction sequence for the SPEF degradation of MCPA was proposed.

  2. REDUCTION OF HERBICIDE AND WATER STRESS IN SPRING BARLEY BY REGULATORS OF POLYAMINE BIOSYNTHESIS

    Directory of Open Access Journals (Sweden)

    Pavol Trebichalský

    2014-02-01

    Full Text Available The experiment was carried out under artificial light of fluorescent lamps starting with 60 % full water capacity which was afterwards decreased on 40 % and finally the plants of barley were not watered. 30 plants of this cereal after plant emergence were thinned on 22 pieces. Experiment was treated by triazine herbicide, as well as its mixtures of regulators of polyamine synthesis: γ-aminobutyric acid, 1.3-propylenediamine dihydrochloride and salicyl acid. Solo application of triazine herbicide during water stress had negative balance on formation of root and above ground biomass. Addition of regulators of polyamine synthesis had positive effects on mentioned parameters, but not in comparison to control variant. These stress factors were eliminated most significantly only the application of GABA (100 g.ha-1 in mixture with herbicide.

  3. Effects of herbicides on fish

    DEFF Research Database (Denmark)

    Solomon, Keith R.; Dalhoff, Kristoffer; Volz, David

    2013-01-01

    Herbicides are used to control weeds and are usually targeted to processes and target sites that are specific to plants. As a result, most herbicides are not acutely toxic to fish. Exceptions to this general rule are uncouplers of oxidative phosphorylation and some herbicides that interfere...... with cell division. Chronic and sublethal effects have been studied for some herbicides, but fewer data are available for these effects than for acute effects. The sublethal effects of herbicides that have been studied include reproduction, stress, olfaction, and behavior. Although some of these responses......, and reproduction. As with all pesticides, herbicides may have indirect effects in fish. These effects are mediated by herbicide-induced changes in food webs or in the physical environment. Indirect effects can only occur if direct effects occur first and would be mediated by the killing of plants by herbicides...

  4. Controlled Release Formulations of Auxinic Herbicides

    Science.gov (United States)

    Kowalski, Witold J.; Siłowiecki, Andrzej.; Romanowska, Iwona; Glazek, Mariola; Bajor, Justyna; Cieciwa, Katarzyna; Rychter, Piotr

    2013-04-01

    Controlled release formulations are applied extensively for the release of active ingredients such as plant protection agents and fertilizers in response to growing concern for ecological problems associated with increased use of plant protection chemicals required for intensive agricultural practices [1]. We synthesized oligomeric mixtures of (R,S)-3-hydroxy butyric acid chemically bonded with 2,4-D, Dicamba and MCPA herbicides (HBA) respectively, and determined their molecular structure and molecular weight dispersion by the size exclusion chromatography, proton magnetic resonance spectrometry and electro-spray ionization mass spectrometry. Further we carried out bioassays of herbicidal effectiveness of the HBA herbicides vs. series of dicotyledonous weeds and crop injury tests [2, 3, 4]. Field bioassays were accomplished according to the EPPO standards [5]. Groups of representative weeds (the development stages in the BCCH scale: 10 - 30) were selected as targets. Statistical variabilities were assessed by the Fisher LSD test for plants treated with the studied herbicides in form of HBA oligomers, the reference herbicides in form of dimethyl ammonium salts (DMA), and untreated plants. No statistically significant differences in the crop injuries caused by the HBA vs. the DMA reference formulation were observed. The effectiveness of the HBA herbicides was lower through the initial period (ca. 2 weeks) relative to the DMA salts, but a significant increase in the effectiveness of the HBA systems followed during the remaining fraction of each assay. After 6 weeks all observed efficiencies approached 100%. The death of weeds treated with the HBA herbicides was delayed when compared with the DMA reference herbicides. The delayed uptake observed for the HBA oligomers relative to the DMA salts was due to controlled release phenomena. In case of the DMA salts the total amount of active ingredients was available at the target site. By contrast, the amount of an active

  5. Modified cellulose synthase gene from Arabidopsis thaliana confers herbicide resistance to plants

    Science.gov (United States)

    Somerville, Chris R [Portola Valley, CA; Scheible, Wolf [Golm, DE

    2007-07-10

    Cellulose synthase ("CS"), a key enzyme in the biosynthesis of cellulose in plants is inhibited by herbicides comprising thiazolidinones such as 5-tert-butyl-carbamoyloxy-3-(3-trifluromethyl)phenyl-4-thiazolidinone (TZ), isoxaben and 2,6-dichlorobenzonitrile (DCB). Two mutant genes encoding isoxaben and TZ-resistant cellulose synthase have been isolated from isoxaben and TZ-resistant Arabidopsis thaliana mutants. When compared with the gene coding for isoxaben or TZ-sensitive cellulose synthase, one of the resistant CS genes contains a point mutation, wherein glycine residue 998 is replaced by an aspartic acid. The other resistant mutation is due to a threonine to isoleucine change at amino acid residue 942. The mutant CS gene can be used to impart herbicide resistance to a plant; thereby permitting the utilization of the herbicide as a single application at a concentration which ensures the complete or substantially complete killing of weeds, while leaving the transgenic crop plant essentially undamaged.

  6. Acute and additive toxicity of ten photosystem-II herbicides to seagrass.

    Science.gov (United States)

    Wilkinson, Adam D; Collier, Catherine J; Flores, Florita; Negri, Andrew P

    2015-11-30

    Photosystem II herbicides are transported to inshore marine waters, including those of the Great Barrier Reef, and are usually detected in complex mixtures. These herbicides inhibit photosynthesis, which can deplete energy reserves and reduce growth in seagrass, but the toxicity of some of these herbicides to seagrass is unknown and combined effects of multiple herbicides on seagrass has not been tested. Here we assessed the acute phytotoxicity of 10 PSII herbicides to the seagrass Halophila ovalis over 24 and/or 48 h. Individual herbicides exhibited a broad range of toxicities with inhibition of photosynthetic activity (∆F/F(m)') by 50% at concentrations ranging from 3.5 μg l(-1) (ametryn) to 132 μg l(-1) (fluometuron). We assessed potential additivity using the Concentration Addition model of joint action for binary mixtures of diuron and atrazine as well as complex mixtures of all 10 herbicides. The effects of both mixture types were largely additive, validating the application of additive effects models for calculating the risk posed by multiple PSII herbicides to seagrasses. This study extends seagrass ecotoxicological data to ametryn, metribuzin, bromacil, prometryn and fluometuron and demonstrates that low concentrations of PSII herbicide mixtures have the potential to impact ecologically relevant endpoints in seagrass, including ∆F/F(m)'.

  7. Acute and additive toxicity of ten photosystem-II herbicides to seagrass

    Science.gov (United States)

    Wilkinson, Adam D.; Collier, Catherine J.; Flores, Florita; Negri, Andrew P.

    2015-11-01

    Photosystem II herbicides are transported to inshore marine waters, including those of the Great Barrier Reef, and are usually detected in complex mixtures. These herbicides inhibit photosynthesis, which can deplete energy reserves and reduce growth in seagrass, but the toxicity of some of these herbicides to seagrass is unknown and combined effects of multiple herbicides on seagrass has not been tested. Here we assessed the acute phytotoxicity of 10 PSII herbicides to the seagrass Halophila ovalis over 24 and/or 48 h. Individual herbicides exhibited a broad range of toxicities with inhibition of photosynthetic activity (∆F/Fm‧) by 50% at concentrations ranging from 3.5 μg l-1 (ametryn) to 132 μg l-1 (fluometuron). We assessed potential additivity using the Concentration Addition model of joint action for binary mixtures of diuron and atrazine as well as complex mixtures of all 10 herbicides. The effects of both mixture types were largely additive, validating the application of additive effects models for calculating the risk posed by multiple PSII herbicides to seagrasses. This study extends seagrass ecotoxicological data to ametryn, metribuzin, bromacil, prometryn and fluometuron and demonstrates that low concentrations of PSII herbicide mixtures have the potential to impact ecologically relevant endpoints in seagrass, including ∆F/Fm‧.

  8. The direct and indirect effects of a glyphosate-based herbicide and nutrients on Chironomidae (Diptera) emerging from small wetlands.

    Science.gov (United States)

    Baker, Leanne F; Mudge, Joseph F; Houlahan, Jeff E; Thompson, Dean G; Kidd, Karen A

    2014-09-01

    Laboratory and mesocosm experiments have demonstrated that some glyphosate-based herbicides can have negative effects on benthic invertebrate species. Although these herbicides are among the most widely used in agriculture, there have been few multiple-stressor, natural system-based investigations of the impacts of glyphosate-based herbicides in combination with fertilizers on the emergence patterns of chironomids from wetlands. Using a replicated, split-wetland experiment, the authors examined the effects of 2 nominal concentrations (2.88 mg acid equivalents/L and 0.21 mg acid equivalents/L) of the glyphosate herbicide Roundup WeatherMax, alone or in combination with nutrient additions, on the emergence of Chironomidae (Diptera) before and after herbicide-induced damage to macrophytes. There were no direct effects of treatment on the structure of the Chironomidae community or on the overall emergence rates. However, after macrophyte cover declined as a result of herbicide application, there were statistically significant increases in emergence in all but the highest herbicide treatment, which had also received no nutrients. There was a negative relationship between chironomid abundance and macrophyte cover on the treated sides of wetlands. Fertilizer application did not appear to compound the effects of the herbicide treatments. Although direct toxicity of Roundup WeatherMax was not apparent, the authors observed longer-term impacts, suggesting that the indirect effects of this herbicide deserve more consideration when assessing the ecological risk of using herbicides in proximity to wetlands. © 2014 SETAC.

  9. [Effects of herbicide on grape leaf photosynthesis and nutrient storage].

    Science.gov (United States)

    Tan, Wei; Wang, Hui; Zhai, Heng

    2011-09-01

    Selecting three adjacent vineyards as test objects, this paper studied the effects of applying herbicide in growth season on the leaf photosynthetic apparatus and branch nutrient storage of grape Kyoho (Vitis vinfrraxVitis labrusca). In the vineyards T1 and T2 where herbicide was applied in 2009, the net photosynthesis rate (Pa) of grape leaves had a significant decrease, as compared with that in vineyard CK where artificial weeding was implemented. The leaves at the fourth node in vineyard T1 and those at the sixth node in vineyard T2 had the largest decrement of Pn (40.5% and 32.1%, respectively). Herbicide had slight effects on the leaf stomatal conductance (Gs). In T1 where herbicide application was kept on with in 2010, the Pn, was still significantly lower than that in CK; while in T2 where artificial weeding was implemented in 2010, the Pn and Gs of top- and middle node leaves were slightly higher than those in T1, but the Pn was still lower than that in CK, showing the aftereffects of herbicide residual. The herbicide application in 2009 decreased the leaf maximum photochemical efficiency of PS II (Fv/Fm) and performance index (P1) while increased the relative variable fluorescence in the J step and K step, indicating the damage of electron transportation of PS II center and oxygen-evolving complex. Herbicide application decreased the pigment content of middle-node leaves in a dose-manner. Applying herbicide enhanced the leaf catalase and peroxidase activities significantly, increased the superoxide dismutase (SOD) activity of middle-node leaves, but decreased the SOD activity of top- and bottom node leaves. After treated with herbicide, the ascorbate peroxidase (APX) activity of middle- and bottom node leaves increased, but that of top-node leaves decreased. Herbicide treatment aggravated leaf lipid peroxidation, and reduced the soluble sugar, starch, free amino acids, and soluble protein storage in branches.

  10. Chloromonilinic Acids C and D, Phytotoxic Tetrasubstituted 3-Chromanonacrylic Acids Isolated from Cochliobolus australiensis with Potential Herbicidal Activity against Buffelgrass (Cenchrus ciliaris).

    Science.gov (United States)

    Masi, Marco; Meyer, Susan; Clement, Suzette; Pescitelli, Gennaro; Cimmino, Alessio; Cristofaro, Massimo; Evidente, Antonio

    2017-10-27

    The fungal pathogen Cochliobolus australiensis isolated from infected leaves of the invasive weed buffelgrass (Pennisetum ciliare) was grown in vitro to evaluate its ability to produce phytotoxic metabolites that could potentially be used as natural herbicides against this weed. Two new tetrasubstituted 3-chromanonacrylic acids, named chloromonilinic acids C (1) and D (2), were isolated from the liquid cultures of C. australiensis, together with the known chloromonilinic acid B. Chloromonilinic acids C and D were characterized by spectroscopic and chemical methods as (E)-3-chloro-3-[(5-hydroxy-3-(1-hydroxy-2-methoxy-2-oxoethyl)-7-methyl-4-oxo-4H-chromen-2-yl)]acrylic acid and (Z)-3-chloro-3-[(5-hydroxy-3-(2-methoxy-2-oxoethyl)-7-methyl-4-oxo-4H-chromen-2-yl)]acrylic acid, respectively. The stereochemistry of chloromonilinic acids C and D was determined using a combination of spectroscopic and computational methods, including electronic circular dichroism. The fungus produced these compounds in two different liquid media together with cochliotoxin, radicinin, radicinol, and their 3-epimers. The radicinin-related compounds were also produced when the fungus was grown in wheat seed solid culture, but chloromonilinic acids were not found in the solid culture organic extract. All three chloromonilinic acids were toxic to buffelgrass in a seedling elongation bioassay, with significantly delayed germination and dramatically reduced radicle growth, especially at a concentration of 5 × 10 -3 M.

  11. Agricultural herbicide transport in a first-order intermittent stream, Nebraska, USA

    Science.gov (United States)

    Vogel, J.R.; Linard, J.I.

    2011-01-01

    The behavior of herbicides in surface waters is a function of many variables, including scale of the watershed, physical and chemical properties of the herbicide, physical and chemical properties of the soil, rainfall intensity, and time of year. In this study, the transport of 6 herbicides and 12 herbicide degradates was examined during the 2004 growing season in an intermediate-scale agricultural watershed (146 ha) that is drained by a first-order intermittent stream, and the mass load for each herbicide in the stream was estimated. The herbicide load during the first week of storm events after application ranged from 17% of annual load for trifluralin to 84% of annual load for acetochlor. The maximum weekly herbicide load in the stream was generally within the first 3 weeks after application for those compounds that were applied within the watershed during 2004, and later for herbicides not applied within the watershed during 2004 but still detected in the stream. The apparent dominant mode of herbicide transport in the stream-determined by analysis amongst herbicide and conservative ion concentrations at different points in the hydrograph and in base flow samples-was either overland runoff or shallow subsurface flow, depending on the elapsed time after application and type of herbicide. The load as a percentage of use (LAPU) for the parent compounds in this study was similar to literature values for those compounds applied by the farmer within the watershed, but smaller for those herbicides that had rainfall as their only source within the watershed.

  12. Herbicide resistance and biodiversity: agronomic and environmental aspects of genetically modified herbicide-resistant plants.

    Science.gov (United States)

    Schütte, Gesine; Eckerstorfer, Michael; Rastelli, Valentina; Reichenbecher, Wolfram; Restrepo-Vassalli, Sara; Ruohonen-Lehto, Marja; Saucy, Anne-Gabrielle Wuest; Mertens, Martha

    2017-01-01

    Farmland biodiversity is an important characteristic when assessing sustainability of agricultural practices and is of major international concern. Scientific data indicate that agricultural intensification and pesticide use are among the main drivers of biodiversity loss. The analysed data and experiences do not support statements that herbicide-resistant crops provide consistently better yields than conventional crops or reduce herbicide amounts. They rather show that the adoption of herbicide-resistant crops impacts agronomy, agricultural practice, and weed management and contributes to biodiversity loss in several ways: (i) many studies show that glyphosate-based herbicides, which were commonly regarded as less harmful, are toxic to a range of aquatic organisms and adversely affect the soil and intestinal microflora and plant disease resistance; the increased use of 2,4-D or dicamba, linked to new herbicide-resistant crops, causes special concerns. (ii) The adoption of herbicide-resistant crops has reduced crop rotation and favoured weed management that is solely based on the use of herbicides. (iii) Continuous herbicide resistance cropping and the intensive use of glyphosate over the last 20 years have led to the appearance of at least 34 glyphosate-resistant weed species worldwide. Although recommended for many years, farmers did not counter resistance development in weeds by integrated weed management, but continued to rely on herbicides as sole measure. Despite occurrence of widespread resistance in weeds to other herbicides, industry rather develops transgenic crops with additional herbicide resistance genes. (iv) Agricultural management based on broad-spectrum herbicides as in herbicide-resistant crops further decreases diversity and abundance of wild plants and impacts arthropod fauna and other farmland animals. Taken together, adverse impacts of herbicide-resistant crops on biodiversity, when widely adopted, should be expected and are indeed very hard

  13. Herbicide-resistant crops: utilities and limitations for herbicide-resistant weed management.

    Science.gov (United States)

    Green, Jerry M; Owen, Micheal D K

    2011-06-08

    Since 1996, genetically modified herbicide-resistant (HR) crops, particularly glyphosate-resistant (GR) crops, have transformed the tactics that corn, soybean, and cotton growers use to manage weeds. The use of GR crops continues to grow, but weeds are adapting to the common practice of using only glyphosate to control weeds. Growers using only a single mode of action to manage weeds need to change to a more diverse array of herbicidal, mechanical, and cultural practices to maintain the effectiveness of glyphosate. Unfortunately, the introduction of GR crops and the high initial efficacy of glyphosate often lead to a decline in the use of other herbicide options and less investment by industry to discover new herbicide active ingredients. With some exceptions, most growers can still manage their weed problems with currently available selective and HR crop-enabled herbicides. However, current crop management systems are in jeopardy given the pace at which weed populations are evolving glyphosate resistance. New HR crop technologies will expand the utility of currently available herbicides and enable new interim solutions for growers to manage HR weeds, but will not replace the long-term need to diversify weed management tactics and discover herbicides with new modes of action. This paper reviews the strengths and weaknesses of anticipated weed management options and the best management practices that growers need to implement in HR crops to maximize the long-term benefits of current technologies and reduce weed shifts to difficult-to-control and HR weeds.

  14. Photosynthesis involvement in the mechanism of action of diphenyl ether herbicides.

    Science.gov (United States)

    Ensminger, M P; Hess, F D

    1985-05-01

    Photosynthesis is not required for the toxicity of diphenyl ether herbicides, nor are chloroplast thylakoids the primary site of diphenyl ether herbicide activity. Isolated spinach (Spinacia oleracea L.) chloroplast fragments produced malonyl dialdehyde, indicating lipid peroxidation, when paraquat (1,1'-dimethyl-4,4'-bipyridinium ion) or diuron [3-(3,4-dichlorophenyl)-1,1-dimethylurea] were added to the medium, but no malonyl dialdehyde was produced when chloroplast fragments were treated with the methyl ester of acifluorfen (methyl 5-[2-chloro-4-(trifluoromethyl)phenoxy]-2-nitrobenzoic acid), oxyfluorfen [2-chloro-1-(3-ethoxy-4-nitrophenoxy)-4-(trifluoromethyl)benzene], or MC15608 (methyl 5-[2-chloro-4-(trifluoromethyl)phenoxy]-2-chlorobenzoate). In most cases the toxicity of acifluorfen-methyl, oxyfluorfen, or MC15608 to the unicellular green alga Chlamydomonas eugametos (Moewus) did not decrease after simultaneous treatment with diuron. However, diuron significantly reduced cell death after paraquat treatment at all but the highest paraquat concentration tested (0.1 millimolar). These data indicate electron transport of photosynthesis is not serving the same function for diphenyl ether herbicides as for paraquat. Additional evidence for differential action of paraquat was obtained from the superoxide scavenger copper penicillamine (copper complex of 2-amino-3-mercapto-3-methylbutanoic acid). Copper penicillamine eliminated paraquat toxicity in cucumber (Cucumis sativus L.) cotyledons but did not reduce diphenyl ether herbicide toxicity.

  15. Suitability of hardwood treated with phenoxy and pyridine herbicides for firewood use

    Science.gov (United States)

    P.B. Bush; D.G. Neary; Charles K. McMahon; J.W. Taylor

    1987-01-01

    Abstract. Potential exposure to pesticide residues resulting from burning wood treated with phenoxyand pyridine herbicides was assessed. Wood samples from trees treated with 2,4-D [2,4-dichlo-rophenoxy acetic acid], dicamba [3,6-dichloro-o-anisic acid], dichlorprop [2-(2,4-dichlorphenoxy) propionic acid], picloram [4-amino-3,5,dtrichloropico-linic...

  16. Transformation of the herbicide [14C]glufosinate in soils

    International Nuclear Information System (INIS)

    Smith, A.E.

    1989-01-01

    The degradation of 2 μg/g [ 14 C]glufosinate (DL-homoalan-4-ylmethylphosphinic acid) was studied in clay, clay loam, and sandy loam soils at 85% field capacity and at 20 degree C. Over a 4-week period the soils were extracted and analyzed for transformation products by radiochemical and gas chromatographic techniques. In all soils there was release of [ 14 C]carbon dioxide and formation of [ 14 C]-3-(hydroxymethylphosphinyl)propionic acid (MPPA) as major degradation products. Within 21 days, about 55% of the applied 14 C herbicide had been transformed to MPPA in the sandy loam and 19% to [ 14 C]carbon dioxide. After 28 days, approximately 45% of the 14 C herbicide had been transformed to MPPA in the clay and clay loam and 10% released as [ 14 C]carbon dioxide. At all samplings, other 14 C transformation products appeared to be insignificant

  17. Crystal structure of plant acetohydroxyacid synthase, the target for several commercial herbicides.

    Science.gov (United States)

    Garcia, Mario Daniel; Wang, Jian-Guo; Lonhienne, Thierry; Guddat, Luke William

    2017-07-01

    Acetohydroxyacid synthase (AHAS, EC 2.2.1.6) is the first enzyme in the branched-chain amino acid biosynthesis pathway. Five of the most widely used commercial herbicides (i.e. sulfonylureas, imidazolinones, triazolopyrimidines, pyrimidinyl-benzoates and sulfonylamino-cabonyl-triazolinones) target this enzyme. Here we have determined the first crystal structure of a plant AHAS in the absence of any inhibitor (2.9 Å resolution) and it shows that the herbicide-binding site adopts a folded state even in the absence of an inhibitor. This is unexpected because the equivalent regions for herbicide binding in uninhibited Saccharomyces cerevisiae AHAS crystal structures are either disordered, or adopt a different fold when the herbicide is not present. In addition, the structure provides an explanation as to why some herbicides are more potent inhibitors of Arabidopsis thaliana AHAS compared to AHASs from other species (e.g. S. cerevisiae). The elucidation of the native structure of plant AHAS provides a new platform for future rational structure-based herbicide design efforts. The coordinates and structure factors for uninhibited AtAHAS have been deposited in the Protein Data Bank (www.pdb.org) with the PDB ID code 5K6Q. © 2017 Federation of European Biochemical Societies.

  18. Natural compounds as next-generation herbicides.

    Science.gov (United States)

    Dayan, Franck E; Duke, Stephen O

    2014-11-01

    Herbicides with new modes of action (MOAs) are badly needed due to the rapidly evolving resistance to commercial herbicides, but a new MOA has not been introduced in over 20 years. The greatest pest management challenge for organic agriculture is the lack of effective natural product herbicides. The structural diversity and evolved biological activity of natural phytotoxins offer opportunities for the development of both directly used natural compounds and synthetic herbicides with new target sites based on the structures of natural phytotoxins. Natural phytotoxins are also a source for the discovery of new herbicide target sites that can serve as the focus of traditional herbicide discovery efforts. There are many examples of strong natural phytotoxins with MOAs other than those used by commercial herbicides, which indicates that there are molecular targets of herbicides that can be added to the current repertoire of commercial herbicide MOAs. © 2014 American Society of Plant Biologists. All Rights Reserved.

  19. Photosynthesis Involvement in the Mechanism of Action of Diphenyl Ether Herbicides 1

    Science.gov (United States)

    Ensminger, Michael P.; Hess, F. Dan

    1985-01-01

    Photosynthesis is not required for the toxicity of diphenyl ether herbicides, nor are chloroplast thylakoids the primary site of diphenyl ether herbicide activity. Isolated spinach (Spinacia oleracea L.) chloroplast fragments produced malonyl dialdehyde, indicating lipid peroxidation, when paraquat (1,1′-dimethyl-4,4′-bipyridinium ion) or diuron [3-(3,4-dichlorophenyl)-1,1-dimethylurea] were added to the medium, but no malonyl dialdehyde was produced when chloroplast fragments were treated with the methyl ester of acifluorfen (methyl 5-[2-chloro-4-(trifluoromethyl)phenoxy]-2-nitrobenzoic acid), oxyfluorfen [2-chloro-1-(3-ethoxy-4-nitrophenoxy)-4-(trifluoromethyl)benzene], or MC15608 (methyl 5-[2-chloro-4-(trifluoromethyl)phenoxy]-2-chlorobenzoate). In most cases the toxicity of acifluorfen-methyl, oxyfluorfen, or MC15608 to the unicellular green alga Chlamydomonas eugametos (Moewus) did not decrease after simultaneous treatment with diuron. However, diuron significantly reduced cell death after paraquat treatment at all but the highest paraquat concentration tested (0.1 millimolar). These data indicate electron transport of photosynthesis is not serving the same function for diphenyl ether herbicides as for paraquat. Additional evidence for differential action of paraquat was obtained from the superoxide scavenger copper penicillamine (copper complex of 2-amino-3-mercapto-3-methylbutanoic acid). Copper penicillamine eliminated paraquat toxicity in cucumber (Cucumis sativus L.) cotyledons but did not reduce diphenyl ether herbicide toxicity. PMID:16664206

  20. Combined thermal and herbicide stress in functionally diverse coral symbionts

    International Nuclear Information System (INIS)

    Dam, J.W. van; Uthicke, S.; Beltran, V.H.; Mueller, J.F.; Negri, A.P.

    2015-01-01

    Most reef building corals rely on symbiotic microalgae (genus Symbiodinium) to supply a substantial proportion of their energy requirements. Functional diversity of different Symbiodinium genotypes, endorsing the host with physiological advantages, has been widely reported. Yet, the influence of genotypic specificity on the symbiont's susceptibility to contaminants or cumulative stressors is unknown. Cultured Symbiodinium of presumed thermal-tolerant clade D tested especially vulnerable to the widespread herbicide diuron, suggesting important free-living populations may be at risk in areas subjected to terrestrial runoff. Co-exposure experiments where cultured Symbiodinium were exposed to diuron over a thermal stress gradient demonstrated how fast-growing clade C1 better maintained photosynthetic capability than clade D. The mixture toxicity model of Independent Action, considering combined thermal stress and herbicide contamination, revealed response additivity for inhibition of photosynthetic yield in both tested cultures, emphasizing the need to account for cumulative stressor impacts in ecological risk assessment and resource management. - Highlights: • Water quality influences thermal stress thresholds in different Symbiodinium types. • Photosystem of clade D tested more sensitive than C1 to a common herbicide. • Increased thermal tolerance quickly countered in presence of herbicide. • Mixture toxicity approach demonstrated response additivity for combined stressors. • Symbiotic partnership may be compromised in areas subjected to terrestrial runoff. - Thermal-tolerant Symbiodinium type D tested especially vulnerable to a common herbicide, emphasizing the significance of cumulative stressors in ecological risk management

  1. Modified cellulose synthase gene from 'Arabidopsis thaliana' confers herbicide resistance to plants

    Energy Technology Data Exchange (ETDEWEB)

    Somerville, Chris R.; Scieble, Wolf

    2000-10-11

    Cellulose synthase ('CS'), a key enzyme in the biosynthesis of cellulose in plants is inhibited by herbicides comprising thiazolidinones such as 5-tert-butyl-carbamoyloxy-3-(3-trifluromethyl) phenyl-4-thiazolidinone (TZ), isoxaben and 2,6-dichlorobenzonitrile (DCB). Two mutant genes encoding isoxaben and TZ-resistant cellulose synthase have been isolated from isoxaben and TZ-resistant Arabidopsis thaliana mutants. When compared with the gene coding for isoxaben or TZ-sensitive cellulose synthase, one of the resistant CS genes contains a point mutation, wherein glycine residue 998 is replaced by an aspartic acid. The other resistant mutation is due to a threonine to isoleucine change at amino acid residue 942. The mutant CS gene can be used to impart herbicide resistance to a plant; thereby permitting the utilization of the herbicide as a single application at a concentration which ensures the complete or substantially complete killing of weeds, while leaving the transgenic crop plant essentially undamaged.

  2. Comparisons of Herbicide Treated and Cultivated Herbicide-Resistant Corn

    Directory of Open Access Journals (Sweden)

    H. Arnold Bruns

    2010-01-01

    Full Text Available Four glyphosate resistant corn (Zea mays L. hybrids, a glufosinate-ammonium resistant hybrid, and a conventional atrazine resistant hybrid gown at Stoneville, MS in 2005, 2006, and 2007 with furrow irrigation were treated with their respective herbicides and their growth, yield, and mycotoxin incidence were compared with untreated cultivated plots. Leaf area index (LAI and dry matter accumulation (DMA were collected on a weekly basis beginning at growth stage V3 and terminating at anthesis. Crop growth rates (CRGs and relative growth rates (RGRs were calculated. Plots were later harvested, yield and yield component data collected, and kernel samples analyzed for aflatoxin and fumonisin. Leaf area index, DMA, CRG, and RGR were not different among the herbicide treated plots and from those that were cultivated. Curves for LAI and DMA were similar to those previously reported. Aflatoxin and fumonisin were relatively low in all plots. Herbicide application or the lack thereof had no negative impact on the incidence of kernel contamination by these two mycotoxins. Herbicides, especially glyphosate on resistant hybrids, have no negative effects on corn yields or kernel quality in corn produced in a humid subtropical environment.

  3. Identification and discrimination of herbicide residues using a conducting polymer electronic nose

    Science.gov (United States)

    Alphus Dan Wilson

    2016-01-01

    The identification of herbicide residues on crop foliage is necessary to make crop-management decisions for weed pest control and to monitor pesticide residue levels on food crops. Electronic-nose (e-nose) methods were tested as a cheaper, alternative means of discriminating between herbicide residue types (compared with conventional chromatography methods), by...

  4. Centimetre-scale vertical variability of phenoxy acid herbicide mineralization potential in aquifer sediment relates to the abundance of tfdA genes

    DEFF Research Database (Denmark)

    Pazarbasi, Meric Batioglu; Bælum, Jacob; Johnsen, Anders R.

    2012-01-01

    sampled just below the groundwater table. Mineralization of 2,4-D and MCPA was fastest in sediment samples taken close to the groundwater table, whereas only minor mineralization of MCPP was seen. Considerable variability was exhibited at increasing aquifer depth, more so with 2,4-D than with MCPA...... are known to be involved in the metabolism of phenoxy acid herbicides. tfdA class III gene copy number was approximately 100-fold greater in samples able to mineralize MCPA than in samples able to mineralize 2,4-D, suggesting that tfdA class III gene plays a greater role in the metabolism of MCPA than of 2......Centimetre-scale vertical distribution of mineralization potential was determined for 2,4-dichlorophenoxyacetic acid (2,4-D), 4-chloro-2-methylphenoxyacetic acid (MCPA) and 2-(4-chloro-2-methylphenoxy)propanoic acid (MCPP) by 96-well microplate radiorespirometric analysis in aquifer sediment...

  5. The herbicide 2,4-dichlorophenoxyacetic acid induces the generation of free-radicals and associated oxidative stress responses in yeast

    International Nuclear Information System (INIS)

    Teixeira, Miguel C.; Telo, Joao P.; Duarte, Nuno F.; Sa-Correia, Isabel

    2004-01-01

    The pro-oxidant action of the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) is demonstrated in this study using Saccharomyces cerevisiae as a eukaryotic experimental model. Evidence is presented for the generation of hydroxyl-radicals, in yeast cells suddenly exposed to 2,4-D, detected by in vivo electron paramagnetic resonance (EPR) spectroscopy using 5,5'-dimethyl-1-pyrroline N-oxide and 5-tert-butoxycarbonyl-5-methyl-1-pyrroline N-oxide as spin-traps. The intensity of the EPR spectra was dependent on the concentration of herbicide tested and was consistently higher in a mutant (Δsod1) devoid of the cytosolic CuZn-superoxide dismutase. A time-course-dependent variation of the level of free-radical adducts was registered upon sudden exposure of an yeast cell population to concentrations of 2,4-D that lead to an initial period of viability loss, before resumption of inhibited growth by the viable adapted population. The variation pattern of the level of hydroxyl-radical adducts correlated with the one determined for the activity of Sod1p, cytosolic catalase Ctt1p, and the dithiol glutaredoxins Grx1p and Grx2p

  6. CADDIS Volume 2. Sources, Stressors and Responses: Herbicides

    Science.gov (United States)

    Introduction to the herbicides module, when to list herbicides as a candidate cause, ways to measure herbicides, simple and detailed conceptual diagrams for herbicides, herbicides module references and literature reviews.

  7. Synthesis of a tritiated herbicide with high activity: methyl thifensulfuron

    International Nuclear Information System (INIS)

    Bastide, J.; Ortega, F.

    1993-01-01

    In order to study the binding on acetolactate synthase, a tritiated herbicide sulfonylurea (thifensulfuron methyl) of high specific activity was synthesized. By use of C 3 H 3 I for esterification of an acid group, a rapid incorporation of tritium into this compound may be achieved. (Author)

  8. Herbicide residues in grapes and wine.

    Science.gov (United States)

    Ying, G G; Williams, B

    1999-05-01

    The persistence of several common herbicides from grapes to wine has been studied. Shiraz, Tarrango and Doradillo grapes were separately sprayed with either norflurazon, oxyfluorfen, oxadiazon or trifluralin-persistent herbicides commonly used for weed control in vineyards. The dissipation of the herbicides from the grapes was followed for 28 days following treatment. Results showed that norflurazon was the most persist herbicide although there were detectable residues of all the herbicides on both red and white grapes at the end of the study period. The penetration of herbicides into the flesh of the grapes was found to be significantly greater for white grapes than for red grapes. Small-lot winemaking experiments showed that norflurazon persisted at levels close to the initial concentration through vinification and into the finished wine. The other herbicides degraded, essentially via first-order kinetics, within the period of "first fermentation" and had largely disappeared after 28 days. The use of charcoal together with filter pads, or with diatomaceous earth was shown to be very effective in removing herbicide residues from the wine. A 5% charcoal filter removed more than 96% of the norflurazon persisting in the treated wine.

  9. Spot Spraying Reduces Herbicide Concentrations in Runoff.

    Science.gov (United States)

    Melland, Alice R; Silburn, D Mark; McHugh, Allen D; Fillols, Emilie; Rojas-Ponce, Samuel; Baillie, Craig; Lewis, Stephen

    2016-05-25

    Rainfall simulator trials were conducted on sugar cane paddocks across dry-tropical and subtropical Queensland, Australia, to examine the potential for spot spraying to reduce herbicide losses in runoff. Recommended rates of the herbicides glyphosate, 2,4-D, fluoroxypyr, atrazine, and diuron were sprayed onto 0, 20, 40, 50, 70, or 100% of the area of runoff plots. Simulated rainfall was applied 2 days after spraying to induce runoff at one plant cane and three ratoon crop sites. Over 50% of all herbicides were transported in the dissolved phase of runoff, regardless of the herbicide's sediment-water partition coefficient. For most sites and herbicides, runoff herbicide concentrations decreased with decreasing spray coverage and with decreasing herbicide load in the soil and cane residues. Importantly, sites with higher infiltration prior to runoff and lower total runoff had lower runoff herbicide concentrations.

  10. Modelling of the effect of solute structure and mobile phase pH and composition on the retention of phenoxy acid herbicides in reversed-phase high-performance liquid chromatography

    International Nuclear Information System (INIS)

    Aschi, Massimiliano; D'Archivio, Angelo Antonio; Mazzeo, Pietro; Pierabella, Mirko; Ruggieri, Fabrizio

    2008-01-01

    A feed-forward artificial neural network (ANN) learned by error back-propagation is used to generate a retention predictive model for phenoxy acid herbicides in isocratic reversed-phase high-performance liquid chromatography. The investigated solutes (18 compounds), apart from the most common herbicides of this class, include some derivatives of benzoic acid and phenylacetic acid structurally related to phenoxy acids, as a whole covering a pK a range between 2.3 and 4.3. A mixed model in terms of both solute descriptors and eluent attributes is built with the aim of predicting retention in water-acetonitrile mobile phases within a large range of composition (acetonitrile from 30% to 70%, v/v) and acidity (pH of water before mixing with acetonitrile ranging between 2 and 5). The set of input variables consists of solute pK a and quantum chemical molecular descriptors of both the neutral and dissociated form, %v/v of acetonitrile in the mobile phase and pH of aqueous phase before mixing with acetonitrile. After elimination of redundant variables, a nine-dimensional model is identified and its prediction ability is evaluated by external validation based on three solutes not involved in model generation and by cross-validation. A multilinear counterpart in terms of the same descriptors is seen to provide a noticeably poorer retention prediction

  11. Modelling of the effect of solute structure and mobile phase pH and composition on the retention of phenoxy acid herbicides in reversed-phase high-performance liquid chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Aschi, Massimiliano [Dipartimento di Chimica, Ingegneria Chimica e Materiali, Universita degli Studi di L' Aquila, Via Vetoio, 67010 Coppito, L' Aquila (Italy); D' Archivio, Angelo Antonio [Dipartimento di Chimica, Ingegneria Chimica e Materiali, Universita degli Studi di L' Aquila, Via Vetoio, 67010 Coppito, L' Aquila (Italy)], E-mail: darchivi@univaq.it; Mazzeo, Pietro; Pierabella, Mirko; Ruggieri, Fabrizio [Dipartimento di Chimica, Ingegneria Chimica e Materiali, Universita degli Studi di L' Aquila, Via Vetoio, 67010 Coppito, L' Aquila (Italy)

    2008-06-02

    A feed-forward artificial neural network (ANN) learned by error back-propagation is used to generate a retention predictive model for phenoxy acid herbicides in isocratic reversed-phase high-performance liquid chromatography. The investigated solutes (18 compounds), apart from the most common herbicides of this class, include some derivatives of benzoic acid and phenylacetic acid structurally related to phenoxy acids, as a whole covering a pK{sub a} range between 2.3 and 4.3. A mixed model in terms of both solute descriptors and eluent attributes is built with the aim of predicting retention in water-acetonitrile mobile phases within a large range of composition (acetonitrile from 30% to 70%, v/v) and acidity (pH of water before mixing with acetonitrile ranging between 2 and 5). The set of input variables consists of solute pK{sub a} and quantum chemical molecular descriptors of both the neutral and dissociated form, %v/v of acetonitrile in the mobile phase and pH of aqueous phase before mixing with acetonitrile. After elimination of redundant variables, a nine-dimensional model is identified and its prediction ability is evaluated by external validation based on three solutes not involved in model generation and by cross-validation. A multilinear counterpart in terms of the same descriptors is seen to provide a noticeably poorer retention prediction.

  12. Stress-physiological reactions of the green alga Scenedesmus opoliensis to water pollution with herbicides

    Directory of Open Access Journals (Sweden)

    Zsolt Gyula KERESZTES

    2009-05-01

    Full Text Available The freshwater green alga Scenedesmus opoliensis proves to be a suitable bioindicator of water pollution with different herbicides. One of the best molecular markers of stress condition imposed by herbicides is overproduction of malondialdehyde resulting from lipid peroxidation in the damaged membranes. Methylviologen, a largely used pre-emergence herbicide which generates reactive oxygen species in the illuminated chloroplasts, triggers the accumulation of ascorbic acid and enhances the enzymatic activity of catalase, both of these substances being involved in the antioxidative protection of algal cells. Diuron, a herbicide that inhibits photosynthetic electron transport on the acceptor side of photosystem II, causes a decline in oxygen production and in biomass accumulation of algae. Glufosinate induces accumulation of toxic ammonia and leads to enhanced net oxygen production, associated with a low rate of carbon assimilation. Long-term exposure to micromolar concentrations of herbicides results in significant changes in the rate of cell division, in hotosynthetic parameters and in the intensity of antioxidative defense. A proper bioindication of toxic effects of herbicides on algae requires a selected combination of different physiological and biochemical parameters which reflect the degree of stress exerted on living organisms by water pollution with xenobiotic organic compounds.

  13. Dynamics of herbicide transport and partitioning under event flow conditions in the lower Burdekin region, Australia

    International Nuclear Information System (INIS)

    Davis, Aaron M.; Lewis, Stephen E.; Bainbridge, Zoë T.; Glendenning, Lionel; Turner, Ryan D.R.; Brodie, Jon E.

    2012-01-01

    This study examined the temporal variability in herbicide delivery to the Great Barrier Reef (GBR) lagoon (Australia) from one of the GBR catchment’s major sugarcane growing regions. Annual loads of measured herbicides were consistently in the order of 200+ kg. Atrazine, it’s degradate desethylatrazine, and diuron contributed approximately 90% of annual herbicide load, with early ‘first-flush’ events accounting for the majority of herbicide loads leaving the catchment. Assessment of herbicide water–sediment partitioning in flood runoff highlighted the majority of herbicides were transported in predominantly dissolved form, although a considerable fraction of diuron was transported in particulate-bound form (ca. 33%). Diuron was also the herbicide demonstrating the highest concentrations and frequency of detection in sediments collected from catchment waterways and adjacent estuarine–marine environments, an outcome aligning with previous research. Herbicide physico-chemical properties appear to play a crucial role in partitioning between water column and sediment habitat types in GBR receiving ecosystems.

  14. DNA analysis of herbarium Specimens of the grass weed Alopecurus myosuroides reveals herbicide resistance pre-dated herbicides.

    Science.gov (United States)

    Délye, Christophe; Deulvot, Chrystel; Chauvel, Bruno

    2013-01-01

    Acetyl-CoA carboxylase (ACCase) alleles carrying one point mutation that confers resistance to herbicides have been identified in arable grass weed populations where resistance has evolved under the selective pressure of herbicides. In an effort to determine whether herbicide resistance evolves from newly arisen mutations or from standing genetic variation in weed populations, we used herbarium specimens of the grass weed Alopecurus myosuroides to seek mutant ACCase alleles carrying an isoleucine-to-leucine substitution at codon 1781 that endows herbicide resistance. These specimens had been collected between 1788 and 1975, i.e., prior to the commercial release of herbicides inhibiting ACCase. Among the 734 specimens investigated, 685 yielded DNA suitable for PCR. Genotyping the ACCase locus using the derived Cleaved Amplified Polymorphic Sequence (dCAPS) technique identified one heterozygous mutant specimen that had been collected in 1888. Occurrence of a mutant codon encoding a leucine residue at codon 1781 at the heterozygous state was confirmed in this specimen by sequencing, clearly demonstrating that resistance to herbicides can pre-date herbicides in weeds. We conclude that point mutations endowing resistance to herbicides without having associated deleterious pleiotropic effects can be present in weed populations as part of their standing genetic variation, in frequencies higher than the mutation frequency, thereby facilitating their subsequent selection by herbicide applications.

  15. Herbicide options for hardwood management

    Science.gov (United States)

    Andrew W. Ezell; A. Brady Self

    2016-01-01

    The use of herbicides in hardwood management presents special problems in that many of the most effective herbicides are either designed to control hardwoods or the product is not labeled for such applications. Numerous studies involving herbicide application in hardwoods have been completed at Mississippi State University. This paper is a compilation of results from...

  16. Leaching of the S-metolachlor herbicide associated with paraquat or glyphosate in a no-tillage system

    Directory of Open Access Journals (Sweden)

    Anderson Luis Nunes

    2016-09-01

    Full Text Available The combined use of desiccant and residual herbicides is a common management practice under no-tillage systems. However, the effect of desiccant herbicides and mulch on the leaching of residual herbicide is unknown. This study aimed at assessing the leaching of the S-metolachlor herbicide applied to ryegrass sequentially or in association with paraquat or glyphosate. A randomized blocks design was used, with four repetitions and treatments distributed over split-plots. The desiccant herbicides paraquat (600 g ha-1 or glyphosate (720 g ha-1 were used in the main plot, while S-metolachlor (2,800 g ha-1 was applied sequentially or in association with the desiccant herbicides in the subplots. There was also a control containing only desiccant herbicide, with no application of residual herbicide. The type of desiccant did not affect the leaching of the residual herbicide. In addition, the chosen method to apply the residual herbicide, sequentially or in association with the desiccant, did not impact the S-metolachlor behavior in the soil. The bioavailable concentration in the soil, 25 days after the application, was 90 g a.i. ha-1, at a depth of 18 cm.

  17. Effects of the 2,4-D herbicide on gills epithelia and liver of the fish Poecilia vivipara

    Directory of Open Access Journals (Sweden)

    Ana F. Vigário

    2014-06-01

    Full Text Available The 2,4-dichlorophenoxyacetic acid, usually named 2,4-D is one of the most widely used herbicides in the world. Acute toxicity of 2,4-D herbicide was investigated through its effects on guppies (Poecilia vivipara Bloch et Schneider 1801. Fish were exposed to the herbicide at concentrations of 10, 20 and 40µl per liter of water for 24 hours to determine its effects on gills and liver epithelia. The estimated LC50 was 34.64µl of 2,4-D per liter of water. Histochemical analyses and Feulgen's reaction were conducted to detect glycoconjugates and DNA, respectively, in gills and liver epithelia. Histochemistry revealed qualitative variations of glycoconjugates present on mucous cells and granules. The four types of mucous cells contained neutral granules, acids, or both. Increasing amounts of syalomucins were observed from the control group to the group exposed to the highest concentration of 2,4-D, suggesting increased mucous viscosity and the formation of plaques that could inhibit gas exchange and osmoregulation. Lamellar fusion observed in the group exposed to 40µl of 2,4-D suggests a defense mechanism. Hepatocytes showed vacuolization in the 10 and 20µl/L groups. The 40 µl/L group showed normal hepatocytes as well as changed ones, many Ito cells, micronuclei, and nuclear swelling. These effects may be associated with toxicity or adaptative processes to cellular stress. The data from this study indicates the importance of assessing similar risks to aquatic species and suggests that Poecilia vivipara is an adequate biological model for analysis of environmental contamination.

  18. Photosensitized herbicidal action

    Energy Technology Data Exchange (ETDEWEB)

    Zweig, A; Nachtigall, G W [American Cyanamid Co., Stamford, Conn.

    1975-12-01

    The herbicidal action produced by the colorless hydrocarbon fluoranthene sprayed on the leaves of growing plants did not occur when uv radiation was removed from the light to which the plants are exposed. If the uv component of the light under which the plants were grown was augmented, the herbicidal effect of fluoranthene was increased. The mechanism of this photodynamic action is discussed.

  19. Degradation of the Phosphonate Herbicide Glyphosate by Arthrobacter atrocyaneus ATCC 13752

    OpenAIRE

    Pipke, Rüdiger; Amrhein, Nikolaus

    1988-01-01

    Of nine authentic Arthrobacter strains tested, only A. atrocyaneus ATCC 13752 was capable of using the herbicide glyphosate [N-(phosphonomethyl)glycine] as its sole source of phosphorus. Contrary to the previously isolated Arthrobacter sp. strain GLP-1, which degrades glyphosate via sarcosine, A. atrocyaneus metabolized glyphosate to aminomethylphosphonic acid. The carbon of aminomethylphosphonic acid was entirely converted to CO2. This is the first report on glyphosate degradation by a bacte...

  20. Herbicidal activity of pre and post emergent herbicide on control of Eleusine indica in aerobic rice system

    International Nuclear Information System (INIS)

    Selvarajh, G.; Zain, N.M.; Aminudin, A.; Seng, C.T.

    2018-01-01

    Aerobic rice system can be an alternate way to cultivate rice in less water conditions. However, weeds are a major constrain in aerobic rice field which decline its success. Weeds are being controlled by herbicides in aerobic rice but not all herbicides are effective in controlling various types of weeds. In this study, two pre-emergent (pretilachor and pendimethalin) and two post-emergent (cyhalofop-butyl and bispyribac-sodium) herbicides were evaluated for effective control of the bioassay species, Eleusine indica. It was found that pendimethalin at a higher application rate of 1.0 kg ai ha-1 strongly inhibit the emergence and shoot growth of E. indica by >75% with negligible effect on the rice growth with stimulation on the leaf greenness. Conversely, pretilachor, cyhalofop-butyl and bispyribac-sodium gave moderate inhibition (55-60% inhibition) on weed emergence and shoot growth at higher application rates of 0.44, 0.1 and 0.035 kg ai ha-1, respectively. Significant inhibitory effects on rice root growth were noticed at highest application rates of pretilachor, cyhalofop-butyl and bispyribac-sodium (40-50% inhibition) across the growth stage of rice seedlings. Great reduction in shoot height, shoot fresh weight, and greenness of rice plant also was evident at 0 DAS across herbicides rates. However, with increasing growth stages, the rice plant became less susceptible to the applied treatments. The finding suggested that pendimethalin at 1.0 kg ai ha-1 was the most suitable application rate for inhibiting E. indica without injuring the rice seedlings. (author)

  1. Sensor-based assessment of herbicide effects

    DEFF Research Database (Denmark)

    Streibig, Jens Carl; Rasmussen, Jesper; Andújar, D.

    2014-01-01

    Non-destructive assessment of herbicide effects may be able to support integrated weed management. To test whether effects of herbicides on canopy variables could be detected by sensors, two crops were used as models and treated with herbicides at BBCH 20 using a logarithmic sprayer. Twelve days...... after spraying at BBCH 25 and 42 days after sowing, nine sensor systems scanned a spring barley and an oilseed rape field experiment sown at different densities and sprayed with increasing field rates of glyphosate and tribenuron-methyl. The objective was to compare ED50s for crops and weeds derived...... by the different sensors in relation to crop density and herbicides. Although sensors were not directly developed to detect herbicide symptoms, they all detected changes in canopy colours or height and crop density. Generally ED50s showed the same pattern in response to crop density within herbicide...

  2. Resistance to the photosystem II herbicide diuron is dominant to sensitivity in the cyanobacterium Synechococcus sp. PCC7942

    OpenAIRE

    Brusslan, Judy; Haselkorn, Robert

    1989-01-01

    The transformable cyanobacterium, Synechococcus sp. PCC7942, was used to study the genetics of resistance to the herbicide diuron. In wild-type cells, diuron binds to one of the core proteins, called D1, of photosystem II reaction centres. This binding prevents the transfer of electrons from QA, the primary quinone acceptor, to QB, which is necessary to create the charge separation that drives ATP synthesis. A single amino acid substitution in the D1 protein reduces diuron binding and confers...

  3. Non-target-site resistance to ALS-inhibiting herbicides in a Sagittaria trifolia L. population.

    Science.gov (United States)

    Zhao, Bochui; Fu, Danni; Yu, Yang; Huang, Chengtian; Yan, Kecheng; Li, Pingsheng; Shafi, Jamil; Zhu, He; Wei, Songhong; Ji, Mingshan

    2017-08-01

    Sagittaria trifolia L. is one of the most competitive weeds in rice fields in northeastern China. The continuous use of acetolactate synthase (ALS)-inhibitors has led to the evolution of herbicide resistant S. trifolia. A subpopulation BC1, which was derived from the L1 population, was analyzed using DNA sequencing and ALS enzyme activity assays and levels of resistance to five ALS-inhibiting herbicides was determined. DNA sequencing and ALS enzyme assays revealed no amino acid substitutions and no significant differences in enzyme sensitivity between susceptible and resistant populations. Whole-plant dose-response experiments showed that the BC1 population exhibited different levels of resistance (resistance ratios ranging from 2.14 to 51.53) to five ALS herbicides, and the addition of malathion (P450 inhibitor) to bensulfuron-methyl, penoxsulam and bispyribac-sodium strongly reduced the dry weight accumulation of the BC1 population compared with the effects of the three herbicides alone. The results of the present study demonstrated that the BC1 population has evolved non-target-site resistance to ALS-inhibiting herbicides. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Determination of Chlorophenoxy Acid Methyl Esters and Other Chlorinated Herbicides by GC High-resolution QTOFMS and Soft lonization

    Directory of Open Access Journals (Sweden)

    Viorica Lopez-Avila

    2015-01-01

    Full Text Available Gas chromatography with quadrupole time-of-flight mass spectrometry (GC-QTOFMS and soft ionization generated by a rare-gas plasma is described here for the determination of various chlorophenoxy acid methyl esters and a few chlorinated herbicides. This plasma-based, wavelength-selectable ionization source, which can use Xe, Kr, Ar, Ne, or He as the plasma gas, enables ionization of GC-amenable compounds with ionization energies below 8.4, 10, 11.6, 16.5, or 22.4 eV, respectively. The advantages of soft ionization include enhanced molecular ions, reduced fragmentation, and reduced background noise as compared to electron ionization. In the study presented here for two plasma gases, we demonstrate that Kr plasma, which is softer than Ar plasma, yields molecular ions with a relative intensity >60% for 11 of the 16 test compounds. When using this “tunable” plasma to ionize the analytes, there is the possibility for selective ionization and less fragmentation, which may lead to increased sensitivity and may help structure elucidation, especially when using high-resolution mass spectrometry that generates accurate masses within a few parts per million (ppm mass errors. Data generated with the Ar plasma and real matrices such as a peppermint extract, a plum extract, and an orange peel extract, spiked with 16 test compounds, indicate that the test compounds can be detected at 1-10 pg/µL of extract, and compounds such as menthone, limonene, eucalyptol, pinene, caryophylene, and other C 15 H 24 isomers, which are present in the peppermint and the orange peel extracts at ppm to percent levels, do not appear to interfere with the determination of the chlorophenoxy acid methyl esters or the chlorinated herbicides, although there were matrix effects when the test compounds were spiked at 1-10 pg/µL of extract.

  5. Selectivity and stability of new herbicides and herbicide combinations for the seed yields of some field crops II. Effect at milk thistle (Silybum Marianum Gaertn.)

    OpenAIRE

    G. Delchev

    2016-01-01

    Abstract. During 2013 – 2015 on pellic vertisol soil type was conducted a field experiment. Under investigation was Bulgarian milk thistle cultivar Silmar (Silybum marianum Gaertn.). Factor A included the years of investigation. Factor B included no treated check, 6 soil-applied herbicides – Tendar EC, Sharpen 33 EC, Merlin flex 480 SC, Smerch 24 ЕC, Raft 400 SC, Eagle 75 DF and 5 foliar-applied herbicides – Kalin flo, Eclipse 70 DWG, Sultan 500 SC, Granstar super 50 SG, Starane 250 ...

  6. Hormonal changes in spring barley after triazine herbicide treatment and its mixtures of regulators of polyamine biosynthesis

    Directory of Open Access Journals (Sweden)

    Pavol Trebichalský

    2017-01-01

    Full Text Available Plants adapt to abiotic stress by undergoing diverse biochemical and physiological changes that involve hormone-dependent signalling pathways. The effects of regulators of polyamine biosynthesis can be mimicked by exogenous chemical regulators such as herbicide safeners, which not only enhance stress tolerance but also confer hormetic benefits such as increased vigor and yield. The phytohormones, abscisic acid (ABA and auxin (IAA play key roles in regulating stress responses in plants. Two years pot trials at Slovak University of agriculture Nitra were carried out with analyses of contents of plant hormones in spring barley grain of variety Kompakt: indolyl-acetic acid (IAA and abscisic acid (ABA, after exposing of tested plants to herbicide stress, as well as the possible decrease of these stress factors with application of regulators of polyamine synthesis was evaluated. At 1st year in spring barley grain after application of solo triazine herbicide treatment in dose 0,5 L.ha-1 an increase of all analyzed plant hormones was observed and contrary, at 2nd year there was the decrease of their contents. From our work there is an obvious influence of herbicide stress induced by application of certain dose of triazine herbicide at 1st year. Expect of the variant with mixture of triazine herbicide (in amount of 0,5 L.ha-1 and 29,6 g.ha-1 DAB, at this year all by us applied regulators of polyamine synthesis reduced the level of both plant hormones. Higher affect of stress caused by enhanced content of soluble macroelements in soil where the plants of barley were grown was observed next year. Soil with increased contents of macronutrients (mg.kg-1: N30.7 + P108.3 + K261.5 + Mg604.2 had reducing effect on contents of plant hormones in barley grain at variant treated with solo triazine herbicide (in dose at 0,5 L.ha-1 in comparison to control variant. The mixtures of regulators of polyamine synthesis reduced the contents of IAA only in comparison to

  7. The influence of selected spraying parameters on two formulation of sulfonylurea herbicides effect

    Directory of Open Access Journals (Sweden)

    Renata KIELOCH

    2013-03-01

    Full Text Available The objective of this study was the evaluation of spray volume and nozzle type effect on different formulation (water dispersible granules - WG and oil dispersion - OD of two sulfonylurea herbicides: the mixture iodosulfuron methyl sodium + amidosulfuron and iodosulfuron methyl sodium + mesosulfuron methyl efficacy. There were investigated three levels of spray volume (125 l*ha-1, 250 l*ha-1 and 350 l*ha-1 and two types of nozzle (extended range flat nozzle TeeJet XR 11003-VS and drift guard flat nozzle TeeJet DG 11003-VS. Each herbicide was used at recommended dose and reduced by half. Spray volume and nozzle type did not affect activity of the mixture iodosulfuron methyl sodium + amidosulfuron, but differentiated the efficacy of OD formulation of iodosulfuron methyl sodium + mesosulfuron methyl, when it was applied at lowered dose. As spray volume rose, herbicide efficacy decreased. Nozzle type influenced OD formulation of the mixture iodosulfuron methyl sodium + mesosulfuron methyl, independently on dose. Significantly weaker efficacy was obtained when drift guard nozzle was used.

  8. Use of Fe3O4 Nanoparticles for Enhancement of Biosensor Response to the Herbicide 2,4-Dichlorophenoxyacetic Acid

    Science.gov (United States)

    Loh, Kee-Shyuan; Lee, Yook Heng; Musa, Ahmad; Salmah, Abdul Aziz; Zamri, Ishak

    2008-01-01

    Magnetic nanoparticles of Fe3O4 were synthesized and characterized using transmission electron microscopy and X-ray diffraction. The Fe3O4 nanoparticles were found to have an average diameter of 5.48 ±1.37 nm. An electrochemical biosensor based on immobilized alkaline phosphatase (ALP) and Fe3O4 nanoparticles was studied. The amperometric biosensor was based on the reaction of ALP with the substrate ascorbic acid 2-phosphate (AA2P). The incorporation of the Fe3O4 nanoparticles together with ALP into a sol gel/chitosan biosensor membrane has led to the enhancement of the biosensor response, with an improved linear response range to the substrate AA2P (5-120 μM) and increased sensitivity. Using the inhibition property of the ALP, the biosensor was applied to the determination of the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D). The use of Fe3O4 nanoparticles gives a two-fold improvement in the sensitivity towards 2,4-D, with a linear response range of 0.5-30 μgL-1. Exposure of the biosensor to other toxicants such as heavy metals demonstrated only slight interference from metals such as Hg2+, Cu2+, Ag2+ and Pb2+. The biosensor was shown to be useful for the determination of the herbicide 2, 4-D because good recovery of 95-100 percent was obtained, even though the analysis was performed in water samples with a complex matrix. Furthermore, the results from the analysis of 2,4-D in water samples using the biosensor correlated well with a HPLC method. PMID:27873839

  9. Quantification of fenoxaprop-p-ethyl herbicide in soil and vegetable samples by microwave-assisted solvent extraction and HPLC method

    International Nuclear Information System (INIS)

    Shahzad, F.U.N.; Shah, J.; Jan, M.R.; Muhammad, M.

    2012-01-01

    A simple HPLC procedure for the determination of fenoxaprop-p-ethyl herbicide in environmental samples is described. The chromatographic analysis was carried out by HPLC, on a C18 packed capillary column (4x4 mm,4.6 X 150 mm, 5mm particle size) with 20 macro l injection volume and UV detector at 280 nm. HPLC-grade acetonitrile and methanol were used as mobile phase with flow rate of 1mL min-1. Samples were spiked with amount between 5 - 20 micro g g-1 of herbicide and were isolated from samples by applying microwave assisted extraction (MASE) at ambient temperature. Percent recoveries were improved by optimizing solvent types, solvent volume, extraction temperature and time. Calibration curve range determined by HPLC was 0.5-16 micro g mL-1. The interaction of different variables for maximum % recovery response was checked by applying factorial design and was found to be in range of 91.22+-0.01-99.32+-0.01 with good precision (< 5% ). Application of this procedure to the analysis of herbicide in ester and acid form showed the effectiveness of the proposed approach. (author)

  10. The chloroindole auxins of pea, strong plant growth hormones or endogenous herbicides

    International Nuclear Information System (INIS)

    Engvild, K.C.

    1994-02-01

    In this work the three theses below are discussed: 1) Identification and quantitative determination of the very strong plant hormone, the auxin 4-chloroindole-3-acetic acid methyl ester, in immature seeds of Pisum, Vicia, Lathyrus, and Lens spp. by incorporation of radioactive 36 Cl, thin layer chromatography, autoradiography, colour reactions, and gas chromatography/mass spectrometry. 2) The strong biological activity of 4-chloroindole-3-acetic acid and its analogues and its ability to induce strong, almost irreversible, ethylene evolution. 3) The possible role of chloroindole auxin in plants, particularly if it might be the hypothetical death hormone, secreted from developing seeds, which induces senescence and kills the mother plant at maturity; if plants generally have several auxin types, growth promoters and endogenous herbicides; and if other chlorine-containing plant hormones occur in developing seeds of other crop species. (au) (7 tabs., 8 ills., 144 refs.)

  11. Non-specific activities of the major herbicide-resistance gene BAR.

    Science.gov (United States)

    Christ, Bastien; Hochstrasser, Ramon; Guyer, Luzia; Francisco, Rita; Aubry, Sylvain; Hörtensteiner, Stefan; Weng, Jing-Ke

    2017-12-01

    Bialaphos resistance (BAR) and phosphinothricin acetyltransferase (PAT) genes, which convey resistance to the broad-spectrum herbicide phosphinothricin (also known as glufosinate) via N-acetylation, have been globally used in basic plant research and genetically engineered crops 1-4 . Although early in vitro enzyme assays showed that recombinant BAR and PAT exhibit substrate preference toward phosphinothricin over the 20 proteinogenic amino acids 1 , indirect effects of BAR-containing transgenes in planta, including modified amino acid levels, have been seen but without the identification of their direct causes 5,6 . Combining metabolomics, plant genetics and biochemical approaches, we show that transgenic BAR indeed converts two plant endogenous amino acids, aminoadipate and tryptophan, to their respective N-acetylated products in several plant species. We report the crystal structures of BAR, and further delineate structural basis for its substrate selectivity and catalytic mechanism. Through structure-guided protein engineering, we generated several BAR variants that display significantly reduced non-specific activities compared with its wild-type counterpart in vivo. The transgenic expression of enzymes can result in unintended off-target metabolism arising from enzyme promiscuity. Understanding such phenomena at the mechanistic level can facilitate the design of maximally insulated systems featuring heterologously expressed enzymes.

  12. ACCERBATIN, a small molecule at the intersection of auxin and reactive oxygen species homeostasis with herbicidal properties.

    Science.gov (United States)

    Hu, Yuming; Depaepe, Thomas; Smet, Dajo; Hoyerova, Klara; Klíma, Petr; Cuypers, Ann; Cutler, Sean; Buyst, Dieter; Morreel, Kris; Boerjan, Wout; Martins, José; Petrášek, Jan; Vandenbussche, Filip; Van Der Straeten, Dominique

    2017-07-10

    The volatile two-carbon hormone ethylene acts in concert with an array of signals to affect etiolated seedling development. From a chemical screen, we isolated a quinoline carboxamide designated ACCERBATIN (AEX) that exacerbates the 1-aminocyclopropane-1-carboxylic acid-induced triple response, typical for ethylene-treated seedlings in darkness. Phenotypic analyses revealed distinct AEX effects including inhibition of root hair development and shortening of the root meristem. Mutant analysis and reporter studies further suggested that AEX most probably acts in parallel to ethylene signaling. We demonstrated that AEX functions at the intersection of auxin metabolism and reactive oxygen species (ROS) homeostasis. AEX inhibited auxin efflux in BY-2 cells and promoted indole-3-acetic acid (IAA) oxidation in the shoot apical meristem and cotyledons of etiolated seedlings. Gene expression studies and superoxide/hydrogen peroxide staining further revealed that the disrupted auxin homeostasis was accompanied by oxidative stress. Interestingly, in light conditions, AEX exhibited properties reminiscent of the quinoline carboxylate-type auxin-like herbicides. We propose that AEX interferes with auxin transport from its major biosynthesis sites, either as a direct consequence of poor basipetal transport from the shoot meristematic region, or indirectly, through excessive IAA oxidation and ROS accumulation. Further investigation of AEX can provide new insights into the mechanisms connecting auxin and ROS homeostasis in plant development and provide useful tools to study auxin-type herbicides. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  13. Enantioselective changes in oxidative stress and toxin release in Microcystis aeruginosa exposed to chiral herbicide diclofop acid

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Jing [School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418 (China); MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Natural Research and Environmental Sciences, Zhejiang University, Hangzhou 310058 (China); Zhang, Ying [Department of Environmental Science, East China Normal University, Shanghai 200241 (China); Chen, Shengwen [School of Urban Development and Environment Engineering, Shanghai Second Polytechnic University, Shanghai 201209 (China); Liu, Chaonan; Zhu, Yongqiang [School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418 (China); Liu, Weiping, E-mail: wliu@zju.edu.cn [MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Natural Research and Environmental Sciences, Zhejiang University, Hangzhou 310058 (China)

    2014-01-15

    Highlights: •The first study on enantioselective oxidative stress and toxin release from Microcystis aeruginosa. •Provide information for the R-enantiomer poses more oxidative stress than the S-enantiomer. •Lifecycle analysis of chiral pollutants needs more attention in environmental assessment. -- Abstract: Enantioselective oxidative stress and toxin release from Microcystis aeruginosa after exposure to the chiral herbicide diclofop acid were investigated. Racemic diclofop acid, R-diclofop acid and S-diclofop acid induced reactive oxygen species (ROS) generation, increased the concentration of malondialdehyde (MDA), enhanced the activity of superoxide dismutase (SOD) and triggered toxin release in M. aeruginosa to varying degrees. The increase in MDA concentration and SOD activity in M. aeruginosa occurred sooner after exposure to diclofop acid than when the cyanobacteria was exposed to either the R- and the S-enantiomer. In addition, enantioselective toxicity of the enantiomers was observed. The R-enantiomer trigged more ROS generation, more SOD activity and more toxin synthesis and release in M. aeruginosa cells than the S-enantiomer. Diclofop acid and its R-enantiomer may collapse the transmembrane proton gradient and destroy the cell membrane through lipid peroxidation and free radical oxidation, whereas the S-enantiomer did not demonstrate such action. R-diclofop acid inhibits the growth of M. aeruginosa in the early stage, but ultimately induced greater toxin release, which has a deleterious effect on the water column. These results indicate that more comprehensive study is needed to determine the environmental safety of the enantiomers, and application of chiral pesticides requires more direct supervision and training. Additionally, lifecycle analysis of chiral pollutants in aquatic system needs more attention to aide in the environmental assessment of chiral pesticides.

  14. Simultaneous quantification of acetanilide herbicides and their oxanilic and sulfonic acid metabolites in natural waters.

    Science.gov (United States)

    Heberle, S A; Aga, D S; Hany, R; Müller, S R

    2000-02-15

    This paper describes a procedure for simultaneous enrichment, separation, and quantification of acetanilide herbicides and their major ionic oxanilic acid (OXA) and ethanesulfonic acid (ESA) metabolites in groundwater and surface water using Carbopack B as a solid-phase extraction (SPE) material. The analytes adsorbed on Carbopack B were eluted selectively from the solid phase in three fractions containing the parent compounds (PCs), their OXA metabolites, and their ESA metabolites, respectively. The complete separation of the three compound classes allowed the analysis of the neutral PCs (acetochlor, alachlor, and metolachlor) and their methylated OXA metabolites by gas chromatography/mass spectrometry. The ESA compounds were analyzed by high-performance liquid chromatography with UV detection. The use of Carbopack B resulted in good recoveries of the polar metabolites even from large sample volumes (1 L). Absolute recoveries from spiked surface and groundwater samples ranged between 76 and 100% for the PCs, between 41 and 91% for the OXAs, and between 47 and 96% for the ESAs. The maximum standard deviation of the absolute recoveries was 12%. The method detection limits are between 1 and 8 ng/L for the PCs, between 1 and 7 ng/L for the OXAs, and between 10 and 90 ng/L for the ESAs.

  15. Herbicidal Activities of Some Allelochemicals and Their Synergistic Behaviors toward Amaranthus tricolor L.

    Directory of Open Access Journals (Sweden)

    Nawasit Chotsaeng

    2017-10-01

    Full Text Available Seven allelochemicals, namely R-(+-limonene (A, vanillin (B, xanthoxyline (C, vanillic acid (D, linoleic acid (E, methyl linoleate (F, and (±-odorine (G, were investigated for their herbicidal activities on Chinese amaranth (Amaranthus tricolor L.. At 400 μM, xanthoxyline (C showed the greatest inhibitory activity on seed germination and seedling growth of the tested plant. Both vanillic acid (D and (±-odorine (G inhibited shoot growth, however, apart from xanthoxyline (C, only vanillic acid (D could inhibit root growth. Interestingly, R-(+-limonene (A lightly promoted root length. Other substances had no allelopathic effect on seed germination and seedling growth of the tested plant. To better understand and optimize the inhibitory effects of these natural herbicides, 21 samples of binary mixtures of these seven compounds were tested at 400 μM using 0.25% (v/v Tween® 80 as a control treatment. The results showed that binary mixtures of R-(+-limonene:xanthoxyline (A:C, vanillin:xanthoxyline (B:C, and xanthoxyline:linoleic acid (C:E exhibited strong allelopathic activities on germination and seedling growth of the tested plant, and the level of inhibition was close to the effect of xanthoxyline (C at 400 µM and was better than the effect of xanthoxyline (C at 200 µM. The inhibition was hypothesized to be from a synergistic interaction of each pair of alleochemicals. Mole ratios of each pair of allelochemicals ((A:C, (B:C, and (C:E were then evaluated, and the best ratios of the binary mixtures A:C, B:C and C:E were found to be 2:8, 2:8, and 4:6 respectively. These binary mixtures significantly inhibited germination and shoot and root growth of Chinese amaranth at low concentrations. The results reported here highlight a synergistic behavior of some allelochemicals which could be applied in the development of potential herbicides.

  16. Virtual imprinting as a tool to design efficient MIPs for photosynthesis-inhibiting herbicides.

    Science.gov (United States)

    Breton, Florent; Rouillon, Regis; Piletska, Elena V; Karim, Kal; Guerreiro, Antonio; Chianella, Iva; Piletsky, Sergey A

    2007-04-15

    Molecular modelling and computational screening were used to identify functional monomers capable of interacting with several different photosynthesis-inhibiting herbicides. The process involved the design of a virtual library of molecular models of functional monomers containing polymerizable residues and residues able to interact with the template through electrostatic, hydrophobic, Van der Waals forces and dipole-dipole interactions. Each of the entries in the virtual library was probed for its possible interactions with molecular models of the template molecules. It was anticipated that the monomers giving the highest binding score would represent good candidates for the preparation of affinity polymers. Strong interactions were computationally determined between acidic functional monomers like methacrylic acid (MAA) or itaconic acid (IA) with triazines, and between vinylimidazole with bentazone and bromoxynil. Nevertheless, weaker interactions were seen with phenylureas. The corresponding blank polymers were prepared using the selected monomers and tested in the solid phase extraction (SPE) of herbicides from chloroform solutions. A good correlation was found between the binding score of the monomers and the affinities of the corresponding polymers. The use of computationally designed blanks can potentially eliminate the need for molecular imprinting, (adding a template to the monomer mixture to create specific binding sites). Data also showed that some monomers have a natural selectivity for some herbicides, which can be further enhanced by imprinting. Thus, in regard to retention on the blank polymer, we can estimate if the resulting imprinted polymer will be effective or not.

  17. The earthworm Aporrectodea caliginosa stimulates abundance and activity of phenoxyalkanoic acid herbicide degraders

    Science.gov (United States)

    Liu, Ya-Jun; Zaprasis, Adrienne; Liu, Shuang-Jiang; Drake, Harold L; Horn, Marcus A

    2011-01-01

    2-Methyl-4-chlorophenoxyacetic acid (MCPA) is a widely used phenoxyalkanoic acid (PAA) herbicide. Earthworms represent the dominant macrofauna and enhance microbial activities in many soils. Thus, the effect of the model earthworm Aporrectodea caliginosa (Oligochaeta, Lumbricidae) on microbial MCPA degradation was assessed in soil columns with agricultural soil. MCPA degradation was quicker in soil with earthworms than without earthworms. Quantitative PCR was inhibition-corrected per nucleic acid extract and indicated that copy numbers of tfdA-like and cadA genes (both encoding oxygenases initiating aerobic PAA degradation) in soil with earthworms were up to three and four times higher than without earthworms, respectively. tfdA-like and 16S rRNA gene transcript copy numbers in soil with earthworms were two and six times higher than without earthworms, respectively. Most probable numbers (MPNs) of MCPA degraders approximated 4 × 105 gdw−1 in soil before incubation and in soil treated without earthworms, whereas MPNs of earthworm-treated soils were approximately 150 × higher. The aerobic capacity of soil to degrade MCPA was higher in earthworm-treated soils than in earthworm-untreated soils. Burrow walls and 0–5 cm depth bulk soil displayed higher capacities to degrade MCPA than did soil from 5–10 cm depth bulk soil, expression of tfdA-like genes in burrow walls was five times higher than in bulk soil and MCPA degraders were abundant in burrow walls (MPNs of 5 × 107 gdw−1). The collective data indicate that earthworms stimulate abundance and activity of MCPA degraders endogenous to soil by their burrowing activities and might thus be advantageous for enhancing PAA degradation in soil. PMID:20740027

  18. Pricing of environmental friendly herbicides appropriate for sustainable agriculture, A case study: wheat farmers in Khorasan Razavi province

    Directory of Open Access Journals (Sweden)

    Mohammad Ghorbani

    2016-04-01

    Full Text Available Awareness of wheat farmers’ personal preferences towards environmental issues and weed types is important in pricing bioherbicides for sustainable weed management and could consequently be a fundamental guide to agricultural authorities and policy-makers. In the present study, a survey was carried out by using data collected from 180 wheat farmers of Korasan Razavi province during 2008, together with hedonic pricing method. The role of environmental qualitative factors and weed type on pricing environmental-friendly herbicides on the basis of “willingness to pay” was studied. Results from the estimation of hedonic pricing method indicated that reduction of water pollution, human health risk, farmers information about negative effects of chemical herbicides and the virtual variable of weed type had significant effects on pricing environmental friendly herbicides. Variables of soil pollution and weed perenniality had no significant effects on pricing herbicide applicable to sustainable agricultural systems. Based on the results of this study, possibilities of using bioherbicide or less pollutant herbicides and also the rate of farmers willingness to pay for alternatives in the region are important factors recommended for additional studies

  19. Environmental Statement. Disposition of Orange Herbicide by Incineration

    Science.gov (United States)

    1974-11-01

    remote as possible from both residential and industrial population centers and from land currently in agronomic pro- duction., Vegetation should be...sparse, of little agronomic value, and of species resistant to the phenoxyacetic acid herbicides contained in Orange or to the pyrolytic products of...each to induce intoxication . The above results are summarized in Table 11-7. b. Behavior in Humans: Gehring et al., (1973) studied the effects of 2,4,5-T

  20. Use of Fe3O4 Nanoparticles for Enhancement of Biosensor Response to the Herbicide 2,4-Dichlorophenoxyacetic Acid

    Directory of Open Access Journals (Sweden)

    Ishak Zamri

    2008-09-01

    Full Text Available Magnetic nanoparticles of Fe3O4 were synthesized and characterized using transmission electron microscopy and X-ray diffraction. The Fe3O4 nanoparticles were found to have an average diameter of 5.48 ±1.37 nm. An electrochemical biosensor based on immobilized alkaline phosphatase (ALP and Fe3O4 nanoparticles was studied. The amperometric biosensor was based on the reaction of ALP with the substrate ascorbic acid 2-phosphate (AA2P. The incorporation of the Fe3O4 nanoparticles together with ALP into a sol gel/chitosan biosensor membrane has led to the enhancement of the biosensor response, with an improved linear response range to the substrate AA2P (5-120 μM and increased sensitivity. Using the inhibition property of the ALP, the biosensor was applied to the determination of the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D. The use of Fe3O4 nanoparticles gives a two-fold improvement in the sensitivity towards 2,4-D, with a linear response range of 0.5-30 μgL-1. Exposure of the biosensor to other toxicants such as heavy metals demonstrated only slight interference from metals such as Hg2+, Cu2+, Ag2+ and Pb2+. The biosensor was shown to be useful for the determination of the herbicide 2, 4-D because good recovery of 95-100 percent was obtained, even though the analysis was performed in water samples with a complex matrix. Furthermore, the results from the analysis of 2,4-D in water samples using the biosensor correlated well with a HPLC method.

  1. The effect of triazine - and urea - type herbicides on photosynthetic apparatus in cucumber leaves

    Directory of Open Access Journals (Sweden)

    Jolanta Jerzykiewicz

    2011-01-01

    Full Text Available About a half of the herbicides used at present in agnculture inhibit the light reactions in photosynthesis. Triazines and phenylureas shut down the photosynthetic process in susceptible plants by binding to specific sites within the plants photosystem II (PS II complex. Both of them bind at the QB site on the Dl protein of PS II, and prevent the transport of electrons between the primary electron acceptor Q and the plastoquinone (PQ. Herbicides can be highly toxic to human and animal health (triazines are possible human carcinogens. Their indiscriminate use has serious environmental implications, for example pollution of soil and water. We compare two heibicides to investigate the one of lowest environmental toxicity but of high toxicity to weeds.

  2. Effect of herbicides on microbiological properties of soil

    Directory of Open Access Journals (Sweden)

    Milošević Nada A.

    2002-01-01

    Full Text Available Microorganisms decompose herbicides and they may serve as bioindicators of soil changes following herbicide application. Certain microbial species may be used as bioherbicides. This study has shown that Azotobacter is most sensitive to herbicide application; it is, therefore, a reliable indicator of the biological value of soil. The numbers of this group of nitrogen-fixing bacteria decrease considerably in the period of 7-14 days after herbicide application. Simultaneously, the numbers of Actinomycetes and less so of fungi increase, indicating that these microorganisms use herbicides as sources of biogenous elements. Rate of herbicidal decomposition depends on the properties of the preparation applied herbicide dose as well as on the physical and chemical soil properties, soil moisture and temperature, ground cover, agrotechnical measures applied and the resident microbial population.

  3. Femtomolar detection of 2,4-dichlorophenoxyacetic acid herbicides via competitive immunoassays using microfluidic based carbon nanotube liquid gated transistor.

    Science.gov (United States)

    Wijaya, I Putu Mahendra; Nie, Tey Ju; Gandhi, Sonu; Boro, Robin; Palaniappan, Alagappan; Hau, Goh Wei; Rodriguez, Isabel; Suri, C Raman; Mhaisalkar, Subodh G

    2010-03-07

    Monitoring of environmental pollutants has become increasingly important due to concern over potential health and environmental impact inflicted by these chemicals. In this contribution, we focus on the development of an all-plastic biosensor comprising laminated single-walled carbon nanotubes as the active element and its conductance modulation in a liquid-gated field effect transistor, as the principle of transduction, for the detection of 2,4-dicholorophenoxy acetic acid (2,4-D) herbicide. The reported biosensor is capable of performing real-time label-free detection of analytes in liquid environment. This biosensor which relies on immunoassay principle for specificity is able to detect down to 500 fM levels of 2,4-D in soil samples.

  4. Fate of the herbicides glyphosate, glufosinate-ammonium, phenmedipham, ethofumesate and metamitron in two Finnish arable soils.

    Science.gov (United States)

    Laitinen, Pirkko; Siimes, Katri; Eronen, Liisa; Rämö, Sari; Welling, Leena; Oinonen, Seija; Mattsoff, Leona; Ruohonen-Lehto, Marja

    2006-06-01

    The fate of five herbicides (glyphosate, glufosinate-ammonium, phenmedipham, ethofumesate and metamitron) was studied in two Finnish sugar beet fields for 26 months. Soil types were sandy loam and clay. Two different herbicide-tolerant sugar beet cultivars and three different herbicide application schedules were used. Meteorological data were collected throughout the study and soil properties were thoroughly analysed. An extensive data set of herbicide residue concentrations in soil was collected. Five different soil depths were sampled. The study was carried out using common Finnish agricultural practices and represents typical sugar beet cultivation conditions in Finland. The overall observed order of persistence was ethofumesate > glyphosate > phenmedipham > metamitron > glufosinate-ammonium. Only ethofumesate and glyphosate persisted until the subsequent spring. Seasonal variation in herbicide dissipation was very high and dissipation ceased almost completely during winter. During the 2 year experiment no indication of potential groundwater pollution risk was obtained, but herbicides may cause surface water pollution. Copyright (c) 2006 Society of Chemical Industry

  5. Electrochemical destruction of chlorophenoxy herbicides by anodic oxidation and electro-Fenton using a boron-doped diamond electrode

    International Nuclear Information System (INIS)

    Brillas, Enric; Boye, Birame; Sires, Ignasi; Garrido, Jose Antonio; Rodriguez, Rosa Maria; Arias, Conchita; Cabot, Pere-Lluis; Comninellis, Christos

    2004-01-01

    The degradation of herbicides 4-chlorophenoxyacetic acid (4-CPA), 4-chloro-2-methylphenoxyacetic acid (MCPA), 2,4-dichlorophenoxyacetic acid (2,4-D) and 2,4,5-trichlorophenoxyacetic acid (2,4,5-T) in aqueous medium of pH 3.0 has been comparatively studied by anodic oxidation and electro-Fenton using a boron-doped diamond (BDD) anode. All solutions are totally mineralized by electro-Fenton, even at low current, being the process more efficient with 1 mM Fe 2+ as catalyst. This is due to the production of large amounts of oxidant hydroxyl radical (OH·) on the BDD surface by water oxidation and from Fenton's reaction between added Fe 2+ and H 2 O 2 electrogenerated at the O 2 -diffusion cathode. The herbicide solutions are also completely depolluted by anodic oxidation. Although a quicker degradation is found at the first stages of electro-Fenton, similar times are required for achieving overall mineralization in both methods. The decay kinetics of all herbicides always follows a pseudo first-order reaction. Reversed-phase chromatography allows detecting 4-chlorophenol, 4-chloro-o-cresol, 2,4-dichlorophenol and 2,4,5-trichlorophenol as primary aromatic intermediates of 4-CPA, MCPA, 2,4-D and 2,4,5-T, respectively. Dechlorination of these products gives Cl - , which is slowly oxidized on BDD. Ion-exclusion chromatography reveals the presence of persistent oxalic acid in electro-Fenton by formation of Fe 3+ -oxalato complexes, which are slowly destroyed by OH· adsorbed on BDD. In anodic oxidation, oxalic acid is mineralized practically at the same rate as generated

  6. Comparing Metabolic Functionalities, Community Structures, and Dynamics of Herbicide-Degrading Communities Cultivated with Different Substrate Concentrations

    DEFF Research Database (Denmark)

    Gözdereliler, Erkin; Boon, Nico; Aamand, Jens

    2013-01-01

    Two 4-chloro-2-methylphenoxyacetic acid (MCPA)-degrading enrichment cultures selected from an aquifer on low (0.1 mg liter−1) or high (25 mg liter−1) MCPA concentrations were compared in terms of metabolic activity, community composition, population growth, and single cell physiology. Different...... community compositions and major shifts in community structure following exposure to different MCPA concentrations were observed using both 16S rRNA gene denaturing gradient gel electrophoresis fingerprinting and pyrosequencing. The communities also differed in their MCPA-mineralizing activities...... activity in cultures selected on low herbicide concentrations. This suggests that LNA bacteria may play a role in degradation of low herbicide concentrations in aquifers impacted by agriculture. This study shows that subpopulations of herbicide-degrading bacteria that are adapted to different pesticide...

  7. The role of L-type amino acid transporters in the uptake of glyphosate across mammalian epithelial tissues.

    Science.gov (United States)

    Xu, Jiaqiang; Li, Gao; Wang, Zhuoyi; Si, Luqin; He, Sijie; Cai, Jialing; Huang, Jiangeng; Donovan, Maureen D

    2016-02-01

    Glyphosate is one of the most commonly used herbicides worldwide due to its broad spectrum of activity and reported low toxicity to humans. Glyphosate has an amino acid-like structure that is highly polar and shows low bioavailability following oral ingestion and low systemic toxicity following intravenous exposures. Spray applications of glyphosate in agricultural or residential settings can result in topical or inhalation exposures to the herbicide. Limited systemic exposure to glyphosate occurs following skin contact, and pulmonary exposure has also been reported to be low. The results of nasal inhalation exposures, however, have not been evaluated. To investigate the mechanisms of glyphosate absorption across epithelial tissues, the permeation of glyphosate across Caco-2 cells, a gastrointestinal epithelium model, was compared with permeation across nasal respiratory and olfactory tissues excised from cows. Saturable glyphosate uptake was seen in all three tissues, indicating the activity of epithelial transporters. The uptake was shown to be ATP and Na(+) independent, and glyphosate permeability could be significantly reduced by the inclusion of competitive amino acids or specific LAT1/LAT2 transporter inhibitors. The pattern of inhibition of glyphosate permeability across Caco-2 and nasal mucosal tissues suggests that LAT1/2 play major roles in the transport of this amino-acid-like herbicide. Enhanced uptake into the epithelial cells at barrier mucosae, including the respiratory and gastrointestinal tracts, may result in more significant local and systemic effects than predicted from glyphosate's passive permeability, and enhanced uptake by the olfactory mucosa may result in further CNS disposition, potentially increasing the risk for brain-related toxicities. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Herbicide injury induces DNA methylome alterations in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Gunjune Kim

    2017-07-01

    Full Text Available The emergence of herbicide-resistant weeds is a major threat facing modern agriculture. Over 470 weedy-plant populations have developed resistance to herbicides. Traditional evolutionary mechanisms are not always sufficient to explain the rapidity with which certain weed populations adapt in response to herbicide exposure. Stress-induced epigenetic changes, such as alterations in DNA methylation, are potential additional adaptive mechanisms for herbicide resistance. We performed methylC sequencing of Arabidopsis thaliana leaves that developed after either mock treatment or two different sub-lethal doses of the herbicide glyphosate, the most-used herbicide in the history of agriculture. The herbicide injury resulted in 9,205 differentially methylated regions (DMRs across the genome. In total, 5,914 of these DMRs were induced in a dose-dependent manner, wherein the methylation levels were positively correlated to the severity of the herbicide injury, suggesting that plants can modulate the magnitude of methylation changes based on the severity of the stress. Of the 3,680 genes associated with glyphosate-induced DMRs, only 7% were also implicated in methylation changes following biotic or salinity stress. These results demonstrate that plants respond to herbicide stress through changes in methylation patterns that are, in general, dose-sensitive and, at least partially, stress-specific.

  9. Sorption behaviour of herbicides in soils

    International Nuclear Information System (INIS)

    Luchini, L.C.; Wiendl, F.M.; Ruegg, E.F.; Instituto Biologico, Sao Paulo

    1988-01-01

    Environmental contamination by herbicides is related with the sorption phenomenon of these compounds in the soils. The behaviour of paraquat, 2,4-D and diuron was studied in soils with different physico-chemical properties, through the Freundlich adsorption and desorption isotherms, using 14 C-radiolabeled herbicides. Results of the range of the adsorption-desorption of each herbicide was related mainly with the chemical characteristics of these compounds. (author) [pt

  10. Herbicide glufosinate inhibits yeast growth and extends longevity during wine fermentation.

    Science.gov (United States)

    Vallejo, Beatriz; Picazo, Cecilia; Orozco, Helena; Matallana, Emilia; Aranda, Agustín

    2017-09-29

    Glufosinate ammonium (GA) is a widely used herbicide that inhibits glutamine synthetase. This inhibition leads to internal amino acid starvation which, in turn, causes the activation of different nutrient sensing pathways. GA also inhibits the enzyme of the yeast Saccharomyces cerevisiae in such a way that, although it is not used as a fungicide, it may alter yeast performance in industrial processes like winemaking. We describe herein how GA indeed inhibits the yeast growth of a wine strain during the fermentation of grape juice. In turn, GA extends longevity in a variety of growth media. The biochemical analysis indicates that GA partially inhibits the nutrient sensing TORC1 pathway, which may explain these phenotypes. The GCN2 kinase mutant is hypersensitive to GA. Hence the control of translation and amino acid biosynthesis is required to also deal with the damaging effects of this pesticide. A global metabolomics analysis under winemaking conditions indicated that an increase in amino acid and in polyamines occurred. In conclusion, GA affects many different biochemical processes during winemaking, which provides us with some insights into both the effect of this herbicide on yeast physiology and into the relevance of the metabolic step for connecting nitrogen and carbon metabolism.

  11. PREVENTION AND CONTROL OF DIMETHYLAMINE VAPORS EMISSION: HERBICIDE PRODUCTION PLANT

    Directory of Open Access Journals (Sweden)

    Zorana Arsenijević

    2008-11-01

    Full Text Available The widely used herbicide, dimethylamine salt of 2,4-dichlorophenoxy acetic acid (2,4-D-DMA, is usually prepared by mixing a dimethylamine (DMA aqueous solution with a solid 2,4-dichlorophenoxy acetic acid (2,4-D. The vapors of the both, reactants and products, are potentially hazardous for the environment. The contribution of DMA vapors in overall pollution from this process is most significant, concerning vapor pressures data of these pollutants. Therefore, the control of the air pollution in the manufacture and handling of methylamines is very important. Within this paper, the optimal air pollution control system in preparation of 2,4-D-DMA was developed for the pesticides manufacturing industry. This study employed the simple pollution prevention concept to reduce the emission of DMA vapors at the source. The investigations were performed on the pilot plant scale. To reduce the emission of DMA vapors, the effluent gases from the herbicide preparation zone were passed through the packed bed scrubber (water - scrubbing medium, and the catalytic reactor in sequence. The end result is a substantially improved air quality in the working area, as well as in the urbanized areas located near the chemical plant.

  12. Sublethal exposure to commercial formulations of the herbicides dicamba, 2,4-dichlorophenoxyacetic acid, and glyphosate cause changes in antibiotic susceptibility in Escherichia coli and Salmonella enterica serovar Typhimurium.

    Science.gov (United States)

    Kurenbach, Brigitta; Marjoshi, Delphine; Amábile-Cuevas, Carlos F; Ferguson, Gayle C; Godsoe, William; Gibson, Paddy; Heinemann, Jack A

    2015-03-24

    Biocides, such as herbicides, are routinely tested for toxicity but not for sublethal effects on microbes. Many biocides are known to induce an adaptive multiple-antibiotic resistance phenotype. This can be due to either an increase in the expression of efflux pumps, a reduced synthesis of outer membrane porins, or both. Exposures of Escherichia coli and Salmonella enterica serovar Typhimurium to commercial formulations of three herbicides-dicamba (Kamba), 2,4-dichlorophenoxyacetic acid (2,4-D), and glyphosate (Roundup)-were found to induce a changed response to antibiotics. Killing curves in the presence and absence of sublethal herbicide concentrations showed that the directions and the magnitudes of responses varied by herbicide, antibiotic, and species. When induced, MICs of antibiotics of five different classes changed up to 6-fold. In some cases the MIC increased, and in others it decreased. Herbicide concentrations needed to invoke the maximal response were above current food maximum residue levels but within application levels for all herbicides. Compounds that could cause induction had additive effects in combination. The role of soxS, an inducer of the AcrAB efflux pump, was tested in β-galactosidase assays with soxS-lacZ fusion strains of E. coli. Dicamba was a moderate inducer of the sox regulon. Growth assays with Phe-Arg β-naphtylamide (PAβN), an efflux pump inhibitor, confirmed a significant role of efflux in the increased tolerance of E. coli to chloramphenicol in the presence of dicamba and to kanamycin in the presence of glyphosate. Pathways of exposure with relevance to the health of humans, domestic animals, and critical insects are discussed. Increasingly common chemicals used in agriculture, domestic gardens, and public places can induce a multiple-antibiotic resistance phenotype in potential pathogens. The effect occurs upon simultaneous exposure to antibiotics and is faster than the lethal effect of antibiotics. The magnitude of the

  13. Studies on the distribution of 2,4 D herbicide in soil-plant ecosystem using isotope tracer techniques

    International Nuclear Information System (INIS)

    Onal, G.

    1986-01-01

    In this study, distribution of 2,4 Diclorophenoxyacetic acid (2,4 D) herbicide in soil-plant ecosystems under greenhouse conditions were investigated by using isotope tracer techniques. For this purpose barley, wheat and oat plants were grown in two different kinds of soil taken from surrounding of Ankara and the distribution of the herbicide between soil and plants were investigated. In the research 14 C-2,40 D was used and the radioactivity was measured in a liquid scintillation counter. (author)

  14. Estimation of herbicide bioconcentration in sugarcane (Saccharum officinarum L.

    Directory of Open Access Journals (Sweden)

    Antonio Luiz Cerdeira

    2015-04-01

    Full Text Available Sugarcane is an important crop for sugar and biofuel production in Brazil. Growers depend greatly on herbicides to produce it. This experiment used herbicide physical-chemical and sugarcane plant physiological properties to simulate herbicide uptake and estimate the bioconcentration factor (BCF. The (BCF was calculated for the steady state chemical equilibrium between the plant herbicide concentration and soil solution. Plant-water partition coefficient (sugarcane bagasse-water partition coefficient, herbicide dilution rate, metabolism and dissipation in the soil-plant system, as well as total plant biomass factors were used. In addition, we added Tebuthiuron at rate of 5.0kg a.i. ha-1 to physically test the model. In conclusion, the model showed the following ranking of herbicide uptake: sulfentrazone > picloram >tebuthiuron > hexazinone > metribuzin > simazine > ametryn > diuron > clomazone > acetochlor. Furthermore, the highest BCF herbicides showed higher Groundwater Ubiquity Score (GUS index indicating high leaching potential. We did not find tebuthiuron in plants after three months of herbicide application

  15. Fast determination of phenoxy acid herbicides in carrots and apples using liquid chromatography coupled triple quadrupole mass spectrometry.

    Science.gov (United States)

    Santilio, Angela; Stefanelli, Patrizia; Dommarco, Roberto

    2009-08-01

    A fast, simple and inexpensive method has been developed for the analysis of phenoxy acid herbicides: 2,4-dichlorophenoxyacetic acid (2,4-D), 4-chloro-2-methylphenoxyacetic acid (MCPA), 2-(4-chloro-o-tolyloxy)propionic acid (MCPP), 2-(4-aryloxyphenoxy)propionic acid (Fluazifop) and 2-(4-aryloxyphenoxy)propionic acid (Haloxyfop) in carrots and apples by liquid chromatography coupled to triple quadrupole mass spectrometry (LC/MS/MS). The compounds were analyzed by QuEChERS (quick, easy, cheap, effective, rugged, safe) methodology without cleanup. The recoveries were performed at two spiked levels (0.05 and 0.5 mg/kg) for both matrices with six replicates for each level. The mean recoveries ranged from 70-92% for both apples and carrots. The precision of the method expressed as relative standard deviation (RSD%) was found to be in the range 3-15%. For all compounds, good linearity (r(2) > 0.99) was obtained over the range of concentration from 0.05 micro g/mL to 0.5 micro g/mL, corresponding to the pesticide concentrations of 0.05 mg/kg and 0.5 mg/kg, respectively. The determination limits (LOQs) ranged from 0.01 ng/mL to 1.3 ng/mL in solvent, whereas, the LOQs calculated in matrix ranged from 0.05 ng/g to 21.0 ng/g for apples and from 0.06 ng/g to 10.2 ng/g for carrots. The developed methodology combines the advantages of both QuEChERS and LC/MS/MS producing a very rapid, sensitive and cheap method useful for the routine analytical laboratories.

  16. Selective Herbicides for Cultivation of Eucalyptus urograndis Clones

    Directory of Open Access Journals (Sweden)

    Patrick J. Minogue

    2015-01-01

    Full Text Available Competition control is essential for successful eucalyptus plantation establishment, yet few selective herbicides have been identified. Five herbicides, flumioxazin, imazamox, imazapic, oxyfluorfen, and sulfometuron methyl, were evaluated for selective weed control in the establishment of genetically modified frost tolerant Eucalyptus urograndis clones. Herbicides were applied at two or three rates, either before or after weed emergence, and compared to a nontreated control and to near-complete weed control obtained with glyphosate directed sprays. Applications prior to weed emergence were most effective for weed control and, with the exception of imazapic, all resulted in enhanced eucalyptus growth relative to the nontreated control. Among postemergent treatments, only imazamox enhanced stem volume. Among selective herbicide treatments, preemergent 2240 g ha−1 oxyfluorfen produced the best growth response, resulting in stem volume index that was 860% greater than the nontreated control, although only 15% of the volume index obtained with near-complete weed control. Imazapic was the most phytotoxic of all herbicides, resulting in 40% mortality when applied preemergent. Survival was 100% for all other herbicide treatments. This research found the previously nontested herbicides imazamox and imazapic to be effective for selective weed control and refined application rate and timing of five herbicides for use in clonal plantations.

  17. Hazard and risk of herbicides for marine microalgae

    International Nuclear Information System (INIS)

    Sjollema, Sascha B.; MartínezGarcía, Gema; Geest, Harm G. van der; Kraak, Michiel H.S.; Booij, Petra; Vethaak, A. Dick; Admiraal, Wim

    2014-01-01

    Due to their specific effect on photosynthesis, herbicides pose a potential threat to coastal and estuarine microalgae. However, comprehensive understanding of the hazard and risk of these contaminants is currently lacking. Therefore the aim of the present study was to investigate the toxic effects of four ubiquitous herbicides (atrazine, diuron, Irgarol ® 1051 and isoproturon) and herbicide mixtures on marine microalgae. Using a Pulse Amplitude Modulation (PAM) fluorometry based bioassay we demonstrated a clear species and herbicide specific toxicity and showed that the current environmental legislation does not protect algae sufficiently against diuron and isoproturon. Although a low actual risk of herbicides in the field was demonstrated, monitoring data revealed that concentrations occasionally reach potential effect levels. Hence it cannot be excluded that herbicides contribute to observed changes in phytoplankton species composition in coastal waters, but this is likely to occur only occasionally. - Highlights: • The hazard of herbicides for microalgae is compound and species specific. • In general a low risk although occasional potential effect levels are reached. • Current legislation does not protect marine microalgae sufficiently. - The hazard of herbicides in the coastal waters is compound and species specific and although the general risk in the field is low, occasionally potential effect levels are reached

  18. Adsorption of sugar beet herbicides to Finnish soils.

    Science.gov (United States)

    Autio, Sari; Siimes, Katri; Laitinen, Pirkko; Rämö, Sari; Oinonen, Seija; Eronen, Liisa

    2004-04-01

    Three sugar beet herbicides, ethofumesate, phenmedipham and metamitron, are currently used on conventional sugar beet cultivation, while new varieties of herbicide resistant (HR) sugar beet, tolerant of glyphosate or glufosinate-ammonium, are under field testing in Finland. Little knowledge has so far been available on the adsorption of these herbicides to Finnish soils. The adsorption of these five herbicides was studied using the batch equilibrium method in 21 soil samples collected from different depths. Soil properties like organic carbon content, texture, pH and partly the phosphorus and oxide content of the soils were tested against the adsorption coefficients of the herbicides. In general, the herbicides studied could be arranged according to their adsorption coefficients as follows: glyphosate>phenmedipham>ethofumesate approximately glufosinate-ammonium>metamitron, metamitron meaning the highest risk of leaching. None of the measured soil parameters could alone explain the adsorption mechanism of these five herbicides. The results can be used in model assessments of risk for leaching to ground water resulting from weed control of sugar beet in Finland.

  19. CADDIS Volume 2. Sources, Stressors and Responses: Herbicides - Detailed Conceptual Diagram

    Science.gov (United States)

    Introduction to the herbicides module, when to list herbicides as a candidate cause, ways to measure herbicides, simple and detailed conceptual diagrams for herbicides, herbicides module references and literature reviews.

  20. CADDIS Volume 2. Sources, Stressors and Responses: Herbicides - Simple Conceptual Diagram

    Science.gov (United States)

    Introduction to the herbicides module, when to list herbicides as a candidate cause, ways to measure herbicides, simple and detailed conceptual diagrams for herbicides, herbicides module references and literature reviews.

  1. Selectable tolerance to herbicides by mutated acetolactate synthase genes integrated into the chloroplast genome of tobacco.

    Science.gov (United States)

    Shimizu, Masanori; Goto, Maki; Hanai, Moeko; Shimizu, Tsutomu; Izawa, Norihiko; Kanamoto, Hirosuke; Tomizawa, Ken-Ichi; Yokota, Akiho; Kobayashi, Hirokazu

    2008-08-01

    Strategies employed for the production of genetically modified (GM) crops are premised on (1) the avoidance of gene transfer in the field; (2) the use of genes derived from edible organisms such as plants; (3) preventing the appearance of herbicide-resistant weeds; and (4) maintaining transgenes without obstructing plant cell propagation. To this end, we developed a novel vector system for chloroplast transformation with acetolactate synthase (ALS). ALS catalyzes the first step in the biosynthesis of the branched amino acids, and its enzymatic activity is inhibited by certain classes of herbicides. We generated a series of Arabidopsis (Arabidopsis thaliana) mutated ALS (mALS) genes and introduced constructs with mALS and the aminoglycoside 3'-adenyltransferase gene (aadA) into the tobacco (Nicotiana tabacum) chloroplast genome by particle bombardment. Transplastomic plants were selected using their resistance to spectinomycin. The effects of herbicides on transplastomic mALS activity were examined by a colorimetric assay using the leaves of transplastomic plants. We found that transplastomic G121A, A122V, and P197S plants were specifically tolerant to pyrimidinylcarboxylate, imidazolinon, and sulfonylurea/pyrimidinylcarboxylate herbicides, respectively. Transplastomic plants possessing mALSs were able to grow in the presence of various herbicides, thus affirming the relationship between mALSs and the associated resistance to herbicides. Our results show that mALS genes integrated into the chloroplast genome are useful sustainable markers that function to exclude plants other than those that are GM while maintaining transplastomic crops. This investigation suggests that the resistance management of weeds in the field amid growing GM crops is possible using (1) a series of mALSs that confer specific resistance to herbicides and (2) a strategy that employs herbicide rotation.

  2. Dacthal and chlorophenoxy herbicides and chlorothalonil fungicide in eggs of osprey (Pandion haliaetus) from the Duwamish-Lake Washington-Puget Sound area of Washington state, USA

    International Nuclear Information System (INIS)

    Chu Shaogang; Henny, Charles J.; Kaiser, James L.; Drouillard, Ken G.; Haffner, G. Douglas; Letcher, Robert J.

    2007-01-01

    Current-use chlorophenoxy herbicides including 2,4-dichlorophenoxyacetic acid, dicamba, triclopyr, dicamba, dimethyl tetrachloroterephthalate (DCPA or dacthal), and the metabolite of pyrethroids, 3-phenoxybenzoic acid (3-PBA), and the fungicide, chlorothalonil, were investigated in the eggs of osprey (Pandion haliaetus) that were collected from 15 sites from five study areas Puget Sound/Seattle area of Washington State, USA. DCPA differs from acidic chlorophenoxy herbicides, and is not readily hydrolyzed to free acid or acid metabolites, and thus we developed a new method. Of the 12 chlorophenoxy herbicides and chlorothalonil analyzed only DCPA could be quantified at six of these sites (2.0 to 10.3 pg/g fresh weight). However, higher levels (6.9 to 85.5 pg/g fresh weight) of the unexpected DCPA structural isomer, dimethyl tetrachlorophthalate (diMe-TCP) were quantified in eggs from all sites. diMe-TCP concentrations tended to be higher in eggs from the Everett Harbor area. As diMe-TCP is not an industrial product, and not commercially available, the source of diMe-TCP is unclear. Regardless, these findings indicate that DCPA and diMe-TCP can be accumulated in the food chain of fish-eating osprey, and transferred in ovo to eggs, and thus may be of concern to the health of the developing chick and the general reproductive health of this osprey population. - Osprey eggs from the Puget Sound area contain the herbicide dacthal and its analogue

  3. Hazard and risk of herbicides for marine microalgae.

    Science.gov (United States)

    Sjollema, Sascha B; Martínezgarcía, Gema; van der Geest, Harm G; Kraak, Michiel H S; Booij, Petra; Vethaak, A Dick; Admiraal, Wim

    2014-04-01

    Due to their specific effect on photosynthesis, herbicides pose a potential threat to coastal and estuarine microalgae. However, comprehensive understanding of the hazard and risk of these contaminants is currently lacking. Therefore the aim of the present study was to investigate the toxic effects of four ubiquitous herbicides (atrazine, diuron, Irgarol(®)1051 and isoproturon) and herbicide mixtures on marine microalgae. Using a Pulse Amplitude Modulation (PAM) fluorometry based bioassay we demonstrated a clear species and herbicide specific toxicity and showed that the current environmental legislation does not protect algae sufficiently against diuron and isoproturon. Although a low actual risk of herbicides in the field was demonstrated, monitoring data revealed that concentrations occasionally reach potential effect levels. Hence it cannot be excluded that herbicides contribute to observed changes in phytoplankton species composition in coastal waters, but this is likely to occur only occasionally. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Phytotoxicity of Four Photosystem II Herbicides to Tropical Seagrasses

    Science.gov (United States)

    Flores, Florita; Collier, Catherine J.; Mercurio, Philip; Negri, Andrew P.

    2013-01-01

    Coastal waters of the Great Barrier Reef (GBR) are contaminated with agricultural pesticides, including the photosystem II (PSII) herbicides which are the most frequently detected at the highest concentrations. Designed to control weeds, these herbicides are equally potent towards non-target marine species, and the close proximity of seagrass meadows to flood plumes has raised concerns that seagrasses may be the species most threatened by herbicides from runoff. While previous work has identified effects of PSII herbicides on the photophysiology, growth and mortality in seagrass, there is little comparative quantitative toxicity data for seagrass. Here we applied standard ecotoxicology protocols to quantify the concentrations of four priority PSII herbicides that inhibit photochemistry by 10, 20 and 50% (IC10, IC20 and IC50) over 72 h in two common seagrass species from the GBR lagoon. The photosystems of seagrasses Zostera muelleri and Halodule uninervis were shown to be generally more sensitive to the PSII herbicides Diuron, Atrazine, Hexazinone and Tebuthiuron than corals and tropical microalgae. The herbicides caused rapid inhibition of effective quantum yield (∆F/F m ′), indicating reduced photosynthesis and maximum effective yields (Fv/Fm) corresponding to chronic damage to PSII. The PSII herbicide concentrations which affected photosynthesis have been exceeded in the GBR lagoon and all of the herbicides inhibited photosynthesis at concentrations lower than current marine park guidelines. There is a strong likelihood that the impacts of light limitation from flood plumes and reduced photosynthesis from PSII herbicides exported in the same waters would combine to affect seagrass productivity. Given that PSII herbicides have been demonstrated to affect seagrass at environmental concentrations, we suggest that revision of environmental guidelines and further efforts to reduce PSII herbicide concentrations in floodwaters may both help protect seagrass meadows

  5. Phytotoxicity of four photosystem II herbicides to tropical seagrasses.

    Science.gov (United States)

    Flores, Florita; Collier, Catherine J; Mercurio, Philip; Negri, Andrew P

    2013-01-01

    Coastal waters of the Great Barrier Reef (GBR) are contaminated with agricultural pesticides, including the photosystem II (PSII) herbicides which are the most frequently detected at the highest concentrations. Designed to control weeds, these herbicides are equally potent towards non-target marine species, and the close proximity of seagrass meadows to flood plumes has raised concerns that seagrasses may be the species most threatened by herbicides from runoff. While previous work has identified effects of PSII herbicides on the photophysiology, growth and mortality in seagrass, there is little comparative quantitative toxicity data for seagrass. Here we applied standard ecotoxicology protocols to quantify the concentrations of four priority PSII herbicides that inhibit photochemistry by 10, 20 and 50% (IC10, IC20 and IC50) over 72 h in two common seagrass species from the GBR lagoon. The photosystems of seagrasses Zosteramuelleri and Haloduleuninervis were shown to be generally more sensitive to the PSII herbicides Diuron, Atrazine, Hexazinone and Tebuthiuron than corals and tropical microalgae. The herbicides caused rapid inhibition of effective quantum yield (∆F/F m '), indicating reduced photosynthesis and maximum effective yields (Fv/Fm ) corresponding to chronic damage to PSII. The PSII herbicide concentrations which affected photosynthesis have been exceeded in the GBR lagoon and all of the herbicides inhibited photosynthesis at concentrations lower than current marine park guidelines. There is a strong likelihood that the impacts of light limitation from flood plumes and reduced photosynthesis from PSII herbicides exported in the same waters would combine to affect seagrass productivity. Given that PSII herbicides have been demonstrated to affect seagrass at environmental concentrations, we suggest that revision of environmental guidelines and further efforts to reduce PSII herbicide concentrations in floodwaters may both help protect seagrass meadows of

  6. Phytotoxicity of four photosystem II herbicides to tropical seagrasses.

    Directory of Open Access Journals (Sweden)

    Florita Flores

    Full Text Available Coastal waters of the Great Barrier Reef (GBR are contaminated with agricultural pesticides, including the photosystem II (PSII herbicides which are the most frequently detected at the highest concentrations. Designed to control weeds, these herbicides are equally potent towards non-target marine species, and the close proximity of seagrass meadows to flood plumes has raised concerns that seagrasses may be the species most threatened by herbicides from runoff. While previous work has identified effects of PSII herbicides on the photophysiology, growth and mortality in seagrass, there is little comparative quantitative toxicity data for seagrass. Here we applied standard ecotoxicology protocols to quantify the concentrations of four priority PSII herbicides that inhibit photochemistry by 10, 20 and 50% (IC10, IC20 and IC50 over 72 h in two common seagrass species from the GBR lagoon. The photosystems of seagrasses Zosteramuelleri and Haloduleuninervis were shown to be generally more sensitive to the PSII herbicides Diuron, Atrazine, Hexazinone and Tebuthiuron than corals and tropical microalgae. The herbicides caused rapid inhibition of effective quantum yield (∆F/F m ', indicating reduced photosynthesis and maximum effective yields (Fv/Fm corresponding to chronic damage to PSII. The PSII herbicide concentrations which affected photosynthesis have been exceeded in the GBR lagoon and all of the herbicides inhibited photosynthesis at concentrations lower than current marine park guidelines. There is a strong likelihood that the impacts of light limitation from flood plumes and reduced photosynthesis from PSII herbicides exported in the same waters would combine to affect seagrass productivity. Given that PSII herbicides have been demonstrated to affect seagrass at environmental concentrations, we suggest that revision of environmental guidelines and further efforts to reduce PSII herbicide concentrations in floodwaters may both help protect

  7. iMAR: An Interactive Web-Based Application for Mapping Herbicide Resistant Weeds.

    Directory of Open Access Journals (Sweden)

    Silvia Panozzo

    Full Text Available Herbicides are the major weed control tool in most cropping systems worldwide. However, the high reliance on herbicides has led to environmental issues as well as to the evolution of herbicide-resistant biotypes. Resistance is a major concern in modern agriculture and early detection of resistant biotypes is therefore crucial for its management and prevention. In this context, a timely update of resistance biotypes distribution is fundamental to devise and implement efficient resistance management strategies. Here we present an innovative web-based application called iMAR (interactive MApping of Resistance for the mapping of herbicide resistant biotypes. It is based on open source software tools and translates into maps the data reported in the GIRE (Italian herbicide resistance working group database of herbicide resistance at national level. iMAR allows an automatic, easy and cost-effective updating of the maps a nd provides two different systems, "static" and "dynamic". In the first one, the user choices are guided by a hierarchical tree menu, whereas the latter is more flexible and includes a multiple choice criteria (type of resistance, weed species, region, cropping systems that permits customized maps to be created. The generated information can be useful to various stakeholders who are involved in weed resistance management: farmers, advisors, national and local decision makers as well as the agrochemical industry. iMAR is freely available, and the system has the potential to handle large datasets and to be used for other purposes with geographical implications, such as the mapping of invasive plants or pests.

  8. Removal of triazine herbicides from freshwater systems using photosynthetic microorganisms

    International Nuclear Information System (INIS)

    Gonzalez-Barreiro, O.; Rioboo, C.; Herrero, C.; Cid, A.

    2006-01-01

    The uptake of the triazine herbicides, atrazine and terbutryn, was determined for two freshwater photosynthetic microorganisms, the green microalga Chlorella vulgaris and the cyanobacterium Synechococcus elongatus. An extremely rapid uptake of both pesticides was recorded, although uptake rate was lower for the cyanobacterium, mainly for atrazine. Other parameters related to the herbicide bioconcentration capacity of these microorganisms were also studied. Growth rate, biomass, and cell viability in cultures containing herbicide were clearly affected by herbicide uptake. Herbicide toxicity and microalgae sensitivity were used to determine the effectiveness of the bioconcentration process and the stability of herbicide removal. C. vulgaris showed higher bioconcentration capability for these two triazine herbicides than S. elongatus, especially with regard to terbutryn. This study supports the usefulness of such microorganisms, as a bioremediation technique in freshwater systems polluted with triazine herbicides

  9. Removal of triazine herbicides from freshwater systems using photosynthetic microorganisms

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Barreiro, O. [Laboratorio de Microbiologia, Facultad de Ciencias, Universidad de A Coruna, Campus da Zapateira s/n. 15071 A Coruna (Spain); Rioboo, C. [Laboratorio de Microbiologia, Facultad de Ciencias, Universidad de A Coruna, Campus da Zapateira s/n. 15071 A Coruna (Spain); Herrero, C. [Laboratorio de Microbiologia, Facultad de Ciencias, Universidad de A Coruna, Campus da Zapateira s/n. 15071 A Coruna (Spain); Cid, A. [Laboratorio de Microbiologia, Facultad de Ciencias, Universidad de A Coruna, Campus da Zapateira s/n. 15071 A Coruna (Spain)]. E-mail: cid@udc.es

    2006-11-15

    The uptake of the triazine herbicides, atrazine and terbutryn, was determined for two freshwater photosynthetic microorganisms, the green microalga Chlorella vulgaris and the cyanobacterium Synechococcus elongatus. An extremely rapid uptake of both pesticides was recorded, although uptake rate was lower for the cyanobacterium, mainly for atrazine. Other parameters related to the herbicide bioconcentration capacity of these microorganisms were also studied. Growth rate, biomass, and cell viability in cultures containing herbicide were clearly affected by herbicide uptake. Herbicide toxicity and microalgae sensitivity were used to determine the effectiveness of the bioconcentration process and the stability of herbicide removal. C. vulgaris showed higher bioconcentration capability for these two triazine herbicides than S. elongatus, especially with regard to terbutryn. This study supports the usefulness of such microorganisms, as a bioremediation technique in freshwater systems polluted with triazine herbicides.

  10. Studies on maize inbred lines susceptibility to herbicides

    Directory of Open Access Journals (Sweden)

    Stefanović Lidija

    2010-01-01

    Full Text Available This paper presents the analysis of results obtained during long- term studies on the response of maize inbred lines to herbicides. Under the agroecological conditions of Zemun Polje the response (reaction of maize inbred lines to herbicides of different classes was investigated. Biological tests were performed and some agronomic, morphological, physiological and biochemical parameters were determined when the response of maize inbred lines to herbicides was estimated. The use of active ingredients of herbicides from triazine, acetanilide, thiocarbamate to new chemical groups (sulfonylurea etc., have been resulted in changes in weed suppression and susceptibility of inbred lines. Obtained results show that effects of herbicides on susceptible maize genotypes can be different: they can slowdown the growth and development and affect the plant height; they can also affect the stages of the tassel and ear development and at the end they can reduced grain yield of the tested inbreds. Numerous studies confirmed the existence of differences in susceptibility level of maize genotypes in relation to herbicides. According to gained results the recommendations for growers are made on the possibility of the application of new herbicides in the hybrid seed production.

  11. Solar photoelectro-Fenton degradation of the herbicide 4-chloro-2-methylphenoxyacetic acid optimized by response surface methodology.

    Science.gov (United States)

    Garcia-Segura, Sergi; Almeida, Lucio Cesar; Bocchi, Nerilso; Brillas, Enric

    2011-10-30

    A central composite rotatable design and response surface methodology (RSM) were used to optimize the experimental variables of the solar photoelectro-Fenton (SPEF) treatment of the herbicide 4-chloro-2-methylphenoxyacetic acid (MCPA). The experiments were made with a flow plant containing a Pt/air-diffusion reactor coupled to a solar compound parabolic collector (CPC) under recirculation of 10 L of 186 mg L(-1) MCPA solutions in 0.05 M Na(2)SO(4) at a liquid flow rate of 180 L h(-1) with an average UV irradiation intensity of about 32 Wm(-2). The optimum variables found for the SPEF process were 5.0 A, 1.0mM Fe(2+) and pH 3.0 after 120 min of electrolysis. Under these conditions, 75% of mineralization with 71% of current efficiency and 87.7 k Wh kg(-1) TOC of energy consumption were obtained. MCPA decayed under the attack of generated hydroxyl radicals following a pseudo-first-order kinetics. Hydroxyl radicals also destroyed 4-chloro-2-methylphenol, methylhydroquinone and methyl-p-benzoquinone detected as aromatic by-products. Glycolic, maleic, fumaric, malic, succinic, tartronic, oxalic and formic acids were identified as generated carboxylic acids, which form Fe(III) complexes that are quickly photodecarboxylated by the UV irradiation of sunlight at the CPC photoreactor. A reaction sequence for the SPEF degradation of MCPA was proposed. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Glyphosate, other herbicides, and transformation products in Midwestern streams, 2002

    Science.gov (United States)

    Battaglin, W.A.; Kolpin, D.W.; Scribner, E.A.; Kuivila, K.M.; Sandstrom, M.W.

    2005-01-01

    The use of glyphosate has increased rapidly, and there is limited understanding of its environmental fate. The objective of this study was to document the occurrence of glyphosate and the transformation product aminomethylphosphonic acid (AMPA) in Midwestern streams and to compare their occurrence with that of more commonly measured herbicides such as acetochlor, atrazine, and metolachlor. Water samples were collected at sites on 51 streams in nine Midwestern states in 2002 during three runoff events: after the application of pre-emergence herbicides, after the application of post-emergence herbicides, and during harvest season. All samples were analyzed for glyphosate and 20 other herbicides using gas chromatography/mass spectrometry or high performance liquid chromatography/mass spectrometry. The frequency of glyphosate and AMPA detection, range of concentrations in runoff samples, and ratios of AMPA to glyphosate concentrations did not vary throughout the growing season as substantially as for other herbicides like atrazine, probably because of different seasonal use patterns. Glyphosate was detected at or above 0.1 μg/1 in 35 percent of pre-emergence, 40 percent of post-emergence, and 31 percent of harvest season samples, with a maximum concentration of 8.7 μg/1. AMPA was detected at or above 0.1 μg/1 in 53 percent of pre-emergence, 83 percent of post-emergence, and 73 percent of harvest season samples, with a maximum concentration of 3.6 μg/1. Glyphosate was not detected at a concentration at or above the U.S. Environmental Protection Agency's maximum contamination level (MCL) of 700 μg/1 in any sample. Atrazine was detected at or above 0.1 μg/1 in 94 percent of pre-emergence, 96 percent of post-emergence, and 57 percent of harvest season samples, with a maximum concentration of 55 μg/1. Atrazine was detected at or above its MCL (3 μg/1) in 57 percent of pre-emergence and 33 percent of post-emergence samples

  13. Glyphasate, other herbicides, and transformation products in midwestern streams, 2002

    Science.gov (United States)

    Battaglin, William A.; Koplin, Dana W.; Scribner, Elizabeth A.; Kuivila, Kathryn; Sandstrom, Mark W.

    2005-01-01

    The use of glyphosate has increased rapidly, and there is limited understanding of its environmental fate. The objective of this study was to document the occurrence of glyphosate and the transformation product aminomethylphosphonic acid (AMPA) in Midwestern streams and to compare their occurrence with that of more commonly measured herbicides such as acetochlor, atrazine, and metolachlor. Water samples were collected at sites on 51 streams in nine Midwestern states in 2002 during three runoff events: after the application of pre-emergence herbicides, after the application of post-emergence herbicides, and during harvest season. All samples were analyzed for glyphosate and 20 other herbicides using gas chromatography/mass spectrometry or high performance liquid chromatography/mass spectrometry. The frequency of glyphosate and AMPA detection, range of concentrations in runoff samples, and ratios of AMPA to glyphosate concentrations did not vary throughout the growing season as substantially as for other herbicides like atrazine, probably because of different seasonal use patterns. Glyphosate was detected at or above 0.1 μg/1 in 35 percent of pre-emergence, 40 percent of post-emergence, and 31 percent of harvest season samples, with a maximum concentration of 8.7 μg/1. AMPA was detected at or above 0.1 μg/1 in 53 percent of pre-emergence, 83 percent of post-emergence, and 73 percent of harvest season samples, with a maximum concentration of 3.6 μg/1. Glyphosate was not detected at a concentration at or above the U.S. Environmental Protection Agency's maximum contamination level (MCL) of 700 μg/1 in any sample. Atrazine was detected at or above 0.1 μg/1 in 94 percent of pre-emergence, 96 percent of post-emergence, and 57 percent of harvest season samples, with a maximum concentration of 55 μg/1. Atrazine was detected at or above its MCL (3 μg/1) in 57 percent of pre-emergence and 33 percent of post-emergence samples.

  14. Photooxidative removal of the herbicide Acid Blue 9 in the presence of hydrogen peroxide: modeling of the reaction for evaluation of electrical energy per order (E EO).

    Science.gov (United States)

    Khataee, Ali R; Khataee, Hamid R

    2008-09-01

    The present work deals with photooxidative removal of the herbicide, Acid Blue 9 (AB9), in water in the presence of hydrogen peroxide (H2O2) under UV light illumination (30 W). The influence of the basic operational parameters such as amount of H2O2, irradiation time and initial concentration of AB9 on the photodegradation efficiency of the herbicide was investigated. The degradation rate of AB9 was not appreciably high when the photolysis was carried out in the absence of H2O2 and it was negligible in the absence of UV light. The photooxidative removal of the herbicide was found to follow pseudo-first-order kinetic, and hence the figure-of-merit electrical energy per order (E Eo) was considered appropriate for estimating the electrical energy efficiency. A mathematical relation between the apparent reaction rate constant and H2O2 used was applied for prediction of the electricity consumption in the photooxidative removal of AB9. The results indicated that this kinetic model, based on the initial rates of degradation, provided good prediction of the E Eo values for a variety of conditions. The results also indicated that the UV/H2O2 process was appropriate as the effective treatment method for removal of AB9 from the contaminated wastewater.

  15. A Rapid and Simple Bioassay Method for Herbicide Detection

    Directory of Open Access Journals (Sweden)

    Xiu-Qing Li

    2008-01-01

    Full Text Available Chlamydomonas reinhardtii, a unicellular green alga, has been used in bioassay detection of a variety of toxic compounds such as pesticides and toxic metals, but mainly using liquid culture systems. In this study, an algal lawn--agar system for semi-quantitative bioassay of herbicidal activities has been developed. Sixteen different herbicides belonging to 11 different categories were applied to paper disks and placed on green alga lawns in Petri dishes. Presence of herbicide activities was indicated by clearing zones around the paper disks on the lawn 2-3 days after application. The different groups of herbicides induced clearing zones of variable size that depended on the amount, mode of action, and chemical properties of the herbicides applied to the paper disks. This simple, paper-disk-algal system may be used to detect the presence of herbicides in water samples and act as a quick and inexpensive semi-quantitative screening for assessing herbicide contamination.

  16. Metabolic profiling of goldfish (Carassius auratis) after long-term glyphosate-based herbicide exposure.

    Science.gov (United States)

    Li, Ming-Hui; Ruan, Ling-Yu; Zhou, Jin-Wei; Fu, Yong-Hong; Jiang, Lei; Zhao, He; Wang, Jun-Song

    2017-07-01

    Glyphosate is an efficient herbicide widely used worldwide. However, its toxicity to non-targeted organisms has not been fully elucidated. In this study, the toxicity of glyphosate-based herbicide was evaluated on goldfish (Carassius auratus) after long-term exposure. Tissues of brains, kidneys and livers were collected and submitted to NMR-based metabolomics analysis and histopathological inspection. Plasma was collected and the blood biochemical indexes of AST, ALT, BUN, CRE, LDH, SOD, GSH-Px, GR and MDA were measured. Long-term glyphosate exposure caused disorders of blood biochemical indexes and renal tissue injury in goldfish. Metabolomics analysis combined with correlation network analysis uncovered significant perturbations in oxidative stress, energy metabolism, amino acids metabolism and nucleosides metabolism in glyphosate dosed fish, which provide new clues to the toxicity of glyphosate. This integrated metabolomics approach showed its applicability in discovering the toxic mechanisms of pesticides, which provided new strategy for the assessment of the environmental risk of herbicides to non-target organisms. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Expanding the eco-evolutionary context of herbicide resistance research.

    Science.gov (United States)

    Neve, Paul; Busi, Roberto; Renton, Michael; Vila-Aiub, Martin M

    2014-09-01

    The potential for human-driven evolution in economically and environmentally important organisms in medicine, agriculture and conservation management is now widely recognised. The evolution of herbicide resistance in weeds is a classic example of rapid adaptation in the face of human-mediated selection. Management strategies that aim to slow or prevent the evolution of herbicide resistance must be informed by an understanding of the ecological and evolutionary factors that drive selection in weed populations. Here, we argue for a greater focus on the ultimate causes of selection for resistance in herbicide resistance studies. The emerging fields of eco-evolutionary dynamics and applied evolutionary biology offer a means to achieve this goal and to consider herbicide resistance in a broader and sometimes novel context. Four relevant research questions are presented, which examine (i) the impact of herbicide dose on selection for resistance, (ii) plant fitness in herbicide resistance studies, (iii) the efficacy of herbicide rotations and mixtures and (iv) the impacts of gene flow on resistance evolution and spread. In all cases, fundamental ecology and evolution have the potential to offer new insights into herbicide resistance evolution and management. © 2014 Society of Chemical Industry.

  18. FLAMMABILITY OF HERBICIDE-TREATED GUAVA FOLIAGE

    Science.gov (United States)

    Guava leaves treated with herbicide were found to be less flammable than untreated green leaves or dead leaves . Differences in flammability were...determined by small-scale laboratory fires, differential thermal analysis, and thermogravimetric analysis. The herbicide-treated leaves had a higher ash

  19. Degradation of the Herbicide Glyphosate by Members of the Family Rhizobiaceae

    OpenAIRE

    Liu, C.-M.; McLean, P. A.; Sookdeo, C. C.; Cannon, F. C.

    1991-01-01

    Several strains of the family Rhizobiaceae were tested for their ability to degrade the phosphonate herbicide glyphosate (isopropylamine salt of N-phosphonomethylglycine). All organisms tested (seven Rhizobium meliloti strains, Rhizobium leguminosarum, Rhizobium galega, Rhizobium trifolii, Agrobacterium rhizogenes, and Agrobacterium tumefaciens) were able to grow on glyphosate as the sole source of phosphorus in the presence of the aromatic amino acids, although growth on glyphosate was not a...

  20. Soil microbial and faunal responses to herbicide tolerant maize and herbicide in two soils

    DEFF Research Database (Denmark)

    Griffiths, Bryan; Caul, Sandra; Thompson, J.

    2008-01-01

    using a tiered approach at laboratory, glasshouse and field scales. Soil for the experiment was taken from field sites where the same maize cultivars were grown to allow comparison between results under glasshouse and field conditions. The maize cultivars T25 (GM HT glufosinate-ammonium tolerant....... The main effects on all measured parameters were those of soil type and plant growth stage, with four categories of subsequent interaction: (1) there were no effects of herbicide on plant growth or soil microarthropods: (2) the maize cultivar (but not the GM HT trait) had effects on the decomposition...

  1. Discovery of Putative Herbicide Resistance Genes and Its Regulatory Network in Chickpea Using Transcriptome Sequencing

    Directory of Open Access Journals (Sweden)

    Mir A. Iquebal

    2017-06-01

    Full Text Available Background: Chickpea (Cicer arietinum L. contributes 75% of total pulse production. Being cheaper than animal protein, makes it important in dietary requirement of developing countries. Weed not only competes with chickpea resulting into drastic yield reduction but also creates problem of harboring fungi, bacterial diseases and insect pests. Chemical approach having new herbicide discovery has constraint of limited lead molecule options, statutory regulations and environmental clearance. Through genetic approach, transgenic herbicide tolerant crop has given successful result but led to serious concern over ecological safety thus non-transgenic approach like marker assisted selection is desirable. Since large variability in tolerance limit of herbicide already exists in chickpea varieties, thus the genes offering herbicide tolerance can be introgressed in variety improvement programme. Transcriptome studies can discover such associated key genes with herbicide tolerance in chickpea.Results: This is first transcriptomic studies of chickpea or even any legume crop using two herbicide susceptible and tolerant genotypes exposed to imidazoline (Imazethapyr. Approximately 90 million paired-end reads generated from four samples were processed and assembled into 30,803 contigs using reference based assembly. We report 6,310 differentially expressed genes (DEGs, of which 3,037 were regulated by 980 miRNAs, 1,528 transcription factors associated with 897 DEGs, 47 Hub proteins, 3,540 putative Simple Sequence Repeat-Functional Domain Marker (SSR-FDM, 13,778 genic Single Nucleotide Polymorphism (SNP putative markers and 1,174 Indels. Randomly selected 20 DEGs were validated using qPCR. Pathway analysis suggested that xenobiotic degradation related gene, glutathione S-transferase (GST were only up-regulated in presence of herbicide. Down-regulation of DNA replication genes and up-regulation of abscisic acid pathway genes were observed. Study further reveals

  2. Analysis of acetohydroxyacid synthase1 gene in chickpea conferring resistance to imazamox herbicide.

    Science.gov (United States)

    Jain, Parul; Tar'an, Bunyamin

    2014-11-01

    Chickpea (Cicer arietinum L.) production in the Canadian prairies is challenging due to a lack of effective weed management mainly because of poor competition ability of the crop and limited registered herbicide options. Chickpea genotype with resistance to imidazolinone (IMI) herbicides has been identified. A point mutation in the acetohydroxyacid synthase1 (AHAS1) gene at C581 to T581, resulting in an amino acid substitution from Ala194 to Val194 (position 205, standardized to arabidopsis), confers the resistance to imazamox in chickpea. However, the molecular mechanism leading to the resistance is not fully understood. In many plant species, contrasting transcription levels of AHAS gene has been implicated in the resistant and susceptible genotypes in response to IMI. The objectives of this research were to compare the AHAS gene expression and AHAS enzyme activity in resistant and susceptible chickpea cultivars in response to imazamox herbicide treatment. Results from RT-qPCR indicated that there is no significant change in the transcript levels of AHAS1 between the susceptible and the resistant genotypes in response to imazamox treatment. Protein hydrophobic cluster analysis, protein-ligand docking analysis, and AHAS enzyme activity assay all indicated that the resistance to imazamox in chickpea is due to the alteration of interaction of the AHAS1 enzyme with the imazamox herbicide.

  3. Valerian (Valeriana officinalis L. tolerance to some post-emergence herbicides

    Directory of Open Access Journals (Sweden)

    Monjezi Nadia

    2015-12-01

    Full Text Available Valerian (Valeriana officinalis L. is a medicinal plant, but its cultivation is restricted by weed competition. Therefore, three rates (0.75X, 1X, and 1.25X, where X is equal to the recommended dose of haloxyfop-R (methyl ester, sethoxydim, oxadiargyl, bentazon, oxadiazon, and oxyfluorfen were applied at the 3-4 leaf stages to valerian plants. This application was done to select the herbicide type and rate for post-controlling broadleaf and grasses weeds in this species. Herbicide injury, Soil-Plant Analyses Development (SPAD reading, number of leaves per plant, stem diameter, and fresh and dry weights were determined 10, 20, and 30 days after herbicide application. Oxyfluorfen application caused the most herbicide injury followed by bentazon. Injury increased as the rate and the days after application increased. Oxadiazon only caused significant damage 30 days after application under all three rates. Other treatments showed no marked injuries under any rate or date after application, as compared with the control. Effects on other measured traits depended on the trait, herbicide, and herbicide rate. The highest SPAD, leaf number, shoot diameter, fresh weight and dry weight, was recorded under application of 30 mg a.i. ∙ kg-1 soil oxadiargyl and 90 mg a.i. ∙ kg-1 soil oxadiazon, 81 mg a.i. ∙ kg-1 soil haloxyfop-R, 37.5 mg a.i. ∙ kg-1 soil oxadiargyl, 22.5 mg a.i. ∙ kg-1 soil oxadiargyl, 81 mg a.i. ∙ kg-1 soil haloxyfop-R, and 81 mg a.i. ∙ kg-1 soil haloxyfop-R, respectively. To sum up, the results showed that sethoxydim, oxadiargyl, and haloxyfop-R produced no significant symptoms of phytotoxicity or reduction of measured traits. This means that oxadiargyl, haloxyfop-R, and sethoxydim may be used safely for weed control of valerian at the rates used in this experiment under similar conditions.

  4. The benefits of herbicide-resistant crops.

    Science.gov (United States)

    Green, Jerry M

    2012-10-01

    Since 1996, genetically modified herbicide-resistant crops, primarily glyphosate-resistant soybean, corn, cotton and canola, have helped to revolutionize weed management and have become an important tool in crop production practices. Glyphosate-resistant crops have enabled the implementation of weed management practices that have improved yield and profitability while better protecting the environment. Growers have recognized their benefits and have made glyphosate-resistant crops the most rapidly adopted technology in the history of agriculture. Weed management systems with glyphosate-resistant crops have often relied on glyphosate alone, have been easy to use and have been effective, economical and more environmentally friendly than the systems they have replaced. Glyphosate has worked extremely well in controlling weeds in glyphosate-resistant crops for more than a decade, but some key weeds have evolved resistance, and using glyphosate alone has proved unsustainable. Now, growers need to renew their weed management practices and use glyphosate with other cultural, mechanical and herbicide options in integrated systems. New multiple-herbicide-resistant crops with resistance to glyphosate and other herbicides will expand the utility of existing herbicide technologies and will be an important component of future weed management systems that help to sustain the current benefits of high-efficiency and high-production agriculture. Copyright © 2012 Society of Chemical Industry.

  5. Primisulfuron herbicide-resistant tobacco plants: mutant selection in vitro by adventitious shoot formation from cultured leaf discs

    International Nuclear Information System (INIS)

    Harms, C.T.; DiMaio, J.J.; Jayne, S.M.; Middlesteadt, L.A.; Negrotto, D.V.; Thompson-Taylor, H.; Montoya, A.L.

    1991-01-01

    A simple procedure has been developed for the rapid and direct selection of herbicide-resistant mutant plants. The procedure uses adventitious shoot formation from suitable explants, such as leaf discs, on a shoot-inducing culture medium containing a toxic herbicide concentration. Resistant green shoots were thus isolated from tobacco (Nicotiana tabacum L.) leaf explants cultured on medium containing 100 μg 1−1 primisulfuron, a new sulfonylurea herbicide. Resistant shoots were recovered from both haploid and diploid explants after UV mutagenesis, as well as without mutagenic treatment. Three mutant plants of separate origin were further analyzed biochemically and genetically. Their acetohydroxyacid synthase (AHAS) enzyme activity was less inhibited by sulfonylurea herbicides than that of unselected, sensitive wild type plants. The extent of inhibition of the AHAS enzyme among the three mutants was different for different sulfonylurea and imidazolinone herbicides suggesting different sites were affected by each mutation. Herbicide tolerance was scored for germinating seedling populations and was found to be inherited as a single dominant nuclear gene. Adventitious shoot formation from cultured leaf discs was used to determine the cross tolerance of mutant plants to various herbicidal AHAS inhibitors. The usefulness of this rapid and direct scheme for mutant selection based on adventitious shoot formation or embryogenesis is discussed. (author)

  6. Adsorption and mobility of the herbicides 2,4-D and ametryn in soils of Sao Paulo State, Brazil

    International Nuclear Information System (INIS)

    Hermes, L.C.

    1991-02-01

    The effect of different soil/water ratios on absorption of the herbicides 2,4-D (2,4-dichloro phenoxy-acetic acid) and ametryn (2, methyl thio-4-ethyl amino-6-isopropyl amino-s-triazine) was evaluated in 17 soil, under laboratory conditions, using 14 C compounds as tracers. The best regression equations and the variables that could explain the adsorption phenomenon were also determined for the soils studied. In another study, the mobility of both herbicides was determined by thin layer chromatography of the soils. (author)

  7. Effecacy of Diffrent Herbicides on Weed Control of Garlic (Allium Sativum

    Directory of Open Access Journals (Sweden)

    M. Hosseni

    2012-04-01

    Full Text Available A field experiment was conducted to evaluate the effect of diffrent herbicides on weeds and garlic in a randomized complete-block design with 12 treatments and three replications, at Siahdasht, Farooj, Khorasan, Iran. Treatments were included rates of 4, 8, 12 and 16 kg.ha-1 Chlorthal-dimethyl (Dacthal, rates of 0.75, 1.5, 3 and 5 lit.ha-1 Oxyfluorfen (Goal, rates of 1, 2, 3 and 6 lit.ha-1 Ioxynil (Totril, and a plot which was hand weeded at the beginning of growing season. Results of three stages sampling showed that weed response to type and amount of herbicide which was significantly (p

  8. Assessment of herbicides and organochlorine pesticides contamination in agricultural soils using gas chromatography-mass spectrometry.

    Science.gov (United States)

    Wang, Wan-Hong; Wang, Shi-Cheng; Wang, Yan-Hong

    2008-01-01

    A rapid multi-residue method for the simultaneous analysis of 3 herbicides and 8 organochlorine pesticides (OCPs) in agricultural soils has been developed, using ultrasonic solvent extraction coupled with gas chromatography-mass spectrometry (GC-MS). The recoveries ranged from 81% to 117% with a relative standard deviation (R.S.D) lower than 15%. The limits of quantification (LOQs) ranged from 0.03 to 1.06 microg x kg(-1) dry weight for different pesticides studied. The proposed method has been applied to investigate the 11 pesticide residues in agricultural soils collected from Liaoning Province, northeast of China. 3 OCPs and 3 herbicides were identified. Acetochlor, atrazine, butachtor were measured in the relatively high level with values ranging from 0.53 to 203.18 microg x kg(-1), 0.14 to 21.20 microg x kg(-1), pesticides in this study was compared with the date of other countries reported and the corresponding limiting values used in Netherland, USA, Canada, Vietnam and Thailand. Among the herbicide residues, there was a significant relativity between soil utilizing types and their residue concentration. It seems that the monitoring action for soil contamination caused by commonly-used herbicides should be enhanced according to soil utilizing types, especially acetochlor in maize field.

  9. Determination of chloroacetanilide herbicide metabolites in water using high-performance liquid chromatography-diode array detection and high-performance liquid chromatography/mass spectrometry

    Science.gov (United States)

    Hostetler, K.A.; Thurman, E.M.

    2000-01-01

    Analytical methods using high-performance liquid chromatography-diode array detection (HPLC-DAD) and high-performance liquid chromatography/mass spectrometry (HPLC/MS) were developed for the analysis of the following chloroacetanilide herbicide metabolites in water: alachlor ethanesulfonic acid (ESA); alachlor oxanilic acid; acetochlor ESA; acetochlor oxanilic acid; metolachlor ESA; and metolachlor oxanilic acid. Good precision and accuracy were demonstrated for both the HPLC-DAD and HPLC/MS methods in reagent water, surface water, and ground water. The average HPLC-DAD recoveries of the chloroacetanilide herbicide metabolites from water samples spiked at 0.25, 0.5 and 2.0 ??g/l ranged from 84 to 112%, with relative standard deviations of 18% or less. The average HPLC/MS recoveries of the metabolites from water samples spiked at 0.05, 0.2 and 2.0 ??g/l ranged from 81 to 118%, with relative standard deviations of 20% or less. The limit of quantitation (LOQ) for all metabolites using the HPLC-DAD method was 0.20 ??g/l, whereas the LOQ using the HPLC/MS method was at 0.05 ??g/l. These metabolite-determination methods are valuable for acquiring information about water quality and the fate and transport of the parent chloroacetanilide herbicides in water. Copyright (C) 2000 Elsevier Science B.V.

  10. Biotechnology approaches to developing herbicide tolerance ...

    African Journals Online (AJOL)

    The use of herbicides has revolutionized weed control in many crop production systems. However, with the increasing development of weed resistances to many popular selective herbicides, the need has arisen to rethink the application of chemical weed control. Approaches to maintain the efficiency of chemical weed ...

  11. Comparative analysis of miRNAs of two rapeseed genotypes in response to acetohydroxyacid synthase-inhibiting herbicides by high-throughput sequencing.

    Directory of Open Access Journals (Sweden)

    Maolong Hu

    Full Text Available Acetohydroxyacid synthase (AHAS, also called acetolactate synthase, is a key enzyme involved in the first step of the biosynthesis of the branched-chain amino acids valine, isoleucine and leucine. Acetohydroxyacid synthase-inhibiting herbicides (AHAS herbicides are five chemical families of herbicides that inhibit AHAS enzymes, including imidazolinones (IMI, sulfonylureas (SU, pyrimidinylthiobenzoates, triazolinones and triazolopyrimidines. Five AHAS genes have been identified in rapeseed, but little information is available regarding the role of miRNAs in response to AHAS herbicides. In this study, an AHAS herbicides tolerant genotype and a sensitive genotype were used for miRNA comparative analysis. A total of 20 small RNA libraries were obtained of these two genotypes at three time points (0h, 24 h and 48 h after spraying SU and IMI herbicides with two replicates. We identified 940 conserved miRNAs and 1515 novel candidate miRNAs in Brassica napus using high-throughput sequencing methods combined with computing analysis. A total of 3284 genes were predicted to be targets of these miRNAs, and their functions were shown using GO, KOG and KEGG annotations. The differentiation expression results of miRNAs showed almost twice as many differentiated miRNAs were found in tolerant genotype M342 (309 miRNAs after SU herbicide application than in sensitive genotype N131 (164 miRNAs. In additiond 177 and 296 miRNAs defined as differentiated in sensitive genotype and tolerant genotype in response to SU herbicides. The miR398 family was observed to be associated with AHAS herbicide tolerance because their expression increased in the tolerant genotype but decreased in the sensitive genotype. Moreover, 50 novel miRNAs from 39 precursors were predicted. There were 8 conserved miRNAs, 4 novel miRNAs and 3 target genes were validated by quantitative real-time PCR experiment. This study not only provides novel insights into the miRNA content of AHAS herbicides

  12. Novel chromatographic separation and carbon solid-phase extraction of acetanilide herbicide degradation products.

    Science.gov (United States)

    Shoemaker, Jody A

    2002-01-01

    One acetamide and 5 acetanilide herbicides are currently registered for use in the United States. Over the past several years, ethanesulfonic acid (ESA) and oxanilic acid (OA) degradation products of these acetanilide/acetamide herbicides have been found in U.S. ground waters and surface waters. Alachlor ESA and other acetanilide degradation products are listed on the U.S. Environmental Protection Agency's (EPA) 1998 Drinking Water Contaminant Candidate List. Consequently, EPA is interested in obtaining national occurrence data for these contaminants in drinking water. EPA currently does not have a method for determining these acetanilide degradation products in drinking water; therefore, a research method is being developed using liquid chromatography/negative ion electrospray/mass spectrometry with solid-phase extraction (SPE). A novel chromatographic separation of the acetochlor/alachlor ESA and OA structural isomers was developed which uses an ammonium acetate-methanol gradient combined with heating the analytical column to 70 degrees C. Twelve acetanilide degradates were extracted by SPE from 100 mL water samples using carbon cartridges with mean recoveries >90% and relative standard deviations < or =16%.

  13. Acceleration of the herbicide isoproturon degradation in wheat by glycosyltransferases and salicylic acid.

    Science.gov (United States)

    Lu, Yi Chen; Zhang, Shuang; Yang, Hong

    2015-01-01

    Isoproturon (IPU) is a herbicide widely used to prevent weeds in cereal production. Due to its extensive use in agriculture, residues of IPU are often detected in soils and crops. Overload of IPU to crops is associated with human health risks. Hence, there is an urgent need to develop an approach to mitigate its accumulation in crops. In this study, the IPU residues and its degradation products in wheat were characterized using ultra performance liquid chromatography-time of fight tandem-mass spectrometer/mass spectrometer (UPLC-TOF-MS/MS). Most detected IPU-derivatives were sugar-conjugated. Degradation and glycosylation of IPU-derivatives could be enhanced by applying salicylic acid (SA). While more sugar-conjugated IPU-derivatives were identified in wheat with SA application, lower levels of IPU were detected, indicating that SA is able to accelerate intracellular IPU catabolism. All structures of IPU-derivatives and sugar-conjugated products were characterized. Comparative data were provided with specific activities and gene expression of certain glucosyltransferases. A pathway with IPU degradation and glucosylation was discussed. Our work indicates that SA-accelerated degradation is practically useful for wheat crops growing in IPU-contaminated soils because such crops with SA application can potentially lower or minimize IPU accumulation in levels below the threshold for adverse effects. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Application of electrokinetic soil flushing to four herbicides: A comparison.

    Science.gov (United States)

    dos Santos, E Vieira; Souza, F; Saez, C; Cañizares, P; Lanza, M R V; Martinez-Huitle, C A; Rodrigo, M A

    2016-06-01

    In this work, four bench-scale plants containing soil spiked with four herbicides (2,4-Dichlorophenoxyacetic acid (2,4-D), oxyfluorfen, chlorsulfuron and atrazine) undergo treatment consisting of an electrokinetic soil flushing (EKSF). Results clearly demonstrate that efficiency of EKSF depends on the chemical characteristic of the pesticide used. The amount of pesticide collected in the anode well is more significant than that collected in the cathode wells, indicating that the electromigration is much more important than drainage by electro-osmotic flux for this application. After 15 d of treatment, the 2,4-D is the pesticide most efficiently removed (95% of removal), while chlorsulfuron is the pesticide more resilient to the treatment. Additionally, volatilization was found to be a process of the major significance in the application of electrokinetic techniques to soil polluted with herbicides and because of that it should always be taken into account in the future design of full-scale processes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Climate change impacts on risks of groundwater pollution by herbicides: a regional scale assessment

    Science.gov (United States)

    Steffens, Karin; Moeys, Julien; Lindström, Bodil; Kreuger, Jenny; Lewan, Elisabet; Jarvis, Nick

    2014-05-01

    Groundwater contributes nearly half of the Swedish drinking water supply, which therefore needs to be protected both under present and future climate conditions. Pesticides are sometimes found in Swedish groundwater in concentrations exceeding the EU-drinking water limit and thus constitute a threat. The aim of this study was to assess the present and future risks of groundwater pollution at the regional scale by currently approved herbicides. We identified representative combinations of major crop types and their specific herbicide usage (product, dose and application timing) based on long-term monitoring data from two agricultural catchments in the South-West of Sweden. All these combinations were simulated with the regional version of the pesticide fate model MACRO (called MACRO-SE) for the periods 1970-1999 and 2070-2099 for a major crop production region in South West Sweden. To represent the uncertainty in future climate data, we applied a five-member ensemble based on different climate model projections downscaled with the RCA3-model (Swedish Meteorological and Hydrological Institute). In addition to the direct impacts of changes in the climate, the risks of herbicide leaching in the future will also be affected by likely changes in weed pressure and land use and management practices (e.g. changes in crop rotations and application timings). To assess the relative importance of such factors we performed a preliminary sensitivity analysis which provided us with a hierarchical structure for constructing future herbicide use scenarios for the regional scale model runs. The regional scale analysis gave average concentrations of herbicides leaching to groundwater for a large number of combinations of soils, crops and compounds. The results showed that future scenarios for herbicide use (more autumn-sown crops, more frequent multiple applications on one crop, and a shift from grassland to arable crops such as maize) imply significantly greater risks of herbicide

  16. Soil microbial communities and glyphosate decay in soils with different herbicide application history.

    Science.gov (United States)

    Guijarro, Keren Hernández; Aparicio, Virginia; De Gerónimo, Eduardo; Castellote, Martín; Figuerola, Eva L; Costa, José Luis; Erijman, Leonardo

    2018-04-11

    This study evaluates the glyphosate dissipation under field conditions in three types of soil, and aims to determine the importance of the following factors in the environmental persistence of herbicide: i) soil bacterial communities, ii) soil physicochemical properties, iii) previous exposure to the herbicide. A soil without previous record of GP application (P0) and two agricultural soils, with 5 and >10years of GP exposure (A5 and A10) were subjected to the application of glyphosate at doses of 3mg·kg -1 . The concentration of GP and AMPA was determined over time and the dynamics of soil bacterial communities was evaluated using 16S ARN ribosomal gene amplicon-sequencing. The GP exposure history affected the rate but not the extent of GP biodegradation. The herbicide was degraded rapidly, but P0 soil showed a dissipation rate significantly lower than soils with agricultural history. In P0 soil, a significant increase in the relative abundance of Bacteroidetes was observed in response to herbicide application. More generally, all soils displayed shifts in bacterial community structure, which nevertheless could not be clearly associated to glyphosate dissipation, suggesting the presence of redundant bacteria populations of potential degraders. Yet the application of the herbicide prompted a partial disruption of the bacterial association network of unexposed soil. On the other hand, higher values of linear (Kd) and nonlinear (Kf) sorption coefficient in P0 point to the relevance of cation exchange capacity (CEC), clay and organic matter to the capacity of soil to adsorb the herbicide, suggesting that bioavailability was a key factor for the persistence of GP and AMPA. These results contribute to understand the relationship between bacterial taxa exposed to the herbicide, and the importance of soil properties as predictors of the possible rate of degradation and persistence of glyphosate in soil. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Herbicide and pesticide occurrence in the soils of children's playgrounds in Sarajevo, Bosnia and Herzegovina.

    Science.gov (United States)

    Sapcanin, Aida; Cakal, Mirsada; Imamovic, Belma; Salihovic, Mirsada; Pehlic, Ekrem; Jacimovic, Zeljko; Jancan, Gordan

    2016-08-01

    Pesticide pollution in Sarajevo public playgrounds is an important health and environmental issue, and the lack of information about it is causing concerns amongst the general population as well as researchers. Since children are in direct contact with surface soils on children's playgrounds, such soils should be much more carefully examined. Furthermore, herbicides and pesticides get transmitted from soil surfaces brought from outside the urban areas, or they get dispersed following their direct applications in urban areas. Infants' and children's health can be directly affected by polluted soils because of the inherent toxicity and widespread use of the different pesticides in urban environments such as playgrounds. In addition to that, the presence of chromated copper arsenate (CCA) wood preservative pesticide found as soil pollutant in playing equipment was also documented. Soil samples from playgrounds were collected and analyzed for triazines, carbamates, dithiocarbamates, phenolic herbicides and organochlorine pesticides. Samples for the determination of heavy metals Cu, Cr and As were prepared by microwave-assisted acid digestion, and the findings were determined by using an inductively coupled plasma optical emission spectrometer. Triazines, carbamates, dithiocarbamates, chlorphenoxy compounds, phenolic herbicides, organochlorine pesticides and organotin compounds were detected in playground soils and their determined concentrations (mg/kg) were respectively found as follows: herbicides and pesticides on human health, which strengthens the case for a more preventative and protective approach to the uncontrolled presence of herbicides and pesticides in Sarajevo's playground soils.

  18. METHOD 535: MEASUREMENT OF CHLOROACETANILIDE AND CHLOROACETAMIDE HERBICIDE DEGRADATES IN DRINKING WATER BY SOLID PHASE EXTRACTION AND LIQUID CHROMATOGRAPHY/TANDEM MASS SPECTROMETRY (LC/MS/MS)

    Science.gov (United States)

    Over the past several years, ethanesulfonic acid (ESA) and oxanilic acid (OA) degradation products of acetanilide/acetamide herbicides have been found in U.S. ground waters and surface waters. The substitution of the sulfonic acid or the carbonic acid for the chlorine atom great...

  19. SELECTIVITY OF DIFFERENT HERBICIDES TO COWPEA

    Directory of Open Access Journals (Sweden)

    Francisco Aires Sizenando Filho2

    2013-12-01

    1.5 = recommended rate + half the recommended rate. At the end of the experiment it was found that: the cowpea showed phytotoxicity to use herbicide among 14 and 21 AAD; the herbicides diuron and metolachlor showed a rate "middle" in control weed, while the pendimethalin wasn't efficient for those function.

  20. Antioxidant activity of rice plants sprayed with herbicides

    Directory of Open Access Journals (Sweden)

    Marcos André Nohatto

    2016-03-01

    Full Text Available Understanding the physiological defense behavior of plants subjected to herbicide application may help to identify products with higher or lower capacity to cause oxidative stress in crops. This study aimed at evaluating the effect of herbicides in the antioxidant activity of rice plants. The experimental design was completely randomized, with six replications. Treatments consisted of the herbicides bentazon (photosystem II inhibitor; 960 g ha-1, penoxsulam (acetolactate synthase inhibitor; 60 g ha-1, cyhalofop-butyl (acetyl coenzyme-A carboxylase inhibitor; 315 g ha-1 and a control. After the herbicides application, samples of rice shoots were collected at 12, 24, 48 and 96 hours after application (HAA. The components evaluated were hydrogen peroxide (H2O2, lipid peroxidation and activity of the antioxidant enzymes superoxide dismutase (SOD and catalase (CAT. Bentazon (up to 24 HAA and penoxsulam (48 and 96 HAA reduced the CAT activity. Moreover, these herbicides increased the levels of H2O2, lipid peroxidation and SOD activity, indicating a condition of oxidative stress in rice plants. The cyhalofop-butyl herbicide did not alter the antioxidant activity, showing that it causes less stress to the crop.

  1. Regulation of Microbial Herbicide Transformation by Coupled Moisture and Oxygen Dynamics in Soil

    Science.gov (United States)

    Marschmann, G.; Pagel, H.; Uksa, M.; Streck, T.; Milojevic, T.; Rezanezhad, F.; Van Cappellen, P.

    2017-12-01

    The key processes of herbicide fate in agricultural soils are well-characterized. However, most of these studies are from batch experiments that were conducted under optimal aerobic conditions. In order to delineate the processes controlling herbicide (i.e., phenoxy herbicide 2-methyl-4-chlorophenoxyacetic acid, MCPA) turnover in soil under variable moisture conditions, we conducted a state-of-the-art soil column experiment, with a highly instrumented automated soil column system, under constant and oscillating water table regimes. In this system, the position of the water table was imposed using a computer-controlled, multi-channel pump connected to a hydrostatic equilibrium reservoir and a water storage reservoir. The soil samples were collected from a fertilized, arable and carbon-limited agricultural field site in Germany. The efflux of CO2 was determined from headspace gas measurements as an integrated signal of microbial respiration activity. Moisture and oxygen profiles along the soil column were monitored continuously using high-resolution moisture content probes and luminescence-based Multi Fiber Optode (MuFO) microsensors, respectively. Pore water and solid-phase samples were collected periodically at 8 depths and analyzed for MCPA, dissolved inorganic and organic carbon concentrations as well as the abundance of specific MCPA-degrading bacteria. The results indicated a clear effect of the water table fluctuations on CO2 fluxes, with lower fluxes during imbibition periods and enhanced CO2 fluxes after drainage. In this presentation, we focus on the results of temporal changes in the vertical distribution of herbicide, specific herbicide degraders, organic carbon concentration, moisture content and oxygen. We expect that the high spatial and temporal resolution of measurements from this experiment will allow robust calibration of a reactive transport model for the soil columns, with subsequent identification and quantification of rate limiting processes of

  2. Uses of thaxtomin and thaxtomin compositions as herbicides

    Energy Technology Data Exchange (ETDEWEB)

    Koivunen, Marja; Marrone, Pamela

    2016-12-27

    There is a need for a selective, low-risk herbicide that can be used to control weeds in cereal cultures and turf. The present invention discloses that a bacterial secondary metabolite, thaxtomin and optionally another herbicide is an effective herbicide on broadleaved, sedge and grass weeds. Thaxtomin A and structurally similar compounds can be used as natural herbicides to control the germination and growth of weeds in cereal, turf grass, Timothy grass and pasture grass cultures with no phytotoxicity to these crops. As a natural, non-toxic compound, thaxtomin can be used as a safe alternative for weed control in both conventional and organic farming and gardening systems.

  3. Bio stimulation for the Enhanced Degradation of Herbicides in Soil

    International Nuclear Information System (INIS)

    Kanissery, R.G; Sims, G.K

    2011-01-01

    Cleanup of herbicide-contaminated soils has been a dire environmental concern since the advent of industrial era. Although microorganisms are excellent degraders of herbicide compounds in the soil, some reparation may need to be brought about, in order to stimulate them to degrade the herbicide at a faster rate in a confined time frame. Bio stimulation through the appropriate utilization of organic amendments and nutrients can accelerate the degradation of herbicides in the soil. However, effective use of bio stimulants requires thorough comprehension of the global redox cycle during the microbial degradation of the herbicide molecules in the soil. In this paper, we present the prospects of using bio stimulation as a powerful remediation strategy for the rapid cleanup of herbicide-polluted soils.

  4. Analysis of temperature dependence of {sup 35}Cl-NQR frequency in 2,4-D herbicide (2,4-dichlorophenoxy acetic acid); Analiza temperaturowej zaleznosci czestosci {sup 35}Cl-NQR w herbicydzie 2,4-D (kwas dichlorofenoksyoctowy)

    Energy Technology Data Exchange (ETDEWEB)

    Mazurek, P.; Ostafin, M.; Kasprzak, J.; Nogaj, B. [Inst. Fizyki, Uniwersytet A. Mickiewicza, Poznan (Poland)

    1994-12-31

    Biological activity of herbicide depends on electronic structure and molecule dynamics. The former parameter has been investigated by means of NQR spectra on {sup 35}Cl nuclei of 2,4-dichlorophenoxy acetic acid. The analysis of temperature dependency of observed frequency has been done. 12 refs, 3 figs, 1 tab.

  5. Annual Herbicide Loadings

    Data.gov (United States)

    U.S. Environmental Protection Agency — Pesticides, Herbicides, Fungicides...etc, are used for a variety of purposes, including control of household, lawn, and garden pests; for control of mosquitoes and...

  6. Isolation from Agricultural Soil and Characterization of a Sphingomonas sp. Able To Mineralize the Phenylurea Herbicide Isoproturon

    Science.gov (United States)

    Sørensen, Sebastian R.; Ronen, Zeev; Aamand, Jens

    2001-01-01

    A soil bacterium (designated strain SRS2) able to metabolize the phenylurea herbicide isoproturon, 3-(4-isopropylphenyl)-1,1-dimethylurea (IPU), was isolated from a previously IPU-treated agricultural soil. Based on a partial analysis of the 16S rRNA gene and the cellular fatty acids, the strain was identified as a Sphingomonas sp. within the α-subdivision of the proteobacteria. Strain SRS2 was able to mineralize IPU when provided as a source of carbon, nitrogen, and energy. Supplementing the medium with a mixture of amino acids considerably enhanced IPU mineralization. Mineralization of IPU was accompanied by transient accumulation of the metabolites 3-(4-isopropylphenyl)-1-methylurea, 3-(4-isopropylphenyl)-urea, and 4-isopropyl-aniline identified by high-performance liquid chromatography analysis, thus indicating a metabolic pathway initiated by two successive N-demethylations, followed by cleavage of the urea side chain and finally by mineralization of the phenyl structure. Strain SRS2 also transformed the dimethylurea-substituted herbicides diuron and chlorotoluron, giving rise to as-yet-unidentified products. In addition, no degradation of the methoxy-methylurea-substituted herbicide linuron was observed. This report is the first characterization of a pure bacterial culture able to mineralize IPU. PMID:11722885

  7. Inheritance and molecular characterization of broad range tolerance to herbicides targeting acetohydroxyacid synthase in sunflower.

    Science.gov (United States)

    Sala, Carlos A; Bulos, Mariano

    2012-02-01

    Ahasl1 is a multilallelic locus where all the induced and natural mutations for herbicide tolerance were described thus far in sunflower (Helianthus annuus L.). The allele Ahasl1-1 confers moderate tolerance to imidazolinone (IMI), Ahasl1-2, and Ahasl1-3 provides high levels of tolerance solely to sulfonylurea (SU) and IMI, respectively. An Argentinean wild sunflower population showing plants with high level of tolerance to either an IMI and a SU herbicide was discovered and used to develop an inbred line designated RW-B. The objectives of this work were to determine the relative level and pattern of cross-tolerance to different AHAS-inhibiting herbicides, the mode of inheritance, and the molecular basis of herbicide tolerance in this line. Slight or no symptoms observed after application of different herbicides indicated that RW-B possesses a completely new pattern of tolerance to AHAS-inhibiting herbicides in sunflower. Biomass response to increasing doses of metsulfuron or imazapyr demonstrated a higher level of tolerance in RW-B with respect to Ahasl1-1/Ahasl1-1 and Ahasl1-2/Ahasl1-2 lines. On the basis of genetic analyses and cosegregation test, it was concluded that tolerance to imazapyr in the original population is inherited as a single, partially dominant nuclear gene and that this gene is controlling the tolerance to four different AHAS-inhibiting herbicides. Pseudo-allelism test permitted us to conclude that the tolerant allele present in RW-B is an allelic variant of Ahasl1-1 and was designated as Ahasl1-4. Nucleotide and deduced amino acid sequence indicated that the Ahasl1-4 allele sequence of RW-B has a leucine codon (TTG) at position 574 (relative to the Arabidopsis thaliana AHAS sequence), whereas the enzyme from susceptible lines has a tryptophan residue (TGG) at this position. The utilization of this new allele in the framework of weed control and crop rotation is discussed.

  8. Persistence and transformation of the herbicide [14C]glufosinate-ammonium in prairie soils under laboratory conditions

    International Nuclear Information System (INIS)

    Smith, A.E.

    1988-01-01

    The degradation of the herbicide [ 14 C]glufosinate-ammonium (the ammonium salt of DL-homoalanin-4-ylmethylphosphinic acid), at a rate of 2 ppm, was studied in three prairie soils at 85% of their field capacity moisture at both 20 and 10 0 C. In all soils the herbicide was biologically transformed to degradation product(s) that underwent further slow degradation with release of [ 14 C]carbon dioxide. At 20 0 C, the soil half-life values for the [ 14 C]herbicide were 3-7 days and, at 10 0 C, 8-11 days. Over a 90-day incubation period at 20 0 C, between 28 and 55% of the applied radioactivity was released from treated soils as [ 14 C]carbon dioxide; solvent-extractable degradation product(s) accounted for 19-37% of the applied radioactivity; between 2.4 and 9.5% of the initial 14 C was incorporated into soil microbial biomass and 7-13% into the fulvic, humic, and humin soil fractions

  9. Occurrence of dichloroacetamide herbicide safeners and co-applied herbicides in midwestern U.S. streams

    Science.gov (United States)

    Woodward, Emily; Hladik, Michelle; Kolpin, Dana W.

    2018-01-01

    Dichloroacetamide safeners (e.g., AD-67, benoxacor, dichlormid, and furilazole) are co-applied with chloroacetanilide herbicides to protect crops from herbicide toxicity. While such safeners have been used since the early 1970s, there are minimal data about safener usage, occurrence in streams, or potential ecological effects. This study focused on one of these research gaps, occurrence in streams. Seven Midwestern U.S. streams (five in Iowa and two in Illinois), with extensive row-crop agriculture, were sampled at varying frequencies from spring 2016 through summer 2017. All four safeners were detected at least once; furilazole was the most frequently detected (31%), followed by benoxacor (29%), dichlormid (15%), and AD-67 (2%). The maximum concentrations ranged from 42 to 190 ng/L. Stream detections and concentrations of safeners appear to be driven by a combination of timing of application (spring following herbicide application) and precipitation events. Detected concentrations were below known toxicity levels for aquatic organisms.

  10. Control of Butterfly Bush with Postemergence Herbicides

    Science.gov (United States)

    Butterfly bush (Buddleja davidii) is classified as invasive in several parts of the United States. Two experiments were conducted to evaluate the effectiveness of four herbicides and two application methods on postemergence butterfly bush control. The four herbicides included: Roundup (glyphosate)...

  11. ACETANILIDE HERBICIDE DEGRADATION PRODUCTS BY LC/MS

    Science.gov (United States)

    Acetanilide herbicides are frequently applied in the U.S. on crops (corn, soybeans, popcorn, etc.) to control broadleaf and annual weeds. The acetanilide and acetamide herbicides currently registered for use in the U.S. are alachlor, acetochlor, metolachlor, propachlor, flufen...

  12. Changes in concentrations of triazine and acetamide herbicides by bank filtration, ozonation, and chlorination in a public water supply

    Science.gov (United States)

    Verstraeten, Ingrid M.; Thurman, E.M.; Lindsey, M.E.; Lee, E.C.; Smith, R.D.

    2002-01-01

    The changes in triazine and acetamide concentrations in water during natural and artificial treatment by bank filtration, ozonation, filtration, and chlorination were measured at the well field and drinking water treatment plant of Lincoln, Nebraska, USA. The city's groundwater supply is affected by induced infiltration and transport of triazines and acetamide herbicides from the Platte River in late spring and early summer. The objective of the study was to evaluate the effect of infiltration and treatment on the presence of triazines and acetamides in drinking water. Samples of river water, well water, and public supply water at various stages of water treatment were collected from 1997-1999 during spring-runoff when the presence of herbicides in the Platte River is largest. In 1999, parent compounds were reduced by 76% of the concentration present in river water (33% by bank filtration, 41% by ozonation, and 1.5% by chlorination). Metabolites of herbicides for which analytical techniques existed were reduced by 21% (plus 26% by bank filtration, minus 23% by ozonation, and minus 24% by chlorination). However, increases in concentrations of specific metabolite compounds were identified after bank filtration and ozonation. After bank filtration, increases in cyanazine amide, cyanazine acid, and deethylcyanazine acid were identified. After ozonation, concentrations of deisopropylatrazine, deethylatrazine, didealkylatrazine, atrazine amide-I, hydroxydeethylatrazine, hydroxydeisopopylatrazine, deethylcyanazine acid, and deethylcyanazine increased. Concentrations of cyanazine acid and ethanesulfonic and oxanilic acids of acetamides decreased during ozonation. Our findings suggest that bank filtration and ozonation of water in part can shift the assessment of risk to human health associated with the consumption of the water from the parent compounds to their degradation products.

  13. Herbicide Safeners Decrease Sensitivity to Herbicides Inhibiting Acetolactate-Synthase and Likely Activate Non-Target-Site-Based Resistance Pathways in the Major Grass Weed Lolium sp. (Rye-Grass)

    OpenAIRE

    Duhoux, Arnaud; Pernin, Fanny; Desserre, Diane; D?lye, Christophe

    2017-01-01

    Herbicides are currently pivotal to control weeds and sustain food security. Herbicides must efficiently kill weeds while being as harmless as possible for crops, even crops taxonomically close to weeds. To increase their selectivity toward crops, some herbicides are sprayed in association with safeners that are bioactive compounds exacerbating herbicide-degrading pathways reputedly specifically in crops. However, exacerbated herbicide metabolism is also a key mechanism underlying evolved non...

  14. Acute and additive toxicity of ten photosystem-II herbicides to seagrass

    OpenAIRE

    Adam D. Wilkinson; Catherine J. Collier; Florita Flores; Andrew P. Negri

    2015-01-01

    Photosystem II herbicides are transported to inshore marine waters, including those of the Great Barrier Reef, and are usually detected in complex mixtures. These herbicides inhibit photosynthesis, which can deplete energy reserves and reduce growth in seagrass, but the toxicity of some of these herbicides to seagrass is unknown and combined effects of multiple herbicides on seagrass has not been tested. Here we assessed the acute phytotoxicity of 10 PSII herbicides to the seagrass Halophila ...

  15. Herbicidal treatments for control of Papaver somniferum L.

    Science.gov (United States)

    Horowitz, M

    1980-01-01

    Fifty-five commercially available herbicides were evaluated for possible use to destroy illicit opium poppy crops (Papaver somniferum). In the first stage, herbicides were sprayed on poppy plants grown in containers. The following compounds killed poppy plants: (a) herbicides with typical foliar activity--amitrole, bromoxynil, 2,4-D, glyphosate, ioxynil and paraquat; and (b) herbicides with root and foliar activity--the triazines ametryn, atrazine, metribuzin, prometryn, simazine and terbutryn; the substituted ureas benzthiazuron, chloroxuron, diuron, fluometuron, linuron, methabenzthiazuron, neburon and phenobenzuron; and the miscellaneous compounds karbutilate, methazole, oxadiazon and pyrazon. Severe but sublethal injury was caused by cycloate, EPTC, molinate, pobulate, cacodylate + MSMA, ethofumesate, perfluidone and phenmedipham. Abnormal development of vegetative or reproductive parts of the plant was induced by benefin, butralin, dinitramine, pendimethalin, trifluralin, diphenamid, napropamide, dalapon and propham. Efficient herbicides with negligible persistence in soil at the doses applied were evaluated on poppy plants in the field at various stages of growth. Small plants were severely injured by 2,4-D, killed rapidly by bromoxynil, ioxynil, paraquat (in mixture + diquat), and more slowly by glyphosate and metribuzin. The resistance to herbicides increased with the age of the poppy plant. Severe damage with partial kill of developed plants was obtained with bromoxynil, ioxynil, glyphosate, and paraquat + diquat; the last treatment produced the fastest effect.

  16. Effect of sugarcane cropping systems on herbicide losses in surface runoff.

    Science.gov (United States)

    Nachimuthu, Gunasekhar; Halpin, Neil V; Bell, Michael J

    2016-07-01

    Herbicide runoff from cropping fields has been identified as a threat to the Great Barrier Reef ecosystem. A field investigation was carried out to monitor the changes in runoff water quality resulting from four different sugarcane cropping systems that included different herbicides and contrasting tillage and trash management practices. These include (i) Conventional - Tillage (beds and inter-rows) with residual herbicides used; (ii) Improved - only the beds were tilled (zonal) with reduced residual herbicides used; (iii) Aspirational - minimum tillage (one pass of a single tine ripper before planting) with trash mulch, no residual herbicides and a legume intercrop after cane establishment; and (iv) New Farming System (NFS) - minimum tillage as in Aspirational practice with a grain legume rotation and a combination of residual and knockdown herbicides. Results suggest soil and trash management had a larger effect on the herbicide losses in runoff than the physico-chemical properties of herbicides. Improved practices with 30% lower atrazine application rates than used in conventional systems produced reduced runoff volumes by 40% and atrazine loss by 62%. There were a 2-fold variation in atrazine and >10-fold variation in metribuzin loads in runoff water between reduced tillage systems differing in soil disturbance and surface residue cover from the previous rotation crops, despite the same herbicide application rates. The elevated risk of offsite losses from herbicides was illustrated by the high concentrations of diuron (14μgL(-1)) recorded in runoff that occurred >2.5months after herbicide application in a 1(st) ratoon crop. A cropping system employing less persistent non-selective herbicides and an inter-row soybean mulch resulted in no residual herbicide contamination in runoff water, but recorded 12.3% lower yield compared to Conventional practice. These findings reveal a trade-off between achieving good water quality with minimal herbicide contamination and

  17. Herbicides and nitrates in groundwater of Maryland and childhood cancers: a geographic information systems approach.

    Science.gov (United States)

    Thorpe, Nancy; Shirmohammadi, Adel

    2005-01-01

    This hypothesis-generating study explores spatial patterns of childhood cancers in Maryland and investigates their potential associations with herbicides and nitrates in groundwater. The Maryland Cancer Registry (MCR) provided data for bone and brain cancers, leukemia, and lymphoma, for ages 0-17, during the years 1992-1998. Cancer clusters and relative risks generated in the study indicate higher relative risk areas and potential clusters in several counties. Contingency table analysis indicates a potential association with several herbicides and nitrates. Cancer rates for the four types have a crude odds ratio (OR) = 1.10 (0.78-1.56) in relationship to atrazine, and an OR = 1.54 (1.14-2.07) for metolachlor. Potential association to mixtures of three compounds give an OR = 7.56 (4.16-13.73). A potential association is indicated between leukemia and nitrates, OR = 1.81 (1.35-2.42), and bone cancer with metolachlor, OR = 2.26 (0.97-5.24). These results give insight to generate a hypothesis of the potential association between exposure to these herbicides and nitrates and specific types of childhood cancer.

  18. Delivery of calibration workshops covering herbicide application equipment : final report.

    Science.gov (United States)

    2014-03-31

    Proper herbicide sprayer set-up and calibration are critical to the success of the Oklahoma Department of Transportation (ODOT) herbicide program. Sprayer system set-up and calibration training is provided in annual continuing education herbicide wor...

  19. Herbicide-resistant crop biotechnology: potential and pitfalls

    Science.gov (United States)

    Herbicide-resistant crops are an important agricultural biotechnology that can enable farmers to effectively control weeds without harming their crops. Glyphosate-resistant (i.e. Roundup Ready) crops have been the most commercially successful varieties of herbicide-resistant crops and have been plan...

  20. Herbicides: A new threat to the Great Barrier Reef

    International Nuclear Information System (INIS)

    Lewis, Stephen E.; Brodie, Jon E.; Bainbridge, Zoe T.; Rohde, Ken W.; Davis, Aaron M.; Masters, Bronwyn L.; Maughan, Mirjam; Devlin, Michelle J.; Mueller, Jochen F.; Schaffelke, Britta

    2009-01-01

    The runoff of pesticides (insecticides, herbicides and fungicides) from agricultural lands is a key concern for the health of the iconic Great Barrier Reef, Australia. Relatively low levels of herbicide residues can reduce the productivity of marine plants and corals. However, the risk of these residues to Great Barrier Reef ecosystems has been poorly quantified due to a lack of large-scale datasets. Here we present results of a study tracing pesticide residues from rivers and creeks in three catchment regions to the adjacent marine environment. Several pesticides (mainly herbicides) were detected in both freshwater and coastal marine waters and were attributed to specific land uses in the catchment. Elevated herbicide concentrations were particularly associated with sugar cane cultivation in the adjacent catchment. We demonstrate that herbicides reach the Great Barrier Reef lagoon and may disturb sensitive marine ecosystems already affected by other pressures such as climate change. - Herbicide residues have been detected in Great Barrier Reef catchment waterways and river water plumes which may affect marine ecosystems.

  1. Herbicides and their transformation products in source-water aquifers tapped by public-supply wells in Illinois, 2001-02

    Science.gov (United States)

    Mills, Patrick C.; McMillan, William D.

    2004-01-01

    During 2001-02, ground-water samples were collected from 117 public-supply wells distributed throughout Illinois to evaluate the occurrence of herbicides and their transformation products in the State?s source-water aquifers. Wells were selected using a stratified-random method to ensure representation of the major types of source-water aquifers in the State. Samples were analyzed for 18 herbicides and 18 transformation products, including 3 triazine and 14 chloroacetanilide products. Herbicide compounds (field-applied parent herbicides and their transformation products) were detected in 34 percent of samples. A subset of samples was collected unfiltered to determine if analytical results for herbicides in unfiltered samples are similar to those in paired filtered samples and, thus, can be considered equally representative of herbicide concentrations in ground water supplied to the public. The study by the U.S. Geological Survey was done in cooperation with the Illinois Environmental Protection Agency. Parent herbicides were detected in only 4 percent of all samples. The six most frequently detected herbicide compounds (from 5 to 28 percent of samples) were chloroacetanilide transformation products. The frequent occurrence of transformation products and their higher concentrations relative to those of most parent herbicides confirm the importance of obtaining information on transformation products to understand the mobility and fate of herbicides in ground-water systems. No sample concentrations determined during this study exceeded current (2003) Federal or State drinking-water standards; however, standards are established for only seven parent herbicides. Factors related to the occurrence of herbicide compounds in the State?s source-water aquifers include unconsolidated and unconfined conditions, various hydrogeologic characteristics and well-construction aspects at shallow depths, and proximity to streams. Generally, the closer an aquifer (or well location) is

  2. Growth, production and quality of pineapple in response to herbicide use

    Directory of Open Access Journals (Sweden)

    Leonardo Carvalho Brant Maia

    2012-09-01

    Full Text Available In pineapple fields, weed competition is exacerbated by the fact that the crop is small and has a very slow vegetative development. The objective of this study was to determine the effects of herbicides on growth, yield and quality of pineapple, cultivar 'Pérola'. The experimental design was in randomized blocks with four treatments and four replications. Treatments consisted of weeding by hoe and the herbicides diuron; fluazifop-p-butyl and atrazine + S-metolachlor applied in post-emergence. The characteristics evaluated monthly during the vegetative stage were stem diameter, D-leaf length, number of leaves, number of emitted leaves and percentage of natural floral induction. In the reproductive phase, evaluations were made of average fruit weight (g with and without crown, fruits length and diameter, number of slip, slip-sucker and sucker type seedlings, determination of soluble solids and pH in the pulp. There was no effect of herbicide treatment on the vegetative growth characteristics. Stem diameter increased until 330 days after planting, showing a decrease after this period. The D-leaf grew over time in all treatments, although phytotoxicity symptoms were observed after the first application of herbicides. The traits evaluated on the reproductive phase showed no significant differences in response to treatments. Therefore, the use of diuron fluazifop-p-butyl and atrazine + S-metolachlor did not affect growth, yield and fruit quality of pineapple, cultivar 'Pérola'.

  3. Mixtures of herbicides and metals affect the redox system of honey bees.

    Science.gov (United States)

    Jumarie, Catherine; Aras, Philippe; Boily, Monique

    2017-02-01

    The increasing loss of bee colonies in many countries has prompted a surge of studies on the factors affecting bee health. In North America, main crops such as maize and soybean are cultivated with extensive use of pesticides that may affect non-target organisms such as bees. Also, biosolids, used as a soil amendment, represent additional sources of metals in agroecosystems; however, there is no information about how these metals could affect the bees. In previous studies we investigated the effects of environmentally relevant doses of herbicides and metals, each individually, on caged honey bees. The present study aimed at investigating the effects of mixtures of herbicides (glyphosate and atrazine) and metals (cadmium and iron), as these mixtures represent more realistic exposure conditions. Levels of metal, vitamin E, carotenoids, retinaldehyde, at-retinol, retinoic acid isomers (9-cis RA, 13-cis RA, at-RA) and the metabolites 13-cis-4-oxo-RA and at-4-oxo-RA were measured in bees fed for 10 days with contaminated syrup. Mixtures of herbicides and cadmium that did not affect bee viability, lowered bee α- and β-carotenoid contents and increased 9-cis-RA as well as 13-cis-4-oxo-RA without modifying the levels of at-retinol. Bee treatment with either glyphosate, a combination of atrazine and cadmium, or mixtures of herbicides promoted lipid peroxidation. Iron was bioconcentrated in bees and led to high levels of lipid peroxidation. Metals also decreased zeaxanthin bee contents. These results show that mixtures of atrazine, glyphosate, cadmium and iron may affect different reactions occurring in the metabolic pathway of vitamin A in the honey bee. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Target-site resistance to acetolactate synthase (ALS)-inhibiting herbicides in Amaranthus palmeri from Argentina.

    Science.gov (United States)

    Larran, Alvaro S; Palmieri, Valeria E; Perotti, Valeria E; Lieber, Lucas; Tuesca, Daniel; Permingeat, Hugo R

    2017-12-01

    Herbicide-resistant weeds are a serious problem worldwide. Recently, two populations of Amaranthus palmeri with suspected cross-resistance to acetolactate synthase (ALS)-inhibiting herbicides (R1 and R2) were found by farmers in two locations in Argentina (Vicuña Mackenna and Totoras, respectively). We conducted studies to confirm and elucidate the mechanism of resistance. We performed in vivo dose-response assays, and confirmed that both populations had strong resistance to chlorimuron-ethyl, diclosulam and imazethapyr when compared with a susceptible population (S). In vitro ALS activity inhibition tests only indicated considerable resistance to imazethapyr and chlorimuron-ethyl, indicating that other non-target mechanisms could be involved in diclosulam resistance. Subsequently, molecular analysis of als nucleotide sequences revealed three single base-pair mutations producing substitutions in amino acids previously associated with resistance to ALS inhibitors, A122, W574, and S653. This is the first report of als resistance alleles in A. palmeri in Argentina. The data support the involvement of a target-site mechanism of resistance to ALS-inhibiting herbicides. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  5. Economics of site-specific and variable-dose herbicide application

    DEFF Research Database (Denmark)

    Ørum, Jens Erik; Kudsk, Per; Jensen, Peter Kryger

    2017-01-01

    Site-specific application of pesticides has so far focused mainly on herbicides. The purpose of precision farming technologies in relation to herbicide use is to reduce herbicide cost and environmental impact from spraying, but at the same time to achieve acceptable weed control. Another purpose...... is to increase the spraying capacity, to reduce the number of sprayer refills, and finally to minimize time spent on weed monitoring. In this chapter the relevance and profitability of four precision herbicide application technologies, two weed detection technologies and a low dose decision support system (DSS......) is analysed. With a low dose herbicide, cost can be reduced by 20–50%. It requires, however, proper monitoring of weeds, which can be a time-consuming task that again requires that the farmer is able to identify the dominant weed species. The current development of high-speed camera and software systems can...

  6. Discovery of new herbicide modes of action with natural phytotoxins

    Science.gov (United States)

    About 20 modes of action (MOAs) are utilized by commercial herbicides, and almost 30 years have passed since the last new MOA was introduced. Rapidly increasing evolution of resistance to herbicides with these MOAs has greatly increased the need for herbicides with new MOAs. Combinatorial chemistry ...

  7. Translocation of labelled assimilates, ion uptake and nucleic acids contents in zea mays plants as influenced by application of the herbicide dual and the bioregulaators GA3 and kinetin

    International Nuclear Information System (INIS)

    Hassanein, R.AA.; Khodary, S.E.A.; Abdel-Aziz, S.M.

    2001-01-01

    Maize seedlings, grown hydroponic for one month, were undertaken o investigate the effect of dual (metolachlor), bio regulators (GA 3 and kinetin) and their interaction with dual on translocation rate of assimilates, nucleic acids content. ion uptake and the activities of protease and nitrate reductase enzymes. Dual at all concentrations decreased the rate of assimilates translocation and nucleic acids levels. Also reduction in the ability of the treated plants to absorb ions from the growth medium as well as the activities of nitrate reductase and protease enzymes were retarded upon dual application. The results also revealed that treatment with either GA 3 or kinetin in combination with dual, reversed the adverse action of the herbicide on zea mays plants

  8. Imazapyr (herbicide) seed dressing increases yield, suppresses ...

    African Journals Online (AJOL)

    from damage. In 1998/99 season, a trial was initiated at Chitedze Research Station under artificial infection, to evaluate the effects of seed dressing with imazapyr (an acetolactate synthase {ALS} inhibiting herbicide) using three seed treatment methods (coating, priming or drenching) and three herbicide rates (15, 30 and 45 ...

  9. Fourier transform of delayed fluorescence as an indicator of herbicide concentration.

    Science.gov (United States)

    Guo, Ya; Tan, Jinglu

    2014-12-21

    It is well known that delayed fluorescence (DF) from Photosystem II (PSII) of plant leaves can be potentially used to sense herbicide pollution and evaluate the effect of herbicides on plant leaves. The research of using DF as a measure of herbicides in the literature was mainly conducted in time domain and qualitative correlation was often obtained. Fourier transform is often used to analyze signals. Viewing DF signal in frequency domain through Fourier transform may allow separation of signal components and provide a quantitative method for sensing herbicides. However, there is a lack of an attempt to use Fourier transform of DF as an indicator of herbicide. In this work, the relationship between the Fourier transform of DF and herbicide concentration was theoretically modelled and analyzed, which immediately yielded a quantitative method to measure herbicide concentration in frequency domain. Experiments were performed to validate the developed method. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Fluridone: a combination germination stimulant and herbicide for problem fields?

    Science.gov (United States)

    Goggin, Danica E; Powles, Stephen B

    2014-09-01

    Problem weeds in agriculture, such as Lolium rigidum Gaud., owe some of their success to their large and dormant seed banks, which permit germination throughout a crop-growing season. Dormant weed seed banks could be greatly depleted by application of a chemical that stimulates early-season germination and then kills the young seedlings. Fluridone, a phytoene desaturase-inhibiting herbicide that can also break seed dormancy, was assessed for its efficacy in this regard. The germination of fluridone-treated Lolium rigidum seeds was stimulated on soils with low organic matter, and almost 100% seedling mortality was observed, while the treatment was only moderately effective on a high-organic-matter potting mix. Seedlings from wheat, canola, common bean and chickpea seeds sown on fluridone-treated sandy loam were bleached and did not survive, but lupins and field peas grew normally. This proof-of-concept study with fluridone suggests that it may be possible to design safe and effective molecules that act as germination stimulants plus herbicides in a range of crop and soil types: a potentially novel way of utilising herbicides to stimulate seed bank germination and a valuable addition to an integrated weed management system. © 2014 Society of Chemical Industry.

  11. Questions concerning the potential impact of glyphosate-based herbicides on amphibians.

    Science.gov (United States)

    Wagner, Norman; Reichenbecher, Wolfram; Teichmann, Hanka; Tappeser, Beatrix; Lötters, Stefan

    2013-08-01

    Use of glyphosate-based herbicides is increasing worldwide. The authors review the available data related to potential impacts of these herbicides on amphibians and conduct a qualitative meta-analysis. Because little is known about environmental concentrations of glyphosate in amphibian habitats and virtually nothing is known about environmental concentrations of the substances added to the herbicide formulations that mainly contribute to adverse effects, glyphosate levels can only be seen as approximations for contamination with glyphosate-based herbicides. The impact on amphibians depends on the herbicide formulation, with different sensitivity of taxa and life stages. Effects on development of larvae apparently are the most sensitive endpoints to study. As with other contaminants, costressors mainly increase adverse effects. If and how glyphosate-based herbicides and other pesticides contribute to amphibian decline is not answerable yet due to missing data on how natural populations are affected. Amphibian risk assessment can only be conducted case-specifically, with consideration of the particular herbicide formulation. The authors recommend better monitoring of both amphibian populations and contamination of habitats with glyphosate-based herbicides, not just glyphosate, and suggest including amphibians in standardized test batteries to study at least dermal administration. Copyright © 2013 SETAC.

  12. selective herbicide glyphosate

    African Journals Online (AJOL)

    Aghomotsegin

    2016-05-04

    May 4, 2016 ... concentrations of the test chemical at 0.625, 1.25, 2.5, 5 and 10 mg/L, respectively. The percentage growth rate ... production, processing, storage, transport or marketing of ... Herbicides commonly known as weed-killers are.

  13. Development and characterization of mutant winter wheat (Triticum aestivum L.) accessions resistant to the herbicide quizalofop.

    Science.gov (United States)

    Ostlie, Michael; Haley, Scott D; Anderson, Victoria; Shaner, Dale; Manmathan, Harish; Beil, Craig; Westra, Phillip

    2015-02-01

    New herbicide resistance traits in wheat were produced through the use of induced mutagenesis. While herbicide-resistant crops have become common in many agricultural systems, wheat has seen few introductions of herbicide resistance traits. A population of Hatcher winter wheat treated with ethyl methanesulfonate was screened with quizalofop to identify herbicide-resistant plants. Initial testing identified plants that survived multiple quizalofop applications. A series of experiments were designed to characterize this trait. In greenhouse studies the mutants exhibited high levels of quizalofop resistance compared to non-mutant wheat. Sequencing ACC1 revealed a novel missense mutation causing an alanine to valine change at position 2004 (Alopecurus myosuroides reference sequence). Plants carrying single mutations in wheat's three genomes (A, B, D) were identified. Acetyl co-enzyme A carboxylase in resistant plants was 4- to 10-fold more tolerant to quizalofop. Populations of segregating backcross progenies were developed by crossing each of the three individual mutants with wild-type wheat. Experiments conducted with these populations confirmed largely normal segregation, with each mutant allele conferring an additive level of resistance. Further tests showed that the A genome mutation conferred the greatest resistance and the B genome mutation conferred the least resistance to quizalofop. The non-transgenic herbicide resistance trait identified will enhance weed control strategies in wheat.

  14. Fate of 2,4-D herbicide in soil-plant ecosystems

    International Nuclear Information System (INIS)

    Onal, G.

    1983-01-01

    Herbicide was applied to wheat, barley and oat plants grown under laboratory, greenhouse and field conditions and the fate of the herbicide was investigated using carbon 14 radioisotope. Results of the investigation indicate that (1) under laboratory condition degradation of the herbicide was faster in the soil, rich in organic matter and was not influenced by humidity; (2) the absorption of the herbicide by the plants was low under greenhouse conditions and (3) the uptake of the chemical by the plants grown in the field was higher in the presence of fertilizer (diammonium phosphate)

  15. Vasogenic edema in striatum following ingestion of glufosinate-containing herbicide.

    Science.gov (United States)

    Lee, Hui-Young; Song, Seo-Young; Lee, Seung-Hwan; Lee, Seo-Young; Kim, Sung-Hun; Ryu, Sook-Won

    2009-10-01

    Glufosinate-ammonium (GLA) is a broad-spectrum herbicide used worldwide. We report a patient who attempted suicide by ingesting a liquid herbicide containing GLA. A diffusion-weighted MRI showed cytotoxic edema in the hippocampus as well as vasogenic edema in the striata. To our knowledge, vasogenic edema caused by GLA-containing herbicide involving the striatum has not been reported in association with cytotoxic edema in the hippocampus. We assume that this herbicide affected the central nervous system via different mechanisms to produce both cytotoxic and vasogenic edema in the same patient.

  16. Bacterial diversity and community structure of a sub-surface aquifer exposed to realistic low herbicide concentrations

    DEFF Research Database (Denmark)

    Lipthay, Julia R. de; Johnsen, Kaare; Albrechtsen, H.-J.

    2004-01-01

    contaminants. We examined the effect of in situ exposure to realistic low concentrations of herbicides on the microbial diversity and community structure of sub-surface sediments from a shallow aquifer near Vejen (Denmark). Three different community analyses were performed: colony morphology typing, sole...... community analyses. In contrast, no significant effect was found on the bacterial diversity, except for the culturable fraction where a significantly increased richness and Shannon index was found in the herbicide acclimated sediments. The results of this study show that in situ exposure of sub-surface...... aquifers to realistic low concentrations of herbicides may alter the overall structure of a natural bacterial community, although significant effects on the genetic diversity and carbon substrate usage cannot be detected. The observed impact was probably due to indirect effects. In future investigations...

  17. Evaluation of generic and branded herbicides : technical report.

    Science.gov (United States)

    2015-03-01

    As with other generic brand products in the marketplace, generic herbicides often have a lower initial product cost than : their brand-name counterparts. While the purchase price of herbicides is important to TxDOT, it is essential to look at : more ...

  18. Blood, sweat, tears and success of technology transfer long-term controlled-release of herbicides: Root-growth-inhibiting biobarrier technology

    International Nuclear Information System (INIS)

    Van Voris, P.; Cataldo, D.A.; Burton, F.G.; Skeins, W.E.

    1988-01-01

    Through the unique combination of polymers with a herbicidally active dinitroaniline, a cylinderical pellet (9mm long and 9mm in diameter) was developed that continuously releases a herbicide for a period of up to 100 years. Equilibrium concentration of the herbicide in soil adjacent to the pellet and the bioactive lifetime of the device cam be adjusted by changing the size of the pellet; the type of polymer; the type, quality, and quantity of carrier; and/or the concentration and type of dinitroaniline used. Commercial products that have been developed under a Federal Technology Transfer Program that utilize this technology include: (1) ROOT-SHIELD, a root repelling sewer gasket for concrete, clay, and PVC sewer lines, (2) BIOBARRIER, a spun-bonded polypropylene geotextile fabric developed to prevent root growth from invading septic tanks; penetrating under roadways, and along the edge of sidewalks, airport runways, and tennis courts, and for landscaped areas; and (3) ROOT-GUARD, a plastic drip irrigation emitter designed to protect buried drip irrigation systems from being plugged by roots. 17 refs., 4 figs., 6 tabs

  19. Non-target effects of a glyphosate-based herbicide on Common toad larvae (Bufo bufo, Amphibia) and associated algae are altered by temperature.

    Science.gov (United States)

    Baier, Fabian; Gruber, Edith; Hein, Thomas; Bondar-Kunze, Elisabeth; Ivanković, Marina; Mentler, Axel; Brühl, Carsten A; Spangl, Bernhard; Zaller, Johann G

    2016-01-01

    Glyphosate-based herbicides are the most widely used pesticides in agriculture, horticulture, municipalities and private gardens that can potentially contaminate nearby water bodies inhabited by amphibians and algae. Moreover, the development and diversity of these aquatic organisms could also be affected by human-induced climate change that might lead to more periods with extreme temperatures. However, to what extent non-target effects of these herbicides on amphibians or algae are altered by varying temperature is not well known. We studied effects of five concentrations of the glyphosate-based herbicide formulation Roundup PowerFlex (0, 1.5, 3, 4 mg acid equivalent glyphosate L -1 as a one time addition and a pulse treatment of totally 4 mg a.e. glyphosate L -1 ) on larval development of Common toads ( Bufo bufo , L.; Amphibia: Anura) and associated algae communities under two temperature regimes (15 vs. 20 °C). Herbicide contamination reduced tail growth (-8%), induced the occurrence of tail deformations (i.e. lacerated or crooked tails) and reduced algae diversity (-6%). Higher water temperature increased tadpole growth (tail and body length (tl/bl) +66%, length-to-width ratio +4%) and decreased algae diversity (-21%). No clear relation between herbicide concentrations and tadpole growth or algae density or diversity was observed. Interactive effects of herbicides and temperature affected growth parameters, tail deformation and tadpole mortality indicating that the herbicide effects are temperature-dependent. Remarkably, herbicide-temperature interactions resulted in deformed tails in 34% of all herbicide treated tadpoles at 15 °C whereas no tail deformations were observed for the herbicide-free control at 15 °C or any tadpole at 20 °C; herbicide-induced mortality was higher at 15 °C but lower at 20 °C. These herbicide- and temperature-induced changes may have decided effects on ecological interactions in freshwater ecosystems. Although no clear dose

  20. Non-target effects of a glyphosate-based herbicide on Common toad larvae (Bufo bufo, Amphibia and associated algae are altered by temperature

    Directory of Open Access Journals (Sweden)

    Fabian Baier

    2016-11-01

    Full Text Available Background Glyphosate-based herbicides are the most widely used pesticides in agriculture, horticulture, municipalities and private gardens that can potentially contaminate nearby water bodies inhabited by amphibians and algae. Moreover, the development and diversity of these aquatic organisms could also be affected by human-induced climate change that might lead to more periods with extreme temperatures. However, to what extent non-target effects of these herbicides on amphibians or algae are altered by varying temperature is not well known. Methods We studied effects of five concentrations of the glyphosate-based herbicide formulation Roundup PowerFlex (0, 1.5, 3, 4 mg acid equivalent glyphosate L−1 as a one time addition and a pulse treatment of totally 4 mg a.e. glyphosate L−1 on larval development of Common toads (Bufo bufo, L.; Amphibia: Anura and associated algae communities under two temperature regimes (15 vs. 20 °C. Results Herbicide contamination reduced tail growth (−8%, induced the occurrence of tail deformations (i.e. lacerated or crooked tails and reduced algae diversity (−6%. Higher water temperature increased tadpole growth (tail and body length (tl/bl +66%, length-to-width ratio +4% and decreased algae diversity (−21%. No clear relation between herbicide concentrations and tadpole growth or algae density or diversity was observed. Interactive effects of herbicides and temperature affected growth parameters, tail deformation and tadpole mortality indicating that the herbicide effects are temperature-dependent. Remarkably, herbicide-temperature interactions resulted in deformed tails in 34% of all herbicide treated tadpoles at 15 °C whereas no tail deformations were observed for the herbicide-free control at 15 °C or any tadpole at 20 °C; herbicide-induced mortality was higher at 15 °C but lower at 20 °C. Discussion These herbicide- and temperature-induced changes may have decided effects on ecological

  1. Phytotoxicity of Four Photosystem II Herbicides to Tropical Seagrasses

    OpenAIRE

    Flores, Florita; Collier, Catherine J.; Mercurio, Philip; Negri, Andrew P.

    2013-01-01

    Coastal waters of the Great Barrier Reef (GBR) are contaminated with agricultural pesticides, including the photosystem II (PSII) herbicides which are the most frequently detected at the highest concentrations. Designed to control weeds, these herbicides are equally potent towards non-target marine species, and the close proximity of seagrass meadows to flood plumes has raised concerns that seagrasses may be the species most threatened by herbicides from runoff. While previous work has identi...

  2. Inhibition of para-Hydroxyphenylpyruvate Dioxygenase by Analogues of the Herbicide Nitisinone As a Strategy to Decrease Homogentisic Acid Levels, the Causative Agent of Alkaptonuria.

    Science.gov (United States)

    Laschi, Marcella; Bernardini, Giulia; Dreassi, Elena; Millucci, Lia; Geminiani, Michela; Braconi, Daniela; Marzocchi, Barbara; Botta, Maurizio; Manetti, Fabrizio; Santucci, Annalisa

    2016-04-05

    Alkaptonuria (AKU) is a rare multisystem metabolic disease caused by deficient activity of homogentisate 1,2-dioxygenase (HGD), which leads to the accumulation of homogentisic acid (HGA). Currently, there is no treatment for AKU. The sole drug with some beneficial effects is the herbicide nitisinone (1), an inhibitor of p-hydroxyphenylpyruvate dioxygenase (4-HPPD). 1 has been used as a life-saving drug in infants with type I tyrosinemia despite severe side effects due to the buildup of tyrosine. Four clinical trials of nitisinone to treat AKU have shown that 1 consistently decreases HGA levels, but also caused the accumulation of tyrosine in blood serum. Moreover, the human preclinical toxicological data for 1 are incomplete. In this work, we performed pharmacodynamics and toxicological evaluations of 1, providing the first report of LD50 values in human cells. Intracellular tyrosinemia was also evaluated. Three additional 4-HPPD inhibitors with a more favorable profile than that of 1 in terms of IC50, LD50, and tyrosine accumulation were also identified among commercially available compounds. These may be promising starting points for the development of new therapeutic strategies for the treatment of AKU. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. A herbicide-resistant ACCase 1781 Setaria mutant shows higher fitness than wild type.

    Science.gov (United States)

    Wang, T; Picard, J C; Tian, X; Darmency, H

    2010-10-01

    It is often alleged that mutations conferring herbicide resistance have a negative impact on plant fitness. A mutant ACCase1781 allele endowing resistance to the sethoxydim herbicide was introgressed from a resistant green foxtail (Setaria viridis (L.) Beauv) population into foxtail millet (S. italica (L.) Beauv.). (1) Better and earlier growth of resistant plants was observed in a greenhouse cabinet. (2) Resistant plants of the advanced BC7 backcross generation showed more vigorous juvenile growth in the field, earlier flowering, more tillers and higher numbers of grains than susceptible plants did, especially when both genotypes were grown in mixture, but their seeds were lighter than susceptible seeds. (3) Field populations originating from segregating hybrids had the expected allele frequencies under normal growth conditions, but showed a genotype shift toward an excess of homozygous resistant plants within 3 years in stressful conditions. Lower seed size, lower germination rate and perhaps unexplored differences in seed longevity and predation could explain how the resistant plants have the same field fitness over the whole life cycle as the susceptible ones although they produce more seeds. More rapid growth kinetics probably accounted for higher fitness of the resistant plants in adverse conditions. The likelihood of a linkage with a beneficial gene is discussed versus the hypothesis of a pleiotropic effect of the ACCase resistance allele. It is suggested that autogamous species like Setaria could not develop a resistant population without the help of a linkage with a gene producing a higher fitness.

  4. Predicting herbicidal plant mortality with mobile photosynthesis meters

    NARCIS (Netherlands)

    Kempenaar, C.; Lotz, L.A.P.; Snel, J.F.H.; Smutny, V.; Zhang, H.J.

    2011-01-01

    Herbicide dose optimisation, i.e. maximising weed control and crop yield with herbicide dose, is an important part of integrated weed management strategies. However, the adoption of optimised dose technology and variable rate application has been limited because of the relatively long period between

  5. Effect of exposure history on microbial herbicide degradation in an aerobic aquifer affected by a point source

    DEFF Research Database (Denmark)

    Tuxen, Nina; de Lipthay, J.R.; Albrechtsen, Hans-Jørgen

    2002-01-01

    sampling points from within the plume, and neither BAM, bentazone, nor isoproturon was degraded in any sampling point. A linear correlation (R2 g 0.83) between pre-exposure and amount of herbicide degraded within 50 days was observed for the phenoxy acids, mecoprop and dichlorprop. An improved model fit...

  6. Response of Saw Palmetto to Three Herbicides

    Science.gov (United States)

    J.L. Michael; D.G. Neary

    1985-01-01

    Saw palmetto [Serona repens (Bartram) Small] can be controlled with herbicides. Garion® 4E1/2 and Brush Killer® 800 were evaluated for effectiveness againest saw palmetto when they were applied at three rates in April, June, and August. Oust® was tested at three rates in April only. Herbicides were not effective with April...

  7. 75 FR 17857 - Removal of Obsolete References to Herbicides Containing Dioxin

    Science.gov (United States)

    2010-04-08

    ... Herbicides Containing Dioxin AGENCY: Department of Veterans Affairs. ACTION: Final rule. SUMMARY: The... health effects of exposure to herbicides containing dioxin and radiation to remove the obsolete references to herbicides containing dioxin. This final rule reflects changes made by the Agent Orange Act of...

  8. Bioactivity of Several Herbicides on the Nanogram Level Under Different Soil Moisture Conditions.

    Science.gov (United States)

    Jung, S C; Kuk, Y I; Senseman, S A; Ahn, H G; Seong, C N; Lee, D J

    2015-01-01

    In this study, a double-tube centrifuge method was employed to determine the effects of soil moisture on the bioactivity of cafenstrole, pretilachlor, benfuresate, oxyfluorfen and simetryn. In general, the available herbicide concentration in soil solution (ACSS) showed little change as soil moisture increased for herbicides. The total available herbicide in soil solution (TASS) typically increased as soil moisture increased for all herbicides. The relationship between TASS and % growth rate based on dry weight showed strong linear relationships for both cafenstrole and pretilachlor, with r2 values of 0.95 and 0.84, respectively. Increasing TASS values were consistent with increasing herbicide water solubility, with the exception of the ionizable herbicide simetryn. Plant absorption and % growth rate exhibited a strong linear relationship with TASS. According to the results suggested that TASS was a better predictor of herbicidal bioactivity than ACSS for all herbicides under unsaturated soil moisture conditions.

  9. A Dinitroaniline-Resistant Mutant of Eleusine indica Exhibits Cross-Resistance and Supersensitivity to Antimicrotubule Herbicides and Drugs.

    Science.gov (United States)

    Vaughn, K C; Marks, M D; Weeks, D P

    1987-04-01

    A dinitroaniline-resistant (R) biotype of Eleusine indica (L.) Gaertner. (goosegrass) is demonstrated to be cross-resistant to a structurally non-related herbicide, amiprophosmethyl, and supersensitive to two other classes of compounds which disrupt mitosis. These characteristics of the R biotype were discovered in a comparative test of the effects of 24 different antimitotic compounds on the R biotype and susceptible (S) wild-type Eleusine. The compounds tested could be classified into three groups based upon their effects on mitosis in root tips of the susceptible (S) biotype. Class I compounds induced effects like the well known mitotic disrupter colchicine: absence of cortical and spindle microtubules, mitosis arrested at prometaphase, and the formation of polymorphic nuclei after arrested mitosis. The R biotype was resistant to treatment with some class I inhibitors (all dinitroaniline herbicides and amiprophosmethyl) but not all (e.g. colchicine, podophyllotoxin, vinblastine, and pronamide). Roots of the R biotype, when treated with either dinitroaniline herbicides or amiprophosmethyl, exhibited no or only small increases in the mitotic index nor were the spindle and cortical microtubules affected. Compounds of class II (carbamate herbicides and griseofulvin) cause misorientation of microtubules which results in multinucleated cells. Compounds of class III (caffeine and structually related alkaloids) cause imcomplete cell walls to form at telophase. Each of these last two classes of compounds affected the R biotype more than the S biotype (supersensitivity). The cross-resistance and high levels of resistance of the R biotype of Eleusine to the dinitroaniline herbicides and the structurally distinct herbicide, amiprophosmethyl, indicate that a mechanism of resistance based upon metabolic modification, translocation, or compartmentation of the herbicides is probably not operative.

  10. Dinitroaniline herbicide resistance in a multiple-resistant Lolium rigidum population.

    Science.gov (United States)

    Chen, Jinyi; Yu, Qin; Owen, Mechelle; Han, Heping; Powles, Stephen

    2018-04-01

    The pre-emergence dinitroaniline herbicides (such as trifluralin and pendimethalin) are vital to Australian no-till farming systems. A Lolium rigidum population collected from the Western Australian grain belt with a 12-year trifluralin use history was characterised for resistance to dinitroaniline, acetyl CoA carboxylase (ACCase)- and acetolactate synthase (ALS)-inhibiting herbicides. Target-site resistance mechanisms were investigated. This L. rigidum population exhibited 32-fold resistance to trifluralin, as compared with the susceptible population. It also displayed 12- to 30-fold cross-resistance to other dinitroaniline herbicides (pendimethalin, ethalfluralin and oryzalin). In addition, this population showed multiple resistance to commonly used post-emergence ACCase- and ALS-inhibiting herbicides. Two target-site α-tubulin gene mutations (Val-202-Phe and Thr-239-Ile) previously documented in other dinitroaniline-resistant weed species were identified, and some known target-site mutations in ACCase (Ile-1781-Leu, Asp-2078-Gly and Cys-2088-Arg) and ALS (Pro-197-Gln/Ser) were found in the same population. An agar-based Petri dish screening method was established for the rapid diagnosis of resistance to dinitroaniline herbicides. Evolution of target-site resistance to both pre- and post-emergence herbicides was confirmed in a single L. rigidum population. The α-tubulin mutations Val-202-Phe and Thr-239-Ile, documented here for the first time in L. rigidum, are likely to be responsible for dinitroaniline resistance in this population. Early detection of dinitroaniline herbicide resistance and integrated weed management strategies are needed to maintain the effectiveness of dinitroaniline herbicides. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  11. Changes in bacterial community after application of three different herbicides.

    Science.gov (United States)

    Moretto, Jéssica Aparecida Silva; Altarugio, Lucas Miguel; Andrade, Pedro Avelino; Fachin, Ana Lúcia; Andreote, Fernando Dini; Stehling, Eliana Guedes

    2017-07-06

    The native soil microbiota is very important to maintain the quality of that environment, but with the intensive use of agrochemicals, changes in microbial biomass and formation of large quantities of toxic waste were observed in soil, groundwater and surface water. Thereby, the goal of this study was to evaluate if the selective pressure exerted by the presence of the herbicides atrazine, diuron and 2,4-D changes the bacterial community structure of an agricultural soil, using denaturing gradient gel electrophoresis technique. According to PERMANOVA analysis, a greater effect of the herbicide persistence time in the soil, the effect of the herbicide class and the effect of interaction between these two factors (persistence time and herbicide class) were observed. In conclusion, the results showed that the selective pressure exerted by the presence of these herbicides altered the composition of the local microbiota, being atrazine and diuron that most significantly affected the bacterial community in soil, and the herbicide 2,4-D was the one that less altered the microbial community and that bacterial community was reestablished first. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Oxidative stress caused by the use of preemergent herbicides in rice crops

    Directory of Open Access Journals (Sweden)

    Ana Claudia Langaro

    Full Text Available ABSTRACT Among the methods of weed control, stands out chemical control. However, even selective, herbicides can trigger the production of reactive species of oxygen and cause oxidative stress. The aim of the study was to evaluate changes in photosynthetic parameters, oxidative damage, antioxidant enzyme activity and altered metabolism of rice plants after applying pre-emergent herbicides. The experiment was conducted in a greenhouse and herbicides used were oxadiazon, pendimethalin and oxyfluorfen, beyond the control without herbicide. There was a reduction of photosynthetic rate and efficiency of carboxylation, compared to the control, when applied herbicides oxyfluorfen and pendimethalin. The major lipid peroxidation and proline accumulation was observed for the herbicide oxyfluorfen. The oxyfluorfen and oxadiazon herbicides also resulted in increased activity of superoxide dismutase, compared to control. When evaluated ascorbate peroxidase activity, there was a higher enzyme activity in plants treated with oxadiazon and pendimethalin. Even selective herbicides registered for weed control in rice crops cause phytotoxicity, reduce height and alter the metabolism of plants, generating reactive oxygen species, which activate enzymatic and non-enzymatic defense systems and result in the degradation of photosynthetic pigments and in reduced protein content.

  13. Phorate can reverse P450 metabolism-based herbicide resistance in Lolium rigidum.

    Science.gov (United States)

    Busi, Roberto; Gaines, Todd Adam; Powles, Stephen

    2017-02-01

    Organophosphate insecticides can inhibit specific cytochrome P450 enzymes involved in metabolic herbicide resistance mechanisms, leading to synergistic interactions between the insecticide and the herbicide. In this study we report synergistic versus antagonistic interactions between the organophosphate insecticide phorate and five different herbicides observed in a population of multiple herbicide-resistant Lolium rigidum. Phorate synergised with three different herbicide modes of action, enhancing the activity of the ALS inhibitor chlorsulfuron (60% LD 50 reduction), the VLCFAE inhibitor pyroxasulfone (45% LD 50 reduction) and the mitosis inhibitor trifluralin (70% LD 50 reduction). Conversely, phorate antagonised the two thiocarbamate herbicides prosulfocarb and triallate with a 12-fold LD 50 increase. We report the selective reversal of P450-mediated metabolic multiple resistance to chlorsulfuron and trifluralin in the grass weed L. rigidum by synergistic interaction with the insecticide phorate, and discuss the putative mechanistic basis. This research should encourage diversity in herbicide use patterns for weed control as part of a long-term integrated management effort to reduce the risk of selection of metabolism-based multiple herbicide resistance in L. rigidum. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  14. Persistence and transformation of the herbicide (/sup 14/C)glufosinate-ammonium in prairie soils under laboratory conditions

    Energy Technology Data Exchange (ETDEWEB)

    Smith, A.E.

    The degradation of the herbicide (/sup 14/C)glufosinate-ammonium (the ammonium salt of DL-homoalanin-4-ylmethylphosphinic acid), at a rate of 2 ppm, was studied in three prairie soils at 85% of their field capacity moisture at both 20 and 10/sup 0/C. In all soils the herbicide was biologically transformed to degradation product(s) that underwent further slow degradation with release of (/sup 14/C)carbon dioxide. At 20/sup 0/C, the soil half-life values for the (/sup 14/C)herbicide were 3-7 days and, at 10/sup 0/C, 8-11 days. Over a 90-day incubation period at 20/sup 0/C, between 28 and 55% of the applied radioactivity was released from treated soils as (/sup 14/C)carbon dioxide; solvent-extractable degradation product(s) accounted for 19-37% of the applied radioactivity; between 2.4 and 9.5% of the initial /sup 14/C was incorporated into soil microbial biomass and 7-13% into the fulvic, humic, and humin soil fractions.

  15. An innovative bovine odorant binding protein-based filtering cartridge for the removal of triazine herbicides from water.

    Science.gov (United States)

    Bianchi, Federica; Basini, Giuseppina; Grolli, Stefano; Conti, Virna; Bianchi, Francesco; Grasselli, Francesca; Careri, Maria; Ramoni, Roberto

    2013-01-01

    Odorant binding protein (OBP) is a multi-functional scavenger for small hydrophobic molecules dissolved in the mucus lining the nasal epithelia of mammals, characterized by broad ligand binding specificity towards a large number of structurally unrelated natural and synthetic molecules of different chemical classes. Here, we demonstrate for the first time the application of OBP as the active element of an innovative filtering matrix for the removal of environmental pollutants such as triazine herbicides from water samples. The filtering device, obtained by coupling histidine-tagged bovine OBP to a nickel nitrilotriacetic acid (Ni-NTA) agarose resin, was characterized in terms of retention capacity for the herbicides atrazine, simazine, and propazine. Analysis of these herbicides at trace levels with solid-phase microextraction followed by gas chromatography-mass spectrometry using the selected ion monitoring mode proved the capabilities of the proposed device for the decontamination of surface and groundwater samples in the 0.2-2,300 μg/L concentration range, obtaining a reduction in the triazine content greater than 97 %, thus suggesting its possible use for the potabilization of water.

  16. Effects Of Spring Herbicide Treatments On Winter Wheat Growth And Grain Yield*

    Directory of Open Access Journals (Sweden)

    Hamouz P.

    2015-03-01

    Full Text Available Herbicides provide a low-cost solution for protecting crops from significant yield losses. If weed infestations are below damage thresholds, however, then herbicide application is unnecessary and can even lead to yield loss. A small-plot field trial was conducted to examine the effect of herbicides on winter wheat yields. Weeds were removed manually from the trial area before herbicide application. Twenty-four treatments were tested in four replications. Treatment 1 consisted of an untreated weed-free control, whereas the other treatments comprised applications of the following herbicides and their combinations: metsulfuron-methyl + tribenuron-methyl (4.95 + 9.99 g ha−1, pinoxaden (30 g ha−1, fluroxypyr (175 g ha−1, and clopyralid (120 g ha−1. Water (250 l ha−1 or a urea-ammonium nitrate fertilizer solution (UAN, 120.5 l ha−1 was used as the herbicide carrier. Crop injury 30 days after treatment and yield loss were recorded. Results showed minor crop injury by herbicides and their combinations when applied without UAN and moderate injury caused by UAN in combination with herbicides. Yield losses reached 5.3% and 4.3% in those treatments where all of the tested herbicides were applied with and without UAN, respectively. The effect of all treatments on crop yield was, however, statistically insignificant (P = 0.934.

  17. Research methods in weed science: herbicide absorption and translocation in plants using radioisotopes

    Science.gov (United States)

    Herbicide absorption and translocation in plants is a key component in the study of herbicide physiology, mode of action, selectivity, resistance mechanisms, and in the registration process. Radioactive herbicides have been in use for over half-a-century in the research and study of herbicide absorp...

  18. Herbicidal and antioxidant responses of transgenic rice overexpressing Myxococcus xanthus protoporphyrinogen oxidase.

    Science.gov (United States)

    Jung, Sunyo; Back, Kyoungwhan

    2005-05-01

    We analyzed the herbicidal and antioxidant defense responses of transgenic rice plants that overexpressed the Myxococcus xanthus protoporphyrinogen oxidase gene. Leaf squares of the wild-type incubated with oxyfluorfen were characterized by necrotic leaf lesions and increases in conductivity and malonyldialdehyde levels, whereas transgenic lines M4 and M7 did not show any change with up to 100 microM oxyfluorfen. The wild-type had decreased F(v)/F(m) and produced a high level of H(2)O(2) at 18 h after foliar application of oxyfluorfen, whereas transgenic lines M4 and M7 were unaffected. In response to oxyfluorfen, violaxanthin, beta-carotene, and chlorophylls (Chls) decreased in wild-type plants, whereas antheraxanthin and zeaxanthin increased. Only a slight decline in Chls was observed in transgenic lines at 48 h after oxyfluorfen treatment. Noticeable increases of cytosolic Cu/Zn-superoxide dismutase, peroxidase isozymes 1 and 2, and catalase were observed after at 48 h of oxyfluorfen treatment in the wild-type. Non-enzymatic antioxidants appeared to respond faster to oxyfluorfen-induced photodynamic stress than did enzymatic antioxidants. Protective responses for the detoxification of active oxygen species were induced to counteract photodynamic stress in oxyfluorfen-treated, wild-type plants. However, oxyfluorfen-treated, transgenic plants suffered less oxidative stress, confirming increased herbicidal resistance resulted from dual expression of M. xanthus Protox in chloroplasts and mitochondria.

  19. Evaluation of carcinogenic potential of the herbicide glyphosate, drawing on tumor incidence data from fourteen chronic/carcinogenicity rodent studies

    OpenAIRE

    Greim, Helmut; Saltmiras, David; Mostert, Volker; Strupp, Christian

    2015-01-01

    Abstract Glyphosate, an herbicidal derivative of the amino acid glycine, was introduced to agriculture in the 1970s. Glyphosate targets and blocks a plant metabolic pathway not found in animals, the shikimate pathway, required for the synthesis of aromatic amino acids in plants. After almost forty years of commercial use, and multiple regulatory approvals including toxicology evaluations, literature reviews, and numerous human health risk assessments, the clear and consistent conclusions are ...

  20. studies on transition metal complexes of herbicidal compounds. ii

    African Journals Online (AJOL)

    a

    derivative of 2-chloro-4-ethylamino-6-isopropylamino-s-triazine, atrazine (ATZ) --- a well known herbicide has ... development while the other is the metal ion associated degradation or deactivation of the herbicides .... Colour M.p./decomp.

  1. Integrated Effect of Seeding Rate, Herbicide Dosage and ...

    African Journals Online (AJOL)

    yield reductions of 26 to 63% across four bread wheat cultivars at 90 weed seedlings m-2 in. Ethiopia. Before herbicides were widely available, farmers employed cultural measures to manage weed population. Wild oat management systems have evolved to the point that producers rely on herbicides to the virtual exclusion ...

  2. Genetically transformed tobacco plants expressing synthetic EPSPS gene confer tolerance against glyphosate herbicide.

    Science.gov (United States)

    Imran, Muhammad; Asad, Shaheen; Barboza, Andre Luiz; Galeano, Esteban; Carrer, Helaine; Mukhtar, Zahid

    2017-04-01

    Glyphosate quashes the synthesis of 5-enolpyruvylshikimate-3- phosphate synthase (EPSPS) enzyme which intercedes the functioning of shikimate pathway for the production of aromatic amino acids. Herbicide resistant crops are developed using glyphosate insensitive EPSPS gene isolated from Agrobacterium sp. strain CP4, which give farmers a sustainable weed control option. Intentions behind this study were to design and characterize the synthetic herbicide resistant CP4 - EPSPS gene in a model plant system and check the effectiveness of transformed tobacco against application of glyphosate. Putative transgenic plants were obtained from independent transformation events, and stable plant transformation, transgene expression and integration were demonstrated respectively by PCR, qRT-PCR and Southern hybridization. Gene transcript level and gene copy number (1-4) varied among the tested transgenic tobacco lines. Herbicide assays showed that transgenic plants were resistant to glyphosate after 12 days of spraying with glyphosate, and EPSPS activity remained at sufficient level to withstand the spray at 1000 ppm of the chemical. T 1 plants analyzed through immunoblot strips and PCR showed that the gene was being translated into protein and transmitted to the next generation successfully. This codon optimized synthetic CP4 - EPSPS gene is functionally equivalent to the gene for glyphosate resistance available in the commercial crops and hence we recommend this gene for transformation into commercial crops.

  3. Laboratory study on leachability of five herbicides in South Australian soils.

    Science.gov (United States)

    Ying, G G; Williams, B

    2000-03-01

    Norflurazon, oxadiazon, oxyfluorfen, trifluralin and simazine are herbicides widely used in the vineyards of the Barossa Valley, South Australia. The leaching behaviour of norflurazon, oxadiazon, oxyfluorfen and trifluralin was investigated on four key soils in the Barossa Valley. Leaching potential on packed soil columns and actual mobility using intact soil columns were investigated. On the packed soil columns, norflurazon was the most leachable herbicide. More of the herbicides were detected in the leachates from the sandy soils (Mountadam and Nuriootpa) than from the clayey soils (Lyndoch and Tanunda). Organic matter is generally low in soils in the Barossa region. Porosity and saturated conductivity significantly affect herbicide movement and in the sandy Mountadam and Nuriootpa soils, the water flux is greater than for the higher clay content Lyndoch and Tanunda soils. Increasing the time interval between herbicide application and the incidence of "rainfall" reduced the amounts of herbicides found in the leachates. The use of intact soil columns and including simazine for comparison showed that both norflurazon and simazine were present in the leachates. Simazine was the first herbicide to appear in leachates. Sectioning of the intact soil columns after leaching clearly demonstrated that norflurazon and simazine reached the bottom of the soil columns for all soils studied. Greater amounts of norflurazon were retained in the soil columns compared with simazine. The other herbicides were mostly retained in the initial sections of the soil columns.

  4. Relationship between weed dormancy and herbicide rotations: implications in resistance evolution.

    Science.gov (United States)

    Darmency, Henri; Colbach, Nathalie; Le Corre, Valérie

    2017-10-01

    It is suggested that selection for late germinating seed cohorts is significantly associated with herbicide resistance in some cropping systems. In turn, it is conceivable that rotating herbicide modes of action selects for populations with mutations for increased secondary dormancy, thus partially overcoming the delaying effect of rotation on resistance evolution. Modified seed dormancy could affect management strategies - like herbicide rotation - that are used to prevent or control herbicide resistance. Here, we review the literature for data on seed dormancy and germination dynamics of herbicide-resistant versus susceptible plants. Few studies use plant material with similar genetic backgrounds, so there are few really comparative data. Increased dormancy and delayed germination may co-occur with resistance to ACCase inhibitors, but there is no clear-cut link with resistance to other herbicide classes. Population shifts are due in part to pleiotropic effects of the resistance genes, but interaction with the cropping system is also possible. We provide an example of a model simulation that accounts for genetic diversity in the dormancy trait, and subsequent consequences for various cropping systems. We strongly recommend adding more accurate and detailed mechanistic modelling to the current tools used today to predict the efficiency of prevention and management of herbicide resistance. These models should be validated through long-term experimental designs including mono-herbicide versus chemical rotation in the field. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  5. Natural compounds with herbicidal activity

    Directory of Open Access Journals (Sweden)

    Mariano Fracchiolla

    2007-12-01

    Full Text Available Research about phytotoxic activity of natural compounds could lead both to find new herbicidal active ingredients and to plan environmental friendly weed control strategies. Particularly, living organisms could be a source of compounds that are impossible, for their complexity, to synthesize artificially. More over, they could have alternative sites of action respect to the known chemical herbicides and, due to their origin, they should be more environmental safe. Many living organism, such as bacteria, fungi, insects, lichens and plants, are able to produce bioactive compounds. They generally are secondary metabolites or simply waste molecules. In this paper we make a review about these compounds, highlighting potential and constraints.

  6. Natural compounds with herbicidal activity

    Directory of Open Access Journals (Sweden)

    Pasquale Montemurro

    2011-02-01

    Full Text Available Research about phytotoxic activity of natural compounds could lead both to find new herbicidal active ingredients and to plan environmental friendly weed control strategies. Particularly, living organisms could be a source of compounds that are impossible, for their complexity, to synthesize artificially. More over, they could have alternative sites of action respect to the known chemical herbicides and, due to their origin, they should be more environmental safe. Many living organism, such as bacteria, fungi, insects, lichens and plants, are able to produce bioactive compounds. They generally are secondary metabolites or simply waste molecules. In this paper we make a review about these compounds, highlighting potential and constraints.

  7. Mechanism of sulfonylurea herbicide resistance in the broadleaf weed, Kochia scoparia

    International Nuclear Information System (INIS)

    Saari, L.L.; Cotterman, J.C.; Primiani, M.M.

    1990-01-01

    Selection of kochia (Kochia scoparia) biotypes resistant to the sulfonylurea herbicide chlorsulfuron has occurred through the continued use of this herbicide in monoculture cereal-growing areas in the United States. The apparent sulfonylurea resistance observed in kochia was confirmed in greenhouse tests. Fresh and dry weight accumulation in the resistance kochia was 2- to >350-fold higher in the presence of four sulfonylurea herbicides as compared to the susceptible biotype. Acetolactate synthase (ALS) activity isolated from sulfonylurea-resistant kochia was less sensitive to inhibition by three classes of ALS-inhibiting herbicides, sulfonylureas, imidazolinones, and sulfonanilides. The decrease in ALS sensitivity to inhibition (as measured by the ratio of resistant I 50 to susceptible I 50 ) was 5- to 28-fold, 2- to 6-fold, and 20-fold for sulfonylurea herbicides, imidazolinone herbicides, and a sulfonanilide herbicide, respectively. No differences were observed in the ALS-specific activities or the rates of [ 14 C]chlorsulfuron uptake, translocation, and metabolism between susceptible and resistant kochia biotypes. The K m values for pyruvate using ALS from susceptible and resistant kochia were 2.13 and 1.74 mM, respectively. Based on these results, the mechanism of sulfonylurea resistance in this kochia biotype is due solely to a less sulfonylurea-sensitive ALS enzyme

  8. Herbicide monitoring in soil, runoff waters and sediments in an olive orchard.

    Science.gov (United States)

    Calderon, Maria Jesus; De Luna, Elena; Gomez, Jose Alfonso; Hermosin, M Carmen

    2016-11-01

    Occurrences of surface water contamination by herbicides in areas where olive orchards are established reveal a need to understand soil processes affecting herbicide fate at field scale for this popular Mediterranean crop. A monitoring study with two herbicides (terbuthylazine and oxyfluorfen) in the first 2cm of soil, runoff waters, and sediments, was carried out after under natural rainfall conditions following winter herbicide application. At the end of the 107day field experiment, no residues of the soil applied terbuthylazine were recovered, whereas 42% of the oxyfluorfen applied remained in the top soil. Very low levels of both herbicides were measured in runoff waters; however, concentrations were slightly higher for terbuthylazine (0.53% of applied) than for oxyfluorfen (0.03% of applied), relating to their respective water solubilities. Congruent with soil residue data, 38.15% of the applied oxyfluorfen was found in runoff-sediment, compared to only 0.46% for terbuthylazine. Accordingly, the herbicide soil distribution coefficients measured within runoff field tanks was much greater for oxyfluorfen (Kd=3098) than for terbuthylazine (Kd=1.57). The herbicide oxyfluorfen is co-transported with sediment in runoff, remaining trapped and/or adsorbed to soil particle aggregates, due in part to its low water solubility. In contrast, terbuthylazine soil dissipation may be associated more so with leaching processes, favored by its high water solubility, low sorption, and slow degradation. By comparing these two herbicides, our results reaffirm the importance of herbicide physico-chemical properties in dictating their behavior in soil and also suggest that herbicides with low solubility, as seen in the case oxyfluorfen, remain susceptible to offsite transport associated with sediments. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Synthesis and characterization of LDH/Ppi composite and its application as adsorbent of 2,4-dichlorophenoxyacetic (herbicide)

    International Nuclear Information System (INIS)

    Pacheco, I.S.; Oliveira, R.S.; Girotto, L.G.; Freitas, L.L. de; Amaral, F.A. do; Canobre, S.C.

    2016-01-01

    This work had as main objective the synthesis and characterization of LDH [Co-Al-Cl] method by hydrolysis of urea and then its synthesized polypyrrole coating by chemically targeting the application as adsorbent dichlorophenoxyacetic acid (2,4-D). The x-ray diffractogram of well defined showed diffraction peaks corresponding to the planes 003, 006, 009 and 110 which allow them to rhombohedral indexes and lamellar structure. The composite LDH / Ppi had a percentage of 49% herbicide retention in aqueous solution. From the investigated adsorption isotherm models that more fit the experimental data was the Freundlich, so it could be inferred that the interaction between the LDH / Ppi and the herbicide was physical, ie an rapid, reversible adsorption and does not specify. (author)

  10. Herbicide Safeners Decrease Sensitivity to Herbicides Inhibiting Acetolactate-Synthase and Likely Activate Non-Target-Site-Based Resistance Pathways in the Major Grass Weed Lolium sp. (Rye-Grass

    Directory of Open Access Journals (Sweden)

    Arnaud Duhoux

    2017-08-01

    Full Text Available Herbicides are currently pivotal to control weeds and sustain food security. Herbicides must efficiently kill weeds while being as harmless as possible for crops, even crops taxonomically close to weeds. To increase their selectivity toward crops, some herbicides are sprayed in association with safeners that are bioactive compounds exacerbating herbicide-degrading pathways reputedly specifically in crops. However, exacerbated herbicide metabolism is also a key mechanism underlying evolved non-target-site-based resistance to herbicides (NTSR in weeds. This raised the issue of a possible role of safeners on NTSR evolution in weeds. We investigated a possible effect of the respective field rates of the two broadly used safeners cloquintocet-mexyl and mefenpyr-diethyl on the sensitivity of the troublesome global weed Lolium sp. (rye-grass to the major herbicides inhibiting acetolactate-synthase (ALS pyroxsulam and iodosulfuron + mesosulfuron, respectively. Three Lolium sp. populations were studied in three series of experiments. The first experiment series compared the frequencies of plants surviving application of each herbicide alone or in association with its safener. Safener co-application caused a net increase ranging from 5.0 to 46.5% in the frequency of plants surviving the field rate of their associated herbicide. In a second series of experiments, safener effect was assessed on individual plant sensitivity using vegetative propagation. A reduction in sensitivity to pyroxsulam and to iodosulfuron + mesosulfuron was observed for 44.4 and 11.1% of the plants in co-treatment with cloquintocet-mexyl and mefenpyr-diethyl, respectively. A third series of experiments investigated safener effect on the expression level of 19 Lolium sp. NTSR marker genes. Safeners showed an enhancing effect on the expression level of 10 genes. Overall, we demonstrated that cloquintocet-mexyl and mefenpyr-diethyl both reduced the sensitivity of Lolium sp. to their

  11. Herbicide Safeners Decrease Sensitivity to Herbicides Inhibiting Acetolactate-Synthase and Likely Activate Non-Target-Site-Based Resistance Pathways in the Major Grass Weed Lolium sp. (Rye-Grass).

    Science.gov (United States)

    Duhoux, Arnaud; Pernin, Fanny; Desserre, Diane; Délye, Christophe

    2017-01-01

    Herbicides are currently pivotal to control weeds and sustain food security. Herbicides must efficiently kill weeds while being as harmless as possible for crops, even crops taxonomically close to weeds. To increase their selectivity toward crops, some herbicides are sprayed in association with safeners that are bioactive compounds exacerbating herbicide-degrading pathways reputedly specifically in crops. However, exacerbated herbicide metabolism is also a key mechanism underlying evolved non-target-site-based resistance to herbicides (NTSR) in weeds. This raised the issue of a possible role of safeners on NTSR evolution in weeds. We investigated a possible effect of the respective field rates of the two broadly used safeners cloquintocet-mexyl and mefenpyr-diethyl on the sensitivity of the troublesome global weed Lolium sp. (rye-grass) to the major herbicides inhibiting acetolactate-synthase (ALS) pyroxsulam and iodosulfuron + mesosulfuron, respectively. Three Lolium sp. populations were studied in three series of experiments. The first experiment series compared the frequencies of plants surviving application of each herbicide alone or in association with its safener. Safener co-application caused a net increase ranging from 5.0 to 46.5% in the frequency of plants surviving the field rate of their associated herbicide. In a second series of experiments, safener effect was assessed on individual plant sensitivity using vegetative propagation. A reduction in sensitivity to pyroxsulam and to iodosulfuron + mesosulfuron was observed for 44.4 and 11.1% of the plants in co-treatment with cloquintocet-mexyl and mefenpyr-diethyl, respectively. A third series of experiments investigated safener effect on the expression level of 19 Lolium sp. NTSR marker genes. Safeners showed an enhancing effect on the expression level of 10 genes. Overall, we demonstrated that cloquintocet-mexyl and mefenpyr-diethyl both reduced the sensitivity of Lolium sp. to their associated ALS

  12. Resistance risk assessment within herbicide authorisation--a call for sensitivity data.

    Science.gov (United States)

    Ulber, Lena; Nordmeyer, Henning; Zwerger, Peter

    2013-02-01

    In most European countries, the risk of herbicide resistance is assessed as part of the authorisation of herbicides in accordance with EPPO Standard PP 1/213(2). Because the susceptibility of weed populations to a certain herbicide may vary greatly, one part of resistance risk assessment is the testing for sensitivity variation among different populations of target weed species with a high resistance risk. This paper emphasises the importance of sensitivity data provision with regard to the recent EU Regulation (EC) 1107/2009 concerning the placing of plant protection products on the market and outlines the main technical requirements for sensitivity data. A useful principle is that sensitivity data should be provided for all herbicides with a high resistance risk regardless of whether resistance has already evolved against the herbicidal substance. Methodical details regarding the generation of sensitivity data are discussed, together with remaining questions that will need to be addressed if a harmonised assessment of herbicide resistance risk is to be achieved. Copyright © 2012 Society of Chemical Industry.

  13. Auxinic herbicides, mechanisms of action, and weed resistance: A look into recent plant science advances

    Directory of Open Access Journals (Sweden)

    Pedro Jacob Christoffoleti

    2015-08-01

    Full Text Available Auxin governs dynamic cellular processes involved at several stages of plant growth and development. In this review, we discuss the mechanisms employed by auxin in light of recent scientific advances, with a focus on synthetic auxins as herbicides and synthetic auxin resistance mechanisms. Two auxin receptors were reported. The plasma membrane receptor ABP1 (Auxin Binding Protein 1 alters the structure and arrangement of actin filaments and microtubules, leading to plant epinasty and reducing peroxisomes and mitochondria mobility in the cell environment. The second auxin receptor is the gene transcription pathway regulated by the SCFTir/AFB ubiquitination complex, which destroys transcription repressor proteins that interrupt Auxin Response Factor (ARF activation. As a result mRNA related with Abscisic Acid (ABA and ethylene are transcribed, producing high quantities of theses hormones. Their associated action leads to high production of Reactive Oxygen Species (ROS, leading to tissue and plant death. Recently, another ubiquitination pathway which is described as a new auxin signaling route is the F-box protein S-Phase Kinase-Associated Protein 2A (SKP2A. It is active in cell division regulation and there is evidence that auxin herbicides can deregulate the SKP2A pathway, which leads to severe defects in plant development. In this discussion, we propose that SFCSKP2A auxin binding site alteration could be a new auxinic herbicide resistance mechanism, a concept which may contribute to the current progress in plant biology in its quest to clarify the many questions that still surround auxin herbicide mechanisms of action and the mechanisms of weed resistance.

  14. Aquatic Plant Control Research Program: Aquatic Plant Identification and Herbicide Use Guide. Volume 2. Aquatic Plants and Susceptibility to Herbicides

    Science.gov (United States)

    1988-11-01

    Chronic >0.5 Daphnia Repeat exposure Chronic >0.2 reproduction 0 NOTE; Fluridone was not found to cause genetic mutations or cancer in tested lab...persists. REGISTERED HERBICIDES 95 REGISTERED HERBICIDES GLYPHOSATE A. Chemical Name and Formulation: Chemical name: N-(phosphonomethyl)glycine Formulation...RODEO (53.5% ai, isopropylamine salt of glyphosate , liquid) B. Mode of Action: Not definite. However, investigators have postulated that

  15. Movement of 14 C-trifluralin labelled herbicide premerlin 600 CE in several soils

    International Nuclear Information System (INIS)

    Storino, Moises.

    1993-12-01

    The mobility behavior of the herbicide premerlin 600 CE (trifluralin was studied by using two different methodologies, i.e., soil thin layer chromatography and soil leaching columns. In the study soil thin layer chromatography were used six different Brazilian oxysols, being two sandy soils and four clayer soils. In the soil leaching columns study were used one sandy and one clayey soil. The distribution of 14 C-premerlin in the different granulometric soil fractions was determined after carried out columns experiments. Under all conditions imposed by these experiment, the herbicide 14 C-premerlin shown to be immobile being located on the surface of the soils columns. No effects of pH, concentration, metabolites or soil type were observed. (author). 46 refs., 25 figs., 3 tabs

  16. Incompatibilidade física de misturas entre herbicidas e inseticidas Physical incompatibility of herbicide and insecticide mixtures

    Directory of Open Access Journals (Sweden)

    F.A. Petter

    2012-06-01

    Full Text Available Objetivou-se, com este trabalho, avaliar a interação física entre misturas em tanque de diferentes classes de defensivos agrícolas. O experimento foi conduzido no laboratório de Química da Universidade do Estado de Mato Grosso, no período de junho a agosto de 2010. Os tratamentos foram constituídos pelas misturas de seis herbicidas (glyphosate SC, glyphosate WG, lactofen CE, fomesafen SC, haloxifop-R CE e fluazifop-pbutil EW com seis inseticidas (methomyl CS, clorpirifós CE, teflubenzuron SC, triflumuron SC, cipermetrina CE e tiametoxam + lambda-cialotrina SC na ausência e presença de dois redutores de pH (ácido pirolenhoso e ácido bórico, com quatro repetições. Utilizou-se escala de 1 a 5, visando avaliar o grau de incompatibilidade, em que 1 é a separação imediata da mistura e recomenda-se não aplicar e 5 é a homogeneidade das misturas. As maiores incompatibilidades físicas nas misturas de herbicidas e inseticidas foram observadas na presença dos herbicidas glyphosate na formulação WG e lactofen CE. O ácido pirolenhoso e o ácido bórico demonstraram ser boas alternativas, como redutores de pH, no preparo de calda de pulverização com misturas de herbicidas e inseticidas. Devem-se evitar misturas em tanque de glyphosate na formulação SC + clorpirifós CE e lactofen CE + clorpirifós CE.The objective ofthis study was to evaluate the physical interaction between simulated tank mixtures of different classes of pesticides. The experiment was conducted at the Chemistry Laboratory of the University of Mato Grosso, Brazil, from June to August 2010. The treatments consisted of mixtures of six herbicides (glyphosate SC, glyphosate WG, lactofen CE, fomesafen SC, haloxifop-R CE, and fluazifop-p-butyl EW with six types of insecticide (methomyl CS, clorpirifos CE, teflubenzuron SC, triflumuron SC, cipermetrin CE, and tiametoxam + lambda-cialotrin SC in the absence and presence oftwo pH reducers (pyroligneous acid and boric acid

  17. Herbicide-resistant weed management: focus on glyphosate.

    Science.gov (United States)

    Beckie, Hugh J

    2011-09-01

    This review focuses on proactive and reactive management of glyphosate-resistant (GR) weeds. Glyphosate resistance in weeds has evolved under recurrent glyphosate usage, with little or no diversity in weed management practices. The main herbicide strategy for proactively or reactively managing GR weeds is to supplement glyphosate with herbicides of alternative modes of action and with soil-residual activity. These herbicides can be applied in sequences or mixtures. Proactive or reactive GR weed management can be aided by crop cultivars with alternative single or stacked herbicide-resistance traits, which will become increasingly available to growers in the future. Many growers with GR weeds continue to use glyphosate because of its economical broad-spectrum weed control. Government farm policies, pesticide regulatory policies and industry actions should encourage growers to adopt a more proactive approach to GR weed management by providing the best information and training on management practices, information on the benefits of proactive management and voluntary incentives, as appropriate. Results from recent surveys in the United States indicate that such a change in grower attitudes may be occurring because of enhanced awareness of the benefits of proactive management and the relative cost of the reactive management of GR weeds. Copyright © 2011 Society of Chemical Industry.

  18. Degradation of Herbicides in the Tropical Marine Environment: Influence of Light and Sediment.

    Science.gov (United States)

    Mercurio, Philip; Mueller, Jochen F; Eaglesham, Geoff; O'Brien, Jake; Flores, Florita; Negri, Andrew P

    2016-01-01

    Widespread contamination of nearshore marine systems, including the Great Barrier Reef (GBR) lagoon, with agricultural herbicides has long been recognised. The fate of these contaminants in the marine environment is poorly understood but the detection of photosystem II (PSII) herbicides in the GBR year-round suggests very slow degradation rates. Here, we evaluated the persistence of a range of commonly detected herbicides in marine water under field-relevant concentrations and conditions. Twelve-month degradation experiments were conducted in large open tanks, under different light scenarios and in the presence and absence of natural sediments. All PSII herbicides were persistent under control conditions (dark, no sediments) with half-lives of 300 d for atrazine, 499 d diuron, 1994 d hexazinone, 1766 d tebuthiuron, while the non-PSII herbicides were less persistent at 147 d for metolachlor and 59 d for 2,4-D. The degradation of herbicides was 2-10 fold more rapid in the presence of a diurnal light cycle and coastal sediments; apart from 2,4-D which degraded more slowly in the presence of light. Despite the more rapid degradation observed for most herbicides in the presence of light and sediments, the half-lives remained > 100 d for the PS II herbicides. The effects of light and sediments on herbicide persistence were likely due to their influence on microbial community composition and its ability to utilise the herbicides as a carbon source. These results help explain the year-round presence of PSII herbicides in marine systems, including the GBR, but more research on the transport, degradation and toxicity on a wider range of pesticides and their transformation products is needed to improve their regulation in sensitive environments.

  19. Herbicide volatilization trumps runoff losses, a multi-year investigation

    Science.gov (United States)

    Surface runoff and volatilization are two processes critical to herbicide off-site transport. To determine the relevance of these off-site transport mechanisms, runoff and turbulent vapor fluxes were simultaneously monitored on the same site for eight years. Site location, herbicide formulations, ...

  20. Analysis of the metabolic resistance of Ambrosia artemisiifolia L. to the herbicides action

    Directory of Open Access Journals (Sweden)

    Y.V. Lykholat

    2018-03-01

    Full Text Available Action and aftereffect of the herbicides with different modes of action on the common ragweed population were studied in the field and greenhouse experiments. Activation of glutathione S-transferase has been detected due to the action of herbicides Harness and Guardian-Tetra both in leaves of juvenile plants and in ragweed seeds, which indicates intensive detoxification of herbicides during weed ontogenesis. Electrophoretic analysis showed that four components in protein spectra of ragweed seeds were inherent in seeds collected from herbicides-treated plants only. Using the method of isoelectric focusing, three specific peroxidase isoforms associated with a certain mechanism of herbicidal action on the parent plants were found in leaves of the next generation plants. The results confirm the intensive adaptive changes in A. artemisiifolia population that could provide the metabolic resistance to different modes of the herbicide action. Keywords: Common ragweed, Metabolic resistance, Herbicide, Mode of action, Isoforms, Isoelectric

  1. In vitro screening of selected herbicides on rhizosphere mycoflora ...

    African Journals Online (AJOL)

    In vitro screening of five selected herbicides at different concentrations on rhizosphere mycoflora from yellow pepper (capsicum annum L var. Nsukka yellow) seedlings at Nsukka were investigated. The herbicides employed for this study were Paraquat, Glyphosate, Primextra, Atrazine and Linuron. The isolated rhizosphere ...

  2. Effects of acetochlor (herbicide) on the survival and avoidance ...

    African Journals Online (AJOL)

    Jane

    2011-07-06

    Jul 6, 2011 ... These results suggested that acetochlor residues had negligible effects on P. birmanica and L. terrestris. Michalkova and Pekar (2009) and Yardim and Edwards (1998) also reported negligible effects of herbicide (glyphosate) on Pardosa agrestis. Although, we also observed negligible effects of herbicide.

  3. Rice Transcriptome Analysis to Identify Possible Herbicide Quinclorac Detoxification Genes

    Directory of Open Access Journals (Sweden)

    Wenying eXu

    2015-09-01

    Full Text Available Quinclorac is a highly selective auxin-type herbicide, and is widely used in the effective control of barnyard grass in paddy rice fields, improving the world’s rice yield. The herbicide mode of action of quinclorac has been proposed and hormone interactions affect quinclorac signaling. Because of widespread use, quinclorac may be transported outside rice fields with the drainage waters, leading to soil and water pollution and environmental health problems.In this study, we used 57K Affymetrix rice whole-genome array to identify quinclorac signaling response genes to study the molecular mechanisms of action and detoxification of quinclorac in rice plants. Overall, 637 probe sets were identified with differential expression levels under either 6 or 24 h of quinclorac treatment. Auxin-related genes such as GH3 and OsIAAs responded to quinclorac treatment. Gene Ontology analysis showed that genes of detoxification-related family genes were significantly enriched, including cytochrome P450, GST, UGT, and ABC and drug transporter genes. Moreover, real-time RT-PCR analysis showed that top candidate P450 families such as CYP81, CYP709C and CYP72A genes were universally induced by different herbicides. Some Arabidopsis genes for the same P450 family were up-regulated under quinclorac treatment.We conduct rice whole-genome GeneChip analysis and the first global identification of quinclorac response genes. This work may provide potential markers for detoxification of quinclorac and biomonitors of environmental chemical pollution.

  4. Urinary Concentrations of Insecticide and Herbicide Metabolites among Pregnant Women in Rural Ghana: A Pilot Study

    Directory of Open Access Journals (Sweden)

    Blair J. Wylie

    2017-03-01

    Full Text Available Use of pesticides by households in rural Ghana is common for residential pest control, agricultural use, and for the reduction of vectors carrying disease. However, few data are available about exposure to pesticides among this population. Our objective was to quantify urinary concentrations of metabolites of organophosphate (OP, pyrethroid, and select herbicides during pregnancy, and to explore exposure determinants. In 2014, 17 pregnant women from rural Ghana were surveyed about household pesticide use and provided weekly first morning urine voids during three visits (n = 51 samples. A total of 90.1% (46/51 of samples had detectable OP metabolites [geometric mean, GM (95% CI: 3,5,6-trichloro-2-pyridinol 0.54 µg/L (0.36–0.81, para-nitrophenol 0.71 µg/L (0.51–1.00], 75.5% (37/49 had detectable pyrethroid metabolites [GM: 3-phenoxybenzoic acid 0.23 µg/L (0.17, 0.32], and 70.5% (36/51 had detectable 2,4-dichlorophenoxyacetic acid levels, a herbicide [GM: 0.46 µg/L (0.29–0.73]. Concentrations of para-nitrophenol and 2,4-dichlorophenoxyacetic acid in Ghanaian pregnant women appear higher when compared to nonpregnant reproductive-aged women in a reference U.S. population. Larger studies are necessary to more fully explore predictors of exposure in this population.

  5. Surface plasmon resonance application for herbicide detection

    Science.gov (United States)

    Chegel, Vladimir I.; Shirshov, Yuri M.; Piletskaya, Elena V.; Piletsky, Sergey A.

    1998-01-01

    The optoelectronic biosensor, based on Surface Plasmon Resonance (SPR) for detection of photosynthesis-inhibiting herbicides in aqueous solutions is presented. The pesticide capability to replace plastoquinone from its complex with D1 protein is used for the detection. This replacement reaction results in the changes of the optical characteristics of protein layer, immobilized on the gold surface. Monitoring of these changes with SPR-technique permit to determine 0.1 - 5.0 mkg/ml herbicide in solution within one hour.

  6. Liquid-phase extraction coupled with metal-organic frameworks-based dispersive solid phase extraction of herbicides in peanuts.

    Science.gov (United States)

    Li, Na; Wang, Zhibing; Zhang, Liyuan; Nian, Li; Lei, Lei; Yang, Xiao; Zhang, Hanqi; Yu, Aimin

    2014-10-01

    Liquid-phase extraction coupled with metal-organic frameworks-based dispersive solid phase extraction was developed and applied to the extraction of pesticides in high fatty matrices. The herbicides were ultrasonically extracted from peanut using ethyl acetate as extraction solvent. The separation of the analytes from a large amount of co-extractive fat was achieved by dispersive solid-phase extraction using MIL-101(Cr) as sorbent. In this step, the analytes were adsorbed on MIL-101(Cr) and the fat remained in bulk. The herbicides were separated and determined by high-performance liquid chromatography. The experimental parameters, including type and volume of extraction solvent, ultrasonication time, volume of hexane and eluting solvent, amount of MIL-101(Cr) and dispersive solid phase extraction time, were optimized. The limits of detection for herbicides range from 0.98 to 1.9 μg/kg. The recoveries of the herbicides are in the range of 89.5-102.7% and relative standard deviations are equal or lower than 7.0%. The proposed method is simple, effective and suitable for treatment of the samples containing high content of fat. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Using a Hydrological Model to Determine Environmentally Safer Windows for Herbicide Application

    Science.gov (United States)

    J.L. Michael; M.C. Smith; W.G. Knisel; D.G. Neary; W.P. Fowler; D.J. Turton

    1996-01-01

    A modification of the GLEAMS model was used to determine application windows which would optimise efficacy and environmental safety for herbicide application to a forest site. Herbicide/soil partition coefficients were determined using soil samples collected from the study site for two herbicides (imazapyr, Koc=46, triclopyr ester, K

  8. Comparisons of Herbicide Treated and Cultivated Herbicide-Resistant Corn

    OpenAIRE

    H. Arnold Bruns; Hamed K. Abbas

    2010-01-01

    Four glyphosate resistant corn (Zea mays L.) hybrids, a glufosinate-ammonium resistant hybrid, and a conventional atrazine resistant hybrid gown at Stoneville, MS in 2005, 2006, and 2007 with furrow irrigation were treated with their respective herbicides and their growth, yield, and mycotoxin incidence were compared with untreated cultivated plots. Leaf area index (LAI) and dry matter accumulation (DMA) were collected on a weekly basis beginning at growth stage V3 and terminating at anthesi...

  9. Selectivity and stability of vegetation-applied herbicides in cotton (Gossypium hirsutum L.

    Directory of Open Access Journals (Sweden)

    T. Barakova

    2016-06-01

    Full Text Available Abstract. An experiment was carried out during 2013 – 2015 in the experimental field of the Field Crops Institute, Chirpan, with two cotton cultivars − Helius and Darmi (Gossypium hirsutum L.. Herbicides: Goal 2 E, oxyfluorfen (80 ml/da; Linuron 45 SC, linuron (200 ml/da; Wing-P, pendimethalin + dimethenamid (400 ml/da; Merlin 750 WG, isoxaflutol (5 g/da; Bazagran 480 SL, bentazone (150 ml/da were investigated. They were treated separately or combined with growth regulator Amalgerol (500 ml/da or foliar fertilizer Lactofol O (500 ml/da in the budding stage of the cotton. It was established that selectivity is the lowest in the two cotton cultivars with herbicides Linuron 45 CK and Merlin 750 WG. The purpose of this investigation was to establish the selectivity and stability of some herbicides and their tank mixtures on the cotton by influence of different meteorological conditions. It has been found that the highest phytotoxicity on cotton is given the vegetation-applied herbicides Merlin and Linuron. Foliar fertilizer Laktofol O reduces phytotoxicity of herbicides Goal, Wing, Merlin and Bazagran in two cotton cultivars. Herbicides Wing and Bazagran have excellent selectivity for the two cotton cultivars – Helius and Darmi. The highest yield was obtained by vegetation treatment with herbicide Bazagran, followed by herbicides Wing and Goal. Tank mixtures of Goal, Bazagran and Wing with Laktofol, followed by those with Amalgerol are technologically the most valuable. They combine high yield with high stability over the years. Аlone application of herbicides Linuron and Merlin and their tank mixtures with Amalgerol and Laktofol have low estimate.

  10. Joint action of some usable important broadleaf herbicides in sugar beet

    Directory of Open Access Journals (Sweden)

    AliAsghar Chitband

    2018-01-01

    Full Text Available Introduction: The assessment of the effect of mixtures could be based on various concepts whether we work within toxicology, pharmacology or weed control. Combinations of certain herbicides can give better weed control than use of the individual herbicide alone and/or loss of weed control when use of certain other herbicides in combination. Predicting the joint action of mixtures is extremely difficult, unless the compounds are known to interact at the same site of action. These most common methods to analyze the joint action of herbicide mixtures are the Additive Dose Model (ADM or the Multiplicative Survival Model (MSM. The ADM assumes the two compounds have similar modes of action (do not interact in the receiver plant, i.e. effective doses of each component will not change by mixing. ADM has been widely accepted as a valid method to estimate joint action of mixtures sharing the same or similar action mechanisms in the receiver plant. MSM has been reported to yield more accurate results for mixture toxicity than ADM do when the components exhibited different or dissimilar modes of action in the receiver plant. ADM or Concentration Addition (CA is used here to test for deviation of additivity of doses using the ADM isoboles as reference; any deviation from the ADM is characterized by antagonism when the efficacy of a mixture is lower than predicted by the reference model and synergistic when the efficacy is higher than predicted. Materials and Methods: In order to determine joint action of some usable important broadleaf herbicides in sugar beet, six experiments were conducted at the research glasshouse in Faculty of Agriculture, Ferdowsi University of Mashhad, Iran. The plants were sprayed with seven doses of commercial formulation of desmedipham + phenmedipham + ethofumesate (Betanal Progress- OF®, 427 g a.i. L-1, Tragusa, Spain, chloridazon (Pyramin®, 1361 g a.i. L-1, BASF, Germany, clopyralid (Lontrel®, 149 g a.i. L-1, Golsam, Gorgan

  11. A Dinitroaniline-Resistant Mutant of Eleusine indica Exhibits Cross-Resistance and Supersensitivity to Antimicrotubule Herbicides and Drugs 1

    Science.gov (United States)

    Vaughn, Kevin C.; Marks, M. David; Weeks, Donald P.

    1987-01-01

    A dinitroaniline-resistant (R) biotype of Eleusine indica (L.) Gaertner. (goosegrass) is demonstrated to be cross-resistant to a structurally non-related herbicide, amiprophosmethyl, and supersensitive to two other classes of compounds which disrupt mitosis. These characteristics of the R biotype were discovered in a comparative test of the effects of 24 different antimitotic compounds on the R biotype and susceptible (S) wild-type Eleusine. The compounds tested could be classified into three groups based upon their effects on mitosis in root tips of the susceptible (S) biotype. Class I compounds induced effects like the well known mitotic disrupter colchicine: absence of cortical and spindle microtubules, mitosis arrested at prometaphase, and the formation of polymorphic nuclei after arrested mitosis. The R biotype was resistant to treatment with some class I inhibitors (all dinitroaniline herbicides and amiprophosmethyl) but not all (e.g. colchicine, podophyllotoxin, vinblastine, and pronamide). Roots of the R biotype, when treated with either dinitroaniline herbicides or amiprophosmethyl, exhibited no or only small increases in the mitotic index nor were the spindle and cortical microtubules affected. Compounds of class II (carbamate herbicides and griseofulvin) cause misorientation of microtubules which results in multinucleated cells. Compounds of class III (caffeine and structually related alkaloids) cause imcomplete cell walls to form at telophase. Each of these last two classes of compounds affected the R biotype more than the S biotype (supersensitivity). The cross-resistance and high levels of resistance of the R biotype of Eleusine to the dinitroaniline herbicides and the structurally distinct herbicide, amiprophosmethyl, indicate that a mechanism of resistance based upon metabolic modification, translocation, or compartmentation of the herbicides is probably not operative. Images Fig. 1 Fig. 2 Fig. 3 Fig. 5 Fig. 6 PMID:16665371

  12. Selectivity and stability of herbicides and their tank mixtures for the seed yield of sunflower (Helianthus Annuus L.

    Directory of Open Access Journals (Sweden)

    G. Delchev

    2016-12-01

    Full Text Available Abstract. The research was conducted during 2012 – 2014 on pellic vertisol soil type. Under investigation were 4 sunflower hybrids (Helianthus annuus L.: hybrid Bacardy (an imitolerant hybrid by ClearField plus technology, hybrid Estiva (an imitolerant hybrid by ClearField technology, hybrid Sumico (a tribenuron-methyl tolerant hybrid by ExpessSun technology and hybrid Arizona (a hybrid by conventional technology. Factor A included the years of investigation. Factor B, herbicides and tank mixtures, included 20 rates. It includes 3 variants by ClearField plus technology, 5 variants by ClearField technology, 5 variants by ExpessSun technology and 7 variants by conventional technology. All variants are on herbicide Gardoprim plus gold 500 SC (Smetolachlor + terbuthylazine – 3.5 l/ha, which treated after sowing before emergence of the sunflower. It is found that the highest seed yield is obtained at herbicide tank mixture Pulsar plus + Stomp aqua by ClearField plus technology. Tank mixture Listego + Dash + Sharpen by ClearField technology and Express + Trend + Select super by ExpressSun technology also lead to obtaining high seed yields. The most unstable are secondary weed infested checks by the fourth technologies for sunflower growing which are treated with soil-applied herbicide Gardoprim plus gold only. Technologically the most valuable are herbicide combination Pulsar plus + Stomp aqua and herbicide Pulsar by ClearField plus technology, tank mixtures Listego + Dash + Sharpen and Listego + Dash by ClearField technology and Express + Trend + Select super and Express + Lactofol B + Select super by ExpressSun technology. Tank mixtures of herbicides Smerch, Pendigan, Wing, Raft, Pledge and Modown with Amalgerol premium by conventional technology have low estimates due to insufficient control of some weeds in sunflower crops.

  13. Effects of the herbicides linuron and S-metolachlor on Perez's frog embryos.

    Science.gov (United States)

    Quintaneiro, Carla; Soares, Amadeu M V M; Monteiro, Marta S

    2018-03-01

    Presence of pesticides in the environment and their possible effects on aquatic organisms are of great concern worldwide. The extensive use of herbicides in agricultural areas are one of the factors contributing to the known decline of amphibian populations. Thus, as non-target species, amphibians can be exposed in early life stages to herbicides in aquatic systems. In this context, this study aims to evaluate effects of increasing concentrations of two maize herbicides, linuron and S-metolachlor on embryos of the Perez' frog (Pelophylax perezi) during 192 h. Apical endpoints were determined for each herbicide: mortality, hatching rate, malformations and length. Frog embryos presented a LC 50 of 21 mg/l linuron and 37.5 mg/l S-metolachlor. Furthermore, sub-lethal concentrations of both herbicides affected normal embryonic development, delaying hatching, decreasing larvae length and causing several malformations. Length of larvae decreased with increasing concentrations of each herbicide, even at the lower concentrations tested. Malformations observed in larvae exposed to both herbicides were oedemas, spinal curvature and deformation, blistering and microphtalmia. Overall, these results highlight the need to assess adverse effects of xenobiotics to early life stages of amphibians regarding beside mortality the embryonic development, which could result in impairments at later stages. However, to unravel mechanisms involved in toxicity of these herbicides further studies regarding lower levels of biological organisation such as biochemical and genomic level should be performed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Phytotoxicity of chiral herbicide bromacil: Enantioselectivity of photosynthesis in Arabidopsis thaliana

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zunwei; Zou, Yuqin; Wang, Jia [MOE Key Laboratory of Environmental Remediation & Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058 (China); Li, Meichao [Research Center of Analysis and Measurement, Zhejiang University of Technology, Hangzhou 310032 (China); Wen, Yuezhong, E-mail: wenyuezhong@zju.edu.cn [MOE Key Laboratory of Environmental Remediation & Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058 (China)

    2016-04-01

    With the wide application of chiral herbicides and the frequent detection of photosystem II (PSII) herbicides, it is of great importance to assess the direct effects of PSII herbicides on photosynthesis in an enantiomeric level. In the present study, the enantioselective phytotoxicity of bromacil (BRO), typical photosynthesis inhibition herbicide, on Arabidopsis thaliana was investigated. The results showed that S-BRO exhibited a greater inhibition of electron transmission in photosystem I (PSI) of A. thaliana than R-BRO by inhibiting the transcription of fnr 1. S-BRO also changed the chlorophyll fluorescence parameters Y (II), Y (NO), and Y (NPQ) to a greater extent than R-Bro. Transcription of genes psbO2, Lhcb3 and Lhcb6 was down-regulated in an enantioselective rhythm and S-BRO caused more serious influence, indicating that S-BRO did worse damage to the photosystem II (PSII) of A. thaliana than R-BRO. This study suggested that S-BRO disturbed the photosynthesis of plants to a larger extent than R-BRO and provided a new sight to evaluate the phytotoxicity of chiral herbicides. - Highlights: • It is necessary to assess the direct effects of PSII herbicides on photosynthesis. • Phytotoxicity of bromacil is investigated in an enantiomeric level. • Bromacil disturbed enantioselectively the photosystem II of Arabidopsis thaliana. • S-bromacil caused severer damage to photosynthesis of Arabidopsis than R-bromacil. • Photosynthesis should be considered for phytotoxicity assessment of herbicides.

  15. Phytotoxicity of chiral herbicide bromacil: Enantioselectivity of photosynthesis in Arabidopsis thaliana

    International Nuclear Information System (INIS)

    Chen, Zunwei; Zou, Yuqin; Wang, Jia; Li, Meichao; Wen, Yuezhong

    2016-01-01

    With the wide application of chiral herbicides and the frequent detection of photosystem II (PSII) herbicides, it is of great importance to assess the direct effects of PSII herbicides on photosynthesis in an enantiomeric level. In the present study, the enantioselective phytotoxicity of bromacil (BRO), typical photosynthesis inhibition herbicide, on Arabidopsis thaliana was investigated. The results showed that S-BRO exhibited a greater inhibition of electron transmission in photosystem I (PSI) of A. thaliana than R-BRO by inhibiting the transcription of fnr 1. S-BRO also changed the chlorophyll fluorescence parameters Y (II), Y (NO), and Y (NPQ) to a greater extent than R-Bro. Transcription of genes psbO2, Lhcb3 and Lhcb6 was down-regulated in an enantioselective rhythm and S-BRO caused more serious influence, indicating that S-BRO did worse damage to the photosystem II (PSII) of A. thaliana than R-BRO. This study suggested that S-BRO disturbed the photosynthesis of plants to a larger extent than R-BRO and provided a new sight to evaluate the phytotoxicity of chiral herbicides. - Highlights: • It is necessary to assess the direct effects of PSII herbicides on photosynthesis. • Phytotoxicity of bromacil is investigated in an enantiomeric level. • Bromacil disturbed enantioselectively the photosystem II of Arabidopsis thaliana. • S-bromacil caused severer damage to photosynthesis of Arabidopsis than R-bromacil. • Photosynthesis should be considered for phytotoxicity assessment of herbicides.

  16. Additive effects of the herbicide glyphosate and elevated temperature on the branched coral Acropora formosa in Nha Trang, Vietnam.

    Science.gov (United States)

    Amid, C; Olstedt, M; Gunnarsson, J S; Le Lan, H; Tran Thi Minh, H; Van den Brink, P J; Hellström, M; Tedengren, M

    2018-05-01

    The combined effects of the herbicide glyphosate and elevated temperature were studied on the tropical staghorn coral Acropora formosa, in Nha Trang bay, Vietnam. The corals were collected from two different reefs, one close to a polluted fish farm and one in a marine-protected area (MPA). In the laboratory, branches of the corals were exposed to the herbicide glyphosate at ambient (28 °C) and at 3 °C elevated water temperatures (31 °C). Effects of herbicide and elevated temperature were studied on coral bleaching using photography and digital image analysis (new colorimetric method developed here based on grayscale), chlorophyll a analysis, and symbiotic dinoflagellate (Symbiodinium, referred to as zooxanthellae) counts. All corals from the MPA started to bleach in the laboratory before they were exposed to the treatments, indicating that they were very sensitive, as opposed to the corals collected from the more polluted site, which were more tolerant and showed no bleaching response to temperature increase or herbicide alone. However, the combined exposure to the stressors resulted in significant loss of color, proportional to loss in chlorophyll a and zooxanthellae. The difference in sensitivity of the corals collected from the polluted site versus the MPA site could be explained by different symbiont types: the resilient type C3u and the stress-sensitive types C21 and C23, respectively. The additive effect of elevated temperatures and herbicides adds further weight to the notion that the bleaching of coral reefs is accelerated in the presence of multiple stressors. These results suggest that the corals in Nha Trang bay have adapted to the ongoing pollution to become more tolerant to anthropogenic stressors, and that multiple stressors hamper this resilience. The loss of color and decrease of chlorophyll a suggest that bleaching is related to concentration of chloro-pigments. The colorimetric method could be further fine-tuned and used as a precise, non

  17. Integration of Agronomic Practices with Herbicides for Sustainable Weed Management in Aerobic Rice

    Science.gov (United States)

    Anwar, M. P.; Juraimi, A. S.; Mohamed, M. T. M.; Uddin, M. K.; Samedani, B.; Puteh, A.; Man, Azmi

    2013-01-01

    Till now, herbicide seems to be a cost effective tool from an agronomic view point to control weeds. But long term efficacy and sustainability issues are the driving forces behind the reconsideration of herbicide dependent weed management strategy in rice. This demands reappearance of physical and cultural management options combined with judicious herbicide application in a more comprehensive and integrated way. Keeping those in mind, some agronomic tools along with different manual weeding and herbicides combinations were evaluated for their weed control efficacy in rice under aerobic soil conditions. Combination of competitive variety, higher seeding rate, and seed priming resulted in more competitive cropping system in favor of rice, which was reflected in lower weed pressure, higher weed control efficiency, and better yield. Most of the herbicides exhibited excellent weed control efficiency. Treatments comprising only herbicides required less cost involvement but produced higher net benefit. On the contrary, treatments comprising both herbicide and manual weeding required high cost involvement and thus produced lower net benefit. Therefore, adoption of competitive rice variety, higher seed rate, and seed priming along with spraying different early-postemergence herbicides in rotation at 10 days after seeding (DAS) followed by a manual weeding at 30 DAS may be recommended from sustainability view point. PMID:24223513

  18. Persistence of auxinic herbicides applied on pasture and toxicity for succeeding crops

    Directory of Open Access Journals (Sweden)

    ARNON H.C. ANÉSIO

    2018-04-01

    Full Text Available ABSTRACT The aim of this work was to determine the persistence of auxinic herbicides applied on tropical pasture and toxicity for succeeding crops. The herbicides were applied in an area of dystrophic red‒yellow latosol with pasture infested of weeds. At 40, 80, and 280 days after application of herbicide, the soil samples were collected at depths of 0 to 20 cm. Soil with residues of 2,4-D, 2,4-D + picloram, triclopyr, and a soil without herbicide application were analyzed with six replicates. Seven crops were cultivated in these soils: cucumber (Cucumis sativus L., velvet bean [Mucuna pruriens (L. DC.], pigeon pea [Cajanus cajan (L. Millsp.], alfalfa (Medicago sativa L., lablab bean [Lablab purpureus (L. Sweet], corn (Zea mays L., and sorghum [Sorghum bicolor (L. Moench]. The plants of cucumber, pigeon pea, and alfalfa were the most susceptible to the auxinic herbicide residues. However, the lablab bean was the only one among the dicot evaluated that showed tolerance to the 2,4-D + picloram residual when cultivated in soils at 280 days after application of herbicide. Corn and sorghum showed lower chlorophyll content in soils with 2,4-D + picloram residual up to 80 days after application of herbicide.

  19. Three-parameter modeling of the soil sorption of acetanilide and triazine herbicide derivatives.

    Science.gov (United States)

    Freitas, Mirlaine R; Matias, Stella V B G; Macedo, Renato L G; Freitas, Matheus P; Venturin, Nelson

    2014-02-01

    Herbicides have widely variable toxicity and many of them are persistent soil contaminants. Acetanilide and triazine family of herbicides have widespread use, but increasing interest for the development of new herbicides has been rising to increase their effectiveness and to diminish environmental hazard. The environmental risk of new herbicides can be accessed by estimating their soil sorption (logKoc), which is usually correlated to the octanol/water partition coefficient (logKow). However, earlier findings have shown that this correlation is not valid for some acetanilide and triazine herbicides. Thus, easily accessible quantitative structure-property relationship models are required to predict logKoc of analogues of the these compounds. Octanol/water partition coefficient, molecular weight and volume were calculated and then regressed against logKoc for two series of acetanilide and triazine herbicides using multiple linear regression, resulting in predictive and validated models.

  20. Comparative sensitivity of Selenastrum capricornutum and Lemna minor to sixteen herbicides

    Science.gov (United States)

    Fairchild, J.F.; Ruessler, D.S.; Haverland, P.S.; Carlson, A.R.

    1997-01-01

    Aquatic plant toxicity tests are frequently conducted in environmental risk assessments to determine the potential impacts of contaminants on primary producers. An examination of published plant toxicity data demonstrates that wide differences in sensitivity can occur across phylogenetic groups of plants. Yet relatively few studies have been conducted with the specific intent to compare the relative sensitivity of various aquatic plant species to contaminants. We compared the relative sensitivity of the algae Selenestrum capricornutum and the floating vascular plant Lemna minor to 16 herbicides (atrazine, metribuzin, simazine, cyanazine, alachlor, metolachlor, chlorsulfuron, metsulfuron, triallate, EPTC, trifluralin, diquat, paraquat, dicamba, bromoxynil, and 2,4-D). The herbicides studied represented nine chemical classes and several modes of action and were chosen to represent major current uses in the United States. Both plant species were generally sensitive to the triazines (atrazine, metribuzin, simazine, and cyanazine), sulfonureas (metsulfuron and chlorsulfuron), pyridines (diquat and paraquat), dinitroaniline (trifluralin), and acetanilide (alachlor and metolachlor) herbicides. Neither plant species was uniformly more sensitive than the other across the broad range of herbicides tested. Lemna was more sensitive to the sulfonureas (metsulfuron and chlorsulfuron) and the pyridines (diquat and parequat) than Selenastrum. However Selenastrum was more sensitive than Lemna to one of two thiocarbamates (triallate) and one of the triazines (cyanazine). Neither species was sensitive to selective broadleaf herbicides including bromoxynil, EPTC, dicamba, or 2,4-D. Results were not always predictable in spite of obvious differences in herbicide modes of action and plant phylogeny. Major departures in sensitivity of Selenastrum occurred between chemicals within individual classes of the triazine, acetanilide, and thiocarbamate herbicides. Results indicate that neither

  1. Magnetic solid-phase extraction of triazine herbicides from rice using metal-organic framework MIL-101(Cr) functionalized magnetic particles.

    Science.gov (United States)

    Liang, Li; Wang, Xinghua; Sun, Ying; Ma, Pinyi; Li, Xinpei; Piao, Huilan; Jiang, Yanxiao; Song, Daqian

    2018-03-01

    The metal-organic framework (MOF) functionalized magnetic graphene oxide/mesoporous silica composites (Fe 3 O 4 @SiO 2 -GO/MIL-101(Cr)) were synthesized and utilized as magnetic solid-phase extraction (MSPE) adsorbent for the extraction of seven triazine herbicides (terbuthylazine, secbumeton, terbumeton, atraton, atrazine, prometon and trietazine) in rice samples. Several experimental parameters, including type and volume of extraction solvent, amount of MIL-101(Cr), extraction time, volume of desorption solvent and desorption time were investigated and optimized. The limits of detection (LODs) of seven triazine herbicides obtained by using the proposed MSPE method combined with high performance liquid chromatography (HPLC) were in the range of 0.010-0.080µgkg -1 . The recoveries of the triazine herbicides in spiked rice samples ranged from of 83.9-103.5% with the relative standard deviations lower than 8.7%. The intra and inter-day (n = 6) precisions for all triazine herbicides at the spiked level of 100.0µgkg -1 were 1.4-5.9% and 2.6-7.8%, respectively. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Intraregional and inter-regional variability of herbicide sensitivity in common arable weed populations

    DEFF Research Database (Denmark)

    de Mol, Friederike; Gerowitt, Bärbel; Kaczmarek, Sylwia

    2015-01-01

    The question on intraregional versus inter-regional variability in herbicide sensitivity for weed populations is of major importance, both in extrapolation of model parameters and in herbicide zonal approval procedures. We hypothesised that inter-regional variability in herbicide sensitivity for ...

  3. economics of herbicide weed management in wheat in ethiopia ...

    African Journals Online (AJOL)

    ACSS

    Effective use of herbicides for the control of annual grass and broadleaf weeds in wheat (Triticum aestivum L.) was not a reality in Ethiopia, until in recent years. This study aimed at evaluating different post-emergence herbicides against annual grasses and broadleaf weeds in wheat for selection and incorporation into an ...

  4. DSSHerbicide: Herbicide field trials in winter wheat. How to come to a decision

    Directory of Open Access Journals (Sweden)

    Sefzat, David

    2014-02-01

    Full Text Available Herbicide decision support systems can calculate efficient, economically optimized herbicide mixtures with reduced dosages, if field specific weed data are given. Thus, they can be a sensible tool for integrated weed control. However, advises of decision support systems have to be tested before introducing them into practical farming. In Mecklenburg-Vorpommern two herbicide field trials were installed with four different prototypes of decision support systems. An untreated plot and three expert advices, private advisors, official advisory service and a farmer decision, were included as additional test variables. Herbicide efficacies in autumn, weed dry matter after spring applications, herbicide costs and wheat yield were measured to evaluate the decision support system prototypes. In one field trial with low weed density before treatments efficacies were at least 85%. In two prototypes efficacies were lower than in the expert plots. No significant differences between decision variables were found regarding weed dry matter after spraying in spring. On this site, herbicide costs were higher when expert advises were used compared to decision support system advises. No significant differences were detected in yield. Even yield in “untreated” was not significantly different. The second field trial carried higher weed densities. Here herbicide efficacies were lower in all treatments. Poa annua and Matricaria recutita were significantly affected by the treatments resulting from the decision tools. However, these differences did not result in statistically different weed dry matter or wheat yield. Three of the prototypes advised solutions with very low herbicide costs in autumn, but high costs in spring. As a result, total weed costs in these plots were higher than in the plots advised by experts. It is concluded from the field trials, that different prototypes of decision support systems are giving sensible herbicide advice. In fields with low

  5. Regularity of mitosis in different varieties of winter bread wheat under the action of herbicides

    Directory of Open Access Journals (Sweden)

    Tatyana Eugenivna KOPYTCHUK

    2012-05-01

    Full Text Available The influence of the most widespread herbicides on winter wheat in Ukraine was studied by anaphase test. Treatment with herbicides reduced the germination of the seeds and disturbed the regularity of mitosis in all varieties of wheat. The range of violations of mitosis was demonstrated by the formation of chromosomal aberrations and dysfunctions of cell cytoskeleton which occurred while processing herbicides. Varietal differences between investigated wheat by sensitivity to herbicides were discovered. The most resistant to herbicides was variety Fantasya Odesskaya, and the most sensitive – Nikoniya, while the most harmful herbicide for wheat was Napalm.

  6. Determination of Two Sulfonylurea Herbicides Residues in Soil Environment Using HPLC and Phytotoxicity of These Herbicides by Lentil Bioassay.

    Science.gov (United States)

    Mehdizadeh, Mohammad; Alebrahim, Mohammad Taghi; Roushani, Mahmoud

    2017-07-01

    A HPLC-UV detection system was used for determination of sulfosulfuron and tribenuron methyl residues from soils. The soils were fortified with sulfosulfuron and tribenuron methyl at rates of 26 and 15 g a.i. ha -1 respectively and samples were taken randomly on 0 (2 h), 1, 2, 4, 10, 20, 40, 60, 90 and 120 days after treatment. The final extracts were prepared for analysis by HPLC. The results showed that degradation of both herbicides in the silty loam soil was faster than sandy loam soil. Half-life of sulfosulfuron was ranged from 5.37 to 10.82 days however this value for tribenuron methyl was ranged from 3.23 to 5.72 days on different soils. The residue of both herbicides at 120 days after application in wheat field had no toxicitic effect on lentil. It was concluded that HPLC analysis procedure was an appropriate method for determination of these herbicides from soils.

  7. A comparison of the herbicide tolerances of rare and common plants in an agricultural landscape.

    Science.gov (United States)

    Egan, J Franklin; Graham, Ian M; Mortensen, David A

    2014-03-01

    Declining plant biodiversity in agroecosystems has often been attributed to escalating use of chemical herbicides, but other changes in farming systems, including the clearing of seminatural habitat fragments, confound the influence of herbicides. The present study introduces a new approach to evaluate the impacts of herbicide pollution on plant communities at landscape or regional scales. If herbicides are in fact a key factor shaping agricultural plant diversity, one would expect to see the signal of past herbicide impacts in the current plant community composition of an intensively farmed region, with common, successful species more tolerant to widely used herbicides than rare or declining species. Data from an extensive field survey of plant diversity in Lancaster County, Pennsylvania, USA, were compared with herbicide bioassay experiments in a greenhouse to test the hypothesis that common species possess higher herbicide tolerances than rare species. Five congeneric pairs of rare and common species were treated with 3 commonly used herbicide modes of action in bioassay experiments, and few significant differences were found in the tolerances of rare species relative to common species. These preliminary results suggest that other factors beyond herbicide exposure may be more important in shaping the distribution and abundance of plant species diversity across an agricultural landscape. © 2014 SETAC.

  8. Removal of compounds used as plasticizers and herbicides from water by means of gamma irradiation

    International Nuclear Information System (INIS)

    Rivera-Utrilla, José; Daiem, Mahmoud M. Abdel; Sánchez-Polo, Manuel; Ocampo-Pérez, Raúl; López-Peñalver, Jesús J.; Velo-Gala, Inmaculada; Mota, Antonio J.

    2016-01-01

    Gamma radiation has been used to induce the degradation of compounds used as plasticizers and herbicides such as phthalic acid (PA), bisphenol A (BPA), diphenolic acid (DPA), 2,4-dichlorophenoxy-acetic acid (2,4-D), and 4-chloro-2-methylphenoxyacetic acid (MCPA) in aqueous solution, determining the dose constants, removal percentages, and radiation-chemical yields. The reaction rate constants of hydroxyl radical (HO"·), hydrated electron (e_a_q"−) and hydrogen atom (H"·) with these pollutants were also obtained by means of competition kinetics, using 3-aminopyridine and atrazine as reference compounds. The results indicated that the elimination of these pollutants with gamma radiation mainly follows the oxidative pathway through reaction with HO"· radicals. The degradation by-products from the five pollutants were determined, detecting that the hydroxylation of the corresponding parent compounds was the main chemical process in the degradation of the pollutants. Moreover, a high decrease in the chemical oxygen demand has been observed for all pollutants. As expected, the degradation by-products generated by the irradiation of PA, BPA and DPA showed a lower toxicity than the parent compounds, however, in the case of 2,4-D and MCPA irradiation, interestingly, their by-products were more toxic than the corresponding original compounds. - Highlights: • Degradation of plasticizers and herbicides using gamma radiation was studied. • Dose constants, removal percentages, and radiation-chemical yields were determined. • The reaction rate constants of HO"·, e_a_q"−, H"· with the pollutants were determined. • The elimination of the pollutants mainly followed the oxidative pathway. • The evolution of chemical oxygen demand and toxicity was analyzed.

  9. Removal of compounds used as plasticizers and herbicides from water by means of gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Rivera-Utrilla, José, E-mail: jrivera@ugr.es [Inorganic Chemistry Department, Faculty of Science, University of Granada, 18071 Granada (Spain); Daiem, Mahmoud M. Abdel [Environmental Engineering Department, Faculty of Engineering, Zagazig University, 44519 Zagazig (Egypt); Sánchez-Polo, Manuel [Inorganic Chemistry Department, Faculty of Science, University of Granada, 18071 Granada (Spain); Ocampo-Pérez, Raúl [Center of Research and Postgraduate Studies, Faculty of Chemical Science, Autonomous University of San Luis Potosí, Av. Dr. M. Nava No.6, San Luis Potosí SLP 78210 (Mexico); López-Peñalver, Jesús J.; Velo-Gala, Inmaculada; Mota, Antonio J. [Inorganic Chemistry Department, Faculty of Science, University of Granada, 18071 Granada (Spain)

    2016-11-01

    Gamma radiation has been used to induce the degradation of compounds used as plasticizers and herbicides such as phthalic acid (PA), bisphenol A (BPA), diphenolic acid (DPA), 2,4-dichlorophenoxy-acetic acid (2,4-D), and 4-chloro-2-methylphenoxyacetic acid (MCPA) in aqueous solution, determining the dose constants, removal percentages, and radiation-chemical yields. The reaction rate constants of hydroxyl radical (HO{sup ·}), hydrated electron (e{sub aq}{sup −}) and hydrogen atom (H{sup ·}) with these pollutants were also obtained by means of competition kinetics, using 3-aminopyridine and atrazine as reference compounds. The results indicated that the elimination of these pollutants with gamma radiation mainly follows the oxidative pathway through reaction with HO{sup ·} radicals. The degradation by-products from the five pollutants were determined, detecting that the hydroxylation of the corresponding parent compounds was the main chemical process in the degradation of the pollutants. Moreover, a high decrease in the chemical oxygen demand has been observed for all pollutants. As expected, the degradation by-products generated by the irradiation of PA, BPA and DPA showed a lower toxicity than the parent compounds, however, in the case of 2,4-D and MCPA irradiation, interestingly, their by-products were more toxic than the corresponding original compounds. - Highlights: • Degradation of plasticizers and herbicides using gamma radiation was studied. • Dose constants, removal percentages, and radiation-chemical yields were determined. • The reaction rate constants of HO{sup ·}, e{sub aq}{sup −}, H{sup ·} with the pollutants were determined. • The elimination of the pollutants mainly followed the oxidative pathway. • The evolution of chemical oxygen demand and toxicity was analyzed.

  10. Phytotoxicity of four herbicides on Ceratophyllum demersum, Vallisneria natans and Elodea nuttallii.

    Science.gov (United States)

    Pan, Huiyun; Li, Xiaolu; Xu, Xiaohua; Gao, Shixiang

    2009-01-01

    The physiological effects of 4 herbicides (butachlor, quinclorac, bensulfuron-methyl and atrazine) on 3 submerged macrophytes (Ceratophyllum demersum, Vallisneria natans and Elodea nuttallii) were tested in laboratory. The variables of the relative growth rate and the photosynthetic pigment content showed that all of the tested herbicides affected the growth of the plants obviously, even at the lowest concentration (0.0001 mg/L). Except for the C. demersum treated with quinclorac at 0.005 and 0.01 mg/L, the relative growth rates of the plants were inhibited significantly (p < 0.01). Statistical analysis of chlorophyll a (Chl-a) contents was carried out with both the t-test and one-way ANOVA to determine the difference between the treatment and control. The results showed that Chl-a contents of the plants in all treatment groups were affected by herbicides significantly, except for the C. demersum treated with bensulfuron-methyl at 0.0005 mg/L. The decrease in Chl-a content was positively correlated to the dosage of the herbicides in most treatment groups. It was suggested that herbicides in water bodies might potentially affect the growth of aquatic macrophytes. Since the Chl-a content of submerged macrophytes responded to the stress of herbicides sensitively and directly, it could be used as a biomaker in environmental monitoring or in the ecological risk assessment of herbicide contamination.

  11. Controlling herbicide-susceptible, -tolerant and -resistant weeds with microbial bioherbicides

    Science.gov (United States)

    The management of weeds is a necessary but expensive challenge. Public concerns of health, safety, and sustainability have increased interest in reducing the use of synthetic chemicals for weed control. Alternatives to chemical herbicides, such as bioherbicides, may offer an alternative to herbicide...

  12. Presence of the β-triketone herbicide tefuryltrione in drinking water sources and its degradation product in drinking waters.

    Science.gov (United States)

    Kamata, Motoyuki; Asami, Mari; Matsui, Yoshihiko

    2017-07-01

    Triketone herbicides are becoming popular because of their herbicidal activity against sulfonylurea-resistant weeds. Among these herbicides, tefuryltrione (TFT) is the first registered herbicide for rice farming, and recently its distribution has grown dramatically. In this study, we developed analytical methods for TFT and its degradation product 2-chloro-4-methylsulfonyl-3-[(tetrahydrofuran-2-yl-methoxy) methyl] benzoic acid (CMTBA). TFT was found frequently in surface waters in rice production areas at concentrations as high as 1.9 μg/L. The maximum observed concentration was lower than but close to 2 μg/L, which is the Japanese reference concentration of ambient water quality for pesticides. However, TFT was not found in any drinking waters even though the source waters were purified by conventional coagulation and filtration processes; this was due to chlorination, which transforms TFT to CMTBA. The conversion rate of TFT to CMBA on chlorination was almost 100%, and CMTBA was stable in the presence of chlorine. Moreover, CMTBA was found in drinking waters sampled from household water taps at a similar concentration to that of TFT in the source water of the water purification plant. Although the acceptable daily intake and the reference concentration of CMTBA are unknown, the highest concentration in drinking water exceeded 0.1 μg/L, which is the maximum allowable concentration for any individual pesticide and its relevant metabolites in the European Union Drinking Directive. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Biotechnology: herbicide-resistant crops

    Science.gov (United States)

    Transgenic, herbicide-resistant (HR) crops are planted on about 80% of the land covered by transgenic crops. More than 90% of HR crios are glyphosate-resistant (GR) crops, the others being resistant to glufosinate. The wide-scale adoption of HR crops, largely for economic reasons, has been the mos...

  14. Effects of herbicides on Behr's metalmark butterfly, a surrogate species for the endangered butterfly, Lange's metalmark

    International Nuclear Information System (INIS)

    Stark, John D.; Chen Xuedong; Johnson, Catherine S.

    2012-01-01

    Lange's metalmark butterfly, Apodemia mormo langei Comstock, is in danger of extinction due to loss of habitat caused by invasive exotic plants which are eliminating its food, naked stem buckwheat. Herbicides are being used to remove invasive weeds from the dunes; however, little is known about the potential effects of herbicides on butterflies. To address this concern we evaluated potential toxic effects of three herbicides on Behr's metalmark, a close relative of Lange's metalmark. First instars were exposed to recommended field rates of triclopyr, sethoxydim, and imazapyr. Life history parameters were recorded after exposure. These herbicides reduced the number of adults that emerged from pupation (24–36%). Each herbicide has a different mode of action. Therefore, we speculate that effects are due to inert ingredients or indirect effects on food plant quality. If these herbicides act the same in A. mormo langei, they may contribute to the decline of this species. - Highlights: ► We evaluated the effects of three herbicides on the butterfly, Behr's metalmark. ► These herbicides are used to control invasive weeds in butterfly habitat. ► The herbicides reduced adult butterfly emergence. - Herbicides are used to remove invasive weeds from butterfly habitat. Certain herbicides may be having a negative effect on butterflies.

  15. Herbicide spring treatments for the control of brome grasses (Bromus spp. in winter cereals

    Directory of Open Access Journals (Sweden)

    Gehring, Klaus

    2014-02-01

    Full Text Available The efficacy of different ALS-inhibiting herbicides for the control of brome species (Bromus spp. was tested in three field trials in the year 2010 – 2012 in the region of North-West-Bavaria Franken. As a result of the trials the standard herbicide Attribut (Propoxycarbazone was confirmed for the control of brome. In case of infestation with brome and black grass the herbicide Broadway (Pyroxsulam offers a certain control of both problematic grass weeds. This illustrates the high dependency of sufficient brome control in winter cereals on the effectiveness of specific ALS-Inhibitor herbicides. Because of the high risk of herbicide resistance to ACCaseand ALS-inhibiting herbicides in brome, integrated weed management is essential for the sustainable control of brome in winter cereals, respectively winter wheat.

  16. Effect of Butachlor Herbicide on Earthworm Eisenia fetidaIts Histological Perspicuity

    International Nuclear Information System (INIS)

    Gobi, M.; Gunasekaran, P.

    2010-01-01

    With the advent of the Green Revolution, there has been a quantum leap in the use of synthetic herbicides and pesticides throughout the world to sustain high yielding crop varieties. Continuous use of these synthetic chemicals leads to loss of soil fertility and soil organisms. To explore the effect of exposure to commercial herbicide (Butachlor) on the life history parameters (biomass, clitellum development, and cocoon production) and the histological changes in the earthworm Eisenia fetida over 60 days, the dried cow dung was contaminated with 0.2575 mg/ kg -1 , 0.5150 mg/ kg -1 , and 2.5750 mg/ kg -1 of butachlor based on the LC 50 value, and a control was maintained. The mean earthworm biomass was found to be decreased with increasing herbicide concentration. Similarly, cocoon production was also reduced by the increasing herbicide concentration. A possible explanation is an increased demand for energy, needed for the regulation and detoxification of herbicide. All earthworms in the exposed group were found to have glandular cell enlargement and to be vacuolated

  17. Effect of Butachlor Herbicide on Earthworm Eisenia fetida—Its Histological Perspicuity

    Directory of Open Access Journals (Sweden)

    Muthukaruppan Gobi

    2010-01-01

    Full Text Available With the advent of the Green Revolution, there has been a quantum leap in the use of synthetic herbicides and pesticides throughout the world to sustain high yielding crop varieties. Continuous use of these synthetic chemicals leads to loss of soil fertility and soil organisms. To explore the effect of exposure to commercial herbicide (Butachlor on the life history parameters (biomass, clitellum development, and cocoon production and the histological changes in the earthworm Eisenia fetida over 60 days, the dried cow dung was contaminated with 0.2575 mg kg−1, 0.5150 mg kg−1, and 2.5750 mg kg−1 of butachlor based on the LC50 value, and a control was maintained. The mean earthworm biomass was found to be decreased with increasing herbicide concentration. Similarly, cocoon production was also reduced by the increasing herbicide concentration. A possible explanation is an increased demand for energy, needed for the regulation and detoxification of herbicide. All earthworms in the exposed group were found to have glandular cell enlargement and to be vacuolated.

  18. Selection of relatively exact reference genes for gene expression studies in goosegrass (Eleusine indica) under herbicide stress.

    Science.gov (United States)

    Chen, Jingchao; Huang, Zhaofeng; Huang, Hongjuan; Wei, Shouhui; Liu, Yan; Jiang, Cuilan; Zhang, Jie; Zhang, Chaoxian

    2017-04-21

    Goosegrass (Eleusine indica) is one of the most serious annual grassy weeds worldwide, and its evolved herbicide-resistant populations are more difficult to control. Quantitative real-time PCR (qPCR) is a common technique for investigating the resistance mechanism; however, there is as yet no report on the systematic selection of stable reference genes for goosegrass. This study proposed to test the expression stability of 9 candidate reference genes in goosegrass in different tissues and developmental stages and under stress from three types of herbicide. The results show that for different developmental stages and organs (control), eukaryotic initiation factor 4 A (eIF-4) is the most stable reference gene. Chloroplast acetolactate synthase (ALS) is the most stable reference gene under glyphosate stress. Under glufosinate stress, eIF-4 is the best reference gene. Ubiquitin-conjugating enzyme (UCE) is the most stable reference gene under quizalofop-p-ethyl stress. The gene eIF-4 is the recommended reference gene for goosegrass under the stress of all three herbicides. Moreover, pairwise analysis showed that seven reference genes were sufficient to normalize the gene expression data under three herbicides treatment. This study provides a list of reliable reference genes for transcript normalization in goosegrass, which will facilitate resistance mechanism studies in this weed species.

  19. Herbicide effects on the growth and photosynthetic efficiency of Cassiopea maremetens.

    Science.gov (United States)

    Rowen, David J; Templeman, Michelle A; Kingsford, Michael J

    2017-09-01

    Herbicides from agricultural run-off have been measured in coastal systems of the Great Barrier Reef over many years. Non-target herbicide exposure, especially photosystem II herbicides has the potential to affect seagrasses and other marine species. The symbiotic benthic jellyfish Cassiopea maremetens is present in tropical/sub-tropical estuarine and marine environments. Jellyfish (n = 8 per treatment) were exposed to four separate concentrations of agricultural formulations of diuron or hexazinone to determine their sensitivity and potential for recovery to pulsed herbicide exposure. Jellyfish growth, symbiont photosynthetic activity and zooxanthellae density were analysed for herbicide-induced changes for 7 days followed by a 7 day recovery period. Both the jellyfish and endosymbiont were more sensitive to diuron than hexazinone. The 7-day EC 50 for jellyfish growth was 0.35 μg L -1 for Diuron and 17.5 μg L -1 for Hexazinone respectively. Diuron exposure caused a significant decrease (p diuron and hexazinone caused significant decreases in photosynthetic efficiency (effective quantum yield) in all treatment concentrations (0.1 μg L -1 and above) and this effect continued in the post-exposure period. As this species is frequently found in near-shore environments, they may be particularly vulnerable to herbicide run-off. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Toxic pressure of herbicides on microalgae in Dutch estuarine and coastal waters

    Science.gov (United States)

    Booij, Petra; Sjollema, Sascha B.; van der Geest, Harm G.; Leonards, Pim E. G.; Lamoree, Marja H.; de Voogt, W. Pim; Admiraal, Wim; Laane, Remi W. P. M.; Vethaak, A. Dick

    2015-08-01

    For several decades now, there has been an increase in the sources and types of chemicals in estuarine and coastal waters as a consequence of anthropogenic activities. This has led to considerable concern about the effects of these chemicals on the marine food chain. The fact is that estuarine and coastal waters are the most productive ecosystems with high primary production by microalgae. The toxic pressure of specific phytotoxic chemicals now poses a major threat to these ecosystems. In a previous study, six herbicides (atrazine, diuron, irgarol, isoproturon, terbutryn and terbutylazine) were identified as the main contaminants affecting photosynthesis in marine microalgae. The purpose of this study is to investigate the toxic pressure of these herbicides in the Dutch estuarine and coastal waters in relation to the effective photosystem II efficiency (ΦPSII) in microalgae. Temporal and spatial variations in the concentrations of these herbicides were analyzed based on monitoring data. Additionally, a field study was carried out in which chemical analysis of water was performed and also a toxicity assessment using the Pulse Amplitude Modulation (PAM) fluorometry assay that measures ΦPSII. The toxic pressure on ΦPSII in microalgae has decreased with 55-82% from 2003 to 2012, with the Western Scheldt estuary showing the highest toxic pressure. By combining toxicity data from the PAM assay with chemical analysis of herbicide concentrations, we have identified diuron and terbutylazine as the main contributors to the toxic pressure on microalgae. Although direct effects are not expected, the toxic pressure is close to the 10% effect level in the PAM assay. A compliance check with the current environmental legislation of the European Union revealed that the quality standards are not sufficient to protect marine microalgae.

  1. Performance of Different Herbicides in Dry-Seeded Rice in Bangladesh

    Science.gov (United States)

    Ahmed, Sharif; Chauhan, Bhagirath Singh

    2014-01-01

    A field study was conducted in the boro season of 2011-12 and aman season of 2012 at Jessore, Bangladesh, to evaluate the performance of sequential applications of preemergence herbicides (oxadiargyl 80 g ai ha−1, pendimethalin 850 g ai ha−1, acetachlor + bensulfuranmethyl 240 g ai ha−1, and pyrazosulfuron 15 g ai ha−1) followed by a postemergence herbicide (ethoxysulfuron 18 g ai ha−1) in dry-seeded rice. All evaluated herbicides reduced weed density and biomass by a significant amount. Among herbicides, pendimethalin, oxadiargyl, and acetachlor + bensulfuranmethyl performed very well against grasses; pyrazosulfuron, on the other hand, was not effective. The best herbicide for broadleaf weed control was oxadiargyl (65–85% control); pendimethalin and acetachlor + bensulfuraonmethyl were not effective for this purpose. The best combination for weed control was oxadiargyl followed by ethoxysulfuron in the boro season and oxadiargyl followed by a one-time hand weeding in the aman season. Compared with the partial weedy plots (hand weeded once), oxadiargyl followed by ethoxysulfuron (4.13 t ha−1) provided a 62% higher yield in the boro season while oxadiargyl followed by a one-time hand weeding (4.08 t ha−1) provided a 37% higher yield in the aman season. PMID:24688423

  2. Cloud based, Open Source Software Application for Mitigating Herbicide Drift

    Science.gov (United States)

    Saraswat, D.; Scott, B.

    2014-12-01

    The spread of herbicide resistant weeds has resulted in the need for clearly marked fields. In response to this need, the University of Arkansas Cooperative Extension Service launched a program named Flag the Technology in 2011. This program uses color-coded flags as a visual alert of the herbicide trait technology within a farm field. The flag based program also serves to help avoid herbicide misapplication and prevent herbicide drift damage between fields with differing crop technologies. This program has been endorsed by Southern Weed Science Society of America and is attracting interest from across the USA, Canada, and Australia. However, flags have risk of misplacement or disappearance due to mischief or severe windstorms/thunderstorms, respectively. This presentation will discuss the design and development of a cloud-based, free application utilizing open-source technologies, called Flag the Technology Cloud (FTTCloud), for allowing agricultural stakeholders to color code their farm fields for indicating herbicide resistant technologies. The developed software utilizes modern web development practices, widely used design technologies, and basic geographic information system (GIS) based interactive interfaces for representing, color-coding, searching, and visualizing fields. This program has also been made compatible for a wider usability on different size devices- smartphones, tablets, desktops and laptops.

  3. A herbicide structure-activity analysis of the antimalarial lead compound MMV007978 against Arabidopsis thaliana.

    Science.gov (United States)

    Corral, Maxime G; Leroux, Julie; Tresch, Stefan; Newton, Trevor; Stubbs, Keith A; Mylne, Joshua S

    2018-07-01

    To fight herbicide-resistant weeds, new herbicides are needed; particularly ones with new modes of action. Building on the revelation that many antimalarial drugs are herbicidal, here we focus on the Medicines for Malaria Venture antimalarial lead compound MMV007978 that has herbicidal activity against the model plant Arabidopsis thaliana. Twenty-two variations of the lead compound thiophenyl motif revealed that change was tolerated provided ring size and charge were retained. MMV007978 was active against select monocot and dicot weeds, and physiological profiling indicated that its mode of action is related to germination and cell division. Of interest is the fact that the compound has a profile that is currently not found among known herbicides. We demonstrate that the antimalarial compound MMV007978 is also herbicidal and that exploiting lead compounds that are often understudied could lead to the identification of interesting herbicidal scaffolds. Further structural investigation of MMV007978 could provide improved herbicidal chemistries with a potential new mode of action. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  4. Effect of four herbicides on microbial population, soil organic matter ...

    African Journals Online (AJOL)

    The effect of four herbicides (atrazine, primeextra, paraquat and glyphosate) on soil microbial population, soil organic matter and dehydrogenase activity was assessed over a period of six weeks. Soil samples from cassava farms were treated with herbicides at company recommended rates. Soil dehydrogenase activity was ...

  5. Crops with target-site herbicide resistance for Orobanche and Striga control.

    Science.gov (United States)

    Gressel, Jonathan

    2009-05-01

    It is necessary to control root parasitic weeds before or as they attach to the crop. This can only be easily achieved chemically with herbicides that are systemic, or with herbicides that are active in soil. Long-term control can only be attained if the crops do not metabolise the herbicide, i.e. have target-site resistance. Such target-site resistances have allowed foliar applications of herbicides inhibiting enol-pyruvylshikimate phosphate synthase (EPSPS) (glyphosate), acetolactate synthase (ALS) (e.g. chlorsulfuron, imazapyr) and dihydropteroate synthase (asulam) for Orobanche control in experimental conditions with various crops. Large-scale use of imazapyr as a seed dressing of imidazolinone-resistant maize has been commercialised for Striga control. Crops with two target-site resistances will be more resilient to the evolution of resistance in the parasite, if well managed.

  6. Herbicides effect on the nitrogen fertilizer assimilation by sensitive plants

    International Nuclear Information System (INIS)

    Ladonin, V.F.; Samojlov, L.N.

    1976-01-01

    It has been established in studying the effect of herbicides on pea plants that the penetration of the preparations into the tissues of leaves and stems results in a slight increase of the rate of formation of dry substance in the leaves of the treated plants within 24 hours after treatment as compared with control, whereas in the last period of the analysis the herbicides strongly inhibit the formation of dry substance in leaves. The applied herbicide doses have resulted in drastic changes of the distribution of the plant-assimilated nitrogen between the protein and non-protein fractions in the leaves and stems of pea. When affected by the studied herbicides, the fertilizer nitrogen supply to the pea plants changes and the rate of the fertilizer nitrogen assimilation by the plants varies noticeably. The regularities of the fertilizer nitrogen inclusion in the protein and non-protein nitrogen compounds of the above-ground pea organs have been studied

  7. Plant Community Diversity After Herbicide Control of Spotted Knapweed

    OpenAIRE

    United States Department of Agriculture, Forest Service

    1992-01-01

    Herbicides were applied to four west-central Montana sites with light to moderate spotted knapweed (Centaurea maculosa Lam.) infestations. Althought knapweed suppression was high, 2 years after the spraying the communities were not converted to grass monocultures. No large declines in plant diversity were caused by the herbicides, and small depressions were probably transitory. By the third year, diversity had increased.

  8. Runoff of the herbicides triclopyr and glufosinate ammonium from oil palm plantation soil.

    Science.gov (United States)

    Tayeb, M A; Ismail, B S; Khairiatul-Mardiana, J

    2017-10-11

    This study focused on the residue detection of the herbicides triclopyr and glufosinate ammonium in the runoff losses from the Tasik Chini oil palm plantation area and the Tasik Chini Lake under natural rainfall conditions in the Malaysian tropical environment. Triclopyr and glufosinate ammonium are post-emergence herbicides. Both herbicides were foliar-sprayed on 0.5 ha of oil palm plantation plots, which were individualized by an uneven slope of 10-15%. Samples were collected at 1, 3, 7, 15, 30, 45, 60, 90, and 120 days after treatment. The concentrations of both herbicides quickly diminished from those in the analyzed sample by the time of collection. The highest residue levels found in the field surface leachate were 0.031 (single dosage, triclopyr), 0.041 (single dosage, glufosinate ammonium), 0.017 (double dosage, triclopyr), and 0.037 μg/kg (double dosage, glufosinate ammonium). The chromatographic peaks were observed at "0" day treatment (2 h after herbicide application). From the applied active ingredients, the triclopyr and glufosinate losses were 0.025 and 0.055%, respectively. The experimental results showed that both herbicides are less potent than other herbicides in polluting water systems because of their short persistence and strong adsorption onto soil clay particles.

  9. Transcript markers of herbicide stress in Arabidopsis and their cross-species extrapolation to Brassica

    Science.gov (United States)

    Low concentrations and short environmental persistence times of some herbicides make it difficult to develop analytical methods to detect herbicide residues in plants or soils. In contrast, genomics may provide tools to identify herbicide exposure to plants in field settings. Usi...

  10. Sarmentine, a natural herbicide from Piper species with multiple herbicide mechanisms of action

    Science.gov (United States)

    Sarmentine, 1-(1-pyrrolidinyl)-(2E,4E)-2,4-decadien-1-one, is a natural amide isolated from the fruits of Piper species. The compound has a number of interesting biological properties, including its broad-spectrum activity on weeds as a contact herbicide. Initial studies highlighted a similarity in ...

  11. Study of different herbicide molecules for the control of durum wheat weed

    Directory of Open Access Journals (Sweden)

    Michele Perniola

    2008-07-01

    Full Text Available In order to enhance the chances to rotate the herbicide molecules, the effectiveness of a new molecule, pinoxaden, was tested, comparing it with other herbicides used in wheat weed control. The trial was carried out comparing the following herbicide mixtures: 1 no weed control treatment; 2 Tribenuron Methyl (TM; 3 Clodinafop (C; 4 Tribenuron Methyl + Clodinafop (TM+C; 5 Pinoxaden + clodinafop + propargile (PCP; 6 Pinoxaden + clodinafop + propargile + Triasulfuron (PCP+T; 7 Pinoxaden + clodinafop + propargile + absolute Ioxinil and Mecoprop (PCP+IM. The new PCP+T herbicides mixture didn’t differ statistically from the traditional TMC treatment in terms of effectiveness, but the agronomic result of the new mixture was totally satisfactory, even taking into account that the marketing of this mixture is not aimed to compete with other existing herbicides but to widen the chance to rotate active principles in time and space, in order to control the onset of resistance phenomena.

  12. Study of different herbicide molecules for the control of durum wheat weed

    Directory of Open Access Journals (Sweden)

    Michele Perniola

    Full Text Available In order to enhance the chances to rotate the herbicide molecules, the effectiveness of a new molecule, pinoxaden, was tested, comparing it with other herbicides used in wheat weed control. The trial was carried out comparing the following herbicide mixtures: 1 no weed control treatment; 2 Tribenuron Methyl (TM; 3 Clodinafop (C; 4 Tribenuron Methyl + Clodinafop (TM+C; 5 Pinoxaden + clodinafop + propargile (PCP; 6 Pinoxaden + clodinafop + propargile + Triasulfuron (PCP+T; 7 Pinoxaden + clodinafop + propargile + absolute Ioxinil and Mecoprop (PCP+IM. The new PCP+T herbicides mixture didn’t differ statistically from the traditional TMC treatment in terms of effectiveness, but the agronomic result of the new mixture was totally satisfactory, even taking into account that the marketing of this mixture is not aimed to compete with other existing herbicides but to widen the chance to rotate active principles in time and space, in order to control the onset of resistance phenomena.

  13. Study of different herbicide molecules for the control of durum wheat weed

    Directory of Open Access Journals (Sweden)

    Vittorio Filì

    2011-02-01

    Full Text Available In order to enhance the chances to rotate the herbicide molecules, the effectiveness of a new molecule, pinoxaden, was tested, comparing it with other herbicides used in wheat weed control. The trial was carried out comparing the following herbicide mixtures: 1 no weed control treatment; 2 Tribenuron Methyl (TM; 3 Clodinafop (C; 4 Tribenuron Methyl + Clodinafop (TM+C; 5 Pinoxaden + clodinafop + propargile (PCP; 6 Pinoxaden + clodinafop + propargile + Triasulfuron (PCP+T; 7 Pinoxaden + clodinafop + propargile + absolute Ioxinil and Mecoprop (PCP+IM. The new PCP+T herbicides mixture didn’t differ statistically from the traditional TMC treatment in terms of effectiveness, but the agronomic result of the new mixture was totally satisfactory, even taking into account that the marketing of this mixture is not aimed to compete with other existing herbicides but to widen the chance to rotate active principles in time and space, in order to control the onset of resistance phenomena.

  14. Efficacy and economics of different herbicides in aerobic rice system ...

    African Journals Online (AJOL)

    Aerobic rice system, the most promising irrigation water saving rice production technology, is highly impeded by severe weed pressure. Weed control through the use of same herbicide causes development of herbicide resistant weed biotypes and serious problem in weed management. This study was aimed at finding out ...

  15. Delayed degradation in soil of foliar herbicides glyphosate and sulcotrione previously absorbed by plants: Consequences on herbicide fate and risk assessment

    OpenAIRE

    Doublet, Jeremy; Mamy, Laure; Barriuso Benito, Enrique

    2009-01-01

    Following application, pesticides can be intercepted and absorbed by weeds and/or crops. Plants containing pesticides residues may then reach the soil during the crop cycle or after harvest. However, the fate in soil of pesticides residues in plants is unknown. Two commonly used foliar herbicides, glyphosate and sulcotrione, 14C-labeled, were applied on leaves of oilseed rape and/or maize, translocation was studied, and then soil incubations of aerial parts of plants containing herbicides res...

  16. Weed emergence on long years’ not herbicide treated fields - duration of the after-effects

    Directory of Open Access Journals (Sweden)

    Schwarz, Jürgen

    2016-02-01

    Full Text Available In a long-term field trial plots were not treated with herbicides for 12 years (from 1996 to 2007. Two different crop rotations with 50% or 66% of cereals in the rotation were tested. At the same time in each crop rotation two different plant protection strategies were established. Since autumn 2007 the former controls not sprayed with any herbicide have been treated with herbicides. The crop rotation was unified. In that long-term field trial plots always treated with herbicides exist also. Weeds were counted by number and species before herbicide treatments. The comparison of these two different plots (treated and untreated shows what after-effect exists on the formerly untreated plots even after eight years. The emergence of weeds is still higher. Also the different crop rotations are still perceptible. For the plant protection strategy with the lower herbicide amounts the differences blur now.

  17. Influence of oligomeric herbicidal ionic liquids with MCPA and Dicamba anions on the community structure of autochthonic bacteria present in agricultural soil

    Energy Technology Data Exchange (ETDEWEB)

    Ławniczak, Ł., E-mail: lukasz.k.lawniczak@wp.pl [Department of Chemical Technology, Poznan University of Technology, 60-965 Poznan (Poland); Syguda, A., E-mail: Anna.Syguda@put.poznan.pl [Department of Chemical Technology, Poznan University of Technology, 60-965 Poznan (Poland); Borkowski, A., E-mail: a.borkowski@uw.edu.pl [Faculty of Geology, University of Warsaw, 02-089 Warsaw (Poland); Cyplik, P., E-mail: pcyplik@wp.pl [Department of Biotechnology and Food Microbiology, University of Life Sciences in Poznan, 60-627 Poznan (Poland); Marcinkowska, K., E-mail: k.marcinkowska@iorpib.poznan.pl [Institute of Plant Protection - National Research Institute, Poznan 60-318 (Poland); Wolko, Ł., E-mail: wolko@o2.pl [Department of Biochemistry and Biotechnology, Poznań University of Life Sciences in Poznan, 60-632 Poznan (Poland); Praczyk, T., E-mail: t.praczyk@iorpib.poznan.pl [Institute of Plant Protection - National Research Institute, Poznan 60-318 (Poland); Chrzanowski, Ł., E-mail: Lukasz.Chrzanowski@put.poznan.pl [Department of Chemical Technology, Poznan University of Technology, 60-965 Poznan (Poland); Pernak, J., E-mail: Juliusz.Pernak@put.poznan.pl [Department of Chemical Technology, Poznan University of Technology, 60-965 Poznan (Poland)

    2016-09-01

    The aim of this study was to evaluate the impact of selected herbicidal ionic liquids (HILs), which exhibit high efficacy in terms of weed control and low toxicity, but may be persistent due to limited biodegradability, on the community structure of autochthonic bacteria present in agricultural soil. Four different oligomeric HILs (with two types of cations and different ratio of herbicidal anions) were synthesized and characterized by employing {sup 1}H and {sup 13}C NMR. The results of biodegradation assay indicated that none of the tested HILs could be classified as readily biodegradable (biodegradation rate ranged from 0 to 7%). The conducted field studies confirmed that the herbicidal efficacy of the HILs was higher compared to the reference herbicide mixture by 10 to 30%, depending on the dose and weed species. After termination of field studies, the soil treated with the tested HILs was subjected to next generation sequencing in order to investigate the potential changes in the bacterial community structure. Proteobacteria was the dominant phylum in all studied samples. Treatment with the studied HILs resulted in an increase of Actinobacteria compared to the reference herbicidal mixture. Differenced among the studied HILs were generally associated with a significantly higher abundance of Bacteroidetes in case of 1-HIL-Dicamba 1/3 and Firmicutes in case of 2-HIL-Dicamba 1/3. - Highlights: • Impact of herbicidal ionic liquids on bacterial community structure was studied. • Oligomeric herbicidal ionic liquids were effective but not readily biodegradable. • Next generation sequencing was used to evaluate shifts in bacterial abundance. • Treatment during field trials resulted in changes at class and species level. • Use of herbicidal ionic liquids affects the structure of autochthonic soil bacteria.

  18. Influence of oligomeric herbicidal ionic liquids with MCPA and Dicamba anions on the community structure of autochthonic bacteria present in agricultural soil

    International Nuclear Information System (INIS)

    Ławniczak, Ł.; Syguda, A.; Borkowski, A.; Cyplik, P.; Marcinkowska, K.; Wolko, Ł.; Praczyk, T.; Chrzanowski, Ł.; Pernak, J.

    2016-01-01

    The aim of this study was to evaluate the impact of selected herbicidal ionic liquids (HILs), which exhibit high efficacy in terms of weed control and low toxicity, but may be persistent due to limited biodegradability, on the community structure of autochthonic bacteria present in agricultural soil. Four different oligomeric HILs (with two types of cations and different ratio of herbicidal anions) were synthesized and characterized by employing "1H and "1"3C NMR. The results of biodegradation assay indicated that none of the tested HILs could be classified as readily biodegradable (biodegradation rate ranged from 0 to 7%). The conducted field studies confirmed that the herbicidal efficacy of the HILs was higher compared to the reference herbicide mixture by 10 to 30%, depending on the dose and weed species. After termination of field studies, the soil treated with the tested HILs was subjected to next generation sequencing in order to investigate the potential changes in the bacterial community structure. Proteobacteria was the dominant phylum in all studied samples. Treatment with the studied HILs resulted in an increase of Actinobacteria compared to the reference herbicidal mixture. Differenced among the studied HILs were generally associated with a significantly higher abundance of Bacteroidetes in case of 1-HIL-Dicamba 1/3 and Firmicutes in case of 2-HIL-Dicamba 1/3. - Highlights: • Impact of herbicidal ionic liquids on bacterial community structure was studied. • Oligomeric herbicidal ionic liquids were effective but not readily biodegradable. • Next generation sequencing was used to evaluate shifts in bacterial abundance. • Treatment during field trials resulted in changes at class and species level. • Use of herbicidal ionic liquids affects the structure of autochthonic soil bacteria.

  19. Cross-resistance to herbicides in annual ryegrass (lolium rigidum)

    International Nuclear Information System (INIS)

    Christopher, J.T.; Powles, S.B.; Liljegren, D.R.; Holtum, J.A.M.

    1991-01-01

    Lolium rigidum Gaud. biotype SLR31 is resistant to the herbicide diclofop-methyl and cross-resistant to several sulfonylurea herbicides. Wheat and the cross-resistant ryegrass exhibit similar patterns of resistance to sulfonylurea herbicides, suggesting that the mechanism of resistance may be similar. Cross-resistant ryegrass is also resistant to the wheat-selective imidazolinone herbicide imazamethabenz. The cross-resistant biotype SLR31 metabolized [phenyl-U- 14 C]chlorsulfuron at a faster rate than a biotype which is susceptible to both diclofop-methyl and chlorsulfuron. A third biotype which is resistant to diclofop-methyl but not to chlorsulfuron metabolized chlorsulfuron at the same rate as the susceptible biotype. The increased metabolism of chlorsulfuron observed in the cross-resistant biotype is, therefore, correlated with the patterns of resistance observed in these L. rigidum biotypes. During high performance liquid chromatography analysis the major metabolite of chlorsulfuron in both susceptible and cross-resistant ryegrass coeluted with the major metabolite produced in wheat. The major product is clearly different from the major product in the tolerant dicot species, flax (Linium usitatissimum). The elution pattern of metabolites of chlorsulfuron was the same for both the susceptible and cross-resistant ryegrass but the cross-resistant ryegrass metabolized chlorsulfuron more rapidly. The investigation of the dose response to sulfonylurea herbicides at the whole plant level and the study of the metabolism of chlorsulfuron provide two independent sets of data which both suggest that the resistance to chlorsulfuron in cross-resistant ryegrass biotype SLR31 involves a wheat-like detoxification system

  20. Sensitivity to Glufosinate-ammonium herbicide in plants of Glycine max cultivar INCASoy-27

    Directory of Open Access Journals (Sweden)

    Jorge Liusvert Pérez Pérez

    2014-10-01

    Full Text Available This work had as objective to define the minimum concentration of herbicide Glufosinate-ammonium that inhibits the growth of the soybean plants in greenhouse condition. The soybean plants were tried with different concentrations of herbicide (5; 10; 1 5; 20; 25; 30 mg L-1 and a control without herbicide. The increase of the concentrations increased the necrosis of the plants and the use of 20 mgL-1 Glufosinato de amonio herbicide was sufficient to inhibit the plant growth. These results allow using this method of selection in programs of genetic improvement and selection of transgenic soybean plants

  1. Herbicides in environmental pollution

    International Nuclear Information System (INIS)

    Qureshi, M.J.; Haq, A.; Maqbool, U.

    1997-01-01

    Herbicide effectiveness on the most pernicious weeds including cyperus rotundus may be limited because spray droplets are not well retained or because penetration and/or translocation is restricted. As a result, chemical pollute the environment and is hazardous to the human health. Monitoring studies ad undertaken to check that the flate and environmental effects of herbicides under field condition are consistent with prediction. Studies on /sup 14/-glyphosate in Cyperus rotundus using radiotracer methods indicated that out of five formulations studies formulation No.3 was the best from penetration point of view of the chemical whereas formulation No. 4 with the high dose showed effective retention and uniform translocation of the chemical after five days of the treatment. Cuticular penetration and translocation of glyphosate in the formulations with or without surfactants have also been studied in C. rotundus. It is also concluded that synperonic surfactants, diesel oil or glycerol did not influence the translocation of glyphosate within the weed. The translocation mainly occurred down swards and accumulated in the plant parts located below the treated zone. (author)

  2. Screening of photosynthetic pigments for herbicidal activity with a new computational molecular approach.

    Science.gov (United States)

    Krishnaraj, R Navanietha; Chandran, Saravanan; Pal, Parimal; Berchmans, Sheela

    2013-12-01

    There is an immense interest among the researchers to identify new herbicides which are effective against the herbs without affecting the environment. In this work, photosynthetic pigments are used as the ligands to predict their herbicidal activity. The enzyme 5-enolpyruvylshikimate-3-phosphate (EPSP) synthase is a good target for the herbicides. Homology modeling of the target enzyme is done using Modeler 9.11 and the model is validated. Docking studies were performed with AutoDock Vina algorithm to predict the binding of the natural pigments such as β-carotene, chlorophyll a, chlorophyll b, phycoerythrin and phycocyanin to the target. β-carotene, phycoerythrin and phycocyanin have higher binding energies indicating the herbicidal activity of the pigments. This work reports a procedure to screen herbicides with computational molecular approach. These pigments will serve as potential bioherbicides in the future.

  3. METHOD DEVELOPMENT FOR ALACHLOR ESA AND OTHER ACENTANILIDE HERBICIDE DEGRADATION PRODUCTS

    Science.gov (United States)

    Introduction: Acetanilide herbicides are frequently applied in the U.S. on crops (corn, soybeans, popcorn, etc.) to control broadleaf and annual weeds. The acetanilide and acetamide herbicides currently registered for use in the U.S. are alachlor, acetochlor, metolachlor, propa...

  4. Potential environmental impacts associated with large-scale herbicide-tolerant GM oilseed rape crops

    Directory of Open Access Journals (Sweden)

    Fellous Marc

    2004-07-01

    Full Text Available The Biomolecular Engineering Commission considers that the knowledge acquired in the last three years has provided significant information in reply to the points raised in its review dated 16 February 2001. The Commission has studied the potential environmental impacts associated with large-scale herbicidetolerantGMoilseed rape crops, making a distinction between direct and indirect impacts. Direct impacts stem from the intrinsic properties of herbicide-tolerant GM oilseed rape crops whereas indirect impacts result from practices associated with the farming of these crops. The Commission considers that, in the absence of the use of the herbicide in question in and outside of farmed land, there is no direct environmental risk (development of invasive crops per se associated with the presence of a herbicide-tolerance gene in oilseed rape (or related species. Nevertheless, since the interest of these tolerant crops lies in the use of the herbicide in question, indirect effects, to varying extents, have been identified and must be taken into account: the use of the herbicide in question, applied to agricultural fields containing the herbicide-tolerant crop could lead to an increase in oilseed rape volunteer populations in crop rotations; the selective pressure exerted by non-specific herbicides (to which the crops have been rendered tolerant may be very high in cases of continuous and uncontrolled use of these herbicides, and may result in the persistence of rare events such as the reproduction of fertile interspecies hybrids; the change to the range of herbicides used should be conveyed by more effective weed control and, like any change in farming practices, induce indirect effects on the agri-ecosystem, particularly in terms of changes to weeds and the associated animal life. Accordingly, the Biomolecular Engineering Commission recommends a global approach in terms of the large-scale farming of herbicide-tolerant crops that: accounts for the

  5. Herbicide contamination and the potential impact to seagrass meadows in Hervey Bay, Queensland, Australia.

    Science.gov (United States)

    McMahon, Kathryn; Bengtson Nash, Susan; Eaglesham, Geoff; Müller, Jochen F; Duke, Norman C; Winderlich, Steve

    2005-01-01

    Low concentrations of herbicides (up to 70 ng l(-1)), chiefly diuron (up to 50 ng l(-1)) were detected in surface waters associated with inter-tidal seagrass meadows of Zostera muelleri in Hervey Bay, south-east Queensland, Australia. Diuron and atrazine (up to 1.1 ng g(-1) dry weight of sediment) were detected in the sediments of these seagrass meadows. Concentration of the herbicides diuron, simazine and atrazine increased in surface waters associated with seagrass meadows during moderate river flow events indicating herbicides were washed from the catchment to the marine environment. Maximum herbicide concentration (sum of eight herbicides) in the Mary River during a moderate river flow event was 4260 ng l(-1). No photosynthetic stress was detected in seagrass in this study during low river flow. However, with moderate river flow events, nearshore seagrasses are at risk of being exposed to concentrations of herbicides that are known to inhibit photosynthesis.

  6. Downy Brome (Bromus tectorum L. and Broadleaf Weed Control in Winter Wheat with Acetolactate Synthase-Inhibiting Herbicides

    Directory of Open Access Journals (Sweden)

    Patrick W. Geier

    2013-04-01

    Full Text Available A study was conducted for three seasons in northwest Kansas, USA to evaluate acetolactate synthase (ALS-inhibiting herbicides for downy brome (Bromus tectorum L. and winter annual broadleaf weed control in winter wheat. Herbicides included pyroxsulam at 18.4 g ai ha−1, propoxycarbazone-Na at 44 g ai ha−1, premixed propoxycarbazone-Na & mesosulfuron-methyl at 27 g ai ha−1, and sulfosulfuron at 35 g ai ha−1. The herbicides were applied postemergence in fall and spring seasons. Averaged over time of application, no herbicide controlled downy brome more than 78% in any year. When downy brome densities were high, control was less than 60%. Pyroxsulam controlled downy brome greater than or similar to other herbicides tested. Flixweed (Descurainia sophia L., blue mustard [Chorispora tenella (Pallas DC.], and henbit (Lamium amplexicaule L. control did not differ among herbicide treatments. All herbicides tested controlled flixweed and blue mustard at least 87% and 94%, respectively. However, none of the herbicides controlled henbit more than 73%. Fall herbicide applications improved weed control compared to early spring applications; improvement ranged from 3% to 31% depending on the weed species. Henbit control was greatly decreased by delaying herbicide applications until spring compared to fall applications (49% vs. 80% control. Herbicide injury was observed in only two instances. The injury was ≤13% with no difference between herbicides and the injury did not impact final plant height or grain yield.

  7. Weed control changes and genetically modified herbicide tolerant crops in the USA 1996-2012.

    Science.gov (United States)

    Brookes, Graham

    2014-01-01

    Crops that have been genetically modified (GM) to be tolerant to herbicides have been widely grown in the USA since 1996. The rapid and widespread adoption of this technology reflects the important economic and environmental benefits that farmers have derived from its use (equal to $21.7 billion additional farm income and a 225 million kg reduction in herbicide active ingredient use 1996-2012). During this time, weed control practices in these crops relative to the 'conventional alternative' have evolved to reflect experience of using the technology, the challenges that have arisen and the increasing focus in recent years on developing sustainable production systems. This paper examines the evidence on the changing nature of herbicides used with these crops and in particular how farmers addressed the challenge of weed resistance. The evidence shows that use of the technology has resulted in a net reduction in both the amount of herbicide used and the associated environmental impact, as measured by the EIQ indicator when compared to what can reasonably be expected if the area planted to GM HT crops reverted to conventional production methods. It also facilitated many farmers being able to derive the economic and environmental benefits associated with switching from a plough-based to a no tillage or conservation tillage production system. In terms of herbicide use, the technology has also contributed to a change the profile of herbicides used. A broad range of, mostly selective herbicides has been replaced by one or 2 broad-spectrum herbicides (mostly glyphosate) used in conjunction with one or 2 other (complementary) herbicides. Since the mid-2000s, the average amount of herbicide applied and the associated environmental load, as measured by the EIQ indicator, have increased on both GM HT and conventional crops. A primary reason for these changes has been increasing incidence of weed species developing populations resistant to herbicides and increased awareness of

  8. Lawn Weed Control with Herbicides. Home and Garden Bulletin No. 123.

    Science.gov (United States)

    Agricultural Research Service (USDA), Washington, DC.

    Information and diagrams are given for identification and treatment of weed grasses and broadleaf weeds. Herbicides are suggested for use against each weed and instructions are given for proper application. Information is given for buying herbicides, and applying sprays and cleaning sprayers. (BB)

  9. Use of image analysis to assess color response on plants caused by herbicide application

    DEFF Research Database (Denmark)

    Asif, Ali; Streibig, Jens Carl; Duus, Joachim

    2013-01-01

    by herbicides. The range of color components of green and nongreen parts of the plants and soil in Hue, Saturation, and Brightness (HSB) color space were used for segmentation. The canopy color changes of barley, winter wheat, red fescue, and brome fescue caused by doses of a glyphosate and diflufenican mixture...... for the green and nongreen parts of the plants and soil were different. The relative potencies were not significantly different from one, indicating that visual and image analysis estimations were about the same. The comparison results suggest that image analysis can be used to assess color changes of plants......In herbicide-selectivity experiments, response can be measured by visual inspection, stand counts, plant mortality, and biomass. Some response types are relative to nontreated control. We developed a nondestructive method by analyzing digital color images to quantify color changes in leaves caused...

  10. Residual herbicide study on selected Hanford Site roadsides

    Energy Technology Data Exchange (ETDEWEB)

    Smith, J.L.; Kemp, C.J.; Sackschewsky, M.R.

    1993-08-01

    Westinghouse Hanford Company routinely treats roadsides with herbicides to control undesirable plant growth. An experiment was conducted to test perennial grass germination in soils adjacent to roadways of the Hanford Site. The primary variable was the distance from the roadside. A simple germination test was executed in a controlled-environment chamber to determine the residual effects of these applications. As expected, the greatest herbicide activity was found directly adjacent to the roadway, approximately 0 to 20 ft (0 to 6.3 m) from the roadway.

  11. The role of herbicides in the erosion of salt marshes in eastern England

    International Nuclear Information System (INIS)

    Mason, C.F.; Underwood, G.J.C.; Baker, N.R.; Davey, P.A.; Davidson, I.; Hanlon, A.; Long, S.P.; Oxborough, K.; Paterson, D.M.; Watson, A.

    2003-01-01

    Herbicide run-off stresses saltmarsh diatoms and higher plants and may increase erosion. - Laboratory studies and field trials were conducted to investigate the role of herbicides on saltmarsh vegetation, and their possible significance to saltmarsh erosion. Herbicide concentrations within the ranges present in the aquatic environment were found to reduce the photosynthetic efficiency and growth of both epipelic diatoms and higher saltmarsh plants in the laboratory and in situ. The addition of sublethal concentrations of herbicides resulted in decreased growth rates and photosynthetic efficiency of diatoms and photosynthetic efficiency of higher plants. Sediment stability also decreased due to a reduction in diatom EPS production. There was qualitative evidence that diatoms migrated deeper into the sediment when the surface was exposed to simazine, reducing surface sediment stability by the absence of a cohesive biofilm. Sediment loads on leaves severely reduced photosynthesis in Limonium vulgare. This, coupled with reduced carbon assimilation from the effects of herbicides, could have large negative consequences for plant productivity and over winter survival of saltmarsh plants. The data support the hypothesis that sublethal herbicide concentrations could be playing a role in the increased erosion of salt marshes that has occurred over the past 40 years

  12. Electrochemical degradation and mineralization of glyphosate herbicide.

    Science.gov (United States)

    Tran, Nam; Drogui, Patrick; Doan, Tuan Linh; Le, Thanh Son; Nguyen, Hoai Chau

    2017-12-01

    The presence of herbicide is a concern for both human and ecological health. Glyphosate is occasionally detected as water contaminants in agriculture areas where the herbicide is used extensively. The removal of glyphosate in synthetic solution using advanced oxidation process is a possible approach for remediation of contaminated waters. The ability of electrochemical oxidation for the degradation and mineralization of glyphosate herbicide was investigated using Ti/PbO 2 anode. The current intensity, treatment time, initial concentration and pH of solution are the influent parameters on the degradation efficiency. An experimental design methodology was applied to determine the optimal condition (in terms of cost/effectiveness) based on response surface methodology. Glyphosate concentration (C 0  = 16.9 mg L -1 ) decreased up to 0.6 mg L -1 when the optimal conditions were imposed (current intensity of 4.77 A and treatment time of 173 min). The removal efficiencies of glyphosate and total organic carbon were 95 ± 16% and 90.31%, respectively. This work demonstrates that electrochemical oxidation is a promising process for degradation and mineralization of glyphosate.

  13. Dicotyledon Weed Quantification Algorithm for Selective Herbicide Application in Maize Crops

    DEFF Research Database (Denmark)

    Laursen, Morten Stigaard; Nyholm Jørgensen, Rasmus; Midtiby, Henrik Skov

    2016-01-01

    The stricter legislation within the European Union for the regulation of herbicides that are prone to leaching causes a greater economic burden on the agricultural industry through taxation. Owing to the increased economic burden, research in reducing herbicide usage has been prompted. High-resol...

  14. Are herbicide-resistant crops the answer to controlling Cuscuta?

    Science.gov (United States)

    Nadler-Hassar, Talia; Shaner, Dale L; Nissen, Scott; Westra, Phill; Rubin, Baruch

    2009-07-01

    Herbicide-resistant crop technology could provide new management strategies for the control of parasitic plants. Three herbicide-resistant oilseed rape (Brassica napus L.) genotypes were used to examine the response of attached Cuscuta campestris Yuncker to glyphosate, imazamox and glufosinate. Cuscata campestris was allowed to establish on all oilseed rape genotypes before herbicides were applied. Unattached seedlings of C. campestris, C. subinclusa Durand & Hilg. and C. gronovii Willd. were resistant to imazamox and glyphosate and sensitive to glufosinate, indicating that resistance initially discovered in C. campestris is universal to all Cuscuta species. Glufosinate applied to C. campestris attached to glufosinate-resistant oilseed rape had little impact on the parasite, while imazamox completely inhibited C. campestris growth on the imidazolinone-resistant host. The growth of C. campestris on glyphosate-resistant host was initially inhibited by glyphosate, but the parasite recovered and resumed growth within 3-4 weeks. The ability of C. campestris to recover was related to the quality of interaction between the host and parasite and to the resistance mechanism of the host. The parasite was less likely to recover when it had low compatibility with the host, indicating that parasite-resistant crops coupled with herbicide resistance could be highly effective in controlling Cuscuta. (c) 2009 by John Wiley & Sons, Ltd.

  15. Effects of the herbicide imazapyr on juvenile Oregon spotted frogs

    Science.gov (United States)

    Yahnke, Amy E.; Grue, Christian E.; Hayes, Marc P.; Troiano, Alexandra T.

    2013-01-01

    Conflict between native amphibians and aquatic weed management in the Pacific Northwest is rarely recognized because most native stillwater-breeding amphibian species move upland during summer, when herbicide application to control weeds in aquatic habitats typically occurs. However, aquatic weed management may pose a risk for aquatic species present in wetlands through the summer, such as the Oregon spotted frog (OSF, Rana pretiosa), a state endangered species in Washington. Acute toxicity of herbicides used to control aquatic weeds tends to be low, but the direct effects of herbicide tank mixes on OSFs have remained unexamined. We exposed juvenile OSFs to tank mixes of the herbicide imazapyr, a surfactant, and a marker dye in a 96-h static-renewal test. The tank mix was chosen because of its low toxicity to fish and its effectiveness in aquatic weed control. Concentrations were those associated with low-volume (3.5 L/ha) and high-volume (7.0 L/ha) applications of imazapyr and a clean-water control. Following exposure, frogs were reared for two months in clean water to identify potential latent effects on growth. Endpoints evaluated included feeding behavior, growth, and body and liver condition indices. We recorded no mortalities and found no significant differences for any end point between the herbicide-exposed and clean-water control frogs. The results suggest that imazapyr use in wetland restoration poses a low risk of direct toxic effects on juvenile OSFs.

  16. The removal of chlorinated organic herbicide in water by gamma-irradiation

    International Nuclear Information System (INIS)

    Dilek Solpan; Murat Torun

    2012-01-01

    In this study, the radiation-induced degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) herbicide in aqueous solution was studied under various conditions as a function of irradiation dose in the absence and presence of hydrogen peroxide. The obtained data confirmed that largest yield of radiolytic degradation is obtained in oxidation processes/ionizing radiation, where oxidation is carried out with hydroxyl radicals. For complete degradation of 50 ppm 2,4-D, a required dose was lower in the presence of hydrogen peroxide. The formed major toxic phenolic intermediates were 2,4-dichlorophenol (2,4-DCP) and 4-chlorophenol (4-CP). The chemical analysis of the 2,4-D and the intermediates resulted from the radiolytic degradation were performed using a gas chromatography associated to mass spectrometry (GC-MS) with ion trap detector (ITD) and ion chromatography (IC). The formation of chlorophenols in addition to chloride, formaldehyde and carboxylic acids was studied as a function of absorbed dose. (author)

  17. Characterization of acetanilide herbicides degrading bacteria isolated from tea garden soil.

    Science.gov (United States)

    Wang, Yei-Shung; Liu, Jian-Chang; Chen, Wen-Ching; Yen, Jui-Hung

    2008-04-01

    Three different green manures were added to the tea garden soils separately and incubated for 40 days. After, incubation, acetanilide herbicides alachlor and metolachlor were spiked into the soils, separately, followed by the isolation of bacteria in each soil at designed intervals. Several bacterial strains were isolated from the soils and identified as Bacillus silvestris, B. niacini, B. pseudomycoides, B. cereus, B. thuringiensis, B. simplex, B. megaterium, and two other Bacillus sp. (Met1 and Met2). Three unique strains with different morphologies were chosen for further investigation. They were B. megaterium, B. niacini, and B. silvestris. The isolated herbicide-degrading bacteria showed optimal performance among three incubation temperatures of 30 degrees C and the best activity in the 10 to 50 microg/ml concentration of the herbicide. Each bacterial strain was able to degrade more than one kind of test herbicides. After incubation for 119 days, B. cereus showed the highest activity to degrade alachlor and propachlor, and B. thuringiensis to degrade metolachlor.

  18. Overexpression of a specific soybean GmGSTU4 isoenzyme improves diphenyl ether and chloroacetanilide herbicide tolerance of transgenic tobacco plants.

    Science.gov (United States)

    Benekos, Kostantinos; Kissoudis, Christos; Nianiou-Obeidat, Irini; Labrou, Nikolaos; Madesis, Panagiotis; Kalamaki, Mary; Makris, Antonis; Tsaftaris, Athanasios

    2010-10-01

    Plant glutathione transferases (GSTs) superfamily consists of multifunctional enzymes and forms a major part of the plants herbicide detoxification enzyme network. The tau class GST isoenzyme GmGSTU4 from soybean, exhibits catalytic activity towards the diphenyl ether herbicide fluorodifen and is active as glutathione-dependent peroxidase (GPOX). Transgenic tobacco plants of Basmas cultivar were generated via Agrobacterium transformation. The aim was to evaluate in planta, GmGSTU4's role in detoxifying the diphenyl ether herbicides fluorodifen and oxyfluorfen and the chloroacetanilides alachlor and metolachlor. Transgenic tobacco plants were verified by PCR and Southern blot hybridization and expression of GmGSTU4 was determined by RT-PCR. Leaf extracts from transgenic plants showed moderate increase in GST activity towards CDNB and a significant increase towards fluorodifen and alachlor, and at the same time an increased GPOX activity towards cumene hydroperoxide. GmGSTU4 overexpressing plants when treated with 200 μM fluorodifen or oxyfluorfen exhibited reduced relative electrolyte leakage compared to wild type plants. Moreover all GmGSTU4 overexpressing lines exhibited significantly increased tolerance towards alachlor when grown in vitro at 7.5 mg/L alachlor compared to wild type plants. No significant increased tolerance was observed to metolachlor. These results confirm the contribution of this particular GmGSTU4 isoenzyme from soybean in the detoxification of fluorodifen and alachlor, and provide the basis towards the development of transgenic plants with improved phytoremediation capabilities for future use in environmental cleanup of herbicides. Copyright © 2010 Elsevier B.V. All rights reserved.

  19. Is hormesis an underestimated factor in the development of herbicide resistance?

    Directory of Open Access Journals (Sweden)

    Belz, Regina G.

    2014-02-01

    Full Text Available The growing impact of herbicide resistant weeds increasingly affects weed management and the delay of resistance evolution has become a major task of chemical weed control. Hormesis and, thus, the phenomenon that low doses of herbicides can boost weed growth could be of importance in this regard since the recommended field rate may represent a low dose for weeds that have evolved resistance to the applied herbicide and, thus, a potential hormetic dose. Applying the field rate may thus not only directly select resistant biotypes, it may also indirectly promote the success and spread of resistant biotypes via hormesis. Nevertheless, hormetic effects in resistant weeds are hitherto merely randomly observed and, thus, a clear quantitative basis to judge the significance of hormesis for resistance evolution is lacking. Therefore, this study aimed at quantifying the degree and frequency of herbicide hormesis in sensitive and resistant weed species in order to provide a first indication of whether the phenomenon deserves consideration as a potential factor contributing to the development of herbicide resistance. In germination assays complete dose-response experiments were conducted with sensitive and resistant biotypes of Matricaria inodora (ALS-target-site resistant; treated with iodosulfuron-methyl-sodium/mesosulfuron-methyl, Eleusine indica (glyphosateresistant; treated with glyphosate, and Chenopodium album (triazine/triazinone-target-site resistant; treated with terbuthylazine. After 10 days of cultivation under controlled conditions plant growth was analyzed by measuring shoot/root length and mass. Results indicated that herbicide hormesis occurred on average with a total frequency of 29% in sensitive/resistant biotypes with an average growth increase of 53% occurring typically within a dose zone exceeding 350fold. Hormetic effects occurred, however, very variable and only for specific endpoints and not plant growth in general. If such a

  20. Glyphosate herbicide affects belowground interactions between earthworms and symbiotic mycorrhizal fungi in a model ecosystem

    Science.gov (United States)

    Zaller, Johann G.; Heigl, Florian; Ruess, Liliane; Grabmaier, Andrea

    2014-01-01

    Herbicides containing glyphosate are widely used in agriculture and private gardens, however, surprisingly little is known on potential side effects on non-target soil organisms. In a greenhouse experiment with white clover we investigated, to what extent a globally-used glyphosate herbicide affects interactions between essential soil organisms such as earthworms and arbuscular mycorrhizal fungi (AMF). We found that herbicides significantly decreased root mycorrhization, soil AMF spore biomass, vesicles and propagules. Herbicide application and earthworms increased soil hyphal biomass and tended to reduce soil water infiltration after a simulated heavy rainfall. Herbicide application in interaction with AMF led to slightly heavier but less active earthworms. Leaching of glyphosate after a simulated rainfall was substantial and altered by earthworms and AMF. These sizeable changes provide impetus for more general attention to side-effects of glyphosate-based herbicides on key soil organisms and their associated ecosystem services. PMID:25005713

  1. Effects of the Atrazine herbicide over the diazotrophic microorganisms associated with corn in a Saldana soil (Tolima)

    International Nuclear Information System (INIS)

    Ordonez, Alba R; Lozano de Yunda, A; Fuentes, C

    1999-01-01

    In this study, it was evaluated, at greenhouse in soil pots, the effect of the herbicide atrazine in different dose (corresponding to o, 0.75, 1.5 and 3.0 kg of soil hectare) over time (15, 30, 45, 60 and 90 days after the application) on the diazotrophic micro-organisms associated with rhizosphere soil and root of a corn cultivation in a clay loam soil of Saldana - Tolima. It was determined the population of diazotrophic microorganisms in soil by the most probable number technique; also it was observed the characteristic growth in the specific cultivation semisolid Nfb-malic acid medium and was evaluated the nitrogenase activity by means of the acetylene reduction technique. Of the same form, it was observed the characteristic growth and it was evaluated the nitrogenase activity of direct fragment sowings of root in the Nfb-malic acid medium. The 60.8% of soil isolates presented characteristic cultural growth in the form of whitish pellicle under the surface of the medium. in the root 83.3% showed this type of growth. The population of diazotrophic microorganisms of soil did not present significant differences (α = 0.05) between treatments neither over time the nitrogenase activity of soil dilutions demonstrated that there is no a significant effect (α = 0.05) of the treatments (dose) but if there is significant effect of the time. The highest values were presented to 45 days of application of the herbicide, with the application of the highest dose. the nitrogenase activity in the root to what is long of the time was different from rhizosphere soil. The treatment without application of atrazine presented greater values to what is long of the time, however, also in this case were not presented significant differences (α = 0.05) between the treatments (dose) neither to what is long of the time. For so much, as a conclusion, they were not presented effects on the population and the nitrogenase activity of the diazotrophic microorganisms until 90 days of after the

  2. Plant reproduction is altered by simulated herbicide drift to constructed plant communities

    Science.gov (United States)

    Herbicide drift may have unintended impacts on native vegetation, adversely affecting structure and function of plant communities. However, these potential effects have been rarely studied or quantified. To determine potential ecological effects of herbicide drift, we construct...

  3. Contribution of transformation products towards the total herbicide toxicity to tropical marine organisms.

    Science.gov (United States)

    Mercurio, Philip; Eaglesham, Geoff; Parks, Stephen; Kenway, Matt; Beltran, Victor; Flores, Florita; Mueller, Jochen F; Negri, Andrew P

    2018-03-19

    The toxicity of herbicide degradation (transformation) products is rarely taken into account, even though these are commonly detected in the marine environment, sometimes at concentrations higher than the parent compounds. Here we assessed the potential contribution of toxicity by transformation products of five photosystem II herbicides to coral symbionts (Symbiodinium sp.), the green algae Dunaliella sp., and prawn (Penaeus monodon) larvae. Concentration-dependent inhibition of photosynthetic efficiency (∆F/F m ') was observed for all herbicides in both microalgal species. The toxicity of solutions of aged diuron solutions containing transformation products to Symbiodinium sp. and Dunaliella sp. was greater than could be explained by the concentrations of diuron measured, indicating transformation products contributed to the inhibition of ∆F/F m '. However, the toxicity of aged atrazine, simazine, hexazinone, and ametryn solutions could be explained by the concentration of parent herbicide, indicating no contribution by transformation products. Prawn larval metamorphosis was not sensitive to the herbicides, but preliminary results indicated some toxicity of the transformation products of atrazine and diuron. Risk assessments should take into account the contribution of herbicide transformation products; however, further studies are clearly needed to test the toxicity of a far wider range of transformation products to a representative diversity of relevant taxa.

  4. In-field frequencies and characteristics of oilseed rape with double herbicide resistance.

    Science.gov (United States)

    Dietz-Pfeilstetter, Antje; Zwerger, Peter

    2009-01-01

    When growing different transgenic herbicide-resistant oilseed rape cultivars side by side, seeds with multiple herbicide resistance can arise, possibly causing problems for the management of volunteer plants. Large-scale field experiments were performed in the years 1999/2000 and 2000/2001 in order to investigate the frequencies and the consequences of the transfer of herbicide resistance genes from transgenic oilseed rape to cultivars grown on neighboring agricultural fields. Transgenic oilseed rape with resistance to glufosinate-ammonium (LibertyLink, LL) and with glyphosate resistance (RoundupReady, RR), respectively, was sown in adjacent 0.5 ha plots, surrounded by about 8 ha non-transgenic oilseed rape. The plots and the field were either in direct contact (0.5 m gap width) or they were separated by 10 m of fallow land. Seed samples taken during harvest in the transgenic plots at different distances were investigated for progeny with resistance to the respective other herbicide. It was found that outcrossing frequencies were reduced to different extents by a 10 m isolation distance. In addition to pollen-mediated transgene flow as a result of outcrossing, we found considerable seed-mediated gene flow by adventitious dispersal of transgenic seeds through the harvesting machine. Volunteer plants with double herbicide resistance emerging in the transgenic plots after harvest were selected by suitable applications of the complementary herbicides Basta and Roundup Ultra. In both years, double-resistant volunteers were largely restricted to the inner edges of the plots. Expression analysis under controlled laboratory conditions of double-resistant plants generated by manual crosses revealed stability of transgene expression even at elevated temperatures. Greenhouse tests with double-resistant oilseed rape plants gave no indication that the sensitivity to a range of different herbicides is changed as compared to non-transgenic oilseed rape.

  5. Eucalyptus ESTs corresponding to the protoporphyrinogen IX oxidase enzyme related to the synthesis of heme, chlorophyll, and to the action of herbicides

    Directory of Open Access Journals (Sweden)

    Edivaldo Domingues Velini

    2005-01-01

    Full Text Available This work was aimed at locating Eucalyptus ESTs corresponding to the PROTOX or PPO enzyme (Protoporphyrinogen IX oxidase, E.C. 1.3.3.4 directly related to resistance to herbicides that promote oxidative stress, changing the functionality of this enzyme. PROTOX, which is the site of action of diphenyl-ether (oxyfluorfen, lactofen, fomesafen, oxadiazole (oxadiazon and oxadiargyl, and aryl triazolinone (sulfentrazone and carfentrazone herbicides, acts on the synthesis route of porphyrins which is associated with the production of chlorophyll a, catalases, and peroxidases. One cluster and one single read were located, with e-values better than e-70, associated to PROTOX. The alignment results between amino acid sequences indicated that this enzyme is adequately represented in the ESTs database of the FORESTs project.

  6. Resistência de plantas daninhas aos herbicidas Weed resistance to herbicides

    Directory of Open Access Journals (Sweden)

    Pedro J. Christoffoleti

    1994-01-01

    Full Text Available A resistência de plantas daninhas aos herbicidas ocorre em função de um processo evolutivo. O desenvolvimento de biótipos de plantas daninhas resistentes é imposto pela agricultura moderna, através da pressão de seleção causada pelo uso intensivo dos herbicidas. O conhecimento dos mecanismos e fatores que favorecem o aparecimento de biótipos de plantas daninhas resistentes é fundamental para que técnicas de manejo sejam utilizadas no sentido de evitar ou retardar o aparecimento de plantas resistentes em uma área. São poucos os relatos ou citações de literatura no Brasil. Sendo assim, este trabalho de revisão procura relatar os principais avanços e descobertas na área de plantas daninhas resistentes aos herbicidas.Weed herbicide resistance has evolved from weed evolution. The modern agriculture is responsible for this evolution because of the intensive use of herbicides. The knowledge of mechanisms and factors that influence the weed herbicide resistance play an important role in the weed manegement techniques used to avoid or delay herbicide resistance appearence. There are not many report or scientific papers about herbi cide resistance in Brasil. Therefore, this literature review aims to provide information about the main advances and discoveries in the field of weed herbicide resistance.

  7. Identification of ionic chloroacetanilide-herbicide metabolites in surface water and groundwater by HPLC/MS using negative ion spray

    Science.gov (United States)

    Ferrer, I.; Thurman, E.M.; Barcelo, D.

    1997-01-01

    Solid-phase extraction (SPE) was combined with high-performance liquid chromatography/high-flow pneumatically assisted electrospray mass spectrometry (HPLC/ESP/MS) for the trace analysis of oxanilic and sulfonic acids of acetochlor, alachlor, and metolachlor. The isolation procedure separated the chloroacetanilide metabolites from the parent herbicides during the elution from C18 cartridges using ethyl acetate for parent compounds, followed by methanol for the anionic metabolites. The metabolites were separated chromatographically using reversed-phase HPLC and analyzed by negative-ion MS using electrospray ionization in selected ion mode. Quantitation limits were 0.01 ??g/L for both the oxanilic and sulfonic acids based on a 100-mL water sample. This combination of methods represents an important advance in environmental analysis of chloroacetanilide-herbicide metabolites in surface water and groundwater for two reasons. First, anionic chloroacetanilide metabolites are a major class of degradation products that are readily leached to groundwater in agricultural areas. Second, anionic metabolites, which are not able to be analyzed by conventional methods such as liquid extraction and gas chromatography/mass spectrometry, are effectively analyzed by SPE and high-flow pneumatically assisted electrospray mass spectrometry. This paper reports the first HPLC/MS identification of these metabolites in surface water and groundwater.

  8. Rapeseed with tolerance to the non selective herbicide glufosinate ammonium

    Energy Technology Data Exchange (ETDEWEB)

    Rasche, E. [Hoechst Schering AgrEvo GmbH, Frankfurt am Main (Germany)

    1998-12-31

    Weed control with herbicides is essential to grow rapeseed. Glufosinate Ammonium is used as a non selective herbicide successfully in many countries for over 10 years. It conforms well with ever increasing safety standards for human beings, animals and the environment. The tolerance of rapeseed and other crop plants was achieved by genetic modification. A resistance gene (PAT or BAR) was transfered into previously susceptible rapeseed plants. This new approach allowed the development of Glufosinate Ammonium as an almost ideal selective herbicide. In cooperation with major seed companies and by own breeding programmes new Glufosinate tolerant rapeseed varieties and hybrids are developed. Data on metabolism, toxicity, residues, efficacy etc. were generated to get registration for the selective herbicide use. In addition various studies were done for safety assessments of the PAT gene and the modified rapeseed. In spring 1995 Canadian authorities granted worldwide the first approvals for the selective use of Glufosinate Ammonium (trademark Liberty) and Glufosinate tolerant (trademark and logo Liberty Link) spring rapeseed (Canola). After a successful launch in 1995 about 150.000 ha of Liberty Link Canola were grown and treated with Liberty in 1996. The Liberty Link Canola growers were very well satisfied. In a grower survey 84% stated that they will definitely use the Liberty Link System again. In Europe registrations for Glufosinate Ammonium as a selective herbicide and for the first Glufosinate tolerant rapeseed varieties are expected in the course of 1997. The Liberty Link System will be launched in rapeseed most probably in 1998. (orig.)

  9. Microevolution of ALS inhibitor herbicide resistance in loose silky bentgrass (Apera spica-venti)

    DEFF Research Database (Denmark)

    Babineau, Marielle

    , the ALS resistant biotypes have a fitness advantage over the susceptible biotype in time to germination and time to flowering and seed production growth stages. This study increased the understanding of the spatial, phenotypic, genetic and ecological processes and consequences in ALS herbicide resistance......-neighborhood experiments were conducted with ALS resistant and susceptible populations with a randomized genetic background, vegetative and reproductive growth stages were compared. The results show a large variation in the response of neighboring populations to ALS herbicide. Multiple resistance is observed between ALS...... from known metabolic herbicide resistance pathways, such as cytochrome P450s, ABC-transporters, UDP-glycosyltransferase and glutathione S-transferase, are identified and quantified. Different gene families are up-regulated at different times after herbicide treatment. In low competition conditions...

  10. Histopathological study on the effect of rice herbicides on grass carp ...

    African Journals Online (AJOL)

    user

    2011-02-14

    Feb 14, 2011 ... observe the impact of herbicides on the histopathology of the fish, the fingerlings were collected from the field trenches ... is almost non-existent in India; the reasons being that increasing ... intensive rice-cum-fish culture offered the opportunity for ..... Toxicity of herbicides to Malaysian rice field fish. In: Proc.

  11. ACCERBATIN, a small molecule at the intersection of auxin and reactive oxygen species homeostasis with herbicidal properties

    Czech Academy of Sciences Publication Activity Database

    Hu, Y.; Depaepe, T.; Smet, D.; Hoyerová, Klára; Klíma, Petr; Cuypers, J.; Cutler, S.; Buyst, D.; Morreel, K.; Boerjan, W.; Martins, J.; Petrášek, Jan; Vandenbussche, F.; Van Der Straeten, D.

    2017-01-01

    Roč. 68, č. 15 (2017), s. 4185-4203 ISSN 0022-0957 R&D Projects: GA MŠk LD15137 Institutional support: RVO:61389030 Keywords : apical hook development * root hair development * arabidopsis-thaliana seedlings * ethylene biosynthesis * shoot gravitropism * cell elongation * abiotic stress * abscisic-acid * plant-growth * gene family * Arabidopsis * auxin homeostasis * chemical genetics * ethylene signaling * herbicide * quinoline carboxamide * reactive oxygen species * triple response Subject RIV: EA - Cell Biology OBOR OECD: Plant sciences, botany Impact factor: 5.830, year: 2016

  12. Investigation of 10 herbicides in surface waters of a horticultural production catchment in southeastern Australia.

    Science.gov (United States)

    Allinson, Graeme; Bui, AnhDuyen; Zhang, Pei; Rose, Gavin; Wightwick, Adam M; Allinson, Mayumi; Pettigrove, Vincent

    2014-10-01

    Herbicides are regularly applied in horticultural production systems and may migrate off-site, potentially posing an ecological risk to surface waterways. However, few studies have investigated the levels and potential ecotoxicological impact of herbicides in horticultural catchments in southern Australia. This study investigated the presence of 10 herbicides at 18 sites during a 5-month period in horticulturally important areas of the Yarra Valley in southeastern Australia. Seven of the 10 herbicides were detected in the streams, in 39 % of spot water samples, in 25 % of surface sediment samples, and in >70 % of the passive sampler systems deployed. Few samples contained residues of ≥2 herbicides. Simazine was the herbicide most frequently detected in water, sediment, and passive sampler samples and had the highest concentrations in water (0.67 μg/L) and sediment (260 μg/kg dry weight). Generally the concentrations of the herbicides detected were several orders of magnitude lower than reported ecotoxicological effect values, including those for aquatic plants and algae, suggesting that concentrations of individual chemicals in the catchment were unlikely to pose an ecological risk. However, little is known about the combined effects of simultaneous, low-level exposure of multiple herbicides of the same mode of action on Australian aquatic organisms nor their contribution when found in mixtures with other pesticides. Further research is required to adequately assess the risk of pesticides in Victorian aquatic environments.

  13. A further evaluation of herbicides for post-emergence use in short rotation coppice

    Energy Technology Data Exchange (ETDEWEB)

    Turnbull, D.J.

    2002-07-01

    This report describes a study of the safety and efficacy of a range of herbicides and mixtures of herbicides (with both contact and residual activity) for the post-emergence control of weeds in newly planted willow short rotation coppice (SRC). Severe competition from weeds that have not been controlled adequately by pre-emergence herbicide application is one of the commonest causes of SRC crop failure. In the study, the effects of 11 herbicide treatments currently recommendation for weed control with cereals, legumes or potatoes were compared with an untreated control. There was minimal crop death from any treatment, though most of the treatments caused varying degrees of phytotoxicity. Two commercial products, Reflex T and Impuls, gave the best overall crop safety and weed control results. The report provides growers of SRC and their advisors with some information on how to achieve improved weed control in SRC fields, and recommends that British Biogen (the trade industry body) should consider the compilation of a technical register of herbicide applications based on information supplied by growers and advisers, including field treatment details.

  14. Seasonal variability in irradiance affects herbicide toxicity to the marine flagellate Dunaliella tertiolecta

    Directory of Open Access Journals (Sweden)

    Sascha eSjollema

    2014-06-01

    Full Text Available Photosynthetically Active Radiation (PAR and Ultraviolet Radiation (UVR of the solar spectrum affect microalgae directly and modify the toxicity of phytotoxic compounds present in water. As a consequence seasonal variable PAR and UVR levels are likely to modulate the toxic pressure of contaminants in the field. Therefore the present study aimed to determine the toxicity of two model contaminants, the herbicides diuron and Irgarol®1051, under simulated irradiance conditions mimicking different seasons. Irradiance conditions of spring and autumn were simulated with a set of Light Emitting Diodes (LEDs. Toxicity of both herbicides was measured individually and in a mixture by determining the inhibition of photosystem II efficiency (ΦPSII of the marine flagellate Dunaliella teriolecta using Pulse Amplitude Modulation (PAM fluorometry. Toxicity of the single herbicides was higher under simulated spring irradiance than under autumn irradiance and this effect was also observed for mixtures of the herbicides. This irradiance dependent toxicity indicates that herbicide toxicity in the field is seasonally variable. Consequently toxicity tests under standard light conditions may overestimate or underestimate the toxic effect of phytotoxic compounds.

  15. Structural and functional effects of herbicides on non-target organisms in aquatic ecosystems with an emphasis on atrazine

    Science.gov (United States)

    Fairchild, James; Kortekamp, Andreas

    2011-01-01

    Herbicide use has increased dramatically around the world over the past 6 decades (Gianessi and Reigner, 2007). Few herbicides were in use in the 1950s. However, by 2001 approximately 1.14 billion kilograms of herbicides were applied globally for the control of undesireable vegetation in agricultural, silvicultural, lawncare, aquacultural, and irrigation/recreational water management activities (Kiely et al., 2004). Twenty-eight percent of the total mass of herbicides is applied in the United States, with the remaining 72 percent being applied elsewhere around the globe (Kiely et al., 2004). Herbicides represent 36% of global pesticide use, followed by insecticides (25%), fungicides (10%) and other chemical classes (Kiely et al., 2004). Agricultural production accounts for approximately 90% of herbicide use in the U.S. (Kiely et al., 2004). Gianessi and Reigner (2007) indicated that herbicides are routinely used on more than 90% of the area designated for large commercial crops including corn, soybeans, cotton, sugar beets, peanuts, and rice. Increased farm mechanization, technological advancements in production of inexpensive sources of inorganic nitrogen fertilizer (e.g., anhydrous ammonia), and conversion of forest, grassland, and wetland habitats to cropland has led to a tremendous increase in global food production over the past half-century. Herbicides have augmented advances in large-scale agricultural systems and have largely replaced mechanical and hand-weeding control mechanisms (Gianessi and Reigner, 2007). The wide-spread use of herbicides in agriculture has resulted in frequent chemical detections in surface and groundwaters (Gilliom, 2007). The majority of herbicides used are highly water soluble and are therefore prone to runoff from terrestrial environments. In additon, spray drift and atmospheric deposition can contribute to herbicide contamination of aquatic environments. Lastly, selected herbicides are deliberately applied to aquatic environments

  16. Degradation and movement in soil of the herbicide isoproturon analyzed by a Photosystem II-based biosensor.

    Science.gov (United States)

    Malý, J; Klem, K; Lukavská, A; Masojídek, J

    2005-01-01

    We have examined the persistence and movement of a urea-type herbicide, isoproturon [IPU; 3-(4-isopropylphenyl)-1,1'-dimethylurea], in soil using a novel herbicide-detection device, the prototype of a portable electrochemical biosensor based on Photosystem II particles immobilized on printed electrodes, and evaluated its results against two other methods: (i) chlorophyll-fluorescence bioassay based on polyphasic induction curves, and (ii) standard analysis represented by liquid chromatography. The data of the herbicide's content determined in soil extracts from field experiments correlated in all three methods. The biosensor assay was effective in determining the herbicide's concentration to as low as 10(-7) M. The results of our experiments also showed the kinetics of movement, degradation, and persistence of isoproturon in various depths of soil. After 6 to 9 wk, almost half of the isoproturon was still actively present in the upper soil layers (0-10 and 10-20 cm) and only 5 to 10% of biological activity was inhibited in the deeper soil layer tested (20-30 cm). Thus, inhibition within the limit of detection of both bioassays could be observed up to 9 wk after application in all profiles (0-30 cm), whereas inhibition persisted for up to 11 wk in the upper soil profile (0-10 cm). The use of the biosensor demonstrated its possibility for making rapid and cheap phytotoxicity tests. Our biosensor can give preliminary information about the biological activity of isoproturon in hours--much faster than growth biotests that may take several days or more.

  17. Photocatalytic degradation of selected herbicides in aqueous suspensions of doped titania under visible light irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Sojic, Daniela V., E-mail: daniela.sojic@dh.uns.ac.rs [Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg D. Obradovica 3, 21000 Novi Sad (Serbia); Despotovic, Vesna N., E-mail: vesna.despotovic@dh.uns.ac.rs [Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg D. Obradovica 3, 21000 Novi Sad (Serbia); Abazovic, Nadica D., E-mail: kiki@vinca.rs [Vinca Institute of Nuclear Sciences, 11001 Beograd, PO Box 522 (Serbia); Comor, Mirjana I., E-mail: mirjanac@vinca.rs [Vinca Institute of Nuclear Sciences, 11001 Beograd, PO Box 522 (Serbia); Abramovic, Biljana F., E-mail: biljana.abramovic@dh.uns.ac.rs [Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg D. Obradovica 3, 21000 Novi Sad (Serbia)

    2010-07-15

    The aim of this work was to study the efficiency of Fe- and N-doped titania suspensions in the photocatalytic degradation of the herbicides RS-2-(4-chloro-o-tolyloxy)propionic acid (mecoprop, MCPP), (4-chloro-2-methylphenoxy)acetic acid (MCPA), and 3,6-dichloropyridine-2-carboxylic acid (clopyralid, CP) under the visible light ({lambda} {>=} 400 nm) irradiation. The obtained results were compared with those of the corresponding undoped TiO{sub 2} (rutile/anatase) and of the most frequently used TiO{sub 2} Degussa P25. Computational modeling procedures were used to optimize geometry and molecular electrostatic potentials of MCPP, MCPA and CP and discuss the obtained results. The results indicate that the efficiency of photocatalytic degradation is greatly influenced by the molecular structure of the compound. Lowering of the band gap of titanium dioxide by doping is not always favorable for increasing photocatalytic efficiency of degradation.

  18. Using GLEAMS to Select Environmental Windows for Herbicide Application in Forests

    Science.gov (United States)

    M.C. Smith; J.L. Michael; W.G. Koisel; D.G. Nealy

    1994-01-01

    Observed herbicide runoff and groundwater data from a pine-release herbicide application study near Gainesville, Florida were used to validate the GLEAMS model hydrology and pesticide component for forest application. The study revealed that model simulations agreed relatively well with the field data for the one-year study. Following validation, a modified version of...

  19. Evaluation of herbicides photodegradation by photo-Fenton process using multivariate analysis

    Energy Technology Data Exchange (ETDEWEB)

    Paterlini, W.C.; Nogueira, R.F.P. [Inst. of Chemistry, Sao Paulo State Univ., R. Prof. Francisco Degni s/n, Araraquara, SP (Brazil)

    2003-07-01

    The photodegradation of herbicides in aqueous medium by photo-Fenton process using ferrioxalate complex (FeOx) as a source of Fe{sup 2+} was evaluated under blacklight irradiation. The commercial products of the herbicides tebuthiuron, 2,4-D and diuron were used. Multivariate analysis was used to evaluate the role of two variables in the photodegradation process, FeOx and hydrogen peroxide concentrations, and to define the concentration ranges that result in the most efficient photodegradation of the herbicides. The photodegradation of the herbicides was followed by monitoring the decrease of the original compounds concentration by HPLC, by the determination of remaining total organic carbon content (TOC), and by the chloride ion release. Under optimised conditions, 20 minutes irradiation was enough to remove 92.7% of TOC for 2,4 D and 89.5% for diuron. Complete dechlorination of these compounds was achieved after 10 minutes of irradiation. It was observed that the initial concentration of these compounds and tebuthiuron was reduced to less than 15% after only 1 minute of irradiation. (orig.)

  20. Advanced oxidation of commercial herbicides mixture: experimental design and phytotoxicity evaluation.

    Science.gov (United States)

    López, Alejandro; Coll, Andrea; Lescano, Maia; Zalazar, Cristina

    2017-05-05

    In this work, the suitability of the UV/H 2 O 2 process for commercial herbicides mixture degradation was studied. Glyphosate, the herbicide most widely used in the world, was mixed with other herbicides that have residual activity as 2,4-D and atrazine. Modeling of the process response related to specific operating conditions like initial pH and initial H 2 O 2 to total organic carbon molar ratio was assessed by the response surface methodology (RSM). Results have shown that second-order polynomial regression model could well describe and predict the system behavior within the tested experimental region. It also correctly explained the variability in the experimental data. Experimental values were in good agreement with the modeled ones confirming the significance of the model and highlighting the success of RSM for UV/H 2 O 2 process modeling. Phytotoxicity evolution throughout the photolytic degradation process was checked through germination tests indicating that the phytotoxicity of the herbicides mixture was significantly reduced after the treatment. The end point for the treatment at the operating conditions for maximum TOC conversion was also identified.

  1. A glutathione s-transferase confers herbicide tolerance in rice

    Directory of Open Access Journals (Sweden)

    Tingzhang Hu

    2014-07-01

    Full Text Available Plant glutathione S-transferases (GSTs have been a focus of attention due to their role in herbicide detoxification. OsGSTL2 is a glutathione S-transferase, lambda class gene from rice (Oryza sativa L.. Transgenic rice plants over-expressing OsGSTL2 were generated from rice calli by the use of an Agrobacterium transformation system, and were screened by a combination of hygromycin resistance, PCR and Southern blot analysis. In the vegetative tissues of transgenic rice plants, the over-expression of OsGSTL2 not only increased levels of OsGSTL2 transcripts, but also GST and GPX expression, while reduced superoxide. Transgenic rice plants also showed higher tolerance to glyphosate and chlorsulfuron, which often contaminate agricultural fields. The findings demonstrate the detoxification role of OsGSTL2 in the growth and development of rice plants. It should be possible to apply the present results to crops for developing herbicide tolerance and for limiting herbicide contamination in the food chain.

  2. In vitro sensitivity of antagonistic Trichoderma atroviride to herbicides

    Directory of Open Access Journals (Sweden)

    Patricia Helena Santoro

    2014-04-01

    Full Text Available Trichoderma atroviride was tested in vitro for its sensitivity to different herbicides. The dosages tested were recommended dosage (RD, half dosage (½RD, and double dosage (2RD. Germination, colony-forming units (CFU, radial growth, and spore production were evaluated. Carfentrazone-ethyl and sulfentrazone inhibited the germination at RD and 2RD. A reduction in the CFU was observed for glufosinate-ammonium, atrazine, carfentrazone-ethyl, diuron + paraquat dichloride, imazapyr, oxyfluorfen, and sulfentrazone at each of the tested dosages. Radial growth was influenced by ametryn, atrazine, carfentrazone-ethyl, oxyfluorfen, and sulfentrazone herbicides, with an 80% reduction of the colonial area. Spore production was affected by carfentrazone-ethyl, oxyfluorfen, and sulfentrazone with colonial area reductions of over 70%. It was concluded that 2,4 D, clomazone, and imazapyr herbicides showed the least toxicity to T. atroviride and should be used in the crops where the fungus has been applied for phytopathogen control.

  3. The role of herbicides for enhancing productivity and conserving land for biodiversity in North America

    Science.gov (United States)

    Robert G. Wagner; Michael Newton; Elizabeth C. Cole; James H. Miller; Barry D. Shiver

    2004-01-01

    Herbicide technology has evolved with forest management in North America over the past 60 years and has become an integral part of modern forestry practice. Forest managers have prescribed herbicides to increase reforestation success and long-term timber yields. Wildlife managers and others interested in conserving biodi- versity, however, have often viewed herbicide...

  4. Glufosinate herbicide intoxication causing unconsciousness, convulsion, and 6th cranial nerve palsy.

    Science.gov (United States)

    Park, Jae-seok; Kwak, Soo-Jung; Gil, Hyo-wook; Kim, So-Young; Hong, Sae-yong

    2013-11-01

    Although glufosinate ammonium herbicides are considered safe when used properly, ingestion of the undiluted form can cause grave outcomes. Recently, we treated a 34-yr-old man who ingested glufosinate ammonium herbicide. In the course of treatment, the patient developed apnea, mental deterioration, and sixth cranial nerve palsy; he has since been discharged with full recovery after intensive care. This case report describes the clinical features of glufosinate intoxication with a focus on sixth cranial nerve palsy. Our observation suggests that neurologic manifestations after ingestion of a "low-grade toxicity herbicide" are variable and more complex than that was previously considered.

  5. An evaluation of herbicides for post-emergence use in short rotation coppice

    Energy Technology Data Exchange (ETDEWEB)

    Turnbull, D.J.

    2000-07-01

    The objective of the project was to evaluate the safety and efficacy of a range of herbicides and mixtures of herbicides, with both contact and residual activity, for the post-emergence control of weeds in newly planted willow short rotation coppice (SRC). This report provides growers and advisers of short rotation coppice with important (but still limited) information on how to achieve improved weed control of problem weeds increasingly prevalent in SRC fields. This may provide guidance towards often-essential emergency treatments when the crop establishment is under considerable pressure and the potential safety, or otherwise, of certain weed-specific herbicides. (author)

  6. Sample clean-up, enrichment and determination of s-triazine herbicides from southern ethiopian lakes supported using liquid membrane extraction

    Directory of Open Access Journals (Sweden)

    Jan Åke Jönsson

    2000-06-01

    Full Text Available The liquid membrane extraction method has been employed for selectively extracting trace quantities of s-triazine herbicides in environmental waters collected from lakes Awassa, Chamo and Abbya, located in close proximity to the agricultural farms in Southern Ethiopia. In liquid membrane extraction, the uncharged triazine compounds from the flowing donor solution diffuse through a porous poly(tetrafluoroethylene (PTFE membrane, containing a water immiscible organic solvent. The s-triazine molecules are then irreversibly trapped in the stagnant acidic acceptor phase since they become protonated. Using both di-n-hexylether and n-undecane membrane solvents, s-traizine herbicides were extracted and low detection limits of about 1 ng/L have been obtained by extraction of three liters of sample solution spiked with 0.1 g/L of each triazine. Residues of atrazine and terbutryn ranging in concentration from 0.02 to 0.05 g/L have been successfully determined.

  7. Histopathological study on the effect of rice herbicides on grass carp ...

    African Journals Online (AJOL)

    Grass carp (Ctenopharyngodan idella) fingerlings were exposed to rice herbicides butachlor 1.5 kg ha-1, oxyfluorfen 0.25 kg ha-1 and thiobencarb 1.5 kg ha-1, 12 days after their application in the respective fields. To observe the impact of herbicides on the histopathology of the fish, the fingerlings were collected from the ...

  8. Isolated etioplasts as test system for inhibitors of fatty acid biosynthesis

    International Nuclear Information System (INIS)

    Lichtenthaler, H.K.; Kobek, K.

    1989-01-01

    Isolated intact chloroplasts of mono- and dicotyledonous plants possess the capacity for de novo fatty acid biosynthesis, starting from 14 C-acetate. These can be taken as test system for herbicides affecting fatty acid biosynthesis as shown earlier in our laboratory. The incorporation rates of acetate into the total fatty acids depend on the photosynthetic cofactors ATP and NADPH and amount in the light to 33 kBq (oat) and 39 kBq (pea) per mg chlorophyll x h, whereas in the dark only ca. 10% of these rates are obtained. In order to establish a test system, which is fully independent of light, we isolated and characterized etioplast fractions from oat and pea seedlings with a very high capacity of de novo fatty acid biosynthesis (500 and 400 kBq per mg carotenoids in a 20 min period). This activity was blocked by herbicides such as cycloxydim, sethoxydim and diclofop in a dose-dependent manner. This new test system has the great advantage that one can verify whether inhibitors of photosynthesis affect fatty acid biosynthesis

  9. Integrated Palmer Amaranth Management in Glufosinate-Resistant Cotton: I. Soil-Inversion, High-Residue Cover Crops and Herbicide Regimes

    Directory of Open Access Journals (Sweden)

    Michael G. Patterson

    2012-11-01

    Full Text Available A three year field experiment was conducted to evaluate the role of soil-inversion, cover crops and herbicide regimes for Palmer amaranth between-row (BR and within-row (WR management in glufosinate-resistant cotton. The main plots were two soil-inversion treatments: fall inversion tillage (IT and non-inversion tillage (NIT. The subplots were three cover crop treatments: crimson clover, cereal rye and winter fallow; and sub subplots were four herbicide regimes: preemergence (PRE alone, postemergence (POST alone, PRE + POST and a no herbicide check (None. The PRE herbicide regime consisted of a single application of pendimethalin at 0.84 kg ae ha−1 plus fomesafen at 0.28 kg ai ha−1. The POST herbicide regime consisted of a single application of glufosinate at 0.60 kg ai ha−1 plus S-metolachlor at 0.54 kg ai ha−1 and the PRE + POST regime combined the prior two components. At 2 weeks after planting (WAP cotton, Palmer amaranth densities, both BR and WR, were reduced ≥90% following all cover crop treatments in the IT. In the NIT, crimson clover reduced Palmer amaranth densities >65% and 50% compared to winter fallow and cereal rye covers, respectively. At 6 WAP, the PRE and PRE + POST herbicide regimes in both IT and NIT reduced BR and WR Palmer amaranth densities >96% over the three years. Additionally, the BR density was reduced ≥59% in no-herbicide (None following either cereal rye or crimson clover when compared to no-herbicide in the winter fallow. In IT, PRE, POST and PRE + POST herbicide regimes controlled Palmer amaranth >95% 6 WAP. In NIT, Palmer amaranth was controlled ≥79% in PRE and ≥95% in PRE + POST herbicide regimes over three years. POST herbicide regime following NIT was not very consistent. Averaged across three years, Palmer amaranth controlled ≥94% in PRE and PRE + POST herbicide regimes regardless of cover crop. Herbicide regime effect on cotton yield was highly significant; the maximum cotton yield was

  10. Molecular investigations of the soil, rhizosphere and transgenic glufosinate-resistant rape and maize plants in combination with herbicide (Basta) application under field conditions.

    Science.gov (United States)

    Ernst, Dieter; Rosenbrock-Krestel, Hilkea; Kirchhof, Gudrun; Bieber, Evi; Giunaschwili, Nathela; Müller, Rüdiger; Fischbeck, Gerhard; Wagner, Tobias; Sandermann, Heinrich; Hartmann, Anton

    2008-01-01

    A field study was conducted during 1994 to 1998 on the Experimental Farm Roggenstein, near Fürstenfeldbruck, Bavaria, Germany to determine the effect of transgenic glufosinate-resistant rape in combination with the herbicide Basta [glufosinate-ammonium, phosphinothricin, ammonium (2RS)-2-amino-4-(methylphosphinato) butyric acid] application on soil microorganisms and the behaviour of the synthetic transgenic DNA in response to normal agricultural practice. No influence of Basta on microbial biomass could be detected. The phospholipid fatty acid analysis of soil extracts showed no difference between Basta application and mechanical weed control, whereas conventional herbicide application revealed a different pattern. Basta application resulted in a changed population of weeds with a selective effect for Viola arvensis. During senescence, transgenic rape DNA was degraded similar to endogenous control DNA. After ploughing the chopped plant material in the soil, transgenic as well as endogenous control DNA sequences could be detected for up to 4 weeks for rape and up to 7 months for maize, whereas PCR analysis of composted transgenic maize revealed the presence of the transgene over a period of 22 months.

  11. Large-scale bioreactor production of the herbicide-degrading Aminobacter sp. strain MSH1

    DEFF Research Database (Denmark)

    Schultz-Jensen, Nadja; Knudsen, Berith Elkær; Frkova, Zuzana

    2014-01-01

    The Aminobacter sp. strain MSH1 has potential for pesticide bioremediation because it degrades the herbicide metabolite 2,6-dichlorobenzamide (BAM). Production of the BAM-degrading bacterium using aerobic bioreactor fermentation was investigated. A mineral salt medium limited for carbon and with ......The Aminobacter sp. strain MSH1 has potential for pesticide bioremediation because it degrades the herbicide metabolite 2,6-dichlorobenzamide (BAM). Production of the BAM-degrading bacterium using aerobic bioreactor fermentation was investigated. A mineral salt medium limited for carbon...... and with an element composition similar to the strain was generated. The optimal pH and temperature for strain growth were determined using shaker flasks and verified in bioreactors. Glucose, fructose, and glycerol were suitable carbon sources for MSH1 (μ =0.1 h−1); slower growth was observed on succinate and acetic...... acid (μ =0.01 h−1). Standard conditions for growth of theMSH1 strain were defined at pH 7 and 25 °C, with glucose as the carbon source. In bioreactors (1 and 5 L), the specific growth rate of MSH1 increased from μ =0.1 h−1 on traditional mineral salt medium to μ =0.18 h−1 on the optimized mineral salt...

  12. Biological Efficacy of Herbicides for Weed Control in Noncropped Areas

    Directory of Open Access Journals (Sweden)

    Tsvetanka Dimitrova

    2009-01-01

    Full Text Available An increasing problem facing agricultural producers is the invasion of weeds, perennial in particular, so that implementation of industrial technologies is impossible without their highly efficient and rational control. For the purpose of studying efficient herbicides for weed control in noncropped areas (stubbles, a biological study of five total systemic herbicides was conducted in areas under natural weed infestation and pressure from othersurrounding weeds at the Institute of Forage Crops in Pleven in 2005-2007. The trials were carried out in field conditions using the block method with plot size of 20 m². Treatment was conducted at the predominant stage of budding of perennial dicotyledonous weeds and earing of monocotyledonous weeds. Herbicidal efficacy was recorded on the EWRS 9-score scale (0-100% killed weeds = score 9-1. It was found that treatment of noncropped areas (stubbles with the total systemic herbicides Touchdown System 4 (360 g/l glyphosate; Cosmic (360 g/l glyphosate; Roundup Plus (441 g/l glyphosate potassium salt; Leon 36 SL (360 g/l glyphosate and Glyphos Super 45 SL (450 g/l glyphosate was highly efficient, so that it was a successful element of a strategy for controlling weeds of different biological groups, and was especially effective against perennial weeds.

  13. Early Identification of Herbicide Stress in Soybean (Glycine max (L.) Merr.) Using Chlorophyll Fluorescence Imaging Technology.

    Science.gov (United States)

    Li, Hui; Wang, Pei; Weber, Jonas Felix; Gerhards, Roland

    2017-12-22

    Herbicides may damage soybean in conventional production systems. Chlorophyll fluorescence imaging technology has been applied to identify herbicide stress in weed species a few days after application. In this study, greenhouse experiments followed by field experiments at five sites were conducted to investigate if the chlorophyll fluorescence imaging is capable of identifying herbicide stress in soybean shortly after application. Measurements were carried out from emergence until the three-to-four-leaf stage of the soybean plants. Results showed that maximal photosystem II (PS II) quantum yield and shoot dry biomass was significantly reduced in soybean by herbicides compared to the untreated control plants. The stress of PS II inhibiting herbicides occurred on the cotyledons of soybean and plants recovered after one week. The stress induced by DOXP synthase-, microtubule assembly-, or cell division-inhibitors was measured from the two-leaf stage until four-leaf stage of soybean. We could demonstrate that the chlorophyll fluorescence imaging technology is capable for detecting herbicide stress in soybean. The system can be applied under both greenhouse and field conditions. This helps farmers to select weed control strategies with less phytotoxicity in soybean and avoid yield losses due to herbicide stress.

  14. A further evaluation of herbicides for post-emergence use in short rotation coppice

    Energy Technology Data Exchange (ETDEWEB)

    Turnbull, D.J.

    2002-07-01

    This report summarises the findings of a project evaluating the safety and efficiency of eleven herbicides for controlling weeds in newly plated willow short rotation coppices, and provides growers with information on post-emergence herbicide options, control of problem weeds, and emergency treatments. Weed germination, crop safety, and the encouraging results obtained using Reflex T and Impuls are discussed. It is suggested that a Technical Register of herbicide applications with contributions by growers and advisers should be considered by the British Biogen trade industry body.

  15. Exposure opportunity models for Agent Orange, dioxin, and other military herbicides used in Vietnam, 1961-1971.

    Science.gov (United States)

    Stellman, Steven D; Stellman, Jeanne M

    2004-07-01

    Nearly 19.5 million gallons of herbicides were sprayed on the Republic of Vietnam between 1961 and 1971 for military purposes. Amounts of spray and patterns of applications are available in an electronic file called HERBS that contains records of 9141 defoliation missions, including detailed coordinates of US Air Force Ranch Hand aircraft flight paths, along with chemical agent and gallonage sprayed. Two classes of models for use in epidemiological and environmental studies that utilize the HERBS data for estimating relative exposure opportunity indices are presented: a discrete "hits" model that counts instances of proximity in time and space to known herbicide applications, and a continuous exposure opportunity index, E4, that takes into account type and amount of herbicide sprayed, distance from spray application, and time interval when exposure may have occurred. Both direct spraying and indirect exposure to herbicide (or dioxin) that may have remained in the local environment are considered, using a conservative first-order model for environmental disappearance. A correction factor for dermal versus respiratory routes of entry has been incorporated. E4 has a log-normal distribution that spans six orders of magnitude, thus providing a substantial amount of discrimination between sprayed and unsprayed areas. The models improve on earlier ones by making full use of the geometry of the HERBS spray flight paths of Ranch Hand aircraft. To the extent possible so many decades after the War, the models have been qualitatively validated by comparison with recent dioxin soil and biota samples from heavily contaminated areas of Vietnam, and quantitatively validated against adipose dioxin obtained in epidemiological studies of Vietnamese. These models are incorporated within a geographic information system (GIS) that may be used, as one would expect, to identify locations such as hamlets, villages, and military installations sprayed by herbicide. In a novel application

  16. Response of soil microbiota to selected herbicide treatments.

    Science.gov (United States)

    Roslycky, E B

    1977-04-01

    Recommended concentrations of paraquat alone and its combination with each of linuron, diuron, atrazine, simazine, and simazine plus diuron exerted little effect on total populations of bacteria, actinomycetes, and fungi in Fox sandy loam under laboratory and simulated field conditions in 66 and 77 days, respectively. Respiration of the total microbiota in soil suspension was afeected by the combinations as well as individual herbicides in various concentrations. Yet, the inhibition of the O2 uptake by any of these herbicides, including some extreme concentrations, was not permanent, indicating adaptation, or suppression of specific organisms. Only linuron in concentrations up to 20 microng/ml stimulated respiration of the soil.

  17. Adsorption of acetanilide herbicides on soil and its components. II. Adsorption and catalytic hydrolysis of diethatyl-ethyl on saturated Na(+)-, K(+)-, Ca(2+)-, and Mg(2+)-montmorillonite.

    Science.gov (United States)

    Liu, W P; Fang, Z; Liu, H J; Yang, W C

    2001-04-01

    Adsorption and catalytic hydrolysis of the herbicide diethatyl-ethyl [N-chloroacetyl-N-(2,6-diethylphenyl)glycine ethyl ester] on homoionic Na(+)-, K(+)-, Ca(2+)-, and Mg(2+)-montmorillonite clays were investigated in water solution. The Freundlich adsorption coefficient, Ki, got from isotherms on clay followed the order of Na+ approximately K+ > Mg2+ approximately Ca2+. Analysis of FT-IR spectra of diethatyl-ethyl adsorbed on clay suggests probable bonding at the carboxyl and amide carbonyl groups of the herbicide. The rate of herbicide hydrolysis in homoionic clay suspensions followed the same order as that for adsorption, indicating that adsorption may have preceded and thus caused hydrolysis. Preliminary product identification showed that hydrolysis occurred via nucleophilic substitution at the carboxyl carbon, causing the cleavage of the ester bond and formation of diethatyl and its dechlorinated derivative, and at the amide carbon, yielding an ethyl ester derivative and its acid. These pathways also suggest that hydrolysis of diethatyl-ethyl was catalyzed by adsorption on the clay surface.

  18. Cross-resistance to prosulfocarb + S-metolachlor and pyroxasulfone selected by either herbicide in Lolium rigidum.

    Science.gov (United States)

    Busi, Roberto; Powles, Stephen B

    2016-09-01

    Weeds can be a greater constraint to crop production than animal pests and pathogens. Pre-emergence herbicides are crucial in many cropping systems to control weeds that have evolved resistance to selective post-emergence herbicides. In this study we assessed the potential to evolve resistance to the pre-emergence herbicides prosulfocarb + S-metolachlor or pyroxasulfone in 50 individual field Lolium rigidum populations collected in a random survey in Western Australia prior to commercialisation of these pre-emergence herbicides. This study shows for the first time that in randomly collected L. rigidum field populations the selection with either prosulfocarb + S-metolachlor or pyroxasulfone can result in concomitant evolution of resistance to both prosulfocarb + S-metolachlor and pyroxasulfone after three generations. In the major weed L. rigidum, traits conferring resistance to new herbicides can be present before herbicide commercialisation. Proactive and multidisciplinary research (evolutionary ecology, modelling and molecular biology) is required to detect and analyse resistant populations before they can appear in the field. Several studies show that evolved cross-resistance in weeds is complex and often unpredictable. Thus, long-term management of cross-resistant weeds must be achieved through heterogeneity of selection by effective chemical, cultural and physical weed control strategies that can delay herbicide resistance evolution. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  19. Using Bioassays and Species Sensitivity Distributions to Assess Herbicide Toxicity towards Benthic Diatoms

    Science.gov (United States)

    Larras, Floriane; Bouchez, Agnès; Rimet, Frédéric; Montuelle, Bernard

    2012-01-01

    Although benthic diatoms are widely used in ecological studies of aquatic systems, there is still a dearth of data concerning species sensitivities towards several contaminants. Within the same community, different species may respond differently depending on their physiological and ecological characteristics. This lack of knowledge makes specific appropriate risk assessment impossible. To find out whether species sensitivity distribution (SSD) could be used to estimate the risk of herbicide toxicity for diatoms, we need to know whether their sensitivity depends on their physiological and ecological characteristics. We carried out single-species bioassays on 11 diatom species exposed to 8 herbicides. Dose-responses relationships were used to extrapolate the Effective Concentration 5 (EC5) and the Effective Concentration 50 (EC50) for each exposure. These data were used to fit a SSD curve for each herbicide, and to determine the Hazardous concentration 5 (HC5) and 50 (HC50). Our results revealed a high level of variability of the sensitivity in the set of species tested. For photosystem-II inhibitor (PSII) herbicides, diatoms species displayed a typical grouping of sensitivity levels consistent with their trophic mode and their ecological guild. N-heterotroph and “motile” guild species were more tolerant of PSII inhibitors, while N-autotroph and “low profile” guild species were more sensitive. Comprehensive SSD curves were obtained for 5 herbicides, but not for sulfonylurea herbicides or for dimetachlor, which had toxicity levels that were below the range of concentration tested. The SSD curves provided the following ranking of toxicity: diuron> terbutryn> isoproturon> atrazine> metolachlor. The HC that affected 5% of the species revealed that, even at the usual environmental concentrations of herbicides, diatom assemblages could be affected, especially by isoproturon, terbutryn, and diuron. PMID:22952981

  20. Using bioassays and species sensitivity distributions to assess herbicide toxicity towards benthic diatoms.

    Directory of Open Access Journals (Sweden)

    Floriane Larras

    Full Text Available Although benthic diatoms are widely used in ecological studies of aquatic systems, there is still a dearth of data concerning species sensitivities towards several contaminants. Within the same community, different species may respond differently depending on their physiological and ecological characteristics. This lack of knowledge makes specific appropriate risk assessment impossible. To find out whether species sensitivity distribution (SSD could be used to estimate the risk of herbicide toxicity for diatoms, we need to know whether their sensitivity depends on their physiological and ecological characteristics. We carried out single-species bioassays on 11 diatom species exposed to 8 herbicides. Dose-responses relationships were used to extrapolate the Effective Concentration 5 (EC(5 and the Effective Concentration 50 (EC(50 for each exposure. These data were used to fit a SSD curve for each herbicide, and to determine the Hazardous concentration 5 (HC(5 and 50 (HC(50. Our results revealed a high level of variability of the sensitivity in the set of species tested. For photosystem-II inhibitor (PSII herbicides, diatoms species displayed a typical grouping of sensitivity levels consistent with their trophic mode and their ecological guild. N-heterotroph and "motile" guild species were more tolerant of PSII inhibitors, while N-autotroph and "low profile" guild species were more sensitive. Comprehensive SSD curves were obtained for 5 herbicides, but not for sulfonylurea herbicides or for dimetachlor, which had toxicity levels that were below the range of concentration tested. The SSD curves provided the following ranking of toxicity: diuron> terbutryn> isoproturon> atrazine> metolachlor. The HC that affected 5% of the species revealed that, even at the usual environmental concentrations of herbicides, diatom assemblages could be affected, especially by isoproturon, terbutryn, and diuron.

  1. Hygienic assessment of risk caused by application of graminis ke and rinkor vg herbicides

    Directory of Open Access Journals (Sweden)

    M.M. Vasileva

    2017-12-01

    Full Text Available Our research goal was to perform hygienic assessment of risks caused by Graminis KE and Rinkor VG herbicides for people working with them. We applied sanitary-hygienic and toxicological research techniques in our work in full conformity with valid technical regulatory documents and guidelines. We set the following research tasks: to analyze literature and information sources; to perform primary toxicological assessment of preparatory herbicides and study their acute toxicity together with sensitizing effects at intragastric introduction, cutaneous application, and inhalation exposure on laboratory animals; to examine herbicides cumulative effects and calculation their cumulation coefficient; to examine working conditions during a natural experiment when Graminis KE and Rinkor VG herbicides were applied and calculate risks for workers; to work out scientifically grounded recommendations on their safety application in agriculture. The examined herbicides, Graminis KE and Rinkor VG, are classified as substances with the 3rd hazard degree as per their toxicometric parameters (moderately hazardous substances. Calculated risks of complex (inhalant and dermal exposure to Gramins KE and Rinkor VG herbicides for workers (operators who refills them and those who spray plants with them when they are applied in agriculture don't exceed acceptable levels (are less than 1. Our work results allow to enrich a set of plant protectors which are applied in the country and to use such preparations in agriculture which are the least harmful for health and the environment. Application of Graminis KE and Rinkor VG herbicides will help to increase crops productivity.

  2. Cross-resistance patterns to acetolactate synthase (ALS)-inhibiting herbicides of flixweed (Descurainia sophia L.) conferred by different combinations of ALS isozymes with a Pro-197-Thr mutation or a novel Trp-574-Leu mutation.

    Science.gov (United States)

    Deng, Wei; Yang, Qian; Zhang, Yongzhi; Jiao, Hongtao; Mei, Yu; Li, Xuefeng; Zheng, Mingqi

    2017-03-01

    Acetolactate synthase (ALS) is the common target of ALS-inhibiting herbicides, and target-site ALS mutations are the main mechanism of resistance to ALS-inhibiting herbicides. In this study, ALS1 and ALS2 genes with full lengths of 2004bp and 1998bp respectively were cloned in individual plants of susceptible (S) or resistant (R) flixweed (Descurainia sophia L.) populations. Two ALS mutations of Pro-197-Thr and/or Trp-574-Leu were identified in plants of three R biotypes (HB24, HB30 and HB42). In order to investigate the function of ALS isozymes in ALS-inhibiting herbicide resistance, pHB24 (a Pro-197-Thr mutation in ALS1 and a wild type ALS2), pHB42 (a Trp-574-Leu mutation in ALS1 and a wild type ALS2) and pHB30 (a Trp-574-Leu mutation in ALS1 and a Pro-197-Thr mutation in ALS2) subpopulations individually homozygous for different ALS mutations were generated. Individuals of pHB30 had mutations in each isozyme of ALS and had higher resistance than pHB24 and pHB42 populations containing mutations in only one ALS isozyme. Moreover, the pHB24 had resistance to SU, TP and SCT herbicides, whereas pHB24 and pHB42 had resistance to these classes of herbicides as well as IMI and PTB herbicides. The sensitivity of isolated ALS enzyme to inhibition by herbicides in these populations correlated with whole plant resistance levels. Therefore, reduced ALS sensitivity resulting from the mutations in ALS was responsible for resistance to ALS-inhibiting herbicides in flixweed. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Comparison of two detection methods in thin layer chromatographic analysis of herbicides in a coastal savannah soil

    International Nuclear Information System (INIS)

    Afful, S.; Yeboah, P.O.; Dogbe, S.A.; Akpabli, C.K.

    2004-01-01

    o-tolidine + potassium iodide and photosynthesis inhibition detection methods, were investigated for the analysis of three triazine herbicides (atrazine, ametryne, simazine), and two urea herbicides (diuron, metobromuron) in a coastal savannah soil using thin layer chromatographic methodology to compare the suitability of the two methods for the study of the herbicides. This was done by spiking 5 g of the soil sample with specific amount of the herbicides standard to generate herbicide-soil concentration of 40.23, 40.28, 41.46, 39.90 and 40.64 μ g/g for atrazine, ametryne, simazine, diuron and metobromuron respectively. Extraction was performed with acetone/hexane mixture (4:1) and the detection limit of each herbicide was then determined. In all, the photosynthesis inhibition method performed better for both the triazine and the urea herbicides, while the o-tolidine + potassium iodide method was suitable for only the triazine herbicides. With the photosynthesis inhibition method, detectability in the range of 0.004 - 0.008±0.02 μ g/g was attained for the herbicides using the unclean extracts. In the case of o-tolidine ± potassium iodide method, detectability of 0.008 - 0.40 0.02 ± g/g was obtained. With the clean up extracts, detectability in the range of 0.025 - 0.162±0.004 μ g/g was obtained using the photosynthesis inhibition method, however, metobromuron was not detected with the clean up extracts with the o-tolidine + KI method. (au)

  4. Population dynamics of weeds in oil palm (Elaeis guineensis Jacq.) circle weeding area affected by herbicide application

    Science.gov (United States)

    Sidik, S.; Purba, E.; Yakub, E. N.

    2018-02-01

    Weed problems in oil palm field were mainly overcomed by herbicide application. The application certain herbicides may lead to rapid population dynamic of certain species due to their different response to herbicides. Some species may less susceptible to certain herbicide whereas other species more susceptible. The objective of this study was to determine the population dynamic of weed species in circle weeding of oil palm in Serdang Bedagai, North Sumatra. Six treatments using glyphosate singly and mixture compared with manual weeding were evaluated for weed control. The treatments were arranged in a randomized block design with four replicates. Each treatment consisted of four circle weedings. The results showed that glyphosate 720 g a.i/ha + indaziflam 50 g a.i/hareduced seedbank and regrowth of weeds. Up to 12 weeks after application glyphosate 720 g a.i/ha + indaziflam 50 g a.i/ha is 29.46% total weeds dry weight compared to manual weeding. The effect of herbicide application on changes on the weed composition and weed seedbank are affected by the characteristic of herbicides and weed response to herbicide application.

  5. Herbicidal cyanoacrylates with antimicrotubule mechanism of action.

    Science.gov (United States)

    Tresch, Stefan; Plath, Peter; Grossmann, Klaus

    2005-11-01

    The herbicidal mode of action of the new synthetic cyanoacrylates ethyl (2Z)-3-amino-2-cyano-4-ethylhex-2-enoate (CA1) and its isopropyl ester derivative CA2 was investigated. For initial characterization, a series of bioassays was used indicating a mode of action similar to that of mitotic disrupter herbicides such as the dinitroaniline pendimethalin. Cytochemical fluorescence studies including monoclonal antibodies against polymerized and depolymerized tubulin and a cellulose-binding domain of a bacterial cellulase conjugated to a fluorescent dye were applied to elucidate effects on cell division processes including mitosis and microtubule and cell wall formation in maize roots. When seedlings were root treated with 10 microM of CA1 or CA2, cell division activity in meristematic root tip cells decreased within 4 h. The chromosomes proceeded to a condensed state of prometaphase, but were unable to progress further in the mitotic cycle. The compounds caused a complete loss of microtubular structures, including preprophase, spindle, phragmoplast and cortical microtubules. Concomitantly, in the cytoplasm, an increase in labelling of free tubulin was observed. This suggests that the herbicides disrupt polymerization and microtubule stability, whereas tubulin synthesis or degradation appeared not to be affected. In addition, cellulose labelling in cell walls of root tip cells was not influenced. The effects of CA1 and CA2 were comparable with those caused by pendimethalin. In transgenic Arabidopsis plants expressing a green fluorescent protein-microtubule-associated protein4 fusion protein, labelled arrays of cortical microtubules in living epidermal cells of hypocotyls collapsed within 160 min after exposure to 10 microM CA1 or pendimethalin. Moreover, a dinitroaniline-resistant biotype of goosegrass (Eleusine indica (L) Gaertn) with a point mutation in alpha-tubulin showed cross-resistance against CA1 and CA2. The results strongly indicate that the cyanoacrylates are

  6. Palmistichus elaeisis (Hymenoptera: Eulophidae as an indicator of toxicity of herbicides registered for corn in Brazil

    Directory of Open Access Journals (Sweden)

    Claubert W.G de Menezes

    2014-09-01

    Full Text Available The diversity of plants in agricultural systems benefits natural enemies. Herbicides are used in weed management in corn (Zea mays L. to reduce competition and productivity losses, but they can impact natural enemies and contaminate the environment. The objective was to evaluate toxicity of herbicides on pupae parasitoid Palmistichus elaeisis Delvare and LaSalle, 1993 (Hymenoptera: Eulophidae. The treatments were represented by the host pupae Tenebrio molitor L., 1785 (Coleoptera: Tenebrionidae and herbicides atrazine, nicosulfuron, paraquat, and tembotrione in commercial doses compared to a control treatment with water. Pupae of T. molitor were immersed in the solution of herbicides and exposed to parasitism by six females of P. elaeisis each. The herbicides atrazine and paraquat were highly toxic and, therefore, not selective to P. elaeisis. Nicosulfuron reduced the sex ratio of P. elaeisis (0.20 ± 0.03, which may affect subsequent generations. Moreover, the herbicide tembotrione was selective to P. elaeisis, showing results comparable to the control. Floristic diversity of weeds can increase food source, habitat, shelter, breeding places and microclimates for insect parasitoids but herbicides formulations can be toxic and these products can affect P. elaeisis or its hosts by direct or indirect contact, showing the importance of selectivity studies for this natural enemy. However, the herbicide tembotrione was selective to P. elaeisis and it can be recommended for programs of sustainable management of weeds in corn crop with this parasitoid.

  7. Perspectives on transgenic, herbicide-resistant crops in the United States almost 20 years after introduction.

    Science.gov (United States)

    Duke, Stephen O

    2015-05-01

    Herbicide-resistant crops have had a profound impact on weed management. Most of the impact has been by glyphosate-resistant maize, cotton, soybean and canola. Significant economic savings, yield increases and more efficacious and simplified weed management have resulted in widespread adoption of the technology. Initially, glyphosate-resistant crops enabled significantly reduced tillage and reduced the environmental impact of weed management. Continuous use of glyphosate with glyphosate-resistant crops over broad areas facilitated the evolution of glyphosate-resistant weeds, which have resulted in increases in the use of tillage and other herbicides with glyphosate, reducing some of the initial environmental benefits of glyphosate-resistant crops. Transgenic crops with resistance to auxinic herbicides, as well as to herbicides that inhibit acetolactate synthase, acetyl-CoA carboxylase and hydroxyphenylpyruvate dioxygenase, stacked with glyphosate and/or glufosinate resistance, will become available in the next few years. These technologies will provide additional weed management options for farmers, but will not have all of the positive effects (reduced cost, simplified weed management, lowered environmental impact and reduced tillage) that glyphosate-resistant crops had initially. In the more distant future, other herbicide-resistant crops (including non-transgenic ones), herbicides with new modes of action and technologies that are currently in their infancy (e.g. bioherbicides, sprayable herbicidal RNAi and/or robotic weeding) may affect the role of transgenic, herbicide-resistant crops in weed management. Published 2014. This article is a U.S. Government work and is in the public domain in the USA. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.

  8. Optimization of typical diffuse herbicide pollution control by soil amendment configurations under four levels of rainfall intensities.

    Science.gov (United States)

    Ouyang, Wei; Huang, Weijia; Wei, Peng; Hao, Fanghua; Yu, Yongyong

    2016-06-15

    Herbicides are a main source of agricultural diffuse pollution due to their wide application in tillage practices. The aim of this study is to optimize the control efficiency of the herbicide atrazine with the aid of modified soil amendments. The soil amendments were composed of a combination of biochar and gravel. The biochar was created from corn straw with a catalytic pyrolysis of ammonium dihydrogen phosphate. The leaching experiments under four rainfall conditions were measured for the following designs: raw soil, soil amended with gravel, biochar individually and together with gravel. The control efficiency of each design was also identified. With the designed equipment, the atrazine content in the contaminant load layer, gravel substrate layer, biochar amendment layer and soil layer was measured under four types of rainfall intensities (1.25 mm/h, 2.50 mm/h, 5.00 mm/h and 10.00 mm/h). Furthermore, the vertical distribution of atrazine in the soil sections was also monitored. The results showed that the herbicide leaching load increased under the highest rainfall intensity in all designs. The soil with the combination of gravel and biochar provided the highest control efficiency of 87.85% on atrazine when the additional proportion of biochar was 3.0%. The performance assessment under the four kinds of rainfall intensity conditions provided the guideline for the soil amendment configuration. The combination of gravel and biochar is recommended as an efficient method for controlling diffuse herbicide pollution. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Simultaneous catalytic degradation of 2,4-D and MCPA herbicides using sulfate radical-based heterogeneous oxidation over persulfate activated by natural hematite (α-Fe2O3/PS)

    Science.gov (United States)

    Kermani, Majid; Mohammadi, Farzad; Kakavandi, Babak; Esrafili, Ali; Rostamifasih, Zeinab

    2018-06-01

    Herein, a sulfate radical (SO4rad -)-based oxidation process was utilized for simultaneous degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) and 2-methyl-4-chlorophenoxyacetic acid (MCPA) herbicides using mesoporous hematite-based natural semi-conductor minerals (HM-NSMs) as efficient activators of persulfate (PS). The features of the catalyst were characterized using field emission scanning electron microscopy (FESEM); Brunauer, Emmett and Teller (BET) analysis; X-ray diffraction (XRD); and energy-dispersive X-ray spectroscopy (EDS). The effect of some operational parameters, including solution pH, catalyst loading, PS dosage and temperature, on the performance system of PS/HM-NSMs was examined. A plausible oxidation mechanism for degradation of both pollutants was also proposed. Increasing the removal efficiency of herbicides follows the order of PS/HM-NSM > HM-NSM > PS. In all experiments, the 2,4-D removal rates were slightly lower than those for MCPA, indicating that 2,4-D has a more recalcitrant nature than MCPA. Under optimized conditions, degradation rates of 68.1% and 74.5% were achieved for 2,4-D and MCPA, respectively, during a 120-min reaction. HM-NSM displays a highly synergistic effect on the degradation of herbicides in the presence of PS. The trapping experiments demonstrated that both OHrad and SO4rad - radicals contribute significantly during the degradation of 2,4-D and MCPA and that sulfate radicals were the dominant species. A mineralization degree of 36% was obtained under optimum conditions. In conclusion, the coupling of PS and HM-NSM is a promising and effective technique to degrade organic matter for the treatment of herbicide-contaminated waters and wastewaters under real conditions.

  10. Fate of herbicides in deep subsurface limestone and sandy aquifers

    DEFF Research Database (Denmark)

    Janniche, Gry Sander

    afgørende for at vurdere herbiciders skæbne i underjord og grundvandsmagasiner. PhD-projektet har undersøgt sorption og nedbrydning af fire model-herbicider (atrazin, acetochlor, mecoprop og isoproturon) i kalksten og sandede grundvands¬magasiner. Desuden er den rumlige småskala-variation af herbicidernes...... tydelig selv inden for få cm afstand over dybden, og betydningen af denne variation afhænger af den samlede udbredelse af lag med forhøjet sorption eller nedbrydning; 2) at kalk/kalksten yder ringe beskyttelse mod grundvands¬forurening med mecoprop, atrazin, isoproturon og acetochlor, da sorptionen er lav...... og mineraliseringen meget langsom for isoproturon, acetochlor og mecoprop, og atrazin ikke er nedbrydeligt; 3) at i sandede grundvands¬magasiner er sorptionen af de fire herbicider generelt lav, men kan under reducerede forhold være kraftig for især isoproturon og acetochlor. Mecoprop, isoproturon og...

  11. Efficacy of Maister OD (Foramsulfuron + Idosulfuron a New Herbicide in Controlling Weeds of Corn Fields

    Directory of Open Access Journals (Sweden)

    J. Abdi

    2012-07-01

    Full Text Available To evaluate the efficacy of a new herbicide Foramsulfuron +Idosulfuron (Maister OD against other herbicides in corn fields, this experiment was fulfielld in 2010 at Mahidasht, Research Center of Agriculture and Natural Resources of Kermanshah, Iran. It was concucted in randomized complete block design with four replications and 11 treatments. In this experiment, three doses of herbicides (38.75, 46.5 and 54.25 g/ha including foramsulfuron + idosulfuron along with Nicusulfuron, ForamSulfuron, Rimsulfuron, Foramsulfuron + Rimsulfuron , Bromicid + hand weeding narrow leaf weeds, Bromicid + Nicusulfuron and U46 + hand weeding of narrow leaf weeds and a complete weeding as the control treatments were investigated. Weeds present in the field were Xanthium stromarium,Chenopedium album, Portulaca oleracea, Sorgum halepense and Setaria virdis. The results of this study showed that doses 38.75 and 46.5 g/ha of herbicide foramsulfuron + idosulfuron after treatments of Bromicid + Nicusulfuron and, Bromicid + narrow leaf weed, hand weeding respectively could control 90 and 86 % of weeds in corn field and increase its yields significantly. Because there are presently few registered herbicide available in Iran, necessity of finding proper herbicides to control weeds in corn field and based on the results oblained from this experiment it seems using 46.5 and 38-75 grams per hectare respectively of foramsulfuron + idosulfuron could be a better option than other herbicides to control weeds in corn fields and increase its seed yield.

  12. Toxicity of herbicides used in the sugarcane crop to diazotrophic bacterium Herbaspirillum seropedicae

    Directory of Open Access Journals (Sweden)

    Sergio de Oliveira Procópio

    2014-10-01

    Full Text Available The objective of this work was to identify herbicides used in the sugarcane crop that affects neither the growth, the development, of nor the process of biological nitrogen fixation (BNF by the diazotrophic bacterium Herbaspirillum seropedicae. Eighteen herbicides (paraquat, ametryne, tebuthiuron, amicarbazone, diuron, metribuzin, [hexazinone + diuron], [hexazinone + clomazone], clomazone, isoxaflutole, sulfentrazone, oxyfluorfen, imazapic, imazapyr, [trifloxysulfuron sodium + ametryne], glyphosate, MSMA e 2,4-D were tested in their respective commercial doses regarding their impact on the growth of the bacteria in liquid medium DIGs. For this, we determined the duration of lag phase, generation time and maximum cell density of H. seropedicae, calculated from optical density data obtained at regular intervals during the incubation of cultures for 33 h at 32oC. We also evaluated the impact of herbicides on nitrogenase activity of H. seropedicae grown in semi-solid N-free JNFb medium. The effects of herbicides on the growth variables and the ARA were compared with the untreated control by Dunnett test. A completely randomized design was used. The herbicides paraquat, imazapyr, ametryne, glyphosate and oxyfluorfen inhibited the growth of H. seropedicae in vitro. Ametryne, oxyfluorfen and glyphosate caused a small reduction in the duration of the lag phase of diazotrophic bacteria H. seropedicae. Oxyfluorfen, ametryne and imazapyr resulted in increased the generation time by H. seropedicae. Glyphosate promoted drastic reduction in biological nitrogen fixation in vitro by H. seropedicae. The other tested herbicides did not affect the growth or the same BNF by H. seropedicae.

  13. Linking fluorescence induction curve and biomass in herbicide screening.

    Science.gov (United States)

    Christensen, Martin G; Teicher, Harald B; Streibig, Jens C

    2003-12-01

    A suite of dose-response bioassays with white mustard (Sinapis alba L) and sugar beet (Beta vulgaris L) in the greenhouse and with three herbicides was used to analyse how the fluorescence induction curves (Kautsky curves) were affected by the herbicides. Bentazone, a photosystem II (PSII) inhibitor, completely blocked the normal fluorescence decay after the P-step. In contrast, fluorescence decay was still obvious for flurochloridone, a PDS inhibitor, and glyphosate, an EPSP inhibitor, which indicated that PSII inhibition was incomplete. From the numerous parameters that can be derived from OJIP-steps of the Kautsky curve the relative changes at the J-step [Fvj = (Fm - Fj)/Fm] was selected to be a common response parameter for the herbicides and yielded consistent dose-response relationships. Four hours after treatment, the response Fvj on the doses of bentazone and flurochloridone could be measured. For glyphosate, the changes of the Kautsky curve could similarly be detected 4 h after treatment in sugar beet, but only after 24 hs in S alba. The best prediction of biomass in relation to Fvj was found for bentazone. The experiments were conducted between May and August 2002 and showed that the ambient temperature and solar radiation in the greenhouse could affect dose-response relationships. If the Kautsky curve parameters should be used to predict the outcome of herbicide screening experiments in the greenhouse, where ambient radiation and temperature can only partly be controlled, it is imperative that the chosen fluorescence parameters can be used to predict accurately the resulting biomass used in classical bioassays.

  14. Grassland response to herbicides and seeding of native grasses 6 years posttreatment

    Science.gov (United States)

    Bryan A. Endress; Catherine G. Parks; Bridgett J. Naylor; Steven R. Radosevich; Mark. Porter

    2012-01-01

    Herbicides are the primary method used to control exotic, invasive plants. This study evaluated restoration efforts applied to grasslands dominated by an invasive plant, sulfur cinquefoil, 6 yr after treatments. Of the five herbicides we evaluated, picloram continued to provide the best control of sulfur cinquefoil over 6 yr. We found the timing of picloram...

  15. Effects of a phosphinothricin based herbicide on selected groups of soil microorganisms.

    Science.gov (United States)

    Pampulha, M E; Ferreira, M A S S; Oliveira, A

    2007-08-01

    The effects of the herbicide glufosinate-ammonium on soil microbial populations and activity were observed in a laboratory microcosms over a 40 day period. Culturable aerobic bacteria, fungi and actinomycetes, the fundamental groups of heterotrophic microorganisms, were studied. Nitrifiers, considered a very sensitive group to these compounds were also evaluated. Since herbicides have been found to inhibit decomposition of cellulose in the soil, the effects of glufosinate on cellulolytic bacteria and fungi were determined. Dehydrogenase activity as a measure of microbial activity was another parameter considered. Both stimulating and inhibitory effects on microbial populations were observed, depending on concentration of the herbicide and the period of incubation. A severe inhibiting effect of glufosinate on dehydrogenase activity was found. We concluded that the widespread use of this herbicide may have possible injurious effects on soil microorganisms and their activities. The toxicity exerted by glufosinate may lead to a shift in microbial community structure tending toward a significant loss in functional diversity. Dehydrogenase activity was shown to be an important indicator of glufosinate side-effects.

  16. APPLICATION OF QuEChERS METHOD FOR THE DETERMINATION OF PHENYLUREA HERBICIDES IN BEETROOT BY HPLC WITH UV-VIS DETECTION

    Directory of Open Access Journals (Sweden)

    Magdalena Surma

    2015-02-01

    Full Text Available Phenylurea herbicides are an important group of herbicides utilized in weed control. They have been on sale since the 1950s and are still in common use throughout the world from pre- and post-emergence control of many annual and perennial broad-leaved weeds. The aim of this work was to evaluate the utility of the QuEChERS method for the determination of phenylurea pesticides (chlortoluron, isoproturon, linuron, metobromuron, metoxuron, monolinuron in beetroot by HPLC with UV/Vis detection. Different types of sorbents (PSA, C18, SAX and NH2 and solvents (hexane, ethyl acetate were applied. The obtained results showed that the best recovery ratios were received for the method with PSA and GCB sorbents and using acetonitrile as an extraction solvent with RSD lower than 15% for most compounds. The linearity of calibration curves was higher than 0.98 for all target analytes. The results show that the QuEChERS method can be successfully applied for the determination of phenylurea herbicides in beetroot.

  17. Differences in sorption behavior of the herbicide 4-chloro-2-methylphenoxyacetic acid on artificial soils as a function of soil pre-aging.

    Science.gov (United States)

    Waldner, Georg; Friesl-Hanl, Wolfgang; Haberhauer, Georg; Gerzabek, Martin H

    The sorption behavior of the herbicide 4-chloro-2-methylphenoxyacetic acid (MCPA) to three different artificial soil mixtures was investigated. Artificial soils serve as model systems for improving understanding of sorption phenomena. The soils consisted of quartz, ferrihydrite, illite, montmorillonite, and charcoal. In a previous study, several selected mixtures had been inoculated with organic matter, and microbial aging (incubation) had been performed for different periods of time (3, 12, and 18 months) before conducting the sorption experiments. The effect of this pre-incubation time on the sorption behavior was determined. Interaction of MCPA with soil surfaces was monitored by aqueous phase sorption experiments, using high-performance liquid chromatography/ultraviolet and in selected cases Fourier-transformed infrared spectroscopy. The sorption behavior showed large differences between differently aged soils; Freundlich and linear sorption model fits (with sorption constants K f , 1/ n exponents, and K d values, respectively) were given for pH = 3 and the unbuffered pH of ∼7. The largest extent of sorption from diluted solutions was found on the surfaces with a pre-incubation time of 3 months. Sorption increased at acidic pH values. Regarding the influence of aging of artificial soils, the following conclusions were drawn: young artificial soils exhibit stronger sorption at lower concentrations, with a larger K f value than aged soils. A correlation with organic carbon content was not confirmed. Thus, the sorption characteristics of the soils are more influenced by the aging of the organic carbon than by the organic carbon content itself.

  18. Pollution by s-triazine herbicides on waters. Electrochemical study on the simazine and propazone reductive deactivation; Contaminacion de aguas por herbicidas s-triazinicos. Estudio electroquimico de la desactivacion reductiva de simazina y propazina

    Energy Technology Data Exchange (ETDEWEB)

    Marin Galvin, R.; Rodriguez Mellado, J. M.; Higuera, M. J. [Universidad de Cordoba (Spain); Ruiz Montoya, M. [Universidad de Huelva (Spain)

    2000-07-01

    The s-Triazine herbicides are actually very used in the world's agricultural practices. Due to this they are widely found in soils and waters. In this sense, these herbicides can be deactivated by photooxidative way in that aquatic environments well sun-lighted and oxygenated. This paper deals on a electrochemical study al laboratory-scale on the reduction of simazine and propazine on mercury electrodes. According results, the global processes is irreversible and it is carried out at potentials of -1.000 mV and solutions with pH<4,0. The products then obtained are non aromatic and non chlorinated and must be reasonably of a lower toxicity than that of the primitive herbicides. The above implies that this reductive way could be applied to detoxify wastewaters herbicide-polluted by using another electrodes different of that mercury. On the other hand, the natural deactivation of natural waters containing simazine and propazine could theoretically act by this reductive way in acids, very poor oxygenated and rich in suspended materials waters (specially, carbonaceous). (Author) 23 refs.

  19. A novel amino acid substitution Trp574Arg in acetolactate synthase (ALS) confers broad resistance to ALS-inhibiting herbicides in crabgrass (Digitaria sanguinalis).

    Science.gov (United States)

    Li, Jian; Li, Mei; Gao, Xingxiang; Fang, Feng

    2017-12-01

    Crabgrass (Digitaria sanguinalis) is an annual monocotyledonous weed. In recent years, field applications of nicosulfuron have been ineffective in controlling crabgrass populations in Shandong Province, China. To investigate the mechanisms of resistance to nicosulfuron in crabgrass populations, the acetolactate synthase (ALS) gene fragment covering known resistance-confering mutation sites was amplified and sequenced. Dose-response experiments suggested that the resistant population SD13 (R) was highly resistant to nicosulfuron (resistance index R/S = 43.7) compared with the sensitive population SD22 (S). ALS gene sequencing revealed a Trp574Arg substitution in the SD13 population, and no other known resistance-conferring mutations were found. In vitro ALS enzyme assays further confirmed that the SD13 population was resistant to all tested ALS-inhibiting herbicides. The resistance pattern experiments revealed that, compared with SD22, the SD13 population exhibited broad-spectrum resistance to nicosulfuron (43.7-fold), imazethapyr (11.4-fold) and flumetsulam (16.1-fold); however, it did not develop resistance to atrazine, mesotrione and topramezone. This study demonstrated that Trp574Arg substitution was the main reason for crabgrass resistance to ALS-inhibiting herbicides. To our knowledge, this is the first report of Trp574Arg substitution in a weed species, and is the first report of target-site mechanisms of herbicide resistance for crabgrass. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  20. Limited fitness costs of herbicide-resistance traits in Amaranthus tuberculatus facilitate resistance evolution

    Science.gov (United States)

    The fitness cost of herbicide resistance (HR) in the absence of herbicide selection plays a key role in HR evolution. Quantifying the fitness cost of resistance, however, is challenging, and there exists a knowledge gap in this area. A synthetic Amaranthus tuberculatus population segregating for fiv...

  1. Predictive value of species sensitivity distributions for effects of herbicides in freshwater ecosystems

    NARCIS (Netherlands)

    Brink, van den P.J.; Blake, N.; Brock, T.C.M.; Maltby, L.

    2006-01-01

    In this article we present a review of the laboratory and field toxicity of herbicides to aquatic ecosystems. Single-species acute toxicity data and ( micro) mesocosm data were collated for nine herbicides. These data were used to investigate the importance of test species selection in constructing

  2. Multi-residues analysis of pre-emergence herbicides in fluvial sediments: application to the mid-Garonne River.

    Science.gov (United States)

    Devault, Damien A; Merlina, Georges; Lim, Puy; Probst, Jean-Luc; Pinelli, Eric

    2007-09-01

    Contamination of man and ecosystems by pesticides has become a major environmental concern. Whereas many studies exist on contamination from agriculture, the effects of urban sources are usually omitted. Fluvial sediment is a complex matrix of pollutants but little is known of its recent herbicide content. This study proposes a method for a fast and reliable analysis of herbicides by employing the accelerated solvent extractor (ASE). The aim of the study is to show the impact of a major town (Toulouse) on the herbicide content in the river. In this study, three herbicide families (i.e.s-triazine, substituted ureas and anilides) were analysed in fluvial sediment fractions at 11 sampling sites along the mid-Garonne River and its tributaries. River water contamination by herbicides is minor, except for at three sites located in urban areas. Among the herbicidal families studied, urban and suburban areas are distinguished from rural areas and were found to be the most contaminated sites during the study period, a winter low-water event. The herbicide content of the coarse sediment fractions is about one third of that found in the fine fractions and usually ignored. The distribution of pesticide concentrations across the whole range of particle sizes was investigated to clarify the role of plant remains on the significant accumulation in the coarse fractions.

  3. A study on Sorghum bicolor (L. Moench response to split application of herbicides

    Directory of Open Access Journals (Sweden)

    Kaczmarek Sylwia

    2017-06-01

    Full Text Available Field experiments to evaluate the split application of mesotrione + s-metolachlor, mesotrione + terbuthylazine, dicamba + prosulfuron, terbuthylazine + mesotrione + s-metolachlor, and sulcotrione in the cultivation of sorghum var. Rona 1 were carried out in 2012 and 2013. The field tests were conducted at the field experimental station in Winna Góra, Poznań, Poland. Treatments with the herbicides were performed directly after sowing (PE and at leaf stage 1–2 (AE1 or at leaf stage 3–4 (AE2 of sorghum. The treatments were carried out in a laid randomized block design with 4 replications. The results showed that the tested herbicides applied at split doses were effective in weed control. After the herbicide application weed density and weed biomass were significantly reduced compared to the infested control. The best results were achieved after the application of mesotrione tank mixture with s-metolachlor and terbuthylazine. Application of split doses of herbicides was also correlated with the density, biomass, and height of sorghum.

  4. Spatial variability of herbicide mobilisation and transport at catchment scale: insights from a field experiment

    Directory of Open Access Journals (Sweden)

    T. Doppler

    2012-07-01

    Full Text Available During rain events, herbicides can be transported from their point of application to surface waters, where they may harm aquatic organisms. Since the spatial pattern of mobilisation and transport is heterogeneous, the contributions of different fields to the herbicide load in the stream may vary considerably within one catchment. Therefore, the prediction of contributing areas could help to target mitigation measures efficiently to those locations where they reduce herbicide pollution the most.

    Such spatial predictions require sufficient insight into the underlying transport processes. To improve the understanding of the process chain of herbicide mobilisation on the field and the subsequent transport through the catchment to the stream, we performed a controlled herbicide application on corn fields in a small agricultural catchment (ca. 1 km2 with intensive crop production in the Swiss Plateau. Water samples were collected at different locations in the catchment (overland flow, tile drains and open channel for two months after application in 2009, with a high temporal resolution during rain events. We also analysed soil samples from the experimental fields and measured discharge, groundwater level, soil moisture and the occurrence of overland flow at several locations. Several rain events with varying intensities and magnitudes occurred during the study period. Overland flow and erosion were frequently observed in the entire catchment. Infiltration excess and saturation excess overland flow were both observed. However, the main herbicide loss event was dominated by infiltration excess.

    Despite the frequent and wide-spread occurrence of overland flow, most of this water did not reach the channel directly, but was retained in small depressions in the catchment. From there, it reached the stream via macropores and tile drains. Manholes of the drainage system and storm drains for road and farmyard runoff acted as

  5. Dicotyledon Weed Quantification Algorithm for Selective Herbicide Application in Maize Crops.

    Science.gov (United States)

    Laursen, Morten Stigaard; Jørgensen, Rasmus Nyholm; Midtiby, Henrik Skov; Jensen, Kjeld; Christiansen, Martin Peter; Giselsson, Thomas Mosgaard; Mortensen, Anders Krogh; Jensen, Peter Kryger

    2016-11-04

    The stricter legislation within the European Union for the regulation of herbicides that are prone to leaching causes a greater economic burden on the agricultural industry through taxation. Owing to the increased economic burden, research in reducing herbicide usage has been prompted. High-resolution images from digital cameras support the studying of plant characteristics. These images can also be utilized to analyze shape and texture characteristics for weed identification. Instead of detecting weed patches, weed density can be estimated at a sub-patch level, through which even the identification of a single plant is possible. The aim of this study is to adapt the monocot and dicot coverage ratio vision (MoDiCoVi) algorithm to estimate dicotyledon leaf cover, perform grid spraying in real time, and present initial results in terms of potential herbicide savings in maize. The authors designed and executed an automated, large-scale field trial supported by the Armadillo autonomous tool carrier robot. The field trial consisted of 299 maize plots. Half of the plots (parcels) were planned with additional seeded weeds; the other half were planned with naturally occurring weeds. The in-situ evaluation showed that, compared to conventional broadcast spraying, the proposed method can reduce herbicide usage by 65% without measurable loss in biological effect.

  6. Effect of herbicides on photosynthetic electron transport and on the growth of the alga Scenedesmus quadricauda

    Directory of Open Access Journals (Sweden)

    W. Hendrich

    2015-01-01

    Full Text Available The inhibitory effect of herbicides on the Hill reaction (with 2,6-dichloro-phenol-indophenol as acceptor and their influence on development of the alga Scenedesmus quadricauda was studied. The following herbicides were tested: 2,4-D, Gramoxone, Afalon, Kresamone, CIPC and Simazine. The results are discussed in terms of the mechanism of action of the investigated herbicides.

  7. Fate of herbicides in a shallow aerobic aquifer: A continuous field injection experiment (Vejen,Denmark)

    DEFF Research Database (Denmark)

    Broholm, Mette; Rügge, K.; Tuxen, Nina

    2001-01-01

    A continuous, natural gradient, field injection experiment, involving six herbicides and a tracer, was performed in a shallow aerobic aquifer near Vejen, Denmark. Bentazone, ()-2-(4-chloro-2-methylphenoxy) propanoic acid (MCPP), dichlorprop, isoproturon, and the dichlobenil metabolite 2,6-dichlor...... in groundwater potentials. An average flow velocity of 0.5 m/d was observed, as depicted by bromide. Bentazone, BAM, MCPP, and dichlorprop retardation was negligible, and only slight retardation of isoproturon was observed in the continuous injection experiment and a preceding pulse experiment. No degradation...... of bentazone was observed in the aerobic aquifer during the monitoring period. BAM and isoproturon were not degraded within 5 m downgradient of the injection. The two phenoxy acids MCPP and dichlorprop were both degraded in the aerobic aquifer. Near the source a lag phase was observed followed by fast...

  8. Drazepinone, a trisubstituted tetrahydronaphthofuroazepinone with herbicidal activity produced by Drechslera siccans.

    Science.gov (United States)

    Evidente, Antonio; Andolfi, Anna; Vurro, Maurizio; Fracchiolla, Mariano; Zonno, Maria Chiara; Motta, Andrea

    2005-03-01

    When grown in a minimal-defined medium, a strain of Drechslera siccans, a pathogenic fungus isolated from seeds of Lolium perenne, produced phytotoxic metabolites. This strain is one of the best toxin producers among several grass pathogenic fungal strains collected and tested to find phytotoxins to be used as natural herbicides of monocot weeds. From the culture filtrates of D. siccans, we isolated a new phytotoxic trisubstituted naphthofuroazepinone, named drazepinone, and characterised it as a 3,5,12a-trimethyl-2,5,5a,12a-tetrahydro-1H-naphtho[2',3':4,5]furo[2,3-b]azepin-2-one. Assayed at 2 microg microl(-1) solution the novel metabolite proved to have broad-spectrum herbicidal properties, without antibacterial and antifungal activities, and low zootoxic activity. Its original chemical structure and the interesting biological properties make drazepinone a potential natural herbicide.

  9. Effect of herbicide and soil amendment on growth and photosynthetic responses in olive crops.

    Science.gov (United States)

    Redondo-Gómez, Susana; Mateos-Naranjo, Enrique; Cox, Lucía; Cornejo, Juan; Figueroa, Enrique

    2007-01-01

    Diuron [3-(3,4-dichlorophenyl)- = 1,1-dimethylurea] and simazine (6-chloro-N(2), N(4)-diethyl-1,3,5-triazine-2,4-diamine) are soil-applied herbicides used in olive crops. The objective of this study is to investigate the combined effect of these herbicides and the amendment of soil with an organic waste (OW) from the olive oil production industry on the growth and photosynthetic apparatus of adult olive trees and to compare the results with those obtained by Redondo-Gómez et al. for two-year-old trees. For this purpose, growth rate, gas exchange and chlorophyll fluorescence parameters were measured in 38-year-old olive trees, after one and two months of soil herbicide treatment and/or OW amendment. Soil co-application of OW and herbicide increases the quantum efficiency of Photosystem II (PSII) and the assimilation of CO(2) in olive trees, which led to a higher relative growth rate of the branches and leaves in length. Herbicide treatment reduced the photosynthetic efficiency in olive trees after two months of soil application, while this reduction is evident from week one in younger trees.

  10. Alternatives to herbicides in an apple orchard, effects on yield, earthworms and plant diversity

    DEFF Research Database (Denmark)

    Andersen, L.; Kuehn, Birka Falk; Bertelsen, M.

    2013-01-01

    tIn a newly established apple orchard eight alternative methods to weed control in the tree row werecompared to a herbicide treatment with respect to effects on tree growth, first-quality fruit yield, earth-worms and flora. All treatments were tested at two irrigation schedules, with similar amount......, whereasmulching with paper wool reduced first-quality fruit yield compared to herbicide treatment. Cover cropas tagetes and weed harrowing had similar yield as herbicide treatment, whereas cover crops as grassand hop medick and weed cutting reduced first-quality yield compared to herbicide treatment. Earth......-worms thrived under rape straw contrary to under black polypropylene and plots with weed harrowing.Treatments had significant effects on species numbers of plants both years, and total vegetation covergenerally increased in the second year. Rape straw supported a high production of apples and a largestock...

  11. Effect of buctril super (Bromoxynil herbicide on soil microbial biomass and bacterial population

    Directory of Open Access Journals (Sweden)

    Zafar Abbas

    2014-02-01

    Full Text Available The present study aimed to evaluate the effect of bromoxynil herbicide on soil microorganisms, with the hypothesis that this herbicide caused suppression in microbial activity and biomass by exerting toxic effect on them. Nine sites of Punjab province (Pakistan those had been exposed to bromoxynil herbicide for about last ten years designated as soil 'A' were surveyed in 2011 and samples were collected and analyzed for Microbial Biomass Carbon (MBC, Biomass Nitrogen (MBN, Biomass Phosphorus (MBP and bacterial population. Simultaneously, soil samples from the same areas those were not exposed to herbicide designated as soil 'B' were taken. At all the sites MBC, MBN and MBP ranged from 131 to 457, 1.22 to 13.1 and 0.59 to 3.70 µg g-1 in the contaminated soils (Soil A, which was 187 to 573, 1.70 to 14.4 and 0.72 to 4.12 µg g-1 in the soils without contamination (soil B. Bacterial population ranged from 0.67 to 1.84x10(8 and 0.87 to 2.37x10(8 cfu g-1 soil in the soils A and B, respectively. Bromoxynil residues ranged from 0.09 to 0.24 mg kg-1 at all the sites in soil A. But no residues were detected in the soil B. Due to lethal effect of bromoxynil residues on the above parameters, considerable decline in these parameters was observed in the contaminated soils. Results depicted that the herbicide had left toxic effects on soil microbial parameters, thus confirmed that continuous use of this herbicide affected the quality of soil and sustainable crop production.

  12. Evaluation Effect of Adjuvant on Mesosulfuron+Iodosulfuron Herbicide Performance on Littleseed Canarygrass Control

    Directory of Open Access Journals (Sweden)

    M. kargar

    2016-02-01

    Full Text Available Introduction: Adjuvant application is one of the most important ways to increase herbicide efficacy and decrease environmental damaging effects of herbicides. In general, It has displayed that a very few of the spray droplets retained on the surface of leaf plants and the majority of them bounce off the leaf surface. Therefore, in spraying processes, adjuvant designed to enhance the absorbing, emulsifying, dispersing, spreading, sticking, wetting, or penetrating properties of pesticides. Adjuvant are most often used with herbicides to help a pesticide spread over a leaf surface and penetrate the waxy cuticle of a leaf or to penetrate through the small hairs present on a leaf surface. Surfactants and crop oils are two types of adjuvant that are used for increasing efficacy of herbicides. In many cases, significant increases have been observed in biological activity with the addition of surfactants or crop oils. For example, the performance of specific graminicides and some sulfonylureas is usually increased by the addition of tank-mix oils. It is generally accepted that the benefit of oils is related to their ability to increase the drying period of droplets during their fly time before their impact on the plants, to improve the spreading of the deposit on difficult-to-wet targets (mainly Graminaceae, to act as solubilizing agents, and above all to enhance the penetration of herbicides into the plants. Among commercially available adjuvants, emulsified vegetable oils have been shown to increase droplet retention and spreading, and enhance absorption and translocation of active ingredients. It has been reported that efficacy of atrazine, bentazone, phenmedipham and rimsulfuron on various weeds were increased by the addition of rapeseed oils to solution spray. Materials and Methods: In order to evaluate the effect of adjuvant concentrations on surface tension of aqueous solutions, an experiment was conducted as completely randomized design with 4

  13. Weed management through herbicide application in direct-seeded rice and yield modeling by artificial neural network

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, D.; Singh, U.P.; Ray, K.; Das, A.

    2016-11-01

    In direct seeded rice (DSR) cultivation, weed is the major constraint mainly due to absence of puddling in field. The yield loss due to weed interference is huge, may be up to 100%. In this perspective, the present experiment was conducted to study the efficacy of selected herbicides, and to predict the rice yield using artificial neural network (ANN) models. The dry weight and density of weeds were recorded at different growth stages and consequently herbicidal efficacy was evaluated. Experimental results revealed that pre-emergence (PRE) herbicide effectively controlled the germination of grassy weeds. Application bispyribac-sodium as post-emergence (POST) following PRE herbicides (clomazone or pendimethalin) or as tank-mixture with clomazone effectively reduced the density and biomass accumulation of diverse weed flora in DSR. Herbicidal treatments improved the plant height, yield attributes and grain yield (2.7 to 5.5 times) over weedy check. The sensitivity of the best ANN model clearly depicts that the weed control index (WCI) of herbicides was most important than their weed control efficiency (WCE). Besides, the early control of weeds is a better prescription to improve rice yield. Differences in sensitivity values of WCI and WCE across the crop growth stages also suggest that at 15, 30 and 60 days after sowing, herbicides most effectively controlled sedges, broad leaves and grasses, respectively. Based on the grain yield and herbicidal WCE, it can be concluded that the combined application of pendimethalin or clomazone as PRE followed by bispyribac-sodium as POST or tank-mixture of clomazone + bispyribac sodium can effectively control different weed flushes throughout the crop growth period in DSR. (Author)

  14. Removal of glyphosate herbicide from water using biopolymer membranes.

    Science.gov (United States)

    Carneiro, Rafael T A; Taketa, Thiago B; Gomes Neto, Reginaldo J; Oliveira, Jhones L; Campos, Estefânia V R; de Moraes, Mariana A; da Silva, Camila M G; Beppu, Marisa M; Fraceto, Leonardo F

    2015-03-15

    Enormous amounts of pesticides are manufactured and used worldwide, some of which reach soils and aquatic systems. Glyphosate is a non-selective herbicide that is effective against all types of weeds and has been used for many years. It can therefore be found as a contaminant in water, and procedures are required for its removal. This work investigates the use of biopolymeric membranes prepared with chitosan (CS), alginate (AG), and a chitosan/alginate combination (CS/AG) for the adsorption of glyphosate present in water samples. The adsorption of glyphosate by the different membranes was investigated using the pseudo-first order and pseudo-second order kinetic models, as well as the Langmuir and Freundlich isotherm models. The membranes were characterized regarding membrane solubility, swelling, mechanical, chemical and morphological properties. The results of kinetics experiments showed that adsorption equilibrium was reached within 4 h and that the CS membrane presented the best adsorption (10.88 mg of glyphosate/g of membrane), followed by the CS/AG bilayer (8.70 mg of glyphosate/g of membrane). The AG membrane did not show any adsorption capacity for this herbicide. The pseudo-second order model provided good fits to the glyphosate adsorption data on CS and CS/AG membranes, with high correlation coefficient values. Glyphosate adsorption by the membranes could be fitted by the Freundlich isotherm model. There was a high affinity between glyphosate and the CS membrane and moderate affinity in the case of the CS/AG membrane. Physico-chemical characterization of the membranes showed low values of solubility in water, indicating that the membranes are stable and not soluble in water. The SEM and AFM analysis showed evidence of the presence of glyphosate on CS membranes and on chitosan face on CS/AG membranes. The results showed that the glyphosate herbicide can be adsorbed by chitosan membranes and the proposed membrane-based methodology was successfully used to

  15. Detection of herbicides in the urine of pet dogs following home lawn chemical application

    Energy Technology Data Exchange (ETDEWEB)

    Knapp, Deborah W., E-mail: knappd@purdue.edu [Department of Veterinary Clinical Sciences, Purdue University, West Lafayette, IN (United States); Purdue University Center for Cancer Research and Purdue Oncological Sciences Center, West Lafayette, IN (United States); Peer, Wendy A.; Conteh, Abass; Diggs, Alfred R. [Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN (United States); Cooper, Bruce R. [Bindley Bioscience Center, Purdue University, West Lafayette, IN (United States); Glickman, Nita W. [Department of Emergency Medicine, University of North Carolina, Chapel Hill, NC (United States); Bonney, Patty L.; Stewart, Jane C. [Department of Veterinary Clinical Sciences, Purdue University, West Lafayette, IN (United States); Glickman, Lawrence T. [Department of Emergency Medicine, University of North Carolina, Chapel Hill, NC (United States); Murphy, Angus S. [Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN (United States)

    2013-07-01

    Exposure to herbicide-treated lawns has been associated with significantly higher bladder cancer risk in dogs. This work was performed to further characterize lawn chemical exposures in dogs, and to determine environmental factors associated with chemical residence time on grass. In addition to concern for canine health, a strong justification for the work was that dogs may serve as sentinels for potentially harmful environmental exposures in humans. Experimentally, herbicides [2,4-dichlorophenoxyacetic acid (2,4-D), 4-chloro-2-methylphenoxypropionic acid (MCPP), dicamba] were applied to grass plots under different conditions (e.g., green, dry brown, wet, and recently mowed grass). Chemicals in dislodgeable residues were measured by LC-MS at 0.17, 1, 24, 48, 72 h post treatment. In a separate study, 2,4-D, MCPP, and dithiopyr concentrations were measured in the urine of dogs and in dislodgeable grass residues in households that applied or did not apply chemicals in the preceding 48 h. Chemicals were measured at 0, 24, and 48 h post application in treated households and at time 0 in untreated control households. Residence times of 2,4-D, MCPP, and dicamba were significantly prolonged (P < 0.05) on dry brown grass compared to green grass. Chemicals were detected in the urine of dogs in 14 of 25 households before lawn treatment, in 19 of 25 households after lawn treatment, and in 4 of 8 untreated households. Chemicals were commonly detected in grass residues from treated lawns, and from untreated lawns suggesting chemical drift from nearby treated areas. Thus dogs could be exposed to chemicals through contact with their own lawn (treated or contaminated through drift) or through contact with other grassy areas if they travel. The length of time to restrict a dog's access to treated lawns following treatment remains to be defined. Further study is indicated to assess the risks of herbicide exposure in humans and dogs. - Highlights: • Lawn chemicals were commonly

  16. Detection of herbicides in the urine of pet dogs following home lawn chemical application

    International Nuclear Information System (INIS)

    Knapp, Deborah W.; Peer, Wendy A.; Conteh, Abass; Diggs, Alfred R.; Cooper, Bruce R.; Glickman, Nita W.; Bonney, Patty L.; Stewart, Jane C.; Glickman, Lawrence T.; Murphy, Angus S.

    2013-01-01

    Exposure to herbicide-treated lawns has been associated with significantly higher bladder cancer risk in dogs. This work was performed to further characterize lawn chemical exposures in dogs, and to determine environmental factors associated with chemical residence time on grass. In addition to concern for canine health, a strong justification for the work was that dogs may serve as sentinels for potentially harmful environmental exposures in humans. Experimentally, herbicides [2,4-dichlorophenoxyacetic acid (2,4-D), 4-chloro-2-methylphenoxypropionic acid (MCPP), dicamba] were applied to grass plots under different conditions (e.g., green, dry brown, wet, and recently mowed grass). Chemicals in dislodgeable residues were measured by LC-MS at 0.17, 1, 24, 48, 72 h post treatment. In a separate study, 2,4-D, MCPP, and dithiopyr concentrations were measured in the urine of dogs and in dislodgeable grass residues in households that applied or did not apply chemicals in the preceding 48 h. Chemicals were measured at 0, 24, and 48 h post application in treated households and at time 0 in untreated control households. Residence times of 2,4-D, MCPP, and dicamba were significantly prolonged (P < 0.05) on dry brown grass compared to green grass. Chemicals were detected in the urine of dogs in 14 of 25 households before lawn treatment, in 19 of 25 households after lawn treatment, and in 4 of 8 untreated households. Chemicals were commonly detected in grass residues from treated lawns, and from untreated lawns suggesting chemical drift from nearby treated areas. Thus dogs could be exposed to chemicals through contact with their own lawn (treated or contaminated through drift) or through contact with other grassy areas if they travel. The length of time to restrict a dog's access to treated lawns following treatment remains to be defined. Further study is indicated to assess the risks of herbicide exposure in humans and dogs. - Highlights: • Lawn chemicals were commonly

  17. Plant breeding by using radiation mutation - Selection of herbicide-resistant cell lines by using {gamma}-rays

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyo Yeon [Sunchun University, Sunchun (Korea); Seo, Yong Weon [Korea University, Seoul (Korea)

    2000-04-01

    In order to develop the herbicide resistant cell lines, micro calli derived from rice anther culture and mature seed of wheat cultivars were irradiated with gamma rays. 1) The callus was dedifferentiated by 7 or 21 day pretreatment at 7 deg. C in two rice cultivars, Ilpumbyeo ad Dongjinbyeo. 2) To check the optimum concentration of herbicide, three herbicides were tested with micro calli. 3) The optimum dose of gamma ray to seeds of wheat seemed to be from 100 to 150 Gy. 4) AFLP and RAPD technique were established to develope herbicide resistant molecular marker in rice. 34 refs., 10 figs., 5 tabs. (Author)

  18. Herbicide contamination in carrot grown in punjab, pakistan

    International Nuclear Information System (INIS)

    Amjad, M.; Ahmad, T.; Jahangir, M.M.

    2013-01-01

    Food safety and security is a burning issue of the time whereas vegetable production is an important aspect of agriculture. Use of herbicides for vegetable production is very common in Pakistan but no proper procedure has been planned to keep optimal level of doses of herbicide under permissible limit. To estimate the pesticide residues, samples from the leading carrot producing sites were collected along with the samples from the market. The samples were processed using standard procedures and qualitative and quantitative analysis was performed by Gas Chromatography-Mass Spectrometry (GC-MS). It was concluded that all the samples were contaminated with S-metolachlor in the range of 0.45 to 0.73 mg kg-1 which was above the permissible limit (0.40 mg kg-1). (author)

  19. Forest worker exposure to airborne herbicide residues in smoke from prescribed fires in the Southern United States

    Science.gov (United States)

    Charles K. McMahon; Parshall B. Bush

    1992-01-01

    Occupational safety and health concerns have been raised in a number of southern states by workers conducting prescribed burns on forested lands treated with herbicides. Modeling assessments coupled with laboratory experiments have shown that the risk of airborne herbicide residues to workers is insignificant, even if the fire occurs immediately after herbicide...

  20. Biodegradation of the acetanilide herbicides alachlor, metolachlor, and propachlor.

    Science.gov (United States)

    Stamper, D M; Tuovinen, O H

    1998-01-01

    Alachlor, metolachlor, and propachlor are detoxified in biological systems by the formation of glutathione-acetanilide conjugates. This conjugation is mediated by glutathione-S-transferase, which is present in microorganisms, plants, and mammals. Other organic sulfides and inorganic sulfide also react through a nucleophilic attack on the 2-chloro group of acetanilide herbicides, but the products are only partially characterized. Sorption in soils and sediments is an important factor controlling the migration and bioavailability of these herbicides, while microbial degradation is the most important factor in determining their overall fate in the environment. The biodegradation of alachlor and metolachlor is proposed to be only partial and primarily cometabolic, and the ring cleavage seems to be slow or insignificant. Propachlor biodegradation has been reported to proceed to substantial (> 50%) mineralization of the ring structure. Reductive dechlorination may be one of the initial breakdown mechanisms under anaerobic conditions. Aerobic and anaerobic transformation products vary in their polarity and therefore in soil binding coefficient. A catabolic pathway for chloroacetanilide herbicides has not been presented in the literature because of the lack of mineralization data under defined cultural conditions.

  1. Growth in coculture stimulates metabolism of the phenylurea herbicide isoproturon by Sphingomonas sp. strain SRS2.

    Science.gov (United States)

    Sørensen, Sebastian R; Ronen, Zeev; Aamand, Jens

    2002-07-01

    Metabolism of the phenylurea herbicide isoproturon by Sphingomonas sp. strain SRS2 was significantly enhanced when the strain was grown in coculture with a soil bacterium (designated strain SRS1). Both members of this consortium were isolated from a highly enriched isoproturon-degrading culture derived from an agricultural soil previously treated regularly with the herbicide. Based on analysis of the 16S rRNA gene, strain SRS1 was assigned to the beta-subdivision of the proteobacteria and probably represents a new genus. Strain SRS1 was unable to degrade either isoproturon or its known metabolites 3-(4-isopropylphenyl)-1-methylurea, 3-(4-isopropylphenyl)-urea, or 4-isopropyl-aniline. Pure culture studies indicate that Sphingomonas sp. SRS2 is auxotrophic and requires components supplied by association with other soil bacteria. A specific mixture of amino acids appeared to meet these requirements, and it was shown that methionine was essential for Sphingomonas sp. SRS2. This suggests that strain SRS1 supplies amino acids to Sphingomonas sp. SRS2, thereby leading to rapid metabolism of (14)C-labeled isoproturon to (14)CO(2) and corresponding growth of strain SRS2. Proliferation of strain SRS1 suggests that isoproturon metabolism by Sphingomonas sp. SRS2 provides unknown metabolites or cell debris that supports growth of strain SRS1. The role of strain SRS1 in the consortium was not ubiquitous among soil bacteria; however, the indigenous soil microflora and some strains from culture collections also stimulate isoproturon metabolism by Sphingomonas sp. strain SRS2 to a similar extent.

  2. Omega-6 fatty acid biomarkers and incident type 2 diabetes

    NARCIS (Netherlands)

    Wu, Jason H.Y.; Marklund, Matti; Imamura, Fumiaki; Tintle, Nathan; Ardisson Korat, Andres V.; Goede, de Janette; Zhou, Xia; Yang, Wei Sin; Oliveira Otto, de Marcia C.; Kröger, Janine; Qureshi, Waqas; Virtanen, Jyrki K.; Bassett, Julie K.; Frazier-Wood, Alexis C.; Lankinen, Maria; Murphy, Rachel A.; Rajaobelina, Kalina; Gobbo, Del Liana C.; Forouhi, Nita G.; Luben, Robert; Khaw, Kay Tee; Wareham, Nick; Kalsbeek, Anya; Veenstra, Jenna; Luo, Juhua; Hu, Frank B.; Lin, Hung Ju; Siscovick, David S.; Boeing, Heiner; Chen, Tzu An; Steffen, Brian; Steffen, Lyn M.; Hodge, Allison; Eriksdottir, Gudny; Smith, Albert V.; Gudnason, Vilmunder; Harris, Tamara B.; Brouwer, Ingeborg A.; Berr, Claudine; Helmer, Catherine; Samieri, Cecilia; Laakso, Markku; Tsai, Michael Y.; Giles, Graham G.; Nurmi, Tarja; Wagenknecht, Lynne; Schulze, Matthias B.; Lemaitre, Rozenn N.; Chien, Kuo Liong; Soedamah-Muthu, Sabita S.; Geleijnse, Johanna M.; Sun, Qi; Harris, William S.; Lind, Lars; Ärnlöv, Johan; Riserus, Ulf; Micha, Renata; Mozaffarian, Dariush

    2017-01-01

    Background: The metabolic effects of omega-6 polyunsaturated fatty acids (PUFAs) remain contentious, and little evidence is available regarding their potential role in primary prevention of type 2 diabetes. We aimed to assess the associations of linoleic acid and arachidonic acid biomarkers with

  3. Heterogeneity in limb fatty acid kinetics in type 2 diabetes

    DEFF Research Database (Denmark)

    Sacchetti, M; Olsen, D B; Saltin, B

    2005-01-01

    AIMS/HYPOTHESIS: In order to test the hypothesis that disturbances in skeletal muscle fatty acid metabolism with type 2 diabetes are not equally present in the upper and lower limbs, we studied fatty acid kinetics simultaneously across the arm and leg of type 2 diabetic patients (n=6) and matched...... control subjects (n=7) for 5 h under baseline conditions and during a 4-h hyperinsulinaemic-euglycaemic clamp. METHODS: Limb fatty acid kinetics was determined by means of continuous [U-(13)C]palmitate infusion and measurement of arteriovenous differences. RESULTS: The systemic palmitate rate...... in the dysregulation of skeletal muscle fatty acid metabolism, with only the leg, but not the arm, showing an impairment of fatty acid kinetics at baseline and during a hyperinsulinaemic-euglycaemic clamp causing a physiological increase in insulin concentration....

  4. Presynaptic (Type III) cells in mouse taste buds sense sour (acid) taste.

    Science.gov (United States)

    Huang, Yijen A; Maruyama, Yutaka; Stimac, Robert; Roper, Stephen D

    2008-06-15

    Taste buds contain two types of cells that directly participate in taste transduction - receptor (Type II) cells and presynaptic (Type III) cells. Receptor cells respond to sweet, bitter and umami taste stimulation but until recently the identity of cells that respond directly to sour (acid) tastants has only been inferred from recordings in situ, from behavioural studies, and from immunostaining for putative sour transduction molecules. Using calcium imaging on single isolated taste cells and with biosensor cells to identify neurotransmitter release, we show that presynaptic (Type III) cells specifically respond to acid taste stimulation and release serotonin. By recording responses in cells isolated from taste buds and in taste cells in lingual slices to acetic acid titrated to different acid levels (pH), we also show that the active stimulus for acid taste is the membrane-permeant, uncharged acetic acid moiety (CH(3)COOH), not free protons (H(+)). That observation is consistent with the proximate stimulus for acid taste being intracellular acidification, not extracellular protons per se. These findings may also have implications for other sensory receptors that respond to acids, such as nociceptors.

  5. Interaction of humic acids and humic-acid-like polymers with herpes simplex virus type 1

    Science.gov (United States)

    Klöcking, Renate; Helbig, Björn

    The study was performed in order to compare the antiviral activity against herpes simplex virus type 1 (HSV-1) of synthetic humic-acid-like polymers to that of their low-molecular-weight basic compounds and naturally occurring humic acids (HA) in vitro. HA from peat water showed a moderate antiviral activity at a minimum effective concentration (MEC) of 20 µg/ml. HA-like polymers, i.e. the oxidation products of caffeic acid (KOP), hydrocaffeic acid (HYKOP), chlorogenic acid (CHOP), 3,4-dihydroxyphenylacetic acid (3,4-DHPOP), nordihydroguaretic acid (NOROP), gentisinic acid (GENOP), pyrogallol (PYROP) and gallic acid (GALOP), generally inhibit virus multiplication, although with different potency and selectivity. Of the substances tested, GENOP, KOP, 3,4-DHPOP and HYKOP with MEC values in the range of 2 to 10 µg/ml, proved to be the most potent HSV-1 inhibitors. Despite its lower antiviral potency (MEC 40 µg/ml), CHOP has a remarkable selectivity due to the high concentration of this polymer that is tolerated by the host cells (>640 µg/ml). As a rule, the antiviral activity of the synthetic compounds was restricted to the polymers and was not preformed in the low-molecular-weight basic compounds. This finding speaks in favour of the formation of antivirally active structures during the oxidative polymerization of phenolic compounds and, indirectly, of corresponding structural parts in different HA-type substances.

  6. Toxicological Effects of a Post Emergent Herbicide on Spirodela polyrhiza as a Model Macrophyte: A Comparison of the Effects of Pure and Nano-capsulated Form of the Herbicide

    OpenAIRE

    Samaneh Torbati *; Mehdi Mahmoudian; Neda Alimirzaei

    2018-01-01

    Background: One of the main reasons of environmental contaminations is the broad application of herbicides. Controlled release technologies such as encapsulation of herbicides are as an effective tool to reduce environmental contaminations. The aim of the present study was successful nanocapsulation of Gallant Super (GS), its characterization and compare the physiological responses of Spirodela polyrhiza L. upon exposure to GS and its encapsulated form. Methods: Nanocapsulation of GS in th...

  7. Generation and characterization of tribenuron-methyl herbicide-resistant rapeseed (Brasscia napus) for hybrid seed production using chemically induced male sterility.

    Science.gov (United States)

    Li, Haitao; Li, Juanjuan; Zhao, Bo; Wang, Jing; Yi, Licong; Liu, Chao; Wu, Jiangsheng; King, Graham J; Liu, Kede

    2015-01-01

    Identification and molecular analysis of four tribenuron-methyl resistant mutants in Brassica napus , which would be very useful in hybrid production using a Chemically induced male sterility system. Chemically induced male sterility (CIMS) systems dependent on chemical hybridization agents (CHAs) like tribenuron-methyl (TBM) represent an important approach for practical utilization of heterosis in rapeseed. However, when spraying the female parents with TBM to induce male sterility the male parents must be protected with a shield to avoid injury to the stamens, which would otherwise complicate the seed production protocol and increase the cost of hybrid seed production. Here we report the first proposed application of a herbicide-resistant cultivar in hybrid production, using a CIMS system based on identifying four TBM-resistant mutants in Brassica napus. Genetic analysis indicated that the TBM resistance was controlled by a single dominant nuclear gene. An in vitro enzyme activity assay for acetohydroxyacid synthase (AHAS) suggested that the herbicide resistance is caused by a gain-of-function mutation in a copy of AHAS genes. Comparative sequencing of the mutants and wild type BnaA.AHAS.a coding sequences identified a C-to-T transition at either position 535 or 536 from the translation start site, which resulted in a substitution of proline with serine or leucine at position 197 according to the Arabidopsis thaliana protein sequence. An allele-specific dCAPS marker developed from the C536T variation co-segregated with the herbicide resistance. Transgenic A. thaliana plants expressing BnaA.ahas3.a conferred herbicide resistance, which confirmed that the P197 substitution in BnaA.AHAS.a was responsible for the herbicide resistance. Moreover, the TBM-resistant lines maintain normal male fertility under TBM treatment and can be of practical value in hybrid seed production using CIMS.

  8. Sorption, desorption and leaching potential of sulfonylurea herbicides in Argentinean soils.

    Science.gov (United States)

    Azcarate, Mariela P; Montoya, Jorgelina C; Koskinen, William C

    2015-01-01

    The sulfonylurea (SUs) herbicides are used to control broadleaf weeds and some grasses in a variety of crops. They have become popular because of their low application rates, low mammalian toxicity and an outstanding herbicidal activity. Sorption is a major process influencing the fate of pesticides in soil. The objective of this study was to characterize sorption-desorption of four sulfonylurea herbicides: metsulfuron-methyl (methyl 2-[(4-methoxy-6-methyl-1,3,5-triazin-2-yl)carbamoylsulfamoyl)]benzoate), sulfometuron-methyl (methyl 2-[(4,6-dimethylpyrimidin-2-yl)carbamoylsulfamoyl]benzoate), rimsulfuron (1-(4,6-dimethoxypyrimidin-2-yl)-3-(3-ethylsulfonyl-2-pyridylsulfonyl)urea) and nicosulfuron (2-[(4,6-dimethoxypyrimidin-2-yl)carbamoylsulfamoyl]-N,N-dimethylnicotinamide) from different soil horizons of different landscape positions. Sorption was studied in the laboratory by batch equilibration method. Sorption coefficients (K(d-SE)) showed that rimsulfuron (K(d-SE) = 1.18 to 2.08 L kg(-1)) and nicosulfuron (K(d-SE) = 0.02 to 0.47 L kg(-1)) were more highly sorbed than metsulfuron-methyl (K(d-SE) = 0.00 to 0.05 L kg(-1)) and sulfometuron-methyl (K(d-SE) = 0.00 to 0.05 L kg(-1)). Sorption coefficients (K(d-SE)) were correlated with pH and organic carbon content. All four herbicides exhibited desorption hysteresis where the desorption coefficients (K(d-D)) > K(d-SE). To estimate the leaching potential, K(oc) and ground-water ubiquity score (GUS) were used to calculate the half-life (t1/2) required to be classified as "leacher" or "nonleacher". According to the results, rimsulfuron and nicosulfuron herbicides would be classified as leachers, but factors such as landscape position, soil depth and the rate of decomposition in surface and subsurface soils could change the classification. In contrast, these factors do not affect classification of sulfometuron-methyl and metsulfuron-methyl; they would rank as leachers.

  9. Using fluorescent dyes as proxies to study herbicide removal by sorption in buffer zones.

    Science.gov (United States)

    Dollinger, Jeanne; Dagès, Cécile; Voltz, Marc

    2017-04-01

    The performance of buffer zones for removing pesticides from runoff water varies greatly according to landscape settings, hydraulic regime, and system design. Evaluating the performance of buffers for a range of pesticides and environmental conditions can be very expensive. Recent studies suggested that the fluorescent dyes uranine and sulforhodamine B could be used as cost-effective surrogates of herbicides to evaluate buffer performance. However, while transformation mechanisms in buffers have been extensively documented, sorption processes of both dyes have rarely been investigated. In this study, we measured the adsorption, desorption, and kinetic sorption coefficients of uranine and sulforhodamine B for a diverse range of buffer zone materials (soils, litters, plants) and compared the adsorption coefficients (Kd) to those of selected herbicides. We also compared the global sorption capacity of 6 ditches, characterized by varying proportions of the aforementioned materials, between both dyes and a set of four herbicides using the sorption-induced pesticide retention indicator (SPRI). We found that both the individual Kd of uranine for the diverse buffer materials and the global sorption capacity of the ditches are equivalent to those of the herbicides diuron, isoproturon, and metolachlor. The Kd of sulforhodamine B on plants and soils are equivalent to those of glyphosate, and the global sorption capacities of the ditches are equivalent for both molecules. Hence, we demonstrate for the first time that uranine can be used as a proxy of moderately hydrophobic herbicides to evaluate the performance of buffer systems, whereas sulforhodamine B can serve as a proxy for more strongly sorbing herbicides.

  10. Microbial Community-Level Physiological Profiles (CLPP) and herbicide mineralization potential in groundwater affected by agricultural land use

    Science.gov (United States)

    Janniche, Gry Sander; Spliid, Henrik; Albrechtsen, Hans-Jørgen

    2012-10-01

    Diffuse groundwater pollution from agricultural land use may impact the microbial groundwater community, which was investigated as Community-Level Physiological Profiles (CLPP) using EcoPlate™. Water was sampled from seven piezometers and a spring in a small agricultural catchment with diffuse herbicide and nitrate pollution. Based on the Shannon-Wiener and Simpson's diversity indices the diversity in the microbial communities was high. The response from the EcoPlates™ showed which substrates support groundwater bacteria, and all 31 carbon sources were utilized by organisms from at least one water sample. However, only nine carbon sources were utilized by all water samples: D-Mannitol, N-acetyl-D-glucosamine, putrescine, D-galacturonic acid, itaconic acid, 4-hydroxy benzoic acid, tween 40, tween 80, and L-asparagine. In all water samples the microorganisms preferred D-mannitol, D-galacturonic acid, tween 40, and 4-hydroxy benzoic acid as substrates, whereas none preferred 2-hydroxy benzoic acid, α-D-lactose, D,L-α-glycerol phosphate, α-ketobutyric acid, L-threonine and glycyl-L-glutamic acid. Principal Component Analysis of the CLPP's clustered the most agriculturally affected groundwater samples, indicating that the agricultural land use affects the groundwater microbial communities. Furthermore, the ability to mineralize atrazine and isoproturon, which have been used in the catchment, was also associated with this cluster.

  11. Bacterial communities in batch and continuous-flow wetlands treating the herbicide S-metolachlor

    Energy Technology Data Exchange (ETDEWEB)

    Elsayed, O.F. [Laboratory of Hydrology and Geochemistry of Strasbourg (LHyGeS), UMR 7517 University of Strasbourg/ENGEES/CNRS (France); Génétique Moléculaire, Génomique, Microbiologie (GMGM), UMR 7156 University of Strasbourg/CNRS (France); Maillard, E. [Laboratory of Hydrology and Geochemistry of Strasbourg (LHyGeS), UMR 7517 University of Strasbourg/ENGEES/CNRS (France); Vuilleumier, S. [Génétique Moléculaire, Génomique, Microbiologie (GMGM), UMR 7156 University of Strasbourg/CNRS (France); Imfeld, G., E-mail: imfeld@unistra.fr [Laboratory of Hydrology and Geochemistry of Strasbourg (LHyGeS), UMR 7517 University of Strasbourg/ENGEES/CNRS (France)

    2014-11-15

    Knowledge of wetland bacterial communities in the context of pesticide contamination and hydrological regime is scarce. We investigated the bacterial composition in constructed wetlands receiving Mercantor Gold{sup ®} contaminated water (960 g L{sup −1} of the herbicide S-metolachlor, > 80% of the S-enantiomer) operated under continuous-flow or batch modes to evaluate the impact of the hydraulic regime. In the continuous-flow wetland, S-metolachlor mass removal was > 40%, whereas in the batch wetland, almost complete removal of S-metolachlor (93–97%) was observed. Detection of ethanesulfonic and oxanilic acid degradation products further indicated S-metolachlor biodegradation in the two wetlands. The dominant bacterial populations were characterised by terminal restriction fragment length polymorphism (T-RFLP) and 454 pyrosequencing. The bacterial profiles evolved during the first 35 days of the experiment, starting from a composition similar to that of inlet water, with the use of nitrate and to a lesser extent sulphate and manganese as terminal electron acceptors for microbial metabolism. Proteobacteria were the most abundant phylum, with Beta-, Alpha- and Gammaproteobacteria representing 26%, 19% and 17% respectively of total bacterial abundance. Bacterial composition in wetland water changed gradually over time in continuous-flow wetland and more abruptly in the batch wetland. Differences in overall bacterial water structure in the two systems were modest but significant (p = 0.008), and S-metolachlor, nitrate, and total inorganic carbon concentrations correlated with changes in the bacterial profiles. Together, the results highlight that bacterial composition profiles and their dynamics may be used as bioindicators of herbicide exposure and hydraulic disturbances in wetland systems. - Highlights: • We evaluated the bacterial composition in wetlands treating S-metolachlor • Hydraulic regime impacted biogeochemical processes and S-metolachlor removal

  12. Bacterial communities in batch and continuous-flow wetlands treating the herbicide S-metolachlor

    International Nuclear Information System (INIS)

    Elsayed, O.F.; Maillard, E.; Vuilleumier, S.; Imfeld, G.

    2014-01-01

    Knowledge of wetland bacterial communities in the context of pesticide contamination and hydrological regime is scarce. We investigated the bacterial composition in constructed wetlands receiving Mercantor Gold ® contaminated water (960 g L −1 of the herbicide S-metolachlor, > 80% of the S-enantiomer) operated under continuous-flow or batch modes to evaluate the impact of the hydraulic regime. In the continuous-flow wetland, S-metolachlor mass removal was > 40%, whereas in the batch wetland, almost complete removal of S-metolachlor (93–97%) was observed. Detection of ethanesulfonic and oxanilic acid degradation products further indicated S-metolachlor biodegradation in the two wetlands. The dominant bacterial populations were characterised by terminal restriction fragment length polymorphism (T-RFLP) and 454 pyrosequencing. The bacterial profiles evolved during the first 35 days of the experiment, starting from a composition similar to that of inlet water, with the use of nitrate and to a lesser extent sulphate and manganese as terminal electron acceptors for microbial metabolism. Proteobacteria were the most abundant phylum, with Beta-, Alpha- and Gammaproteobacteria representing 26%, 19% and 17% respectively of total bacterial abundance. Bacterial composition in wetland water changed gradually over time in continuous-flow wetland and more abruptly in the batch wetland. Differences in overall bacterial water structure in the two systems were modest but significant (p = 0.008), and S-metolachlor, nitrate, and total inorganic carbon concentrations correlated with changes in the bacterial profiles. Together, the results highlight that bacterial composition profiles and their dynamics may be used as bioindicators of herbicide exposure and hydraulic disturbances in wetland systems. - Highlights: • We evaluated the bacterial composition in wetlands treating S-metolachlor • Hydraulic regime impacted biogeochemical processes and S-metolachlor removal

  13. Herbicide on Weed Composition, Diversity and Density in Silage Corn (cv. Sc 704

    Directory of Open Access Journals (Sweden)

    M. Zafarian

    2012-07-01

    Full Text Available In order to study the effect of plant density, planting pattern and herbicide dosage of nicosulfuron, a field experiment was arranged in a factorial split plot treatments based on RCBD with three replications in Chenaran, Khorasan Razavi, in 2010. The experimental treatments consisted of a factorial plant density (100000, 120000 and 140000 plants ha-1 in the planting pattern (single and double row as main plot and herbicide dosage of nicousulforon in four levels (0, 1, 1/5 and 2, l.ha-1 as sub-plot. Samplings were made at in five stages (37days after the emergence of corn and it was repeated once per 20 days. The results indicated reducing the weed density and dry matter of weeds in the first stage after the herbicide treatment. Moreover, it was observed a significant interaction effect between plant density with planting pattern and between planting pattern with herbicides dosages during growth season on reducing weed density and dry matter. Also results indicated that in between of this experiment's treatments, nicosulfuron herbicide reduced weed density at the beginning of growth season and double row planting pattern suppressed weed density during growing season, and resulted in lowest Jacard similarity index (Sj of weed species. Results also indicated that with increasing of plant density and herbicide dosage especially in composition of double row planting pattern, according to Shannon- Wiener index, sensitive population such as common purslane (Portulaca oleracea L., buckhorn plantain (Plantago lanceolata L., prostrate knotweed (Polygonum aviculareL., black nightshade (Solanum nigrum L. and Johnson grass (Sorghum halepens L. was reduced in during growing season. Simpson dominance index, showed that some low populated weeds such as redroot pigweed (Amaranthus retroflexus L., common lambsquarters (Chenopodium album L., field bindweed (Convolvulus arvensis L. and Canada thistle (Circum arvensis L. persisted their growth up to the end of

  14. COMPARATIVE STUDY CONCERNING THE INFLUENCE OF DIFFERENT HERBICIDE TREATMENT IN ONION CULTURE

    Directory of Open Access Journals (Sweden)

    Ioan OROIAN

    2009-06-01

    Full Text Available A comparative study was performed concerning the action of three herbicides (Pantera 40 CE, Fusilade Super and Agil 100 EC on onion culture. The Amstrong onion hybrid was used on clay - aluviovertic chernosem, with NPK fertilization (N80P80K80 during the preparation of the germinative bed. The unfavorable climatic conditions infl uence the effi cacy of the post-emergent applied herbicides, but signifi cant differences were recorded between variants treated with different products. When Pantera 40 CE was used, phytotoxicity phenomena materialized by temporary discoloration of the plants were not recorded, compared to the results obtained when the other herbicides were used. The use of Pantera 40 CE led to the most important production gain, with 9.8% compared to Fusilade super and 4.8% with Agil 100 EC.

  15. Chemically functionalized ZnS quantum dots as new optical nanosensor of herbicides

    Science.gov (United States)

    Masteri-Farahani, M.; Mahdavi, S.; Khanmohammadi, H.

    2018-03-01

    Surface chemical functionalization of ZnS quantum dots (ZnS-QDs) with cysteamine hydrochloride resulted in the preparation of an optical nanosensor for detection of herbicides. Characterization of the functionalized ZnS-QDs was performed with physicochemical methods such as x-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared (FT-IR) spectroscopy, energy dispersive x-ray (EDX) analysis, ultraviolet-visible (UV–vis) and photoluminescence (PL) spectroscopies. The optical band gap of the functionalized ZnS-QDs was determined by using Tauc plot as 4.1 eV. Addition of various herbicides resulted in the linearly fluorescence quenching of the functionalized ZnS-QDs according to the Stern-Volmer equation. The functionalized ZnS-QDs can be used as simple, rapid, and inexpensive nanosensor for practical detection and measurement of various herbicides.

  16. The response of parental components of ZP maize hybrids to effects of herbicides

    Directory of Open Access Journals (Sweden)

    Stefanović Lidija

    2007-01-01

    Full Text Available The response of four inbred lines, parental components of ZP maize hybrids, to effects of six herbicides applied after emergence of both, maize and weeds, was observed in the present study. The following herbicides were applied in the 2-3-leaf stage of maize: isoxaflutole (Merlin 750-WG in the amount of 0.135 kg ha-1, nicosulfuron (Motivell in the amount of 1.25 l ha-1, foramsulfuron (Equip in the amount of 2.0 l ha-1, dicamba + rimsulfuron (Tarot plus in the amount of 0.3 kg ha-1, mezotrion (Callisto in the amount of 0.25 l ha-1 and thifensulfuron-methyl (Grid in the amount of 0.02 kg ha-1. The phytotoxic effect of herbicides on the maize grain yield was evaluated according to the 1-9 EWRC scale. Maize inbreds showed different susceptibility depending on the applied herbicide. The least favourable effects in both years for all genotypes were obtained in the treatments with Tarot plus and Grid, in which the lowest values of maize grain yield were recorded.

  17. Metabolism of nitrodiphenyl ether herbicides by dioxin-degrading bacterium Sphingomonas wittichii RW1.

    Science.gov (United States)

    Keum, Young Soo; Lee, Young Ju; Kim, Jeong-Han

    2008-10-08

    Nitrodiphenyl ether herbicides, including chlomethoxyfen, nitrofen, and oxyfluorfen are potent herbicides. Some metabolites and parent compounds are considered as possible mutagens and endocrine disruptors. Both properties pose serious hygienic and environmental risks. Sphingomonas wittichii RW1 is a well-known degrader of polychlorinated dibenzo- p-dioxins, dibenzofurans, and diphenyl ethers. However, no detailed research of its metabolic activity has been performed against pesticides with a diphenyl ether scaffold. In this study, we report S. wittichii RW1 as a very potent diphenyl ether herbicide-metabolizing bacterium with broad substrate specificity. The structures of metabolites were determined by instrumental analysis and synthetic standards. Most pesticides were rapidly removed from the culture medium in the order of nitrofen > oxyfluorfen > chlomethoxyfen. In general, herbicides were degraded through the initial reduction and N-acetylation of nitro groups, followed by ether bond cleavage. Relatively low concentrations of phenolic and catecholic metabolites throughout the study suggested that these metabolites were rapidly metabolized and incorporated into primary metabolism. These results indicate that strain RW1 has very versatile metabolic activities over a wide range of environmental contaminants.

  18. The effect of the herbicide diuron on soil microbial activity.

    Science.gov (United States)

    Prado, A G; Airoldi, C

    2001-07-01

    The inhibitory effect of the herbicide diuron [3-(3,4-dichlorophenyl)-1,1-dimethylurea] on microbial activity in red Latosol soil was followed using microcalorimetry. The activity of the micro-organisms in 1.50 g of soil sample was stimulated by addition of 6.0 mg of glucose and 6.0 mg of ammonium sulfate under 35% controlled humidity at 298.15 (+/- 0.02) K. This activity was determined by power-time curves that were recorded for increasing amounts of diuron, varying from zero to 333.33 micrograms g-1 soil. An increase in the amount of diuron in soil caused a decrease of the original thermal effect, to reach a null value above 333.33 micrograms g-1 of herbicide. The power-time curve showed that the lag-phase period and peak time increased with added herbicide. The decrease of the thermal effect evolved by micro-organisms and the increase of the lag-phase period are associated with the death of microbial populations caused by diuron, which strongly affects soil microbial communities.

  19. Glycerine associated molecules with herbicide for controlling ...

    African Journals Online (AJOL)

    ciganinha”, belongs to the family Bignoniaceae. The only way to control this plant species in crop fields is by the application of herbicides on the stump or directly on the stem. The present study aimed to analyze the effect of glycerine in controlling A.

  20. A Simple Vortex-Assisted Magnetic Dispersive Solid Phase Microextraction System for Preconcentration and Separation of Triazine Herbicides from Environmental Water and Vegetable Samples Using Fe₃O₄@MIL-100(Fe) Sorbent.

    Science.gov (United States)

    Nasrollahpour, Atefe; Moradi, Seyyed Ershad

    2018-04-04

    A vortex-assisted magnetic dispersive solid phase microextraction coupled with high-performance liquid chromatography has been developed for the extraction and determination of triazine herbicides by using magnetic metal organic frameworks [Fe₃O₄@MIL-100(Fe)] in environmental water and vegetable samples. The Fe₃O₄@MIL-100(Fe) composite has been characterized by using X-ray diffraction spectroscopy, tunneling electron microscopy, thermogravimetric measurement, and Brunauer-Emmett-Teller analysis. The method is based on the sorption of triazine herbicides on Fe₃O₄@MIL-100(Fe) because of the complex formation between iron oxide nanoparticles and triazine herbicides beside π-π interactions between organic parts of Fe₃O₄@MIL-100(Fe) and triazine herbicides. The experimental parameters for the preconcentration of triazine herbicides, such as the type and volume of the eluent, pH, time of the sorption and desorption, and the amount of the sorbent, were optimized. Under the optimized conditions, the method was linear over the concentration range of 0.0061 to 70 ng/mL for each triazine herbicide, and the correlation coefficients ranged from 0.9988 to 0.9997. The limit of detection of the method at a signal-to-noise ratio of 3 was 2.0 to 5.3 ng/mL. The relative standard deviations for inter- and intraday assays were in the range of 5.8 to 10.2% and 3.8 to 6.3%, respectively.

  1. Leaching and residual activity of imidazolinone herbicides in lowland soils

    Directory of Open Access Journals (Sweden)

    João Paulo Refatti

    Full Text Available ABSTRACT: Herbicides used in the Clearfield® rice (Oryza sativa L. production system have a potential for leaching. This can result in contamination of underground water resources and cause injury to not tolerant crops that are sown in a succession and/or crop rotation. The objective of this study was to determine the leaching potential and the residual activity of the herbicides used in the Clearfield® rice system. The experiment was conducted over a period of two years and consisted of conducting a field test to be followed by two bioassays with a year of difference between their implementation. Initially an experiment was conducted in lowland area where it was planted the cultivar of rice ‘PUITA INTA CL’. Approximately one and two years thereafter, soil samples from each plot were collected at intervals of 5cm to a depth of 30cm (B factor for the bioassay to evaluate persistence of herbicides. Factor A was composed of mixtures formulated of imazethapyr + imazapic (75 + 25g a.i. L-1, imazapyr + imazapic (525 + 175g a.i. kg-1 in two doses, imazethapyr (100g a.i. L-1 and treatment control without application. Basing on results, it was concluded that the mixtures imazethapyr + imazapic, imazapyr + imazapic and imazethapyr leached into the soil, reaching depths of up to 25cm in lowland soil. Imidazolinone herbicides used today in the irrigated rice Clearfield® system are persistent in soil, and their phytotoxic activity can be observed up to two years after application.

  2. Effect of Rimsulfuron, Imazapic and Imazamox Herbicides on Broomrape (Orobanche aegyptiaca in Tomato (Lycopersicum esculentum

    Directory of Open Access Journals (Sweden)

    E. Kazerooni Monfared

    2016-01-01

    Full Text Available Experiments, in Petri dish and greenhouse, were carried out to investigate the efficiency of three herbicides (rimsulfuron, imazapic and imazamox in controling broomrape. In Petri dish study, herbicides were applied at 0.05, 0.25, 1.25, 6.25 and 31.25 micro-mole doses to broomrape seeds at germination stage without a host plant and adding GR24 as stimulator. In the greenhouse experiments, the efficiency of these herbicides to control broomrape in two varieties of tomato (Viva and Hyb.Petopride II was investigated. Treatments were four doses of rimsulfuron (25, 50, 75 and 100 g ai/ha, imazapic (5, 10, 15 and 20 g ai/ha and imazamox (0.4, 0.8, 1.2 and 1.6 g ai/ha at one, two and three applications. Results of Petri-dish experiments showed that rimsulfuron and imazapic significantly reduced radicle elongation of seedlings as compared to the control, while, imazamox did not have any effect on broomrape seed. Each dose was applied for one, two and three times with in 15, 29 and 43 days after within transplanting tomato seedlings. Results of pot experiments indicated that the responses of two tomato varieties herbicides were different. Viva was responsive to herbicidal effect and produced higher biomass than Hyb.Petopride II. Rimsulfuron was a suitable herbicide in tomato to control broomrape. Rimsulfuron at doses of 25, 50 and 75 g ai/ha (three times of application were the best doses, specially in viva were the best treatments for broomrape control and producing tomato biomass. Imazapic also, at 5 g ai/ha (two times of application and 10 g ai/ha (single application was an effective treatments in variety of viva. Imazamox treatments did not appear to be suitable herbicides in this study.

  3. Analysis of phosphorus herbicides by ion-pairing reversed-phase liquid chromatography coupled to inductively coupled plasma mass spectrometry with octapole reaction cell.

    Science.gov (United States)

    Sadi, Baki B M; Vonderheide, Anne P; Caruso, Joseph A

    2004-09-24

    A reversed phase ion-pairing high performance liquid chromatographic (RPIP-HPLC) method is developed for the separation of two phosphorus herbicides, Glufosinate and Glyphosate as well as Aminomethylphosphonic acid (AMPA), the major metabolite of Glyphosate. Tetrabutylammonium hydroxide is used as the ion-pairing reagent in conjunction with an ammonium acetate/acetic acid buffering system at pH 4.7. An inductively coupled plasma mass spectrometer (ICP-MS) is coupled to the chromatographic system to detect the herbicides at m/z = 31P. Historically, phosphorus has been recognized as one of the elements difficult to analyze in argon plasma. This is due to its relatively high ionization potential (10.5 eV) as well as the inherent presence of the polyatomic interferences 14N16O1H+ and 15N16O+ overlapping its only isotope at m/z = 31. An octapole reaction cell is utilized to minimize the isobaric polyatomic interferences and to obtain the highest signal-to-background ratio. Detection limits were found to be in the low ppt range (25-32 ng/l). The developed method is successfully applied to the analysis of water samples collected from the Ohio River and spiked with a standard compounds at a level of 20 microg/l.

  4. Vertical migration of some herbicides through undisturbed and homogenized soil columns

    Directory of Open Access Journals (Sweden)

    Md. Wasim Aktar

    2009-01-01

    Full Text Available A laboratory experiment was conducted by using three herbicides, two from dinitroaniline group and one from thiocarbamate group to know their degree of downward movement (leachability through soil columns and their contribution in ground water contamination. Soil columns were loaded with Pendimethalin, Benthiocarb and Oryzalin @ 10.0, 10.0 and 7.7 kg a.i. ha-1, respectively. After 30 days soil samples were analyzed from each segments (i.e. 0-6, 6-12, 12-18, and 18-24 and 24-30 cm for Benthiocarb and Pendimethalin by GLC equipped with Ni63 electron capture detector (ECD and for Oryzalin by HPLC coupled with UV-VIS detector. The results obtained in the present study reveal that the residues of the three herbicides under investigation were predominantly confined to the upper soil layer (0-6 cm. Comparatively, low mobility of these herbicides in soils could be due to strong adsorption of these chemical to soil colloids.

  5. Vertical migration of some herbicides through undisturbed and homogenized soil columns

    Science.gov (United States)

    Aktar, Md. Wasim; Sengupta, Dwaipayan; Purkait, Swarnali; Chowdhury, Ashim

    2008-01-01

    A laboratory experiment was conducted by using three herbicides, two from dinitroaniline group and one from thiocarbamate group to know their degree of downward movement (leachability) through soil columns and their contribution in ground water contamination. Soil columns were loaded with Pendimethalin, Benthiocarb and Oryzalin at doses of 10.0, 10.0 and 7.7 kg/ha, respectively. After 30 days soil samples were analyzed from each segments (i.e. 0–6, 6–12, 12–18, 18–24 and 24–30 cm) for Benthiocarb and Pendimethalin by GLC equipped with Ni63 electron capture detector (ECD) and for Oryzalin by HPLC coupled with UV-VIS detector. The results obtained in the present study reveal that the residues of the three herbicides under investigation were predominantly confined to the upper soil layer (0–6 cm). Comparatively, low mobility of these herbicides in soils could be due to strong adsorption of these chemical to soil colloids. PMID:21218121

  6. Vertical migration of some herbicides through undisturbed and homogenized soil columns

    Directory of Open Access Journals (Sweden)

    Md. Wasim Aktar

    2008-12-01

    Full Text Available A laboratory experiment was conducted by using three herbicides, two from dinitroaniline group and one from thiocarbamate group to know their degree of downward movement (leachability through soil columns and their contribution in ground water contamination. Soil columns were loaded with Pendimethalin, Benthiocarb and Oryzalin @ 10.0, 10.0 and 7.7 kg a.i. ha-1, respectively. After 30 days soil samples were analyzed from each segments (i.e. 0-6, 6-12, 12-18, and 18-24 and 24-30 cm for Benthiocarb and Pendimethalin by GLC equipped with Ni63 electron capture detector (ECD and for Oryzalin by HPLC coupled with UV-VIS detector. The results obtained in the present study reveal that the residues of the three herbicides under investigation were predominantly confined to the upper soil layer (0-6 cm. Comparatively, low mobility of these herbicides in soils could be due to strong adsorption of these chemical to soil colloids.

  7. Tubulin-isotype analysis of two grass species-resistant to dinitroaniline herbicides.

    Science.gov (United States)

    Waldin, T R; Ellis, J R; Hussey, P J

    1992-09-01

    Trifluralin-resistant biotypes of Eleusine indica (L.) Gaertn. (goosegrass) and Setaria viridis (L.) Beauv. (green foxtail) exhibit cross-resistance to other dinitroaniline herbicides. Since microtubules are considered the primary target site for dinitroaniline herbicides we investigated whether the differential sensitivity of resistant and susceptible biotypes of these species results from modified tubulin polypeptides. One-dimensional and two-dimensional polyacrylamide gel electrophoresis combined with immunoblotting using well-characterised anti-tubulin monoclonal antibodies were used to display the family of tubulin isotypes in each species. Seedlings of E. indica exhibited four β-tubulin isotypes and one α-tubulin isotype, whereas those of S. viridis exhibited two β-tubulin and two α-tubulin isotypes. Comparison of the susceptible and resistant biotypes within each species revealed no differences in electrophoretic properties of the multiple tubulin isotypes. These results provide no evidence that resistance to dinitroaniline herbicides is associated with a modified tubulin polypeptide in these biotypes of E. indica or S. viridis.

  8. Decision Support System for Optimized Herbicide Dose in Spring Barley

    DEFF Research Database (Denmark)

    Sønderskov, Mette; Kudsk, Per; Mathiassen, Solvejg K

    2014-01-01

    Crop Protection Online (CPO) is a decision support system, which integrates decision algorithms quantifying the requirement for weed control and a herbicide dose model. CPO was designed to be used by advisors and farmers to optimize the choice of herbicide and dose. The recommendations from CPO...... as the Treatment Frequency Index (TFI)) compared to a high level of required weed control. The observations indicated that the current level of weed control required is robust for a range of weed scenarios. Weed plant numbers 3 wk after spraying indicated that the growth of the weed species were inhibited...

  9. Using accelerated life testing procedures to compare the relative sensitivity of rainbow trout and the federally listed threatened bull trout to three commonly used rangeland herbicides (picloram, 2,4-D, and clopyralid).

    Science.gov (United States)

    Fairchild, James F; Allert, Ann; Sappington, Linda S; Nelson, Karen J; Valle, Janet

    2008-03-01

    We conducted 96-h static acute toxicity studies to evaluate the relative sensitivity of juveniles of the threatened bull trout (Salvelinus confluentus) and the standard cold-water surrogate rainbow trout (Onchorhyncus mykiss) to three rangeland herbicides commonly used for controlling invasive weeds in the northwestern United States. Relative species sensitivity was compared using three procedures: standard acute toxicity testing, fractional estimates of lethal concentrations, and accelerated life testing chronic estimation procedures. The acutely lethal concentrations (ALC) resulting in 50% mortality at 96 h (96-h ALC50s) were determined using linear regression and indicated that the three herbicides were toxic in the order of picloram acid > 2,4-D acid > clopyralid acid. The 96-h ALC50 values for rainbow trout were as follows: picloram, 41 mg/L; 2.4-D, 707 mg/L; and clopyralid, 700 mg/L. The 96-h ALC50 values for bull trout were as follows: picloram, 24 mg/L; 2.4-D, 398 mg/L; and clopyralid, 802 mg/L. Fractional estimates of safe concentrations, based on 5% of the 96-h ALC50, were conservative (overestimated toxicity) of regression-derived 96-h ALC5 values by an order of magnitude. Accelerated life testing procedures were used to estimate chronic lethal concentrations (CLC) resulting in 1% mortality at 30 d (30-d CLC1) for the three herbicides: picloram (1 mg/L rainbow trout, 5 mg/L bull trout), 2,4-D (56 mg/L rainbow trout, 84 mg/L bull trout), and clopyralid (477 mg/L rainbow trout; 552 mg/L bull trout). Collectively, the results indicated that the standard surrogate rainbow trout is similar in sensitivity to bull trout. Accelerated life testing procedures provided cost-effective, statistically defensible methods for estimating safe chronic concentrations (30-d CLC1s) of herbicides from acute toxicity data because they use statistical models based on the entire mortality:concentration:time data matrix.

  10. Content Of 2,4-D-14C Herbicide Residue In Water And Soil Of Irrigated Rice Field System

    International Nuclear Information System (INIS)

    Chairul, Sofnie M.; Djabir, Elida; Magdalena, Nelly

    2000-01-01

    The investigation of 2,4-D exp.-14C herbicide residue in water and soil of irrigated rice field system was carried out. Rice plant and weeds (Monochoria vaginalis Burn. F. Presl) were planted in 101 buckets using two kinds of soil condition, I.e. normal soil and 30 % above normal compact soil. After one week planting, the plants were sprayed with 1 u Ci of 2,4-D exp.-14C and 0,4 mg non labeled 2,4-D. The herbicide residue content was determined 0, 2, 4, 8 and 10 weeks after spraying with 2,4-D herbicide. The analysis was done using Combustion Biological Oxidizer merk Harvey ox-400, and counted with Liquid Scintillation Counter merk Beckman model LS-1801. The results indicates that the herbicide contents in water and soil decrease from the first spraying with herbicide until harvest herbicide Residue content in water after harvest was 0.87 x 10 exp.-6 ppm for soil normal condition, and 0.59 x 10 exp.-6 pm for the soil 30 % up normal condition, while herbicide content in soil was 1.54 x 10 exp.-6 ppm for soil normal condition and 1.48 x 10 exp.-6 ppm for soil 30 % up normal. 2,4-D herbicide residue content in rice after harvest was 0.27 x 10 exp.-6 ppm for normal soil condition and 0.25 x 10 exp.-6 ppm for the soil 30 % up normal. 2,4-D herbicide residue content in roots and leaves of weeds after harvest were respectively 0.29 x 10 exp.-6 ppm and 0.18 x 10 exp.-6 for normal soil condition, while for 30 % up normal soil were 0.25 x 10 exp.-5 ppm and 0.63 x 10 exp.-7 ppm. This result indicates that there is no effect pollution to surrounding area, because the herbicide content is still bellow the allowed detection limit, 0.05 ppm

  11. Biotransformation and biomonitoring of phenylurea herbicide diuron.

    Science.gov (United States)

    Sharma, Priyanka; Suri, C Raman

    2011-02-01

    A Gram-positive, Micrococcus sp. strain PS-1 isolated from diuron storage site was studied for its capability of biotransformation of phenylurea herbicide diuron to a secondary metabolite, 1-(3,4-dichlorophenyl)urea (DCPU) for bioconjugation and antibody development applications. The metabolite formed associated with profound changes in bacterial cell morphology demonstrated increase in the degradation kinetics of diuron in presence of small quantity of a surfactant. The synthesized metabolite identified by chromatographic and mass spectrometry techniques was conjugated with carrier protein, and used as an immunogen for antibodies production. The generated antibody was highly specific, demonstrating excellent sensitivity against diuron. The antibody was used as receptor molecules in standard fluorescence immunoassay (FIA) format showing detection limit of 0.01 ng/mL in the optimum working concentration range of diuron with good signal precision (∼2%). The study presented first time the degradation pathway of herbicide by specific microorganism to synthesize hapten for bioconjugation and immunoassay development. Copyright © 2010 Elsevier Ltd. All rights reserved.

  12. Yellow nutsedge (Cyperus esculentus L.) control with herbicides: the role of tuberization

    International Nuclear Information System (INIS)

    Pereira, W.

    1985-01-01

    Trials were carried out under greenhouse, growth chamber, laboratory, outdoor pot, and field conditions to characterize stages of yellow nutsedge tuberization and to investigate the influence of herbicides. The effects of herbicides on tuberization and phytotoxicity at several growth stages, as well as on sprouting, growth characteristics, and survival of new tubers were determined. Tuberization was a continuous process, but was modulated by plant age and environmental conditions. The growth stage that included the time of first tuber initiation was the best for applying glyphosate [N-(phosphonomethyl)glycine] and oxyfluorfen [2-chloro-1-(3-ethoxy-4-nitrophenoxy)-4-(trifluromethyl)benzene]. Plant-age and length of period after spraying influenced glyphosate and oxyfluorfen absorption and translocation. Addition of unlabelled oxyfluorfen as a tank mixture can glyphosate increased absorption of 14 C-glyphosate to 27% after 1 day and 46% after 8 days and increased translocation into other plant parts. Timing of postemergence herbicide applications relative to tuberization is crucial for overall control of yellow nutsedge. When soil applied herbicides were compared in the field, consecutive applications of dichlobenil (2,6-dichlorobenzonitrile) and metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl)acetamide] for two years provided the best control of nutsedge

  13. Yellow nutsedge (Cyperus esculentus L. ) control with herbicides: the role of tuberization

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, W.

    1985-01-01

    Trials were carried out under greenhouse, growth chamber, laboratory, outdoor pot, and field conditions to characterize stages of yellow nutsedge tuberization and to investigate the influence of herbicides. The effects of herbicides on tuberization and phytotoxicity at several growth stages, as well as on sprouting, growth characteristics, and survival of new tubers were determined. Tuberization was a continuous process, but was modulated by plant age and environmental conditions. The growth stage that included the time of first tuber initiation was the best for applying glyphosate (N-(phosphonomethyl)glycine) and oxyfluorfen (2-chloro-1-(3-ethoxy-4-nitrophenoxy)-4-(trifluromethyl)benzene). Plant-age and length of period after spraying influenced glyphosate and oxyfluorfen absorption and translocation. Addition of unlabelled oxyfluorfen as a tank mixture can glyphosate increased absorption of /sup 14/C-glyphosate to 27% after 1 day and 46% after 8 days and increased translocation into other plant parts. Timing of postemergence herbicide applications relative to tuberization is crucial for overall control of yellow nutsedge. When soil applied herbicides were compared in the field, consecutive applications of dichlobenil (2,6-dichlorobenzonitrile) and metolachlor (2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl)acetamide) for two years provided the best control of nutsedge.

  14. Assessing the extent and effects of herbicide drift into Danish hedgerows

    DEFF Research Database (Denmark)

    Pedersen, Marianne Bruus; Andersen, H. V.; Strandberg, M. T.

    Very low dosages of herbicides are known to cause effects on bird cherry (Prunus avium) and hawthorn (Crataegus monogyna). It is not yet known whether other hedgerow trees and shrubs are equally sensitive to herbicide drift, to which extent spray drift into hedges and other habitats close to fiel...... were assessed. Metsulfuron methyl effects on Sambucus nigra (elder) and Sorbus intermedia were studied in separate experiments and will include second year effects. Methods and preliminary results are presented and discussed in relation to pesticide regulation....

  15. Response of Transplanted Aman Rice Varieties to Herbicides in Strip-Tilled Non-Puddled Soil

    Directory of Open Access Journals (Sweden)

    Taslima Zahan1

    2017-12-01

    Full Text Available BACKGROUND: Sensitivity of crop cultivars may vary to commonly used herbicides resulting in potential yield loss and reduce farm profit. Transplanting of rice seedlings in strip-tilled non-puddled field is a new practice for which herbicide tolerant varieties need to select. Therefore, a study was executed at the Agronomy Field Laboratory of Bangladesh Agricultural University, Mymensingh during 2013 to evaluate the response of some popular transplanted aman rice varieties to different herbicides at their recommended rate and to select most tolerant aman rice variety or varieties for strip-tilled non-puddled transplanting. METHODOLOGY: Twelve aman rice varieties (BR11, BRRI dhan33, BRRI dhan39, BRRI dhan44, BRRI dhan46, BRRI dhan49, BRRI dhan51, BRRI dhan52, BRRI dhan56, BRRI dhan57, BRRI hybrid dhan-4 and BINA dhan7 were examined in the study against six herbicides (2 pre-emergence: pyrazosulfuron-ethyl and butachlor; 1 early post-emergence: orthosulfamuron and 3 late post-emergence: acetochlor + bensulfuron methyl, butachlor + propanil and 2,4-D amine along with one untreated manually weed-free control. KEY FINDINGS: The study revealed that aman rice varieties responded differentially to different herbicides. All rice varieties performed better in pyrazosulfuron-ethyl treated plots relative to the other herbicide treated plots and even than the control plots. Pyrazosulfuron-ethyl increased grain yield of all aman rice varieties by 0.6-32.6% over control and butachlor + propanil provided increased grain yield in all rice varieties by 2.0-25.5% except BRRI hybrid dhan-4. The study also disclosed that BRRI dhan57 and BRRI hybrid dhan-4 gone through the yield loss by application of 2,4-D amine and BRRI dhan56 by application of butachlor and orthosulfamuron. Moreover, acetochlor + bensulfuron methyl produced shorter plants and caused yield loss by 7.8-27.1% in all aman rice varieties compared to the control and BRRI dhan39 was the most susceptible

  16. Organosilane grafted acid-activated beidellite clay for the removal of non-ionic alachlor and anionic imazaquin

    International Nuclear Information System (INIS)

    Paul, Blain; Martens, Wayde N.; Frost, Ray L.

    2011-01-01

    Clay adsorbents were prepared via two-step method to remove nonionic alachlor and anionic imazaquin herbicides from water. Firstly, layered beidellite clay, a member of smectite family, was treated with acid in hydrothermal process; secondly, common silane coupling agents, 3-chloro-propyl trimethoxysilane or triethoxy silane, were grafted on the acid treated samples to prepare adsorbent materials. The organically modified clay samples were characterized by powder X-ray diffraction, N 2 gas adsorption, and FTIR spectroscopy. It was found that the selective modification of clay samples displayed higher adsorption capacity for herbicides compared with acid activated clay. And the amount of adsorption is increased with increasing the grafting amount of silane groups. Clay grafted with 3-chloro-propyl trimethoxysilane is an excellent adsorbent for both alachlor and imazaquin but triethoxy (octyl) silane grafted clay is more efficient only for alachlor removal.

  17. Glufosinate Herbicide Intoxication Causing Unconsciousness, Convulsion, and 6th Cranial Nerve Palsy

    OpenAIRE

    Park, Jae-seok; Kwak, Soo-Jung; Gil, Hyo-wook; Kim, So-Young; Hong, Sae-yong

    2013-01-01

    Although glufosinate ammonium herbicides are considered safe when used properly, ingestion of the undiluted form can cause grave outcomes. Recently, we treated a 34-yr-old man who ingested glufosinate ammonium herbicide. In the course of treatment, the patient developed apnea, mental deterioration, and sixth cranial nerve palsy; he has since been discharged with full recovery after intensive care. This case report describes the clinical features of glufosinate intoxication with a focus on six...

  18. Chromatographic determination of herbicide residues in various matrices

    Czech Academy of Sciences Publication Activity Database

    Cserháti, T.; Forgács, E.; Deyl, Zdeněk; Mikšík, Ivan; Eckhardt, Adam

    2004-01-01

    Roč. 18, č. 6 (2004), s. 350-359 ISSN 0269-3879 Institutional research plan: CEZ:AV0Z5011922 Keywords : herbicide residues * extraction methods * HPLC Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 1.069, year: 2004

  19. Biodegradation of glyphosate herbicide in vitro using bacterial ...

    African Journals Online (AJOL)

    USER

    2010-06-28

    Jun 28, 2010 ... Full Length Research Paper ... Glyphosate is a compound used as herbicide in the control and/or killing of grasses and herbaceous plants. ... Because of its toxicity to non-target organisms, there is need to decontaminate.

  20. Environmental determinants of the urinary concentrations of herbicides during pregnancy: the PELAGIE mother-child cohort (France).

    Science.gov (United States)

    Chevrier, Cécile; Serrano, Tania; Lecerf, Rémi; Limon, Gwendolina; Petit, Claire; Monfort, Christine; Hubert-Moy, Laurence; Durand, Gaël; Cordier, Sylvaine

    2014-02-01

    Herbicides are generally the most extensively used of the pesticides applied to agricultural crops. However, the literature contains little evidence useful in assessing the potential sources of the general population's exposure to herbicides, including by residential proximity to crops. The objective of this study was to take advantage of data from the PELAGIE mother-child cohort to identify the main determinants of the body burden of exposure to the chloroacetanilide and triazine herbicides commonly used on corn crops in Brittany, France, before 2006. Urine samples from a randomly selected subcohort of women in the first trimester of pregnancy (n=579) were assayed for herbicide metabolites. The residential exposure resulting from proximity to corn crops was assessed with satellite-image-based scores combined with meteorological data. Data on diet, drinking tap water (from the public water supply), occupations, and household herbicide use were collected by questionnaires. Herbicides were quantified in 5.3% to 39.7% of urine samples. Alachlor and acetochlor were found most frequently in the urine of women living in rural areas. The presence of dealkylated triazine metabolites in urine samples was positively associated with residential proximity to corn crops (OR=1.38, 95% CI: 1.05-1.80). Urinary metabolites of both atrazine and dealkylated triazine were correlated with tap water consumption (OR=2.94, 1.09-7.90, and OR=1.82, 1.10-3.03, respectively); hydroxylated triazine metabolites were correlated with fish intake (OR=1.48, 1.09-1.99). This study reinforces previous results that suggest that environmental contamination resulting from agricultural activities may contribute to the general population's exposure to herbicides. © 2013.

  1. Structure effect on the interaction of phenylurea herbicides with model biomembrane as an environmental mobility parameter.

    Science.gov (United States)

    Librando, Vito; Forte, Stefano; Sarpietro, Maria G

    2004-01-15

    During recent years, intensive use of herbicides has raised increasing concern mainly due to their massive pollution of the environment. As these herbicides are directly or indirectly toxic to a wide range of organisms, their potential for contaminating soil, surface water, and groundwater makes these xenobiotics of special interest from a health and environmental point of view. Knowledge of the mechanisms by which they exert their toxic effects is becoming a need. Because of the herbicides' lipophilicity, a possible site of interaction in the cell is represented by biomembranes. The interaction of four herbicides, difenoxuron, diuron, linuron, and metoxuron, with model membranes constituted of dimyristoylphosphatidylcholine multilamellar vesicles was investigated by the differential scanning calorimetry technique. The aim was to study the effects exerted by an increasing amount of the examined compounds on thermotropic behavior of the model phospholipid membranes and to correlate the obtained results with structural features of the herbicides due to their environmental mobility. Among the herbicides studied, linuron is the most effective in perturbing the ordinate structure of vesicles forming phospholipids, whereas metoxuron is the least effective and the others exert an intermediate effect. Linuron exerts its effect both on the transition temperature of the gel to the liquid crystalline phase and on the enthalpy change. Difenoxuron, diuron, and metoxuron cause a change in the transition temperature but have an insignificant effect on the enthalpy change. The calorimetric results, correlated with the structural features of the herbicides, are consistent with their partition coefficient, log K(ow), suggesting that the more hydrophobic compound character causes a greater liposolubility and consequential cellular absorption with more effectiveness on the membrane order.

  2. [Determination of biphenyl ether herbicides in water using HPLC with cloud-point extraction].

    Science.gov (United States)

    He, Cheng-Yan; Li, Yuan-Qian; Wang, Shen-Jiao; Ouyang, Hua-Xue; Zheng, Bo

    2010-01-01

    To determine residues of multiple biphenyl ether herbicides simultaneously in water using high performance liquid chromatography (HPLC) with cloud-point extraction. The residues of eight biphenyl ether herbicides (including bentazone, fomesafen, acifluorfen, aclonifen, bifenox, fluoroglycofenethy, nitrofen, oxyfluorfen) in water samples were extracted with cloud-point extraction of Triton X-114. The analytes were separated and determined using reverse phase HPLC with ultraviolet detector at 300 nm. Optimized conditions for the pretreatment of water samples and the parameters of chromatographic separation applied. There was a good linear correlation between the concentration and the peak area of the analytes in the range of 0.05-2.00 mg/L (r = 0.9991-0.9998). Except bentazone, the spiked recoveries of the biphenyl ether herbicides in the water samples ranged from 80.1% to 100.9%, with relative standard deviations ranging from 2.70% to 6.40%. The detection limit of the method ranged from 0.10 microg/L to 0.50 microg/L. The proposed method is simple, rapid and sensitive, and can meet the requirements of determination of multiple biphenyl ether herbicides simultaneously in natural waters.

  3. Effects of herbicides on non-target plants: How do effects in standard plant tests relate to effects in natural habitats?

    DEFF Research Database (Denmark)

    Strandberg, Beate; Bruus, Marianne; Kjær, Christian

    areas where risk assessment seems to be insufficient. The most extensive conclusion is that seed production is a more sensible end-point for risk assessment of herbicides than the currently used end-point biomass. Crop species, in general, were not less sensitive to herbicides than non-target species......The report presents the results on effects of herbicides on plants found in natural habitats within the agricultural land. Furthermore, it evaluates whether the current risk assessment of herbicides represents an adequate safeguard for protection of these species and habitats. We found several....... Finally, we found that interactions between species are important for their responses to herbicides....

  4. A geographic information system for characterizing exposure to Agent Orange and other herbicides in Vietnam.

    Science.gov (United States)

    Stellman, Jeanne Mager; Stellman, Steven D; Weber, Tracy; Tomasallo, Carrie; Stellman, Andrew B; Christian, Richard

    2003-03-01

    Between 1961 and 1971, U.S. military forces dispersed more than 19 million gallons of phenoxy and other herbicidal agents in the Republic of Vietnam, including more than 12 million gallons of dioxin-contaminated Agent Orange, yet only comparatively limited epidemiologic and environmental research has been carried out on the distribution and health effects of this contamination. As part of a response to a National Academy of Sciences' request for development of exposure methodologies for carrying out epidemiologic research, a conceptual framework for estimating exposure opportunity to herbicides and a geographic information system (GIS) have been developed. The GIS is based on a relational database system that integrates extensive data resources on dispersal of herbicides (e.g., HERBS records of Ranch Hand aircraft flight paths, gallonage, and chemical agent), locations of military units and bases, dynamic movement of combat troops in Vietnam, and locations of civilian population centers. The GIS can provide a variety of proximity counts for exposure to 9,141 herbicide application missions. In addition, the GIS can be used to generate a quantitative exposure opportunity index that accounts for quantity of herbicide sprayed, distance, and environmental decay of a toxic factor such as dioxin, and is flexible enough to permit substitution of other mathematical exposure models by the user. The GIS thus provides a basis for estimation of herbicide exposure for use in large-scale epidemiologic studies. To facilitate widespread use of the GIS, a user-friendly software package was developed to permit researchers to assign exposure opportunity indexes to troops, locations, or individuals.

  5. Microbiological degradation of products for detoxication of chemical weapons and organophosphoric herbicides

    Energy Technology Data Exchange (ETDEWEB)

    Zharikov, G.A. [Research Center for Toxicology and Hygienic Regulation of Biopreparations (RCT and HRB), Serpukhov, Moscow region (Russian Federation); Starovoitov, I.I.; Ermakova, I.T.; Shushkova, T.V. [Inst. for Biochemistry and Physiology of Microorganisms, Pushchino, Moscow region (Russian Federation)

    2003-07-01

    Wide and uncontrolled application of some pesticides, herbicides, and insecticides in agriculture has led to intensive contamination of the environment by phosphoroorganic compounds (PO{sub s}). Development of ecologically sound technologies for bioremediation is an urgent task at cleanup of territories contaminated as a result of implementation of chemical weapons destruction program (toxic agents - TA). Presently, the greatest problem when cleaning the environment is decomposition of PO{sub s} with hardly hydrolyzed direct N-D bond. The bond is resistant to photolysis, chemical hydrolysis, heat degradation and it can be found in many natural and anthropogenic PO{sub s} (methylphosphoric acid (MPA), glyphosate or round-up, phosphonolipids, methylphosphonylfloride, etc.). The goal of the present work is search and selection of highly efficient strains of microorganisms-degraders, hydrolyzing C-P bond in phosphoroorganic compounds for further development of technology for bioremediation of contaminated soils. Microorganisms, capable of hydrolysis of PO{sub s} with direct C-P bond, were isolated from soil samples taken at territories, contaminated by TA detoxication products (sarin, soman), as well as from rice fields subjected to long-term treatment by herbicide glyphosate. Activity of isolated microorganism strains was assessed by the amount of produced biomass as well as by specific growth velocity on the media with mentioned above sources of phosphorus and glutamate as a carbon source. As a result, most active bacteria strains, growing with maximal specific velocity 0.12-0.15 hour{sup -1} and producing biomass 2.0-2.5 g/l were selected. (orig.)

  6. Selectivity of herbicides in crambe crop

    Directory of Open Access Journals (Sweden)

    Guilherme Sasso Ferreira Souza

    2014-02-01

    Full Text Available The low productivity of crambe can be associated with many factors, among these, the competition with weeds, which reduces the yield, harvest affects and contributes to the increase in seed moisture. Therefore, this study aimed to evaluate the tolerance of crambe plants cv. FMS Brilhante to herbicides applied in preplant incorporated (PPI, preemergence (PRE, and postemergence (POST. The study was installed in a green-house and the treatments consisted of the herbicide application in: pre-plant incorporated ofdiclosulam, flumetsulam, metribuzin, and trifluralin;preemergence applicationof atrazine, diclosulam, diuron, flumetsulam, metribuzim, S-metolachlor, sulfentrazone, and trifluralin; and postemergence application ofbentazon, carfentrazone-ethyl, clefoxydim, cletodim + fenoxaprop-p-ethyl, ethoxysulfuron, fomesafen, fluazifop-p-butyl, flumioxazin, halosulfuron, imazamox, imazapic, lactofen, nicosulfuron, oxadiazon, quinclorac, and setoxydim. Visual evaluations of phytotoxicity on crambe plants were realized after applications, the seedlings were counted and the height and plant dry matter were determined in the end of the evaluation period. In conditions where the studies were conducted, we can conclude that only the trifluralin application in PRE and the application of clefoxidim+fenoxaprop-p-ethyl, fluazifop-p-butyl, quinclorac, setoxydim and clefoxydim in POST showed selectivity and potential use for FMS Brilhante crambe cultivar.

  7. Inducible hydroxylation and demethylation of the herbicide isoproturon by Cunninghamella elegans.

    Science.gov (United States)

    Hangler, Martin; Jensen, Bo; Rønhede, Stig; Sørensen, Sebastian R

    2007-03-01

    A screening of 27 fungal strains for degradation of the phenylurea herbicide isoproturon was performed and yielded 15 strains capable of converting the herbicide to polar metabolites. The zygomycete fungus Cunninghamella elegans strain JS/2 isolated from an agricultural soil converted isoproturon to several known hydroxylated metabolites. In addition, unknown metabolites were produced in minor amounts. Inducible degradation was indicated by comparing resting cells pregrown with or without isoproturon. This shows that strain JS/2 is capable of partially degrading isoproturon and that one or more of the enzymes involved are inducible upon isoproturon exposure.

  8. Hydroxylation of the Herbicide Isoproturon by Fungi Isolated from Agricultural soil

    DEFF Research Database (Denmark)

    Rønhede, S.; Jensen, Bo; Rosendahl, Søren

    2005-01-01

    Several asco-, basidio-, and zygomycetes isolated from an agricultural field were shown to be able to hydroxylate the phenylurea herbicide isoproturon [N-(4-isopropylphenyl)-N',N'-dimethylurea] to N-(4-(2-hydroxy-1-methylethyl)phenyl)-N',N'-dimethylurea and N-(4-(1-hydroxy-1-methylethyl)phenyl)-N......Several asco-, basidio-, and zygomycetes isolated from an agricultural field were shown to be able to hydroxylate the phenylurea herbicide isoproturon [N-(4-isopropylphenyl)-N',N'-dimethylurea] to N-(4-(2-hydroxy-1-methylethyl)phenyl)-N',N'-dimethylurea and N-(4-(1-hydroxy-1-methylethyl...

  9. Adsorption of triazine herbicides from aqueous solution by functionalized multiwall carbon nanotubes grown on silicon substrate

    Science.gov (United States)

    D'Archivio, Angelo Antonio; Maggi, Maria Anna; Odoardi, Antonella; Santucci, Sandro; Passacantando, Maurizio

    2018-02-01

    Multi-walled carbon nanotubes (MWCNTs), because of their small size and large available surface area, are potentially efficient sorbents for the extraction of water solutes. Dispersion of MWCNTs in aqueous medium is suitable to adsorb organic contaminants from small sample volumes, but, the recovery of the suspended sorbent for successive re-use represents a critical step, which makes this method inapplicable in large-scale water-treatment technologies. To overcome this problem, we proposed here MWCNTs grown on silicon supports and investigated on a small-volume scale their adsorption properties towards triazine herbicides dissolved in water. The adsorption efficiency of the supported MWCNTs has been tested on seven triazine herbicides, which are emerging water contaminants in Europe and USA, because of their massive use, persistence in soils and potential risks for the aquatic organisms and human health. The investigated compounds, in spite of their common molecular skeleton, cover a relatively large property range in terms of both solubility in water and hydrophilicity/hydrophobicity. The functionalisation of MWCNTs carried out by acidic oxidation, apart from increasing wettability of the material, results in a better adsorption performance. Increasing of functionalisation time between 17 and 60 h progressively increases the extraction of all seven pesticides and produces a moderate increment of selectivity.

  10. New Technologies for Insect-Resistant and Herbicide-Tolerant Plants.

    Science.gov (United States)

    Lombardo, Luca; Coppola, Gerardo; Zelasco, Samanta

    2016-01-01

    The advent of modern molecular biology and recombinant DNA technology has resulted in a dramatic increase in the number of insect-resistant (IR) and herbicide-tolerant (HT) plant varieties, with great economic benefits for farmers. Nevertheless, the high selection pressure generated by control strategies for weed and insect populations has led to the evolution of herbicide and pesticide resistance. In the short term, the development of new techniques or the improvement of existing ones will provide further instruments to counter the appearance of resistant weeds and insects and to reduce the use of agrochemicals. In this review, we examine some of the most promising new technologies for developing IR and HT plants, such as genome editing and antisense technologies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Ecological review of black-grass (Alopecurus myosuroides Huds. propagation abilities in relationship with herbicide resistance

    Directory of Open Access Journals (Sweden)

    Maréchal, PY.

    2012-01-01

    Full Text Available Alopecurus myosuroides Huds. (black-grass has always been a major concern for cereal growers, and the development of herbicide resistance does not improve the situation. This review article summarizes the different traits involved in the dispersal pattern of herbicide resistant black-grass individuals within a susceptible field population. Therefore, the whole life cycle of black-grass is depicted from the seed to the seed. From the early vegetative development to the seed falling, every stage is described, taking into account how herbicide resistance can influence or exert a different impact compared to susceptible plants.

  12. Influence of tank mixtures of pre-emergence herbicides on growing leeks (Allium porrum L.

    Directory of Open Access Journals (Sweden)

    Gerasimova Nina

    2015-01-01

    Full Text Available The effect of mixtures of pre-emergence herbicides on weed infestation and yield of leek was evaluated. Three tank mixtures were applied: s-metolachlor (Dual Gold 960 EC at a dose of 80 ml/da + oxyfluorfen (Goal 2 E at a dose of 100 ml/da; s-metolachlor (Dual Gold 960 EC at a dose of 60 ml/da + oxyfluorfen (Goal 2 E at a dose of 75 ml/da; and s-metolachlor (Dual Gold 960 EC at a dose of 40 ml/da + oxyfluorfen (Goal 2 E at a dose of 50 ml/da. The number of weeds was recorded following the application of the tank mixture. It was found that treatment with a tank mixture of herbicides Dual Gold 960 EC and Goal 2 E caused a reduction in weed infestation at all three application rates as compared to the control. The lowest weed infestation was established after treatment with the highest doses of herbicides. It was suggested that the applied herbicide mixture could be used effectively at the leeks growth stage.

  13. An Epidemiologic Investigation of Health Effects in Air Force Personnel Following Exposure to Herbicides. Volume I: 1997 Follow-up Examination Results

    National Research Council Canada - National Science Library

    Michalek, J

    2000-01-01

    ... attributable to exposure to herbicides exist in veterans of Operation Ranch Hand Operation. Ranch Hand was the unit responsible for the aerial spraying of herbicides, including Herbicide Orange, in Vietnam from 1961 to 1971...

  14. Herbicide micropollutants in surface, ground and drinking waters within and near the area of Zagreb, Croatia.

    Science.gov (United States)

    Fingler, Sanja; Mendaš, G; Dvoršćak, M; Stipičević, S; Vasilić, Ž; Drevenkar, V

    2017-04-01

    The frequency and mass concentrations of 13 herbicide micropollutants (triazines, phenylureas, chloroacetanilides and trifluralin) were investigated during 2014 in surface, ground and drinking waters in the area of the city of Zagreb and its suburbs. Herbicide compounds were accumulated from water by solid-phase extraction using either octadecylsilica or styrene-divinylbenzene sorbent cartridges and analysed either by high-performance liquid chromatography with UV-diode array detector or gas chromatography with mass spectrometric detection. Atrazine was the most frequently detected herbicide in drinking (84 % of samples) and ground (61 % of samples) waters in mass concentrations of 5 to 68 ng L -1 . It was followed by metolachlor and terbuthylazine, the former being detected in 54 % of drinking (up to 15 ng L -1 ) and 23 % of ground (up to 100 ng L -1 ) waters, and the latter in 45 % of drinking (up to 20 ng L -1 ) and 26 % of ground (up to 25 ng L -1 ) water samples. Acetochlor was the fourth most abundant herbicide in drinking waters, detected in 32 % of samples. Its mass concentrations of 107 to 117 ng L -1 in three tap water samples were the highest of all herbicides measured in the drinking waters. The most frequently (62 % of samples) and highly (up to 887 ng L -1 ) detected herbicide in surface waters was metolachlor, followed by terbuthylazine detected in 49 % of samples in mass concentrations of up to 690 ng L -1 , and atrazine detected in 30 % of samples in mass concentrations of up to 18 ng L -1 . The seasonal variations in herbicide concentrations in surface waters were observed for terbuthylazine, metolachlor, acetochlor, chlortoluron and isoproturon with the highest concentrations measured from April to August.

  15. Characterization of cholinesterases in Chironomus riparius and the effects of three herbicides on chlorpyrifos toxicity.

    Science.gov (United States)

    Pérez, Joanne; Monteiro, Marta S; Quintaneiro, Carla; Soares, Amadeu M V M; Loureiro, Susana

    2013-11-15

    In this study, the toxicities of four pesticides (the herbicides atrazine, terbuthylazine, metolachlor and the insecticide chlorpyrifos) previously detected in the Alqueva reservoir/dam (south of Portugal) were evaluated individually and in binary combinations of the herbicides and the insecticide using fourth-instar larvae of the aquatic midge Chironomus riparius. Chlorpyrifos induced toxicity to midges in all the 48 h toxicity bioassays performed. The swimming behaviour of the larvae was impaired, with EC50 values ranging from 0.15 to 0.17 μg/L. However, neither s-triazine (atrazine and terbuthylazine) herbicides nor metolachlor alone at concentrations up to 200 μg/L caused significant toxicity to C. riparius. When combined with both s-triazine herbicides, chlorpyrifos toxicity was enhanced by approximately 2-fold when tested in a binary mixture experimental setup, at the 50% effective concentration levels. To evaluate how chlorpyrifos toxicity was being increased, the cholinesterases (ChE) were characterized biochemically using different substrates and selective inhibitors. The results obtained suggested that the main enzyme present in this species is acetylcholinesterase (AChE) and therefore it was assayed upon C. riparius exposures to all pesticides individually and as binary mixtures. Although atrazine and terbuthylazine are not effective inhibitors of AChE, the potentiation of chlorpyrifos toxicity by the two s-triazine herbicides was associated with a potentiation in the inhibition of AChE in midges; both s-triazine herbicides at 200 μg/L increased the inhibition of the AChE activity by 7 and 8-fold, respectively. A strong correlation was observed between swimming behaviour disturbances of larvae and the inhibition of the AChE activity. In contrast, metolachlor did not affect chlorpyrifos toxicity at any of the concentrations tested. Therefore, the herbicides atrazine and terbuthylazine can act as synergists in the presence of chlorpyrifos, increasing

  16. Hydrolytic Activation Kinetics of the Herbicide Benzobicyclon in Simulated Aquatic Systems.

    Science.gov (United States)

    Williams, Katryn L; Tjeerdema, Ronald S

    2016-06-22

    Herbicide resistance is a growing concern for weeds in California rice fields. Benzobicyclon (BZB; 3-(2-chloro-4-(methylsulfonyl)benzoyl)-2-phenylthiobicyclo[3.2.1]oct-2-en-4-one) has proven successful against resistant rice field weeds in Asia. A pro-herbicide, BZB forms the active agent, benzobicyclon hydrolysate (BH), in water; however, the transformation kinetics are not understood for aquatic systems, particularly flooded California rice fields. A quantitative experiment was performed to assess the primary mechanism and kinetics of BZB hydrolysis to BH. Complete conversion to BH was observed for all treatments. Basic conditions (pH 9) enhanced the reaction, with half-lives ranging from 5 to 28 h. Dissolved organic carbon (DOC) hindered transformation, which is consistent with other base-catalyzed hydrolysis reactions. BH was relatively hydrolytically stable, with 18% maximum loss after 5 days. Results indicate BZB is an efficient pro-herbicide under aqueous conditions such as those of a California rice field, although application may be best suited for fields with recirculating tailwater systems.

  17. Evaluation of six pesticides leaching indexes using field data of herbicide application in Casablanca Valley, Chile.

    Science.gov (United States)

    Kogan, M; Rojas, S; Gómez, P; Suárez, F; Muñoz, J F; Alister, C

    2007-01-01

    A field study was performed to evaluate the accuracy of six pesticide screening leaching indexes for herbicide movement. Adsorption, dissipation and soil movement were studied in a vineyard in a sandy loam soil during 2005 season. Simazine, diuron, pendimethalin, oxyfluorfen and flumioxazin were applied to bare soil at rates commonly used, and their soil concentrations throughout soil profile were determined at 0, 10, 20, 40 and 90 days after application (DAA). Herbicides were subjected to two pluviometric regimens, natural field condition and modified conditions (plus natural rainfall 180 mm). Leaching indexes utilized were: Briggs's Rf, Hamaker's Rf, LEACH, LPI, GUS and LIX. Simazine reached 120 cm, diuron 90 cm, flumioxazin 30 cm soil depth respectively. Pendimethalin and oxyfluorfen were retained up to 5 cm. None of the herbicides leaching was affected by rainfall regimen. Only flumioxazin field dissipation was clearly affected by pluviometric condition. The best representation of the herbicide soil depth movement and leaching below 15 cm soil depth were: Hamaker's Rf < Briggs's Rf < GUS < LPI, < LEACH < LIX. Field results showed a good correlation between herbicides K(d) and their soil depth movement and mass leached below 15 cm soil depth.

  18. Impact of wheat straw biochar addition to soil on the sorption, leaching, dissipation of the herbicide (4-chloro-2-methylphenoxy)acetic acid and the growth of sunflower (Helianthus annuus L.).

    Science.gov (United States)

    Tatarková, Veronika; Hiller, Edgar; Vaculík, Marek

    2013-06-01

    Biochar addition to agricultural soils might increase the sorption of herbicides, and therefore, affect other sorption-related processes such as leaching, dissipation and toxicity for plants. In this study, the impact of wheat straw biochar on the sorption, leaching and dissipation in a soil, and toxicity for sunflower of (4-chloro-2-methylphenoxy)acetic acid (MCPA), a commonly used ionizable herbicide, was investigated. The results showed that MCPA sorption by biochar and biochar-amended soil (1.0wt% biochar) was 82 and 2.53 times higher than that by the non-amended soil, respectively. However, desorption of MCPA from biochar-amended soil was only 1.17 times lower than its desorption in non-amended soil. Biochar addition to soil reduced both MCPA leaching and dissipation. About 35% of the applied MCPA was transported through biochar-amended soil, while up to 56% was recovered in the leachates transported through non-amended soil. The half-life value of MCPA increased from 5.2d in non-amended soil to 21.5 d in biochar-amended soil. Pot experiments with sunflower (Helianthus annuus L.) grown in MCPA-free, but biochar-amended soil showed no positive effect of biochar on the growth of sunflower in comparison to the non-amended soil. However, biochar itself significantly reduced the content of photosynthetic pigments (chlorophyll a, b) in sunflower. There was no significant difference in the phytotoxic effects of MCPA on sunflowers between the biochar-amended soil and the non-amended soil. Furthermore, MCPA had no effect on the photosynthetic pigment contents in sunflower. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Glyphosate and dicamba herbicide tank mixture effects on native plant and non-genetically engineered soybean seedlings

    Science.gov (United States)

    Weed species are becoming resistant to intensive and extensive use of specific herbicides associated with the production of herbicide resistant crops, e.g., the use of glyphosate for weed management with glyphosate resistant soybeans. To counter this resistance, crops engineered ...

  20. Comparative effects of herbicides on photosynthesis and growth of tropical estuarine microalgae

    Energy Technology Data Exchange (ETDEWEB)

    Magnusson, Marie [AIMS at JCU, Australian Institute of Marine Science, School of Marine and Tropical Biology, James Cook University, Townsville, QLD 4811 (Australia); School of Marine and Tropical Biology, James Cook University, Douglas Campus, Townsville 4811 (Australia); Heimann, Kirsten [School of Marine and Tropical Biology, James Cook University, Douglas Campus, Townsville 4811 (Australia)], E-mail: Kirsten.Heimann@jcu.edu.au; Negri, Andrew P. [Australian Institute of Marine Science, PMB 3 Townsville MC, QLD 4810 (Australia)

    2008-09-15

    Pulse amplitude modulation (PAM) fluorometry is ideally suited to measure the sub-lethal impacts of photosystem II (PSII)-inhibiting herbicides on microalgae, but key relationships between effective quantum yield [Y(II)] and the traditional endpoints growth rate ({mu}) and biomass increase are unknown. The effects of three PSII-inhibiting herbicides; diuron, hexazinone and atrazine, were examined on two tropical benthic microalgae; Navicula sp. (Heterokontophyta) and Nephroselmis pyriformis (Chlorophyta). The relationships between Y(II), {mu} and biomass increase were consistent (r{sup 2} {>=} 0.90) and linear (1:1), validating the utility of PAM fluorometry as a rapid and reliable technique to measure sub-lethal toxicity thresholds of PSII-inhibiting herbicides in these microalgae. The order of toxicity (EC{sub 50} range) was: diuron (16-33 nM) > hexazinone (25-110 nM) > atrazine (130-620 nm) for both algal species. Growth rate and photosynthesis were affected at diuron concentrations that have been detected in coastal areas of the Great Barrier Reef.

  1. Comparative effects of herbicides on photosynthesis and growth of tropical estuarine microalgae

    International Nuclear Information System (INIS)

    Magnusson, Marie; Heimann, Kirsten; Negri, Andrew P.

    2008-01-01

    Pulse amplitude modulation (PAM) fluorometry is ideally suited to measure the sub-lethal impacts of photosystem II (PSII)-inhibiting herbicides on microalgae, but key relationships between effective quantum yield [Y(II)] and the traditional endpoints growth rate (μ) and biomass increase are unknown. The effects of three PSII-inhibiting herbicides; diuron, hexazinone and atrazine, were examined on two tropical benthic microalgae; Navicula sp. (Heterokontophyta) and Nephroselmis pyriformis (Chlorophyta). The relationships between Y(II), μ and biomass increase were consistent (r 2 ≥ 0.90) and linear (1:1), validating the utility of PAM fluorometry as a rapid and reliable technique to measure sub-lethal toxicity thresholds of PSII-inhibiting herbicides in these microalgae. The order of toxicity (EC 50 range) was: diuron (16-33 nM) > hexazinone (25-110 nM) > atrazine (130-620 nm) for both algal species. Growth rate and photosynthesis were affected at diuron concentrations that have been detected in coastal areas of the Great Barrier Reef

  2. Hazard and risk of herbicides for marine microalgae

    NARCIS (Netherlands)

    Sjollema, S.B.; Martínez-García, G.; van der Geest, H.G.; Kraak, M.H.S.; Booij, P.; Vethaak, A.D.; Admiraal, W.

    2014-01-01

    Due to their specific effect on photosynthesis, herbicides pose a potential threat to coastal and estuarine microalgae. However, comprehensive understanding of the hazard and risk of these contaminants is currently lacking. Therefore the aim of the present study was to investigate the toxic effects

  3. Biomass, Leaf Area, and Resource Availability of Kudzu Dominated Plant Communities Following Herbicide Treatment

    Energy Technology Data Exchange (ETDEWEB)

    L.T. Rader

    2001-10-01

    Kudzu is an exotic vine that threatens the forests of the southern U.S. Five herbicides were tested with regard to their efficacy in controlling kudzu, community recover was monitored, and interactions with planted pines were studied. The sites selected were old farm sites dominated by kudzu.These were burned following herbicide treatment. The herbicides included triclopyr, clopyralid, metsulfuron, tebuthiuron, and picloram plus 2,4-D. Pine seedlings were planted the following year. Regression equations were developed for predicting biomass and leaf area. Four distinct plant communities resulted from the treatments. The untreated check continued to be kudzu dominated. Blackberry dominated the clopyradid treatment. Metsulfron, trychlopyr and picloram treated sites resulted in herbaceous dominated communities. The tebuthiuron treatment maintained all vegetation low.

  4. Herbicide and fertilizers promote analogous phylogenetic responses but opposite functional responses in plant communities

    DEFF Research Database (Denmark)

    Pellissier, Loïc; Wisz, Mary S.; Strandberg, Beate

    2014-01-01

    on long-term experiment we show that fertilizer and herbicides (glyphosate) have contrasting effects on functional structure, but can increase phylogenetic diversity in semi-natural plant communities. We found that an increase in nitrogen promoted an increase in the average specific leaf area and canopy...... height at the community level, but an increase in glyphosate promoted a decrease in those traits. Phylogenetic diversity of plant communities increased when herbicide and fertilizer were applied together, likely because functional traits facilitating plant success in those conditions were......Throughout the world, herbicides and fertilizers change species composition in agricultural communities, but how do the cumulative effects of these chemicals impact the functional and phylogenetic structure of non-targeted communities when they drift into adjacent semi-natural habitats? Based...

  5. Comparison of two detection methods in thin layer chromatographic analysis of some herbicides in a coastal savannah soil in Ghana

    International Nuclear Information System (INIS)

    Afful, S.; Yeboah, P.O.; Dogbe, S.A.; Akpabli, C.K.

    2008-01-01

    o-tolidine plus potassium iodide and photosynthesis inhibition detection methods were investigated for the analysis of three triazine herbicides (atrazine, ametryne, simazine) and two urea herbicides (diuron, metbromuron) in a coastal savannah soil using thin layer chromatography to compare the suitability of the two methods for the study of the herbicides. This was done by spiking 5 g of the soil sample with specific amount of the herbicide standards to generate herbicide-soil concentration of 40.24, 41.46, 40.28, 39.90 and 40.64 μg/g for atrazine, ametryne, simazine, diuron and metbromuron, respectively. Extraction was performed with acetone/hexane mixture (4:1) and the detection limit of each herbicide was then determined. In all, the photosynthesis inhibition method performed better for both the triazine and the urea herbicides, while the o-tolidine plus potassium iodide method was suitable for only the triazine herbicides. With the photosynthesis inhibition method, detectability in the range of 0.004-0.008 ± 0.002 μg/g was attained for the herbicides using the unclean extracts. In the case of o-tolidine plus potassium iodide method, detectability of 0.008-0.406 ± 0.02 μg/g was obtained. With the clean up extracts detectability in the range of 0.025-0.162 ± 0.004 μg/g was obtained using the photosynthesis inhibition method. However, metbromuron was not detected in the cleaned up extracts when o-tolidine plus potassium iodide detection method was used. For the methods described, clean up with SPE cartridge, equipped with C-18, is not critical to obtain the desired results. (au)

  6. Hydroxyl radical induced transformation of phenylurea herbicides: A theoretical study

    International Nuclear Information System (INIS)

    Mile, Viktória; Harsányi, Ildikó; Kovács, Krisztina; Földes, Tamás; Takács, Erzsébet; Wojnárovits, László

    2017-01-01

    Aromatic ring hydroxylation reactions occurring during radiolysis of aqueous solutions are studied on the example of phenylurea herbicides by Density Functional Theory calculations. The effect of the aqueous media is taken into account by using the Solvation Model Based on Density model. Hydroxyl radical adds to the ring because the activation free energies (0.4–47.2 kJ mol −1 ) are low and also the Gibbs free energies have high negative values ((−27.4) to (−5.9) kJ mol −1 ). According to the calculations in most of cases the ortho- and para-addition is preferred in agreement with the experimental results. In these reactions hydroxycyclohexadienyl type radicals form. In a second type reaction, when loss of chlorine atom takes place, OH/Cl substitution occurs without cyclohexadienyl type intermediate. - Highlights: • Attack of • OH to aniline, phenol, fenuron, monuron, diuron was studied by DFT. • Ortho-para directing is suggested with –NH 2 , –OH and –NHCON(CH 3 ) 2 groups. • • OH addition to the ring gives hydroxycyclohexadienyl radical. • Attack at C-Cl leads to • OH/Cl substitution without cyclohexadienyl intermediate.

  7. GLOBAL EXPRESSION PROFILING AS A TOOL TO DEVELOP MOLECULAR MARKERS LINKED TO HERBICIDE STRESS IN ARABIDOPSIS

    Science.gov (United States)

    Herbicide drift (unintentional physical movement from target to off-target plants) is a cause of crop loss in US. Low-dose, high-potency herbicides that have short environmental persistence times constrain efforts to develop or identify metabolite or biochemical markers of exposu...

  8. Microbial degradation pathways of the herbicide dichlobenil in soils with different history of dichlobenil-exposure

    International Nuclear Information System (INIS)

    Holtze, Maria S.; Hansen, Hans Christian B.; Juhler, Rene K.; Sorensen, Jan; Aamand, Jens

    2007-01-01

    This is the first detailed study of metabolite production during degradation of the herbicide 2,6-dichlorobenzonitrile (dichlobenil). Degradation of dichlobenil and three potential metabolites: 2,6-dichlorobenzamide (BAM), 2,6-dichlorobenzoic acid (2,6-DCBA) and ortho-chlorobenzamide (OBAM) was studied in soils either previously exposed or not exposed to dichlobenil using a newly developed HPLC method. Dichlobenil was degraded in all four soils; BAM and 2,6-DCBA were only degraded in soils previously exposed to dichlobenil (100% within 35-56 days and 85-100% in 56 days, respectively), and OBAM in all four soils (25-33% removal in 48 days). BAM produced from dichlobenil was either hydrolyzed to 2,6-DCBA or dechlorinated to OBAM, which was further hydrolyzed to ortho-chlorobenzoic acid. BAM was rapidly mineralized in previously exposed soils only. All potential metabolites and the finding that BAM was a dead-end metabolite of dichlobenil in soils not previously exposed to dichlobenil needs to be included in risk assessments of the use of dichlobenil. - BAM produced from dichlobenil was either hydrolyzed to 2,6-DCBA or dechlorinated to OBAM, which was further hydrolyzed to ortho-chlorobenzoic acid

  9. Microbial degradation pathways of the herbicide dichlobenil in soils with different history of dichlobenil-exposure

    Energy Technology Data Exchange (ETDEWEB)

    Holtze, Maria S. [Department of Natural Sciences, Soil and Environmental Chemistry, Royal Veterinary and Agricultural University, Thorvaldsensvej 40, DK-1871 Frederiksberg C (Denmark) and Department of Geochemistry, Geological Survey of Denmark and Greenland, Oster Voldgade 10, DK-1350 Copenhagen K (Denmark) and Section of Genetics and Microbiology, Department of Ecology, Royal Veterinary and Agricultural University, Thorvaldsensvej 40, DK-1871 Frederiksberg C (Denmark)]. E-mail: msh@geus.dk; Hansen, Hans Christian B. [Department of Natural Sciences, Soil and Environmental Chemistry, Royal Veterinary and Agricultural University, Thorvaldsensvej 40, DK-1871 Frederiksberg C (Denmark); Juhler, Rene K. [Department of Geochemistry, Geological Survey of Denmark and Greenland, Oster Voldgade 10, DK-1350 Copenhagen K (Denmark); Sorensen, Jan [Section of Genetics and Microbiology, Department of Ecology, Royal Veterinary and Agricultural University, Thorvaldsensvej 40, DK-1871 Frederiksberg C (Denmark); Aamand, Jens [Department of Geochemistry, Geological Survey of Denmark and Greenland, Oster Voldgade 10, DK-1350 Copenhagen K (Denmark)

    2007-07-15

    This is the first detailed study of metabolite production during degradation of the herbicide 2,6-dichlorobenzonitrile (dichlobenil). Degradation of dichlobenil and three potential metabolites: 2,6-dichlorobenzamide (BAM), 2,6-dichlorobenzoic acid (2,6-DCBA) and ortho-chlorobenzamide (OBAM) was studied in soils either previously exposed or not exposed to dichlobenil using a newly developed HPLC method. Dichlobenil was degraded in all four soils; BAM and 2,6-DCBA were only degraded in soils previously exposed to dichlobenil (100% within 35-56 days and 85-100% in 56 days, respectively), and OBAM in all four soils (25-33% removal in 48 days). BAM produced from dichlobenil was either hydrolyzed to 2,6-DCBA or dechlorinated to OBAM, which was further hydrolyzed to ortho-chlorobenzoic acid. BAM was rapidly mineralized in previously exposed soils only. All potential metabolites and the finding that BAM was a dead-end metabolite of dichlobenil in soils not previously exposed to dichlobenil needs to be included in risk assessments of the use of dichlobenil. - BAM produced from dichlobenil was either hydrolyzed to 2,6-DCBA or dechlorinated to OBAM, which was further hydrolyzed to ortho-chlorobenzoic acid.

  10. Serum alpha-tocopherol and ascorbic acid concentrations in Type 1 and Type 2 diabetic patients with and without angiopathy.

    Science.gov (United States)

    Skrha, Jan; Prázný, Martin; Hilgertová, Jirina; Weiserová, Hana

    2003-03-01

    Alpha-tocopherol and ascorbic acid form a part of scavenger system influencing the level of oxidative stress in diabetes mellitus. The aim of this study was to evaluate serum concentrations of alpha-tocopherol and ascorbic acid in Type 1 and Type 2 diabetes mellitus and to compare them with the presence of vascular complications as well as with oxidative stress and endothelial dysfunction. A total of 38 Type 1 and 62 Type 2 diabetic patients were subdivided into those with and without angiopathy. Serum alpha-tocopherol and ascorbic acid concentrations were estimated in all patients and in 38 healthy persons. Their results were compared with diabetes control, with oxidative stress measured by plasma malondialdehyde and with endothelial dysfunction estimated by serum N-acetyl-beta-glucosaminidase activity. In addition, the differences in biochemical variables were compared between patients with and without angiopathy. Serum alpha-tocopherol related to the sum of cholesterol and triglyceride concentrations (AT/CHT ratio) was significantly lower in diabetic patients with macroangiopathy than in those without vascular changes (pascorbic acid levels were significantly lower only in Type 2 diabetic patients with macroangiopathy as compared with healthy controls as well as with patients without vascular disease (pcholesterol or triglyceride concentrations in both Type 1 and Type 2 diabetic patients. The presence of oxidative stress together with endothelial dysfunction measured by N-acetyl-beta-glucosaminidase activity was accompanied by lower AT/CHT ratio (pascorbic acid concentration in serum. Their low concentrations may participate at the increased level of oxidative stress in these individuals.

  11. Folic acid: a marker of endothelial function in type 2 diabetes?

    Directory of Open Access Journals (Sweden)

    Arduino A Mangoni

    2005-04-01

    Full Text Available Arduino A Mangoni1, Roy A Sherwood2, Belinda Asonganyi2, Emma L Ouldred3, Stephen Thomas4, Stephen HD Jackson31Department of Clinical Pharmacology, Centre for Neuroscience, School of Medicine, Flinders University, Adelaide, SA, Australia; 2Clinical Biochemistry, King’s College Hospital, London, UK; 3Department of Health Care of the Elderly, Guy’s, King’s, and St Thomas’ School of Medicine, King’s College, London, UK; 4Department of Diabetic Medicine, King’s College Hospital, London, UKObjectives: Endothelial dysfunction is a common feature of type 2 diabetes. Recent studies suggest that the B-vitamin folic acid exerts direct beneficial effects on endothelial function, beyond the well known homocysteine lowering effects. Therefore, folic acid might represent a novel “biomarker” of endothelial function. We sought to determine whether plasma levels of folic acid determine endothelial-dependent vasodilation in patients with type 2 diabetes.Methods: Forearm arterial blood flow (FABF was measured at baseline and during intrabrachial infusion of the endothelial-dependent vasodilator acetylcholine (15 µg/min and the endothelial-independent vasodilator sodium nitroprusside (2 µg/min in 26 type 2 diabetic patients (age 56.5 ± 0.9 years, means ± SEM with no history of cardiovascular disease.Results: FABF ratio (ie, the ratio between the infused and control forearm FABF significantly increased during acetylcholine (1.10 ± 0.04 vs 1.52 ± 0.07, p < 0.001 and sodium nitroprusside (1.12 ± 0.11 vs 1.62 ± 0.06, p < 0.001 infusions. After correcting for age, gender, diabetes duration, smoking, hypertension, body mass index, microalbuminuria, glycated hemoglobin, low-density lipoprotein cholesterol, and homocysteine, multiple regression analysis showed that plasma folic acid concentration was the only independent determinant (p = 0.037, R2 = 0.22 of acetylcholine-mediated, but not sodium nitroprusside-mediated, vasodilatation

  12. Investigating Resistance of Wild Mustard (Sinapis arvensis L. ‎Populations to Tribenuron-Methyl Herbicide

    Directory of Open Access Journals (Sweden)

    ‎ Mehdi Afshari

    2017-05-01

    Full Text Available Tribenuron-methyl is commonly used for post emergence control of broad leaf weeds in wheat fields. In order to survey suspicious resistant weeds in wheat fields to this herbicide thirty-eight fields of Kermanshah province were investigated during 2012- 2013. Seeds of suspected resistance of wild mustard were gathered and tested in a randomized complete blocks design experiment with three replications. First, for early detection of herbicide resistance, the suspected population was screened using discriminating dose of tribenuron-methyl. Determining of the resistance degree was conducted by whole plant bioassay tests using dose-response curves. The resistance mechanisms were assayed by molecular methods, especially using the ALS gene cloning by PJET1.2/blunt Vector. For susceptible populations, the concentration required for complete control was 10.4 g ai ha-1 tribenuron-methyl. Also, in screening tests 50% of populations as resistant populations were identified. According to the Beckie and Tardif, it was found that 57.8% of these population did have a very high degree of resistance, 31.5% with high resistance and 10/5% with low resistance degree. GR50 of the resistant weeds was also increased as compared to sensitive weed, which indicates resistance in this province, Thus to control the resistant populations Z15, this amount increased to 1309 g ai ha-1.The results of DNA sequencing showed that mutation by replacing proline amino acid at position Ala122 causes resistance based on target-site mutation.

  13. Effect of some adjuvants application on enhancing sulfosulfuron herbicide performance on Phalaris minor- Poaceae

    Directory of Open Access Journals (Sweden)

    Mohammad Mehdizadeh

    2015-02-01

    Full Text Available Nowadays environmental pollution by pesticides application is a major concern for health. Efficiency of many herbicides can be increased by adding adjuvants to the spray solution. Therefore greenhouse study was conducted during 2014 to determine the efficacy of three adjuvants (Citogate, Castor oil and Canola oil at concentrations of 0.1 and 0.2 (%v/v with 5, 10, 20, 30 and 40 g a.i\\ha of sulfosulfuron herbicide on littleseed canary grass. Results showed that the adjuvants enhanced the efficacy of sulfosulfuron in decreasing the dry weights of littleseed canary grass. Performance of herbicide was increased with enhancing its concentrations. Measured ED50 and ED90 concentrations of sulfosulfuron in control were 16.74 and 32.22 g a.i\\ha, respectively. Whereas the values for Citogate 0.2 (%v\\v, was 5.86 and 13.34 g a.i\\ha, respectively. The addition of Citogate and Castor oil had the highest and lowest effect on sulfosulfuron efficacy against Littleseed canary grass. In conclusion, the study revealed that Citogate concentrations had powerful effects on herbicide efficacy followed by Canola oil.

  14. Biodegradation of glyphosate herbicide by Salinicoccus spp isolated from Qom Hoze-soltan lake, Iran

    Directory of Open Access Journals (Sweden)

    Yaser Sharifi

    2015-01-01

    Full Text Available Background: Glyphosate (N-phosphonomethyl Glycine is an organophosphorus pesticide with dangerous effects on the environment. In this study, the biodegradation of glyphosate herbicide by halophilic bacteria isolated from Qom Hoze-Soltan Lake has been investigated. Methods: After sampling and bacterial isolation, native halophilic strains grown in the presence of glyphosate at a wavelength of 660 nm and also the disappearance of the glyphosate in the plates at a wavelength of 220 nm were determined and the dominant bacteria were isolated. Biochemical, molecular (according to the 16S rRNA sequence, antibiotic, and the Minimum Inhibitory Concentration (MIC test was performed for the dominant bacteria. Analysis of the remaining glyphosate herbicide was performed by HPLC analysis after derivation with FMOC-Cl. Results: According to the results of the biochemical, antibiotic and molecular 16S rRNA tests, the native halophilic isolates with the ability to biodegrade glyphosate were gram positive cocci very similar to Salinicoccusspp. The results of HPLC showed that Salinicoccusspp is able to biodegrade glyphosate herbicide. Conclusion: The native bacteria in Qom Hoze-soltanlake, Iran can be used for biodegradation of glyphosate herbicide.

  15. How to test herbicides at forest tree nurseries.

    Science.gov (United States)

    Roger E. Sandquist; Peyton W. Owston; Stephen E. McDonald

    1981-01-01

    Procedures developed in a cooperative westwide study of weed control in forest tree nurseries are described in a form modified for use by nursery managers. The proven, properly designed test and evaluation methods can be used to generate data needed for evaluation and registration of herbicides.

  16. Incorporating seeds in activated carbon pellets limits herbicide effects to seeded bunchgrasses when controlling exotic annuals

    Science.gov (United States)

    Revegetation of exotic annual grass-invaded rangeland with pre-emergent herbicides is challenging because seeding is delayed until herbicide toxicity has diminished, but at this time, exotic annuals can be re-invading. Incorporating seeds into activated carbon pellets may allow seeding to occur at t...

  17. Raw or incubated olive-mill wastes and its biotransformed products as agricultural soil amendments-effect on sorption-desorption of triazine herbicides.

    Science.gov (United States)

    Delgado-Moreno, Laura; Almendros, Gonzalo; Peña, Aránzazu

    2007-02-07

    Raw olive-mill waste and soil amendments obtained from their traditional composting or vermicomposting were added, at rates equivalent to 200 Mg ha-1, to a calcareous silty clay loam soil in a laboratory test, in order to improve its fertility and physicochemical characteristics. In particular, the effects on the sorption-desorption processes of four triazine herbicides have been examined. We found that comparatively hydrophobic herbicides terbuthylazine and prometryn increased their retention on amended soil whereas the more polar herbicides simazine and cyanazine were less affected. Soil application of olive cake, without transformation, resulted in the highest herbicide retention. Its relatively high content in aliphatic fractions and lipids could explain the increased herbicide retention through hydrophobic bonding and herbicide diffusion favored by poorly condensed macromolecular structures. On the other hand, the condensed aromatic structure of the compost and vermicompost from olive cake could hinder diffusion processes, resulting in lower herbicide sorption. In fact, the progressive humification in soil of olive-mill solid waste led to a decrease of sorption capacity, which suggested important changes in organic matter quality and interactions during the mineralization process. When soil amended with vermicompost was incubated for different periods of time, the enhanced herbicide sorption capacity persisted for 2 months. Pesticide desorption was reduced by the addition of fresh amendments but was enhanced during the transformation process of amendments in soil. Our results indicate the potential of soil amendments based on olive-mill wastes in the controlled, selective release of triazine herbicides, which varies depending on the maturity achieved by their biological transformation.

  18. Herbicidal Spectrum, Absorption and Transportation, and Physiological Effect on Bidens pilosa of the Natural Alkaloid Berberine.

    Science.gov (United States)

    Wu, Jiao; Ma, Jing-Jing; Liu, Bo; Huang, Lun; Sang, Xiao-Qing; Zhou, Li-Juan

    2017-08-02

    Berberine is a natural herbicidal alkaloid from Coptis chinensis Franch. Here we characterized its herbicidal spectrum and absorption and transportation in the plant, along with the possible mechanism. Berberine showed no effect on the germination of the 10 tested plants. The IC 50 values of berberine on the primary root length and fresh weight of the 10 tested plants ranged from 2.91 to 9.79 mg L -1 and 5.76 to 35.07 mg L -1 , respectively. Berberine showed a similar herbicidal effect on Bidens pilosa as the commercial naturally derived herbicide cinmethylin. HPLC and fluorescence analysis revealed that berberine was mainly absorbed by B. pilosa root and transported through vascular bundle acropetally. Enzyme activity studies, GC-MS analysis, and SEM and TEM observations indicated that berberine might first function on the cell membrane indicated by variation of the IUFA percent and then cause POD, PPO, and SOD activity changes and cellular structure deformity, which was eventually expressed as the decrease of cell adaptation ability and abnormal cell function and may even result in cell death. Environmental safety evaluation tests revealed that berberine was low in toxicity to Brachydanio rerio. These indicate that berberine has the potential to be a bioherbicide and/or a lead molecule for new herbicides.

  19. Hematological Alterations in Common Carp (Cyprinus carpio L.) Exposed to Herbicides: Pendimethalin and Ethofumesate Tested Separately and in Mixture.

    Science.gov (United States)

    Bojarski, Bartosz; Ludwikowska, Agnieszka; Kurek, Anna; Pawlak, Krzysztof; Tombarkiewicz, Barbara; Lutnicka, Hanna

    2015-01-01

    Herbicides are used in large amounts in agriculture and the evaluation of their toxic effects is of major concern to environmental safety. The aim of the present study was to investigate common carp hematological alterations caused by herbicide exposure. Fish were treated with pendimethalin and ethofumesate tested separately and in mixture administered to aquarium water. Peripheral blood of treated fish was collected after 1, 3 and 7 days of exposure and compared to control. The total number of erythrocytes (RBC), total number of leukocytes (WBC), hematocrit value (Hct), total hemoglobin concentration (Hb), mean corpuscular hemoglobin (MCH), mean corpuscular volume (MCV), mean corpuscular hemoglobin concentration (MCHC) and leukograms were determined at once. The results indicate that herbicide exposure caused different changes in the hematological profile of the fish. In the case of exposure to individual herbicides, short-term fluctuations of various hematological indices were noted. Moreover, a significant increase in RBC and Hct after a short period of exposure (1-3 days) in fish exposed simultaneously to both tested herbicides was observed. Exposure to herbicides affected the leukocyte profile after 3 and 7 days of duration. Fluctuations of hematological parameters are a typical change in fish exposed to pesticides.

  20. Estudo da degradação do herbicida ácido 2,4- diclorofenoxiacético (2,4-D por meio da radiação gama do cobalto-60 em solução aquosa contendo ácido húmico Study of degradation of the herbicide 2,4- dichlorophenoxyacetic acid (2,4-d by gamma radiation from cobalto- 60 in aqueous solution containing humic acid

    Directory of Open Access Journals (Sweden)

    Sandro Xavier de Campos

    2002-07-01

    Full Text Available The use of pesticides in agriculture presents some problems to ecosytems as a consequence of their remaining in the environment. Conventional methods for environmental decontamination sometimes just transfer these residues from one place to another. The use of gamma radiation from cobalt-60 to induce 2,4-D degradation in aqueous solution containing humic acid was studied. Results show that the herbicide is completely degraded after treatment with a 30 kGy dose. There were decreases in the degradation of the 2,4-D when humic acid was added at all doses. Some radiolytic products are proposed. The 2,4-D radiolytic yields (G from 2,4-D were calculated.