WorldWideScience

Sample records for acid transporter lat1

  1. Overexpression of L-Type Amino Acid Transporter 1 (LAT1) and 2 (LAT2): Novel Markers of Neuroendocrine Tumors

    Barollo, Susi; Bertazza, Loris; Watutantrige-Fernando, Sara; Censi, Simona; Cavedon, Elisabetta; Galuppini, Francesca; Pennelli, Gianmaria; Fassina, Ambrogio; Citton, Marilisa; Rubin, Beatrice; Pezzani, Raffaele; Benna, Clara; Opocher, Giuseppe; Iacobone, Maurizio; Mian, Caterina

    2016-01-01

    Background 6-18F-fluoro-L-3,4-dihydroxyphenylalanine (18F-FDOPA) PET is a useful tool in the clinical management of pheochromocytoma (PHEO) and medullary thyroid carcinoma (MTC). 18F-FDOPA is a large neutral amino acid biochemically resembling endogenous L-DOPA and taken up by the L-type amino acid transporters (LAT1 and LAT2). This study was conducted to examine the expression of the LAT system in PHEO and MTC. Methods Real-time PCR and Western blot analyses were used to assess LAT1 and LAT2 gene and protein expression in 32 PHEO, 38 MTC, 16 normal adrenal medulla and 15 normal thyroid tissue samples. Immunohistochemistry method was applied to identify the proteins’ subcellular localization. Results LAT1 and LAT2 were overexpressed in both PHEO and MTC by comparison with normal tissues. LAT1 presented a stronger induction than LAT2, and their greater expression was more evident in PHEO (15.1- and 4.1-fold increases, respectively) than in MTC (9.9- and 4.1-fold increases, respectively). Furthermore we found a good correlation between LAT1/2 and GLUT1 expression levels. A positive correlation was also found between urinary noradrenaline and adrenaline levels and LAT1 gene expression in PHEO. The increased expression of LAT1 is also confirmed at the protein level, in both PHEO and MTC, with a strong cytoplasmic localization. Conclusions The present study is the first to provide experimental evidence of the overexpression in some NET cancers (such as PHEO or MTC) of L-type amino acid transporters, and the LAT1 isoform in particular, giving the molecular basis to explain the increase of the DOPA uptake seen in such tumor cells. PMID:27224648

  2. Imaging the L-type amino acid transporter-1 (LAT1 with Zr-89 immunoPET.

    Oluwatayo F Ikotun

    Full Text Available The L-type amino acid transporter-1 (LAT1, SLC7A5 is upregulated in a wide range of human cancers, positively correlated with the biological aggressiveness of tumors, and a promising target for both imaging and therapy. Radiolabeled amino acids such as O-(2-[(18F]fluoroethyl-L-tyrosine (FET that are transport substrates for system L amino acid transporters including LAT1 have met limited success for oncologic imaging outside of the brain, and thus new strategies are needed for imaging LAT1 in systemic cancers. Here, we describe the development and biological evaluation of a novel zirconium-89 labeled antibody, [(89Zr]DFO-Ab2, targeting the extracellular domain of LAT1 in a preclinical model of colorectal cancer. This tracer demonstrated specificity for LAT1 in vitro and in vivo with excellent tumor imaging properties in mice with xenograft tumors. PET imaging studies showed high tumor uptake, with optimal tumor-to-non target contrast achieved at 7 days post administration. Biodistribution studies demonstrated tumor uptake of 10.5 ± 1.8 percent injected dose per gram (%ID/g at 7 days with a tumor to muscle ratio of 13 to 1. In contrast, the peak tumor uptake of the radiolabeled amino acid [(18F]FET was 4.4 ± 0.5 %ID/g at 30 min after injection with a tumor to muscle ratio of 1.4 to 1. Blocking studies with unlabeled anti-LAT1 antibody demonstrated a 55% reduction of [(89Zr]DFO-Ab2 accumulation in the tumor at 7 days. These results are the first report of direct PET imaging of LAT1 and demonstrate the potential of immunoPET agents for imaging specific amino acid transporters.

  3. Diagnostic usefulness of {sup 18}F-FAMT PET and L-type amino acid transporter 1 (LAT1) expression in oral squamous cell carcinoma

    Nobusawa, Aiko [Gunma University Graduate School of Medicine, Department of Stomatology and Maxillofacial Surgery, Maebashi, Gunma (Japan); Gunma University Graduate School of Medicine, Department of Diagnostic Pathology, Maebashi, Gunma (Japan); Kim, Mai [Gunma University Graduate School of Medicine, Department of Stomatology and Maxillofacial Surgery, Maebashi, Gunma (Japan); Gunma University Graduate School of Medicine, Department of Diagnostic Radiology and Nuclear Medicine, Maebashi, Gunma (Japan); Kaira, Kyoichi [Gunma University Graduate School of Medicine, Department of Diagnostic Pathology, Maebashi, Gunma (Japan); Gunma University Hospital, Oncology Center, Maebashi, Gunma (Japan); Miyashita, Go; Negishi, Akihide; Yokoo, Satoshi [Gunma University Graduate School of Medicine, Department of Stomatology and Maxillofacial Surgery, Maebashi, Gunma (Japan); Oriuchi, Noboru; Higuchi, Tetsuya; Tsushima, Yoshito [Gunma University Graduate School of Medicine, Department of Diagnostic Radiology and Nuclear Medicine, Maebashi, Gunma (Japan); Kanai, Yoshikatsu [Osaka University, Division of Bio-system Pharmacology, Graduate School of Medicine, Osaka (Japan); Oyama, Tetsunari [Gunma University Graduate School of Medicine, Department of Diagnostic Pathology, Maebashi, Gunma (Japan)

    2013-10-15

    l-[3-{sup 18}F]-{alpha}-Methyltyrosine ({sup 18}F-FAMT) was developed as an amino acid tracer for PET imaging to provide better specificity than 2-[{sup 18}F]fluoro-2-deoxy-d-glucose ({sup 18}F-FDG) PET for cancer diagnosis. We investigated the diagnostic usefulness of {sup 18}F-FAMT in oral squamous cell carcinoma (OSCC). The correlation between tumour uptake of {sup 18}F-FAMT and L-type amino acid transporter 1 (LAT1) expression was determined. The study group comprised 68 OSCC patients who underwent both {sup 18}F-FAMT and {sup 18}F-FDG PET. Resected tumour sections were stained by immunohistochemistry for LAT1, CD98 and Ki-67, and microvessel density was determined in terms of CD34 and p53 expression. The sensitivity of primary tumour detection by {sup 18}F-FAMT and {sup 18}F-FDG PET was 98 % and 100 %, respectively. The sensitivity, specificity and accuracy of {sup 18}F-FAMT PET for detecting malignant lymph nodes were 68 %, 99 % and 97 %, respectively, and equivalent values for {sup 18}F-FDG PET were 84 %, 94 % and 94 %, respectively. The specificity and accuracy of {sup 18}F-FAMT were significantly higher than those of {sup 18}F-FDG. The uptake of {sup 18}F-FAMT was significantly correlated with LAT1 expression, cell proliferation and advanced stage. The expression of LAT1 in OSCC cells was closely correlated with CD98 levels, cell proliferation and angiogenesis. {sup 18}F-FAMT PET showed higher specificity for detecting malignant lesions than {sup 18}F-FDG PET. The uptake of {sup 18}F-FAMT by OSCC cells can be determined by the presence of LAT1 expression and tumour cell proliferation. (orig.)

  4. Brain interstitial fluid glutamine homeostasis is controlled by blood-brain barrier SLC7A5/LAT1 amino acid transporter.

    Dolgodilina, Elena; Imobersteg, Stefan; Laczko, Endre; Welt, Tobias; Verrey, Francois; Makrides, Victoria

    2016-11-01

    L-glutamine (Gln) is the most abundant amino acid in plasma and cerebrospinal fluid and a precursor for the main central nervous system excitatory (L-glutamate) and inhibitory (γ-aminobutyric acid (GABA)) neurotransmitters. Concentrations of Gln and 13 other brain interstitial fluid amino acids were measured in awake, freely moving mice by hippocampal microdialysis using an extrapolation to zero flow rate method. Interstitial fluid levels for all amino acids including Gln were ∼5-10 times lower than in cerebrospinal fluid. Although the large increase in plasma Gln by intraperitoneal (IP) injection of (15)N2-labeled Gln (hGln) did not increase total interstitial fluid Gln, low levels of hGln were detected in microdialysis samples. Competitive inhibition of system A (SLC38A1&2; SNAT1&2) or system L (SLC7A5&8; LAT1&2) transporters in brain by perfusion with α-(methylamino)-isobutyric acid (MeAIB) or 2-aminobicyclo-(2,2,1)-heptane-2-carboxylic acid (BCH) respectively, was tested. The data showed a significantly greater increase in interstitial fluid Gln upon BCH than MeAIB treatment. Furthermore, brain BCH perfusion also strongly increased the influx of hGln into interstitial fluid following IP injection consistent with transstimulation of LAT1-mediated transendothelial transport. Taken together, the data support the independent homeostatic regulation of amino acids in interstitial fluid vs. cerebrospinal fluid and the role of the blood-brain barrier expressed SLC7A5/LAT1 as a key interstitial fluid gatekeeper.

  5. LAT1 activity of carboxylic acid bioisosteres: Evaluation of hydroxamic acids as substrates.

    Zur, Arik A; Chien, Huan-Chieh; Augustyn, Evan; Flint, Andrew; Heeren, Nathan; Finke, Karissa; Hernandez, Christopher; Hansen, Logan; Miller, Sydney; Lin, Lawrence; Giacomini, Kathleen M; Colas, Claire; Schlessinger, Avner; Thomas, Allen A

    2016-10-15

    Large neutral amino acid transporter 1 (LAT1) is a solute carrier protein located primarily in the blood-brain barrier (BBB) that offers the potential to deliver drugs to the brain. It is also up-regulated in cancer cells, as part of a tumor's increased metabolic demands. Previously, amino acid prodrugs have been shown to be transported by LAT1. Carboxylic acid bioisosteres may afford prodrugs with an altered physicochemical and pharmacokinetic profile than those derived from natural amino acids, allowing for higher brain or tumor levels of drug and/or lower toxicity. The effect of replacing phenylalanine's carboxylic acid with a tetrazole, acylsulfonamide and hydroxamic acid (HA) bioisostere was examined. Compounds were tested for their ability to be LAT1 substrates using both cis-inhibition and trans-stimulation cell assays. As HA-Phe demonstrated weak substrate activity, its structure-activity relationship (SAR) was further explored by synthesis and testing of HA derivatives of other LAT1 amino acid substrates (i.e., Tyr, Leu, Ile, and Met). The potential for a false positive in the trans-stimulation assay caused by parent amino acid was evaluated by conducting compound stability experiments for both HA-Leu and the corresponding methyl ester derivative. We concluded that HA's are transported by LAT1. In addition, our results lend support to a recent account that amino acid esters are LAT1 substrates, and that hydrogen bonding may be as important as charge for interaction with the transporter binding site.

  6. Modulation of LAT1 (SLC7A5) transporter activity and stability by membrane cholesterol

    Dickens, David; Chiduza, George N.; Wright, Gareth S. A.; Pirmohamed, Munir; Antonyuk, Svetlana V.; Hasnain, S. Samar

    2017-01-01

    LAT1 (SLC7A5) is a transporter for both the uptake of large neutral amino acids and a number of pharmaceutical drugs. It is expressed in numerous cell types including T-cells, cancer cells and brain endothelial cells. However, mechanistic knowledge of how it functions and its interactions with lipids are unknown or limited due to inability of obtaining stable purified protein in sufficient quantities. Our data show that depleting cellular cholesterol reduced the Vmax but not the Km of the LAT1 mediated uptake of a model substrate into cells (L-DOPA). A soluble cholesterol analogue was required for the stable purification of the LAT1 with its chaperon CD98 (4F2hc,SLC3A2) and that this stabilised complex retained the ability to interact with a substrate. We propose cholesterol interacts with the conserved regions in the LAT1 transporter that have been shown to bind to cholesterol/CHS in Drosophila melanogaster dopamine transporter. In conclusion, LAT1 is modulated by cholesterol impacting on its stability and transporter activity. This novel finding has implications for other SLC7 family members and additional eukaryotic transporters that contain the LeuT fold. PMID:28272458

  7. Boronophenylalanine, a boron delivery agent for boron neutron capture therapy, is transported by ATB0,+, LAT1 and LAT2.

    Wongthai, Printip; Hagiwara, Kohei; Miyoshi, Yurika; Wiriyasermkul, Pattama; Wei, Ling; Ohgaki, Ryuichi; Kato, Itsuro; Hamase, Kenji; Nagamori, Shushi; Kanai, Yoshikatsu

    2015-03-01

    The efficacy of boron neutron capture therapy relies on the selective delivery of boron carriers to malignant cells. p-Boronophenylalanine (BPA), a boron delivery agent, has been proposed to be localized to cells through transporter-mediated mechanisms. In this study, we screened aromatic amino acid transporters to identify BPA transporters. Human aromatic amino acid transporters were functionally expressed in Xenopus oocytes and examined for BPA uptake and kinetic parameters. The roles of the transporters in BPA uptake were characterized in cancer cell lines. For the quantitative assessment of BPA uptake, HPLC was used throughout the study. Among aromatic amino acid transporters, ATB(0,+), LAT1 and LAT2 were found to transport BPA with Km values of 137.4 ± 11.7, 20.3 ± 0.8 and 88.3 ± 5.6 μM, respectively. Uptake experiments in cancer cell lines revealed that the LAT1 protein amount was the major determinant of BPA uptake at 100 μM, whereas the contribution of ATB(0,+) became significant at 1000 μM, accounting for 20-25% of the total BPA uptake in MCF-7 breast cancer cells. ATB(0,+), LAT1 and LAT2 transport BPA at affinities comparable with their endogenous substrates, suggesting that they could mediate effective BPA uptake in vivo. The high and low affinities of LAT1 and ATB(0,+), respectively, differentiate their roles in BPA uptake. ATB(0,+), as well as LAT1, could contribute significantly to the tumor accumulation of BPA at clinical dose.

  8. Effect of C-terminal protein tags on pentitol and L-arabinose transport by Ambrosiozyma monospora Lat1 and Lat2 transporters in Saccharomyces cerevisiae.

    Londesborough, John; Richard, Peter; Valkonen, Mari; Viljanen, Kaarina

    2014-05-01

    Functional expression in heterologous hosts is often less successful for integral membrane proteins than for soluble proteins. Here, two Ambrosiozyma monospora transporters were successfully expressed in Saccharomyces cerevisiae as tagged proteins. Growth of A. monospora on l-arabinose instead of glucose caused transport activities of l-arabinose, l-arabitol, and ribitol, measured using l-[1-(3)H]arabinose, l-[(14)C]arabitol, and [(14)C]ribitol of demonstrated purity. A. monospora LAT1 and LAT2 genes were cloned earlier by using their ability to improve the growth of genetically engineered Saccharomyces cerevisiae on l-arabinose. However, the l-arabinose and pentitol transport activities of S. cerevisiae carrying LAT1 or LAT2 are only slightly greater than those of control strains. S. cerevisiae carrying the LAT1 or LAT2 gene fused in frame to the genes for green fluorescent protein (GFP) or red fluorescent protein (mCherry) or adenylate kinase (AK) exhibited large (>3-fold for LAT1; >20-fold for LAT2) increases in transport activities. Lat1-mCherry transported l-arabinose with high affinity (Km ≈ 0.03 mM) and l-arabitol and ribitol with very low affinity (Km ≥ 75 mM). The Lat2-GFP, Lat2-mCherry, and Lat2-AK fusion proteins could not transport l-arabinose but were high-affinity pentitol transporters (Kms ≈ 0.2 mM). The l-arabinose and pentitol transport activities of A. monospora could not be completely explained by any combination of the observed properties of tagged Lat1 and Lat2, suggesting either that tagging and expression in a foreign membrane alters the transport kinetics of Lat1 and/or Lat2 or that A. monospora contains at least one more l-arabinose transporter.

  9. Androgen receptor and nutrient signaling pathways coordinate the demand for increased amino acid transport during prostate cancer progression

    Wang, Qian; Bailey, Charles G; Ng, Cynthia

    2011-01-01

    L-Type amino acid transporters such as LAT1 and LAT3 mediate the uptake of essential amino acids. Here, we report that prostate cancer cells coordinate the expression of LAT1 and LAT3 to maintain sufficient levels of leucine needed for mTORC1 signaling and cell growth. Inhibiting LAT function...... transporter pathways vital for tumor outgrowth....

  10. Potential Biomarker of L type Amino Acid Transporter 1 in Breast Cancer Progression

    Liang, Zhongxing; Cho, Heidi T.; Williams, Larry; Zhu, Aizhi; Liang, Ke; Huang, Ke; Wu, Hui; Jiang, Chunsu; Hong, Samuel; Crowe, Ronald; Goodman, Mark M.; Shim, Hyunsuk [Emory Univ. School of Medicine, Atlanta (United States)

    2011-06-15

    L type amino acid transporter 1 (LAT1) is essential for the transport of large neutral amino acids. However, its role in breast cancer growth remains largely unknown. The purpose of the study is to investigate whether LAT1 is a potential biomarker for the diagnosis and treatment of breast cancer. LAT1 mRNA and protein levels in breast cancer cell lines and tissues were analyzed. In addition, the effects of targeting LAT1 for the inhibition of breast cancer cell tumorigenesis were assessed with soft agar assay. The imaging of xenograft with 1 amino 3 [{sup 18F}]fluorocyclo butane 1 carboxylic acid ([{sup 18F}]FACBC) PET was assessed for its diagnostic biomarker potential. Normal breast tissue or low malignant cell lines expressed low levels of LAT1 mRNA and protein, while highly malignant cancer cell lines and high grade breast cancer tissue expressed high levels of LAT1. In addition, higher expression levels of LAT1 in breast cancer tissues were consistent with advanced stage breast cancer. Furtermore, the blockade of LAT1 with its inhibitor, 2 amino bicyclo[2.2.1]heptane 2 carboxylic acid (BCH), or the knockdown of LAT1 with siRNA, inhibited proliferation and tumorigenesis of breast cancer cells. A leucine analog, [{sup 18F}]FACBC, has been demonstrated to be an excellent PET tracer for the non invasive imaging og malignant breast cancer using an orthotopic animal model. The overexpression of LAT1 is required for the progression of breast cancer. LAT1 represents a potential biomarker for therapy and diagnosis of breast cancer. [{sup 18F}]FACBC that correlates with LAT1 function is a potential PET tracer for malignant breast tumor imaging.

  11. LAT-1 activity of meta-substituted phenylalanine and tyrosine analogs.

    Augustyn, Evan; Finke, Karissa; Zur, Arik A; Hansen, Logan; Heeren, Nathan; Chien, Huan-Chieh; Lin, Lawrence; Giacomini, Kathleen M; Colas, Claire; Schlessinger, Avner; Thomas, Allen A

    2016-06-01

    The transporter protein Large-neutral Amino Acid Transporter 1 (LAT-1, SLC7A5) is responsible for transporting amino acids such as tyrosine and phenylalanine as well as thyroid hormones, and it has been exploited as a drug delivery mechanism. Recently its role in cancer has become increasingly appreciated, as it has been found to be up-regulated in many different tumor types, and its expression levels have been correlated with prognosis. Substitution at the meta position of aromatic amino acids has been reported to increase affinity for LAT-1; however, the SAR for this position has not previously been explored. Guided by newly refined computational models of the binding site, we hypothesized that groups capable of filling a hydrophobic pocket would increase binding to LAT-1, resulting in improved substrates relative to parent amino acid. Tyrosine and phenylalanine analogs substituted at the meta position with halogens, alkyl and aryl groups were synthesized and tested in cis-inhibition and trans-stimulation cell assays to determine activity. Contrary to our initial hypothesis we found that lipophilicity was correlated with diminished substrate activity and increased inhibition of the transporter. The synthesis and SAR of meta-substituted phenylalanine and tyrosine analogs is described.

  12. Expression of heteromeric amino acid transporters along the murine intestine.

    Dave, Mital H; Schulz, Nicole; Zecevic, Marija; Wagner, Carsten A; Verrey, Francois

    2004-07-15

    Members of the new heterodimeric amino acid transporter family are composed of two subunits, a catalytic multitransmembrane spanning protein (light chain) and a type II glycoprotein (heavy chain). These transporters function as exchangers and thereby extend the transmembrane amino acid transport selectivity to specific amino acids. The heavy chain rBAT associates with the light chain b degrees (,+)AT to form a cystine and cationic amino acid transporter. The other heavy chain, 4F2hc, can interact with seven different light chains to form various transporters corresponding to systems L, y(+)L, asc or x(-)(c). The importance of some of these transporters in intestinal and renal (re)absorption of amino acids is highlighted by the fact that mutations in either the rBAT or b degrees (,+)AT subunit result in cystinuria whereas a defect in the y(+)-LAT1 light chain causes lysinuric protein intolerance. Here we investigated the localization of these transporters in intestine since both diseases are also characterized by altered intestinal amino acid absorption. Real time PCR showed organ-specific expression patterns for all transporter subunit mRNAs along the intestine and Western blotting confirmed these findings on the protein level. Immunohistochemistry demonstrated basolateral coexpression of 4F2hc, LAT2 and y(+)-LAT1 in stomach and small intestine, whereas rBAT and b degrees (,+)AT were found colocalizing on the apical side of small intestine epithelium. In stomach, 4F2hc and LAT2 were localized in H(+)/K(+)-ATPase-expressing parietal cells. The abundant expression of several members of the heterodimeric transporter family along the murine small intestine suggests their involvement in amino acids absorption. Furthermore, strong expression of rBAT, b degrees (,+)AT and y(+)-LAT1 in the small intestine explains the reduced intestinal absorption of some amino acid in patients with cystinuria or lysinuric protein intolerance.

  13. Transport of methylmercury—cysteine conjugate by system L—tpye amino acid transporters and its transportermediated toxicity

    KanaY; KimDK

    2002-01-01

    Methylmercury(MeHg) is widely known for its potent neurotoxicity and the causal substance of Minamata disease.Since the conjugates of MeHg with thiol compounds are easily formed in vivo,the metabolism and transport of glutathione,cysteine and their derivatives are important determinants of tissue distribution and elimination of MeHg.It has been proposed that the amino acid transport system L,which transports large neutral amino acids,is one of the major routes for MeHg mobilization.We have identified two isoforms of system L amino acid transporters:L-type amino acid transkporter-1(LAT1) and LAT2 and found that they transport MeHg as a cysteine-conjugate (MeHg-Cys).We have further found that a classical system L inhibitor BCH[2-aminobicyclo-(2,2,1)-heptane-2-carboxylic acid] rescued T24 human bladder carcinoma cells expressing LAT1 form the toxicity of MeHg-Cysl.We concluded that the cytotoxicity of MeHg is mediated by system L transporters.The fact that BCH reduced the toxicity of MeHg-Cys suggests that the high-affinity inhibitors of system L transporters could be a new rationable to avoid MeHg-toxicity.

  14. Construction of LAT1 eukaryotic expression vector of C57 mouse and its effect on the Neuro-2a cell%C57小鼠 LATl 真核表达载体的构建及其对Neuro-2a 细胞的影响

    卫兵艳; 刘田福; 樊林花; 刘茂林

    2014-01-01

    Objective To construct the lamino acid transporter 1 eukaryotic expression vector of C 57 mouse and to express the gene inNeuro-2atumor cells,and explore the effect of LAT1on proliferation and apoptosis of Neuro-2a cell. Methods The full-length LAT1 cDNA was synthesized by RT-PCR and cloned into pcDNA3.1vector to construct recombinant plasmid.The constructed pcDNA3.1-LAT1vector was verified by Enzyme digestion and sequencing and then transfected intomurine Neuro-2acellsby liposome.The transfected cells were selected with G418 and stably expressed strain was constructed .The expression of LAT1 was detected by RT-PCR and western blot .Proliferation was analyzed by MTT , cell cycle and apoptosis were detected by flow cytometric analysis .Results The full-length LAT1 cDNA was amplified successfully and pcDNA3.1-LAT1eukaryoticvector was constructed successfully .Enzyme digestion and sequencing confirmed the sequence was correct .Neuro-2acells were transfected and Stably expressed strain was constructed successfully.MTT showed that the group of transfected restructuring plasmid could significantly affect Neuro -2a cell proliferation more than the control groups ( P <0.05 ) .From the flowcytometric analysis , LAT1 could promote cell proliferation and inhibit Neuro-2a cell apoptosis.Conclusion LAT1 can express successfully inNeuro-2acells which were transfected with recombinantpcDNA3.1-LAT1plasmid.LAT1 in Neuro-2a cells can promote cell proliferation and inhibit the cell apoptosis which provides a basis for the study of LAT 1.That lays the foundation for studying biological effects of LAT 1.%目的:构建C57小鼠L型氨基酸转运载体1( LAT1)的真核表达载体,转染Neuro-2a肿瘤细胞进行表达,探讨LAT1对Neuro-2a细胞增殖及凋亡的影响。方法采用RT-PCR扩增出LAT1全长目的基因,定向克隆pcDNA3.1表达载体,构建pcDNA3.1-LAT1重组表达质粒,通过脂质体法将阳性克隆转染Neuro-2a细胞,经G418筛选获得稳

  15. Renal amino acid transport systems and essential hypertension.

    Pinto, Vanda; Pinho, Maria João; Soares-da-Silva, Patrício

    2013-08-01

    Several clinical and animal studies suggest that "blood pressure goes with the kidney," that is, a normotensive recipient of a kidney genetically programmed for hypertension will develop hypertension. Intrarenal dopamine plays an important role in the pathogenesis of hypertension by regulating epithelial sodium transport. The candidate transport systems for L-DOPA, the source for dopamine, include the sodium-dependent systems B(0), B(0,+), and y(+)L, and the sodium-independent systems L (LAT1 and LAT2) and b(0,+). Renal LAT2 is overexpressed in the prehypertensive spontaneously hypertensive rat (SHR), which might contribute to enhanced L-DOPA uptake in the proximal tubule and increased dopamine production, as an attempt to overcome the defect in D1 receptor function. On the other hand, it has been recently reported that impaired arginine transport contributes to low renal nitric oxide bioavailability observed in the SHR renal medulla. Here we review the importance of renal amino acid transporters in the kidney and highlight pathophysiological changes in the expression and regulation of these transporters in essential hypertension. The study of the regulation of renal amino acid transporters may help to define the underlying mechanisms predisposing individuals to an increased risk for development of hypertension.

  16. Induction of amino acid transporters expression by endurance exercise in rat skeletal muscle

    Murakami, Taro, E-mail: tamuraka@sgk.ac.jp; Yoshinaga, Mariko

    2013-10-04

    Highlights: •Regulation of amino acid transporter expression in working muscle remains unclear. •Expression of amino acid transporters for leucine were induced by a bout of exercise. •Requirement of leucine in muscle cells might regulate expression of its transporters. •This information is beneficial for understanding the muscle remodeling by exercise. -- Abstract: We here investigated whether an acute bout of endurance exercise would induce the expression of amino acid transporters that regulate leucine transport across plasma and lysosomal membranes in rat skeletal muscle. Rats ran on a motor-driven treadmill at a speed of 28 m/min for 90 min. Immediately after the exercise, we observed that expression of mRNAs encoding L-type amino acid transporter 1 (LAT1) and CD98 was induced in the gastrocnemius, soleus, and extensor digitorum longus (EDL) muscles. Sodium-coupled neutral amino acid transporter 2 (SNAT2) mRNA was also induced by the exercise in those three muscles. Expression of proton-assisted amino acid transporter 1 (PAT1) mRNA was slightly but not significantly induced by a single bout of exercise in soleus and EDL muscles. Exercise-induced mRNA expression of these amino acid transporters appeared to be attenuated by repeated bouts of the exercise. These results suggested that the expression of amino acid transporters for leucine may be induced in response to an increase in the requirement for this amino acid in the cells of working skeletal muscles.

  17. Clinical significance of LAT1 expression in prostate cancer tissues%LAT1在前列腺癌中表达的意义

    金石华; 许秀红; 张玉海; 那彦群

    2011-01-01

    目的 研究L型氨基酸转运子1(LAT1)在前列腺癌(PCa)中表达的意义.方法 用免疫组织化学方法检测LAT1在前列腺增生(BPH)组织和PCa组织中的表达,并分析LAT1的表达与PCa的病理分级、临床分期的关系.用基因芯片研究雄激素依赖性PCa细胞系C4与雄激素非依赖性PCa细胞系C4-2的基因表达差异,比较两个细胞系中LAT1mRNA的水平,并用免疫组织化学方法研究LAT1蛋白质在C4和C4-2中的表达.结果 LAT1在BPH和PCa组织中均有表达,BPH组织中LAT1的阳性表达率为77.0%,而在PCa组织中为95.5%,两者无统计学差异,但是在Pea组织中阳性染色的强度要明显高于BPH组织.LAT1的表达与前列腺癌的病理分级、临床分期无关.C4-2中LAT1 mRNA和蛋白质的表达水平明显高于C4.结论 LAT1的高表达可能与PCa的发病有关,也可能与PCa的雄激素非依赖化有关.%Objective To evaluate the clinical significance of LAT1 expression in prostate cancer tissues.Methods The expressions of LAT1 in benign prostate hyperplasia (BPH) tissues and prostate cancer tissue were detected by immunohistochemistry. The relationship between the expression of LAT1 and the clinical pathological grade of prostate cancer was explored. The genes expression of human androgen-dependent prostate cancer cells C4 and androgen-independent prostate cancer cells C4-2 were comparatively analyzed by gene chips containing LAT1.The expression of LAT1 protein in C4 and C4-2 cells was further confirmed by immunohistochemistry. Results There was no significant difference in the positive rate of LAT1 expression between BPH tissues and prostate cancer tissues. But the positive intensity of LAT1 in prostate cancer tissues was much stronger than that in BPH tissues. No relationship was found between the expressions of LAT1 and clinical pathological grades of PC. The mRNA and protein expression of LAT1 were much higher in C4-2 cells than those in C4 cells. Conclusion High

  18. Membrane transporters for the special amino acid glutamine: Structure/function relationships and relevance to human health.

    Pochini, Lorena; Scalise, Mariafrancesca; Galluccio, Michele; Indiveri, Cesare

    2014-08-01

    Glutamine together with glucose is essential for body’s homeostasis. It is the most abundant amino acid and is involved in many biosynthetic, regulatory and energy production processes. Several membrane transporters which differ in transport modes, ensure glutamine homeostasis by coordinating its absorption, reabsorption and delivery to tissues. These transporters belong to different protein families, are redundant and ubiquitous. Their classification, originally based on functional properties, has recently been associated with the SLC nomenclature. Function of glutamine transporters is studied in cells over-expressing the transporters or, more recently in proteoliposomes harboring the proteins extracted from animal tissues or over-expressed in microorganisms. The role of the glutamine transporters is linked to their transport modes and coupling with Na+ and H+. Most transporters share specificity for other neutral or cationic amino acids. Na+-dependent co-transporters efficiently accumulate glutamine while antiporters regulate the pools of glutamine and other amino acids. The most acknowledged glutamine transporters belong to the SLC1, 6, 7 and 38 families. The members involved in the homeostasis are the co-transporters B0AT1 and the SNAT members 1, 2, 3, 5 and 7; the antiporters ASCT2, LAT1 and 2. The last two are associated to the ancillary CD98 protein. Some information on regulation of the glutamine transporters exist, which, however, need to be deepened. No information at all is available on structures, besides some homology models obtained using similar bacterial transporters as templates. Some models of rat and human glutamine transporters highlight very similar structures between the orthologues. Moreover the presence of glycosylation and/or phosphorylation sites located at the extracellular or intracellular faces has been predicted. ASCT2 and LAT1 are over-expressed in several cancers, thus representing potential targets for pharmacological intervention.

  19. Expression pattern of peptide and amino acid genes in digestive tract of transporter juvenile turbot ( Scophthalmus maximus L.)

    Xu, Dandan; He, Gen; Mai, Kangsen; Zhou, Huihui; Xu, Wei; Song, Fei

    2016-04-01

    Turbot ( Scophthalmus maximus L.), a carnivorous fish species with high dietary protein requirement, was chosen to examine the expression pattern of peptide and amino acid transporter genes along its digestive tract which was divided into six segments including stomach, pyloric caeca, rectum, and three equal parts of the remainder of the intestine. The results showed that the expression of two peptide and eleven amino acid transporters genes exhibited distinct patterns. Peptide transporter 1 (PepT1) was rich in proximal intestine while peptide transporter 2 (PepT2) was abundant in distal intestine. A number of neutral and cationic amino acid transporters expressed richly in whole intestine including B0-type amino acid transporter 1 (B0AT1), L-type amino acid transporter 2 (LAT2), T-type amino acid transporter 1 (TAT1), proton-coupled amino acid transporter 1 (PAT1), y+L-type amino acid transporter 1 (y+LAT1), and cationic amino acid transporter 2 (CAT2) while ASC amino acid transporter 2 (ASCT2), sodium-coupled neutral amino acid transporter 2 (SNAT2), and y+L-type amino acid transporter 2 (y+LAT2) abundantly expressed in stomach. In addition, system b0,+ transporters (rBAT and b0,+AT) existed richly in distal intestine. These findings comprehensively characterized the distribution of solute carrier family proteins, which revealed the relative importance of peptide and amino acid absorption through luminal membrane. Our findings are helpful to understand the mechanism of the utilization of dietary protein in fish with a short digestive tract.

  20. Regulation of amino acid transporter trafficking by mTORC1 in primary human trophoblast cells is mediated by the ubiquitin ligase Nedd4-2.

    Rosario, Fredrick J; Dimasuay, Kris Genelyn; Kanai, Yoshikatsu; Powell, Theresa L; Jansson, Thomas

    2016-04-01

    Changes in placental amino acid transfer directly contribute to altered fetal growth, which increases the risk for perinatal complications and predisposes for the development of obesity, diabetes and cardiovascular disease later in life. Placental amino acid transfer is critically dependent on the expression of specific transporters in the plasma membrane of the trophoblast, the transporting epithelium of the human placenta. However, the molecular mechanisms regulating this process are largely unknown. Nedd4-2 is an ubiquitin ligase that catalyses the ubiquitination of proteins, resulting in proteasomal degradation. We hypothesized that inhibition of mechanistic target of rapamycin complex 1 (mTORC1) decreases amino acid uptake in primary human trophoblast (PHT) cells by activation of Nedd4-2, which increases transporter ubiquitination resulting in decreased transporter expression in the plasma membrane. mTORC 1 inhibition increased the expression of Nedd4-2, promoted ubiquitination and decreased the plasma membrane expression of SNAT2 (an isoform of the System A amino acid transporter) and LAT1 (a System L amino acid transporter isoform), resulting in decreased cellular amino acid uptake. Nedd4-2 silencing markedly increased the trafficking of SNAT2 and LAT1 to the plasma membrane, which stimulated cellular amino acid uptake. mTORC1 inhibition by silencing of raptor failed to decrease amino acid transport following Nedd4-2 silencing. In conclusion, we have identified a novel link between mTORC1 signalling and ubiquitination, a common posttranslational modification. Because placental mTORC1 is inhibited in fetal growth restriction and activated in fetal overgrowth, we propose that regulation of placental amino acid transporter ubiquitination by mTORC1 and Nedd4-2 constitutes a molecular mechanisms underlying abnormal fetal growth.

  1. The role of L-type amino acid transporters in the uptake of glyphosate across mammalian epithelial tissues.

    Xu, Jiaqiang; Li, Gao; Wang, Zhuoyi; Si, Luqin; He, Sijie; Cai, Jialing; Huang, Jiangeng; Donovan, Maureen D

    2016-02-01

    Glyphosate is one of the most commonly used herbicides worldwide due to its broad spectrum of activity and reported low toxicity to humans. Glyphosate has an amino acid-like structure that is highly polar and shows low bioavailability following oral ingestion and low systemic toxicity following intravenous exposures. Spray applications of glyphosate in agricultural or residential settings can result in topical or inhalation exposures to the herbicide. Limited systemic exposure to glyphosate occurs following skin contact, and pulmonary exposure has also been reported to be low. The results of nasal inhalation exposures, however, have not been evaluated. To investigate the mechanisms of glyphosate absorption across epithelial tissues, the permeation of glyphosate across Caco-2 cells, a gastrointestinal epithelium model, was compared with permeation across nasal respiratory and olfactory tissues excised from cows. Saturable glyphosate uptake was seen in all three tissues, indicating the activity of epithelial transporters. The uptake was shown to be ATP and Na(+) independent, and glyphosate permeability could be significantly reduced by the inclusion of competitive amino acids or specific LAT1/LAT2 transporter inhibitors. The pattern of inhibition of glyphosate permeability across Caco-2 and nasal mucosal tissues suggests that LAT1/2 play major roles in the transport of this amino-acid-like herbicide. Enhanced uptake into the epithelial cells at barrier mucosae, including the respiratory and gastrointestinal tracts, may result in more significant local and systemic effects than predicted from glyphosate's passive permeability, and enhanced uptake by the olfactory mucosa may result in further CNS disposition, potentially increasing the risk for brain-related toxicities.

  2. Pulmonary alveolar epithelial uptake of S-nitrosothiols is regulated by L-type amino acid transporter.

    Granillo, Olivia M; Brahmajothi, Mulugu V; Li, Sheng; Whorton, A Richard; Mason, S Nicholas; McMahon, Timothy J; Auten, Richard L

    2008-07-01

    Nitric oxide (NO) effects are often mediated via S-nitrosothiol (SNO) formation; SNO uptake has recently been shown to be mediated in some cell types via system L-type amino acid transporters (LAT-1, 2). Inhaled NO therapy may exert some biological effects via SNO formation. We therefore sought to determine if pulmonary epithelial SNO uptake depended on LAT or peptide transporter 2 (PEPT2). Both LAT-1 and PEPT2 proteins were detected by immunoblot and immunocytochemistry in L2 cells and rat lung. We tested SNO uptake through the transporters by exposing rat alveolar epithelial cells (L2 and type II) to RSNOs: S-nitrosoglutathione, S-nitrosocysteinylglycine (SNO-Cys-Gly), S-nitrosocysteine (CSNO), and to NO donor diethylamine NONOate (DEA-NONOate). SNO was detected in cell lysates by ozone chemiluminescence. NO uptake was detected by fluorescence in alveolar epithelial cells loaded with 4-amino-5-methylamino-2',7'-difluorofluorescein (DAF-FM) diacetate cultured in submersion and exposed to RSNOs and DEA NONOate. Addition of L-Cys but not D-Cys to RSNOs or DEA NONOate increased SNO and DAF-FM signal that was inhibited by coincubation with LAT competitors. Incubation of cells with PEPT2 substrate SNO-Cys-Gly showed no increase in SNO or DAF-FM signal unless incubated with L-Cys. This was unaffected by PEPT2 inhibition. We conclude that RSNOs (thionitrites, S-nitrosothiols) and NO enter alveolar epithelial cells predominantly by S-nitrosation of L-Cys, which is then imported through LAT.

  3. Nature of the elements transporting long-chain fatty acids through the red cell membrane

    Bojesen, Inge Norby; Bojesen, Eigil

    1998-01-01

    Docosahexaenoic acid, linoleic acid, red cell membrane, transporting elements, transport kinetics, fatty acid transport......Docosahexaenoic acid, linoleic acid, red cell membrane, transporting elements, transport kinetics, fatty acid transport...

  4. Electron transport chains of lactic acid bacteria

    Brooijmans, R.J.W.

    2008-01-01

    Lactic acid bacteria are generally considered facultative anaerobic obligate fermentative bacteria. They are unable to synthesize heme. Some lactic acid bacteria are unable to form menaquinone as well. Both these components are cofactors of respiratory (electron transport) chains of prokaryotic bact

  5. SLC27 fatty acid transport proteins.

    Anderson, Courtney M; Stahl, Andreas

    2013-01-01

    The uptake and metabolism of long chain fatty acids (LCFA) are critical to many physiological and cellular processes. Aberrant accumulation or depletion of LCFA underlie the pathology of numerous metabolic diseases. Protein-mediated transport of LCFA has been proposed as the major mode of LCFA uptake and activation. Several proteins have been identified to be involved in LCFA uptake. This review focuses on the SLC27 family of fatty acid transport proteins, also known as FATPs, with an emphasis on the gain- and loss-of-function animal models that elucidate the functions of FATPs in vivo and how these transport proteins play a role in physiological and pathological situations.

  6. Transport and biological activities of bile acids.

    Zwicker, Brittnee L; Agellon, Luis B

    2013-07-01

    Bile acids have emerged as important biological molecules that support the solubilization of various lipids and lipid-soluble compounds in the gut, and the regulation of gene expression and cellular function. Bile acids are synthesized from cholesterol in the liver and eventually released into the small intestine. The majority of bile acids are recovered in the distal end of the small intestine and then returned to the liver for reuse. The components of the mechanism responsible for the recycling of bile acids within the enterohepatic circulation have been identified whereas the mechanism for intracellular transport is less understood. Recently, the ileal lipid binding protein (ILBP; human gene symbol FABP6) was shown to be needed for the efficient transport of bile acids from the apical side to the basolateral side of enterocytes in the distal intestine. This review presents an overview of the transport of bile acids between the liver and the gut as well as within hepatocytes and enterocytes. A variety of pathologies is associated with the malfunction of the bile acid transport system.

  7. Selective amino acid substitutions convert the creatine transporter to a gamma-aminobutyric acid transporter.

    Dodd, Joanna R; Christie, David L

    2007-05-25

    The creatine transporter (CRT) is a member of a large family of sodium-dependent neurotransmitter and amino acid transporters. The CRT is closely related to the gamma-aminobutyric acid (GABA) transporter, GAT-1, yet GABA is not an effective substrate for the CRT. The high resolution structure of a prokaryotic homologue, LeuT has revealed precise details of the substrate binding site for leucine (Yamashita, A., Singh, S. K., Kawate, T., Jin, Y., and Gouaux, E. (2005) Nature 437, 215-223). We have now designed mutations based on sequence comparisons of the CRT with GABA transporters and the LeuT structural template in an attempt to alter the substrate specificity of the CRT. Combinations of two or three amino acid substitutions at four selected positions resulted in the loss of creatine transport activity and gain of a specific GABA transport function. GABA transport by the "gain of function" mutants was sensitive to nipecotic acid, a competitive inhibitor of GABA transporters. Our results show LeuT to be a good structural model to identify amino acid residues involved in the substrate and inhibitor selectivity of eukaryotic sodium-dependent neurotransmitter and amino acid transporters. However, modification of the binding site alone appears to be insufficient for efficient substrate translocation. Additional residues must mediate the conformational changes required for the diffusion of substrate from the binding site to the cytoplasm.

  8. Lats1/2 Regulate Yap/Taz to Control Nephron Progenitor Epithelialization and Inhibit Myofibroblast Formation.

    McNeill, Helen; Reginensi, Antoine

    2017-03-01

    In the kidney, formation of the functional filtration units, the nephrons, is essential for postnatal life. During development, mesenchymal progenitors tightly regulate the balance between self-renewal and differentiation to give rise to all nephron epithelia. Here, we investigated the functions of the Hippo pathway serine/threonine-protein kinases Lats1 and Lats2, which phosphorylate and inhibit the transcriptional coactivators Yap and Taz, in nephron progenitor cells. Genetic deletion of Lats1 and Lats2 in nephron progenitors of mice led to disruption of nephrogenesis, with an accumulation of spindle-shaped cells in both cortical and medullary regions of the kidney. Lineage-tracing experiments revealed that the cells that accumulated in the interstitium derived from nephron progenitor cells and expressed E-cadherin as well as vimentin, a myofibroblastic marker not usually detected after mesenchymal-to-epithelial transition. The accumulation of these interstitial cells associated with collagen deposition and ectopic expression of the myofibroblastic markers vimentin and α-smooth-muscle actin in developing kidneys. Although these myofibroblastic cells had high Yap and Taz accumulation in the nucleus concomitant with a loss of phosphorylated Yap, reduction of Yap and/or Taz expression levels completely rescued the Lats1/2 phenotype. Taken together, our results demonstrate that Lats1/2 kinases restrict Yap/Taz activities to promote nephron progenitor cell differentiation in the mammalian kidney. Notably, our data also show that myofibroblastic cells can differentiate from nephron progenitors.

  9. miR-21 modulates resistance of HR-HPV positive cervical cancer cells to radiation through targeting LATS1

    Liu, Shikai; Song, Lili, E-mail: commasll@163.com; Zhang, Liang; Zeng, Saitian; Gao, Fangyuan

    2015-04-17

    Although multiple miRNAs are found involved in radioresistance development in HR-HPV positive (+) cervical cancer, only limited studies explored the regulative mechanism of the miRNAs. miR-21 is one of the miRNAs significantly upregulated in HR-HPV (+) cervical cancer is also significantly associated with radioresistance. However, the detailed regulative network of miR-21 in radioresistance is still not clear. In this study, we confirmed that miR-21 overexpression was associated with higher level of radioresistance in HR-HPV (+) cervical cancer patients and thus decided to further explore its role. Findings of this study found miR-21 can negatively affect radiosensitivity of HR-HPV (+) cervical cancer cells and decrease radiation induced G2/M block and increase S phase accumulation. By using dual luciferase assay, we verified a binding site between miR-21 and 3′-UTR of large tumor suppressor kinase 1 (LATS1). Through direct binding, miR-21 can regulate LATS1 expression in cervical cancer cells. LATS1 overexpression can reverse miR-21 induced higher colony formation rate and also reduced miR-21 induced S phase accumulation and G2/M phase block reduction under radiation treatment. These results suggested that miR-21-LATS1 axis plays an important role in regulating radiosensitivity. - Highlights: • miR-21 is highly expressed in HR-HPV (+) radioresistant cervical cancer patients. • miR-21 can negatively affect radiosensitivity of HR-HPV (+) cervical cancer cells. • miR-21 can decrease radiation induced G2/M block and increase S phase accumulation. • miR-21 modulates radiosensitivity cervical cancer cell by directly targeting LATS1.

  10. Amino acid transport by prosthecae of Asticcacaulis biprosthecum: evidence for a broad-range transport system.

    Tam, E; Pate, J L

    1985-10-01

    Prosthecae purified from cells of Asticcaulis biprosthecum possess active transport systems that transport all 20 amino acids tested. Using ascorbate-reduced phenazine methosulphate in the presence of oxygen, all 20 amino acids are accumulated against a concentration gradient by isolated prosthecae. Results of experiments testing the inhibition of transport of one amino acid by another, and of experiments testing the exchange of exogenous amino acids with those preloaded in prosthecae, along with characteristics of mutants defective in amino acid transport, suggest the presence in prosthecae of three amino acid transport systems. One, the general or G system, transports at least 18 of the 20 amino acids tested. Another system, referred to as the proline or P system, transports seven amino acids (including proline) that are also transported by the G system. The third system transports only glutamate and aspartate, and is referred to as the acidic amino acid transport system or A system.

  11. Membrane transporters and new drug development

    EndoH

    2002-01-01

    Molecular biology has made it possible to identify membrane transporter molecules that transport hydrophilic endogenous and exogenous compounds across cellular membranes.Ther are two possibilities on transporters relevant to new drug development,drug targets and pharmacokinetics.Human genome database predicts that more than 10% of common diseases may be tightly related with membrane transporter dysfunction.Thus,membrane transporters would be possible molecular targets for new drug development.As an example,I will talk on our discovery of L-type amino acid transporter 1(LAT1) being oncofetal and upregulated in cancers for their rapid growth and metastasis.We provide evidence that inhibition of LAT1 functions may become novel types of anticancer tools.As another example in human pharmacokinetics,application of stable expressing cell lines of human drug transporters will be proposed including organic anion and cation transporters which are distributed in various organs including the liver and kidney.These transporters are multispecific in their substrate recognition,and better molecules to anticipate drug-drug interactions in human bodies before new drug candidates are given in clinical trials.This in vitro technique may contribute to decide suitable compounds in particular by high throughout screening strategy.

  12. Portage transport of sulfanilamide and sulfanilic acid.

    Hwang, S Y; Berges, D A; Taggart, J J; Gilvarg, C

    1989-03-01

    Sulfanilic acid, in contrast to sulfanilamide, has poor in vitro antibacterial activity. Paradoxically, it has been shown to be a more effective inhibitor than sulfanilamide of dihydropteroic acid synthase. In order to circumvent the presumed permeability barrier to sulfanilic acid, advantage was taken of the technique of portage transport. Derivatives of the compound were prepared in which it was linked via its primary amino group to the alpha-carbon of glycine residues in di- and tripeptides. L-Alanyl-L-alanyl-L-2-[(4-sulfophenyl)amino]glycine proved to be 207 times more potent than sulfanilic acid and 8 times more active than either sulfanilamide or L-alanyl-L-alanyl-L-2-[[4-(aminosulfonyl)-phenyl]amino]glycine when tested against Escherichia coli. These findings confirm that the weak in vitro activity of sulfanilic acid is due to its limited ability to penetrate the bacterial membrane. They also emphasize the ability of portage transport to reveal therapeutic capability that had been attenuated by poor drug permeation.

  13. LATS1 tumor suppressor is a novel actin-binding protein and negative regulator of actin polymerization

    Stacy Visser-Grieve; Zhonghua Zhou; Yi-Min She; He Huang; Terry D Cyr; Tian Xu; Xiaolong Yang

    2011-01-01

    Dear Editor,The LATS tumor suppressor,conserved from Drosophila (dlats) to humans (LATS1,LATS2),plays a vital role in maintaining cellular homeostasis in humans since loss of either LATS1 or LATS2 leads to the development of numerous cancer types such as breast cancer and leukemia [1].Apart from its roles as a Ser/Thr kinase within the emerging Hippo pathway regulating cell proliferation and apoptosis,ultimately leading to the control of organ size and tumorigenesis [2],LATS is also implicated in a broad range of functions including regulation of genetic stability,transcription,and protein stability [1 ].Recently,tumor suppressors have also been shown to affect the later stages of tumorigenesis,including metastasis.Among this group of metastasis regulators are genes that can directly affect actin dynamics by binding to F-actin,such as the tumor suppressors p53 [3],NF2 [4] and APC [5].

  14. Uptake of 3-[{sup 125}I]iodo-{alpha}-methyl-L-tyrosine into colon cancer DLD-1 cells: characterization and inhibitory effect of natural amino acids and amino acid-like drugs

    Shikano, Naoto [Department of Radiological Sciences, Ibaraki Prefectural University of Health Sciences, Ami-machi, Inashiki-gun, Ibaraki 300-0394 (Japan)], E-mail: sikano@ipu.ac.jp; Ogura, Masato [Department of Radiological Sciences, Ibaraki Prefectural University of Health Sciences, Ami-machi, Inashiki-gun, Ibaraki 300-0394 (Japan); Okudaira, Hiroyuki [School of Health Sciences, Faculty of Medicine, Kanazawa University, Kanazawa 920-0942 (Japan); Nakajima, Syuichi; Kotani, Takashi [Department of Radiological Sciences, Ibaraki Prefectural University of Health Sciences, Ami-machi, Inashiki-gun, Ibaraki 300-0394 (Japan); Kobayashi, Masato [School of Health Sciences, Faculty of Medicine, Kanazawa University, Kanazawa 920-0942 (Japan); Nakazawa, Shinya [Department of Radiological Sciences, Ibaraki Prefectural University of Health Sciences, Ami-machi, Inashiki-gun, Ibaraki 300-0394 (Japan); Baba, Takeshi; Yamaguchi, Naoto [Center for Medical Sciences, Ibaraki Prefectural University of Health Sciences, Ami-machi, Inashiki-gun, Ibaraki 300-0394 (Japan); Kubota, Nobuo [Department of Radiological Sciences, Ibaraki Prefectural University of Health Sciences, Ami-machi, Inashiki-gun, Ibaraki 300-0394 (Japan); Iwamura, Yukio [Center for Humanities and Sciences, Ibaraki Prefectural University of Health Sciences, Ami-machi, Inashiki-gun, Ibaraki 300-0394 (Japan); Kawai, Keiichi [School of Health Sciences, Faculty of Medicine, Kanazawa University, Kanazawa 920-0942 (Japan)

    2010-02-15

    Introduction: We examined 3-[{sup 123}I]iodo-{alpha}-methyl-L-tyrosine ([{sup 123}I]IMT) uptake and inhibition by amino acids and amino acid-like drugs in the human DLD-1 colon cancer cell line, to discuss correlation between the inhibition effect and structure. Methods: Expression of relevant neutral amino acid transporters was examined by real-time PCR with DLD-1 cells. The time course of [{sup 125}I]IMT uptake, contributions of transport systems, concentration dependence and inhibition effects by amino acids and amino acid-like drugs (1 mM) on [{sup 125}I]IMT uptake were examined. Results: Expression of system L (4F2hc, LAT1 and LAT2), system A (ATA1, ATA2) and system ASC (ASCT1) was strongly detected; system L (LAT3, LAT4) and MCT8 were weakly detected; and B{sup 0}AT was not detected. [{sup 125}I]IMT uptake in DLD-1 cells involved Na{sup +}-independent system L primarily and Na{sup +}-dependent system(s). Uptake of [{sup 125}I]IMT in Na{sup +}-free buffer followed Michaelis-Menten kinetics, with a K{sub m} of 78 {mu}M and V{sub max} of 333 pmol/10{sup 6} cells per minute. Neutral D- and L-amino acids with branched or aromatic large side chains inhibited [{sup 125}I]IMT uptake. Tyrosine analogues, tryptophan analogues, L-phenylalanine and p-halogeno-L-phenylalanines, and gamma amino acids [including 3,4-dihydroxy-L-phenylalanine (L-DOPA), DL-threo-{beta}-(3,4-dihydroxyphenyl)serine (DOPS), 4-[bis(2-chloroethyl)amino]-L-phenylalanine and 1-(aminomethyl)-cyclohexaneacetic acid] strongly inhibited [{sup 125}I]IMT uptake, but L-tyrosine methyl ester and R(+)/S(-)-baclofen weakly inhibited uptake. The substrates of system ASC and A did not inhibit [{sup 125}I]IMT uptake except L-serine and D/L-cysteine. Conclusions: [{sup 125}I]IMT uptake in DLD-1 cells involves mostly LAT1 and its substrates' (including amino acid-like drugs derived from tyrosine, tryptophan and phenylalanine) affinity to transport via LAT1. Whether transport of gamma amino acid analogues is

  15. Intestinal transport of sulfanilic acid in rats immunized with protein-sulfanilic acid conjugate.

    Yamamoto, A; Kawaratani, T; Kawashima, K; Hashida, M; Sezaki, H

    1990-07-01

    Intestinal transport of sulfanilic acid was examined by means of an in vitro everted sac technique in rats immunized with a bovine gamma-globulin-sulfanilic acid conjugate. At a low concentration of sulfanilic acid, the intestinal transport of sulfanilic acid was decreased in rats immunized with bovine gamma-globulin-sulfanilic acid conjugate. This phenomenon was dose dependent and antigen specific, since there was no difference in the transport of sulfanilic acid at a high concentration and of an unrelated hapten. These results suggested that parenteral immunization impaired not only the intestinal transport of macromolecular antigens, as previously shown, but also the transport of the low molecular weight hapten, sulfanilic acid.

  16. Primary and secondary thyroid hormone transporters

    Kinne Anita

    2011-08-01

    Full Text Available Abstract Thyroid hormones (TH are essential for the development of the human brain, growth and cellular metabolism. Investigation of TH transporters became one of the emerging fields in thyroid research after the discovery of inactivating mutations in the Monocarboxylate transporter 8 (MCT8, which was found to be highly specific for TH transport. However, additional transmembrane transporters are also very important for TH uptake and efflux in different cell types. They transport TH as secondary substrates and include the aromatic amino acid transporting MCT10, the organic anion transporting polypeptides (e.g. OATP1C1, OATP1A2, OPTP1A4 and the large neutral amino acid transporters (LAT1 and LAT2. These TH transporters characteristically possess 12 transmembrane spanners but due to the strong differing sequences between the three transporter families we assume an identical conformation is not very likely. In contrast to the others, the LAT family members form a heterodimer with the escort protein 4F2hc/CD98. A comparison of sequence proportions, locations and types of functional sensitive features for TH transport discovered by mutations, revealed that transport sensitive charged residues occur as conserved amino acids only within each family of the transporter types but not in all putative TH transporters. Based on the lack of highly conserved sensitive charged residues throughout the three transporter families as a common counterpart for the amino acid moiety of the substrates, we conclude that the molecular transport mechanism is likely organized either a by different molecular determinants in the divergent transporter types or b the counterparts for the substrates` amino acid moiety at the transporter are not any charged side chains but other proton acceptors or donators. However, positions of transport sensitive residues coincide at transmembrane helix 8 in the TH transporter MCT8, OATP1C1 and another amino acid transporter, the L

  17. Characterisation of CMP-sialic acid transporter substrate recognition

    Maggioni, A.; Itzstein, M. von; Guzman, I.B. Rodriguez; Ashikov, A.M.; Stephens, A.S.; Haselhorst, T.; Tiralongo, J.

    2013-01-01

    CMP-sialic acid transporter: We report an in-depth, multidisciplinary, structural study that has identified the amino acid residues intimately involved in CMP-sialic acid transporter (CST) substrate specificity. Our data provide a significant contribution towards a better understanding the structure

  18. Expression of L amino acid transport system 1 and analysis of iodine-123-methyltyrosine tumor uptake in a pancreatic xenotransplantation model using fused high-resolution-micro-SPECT-MRI

    Corinna von Forstner; Maaz Zuhayra; Ole Ammerpohl; Yi Zhao; Sanjay Tiwari; Olav Jansen; Holger Kalthoff; Eberhard Henze; Jan-Hendrik Egberts

    2011-01-01

    BACKGROUND: The specificity in discriminating pancreatitis is limited in the positron emission tomography (PET) using Fluorine-18-fluorodeoxyglucose.Furthermore,PETisnot widely available compared to the single photon emission computed tomography (SPECT). Since amino acids play a minor role in metabolism of inflammatory cells, the potential of the SPECT tracer, 3-[123I]iodo-L-α-methyltyrosine (123I-IMT), for detecting pancreatic cancer was examined in xenotransplantation models of humanpancreaticcarcinomainmice. METHODS:  123I-IMT was injected to eight mice inoculated with subcutaneous or orthotopic pancreatic tumors. Fused high-resolution-micro-SPECT (Hi-SPECT) and magnetic resonance imaging were performed. The gene expression level of L amino acid transport-system 1 (LAT1) was analyzed and correlated with tumor uptake of 123I-IMT. RESULTS: A high uptake of 123I-IMT was detected in all tumor-bearing mice. The median tumor-to-background ratio (T/B) was 12.1 (2.0-13.2) for orthotopic and 8.4 (1.8-11.1) for subcutaneous xenotransplantation, respectively. Accordingly, the LAT1 expression in transplanted Colo357 cells was increased compared to non-malignant controls. CONCLUSIONS: Our mouse model could show a high 123I-IMT uptake in pancreatic cancer. Fused MRI scans facilitate precise evaluation of uptake in the specific regions of interest. Further studies are required to confirm these findings in tumors derived from other human pancreatic cancer cells. Since amino acids play a minor role in the metabolism of inflammatory cells, the potential for application of 123I-IMT to distinguish pancreatic tumor from inflammatory pancreatitis warrants further investigation.

  19. Transport of amino acids and GABA analogues via the human proton-coupled amino acid transporter, hPAT1

    Larsen, Mie; Larsen, Birger Brodin; Frølund, Bente;

    2008-01-01

    The objective of this study was to investigate transepithelial amino acid transport as a function of Caco-2 cell culture time. Furthermore, the objective was to investigate apical uptake characteristics of hPAT1-mediated transport under various experimental conditions. Apical amino acid uptake......, which has been shown to function as a carboxylic acid bioisostere for substrates of the GABA receptor and transport systems....

  20. Novel Lactate Transporters from Carboxylic Acid-Producing Rhizopus

    The fungus Rhizopus is frequently used for fermentative production of lactic acid, but little is known about the mechanisms or proteins for transporting this carboxylic acid. Since transport of the lactate anion across the plasma membrane is critical to prevent acidification of the cytoplasm, we ev...

  1. Developmental and cell type-specific expression of thyroid hormone transporters in the mouse brain and in primary brain cells.

    Braun, Doreen; Kinne, Anita; Bräuer, Anja U; Sapin, Remy; Klein, Marc O; Köhrle, Josef; Wirth, Eva K; Schweizer, Ulrich

    2011-03-01

    Cellular thyroid hormone uptake and efflux are mediated by transmembrane transport proteins. One of these, monocarboxylate transporter 8 (MCT8) is mutated in Allan-Herndon-Dudley syndrome, a severe mental retardation associated with abnormal thyroid hormone constellations. Since mice deficient in Mct8 exhibit a milder neurological phenotype than patients, we hypothesized that alternative thyroid hormone transporters may compensate in murine brain cells for the lack of Mct8. Using qPCR, Western Blot, and immunocytochemistry, we investigated the expression of three different thyroid hormone transporters, i.e., Mct8 and L-type amino acid transporters Lat1 and Lat2, in mouse brain. All three thyroid hormone transporters are expressed from corticogenesis and peak around birth. Primary cultures of neurons and astrocytes express Mct8, Lat1, and Lat2. Microglia specifically expresses Mct10 and Slco4a1 in addition to high levels of Lat2 mRNA and protein. As in vivo, a brain microvascular endothelial cell line expressed Mct8 and Lat1. 158N, an oligodendroglial cell line expressed Mct8 protein, consistent with delayed myelination in MCT8-deficient patients. Functional T(3)- and T(4)-transport assays into primary astrocytes showed K(M) values of 4.2 and 3.7 μM for T(3) and T(4). Pharmacological inhibition of L-type amino acid transporters by BCH and genetic inactivation of Lat2 reduced astrocytic T(3) uptake to the same extent. BSP, a broad spectrum inhibitor, including Mct8, reduced T(3) uptake further suggesting the cooperative activity of several T(3) transporters in astrocytes.

  2. Differential regulation of placental amino acid transport by saturated and unsaturated fatty acids.

    Lager, Susanne; Jansson, Thomas; Powell, Theresa L

    2014-10-15

    Fatty acids are critical for normal fetal development but may also influence placental function. We have previously reported that oleic acid (OA) stimulates amino acid transport in primary human trophoblasts (PHTs). In other tissues, saturated and unsaturated fatty acids have distinct effects on cellular signaling, for instance, palmitic acid (PA) but not OA reduces IκBα expression. We hypothesized that saturated and unsaturated fatty acids differentially affect trophoblast amino acid transport and cellular signaling. To test this hypothesis, PHTs were cultured in docosahexaenoic acid (DHA; 50 μM), OA (100 μM), or PA (100 μM). DHA and OA were also combined to test whether DHA could counteract the OA stimulatory effect on amino acid transport. The effects of fatty acids were compared against a vehicle control. Amino acid transport was measured by isotope-labeled tracers. Activation of inflammatory-related signaling pathways and the mechanistic target of rapamycin (mTOR) pathway were determined by Western blot analysis. Exposure of PHTs to DHA for 24 h reduced amino acid transport and phosphorylation of p38 MAPK, STAT3, mTOR, eukaryotic initiation factor 4E-binding protein 1, and ribosomal protein (rp)S6. In contrast, OA increased amino acid transport and phosphorylation of ERK, mTOR, S6 kinase 1, and rpS6. The combination of DHA with OA increased amino acid transport and rpS6 phosphorylation. PA did not affect amino acid transport but reduced IκBα expression. In conclusion, these fatty acids differentially regulated placental amino acid transport and cellular signaling. Taken together, these findings suggest that dietary fatty acids could alter the intrauterine environment by modifying placental function, thereby having long-lasting effects on the developing fetus.

  3. Differential diagnosis of (inherited) amino acid metabolism or transport disorders

    W. Blom (W.); J.G.M. Huijmans (Jan)

    1992-01-01

    markdownabstract__Abstract__ Disorders of amino acid metabolism or transport are most clearly expressed in urine. Nevertheless the interpretation of abnormalities in urinary amino acid excretion remains difficult. An increase or decrease of almost every amino acid in urine can be due to various eti

  4. Ligands targeting the excitatory amino acid transporters (EAATs).

    Dunlop, John; Butera, John A

    2006-01-01

    This review provides an overview of ligands for the excitatory amino acid transporters (EAATs), a family of high-affinity glutamate transporters localized to the plasma membrane of neurons and astroglial cells. Ligand development from the perspective of identifying novel and more selective tools for elucidating transporter subtype function, and the potential of transporter ligands in a therapeutic setting are discussed. Acute pharmacological modulation of EAAT activity in the form of linear and conformationally restricted glutamate and aspartate analogs is presented, in addition to recent strategies aimed more toward modulating transporter expression levels, the latter of particular significance to the development of transporter based therapeutics.

  5. The relationship between gene expression of cationic and neutral amino acid transporters in the small intestine of chick embryos and chick breed, development, sex, and egg amino acid concentration.

    Zeng, P L; Li, X G; Wang, X Q; Zhang, D X; Shu, G; Luo, Q B

    2011-11-01

    This study was conducted to investigate the gene expression of cationic and neutral amino acid (AA) transporters in the small intestine of chick embryos with different genetic backgrounds [Wenshi Yellow-Feathered chick (WYFC) and White Recessive Rock chick (WRRC)]. The study also investigated the correlation between the abundance of AA transporter mRNA and the AA content of fertilized eggs. Intestinal samples were collected on embryonic d 9, 12, 14, 17, and 19 and the day of hatch. The results showed that, before incubation, the AA content of WRRC eggs was lower (P CAT-1 [solute carrier (SLC) family 7 member 1], CAT-4 (SLC family 7 member 4), rBAT (SLC family 3 member 1), y(+)LAT-1 (SLC family 7 member 7), y(+)LAT-2 (SLC family 7 member 6), LAT-4 (SLC family 43 member 2), and SNAT-2 (SLC family 38 member 2), as detected by real-time reverse transcriptase PCR, was greater (P CAT-1, CAT-4, y(+)LAT-2, and LAT-4 in WYFC and on CAT-4 and B(0)AT-1 (SLC family 6 member 19) mRNA expression in WRRC. In WYFC, only CAT-1 mRNA expression was negatively correlated (r = -0.68 to -0.84, P < 0.05) with all AA content. However, few correlations were detected between AA content and the mRNA expression of multiple transporters in WRRC. These findings provide a comprehensive profile of the temporal and spatial mRNA expression of AA transporters in the small intestine of chick embryos. Few correlations were detected between the AA content of the eggs and mRNA expression of specific AA transporters in the small intestine.

  6. Identification of a novel sialic acid transporter in Haemophilus ducreyi.

    Post, Deborah M B; Mungur, Rachna; Gibson, Bradford W; Munson, Robert S

    2005-10-01

    Haemophilus ducreyi, the causative agent of chancroid, produces a lipooligosaccharide (LOS) which terminates in N-acetyllactosamine. This glycoform can be further extended by the addition of a single sialic acid residue to the terminal galactose moiety. H. ducreyi does not synthesize sialic acid, which must be acquired from the host during infection or from the culture medium when the bacteria are grown in vitro. However, H. ducreyi does not have genes that are highly homologous to the genes encoding known bacterial sialic acid transporters. In this study, we identified the sialic acid transporter by screening strains in a library of random transposon mutants for those mutants that were unable to add sialic acid to N-acetyllactosamine-containing LOS. Mutants that reacted with the monoclonal antibody 3F11, which recognizes the terminal lactosamine structure, and lacked reactivity with the lectin Maackia amurensis agglutinin, which recognizes alpha2,3-linked sialic acid, were further characterized to demonstrate that they produced a N-acetyllactosamine-containing LOS by silver-stained sodium dodecyl sulfate-polyacrylamide gel electrophoresis and mass spectrometric analyses. The genes interrupted in these mutants were mapped to a four-gene cluster with similarity to genes encoding bacterial ABC transporters. Uptake assays using radiolabeled sialic acid confirmed that the mutants were unable to transport sialic acid. This study is the first report of bacteria using an ABC transporter for sialic acid uptake.

  7. Carboxylic Acids Plasma Membrane Transporters in Saccharomyces cerevisiae.

    Casal, Margarida; Queirós, Odília; Talaia, Gabriel; Ribas, David; Paiva, Sandra

    2016-01-01

    This chapter covers the functionally characterized plasma membrane carboxylic acids transporters Jen1, Ady2, Fps1 and Pdr12 in the yeast Saccharomyces cerevisiae, addressing also their homologues in other microorganisms, as filamentous fungi and bacteria. Carboxylic acids can either be transported into the cells, to be used as nutrients, or extruded in response to acid stress conditions. The secondary active transporters Jen1 and Ady2 can mediate the uptake of the anionic form of these substrates by a H(+)-symport mechanism. The undissociated form of carboxylic acids is lipid-soluble, crossing the plasma membrane by simple diffusion. Furthermore, acetic acid can also be transported by facilitated diffusion via Fps1 channel. At the cytoplasmic physiological pH, the anionic form of the acid prevails and it can be exported by the Pdr12 pump. This review will highlight the mechanisms involving carboxylic acids transporters, and the way they operate according to the yeast cell response to environmental changes, as carbon source availability, extracellular pH and acid stress conditions.

  8. Excitatory amino acid transporters as potential drug targets

    Bunch, Lennart; Erichsen, Mette Navy; Jensen, Anders Asbjørn

    2009-01-01

    BACKGROUND: Excitatory amino acid transporters (EAATs) are transmembrane proteins responsible for the uptake of (S)-glutamate (Glu) from the synaptic cleft, thereby terminating the glutamatergic neurotransmitter signal. Today five subtypes have been identified. Except for EAAT2, their individual...

  9. Exploitation of Bile Acid Transport Systems in Prodrug Design

    Elina Sievänen

    2007-08-01

    Full Text Available The enterohepatic circulation of bile acids is one of the most efficient recycling routes in the human body. It is a complex process involving numerous transport proteins, which serve to transport bile acids from the small intestine into portal circulation, from the portal circulation into the hepatocyte, from the hepatocyte into the bile, and from the gall bladder to the small intestine. The tremendous transport capacity and organ specificity of enterohepatic circulation combined with versatile derivatization possibilities, rigid steroidal backbone, enantiomeric purity, availability, and low cost have made bile acids attractive tools in designing pharmacological hybrid molecules and prodrugs with the view of improving intestinal absorption, increasing the metabolic stability of pharmaceuticals, specifically targeting drugs to organs involved in enterohepatic circulation, as well as sustaining therapeutically reasonable systemic concentrations of active agents. This article briefly describes bile acid transport proteins involved in enterohepatic circulation, summarizes the key factors affecting on the transport by these proteins, and reviews the use of bile acids and their derivatives in designing prodrugs capable of exploiting the bile acid transport system.

  10. Supplementation of Ascorbic Acid in Weanling Horses Following Prolonged Transportation

    Michelle Stives

    2012-04-01

    Full Text Available Though horses synthesize ascorbic acid in their liver in amounts that meet their needs under normal circumstances, prolonged stress results in low plasma concentrations due to enhanced utilization and renal excretion and can reduce immune function. It was hypothesized that plasma ascorbic acid could be maintained in weanling horses by oral supplementation following prolonged transportation. Weanlings were supplemented with no ascorbic acid (Tx 0: n = 4, 5 grams ascorbic acid twice daily for 5 days (Tx 1: n = 4 or for 10 days (Tx 2: n = 4 following >50 hours of transportation. Supplementation caused slight (P < 0.2 increases in plasma ascorbic acid concentrations. Both supplemented groups had decreased (P < 0.05 plasma concentrations for 1 to 3 weeks following cessation of supplementation, possibly due to increased renal excretion or suppressed hepatic synthesis. Supplementation of ascorbic acid following prolonged stress will increase plasma concentrations, but prolonged supplementation should be avoided.

  11. Differential diagnosis of (inherited) amino acid metabolism or transport disorders.

    Blom, W; Huijmans, J G

    1992-02-01

    Disorders of amino acid metabolism or transport are most clearly expressed in urine. Nevertheless the interpretation of abnormalities in urinary amino acid excretion remains difficult. An increase or decrease of almost every amino acid in urine can be due to various etiology. To differentiate between primary and secondary aminoacido-pathies systematic laboratory investigation is necessary. Early diagnosis of disorders of amino acid metabolism or transport is very important, because most of them can be treated, leading to the prevention of (further) clinical abnormalities. In those disorders, which cannot be treated, early diagnosis in an index-patient may prevent the birth of other siblings by means of genetic counseling and prenatal diagnosis.Primary aminoacidopathies can be due to genetically determined transport disorders and enzyme deficiencies in amino acid metabolism or degradation. Secondary aminoacidopathies are the result of abnormal or deficient nutrition, intestinal dysfunction, organ pathology or other metabolic diseases like organic acidurias.A survey of amino acid metabolism and transport abnormalities will be given, illustrated with metabolic pathways and characteristic abnormal amino acid chromatograms.

  12. Xenobiotic, bile acid, and cholesterol transporters: function and regulation.

    Klaassen, Curtis D; Aleksunes, Lauren M

    2010-03-01

    Transporters influence the disposition of chemicals within the body by participating in absorption, distribution, and elimination. Transporters of the solute carrier family (SLC) comprise a variety of proteins, including organic cation transporters (OCT) 1 to 3, organic cation/carnitine transporters (OCTN) 1 to 3, organic anion transporters (OAT) 1 to 7, various organic anion transporting polypeptide isoforms, sodium taurocholate cotransporting polypeptide, apical sodium-dependent bile acid transporter, peptide transporters (PEPT) 1 and 2, concentrative nucleoside transporters (CNT) 1 to 3, equilibrative nucleoside transporter (ENT) 1 to 3, and multidrug and toxin extrusion transporters (MATE) 1 and 2, which mediate the uptake (except MATEs) of organic anions and cations as well as peptides and nucleosides. Efflux transporters of the ATP-binding cassette superfamily, such as ATP-binding cassette transporter A1 (ABCA1), multidrug resistance proteins (MDR) 1 and 2, bile salt export pump, multidrug resistance-associated proteins (MRP) 1 to 9, breast cancer resistance protein, and ATP-binding cassette subfamily G members 5 and 8, are responsible for the unidirectional export of endogenous and exogenous substances. Other efflux transporters [ATPase copper-transporting beta polypeptide (ATP7B) and ATPase class I type 8B member 1 (ATP8B1) as well as organic solute transporters (OST) alpha and beta] also play major roles in the transport of some endogenous chemicals across biological membranes. This review article provides a comprehensive overview of these transporters (both rodent and human) with regard to tissue distribution, subcellular localization, and substrate preferences. Because uptake and efflux transporters are expressed in multiple cell types, the roles of transporters in a variety of tissues, including the liver, kidneys, intestine, brain, heart, placenta, mammary glands, immune cells, and testes are discussed. Attention is also placed upon a variety of

  13. Multidrug transporters in lactic acid bacteria

    Mazurkiewicz, P; Sakamoto, K; Poelarends, GJ; Konings, WN

    2005-01-01

    Gram-positive lactic acid bacteria possess several Multi-Drug Resistance systems (MDRs) that excrete out of the cell a wide variety of mainly cationic lipophilic cytotoxic compounds as well as many clinically relevant antibiotics. These MDRs are either proton/drug antiporters belonging to the major

  14. Expression of digestive enzymes and nutrient transporters in Eimeria acervulina-challenged layers and broilers.

    Su, S; Miska, K B; Fetterer, R H; Jenkins, M C; Wong, E A

    2014-05-01

    Avian coccidiosis is a disease caused by intestinal protozoa in the genus Eimeria. Clinical signs of coccidiosis include intestinal lesions and reduced feed efficiency and BW gain. This growth reduction may be due to changes in expression of digestive enzymes and nutrient transporters in the intestine. The objective of this study was to examine the differential expression of digestive enzymes, transporters of amino acids, peptides, sugars, and minerals, and an antimicrobial peptide in the small intestine of Eimeria acervulina-infected broilers and layers. Uninfected broilers and layers, in general, expressed these genes at comparable levels. Some differences included 3-fold and 2-fold greater expression of the peptide transporter PepT1 and the antimicrobial peptide LEAP2 (liver expressed antimicrobial peptide 2), respectively, in the jejunum of layers compared with broilers and 17-fold greater expression of LEAP2 in the duodenum of broilers compared with layers. In the duodenum of Eimeria-infected broilers and layers, there was downregulation of aminopeptidase N; sucrase-isomaltase; the neutral, cationic, and anionic amino acid transporters b(o,+)AT/rBAT, B(o)AT, CAT2, and EAAT3; the sugar transporter GLUT2; the zinc transporter ZnT1; and LEAP2. In the jejunum of infected layers there was downregulation of many of the same genes as in the duodenum plus downregulation of PepT1, b(o,+)AT/rBAT, and the y(+) L system amino acid transporters y(+) LAT1 and y(+) LAT2. In the ileum of infected layers there was downregulation of CAT2, y(+)LAT1, the L type amino acid transporter LAT1, and the sugar transporter GLUT1, and upregulation of APN, PepT1, the sodium glucose transporter SGLT4, and LEAP2. In E. acervulina-infected broilers, there were no gene expression changes in the jejunum and ileum. These changes in intestinal digestive enzyme and nutrient transporter gene expression may result in a decrease in the efficiency of protein digestion, uptake of important amino acids

  15. Structural and functional dynamics of Excitatory Amino Acid Transporters (EAAT

    Thomas Rauen

    2014-09-01

    Full Text Available Glutamate transporters control the glutamate homeostasis in the central nervous system, and, thus, are not only crucial for physiological excitatory synaptic signaling, but also for the prevention of a large number of neurodegenerative diseases that are associated with excessive and prolonged presence of the neurotransmitter glutamate in the extracellular space. Until now, five subtypes of high-affinity glutamate transporters (excitatory amino acid transporters, EAATs 1–5 have been identified. These 5 high-affinity glutamate transporter subtypes belong to the solute carrier 1 (SLC1 family of transmembrane proteins: EAAT1/GLAST (SLC1A3, EAAT2/GLT1 (SLC1A2, EAAT3/EAAC1 (SLC1A1, EAAT4 (SLC1A6 and EAAT5 (SLC1A7. EAATs are secondary-active transporters, taking up glutamate into the cell against a substantial concentration gradient. The driving force for concentrative uptake is provided by the co-transport of Na+ ions and the counter-transport of one K+ in a step independent of the glutamate translocation step. Due to the electrogenicity of transport, the transmembrane potential can also act as driving force. Glutamate transporters are also able to run in reverse, resulting in glutamate release from cells. Due to these important physiological functions, glutamate transporter expression and, therefore, the transport rate, are tightly regulated. The EAAT protein family are structurally expected to be highly similar, however, these transporters show a functional diversity that ranges from high capacity glutamate uptake systems (EAATs 1–3 to receptor-like glutamate activated anion channels (EAATs 4–5. Here, we provide an update on most recent progress made on EAAT’s molecular transport mechanism, structure-function relationships, pharmacology, and will add recent insights into mechanism of rapid membrane trafficking of glutamate transporters.

  16. Neutral amino acid transport across brain microvessel endothelial cell monolayers

    Audus, K.L.; Borchardt, R.T.

    1986-03-01

    Brain microvessel endothelial cells (BMEC) which form the blood-brain barrier (BBB) possess an amino acid carrier specific for large neutral amino acids (LNAA). The carrier is important for facilitating the delivery of nutrient LNAA's and centrally acting drugs that are LNAA's, to the brain. Bovine BMEC's were isolated and grown up to complete monolayers on regenerated cellulose-membranes in primary culture. To study the transendothelial transport of leucine, the monolayers were placed in a side-by-side diffusion cell, and transport across the monolayers followed with (/sup 3/H)-leucine. The transendothelial transport of leucine in this in vitro model was determined to be bidirectional, and time-, temperature-, and concentration-dependent. The transport of leucine was saturable and the apparent K/sub m/ and V/sub max/, 0.18 mM and 6.3 nmol/mg/min, respectively. Other LNAA's, including the centrally acting drugs, ..cap alpha..-methyldopa, L-DOPA, ..cap alpha..-methyl-tyrosine, and baclofen, inhibited leucine transport. The leucine carrier was also found to be stereospecific and not sensitive to inhibitors of active transport. These results are consistent with previous in vitro and in vivo studies. Primary cultures of BMEC's appear to be a potentially important tool for investigating at the cellular level, the transport mechanisms of the BBB.

  17. Acid-base transport in pancreas – new challenges

    Ivana eNovak

    2013-12-01

    Full Text Available Along the gastrointestinal tract a number of epithelia contribute with acid or basic secretions in order to aid digestive processes. The stomach and pancreas are the most extreme examples of acid (H+ and base (HCO3- transporters, respectively. Nevertheless, they share the same challenges of transporting acid and bases across epithelia and effectively regulating their intracellular pH. In this review, we will make use of comparative physiology to enlighten the cellular mechanisms of pancreatic HCO3- and fluid secretion, which is still challenging physiologists. Some of the novel transporters to consider in pancreas are the proton pumps (H+-K+-ATPases, as well as the calcium-activated K+ and Cl- channels, such as KCa3.1 and TMEM16A/ANO1. Local regulators, such as purinergic signalling, fine-tune and coordinate pancreatic secretion. Lastly, we speculate whether dys-regulation of acid-base transport contributes to pancreatic diseases including cystic fibrosis, pancreatitis and cancer.

  18. Acid-base transport in pancreas-new challenges

    Novak, Ivana; Haanes, Kristian Agmund; Wang, Jing

    2013-01-01

    Along the gastrointestinal tract a number of epithelia contribute with acid or basic secretions in order to aid digestive processes. The stomach and pancreas are the most extreme examples of acid (H+) and base (HCO-3) transporters, respectively. Nevertheless, they share the same challenges...... to consider in pancreas are the proton pumps (H-K-ATPases), as well as the calcium-activated K and Cl channels, such as K3.1 and TMEM16A/ANO1. Local regulators, such as purinergic signaling, fine-tune, and coordinate pancreatic secretion. Lastly, we speculate whether dys-regulation of acid-base transport...... contributes to pancreatic diseases including cystic fibrosis, pancreatitis, and cancer. © 2013 Novak, Haanes and Wang....

  19. Transport of phytanic acid on lipoproteins in Refsum disease.

    Wierzbicki, A S; Sankaralingam, A; Lumb, P J; Hardman, T C; Sidey, M C; Gibberd, F B

    1999-02-01

    Patients with Refsum disease accumulate significant quantities of phytanic acid in adipose and neural tissue. The accumulation can be reversed by following a diet low in phytanic acid, yet the mechanism of transport of this fatty acid is obscure. We investigated the distribution of phytanic acid in different lipoprotein subfractions in 11 patients with Refsum disease and 9 unaffected siblings. Plasma phytanic acid was distributed on VLDL (16.2% +/- 12.2%), IDL (1.77% +/- 1.64%), LDL (34.8% +/- 12.6%) and HDL (14.3% +/- 7.87%). No correlations with any parameter were seen with total phytanic acid content. Weak nonsignificant correlations were found with the fractional distribution of phytanic acid and VLDL triglyceride (r = 0.35; p = 0.12) and plasma HDL-cholesterol (r = 0.32; p = 0.16) and with LDL:HDL cholesterol ratio (r = 0.33; p = 0.14). Significant correlation of the fractional distribution of phytanic acid on lipoprotein particles was noted with the ratio of apolipoprotein B: apolipoprotein A1-containing particles (r = 0.46; p = 0.03) and apolipoprotein B: apolipoprotein A1 in HDL2 (r = 0.53; p = 0.01). This suggests that the import-export balance for phytanic acid in plasma is related to forward and reverse cholesterol transport on lipoprotein particles, and only weakly to plasma cholesterol and triglycerides. These ratios of apolipoprotein particles may play a significant role in determining the rate of phytanic acid elimination in patients with Refsum disease.

  20. Expression pattern of thyroid hormone transporters in the postnatal mouse brain

    Julia eMüller

    2014-06-01

    Full Text Available For a comprehensive description of the tissue-specific thyroidal state under normal as well as under pathophysiological conditions it is of utmost importance to include thyroid hormone (TH transporters in the analysis as well. The current knowledge of the cell-specific repertoire of TH transporters, however, is still rather limited, although several TH transporting proteins have been identified. Here, we describe the temporal and spatial distribution pattern of the most prominent TH transporters in the postnatal mouse brain. For that purpose, we performed radioactive in situ hybridization studies in order to analyze the cellular mRNA expression pattern of the monocarboxylate transporters Mct8 and Mct10, the L-type amino acid transporters Lat1 and Lat2 as well as the organic anion transporting peptide Oatp1c1 at different postnatal time points. Highest TH transporter expression levels in the CNS were observed at postnatal day 6 and 12, while hybridization signal intensities visibly declined after the second postnatal week. The only exception was Mct10 for which the strongest signals could be observed in white matter regions at postnatal day 21 indicating that this transporter is preferentially expressed in mature oligodendrocytes. Whereas Mct8 and Lat2 showed an overlapping neuronal mRNA expression pattern in the cerebral cortex, hippocampus and in the hypothalamus, Oatp1c1 and Lat1 specific signals were most prominent in capillary endothelial cells throughout the CNS. In the choroid plexus, expression of three transporters (Mct8, Lat2 and Oatp1c1 could be detected, whereas in other brain areas (e.g. striatum, thalamus, brain stem nuclei only one of the transporter candidates appeared to be present. Overall, our study revealed a distinct mRNA distribution pattern for each of the TH transporter candidates. Further studies will reveal to which extent these transporters contribute to the cell-specific TH uptake and efflux in the mouse CNS.

  1. Differential expression of cholangiocyte and ileal bile acid transporters following bile acid supplementation and depletion

    N. Sertac Kip; Konstantinos N. Lazaridis; Anatoliy I. Masyuk; Patrick L. Splinter; Robert C. Huebert; Nicholas F. LaRusso

    2004-01-01

    AIM: We have previously demonstrated that cholangiocytes,the epithelial cells lining intrahepatic bile ducts, encode two functional bile acid transporters via alternative splicing of a single gene to facilitate bile acid vectorial transport.Cholangiocytes possess ASBT, an apical sodium-dependent bile acid transporter to take up bile acids, and t-ASBT, a basolateral alternatively spliced and truncated form of ASBT to efflux bile acids. Though hepatocyte and ileal bile acid transporters are in part regulated by the flux of bile acids,the effect of alterations in bile acid flux on the expression of t-ASBT in terminal ileocytes remains unclear. Thus, we tested the hypothesis that expression of ASBT and t-ASBT in cholangiocytes and ileocytes was regulated by bile acid flux. METHODS: Expression of ASBT and t-ASBT message and protein in cholangiocytes and ileocytes isolated from pairfed rats given control (C) and 1% taurocholate (TCA) or 5% cholestyramine (CY) enriched diets, were assessed by both quantitative RNase protection assays and quantitative immunoblotting. The data obtained from each of the control groups were pooled to reflect the changes observed following TCA and CY treatments with respect to the control diets.Cholangiocyte taurocholate uptake was determined using a novel microperfusion technique on intrahepatic bile duct units (IBDUs) derived from C, TCA and CY fed rats.RESULTS: In cholangiocytes, both ASBT and t-ASBT message RNA and protein were significantly decreased in response to TCA feeding compared to C diet. In contrast,message and protein of both bile acid transporters significantly increased following CY feeding compared to C diet. In the ileum, TCA feeding significantly up-regulated both ASBT and t-ASBT message and protein compared to C diet, while CY feeding significantly down-regulated message and protein of both bile acid transporters compared to C diet. As anticipated from alterations in cholangiocyte ASBT expression, the uptake of

  2. Fatty acid transport protein expression in human brain and potential role in fatty acid transport across human brain microvessel endothelial cells.

    Mitchell, Ryan W; On, Ngoc H; Del Bigio, Marc R; Miller, Donald W; Hatch, Grant M

    2011-05-01

    The blood-brain barrier (BBB), formed by the brain capillary endothelial cells, provides a protective barrier between the systemic blood and the extracellular environment of the CNS. Passage of fatty acids from the blood to the brain may occur either by diffusion or by proteins that facilitate their transport. Currently several protein families have been implicated in fatty acid transport. The focus of the present study was to identify the fatty acid transport proteins (FATPs) expressed in the brain microvessel endothelial cells and characterize their involvement in fatty acid transport across an in vitro BBB model. The major fatty acid transport proteins expressed in human brain microvessel endothelial cells (HBMEC), mouse capillaries and human grey matter were FATP-1, -4 and fatty acid binding protein 5 and fatty acid translocase/CD36. The passage of various radiolabeled fatty acids across confluent HBMEC monolayers was examined over a 30-min period in the presence of fatty acid free albumin in a 1 : 1 molar ratio. The apical to basolateral permeability of radiolabeled fatty acids was dependent upon both saturation and chain length of the fatty acid. Knockdown of various fatty acid transport proteins using siRNA significantly decreased radiolabeled fatty acid transport across the HBMEC monolayer. Our findings indicate that FATP-1 and FATP-4 are the predominant fatty acid transport proteins expressed in the BBB based on human and mouse expression studies. While transport studies in HBMEC monolayers support their involvement in fatty acid permeability, fatty acid translocase/CD36 also appears to play a prominent role in transport of fatty acids across HBMEC.

  3. Β-alanine and l-histidine transport across the inner blood-retinal barrier: potential involvement in L-carnosine supply.

    Usui, Takuya; Kubo, Yoshiyuki; Akanuma, Shin-Ichi; Hosoya, Ken-Ichi

    2013-08-01

    The supply of L-carnosine, a bioactive dipeptide of β-alanine and l-histidine, to the retina across the blood-retinal barrier (BRB) was studied. The in vivo and in vitro studies revealed low uptake activities for [(3)H]Gly-Sar, a representative dipeptide, suggesting that l-carnosine transport plays only a minor role at the BRB. The in vivo study using rats showed approximately 18- and 23-fold greater retinal uptake indexes (RUI) for [(3)H]β-alanine and [(3)H]l-histidine compared with that of a paracellular marker, respectively. The RUI of [(3)H]β-alanine was taurine- and γ-aminobutyric acid-sensitive, and the in vitro uptake by TR-iBRB2 cells showed time- concentration- and temperature-dependent [(3)H]β-alanine uptake, suggesting that a carrier-mediated process was involved in β-alanine transport across the inner BRB. [(3)H]β-Alanine uptake was inhibited by taurine and β-guanidinopropionic acid, suggesting that taurine transporter (TAUT/SLC6A6) is responsible for the influx transport of β-alanine across the inner BRB. Regarding l-histidine, the l-leucine-sensitive RUI of [(3)H]l-histidine was identified, and the in vitro [(3)H]l-histidine uptake by TR-iBRB2 cells suggested that a carrier-mediated process was involved in l-histidine transport across the inner BRB. The inhibition profile suggested that L-type amino acid transporter (LAT1/SLC7A5) is responsible for the influx transport of l-histidine across the inner BRB. These results show that the influx transports of β-alanine and l-histidine across the inner BRB is carried out by TAUT and LAT1, respectively, suggesting that the retinal l-carnosine is supplied by enzymatic synthesis from two kinds of amino acids transported across the inner BRB.

  4. Identification of a disulfide bridge important for transport function of SNAT4 neutral amino acid transporter.

    Rugmani Padmanabhan Iyer

    Full Text Available SNAT4 is a member of system N/A amino acid transport family that primarily expresses in liver and muscles and mediates the transport of L-alanine. However, little is known about the structure and function of the SNAT family of transporters. In this study, we showed a dose-dependent inhibition in transporter activity of SNAT4 with the treatment of reducing agents, dithiothreitol (DTT and Tris(2-carboxyethylphosphine (TCEP, indicating the possible involvement of disulfide bridge(s. Mutation of residue Cys-232, and the two highly conserved residues Cys-249 and Cys-321, compromised the transport function of SNAT4. However, this reduction was not caused by the decrease of SNAT4 on the cell surface since the cysteine-null mutant generated by replacing all five cysteines with alanine was equally capable of being expressed on the cell surface as wild-type SNAT4. Interestingly, by retaining two cysteine residues, 249 and 321, a significant level of L-alanine uptake was restored, indicating the possible formation of disulfide bond between these two conserved residues. Biotinylation crosslinking of free thiol groups with MTSEA-biotin provided direct evidence for the existence of a disulfide bridge between Cys-249 and Cys-321. Moreover, in the presence of DTT or TCEP, transport activity of the mutant retaining Cys-249 and Cys-321 was reduced in a dose-dependent manner and this reduction is gradually recovered with increased concentration of H2O2. Disruption of the disulfide bridge also decreased the transport of L-arginine, but to a lesser degree than that of L-alanine. Together, these results suggest that cysteine residues 249 and 321 form a disulfide bridge, which plays an important role in substrate transport but has no effect on trafficking of SNAT4 to the cell surface.

  5. (18)F-Fluorination of Unactivated C-H Bonds in Branched Aliphatic Amino Acids: Direct Synthesis of Oncological Positron Emission Tomography Imaging Agents.

    Nodwell, Matthew B; Yang, Hua; Čolović, Milena; Yuan, Zheliang; Merkens, Helen; Martin, Rainer E; Bénard, François; Schaffer, Paul; Britton, Robert

    2017-03-15

    A mild and selective photocatalytic C-H (18)F-fluorination reaction has been developed that provides direct access to (18)F-fluorinated amino acids. The biodistribution and uptake of three (18)F-labeled leucine analogues via LAT1 mediated transport in several cancer cell lines is reported. Positron emission tomography imaging of mice bearing PC3 (prostate) or U87 (glioma) xenografts using 5-[(18)F]-fluorohomoleucine showed high tumor uptake and excellent tumor visualization, highlighting the utility of this strategy for rapid tracer discovery for oncology.

  6. Hypoxia optimises tumour growth by controlling nutrient import and acidic metabolite export.

    Parks, Scott K; Cormerais, Yann; Marchiq, Ibtissam; Pouyssegur, Jacques

    2016-01-01

    In their quest for survival and successful growth, cancer cells optimise their cellular processes to enable them to outcompete normal cells in their microenvironment. In essence cancer cells: (i) enhance uptake of nutrients/metabolites, (ii) utilise nutrients more efficiently via metabolic alterations and (iii) deal with the metabolic waste products in a way that furthers their progression while hampering the survival of normal tissue. Hypoxia Inducible Factors (HIFs) act as essential drivers of these adaptations via the promotion of numerous membrane proteins including glucose transporters (GLUTs), monocarboxylate transporters (MCTs), amino-acid transporters (LAT1, xCT), and acid-base regulating carbonic anhydrases (CAs). In addition to a competitive growth advantage for tumour cells, these HIF-regulated proteins are implicated in metastasis, cancer 'stemness' and the immune response. Current research indicates that combined targeting of these HIF-regulated membrane proteins in tumour cells will provide promising therapeutic strategies in the future.

  7. Antibacterial drug treatment increases intestinal bile acid absorption via elevated levels of ileal apical sodium-dependent bile acid transporter but not organic solute transporter α protein.

    Miyata, Masaaki; Hayashi, Kenjiro; Yamakawa, Hiroki; Yamazoe, Yasushi; Yoshinari, Kouichi

    2015-01-01

    Antibacterial drug treatment increases the bile acid pool size and hepatic bile acid concentration through the elevation of hepatic bile acid synthesis. However, the involvement of intestinal bile acid absorption in the increased bile acid pool size remains unclear. To determine whether intestinal bile acid absorption contributes to the increased bile acid pool in mice treated with antibacterial drugs, we evaluated the levels of bile acid transporter proteins and the capacity of intestinal bile acid absorption. Ileal apical sodium-dependent bile acid transporter (ASBT) mRNA and protein levels were significantly increased in ampicillin (ABPC)-treated mice, whereas organic solute transporter α (OSTα) mRNA levels, but not protein levels, significantly decreased in mice. Similar alterations in the expression levels of bile acid transporters were observed in mice treated with bacitracin/neomycin/streptomycin. The capacity for intestinal bile acid absorption was evaluated by an in situ loop method. Increased ileal absorption of taurochenodeoxycholic acid was observed in mice treated with ABPC. These results suggest that intestinal bile acid absorption is elevated in an ASBT-dependent manner in mice treated with antibacterial drugs.

  8. Transport of the two natural auxins, indole-3-butyric acid and indole-3-acetic acid, in Arabidopsis

    Rashotte, Aaron M.; Poupart, Julie; Waddell, Candace S.; Muday, Gloria K.; Brown, C. S. (Principal Investigator)

    2003-01-01

    Polar transport of the natural auxin indole-3-acetic acid (IAA) is important in a number of plant developmental processes. However, few studies have investigated the polar transport of other endogenous auxins, such as indole-3-butyric acid (IBA), in Arabidopsis. This study details the similarities and differences between IBA and IAA transport in several tissues of Arabidopsis. In the inflorescence axis, no significant IBA movement was detected, whereas IAA is transported in a basipetal direction from the meristem tip. In young seedlings, both IBA and IAA were transported only in a basipetal direction in the hypocotyl. In roots, both auxins moved in two distinct polarities and in specific tissues. The kinetics of IBA and IAA transport appear similar, with transport rates of 8 to 10 mm per hour. In addition, IBA transport, like IAA transport, is saturable at high concentrations of auxin, suggesting that IBA transport is protein mediated. Interestingly, IAA efflux inhibitors and mutations in genes encoding putative IAA transport proteins reduce IAA transport but do not alter IBA movement, suggesting that different auxin transport protein complexes are likely to mediate IBA and IAA transport. Finally, the physiological effects of IBA and IAA on hypocotyl elongation under several light conditions were examined and analyzed in the context of the differences in IBA and IAA transport. Together, these results present a detailed picture of IBA transport and provide the basis for a better understanding of the transport of these two endogenous auxins.

  9. Action of Abscisic Acid on Auxin Transport and its Relation to Phototropism

    Naqvi, S. M.; Engvild, Kjeld Christensen

    1974-01-01

    The action of abscisic acid on the kinetics of auxin transport through Zea mays L. (cv. Goudster) coleoptiles has been investigated. Abscisic acid applied simultaneously with indoleacetic acid-2-14C in the donor block reduced the transport intensity without materially affecting the basipetal...

  10. Charge transport in conducting polyaniline co-doped with sulfosalicylic acid and dodecylbenzoyl sulfonic acid

    MA Li; YAN Jun; GAN Meng-Yu; HE Ling; LI Jian-Feng

    2009-01-01

    We prepared conducting polyaniline (PAn) co-doped with sulfosalicylic acid (SSA) and dodecylbenzoyl sulfonic acid (DBSA) in micro-emulsive polymerization, and studied its charge transport behaviors based on the measurement of its electrical conductivity in the temperature range between 203 K and 298 K. The conductivity was found to increase with temperature, similar to the case in semiconductors. Analyzing the experimental data with three models, namely the charge-energy-limited-tunneling model, Kivelson model and the three-dimensional variable range hopping (3D-VRH) model demonstrated that these models all describe well the charge transport behaviors of PAn co-doped with SSA and DBSA within the mentioned temperature range. From calculation with the 3D-VRH model, the hopping distance of the conducting PAn is obviously larger than its localization length. The PAn doped with SSA and DBSA enjoys desirable crystallinity due to the co-doping of two functional sulfonic acids. The macroscopic conductivity may correspond to three-dimensional transport in the network of the bundles, and the metallic islands may be attributed to quasi-one-dimensional bundles.

  11. Amino Acid Transporters and Release of Hydrophobic Amino Acids in the Heterocyst-Forming Cyanobacterium Anabaena sp. Strain PCC 7120

    Rafael Pernil

    2015-04-01

    Full Text Available Anabaena sp. strain PCC 7120 is a filamentous cyanobacterium that can use inorganic compounds such as nitrate or ammonium as nitrogen sources. In the absence of combined nitrogen, it can fix N2 in differentiated cells called heterocysts. Anabaena also shows substantial activities of amino acid uptake, and three ABC-type transporters for amino acids have been previously characterized. Seven new loci encoding predicted amino acid transporters were identified in the Anabaena genomic sequence and inactivated. Two of them were involved in amino acid uptake. Locus alr2535-alr2541 encodes the elements of a hydrophobic amino acid ABC-type transporter that is mainly involved in the uptake of glycine. ORF all0342 encodes a putative transporter from the dicarboxylate/amino acid:cation symporter (DAACS family whose inactivation resulted in an increased uptake of a broad range of amino acids. An assay to study amino acid release from Anabaena filaments to the external medium was set up. Net release of the alanine analogue α-aminoisobutyric acid (AIB was observed when transport system N-I (a hydrophobic amino acid ABC-type transporter was engaged in the uptake of a specific substrate. The rate of AIB release was directly proportional to the intracellular AIB concentration, suggesting leakage from the cells by diffusion.

  12. Impact of Microbial Growth on Subsurface Perfluoroalkyl Acid Transport

    Weathers, T. S.; Higgins, C. P.; Sharp, J.

    2014-12-01

    The fate and transport of poly and perfluoroalkyl substances (PFASs) in the presence of active microbial communities has not been widely investigated. These emerging contaminants are commonly utilized in aqueous film-forming foams (AFFF) and have often been detected in groundwater. This study explores the transport of a suite of perfluorocarboxylic acids and perfluoroalkylsulfonates, including perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS), in microbially active settings. Single point organic carbon normalized sorption coefficients derived by exposing inactive cellular material to PFASs result in more than an order of magnitude increase in sorption compared to soil organic carbon sorption coefficients found in literature. For example, the sorption coefficients for PFOS are 4.05±0.07 L/kg and 2.80±0.08 L/kg for cellular organic carbon and soil organic carbon respectively. This increase in sorption, coupled with enhanced extracellular polymeric substance production observed during growth of a common hydrocarbon degrading soil microbe exposed to source-level concentrations of PFASs (10 mg/L of 11 analytes, 110 mg/L total) may result in PFAS retardation in situ. To address the upscaling of this phenomenon, flow-through columns packed with low-organic carbon sediment and biostimulated with 10 mg/L glucose were exposed to PFAS concentrations from 15 μg/L to 10 mg/L of each 11 analytes. Breakthrough and tailing of each analyte was measured and modeled with Hydrus-1D to explore sorption coefficients over time for microbially active columns.

  13. Butyric acid increases transepithelial transport of ferulic acid through upregulation of the monocarboxylate transporters SLC16A1 (MCT1) and SLC16A3 (MCT4).

    Ziegler, Kerstin; Kerimi, Asimina; Poquet, Laure; Williamson, Gary

    2016-06-01

    Ferulic acid is released by microbial hydrolysis in the colon, where butyric acid, a major by-product of fermentation, constitutes the main energy source for colonic enterocytes. We investigated how varying concentrations of this short chain fatty acid may influence the absorption of the phenolic acid. Chronic treatment of Caco-2 cells with butyric acid resulted in increased mRNA and protein abundance of the monocarboxylate transporters SLC16A1 (MCT1) and SLC16A3 (MCT4), previously proposed to facilitate ferulic acid absorption in addition to passive diffusion. Short term incubation with butyric acid only led to upregulation of MCT4 while both conditions increased transepithelial transport of ferulic acid in the apical to basolateral, but not basolateral to apical, direction. Chronic treatment also elevated intracellular concentrations of ferulic acid, which in turn gave rise to increased concentrations of ferulic acid metabolites. Immunofluorescence staining of cells revealed uniform distribution of MCT1 protein in the cell membrane, whereas MCT4 was only detected in the lateral plasma membrane sections of Caco-2 cells. We therefore propose that MCT1 may be acting as an uptake transporter and MCT4 as an efflux system across the basolateral membrane for ferulic acid, and that this process is stimulated by butyric acid.

  14. L-aspartic acid transport by cat erythrocytes

    Chen, C.W.; Preston, R.L.

    1986-03-01

    Cat and dog red cells are unusual in that they have no Na/K ATPase and contain low K and high Na intracellularly. They also show significant Na dependent L-aspartate (L-asp) transport. The authors have characterized this system in cat RBCs. The influx of /sup 3/H-L-asp (typically 2..mu..M) was measured in washed RBCs incubated for 60 s at 37/sup 0/C in medium containing 140 mM NaCl, 5 mM Kcl, 2 mM CaCl/sub 2/, 15 mM MOPS pH 7.4, 5 mM glucose, and /sup 14/C-PEG as a space marker. The cells were washed 3 times in the medium immediately before incubation which was terminated by centrifuging the RBCs through a layer of dibutylphthalate. Over an L-asp concentration range of 0.5-1000..mu..M, influx obeyed Michaelis-Menten kinetics with a small added linear diffusion component. The Kt and Jmax of the saturable component were 5.40 +/- 0.34 ..mu..M and 148.8 +/- 7.2 ..mu..mol 1. cell/sup -1/h/sup -1/ respectively. Replacement of Na with Li, K, Rb, Cs or choline reduce influx to diffusion. With the addition of asp analogues (4/sup +/M L-asp, 40/sup +/M inhibitor), the following sequence of inhibition was observed (range 80% to 40% inhib.): L-glutamate > L-cysteine sulfonate > D-asp > L-cysteic acid > D-glutamate. Other amino acids such as L-alanine, L-proline, L-lysine, L-cysteine, and taurine showed no inhibition (<5%). These data suggest that cat red cells contain a high-affinity Na dependent transport system for L-asp, glutamate, and closely related analogues which resembles that found in the RBCs of other carnivores and in neural tissues.

  15. Transport of ascorbic acid and dehydroascorbic acid by pancreatic islet cells from neonatal rats

    Zhou, A; Farver, O; Thorn, N A

    1991-01-01

    Several amidated biologically active peptides such as pancreastatin, thyrotropin-releasing hormone, pancreatic polypeptide and amylin are produced in endocrine pancreatic tissue which contains the enzyme necessary for their final processing, i.e. peptidylglycine alpha-amidating mono-oxygenase (EC 1.......14.17.3). The enzyme needs ascorbic acid for activity as well as copper and molecular oxygen. The present work shows that pancreatic islet cells prepared from overnight cultures of isolated islets from 5-7-day-old rats accumulate 14C-labelled ascorbic acid by a Na(+)-dependent active transport mechanism which involves...... contained a fairly low concentration of iron but a high concentration of copper....

  16. Designing Novel Nanoformulations Targeting Glutamate Transporter Excitatory Amino Acid Transporter 2: Implications in Treating Drug Addiction.

    Rao, Pss; Yallapu, Murali M; Sari, Youssef; Fisher, Paul B; Kumar, Santosh

    Chronic drug abuse is associated with elevated extracellular glutamate concentration in the brain reward regions. Deficit of glutamate clearance has been identified as a contributing factor that leads to enhanced glutamate concentration following extended drug abuse. Importantly, normalization of glutamate level through induction of glutamate transporter 1 (GLT1)/ excitatory amino acid transporter 2 (EAAT2) expression has been described in several in vivo studies. GLT1 upregulators including ceftriaxone, a beta-lactam antibiotic, have been effective in attenuating drug-seeking and drug-consumption behavior in rodent models. However, potential obstacles toward clinical translation of GLT1 (EAAT2) upregulators as treatment for drug addiction might include poor gastrointestinal absorption, serious peripheral adverse effects, and/or suboptimal CNS concentrations. Given the growing success of nanotechnology in targeting CNS ailments, nanoformulating known GLT1 (EAAT2) upregulators for selective uptake across the blood brain barrier presents an ideal therapeutic approach for treating drug addiction. In this review, we summarize the results obtained with promising GLT1 (EAAT2) inducing compounds in animal models recapitulating drug addiction. Additionally, the various nanoformulations that can be employed for selectively increasing the CNS bioavailability of GLT1 (EAAT2) upregulators are discussed. Finally, the applicability of GLT1 (EAAT2) induction via central delivery of drug-loaded nanoformulations is described.

  17. Transport mechanism and regulatory properties of the human amino acid transporter ASCT2 (SLC1A5).

    Scalise, Mariafrancesca; Pochini, Lorena; Panni, Simona; Pingitore, Piero; Hedfalk, Kristina; Indiveri, Cesare

    2014-11-01

    The kinetic mechanism of the transport catalyzed by the human glutamine/neutral amino acid transporter hASCT2 over-expressed in P. pastoris was determined in proteoliposomes by pseudo-bi-substrate kinetic analysis of the Na(+)-glutamineex/glutaminein transport reaction. A random simultaneous mechanism resulted from the experimental analysis. Purified functional hASCT2 was chemically cross-linked to a stable dimeric form. The oligomeric structure correlated well with the kinetic mechanism of transport. Half-saturation constants (Km) of the transporter for the other substrates Ala, Ser, Asn and Thr were measured both on the external and internal side. External Km were much lower than the internal ones confirming the asymmetry of the transporter. The electric nature of the transport reaction was determined imposing a negative inside membrane potential generated by K(+) gradients in the presence of valinomycin. The transport reaction resulted to be electrogenic and the electrogenicity originated from external Na(+). Internal Na(+) exerted a stimulatory effect on the transport activity which could be explained by a regulatory, not a counter-transport, effect. Native and deglycosylated hASCT2 extracted from HeLa showed the same transport features demonstrating that the glycosyl moiety has no role in transport function. Both in vitro and in vivo interactions of hASCT2 with the scaffold protein PDZK1 were revealed.

  18. Roles of Long-chain Acyl Coenzyme A Synthetase in Absorption and Transport of Fatty Acid

    Fan Gao; Xue-feng Yang; Nian Fu; Yang Hu; Yan Ouyang; Kai Qing

    2016-01-01

    Abstract Long-chain acyl coenzyme A synthetase (ACSL) is a member of the synthetase family encoded by a multigene family; it plays an important role in the absorption and transport of fatty acid. Here we review the roles of ACSL in the regulating absorption and transport of fatty acid, as well as the connection between ACSL and some metabolic diseases.

  19. Report membrane transport of lactic acid in the filamentous fungus Rhizopus

    The fungus Rhizopus is frequently used for fermentative production of lactic acid, but little is known about the mechanisms or proteins for transporting this carboxylic acid. Since transport of the lactate anion across the plasma membrane is critical to prevent acidification of the cytoplasm, we ev...

  20. Liquid Membrane Transport Behavior of Functional Substituted Crown Ethers for Amino Acids

    2002-01-01

    Three functional substituted crown ethers were synthesized as liquid membrane transport carriers for amino acids. The result obtained shows that this kind of ditopic ligands can transport sodium salt of amino acids in good rate value especially the one with two pyridinyl groups as binding site outside the macrocycle.

  1. Non-physiological amino acid (NPAA) therapy targeting brain phenylalanine reduction: pilot studies in PAHENU2 mice.

    Vogel, Kara R; Arning, Erland; Wasek, Brandi L; Bottiglieri, Teodoro; Gibson, K Michael

    2013-05-01

    Transport of large neutral amino acids (LNAA) across the blood brain barrier (BBB) is facilitated by the L-type amino acid transporter, LAT1. Peripheral accumulation of one LNAA (e.g., phenylalanine (phe) in PKU) is predicted to increase uptake of the offending amino acid to the detriment of others, resulting in disruption of brain amino acid homeostasis. We hypothesized that selected non-physiological amino acids (NPAAs) such as DL-norleucine (NL), 2-aminonorbornane (NB; 2-aminobicyclo-(2,1,1)-heptane-2-carboxylic acid), 2-aminoisobutyrate (AIB), and N-methyl-aminoisobutyrate (MAIB), acting as competitive inhibitors of various brain amino acid transporters, could reduce brain phe in Pah (enu2) mice, a relevant murine model of PKU. Oral feeding of 5 % NL, 5 % AIB, 0.5 % NB and 3 % MAIB reduced brain phe by 56 % (p amino acids) were also observed, however, with MAIB displaying the mildest effects. Of interest, MAIB represents an inhibitor of the system A (alanine) transporter that primarily traffics small amino acids and not LNAAs. Our studies represent the first in vivo use of these NPAAs in Pah (enu2) mice, and provide proof-of-principle for their further preclinical development, with the long-term objective of identifying NPAA combinations and concentrations that selectively restrict brain phe transport while minimally impacting other LNAAs and downstream intermediates.

  2. Delineation on Therapeutic Significance of Transporters as Molecular Targets of Drugs

    KANAI Yoshikat; HE Xin; LIU Chang-xiao

    2011-01-01

    Transporters are membrane proteins mediating permeation of organic and inorganic solutes through the plasma membrane and membranes of intracellular organella.They play essential roles in the epithelial absorption and cellular uptake of nutrients as well as absorption,distribution,metabolism,and excretion of drugs.Because transporters contribute to determining the distribution of compounds in the body in concert with metabolic/synthetic enzymes,the drugs that affect the functions of transporters are expected to alter the distribution of compounds in the body and to ameliorate disrupted homeostasis.In this context,drugs targeting transporters have been used clinically.Such drugs include antidepressants targeting monoamine transporters,diuretics targeting inorganic ion transporters of renal tubules,and uricosuric agents targeting renal urate transporters.Now new transporter-targeting drugs designed based on post-genome drug development strategy have been in the process of clinical trials or basic/clinical researches.For example,the inhibitors of renal Na/glucose cotransporter SGLT2 have been proved for their efficacy in the treatment of diabetes mellitus.The cancer L-type amino acid transporter 1(LAT1)has been considered as a target of cancer diagnosis and therapeutics.The transporter-targeting drugs are expected to provide new rationale in the therapeutics of various diseases.

  3. Mitochondrial ascorbic acid transport is mediated by a low-affinity form of the sodium-coupled ascorbic acid transporter-2.

    Muñoz-Montesino, Carola; Roa, Francisco J; Peña, Eduardo; González, Mauricio; Sotomayor, Kirsty; Inostroza, Eveling; Muñoz, Carolina A; González, Iván; Maldonado, Mafalda; Soliz, Carlos; Reyes, Alejandro M; Vera, Juan Carlos; Rivas, Coralia I

    2014-05-01

    Despite the fundamental importance of the redox metabolism of mitochondria under normal and pathological conditions, our knowledge regarding the transport of vitamin C across mitochondrial membranes remains far from complete. We report here that human HEK-293 cells express a mitochondrial low-affinity ascorbic acid transporter that molecularly corresponds to SVCT2, a member of the sodium-coupled ascorbic acid transporter family 2. The transporter SVCT1 is absent from HEK-293 cells. Confocal colocalization experiments with anti-SVCT2 and anti-organelle protein markers revealed that most of the SVCT2 immunoreactivity was associated with mitochondria, with minor colocalization at the endoplasmic reticulum and very low immunoreactivity at the plasma membrane. Immunoblotting of proteins extracted from highly purified mitochondrial fractions confirmed that SVCT2 protein was associated with mitochondria, and transport analysis revealed a sigmoidal ascorbic acid concentration curve with an apparent ascorbic acid transport Km of 0.6mM. Use of SVCT2 siRNA for silencing SVCT2 expression produced a major decrease in mitochondrial SVCT2 immunoreactivity, and immunoblotting revealed decreased SVCT2 protein expression by approximately 75%. Most importantly, the decreased protein expression was accompanied by a concomitant decrease in the mitochondrial ascorbic acid transport rate. Further studies using HEK-293 cells overexpressing SVCT2 at the plasma membrane revealed that the altered kinetic properties of mitochondrial SVCT2 are due to the ionic intracellular microenvironment (low in sodium and high in potassium), with potassium acting as a concentration-dependent inhibitor of SVCT2. We discarded the participation of two glucose transporters previously described as mitochondrial dehydroascorbic acid transporters; GLUT1 is absent from mitochondria and GLUT10 is not expressed in HEK-293 cells. Overall, our data indicate that intracellular SVCT2 is localized in mitochondria, is

  4. The amino acid transporter SLC6A14 in cancer and its potential use in chemotherapy

    Yangzom D. Bhutia

    2014-12-01

    Full Text Available Tumor cells have an increased demand for glucose and amino acids to support their rapid growth, and also exhibit alterations in biochemical pathways that metabolize these nutrients. Transport across the plasma membrane is essential to feed glucose and amino acids into these tumor cell-selective metabolic pathways. Transfer of amino acids across biological membranes occurs via a multitude of transporters; tumor cells must upregulate one or more of these transporters to satisfy their increased demand for amino acids. Among the amino acid transporters, SLC6A14 stands out with specific functional features uniquely suited for the biological needs of the tumor cells. This transporter is indeed upregulated in tumors of epithelial origin, including colon cancer, cervical cancer, breast cancer, and pancreatic cancer. Since normal cells express this transporter only at low levels, blockade of this transporter should lead to amino acid starvation selectively in tumor cells, thus having little effect on normal cells. This offers a novel, yet logical, strategy for the treatment of cancers that are associated with upregulation of SLC6A14. In addition, a variety of amino acid-based prodrugs are recognized as substrates by SLC6A14, thus raising the possibility that anticancer drugs can be delivered into tumor cells selectively via this transporter in the form of amino acid prodrugs. This strategy allows exposure of SLC6A14-positive tumor cells to chemotherapy with minimal off-target effects. In conclusion, the amino acid transporter SLC6A14 holds great potential not only as a direct drug target for cancer therapy but also for tumor cell-selective delivery of anticancer drugs.

  5. Potency of individual bile acids to regulate bile acid synthesis and transport genes in primary human hepatocyte cultures.

    Liu, Jie; Lu, Hong; Lu, Yuan-Fu; Lei, Xiaohong; Cui, Julia Yue; Ellis, Ewa; Strom, Stephen C; Klaassen, Curtis D

    2014-10-01

    Bile acids (BAs) are known to regulate their own homeostasis, but the potency of individual bile acids is not known. This study examined the effects of cholic acid (CA), chenodeoxycholic acid (CDCA), deoxycholic acid (DCA), lithocholic acid (LCA) and ursodeoxycholic acid (UDCA) on expression of BA synthesis and transport genes in human primary hepatocyte cultures. Hepatocytes were treated with the individual BAs at 10, 30, and 100μM for 48 h, and RNA was extracted for real-time PCR analysis. For the classic pathway of BA synthesis, BAs except for UDCA markedly suppressed CYP7A1 (70-95%), the rate-limiting enzyme of bile acid synthesis, but only moderately (35%) down-regulated CYP8B1 at a high concentration of 100μM. BAs had minimal effects on mRNA of two enzymes of the alternative pathway of BA synthesis, namely CYP27A1 and CYP7B1. BAs increased the two major target genes of the farnesoid X receptor (FXR), namely the small heterodimer partner (SHP) by fourfold, and markedly induced fibroblast growth factor 19 (FGF19) over 100-fold. The BA uptake transporter Na(+)-taurocholate co-transporting polypeptide was unaffected, whereas the efflux transporter bile salt export pump was increased 15-fold and OSTα/β were increased 10-100-fold by BAs. The expression of the organic anion transporting polypeptide 1B3 (OATP1B3; sixfold), ATP-binding cassette (ABC) transporter G5 (ABCG5; sixfold), multidrug associated protein-2 (MRP2; twofold), and MRP3 (threefold) were also increased, albeit to lesser degrees. In general, CDCA was the most potent and effective BA in regulating these genes important for BA homeostasis, whereas DCA and CA were intermediate, LCA the least, and UDCA ineffective.

  6. Structural basis of the alternating-access mechanism in a bile acid transporter

    Zhou, Xiaoming; Levin, Elena J.; Pan, Yaping; McCoy, Jason G.; Sharma, Ruchika; Kloss, Brian; Bruni, Renato; Quick, Matthias; Zhou, Ming

    2014-01-01

    Bile acids are synthesized from cholesterol in hepatocytes and secreted through the biliary tract into the small intestine, where they aid in absorption of lipids and fat-soluble vitamins. Through a process known as enterohepatic recirculation, more than 90% of secreted bile acids are then retrieved from the intestine and returned to the liver for resecretion. In humans, there are two Na+-dependent bile acid transporters involved in enterohepatic recirculation, the Na+-taurocholate co-transporting polypeptide (NTCP; also known as SLC10A1) expressed in hepatocytes, and the apical sodium-dependent bile acid transporter (ASBT; also known as SLC10A2) expressed on enterocytes in the terminal ileum. In recent years, ASBT has attracted much interest as a potential drug target for treatment of hypercholesterolaemia, because inhibition of ASBT reduces reabsorption of bile acids, thus increasing bile acid synthesis and consequently cholesterol consumption. However, a lack of three-dimensional structures of bile acid transporters hampers our ability to understand the molecular mechanisms of substrate selectivity and transport, and to interpret the wealth of existing functional data. The crystal structure of an ASBT homologue from Neisseria meningitidis (ASBTNM) in detergent was reported recently, showing the protein in an inward-open conformation bound to two Na+ and a taurocholic acid. However, the structural changes that bring bile acid and Na+ across the membrane are difficult to infer from a single structure. To understand the structural changes associated with the coupled transport of Na+ and bile acids, here we solved two structures of an ASBT homologue from Yersinia frederiksenii (ASBTYf) in a lipid environment, which reveal that a large rigid-body rotation of a substrate-binding domain gives the conserved `crossover' region, where two discontinuous helices cross each other, alternating accessibility from either side of the cell membrane. This result has implications

  7. Renal Transport of Uric Acid: Evolving Concepts and Uncertainties

    Bobulescu, Ion Alexandru; Moe, Orson W.

    2012-01-01

    In addition to its role as a metabolic waste product, uric acid has been proposed to be an important molecule with multiple functions in human physiology and pathophysiology and may be linked to human diseases beyond nephrolithiasis and gout. Uric acid homeostasis is determined by the balance between production, intestinal secretion, and renal excretion. The kidney is an important regulator of circulating uric acid levels, by reabsorbing around 90% of filtered urate, while being responsible f...

  8. Amino Acid transport in protoplasts isolated from soybean leaves.

    Vernooy, C D; Lin, W

    1986-05-01

    We isolated large quantities of mesophyll protoplasts from source and sink leaves of soybean plants and examined them for amino acid uptake. Accumulation of amino acids in isolated protoplasts was linear for at least 40 minutes. Uptake kinetics revealed the presence of both saturable and linear components. Increasing external pH decreases the uptake. The uncoupler, carbonyl cyanide p-trifluoromethoxyphenylhydrazone at 15 micromolar inhibited and fusicoccin at 10 micromolar stimulated amino acid uptake. Our data are consistent with a proton-cotransport mechanism for the uptake of l-glutamine and alpha-amino isobutyric acid into soybean mesophyll cells.

  9. A defect in amino acid transport of filamentous Escherichia coli induced by penicillin.

    内藤, 伸明; 友近, 健一; 口分田,晃; 塩出,純二; 金政, 泰弘

    1983-01-01

    This paper describes a new type of penicillin action on the cytoplasmic membrane of Escherichia coli. The ability of filamentous cells to uptake amino acids induced by low concentrations of penicillin increased with cell elongation. This defect in amino acid transport was mostly observed on the substrate of the osmotic shock resistant transport system. Penicillin treatment, however, did not disturb the other membrane functions such as the uptake of α-D-methyl glucopyranoside and triphenylmeth...

  10. The ABC transporter ABC40 encodes a phenylacetic acid export system in Penicillium chrysogenum

    Weber, Stefan S.; Kovalchuk, Andriy; Bovenberg, Roe A. L.; Driessen, Arnold J. M.

    2012-01-01

    The filamentous fungus Penicillium chrysogenum is used for the industrial production of beta-lactam antibiotics. The pathway for beta-lactam biosynthesis has been resolved and involves the enzyme phenylacetic acid CoA ligase that is responsible for the CoA activation of the side chain precursor phenylacetic acid (PAA) that is used for the biosynthesis of penicillin G. To identify ABC transporters related to beta-lactam biosynthesis, we analyzed the expression of all 48 ABC transporters presen...

  11. Towards bridging the gap between acid-base transporters and neuronal excitability modulation.

    Liu, Ying; Chen, Li-Ming

    2014-01-01

    pH homeostasis is a fundamental regulator of the function of the central nervous system. Dysfunction of acid-base transporters often results in disturbance of neuronal excitability. In a latest issue of Journal of Neuroscience, Jones et al. report that increasing intracellular bicarbonate concentration substantially stimulates the excitability of pyramidal neurons from mouse hippocampus by inhibiting KCNQ potassium channel. The finding shed important new light in understanding the molecular mechanism underlying the regulation of neuronal excitability by acid-base transporters.

  12. Transgenic mice overexpressing γ-aminobutyric acid transporter subtype I develop obesity

    2000-01-01

    Transgenic mice ubiquitously overexpressing murine γaminobutyric acid transporter subtype I were created. Unexpectedly, these mice markedly exhibited heritable obesity,which features significantly increased body weight and fat deposition. Behavioral examination revealed that transgenic mice have slightly reduced spontaneous locomotive capacity and altered feeding pattern. This preliminary finding indicates that the inappropriate level of γ-aminobutyric acid transporters may be directly or indirectly involved in the pathogenic mechanism underlying certain types of obesity.

  13. Study of Tranexamic Acid during Air Medical Prehospital Transport (STAAMP) Trial

    2014-10-01

    during Air Medical Prehospital transport (STAAMP) trial PRINCIPAL INVESTIGATOR: Jason L. Sperry, MD, MPH CONTRACTING ORGANIZATION...Tranexamic acid during Air Medical Prehospital transport (STAAMP) trial 5b. GRANT NUMBER W81XWH-13-2-0080 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S...and explained the purpose of this study to Pittsburgh local and surrounding area. 15. SUBJECT TERMS Prehospital ; Tranexamic acid 16

  14. Heme and menaquinone induced electron transport in lactic acid bacteria

    Brooijmans, R.J.W.; Smit, B.; Santos, dos F.; Riel, van J.; Vos, de W.M.; Hugenholtz, J.

    2009-01-01

    ABSTRACT: BACKGROUND: For some lactic acid bacteria higher biomass production as a result of aerobic respiration has been reported upon supplementation with heme and menaquinone. In this report, we have studied a large number of species among lactic acid bacteria for the existence of this trait. RES

  15. A plasma membrane association module in yeast amino acid transporters

    Popov-Čeleketić, Dušan; Bianchi, Frans; Ruiz, Stephanie J; Meutiawati, Febrina; Poolman, Bert

    2016-01-01

    Amino acid permeases (AAPs) in the plasma membrane (PM) of Saccharomyces cerevisiae are responsible for the uptake of amino acids and involved in regulation of their cellular levels. Here, we report on a strong and complex module for PM association found in the C-terminal tail of AAPs. Using in sili

  16. Aphid amino acid transporter regulates glutamine supply to intracellular bacterial symbionts.

    Price, Daniel R G; Feng, Honglin; Baker, James D; Bavan, Selvan; Luetje, Charles W; Wilson, Alex C C

    2014-01-01

    Endosymbiotic associations have played a major role in evolution. However, the molecular basis for the biochemical interdependence of these associations remains poorly understood. The aphid-Buchnera endosymbiosis provides a powerful system to elucidate how these symbioses are regulated. In aphids, the supply of essential amino acids depends on an ancient nutritional symbiotic association with the gamma-proteobacterium Buchnera aphidicola. Buchnera cells are densely packed in specialized aphid bacteriocyte cells. Here we confirm that five putative amino acid transporters are highly expressed and/or highly enriched in Acyrthosiphon pisum bacteriocyte tissues. When expressed in Xenopus laevis oocytes, two bacteriocyte amino acid transporters displayed significant levels of glutamine uptake, with transporter ACYPI001018, LOC100159667 (named here as Acyrthosiphon pisum glutamine transporter 1, ApGLNT1) functioning as the most active glutamine transporter. Transporter ApGLNT1 has narrow substrate selectivity, with high glutamine and low arginine transport capacity. Notably, ApGLNT1 has high binding affinity for arginine, and arginine acts as a competitive inhibitor for glutamine transport. Using immunocytochemistry, we show that ApGLNT1 is localized predominantly to the bacteriocyte plasma membrane, a location consistent with the transport of glutamine from A. pisum hemolymph to the bacteriocyte cytoplasm. On the basis of functional transport data and localization, we propose a substrate feedback inhibition model in which the accumulation of the essential amino acid arginine in A. pisum hemolymph reduces the transport of the precursor glutamine into bacteriocytes, thereby regulating amino acid biosynthesis in the bacteriocyte. Structural similarities in the arrangement of hosts and symbionts across endosymbiotic systems suggest that substrate feedback inhibition may be mechanistically important in other endosymbioses.

  17. Canine amino acid transport system Xc(-): cDNA sequence, distribution and cystine transport activity in lens epithelial cells.

    Maruo, Takuya; Kanemaki, Nobuyuki; Onda, Ken; Sato, Reiichiro; Ichihara, Nobuteru; Ochiai, Hideharu

    2014-04-01

    The cystine transport activity of a lens epithelial cell line originated from a canine mature cataract was investigated. The distinct cystine transport activity was observed, which was inhibited to 28% by extracellular 1 mM glutamate. The cDNA sequences of canine cysteine/glutamate exchanger (xCT) and 4F2hc were determined. The predicted amino acid sequences were 527 and 533 amino acid polypeptides, respectively. The amino acid sequences of canine xCT and 4F2hc showed high similarities (>80%) to those of humans. The expression of xCT in lens epithelial cell line was confirmed by western blot analysis. RT-PCR analysis revealed high level expression only in the brain, and it was below the detectable level in other tissues.

  18. Structure and mechanism of a Na+-independent amino acid transporter.

    Shaffer, Paul L; Goehring, April; Shankaranarayanan, Aruna; Gouaux, Eric

    2009-08-21

    Amino acid, polyamine, and organocation (APC) transporters are secondary transporters that play essential roles in nutrient uptake, neurotransmitter recycling, ionic homeostasis, and regulation of cell volume. Here, we present the crystal structure of apo-ApcT, a proton-coupled broad-specificity amino acid transporter, at 2.35 angstrom resolution. The structure contains 12 transmembrane helices, with the first 10 consisting of an inverted structural repeat of 5 transmembrane helices like the leucine transporter LeuT. The ApcT structure reveals an inward-facing, apo state and an amine moiety of lysine-158 located in a position equivalent to the sodium ion site Na2 of LeuT. We propose that lysine-158 is central to proton-coupled transport and that the amine group serves the same functional role as the Na2 ion in LeuT, thus demonstrating common principles among proton- and sodium-coupled transporters.

  19. Modulating effect of ascorbic Acid on transport-induced immunosuppression in goats.

    Minka, Ndazo Salka; Ayo, Joseph Olusegun

    2011-01-01

    The effect of 12 h road transportation on some basic blood cells and the modulating role of ascorbic acid were investigated in 40 adult Red Sokoto goats during the hot dry season. The animals were divided into two groups, GI (experimental; n = 20) and GII (control; n = 20). Group 1 was administered with ascorbic acid (AA) per os at a dosage rate of 100 mg/kg body weight, while GII was given 10 mL of sterile water per goat. Forty minutes after the administration and loading, the goats were transported for 12 h. The result obtained in GII goats showed that loading, transportation, high ambient temperature (AT), and relative humidity (RH) encountered during transportation induced lymphopenia, neutrophilia, and eosinopenia, which can cause immunosuppression. In GI goats, the administration of AA prior to loading and transportation ameliorated the adverse effects of loading and transportation stress on neutrophil/lymphocyte ratio and eosinopenia of the goats.

  20. Transport and metabolic effects of alpha-aminoisobutyric acid in Saccharomyces cerevisiae.

    Kim, K W; Roon, R J

    1982-11-24

    alpha-Aminoisobutyric acid is actively transported into yeast cells by the general amino acid transport system. The system exhibits a Km for alpha-aminoisobutyric acid of 270 microM, a Vmax of 24 nmol/min per mg cells (dry weight), and a pH optimum of 4.1-4.3. alpha-Aminoisobutyric acid is also transported by a minor system(s) with a Vmax of 1.7 nmol/min per mg cells. Transport occurs against a concentration gradient with the concentration ratio reaching over 1000:1 (in/out). The alpha-aminoisobutyric acid is not significantly metabolized or incorporated into protein after an 18 h incubation. alpha-Aminoisobutyric acid inhibits cell growth when a poor nitrogen source such as proline is provided but not with good nitrogen sources such as NH+4. During nitrogen starvation alpha-aminoisobutyric acid strongly inhibits the synthesis of the nitrogen catabolite repression sensitive enzyme, asparaginase II. Studies with a mutant yeast strain (GDH-CR) suggest that alpha-aminoisobutyric acid inhibition of asparaginase II synthesis occurs because alpha-aminoisobutyric acid is an effective inhibitor of protein synthesis in nitrogen starved cells.

  1. Niflumic acid modulates uncoupled substrate-gated conductances in the human glutamate transporter EAAT4.

    Poulsen, M V; Vandenberg, R J

    2001-07-01

    1. The effects of niflumic acid on the substrate-gated currents mediated by the glutamate transporter EAAT4 expressed in Xenopus laevis oocytes were examined using radiolabelled substrate flux measurements and two-electrode voltage clamp techniques. 2. Niflumic acid significantly enhanced the substrate-gated currents in EAAT4, without affecting the affinity of the substrates towards EAAT4. At a concentration of 300 microM, niflumic acid caused a 19 +/- 5 % reduction in L-[(3)H]glutamate uptake and no significant effect on the uptake of DL-[(3)H]aspartate. Thus, enhancement of the substrate-gated currents in EAAT4 does not correlate with the rate of substrate transport and suggests that the niflumic acid-induced currents are not thermodynamically coupled to the transport of substrate. 3. Niflumic acid and arachidonic acid co-applied with substrate to EAAT4-expressing oocytes had similar functional consequences. However, niflumic acid still enhanced the L-glutamate-gated current to the same extent in the presence and absence of a saturating dose of arachidonic acid, which suggests that the sites of action of the two compounds are distinct. 4. The EAAT4-mediated currents for the two substrates, L-glutamate and L-aspartate, were not enhanced equally by addition of the same dose of niflumic acid and the ionic composition of the niflumic acid-induced currents was not the same for the two substrates. Protons carry the L-glutamate-gated niflumic acid-induced current and both protons and chloride ions carry the L-aspartate-gated niflumic acid-induced current. 5. These results show that niflumic acid can be used to probe the functional aspects of EAAT4 and that niflumic acid and other non-steroid anti-inflammatory drugs could be used as the basis for the development of novel modulators of glutamate transporters.

  2. Engineering rTCA pathway and C4-dicarboxylate transporter for L-malic acid production.

    Chen, Xiulai; Wang, Yuancai; Dong, Xiaoxiang; Hu, Guipeng; Liu, Liming

    2017-02-22

    L-Malic acid is an important component of a vast array of food additives, antioxidants, disincrustants, pharmaceuticals, and cosmetics. Here, we presented a pathway optimization strategy and a transporter modification approach to reconstruct the L-malic acid biosynthesis pathway and transport system, respectively. First, pyruvate carboxylase (pyc) and malate dehydrogenase (mdh) from Aspergillus flavus and Rhizopus oryzae were combinatorially overexpressed to construct the reductive tricarboxylic acid (rTCA) pathway for L-malic acid biosynthesis. Second, the L-malic acid transporter (Spmae) from Schizosaccharomyces pombe was engineered by removing the ubiquitination motification to enhance the L-malic acid efflux system. Finally, the L-malic acid pathway was optimized by controlling gene expression levels, and the final L-malic acid concentration, yield, and productivity were up to 30.25 g L(-1), 0.30 g g(-1), and 0.32 g L(-1) h(-1) in the resulting strain W4209 with CaCO3 as a neutralizing agent, respectively. In addition, these corresponding parameters of pyruvic acid remained at 30.75 g L(-1), 0.31 g g(-1), and 0.32 g L(-1) h(-1), respectively. The metabolic engineering strategy used here will be useful for efficient production of L-malic acid and other chemicals.

  3. Brucella abortus ure2 region contains an acid-activated urea transporter and a nickel transport system

    García-Lobo Juan M

    2010-04-01

    Full Text Available Abstract Background Urease is a virulence factor that plays a role in the resistance of Brucella to low pH conditions, both in vivo and in vitro. Brucella contains two separate urease gene clusters, ure1 and ure2. Although only ure1 codes for an active urease, ure2 is also transcribed, but its contribution to Brucella biology is unknown. Results Re-examination of the ure2 locus showed that the operon includes five genes downstream of ureABCEFGDT that are orthologs to a nikKMLQO cluster encoding an ECF-type transport system for nickel. ureT and nikO mutants were constructed and analyzed for urease activity and acid resistance. A non-polar ureT mutant was unaffected in urease activity at neutral pH but showed a significantly decreased activity at acidic pH. It also showed a decreased survival rate to pH 2 at low concentration of urea when compared to the wild type. The nikO mutant had decreased urease activity and acid resistance at all urea concentrations tested, and this phenotype could be reverted by the addition of nickel to the growth medium. Conclusions Based on these results, we concluded that the operon ure2 codes for an acid-activated urea transporter and a nickel transporter necessary for the maximal activity of the urease whose structural subunits are encoded exclusively by the genes in the ure1 operon.

  4. Regulated acid-base transport in the collecting duct.

    Wagner, Carsten A; Devuyst, Olivier; Bourgeois, Soline; Mohebbi, Nilufar

    2009-05-01

    The renal collecting system serves the fine-tuning of renal acid-base secretion. Acid-secretory type-A intercalated cells secrete protons via a luminally expressed V-type H(+)-ATPase and generate new bicarbonate released by basolateral chloride/bicarbonate exchangers including the AE1 anion exchanger. Efficient proton secretion depends both on the presence of titratable acids (mainly phosphate) and the concomitant secretion of ammonia being titrated to ammonium. Collecting duct ammonium excretion requires the Rhesus protein RhCG as indicated by recent KO studies. Urinary acid secretion by type-A intercalated cells is strongly regulated by various factors among them acid-base status, angiotensin II and aldosterone, and the Calcium-sensing receptor. Moreover, urinary acidification by H(+)-ATPases is modulated indirectly by the activity of the epithelial sodium channel ENaC. Bicarbonate secretion is achieved by non-type-A intercalated cells characterized by the luminal expression of the chloride/bicarbonate exchanger pendrin. Pendrin activity is driven by H(+)-ATPases and may serve both bicarbonate excretion and chloride reabsorption. The activity and expression of pendrin is regulated by different factors including acid-base status, chloride delivery, and angiotensin II and may play a role in NaCl retention and blood pressure regulation. Finally, the relative abundance of type-A and non-type-A intercalated cells may be tightly regulated. Dysregulation of intercalated cell function or abundance causes various syndromes of distal renal tubular acidosis underlining the importance of these processes for acid-base homeostasis.

  5. Inhibition of ileal bile acid transporter: An emerging therapeutic strategy for chronic idiopathic constipation.

    Mosińska, Paula; Fichna, Jakub; Storr, Martin

    2015-06-28

    Chronic idiopathic constipation is a common disorder of the gastrointestinal tract that encompasses a wide profile of symptoms. Current treatment options for chronic idiopathic constipation are of limited value; therefore, a novel strategy is necessary with an increased effectiveness and safety. Recently, the inhibition of the ileal bile acid transporter has become a promising target for constipation-associated diseases. Enhanced delivery of bile acids into the colon achieves an accelerated colonic transit, increased stool frequency, and relief of constipation-related symptoms. This article provides insight into the mechanism of action of ileal bile acid transporter inhibitors and discusses their potential clinical use for pharmacotherapy of constipation in chronic idiopathic constipation.

  6. Effects of progesterone on glutamate transporter 2 and gamma-aminobutyric acid transporter 1 expression in the developing rat brain after recurrent seizures

    Lingjuan Liu; Dingan Mao; Liqun Liu; Yu Huang; Tao Bo

    2012-01-01

    Seizures were induced by flurothyl inhalation. Rats were intramuscularly treated with progesterone after each seizure. Results demonstrated that glutamate transporter 2 and γ-aminobutyric acid transporter 1 expression levels were significantly increased in the cerebral cortex and hippocampus of the developing rat brain following recurrent seizures. After progesterone treatment, glutamate transporter 2 protein expression was upregulated, but γ-aminobutyric acid transporter 1 levels decreased. These results suggest that glutamate transporter 2 and γ-aminobutyric acid transporter 1 are involved in the pathological processes of epilepsy. Progesterone can help maintain a balance between excitatory and inhibitory systems by modulating the amino acid transporter system, and protect the developing brain after recurrent seizures.

  7. Surface proton transport of fully protonated poly(aspartic acid) thin films on quartz substrates

    Nagao, Yuki, E-mail: ynagao@jaist.ac.jp; Kubo, Takahiro

    2014-12-30

    Graphical abstract: - Highlights: • Proton transport of fully protonated poly(aspartic acid) thin film was investigated. • The thin film structure differed greatly from the partially protonated one. • Proton transport occurs on the surface, not inside of the thin film. • This result contributes to biological transport systems such as bacteriorhodopsin. - Abstract: Thin film structure and the proton transport property of fully protonated poly(aspartic acid) (P-Asp100) have been investigated. An earlier study assessed partially protonated poly(aspartic acid), highly oriented thin film structure and enhancement of the internal proton transport. In this study of P-Asp100, IR p-polarized multiple-angle incidence resolution (P-MAIR) spectra were measured to investigate the thin film structure. The obtained thin films, with thicknesses of 120–670 nm, had no oriented structure. Relative humidity dependence of the resistance, proton conductivity, and normalized resistance were examined to ascertain the proton transport property of P-Asp100 thin films. The obtained data showed that the proton transport of P-Asp100 thin films might occur on the surface, not inside of the thin film. This phenomenon might be related with the proton transport of the biological system.

  8. Light-activated amino acid transport in Halobacterium halobium envelope vesicles

    Macdonald, R. E.; Lanyi, J. K.

    1977-01-01

    Vesicles prepared from Halobacterium halobium cell envelopes accumulate amino acids in response to light-induced electrical and chemical gradients. Nineteen of 20 commonly occurring amino acids have been shown to be actively accumulated by these vesicles in response to illumination or in response to an artificially created Na+ gradient. On the basis of shared common carriers the transport systems can be divided into eight classes, each responsible for the transport of one or several amino acids: arginine, lysine, histidine; asparagine, glutamine; alanine, glycine, threonine, serine; leucine, valine, isoleucine, methionine; phenylalanine, tyrosine, tryptophan; aspartate; glutamate; proline. Available evidence suggests that these carriers are symmetrical in that amino acids can be transported equally well in both directions across the vesicle membranes. A tentative working model to account for these observations is presented.

  9. Surface proton transport of fully protonated poly(aspartic acid) thin films on quartz substrates

    Nagao, Yuki; Kubo, Takahiro

    2014-12-01

    Thin film structure and the proton transport property of fully protonated poly(aspartic acid) (P-Asp100) have been investigated. An earlier study assessed partially protonated poly(aspartic acid), highly oriented thin film structure and enhancement of the internal proton transport. In this study of P-Asp100, IR p-polarized multiple-angle incidence resolution (P-MAIR) spectra were measured to investigate the thin film structure. The obtained thin films, with thicknesses of 120-670 nm, had no oriented structure. Relative humidity dependence of the resistance, proton conductivity, and normalized resistance were examined to ascertain the proton transport property of P-Asp100 thin films. The obtained data showed that the proton transport of P-Asp100 thin films might occur on the surface, not inside of the thin film. This phenomenon might be related with the proton transport of the biological system.

  10. Transport and Metabolism of the Endogenous Auxin Precursor lndole-3-Butyric Acid

    Lucia C. Strader; Bonnie Bartel

    2011-01-01

    T Plant growth and morphogenesis depend on the levels and distribution of the plant hormone auxin. Plants tightly regulate cellular levels of the active auxin indole-3-acetic acid (IAA) through synthesis, inactivation, and transport. Although the transporters that move IAA into and out of cells are well characterized and play important roles in development, little is known about the transport of IAA precursors. In this review, we discuss the accumulating evidence suggesting that the IAA precursor indole-3-butyric acid (IBA) is transported independently of the characterized IAA transport machinery along with the recent identification of specific IBA efflux carriers and enzymes suggested to metabolize IBA. These studies have revealed important roles for IBA in maintaining IAA levels and distribution within the plant to support normal development.

  11. Heme and menaquinone induced electron transport in lactic acid bacteria

    Santos Filipe

    2009-05-01

    Full Text Available Abstract Background For some lactic acid bacteria higher biomass production as a result of aerobic respiration has been reported upon supplementation with heme and menaquinone. In this report, we have studied a large number of species among lactic acid bacteria for the existence of this trait. Results Heme- (and menaquinone stimulated aerobic growth was observed for several species and genera of lactic acid bacteria. These include Lactobacillus plantarum, Lactobacillus rhamnosus, Lactobacilllus brevis, Lactobacillus paralimentarius, Streptococcus entericus and Lactococcus garviae. The increased biomass production without further acidification, which are respiration associated traits, are suitable for high-throughput screening as demonstrated by the screening of 8000 Lactococcus lactis insertion mutants. Respiration-negative insertion-mutants were found with noxA, bd-type cytochrome and menaquinol biosynthesis gene-disruptions. Phenotypic screening and in silico genome analysis suggest that respiration can be considered characteristic for certain species. Conclusion We propose that the cyd-genes were present in the common ancestor of lactic acid bacteria, and that multiple gene-loss events best explains the observed distribution of these genes among the species.

  12. New mechanisms that regulate Saccharomyces cerevisiae short peptide transporter achieve balanced intracellular amino acid concentrations.

    Melnykov, Artem V

    2016-01-01

    The budding yeast Saccharomyces cerevisiae is able to take up large quantities of amino acids in the form of di- and tripeptides via a short peptide transporter, Ptr2p. It is known that PTR2 can be induced by certain peptides and amino acids, and the mechanisms governing this upregulation are understood at the molecular level. We describe two new opposing mechanisms of regulation that emphasize potential toxicity of amino acids: the first is upregulation of PTR2 in a population of cells, caused by amino acid secretion that accompanies peptide uptake; the second is loss of Ptr2p activity, due to transporter internalization following peptide uptake. Our findings emphasize the importance of proper amino acid balance in the cell and extend understanding of peptide import regulation in yeast.

  13. Bibliography for acid-rock drainage and selected acid-mine drainage issues related to acid-rock drainage from transportation activities

    Bradley, Michael W.; Worland, Scott C.

    2015-01-01

    Acid-rock drainage occurs through the interaction of rainfall on pyrite-bearing formations. When pyrite (FeS2) is exposed to oxygen and water in mine workings or roadcuts, the mineral decomposes and sulfur may react to form sulfuric acid, which often results in environmental problems and potential damage to the transportation infrastructure. The accelerated oxidation of pyrite and other sulfidic minerals generates low pH water with potentially high concentrations of trace metals. Much attention has been given to contamination arising from acid mine drainage, but studies related to acid-rock drainage from road construction are relatively limited. The U.S. Geological Survey, in cooperation with the Tennessee Department of Transportation, is conducting an investigation to evaluate the occurrence and processes controlling acid-rock drainage and contaminant transport from roadcuts in Tennessee. The basic components of acid-rock drainage resulting from transportation activities are described and a bibliography, organized by relevant categories (remediation, geochemical, microbial, biological impact, and secondary mineralization) is presented.

  14. Humic acid transport in saturated porous media:Influence of flow velocity and influent concentration

    Xiaorong Wei; Mingan Shao; Lina Du; Robert Horton

    2014-01-01

    Understanding the transport of humic acids (HAs) in porous media can provide important and practical evidence needed for accurate prediction of organic/inorganic contaminant transport in different environmental media and interfaces.A series of column transport experiments was conducted to evaluate the transport of HA in different porous media at different flow velocities and influent HA concentrations.Low flow velocity and influent concentration were found to favor the adsorption and deposition of HA onto sand grains packed into columns and to give higher equilibrium distribution coefficients and deposition rate coefficients,which resulted in an increased fraction of HA being retained in columns.Consequently,retardation factors were increased and the transport of HA through the columns was delayed.These results suggest that the transport of HA in porous media is primarily controlled by the attachment of HA to the solid matrix.Accordingly,this attachment should be considered in studies of HA behavior in porous media.

  15. Humic acid transport in saturated porous media: influence of flow velocity and influent concentration.

    Wei, Xiaorong; Shao, Mingan; Du, Lina; Horton, Robert

    2014-12-01

    Understanding the transport of humic acids (HAs) in porous media can provide important and practical evidence needed for accurate prediction of organic/inorganic contaminant transport in different environmental media and interfaces. A series of column transport experiments was conducted to evaluate the transport of HA in different porous media at different flow velocities and influent HA concentrations. Low flow velocity and influent concentration were found to favor the adsorption and deposition of HA onto sand grains packed into columns and to give higher equilibrium distribution coefficients and deposition rate coefficients, which resulted in an increased fraction of HA being retained in columns. Consequently, retardation factors were increased and the transport of HA through the columns was delayed. These results suggest that the transport of HA in porous media is primarily controlled by the attachment of HA to the solid matrix. Accordingly, this attachment should be considered in studies of HA behavior in porous media.

  16. Progress in uric acid transporters%尿酸转运蛋白研究进展

    朱立然; 陈光亮

    2012-01-01

    Transport of uric acid by the kidneys rely on the transport protein in the renal tubular epithelial cells. Four kinds of urate transporters are involved in proximal tubular u-rate transport; human urate-anion exchanger 1 (hURAT1) , which is responsible for the reab-sorption of urate, human urate transporter (UAT) and organic anion transporter (OAT1 and OAT3), there are responsible for uric acid secretion. Recently, also found that the one re- sponsible for uric acid secretion into the extracellular, involved in the renal proximal tubule reabsorption of urate transporter protein - glucose transporter protein (GLUT9). This article summarized the features, functions and regulatory mechanisms of uric acid transport protein.%体内尿酸经肾脏转运时需依赖肾小管上皮细胞上的转运蛋白.现已明确有4种尿酸盐转运蛋白参与了人近曲肾小管对尿酸盐的转运:即负责尿酸重吸收的尿酸盐阴离子转运体1(hURAT1),及负责尿酸分泌的尿酸盐转运体(UAT)和有机阴离子转运体(OAT1和OAT3).最近,又发现了一种负责将尿酸分泌到细胞外,参与肾脏近曲小管对尿酸盐的重吸收的转运蛋白--葡萄糖转运蛋白9(GLUT9).本文对尿酸转运蛋白的特点、功能及调节机制进行综述.

  17. Perfluoroalkyl Acid Concentrations in Blood Samples Subjected to Transportation and Processing Delay.

    Cathrine Carlsen Bach

    Full Text Available In studies of perfluoroalkyl acids, the validity and comparability of measured concentrations may be affected by differences in the handling of biospecimens. We aimed to investigate whether measured plasma levels of perfluoroalkyl acids differed between blood samples subjected to delay and transportation prior to processing and samples with immediate processing and freezing.Pregnant women recruited at Aarhus University Hospital, Denmark, (n = 88 provided paired blood samples. For each pair of samples, one was immediately processed and plasma was frozen, and the other was delayed and transported as whole blood before processing and freezing of plasma (similar to the Danish National Birth Cohort. We measured 12 perfluoroalkyl acids and present results for compounds with more than 50% of samples above the lower limit of quantification.For samples taken in the winter, relative differences between the paired samples ranged between -77 and +38% for individual perfluoroalkyl acids. In most cases concentrations were lower in the delayed and transported samples, e.g. the relative difference was -29% (95% confidence interval -30; -27 for perfluorooctane sulfonate. For perfluorooctanoate there was no difference between the two setups [corresponding estimate 1% (0, 3]. Differences were negligible in the summer for all compounds.Transport of blood samples and processing delay, similar to conditions applied in some large, population-based studies, may affect measured perfluoroalkyl acid concentrations, mainly when outdoor temperatures are low. Attention to processing conditions is needed in studies of perfluoroalkyl acid exposure in humans.

  18. Genetic evidence of a high-affinity cyanuric acid transport system in Pseudomonas sp. ADP.

    Platero, Ana I; Santero, Eduardo; Govantes, Fernando

    2014-03-01

    The Pseudomonas sp. ADP plasmid pADP-1 encodes the activities involved in the hydrolytic degradation of the s-triazine herbicide atrazine. Here, we explore the presence of a specific transport system for the central intermediate of the atrazine utilization pathway, cyanuric acid, in Pseudomonas sp. ADP. Growth in fed-batch cultures containing limiting cyanuric acid concentrations is consistent with high-affinity transport of this substrate. Acquisition of the ability to grow at low cyanuric acid concentrations upon conjugal transfer of pADP1 to the nondegrading host Pseudomonas putida KT2442 suggests that all activities required for this phenotype are encoded in this plasmid. Co-expression of the pADP1-borne atzDEF and atzTUVW genes, encoding the cyanuric acid utilization pathway and the subunits of an ABC-type solute transport system, in P. putida KT2442 was sufficient to promote growth at cyanuric acid concentrations as low as 50 μM in batch culture. Taken together, our results strongly suggest that the atzTUVW gene products are involved in high-affinity transport of cyanuric acid.

  19. Expression of the SNAT2 amino acid transporter during the development of rat cerebral cortex.

    Rodríguez, Angelina; Angelina, Rodríguez; Berumen, Laura C; Francisco, Zafra; Giménez, Cecilio; Cecilio, Giménez; García-Alcocer, María Guadalupe; Guadalupe, García-Alcocer María

    2011-11-01

    The sodium-coupled neutral amino acid transporter 2 (SNAT2) is a protein that is expressed ubiquitously in mammalian tissues and that displays Na(+), voltage and pH dependent activity. This transporter mediates the passage of small zwitterionic amino acids across the cell membrane and regulates the cell homeostasis and its volume. We have examined the expression of SNAT2 mRNA and protein during the development of the rat cerebral cortex, from gestation through the postnatal stages to adulthood. Our data reveal that SNAT2 mRNA and protein expression is higher during embryogenesis, while it subsequently diminishes during postnatal development. Moreover, during embryonic period SNAT2 colocalizes with the radial glial cells marker GLAST, while in postnatal period it is mainly detected in neuronal dendrites. These findings suggest a relevant role for amino acid transport through SNAT2 in the developing embryonic brain.

  20. Effect of Heat Stress on the Intestinal Flora Structure and Alkaline Phosphatase Activities and mRNA Expression of Amino Acid Transporters of Layer%热应激对蛋鸡肠道菌群结构、碱性磷酸酶活性及氨基酸转运载体mRNA表达丰度的影响

    李永洙; 陈常秀; Yongquan Cui

    2013-01-01

    [目的]揭示热应激环境下蛋鸡肠道菌群结构、肠黏膜碱性磷酸酶活性和氨基酸转运载体mRNA表达量的变化机理。[方法]试验选择16周龄济宁百日鸡96只,随机分成对照组((24±1)℃;Ⅰ)和热应激((38±1)℃)组,各组设6个重复,每个重复8只,试验持续14 d。采用16S rDNA的PCR-DGGE技术和实时荧光定量PCR等手段,分析热应激2(Ⅱ)、7(Ⅲ)、14 d(Ⅳ)时,对十二指肠、空肠及回肠内容物菌群多样性和肠黏膜碱性磷酸酶活性以及氨基酸转运载体rBAT、y+LAT 1、CAT l mRNA基因表达的相对丰度变化规律。[结果]热应激7 d开始各肠段菌群多样性较为丰富,热应激7、14 d时空肠和回肠部位敏感乳杆菌(Lactobacillus agilis),回肠部位约氏乳杆菌(Lactobacillus johnsonii)、不可培养细菌(uncultured bacterium)和不可培养的拟杆菌属(uncultured Bacteroidalesbacterium)均末检测到;而热应激不同时间段空肠和回肠部位可检测到不可培养细菌、溃疡拟杆菌(Bacteroides helcogenes)、卵形拟杆菌(Bacteroides ovatus)、索氏志贺氏菌(Shigella sonnei);空肠和回肠部位黏膜上皮细胞表面的碱性磷酸酶活性与Ⅰ组比较显著下降(P<0.05);而空肠和回肠Ⅲ组的rBAT、y+LAT 1 mRNA表达丰度均最低,空肠在各热应激时段表达丰度变化幅度最大(P<0.05),回肠的CAT 1 mRNA表达丰度在Ⅲ、Ⅳ组与Ⅰ组比较影响更明显(P<0.01)。[结论]热应激对空肠和回肠部位微生物菌群影响较为明显,肠道微生物群落改变可导致肠道的消化吸收功能发生改变。%[Objective] The objective of this study is to reveal the influence mechanisms of heat stress affecting the intestinal flora structure of layer, the alkaline phosphatase activities of intestinal mucosa and the mRNA expression of amino acid transporters.[Method]A total of 96 Jining Bairi

  1. Expression of digestive enzymes and nutrient transporters in Eimeria-challenged broilers.

    Su, S; Miska, K B; Fetterer, R H; Jenkins, M C; Wong, E A

    2015-03-01

    Avian coccidiosis is a disease caused by the intestinal protozoa Eimeria. The site of invasion and lesions in the intestine is species-specific, for example E. acervulina affects the duodenum, E. maxima the jejunum, and E. tenella the ceca. Lesions in the intestinal mucosa cause reduced feed efficiency and body weight gain. The growth reduction may be due to changes in expression of digestive enzymes and nutrient transporters in the intestine. The objective of this study was to compare the expression of digestive enzymes, nutrient transporters and an antimicrobial peptide in broilers challenged with either E. acervulina, E. maxima or E. tenella. The genes examined included digestive enzymes (APN and SI), peptide and amino acid transporters (PepT1, ASCT1, b(0,+)AT/rBAT, B(0)AT, CAT1, CAT2, EAAT3, LAT1, y(+)LAT1 and y(+)LAT2), sugar transporters (GLUT1, GLUT2, GLUT5 and SGLT1), zinc transporter (ZnT1) and an antimicrobial peptide (LEAP2). Duodenum, jejunum, ileum and ceca were collected 7 days post challenge. E. acervulina challenge resulted in downregulation of various nutrient transporters or LEAP2 in the duodenum and ceca, but not the jejunum or ileum. E. maxima challenge produced both downregulation and upregulation of nutrient transporters and LEAP2 in all three segments of the small intestine and ceca. E. tenella challenge resulted in the downregulation and upregulation of nutrient transporters and LEAP2 in the jejunum, ileum and ceca, but not the duodenum. At the respective target tissue, E. acervulina, E. maxima and E. tenella infection caused common downregulation of APN, b(0,+)AT, rBAT, EAAT3, SI, GLUT2, GLUT5, ZnT1 and LEAP2. The downregulation of nutrient transporters would result in a decrease in the efficiency of protein and polysaccharide digestion and uptake, which may partially explain the weight loss. The downregulation of nutrient transporters may also be a cellular response to reduced expression of the host defense protein LEAP2, which would

  2. SODIUM ION-DEPENDENT AMINO-ACID-TRANSPORT IN MEMBRANE-VESICLES OF BACILLUS-STEAROTHERMOPHILUS

    HEYNE, RIR; DEVRIJ, W; CRIELAARD, W; KONINGS, WN

    1991-01-01

    Amino acid transport in membrane vesicles of Bacillus stearothermophilus was studied. A relatively high concentration of sodium ions is needed for uptake of L-alanine (K(t) = 1.0 mM) and L-leucine (K(t) = 0.4 mM). In contrast, the Na+-H+-L-glutamate transport system has a high affinity for sodium io

  3. Transmembrane domain II of the human bile acid transporter SLC10A2 coordinates sodium translocation.

    Sabit, Hairat; Mallajosyula, Sairam S; MacKerell, Alexander D; Swaan, Peter W

    2013-11-01

    Human apical sodium-dependent bile acid transporter (hASBT, SLC10A2) is responsible for intestinal reabsorption of bile acids and plays a key role in cholesterol homeostasis. We used a targeted and systematic approach to delineate the role of highly conserved transmembrane helix 2 on the expression and function of hASBT. Cysteine mutation significantly depressed transport activity for >60% of mutants without affecting cell surface localization of the transporter. All mutants were inaccessible toward chemical modification by membrane-impermeant MTSET reagent, strongly suggesting that transmembrane 2 (TM2) plays an indirect role in bile acid substrate translocation. Both bile acid uptake and sodium dependence of TM2 mutants revealed a distinct α-helical periodicity. Kinetic studies with conservative and non-conservative mutants of sodium sensitive residues further underscored the importance of Gln(75), Phe(76), Met(79), Gly(83), Leu(86), Phe(90), and Asp(91) in hASBT function. Computational analysis indicated that Asp(91) may coordinate with sodium during the transport cycle. Combined, our data propose that a consortium of sodium-sensitive residues along with previously reported residues (Thr(134), Leu(138), and Thr(149)) from TM3 may form the sodium binding and translocation pathway. Notably, residues Gln(75), Met(79), Thr(82), and Leu(86) from TM2 are highly conserved in TM3 of a putative remote bacterial homologue (ASBTNM), suggesting a universal mechanism for the SLC10A transporter family.

  4. Tuning transport selectivity of ionic species by phosphoric acid gradient in positively charged nanochannel membranes.

    Yang, Meng; Yang, Xiaohai; Wang, Kemin; Wang, Qing; Fan, Xin; Liu, Wei; Liu, Xizhen; Liu, Jianbo; Huang, Jin

    2015-02-03

    The transport of ionic species through a nanochannel plays important roles in fundamental research and practical applications of the nanofluidic device. Here, we demonstrated that ionic transport selectivity of a positively charged nanochannel membrane can be tuned under a phosphoric acid gradient. When phosphoric acid solution and analyte solution were connected by the positively charged nanochannel membrane, the faster-moving analyte through the positively charged nanochannel membrane was the positively charged dye (methylviologen, MV(2+)) instead of the negatively charged dye (1,5-naphthalene disulfonate, NDS(2-)). In other words, a reversed ion selectivity of the nanochannel membranes can be found. It can be explained as a result of the combination of diffusion, induced electroosmosis, and induced electrophoresis. In addition, the influencing factors of transport selectivity, including concentration of phosphoric acid, penetration time, and volume of feed solution, were also investigated. The results showed that the transport selectivity can further be tuned by adjusting these factors. As a method of tuning ionic transport selectivity by establishing phosphoric acid gradient, it will be conducive to improving the separation of ionic species.

  5. Uptake of sialic acid by human erythrocyte. Characterization of a transport system.

    Bulai, Tatiana; Bratosin, Daniela; Artenie, Vlad; Montreuil, Jean

    2003-01-01

    Upon incubation of human red blood cells (RBC) with [4-9-14C] N-acetylneuraminic acid, the cells incorporated this sugar, as demonstrated by the identification of labelled N-acetylmannosamine in the cytosol, as a result of the action of the sialic acid pyruvate-lyase we discovered previously (Biochimie 84 (2002) 655). The mechanism is saturable and indicates the presence of a limited number of transporter molecules in the RBC membrane. This transport process may have relevance to the desialylation of membrane glycoconjugates which occurs during ageing of erythrocytes.

  6. The importance of the excitatory amino acid transporter 3 (EAAT3)

    E. Bjørn-Yoshimoto, Walden; Underhill, Suzanne M.

    2016-01-01

    Abstract The neuronal excitatory amino acid transporter 3 (EAAT3) is fairly ubiquitously expressed in the brain, though it does not necessarily maintain the same function everywhere. It is important in maintaining low local concentrations of glutamate, where its predominant post-synaptic localiza......Abstract The neuronal excitatory amino acid transporter 3 (EAAT3) is fairly ubiquitously expressed in the brain, though it does not necessarily maintain the same function everywhere. It is important in maintaining low local concentrations of glutamate, where its predominant post...

  7. Amino acid composition analysis of human secondary transport proteins and implications for reliable membrane topology prediction.

    Saidijam, Massoud; Azizpour, Sonia; Patching, Simon G

    2016-07-08

    Secondary transporters in humans are a large group of proteins that transport a wide range of ions, metals, organic and inorganic solutes involved in energy transduction, control of membrane potential and osmotic balance, metabolic processes and in the absorption or efflux of drugs and xenobiotics. They are also emerging as important targets for development of new drugs and as target sites for drug delivery to specific organs or tissues. We have performed amino acid composition (AAC) and phylogenetic analyses and membrane topology predictions for 336 human secondary transport proteins and used the results to confirm protein classification and to look for trends and correlations with structural domains and specific substrates and/or function. Some proteins showed statistically high contents of individual amino acids or of groups of amino acids with similar physicochemical properties. One recurring trend was a correlation between high contents of charged and/or polar residues with misleading results in predictions of membrane topology, which was especially prevalent in Mitochondrial Carrier family proteins. We demonstrate how charged or polar residues located in the middle of transmembrane helices can interfere with their identification by membrane topology tools resulting in missed helices in the prediction. Comparison of AAC in the human proteins with that in 235 secondary transport proteins from Escherichia coli revealed similar overall trends along with differences in average contents for some individual amino acids and groups of similar amino acids that are presumed to result from a greater number of functions and complexity in the higher organism.

  8. Models for gibberellic acid transport and enzyme production and transport in the aleurone layer of barley.

    O'Brien, Ricky; Fowkes, Nev; Bassom, Andrew P

    2010-11-01

    Gibberellins are growth hormones produced in the embryo of grain released during germination. They promote growth through the production of enzymes in the aleurone layer surrounding the endosperm. These enzymes then diffuse into the endosperm and produce the sugars required by the growing acrospire. Here we model the transport of gibberellins into and along the aleurone layer, the consequent production of enzymes, and their transport into the endosperm. Simple approximate solutions of the governing equations are obtained which suggest that the enzymes are released immediately behind a gibberellin front which travels with almost constant speed along the aleurone layer. The model also suggests that this propagation speed is determined primarily by conditions near the scutellum-aleurone junction, which may enable the embryo to actively control the germination process.

  9. Dynamic Behavior and Mass Transport in Polyacrylic Acid Gel by Dynamic Light Scattering

    2002-01-01

    Dynamic behaviors on polyacrylic acid (PAA) gels and mass (small molecules) transports in the gels have been studied mainly by dynamic light scattering (DLS). The cross-linking degree (fc), monomer concentration (Cm) and temperature of the gels have significant influences on its dynamic behavior and mass transport in the gels. The increase of fc leads to decrease of the mesh sizes of the gels, thus the obstacle of the gels for mass transport is increased. As a result, small molecular diffusion Dk in the gels is decreased. So even if for small molecules, the Dk also is influenced.

  10. The expression of thyroid hormone transporters in the human fetal cerebral cortex during early development and in N-Tera-2 neurodifferentiation.

    Chan, S-Y; Martín-Santos, A; Loubière, L S; González, A M; Stieger, B; Logan, A; McCabe, C J; Franklyn, J A; Kilby, M D

    2011-06-01

    Associations of neurological impairment with mutations in the thyroid hormone (TH) transporter, MCT8, and with maternal hypothyroxinaemia, suggest that THs are crucial for human fetal brain development. It has been postulated that TH transporters regulate the cellular supply of THs within the fetal brain during development. This study describes the expression of TH transporters in the human fetal cerebral cortex (7–20 weeks gestation) and during retinoic acid induced neurodifferentiation of the human N-Tera-2 (NT2) cell line, in triiodothyronine (T3) replete and T3-depleted media. Compared with adult cortex, mRNAs encoding OATP1A2, OATP1C1, OATP3A1 variant 2, OATP4A1, LAT2 and CD98 were reduced in fetal cortex at different gestational ages, whilst mRNAs encoding MCT8, MCT10, OATP3A1 variant 1 and LAT1 were similar. From the early first trimester, immunohistochemistry localised MCT8 and MCT10 to the microvasculature and to undifferentiated CNS cells. With neurodifferentiation, NT2 cells demonstrated declining T3 uptake, accompanied by reduced expressions of MCT8, LAT1, CD98 and OATP4A1. T3 depletion significantly reduced MCT10 and LAT2 mRNA expression at specific time points during neurodifferentiation but there were no effects upon T3 uptake, neurodifferentiation marker expression or neurite lengths and branching. MCT8 repression also did not affect NT2 neurodifferentiation. In conclusion, many TH transporters are expressed in the human fetal cerebral cortex from the first trimester, which could regulate cellular TH supply during early development. However, human NT2 neurodifferentiation is not dependent upon T3 or MCT8 and there were no compensatory changes to promote T3 uptake in a T3-depleted environment.

  11. Formulating gels for decreased mucociliary transport using rheologic properties: Polyacrylic acids

    Shah, Ankur J.; Donovan, Maureen D.

    2007-01-01

    The purpose of these studies was to identify the rheologic properties of polyacrylic acid gels necessary for optimal reductions in mucociliary clearance. The mucociliary transport of 2 bioadhesive polyacrylic acid polymers, polycarbophil and carbopol, was assessed in vitro by measuring their clerance rates across explants of ciliated bovine tracheal tissue. The viscoelastic properties of polymer gels were measured in the presence of mucus using controlled stress rheometry. Combinations of app...

  12. Excitability scores of goats administered ascorbic acid and transported during hot-dry conditions.

    Ayo, J O; Minka, N S; Mamman, M

    2006-06-01

    In this study, we investigated the effect of ascorbic acid (AA) administration on goat excitability due to transportation. Ten goats administered AA (p.o.) at 100 mg/kg of body weight before transportation served as the experimental group, and seven goats administered only 10 ml/kg of sterile water (p.o.) served as controls. Excitability scores were recorded for each goat; when weighed, before, immediately after, and 3 h after 8 h of transportation. A score of one to four was allocated to each goat; higher scores represent greater excitability. Immediately after transportation, excitability scores decreased significantly, especially those of control goats (p 0.05) different from their pre-transportation normal values, whereas those of control goats were significantly lower (p < 0.01). The correlation i.e. the relationship between excitability score values and percent excitability (percentage of goat with particular excitability score) for different excitability score group 3 h post-transportation was positive and highly significant (p < 0.001), in both experimental and control goats. Our results indicate that road transportation induces considerable stress (depression) in goats as evidenced by a lower excitability score posttransportation. Moreover, the administration of AA pretransportation facilitated the transition from a state of depression to excitation. In conclusion, AA administration to animals prior to transportation may ameliorate the depression often encountered after road transportation.

  13. Transepithelial transport of aliphatic carboxylic acids studied in Madin Darby canine kidney (MDCK) cell monolayers.

    Cho, M J; Adson, A; Kezdy, F J

    1990-04-01

    Transport of 14C-labeled acetic, propionic (PA), butyric, valeric, heptanoic (HA), and octanoic (OA) acids across the Madin Darby canine kidney (MDCK) epithelial cell monolayer grown on a porous polycarbonate membrane was studied in Hanks' balanced salt solution (HBSS) at 37 degrees C in both apical-to-basolateral and basolateral-to-apical directions. At micromolar concentrations of solutes, metabolic decomposition was significant as evidenced by [14C]CO2 production during the OA transport. The apparent permeability (Pe) indicates that as lipophilicity increases, diffusion across the "unstirred" boundary layer becomes rate limiting. In support of this notion, transport of OA and HA was enhanced by agitation, showed an activation energy of 3.7 kcal/mol for OA, and resulted in identical Pe values for both transport directions. Analysis of Pe changes with varying alkyl chain length resulted in a delta G of -0.68 +/- 0.09 kcal/mol for -CH2-group transfer from an aqueous phase to the MDCK cells. When the intercellular tight junctions were opened by the divalent chelator EGTA in Ca2+/Mg2(+)-free HBSS, transport of the fluid-phase marker Lucifer yellow greatly increased because of paracellular leakage. PA transport also showed a significant increase, but OA transport was independent of EGTA. Although albumin also undergoes paracellular transport in the presence of EGTA and OA binds strongly to albumin, OA transport in EGTA solution was unchanged by albumin. These observations indicate that transmembrane transport is the major mechanism for lipophilic substances. The present study, together with earlier work on the transport of polar substances, shows that the MDCK cell monolayer is an excellent model of the transepithelial transport barrier.

  14. The role of membrane fatty-acid transporters in regulating skeletal muscle substrate use during exercise.

    Pelsers, Maurice M A L; Stellingwerff, Trent; van Loon, Luc J C

    2008-01-01

    While endogenous carbohydrates form the main substrate source during high-intensity exercise, long-chain fatty acids (LCFA) represent the main substrate source during more prolonged low- to moderate-intensity exercise. Adipose tissue lipolysis is responsible for the supply of LCFA to the contracting muscle. Once taken up by skeletal muscle tissue, LCFA can either serve as a substrate for oxidative phosphorylation or can be directed towards esterification into triacylglycerol. Myocellular uptake of LCFA comprises a complex and incompletely understood process. Although LCFA can enter the cell via passive diffusion, more recent reports indicate that LCFA uptake is tightly regulated by plasma membrane-located transport proteins (fatty acid translocase [FAT/CD36], plasmalemmal-located fatty acid binding protein [FABPpm] and fatty acid transport protein [FATP]). Depending on cardiac and skeletal muscle energy demands, some of these LCFA transporters can translocate rapidly from intracellular pools to the plasma membrane to allow greater LCFA uptake. This translocation process can be induced by insulin and/or muscle contraction. However, the precise signalling pathways responsible for activating the translocation machinery remain to be elucidated. This article will provide an overview on the effects of diet, acute exercise and exercise training on the expression and/or translocation of the various LCFA transporters in skeletal muscle tissue (FAT/CD36, FABPpm, FATP).

  15. Influence of Humic Acid on the Transport and Deposition of Colloidal Silica under Different Hydrogeochemical Conditions

    Jingjing Zhou

    2016-12-01

    Full Text Available The transport and deposition of colloids in aquifers plays an important role in managed aquifer recharge (MAR schemes. Here, the processes of colloidal silica transport and deposition were studied by displacing groundwater with recharge water. The results showed that significant amounts of colloidal silica transport occurred when native groundwater was displaced by HA solution. Solution contains varying conditions of ionic strength and ion valence. The presence of humic acid could affect the zeta potential and size of the colloidal silica, which led to obvious colloidal silica aggregation in the divalent ion solution. Humic acid increased colloidal silica transport by formation of non-adsorbing aqueous phase silica–HA complexes. The experimental and modeling results showed good agreement, indicating that the essential physics were accurately captured by the model. The deposition rates were less than 10−8 s−1 in deionized water and monovalent ion solution. Moreover, the addition of Ca2+ and increase of IS resulted in the deposition rates increasing by five orders of magnitude to 10−4 s−1. In all experiments, the deposition rates decreased in the presence of humic acid. Overall, the promotion of humic acid in colloidal silica was strongly associated with changes in water quality, indicating that they should receive greater attention during MAR.

  16. Low brain ascorbic acid increases susceptibility to seizures in mouse models of decreased brain ascorbic acid transport and Alzheimer's disease.

    Warner, Timothy A; Kang, Jing-Qiong; Kennard, John A; Harrison, Fiona E

    2015-02-01

    Seizures are a known co-occurring symptom of Alzheimer's disease, and they can accelerate cognitive and neuropathological dysfunction. Sub-optimal vitamin C (ascorbic acid) deficiency, that is low levels that do not lead the sufferer to present with clinical signs of scurvy (e.g. lethargy, hemorrhage, hyperkeratosis), are easily obtainable with insufficient dietary intake, and may contribute to the oxidative stress environment of both Alzheimer's disease and epilepsy. The purpose of this study was to test whether mice that have diminished brain ascorbic acid in addition to carrying human Alzheimer's disease mutations in the amyloid precursor protein (APP) and presenilin 1 (PSEN1) genes, had altered electrical activity in the brain (electroencephalography; EEG), and were more susceptible to pharmacologically induced seizures. Brain ascorbic acid was decreased in APP/PSEN1 mice by crossing them with sodium vitamin C transporter 2 (SVCT2) heterozygous knockout mice. These mice have an approximately 30% decrease in brain ascorbic acid due to lower levels of SVCT2 that supplies the brain with ASC. SVCT2+/-APP/PSEN1 mice had decreased ascorbic acid and increased oxidative stress in brain, increased mortality, faster seizure onset latency following treatment with kainic acid (10 mg/kg i.p.), and more ictal events following pentylenetetrazol (50 mg/kg i.p.) treatment. Furthermore, we report the entirely novel phenomenon that ascorbic acid deficiency alone increased the severity of kainic acid- and pentylenetetrazol-induced seizures. These data suggest that avoiding ascorbic acid deficiency may be particularly important in populations at increased risk for epilepsy and seizures, such as Alzheimer's disease.

  17. The transport of indole-3-acetic Acid in boron- and calcium-deficient sunflower hypocotyl segments.

    Tang, P M; Dela Fuente, R K

    1986-06-01

    Transfer of sunflower (Helianthus annuus L. cv Russian Mammoth) seedlings from complete nutrient solution to solutions deficient in either boron or calcium resulted in a steady decline in the rate of auxin transport, compared to seedlings that remained in the complete solution. In seedlings transferred to solutions deficient in both B and Ca, the decline in auxin transport was greater than seedlings deficient in only one element. The transfer of B- or Ca-deficient seedlings back to the complete solution prevented further decline in auxin transport, but auxin transport did not increase to the same level as seedlings maintained in complete solution. The significant reduction in auxin transport during the early stages of B or Ca deficiency was not related to (a) reduced growth rate of the hypocotyl, (b) increased acropetal movement of auxin, or (c) lack of respiratory substrates in the hypocotyl. In addition, no difference was found in the water-extractable total and ionic Ca in B-deficient and control nondeficient hypocotyls, indicating a direct effect of B on auxin transport, rather than indirectly by affecting Ca absorption. The rate of auxin transport in hypocotyls deficient in either B or Ca, was inversely correlated with K(+) leakage and rate of respiration. The data presented strongly support the view that there are separate sites for B and Ca in the basipetal transport of the plant hormone indoleacetic acid.

  18. Urinary solute transport by ileal segments. I. Effects of nicotinic acid.

    Martínez-Piñeiro, L; Mateos, F; Montero, A; Madero, R; Martínez-Piñeiro, J A

    1993-12-01

    This study was conducted to quantify urinary solute transport by the ileum, using an in vivo human model, and to determine the effect of nicotinic acid on this process. Patients were studied under both basal conditions and niacin therapy. The rates of solute transport were established by analysis of excretion indexes for each solute. Potassium and ammonium were absorbed by the ileum, while phosphorus, sodium and bicarbonate were secreted. The percentage excretion index of sodium and bicarbonate increased by approximately 100 and 600% respectively, causing a significant rise in urinary pH. Although not statistically significant, there was a tendency for chloride to be absorbed and for water to pass into the bowel lumen. Nicotinic acid 3 g/day had no significant effect on urinary solute transport.

  19. Transport of Glyphosate and Aminomethylphosphonic Acid under Two Soil Management Practices in an Italian Vineyard.

    Napoli, Marco; Marta, Anna Dalla; Zanchi, Camillo A; Orlandini, Simone

    2016-09-01

    Worldwide, glyphosate is the most widely used herbicide in controlling the growth of annual and perennial weeds. An increasing number of studies have highlighted the environmental risk resulting from the use of this molecule in aquatic and terrestrial ecosystems. The objective of the study was to determine the transport of glyphosate and its degradation product, aminomethylphosphonic acid (AMPA), through runoff and transported sediment from a vineyard under two different soil management systems: harrowed inter-row (HR) and permanent grass covered inter-row (GR). The study was performed over a period of 4 yr. Glyphosate and AMPA concentrations were found to be higher in runoff and in transported sediment from HR compared with GR, regardless of the amount of runoff and transported sediment. The mean annual percentages of glyphosate loss, via runoff and transported sediment, were about 1.37 and 0.73% for HR and GR, respectively. Aminomethylphosphonic acid represented approximately 30.9 and 40.0% of the total glyphosate losses in GR and HR, respectively. Moreover, results suggested that rains occurring within 4 wk after treatment could cause the transport of glyphosate and AMPA in high concentrations. Soil analyses indicated that glyphosate content was below detection within 1 yr, whereas AMPA remained in the soil profiles along the vine row and in the inter-row. Results indicated that GR can reduce soil and herbicide loss by runoff in vineyard cropping system.

  20. Transport of Arginine and Aspartic Acid into Isolated Barley Mesophyll Vacuoles 1

    Martinoia, Enrico; Thume, Monika; Vogt, Esther; Rentsch, Doris; Dietz, Karl-Josef

    1991-01-01

    The transport of arginine into isolated barley (Hordeum vulgare L.) mesophyll vacuoles was investigated. In the absence of ATP, arginine uptake was saturable with a Km of 0.3 to 0.4 millimolar. Positively charged amino acids inhibited arginine uptake, lysine being most potent with a Ki of 1.2 millimolar. In the presence of free ATP, but not of its Mg-complex, uptake of arginine was drastically enhanced and a linear function of its concentration up to 16 millimolar. The nonhydrolyzable adenylyl imidodiphosphate, but no other nucleotide tested, could substitute for ATP. Therefore, it is suggested that this process does not require energy and does not involve the tonoplast ATPase. The ATP-dependent arginine uptake was strongly inhibited by p-chloromercuriphenylsulfonic acid. Furthermore, hydrophobic amino acids were inhibitory (I50 phenylalanine 1 millimolar). Similar characteristics were observed for the uptake of aspartic acid. However, rates of ATP-stimulated aspartic acid transport were 10-fold lower as compared to arginine transport. Uptake of aspartate in the absence of ATP was negligible. PMID:16668447

  1. Intracellular pH regulation by acid/base transporters in mammalian neurons

    Vernon A. Ruffin

    2014-02-01

    Full Text Available Intracellular pH (pHi regulation in the brain is important in both physiological and physiopathological conditions because changes in pHi generally result in altered neuronal excitability. In this review, we will cover 4 major areas: [1] The effect of pHi on cellular processes in the brain, including channel activity and neuronal excitability. [2] pHi homeostasis and how it is determined by the balance between rates of acid loading (JL and extrusion (JE. The balance between JE and JL determine steady-state pHi, as well as the ability of the cell to defend pHi in the face of extracellular acid-base disturbances (e.g. metabolic acidosis. [3] The properties and importance of members of the SLC4 and SLC9 families of acid-base transporters expressed in the brain that contribute to JL (namely the Cl-HCO3 exchanger AE3 and JE (the Na-H exchangers NHE1, NHE3 and NHE5 as well as the Na+- coupled HCO3- transporters NBCe1, NBCn1, NDCBE, and NBCn2. [4] The effect of acid-base disturbances on neuronal function and the roles of acid-base transporters in defending neuronal pHi under physiopathologic conditions.

  2. Disposition and transportation of surplus radioactive low specific activity nitric acid. Volume 1, Environmental Assessment

    NONE

    1995-05-01

    DOE is deactivating the PUREX plant at Hanford; this will involve the disposition of about 692,000 liters (183,000 gallons) of surplus nitric acid contaminated with low levels of U and other radionuclides. The nitric acid, designated as low specific activity, is stored in 4 storage tanks at PUREX. Five principal alternatives were evaluated: transfer for reuse (sale to BNF plc), no action, continued storage in Hanford upgraded or new facility, consolidation of DOE surplus acid, and processing the LSA nitric acid as waste. The transfer to BNF plc is the preferred alternative. From the analysis, it is concluded that the proposed disposition and transportation of the acid does not constitute a major federal action significantly affecting the quality of the human environment within the meaning of NEPA; therefore an environmental impact statement is not required.

  3. Reconstitution of bile acid transport in the rat hepatoma McArdle RH-7777 cell line.

    Torchia, E C; Shapiro, R J; Agellon, L B

    1996-07-01

    The liver recovers bile acids from the portal circulation primarily via an active process that is dependent on sodium ions. Hepatocytes lose the ability to transport bile acids in culture, and, in liver-derived permanent cell lines, this ability is severely reduced or absent. To study the importance of bile acids in regulating liver-specific functions (e.g., cellular bile acid and cholesterol metabolism), we have re-established active bile acid transport in cultured cells. The complementary DNA (cDNA) encoding the rat sodium/taurocholate cotransporting polypeptide (ntcp) was placed under the control of a cytomegalovirus promoter and transfected into the rat hepatoma cell line, McArdle RH-7777. Transfected cells were screened for the ability to take up [3H]-taurocholate. Clones that displayed the ability to take up taurocholate were expanded (designated McNtcp) and further characterized. The apparent Michaelis constant (Km) for taurocholate uptake was similar among the different clones. The observed maximum velocity (Vmax), however, differed and was positively correlated with the abundance of recombinant ntcp messenger RNA (mRNA). The highest level of taurocholate uptake activity observed in McNtcp cells was comparable with that of freshly isolated hepatocytes. Efflux of accumulated taurocholate from McNtcp cells proceeded in a manner similar to primary hepatocytes, indicating that McArdle RH-7777 cells have retained the ability to secrete bile acids. Moreover, taurocholate uptake in McNtcp cells was inhibited by other bile acid species. Based on the observed kinetic parameters, the reconstituted McArdle RH-7777 cells mimic the ability of primary hepatocytes to transport bile acids.

  4. The orphan transporter v7-3 (slc6a15) is a Na+-dependent neutral amino acid transporter (B0AT2)

    Bröer, Angelika; Tietze, Nadine; Kowalczuk, Sonja;

    2006-01-01

    Transporters of the SLC6 (solute carrier 6) family play an important role in the removal of neurotransmitters in brain tissue and in amino acid transport in epithelial cells. In the present study, we demonstrate that mouse v7-3 (slc6a15) encodes a transporter for neutral amino acids...... low-affinity substrates of the transporter, with K(0.5) values in the millimolar range. Transport of neutral amino acids via B(0)AT2 was Na+-dependent, Cl--independent and electrogenic. Superfusion of mouse B(0)AT2-expressing oocytes with amino acid substrates generated robust inward currents. Na......+-activation kinetics of proline transport and uptake under voltage clamp suggested a 1:1 Na+/amino acid co-transport stoichiometry. Susbtrate and co-substrate influenced each other's K(0.5) values, suggesting that they share the same binding site. A mouse B(0)AT2-like transport activity was detected in synaptosomes...

  5. Hippocampal and cortical expression of gamma-aminobutyric acid transporter 1 and glial fibrillary acidic protein in pentylenetetrazol-induced chronic epileptic rats

    Yi Zeng; Zhong Yang; Xiaodong Long; Chao You

    2009-01-01

    BACKGROUND: Gamma-aminobutyric acid transporter plays an important role in gamma-aminobutyric acid metabolism, and is highly associated with epilepsy seizures.Pathologically, astrocytes release active substances that alter neuronal excitability, and it has been demonstrated that astrocytes play a role in epileptic seizures.OBJECTIVE: To observe changes in gamma-aminobutyric acid transporter 1 and glial fibrillary acidic protein expression in the hippocampus and cortex of the temporal lobe in rats with pentylenetetrazol-induced chronic epilepsy.DESIGN, TIME AND SETTING: Randomized, controlled, animal experiment was performed at the Department of Neurobiology, Third Military University of Chinese PLA between January 2006 and December 2007.MATERIALS: Pentylenetetrazol was purchased from Sigma, USA; rabbit anti-rat gamma-aminobutyric acid transporter 1 and glial fibrillary acidic protein were from Chemicon, USA.METHODS; A total of 40 Sprague Dawley rats were divided into model and control groups. Rat models of chronic epilepsy were created by pentylenetetrazol kindling, and were subdivided into 3-, 7-, and 14-day kindling subgroups.MAIN OUTCOME MEASURES: Gamma-aminobutyric acid transporter 1 and glial fibrillary acidic protein expression, as well as the number of positive cells in the hippocampus and cortex of temporal lobe of rats, were determined by immunohistochemistry and Western blot analyses.RESULTS: Compared with the control group, the number of gamma-aminobutyric acid transporter 1 and glial fibrillary acidic protein -positive cells in the hippocampus and cortex of rats with pentylenetetrazol-induced epilepsy significantly increased, gamma-aminobutyric acid transporter 1 and glial fibrillary acidic protein expression increased after 3 days of kindling, reached a peak on day 7, and remained at elevated levels at day 14 (P < 0.05).CONCLUSION: Astrocytic activation and gamma-aminobutyric acid transporter 1 overexpression may contribute to pentylenetetrazol

  6. Identification of functional amino acid residues involved in polyamine and agmatine transport by human organic cation transporter 2.

    Kyohei Higashi

    Full Text Available Polyamine (putrescine, spermidine and spermine and agmatine uptake by the human organic cation transporter 2 (hOCT2 was studied using HEK293 cells transfected with pCMV6-XL4/hOCT2. The Km values for putrescine and spermidine were 7.50 and 6.76 mM, and the Vmax values were 4.71 and 2.34 nmol/min/mg protein, respectively. Spermine uptake by hOCT2 was not observed at pH 7.4, although it inhibited both putrescine and spermidine uptake. Agmatine was also taken up by hOCT2, with Km value: 3.27 mM and a Vmax value of 3.14 nmol/min/mg protein. Amino acid residues involved in putrescine, agmatine and spermidine uptake by hOCT2 were Asp427, Glu448, Glu456, Asp475, and Glu516. In addition, Glu524 and Glu530 were involved in putrescine and spermidine uptake activity, and Glu528 and Glu540 were weakly involved in putrescine uptake activity. Furthermore, Asp551 was also involved in the recognition of spermidine. These results indicate that the recognition sites for putrescine, agmatine and spermidine on hOCT2 strongly overlap, consistent with the observation that the three amines are transported with similar affinity and velocity. A model of spermidine binding to hOCT2 was constructed based on the functional amino acid residues.

  7. Embryo-specific silencing of a transporter reduces phytic acid content of maize and soybean seeds.

    Shi, Jinrui; Wang, Hongyu; Schellin, Kathleen; Li, Bailin; Faller, Marianna; Stoop, Johan M; Meeley, Robert B; Ertl, David S; Ranch, Jerry P; Glassman, Kimberly

    2007-08-01

    Phytic acid in cereal grains and oilseeds is poorly digested by monogastric animals and negatively affects animal nutrition and the environment. However, breeding programs involving mutants with less phytic acid and more inorganic phosphate (P(i)) have been frustrated by undesirable agronomic characteristics associated with the phytic acid-reducing mutations. We show that maize lpa1 mutants are defective in a multidrug resistance-associated protein (MRP) ATP-binding cassette (ABC) transporter that is expressed most highly in embryos, but also in immature endosperm, germinating seed and vegetative tissues. Silencing expression of this transporter in an embryo-specific manner produced low-phytic-acid, high-Pi transgenic maize seeds that germinate normally and do not show any significant reduction in seed dry weight. This dominant transgenic approach obviates the need for incorporating recessive lpa1 mutations to create maize hybrids with reduced phytic acid. Suppressing the homologous soybean MRP gene also generated low-phytic-acid seed, suggesting that the strategy might be feasible for many crops.

  8. Channel-mediated lactic acid transport: a novel function for aquaglyceroporins in bacteria.

    Bienert, Gerd P; Desguin, Benoît; Chaumont, François; Hols, Pascal

    2013-09-15

    MIPs (major intrinsic proteins), also known as aquaporins, are membrane proteins that channel water and/or uncharged solutes across membranes in all kingdoms of life. Considering the enormous number of different bacteria on earth, functional information on bacterial MIPs is scarce. In the present study, six MIPs [glpF1 (glycerol facilitator 1)-glpF6] were identified in the genome of the Gram-positive lactic acid bacterium Lactobacillus plantarum. Heterologous expression in Xenopus laevis oocytes revealed that GlpF2, GlpF3 and GlpF4 each facilitated the transmembrane diffusion of water, dihydroxyacetone and glycerol. As several lactic acid bacteria have GlpFs in their lactate racemization operon (GlpF1/F4 phylogenetic group), their ability to transport this organic acid was tested. Both GlpF1 and GlpF4 facilitated the diffusion of D/L-lactic acid. Deletion of glpF1 and/or glpF4 in Lb. plantarum showed that both genes were involved in the racemization of lactic acid and, in addition, the double glpF1 glpF4 mutant showed a growth delay under conditions of mild lactic acid stress. This provides further evidence that GlpFs contribute to lactic acid metabolism in this species. This lactic acid transport capacity was shown to be conserved in the GlpF1/F4 group of Lactobacillales. In conclusion, we have functionally analysed the largest set of bacterial MIPs and demonstrated that the lactic acid membrane permeability of bacteria can be regulated by aquaglyceroporins.

  9. Effect of maternal micronutrients (folic acid, vitamin B12) and omega 3 fatty acids on liver fatty acid desaturases and transport proteins in Wistar rats.

    Wadhwani, Nisha S; Manglekar, Rupali R; Dangat, Kamini D; Kulkarni, Asmita V; Joshi, Sadhana R

    2012-01-01

    A disturbed fatty acid metabolism increases the risk of adult non-communicable diseases. This study examines the effect of maternal micronutrients on the fatty acid composition, desaturase activity, mRNA levels of fatty acid desaturases and transport proteins in the liver. Pregnant female rats were divided into 6 groups at 2 levels of folic acid both in the presence and absence of vitamin B(12). The vitamin B(12) deficient groups were supplemented with omega 3 fatty acid. An imbalance of maternal micronutrients reduces liver docosahexaenoic acid, increases Δ5 desaturase activity but decreases mRNA levels, decreases Δ6 desaturase activity but not mRNA levels as compared to control. mRNA level of Δ5 desaturase reverts back to the levels of the control group as a result of omega 3 fatty acid supplementation. Our data for the first time indicates that maternal micronutrients differentially alter the activity and expression of fatty acid desaturases in the liver.

  10. Human intestine luminal ACE2 and amino acid transporter expression increased by ACE-inhibitors.

    Vuille-dit-Bille, Raphael N; Camargo, Simone M; Emmenegger, Luca; Sasse, Tom; Kummer, Eva; Jando, Julia; Hamie, Qeumars M; Meier, Chantal F; Hunziker, Schirin; Forras-Kaufmann, Zsofia; Kuyumcu, Sena; Fox, Mark; Schwizer, Werner; Fried, Michael; Lindenmeyer, Maja; Götze, Oliver; Verrey, François

    2015-04-01

    Sodium-dependent neutral amino acid transporter B(0)AT1 (SLC6A19) and imino acid (proline) transporter SIT1 (SLC6A20) are expressed at the luminal membrane of small intestine enterocytes and proximal tubule kidney cells where they exert key functions for amino acid (re)absorption as documented by their role in Hartnup disorder and iminoglycinuria, respectively. Expression of B(0)AT1 was shown in rodent intestine to depend on the presence of the carboxypeptidase angiotensin-converting enzyme 2 (ACE2). This enzyme belongs to the renin-angiotensin system and its expression is induced by treatment with ACE-inhibitors (ACEIs) or angiotensin II AT1 receptor blockers (ARBs) in many rodent tissues. We show here in the Xenopus laevis oocyte expression system that human ACE2 also functionally interacts with SIT1. To investigate in human intestine the potential effect of ACEIs or ARBs on ACE2, we analysed intestinal biopsies taken during routine gastroduodenoscopy and ileocolonoscopy from 46 patients of which 9 were under ACEI and 13 ARB treatment. Analysis of transcript expression by real-time PCR and of proteins by immunofluorescence showed a co-localization of SIT1 and B(0)AT1 with ACE2 in the brush-border membrane of human small intestine enterocytes and a distinct axial expression pattern of the tested gene products along the intestine. Patients treated with ACEIs displayed in comparison with untreated controls increased intestinal mRNA levels of ACE2, peptide transporter PEPT1 (SLC15A1) and AA transporters B(0)AT1 and PAT1 (SLC36A1). This study unravels in human intestine the localization and distribution of intestinal transporters involved in amino acid absorption and suggests that ACEIs impact on their expression.

  11. Formulating gels for decreased mucociliary transport using rheologic properties: polyacrylic acids.

    Shah, Ankur J; Donovan, Maureen D

    2007-04-20

    The purpose of these studies was to identify the rheologic properties of polyacrylic acid gels necessary for optimal reductions in mucociliary clearance. The mucociliary transport of 2 bioadhesive polyacrylic acid polymers, polycarbophil and carbopol, was assessed in vitro by measuring their clearance rates across explants of ciliated bovine tracheal tissue. The viscoelastic properties of polymer gels were measured in the presence of mucus using controlled stress rheometry. Combinations of apparent viscosity (eta) and complex modulus (G*) were found to be the most useful parameters in the identification of polyacrylic acid formulations capable of decreasing mucociliary transport rate (MTR). A narrow range of eta and G* values suitable for reducing mucociliary clearance, while remaining sufficiently fluid for intranasal administration, were identified. The correlations between the rheologic parameters of the polycarbophil gels and their mucociliary transport rates were used to identify other polyacrylic acid gels that also had suitable mucociliary clearance properties, demonstrating that these parameters can be used to direct the optimization of formulations using simple in vitro rheologic testing.

  12. Structural basis for amino acid export by DMT superfamily transporter YddG.

    Tsuchiya, Hirotoshi; Doki, Shintaro; Takemoto, Mizuki; Ikuta, Tatsuya; Higuchi, Takashi; Fukui, Keita; Usuda, Yoshihiro; Tabuchi, Eri; Nagatoishi, Satoru; Tsumoto, Kouhei; Nishizawa, Tomohiro; Ito, Koichi; Dohmae, Naoshi; Ishitani, Ryuichiro; Nureki, Osamu

    2016-05-30

    The drug/metabolite transporter (DMT) superfamily is a large group of membrane transporters ubiquitously found in eukaryotes, bacteria and archaea, and includes exporters for a remarkably wide range of substrates, such as toxic compounds and metabolites. YddG is a bacterial DMT protein that expels aromatic amino acids and exogenous toxic compounds, thereby contributing to cellular homeostasis. Here we present structural and functional analyses of YddG. Using liposome-based analyses, we show that Escherichia coli and Starkeya novella YddG export various amino acids. The crystal structure of S. novella YddG at 2.4 Å resolution reveals a new membrane transporter topology, with ten transmembrane segments in an outward-facing state. The overall structure is basket-shaped, with a large substrate-binding cavity at the centre of the molecule, and is composed of inverted structural repeats related by two-fold pseudo-symmetry. On the basis of this intramolecular symmetry, we propose a structural model for the inward-facing state and a mechanism of the conformational change for substrate transport, which we confirmed by biochemical analyses. These findings provide a structural basis for the mechanism of transport of DMT superfamily proteins.

  13. A single amino acid change converts the sugar sensor SGLT3 into a sugar transporter.

    Laura Bianchi

    Full Text Available BACKGROUND: Sodium-glucose cotransporter proteins (SGLT belong to the SLC5A family, characterized by the cotransport of Na(+ with solute. SGLT1 is responsible for intestinal glucose absorption. Until recently the only role described for SGLT proteins was to transport sugar with Na(+. However, human SGLT3 (hSGLT3 does not transport sugar but causes depolarization of the plasma membrane when expressed in Xenopus oocytes. For this reason SGLT3 was suggested to be a sugar sensor rather than a transporter. Despite 70% amino acid identity between hSGLT3 and hSGLT1, their sugar transport, apparent sugar affinities, and sugar specificity differ greatly. Residue 457 is important for the function of SGLT1 and mutation at this position in hSGLT1 causes glucose-galactose malabsorption. Moreover, the crystal structure of vibrio SGLT reveals that the residue corresponding to 457 interacts directly with the sugar molecule. We thus wondered if this residue could account for some of the functional differences between SGLT1 and SGLT3. METHODOLOGY/PRINCIPAL FINDINGS: We mutated the glutamate at position 457 in hSGLT3 to glutamine, the amino acid present in all SGLT1 proteins, and characterized the mutant. Surprisingly, we found that E457Q-hSGLT3 transported sugar, had the same stoichiometry as SGLT1, and that the sugar specificity and apparent affinities for most sugars were similar to hSGLT1. We also show that SGLT3 functions as a sugar sensor in a living organism. We expressed hSGLT3 and E457Q-hSGLT3 in C. elegans sensory neurons and found that animals sensed glucose in an hSGLT3-dependent manner. CONCLUSIONS/SIGNIFICANCE: In summary, we demonstrate that hSGLT3 functions as a sugar sensor in vivo and that mutating a single amino acid converts this sugar sensor into a sugar transporter similar to SGLT1.

  14. Nutrient uptake by marine invertebrates: cloning and functional analysis of amino acid transporter genes in developing sea urchins (Strongylocentrotus purpuratus).

    Meyer, Eli; Manahan, Donal T

    2009-08-01

    Transport of amino acids from low concentrations in seawater by marine invertebrates has been extensively studied, but few of the genes involved in this physiological process have been identified. We have characterized three amino acid transporter genes cloned from embryos of the sea urchin Strongylocentrotus purpuratus. These genes show phylogenetic proximity to classical amino acid transport systems, including Gly and B0+, and the inebriated gene (INE). Heterologous expression of these genes in frog oocytes induced a 40-fold increase in alanine transport above endogenous levels, demonstrating that these genes mediate alanine transport. Antibodies specific to one of these genes (Sp-AT1) inhibited alanine transport, confirming the physiological activity of this gene in larvae. Whole-mount antibody staining of larvae revealed expression of Sp-AT1 in the ectodermal tissues associated with amino acid transport, as independently demonstrated by autoradiographic localization of radioactive alanine. Maximum rates of alanine transport increased 6-fold during early development, from embryonic to larval stages. Analysis of gene expression during this developmental period revealed that Sp-AT1 transcript abundance remained nearly constant, while that of another transporter gene (Sp-AT2) increased 11-fold. The functional characterization of these genes establishes a molecular biological basis for amino acid transport by developmental stages of marine invertebrates.

  15. Effect of heat stress on amino acid digestibility and transporters in meat-type chickens.

    Habashy, W S; Milfort, M C; Adomako, K; Attia, Y A; Rekaya, R; Aggrey, S E

    2017-03-02

    The present study was conducted to investigate the effect of heat stress (HS) on performance, digestibility, and molecular transporters of amino acids in broilers. Cobb 500 chicks were raised from hatch till 13 d in floor pens. At d 14, 48 birds were randomly and equally divided between a control group (25°C) and a HS treatment group (35°C). Birds in both treatment classes were individually caged and fed ad libitum on a diet containing 18.7% CP and 3,560 Kcal ME/Kg. Five birds per treatment at one and 12 d post treatment were euthanized and the Pectoralis major (P. major) and ileum were sampled for gene expression analysis. At d 33, ileal contents were collected and used for digestibility analysis. Broilers under HS had reduced growth and feed intake compared to controls. Although the apparent ileal digestibility (AID) was consistently higher for all amino acids in the HS group, it was not significant except for hydroxylysine. The amino acid consumption and retention were significantly lower in the HS group when compared to the control group. Meanwhile, the retention of amino acids per BWG was higher in the HS group when compared to the control group except for hydroxylysine and ornithine. The dynamics of amino acid transporters in the P. major and ileum was influenced by HS. In P. major and ileum tissues at d one, transporters SNAT1, SNAT2, SNAT7, TAT1, and b0,+AT, were down-regulated in the HS group. Meanwhile, LAT4 and B0AT were down-regulated only in the P. major in the treatment group. The amino acid transporters B0AT and SNAT7 at d 12 post HS were down-regulated in the P. major and ileum, but SNAT2 was down-regulated only in the ileum and TAT1 was down-regulated only in the P. major compared with the control group. These changes in amino acid transporters may explain the reduced growth in meat type chickens under heat stress.

  16. Physiological responses of erythrocytes of goats to transportation and the mondulatory role of ascorbic acid.

    Minka, Ndazo Salka; Ayo, Joseph Olusegun

    2010-07-01

    Experiments were performed with the aim of investigating the effect of road transportation for 12 hr on erythrocytes of goats during the hot-dry season and the modulatory role of ascorbic acid. Forty 2.5-3-year-old Red Sokoto goats weighing 23-25 kg and belonging to both sexes served as the subjects of the study. Twenty of the goats served as the experimental group and were administered ascorbic acid (AA) per os at a dosage rate of 100 mg/kg body weight; the other 20 served as controls and were given 10 ml each of sterile water. Forty minutes after the administration and loading, the goats were transported for 12 hr. EDTA blood samples collected before loading, after loading, immediately after transportation and subsequently on the 3rd and 7th days of post-transportation were used to determine the red blood cell (RBC) count, packed cell volume (PCV), hemoglobin (Hb), erythrocyte osmotic fragility (EOF), hematimetric (intrinsic) indices and hemoglobin index levels. The obtained results showed that handling, loading and transportation of the control goats induced significant (P<0.05) increases in RBC, Hb, EOF and hypochromic erythrocytes and a decrease (P<0.05) in the volume and average Hb content in RBCs. AA administration ameliorated all these changes. The present results suggest that road transportation for 12 hr during the hot-dry season could induce serious stress, resulting in hemolysis of erythrocytes, which was ameliorated by AA administration. In addition, the results demonstrated that EOF could be used as a diagnostic tool in road transportation stress.

  17. Organic Anion Transporting Polypeptides Contribute to the Disposition of Perfluoroalkyl Acids in Humans and Rats.

    Zhao, Wen; Zitzow, Jeremiah D; Weaver, Yi; Ehresman, David J; Chang, Shu-Ching; Butenhoff, John L; Hagenbuch, Bruno

    2016-12-24

    Perfluoroalkyl sulfonates (PFSAs) such as perfluorohexane sulfonate (PFHxS) and perfluorooctane sulfonate (PFOS) have very long serum elimination half-lives in humans, and preferentially distribute to serum and liver. The enterohepatic circulation of PFHxS and PFOS likely contributes to their extended elimination half-lives. We previously demonstrated that perfluorobutane sulfonate (PFBS), PFHxS, and PFOS are transported into hepatocytes both in a sodium-dependent and a sodium-independent manner. We identified Na(+)/taurocholate cotransporting polypeptide (NTCP) as the responsible sodium-dependent transporter. Furthermore, we demonstrated that the human apical sodium-dependent bile salt transporter (ASBT) contributes to the intestinal reabsorption of PFOS. However, so far no sodium-independent uptake transporters for PFSAs have been identified in human hepatocytes or enterocytes. In addition, perfluoroalkyl carboxylates (PFCAs) with 8 and 9 carbons were shown to preferentially distribute to the liver of rodents; however, no rat or human liver uptake transporters are known to transport these PFCAs. Therefore, we tested whether PFBS, PFHxS, PFOS, and PFCAs with 7-10 carbons are substrates of organic anion transporting polypeptides (OATPs). We used CHO and HEK293 cells to demonstrate that human OATP1B1, OATP1B3, and OATP2B1 can transport PFBS, PFHxS, PFOS, and the 2 PFCAs (C8 and C9). In addition, we show that rat OATP1A1, OATP1A5, OATP1B2, and OATP2B1 transport all 3 PFSAs. In conclusion, our results suggest that besides NTCP and ASBT, OATPs also are capable of contributing to the enterohepatic circulation and extended human serum elimination half-lives of the tested perfluoroalkyl acids.

  18. Inducible expression and pharmacology of the human excitatory amino acid transporter 2 subtype of L-glutamate transporter.

    Dunlop, J; Lou, Z; Zhang, Y; McIlvain, H B

    1999-12-01

    1. In this study we have examined the use of the ecdysone-inducible mammalian expression system (Invitrogen) for the regulation of expression of the predominant L-glutamate transporter EAAT2 (Excitatory Amino Acid Transporter) in HEK 293 cells. 2. HEK 293 cells which were stably transformed with the regulatory vector pVgRXR (EcR 293 cells) were used for transfection of the human EAAT2 cDNA using the inducible vector pIND and a clone designated HEK/EAAT2 was selected for further characterization. 3. Na+-dependent L-glutamate uptake activity (3.2 pmol min-1 mg-1) was observed in EcR 293 cells and this was increased approximately 2 fold in the uninduced HEK/EAAT2 cells, indicating a low level of basal EAAT2 activity in the absence of exogenous inducing agent. Exposure of HEK/EAAT2 cells to the ecdysone analogue Ponasterone A (10 microM for 24 h) resulted in a > or = 10 fold increase in the Na+-dependent activity. 4. L-glutamate uptake into induced HEK/EAAT2 cells followed first-order Michaelis-Menten kinetics and Eadie-Hofstee transformation of the saturable uptake data produced estimates of kinetic parameters as follows; Km 52.7+/-7.5 microM, Vmax 3.8+/-0.9 nmol min-1 mg-1 protein. 5. The pharmacological profile of the EAAT2 subtype was characterized using a series of L-glutamate transport inhibitors and the rank order of inhibitory potency was similar to that described previously for the rat homologue GLT-1 and in synaptosomal preparations from rat cortex. 6. Addition of the EAAT2 modulator arachidonic acid resulted in an enhancement (155+/-5% control in the presence of 30 microM) of the L-glutamate transport capacity in the induced HEK/EAAT2 cells. 7. This study demonstrates that the expression of EAAT2 can be regulated in a mammalian cell line using the ecdysone-inducible mammalian expression system.

  19. Molecular physiology of the insect K-activated amino acid transporter 1 (KAAT1) and cation-anion activated amino acid transporter/channel 1 (CAATCH1) in the light of the structure of the homologous protein LeuT.

    Castagna, M; Bossi, E; Sacchi, V F

    2009-06-01

    K-activated amino acid transporter 1 (KAAT1) and cation-anion-activated amino acid transporter/channel 1 (CAATCH1) are amino acid cotransporters, belonging to the Na/Cl-dependent neurotransmitter transporter family (also called SLC6/NSS), that have been cloned from Manduca sexta midgut. They have been thoroughly studied by expression in Xenopus laevis oocytes, and structure/function analyses have made it possible to identify the structural determinants of their cation and amino acid selectivity. About 40 mutants of these proteins have been studied by measuring amino acid uptake and current/voltage relationships. The results obtained since the cloning of KAAT1 and CAATCH1 are here discussed in the light of the 3D model of the first crystallized member of the family, the leucine transporter LeuT.

  20. Transport of. cap alpha. -aminoisobutyric acid into rat parotid after X-irradiation

    Bodner, Lipa

    1989-04-01

    Rat parotid gland exposed to 20 Gy X-irradiation exhibits functional alteration 3 days after exposure. The flow rate of saliva and the uptake of ..cap alpha..-aminoisobutyric acid by the gland was reduced to 50% of values for the control non-irradiated glands. When the same gland was studied in an in vitro system it functioned normally. K/sup +/ release and ..cap alpha..-aminoisobutyric acid uptake by the irradiated dispersed acinar cells was comparable to the control. Transport alteration from the circulatory system into the parotid gland may cause the initial radiation-induced damage.

  1. Mechanisms Regulating Acid-Base Transporter Expression in Breast- and Pancreatic Cancer

    Gorbatenko, Andrej

    , characteristics of which are a shift towards glycolytic metabolism and increased acid production. HER2 receptor overexpression in breast cancer leads to further increased glycolysis, invasion and metastasis, drug resistance and poor prognosis. Increased tumor glycolysis requires acquisition of mechanisms...... for dealing with excess acid production. In this light, evidence accumulates on the importance of pH regulatory proteins to cancer cell survival and motility. Our group previously demonstrated upregulation of the Na+/HCO3 - co-transporter NBCn1 (SLC4A7) by a constitutively active form of HER2 receptor (p95HER...

  2. Placental glucose and amino acid transport in calorie-restricted wild-type and Glut3 null heterozygous mice.

    Ganguly, Amit; Collis, Laura; Devaskar, Sherin U

    2012-08-01

    Calorie restriction (CR) decreased placenta and fetal weights in wild-type (wt) and glucose transporter (Glut) 3 heterozygous null (glut3(+/-)) mice. Because placental nutrient transport is a primary energy determinant of placentofetal growth, we examined key transport systems. Maternal CR reduced intra- and transplacental glucose and leucine transport but enhanced system A amino acid transport in wt mice. These transport perturbations were accompanied by reduced placental Glut3 and leucine amino acid transporter (LAT) family member 2, no change in Glut1 and LAT family member 1, but increased sodium coupled neutral amino acid transporter (SNAT) and SNAT2 expression. We also noted decreased total and active phosphorylated forms of mammalian target of rapamycin, which is the intracellular nutrient sensor, the downstream total P70S6 kinase, and pS6 ribosomal protein with no change in total and phosphorylated 4E-binding protein 1. To determine the role of placental Glut3 in mediating CR-induced placental transport changes, we next investigated the effect of gestational CR in glut3(+/-) mice. In glut3(+/-) mice, a key role of placental Glut3 in mediating transplacental and intraplacental glucose transport was established. In addition, reduced Glut3 results in a compensatory increase of leucine and system A transplacental transport. On the other hand, diminished Glut3-mediated intraplacental glucose transport reduced leucine transport and mammalian target of rapamycin and preserved LAT and enhancing SNAT. CR in glut3(+/-) mice further reduced transplacental glucose transport and enhanced system A amino acid transport, although the increased leucine transport was lost. In addition, increased Glut3 was seen and preserved Glut1, LAT, and SNAT. These placental changes collectively protect survival of wt and glut3(+/-) fetuses against maternal CR-imposed reduction of macromolecular nutrients.

  3. Column experiments to investigate transport of colloidal humic acid through porous media during managed aquifer recharge

    Liu, Dan; Zhou, Jingjing; Zhang, Wenjing; Huan, Ying; Yu, Xipeng; Li, Fulin; Chen, Xuequn

    2016-09-01

    Colloids act as vectors for pollutants in groundwater, thereby creating a series of environmental problems. While managed aquifer recharge plays an important role in protecting groundwater resources and controlling land subsidence, it has a significant effect on the transport of colloids. In this study, particle size and zeta potential of colloidal humic acid (HA) have been measured to determine the effects of different hydrochemistry conditions. Column experiments were conducted to examine the effects on the transport of colloidal HA under varying conditions of pH (5, 7, 9), ionic strength (<0.0005, 0.02, 0.05 M), cation valence (Na+, Ca2+) and flow rate (0.1, 0.2, 0.4 ml/min) through collectors (glass beads) to model the properties and quality of artificial recharge water and changes in the hydrodynamic field. Breakthrough curves showed that the behavior of colloidal HA being transported varied depending on the conditions. Colloid transport was strongly influenced by hydrochemical and hydrodynamic conditions. With decreasing pH or increasing ionic strength, a decrease in the peak effluent concentration of colloidal HA and increase in deposition could be clearly seen. Comparison of different cation valence tests indicated that changes in transport and deposition were more pronounced with divalent Ca2+ than with monovalent Na+. Changes in hydrodynamic field (flow rate) also had an impact on transportation of colloidal HA. The results of this study highlight the need for further research in this area.

  4. Theory of ion transport with fast acid-base equilibrations in bioelectrochemical systems

    Dykstra, J. E.; Biesheuvel, P. M.; Bruning, H.; Ter Heijne, A.

    2014-07-01

    Bioelectrochemical systems recover valuable components and energy in the form of hydrogen or electricity from aqueous organic streams. We derive a one-dimensional steady-state model for ion transport in a bioelectrochemical system, with the ions subject to diffusional and electrical forces. Since most of the ionic species can undergo acid-base reactions, ion transport is combined in our model with infinitely fast ion acid-base equilibrations. The model describes the current-induced ammonia evaporation and recovery at the cathode side of a bioelectrochemical system that runs on an organic stream containing ammonium ions. We identify that the rate of ammonia evaporation depends not only on the current but also on the flow rate of gas in the cathode chamber, the diffusion of ammonia from the cathode back into the anode chamber, through the ion exchange membrane placed in between, and the membrane charge density.

  5. Fatty Acid-Binding Protein in Small Intestine IDENTIFICATION, ISOLATION, AND EVIDENCE FOR ITS ROLE IN CELLULAR FATTY ACID TRANSPORT

    Ockner, Robert K.; Manning, Joan A.

    1974-01-01

    A soluble fatty acid-binding protein (FABP), mol wt ∼ 12,000 is present in intestinal mucosa and other tissues that utilize fatty acids, including liver, myocardium, adipose, and kidney. This protein binds long chain fatty acids both in vivo and in vitro. FABP was isolated from rat intestine by gel filtration and isoelectric focusing. It showed a reaction of complete immunochemical identity with proteins in the 12,000 mol wt fatty acid-binding fractions of liver, myocardium, and adipose tissue supernates. (The presence of immunochemically nonidentical 12,000 mol wt FABP in these tissues is not excluded.) By quantitative radial immunodiffusion, supernatant FABP concentration in mucosa from proximal and middle thirds of jejuno-ileum significantly exceeded that in distal third, duodenum, and liver, expressed as micrograms per milligram soluble protein, micrograms per gram DNA, and micrograms per gram tissue. FABP concentration in villi was approximately three times greater than in crypts. Small quantities of FABP were present in washed nuclei-cell membrane, mitochondrial and microsomal fractions. However, the amount of FABP solubilized per milligram membrane protein was similar for all particulate fractions, and total membrane-associated FABP was only about 16% of supernatant FABP. Intestinal FABP concentration was significantly greater in animals maintained on high fat diets than on low fat; saturated and unsaturated fat diets did not differ greatly in this regard. The preponderance of FABP in villi from proximal and middle intestine, its ability to bind fatty acids in vivo as well as in vitro, and its response to changes in dietary fat intake support the concept that this protein participates in cellular fatty acid transport during fat absorption. Identical or closely related 12,000 mol wt proteins may serve similar functions in other tissues. Images PMID:4211161

  6. Molecular cloning and ontogenesis expression of fatty acid transport protein-1 in yellow-feathered broilers

    Yuzhen Song; Jiaying Feng; Lihua Zhou; Gang Shu; Xiaotong Zhu; Ping Gao; Yongliang Zhang; Qingyan Jiang

    2008-01-01

    Fatty acid transport protein-1 (FATP-1) is one of the important transporter proteins involved in fatty acid transmembrane transport and fat deposition. To study the relationship between FATP-1 mRNA expression and fat deposition, chicken (Gallus gallus) FATP-1 sequence was first cloned by rapid amplification of cDNA ends (RACE). Tissue samples of chest muscle, leg muscle, subcutaneous fat, and abdominal fat were collected from six male and six female broilers each, at 22 days, 29 days, and 42 days, respectively. The tissue specificity and ontogenesis expression pattern of the FATP-1 mRNA of yellow-feathered broilers was studied by real-time reverse transcription polymerase chain reaction (RT-PCR), and the fat deposition laws in different tissues were also compared. A 2,488 bp cDNA sequence of chicken FATP-1 was cloned by RACE (GenBank accession no. DQ352834), including 547 bp 3' end untranslated region (URT) and 1,941 bp open reading frame (ORF). Chicken FATP-1 encoded 646 amino acid residues, which shared 83.9% and 83.0% identity with those of human and rat, respectively. The results of quantitative PCR demonstrated a constant FATP-1 mRNA expression level in the chest muscle and subcutaneous fat of both male and female broilers at three stages, whereas the expression level of the FATP-1 mRNA in the leg muscle at 42 days was significantly higher than that at 22 days or 29 days. In the abdominal fat of male broilers, the gene expression significantly increased with age, whereas the female broilers showed a dramatic downregulation of FATP-1 expression in abdominal fat at 42 days. This suggested a typical tissue-and gender-specific expression pattern of chicken FATP-1, mediating the specific process of fatty acid transport or utilization in muscle and adipose tissues.

  7. Towards bridging the gap between acid-base transporters and neuronal excitability modulation

    2014-01-01

    pH homeostasis is a fundamental regulator of the function of the central nervous system. Dysfunction of acid-base transporters often results in disturbance of neuronal excitability. In a latest issue of Journal of Neuroscience, Jones et al. report that increasing intracellular bicarbonate concentration substantially stimulates the excitability of pyramidal neurons from mouse hippocampus by inhibiting KCNQ potassium channel. The finding shed important new light in understanding the molecular m...

  8. Distribution of neutral amino acid transporter ASCT1 in the non-neuronal tissued of mice

    Hashimoto, Yoshiharu; Sadamoto, Yoshihiro; Konno, Akihiro; Kon, Yasuhiro

    2004-01-01

    Distribution of ASCT1, a neurtral amino acid transporter, in non-neuronal peripheral tissues of adult and developong mice was examines by immunohistochemistry and immunoelectron microscopy. Immunoreactivity for ASCT1 in the digestive system was localized in basal cells of stratified squamous epithelia from oral parietes to nonglandular region of the stomach, chief cells of the glandular stomach, acinar cells of the salivary gland and exocrine pancreas, and Paneth's cells of the small intestin...

  9. Stimulation of the amino acid transporter SLC6A19 by JAK2

    Bhavsar, Shefalee K.; Hosseinzadeh, Zohreh; Merches, Katja; Gu, Shuchen [Department of Physiology I, University of Tuebingen (Germany); Broeer, Stefan [Research School of Biology, Australian National University (Australia); Lang, Florian, E-mail: florian.lang@uni-tuebingen.de [Department of Physiology I, University of Tuebingen (Germany)

    2011-10-28

    Highlights: Black-Right-Pointing-Pointer The amino acid transporter SLC6A19 is upregulated by Janus kinase-2 JAK2. Black-Right-Pointing-Pointer The {sup V617F}JAK2 mutant, causing myeloproliferative disease, is more effective. Black-Right-Pointing-Pointer JAK2 inhibitor AG490 reverses stimulation of SLC6A19 by {sup V617F}JAK2. Black-Right-Pointing-Pointer JAK2 enhances SLC6A19 protein insertion into the cell membrane. Black-Right-Pointing-Pointer SLC6A19 may contribute to amino acid uptake into {sup V617F}JAK2 expressing tumor cells. -- Abstract: JAK2 (Janus kinase-2) is expressed in a wide variety of cells including tumor cells and contributes to the proliferation and survival of those cells. The gain of function mutation {sup V617F}JAK2 mutant is found in the majority of myeloproliferative diseases. Cell proliferation depends on the availability of amino acids. Concentrative cellular amino acid uptake is in part accomplished by Na{sup +} coupled amino acid transport through SLC6A19 (B(0)AT). The present study thus explored whether JAK2 activates SLC6A19. To this end, SLC6A19 was expressed in Xenopus oocytes with or without wild type JAK2, {sup V617F}JAK2 or inactive {sup K882E}JAK2 and electrogenic amino acid transport determined by dual electrode voltage clamp. In SLC6A19-expressing oocytes but not in oocytes injected with water or JAK2 alone, the addition of leucine (2 mM) to the bath generated a current (I{sub le}), which was significantly increased following coexpression of JAK2 or {sup V617F}JAK2, but not by coexpression of {sup K882E}JAK2. Coexpression of JAK2 enhanced the maximal transport rate without significantly modifying the affinity of the carrier. Exposure of the oocytes to the JAK2 inhibitor AG490 (40 {mu}M) resulted in a gradual decline of I{sub le}. According to chemiluminescence JAK2 enhanced the carrier protein abundance in the cell membrane. The decline of I{sub le} following inhibition of carrier insertion by brefeldin A (5 {mu}M) was similar

  10. Intestinal drug transport via the proton-coupled amino acid transporter PAT1 (SLC36A1) is inhibited by Gly-X(aa) dipeptides

    Frølund, Sidsel; Langthaler, Louise; Kall, Morten A

    2012-01-01

    The oral absorption of some drug substances is mediated by nutrient transporters. As a consequence, nutrients and drugs may compete for available transporters, and interactions at the level of intestinal absorption are possible. Recently, we have identified δ-aminolevulinic acid, Gly-Gly, and Gly......-Sar as substrates of the amino acid transporter PAT1. The aim of the present study is to investigate if other Gly-containing dipeptides interact with PAT1, and whether they can inhibit PAT1 mediated drug absorption, in vitro and in vivo. The in vitro methods included two-electrode voltage clamp measurements on h......PAT1 expressing Xenopus laevis oocytes, which were used to investigate the PAT1-mediated transport of 17 different Gly-containing dipeptides (Gly-X(aa) or X(aa)-Gly). Also, the transepithelial transport of the PAT1 substrate gaboxadol was investigated across Caco-2 cell monolayers in the presence...

  11. Okadaic acid inhibits cell growth and photosynthetic electron transport in the alga Dunaliella tertiolecta

    Perreault, Francois; Matias, Marcelo Seleme; Oukarroum, Abdallah [Department of Chemistry, Universite du Quebec a Montreal, 2101, Rue Jeanne Mance, Montreal, QC, Canada H2X 2J6 (Canada); Matias, William Gerson [Department of Chemistry, Universite du Quebec a Montreal, 2101, Rue Jeanne Mance, Montreal, QC, Canada H2X 2J6 (Canada); Laboratorio de Toxicologia Ambiental, LABTOX, Depto. de Engenharia Sanitaria e Ambiental, Universidade Federal de Santa Catarina, Campus Universitario, CEP: 88040-970, Florianopolis, SC (Brazil); Popovic, Radovan, E-mail: popovic.radovan@uqam.ca [Department of Chemistry, Universite du Quebec a Montreal, 2101, Rue Jeanne Mance, Montreal, QC, Canada H2X 2J6 (Canada)

    2012-01-01

    Okadaic acid (OA), which is produced by several dinoflagellate species, is a phycotoxin known to induce a decrease of biomass production in phytoplankton. However, the mechanisms of OA cytotoxicity are still unknown in microalgae. In this study, we exposed the green microalga Dunaliella tertiolecta to OA concentrations of 0.05 to 0.5 {mu}M in order to evaluate its effects on cell division, reactive oxygen species production and photosynthetic electron transport. After 72 h of treatment under continuous illumination, OA concentrations higher than 0.10 {mu}M decreased culture cell density, induced oxidative stress and inhibited photosystem II electron transport capacity. OA effect in D. tertiolecta was strongly light dependent since no oxidative stress was observed when D. tertiolecta was exposed to OA in the dark. In the absence of light, the effect of OA on culture cell density and photosystem II activity was also significantly reduced. Therefore, light appears to have a significant role in the toxicity of OA in microalgae. Our results indicate that the site of OA interaction on photosynthetic electron transport is likely to be at the level of the plastoquinone pool, which can lead to photo-oxidative stress when light absorbed by the light-harvesting complex of photosystem II cannot be dissipated via photochemical pathways. These findings allowed for a better understanding of the mechanisms of OA toxicity in microalgae. - Highlights: Black-Right-Pointing-Pointer Exposition of Dunaliella tertiolecta to okadaic acid in light conditions results in reactive oxygen species formation. Black-Right-Pointing-Pointer Inhibition of photosystem II is dependent on oxidative stress and effects of okadaic acid on the plastoquinone pool. Black-Right-Pointing-Pointer Oxidative stress and inhibition of photosynthesis increase okadaic acid effect on cell density in light conditions. Black-Right-Pointing-Pointer Okadaic acid induces toxicity in algae via both light-dependent and light

  12. Proton transport properties of tin phosphate, chromotropic acid anchored onto tin phosphate and tin phenyl phosphonate

    Chithra Sumej; P P Sharmila; Nisha J Tharayil; S Suma

    2013-02-01

    Tin (IV) phosphates of the class of tetravalent metal acid (TMA) salts have been synthesized by sol–gel method. The functionalized materials of tin (IV) phosphate (SnP) like chromotropic acid anchored tin phosphate (SnPCA) and tin phenyl phosphonate (SnPP) were also synthesized. These materials have been characterized for elemental analysis (ICP–AES), thermal analysis, X-ray analysis and FTIR spectroscopy. Chemical resistivity of these materials has been accessed in acidic, basic and organic solvent media. The proton present in the structural hydroxyl groups indicates good potential for TMA salts to exhibit solid-state proton conduction. The transport properties of these materials have been explored by measuring specific proton conductance at different temperatures. Based on the specific conduction data and Arrhenius plots, a suitable mechanism has been proposed.

  13. The Monocarboxylate Transporter Inhibitor α-Cyano-4-Hydroxycinnamic Acid Disrupts Rat Lung Branching

    Sara Granja

    2013-12-01

    Full Text Available Background/Aims: The human embryo develops in a hypoxic environment. In this way, cells have to rely on the glycolytic pathway for energy supply, leading to an intracellular accumulation of monocarboxylates such as lactate and pyruvate. These acids have an important role in cell metabolism and their rapid transport across the plasma membrane is crucial for the maintenance of intracellular pH homeostasis. This transport is mediated by a family of transporters, designated by monocarboxylate transporters (MCTs, namely isoforms 1 and 4. MCT1/4 expression is regulated by the ancillary protein CD147.The general aim of this study was to characterize the expression pattern of MCT1/4, CD147 and the glucose transporter GLUT1 during human fetal lung development and elucidate the role of MCTs in lung development. Methods: The expression pattern of MCT1/4 and GLUT1 was characterized by immunohistochemistry and fetal lung viability and branching were evaluated by exposing rat fetal lung explants to CHC, an inhibitor of MCT activity. Results: Our findings show that all the biomarkers are differently expressed during fetal lung development and that CHC appears to have an inhibitory effect on lung branching and viability, in a dose dependent way. Conclusion: We provide evidence for the role of MCTs in embryo lung development, however to prove the dependence of MCT activity further studies are waranted.

  14. Poly(acrylic acid) coating induced 2-line ferrihydrite nanoparticle transport in saturated porous media

    Xiang, Aishuang; Yan, Weile; Koel, Bruce E.; Jaffé, Peter R.

    2013-07-01

    Iron oxide and iron nanoparticles (NPs) have been used effectively for environmental remediation, but are limited in their applications by strong retention in groundwater-saturated porous media. For example, delivery of NPs to large groundwater reservoirs would require large numbers of injection wells. To address this problem, we have explored polymer coatings as a surface engineering strategy to enhance transport of oxide nanoparticles in porous media. We report here on our studies of 2-line ferrihydrite NPs and the influence of poly (acrylic acid) (PAA) polymer coatings on the colloidal stability and transport in natural sand-packed column tests simulating flow in groundwater-saturated porous media. Measurements were also made of zeta potential, hydrodynamic diameter, and polymer adsorption and desorption properties. The coated NPs have a diameter range of 30-500 nm. We found that NP transport was improved by PAA coating and that the transport properties could be tuned by adjusting the polymer concentration. Our results demonstrate that a high stability of oxide particles and improved transport can be achieved in groundwater-saturated porous media by introducing negatively charged polyelectrolytes and optimizing polymer concentrations.

  15. Poly(acrylic acid) coating induced 2-line ferrihydrite nanoparticle transport in saturated porous media

    Xiang, Aishuang [Princeton University, Chemical and Biological Engineering Department (United States); Yan, Weile [Texas Tech University, Civil and Environmental Engineering (United States); Koel, Bruce E., E-mail: bkoel@princeton.edu [Princeton University, Chemical and Biological Engineering Department (United States); Jaffe, Peter R., E-mail: jaffe@princeton.edu [Princeton University, Civil and Environmental Engineering Department (United States)

    2013-07-15

    Iron oxide and iron nanoparticles (NPs) have been used effectively for environmental remediation, but are limited in their applications by strong retention in groundwater-saturated porous media. For example, delivery of NPs to large groundwater reservoirs would require large numbers of injection wells. To address this problem, we have explored polymer coatings as a surface engineering strategy to enhance transport of oxide nanoparticles in porous media. We report here on our studies of 2-line ferrihydrite NPs and the influence of poly (acrylic acid) (PAA) polymer coatings on the colloidal stability and transport in natural sand-packed column tests simulating flow in groundwater-saturated porous media. Measurements were also made of zeta potential, hydrodynamic diameter, and polymer adsorption and desorption properties. The coated NPs have a diameter range of 30-500 nm. We found that NP transport was improved by PAA coating and that the transport properties could be tuned by adjusting the polymer concentration. Our results demonstrate that a high stability of oxide particles and improved transport can be achieved in groundwater-saturated porous media by introducing negatively charged polyelectrolytes and optimizing polymer concentrations.

  16. Stable isotope tracer reveals that viviparous snakes transport amino acids to offspring during gestation.

    Van Dyke, James U; Beaupre, Steven J

    2012-03-01

    Viviparity and placentation have evolved from oviparity over 100 times in squamate reptiles (lizards and snakes). The independent origins of placentation have resulted in a variety of placental morphologies in different taxa, ranging from simple apposition of fetal and maternal tissues to endotheliochorial implantation that is homoplasious with mammalian placentation. Because the eggs of oviparous squamates transport gases and water from the environment and calcium from the eggshell, the placentae of viviparous squamates are thought to have initially evolved to accomplish these functions from within the maternal oviduct. Species with complex placentae have also been shown to rely substantially, or even primarily, on placental transport of organic nutrients for embryonic nutrition. However, it is unclear whether species with only simple placentae are also capable of transporting organic nutrients to offspring. Among viviparous squamates, all of the snakes that have been studied thus far have been shown to have simple placentae. However, most studies of snake placentation are limited to a single lineage, the North American Natricinae. We tested the abilities of four species of viviparous snakes - Agkistrodon contortrix (Viperidae), Boa constrictor (Boidae), Nerodia sipedon (Colubridae: Natricinae) and Thamnophis sirtalis (Colubridae: Natricinae) - to transport diet-derived amino acids to offspring during gestation. We fed [(15)N]leucine to pregnant snakes, and compared offspring (15)N content with that of unlabeled controls. Labeled females allocated significantly more (15)N to offspring than did controls, but (15)N allocation did not differ among species. Our results indicate that viviparous snakes are capable of transporting diet-derived amino acids to their offspring during gestation, possibly via placentation.

  17. Assessment of Amino Acid/Drug Transporters for Renal Transport of [18F]Fluciclovine (anti-[18F]FACBC in Vitro

    Masahiro Ono

    2016-10-01

    Full Text Available [18F]Fluciclovine (trans-1-amino-3-[18F]fluorocyclobutanecarboxylic acid; anti-[18F]FACBC, a positron emission tomography tracer used for the diagnosis of recurrent prostate cancer, is transported via amino acid transporters (AATs with high affinity (Km: 97–230 μM. However, the mechanism underlying urinary excretion is unknown. In this study, we investigated the involvement of AATs and drug transporters in renal [18F]fluciclovine reuptake. [14C]Fluciclovine (trans-1-amino-3-fluoro[1-14C]cyclobutanecarboxylic acid was used because of its long half-life. The involvement of AATs in [14C]fluciclovine transport was measured by apical-to-basal transport using an LLC-PK1 monolayer as model for renal proximal tubules. The contribution of drug transporters herein was assessed using vesicles/cells expressing the drug transporters P-glycoprotein (P-gp, breast cancer resistance protein (BCRP, multidrug resistance-associated protein 4 (MRP4, organic anion transporter 1 (OAT1, organic anion transporter 3 (OAT3 , organic cation transporter 2 (OCT2, organic anion transporting polypeptide 1B1 (OATP1B1, and organic anion transporting polypeptide 1B3 (OATP1B3. The apical-to-basal transport of [14C]fluciclovine was attenuated by l-threonine, the substrate for system alanine-serine-cysteine (ASC AATs. [14C]Fluciclovine uptake by drug transporter-expressing vesicles/cells was not significantly different from that of control vesicles/cells. Fluciclovine inhibited P-gp, MRP4, OAT1, OCT2, and OATP1B1 (IC50 > 2.95 mM. Therefore, system ASC AATs may be partly involved in the renal reuptake of [18F]fluciclovine. Further, given that [18F]fluciclovine is recognized as an inhibitor with millimolar affinity for the tested drug transporters, slow urinary excretion of [18F]fluciclovine may be mediated by system ASC AATs, but not by drug transporters.

  18. Dietary supplementation with N-carbamylglutamate increases the expression of intestinal amino acid transporters in weaned Huanjiang mini-pig piglets.

    Yang, H S; Fu, D Z; Kong, X F; Wang, W C; Yang, X J; Nyachoti, C M; Yin, Y L

    2013-06-01

    Weaning is associated with reduced intestinal absorptive capacity in piglets. Our previous study indicated that dietary supplementation with N-carbamylglutamate (NCG) enhanced growth performance and improved intestinal function in weaned piglets. The present study was conducted to test the hypothesis that dietary supplementation with NCG may increase the growth performance of weaned piglets by regulating the expression of intestinal nutrient transporters, thus enhancing nutrient absorption. Twenty-four Huanjiang mini-pig piglets weaned at 21 d of age (3.17 ± 0.21 kg average BW) were randomly assigned to 2 dietary treatments consisting of a basal diet and the basal diet with 0.1% NCG supplementation for a 14-d period with 6 pens per treatment and 1 male and 1 female per pen. On d 14, 1 piglet was randomly selected from each pen for blood and tissue sampling. Dietary NCG supplementation enhanced (P < 0.05) growth rate and the efficiency of feed use in weaned Huanjiang mini-pig piglets. The NCG-supplemented diet increased (P < 0.05) mRNA expression levels of Slc6a19, Slc7a9, and Slc1a1 and the protein abundance of ASCT2, B(0)AT1, b(0,+)AT, y(+)LAT1, and EAAC1 in the jejunum. Furthermore, the contents of low density lipoprotein, ammonia, urea nitrogen, and AA as well as the activity of alkaline phosphatase in plasma were all altered (P < 0.05) by supplementation with NCG. These findings indicate that dietary supplementation with NCG may improve intestinal absorptive function in weaned piglets by increasing the expression of AA transporters in the intestine.

  19. Identification of transport pathways for citric acid cycle intermediates in the human colon carcinoma cell line, Caco-2.

    Weerachayaphorn, Jittima; Pajor, Ana M

    2008-04-01

    Citric acid cycle intermediates are absorbed from the gastrointestinal tract through carrier-mediated mechanisms, although the transport pathways have not been clearly identified. This study examines the transport of citric acid cycle intermediates in the Caco-2 human colon carcinoma cell line, often used as a model of small intestine. Inulin was used as an extracellular volume marker instead of mannitol since the apparent volume measured with mannitol changed with time. The results show that Caco-2 cells contain at least three distinct transporters, including the Na+-dependent di- and tricarboxylate transporters, NaDC1 and NaCT, and one or more sodium-independent pathways, possibly involving organic anion transporters. Succinate transport is mediated mostly by Na+-dependent pathways, predominantly by NaDC1, but with some contribution by NaCT. RT-PCR and functional characteristics verified the expression of these transporters in Caco-2 cells. In contrast, citrate transport in Caco-2 cells occurs by a combination of Na+-independent pathways, possibly mediated by an organic anion transporter, and Na+-dependent mechanisms. The non-metabolizable dicarboxylate, methylsuccinate, is also transported by a combination of Na+-dependent and -independent pathways. In conclusion, we find that multiple pathways are involved in the transport of di- and tricarboxylates by Caco-2 cells. Since many of these pathways are not found in human intestine, this model may be best suited for studying Na+-dependent transport of succinate by NaDC1.

  20. The contribution of SNAT1 to system A amino acid transporter activity in human placental trophoblast

    Desforges, M., E-mail: michelle.desforges@manchester.ac.uk [Maternal and Fetal Health Research Centre, Developmental Biomedicine, School of Medicine, Manchester Academic Health Sciences Centre, University of Manchester, St. Mary' s Hospital, Level 5-Research, Oxford Road, Manchester M13 9WL (United Kingdom); Greenwood, S.L.; Glazier, J.D.; Westwood, M.; Sibley, C.P. [Maternal and Fetal Health Research Centre, Developmental Biomedicine, School of Medicine, Manchester Academic Health Sciences Centre, University of Manchester, St. Mary' s Hospital, Level 5-Research, Oxford Road, Manchester M13 9WL (United Kingdom)

    2010-07-16

    Research highlights: {yields} mRNA levels for SNAT1 are higher than other system A subtype mRNAs in primary human cytotrophoblast. {yields} SNAT1 knockdown in cytotrophoblast cells significantly reduces system A activity. {yields} SNAT1 is a key contributor to system A-mediated amino acid transport in human placenta. -- Abstract: System A-mediated amino acid transport across the placenta is important for the supply of neutral amino acids needed for fetal growth. All three system A subtypes (SNAT1, 2, and 4) are expressed in human placental trophoblast suggesting there is an important biological role for each. Placental system A activity increases as pregnancy progresses, coinciding with increased fetal nutrient demands. We have previously shown SNAT4-mediated system A activity is higher in first trimester than at term, suggesting that SNAT1 and/or SNAT2 are responsible for the increased system A activity later in gestation. However, the relative contribution of each subtype to transporter activity in trophoblast at term has yet to be evaluated. The purpose of this study was to identify the predominant subtype of system A in cytotrophoblast cells isolated from term placenta, maintained in culture for 66 h, by: (1) measuring mRNA expression of the three subtypes and determining the Michaelis-Menten constants for uptake of the system A-specific substrate, {sup 14}C-MeAIB, (2) investigating the contribution of SNAT1 to total system A activity using siRNA. Results: mRNA expression was highest for the SNAT1 subtype of system A. Kinetic analysis of {sup 14}C-MeAIB uptake revealed two distinct transport systems; system 1: K{sub m} = 0.38 {+-} 0.12 mM, V{sub max} = 27.8 {+-} 9.0 pmol/mg protein/20 min, which resembles that reported for SNAT1 and SNAT2 in other cell types, and system 2: K{sub m} = 45.4 {+-} 25.0 mM, V{sub max} = 1190 {+-} 291 pmol/mg protein/20 min, which potentially represents SNAT4. Successful knockdown of SNAT1 mRNA using target-specific si

  1. Influence of Perfluorooctanoic Acid on the Transport and Deposition Behaviors of Bacteria in Quartz Sand.

    Wu, Dan; Tong, Meiping; Kim, Hyunjung

    2016-03-01

    The significance of perfluorooctanoic acid (PFOA) on the transport and deposition behaviors of bacteria (Gram-negative Escherichia coli and Gram-positive Bacillus subtilis) in quartz sand is examined in both NaCl and CaCl2 solutions at pH 5.6 by comparing both breakthrough curves and retained profiles with PFOA in solutions versus those without PFOA. All test conditions are found to be highly unfavorable for cell deposition regardless of the presence of PFOA; however, 7%-46% cell deposition is observed depending on the conditions. The cell deposition may be attributed to micro- or nanoscale roughness and/or to chemical heterogeneity of the sand surface. The results show that, under all examined conditions, PFOA in suspensions increases cell transport and decreases cell deposition in porous media regardless of cell type, presence or absence of extracellular polymeric substances, ionic strength, and ion valence. We find that the additional repulsion between bacteria and quartz sand caused by both acid-base interaction and steric repulsion as well as the competition for deposition sites on quartz sand surfaces by PFOA are responsible for the enhanced transport and decreased deposition of bacteria with PFOA in solutions.

  2. Cationic amino acid transporter 2 enhances innate immunity during Helicobacter pylori infection.

    Daniel P Barry

    Full Text Available Once acquired, Helicobacter pylori infection is lifelong due to an inadequate innate and adaptive immune response. Our previous studies indicate that interactions among the various pathways of arginine metabolism in the host are critical determinants of outcomes following infection. Cationic amino acid transporter 2 (CAT2 is essential for transport of L-arginine (L-Arg into monocytic immune cells during H. pylori infection. Once within the cell, this amino acid is utilized by opposing pathways that lead to elaboration of either bactericidal nitric oxide (NO produced from inducible NO synthase (iNOS, or hydrogen peroxide, which causes macrophage apoptosis, via arginase and the polyamine pathway. Because of its central role in controlling L-Arg availability in macrophages, we investigated the importance of CAT2 in vivo during H. pylori infection. CAT2(-/- mice infected for 4 months exhibited decreased gastritis and increased levels of colonization compared to wild type mice. We observed suppression of gastric macrophage levels, macrophage expression of iNOS, dendritic cell activation, and expression of granulocyte-colony stimulating factor in CAT2(-/- mice suggesting that CAT2 is involved in enhancing the innate immune response. In addition, cytokine expression in CAT2(-/- mice was altered from an antimicrobial Th1 response to a Th2 response, indicating that the transporter has downstream effects on adaptive immunity as well. These findings demonstrate that CAT2 is an important regulator of the immune response during H. pylori infection.

  3. Excitatory amino acid transporter 2 downregulation correlates with thalamic neuronal death following kainic acid-induced status epilepticus in rat.

    Sakurai, Masashi; Kurokawa, Haruna; Shimada, Akinori; Nakamura, Kazuhiro; Miyata, Hajime; Morita, Takehito

    2015-02-01

    Recurrent seizures without interictal resumption (status epilepticus) have been reported to induce neuronal death in the midline thalamic region that has functional roles in memory and decision-making; however, the pathogenesis underlying status epilepticus-induced thalamic neuronal death is yet to be determined. We performed histological and immunohistochemical studies as well as cerebral blood flow measurement using 4.7 tesla magnetic resonance imaging spectrometer on midline thalamic region in Sprague-Dawley rats (n = 75, male, 7 weeks after birth, body weight 250-300 g) treated with intraperitoneal injection of kainic acid (10 mg/kg) to induce status epilepticus (n = 55) or normal saline solution (n = 20). Histological study using paraffin-embedded specimens revealed neuronal death showing ischemic-like changes and Fluoro-Jade C positivity with calcium deposition in the midline thalamic region of epileptic rats. The distribution of neuronal death was associated with focal loss of immunoreactivity for excitatory amino acid transporter 2 (EAAT2), stronger immunoreaction for glutamate and increase in number of Iba-1-positive microglial cells showing swollen cytoplasm and long processes. Double immunofluorescence study demonstrated co-expression of interleukin-1 beta (IL-1β) and inducible nitric oxide synthase (iNOS) within microglial cells, and loss of EAAT2 immunoreactivity in reactive astrocytes. These microglial alterations and astrocytic EAAT2 downregulation were also observed in tissue without obvious neuronal death in kainic acid-treated rats. These results suggest the possible role of glutamate excitotoxicity in neuronal death in the midline thalamic region following kainic acid-induced status epilepticus due to astrocytic EAAT2 downregulation following microglial activation showing upregulation of IL-1β and iNOS.

  4. Haematology and behaviour of pullets transported by road and administered with ascorbic acid during the hot-dry season.

    Minka, N S; Ayo, J O

    2008-10-01

    The effects of ascorbic acid (AA) on pullets transported by road for 6h during the hot-dry season were investigated. Forty Shika Brown pullets administered orally with AA just before transportation served as experimental, while another 40 pullets given sterile water only served as control. Blood samples analyzed before and after transportation in control pullets showed a decrease (P0.05) from those obtained pre-transportation. The result showed that the transportation was stressful in control pullets. The behavioural activities of the pullets' post-transportation period indicated that AA facilitated the transition of the state of depression that followed excitation back to excitation immediately after transportation. In conclusion, AA administration ameliorated the adverse effect of road transportation stress during the hot-dry season.

  5. Amino acid contents and transport of fixed N in nodules of Leucaena leucocephala variety K-8

    DuBois, J.D.

    1987-04-01

    Seedlings of Leucaena leucocephala var. K-8 were grown with a N-free fertilizer or fertilizer containing /sup 15/N-depleted (NH/sub 4/)/sub 2/SO/sub 4/ (0.01 atom /sup 15/N; 10 ppm). The nodules of 5 month old trees grown on N-free media were used for /sup 15/N-enriched treatment and as controls. Nodules from plants grown on /sup 15/N-depleted media were also used. Nodules were extracted with 0.5% aqueous toluene and aliquots were analyzed with a Beckman 120B Amino Acid Analyzer. Samples were separated into free ammonium, Asp-N, Glu-N, Asn and Gln amide- and amino-N, and remaining amino acids. Fractions were then analyzed for /sup 15/N content. Asn (27.3 umol/gfw) represented 56% of the total free amino acid pool in the nodules. Asn (amide-N and amino-N) also represented approximately 77% of the total N fixed during the one hour /sup 15/N-enriched N/sub 2/ and the /sup 15/N-depleted treatments. Based on these findings and the fact that the ureide fraction is barely detectable in the nodules (0.25 ..mu..mol/gfw), the authors considers L. leucocephala an amide transporter of fixed N. Additional information will be presented on the amino acid contents of tissues, as well as a time course of amino acid content from seed through nodulation.

  6. Transport of citrate across renal brush border membrane: effects of dietary acid and alkali loading

    Jenkins, A.D.; Dousa, T.P.; Smith, L.H.

    1985-10-01

    Dietary acid or alkali loading was given to rats by providing 150 mM NH4Cl or 150 mM NaHCO3 in place of drinking water for 6 days; control animals received 150 mM NaCl. After 6 days, the citrate clearance was 0.04 +/- 0.01 ml/min (mean +/- SE) in the acid-loaded group, 0.9 +/- 0.1 ml/min in the control group, and 2.5 +/- 0.2 ml/min in the alkali-loaded group. At the end of the experiment, the rats were killed, and the Na gradient-dependent citrate uptake was measured in brush border membrane (BBM) vesicles prepared from each group. At 0.3 min, the ( UC)citrate uptake was 198 +/- 8 pmol/mg protein (mean +/- SE) in the acid-loaded group, 94 +/- 16 pmol/mg protein in the control group, and 94 +/- 13 pmol/mg protein in the alkali-loaded group. The rate of Na -independent (NaCl in medium replaced by KCl) ( UC)-citrate uptake by BBM vesicles was the same for acid-loaded, control, and alkali-loaded animals. Thus, the increased capacity of the proximal tubular BBM to transport citrate from the tubular lumen into the cell interior may be an important factor that contributes to decreased urinary citrate in the presence of metabolic acidosis induced by chronic dietary acid loading.

  7. Characterization and Regulation of the Amino Acid Transporter SNAT2 in the Small Intestine of Piglets.

    Li, Guangran; Li, Jianjun; Tan, Bie; Wang, Jing; Kong, Xiangfeng; Guan, Guiping; Li, Fengna; Yin, Yulong

    2015-01-01

    The sodium-dependent neutral amino acid transporter 2 (SNAT2), which has dual transport/receptor functions, is well documented in eukaryotes and some mammalian systems, but has not yet been verified in piglets. The objective of this study was to investigate the characteristics and regulation of SNAT2 in the small intestine of piglets. The 1,521-bp porcine full cDNA sequence of SNAT2 (KC769999) from the small intestine of piglets was cloned. The open reading frame of cDNA encodes 506 deduced amino acid residues with a calculated molecular mass of 56.08 kDa and an isoelectric point (pI) of 7.16. Sequence alignment and phylogenetic analysis revealed that SNAT2 is highly evolutionarily conserved in mammals. SNAT2 mRNA can be detected in the duodenum, jejunum and ileum by real-time quantitative PCR. During the suckling period from days 1 to 21, the duodenum had the highest abundance of SNAT2 mRNA among the three segments of the small intestine. There was a significant decrease in the expression of SNAT2 mRNA in the duodenal and jejunal mucosa and in the expression of SNAT2 protein in the jejunal and ileal mucosa on day 1 after weaning (P absorption of amino acids and signal transduction in the porcine small intestine.

  8. Speciation and transport of arsenic in an acid sulfate soil-dominated catchment, eastern Australia.

    Kinsela, Andrew S; Collins, Richard N; Waite, T David

    2011-02-01

    Factors controlling the transport of geogenically-derived arsenic from a coastal acid sulfate soil into downstream sediments are identified in this study with both solid-phase associations and aqueous speciation clearly critical to the mobility and toxicity of arsenic. The data from both sequential extractions and X-ray adsorption spectroscopy indicate that arsenic in the unoxidised Holocene acid sulfate soils is essentially non-labile in the absence of prolonged oxidation, existing primarily as arsenopyrite or as an arsenopyrite-like species, likely arsenian pyrite. Anthropogenically-accelerated pedogenic processes, which have oxidised this material over time, have greatly enhanced the potential bioavailability of arsenic, with solid-phase arsenic almost solely present as As(V) associated with secondary Fe(III) minerals present. Analyses of downstream sediments reveal that a portion of the arsenic is retained as a mixed As(III)/As(V) solid-phase, though not at levels considered to be environmentally deleterious. Determination of arsenic speciation in pore waters using high performance liquid chromatography/Inductively Coupled Plasma-Mass Spectrometry shows a dominance of As(III) in upstream pore waters whilst an unidentified As species reaches comparative levels within the downstream, estuarine locations. Pore water As(V) was detected at trace concentrations only. The results demonstrate the importance of landscape processes to arsenic transport and availability within acid sulfate soil environments.

  9. Trypanocidal Effect of Isotretinoin through the Inhibition of Polyamine and Amino Acid Transporters in Trypanosoma cruzi

    Reigada, Chantal; Valera-Vera, Edward A.; Sayé, Melisa; Errasti, Andrea E.; Avila, Carla C.; Miranda, Mariana R.; Pereira, Claudio A.

    2017-01-01

    Polyamines are essential compounds to all living organisms and in the specific case of Trypanosoma cruzi, the causative agent of Chagas disease, they are exclusively obtained through transport processes since this parasite is auxotrophic for polyamines. Previous works reported that retinol acetate inhibits Leishmania growth and decreases its intracellular polyamine concentration. The present work describes a combined strategy of drug repositioning by virtual screening followed by in vitro assays to find drugs able to inhibit TcPAT12, the only polyamine transporter described in T. cruzi. After a screening of 3000 FDA-approved drugs, 7 retinoids with medical use were retrieved and used for molecular docking assays with TcPAT12. From the docked molecules, isotretinoin, a well-known drug used for acne treatment, showed the best interaction score with TcPAT12 and was selected for further in vitro studies. Isotretinoin inhibited the polyamine transport, as well as other amino acid transporters from the same protein family (TcAAAP), with calculated IC50 values in the range of 4.6–10.3 μM. It also showed a strong inhibition of trypomastigote burst from infected cells, with calculated IC50 of 130 nM (SI = 920) being significantly less effective on the epimastigote stage (IC50 = 30.6 μM). The effect of isotretinoin on the parasites plasma membrane permeability and on mammalian cell viability was tested, and no change was observed. Autophagosomes and apoptotic bodies were detected as part of the mechanisms of isotretinoin-induced death indicating that the inhibition of transporters by isotretinoin causes nutrient starvation that triggers autophagic and apoptotic processes. In conclusion, isotretinoin is a promising trypanocidal drug since it is a multi-target inhibitor of essential metabolites transporters, in addition to being an FDA-approved drug largely used in humans, which could reduce significantly the requirements for its possible application in the treatment of

  10. Modulatory effect of ascorbic acid on physiological responses of transported ostrich chicks

    Minka N. Salka

    2012-05-01

    Full Text Available The aims of this study were to determine the modulating role of ascorbic acid (AA on rectal temperature (RT, heterophil to lymphocyte (H to L ratio and aberrant behaviours of ostrich chicks transported by road for 4 h during hot-dry conditions. Twenty ostrich chicks aged 2.5 months, of both sexes and belonging to the Red Neck breed, served as subjects of the study. The chicks were assigned randomly to AA-treated and control groups, consisting of 10 chicks each. The AA-treated group was administered orally with 100 mg/kg body weight of AA dissolved in 5 mL of sterile water 30 min before transportation, whilst the control group was given the equivalent of sterile water only. The thermal load (TL experienced in the vehicle during transportation fluctuated between 31 °C and 89 °C, as calculated from the ambient temperature and relative humidity. Transportation induced hyperthermia, lymphopenia, heterophilia and aberrant behaviours of pecking, wing fluffing and panting, which were ameliorated by AA administration. The relationships between the TL, journey duration and physiological variables of RT, H to L ratio and aberrant behaviours recorded during transportation were significantly and positively correlated in the control group. In AA-treated group the relationships were not significantly correlated. In conclusion, the results showed for the first time that AA ameliorated the adverse effects of stress caused by road transportation on the aberrant behaviours, RT and H to L ratio of ostrich chicks during the hot-dry season.

  11. Transport and cycling of iron and hydrogen peroxide in a freshwater stream: Influence of organic acids

    Scott, D.T.; Runkel, R.L.; McKnight, Diane M.; Voelker, B.M.; Kimball, B.A.; Carraway, E.R.

    2003-01-01

    An in-stream injection of two dissolved organic acids (phthalic and aspartic acids) was performed in an acidic mountain stream to assess the effects of organic acids on Fe photoreduction and H2O2 cycling. Results indicate that the fate of Fe is dependent on a net balance of oxidative and reductive processes, which can vary over a distance of several meters due to changes in incident light and other factors. Solution phase photoreduction rates were high in sunlit reaches and were enhanced by the organic acid addition but were also limited by the amount of ferric iron present in the water column. Fe oxide photoreduction from the streambed and colloids within the water column resulted in an increase in the diurnal load of total filterable Fe within the experimental reach, which also responded to increases in light and organic acids. Our results also suggest that Fe(II) oxidation increased in response to the organic acids, with the result of offsetting the increase in Fe(II) from photoreductive processes. Fe(II) was rapidly oxidized to Fe(III) after sunset and during the day within a well-shaded reach, presumably through microbial oxidation. H2O 2, a product of dissolved organic matter photolysis, increased downstream to maximum concentrations of 0.25 ??M midday. Kinetic calculations show that the buildup of H2O2 is controlled by reaction with Fe(III), but this has only a small effect on Fe(II) because of the small formation rates of H2O2 compared to those of Fe(II). The results demonstrate the importance of incorporating the effects of light and dissolved organic carbon into Fe reactive transport models to further our understanding of the fate of Fe in streams and lakes.

  12. Conformational basis for the Li(+)-induced leak current in the rat gamma-aminobutyric acid (GABA) transporter-1

    MacAulay, Nanna; Zeuthen, Thomas; Gether, Ulrik

    2002-01-01

    The rat gamma-aminobutyric acid transporter-1 (GAT-1) was expressed in Xenopus laevis oocytes and the substrate-independent Li(+)-induced leak current was examined using two-electrode voltage clamp. The leak current was not affected by the addition of GABA and was not due to H(+) permeation. The ...... of Na(+) restrains the transporter from moving into a leak conductance mode as well as allowing maintenance of GABA-elicited transport-associated current....

  13. Excitatory amino acid transporters: recent insights into molecular mechanisms, novel modes of modulation and new therapeutic possibilities

    Jensen, Anders A.; Fahlke, Christoph; Bjørn-Yoshimoto, Walden Emil;

    2015-01-01

    The five excitatory amino acid transporters (EAAT1–5) mediating the synaptic uptake of the major excitatory neurotransmitter glutamate are differently expressed throughout the CNS and at the synaptic level. Although EAATs are crucial for normal excitatory neurotransmission, explorations into the ...... of EAATs and their intricate transport process, the novel approaches to pharmacological modulation of the transporters that have emerged, and interesting new perspectives in EAAT as drug targets proposed in recent years....

  14. Hypomorphic variants of cationic amino acid transporter 3 in males with autism spectrum disorders.

    Nava, Caroline; Rupp, Johanna; Boissel, Jean-Paul; Mignot, Cyril; Rastetter, Agnès; Amiet, Claire; Jacquette, Aurélia; Dupuits, Céline; Bouteiller, Delphine; Keren, Boris; Ruberg, Merle; Faudet, Anne; Doummar, Diane; Philippe, Anne; Périsse, Didier; Laurent, Claudine; Lebrun, Nicolas; Guillemot, Vincent; Chelly, Jamel; Cohen, David; Héron, Delphine; Brice, Alexis; Closs, Ellen I; Depienne, Christel

    2015-12-01

    Cationic amino acid transporters (CATs) mediate the entry of L-type cationic amino acids (arginine, ornithine and lysine) into the cells including neurons. CAT-3, encoded by the SLC7A3 gene on chromosome X, is one of the three CATs present in the human genome, with selective expression in brain. SLC7A3 is highly intolerant to variation in humans, as attested by the low frequency of deleterious variants in available databases, but the impact on variants in this gene in humans remains undefined. In this study, we identified a missense variant in SLC7A3, encoding the CAT-3 cationic amino acid transporter, on chromosome X by exome sequencing in two brothers with autism spectrum disorder (ASD). We then sequenced the SLC7A3 coding sequence in 148 male patients with ASD and identified three additional rare missense variants in unrelated patients. Functional analyses of the mutant transporters showed that two of the four identified variants cause severe or moderate loss of CAT-3 function due to altered protein stability or abnormal trafficking to the plasma membrane. The patient with the most deleterious SLC7A3 variant had high-functioning autism and epilepsy, and also carries a de novo 16p11.2 duplication possibly contributing to his phenotype. This study shows that rare hypomorphic variants of SLC7A3 exist in male individuals and suggest that SLC7A3 variants possibly contribute to the etiology of ASD in male subjects in association with other genetic factors.

  15. Prenatal testosterone-induced fetal growth restriction is associated with down-regulation of rat placental amino acid transport

    Hankins Gary DV

    2011-08-01

    Full Text Available Abstract Background Exposure of pregnant mothers to elevated concentrations of circulating testosterone levels is associated with fetal growth restriction and delivery of small-for-gestational-age babies. We examined whether maternal testosterone crosses the placenta to directly suppress fetal growth or if it modifies placental function to reduce the capacity for transport of nutrients to the fetus. Methods Pregnant rats were exposed to testosterone propionate (TP; 0.5 mg/kg by daily subcutaneous injection from gestational days (GD 15-19. Maternal and fetal testosterone levels, placental nutrient transport activity and expression of transporters and birth weight of pups and their anogenital distances were determined. Results This dose of TP doubled maternal testosterone levels but had no effect on fetal testosterone levels. Maternal daily weight gain was significantly lower only on GD 19 in TP treated dams compared to controls. Placental weight and birth weight of pups were significantly reduced, but the anogenital distance of pups were unaffected by TP treatment. Maternal plasma amino acids concentrations were altered following testosterone exposure, with decreases in glutamine, glycine, tyrosine, serine, proline, and hydroxyproline and increases in asparagine, isoleucine, leucine, lysine, histidine and arginine. In the TP dams, placental system A amino acid transport activity was significantly reduced while placental glucose transport capacity was unaffected. Decreased expression of mRNA and protein levels of slc38a2/Snat2, an amino acid transporter, suggests that reduced transporter proteins may be responsible for the decrease in amino acid transport activity. Conclusions Taken together, these data suggest that increased maternal testosterone concentrations do not cross the placenta to directly suppress fetal growth but affects amino acid nutrient delivery to the fetus by downregulating specific amino acid transporter activity.

  16. Effects of dietary protein and amino acid levels on the expression of selected cationic amino acid transporters and serum amino acid concentration in growing pigs.

    García-Villalobos, Héctor; Morales-Trejo, Adriana; Araiza-Piña, Benedicto A; Htoo, John K; Cervantes-Ramírez, Miguel

    2012-08-01

    The absorption of lysine is facilitated by leucine, but there is no information regarding the effect of crude protein, lysine and leucine levels on the expression of cationic amino acid transporters in pigs. Therefore, an experiment was conducted with 20 pigs (14.9 +/- 0.62 kg initial body weight) to evaluate the effect of two protein levels, and the content of lysine, threonine, methionine and leucine in low crude protein diets on the expression of b(0,+) and CAT-1 mRNA in jejunum, Longissimus dorsi and Semitendinosus muscles and serum concentration of amino acids. Treatments were as follows: (i) wheat-soybean meal diet, 20% crude protein (Control); (ii) wheat diet deficient in lysine, threonine and methionine (Basal diet); (iii) Basal diet plus 0.70% L-lysine, 0.27% L-threonine, 0.10% DL-methionine (Diet LTM); (iv) Diet LTM plus 0.80% L-leucine (Diet LTM + Leu). Despite the Basal diet, all diets were formulated to meet the requirements of lysine, threonine and methionine; Diet LTM + Leu supplied 60% excess of leucine. The addition of lysine, threonine and methionine in Diet LTM increased the expression of b(0,+) in jejunum and CAT-1 in the Semitendinosus and Longissiums muscles and decreased CAT-1 in jejunum; the serum concentration of lysine was also increased (p Pigs fed the Control diet expressed less b(0,+) in jejunum, and CAT-1 in the Semitendinosus and Longissiums muscles expressed more CAT-1 in jejunum (p dietary amino acids, affect the expression of cationic amino acid transporters in pigs fed wheat-based diets.

  17. Rapid chemoenzymatic route to glutamate transporter inhibitor l-TFB-TBOA and related amino acids.

    Fu, Haigen; Younes, Sabry H H; Saifuddin, Mohammad; Tepper, Pieter G; Zhang, Jielin; Keller, Erik; Heeres, André; Szymanski, Wiktor; Poelarends, Gerrit J

    2017-03-21

    The complex amino acid (l-threo)-3-[3-[4-(trifluoromethyl)benzoylamino]benzyloxy]aspartate (l-TFB-TBOA) and its derivatives are privileged compounds for studying the roles of excitatory amino acid transporters (EAATs) in regulation of glutamatergic neurotransmission, animal behavior, and in the pathogenesis of neurological diseases. The wide-spread use of l-TFB-TBOA stems from its high potency of EAAT inhibition and the lack of off-target binding to glutamate receptors. However, one of the main challenges in the evaluation of l-TFB-TBOA and its derivatives is the laborious synthesis of these compounds in stereoisomerically pure form. Here, we report an efficient and step-economic chemoenzymatic route that gives access to enantio- and diastereopure l-TFB-TBOA and its derivatives at multigram scale.

  18. Structure-dependent effects of pyridine derivatives on mechanisms of intestinal fatty acid uptake: regulation of nicotinic acid receptor and fatty acid transporter expression.

    Riedel, Annett; Lang, Roman; Rohm, Barbara; Rubach, Malte; Hofmann, Thomas; Somoza, Veronika

    2014-07-01

    Pyridines are widely distributed in foods. Nicotinic acid (NA), a carboxylated pyridine derivative, inhibits lipolysis in adipocytes by activation of the orphan NA receptor (HM74A) and is applied to treat hyperlipidemia. However, knowledge on the impact of pyridine derivatives on intestinal lipid metabolism is scarce. This study was performed to identify the structural determinants of pyridines for their effects on fatty acid uptake in enterocyte-like Caco-2 cells and to elucidate the mechanisms of action. The impact of 17 pyridine derivatives on fatty acid uptake was tested. Multiple regression analysis revealed the presence of a methyl group to be the structural determinant at 0.1 mM, whereas at 1 mM, the presence of a carboxylic group and the N-methylation presented further structural characteristics to affect the fatty acid uptake. NA, showing a stimulating effect on FA uptake, and N-methyl-4-phenylpyridinium (MPP), inhibiting FA uptake, were selected for mechanistic studies. Gene expression of the fatty acid transporters CD36, FATP2 and FATP4, and the lipid metabolism regulating transcription factors peroxisome proliferator-activated receptor (PPAR) α and PPARγ was up-regulated upon NA treatment. Caco-2 cells were demonstrated to express the low-affinity NA receptor HM74 of which the gene expression was up-regulated upon NA treatment. We hypothesize that the NA-induced fatty acid uptake might result from NA receptor activation and related intracellular signaling cascades. In contrast, MPP increased transepithelial electrical resistance. We therefore conclude that NA and MPP, both sharing the pyridine motif core, exhibit their contrary effects on intestinal FA uptake by activation of different mechanisms.

  19. Characterization and Regulation of the Amino Acid Transporter SNAT2 in the Small Intestine of Piglets.

    Guangran Li

    Full Text Available The sodium-dependent neutral amino acid transporter 2 (SNAT2, which has dual transport/receptor functions, is well documented in eukaryotes and some mammalian systems, but has not yet been verified in piglets. The objective of this study was to investigate the characteristics and regulation of SNAT2 in the small intestine of piglets. The 1,521-bp porcine full cDNA sequence of SNAT2 (KC769999 from the small intestine of piglets was cloned. The open reading frame of cDNA encodes 506 deduced amino acid residues with a calculated molecular mass of 56.08 kDa and an isoelectric point (pI of 7.16. Sequence alignment and phylogenetic analysis revealed that SNAT2 is highly evolutionarily conserved in mammals. SNAT2 mRNA can be detected in the duodenum, jejunum and ileum by real-time quantitative PCR. During the suckling period from days 1 to 21, the duodenum had the highest abundance of SNAT2 mRNA among the three segments of the small intestine. There was a significant decrease in the expression of SNAT2 mRNA in the duodenal and jejunal mucosa and in the expression of SNAT2 protein in the jejunal and ileal mucosa on day 1 after weaning (P < 0.05. Studies with enterocytes in vitro showed that amino acid starvation and supplementation with glutamate, arginine or leucine enhanced, while supplementation with glutamine reduced, SNAT2 mRNA expression (P < 0.05. These results regarding the characteristics and regulation of SNAT2 should help to provide some information to further clarify its roles in the absorption of amino acids and signal transduction in the porcine small intestine.

  20. Phytanic acid oxidation: normal activation and transport yet defective alpha-hydroxylation of phytanic acid in peroxisomes from Refsum disease and rhizomelic chondrodysplasia punctata.

    Pahan, K; Khan, M; Singh, I

    1996-05-01

    In humans the oxidation of phytanic acid is a peroxisomal function. To understand the possible mechanisms for the pathognomic accumulation of phytanic acid in plasma and body fluids of Refsum disease (RD) and rhizomelic chondrodysplasia punctata (RCDP), we investigated activities of various steps (activation, transport, and oxidation) in the metabolism of phytanic acid in peroxisomes isolated from cultured skin fibroblasts from control, RD, and RCDP subjects. Activation of phytanic acid was normal in peroxisomes from both RD and RCDP. Transport of phytanic acid or phytanoyl-CoA in the absence or presence of fatty acid activating cofactors (ATP, MgCl2, and CoASH) into peroxisomes isolated from RD and RCDP skin fibroblasts was also similar to that of peroxisomes from control fibroblasts. Defective oxidation of [(2,3)-3H]- or [1-14C]phytanic acid, or [1-14C]phytanoyl-CoA (substrate for the first step of alpha-oxidation) but normal oxidation of [1-14C] alpha-hydroxyphytanic acid (substrate for the second step of the alpha-oxidation pathway) in peroxisomes from RD clearly demonstrates that excessive accumulation of phytanic acid in plasma and body fluids of RD is due to the deficiency of phytanic acid alpha-hydroxylase in peroxisomes. However, in RCDP peroxisomes, in addition to deficient oxidation of [1-14C]phytanic acid or phytanoyl-CoA or [(2,3)-3H]phytanic acid, the oxidation of [1-14C] alpha-hydroxyphytanic acid was also deficient, indicating that in RCDP the activities both of alpha-hydroxylation of phytanic acid and decarboxylation of alpha-hydroxyphytanic acid are deficient. These observations indicate that peroxisomal membrane functions (phytanic acid activation and transport) in phytanic acid metabolism are normal in both RD and RCDP. The defect in RD is in the alpha-hydroxylation of phytanic acid; whereas in RCDP both alpha-hydroxylation of phytanic acid as well as decarboxylation of alpha-hydroxyphytanic acid are deficient.

  1. Poultry fat decreased fatty acid transporter protein mRNA expression and affected fatty acid composition in chickens

    Yuan Jianmin

    2012-05-01

    Full Text Available Abstract Background A study was undertaken to examine the effects of poultry fat (PF compared with those of soybean oil (SBO on intestinal development, fatty acid transporter protein (FATP mRNA expression, and fatty acid composition in broiler chickens. A total of 144 day-old male commercial broilers were randomly allocated to 2 treatment groups (6 replicates of 12 chicks for each treatment and fed isocaloric diets containing 3.0% PF or 2.7% SBO at 0 to 3 wk and 3.8% PF or 3.5% SBO at 4 to 6 wk, respectively. Results PF had no influence on intestinal morphology, weight, or DNA, RNA, or protein concentrations at 2, 4, and 6 wk of age. However, compared with SBO, PF significantly decreased FATP mRNA abundance at 4 wk (P = 0.009 and 6 wk of age (P P = 0.039; and decreased C18:2 (P = 0.015, C18:3 (P P = 0.018, Σ-polyunsaturated fatty acids (Σ-PUFA (P = 0.020, and the proportion of PUFA (P P = 0.010, C18:3 (P P P = 0.005, and the proportion of PUFA (P  Conclusions PF decreases FATP and L-FABP mRNA expression and decreased the proportion of PUFA in the intestinal mucosa and breast muscle.

  2. Disruption of the Saccharomyces cerevisiae homologue to the murine fatty acid transport protein impairs uptake and growth on long-chain fatty acids

    Færgeman, Nils J.; DiRusso, C C; Elberger, A;

    1997-01-01

    described in 3T3-L1 adipocytes (Schaffer and Lodish (1994) Cell 79, 427-436), suggesting a similar function. Disruption of FAT1 results in 1) an impaired growth in YPD medium containing 25 microM cerulenin and 500 microM fatty acid (myristate (C14:0), palmitate (C16:0), or oleate (C18:1)); 2) a marked......The yeast Saccharomyces cerevisiae is able to utilize exogenous fatty acids for a variety of cellular processes including beta-oxidation, phospholipid biosynthesis, and protein modification. The molecular mechanisms that govern the uptake of these compounds in S. cerevisiae have not been described....... We report the characterization of FAT1, a gene that encodes a putative membrane-bound long-chain fatty acid transport protein (Fat1p). Fat1p contains 623 amino acid residues that are 33% identical and 54% with similar chemical properties as compared with the fatty acid transport protein FATP...

  3. Identification of a Novel N-Acetylmuramic Acid Transporter in Tannerella forsythia.

    Ruscitto, Angela; Hottmann, Isabel; Stafford, Graham P; Schäffer, Christina; Mayer, Christoph; Sharma, Ashu

    2016-11-15

    Tannerella forsythia is a Gram-negative periodontal pathogen lacking the ability to undergo de novo synthesis of amino sugars N-acetylmuramic acid (MurNAc) and N-acetylglucosamine (GlcNAc) that form the disaccharide repeating unit of the peptidoglycan backbone. T. forsythia relies on the uptake of these sugars from the environment, which is so far unexplored. Here, we identified a novel transporter system of T. forsythia involved in the uptake of MurNAc across the inner membrane and characterized a homolog of the Escherichia coli MurQ etherase involved in the conversion of MurNAc-6-phosphate (MurNAc-6-P) to GlcNAc-6-P. The genes encoding these components were identified on a three-gene cluster spanning Tanf_08375 to Tanf_08385 located downstream from a putative peptidoglycan recycling locus. We show that the three genes, Tanf_08375, Tanf_08380, and Tanf_08385, encoding a MurNAc transporter, a putative sugar kinase, and a MurQ etherase, respectively, are transcriptionally linked. Complementation of the Tanf_08375 and Tanf_08380 genes together in trans, but not individually, rescued the inability of an E. coli mutant deficient in the phosphotransferase (PTS) system-dependent MurNAc transporter MurP as well as that of a double mutant deficient in MurP and components of the PTS system to grow on MurNAc. In addition, complementation with this two-gene construct in E. coli caused depletion of MurNAc in the medium, further confirming this observation. Our results show that the products of Tanf_08375 and Tanf_08380 constitute a novel non-PTS MurNAc transporter system that seems to be widespread among bacteria of the Bacteroidetes phylum. To the best of our knowledge, this is the first identification of a PTS-independent MurNAc transporter in bacteria.

  4. A novel glutamate transport system in poly(γ-glutamic acid)-producing strain Bacillus subtilis CGMCC 0833.

    Wu, Qun; Xu, Hong; Zhang, Dan; Ouyang, Pingkai

    2011-08-01

    Bacillus subtilis CGMCC 0833 is a poly(γ-glutamic acid) (γ-PGA)-producing strain. It has the capacity to tolerate high concentration of extracellular glutamate and to utilize glutamate actively. Such a high uptake capacity was owing to an active transport system for glutamate. Therefore, a specific transport system for L-glutamate has been observed in this strain. It was a novel transport process in which glutamate was symported with at least two protons, and an inward-directed sodium gradient had no stimulatory effect on it. K(m) and V(m) for glutamate transport were estimated to be 67 μM and 152 nmol⁻¹ min⁻¹ mg⁻¹ of protein, respectively. The transport system showed structural specificity and stereospecificity and was strongly dependent on extracellular pH. Moreover, it could be stimulated by Mg²⁺, NH₄⁺, and Ca²⁺. In addition, the glutamate transporter in this strain was studied at the molecular level. As there was no important mutation of the transporter protein, it appeared that the differences of glutamate transporter properties between this strain and other B. subtilis strains were not due to the differences of the amino acid sequence and the structure of transporter protein. This is the first extensive report on the properties of glutamate transport system in γ-PGA-producing strain.

  5. Osteoblast protects osteoclast devoid of sodium-dependent vitamin C transporters from oxidative cytotoxicity of ascorbic acid.

    Takarada, Takeshi; Hinoi, Eiichi; Kambe, Yuki; Sahara, Koichi; Kurokawa, Shintaro; Takahata, Yoshifumi; Yoneda, Yukio

    2007-12-01

    The view that ascorbic acid indirectly benefits osteoclastogenesis through expression of receptor activator of nuclear factor-kappaB (NF-kappaB) ligand (RANKL) by osteoblasts is prevailing. In this study, we have examined the direct effect of ascorbic acid on osteoclastogenesis in cultured mouse osteoclasts differentiated from bone marrow precursors. The absence of alkaline phosphatase and osteoblastic marker genes validated the usefulness of isolation procedures. Sustained exposure to ascorbic acid, but not to dehydroascorbic acid, significantly reduced the number of multinucleated cells positive to tartrate-resistant acid phosphatase (TRAP) staining. In cultured osteoclasts, mRNA expression was seen for glucose transporter-1 involved in membrane transport of dehydroascorbic acid, but not for sodium-dependent vitamin C transporters-1 and -2 that are both responsible for the transport of ascorbic acid. The inhibition by ascorbic acid was completely prevented by catalase, while ascorbic acid or hydrogen peroxide drastically increased the number of cells stained with propidium iodide and the generation of reactive oxygen species, in addition to inducing mitochondrial membrane depolarization in cultured osteoclasts. In pre-osteoclastic cell line RAW264.7 cells, ascorbic acid similarly inhibited the formation of TRAP-positive multinucleated cells, with a significant decrease in RANKL-induced NF-kappaB transactivation. Moreover, co-culture with osteoblastic MC3T3-E1 cells significantly prevented the ascorbic acid-induced decrease in the number of TRAP-positive multinucleated cells in RAW264.7 cells. These results suggest that ascorbic acid may play a dual repulsive role in osteoclastogenesis toward bone remodeling through the direct cytotoxicity mediated by oxidative stress to osteoclasts, in addition to the indirect trophism mediated by RANKL from osteoblasts.

  6. Ca2+ effects on glucose transport and fatty acid oxidation in L6 skeletal muscle cell cultures

    Darrick Balu

    2016-03-01

    We did find a Ca2+ stimulation (using either caffeine or ionomycin of fatty acid oxidation. This was observed in the absence (but not the presence of added glucose. We conclude that Ca2+ stimulates fatty acid oxidation at a mitochondrial site, secondary to malonyl CoA inhibition (represented by the presence of glucose in our experiments. In summary, the experiments resolve a controversy on Ca2+ stimulation of glucose transport by skeletal muscle, introduce an important experimental consideration for the measurement of glucose transport, and uncover a new site of action for Ca2+ stimulation of fatty acid oxidation.

  7. The actions of exogenous leucine on mTOR signalling and amino acid transporters in human myotubes

    Cameron-Smith David

    2011-06-01

    Full Text Available Abstract Background The branched-chain amino acid (BCAA leucine has been identified to be a key regulator of skeletal muscle anabolism. Activation of anabolic signalling occurs via the mammalian target of rapamycin (mTOR through an undefined mechanism. System A and L solute carriers transport essential amino acids across plasma membranes; however it remains unknown whether an exogenous supply of leucine regulates their gene expression. The aim of the present study was to investigate the effects of acute and chronic leucine stimulation of anabolic signalling and specific amino acid transporters, using cultured primary human skeletal muscle cells. Results Human myotubes were treated with leucine, insulin or co-treated with leucine and insulin for 30 min, 3 h or 24 h. Activation of mTOR signalling kinases were examined, together with putative nutrient sensor human vacuolar protein sorting 34 (hVps34 and gene expression of selected amino acid transporters. Phosphorylation of mTOR and p70S6K was transiently increased following leucine exposure, independently to insulin. hVps34 protein expression was also significantly increased. However, genes encoding amino acid transporters were differentially regulated by insulin and not leucine. Conclusions mTOR signalling is transiently activated by leucine within human myotubes independently of insulin stimulation. While this occurred in the absence of changes in gene expression of amino acid transporters, protein expression of hVps34 increased.

  8. Proton transport in triflic acid pentahydrate studied via ab initio path integral molecular dynamics.

    Hayes, Robin L; Paddison, Stephen J; Tuckerman, Mark E

    2011-06-16

    Trifluoromethanesulfonic acid hydrates provide a well-defined system to study proton dissociation and transport in perfluorosulfonic acid membranes, typically used as the electrolyte in hydrogen fuel cells, in the limit of minimal water. The triflic acid pentahydrate crystal (CF(3)SO(3)H·5H(2)O) is sufficiently aqueous that it contains an extended three-dimensional water network. Despite it being extended, however, long-range proton transport along the network is structurally unfavorable and would require considerable rearrangement. Nevertheless, the triflic acid pentahydrate crystal system can provide a clear picture of the preferred locations of local protonic defects in the water network, which provides insights about related structures in the disordered, low-hydration environment of perfluorosulfonic acid membranes. Ab initio molecular dynamics simulations reveal that the proton defect is most likely to transfer to the closest water that has the expected presolvation and only contains water in its first solvation shell. Unlike the tetrahydrate of triflic acid (CF(3)SO(3)H·4H(2)O), there is no evidence of the proton preferentially transferring to a water molecule bridging two of the sulfonate groups. However, this could be an artifact of the crystal structure since the only such water molecule is separated from the proton by long O-O distances. Hydrogen bonding criteria, using the two-dimensional potential of mean force, are extracted. Radial distribution functions, free energy profiles, radii of gyration, and the root-mean-square displacement computed from ab initio path integral molecular dynamics simulations reveal that quantum effects do significantly extend the size of the protonic defect and increase the frequency of proton transfer events by nearly 15%. The calculated IR spectra confirm that the dominant protonic defect mostly exists as an Eigen cation but contains some Zundel ion characteristics. Chain lengths and ring sizes determined from the

  9. The small SLC43 family: facilitator system l amino acid transporters and the orphan EEG1.

    Bodoy, Susanna; Fotiadis, Dimitrios; Stoeger, Claudia; Kanai, Yoshikatsu; Palacín, Manuel

    2013-01-01

    The SLC43 family is composed of only three genes coding for the plasma membrane facilitator system l amino acid transporters LAT3 (SLC43A1; TC 2.A.1.44.1) and LAT4 (SLC43A2; TC 2.A.1.44.2), and the orphan protein EEG1 (SLC43A3; TC 2.A.1.44.3). Besides the known mechanism of transport of LAT3 and LAT4, their physiological roles still remain quite obscure. Morphants suggested a role of LAT3 in renal podocyte development in zebrafish. Expression in liver and skeletal muscle, and up-regulation by starvation suggest a role of LAT3 in the flux of branched-chain amino acids (BCAAs) from liver and skeletal muscle to the bloodstream. Finally, LAT3 is up-regulated in androgen-dependent cancers, suggesting a role in mTORC1 signaling in this type of tumors. In addition, LAT4 might contribute to the transfer of BCAAs from mother to fetus. Unfortunately, the EEG1 mouse model (EEG1(Y221∗)) described here has not yet offered a clue to the physiological role of this orphan protein.

  10. Nutritional and Hormonal Regulation of Citrate and Carnitine/Acylcarnitine Transporters: Two Mitochondrial Carriers Involved in Fatty Acid Metabolism

    Anna M. Giudetti

    2016-05-01

    Full Text Available The transport of solutes across the inner mitochondrial membrane is catalyzed by a family of nuclear-encoded membrane-embedded proteins called mitochondrial carriers (MCs. The citrate carrier (CiC and the carnitine/acylcarnitine transporter (CACT are two members of the MCs family involved in fatty acid metabolism. By conveying acetyl-coenzyme A, in the form of citrate, from the mitochondria to the cytosol, CiC contributes to fatty acid and cholesterol synthesis; CACT allows fatty acid oxidation, transporting cytosolic fatty acids, in the form of acylcarnitines, into the mitochondrial matrix. Fatty acid synthesis and oxidation are inversely regulated so that when fatty acid synthesis is activated, the catabolism of fatty acids is turned-off. Malonyl-CoA, produced by acetyl-coenzyme A carboxylase, a key enzyme of cytosolic fatty acid synthesis, represents a regulator of both metabolic pathways. CiC and CACT activity and expression are regulated by different nutritional and hormonal conditions. Defects in the corresponding genes have been directly linked to various human diseases. This review will assess the current understanding of CiC and CACT regulation; underlining their roles in physio-pathological conditions. Emphasis will be placed on the molecular basis of the regulation of CiC and CACT associated with fatty acid metabolism.

  11. Functional characterization of folic acid transport in the intestine of the laying hen using the everted intestinal sac model.

    Tactacan, G B; Rodriguez-Lecompte, J C; Karmin, O; House, J D

    2011-01-01

    Absorption at the level of the intestine is likely a primary regulatory mechanism for the deposition of dietary supplemented folic acid into the chicken egg. Therefore, factors affecting the intestinal transport of folic acid in the laying hen may influence the level of egg folate concentrations. To this end, a series of experiments using intestinal everted sacs were conducted to characterize intestinal folic acid absorption processes in laying hens. Effects of naturally occurring folate derivatives (5-methyl and 10-formyltetrahydrofolate) as well as heme on folic acid absorption were also investigated. Folic acid absorption was measured based on the rate of uptake of (3)H-labeled folic acid in the everted sac from various segments of the small and large intestines. Folic acid concentration, incubation length, and pH condition were optimized before the performance of uptake experiments. The distribution profile of folic acid transport along the intestine was highest in the upper half of the small intestine. Maximum uptake rate (nmol·100 g tissue(-1)·min(-1)) was observed in the duodenum (20.6 ± 1.9) and jejunum (22.3 ± 2.0) and decreased significantly in the ileum (15.3 ± 1.1) and cecum (9.3 ± 0.9). Transport increased proportionately (P laying hen. Uptake of folic acid in the cecum raises the likelihood of absorption of bacterial-derived folate.

  12. Homology modeling of human γ-butyric acid transporters and the binding of pro-drugs 5-aminolevulinic acid and methyl aminolevulinic acid used in photodynamic therapy.

    Yan Baglo

    Full Text Available Photodynamic therapy (PDT is a safe and effective method currently used in the treatment of skin cancer. In ALA-based PDT, 5-aminolevulinic acid (ALA, or ALA esters, are used as pro-drugs to induce the formation of the potent photosensitizer protoporphyrin IX (PpIX. Activation of PpIX by light causes the formation of reactive oxygen species (ROS and toxic responses. Studies have indicated that ALA and its methyl ester (MAL are taken up into the cells via γ-butyric acid (GABA transporters (GATs. Uptake via GATs into peripheral sensory nerve endings may also account for one of the few adverse side effects of ALA-based PDT, namely pain. In the present study, homology models of the four human GAT subtypes were constructed using three x-ray crystal structures of the homologous leucine transporter (LeuT as templates. Binding of the native substrate GABA and the possible substrates ALA and MAL was investigated by molecular docking of the ligands into the central putative substrate binding sites in the outward-occluded GAT models. Electrostatic potentials (ESPs of the putative substrate translocation pathway of each subtype were calculated using the outward-open and inward-open homology models. Our results suggested that ALA is a substrate of all four GATs and that MAL is a substrate of GAT-2, GAT-3 and BGT-1. The ESP calculations indicated that differences likely exist in the entry pathway of the transporters (i.e. in outward-open conformations. Such differences may be exploited for development of inhibitors that selectively target specific GAT subtypes and the homology models may hence provide tools for design of therapeutic inhibitors that can be used to reduce ALA-induced pain.

  13. Co-mapping studies of QTLs for fruit acidity and candidate genes of organic acid metabolism and proton transport in sweet melon (Cucumis melo L.).

    Cohen, S; Tzuri, G; Harel-Beja, R; Itkin, M; Portnoy, V; Sa'ar, U; Lev, S; Yeselson, L; Petrikov, M; Rogachev, I; Aharoni, A; Ophir, R; Tadmor, Y; Lewinsohn, E; Burger, Y; Katzir, N; Schaffer, A A

    2012-07-01

    Sweet melon cultivars contain a low level of organic acids and, therefore, the quality and flavor of sweet melon fruit is determined almost exclusively by fruit sugar content. However, genetic variability for fruit acid levels in the Cucumis melo species exists and sour fruit accessions are characterized by acidic fruit pH of 6. In this paper, we report results from a mapping population based on recombinant inbred lines (RILs) derived from the cross between the non-sour 'Dulce' variety and the sour PI 414323 accession. Results show that a single major QTL for pH co-localizes with major QTLs for the two predominant organic acids in melon fruit, citric and malic, together with an additional metabolite which we identified as uridine. While the acidic recombinants were characterized by higher citric and malic acid levels, the non-acidic recombinants had a higher uridine content than did the acidic recombinants. Additional minor QTLs for pH, citric acid and malic acid were also identified and for these the increased acidity was unexpectedly contributed by the non-sour parent. To test for co-localization of these QTLs with genes encoding organic acid metabolism and transport, we mapped the genes encoding structural enzymes and proteins involved in organic acid metabolism, transport and vacuolar H+ pumps. None of these genes co-localized with the major pH QTL, indicating that the gene determining melon fruit pH is not one of the candidate genes encoding this primary metabolic pathway. Linked markers were tested in two additional inter-varietal populations and shown to be linked to the pH trait. The presence of the same QTL in such diverse segregating populations suggests that the trait is determined throughout the species by variability in the same gene and is indicative of a major role of the evolution of this gene in determining the important domestication trait of fruit acidity within the species.

  14. Investigating Mass Transport Limitations on Xylan Hydrolysis During Dilute Acid Pretreatment of Poplar

    Mittal, Ashutosh; Pilath, Heid M.; Parent, Yves; Chatterjee, Siddharth G.; Donohoe, Bryon S.; Yarbrough, John M.; Himmel, Michael E.; Nimlos, Mark R.; Johnson, David K.

    2014-04-28

    Mass transport limitations could be an impediment to achieving high sugar yields during biomass pretreatment and thus be a critical factor in the economics of biofuels production. The objective of this work was to study the mass transfer restrictions imposed by the structure of biomass on the hydrolysis of xylan during dilute acid pretreatment of biomass. Mass transfer effects were studied by pretreating poplar wood at particle sizes ranging from 10 micrometers to 10 mm. This work showed a significant reduction in the rate of xylan hydrolysis in poplar when compared to the intrinsic rate of hydrolysis for isolated xylan that is possible in the absence of mass transfer. In poplar samples we observed no significant difference in the rates of xylan hydrolysis over more than two orders of magnitude in particle size. It appears that no additional mass transport restrictions are introduced by increasing particle size from 10 micrometers to 10 mm. This work suggests that the rates of xylan hydrolysis in biomass particles are limited primarily by the diffusion of hydrolysis products out of plant cell walls. A mathematical description is presented to describe the kinetics of xylan hydrolysis that includes transport of the hydrolysis products through biomass into the bulk solution. The modeling results show that the effective diffusion coefficient of the hydrolysis products in the cell wall is several orders of magnitude smaller than typical values in other applications signifying the role of plant cell walls in offering resistance to diffusion of the hydrolysis products.

  15. Fate and transport of glyphosate and aminomethylphosphonic acid in surface waters of agricultural basins

    Coupe, R.H.; Kalkhoff, S.J.; Capel, P.D.; Gregoire, C.

    2012-01-01

    Background: Glyphosate [N-(phosphonomethyl)glycine] is a herbicide used widely throughout the world in the production of many crops and is heavily used on soybeans, corn and cotton. Glyphosate is used in almost all agricultural areas of the United States, and the agricultural use of glyphosate has increased from less than 10 000 Mg in 1992 to more than 80 000 Mg in 2007. The greatest intensity of glyphosate use is in the midwestern United States, where applications are predominantly to genetically modified corn and soybeans. In spite of the increase in usage across the United States, the characterization of the transport of glyphosate and its degradate aminomethylphosphonic acid (AMPA) on a watershed scale is lacking. Results: Glyphosate and AMPA were frequently detected in the surface waters of four agricultural basins. The frequency and magnitude of detections varied across basins, and the load, as a percentage of use, ranged from 0.009 to 0.86% and could be related to three general characteristics: source strength, rainfall runoff and flow route. Conclusions: Glyphosate use in a watershed results in some occurrence in surface water; however, the watersheds most at risk for the offsite transport of glyphosate are those with high application rates, rainfall that results in overland runoff and a flow route that does not include transport through the soil. ?? 2011 Society of Chemical Industry.

  16. Expression, solubilisation, and purification of a functional CMP-sialic acid transporter in Pichia pastoris.

    Maggioni, Andrea; Hadley, Barbara; von Itzstein, Mark; Tiralongo, Joe

    2014-09-01

    Membrane proteins, including solute transporters play crucial roles in cellular function and have been implicated in a variety of important diseases, and as such are considered important targets for drug development. Currently the drug discovery process is heavily reliant on the structural and functional information discerned from high-resolution crystal structures. However, membrane protein structure determination is notoriously difficult, due in part to challenges faced in their expression, solubilisation and purification. The CMP-sialic acid transporter (CST) is considered to be an attractive target for drug discovery. CST inhibition reduces cancer cell sialylation and decreases the metastatic potential of cancer cells and to date, no crystal structure of the CST, or any other nucleotide sugar transporter exists. Here we describe the optimised conditions for expression in Pichia pastoris, solubilisation using n-nonyl β-d-maltopyranoside (NM) and single step purification of a functional CST. Importantly we show that despite being able to solubilise and purify the CST using a number of different detergents, only NM was able to maintain CST functionality.

  17. Experimental lead poisoning and intestinal transport of glucose, amino acids, and sodium.

    Wapnir, R A; Exeni, R A; McVicar, M; Lipshitz, F

    1977-03-01

    Juvenile rats fed a diet containing 1% lead acetate for 7 weeks, in addition to an impaired growth rate and renal function derangements, suffered malabsorption of glucose and certain amino acids, as assessed by an in vivo perfusion technique. The reduction in glucose absorption ranged between 10% and 31% when the carbohydrate was pumped in concentrations of 2-80 mM. This alteration was compatible with a noncompetitive type of transport inhibition. The intestinal absorption of glycine, lysine, and phenylalanine were, respectively, decreased 22, 18, and 15% when these amino acids were present at 1 mM levels. Sodium transport was severely reduced (57.6 +/- 17.9 (SEM) vs. 124.2 +/- 17.4 muEq/min-cm) and intestinal mucosa (Na+-K+)-ATPase was concomitantly lower in the lead-intoxicated rats (186.4 +/- 19.0 vs 268.4 +/- 29.8 nmol P/min-mg protein). However, this enzyme was not altered in liver and kidney. Furthermore, intestinal mucosa fructose-1,6-diphosphatase, succinic dehydrogenase, pyruvate kinase, and tryptophan hydroxylase were not different in experimental and control animals. These studies substantiate the presence of functional and biochemical abnormalities in the intestinal mucosa of young rats when fed substantial amounts of a soluble lead salt. It is, therefore, reasonable to accept the possibility that physiologic damage occurs in tissues directly subjected to high and persistent levels of a toxic agents, as it occurs in other organs, underscoring the parallelism between transport mechanisms at the renal and intestinal levels.

  18. Overexpression of γ-aminobutyric acid transporter subtype I leads to susceptibility to kainic acid-induced seizure in transgenic mice

    2001-01-01

    γ-aminobutyric acid (GABA) is the principal inhibitory neurotransmitter,and the GABAergic synaptic transmission is normally terminated by the rapid uptake through GABA transporters.With transgenic mice ubiquitously overexpressing GABA transporter subtype I (GAT1),the present study explored the pathophysiological role of GAT1 in epileptogenesis.Though displaying no spontaneous seizure activity,these mice exhibit altered electroencephalographic patterns and increased susceptibility to seizure induced by kainic acid.In addition,the GABAA receptor and glutamate transporters are up-regulated in transgenic mice,which perhaps reflects a compensatory or corrective change to the elevated level of GAT1.These preliminary findings support the hypothesis that excitatory and inhibitory neurotransmission,and seizure susceptibility can be altered by neurotransmitter transporters.

  19. Omega 3 fatty acids promote macrophage reverse cholesterol transport in hamster fed high fat diet.

    Fatima Kasbi Chadli

    Full Text Available The aim of this study was to investigate macrophage reverse cholesterol transport (RCT in hamster, a CETP-expressing species, fed omega 3 fatty acids (ω3PUFA supplemented high fat diet (HFD. Three groups of hamsters (n = 6/group were studied for 20 weeks: 1 control diet: Control, 2 HFD group: HF and 3 HFD group supplemented with ω3PUFA (EPA and DHA: HFω3. In vivo macrophage-to-feces RCT was assessed after an intraperitoneal injection of (3H-cholesterol-labelled hamster primary macrophages. Compared to Control, HF presented significant (p<0.05 increase in body weight, plasma TG (p<0.01 and cholesterol (p<0.001 with an increase in VLDL TG and in VLDL and LDL cholesterol (p<0.001. Compared to HF, HFω3 presented significant decrease in body weight. HFω3 showed less plasma TG (p<0.001 and cholesterol (p<0.001 related to a decrease in VLDL TG and HDL cholesterol respectively and higher LCAT activity (p<0.05 compared to HF. HFω3 showed a higher fecal bile acid excretion (p<0.05 compared to Control and HF groups and higher fecal cholesterol excretion (p<0.05 compared to HF. This increase was related to higher gene expression of ABCG5, ABCA1 and SR-B1 in HFω3 compared to Control and HF groups (<0.05 and in ABCG1 and CYP7A1 compared to HF group (p<0.05. A higher plasma efflux capacity was also measured in HFω3 using (3H- cholesterol labeled Fu5AH cells. In conclusion, EPA and DHA supplementation improved macrophage to feces reverse cholesterol transport in hamster fed HFD. This change was related to the higher cholesterol and fecal bile acids excretion and to the activation of major genes involved in RCT.

  20. Transport in Porous Media of Poly(Acrylic Acid) Coated Ferrihydrite Nanoparticles

    Jaffe, P. R.; Xiang, A.; Koel, B. E.

    2012-12-01

    Augmentation of soils with iron to enhance biological processes such as uranium reduction via iron reducing bacteria, e.g., Geobacter sp., might be achieved via the injection of iron nanoparticles into the subsurface. The challenge is to make these nanoparticles transportable in the subsurface while not affecting the iron bioavailability. Poorly crystallized 2-line ferrihydrite iron oxide nanoparticles were synthesized and coated with different amounts of poly(acrylic acid) polymers (Na-PAA6K or Na-PAA140K). Analyses were then performed on these particles, including sorption/desorption of the polymer onto the iron nanoparticles, particle size, zeta potential, transport in sand and soil columns, and bioavailabity of the Fe(III) in the absence and presence of the coating to iron reducing organisms. Results showed that at pH values of environmental relevance, the zeta potential of the particles varied from about 3 mV (pH=8.2) for the non-coated particles to about -30 mV for the particles coated with the polymers to their highest sorption capacity. The coated particle diameter was shown to be in the range of 200 nm. Column transport experiments showed that for the highest polymer coating the nanoparticle breakthrough was virtually identical to that of bromide, while significant filtration was observed for particles with an intermediate coating, and complete particle removal via filtration was observed for the non-coated particles. These results held for sand as well as for soil, which had been previously characterized, from a field site at Rifle, CO. Bioavailability experiments showed no difference in the iron reduction rate between the untreated and treated nanoparticles. These results show that it is possible to manufacture iron nanoparticles to enhance biological iron reduction, and that the transport properties of these treated particles is tunable so that a desired retention in the porous medium can be achieved.

  1. Mechanism of proton transport in ionic-liquid-doped perfluorosulfonic acid membranes.

    Kumar, Milan; Venkatnathan, Arun

    2013-11-21

    Ionic-liquid-doped perfluorosulfonic acid membranes (PFSA) are promising electrolytes for intermediate/high-temperature fuel cell applications. In the present study, we examine proton-transport pathways in a triethylammonium-triflate (TEATF) ionic liquid (IL)-doped Nafion membrane using quantum chemistry calculations. The IL-doped membrane matrix contains triflic acid (TFA), triflate anions (TFA(-)), triethylamine (TEA), and triethylammonium cations (TEAH(+)). Results show that proton abstraction from the sulfonic acid end groups in the membrane by TFA(-) facilitates TEAH(+) interaction with the side-chains. In the IL-doped PFSA membrane matrix, proton transfer from TFA to TEA and TFA to TFA(-) occurs. However, proton transfer from a tertiary amine cation (TEAH(+)) to a tertiary amine (TEA) does not occur without an interaction with an anion (TFA(-)). An anion interaction with the amine increases its basicity, and as a consequence, it takes a proton from a cation either instantly (if the cation is freely moving) or with a small activation energy barrier of 2.62 kcal/mol (if the cation is interacting with another anion). The quantum chemistry calculations predict that anions are responsible for proton-exchange between cations and neutral molecules of a tertiary amine. Results from this study can assist the experimental choice of IL to provide enhanced proton conduction in PFSA membrane environments.

  2. Facilitated transport of titanium dioxide nanoparticles by humic substances in saturated porous media under acidic conditions

    Zhang, Ruichang [Chinese Academy of Sciences, Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science (China); Zhang, Haibo; Tu, Chen; Hu, Xuefeng; Li, Lianzhen [Chinese Academy of Sciences, Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (China); Luo, Yongming, E-mail: ymluo@yic.ac.cn; Christie, Peter [Chinese Academy of Sciences, Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science (China)

    2015-04-15

    The transport behavior of titanium dioxide nanoparticles (TiO{sub 2} NPs, 30 nm in diameter) was studied in well-defined porous media composed of clean quartz sand over a range of solution chemistry under acidic conditions. Transport of TiO{sub 2} NPs was dramatically enhanced by humic substances (HS) at acidic pH (4.0, 5.0 and 6.0), even at a low HS concentration of 0.5 mg L{sup −1}. Facilitated transport of TiO{sub 2} NPs was likely attributable to the increased stability of TiO{sub 2} NPs and repulsive interaction between TiO{sub 2} NPs and quartz sands due to the adsorbed HS. The mobility of TiO{sub 2} NPs was also increased with increasing pH from 4.0 to 6.0. Although transport of TiO{sub 2} NPs was insensitive to low ionic strength, it was significantly inhibited by high concentrations of NaCl and CaCl{sub 2}. In addition, calculated Derjaguin–Landau–Verwey–Overbeek (DLVO) interaction energy indicated that high energy barriers were responsible for the high mobility of TiO{sub 2} NPs, while the secondary energy minimum could play an important role in the retention of TiO{sub 2} NPs at 100 mmol L{sup −1} NaCl. Straining and gravitational settlement of larger TiO{sub 2} NPs aggregates at 1 mg L{sup −1} HS, pH 5.0, and 2 mmol L{sup −1} CaCl{sub 2} could be responsible for the significant retention even in the presence of high energy barriers. Moreover, more favorable interaction between approaching TiO{sub 2} NPs and TiO{sub 2} NPs that had been already deposited on the collector resulted in a ripening-shape breakthrough curve at 2 mmol L{sup −1} CaCl{sub 2}. Overall, a combination of mechanisms including DLVO-type force, straining, and physical filtration was involved in the retention of TiO{sub 2} NPs over the range of solution chemistry examined in this study.

  3. Characterization of the putative amino acid transporter genes AtCAT2, 3 &4: the tonoplast localized AtCAT2 regulates soluble leaf amino acids.

    Yang, Huaiyu; Krebs, Melanie; Stierhof, York-Dieter; Ludewig, Uwe

    2014-05-01

    The plant vacuole constitutes a large transient storage compartment for nutrients, proteins and metabolites, and is a major cellular sink for toxic waste compounds. Amino acids can cross the vacuolar membrane via specific transport proteins, which are molecularly not well characterized. Two members of a small subfamily of the cationic amino acid transporters, AtCAT2 and AtCAT4, were primarily localized at the tonoplast when tagged with GFP. The closely related AtCAT3, by contrast, was detected in the endoplasmic reticulum membrane. The exchange of a di-acidic motif at the carboxy-tail affected their sub-cellular localization, with larger effects visible in transiently transformed protoplasts compared to stably expressing plant lines. The genes have broad, partially overlapping tissue expression, with CAT2 dominating in most tissues. Loss-of-function mutants of individual CATs showed no visible phenotype under various conditions, but the overall tissue concentration of amino acids was increased in soil-grown cat2 mutants. The data suggest that CAT2 is a critical target of leaf amino acid concentrations and manipulation of this tonoplast transporter can significantly alter total tissue amino acid concentrations.

  4. Fate and transport of glyphosate and aminomethylphosphonic acid in surface waters of agricultural basins

    Gregoire, Caroline; Capel, Paul D.; Coupe, Richard H.; Kalkhoff, Stephen J.

    2011-01-01

    BACKGROUND: Glyphosate [N-(phosphonomethyl)glycine] is a herbicide used widely throughout the world in the production of many crops and is heavily used on soybeans, corn and cotton. Glyphosate is used in almost all agricultural areas of the United States, and the agricultural use of glyphosate has increased from less than 10 000 Mg in 1992 to more than 80 000 Mg in 2007. The greatest intensity of glyphosate use is in the midwestern United States, where applications are predominantly to genetically modified corn and soybeans. In spite of the increase in usage across the United States, the characterization of the transport of glyphosate and its degradate aminomethylphosphonic acid (AMPA) on a watershed scale is lacking.

  5. Fatty Acid Transport Protein-2 inhibitor Grassofermata/CB5 protects cells against lipid accumulation and toxicity

    Saini, Nipun; Black, Paul N.; Montefusco, David; DiRusso, Concetta C.

    2015-01-01

    The inhibition of the fatty acid uptake into non-adipose tissues provides an attractive target for prevention of lipotoxicity leading to obesity-associated non-alcoholic fatty liver disease and type 2 diabetes. Fatty acid transport proteins (FATPs) are bifunctional proteins involved in the uptake and activation of fatty acids by esterification with coenzyme A. Here we characterize Grassofermata/CB5, previously identified as a fatty acid uptake inhibitor directed against HsFATP2. The compound was effective in inhibiting the uptake of fatty acids in the low micro-molar range (IC50 8–11μM) and prevented palmitate-mediated lipid accumulation and cell death in cell lines that are models for intestines, liver, muscle and pancreas. In adipocytes, uptake inhibition was less effective (IC50 58μM). Inhibition was specific for long chain fatty acids and was ineffective toward medium chain fatty acids, which are transported by diffusion. Kinetic analysis of Grassofermata-dependent FA transport inhibition verified a non-competitive mechanism. By comparison with Grassofermata, several atypical antipsychotic drugs previously implicated as inhibitors of FA uptake were ineffectual. In mice Grassofermata decreased absorption of 13C-oleate demonstrating its potential as a therapeutic agent. PMID:26284975

  6. TNF-α stimulates System A amino acid transport in primary human trophoblast cells mediated by p38 MAPK signaling.

    Aye, Irving L M H; Jansson, Thomas; Powell, Theresa L

    2015-10-01

    Maternal obesity and gestational diabetes mellitus (GDM) increase the risk of delivering infants that are large for gestational age with greater adiposity, who are prone to the development of metabolic disease in childhood and beyond. These maternal conditions are also associated with increased levels of the proinflammatory cytokine TNF-α in maternal tissues and the placenta. Recent evidence suggests that changes in placental amino acid transport contribute to altered fetal growth. TNF-α was previously shown to stimulate System A amino acid transport in primary human trophoblasts (PHTs), however the molecular mechanisms remain unknown. In this study, we tested the hypothesis that TNF-α regulates amino acid uptake in cultured PHTs by a mitogen-activated protein kinase (MAPK)-dependent mechanism. Treatment of PHTs with TNF-α significantly increased System A amino acid transport, as well as Erk and p38 MAPK signaling. Pharmacological antagonism of p38, but not Erk MAPK activity, inhibited TNF-α stimulated System A activity. Silencing of p38 MAPK using siRNA transfections prevented TNF-α stimulated System A transport in PHTs. TNF-α significantly increased the protein expression of System A transporters SNAT1 and SNAT2, but did not affect their mRNA expression. The effects of TNF-α on SNAT1 and SNAT2 protein expression were reversed by p38 MAPK siRNA silencing. In conclusion, TNF-α regulates System A activity through increased SNAT1 and SNAT2 transporter protein expression in PHTs. These findings suggest that p38 MAPK may represent a critical mechanistic link between elevated proinflammatory cytokines and increased placental amino acid transport in obese and GDM pregnancies associated with fetal overgrowth.

  7. Highly conserved asparagine 82 controls the interaction of Na+ with the sodium-coupled neutral amino acid transporter SNAT2.

    Zhang, Zhou; Gameiro, Armanda; Grewer, Christof

    2008-05-01

    The neutral amino acid transporter 2 (SNAT2), which belongs to the SLC38 family of solute transporters, couples the transport of amino acid to the cotransport of one Na(+) ion into the cell. Several polar amino acids are highly conserved within the SLC38 family. Here, we mutated three of these conserved amino acids, Asn(82) in the predicted transmembrane domain 1 (TMD1), Tyr(337) in TMD7, and Arg(374) in TMD8; and we studied the functional consequences of these modifications. The mutation of N82A virtually eliminated the alanine-induced transport current, as well as amino acid uptake by SNAT2. In contrast, the mutations Y337A and R374Q did not abolish amino acid transport. The K(m) of SNAT2 for its interaction with Na(+), K(Na(+)), was dramatically reduced by the N82A mutation, whereas the more conservative mutation N82S resulted in a K(Na(+)) that was in between SNAT2(N82A) and SNAT2(WT). These results were interpreted as a reduction of Na(+) affinity caused by the Asn(82) mutations, suggesting that these mutations interfere with the interaction of SNAT2 with the sodium ion. As a consequence of this dramatic reduction in Na(+) affinity, the apparent K(m) of SNAT2(N82A) for alanine was increased 27-fold compared with that of SNAT2(WT). Our results demonstrate a direct or indirect involvement of Asn(82) in Na(+) coordination by SNAT2. Therefore, we predict that TMD1 is crucial for the function of SLC38 transporters and that of related families.

  8. Expression Profile of Cationic Amino Acid Transporters in Rats with Endotoxin-Induced Uveitis

    Yung-Ray Hsu

    2016-01-01

    Full Text Available Purpose. The transcellular arginine transportation via cationic amino acid transporter (CAT is the rate-limiting step in nitric oxide (NO synthesis, which is crucial in intraocular inflammation. In this study, CAT isoforms and inducible nitric oxide synthase (iNOS expression was investigated in endotoxin-induced uveitis (EIU. Methods. EIU was induced in Lewis rats by lipopolysaccharide (LPS injection. In the treatment group, the rats were injected intraperitoneally with the proteasome inhibitor bortezomib before EIU induction. After 24 hours, leukocyte quantification, NO measurement of the aqueous humor, and histopathological examination were evaluated. The expression of CAT isoforms and iNOS was determined by reverse transcription-polymerase chain reaction, western blotting, and immunofluorescence staining. Nuclear factor-kappa B (NF-κB binding activity was evaluated by electrophoretic mobility shift assay. The mouse macrophage cell line RAW 264.7 was used to validate the in vivo findings. Results. LPS significantly stimulated iNOS, CAT-2A, and CAT-2B mRNA and protein expression but did not affect CAT-1 in EIU rats and RAW 264.7 cells. Bortezomib attenuated inflammation and inhibited iNOS, CAT-2A, and CAT-2B expression through NF-κB inhibition. Conclusions. CAT-2 and iNOS, but not CAT-1, are specifically involved in EIU. NF-κB is essential in the induction of CAT-2 and iNOS in EIU.

  9. Biphasic effects of ethanol and sodium oleate on synaptic transport of aspartic acid

    Foley, T.; Rhoads, D.E.

    1987-05-01

    The authors have examined the effects of ethanol and sodium oleate on the transport of aspartic acid (ASP) by nerve-ending preparations from rat cerebral cortex. Physiologically relevant ethanol concentrations of up to 100mM stimulated ASP uptake while concentrations greater than 200mM caused inhibition. A similar biphasic effect was observed with oleate stimulating ASP uptake at 0.1 to 1..mu..M and inhibiting ASP uptake at concentrations greater than 1..mu..M. Maximum stimulation was observed at 0.1..mu..M oleate and at 50mM ethanol. In contrast, when synaptosomes were prepared from rats that had been exposed for 2-3 weeks to 10% ethanol in their drinking water, higher concentrations of ethanol and oleate were required to obtain comparable stimulation of ASP uptake. These biphasic effects on ASP transport can be interpreted in terms of physicochemical alterations in the synaptic membranes, with from alcohol-exposed rats showing tolerance to these fluidizing effects.

  10. Transport of cationic amino acids by the mouse ecotropic retrovirus receptor.

    Kim, J W; Closs, E I; Albritton, L M; Cunningham, J M

    1991-08-22

    Susceptibility of rodent cells to infection by ecotropic murine leukaemia viruses (MuLV) is determined by binding of the virus envelope to a membrane receptor that has multiple membrane-spanning domains. Cells infected by ecotropic MuLV synthesize envelope protein, gp70, which binds to this receptor, thereby preventing additional infections. The consequences of envelope-MuLV receptor binding for the infected host cell have not been directly determined, partly because the cellular function of the MuLV receptor protein is unknown. Here we report a coincidence in the positions of the first eight putative membrane-spanning domains found in the virus receptor and in two related proteins, the arginine and histidine permeases of Saccharomyces cerevisiae (Fig. 1), but not in any other proteins identified by computer-based sequence comparison of the GenBank data base. Xenopus oocytes injected with receptor-encoding messenger RNA show increased uptake of L-arginine, L-lysine and L-ornithine. The transport properties and the expression pattern of the virus receptor behave in ways previously attributed to y+, the principal transporter of cationic L-amino acids in mammalian cells.

  11. Sialic acid transporter NanT participates in Tannerella forsythia biofilm formation and survival on epithelial cells.

    Honma, Kiyonobu; Ruscitto, Angela; Frey, Andrew M; Stafford, Graham P; Sharma, Ashu

    2016-05-01

    Tannerella forsythia is a periodontal pathogen implicated in periodontitis. This gram-negative pathogen depends on exogenous peptidoglycan amino sugar N-acetylmuramic acid (NAM) for growth. In the biofilm state the bacterium can utilize sialic acid (Neu5Ac) instead of NAM to sustain its growth. Thus, the sialic acid utilization system of the bacterium plays a critical role in the growth and survival of the organism in the absence of NAM. We sought the function of a T. forsythia gene annotated as nanT coding for an inner-membrane sugar transporter located on a sialic acid utilization genetic cluster. To determine the function of this putative sialic acid transporter, an isogenic nanT-deletion mutant generated by allelic replacement strategy was evaluated for biofilm formation on NAM or Neu5Ac, and survival on KB epithelial cells. Moreover, since T. forsythia forms synergistic biofilms with Fusobacterium nucleatum, co-biofilm formation activity in mixed culture and sialic acid uptake in culture were also assessed. The data showed that the nanT-inactivated mutant of T. forsythia was attenuated in its ability to uptake sialic acid. The mutant formed weaker biofilms compared to the wild-type strain in the presence of sialic acid and as co-biofilms with F. nucleatum. Moreover, compared to the wild-type T. forsythia nanT-inactivated mutant showed reduced survival when incubated on KB epithelial cells. Taken together, the data presented here demonstrate that NanT-mediated sialic transportation is essential for sialic acid utilization during biofilm growth and survival of the organism on epithelial cells and implies sialic acid might be key for its survival both in subgingival biofilms and during infection of human epithelial cells in vivo.

  12. Differential cystine and dibasic amino acid handling after loss of function of the amino acid transporter b0,+AT (Slc7a9) in mice.

    Di Giacopo, Andrea; Rubio-Aliaga, Isabel; Cantone, Alessandra; Artunc, Ferruh; Rexhepaj, Rexhep; Frey-Wagner, Isabelle; Font-Llitjós, Mariona; Gehring, Nicole; Stange, Gerti; Jaenecke, Isabel; Mohebbi, Nilufar; Closs, Ellen I; Palacín, Manuel; Nunes, Virginia; Daniel, Hannelore; Lang, Florian; Capasso, Giovambattista; Wagner, Carsten A

    2013-12-15

    Cystinuria is an autosomal recessive disease caused by mutations in SLC3A1 (rBAT) and SLC7A9 (b(0,+)AT). Gene targeting of the catalytic subunit (Slc7a9) in mice leads to excessive excretion of cystine, lysine, arginine, and ornithine. Here, we studied this non-type I cystinuria mouse model using gene expression analysis, Western blotting, clearance, and brush-border membrane vesicle (BBMV) uptake experiments to further characterize the renal and intestinal consequences of losing Slc7a9 function. The electrogenic and BBMV flux studies in the intestine suggested that arginine and ornithine are transported via other routes apart from system b(0,+). No remarkable gene expression changes were observed in other amino acid transporters and the peptide transporters in the intestine and kidney. Furthermore, the glomerular filtration rate (GFR) was reduced by 30% in knockout animals compared with wild-type animals. The fractional excretion of arginine was increased as expected (∼100%), but fractional excretions of lysine (∼35%), ornithine (∼16%), and cystine (∼11%) were less affected. Loss of function of b(0,+)AT reduced transport of cystine and arginine in renal BBMVs and completely abolished the exchanger activity of dibasic amino acids with neutral amino acids. In conclusion, loss of Slc7a9 function decreases the GFR and increases the excretion of several amino acids to a lesser extent than expected with no clear regulation at the mRNA and protein level of alternative transporters and no increased renal epithelial uptake. These observations indicate that transporters located in distal segments of the kidney and/or metabolic pathways may partially compensate for Slc7a9 loss of function.

  13. Agp2, a Member of the Yeast Amino Acid Permease Family, Positively Regulates Polyamine Transport at the Transcriptional Level

    Mustapha Aouida; Marta Rubio-Texeira; Thevelein, Johan M.; Richard Poulin; Dindial Ramotar

    2013-01-01

    Agp2 is a plasma membrane protein of the Saccharomyces cerevisiae amino acid transporter family, involved in high-affinity uptake of various substrates including L-carnitine and polyamines. The discovery of two high affinity polyamine permeases, Dur3 and Sam3, prompted us to investigate whether Agp2 directly transports polyamines or acts instead as a regulator. Herein, we show that neither dur3Δ nor sam3Δ single mutant is defective in polyamine transport, while the dur3Δ sam3Δ double mutant e...

  14. Investigation of the fatty acid transporter-encoding genes SLC27A3 and SLC27A4 in autism

    Motoko Maekawa; Yoshimi Iwayama; Tetsuo Ohnishi; Manabu Toyoshima; Chie Shimamoto; Yasuko Hisano; Tomoko Toyota; Shabeesh Balan; Hideo Matsuzaki; Yasuhide Iwata; Shu Takagai; Kohei Yamada; Motonori Ota; Satoshi Fukuchi; Yohei Okada

    2015-01-01

    The solute carrier 27A (SLC27A) gene family encodes fatty acid transport proteins (FATPs) and includes 6 members. During fetal and postnatal periods of development, the growing brain requires a reliable supply of fatty acids. Because autism spectrum disorders (ASD) are now recognized as disorders caused by impaired early brain development, it is possible that functional abnormalities of SLC27A genes may contribute to the pathogenesis of ASD. Here, we confirmed the expression of SLC27A3 and SL...

  15. Proton transport in triflic acid hydrates studied via path integral car-parrinello molecular dynamics.

    Hayes, Robin L; Paddison, Stephen J; Tuckerman, Mark E

    2009-12-31

    The mono-, di-, and tetrahydrates of trifluoromethanesulfonic acid, which contain characteristic H(3)O(+), H(5)O(2)(+), and H(9)O(4)(+) structures, provide model systems for understanding proton transport in materials with high perfluorosulfonic acid density such as perfluorosulfonic acid membranes commonly employed in hydrogen fuel cells. Ab initio molecular dynamics simulations indicate that protons in these solids are predisposed to transfer to the water most strongly bound to sulfonate groups via a Grotthuss-type mechanism, but quickly return to the most solvated defect structure either due to the lack of a nearby species to stabilize the new defect or a preference for the proton to be maximally hydrated. Path integral molecular dynamics of the mono- and dihydrate reveal significant quantum effects that facilitate proton transfer to the "presolvated" water or SO(3)(-) in the first solvation shell and increase the Zundel character of all the defects. These trends are quantified in free energy profiles for each bonding environment. Hydrogen bonding criteria for HOH-OH(2) and HOH-O(3)S are extracted from the two-dimensional potential of mean force. The quantum radial distribution function, radius of gyration, and root-mean-square displacement position correlation function show that the protonic charge is distributed over two or more water molecules. Metastable structural defects with one excess proton shared between two sulfonate groups and another Zundel or Eigen type cation defect are found for the mono- and dihydrate but not for the tetrahydrate crystal. Results for the tetrahydrate native crystal exhibit minor differences at 210 and 250 K. IR spectra are calculated for all native and stable defect structures. Graph theory techniques are used to characterize the chain lengths and ring sizes in the hydrogen bond network. Low conductivities when limited water is present may be attributable to trapping of protons between SO(3)(-) groups and the increased

  16. Isomer-specific effects of conjugated linoleic acid on HDL functionality associated with reverse cholesterol transport.

    Nicod, Nathalie; Parker, Robert S; Giordano, Elena; Maestro, Virginia; Davalos, Alberto; Visioli, Francesco

    2015-02-01

    High-density lipoproteins (HDLs) are atheroprotective because of their role in reverse cholesterol transport. The intestine is involved in this process because it synthesizes HDL, removes cholesterol from plasma and excretes it into the lumen. We investigated the role of selected dietary fatty acids on intestinal cholesterol uptake and HDL functionality. Caco-2 monolayers grown on Transwells were supplemented with either palmitic, palmitoleic, oleic, linoleic, docosahexaenoic, eicosapentaenoic, arachidonic or conjugated linoleic acids (CLAs): c9,t11-CLA; t9,t11-CLA; c10,t12-CLA. Cells synthesized HDL in the basolateral compartment for 24 h in the absence or presence of an antibody to SR-BI (aSR-BI), which inhibits its interaction with HDL. Free cholesterol (FC) accumulated to a greater extent in the presence than in the absence of aSR-BI, indicating net uptake of FC by SR-BI. Uptake's efficiency was significantly decreased when cells were treated with c9,t11-CLA relative to the other fatty acids. These differences were associated with lower HDL functionality, since neither SR-BI protein expression nor expression and alternative splicing of other genes involved lipid metabolism were affected. Only INSIG2 expression was decreased, with no increase of its target genes. Increasing pre-β-HDL synthesis, by inducing ABCA1 and adding APOA1, resulted in reduced uptake of FC by SR-BI after c9,t11-CLA treatment, indicating reduced functionality of pre-β-HDL. Conversely, treatment with c9,t11-CLA resulted in a greater uptake of FC and esterified cholesterol from mature HDL. Therefore, Caco-2 monolayers administered c9,t11-CLA produced a nonfunctional pre-β-HDL but took up cholesterol more efficiently via SR-BI from mature HDL.

  17. Transport of eicosapentaenoic acid-derived PGE₃, PGF(3α, and TXB₃ by ABCC4.

    Nobuaki Tanaka

    Full Text Available Eicosapentaenoic acid-derived prostaglandin (PG E3, PGF(3α, and thromboxane (TX B3 are bioactive lipid mediators which have anti-cancer and anti-inflammatory effects. To exert their effects, PGE3, PGF(3α, and TXB3 must be released to the extracellular space from cells, but the release mechanism has been unclear. We therefore investigated the contribution of ATP-binding cassette transporter C4 (ABCC4, which has been known as a prostanoids efflux transporter, to the release of PGE3, PGF(3α, and TXB3.ATP-dependent transport of PGE3, PGF(3α, and TXB3 via ABCC4 was investigated by using inside-out membrane vesicles prepared from ABCC4-overexpressing HEK293 cells. To evaluate the contribution of ABCC4 to the release of PGE3, PGF(3α, and TXB3, we measured the extracellular and intracellular levels of PGE3, PGF(3α, and TXB3 in A549 cells when we used ABCC4 inhibitors (dipyridamole, MK571, and probenecid or ABCC4 siRNAs. The quantification of PGE3, PGF(3α, and TXB3 was performed by using liquid chromatography-tandem mass spectrometry.The apparent Km values for ABCC4-mediated transport were 2.9±0.1 µM for PGE3, 12.1±1.3 µM for PGF(3α, and 11.9±1.4 µM for TXB3 and the ATP-dependent accumulation of PGE3, PGF(3α, and TXB3 into vesicles was decreased by using typical substrates and inhibitors of ABCC4. ABCC4 inhibitors and ABCC4 knockdown showed the reduction of extracellular/intracellular ratio of PGE3 (40-60% of control and PGF(3α (60-80% of control in A549 cells.Our results suggest that PGE3, PGF(3α, and TXB3 are substrates of ABCC4 and ABCC4 partially contributes to the release of PGE3 and PGF(3α.

  18. Glycinergic-Fipronil Uptake Is Mediated by an Amino Acid Carrier System and Induces the Expression of Amino Acid Transporter Genes in Ricinus communis Seedlings.

    Xie, Yun; Zhao, Jun-Long; Wang, Chuan-Wei; Yu, Ai-Xin; Liu, Niu; Chen, Li; Lin, Fei; Xu, Han-Hong

    2016-05-18

    Phloem-mobile insecticides are efficient for piercing and sucking insect control. Introduction of sugar or amino acid groups to the parent compound can improve the phloem mobility of insecticides, so a glycinergic-fipronil conjugate (GlyF), 2-(3-(3-cyano-1-(2,6-dichloro-4-(trifluoromethyl)phenyl)-4-((trifluoromethyl)sulfinyl)-1H-pyrazole-5-yl)ureido) acetic acid, was designed and synthesized. Although the "Kleier model" predicted that this conjugate is not phloem mobile, GlyF can be continually detected during a 5 h collection of Ricinus communis phloem sap. Furthermore, an R. communis seedling cotyledon disk uptake experiment demonstrates that the uptake of GlyF is sensitive to pH, carbonyl cyanide m-chlorophenylhydrazone (CCCP), temperature, and p-chloromercuribenzenesulfonic acid (pCMBS) and is likely mediated by amino acid carrier system. To explore the roles of amino acid transporters (AATs) in GlyF uptake, a total of 62 AAT genes were identified from the R. communis genome in silico. Phylogenetic analysis revealed that AATs in R. communis were organized into the ATF (amino acid transporter) and APC (amino acid, polyaminem and choline transporter) superfamilies, with five subfamilies in ATF and two in APC. Furthermore, the expression profiles of 20 abundantly expressed AATs (cycle threshold (Ct) values communis seedlings. On the basis of the observation that the expression profile of the four candidate genes is similar to the time course observation for GlyF foliar disk uptake, it is suggested that those four genes are possible candidates involved in the uptake of GlyF. These results contribute to a better understanding of the mechanism of GlyF uptake as well as phloem loading from a molecular biology perspective and facilitate functional characterization of candidate AAT genes in future studies.

  19. Incorporating Geochemical And Microbial Kinetics In Reactive Transport Models For Generation Of Acid Rock Drainage

    Andre, B. J.; Rajaram, H.; Silverstein, J.

    2010-12-01

    Acid mine drainage, AMD, results from the oxidation of metal sulfide minerals (e.g. pyrite), producing ferrous iron and sulfuric acid. Acidophilic autotrophic bacteria such as Acidithiobacillus ferrooxidans and Leptospirillum ferrooxidans obtain energy by oxidizing ferrous iron back to ferric iron, using oxygen as the electron acceptor. Most existing models of AMD do not account for microbial kinetics or iron geochemistry rigorously. Instead they assume that oxygen limitation controls pyrite oxidation and thus focus on oxygen transport. These models have been successfully used for simulating conditions where oxygen availability is a limiting factor (e.g. source prevention by capping), but have not been shown to effectively model acid generation and effluent chemistry under a wider range of conditions. The key reactions, oxidation of pyrite and oxidation of ferrous iron, are both slow kinetic processes. Despite being extensively studied for the last thirty years, there is still not a consensus in the literature about the basic mechanisms, limiting factors or rate expressions for microbially enhanced oxidation of metal sulfides. An indirect leaching mechanism (chemical oxidation of pyrite by ferric iron to produce ferrous iron, with regeneration of ferric iron by microbial oxidation of ferrous iron) is used as the foundation of a conceptual model for microbially enhanced oxidation of pyrite. Using literature data, a rate expression for microbial consumption of ferrous iron is developed that accounts for oxygen, ferrous iron and pH limitation. Reaction rate expressions for oxidation of pyrite and chemical oxidation of ferrous iron are selected from the literature. A completely mixed stirred tank reactor (CSTR) model is implemented coupling the kinetic rate expressions, speciation calculations and flow. The model simulates generation of AMD and effluent chemistry that qualitatively agrees with column reactor and single rock experiments. A one dimensional reaction

  20. Fetal hydantoin syndrome: inhibition of placental folic acid transport as a potential mechanism for fetal growth retardation in the rat

    Will, M.; Barnard, J.A.; Said, H.M.; Ghishan, F.K.

    1985-04-01

    Maternal hydantoin ingestion during pregnancy results in a well defined clinical entity termed ''fetal hydantoin syndrome''. The clinical characteristics of this syndrome includes growth retardation, and congenital anomalies. Because folic acid is essential for protein synthesis and growth, and since hydantoin interferes with intestinal transport of folic acid, the authors postulated that part of the fetal hydantoin syndrome may be due to inhibition of placental folic acid by maternal hydantoin. Therefore, they studied in vivo placental folate transport in a well-established model for fetal hydantoin syndrome in the rat. Our results indicate that maternal hydantoin ingestion, significantly decreased fetal weight and placental and fetal uptake of folate compared to controls. To determine whether maternal hydantoin ingestion has a generalized or specific effect on placental function, they examined placental and fetal zinc transport in the same model. Our results indicate that zinc transport is not altered by hydantoin ingestion. They conclude that maternal hydantoin ingestion results in fetal growth retardation which may be due in part to inhibition of placental folate transport.

  1. Simultaneous determination of gallic acid and gentisic acid in organic anion transporter expressing cells by liquid chromatography-tandem mass spectrometry.

    Wang, Li; Halquist, Matthew S; Sweet, Douglas H

    2013-10-15

    In order to elucidate the role of organic anion transporters (OATs) in the renal elimination of gallic acid and gentisic acid, a new, rapid, and sensitive liquid chromatography-tandem mass spectrometry (LC-MS/MS) method has been developed and validated for the simultaneous determination of gallic acid and gentisic acid in cell lysate, using Danshensu as the internal standard (IS). After a simple liquid-liquid extraction, the analytes were detected in negative ESI mode using selected reaction monitoring. The precursor-to-product ion transitions (m/z) were 169.0→125.0, 153.1→108.0, and 196.8→135.2 for gallic acid, gentisic acid, and the IS, respectively. Chromatographic separation was achieved on a C18 column using mobile phases consisting of water with 0.1% acetic acid (A) and acetonitrile with 0.05% formic acid. (B) The total run time was 3min and calibration curves were linear over the concentrations of 0.33-2400ng/mL for both compounds (r(2)>0.995). Good precision (between 3.11% and 14.1% RSD) and accuracy (between -12.7% and 11% bias) was observed for quality controls at concentrations of 0.33 (lower limit of quantification), 1, 50, and 2000ng/mL. The mean extraction recovery of gallic acid and gentisic acid was 80.7% and 83.5%, respectively. Results from post-column infusion and post-extraction methods indicated that the analytical method exhibited negligible matrix effects. Finally, this validated assay was successfully applied in a cellular uptake study to determine the intracellular concentrations of gallic acid and gentisic acid in OAT expressing cells.

  2. Potassium co-transport and antiport during the uptake of sucrose and glutamic acid from the xylem vessels

    Bel, A.J.E. van; Erven, A.J. van

    1979-01-01

    Perfusion experiments with excised internodes of tomato (Lycopersicon esculentum cv Moneymaker) showed that the uptake of glutamic acid and sucrose from the xylem vessels is accompanied with coupled proton co-transport and potassium antiport at low pH (<5.5). At high pH (5.5) both proton and potassi

  3. Excitatory amino acid transporters EAAT-1 and EAAT-2 in temporal lobe and hippocampus in intractable temporal lobe epilepsy

    Sarac, Sinan; Afzal, Shoaib; Broholm, Helle;

    2009-01-01

    extra-cellular clearance of glutamate by excitatory amino acid transporters (EAAT-1 to EAAT-5). EAAT-1 and EAAT-2 are mainly expressed on astroglial cells for the reuptake of glutamate from the extra-cellular space. We have studied the expression of EAAT-1 and EAAT-2 in the hippocampus and temporal lobe...

  4. Differential expression of proton-assisted amino acid transporters (PAT[1] and PAT[2]) in tissues of neonatal pigs

    The PATs have been identified as growth-regulatory nutrient sensors in Drosophila and as activators of mammalian target of rapamycin (mTOR) in mammalian cell cultures. These studies suggest that, beyond their classical function as transporters of simple amino acids (AA), the PATs act as tranceptors,...

  5. Amino acid transport in taxonomically diverse cyanobacteria and identification of two genes encoding elements of a neutral amino acid permease putatively involved in recapture of leaked hydrophobic amino acids.

    Montesinos, M L; Herrero, A; Flores, E

    1997-02-01

    The activities of uptake of thirteen 14C-labeled amino acids were determined in nine cyanobacteria, including the unicellular strains Synechococcus sp. strain PCC 7942 and Synechocystis sp. strain PCC 6803; the filamentous strain Pseudanabaena sp. strain PCC 6903, and the filamentous, heterocyst-forming strains Anabaena sp. strains PCC 7120 and PCC 7937; Nostoc sp. strains PCC 7413 and PCC 7107; Calothrix sp. strain PCC 7601 (which is a mutant unable to develop heterocysts); and Fischerella muscicola UTEX 1829. Amino acid transport mutants, selected as mutants resistant to some amino acid analogs, were isolated from the Anabaena, Nostoc, Calothrix, and Pseudanabaena strains. All of the tested cyanobacteria bear at least a neutral amino acid transport system, and some strains also bear transport systems specific for basic or acidic amino acids. Two genes, natA and natB, encoding elements (conserved component, NatA, and periplasmic binding protein, NatB) of an ABC-type permease for neutral amino acids were identified by insertional mutagenesis of strain PCC 6803 open reading frames from the recently published genomic DNA sequence of this cyanobacterium. DNA sequences homologous to natA and natB from strain PCC 6803 were detected by hybridization in eight cyanobacterial strains tested. Mutants unable to transport neutral amino acids, including natA and natB insertional mutants, accumulated in the extracellular medium a set of amino acids that always included Ala, Val, Phe, Ile, and Leu. A general role for a cyanobacterial neutral amino acid permease in recapture of hydrophobic amino acids leaked from the cells is suggested.

  6. The fatty acid transport protein Fat1p is involved in the export of fatty acids from lipid bodies in Yarrowia lipolytica.

    Dulermo, Rémi; Gamboa-Meléndez, Heber; Dulermo, Thierry; Thevenieau, France; Nicaud, Jean-Marc

    2014-09-01

    In order to live, cells need to import different molecules, such as sugars, amino acids or lipids, using transporters. In Saccharomyces cerevisiae, the ScFAT1 gene encodes the long-chain fatty acid transporter; however, the transport of fatty acids (FAs) in the oleaginous yeast Yarrowia lipolytica has not yet been studied. In contrast to what has previously been found for ΔScfat1 strains, ΔYlfat1 yeast was still able to grow on substrates containing short-, medium- or long-chain FAs. We observed a notable difference in cell lipid content between wild-type (WT) and deletion mutant strains after 24 h of culture in minimal oleate medium: in the WT strain, lipids represented 24% of cell dry weight (CDW), while they accounted for 37% of CDW in the ΔYlfat1 strain. This result indicates that YlFat1p is not involved in cell lipid uptake. Moreover, we also observed that fatty acid remobilisation was decreased in the ΔYlfat1 strain and that fluorescence-tagged YlFat1p proteins localised to the interfaces between lipid bodies, which suggests that YlFat1p may play a role in the export of FAs from lipid bodies.

  7. Surfactant-modified fatty acid composition of Citrobacter sp. SA01 and its effect on phenanthrene transmembrane transport.

    Li, Feng; Zhu, Lizhong

    2014-07-01

    The effects of the surfactants, Tween 80 and sodium dodecyl benzene sulfonate (SDBS) on a membrane's fatty acid composition and the transmembrane transport of phenanthrene were investigated. The results indicated that both surfactants could modify the composition of fatty acids of Citrobacter sp. Strain SA01 cells, 50 mg L(-1) of both surfactants changed the composition of the fatty acids the most, increasing the amount of unsaturated fatty acids. The comparison of fatty acid profiles with diphenylhexatriene fluorescence anisotropy, a probe for plasma membrane fluidity, suggested that an increased amount of unsaturated fatty acids corresponded to greater membrane fluidity. In addition, increased unsaturated fatty acids promoted phenanthrene to partition from the extracellular matrix to cell debris, which increased reverse partitioning from the cell debris to the cytochylema. The results of this study were expected in that the addition of a surfactant is a simple and effective method for accelerating the rate-limiting step of transmembrane transport of hydrophobic organic compounds (HOCs) in bioremediation.

  8. Plasma membrane H+ and K+ transporters are involved in the weak-acid preservative response of disparate food spoilage yeasts.

    Macpherson, Neil; Shabala, Lana; Rooney, Henrietta; Jarman, Marcus G; Davies, Julia M

    2005-06-01

    The food spoilage yeasts Zygosaccharomyces bailii and Saccharomyces cerevisiae have been proposed to resist weak-acid preservative stress by different means; Z. bailii by limiting influx of preservative combined with its catabolism, S. cerevisiae by active extrusion of the preservative weak-acid anion and H(+). Measurement of H(+) extrusion by exponential-phase Z. bailii cells suggest that, in common with S. cerevisiae, this yeast uses a plasma membrane H(+)-ATPase to expel H(+) when challenged by weak-acid preservative (benzoic acid). Simultaneous measurement of Z. bailii net H(+) and K(+) fluxes showed that net K(+) influx accompanies net H(+) efflux during acute benzoic acid stress. Such ionic coupling is known for S. cerevisiae in short-term preservative stress. Both yeasts significantly accumulated K(+) on long-term exposure to benzoic acid. Analysis of S. cerevisiae K(+) transporter mutants revealed that loss of the high affinity K(+) uptake system Trk1 confers sensitivity to growth in preservative. The results suggest that cation accumulation is an important factor in adaptation to weak-acid preservatives by spoilage yeasts and that Z. bailii and S. cerevisiae share hitherto unsuspected adaptive responses at the level of plasma membrane ion transport.

  9. Effect of ascorbic acid administration on erythrocyte osmotic fragility of pigs transported by road during the hot-dry season.

    Asala, Olayinka O; Ayo, Joseph O; Rekwot, Peter I; Minka, Ndazo S; Omoniwa, David O; Adenkola, Adeshina Y

    2011-04-01

    The experiments were performed in order to determine the effect of 8-h road transportation of pigs on erythrocytes osmotic fragility during the hot-dry season, and the ameliorative role of ascorbic acid. Twenty-three adult pigs comprising of both sexes served as subjects for the study. Thirteen pigs administered ascorbic acid (AA) per os 30 min before transportation, at a dose rate of 100 mg/kg served as experimental animals, while ten pigs administered with distilled water per os served as control, and were transported for 8 h during the hot-dry season. EDTA blood samples collected a day before (pre-transportation), immediately after 8-h transportation and 7 days post-transportation were used to determine erythrocyte osmotic fragility. The ambient temperature (AT) and relative humidity (RH) measured within the vehicle ranged between 30.5-39.0 °C and 40.0-71.0% respectively. These values were outside the thermoneutral zone for the pig, indicating that the season was thermally stressful. Results obtained showed a significant difference (p<0.05) in percent haemolysis recorded at NaCl concentrations of 0.4% and 0.6% immediately after transportation in experimental pigs and at 0.5, 0.6, 0.8 and 0.9% NaCl concentrations in experimental pigs 7 days post-transportation. In conclusion, result from the present study indicated that 8-h road transportation during the hot-dry season could induce stress resulting in haemolysis of erythrocytes and AA administration ameliorated the stress.

  10. Effect of Indole Butyric Acid on the Transportation of Stored Calcium in Malus hupehensis Rhed. Seedling

    LI Jia; YANG Hong-qiang; YAN Tian-li; SHU Huai-rui

    2006-01-01

    Calcium (Ca) plays an important role in the metabolism of higher plants. Recently, research on Ca2+ in plants has been focused especially at the cellular and molecular levels. Uptake, transport, and distribution are also very important for Ca to accomplish its function at the whole-plant level. In this experiment, one-year-old apple seedlings (M. hupehensis Rehd.) were investigated to determine the distribution of stored Ca, the different forms of Ca, and Ca2+-ATPase activity after treatment with indole butyric acid (IBA). The results showed that the total Ca measured in mature leaves and Ca2+-ATPase activity in tender leaves were higher compared with those in the control (CK). Calcium nitrate and calcium chloride (ALe-Ca) and calcium phosphate and calcium carbonate (HAC-Ca) decreased in both mature leaves and shoots,whereas water-soluble calcium (H2O-Ca), calcium pectate (NaCl-Ca), and calcium oxalate (HCl-Ca) increased. The percentage of active calcium, calcium pectate, and water-soluble calcium increased, whereas the percentage of calcium phosphate and calcium carbonate decreased. When treated with IBA, calcium fractions and percentage of the different forms of Ca was enhanced in 40 part per million (ppm) IBA compared with 20 ppm IBA and water. The results indicated that IBA increased the percentage of both active calcium (NaCl-Ca and H2O-Ca) in tender shoots and boosted the transportation of stored Ca in plants. IBA promoted Ca2+-ATPase activity and Ca2+ uptake in tender shoots of M. hupehensis. It can improve the total Ca contents and the relative percentage of Ca.

  11. Long-distance transport of L-ascorbic acid in potato

    Alberino Salvatore

    2004-09-01

    Full Text Available Abstract Background Following on from recent advances in plant AsA biosynthesis there is increasing interest in elucidating the factors contributing to the L-ascorbic acid (AsA content of edible crops. One main objective is to establish whether in sink organs such as fruits and tubers, AsA is synthesised in situ from imported photoassimilates or synthesised in source tissues and translocated via the phloem. In the current work we test the hypothesis that long-distance transport is involved in AsA accumulation within the potato tuber, the most significant source of AsA in the European diet. Results Using the EDTA exudation technique we confirm the presence of AsA in the phloem of potato plants and demonstrate a correlation between changes in the AsA content of source leaves and that of phloem exudates. Comparison of carboxyflourescein and AgNO3 staining is suggestive of symplastic unloading of AsA in developing tubers. This hypothesis was further supported by the changes in AsA distribution during tuber development which closely resembled those of imported photoassimilates. Manipulation of leaf AsA content by supply of precursors to source leaves resulted in increased AsA content of developing tubers. Conclusion Our data provide strong support to the hypothesis that long-distance transport of AsA occurs in potato. We also show that phloem AsA content and AsA accumulation in sink organs can be directly increased via manipulation of AsA content in the foliage. We are now attempting to establish the quantitative contribution of imported AsA to overall AsA accumulation in developing potato tubers via transgenic approaches.

  12. Accumulation, selection and covariation of amino acids in sieve tube sap of tansy (Tanacetum vulgare) and castor bean (Ricinus communis): evidence for the function of a basic amino acid transporter and the absence of a γ-amino butyric acid transporter.

    Bauer, Susanne N; Nowak, Heike; Keller, Frank; Kallarackal, Jose; Hajirezaei, Mohamad-Reza; Komor, Ewald

    2014-09-01

    Sieve tube sap was obtained from Tanacetum by aphid stylectomy and from Ricinus after apical bud decapitation. The amino acids in sieve tube sap were analyzed and compared with those from leaves. Arginine and lysine accumulated in the sieve tube sap of Tanacetum more than 10-fold compared to the leaf extracts and they were, together with asparagine and serine, preferably selected into the sieve tube sap, whereas glycine, methionine/tryptophan and γ-amino butyric acid were partially or completely excluded. The two basic amino acids also showed a close covariation in sieve tube sap. The acidic amino acids also grouped together, but antagonistic to the other amino acids. The accumulation ratios between sieve tube sap and leaf extracts were smaller in Ricinus than in Tanacetum. Arginine, histidine, lysine and glutamine were enriched and preferentially loaded into the phloem, together with isoleucine and valine. In contrast, glycine and methionine/tryptophan were partially and γ-amino butyric acid almost completely excluded from sieve tube sap. The covariation analysis grouped arginine together with several neutral amino acids. The acidic amino acids were loaded under competition with neutral amino acids. It is concluded from comparison with the substrate specificities of already characterized plant amino acid transporters, that an AtCAT1-like transporter functions in phloem loading of basic amino acids, whereas a transporter like AtGAT1 is absent in phloem. Although Tanacetum and Ricinus have different minor vein architecture, their phloem loading specificities for amino acids are relatively similar.

  13. Conserved charged amino acid residues in the extracellular region of sodium/iodide symporter are critical for iodide transport activity

    Liang Ji-An

    2010-11-01

    Full Text Available Abstract Background Sodium/iodide symporter (NIS mediates the active transport and accumulation of iodide from the blood into the thyroid gland. His-226 located in the extracellular region of NIS has been demonstrated to be critical for iodide transport in our previous study. The conserved charged amino acid residues in the extracellular region of NIS were therefore characterized in this study. Methods Fourteen charged residues (Arg-9, Glu-79, Arg-82, Lys-86, Asp-163, His-226, Arg-228, Asp-233, Asp-237, Arg-239, Arg-241, Asp-311, Asp-322, and Asp-331 were replaced by alanine. Iodide uptake abilities of mutants were evaluated by steady-state and kinetic analysis. The three-dimensional comparative protein structure of NIS was further modeled using sodium/glucose transporter as the reference protein. Results All the NIS mutants were expressed normally in the cells and targeted correctly to the plasma membrane. However, these mutants, except R9A, displayed severe defects on the iodide uptake. Further kinetic analysis revealed that mutations at conserved positively charged amino acid residues in the extracellular region of NIS led to decrease NIS-mediated iodide uptake activity by reducing the maximal rate of iodide transport, while mutations at conserved negatively charged residues led to decrease iodide transport by increasing dissociation between NIS mutants and iodide. Conclusions This is the first report characterizing thoroughly the functional significance of conserved charged amino acid residues in the extracellular region of NIS. Our data suggested that conserved charged amino acid residues, except Arg-9, in the extracellular region of NIS were critical for iodide transport.

  14. Fatty acid transport protein-2 inhibitor Grassofermata/CB5 protects cells against lipid accumulation and toxicity

    Saini, Nipun; Black, Paul N.; Montefusco, David; DiRusso, Concetta C., E-mail: cdirusso2@unl.edu

    2015-09-25

    The inhibition of the fatty acid uptake into non-adipose tissues provides an attractive target for prevention of lipotoxicity leading to obesity-associated non-alcoholic fatty liver disease and type 2 diabetes. Fatty acid transport proteins (FATPs) are bifunctional proteins involved in the uptake and activation of fatty acids by esterification with coenzyme A. Here we characterize Grassofermata/CB5, previously identified as a fatty acid uptake inhibitor directed against HsFATP2. The compound was effective in inhibiting the uptake of fatty acids in the low micro-molar range (IC{sub 50} 8–11 μM) and prevented palmitate-mediated lipid accumulation and cell death in cell lines that are models for intestines, liver, muscle and pancreas. In adipocytes, uptake inhibition was less effective (IC{sub 50} 58 μM). Inhibition was specific for long chain fatty acids and was ineffective toward medium chain fatty acids, which are transported by diffusion. Kinetic analysis of Grassofermata-dependent FA transport inhibition verified a non-competitive mechanism. By comparison with Grassofermata, several atypical antipsychotic drugs previously implicated as inhibitors of FA uptake were ineffectual. In mice Grassofermata decreased absorption of {sup 13}C-oleate demonstrating its potential as a therapeutic agent. - Highlights: • Grassofermata is a small compound inhibitor of FATP2. • Uptake inhibition is specific for long chain fatty acids. • Uptake kinetics shows low specificity for adipocytes compared to other cell types. • Inhibition is by a non-competitive mechanism. • Atypical antipsychotics do not inhibit FA uptake by comparison with Grassofermata.

  15. Retinoic acid receptor agonists regulate expression of ATP-binding cassette transporter G1 in macrophages.

    Ayaori, Makoto; Yakushiji, Emi; Ogura, Masatsune; Nakaya, Kazuhiro; Hisada, Tetsuya; Uto-Kondo, Harumi; Takiguchi, Shunichi; Terao, Yoshio; Sasaki, Makoto; Komatsu, Tomohiro; Iizuka, Maki; Yogo, Makiko; Uehara, Yoshinari; Kagechika, Hiroyuki; Nakanishi, Tsuyoshi; Ikewaki, Katsunori

    2012-04-01

    ABC transporter G1 (ABCG1) plays a pivotal role in HDL-mediated cholesterol efflux and atherogenesis. We investigated whether, and how, retinoic acid receptors (RARs) regulate ABCG1 expression in macrophages. All-trans retinoic acid (ATRA), an RAR ligand, increased ABCG1 protein levels and apoA-I/HDL-mediated cholesterol efflux from the macrophages. Both ATRA and other RAR agonists, TTNPB and Am580, increased major transcripts driven by promoter B upstream of exon 5, though minor transcripts driven by promoter A upstream of exon 1 were only increased by ATRA. The stimulatory effects of ATRA on ABCG1 expression were completely abolished in the presence of RAR/RXR antagonists but were only partially canceled in the presence of an LXR antagonist. Adenovirus with overexpressed oxysterol sulfotransferase abolished the LXR pathway, as previously reported, and ATRA-responsiveness in ABCA1/ABCG1 expressions were respectively attenuated by 38 and 22% compared to the control virus. Promoter assays revealed that ABCG1 levels were regulated more by promoter B than promoter A, and ATRA activated promoter B in a liver X receptor-responsive element (LXRE)-dependent manner. Further, LXRE-B in intron 7, but not LXRE-A in intron 5, enhanced ATRA responsiveness under overexpression of all RAR isoforms-RARα/β/γ. In contrast, the activation of promoter B by TTNPB depended on LXRE-B and RARα, but not on RARβ/γ. Finally, chromatin immunoprecipitation and gel-shift assays revealed a specific and direct repeat 4-dependent binding of RARα to LXRE-B. In conclusion, RAR ligands increase ABCA1/G1 expression and apoA-I/HDL-mediated cholesterol efflux from macrophages, and modulate ABCG1 promoter activity via LXRE-dependent mechanisms.

  16. Fishy Business: Effect of Omega-3 Fatty Acids on Zinc Transporters and Free Zinc Availability in Human Neuronal Cells

    Damitha De Mel

    2014-08-01

    Full Text Available Omega-3 (ω-3 fatty acids are one of the two main families of long chain polyunsaturated fatty acids (PUFA. The main omega-3 fatty acids in the mammalian body are α-linolenic acid (ALA, docosahexaenoic acid (DHA and eicosapentaenoic acid (EPA. Central nervous tissues of vertebrates are characterized by a high concentration of omega-3 fatty acids. Moreover, in the human brain, DHA is considered as the main structural omega-3 fatty acid, which comprises about 40% of the PUFAs in total. DHA deficiency may be the cause of many disorders such as depression, inability to concentrate, excessive mood swings, anxiety, cardiovascular disease, type 2 diabetes, dry skin and so on. On the other hand, zinc is the most abundant trace metal in the human brain. There are many scientific studies linking zinc, especially excess amounts of free zinc, to cellular death. Neurodegenerative diseases, such as Alzheimer’s disease, are characterized by altered zinc metabolism. Both animal model studies and human cell culture studies have shown a possible link between omega-3 fatty acids, zinc transporter levels and free zinc availability at cellular levels. Many other studies have also suggested a possible omega-3 and zinc effect on neurodegeneration and cellular death. Therefore, in this review, we will examine the effect of omega-3 fatty acids on zinc transporters and the importance of free zinc for human neuronal cells. Moreover, we will evaluate the collective understanding of mechanism(s for the interaction of these elements in neuronal research and their significance for the diagnosis and treatment of neurodegeneration.

  17. Fishy business: effect of omega-3 fatty acids on zinc transporters and free zinc availability in human neuronal cells.

    De Mel, Damitha; Suphioglu, Cenk

    2014-08-15

    Omega-3 (ω-3) fatty acids are one of the two main families of long chain polyunsaturated fatty acids (PUFA). The main omega-3 fatty acids in the mammalian body are α-linolenic acid (ALA), docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA). Central nervous tissues of vertebrates are characterized by a high concentration of omega-3 fatty acids. Moreover, in the human brain, DHA is considered as the main structural omega-3 fatty acid, which comprises about 40% of the PUFAs in total. DHA deficiency may be the cause of many disorders such as depression, inability to concentrate, excessive mood swings, anxiety, cardiovascular disease, type 2 diabetes, dry skin and so on. On the other hand, zinc is the most abundant trace metal in the human brain. There are many scientific studies linking zinc, especially excess amounts of free zinc, to cellular death. Neurodegenerative diseases, such as Alzheimer's disease, are characterized by altered zinc metabolism. Both animal model studies and human cell culture studies have shown a possible link between omega-3 fatty acids, zinc transporter levels and free zinc availability at cellular levels. Many other studies have also suggested a possible omega-3 and zinc effect on neurodegeneration and cellular death. Therefore, in this review, we will examine the effect of omega-3 fatty acids on zinc transporters and the importance of free zinc for human neuronal cells. Moreover, we will evaluate the collective understanding of mechanism(s) for the interaction of these elements in neuronal research and their significance for the diagnosis and treatment of neurodegeneration.

  18. Unsaturated fatty acids and phytosterols regulate cholesterol transporter genes in Caco-2 and HepG2 cell lines.

    Park, Youngki; Carr, Timothy P

    2013-02-01

    Dietary consumption of phytosterols and certain fatty acids has been shown to reduce cholesterol absorption and plasma cholesterol concentrations. However, it has not been fully elucidated whether phytosterols or fatty acids can alter the expression of cholesterol transporters by functioning as signaling molecules. This study tested the hypothesis that various fatty acids and phytosterols commonly found in the food supply can modulate the expression of transporters including Niemann-Pick C1-like 1, low-density lipoprotein receptor, and scavenger receptor class B type I and 3-hydroxy-3-methylglutaryl-coenzyme A reductase in the intestine and liver. Caco-2 cells were used as models of enterocytes, and HepG2 cells were used as a model of hepatocytes. The cells were treated for 18 hours with 100 μmol/L of a fatty acid, or for 24 hours with 10 μmol/L of 25α-hydroxycholesterol, or 100 μmol/L of cholesterol, sitosterol, and stigmasterol to measure expression of genes involved in cholesterol transport using quantitative real-time polymerase chain reaction. Polyunsaturated fatty acids in Caco-2 cells and sterols in HepG2 cells significantly reduced the messenger RNA expression levels of Niemann-Pick C1-like 1, scavenger receptor class B type I, low-density lipoprotein receptor, and 3-hydroxy-3-methylglutaryl-coenzyme A reductase. Importantly, sitosterol and stigmasterol reduced the messenger RNA levels of genes to a similar extent as cholesterol. The data support the hypothesis that unsaturated fatty acid and phytosterols can act as signaling molecules and alter the expression of genes involved in cholesterol transport and metabolism.

  19. Cationic amino acid transporter-2 regulates immunity by modulating arginase activity.

    Robert W Thompson

    2008-03-01

    Full Text Available Cationic amino acid transporters (CAT are important regulators of NOS2 and ARG1 activity because they regulate L-arginine availability. However, their role in the development of Th1/Th2 effector functions following infection has not been investigated. Here we dissect the function of CAT2 by studying two infectious disease models characterized by the development of polarized Th1 or Th2-type responses. We show that CAT2(-/- mice are significantly more susceptible to the Th1-inducing pathogen Toxoplasma gondii. Although T. gondii infected CAT2(-/- mice developed stronger IFN-gamma responses, nitric oxide (NO production was significantly impaired, which contributed to their enhanced susceptibility. In contrast, CAT2(-/- mice infected with the Th2-inducing pathogen Schistosoma mansoni displayed no change in susceptibility to infection, although they succumbed to schistosomiasis at an accelerated rate. Granuloma formation and fibrosis, pathological features regulated by Th2 cytokines, were also exacerbated even though their Th2 response was reduced. Finally, while IL-13 blockade was highly efficacious in wild-type mice, the development of fibrosis in CAT2(-/- mice was largely IL-13-independent. Instead, the exacerbated pathology was associated with increased arginase activity in fibroblasts and alternatively activated macrophages, both in vitro and in vivo. Thus, by controlling NOS2 and arginase activity, CAT2 functions as a potent regulator of immunity.

  20. Specific analogues uncouple transport, signalling, oligo-ubiquitination and endocytosis in the yeast Gap1 amino acid transceptor.

    Van Zeebroeck, Griet; Rubio-Texeira, Marta; Schothorst, Joep; Thevelein, Johan M

    2014-07-01

    The Saccharomyces cerevisiae amino acid transceptor Gap1 functions as receptor for signalling to the PKA pathway and concomitantly undergoes substrate-induced oligo-ubiquitination and endocytosis. We have identified specific amino acids and analogues that uncouple to certain extent signalling, transport, oligo-ubiquitination and endocytosis. L-lysine, L-histidine and L-tryptophan are transported by Gap1 but do not trigger signalling. Unlike L-histidine, L-lysine triggers Gap1 oligo-ubiquitination without substantial induction of endocytosis. Two transported, non-metabolizable signalling agonists, β-alanine and D-histidine, are strong and weak inducers of Gap1 endocytosis, respectively, but both causing Gap1 oligo-ubiquitination. The non-signalling agonist, non-transported competitive inhibitor of Gap1 transport, L-Asp-γ-L-Phe, induces oligo-ubiquitination but no discernible endocytosis. The Km of L-citrulline transport is much lower than the threshold concentration for signalling and endocytosis. These results show that molecules can be transported without triggering signalling or substantial endocytosis, and that oligo-ubiquitination and endocytosis do not require signalling nor metabolism. Oligo-ubiquitination is required, but apparently not sufficient to trigger endocytosis. In addition, we demonstrate intracellular cross-induction of endocytosis of transport-defective Gap1(Y395C) by ubiquitination- and endocytosis-deficient Gap1(K9R,K16R). Our results support the concept that different substrates bind to partially overlapping binding sites in the same general substrate-binding pocket of Gap1, triggering divergent conformations, resulting in different conformation-induced downstream processes.

  1. Impact of humic acid fouling on membrane performance and transport of pharmaceutically active compounds in forward osmosis.

    Xie, Ming; Nghiem, Long D; Price, William E; Elimelech, Menachem

    2013-09-01

    The impact of humic acid fouling on the membrane transport of two pharmaceutically active compounds (PhACs) - namely carbamazepine and sulfamethoxazole - in forward osmosis (FO) was investigated. Deposition of humic acid onto the membrane surface was promoted by the complexation with calcium ions in the feed solution and the increase in ionic strength at the membrane surface due to the reverse transport of NaCl draw solute. The increase in the humic acid deposition on the membrane surface led to a substantial decrease in the membrane salt (NaCl) permeability coefficient but did not result in a significant decrease in the membrane pure water permeability coefficient. As the deposition of humic acid increased, the permeation of carbamazepine and sulfamethoxazole decreased, which correlated well with the decrease in the membrane salt (NaCl) permeability coefficient. It is hypothesized that the hydrated humic acid fouling layer hindered solute diffusion through the membrane pore and enhanced solute rejection by steric hindrance, but not the permeation of water molecules. The membrane water and salt (NaCl) permeability coefficients were fully restored by physical cleaning of the membrane, suggesting that humic acid did not penetrate into the membrane pores.

  2. Assessment of thermal load on transported goats administered with ascorbic acid during the hot-dry conditions.

    Minka, N S; Ayo, J O

    2012-03-01

    The major factor in the induction of physiological stress during road transportation of livestock is the complex fluctuations of the thermal transport microenvironment, encountered when animals are transported across different ecological zones. Recommended guidelines on optimum "on-board" conditions in which goats should be transported are lacking, and there are no acceptable ranges and limits for the thermal loads to which goats may be subjected during long-distance road transportation in hot-dry conditions. Panting score (PS), rectal temperature (RT), heart rate (HR) and respiratory rate (RR) were employed as reliable stress indices to assess the effects of different thermal loads, measured as temperature humidity index (THI), encountered in the vehicle during 12 h of road transportation of 40 goats, and to suggest the administration of 100 mg/kg body weight of ascorbic acid (AA) as an ameliorating agent. The results obtained showed that the PS, RT, HR and RR rose above normal reference values with increase in the THI and journey duration. The rise in PS value, which is a visual indicator of the severity of thermal load, was the most pronounced. The results suggest that values of THI in the vehicle up to 94.6 constitute no risk, while at of 100 it presents a moderate risk and above 100 may result in severe stress. The relationships between the thermal load and the physiological variables were positive and significant (P < 0.05). They reflect the degree of stress imposed by each THI value during the transportation, and may be used as recommended ranges and limit thermal load values in transported goats. The results demonstrated that administration of 100 mg/kg body weight of AA before road transportation mitigated the risk of adverse effects of high THI values and other stress factors due to road transportation in goats.

  3. Assessment of thermal load on transported goats administered with ascorbic acid during the hot-dry conditions

    Minka, N. S.; Ayo, J. O.

    2012-03-01

    The major factor in the induction of physiological stress during road transportation of livestock is the complex fluctuations of the thermal transport microenvironment, encountered when animals are transported across different ecological zones. Recommended guidelines on optimum "on-board" conditions in which goats should be transported are lacking, and there are no acceptable ranges and limits for the thermal loads to which goats may be subjected during long-distance road transportation in hot-dry conditions. Panting score (PS), rectal temperature (RT), heart rate (HR) and respiratory rate (RR) were employed as reliable stress indices to assess the effects of different thermal loads, measured as temperature humidity index (THI), encountered in the vehicle during 12 h of road transportation of 40 goats, and to suggest the administration of 100 mg/kg body weight of ascorbic acid (AA) as an ameliorating agent. The results obtained showed that the PS, RT, HR and RR rose above normal reference values with increase in the THI and journey duration. The rise in PS value, which is a visual indicator of the severity of thermal load, was the most pronounced. The results suggest that values of THI in the vehicle up to 94.6 constitute no risk, while at of 100 it presents a moderate risk and above 100 may result in severe stress. The relationships between the thermal load and the physiological variables were positive and significant ( P < 0.05). They reflect the degree of stress imposed by each THI value during the transportation, and may be used as recommended ranges and limit thermal load values in transported goats. The results demonstrated that administration of 100 mg/kg body weight of AA before road transportation mitigated the risk of adverse effects of high THI values and other stress factors due to road transportation in goats.

  4. Amino acid composition analysis of secondary transport proteins from Escherichia coli with relation to functional classification, ligand specificity and structure.

    Saidijam, Massoud; Patching, Simon G

    2015-01-01

    We have performed an amino acid composition (AAC) analysis of the complete sequences for 235 secondary transport proteins from Escherichia coli, which have functions in the uptake and export of organic and inorganic metabolites, efflux of drugs and in controlling membrane potential. This revealed the trends in content for specific amino acid types and for combinations of amino acids with similar physicochemical properties. In certain proteins or groups of proteins, the so-called spikes of high content for a specific amino acid type or combination of amino acids were identified and confirmed statistically, which in some cases could be directly related to function and ligand specificity. This was prevalent in proteins with a function of multidrug or metal ion efflux. Any tool that can help in identifying bacterial multidrug efflux proteins is important for a better understanding of this mechanism of antibiotic resistance. Phylogenetic analysis based on sequence alignments and comparison of sequences at the N- and C-terminal ends confirmed transporter Family classification. Locations of specific amino acid types in some of the proteins that have crystal structures (EmrE, LacY, AcrB) were also considered to help link amino acid content with protein function. Though there are limitations, this work has demonstrated that a basic analysis of AAC is a useful tool to use in combination with other computational and experimental methods for classifying and investigating function and ligand specificity in a large group of transport or other membrane proteins, including those that are molecular targets for development of new drugs.

  5. Agp2, a Member of the Yeast Amino Acid Permease Family, Positively Regulates Polyamine Transport at the Transcriptional Level

    Aouida, Mustapha

    2013-06-03

    Agp2 is a plasma membrane protein of the Saccharomyces cerevisiae amino acid transporter family, involved in high-affinity uptake of various substrates including L-carnitine and polyamines. The discovery of two high affinity polyamine permeases, Dur3 and Sam3, prompted us to investigate whether Agp2 directly transports polyamines or acts instead as a regulator. Herein, we show that neither dur3? nor sam3? single mutant is defective in polyamine transport, while the dur3? sam3? double mutant exhibits a sharp decrease in polyamine uptake and an increased resistance to polyamine toxicity similar to the agp2? mutant. Studies of Agp2 localization indicate that in the double mutant dur3? sam3?, Agp2-GFP remains plasma membrane-localized, even though transport of polyamines is strongly reduced. We further demonstrate that Agp2 controls the expression of several transporter genes including DUR3 and SAM3, the carnitine transporter HNM1 and several hexose, nucleoside and vitamin permease genes, in addition to SKY1 encoding a SR kinase that positively regulates low-affinity polyamine uptake. Furthermore, gene expression analysis clearly suggests that Agp2 is a strong positive regulator of additional biological processes. Collectively, our data suggest that Agp2 might respond to environmental cues and thus regulate the expression of several genes including those involved in polyamine transport. © 2013 Aouida et al.

  6. Agp2, a member of the yeast amino acid permease family, positively regulates polyamine transport at the transcriptional level.

    Mustapha Aouida

    Full Text Available Agp2 is a plasma membrane protein of the Saccharomyces cerevisiae amino acid transporter family, involved in high-affinity uptake of various substrates including L-carnitine and polyamines. The discovery of two high affinity polyamine permeases, Dur3 and Sam3, prompted us to investigate whether Agp2 directly transports polyamines or acts instead as a regulator. Herein, we show that neither dur3Δ nor sam3Δ single mutant is defective in polyamine transport, while the dur3Δ sam3Δ double mutant exhibits a sharp decrease in polyamine uptake and an increased resistance to polyamine toxicity similar to the agp2Δ mutant. Studies of Agp2 localization indicate that in the double mutant dur3Δ sam3Δ, Agp2-GFP remains plasma membrane-localized, even though transport of polyamines is strongly reduced. We further demonstrate that Agp2 controls the expression of several transporter genes including DUR3 and SAM3, the carnitine transporter HNM1 and several hexose, nucleoside and vitamin permease genes, in addition to SKY1 encoding a SR kinase that positively regulates low-affinity polyamine uptake. Furthermore, gene expression analysis clearly suggests that Agp2 is a strong positive regulator of additional biological processes. Collectively, our data suggest that Agp2 might respond to environmental cues and thus regulate the expression of several genes including those involved in polyamine transport.

  7. Agp2, a member of the yeast amino acid permease family, positively regulates polyamine transport at the transcriptional level.

    Aouida, Mustapha; Rubio-Texeira, Marta; Rubio Texeira, Marta; Thevelein, Johan M; Poulin, Richard; Ramotar, Dindial

    2013-01-01

    Agp2 is a plasma membrane protein of the Saccharomyces cerevisiae amino acid transporter family, involved in high-affinity uptake of various substrates including L-carnitine and polyamines. The discovery of two high affinity polyamine permeases, Dur3 and Sam3, prompted us to investigate whether Agp2 directly transports polyamines or acts instead as a regulator. Herein, we show that neither dur3Δ nor sam3Δ single mutant is defective in polyamine transport, while the dur3Δ sam3Δ double mutant exhibits a sharp decrease in polyamine uptake and an increased resistance to polyamine toxicity similar to the agp2Δ mutant. Studies of Agp2 localization indicate that in the double mutant dur3Δ sam3Δ, Agp2-GFP remains plasma membrane-localized, even though transport of polyamines is strongly reduced. We further demonstrate that Agp2 controls the expression of several transporter genes including DUR3 and SAM3, the carnitine transporter HNM1 and several hexose, nucleoside and vitamin permease genes, in addition to SKY1 encoding a SR kinase that positively regulates low-affinity polyamine uptake. Furthermore, gene expression analysis clearly suggests that Agp2 is a strong positive regulator of additional biological processes. Collectively, our data suggest that Agp2 might respond to environmental cues and thus regulate the expression of several genes including those involved in polyamine transport.

  8. Serum biochemical activities and muscular soreness in transported goats administered with ascorbic acid during the hot-dry season

    Ndazo S Minka

    2010-12-01

    Full Text Available The effects of handling, loading and 12 h of road transportation during the hot-dry season on muscular metabolism of 20 experimental goats administered orally with 100 mg/kg body weight of ascorbic acid (AA dissolved in 10 ml of sterile water, and other 20 control goats given equivalent of sterile water 40 min prior to transportation were investigated. The result obtained post-transportation showed that handling, loading and transportation were stressful to the goats, especially the control goats and resulted into muscular damage and the development of delayed-onset-muscular-soreness (DOMS, which may lead to dark-firm-dry (DFD syndrome meat with undesirable effects on its quality. In the experimental goats administered AA such transportation effects were minimal or completely abolished. The result demonstrated that AA reduced the incidence of DOMS and muscular damage in transported goats, therefore it may be used to improve the welfare and quality of meat obtained from goats subjected to long period of road transportation under adverse climatic conditions.

  9. Particle-facilitated lead and arsenic transport in abandoned mine sites soil influenced by simulated acid rain.

    Shaoping, Hu; Xincai, Chen; Jiyan, Shi; Yingxu, Chen; Qi, Lin

    2008-05-01

    The role of acid rain in affecting Pb and As transport from mine tailings was investigated by pumping simulated acid rain at a infiltration rate of 10.2 cm/h through soil columns. Simulated acid rain with pH of 3.0, 4.5 and 5.6 were used as leaching solutions. Results showed that 86.9-95.9% of Pb and 90-91.8% of As eluted from the columns were adsorbed by particles in the leachates. Scanning electron microscopy (SEM) analysis showed that particles released from the columns were mainly composed of flocculated aggregates and plate or rod shaped discrete grains. Transmission electron microscopy (TEM) coupled with energy dispersive X-ray analysis (EDX) showed that these particles were predominantly silicate minerals. Results from our experiments demonstrated that when rapid infiltration conditions or a rainstorm exist, particle-facilitated transport of contaminants is likely to the dominant metal transport pathway influenced by acid rain.

  10. Multi-component reactive transport modeling of natural attenuation of an acid groundwater plume at a uranium mill tailings site

    Zhu, Chen; Hu, Fang Q.; Burden, David S.

    2001-11-01

    Natural attenuation of an acidic plume in the aquifer underneath a uranium mill tailings pond in Wyoming, USA was simulated using the multi-component reactive transport code PHREEQC. A one-dimensional model was constructed for the site and the model included advective-dispersive transport, aqueous speciation of 11 components, and precipitation-dissolution of six minerals. Transport simulation was performed for a reclamation scenario in which the source of acidic seepage will be terminated after 5 years and the plume will then be flushed by uncontaminated upgradient groundwater. Simulations show that successive pH buffer reactions with calcite, Al(OH) 3(a), and Fe(OH) 3(a) create distinct geochemical zones and most reactions occur at the boundaries of geochemical zones. The complex interplay of physical transport processes and chemical reactions produce multiple concentration waves. For SO 42- transport, the concentration waves are related to advection-dispersion, and gypsum precipitation and dissolution. Wave speeds from numerical simulations compare well to an analytical solution for wave propagation.

  11. Pharmacology of Glutamate Transport in the CNS: Substrates and Inhibitors of Excitatory Amino Acid Transporters (EAATs) and the Glutamate/Cystine Exchanger System x c -

    Bridges, Richard J.; Patel, Sarjubhai A.

    As the primary excitatory neurotransmitter in the mammalian CNS, l-glutamate participates not only in standard fast synaptic communication, but also contributes to higher order signal processing, as well as neuropathology. Given this variety of functional roles, interest has been growing as to how the extracellular concentrations of l-glutamate surrounding neurons are regulated by cellular transporter proteins. This review focuses on two prominent systems, each of which appears capable of influencing both the signaling and pathological actions of l-glutamate within the CNS: the sodium-dependent excitatory amino acid transporters (EAATs) and the glutamate/cystine exchanger, system x c - (Sx c -). While the family of EAAT subtypes limit access to glutamate receptors by rapidly and efficiently sequestering l-glutamate in neurons and glia, Sxc - provides a route for the export of glutamate from cells into the extracellular environment. The primary intent of this work is to provide an overview of the inhibitors and substrates that have been developed to delineate the pharmacological specificity of these transport systems, as well as be exploited as probes with which to selectively investigate function. Particular attention is paid to the development of small molecule templates that mimic the structural properties of the endogenous substrates, l-glutamate, l-aspartate and l-cystine and how strategic control of functional group position and/or the introduction of lipophilic R-groups can impact multiple aspects of the transport process, including: subtype selectivity, inhibitory potency, and substrate activity.

  12. T tubules and surface membranes provide equally effective pathways of carbonic anhydrase-facilitated lactic acid transport in skeletal muscle.

    Janine Hallerdei

    Full Text Available We have studied lactic acid transport in the fast mouse extensor digitorum longus muscles (EDL by intracellular and cell surface pH microelectrodes. The role of membrane-bound carbonic anhydrases (CA of EDL in lactic acid transport was investigated by measuring lactate flux in muscles from wildtype, CAIV-, CAIX- and CAXIV-single ko, CAIV-CAXIV double ko and CAIV-CAIX-CAXIV-triple ko mice. This was complemented by immunocytochemical studies of the subcellular localization of CAIV, CAIX and CAXIV in mouse EDL. We find that CAXIV and CAIX single ko EDL exhibit markedly but not maximally reduced lactate fluxes, whereas triple ko and double ko EDL show maximal or near-maximal inhibition of CA-dependent lactate flux. Interpretation of the flux measurements in the light of the immunocytochemical results leads to the following conclusions. CAXIV, which is homogeneously distributed across the surface membrane of EDL fibers, facilitates lactic acid transport across this membrane. CAIX, which is associated only with T tubular membranes, facilitates lactic acid transport across the T tubule membrane. The removal of lactic acid from the lumen of T tubuli towards the interstitial space involves a CO2-HCO3- diffusional shuttle that is maintained cooperatively by CAIX within the T tubule and, besides CAXIV, by the CAIV, which is strategically located at the opening of the T tubules. The data suggest that about half the CA-dependent muscular lactate flux occurs across the surface membrane, while the other half occurs across the membranes of the T tubuli.

  13. Cloning and characterization of a functional human ¿-aminobutyric acid (GABA) transporter, human GAT-2

    Christiansen, Bolette; Meinild, Anne-Kristine; Jensen, Anders A.

    2007-01-01

    and dependent on both Na(+) and Cl(-). Pharmacologically the transporter is distinct from the other human GABA transporters and similar to rat GAT-2 and mouse GAT3 with high sensitivity toward GABA and beta-alanine. Furthermore the GABA transport inhibitor (S)-SNAP-5114 displayed some inhibitory activity...

  14. Effect of HEPES buffer on the uptake and transport of P-glycoprotein substrates and large neutral amino acids

    Luo, Shuanghui; Pal, Dhananjay; Shah, Sujay J.; Kwatra, Deep; Paturi, Kalyani D.; Mitra, Ashim K.

    2010-01-01

    HEPES has been widely employed as an organic buffer agent in cell culture medium as well as uptake and transport experiments in vitro. However, concentrations of HEPES used in such studies vary from one laboratory to another. In this study, we investigated the effect of HEPES on the uptake and bidirectional transport of P-gp substrates employing both Caco-2 and MDCK-MDR1 cells. ATP-dependent uptake of glutamic acid was also examined. ATP production was further quantified applying ATP Determin...

  15. Summer-to-Winter Phenotypic Flexibility of Fatty Acid Transport and Catabolism in Skeletal Muscle and Heart of Small Birds.

    Zhang, Yufeng; King, Marisa O; Harmon, Erin; Swanson, David L

    2015-01-01

    Prolonged shivering in birds is mainly fueled by lipids. Consequently, lipid transport and catabolism are vital for thermogenic performance and could be upregulated along with thermogenic capacity as part of the winter phenotype. We investigated summer-to-winter variation in lipid transport and catabolism by measuring mRNA expression, protein levels, and enzyme activities for several key steps of lipid transport and catabolic pathways in pectoralis muscle and heart in two small temperate-zone resident birds, American goldfinches (Spinus tristis) and black-capped chickadees (Poecile atricapillus). Cytosolic fatty acid binding protein (FABPc; a key component of intramyocyte lipid transport) mRNA and/or protein levels were generally higher in winter for pectoralis muscle and heart for both species. However, seasonal variation in plasma membrane lipid transporters, fatty acyl translocase, and plasma membrane fatty acid binding protein in pectoralis and heart differed between the two species, with winter increases for chickadees and seasonal stability or summer increases for goldfinches. Catabolic enzyme activities generally showed limited seasonal differences for both tissues and both species. These data suggest that FABPc is an important target of upregulation for the winter phenotype in pectoralis and heart of both species. Plasma membrane lipid transporters and lipid catabolic capacity were also elevated in winter for chickadees but not for goldfinches. Because the two species show differential regulation of distinct aspects of lipid transport and catabolism, these data are consistent with other recent studies documenting that different bird species or populations employ a variety of strategies to promote elevated winter thermogenic capacity.

  16. Crosstalk of Escherichia coli FadR with global regulators in expression of fatty acid transport genes.

    Youjun Feng

    Full Text Available Escherichia coli FadR plays two regulatory roles in fatty acid metabolism. FadR represses the fatty acid degradation (fad system and activates the unsaturated fatty acid synthetic pathway. Cross-talk between E. coli FadR and the ArcA-ArcB oxygen-responsive two-component system was observed that resulted in diverse regulation of certain fad regulon β-oxidation genes. We have extended such analyses to the fadL and fadD genes, the protein products of which are required for long chain fatty acid transport and have also studied the role of a third global regulator, the CRP-cAMP complex. The promoters of both the fadL and fadD genes contain two experimentally validated FadR-binding sites plus binding sites for ArcA and CRP-cAMP. Despite the presence of dual binding sites FadR only modestly regulates expression of these genes, indicating that the number of binding sites does not determine regulatory strength. We report complementary in vitro and in vivo studies indicating that the CRP-cAMP complex directly activates expression of fadL and fadD as well as the β-oxidation gene, fadH. The physiological relevance of the fadL and fadD transcription data was validated by direct assays of long chain fatty acid transport.

  17. A New Synthesis of 4, 4-Diaryl/Diheteroaryl-3-butenyl Derivatives of Nipecotic Acids as GABA Transporter Inhibitors

    2005-01-01

    A new method for the synthesis of 4, 4-diaryl/diheteroaryl-3-butenyl derivatives of nipecotic acid as GABA transporter inhibitors is described. The key intermediates 4-tosyl-1,1-diaryl/diheteroaryl-1-butene 10a-d were synthesized by Wittig reaction, and followed by alkylation with (R)-3-piperidinecarboxylate. The resulting N-cycloalkylated amino acid esters 11a-d were saponified and then acidified to get the target compounds 1a-d. The preliminary bioassays showed that 1a-d exhibited excellent inhibition of [3H]-GABA uptake in vitro of culture cells.

  18. SGLT2 inhibitor lowers serum uric acid through alteration of uric acid transport activity in renal tubule by increased glycosuria

    Chino, Yukihiro; Samukawa, Yoshishige; Sakai, Soichi; Nakai, Yasuhiro; Yamaguchi, Jun-ichi; Nakanishi, Takeo; Tamai, Ikumi

    2014-01-01

    Sodium glucose cotransporter 2 (SGLT2) inhibitors have been reported to lower the serum uric acid (SUA) level. To elucidate the mechanism responsible for this reduction, SUA and the urinary excretion rate of uric acid (UEUA) were analysed after the oral administration of luseogliflozin, a SGLT2 inhibitor, to healthy subjects. After dosing, SUA decreased, and a negative correlation was observed between the SUA level and the UEUA, suggesting that SUA decreased as a result of the increase in the...

  19. Proton transport properties of poly(aspartic acid) with different average molecular weights

    Nagao, Yuki, E-mail: ynagao@kuchem.kyoto-u.ac.j [Department of Mechanical Systems and Design, Graduate School of Engineering, Tohoku University, 6-6-01 Aoba Aramaki, Aoba-ku, Sendai 980-8579 (Japan); Imai, Yuzuru [Institute of Development, Aging and Cancer (IDAC), Tohoku University, 4-1 Seiryo-cho, Aoba-ku, Sendai 980-8575 (Japan); Matsui, Jun [Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, 2-1-1 Katahira, Sendai 980-8577 (Japan); Ogawa, Tomoyuki [Department of Electronic Engineering, Graduate School of Engineering, Tohoku University, 6-6-05 Aoba Aramaki, Aoba-ku, Sendai 980-8579 (Japan); Miyashita, Tokuji [Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, 2-1-1 Katahira, Sendai 980-8577 (Japan)

    2011-04-15

    Research highlights: Seven polymers with different average molecular weights were synthesized. The proton conductivity depended on the number-average degree of polymerization. The difference of the proton conductivities was more than one order of magnitude. The number-average molecular weight contributed to the stability of the polymer. - Abstract: We synthesized seven partially protonated poly(aspartic acids)/sodium polyaspartates (P-Asp) with different average molecular weights to study their proton transport properties. The number-average degree of polymerization (DP) for each P-Asp was 30 (P-Asp30), 115 (P-Asp115), 140 (P-Asp140), 160 (P-Asp160), 185 (P-Asp185), 205 (P-Asp205), and 250 (P-Asp250). The proton conductivity depended on the number-average DP. The maximum and minimum proton conductivities under a relative humidity of 70% and 298 K were 1.7 . 10{sup -3} S cm{sup -1} (P-Asp140) and 4.6 . 10{sup -4} S cm{sup -1} (P-Asp250), respectively. Differential thermogravimetric analysis (TG-DTA) was carried out for each P-Asp. The results were classified into two categories. One exhibited two endothermic peaks between t = (270 and 300) {sup o}C, the other exhibited only one peak. The P-Asp group with two endothermic peaks exhibited high proton conductivity. The high proton conductivity is related to the stability of the polymer. The number-average molecular weight also contributed to the stability of the polymer.

  20. Upregulation of Na+,Cl--Coupled Betaine/ γ-Amino-Butyric Acid Transporter BGT1 by Tau Tubulin Kinase 2

    Ahmad Almilaji

    2013-08-01

    Full Text Available Background/Aims: The serine/threonine kinase Tau-tubulin-kinase 2 (TTBK2 is expressed in various tissues including kidney, liver and brain. Loss of function mutations of TTBK2 lead to autosomal dominant spinocerebellar ataxia type 11 (SCA11. Cell survival is fostered by cellular accumulation of organic osmolytes. Carriers accomplishing cellular accumulation of organic osmolytes include the Na+, Cl--coupled betaine/γ-amino-butyric acid transporter BGT1. The present study explored whether TTBK2 participates in the regulation of BGT1 activity. Methods: Electrogenic transport of GABA was determined in Xenopus oocytes expressing BGT1 with or without wild-type TTBK2, truncated TTBK2[1-450] or kinase inactive mutants TTBK2- KD and TTBK2[1-450]-KD. Results: Coexpression of wild-type TTBK2, but not of TTBK2[1-450], TTBK2-KD or TTBK2[1-450]-KD, increased electrogenic GABA transport. Wildtype TTBK2 increased the maximal transport rate without significantly modifying affinity of the carrier. Coexpression of wild-type TTBK2 significantly delayed the decline of transport following inhibition of carrier insertion with brefeldin A, indicating that wild-type TTBK2 increased carrier stability in the cell membrane. Conclusion: Tau-tubulin-kinase 2 TTBK2 is a powerful stimulator of the osmolyte and GABA transporter BGT1.

  1. Modulation of fatty acid transport and metabolism by maternal obesity in the human full-term placenta.

    Dubé, Evemie; Gravel, Ariane; Martin, Coralie; Desparois, Guillaume; Moussa, Issa; Ethier-Chiasson, Maude; Forest, Jean-Claude; Giguère, Yves; Masse, André; Lafond, Julie

    2012-07-01

    Knowledge of the consequences of maternal obesity in human placental fatty acids (FA) transport and metabolism is limited. Animal studies suggest that placental uptake of maternal FA is altered by maternal overnutrition. We hypothesized that high maternal body mass index (BMI) affects human placental FA transport by modifying expression of key transporters. Full-term placentas were obtained by vaginal delivery from normal weight (BMI, 18.5-24.9 kg/m(2)) and obese (BMI > 30 kg/m(2)) women. Blood samples were collected from the mother at each trimester and from cord blood at delivery. mRNA and protein expression levels were evaluated with real-time RT-PCR and Western blotting. Lipoprotein lipase (LPL) activity was evaluated using enzyme fluorescence. In vitro linoleic acid transport was studied with isolated trophoblasts. Our results demonstrated that maternal obesity is associated with increased placental weight, decreased gestational age, decreased maternal high-density lipoprotein (HDL) levels during the first and third trimesters, increased maternal triglyceride levels during the second and third trimesters, and increased maternal T3 levels during all trimesters, and decreased maternal cholesterol (CHOL) and low-density lipoprotein (LDL) levels during the third trimester; and increased newborn CHOL, LDL, apolipoprotein B100, and T3 levels. Increases in placental CD36 mRNA and protein expression levels, decreased SLC27A4 and FABP1 mRNA and protein and FABP3 protein expression, and increased LPL activity and decreased villus cytotrophoblast linoleic acid transport were also observed. No changes were seen in expression of PPARA, PPARD, or PPARG mRNA and protein. Overall this study demonstrated that maternal obesity impacts placental FA uptake without affecting fetal growth. These changes, however, could modify the fetus metabolism and its predisposition to develop diseases later in life.

  2. Effect of HEPES buffer on the uptake and transport of P-glycoprotein substrates and large neutral amino acids.

    Luo, Shuanghui; Pal, Dhananjay; Shah, Sujay J; Kwatra, Deep; Paturi, Kalyani D; Mitra, Ashim K

    2010-04-05

    HEPES has been widely employed as an organic buffer agent in cell culture medium as well as uptake and transport experiments in vitro. However, concentrations of HEPES used in such studies vary from one laboratory to another. In this study, we investigated the effect of HEPES on the uptake and bidirectional transport of P-gp substrates employing both Caco-2 and MDCK-MDR1 cells. ATP-dependent uptake of glutamic acid was also examined. ATP production was further quantified applying ATP Determination Kit. An addition of HEPES to the growth and incubation media significantly altered the uptake and transport of P-gp substrates in both Caco-2 and MDCK-MDR1 cells. Uptake of P-gp substrates substantially diminished as the HEPES concentration was raised to 25 mM. Bidirectional (A-B and B-A) transport studies revealed that permeability ratio of P(appB-A) to P(appA-B) in the presence of 25 mM HEPES was significantly higher than control. The uptake of phenylalanine is an ATP-independent process, whereas the accumulation of glutamic acid is ATP-dependent. While phenylalanine uptake remained unchanged, glutamic acid uptake was elevated with the addition of HEPES. Verapamil is an inhibitor of P-gp mediated uptake; elevation of cyclosporine uptake in the presence of 5 muM verapamil was compromised by the presence of 25 mM HEPES. The results of ATP assay indicated that HEPES stimulated the production of ATP. This study suggests that the addition of HEPES in the medium modulated the energy dependent efflux and uptake processes. The effect of HEPES on P-gp mediated drug efflux and transport may provide some mechanistic insight into possible reasons for inconsistencies in the results reported from various laboratories.

  3. Salicylic acid transport in Ricinus communis involves a pH-dependent carrier system in addition to diffusion.

    Rocher, Françoise; Chollet, Jean-François; Legros, Sandrine; Jousse, Cyril; Lemoine, Rémi; Faucher, Mireille; Bush, Daniel R; Bonnemain, Jean-Louis

    2009-08-01

    Despite its important functions in plant physiology and defense, the membrane transport mechanism of salicylic acid (SA) is poorly documented due to the general assumption that SA is taken up by plant cells via the ion trap mechanism. Using Ricinus communis seedlings and modeling tools (ACD LogD and Vega ZZ softwares), we show that phloem accumulation of SA and hydroxylated analogs is completely uncorrelated with the physicochemical parameters suitable for diffusion (number of hydrogen bond donors, polar surface area, and, especially, LogD values at apoplastic pHs and Delta LogD between apoplast and phloem sap pH values). These and other data (such as accumulation in phloem sap of the poorly permeant dissociated form of monohalogen derivatives from apoplast and inhibition of SA transport by the thiol reagent p-chloromercuribenzenesulfonic acid [pCMBS]) lead to the following conclusions. As in intestinal cells, SA transport in Ricinus involves a pH-dependent carrier system sensitive to pCMBS; this carrier can translocate monohalogen analogs in the anionic form; the efficiency of phloem transport of hydroxylated benzoic acid derivatives is tightly dependent on the position of the hydroxyl group on the aromatic ring (SA corresponds to the optimal position) but moderately affected by halogen addition in position 5, which is known to increase plant defense. Furthermore, combining time-course experiments and pCMBS used as a tool, we give information about the localization of the SA carrier. SA uptake by epidermal cells (i.e. the step preceding the symplastic transport to veins) insensitive to pCMBS occurs via the ion-trap mechanism, whereas apoplastic vein loading involves a carrier-mediated mechanism (which is targeted by pCMBS) in addition to diffusion.

  4. Substrate specificity and functional characterisation of the H+/amino acid transporter rat PAT2 (Slc36a2)

    Kennedy, David J.; Gatfield, Kelly M.; Winpenny, John P; Ganapathy, Vadivel; Thwaites, David T.

    2004-01-01

    Functional characteristics and substrate specificity of the rat proton-coupled amino acid transporter 2 (rat PAT2 (rPAT2)) were determined following expression in Xenopus laevis oocytes using radiolabelled uptake measurements, competition experiments and measurements of substrate-evoked current using the two-electrode voltage-clamp technique. The aim of the investigation was to determine the structural requirements and structural limitations of potential substrates for rPAT2.Amino (and imino)...

  5. Transport of poly(acrylic acid) coated 2-line ferrihydrite nanoparticles in saturated aquifer sediments for environmental remediation

    Xiang, Aishuang; Zhou, Sheng; Koel, Bruce E.; Jaffé, Peter R.

    2014-04-01

    Groundwater remediation using iron oxide and zero-valent iron nanoparticles (NPs) can be effective, but is limited in many applications due to the NP strong retention in groundwater-saturated porous media after injection, the passivation of the porous surface, and the high cost of nanomaterials versus macro scale iron. In this study, we investigated transport of bare and polymer-coated 2-line ferrihydrite NPs (30-300 nm) in saturated aquifer sediments. The influence of poly(acrylic acid) (PAA) polymer coatings was studied on the colloidal stability and transport in sediments packed column tests simulating groundwater flow in saturated sediments. In addition, the influence of calcium cations was investigated by transport measurements using sediments with calcium concentrations in the aqueous phase ranging from 0.5 (typical for most sediments) to 2 mM. Measurements were also made of zeta potential, hydrodynamic diameter, polymer adsorption and desorption properties, and bio-availability of PAA-coated NPs. We found that NP transport through the saturated aquifer sediments was improved by PAA coating and that the transport properties could be tuned by adjusting the polymer concentration. We further discovered that PAA coatings enhanced NP transport, compared to bare NPs, in all calcium-containing experiments tested, however, the presence of calcium always exhibited a negative effect on NP transport. In tests of bioavailability, the iron reduction rate of the coated and bare NPs by Geobacter sulfurreducens was the same, which shows that the PAA coating does not significantly reduce NP Fe(III) bioavailability. Our results demonstrate that much improved transport of iron oxide NP can be achieved in saturated aquifer sediments by introducing negatively charged polyelectrolytes and optimizing polymer concentrations, and furthermore, these coated NPs retain their bioavailability that is needed for applications in bio-environmental remediation.

  6. Role of a major facilitator superfamily transporter in adaptation capacity of Penicillium funiculosum under extreme acidic stress.

    Xu, Xiaoxue; Chen, Jinyin; Xu, Houjuan; Li, Duochuan

    2014-08-01

    Fungal species present in extreme low pH environments are expected to have adapted for tolerance to high H(+) concentrations. However, their adaptability mechanism is unclear. In this study, we isolated an acid-tolerant strain of Penicillium funiculosum, which can grow actively at pH 1.0 and thrived in pH 0.6. A major facilitator superfamily transporter (PfMFS) was isolated from an acid-sensitive random insertional mutant (M4) of the fungus. It encodes a putative protein of 551 residues and contains 14 transmembrane-spanning segments. A targeted mutant (M7) carrying an inactivated copy of PfMFS showed an obvious reduction of growth compared with the wild type (WT) and complementation of M7 with PfMFS restored the wild-type level of growth at pH 1.0. Further data showed that the wild-type showed higher intracellular pH than M7 in response to pH 1. Subcellular localization showed that PfMFS was a cell membrane protein. Homology modeling showed structural similarity with an MFS transporter EmrD from Escherichiacoli. These results demonstrate that the PfMFS transporter is involved in the acid resistance and intracellular pH homeostasis of P. funiculosum.

  7. Recent Advances in Understanding Amino Acid Sensing Mechanisms that Regulate mTORC1

    Liufeng Zheng

    2016-09-01

    Full Text Available The mammalian target of rapamycin (mTOR is the central regulator of mammalian cell growth, and is essential for the formation of two structurally and functionally distinct complexes: mTORC1 and mTORC2. mTORC1 can sense multiple cues such as nutrients, energy status, growth factors and hormones to control cell growth and proliferation, angiogenesis, autophagy, and metabolism. As one of the key environmental stimuli, amino acids (AAs, especially leucine, glutamine and arginine, play a crucial role in mTORC1 activation, but where and how AAs are sensed and signal to mTORC1 are not fully understood. Classically, AAs activate mTORC1 by Rag GTPases which recruit mTORC1 to lysosomes, where AA signaling initiates. Plasma membrane transceptor L amino acid transporter 1 (LAT1-4F2hc has dual transporter-receptor function that can sense extracellular AA availability upstream of mTORC1. The lysosomal AA sensors (PAT1 and SLC38A9 and cytoplasmic AA sensors (LRS, Sestrin2 and CASTOR1 also participate in regulating mTORC1 activation. Importantly, AAs can be sensed by plasma membrane receptors, like G protein-coupled receptor (GPCR T1R1/T1R3, and regulate mTORC1 without being transported into the cells. Furthermore, AA-dependent mTORC1 activation also initiates within Golgi, which is regulated by Golgi-localized AA transporter PAT4. This review provides an overview of the research progress of the AA sensing mechanisms that regulate mTORC1 activity.

  8. Recent Advances in Understanding Amino Acid Sensing Mechanisms that Regulate mTORC1

    Zheng, Liufeng; Zhang, Wei; Zhou, Yuanfei; Li, Fengna; Wei, Hongkui; Peng, Jian

    2016-01-01

    The mammalian target of rapamycin (mTOR) is the central regulator of mammalian cell growth, and is essential for the formation of two structurally and functionally distinct complexes: mTORC1 and mTORC2. mTORC1 can sense multiple cues such as nutrients, energy status, growth factors and hormones to control cell growth and proliferation, angiogenesis, autophagy, and metabolism. As one of the key environmental stimuli, amino acids (AAs), especially leucine, glutamine and arginine, play a crucial role in mTORC1 activation, but where and how AAs are sensed and signal to mTORC1 are not fully understood. Classically, AAs activate mTORC1 by Rag GTPases which recruit mTORC1 to lysosomes, where AA signaling initiates. Plasma membrane transceptor L amino acid transporter 1 (LAT1)-4F2hc has dual transporter-receptor function that can sense extracellular AA availability upstream of mTORC1. The lysosomal AA sensors (PAT1 and SLC38A9) and cytoplasmic AA sensors (LRS, Sestrin2 and CASTOR1) also participate in regulating mTORC1 activation. Importantly, AAs can be sensed by plasma membrane receptors, like G protein-coupled receptor (GPCR) T1R1/T1R3, and regulate mTORC1 without being transported into the cells. Furthermore, AA-dependent mTORC1 activation also initiates within Golgi, which is regulated by Golgi-localized AA transporter PAT4. This review provides an overview of the research progress of the AA sensing mechanisms that regulate mTORC1 activity. PMID:27690010

  9. Up-Regulation of the Excitatory Amino Acid Transporters EAAT1 and EAAT2 by Mammalian Target of Rapamycin

    Abeer Abousaab

    2016-11-01

    Full Text Available Background: The excitatory amino-acid transporters EAAT1 and EAAT2 clear glutamate from the synaptic cleft and thus terminate neuronal excitation. The carriers are subject to regulation by various kinases. The EAAT3 isoform is regulated by mammalian target of rapamycin (mTOR. The present study thus explored whether mTOR influences transport by EAAT1 and/or EAAT2. Methods: cRNA encoding wild type EAAT1 (SLC1A3 or EAAT2 (SLC1A2 was injected into Xenopus oocytes without or with additional injection of cRNA encoding mTOR. Dual electrode voltage clamp was performed in order to determine electrogenic glutamate transport (IEAAT. EAAT2 protein abundance was determined utilizing chemiluminescence. Results: Appreciable IEAAT was observed in EAAT1 or EAAT2 expressing but not in water injected oocytes. IEAAT was significantly increased by coexpression of mTOR. Coexpression of mTOR increased significantly the maximal IEAAT in EAAT1 or EAAT2 expressing oocytes, without significantly modifying affinity of the carriers. Moreover, coexpression of mTOR increased significantly EAAT2 protein abundance in the cell membrane. Conclusions: The kinase mTOR up-regulates the excitatory amino acid transporters EAAT1 and EAAT2.

  10. Novel insights in transport mechanisms and kinetics of phenylacetic acid and penicillin-G in Penicillium chrysogenum.

    Douma, Rutger D; Deshmukh, Amit T; de Jonge, Lodewijk P; de Jong, Bouke W; Seifar, Reza M; Heijnen, Joseph J; van Gulik, Walter M

    2012-01-01

    Although penicillin-G (PenG) production by the fungus Penicillium chrysogenum is a well-studied process, little is known about the mechanisms of transport of the precursor phenylacetic acid (PAA) and the product PenG over the cell membrane. To obtain more insight in the nature of these mechanisms, in vivo stimulus response experiments were performed with PAA and PenG in chemostat cultures of P. chrysogenum at time scales of seconds to minutes. The results indicated that PAA is able to enter the cell by passive diffusion of the undissociated acid at a high rate, but is at the same time actively excreted, possibly by an ATP-binding cassette transporter. This results in a futile cycle, dissipating a significant amount of metabolic energy, which was confirmed by increased rates of substrate and oxygen consumption, and carbon dioxide production. To estimate the kinetic properties of passive import and active export of PAA over the cell membrane, a dynamic mathematical model was constructed. With this model, a good description of the dynamic data could be obtained. Also, PenG was found to be rapidly taken up by the cells upon extracellular addition, indicating that PenG transport is reversible. The measured concentration gradient of PenG over the cell membrane corresponded well with facilitated transport. Also, for PenG transport, a dynamic model was constructed and validated with experimental data. The outcome of the model simulations was in agreement with the presence of a facilitated transport system for PenG.

  11. Pharmacokinetics of amino acid ester prodrugs of acyclovir after oral administration: interaction with the transporters on Caco-2 cells.

    Katragadda, Suresh; Jain, Ritesh; Kwatra, Deep; Hariharan, Sudharshan; Mitra, Ashim K

    2008-10-01

    In vivo systemic absorption of the amino acid prodrugs of acyclovir (ACV) after oral administration was evaluated in rats. Stability of the prodrugs, L-alanine-ACV (AACV), L-serine-ACV (SACV), L-isoleucine-ACV (IACV), gamma-glutamate-ACV (EACV) and L-valine-ACV (VACV) was evaluated in various tissues. Interaction of these prodrugs with the transporters on Caco-2 cells was studied. In vivo systemic bioavailability of these prodrugs upon oral administration was evaluated in jugular vein cannulated rats. The amino acid ester prodrugs showed affinity towards various amino acid transporters as well as the peptide transporter on the Caco-2 cells. In terms of stability, EACV was most enzymatically stable compared to other prodrugs especially in liver homogenate. In oral absorption studies, ACV and AACV showed high terminal elimination rate constants (lambda(z)). SACV and VACV exhibited approximately five-fold increase in area under the curve (AUC) values relative to ACV (pACV. C(last(T)) (concentration at the last time point) of SACV was observed to be 0.18+/-0.06 microM in plasma which is two times better than VACV and three times better than ACV. Amino acid ester prodrugs of ACV were absorbed at varying amounts (C(max)) and eliminated at varying rates (lambda(z)) thereby leading to varying extents (AUC). The amino acid ester prodrug SACV owing to its enhanced stability, higher AUC and better concentration at last time point seems to be a promising candidate for the oral treatment of herpes infections.

  12. Molecular features of the L-type amino acid transporter 2 determine different import and export profiles for thyroid hormones and amino acids.

    Hinz, Katrin M; Neef, Dominik; Rutz, Claudia; Furkert, Jens; Köhrle, Josef; Schülein, Ralf; Krause, Gerd

    2017-03-05

    The L-type amino acid transporter 2 (LAT2) imports amino acids (AA) and also certain thyroid hormones (TH), e.g. 3,3'-T2 and T3, but not rT3 and T4. We utilized LAT2 mutations (Y130A, N133S, F242W) that increase 3,3'-T2 import and focus here on import and export capacity for AA, T4, T3, BCH and derivatives thereof to delineate molecular features. Transport studies and analysis of competitive inhibition of import by radiolabelled TH and AA were performed in Xenopus laevis oocytes. Only Y130A, a pocket widening mutation, enabled import for T4 and increased it for T3. Mutant F242W showed increased 3,3'-T2 import but no import rates for other TH derivatives. No export was detected for any TH by LAT2-wild type (WT). Mutations Y130A and N133S enabled only the export of 3,3'-T2, while N133S also increased AA export. Thus, distinct molecular LAT2-features determine bidirectional AA transport but only an unidirectional 3,3'-T2 and T3 import.

  13. Transport and metabolism of fumaric acid in Saccharomyces cerevisiae in aerobic glucose-limited chemostat culture

    Shah, Mihir V.; Mastrigt, van Oscar; Heijnen, Joseph J.; Gulik, van Walter M.

    2016-01-01

    Currently, research is being focused on the industrial-scale production of fumaric acid and other relevant organic acids from renewable feedstocks via fermentation, preferably at low pH for better product recovery. However, at low pH a large fraction of the extracellular acid is present in the un

  14. Hepatic alterations are accompanied by changes to bile acid transporter-expressing neurons in the hypothalamus after traumatic brain injury

    Nizamutdinov, Damir; DeMorrow, Sharon; McMillin, Matthew; Kain, Jessica; Mukherjee, Sanjib; Zeitouni, Suzanne; Frampton, Gabriel; Bricker, Paul Clint S.; Hurst, Jacob; Shapiro, Lee A.

    2017-01-01

    Annually, there are over 2 million incidents of traumatic brain injury (TBI) and treatment options are non-existent. While many TBI studies have focused on the brain, peripheral contributions involving the digestive and immune systems are emerging as factors involved in the various symptomology associated with TBI. We hypothesized that TBI would alter hepatic function, including bile acid system machinery in the liver and brain. The results show activation of the hepatic acute phase response by 2 hours after TBI, hepatic inflammation by 6 hours after TBI and a decrease in hepatic transcription factors, Gli 1, Gli 2, Gli 3 at 2 and 24 hrs after TBI. Bile acid receptors and transporters were decreased as early as 2 hrs after TBI until at least 24 hrs after TBI. Quantification of bile acid transporter, ASBT-expressing neurons in the hypothalamus, revealed a significant decrease following TBI. These results are the first to show such changes following a TBI, and are compatible with previous studies of the bile acid system in stroke models. The data support the emerging idea of a systemic influence to neurological disorders and point to the need for future studies to better define specific mechanisms of action. PMID:28106051

  15. Inhibitory effect of caffeic acid on human organic anion transporters hOAT1 and hOAT3: a novel candidate for food-drug interaction.

    Uwai, Yuichi; Ozeki, Yukihiro; Isaka, Tomonori; Honjo, Hiroaki; Iwamoto, Kikuo

    2011-01-01

    Several kinds of food have been shown to influence the absorption and metabolism of drugs, although there is little information about their effect on the renal excretion of drugs. In this study, we performed uptake experiments using Xenopus laevis oocytes to assess the inhibitory effects of chlorogenic acid, caffeic acid and quinic acid, which are contained in coffee, fruits and vegetables, on human organic anion transporters hOAT1 and hOAT3; these transporters mediate renal tubular uptake of anionic drugs from blood. Injection of hOAT1 and hOAT3 cRNA into oocytes stimulated uptake of typical substrates of hOAT1 and hOAT3 (p-aminohippurate and estrone sulfate, respectively); among the three compounds tested, caffeic acid most strongly inhibited these transporters. The apparent 50% inhibitory concentrations of caffeic acid were estimated to be 16.6 µM for hOAT1 and 5.4 µM for hOAT3. Eadie-Hofstee plot analysis showed that caffeic acid inhibited both transporters in a competitive manner. In addition to the transport of p-aminohippurate and estrone sulfate, that of antifolates and antivirals was inhibited by caffeic acid. These findings show that caffeic acid has inhibitory potential against hOAT1 and hOAT3, suggesting that renal excretion of their substrates could be affected in patients consuming a diet including caffeic acid.

  16. Maternal Diabetes Leads to Adaptation in Embryonic Amino Acid Metabolism during Early Pregnancy.

    Gürke, Jacqueline; Hirche, Frank; Thieme, René; Haucke, Elisa; Schindler, Maria; Stangl, Gabriele I; Fischer, Bernd; Navarrete Santos, Anne

    2015-01-01

    During pregnancy an adequate amino acid supply is essential for embryo development and fetal growth. We have studied amino acid composition and branched chain amino acid (BCAA) metabolism at day 6 p.c. in diabetic rabbits and blastocysts. In the plasma of diabetic rabbits the concentrations of 12 amino acids were altered in comparison to the controls. Notably, the concentrations of the BCAA leucine, isoleucine and valine were approximately three-fold higher in diabetic rabbits than in the control. In the cavity fluid of blastocysts from diabetic rabbits BCAA concentrations were twice as high as those from controls, indicating a close link between maternal diabetes and embryonic BCAA metabolism. The expression of BCAA oxidizing enzymes and BCAA transporter was analysed in maternal tissues and in blastocysts. The RNA amounts of three oxidizing enzymes, i.e. branched chain aminotransferase 2 (Bcat2), branched chain ketoacid dehydrogenase (Bckdha) and dehydrolipoyl dehydrogenase (Dld), were markedly increased in maternal adipose tissue and decreased in liver and skeletal muscle of diabetic rabbits than in those of controls. Blastocysts of diabetic rabbits revealed a higher Bcat2 mRNA and protein abundance in comparison to control blastocysts. The expression of BCAA transporter LAT1 and LAT2 were unaltered in endometrium of diabetic and healthy rabbits, whereas LAT2 transcripts were increased in blastocysts of diabetic rabbits. In correlation to high embryonic BCAA levels the phosphorylation amount of the nutrient sensor mammalian target of rapamycin (mTOR) was enhanced in blastocysts caused by maternal diabetes. These results demonstrate a direct impact of maternal diabetes on BCAA concentrations and degradation in mammalian blastocysts with influence on embryonic mTOR signalling.

  17. Maternal Diabetes Leads to Adaptation in Embryonic Amino Acid Metabolism during Early Pregnancy.

    Jacqueline Gürke

    Full Text Available During pregnancy an adequate amino acid supply is essential for embryo development and fetal growth. We have studied amino acid composition and branched chain amino acid (BCAA metabolism at day 6 p.c. in diabetic rabbits and blastocysts. In the plasma of diabetic rabbits the concentrations of 12 amino acids were altered in comparison to the controls. Notably, the concentrations of the BCAA leucine, isoleucine and valine were approximately three-fold higher in diabetic rabbits than in the control. In the cavity fluid of blastocysts from diabetic rabbits BCAA concentrations were twice as high as those from controls, indicating a close link between maternal diabetes and embryonic BCAA metabolism. The expression of BCAA oxidizing enzymes and BCAA transporter was analysed in maternal tissues and in blastocysts. The RNA amounts of three oxidizing enzymes, i.e. branched chain aminotransferase 2 (Bcat2, branched chain ketoacid dehydrogenase (Bckdha and dehydrolipoyl dehydrogenase (Dld, were markedly increased in maternal adipose tissue and decreased in liver and skeletal muscle of diabetic rabbits than in those of controls. Blastocysts of diabetic rabbits revealed a higher Bcat2 mRNA and protein abundance in comparison to control blastocysts. The expression of BCAA transporter LAT1 and LAT2 were unaltered in endometrium of diabetic and healthy rabbits, whereas LAT2 transcripts were increased in blastocysts of diabetic rabbits. In correlation to high embryonic BCAA levels the phosphorylation amount of the nutrient sensor mammalian target of rapamycin (mTOR was enhanced in blastocysts caused by maternal diabetes. These results demonstrate a direct impact of maternal diabetes on BCAA concentrations and degradation in mammalian blastocysts with influence on embryonic mTOR signalling.

  18. Interaction of Peptide Transporter 1 With D-Glucose and L-Glutamic Acid; Possible Involvement of Taste Receptors.

    Arakawa, Hiroshi; Ohmachi, Taichi; Ichiba, Kiko; Kamioka, Hiroki; Tomono, Takumi; Kanagawa, Masahiko; Idota, Yoko; Hatano, Yasuko; Yano, Kentaro; Morimoto, Kaori; Ogihara, Takuo

    2016-01-01

    We investigated the influence of sweet and umami (savory) tastants on the intestinal absorption of cephalexin (CEX), a substrate of peptide transporter 1 (PEPT1, SLC15A1) in rats. After oral administration of glucose or mannitol to rats, CEX was administered together with a second dose of glucose or mannitol. Western blot analysis indicated that expression of PEPT1 in rat jejunum membrane was decreased by glucose, compared to mannitol. Furthermore, the maximum plasma concentration (Cmax) of orally administered CEX was reduced by glucose compared to mannitol. The effect of glucose was diminished by nifedipine, a L-type Ca(2+) channel blocker. We also found that Cmax of orally administered CEX was reduced by treatment with L-glutamic acid, compared to D-glutamic acid. Thus, excessive intake of glucose and L-glutamic acid may impair oral absorption of PEPT1 substrates.

  19. Eicosapentaenoic acid inhibits intestinal β-carotene absorption by downregulation of lipid transporter expression via PPAR-α dependent mechanism.

    Mashurabad, Purna Chandra; Kondaiah, Palsa; Palika, Ravindranadh; Ghosh, Sudip; Nair, Madhavan K; Raghu, Pullakhandam

    2016-01-15

    The involvement of lipid transporters, the scavenger receptor class B, type I (SR-BI) and Niemann-Pick type C1 Like 1 protein (NPC1L1) in carotenoid absorption is demonstrated in intestinal cells and animal models. Dietary ω-3 fatty acids are known to possess antilipidemic properties, which could be mediated by activation of PPAR family transcription factors. The present study was conducted to determine the effect of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), on intestinal β-carotene absorption. β-carotene uptake in Caco-2/TC7 cells was inhibited by EPA (p intestinal β-carotene absorption by down regulation of SR B1 expression via PPARα dependent mechanism and provide an evidence for dietary modulation of intestinal β-carotene absorption.

  20. Supplemental leucine and isoleucine affect expression of cationic amino acid transporters and myosin, serum concentration of amino acids, and growth performance of pigs.

    Cervantes-Ramírez, M; Mendez-Trujillo, V; Araiza-Piña, B A; Barrera-Silva, M A; González-Mendoza, D; Morales-Trejo, A

    2013-01-24

    Leucine (Leu) participates in the activity of cationic amino acid (aa) transporters. Also, branched-chain aa [Leu, isoleucine (Ile), and valine (Val)] share intestinal transporters for absorption. We conducted an experiment with 16 young pigs (body weight of about 16 kg) to determine whether Leu and Ile affect expression of aa transporters b(0,+) and CAT-1 in the jejunum and expression of myosin in muscle, as well as serum concentration of essential aa, and growth performance in pigs. Dietary treatments were: wheat-based diets fortified with Lys, Thr, and Met; basal diet plus 0.50% Leu; basal diet plus 0.50% Ile, and basal diet plus 0.50% Leu and 0.50% Ile. After 28 days, the pigs were sacrificed to collect blood, jejunum, and semitendinosus and longissimus muscle samples. The effects of single and combined addition of Leu and Ile were analyzed. Leu alone or combined with Ile significantly decreased daily weight gain and reduced feed conversion. Leu and Ile, alone or in combination, significantly decreased expression of b(0,+) and significantly increased CAT-1. Ile alone or combined with Leu significantly decreased myosin expression in semitendinosus and significantly decreased it in longissimus muscle. Leu alone significantly decreased Lys, Ile and Thr serum concentrations; Ile significantly decreased Thr serum concentration; combined Leu and Ile significantly decreased Thr and significantly increased Val serum concentration. We conclude that dietary levels of Leu and Ile affect growth performance, expression of aa transporters and myosin, and aa serum concentrations in pigs.

  1. Neuronal transport of acid hydrolases and peroxidase within the lysosomal system or organelles: involvement of agranular reticulum-like cisterns.

    Broadwell, R D; Oliver, C; Brightman, M W

    1980-04-01

    Neurosecretory neurons of the hyperosmotically stressed hypothalamo-neurohypophysial system have been a useful model with which to demonstrate interrelationships among perikaryal lysosomes, agranular reticulum-like cisterns, endocytotic vacuoles, and the axoplasmic transport of acid hydrolases and horseradish peroxidase. Supraoptic neurons from normal mice and mice given 2% salt water to drink for 5--8 days have been studied using enzyme cytochemical techniques for peroxidase and lysosomal acid hydrolases. Peroxidase-labeling of these neurons was accomplished by intravenous injection or cerebral ventriculocisternal perfusion of the protein as previously reported (Broadwell and Brightman, '79). Compared to normal controls, supraoptic cell bodies from hyperosmotically stimulated mice contained elevated concentrations of peroxidase-labeled dense bodies demonstrated to be secondary lysosomes and acid hydrolase-positive and peroxidase-positive cisterns either attached or unattached to secondary lysosomes. These cisterns were smooth-surfaced and 400--1,000 A wide. Their morphology was similar to that of the agranular reticulum. Some of the cisterns contained both peroxidase and acid hydrolase activities. The cisterns probably represent an elongated form of lysosome and, therefore, are not elements of the agranular reticulum per se. By virtue of their direct connections with perikaryal secondary lysosomes, these cisterns may provide the route by which acid hydrolases and exogenous macromolecules can leave perikaryal secondary lysosomes for anterograde flow down the axon. Very few smooth-surfaced cisterns were involved in the retrograde transport of peroxidase within pituitary stalk axons from normal and salt-treated mice injected intravenously with peroxidase. Peroxidase undergoing retrograde transport was predominantly in endocytotic structures such as vacuoles and cup-shaped organelles, which deliver this exogenous macromolecule directly to secondary lysosomes for

  2. Transport of monocarboxylic acids at the blood-brain barrier: Studies with monolayers of primary cultured bovine brain capillary endothelial cells

    Terasaki, T.; Takakuwa, S.; Moritani, S.; Tsuji, A. (Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Kanazawa University (Japan))

    1991-09-01

    The kinetics and mechanism of the transport of monocarboxylic acids (MCAs) were studied by using primary cultured bovine brain capillary endothelial cells. Concentration-dependent uptake of acetic acid was observed, and the kinetic parameters were estimated as follows: the Michaelis constant, Kt, was 3.41 {plus minus} 1.87 mM, the maximum uptake rate, Jmax, was 144.7 {plus minus} 55.7 nmol/mg of protein/min and the nonsaturable first-order rate constant, Kd, was 6.66 {plus minus} 1.98 microliters/mg of protein/min. At medium pH below 7.0, the uptake rate of (3H)acetic acid increased markedly with decreasing medium pH, whereas pH-independent uptake was observed in the presence of 10 mM acetic acid. An energy requirement for (3H)acetic acid uptake was also demonstrated, because metabolic inhibitors (2,4-dinitrophenol and rotenone) reduced significantly the uptake rate (P less than .05). Carbonylcyanide-p-trifluoro-methoxyphenylhydrazone, a protonophore, inhibited significantly the uptake of (3H)acetic acid at medium pH of 5.0 and 6.0, whereas 4,4{prime}-diisothiocyanostilben-2,2{prime}-disulfonic acid did not. Several MCAs inhibited significantly the uptake rate of (3H)acetic acid, whereas di- and tricarboxylic acids did not. The uptake of (3H)acetic acid was competitively inhibited by salicylic acid, with an inhibition constant, Ki, of 3.60 mM, suggesting a common transport system between acetic acid and salicylic acid. Moreover, at the medium pH of 7.4, salicylic acid and valproic acid inhibited significantly the uptake of (3H)acetic acid, demonstrating that the transport of MCA drugs could also be ascribed to the MCA transport system at the physiologic pH.

  3. Organic anion-transporting polypeptide 1a4 (Oatp1a4) is important for secondary bile acid metabolism.

    Zhang, Youcai; Csanaky, Iván L; Selwyn, Felcy Pavithra; Lehman-McKeeman, Lois D; Klaassen, Curtis D

    2013-08-01

    Organic anion transporting polypeptides (human: OATPs; rodent: Oatps) were thought to have important functions in bile acid (BA) transport. Oatp1a1, 1a4, and 1b2 are the three major Oatp1 family members in rodent liver. Our previous studies have characterized the BA homeostasis in Oatp1a1-null and Oatp1b2-null mice. The present study investigated the physiological role of Oatp1a4 in BA homeostasis by using Oatp1a4-null mice. Oatp1a4 expression is female-predominant in livers of mice, and thereby it was expected that female Oatp1a4-null mice will have more prominent changes than males. Interestingly, the present study demonstrated that female Oatp1a4-null mice had no significant alterations in BA concentrations in serum or liver, though they had increased mRNA of hepatic BA efflux transporters (Mrp4 and Ostα/β) and ileal BA transporters (Asbt and Ostα/β). In contrast, male Oatp1a4-null mice showed significantly altered BA homeostasis, including increased concentrations of deoxycholic acid (DCA) in serum, liver and intestinal contents. After feeding a DCA-supplemented diet, male but not female Oatp1a4-null mice had higher concentrations of DCA in serum and livers than their WT controls. This suggested that Oatp1a4 is important for intestinal absorption of secondary BAs in male mice. Furthermore, loss of Oatp1a4 function did not decrease BA accumulation in serum or livers of bile-duct-ligated mice, suggesting that Oatp1a4 is not likely a BA uptake transporter. In summary, the present study for the first time demonstrates that Oatp1a4 does not appear to mediate the hepatic uptake of BAs, but plays an important male-predominant role in secondary BA metabolism in mice.

  4. Back to Acid Soil Fields: The Citrate Transporter SbMATE Is a Major Asset for Sustainable Grain Yield for Sorghum Cultivated on Acid Soils.

    Carvalho, Geraldo; Schaffert, Robert Eugene; Malosetti, Marcos; Viana, Joao Herbert Moreira; Menezes, Cicero Bezerra; Silva, Lidianne Assis; Guimaraes, Claudia Teixeira; Coelho, Antonio Marcos; Kochian, Leon V; van Eeuwijk, Fred A; Magalhaes, Jurandir Vieira

    2015-12-17

    Aluminum (Al) toxicity damages plant roots and limits crop production on acid soils, which comprise up to 50% of the world's arable lands. A major Al tolerance locus on chromosome 3, AltSB, controls aluminum tolerance in sorghum [Sorghum bicolor (L.) Moench] via SbMATE, an Al-activated plasma membrane transporter that mediates Al exclusion from sensitive regions in the root apex. As is the case with other known Al tolerance genes, SbMATE was cloned based on studies conducted under controlled environmental conditions, in nutrient solution. Therefore, its impact on grain yield on acid soils remains undetermined. To determine the real world impact of SbMATE, multi-trait quantitative trait loci (QTL) mapping in hydroponics, and, in the field, revealed a large-effect QTL colocalized with the Al tolerance locus AltSB, where SbMATE lies, conferring a 0.6 ton ha(-1) grain yield increase on acid soils. A second QTL for Al tolerance in hydroponics, where the positive allele was also donated by the Al tolerant parent, SC283, was found on chromosome 9, indicating the presence of distinct Al tolerance genes in the sorghum genome, or genes acting in the SbMATE pathway leading to Al-activated citrate release. There was no yield penalty for AltSB, consistent with the highly localized Al regulated SbMATE expression in the root tip, and Al-dependent transport activity. A female effect of 0.5 ton ha(-1) independently demonstrated the effectiveness of AltSB in hybrids. Al tolerance conferred by AltSB is thus an indispensable asset for sorghum production and food security on acid soils, many of which are located in developing countries.

  5. Back to Acid Soil Fields: The Citrate Transporter SbMATE Is a Major Asset for Sustainable Grain Yield for Sorghum Cultivated on Acid Soils

    Geraldo Carvalho Jr

    2016-02-01

    Full Text Available Aluminum (Al toxicity damages plant roots and limits crop production on acid soils, which comprise up to 50% of the world’s arable lands. A major Al tolerance locus on chromosome 3, AltSB, controls aluminum tolerance in sorghum [Sorghum bicolor (L. Moench] via SbMATE, an Al-activated plasma membrane transporter that mediates Al exclusion from sensitive regions in the root apex. As is the case with other known Al tolerance genes, SbMATE was cloned based on studies conducted under controlled environmental conditions, in nutrient solution. Therefore, its impact on grain yield on acid soils remains undetermined. To determine the real world impact of SbMATE, multi-trait quantitative trait loci (QTL mapping in hydroponics, and, in the field, revealed a large-effect QTL colocalized with the Al tolerance locus AltSB, where SbMATE lies, conferring a 0.6 ton ha–1 grain yield increase on acid soils. A second QTL for Al tolerance in hydroponics, where the positive allele was also donated by the Al tolerant parent, SC283, was found on chromosome 9, indicating the presence of distinct Al tolerance genes in the sorghum genome, or genes acting in the SbMATE pathway leading to Al-activated citrate release. There was no yield penalty for AltSB, consistent with the highly localized Al regulated SbMATE expression in the root tip, and Al-dependent transport activity. A female effect of 0.5 ton ha–1 independently demonstrated the effectiveness of AltSB in hybrids. Al tolerance conferred by AltSB is thus an indispensable asset for sorghum production and food security on acid soils, many of which are located in developing countries.

  6. Val 70,Phe 72 and the last seven amino acid residues of C—terminal are essential to the function of norepinephrine transporter

    LIUYANHONG; WOLFGANGSCHWARZ

    1998-01-01

    The norepinephrine transporter(NET) is a member of the Na+/Cl- dependent neurotransmitter transporter family and constitutes the target of several clinically important antidepressants.To delineate the critical amino acid residues and the function of C-terminal in regulating transport activity of NET,here we constructed two site mutants (V70F,F72V;V70I,F72V) and one C-terminal truncated mutant (Δ 611-617).The wild type and mutants of NET were expressed in Xenopus oocytes by injection of their cRNA.We found that all of these mutants lost their transport activity.These results indicate that the amino acid residues of V70 and F72,and the last seven amino acids of C-terminal are essential to the transport activity of NET.

  7. Propylene glycol-linked amino acid/dipeptide diester prodrugs of oleanolic acid for PepT1-mediated transport: synthesis, intestinal permeability, and pharmacokinetics.

    Cao, Feng; Gao, Yahan; Wang, Meng; Fang, Lei; Ping, Qineng

    2013-04-01

    In our previous studies, ethylene glycol-linked amino acid diester prodrugs of oleanolic acid (OA), a Biopharmaceutics Classification System (BCS) class IV drug, designed to target peptide transporter 1 (PepT1) have been synthesized and evaluated. Unlike ethylene glycol, propylene glycol is of very low toxicity in vivo. In this study, propylene glycol was used as a linker to further compare the effect of the type of linker on the stability, permeability, affinity, and bioavailability of the prodrugs of OA. Seven diester prodrugs with amino acid/dipeptide promoieties containing L-Val ester (7a), L-Phe ester (7b), L-Ile ester (7c), D-Val-L-Val ester (9a), L-Val-L-Val ester (9b), L-Ala-L-Val ester (9c), and L-Ala-L-Ile ester (9d) were designed and successfully synthesized. In situ rat single-pass intestinal perfusion (SPIP) model was performed to screen the effective permeability (P(eff)) of the prodrugs. P(eff) of 7a, 7b, 7c, 9a, 9b, 9c, and 9d (6.7-fold, 2.4-fold, 1.24-fold, 1.22-fold, 4.15-fold, 2.2-fold, and 1.4-fold, respectively) in 2-(N-morpholino)ethanesulfonic acid buffer (MES) with pH 6.0 showed significant increase compared to that of OA (p propylene glycol-linked amino acid/dipeptide diester prodrugs showed better stability, permeability, affinity, and bioavailability. In conclusion, propylene glycol-linked amino acid/dipeptide diester prodrugs of OA may be suitable for PepT1-targeted prodrugs of OA to improve the oral bioavailability of OA.

  8. Conserved Aspartic Acid Residues Lining the Extracellular Loop I of Sodium-coupled Bile Acid Transporter ASBT Interact with Na+ and 7α-OH Moieties on the Ligand Cholestane Skeleton*

    Hussainzada, Naissan; Da Silva, Tatiana Claro; Zhang, Eric Y.; Swaan, Peter W.

    2008-01-01

    Functional contributions of residues Val-99—Ser-126 lining extracellular loop (EL) 1 of the apical sodium-dependent bile acid transporter were determined via cysteine-scanning mutagenesis, thiol modification, and in silico interpretation. Despite membrane expression for all but three constructs (S112C, Y117C, S126C), most EL1 mutants (64%) were inactivated by cysteine mutation, suggesting a functional role during sodium/bile acid co-transport. A negative charge at conserved residues Asp-120 and Asp-122 is required for transport function, whereas neutralization of charge at Asp-124 yields a functionally active transporter. D124A exerts low affinity for common bile acids except deoxycholic acid, which uniquely lacks a 7α-hydroxyl (OH) group. Overall, we conclude that (i) Asp-122 functions as a Na+ sensor, binding one of two co-transported Na+ ions, (ii) Asp-124 interacts with 7α-OH groups of bile acids, and (iii) apolar EL1 residues map to hydrophobic ligand pharmacophore features. Based on these data, we propose a comprehensive mechanistic model involving dynamic salt bridge pairs and hydrogen bonding involving multiple residues to describe sodium-dependent bile acid transporter-mediated bile acid and cation translocation. PMID:18508772

  9. Supplementation with branched-chain amino acids to a low-protein diet regulates intestinal expression of amino acid and peptide transporters in weanling pigs.

    Zhang, Shihai; Qiao, Shiyan; Ren, Man; Zeng, Xiangfang; Ma, Xi; Wu, Zhenlong; Thacker, Philip; Wu, Guoyao

    2013-11-01

    This study determined the effects of dietary branched-chain amino acids (AA) (BCAA) on growth performance, expression of jejunal AA and peptide transporters, and the colonic microflora of weanling piglets fed a low-protein (LP) diet. One hundred and eight Large White × Landrace × Duroc piglets (weaned at 28 days of age) were fed a normal protein diet (NP, 20.9 % crude protein), an LP diet (LP, 17.1 % crude protein), or an LP diet supplemented with BCAA (LP + BCAA, 17.9 % crude protein) for 14 days. Dietary protein restriction reduced piglet growth performance and small-intestinal villous height, which were restored by BCAA supplementation to the LP diet to values for the NP diet. Serum concentrations of BCAA were reduced in piglets fed the LP diet while those in piglets fed the LP + BCAA diet were similar to values for the NP group. mRNA levels for Na(+)-neutral AA exchanger-2, cationic AA transporter-1, b(0,+) AA transporter, and 4F2 heavy chain were more abundant in piglets fed the LP + BCAA diet than the LP diet. However, mRNA and protein levels for peptide transporter-1 were lower in piglets fed the LP + BCAA diet as compared to the LP diet. The colonic microflora did not differ among the three groups of pigs. In conclusion, growth performance, intestinal development, and intestinal expression of AA transporters in weanling piglets are enhanced by BCAA supplementation to LP diets. Our findings provide a new molecular basis for further understanding of BCAA as functional AA in animal nutrition.

  10. Protein Restriction with Amino Acid-Balanced Diets Shrinks Circulating Pool Size of Amino Acid by Decreasing Expression of Specific Transporters in the Small Intestine.

    Qiu, Kai; Qin, Chun Fu; Luo, Min; Zhang, Xin; Sun, Wen Juan; Jiao, Ning; Li, De Fa; Yin, Jing Dong

    2016-01-01

    Dietary protein restriction is not only beneficial to health and longevity in humans, but also protects against air pollution and minimizes feeding cost in livestock production. However, its impact on amino acid (AA) absorption and metabolism is not quite understood. Therefore, the study aimed to explore the effect of protein restriction on nitrogen balance, circulating AA pool size, and AA absorption using a pig model. In Exp.1, 72 gilts weighting 29.9 ± 1.5 kg were allocated to 1 of the 3 diets containing 14, 16, or 18% CP for a 28-d trial. Growth (n = 24), nitrogen balance (n = 6), and the expression of small intestinal AA and peptide transporters (n = 6) were evaluated. In Exp.2, 12 barrows weighting 22.7 ± 1.3 kg were surgically fitted with catheters in the portal and jejunal veins as well as the carotid artery and assigned to a diet containing 14 or 18% CP. A series of blood samples were collected before and after feeding for determining the pool size of circulating AA and AA absorption in the portal vein, respectively. Protein restriction did not sacrifice body weight gain and protein retention, since nitrogen digestibility was increased as dietary protein content reduced. However, the pool size of circulating AA except for lysine and threonine, and most AA flux through the portal vein were reduced in pigs fed the low protein diet. Meanwhile, the expression of peptide transporter 1 (PepT-1) was stimulated, but the expression of the neutral and cationic AA transporter systems was depressed. These results evidenced that protein restriction with essential AA-balanced diets, decreased AA absorption and reduced circulating AA pool size. Increased expression of small intestinal peptide transporter PepT-1 could not compensate for the depressed expression of jejunal AA transporters for AA absorption.

  11. Protein Restriction with Amino Acid-Balanced Diets Shrinks Circulating Pool Size of Amino Acid by Decreasing Expression of Specific Transporters in the Small Intestine

    Luo, Min; Zhang, Xin; Sun, Wen Juan; Jiao, Ning; Li, De Fa; Yin, Jing Dong

    2016-01-01

    Dietary protein restriction is not only beneficial to health and longevity in humans, but also protects against air pollution and minimizes feeding cost in livestock production. However, its impact on amino acid (AA) absorption and metabolism is not quite understood. Therefore, the study aimed to explore the effect of protein restriction on nitrogen balance, circulating AA pool size, and AA absorption using a pig model. In Exp.1, 72 gilts weighting 29.9 ± 1.5 kg were allocated to 1 of the 3 diets containing 14, 16, or 18% CP for a 28-d trial. Growth (n = 24), nitrogen balance (n = 6), and the expression of small intestinal AA and peptide transporters (n = 6) were evaluated. In Exp.2, 12 barrows weighting 22.7 ± 1.3 kg were surgically fitted with catheters in the portal and jejunal veins as well as the carotid artery and assigned to a diet containing 14 or 18% CP. A series of blood samples were collected before and after feeding for determining the pool size of circulating AA and AA absorption in the portal vein, respectively. Protein restriction did not sacrifice body weight gain and protein retention, since nitrogen digestibility was increased as dietary protein content reduced. However, the pool size of circulating AA except for lysine and threonine, and most AA flux through the portal vein were reduced in pigs fed the low protein diet. Meanwhile, the expression of peptide transporter 1 (PepT-1) was stimulated, but the expression of the neutral and cationic AA transporter systems was depressed. These results evidenced that protein restriction with essential AA-balanced diets, decreased AA absorption and reduced circulating AA pool size. Increased expression of small intestinal peptide transporter PepT-1 could not compensate for the depressed expression of jejunal AA transporters for AA absorption. PMID:27611307

  12. Dysfunction of organic anion transporting polypeptide 1a1 alters intestinal bacteria and bile acid metabolism in mice.

    Youcai Zhang

    Full Text Available Organic anion transporting polypeptide 1a1 (Oatp1a1 is predominantly expressed in liver and is able to transport bile acids (BAs in vitro. Male Oatp1a1-null mice have increased concentrations of taurodeoxycholic acid (TDCA, a secondary BA generated by intestinal bacteria, in both serum and livers. Therefore, in the present study, BA concentrations and intestinal bacteria in wild-type (WT and Oatp1a1-null mice were quantified to investigate whether the increase of secondary BAs in Oatp1a1-null mice is due to alterations in intestinal bacteria. The data demonstrate that Oatp1a1-null mice : (1 have similar bile flow and BA concentrations in bile as WT mice; (2 have a markedly different BA composition in the intestinal contents, with a decrease in conjugated BAs and an increase in unconjugated BAs; (3 have BAs in the feces that are more deconjugated, desulfated, 7-dehydroxylated, 3-epimerized, and oxidized, but less 7-epimerized; (4 have 10-fold more bacteria in the small intestine, and 2-fold more bacteria in the large intestine which is majorly due to a 200% increase in Bacteroides and a 30% reduction in Firmicutes; and (5 have a different urinary excretion of bacteria-related metabolites than WT mice. In conclusion, the present study for the first time established that lack of a liver transporter (Oatp1a1 markedly alters the intestinal environment in mice, namely the bacteria composition.

  13. Colloid formation and metal transport through two mixing zones affected by acid mine drainage near Silverton, Colorado

    Schemel, L.E.; Kimball, B.A.; Bencala, K.E.

    2000-01-01

    Stream discharges and concentrations of dissolved and colloidal metals (Al, Ca, Cu, Fe, Mg, Mn, Pb, and Zn), SO4, and dissolved silica were measured to identify chemical transformations and determine mass transports through two mixing zones in the Animas River that receive the inflows from Cement and Mineral Creeks. The creeks were the dominant sources of Al, Cu, Fe, and Pb, whereas the upstream Animas River supplied about half of the Zn. With the exception of Fe, which was present in dissolved and colloidal forms, the metals were dissolved in the acidic, high-SO4 waters of Cement Creek (pH 3.8). Mixing of Cement Creek with the Animas River increased pH to near-neutral values and transformed Al and some additional Fe into colloids which also contained Cu and Pb. Aluminium and Fe colloids had already formed in the mildly acidic conditions in Mineral Creek (pH 6.6) upstream of the confluence with the Animas River. Colloidal Fe continued to form downstream of both mixing zones. The Fe- and Al-rich colloids were important for transport of Cu, Pb, and Zn, which appeared to have sorbed to them. Partitioning of Zn between dissolved and colloidal phases was dependent on pH and colloid concentration. Mass balances showed conservative transports for Ca, Mg, Mn, SO4, and dissolved silica through the two mixing zones and small losses (< 10%) of colloidal Al, Fe and Zn from the water column.

  14. Expression profiles of the genes associated with metabolism and transport of amino acids and their derivatives in rat liver regeneration.

    Xu, C S; Chang, C F

    2008-01-01

    Amino acids (AA) are components of protein and precursors of many important biological molecules. To address effects of the genes associated with metabolism and transport of AA and their derivatives during rat liver regeneration (LR), we firstly obtained the above genes by collecting databases data and retrieving related thesis, and then analyzed their expression profiles during LR using Rat Genome 230 2.0 array. The LR-associated genes were identified by comparing the gene expression difference between partial hepatectomy (PH) and sham-operation (SO) rat livers. It was approved that 134 genes associated with metabolism of AA and their derivatives and 26 genes involved in transport of them were LR-associated. The initially and totally expressing number of these genes occurring in initial phase of LR (0.5-4 h after PH), G0/G1 (4-6 h after PH), cell proliferation (6-66 h after PH), cell differentiation and structure-function reconstruction of liver tissue (72-168 h after PH) were respectively 76, 17, 79, 5 and 162, 89, 564, 195, illustrating that these LR-associated genes were initially expressed mainly in initial stage, and functioned in different phases. Frequencies of up-regulation and down-regulation of them being separately 564 and 357 demonstrated that genes up-regulated outnumbered those down-regulated. Categorization of their expression patterns into 22 types implied the diversity of cell physiological and biochemical activities. According to expression changes and patterns of the above-mentioned genes in LR, it was presumed that histidine biosynthesis in the metaphase and anaphase, valine metabolism in the anaphase, and metabolism of glutamate, glutamine, asparate, asparagine, methionine, alanine, leucine and aromatic amino acid almost were enhanced in the whole LR; as for amino acid derivatives, transport of neutral amino acids, urea, gamma-aminobutyric acid, betaine and taurine, metabolism of dopamine, heme, S-adenosylmethionine, thyroxine, and

  15. Aluminum-contaminant transport by surface runoff and bypass flow from an acid sulphate soil

    Minh, L.Q.; Tuong, T.P.; Mensvoort, van M.E.F.; Bouma, J.

    2002-01-01

    Quantifying the process and the amount of acid-contaminant released to the surroundings is important in assessing the environmental hazards associated with reclaiming acid sulphate soils (ASS). The roles of surface runoff and bypass flow (i.e. the rapid downward flow of free water along macropores t

  16. Analysis of acid transport through multi-phase epoxy mortars for wastewater structures.

    Valix, M

    2015-01-01

    The characteristics of acid migration through epoxy mortars were examined. Diffusion coefficients of typical sewer bio-metabolised acids: sulphuric, nitric, citric and oxalic acids were determined by gravimetric sorption method and fitted to the multi-phase Jacob-Jones model. Acid permeation was characterised by hindered pore diffusion with the extent being determined by the polarity of the acid and epoxy, and by the microstructure of the epoxy. Epoxy with higher polarity was able to reduce the diffusion coefficients by 49, while dense phases of the coating reduced the diffusion coefficient by 5,100. These results reflect the relative influence of epoxy polarity and microstructure on their performance as protective liners in sewers.

  17. Pharmacological characterization of human excitatory amino acid transporters EAAT1, EAAT2 and EAAT3 in a fluorescence-based membrane potential assay

    Jensen, Anders A.; Bräuner-Osborne, Hans

    2004-01-01

    We have expressed the human excitatory amino acid transporters EAAT1, EAAT2 and EAAT3 stably in HEK293 cells and characterized the transporters pharmacologically in a conventional [(3) H]-d-aspartate uptake assay and in a fluorescence-based membrane potential assay, the FLIPR Membrane Potential...

  18. Function and expression of the proton-coupled amino acid transporter Slc36a1 along the rat gastrointestinal tract

    Broberg, M. L.; Holm, Rasmus Koldborg; Tønsberg, H;

    2012-01-01

    BACKGROUND AND PURPOSE: Intestinal absorption via membrane transporters may determine the pharmacokinetics of drug compounds. The hypothesis is that oral absorption of gaboxadol (4, 5, 6, 7-tetrahydroisoxazolo [5,4-c] pyridine-3-ol) in rats occurs via the proton-coupled amino acid transporter, r......: The absorption fraction of gaboxadol was high (81.3-91.3%) following administration in the stomach, duodenum and jejunum, but low (4.2%) after administration in the colon. The pharmacokinetics of gaboxadol was modified by the co-administration of L-tryptophan (a hPAT1 inhibitor) and L-proline (a hPAT1 substrate...... suggest that PAT1 mediates the intestinal absorption of gaboxadol and therefore determines the oral bioavailability. This has implications for the in vivo role of PAT1 and for formulation design of its substrates. © 2012 The Authors. British Journal of Pharmacology © 2012 The British Pharmacological...

  19. Vigabatrin absorption is mediated via the proton-coupled amino acid transporter PAT1 – in vitro and in vivo

    Nøhr, Martha Kampp; Juul, Rasmus Vestergaard; Hansen, Steen Honore';

    2013-01-01

    Purpose The anti-epileptic drug substance vigabatrin is used mainly for the treatment of infantile spasms. In spite of its hydrophilic nature (LogD7.0 ; -2.16), vigabatrin is readily absorbed after oral administration to humans. Vigabatrin has been shown in vitro to be a substrate of the intestinal...... the pharmacokinetic profile of vigabatrin with an apparent prolonged absorption of vigabatrin. Conclusions Transport of vigabatrin across Caco-2 cell monolayers was polarized in the lumen-to-blood directions, dependent on an acidic pH in the lumen compartment and inhibited by PAT1-ligands. This indicated that PAT1...

  20. Enteroendocrine-derived glucagon-like peptide-2 controls intestinal amino acid transport

    Jennifer Lee

    2017-03-01

    Conclusions: These findings reveal an important role for GLP-2R signaling in the physiological and pharmacological control of enteral amino acid sensing and assimilation, defining an enteroendocrine cell-enterocyte axis for optimal energy absorption.

  1. Expression of thyroid hormone transporters in the human placenta and changes associated with intrauterine growth restriction

    Loubière, L S; Vasilopoulou, E.; Bulmer, J N; Taylor, P. M.; Stieger, B.; Verrey, F.; McCabe, C. J.; Franklyn, J.A.; Kilby, M. D.; Chan, S-Y

    2010-01-01

    Thyroid hormones (TH) are important for the development of the human fetus and placenta from very early gestation. The transplacental passage of TH from mother to fetus and the supply of TH into trophoblasts require the expression of placental TH plasma membrane transporters. We describe the ontogeny of the TH transporters MCT8, MCT10, LAT1, LAT2, OATP1A2 and OATP4A1 in a large series (n = 110) of normal human placentae across gestation and describe their expression changes with intrauterine ...

  2. Overexpression of human fatty acid transport protein 2/very long chain acyl-CoA synthetase 1 (FATP2/Acsvl1) reveals distinct patterns of trafficking of exogenous fatty acids

    Melton, Elaina M. [Department of Biochemistry, University of Nebraska, Lincoln, NE (United States); Center for Cardiovascular Sciences, Albany Medical College, Albany, NY (United States); Cerny, Ronald L. [Department of Chemistry, University of Nebraska, Lincoln, NE (United States); DiRusso, Concetta C. [Department of Biochemistry, University of Nebraska, Lincoln, NE (United States); Black, Paul N., E-mail: pblack2@unl.edu [Department of Biochemistry, University of Nebraska, Lincoln, NE (United States)

    2013-11-01

    Highlights: •Roles of FATP2 in fatty acid transport/activation contribute to lipid homeostasis. •Use of 13C- and D-labeled fatty acids provide novel insights into FATP2 function. •FATP2-dependent trafficking of FA into phospholipids results in distinctive profiles. •FATP2 functions in the transport and activation pathways for exogenous fatty acids. -- Abstract: In mammals, the fatty acid transport proteins (FATP1 through FATP6) are members of a highly conserved family of proteins, which function in fatty acid transport proceeding through vectorial acylation and in the activation of very long chain fatty acids, branched chain fatty acids and secondary bile acids. FATP1, 2 and 4, for example directly function in fatty acid transport and very long chain fatty acids activation while FATP5 does not function in fatty acid transport but activates secondary bile acids. In the present work, we have used stable isotopically labeled fatty acids differing in carbon length and saturation in cells expressing FATP2 to gain further insights into how this protein functions in fatty acid transport and intracellular fatty acid trafficking. Our previous studies showed the expression of FATP2 modestly increased C16:0-CoA and C20:4-CoA and significantly increased C18:3-CoA and C22:6-CoA after 4 h. The increases in C16:0-CoA and C18:3-CoA suggest FATP2 must necessarily partner with a long chain acyl CoA synthetase (Acsl) to generate C16:0-CoA and C18:3-CoA through vectorial acylation. The very long chain acyl CoA synthetase activity of FATP2 is consistent in the generation of C20:4-CoA and C22:6-CoA coincident with transport from their respective exogenous fatty acids. The trafficking of exogenous fatty acids into phosphatidic acid (PA) and into the major classes of phospholipids (phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylinositol (PI), and phosphatidyserine (PS)) resulted in distinctive profiles, which changed with the expression of FATP2. The

  3. The uptake transporter OATP8 expression decreases during multistep hepatocarcinogenesis: correlation with gadoxetic acid enhanced MR imaging

    Kitao, Azusa; Matsui, Osamu; Yoneda, Norihide; Kozaka, Kazuto; Shinmura, Rieko; Koda, Wataru; Kobayashi, Satoshi; Gabata, Toshifumi [Kanazawa University Graduate School of Medical Science, Department of Radiology, Kanazawa (Japan); Zen, Yoh [Kanazawa University Graduate School of Medical Science, Human Pathology, Kanazawa (Japan); King' s College Hospital, Institute of Liver Studies, London (United Kingdom); Yamashita, Tatsuya; Kaneko, Shuichi [Kanazawa University Graduate School of Medical Science, Gastroenterology, Kanazawa (Japan); Nakanuma, Yasuni [Kanazawa University Graduate School of Medical Science, Human Pathology, Kanazawa (Japan)

    2011-10-15

    To clarify the changes in organic anion-transporting polypeptide 8 (OATP8) expression and enhancement ratio on gadoxetic acid-enhanced MR imaging in hepatocellular nodules during multistep hepatocarcinogenesis. In imaging analysis, we focused on 71 surgically resected hepatocellular carcinomas (well, moderately and poorly differentiated HCCs) and 1 dysplastic nodule (DN). We examined the enhancement ratio in the hepatobiliary phase of gadoxetic acid enhanced MR imaging [(1/postcontrast T1 value-1/precontrast T1 value)/(1/precontrast T1 value)], then analysed the correlation among the enhancement ratio, tumour differentiation grade and intensity of immunohistochemical OATP8 expression. In pathological analysis, we focused on surgically resected 190 hepatocellular nodules: low-grade DNs, high-grade DNs, early HCCs, well-differentiated, moderately differentiated and poorly differentiated HCCs, including cases without gadoxetic acid-enhanced MR imaging. We evaluated the correlation between the immunohistochemical OATP8 expression and the tumour differentiation grade. The enhancement ratio of HCCs decreased in accordance with the decline in tumour differentiation (P < 0.0001, R = 0.28) and with the decline of OATP8 expression (P < 0.0001, R = 0.81). The immunohistochemical OATP8 expression decreased from low-grade DNs to poorly differentiated HCCs (P < 0.0001, R = 0.15). The immunohistochemical expression of OATP8 significantly decreases during multistep hepatocarcinogenesis, which may explain the decrease in enhancement ratio on gadoxetic acid-enhanced MR imaging. (orig.)

  4. Selective transport of long-chain fatty acids by FAT/CD36 in skeletal muscle of broilers.

    Guo, J; Shu, G; Zhou, L; Zhu, X; Liao, W; Wang, S; Yang, J; Zhou, G; Xi, Q; Gao, P; Zhang, Y; Zhang, S; Yuan, L; Jiang, Q

    2013-03-01

    Fatty acid translocase (FAT/CD36) is a membrane receptor that facilitates long-chain fatty acid uptake. To investigate its role in the regulation of long-chain fatty acid composition in muscle tissue, we studied and compared FAT/CD36 gene expression in muscle tissues of commercial broiler chickens and Chinese local Silky fowls. The results from gas chromatography-mass spectrometry analysis of muscle samples demonstrated that Chinese local Silky fowls had significantly higher (P FAT/CD36 and caveolin-1) in the m. ipsilateral pectoralis and biceps femoris were analyzed by Q-PCR, and FAT/CD36 expression levels showed significant differences between these types of chickens (P FAT/CD36 expression are positively correlated with LA content (r = 0.567, P FAT/CD36 cDNA demonstrated that overexpression of FAT/CD36 improves total FA uptake with a significant increase in the proportion of LA and AA, and a decreased proportion of palmitic acid. These results suggest that chicken FAT/CD36 may selectively transport LA and AA, which may lead to the higher LA deposition in muscle tissue.

  5. Myocardial Lipid Profiling During Time Course of High Fat Diet and its Relationship to the Expression of Fatty Acid Transporters

    Ewa Harasim

    2015-09-01

    Full Text Available Background/Aims: It is well documented that increased fatty acids (FA supply causes lipid accumulation and insulin resistance in skeletal muscles. Whether the same mechanism is present in the heart is still unclear. Therefore, the goal of our study was to determine the content of specific myocardial lipid fractions during feeding rats a high fat diet (HFD for 5 weeks. Moreover, the relation between changes in myocardial lipid content, whole body insulin resistance and the expression of fatty acid transporters in each week of HFD was established. Methods: Gas liquid chromatography and high performance liquid chromatography were used to determine the content of lipid fractions in the left ventricle. Expression of selected proteins was estimated by Western blot technique. All measurements were made after each week of HFD. Results: As expected, lipid profile in myocardium was altered by HFD in different weeks of the study with the most intense changes in triacylglycerols, long chain fatty acid-CoA and ceramide. Furthermore, there was a significant elevation of plasmalemmal (the 4th and the 5th week and mitochondrial expression (from the 3rd to the 5th week of fatty acid translocase. Conclusion: High fat diet affects myocardial lipid profile in each week of its duration and causes alternations in FA metabolism in cardiomyocytes.

  6. The transport of phenylacetic acid across the peroxisomal membrane is mediated by the PaaT protein in Penicillium chrysogenum.

    Fernández-Aguado, Marta; Ullán, Ricardo V; Teijeira, Fernando; Rodríguez-Castro, Raquel; Martín, Juan F

    2013-04-01

    Penicillium chrysogenum, an industrial microorganism used worldwide for penicillin production, is an excellent model to study the biochemistry and the cell biology of enzymes involved in the synthesis of secondary metabolites. The well-known peroxisomal location of the last two steps of penicillin biosynthesis (phenylacetyl-CoA ligase and isopenicillin N acyltransferase) requires the import into the peroxisomes of the intermediate isopenicillin N and the precursors phenylacetic acid and coenzyme A. The mechanisms for the molecular transport of these precursors are still poorly understood. In this work, a search was made, in the genome of P. chrysogenum, in order to find a Major Facilitator Superfamily (MFS) membrane protein homologous to CefT of Acremonium chrysogenum, which is known to confer resistance to phenylacetic acid. The paaT gene was found to encode a MFS membrane protein containing 12 transmembrane spanners and one Pex19p-binding domain for Pex19-mediated targeting to peroxisomal membranes. RNA interference-mediated silencing of the paaT gene caused a clear reduction of benzylpenicillin secretion and increased the sensitivity of P. chrysogenum to the penicillin precursor phenylacetic acid. The opposite behavior was found when paaT was overexpressed from the glutamate dehydrogenase promoter that increases phenylacetic acid resistance and penicillin production. Localization studies by fluorescent laser scanning microscopy using PaaT-DsRed and EGFP-SKL fluorescent fusion proteins clearly showed that the protein was located in the peroxisomal membrane. The results suggested that PaaT is involved in penicillin production, most likely through the translocation of side-chain precursors (phenylacetic acid and phenoxyacetic acid) from the cytosol to the peroxisomal lumen across the peroxisomal membrane of P. chrysogenum.

  7. Functional characterization of the Bombyx mori fatty acid transport protein (BmFATP) within the silkmoth pheromone gland.

    Ohnishi, Atsushi; Hashimoto, Kana; Imai, Kiyohiro; Matsumoto, Shogo

    2009-02-20

    Fatty acid transport protein (FATP) is an evolutionarily conserved membrane-bound protein that facilitates the uptake of extracellular long chain fatty acids. In humans and mice, six FATP isoforms have been identified and their tissue-specific distributions suggest that each plays a discrete role in lipid metabolism in association with fatty acid uptake. While the presence of FATP homologs in insects has been demonstrated, their functional role remains to be characterized. Pheromonogenesis is defined as the dynamic period in which all machinery required for sex pheromone biosynthesis is generated and organized within the pheromone gland (PG) cells. By exploiting this unique system in the PG of the silkmoth, Bombyx mori, we found that BmFATP is predominantly expressed in the PG and undergoes up-regulation 1 day prior to eclosion. Before eclosion, B. mori PG cells accumulate cytoplasmic lipid droplets (LDs), which play a role in storing the pheromone (bombykol) precursor fatty acid in the form of triacylglycerol. RNAi-mediated gene silencing of BmFATP in vivo significantly suppressed LD accumulation by preventing the synthesis of triacylglycerols and resulted in a significant reduction in bombykol production. These results, in conjunction with the findings that BmFATP stimulates the uptake of extracellular long-chain fatty acids and BmFATP knockdown reduces cellular long-chain acyl-CoA synthetase activity, suggest that BmFATP plays an essential role in bombykol biosynthesis by stimulating both LD accumulation and triacylglycerol synthesis via a process called vectorial acylation that couples the uptake of extracellular fatty acids with activation to CoA thioesters during pheromonogenesis.

  8. Theory of ion transport with fast acid-base equilibrations in bioelectrochemical systems

    Dykstra, J.E.; Biesheuvel, P.M.; Bruning, H.; Heijne, ter A.

    2014-01-01

    Bioelectrochemical systems recover valuable components and energy in the form of hydrogen or electricity from aqueous organic streams. We derive a one-dimensional steady-state model for ion transport in a bioelectrochemical system, with the ions subject to diffusional and electrical forces. Since mo

  9. Fatty acid transport protein 4 is dispensable for intestinal lipid absorption in mice.

    Shim, Jien; Moulson, Casey L; Newberry, Elizabeth P; Lin, Meei-Hua; Xie, Yan; Kennedy, Susan M; Miner, Jeffrey H; Davidson, Nicholas O

    2009-03-01

    FA transport protein 4 (FATP4), one member of a multigene family of FA transporters, was proposed as a major FA transporter in intestinal lipid absorption. Due to the fact that Fatp4(-/-) mice die because of a perinatal skin defect, we rescued the skin phenotype using an FATP4 transgene driven by a keratinocyte-specific promoter (Fatp4(-/-);Ivl-Fatp4(tg/+) mice) to elucidate the role of intestinal FATP4 in dietary lipid absorption. Fatp4(-/-);Ivl-Fatp4(tg/+) mice and wild-type littermates displayed indistinguishable food consumption, growth, and weight gain on either low or high fat (Western) diets, with no differences in intestinal triglyceride (TG) absorption or fecal fat losses. Cholesterol absorption and intestinal TG absorption kinetics were indistinguishable between the genotypes, although Western diet fed Fatp4(-/-);Ivl-Fatp4(tg/+) mice showed a significant increase in enterocyte TG and FA content. There was no compensatory upregulation of other FATP family members or any other FA or cholesterol transporters in Fatp4(-/-);Ivl-Fatp4(tg/+) mice. Furthermore, although serum cholesterol levels were lower in Fatp4(-/-);Ivl-Fatp4(tg/+) mice, there was no difference in hepatic VLDL secretion in-vivo or in hepatic lipid content on either a chow or Western diet. Taken together, our studies find no evidence for a physiological role of intestinal FATP4 in dietary lipid absorption in mice.

  10. Mice lacking neutral amino acid transporter B0AT1 (Slc6a19) have elevated levels of FGF21 and GLP-1 and improved glycaemic control

    Yang Jiang; Adam J. Rose; Sijmonsma, Tjeerd P.; Angelika Bröer; Anja Pfenninger; Stephan Herzig; Dieter Schmoll; Stefan Bröer

    2015-01-01

    Objective: Type 2 diabetes arises from insulin resistance of peripheral tissues followed by dysfunction of β-cells in the pancreas due to metabolic stress. Both depletion and supplementation of neutral amino acids have been discussed as strategies to improve insulin sensitivity. Here we characterise mice lacking the intestinal and renal neutral amino acid transporter B0AT1 (Slc6a19) as a model to study the consequences of selective depletion of neutral amino acids. Methods: Metabolic tests...

  11. Effects of heat stress on the gene expression of nutrient transporters in the jejunum of broiler chickens ( Gallus gallus domesticus)

    Sun, Xiaolei; Zhang, Haichao; Sheikhahmadi, Ardashir; Wang, Yufeng; Jiao, Hongchao; Lin, Hai; Song, Zhigang

    2015-02-01

    In broiler chickens, heat stress disrupts nutrient digestion and absorption. However, the underlying molecular mechanism is not clearly understood. Hence, to investigate the effects of high ambient temperatures on the expression levels of nutrient transporters in the jejunum of broiler chickens, seventy-two 35-day-old male broiler chickens with similar body weights were randomly allocated into two groups: control (24 ± 1 °C) and heat-stressed (32 ± 1 °C). The chickens in the heat-stressed group were exposed to 10 h of heat daily from 08:00 to 18:00 and then raised at 24 ± 1 °C. The rectal temperature and feed intake of the chickens were recorded daily. After 7 days, nine chickens per group were sacrificed by exsanguination, and the jejunum was collected. The results show that heat exposure significantly decreased the feed intake and increased the rectal temperature of the broiler chickens. The plasma concentrations of uric acid and triglyceride significantly increased and decreased, respectively, in the heat-stressed group. No significant differences in the levels of plasma glucose, total amino acids, and very low-density lipoprotein were observed between the heat-stressed and control groups. However, the plasma concentration of glucose tended to be higher ( P = 0.09) in the heat-stressed group than in the control group. Heat exposure did not significantly affect the mRNA levels of Na+-dependent glucose transporter 1 and amino acid transporters y + LAT1, CAT1, r-BAT, and PePT-1. However, the expression levels of GLUT-2, FABP1, and CD36 were significantly decreased by heat exposure. The results of this study provide new insights into the mechanisms by which heat stress affects nutrient absorption in broiler chickens. Our findings suggest that periodic heat exposure might alter the jejunal glucose and lipid transport rather than amino acid transport. However, intestinal epithelial damage and cell loss should be considered when interpreting the effects of heat

  12. Enhanced Absorption and Growth Inhibition with Amino Acid Monoester Prodrugs of Floxuridine by Targeting hPEPT1 Transporters

    Gordon L. Amidon

    2008-06-01

    Full Text Available A series of amino acid monoester prodrugs of floxuridine was synthesized and evaluated for the improvement of oral bioavailability and the feasibility of target drug delivery via oligopeptide transporters. All floxuridine 5′-amino acid monoester prodrugs exhibited PEPT1 affinity, with inhibition coefficients of Gly-Sar uptake (IC50 ranging from 0.7 – 2.3 mM in Caco-2 and 2.0 – 4.8 mM in AsPC-1 cells, while that of floxuridine was 7.3 mM and 6.3 mM, respectively. Caco-2 membrane permeabilities of floxuridine prodrugs (1.01 – 5.31 x 10-6 cm/sec and floxuridine (0.48 x 10-6 cm/sec were much higher than that of 5-FU (0.038 x 10-6 cm/sec. MDCK cells stably transfected with the human oligopeptide transporter PEPT1 (MDCK/hPEPT1 exhibited enhanced cell growth inhibition in the presence of the prodrugs. This prodrug strategy offers great potential, not only for increased drug absorption but also for improved tumor selectivity and drug efficacy.

  13. Ion-pair mediated transport of small model peptides in liquid phase micro extraction under acidic conditions.

    Reubsaet, J Léon E; Paulsen, Jonas V

    2005-02-01

    This paper discusses the behaviour of five small model peptides in a three phase (aqueous donor-organic-aqueous acceptor) liquid phase micro extraction system in relation to their physico-chemical properties (charge, hydrophobicity). It is proved that for all peptides transport over the organic phase is mediated by aliphatic sulphonic acids. Heptane-1-sulphonic acid gave the best overall recoveries. It appeared that peptides with hydrophobic properties (IPI) and a high number of positive charges (KYK) show good recoveries and are enriched in the acceptor phase. Variation in the pH (1.6-4.4) of the donor phase shows that there are peptide-dependent optimal pH-values for their recovery. Increasing pH in the acceptor phase shows that in most cases the recovery decreases due to decreased ion-pair mediated membrane transport. For KYK the partition between the organic phase and the aqueous acceptor-phase is also driven by the solubility in the aqueous acceptor phase. Increase of the ion strength of the acceptor phase did not affect the recovery of the peptides. Except for KYK, which showed decreased recovery when the ion strength increased. Another finding is that delocalisation of positive charge causes bad recovery, probably due to incomplete ion-pair-peptide complex formation.

  14. Amino acids and carbohydrates absorption by Na+-dependent transporters in the pyloric ceca of Hoplias malabaricus (Erythrinidae

    Vieira Vania Lucia Pimentel

    2001-01-01

    Full Text Available Information about amino acids and carbohydrate absorption in fish is important to formulate an adequate diet to obtain optimal growth. Therefore, the objective of this study was to investigate if Na+-dependent transporters are involved on the absorption of glycine, L-glutamine, L-leucine, L-lysine, L-proline, L-alanine, and the carbohydrates fructose and glucose in the pyloric ceca of Hoplias malabaricus. The pyloric ceca were mounted in a system of continuous perfusion "in vitro". Amino acids and carbohydrates were placed on the mucosal side at concentrations of 10, 20, and 40mM. The serosal side of the pyloric ceca was positive in relation to the mucosal side. The addition of glycine, L-glutamine, L-leucine, L-lysine, L-proline (all tested concentrations, and glucose (at concentrations of 20 and 40mM increased the positivity of the serosal side, indicating the presence of Na+-dependent transporters in the absorption of these substances. L-alanine and fructose did not change the positivity of the serosal side. The pyloric ceca seem to be the main site of nutrient absorption in the digestive tract of H. malabaricus.

  15. Experimental Study and Numerical Solution of Poly Acrylic Acid Supported Magnetite Nanoparticles Transport in a One-Dimensional Porous Media

    M. Golzar

    2014-01-01

    Full Text Available Recently, iron nanoparticles have attracted more attention for groundwater remediation due to its potential to reduce subsurface contaminants such as PCBs, chlorinated solvents, and heavy metals. The magnetic properties of iron nanoparticles cause to attach to each other and form bigger colloid particles of iron nanoparticles with more rapid sedimentation rate in aqueous environment. Using the surfactants such as poly acrylic acid (PAA prevents iron nanoparticles from forming large flocs that may cause sedimentation and so increases transport distance of the nanoparticles. In this study, the transport of iron oxide nanoparticles (Fe3O4 stabilized with PAA in a one-dimensional porous media (column was investigated. The slurries with concentrations of 20,100 and 500 (mg/L were injected into the bottom of the column under hydraulic gradients of 0.125, 0.375, and 0.625. The results obtained from experiments were compared with the results obtained from numerical solution of advection-dispersion equation based on the classical colloid filtration theory (CFT. The experimental and simulated breakthrough curves showed that CFT is able to predict the transport and fate of iron oxide nanoparticles stabilized with PAA (up to concentration 500 ppm in a porous media.

  16. IGF-I regulates redox status in breast cancer cells by activating the amino acid transport molecule xC-.

    Yang, Yuzhe; Yee, Douglas

    2014-04-15

    Insulin-like growth factors (IGF) stimulate cell growth in part by increasing amino acid uptake. xCT (SLC7A11) encodes the functional subunit of the cell surface transport system xC(-), which mediates cystine uptake, a pivotal step in glutathione synthesis and cellular redox control. In this study, we show that IGF-I regulates cystine uptake and cellular redox status by activating the expression and function of xCT in estrogen receptor-positive (ER(+)) breast cancer cells by a mechanism that relies on the IGF receptor substrate-1 (IRS-1). Breast cancer cell proliferation mediated by IGF-I was suppressed by attenuating xCT expression or blocking xCT activity with the pharmacologic inhibitor sulfasalazine (SASP). Notably, SASP sensitized breast cancer cells to inhibitors of the type I IGF receptor (IGF-IR) in a manner reversed by the reactive oxygen species (ROS) scavenger N-acetyl-L-cysteine. Thus, IGF-I promoted the proliferation of ER(+) breast cancer cells by regulating xC(-) transporter function to protect cancer cells from ROS in an IRS-1-dependent manner. Our findings suggest that inhibiting xC(-) transporter function may synergize with modalities that target the IGF-IR to heighten their therapeutic effects.

  17. The ileal lipid binding protein is required for efficient absorption and transport of bile acids in the distal portion of the murine small intestine.

    Praslickova, Dana; Torchia, Enrique C; Sugiyama, Michael G; Magrane, Elijah J; Zwicker, Brittnee L; Kolodzieyski, Lev; Agellon, Luis B

    2012-01-01

    The ileal lipid binding protein (ilbp) is a cytoplasmic protein that binds bile acids with high affinity. However evidence demonstrating the role of this protein in bile acid transport and homeostasis is missing. We created a mouse strain lacking ilbp (Fabp6(-/-) mice) and assessed the impact of ilbp deficiency on bile acid homeostasis and transport in vivo. Elimination of ilbp increased fecal bile acid excretion (54.2%, Pexcreted by 24 h after oral administration was 102% (Psmall and large intestines was increased by 22% (P<0.02) and decreased by 62.7% (P<0.01), respectively, in male Fabp6(-/-) mice relative wild-type mice, whereas no changes were seen in female Fabp6(-/-) mice. Mucosal to serosal bile acid transport using everted distal gut sacs was decreased by 74% (P<0.03) in both sexes of Fabp6(-/-) mice as compared to wild-type mice. The results demonstrate that ilbp is involved in the apical to basolateral transport of bile acids in ileal enterocytes, and is vital for the maintenance of bile acid homeostasis in the enterohepatic circulation (EHC) in mice.

  18. Sialic acid transport and catabolism are cooperatively regulated by SiaR and CRP in nontypeable Haemophilus influenzae

    Johnston Jason W

    2010-09-01

    Full Text Available Abstract Background The transport and catabolism of sialic acid, a critical virulence factor for nontypeable Haemophilus influenzae, is regulated by two transcription factors, SiaR and CRP. Results Using a mutagenesis approach, glucosamine-6-phosphate (GlcN-6P was identified as a co-activator for SiaR. Evidence for the cooperative regulation of both the sialic acid catabolic and transport operons suggested that cooperativity between SiaR and CRP is required for regulation. cAMP was unable to influence the expression of the catabolic operon in the absence of SiaR but was able to induce catabolic operon expression when both SiaR and GlcN-6P were present. Alteration of helical phasing supported this observation by uncoupling SiaR and CRP regulation. The insertion of one half-turn of DNA between the SiaR and CRP operators resulted in the loss of SiaR-mediated repression of the transport operon while eliminating cAMP-dependent induction of the catabolic operon when GlcN-6P was present. SiaR and CRP were found to bind to their respective operators simultaneously and GlcN-6P altered the interaction of SiaR with its operator. Conclusions These results suggest multiple novel features for the regulation of these two adjacent operons. SiaR functions as both a repressor and an activator and SiaR and CRP interact to regulate both operons from a single set of operators.

  19. System A amino acid transporter SNAT2 shows subtype-specific affinity for betaine and hyperosmotic inducibility in placental trophoblasts.

    Nishimura, Tomohiro; Yagi, Risa; Usuda, Mariko; Oda, Kenji; Yamazaki, Mai; Suda, Sayaka; Takahashi, Yu; Okazaki, Fumiyasu; Sai, Yoshimichi; Higuchi, Kei; Maruyama, Tetsuo; Tomi, Masatoshi; Nakashima, Emi

    2014-05-01

    Betaine uptake is induced by hypertonic stress in a placental trophoblast cell line, and involvement of amino acid transport system A was proposed. Here, we aimed to identify the subtype(s) of system A that mediates hypertonicity-induced betaine uptake. Measurement of [(14)C]betaine uptake by HEK293 cells transiently transfected with human or rat sodium-coupled neutral amino acid transporters (SNATs), SNAT1, SNAT2 and SNAT4 revealed that only human and rat SNAT2 have betaine uptake activity. The Michaelis constants (Km) of betaine uptake by human and rat SNAT2 were estimated to be 5.3 mM and 4.6 mM, respectively. Betaine exclusively inhibited the uptake activity of SNAT2 among the rat system A subtypes. We found that rat SNAT1, SNAT2 and SNAT4 were expressed at the mRNA level under isotonic conditions, while expression of SNAT2 and SNAT4 was induced by hypertonicity in TR-TBT 18d-1 cells. Western blot analyses revealed that SNAT2 expression on plasma membrane of TR-TBT 18d-1 cells was more potently induced by hypertonicity than that in total cell lysate. Immunocytochemistry confirmed the induction of SNAT2 expression in TR-TBT 18d-1 cells exposed to hypertonic conditions and indicated that SNAT2 was localized on the plasma membrane in these cells. Our results indicate that SNAT2 transports betaine, and that tonicity-sensitive SNAT2 expression may be involved in regulation of betaine concentration in placental trophoblasts.

  20. Transmembrane domain V plays a stabilizing role in the function of human bile acid transporter SLC10A2.

    Moore, Robyn H; Chothe, Paresh; Swaan, Peter W

    2013-07-30

    The human apical sodium-dependent bile acid transporter (hASBT, SLC10A2), primarily expressed in the ileum, is involved in both the recycling of bile acids and cholesterol homeostasis. In this study, the structure-function relationship of transmembrane domain 5 (TM5) residues involved in transport is elucidated. Cysteine scanning mutagenesis of each consecutive residue on TM5 resulted in 96% of mutants having a significantly decreased transport activity, although each was expressed at the cell surface. Specifically, G197 and I208 were no longer functional, and G201 and G212 functioned at a level of Conservative alanine mutations of the four residues displayed a higher activity in all but G197A, indicating its functional importance. G197 and G201 form a GxxxG motif, which has been found to be important in helix-helix interactions. According to our model, G197 and G201 face transmembrane domain 4 (TM4) residues G179 and P175, respectively. Similarly, G212 faces G237, which forms part of a GxxxG domain in transmembrane domain 6 (TM6). It is possible that these GxxxG domains and their interacting partners are responsible for maintaining the structure of the helices and their interactions with one another. I205 and I208 are both in positions to anchor the GxxxG domains and direct the change in interaction of TM5 from TM4 to TM6. Combined, the results suggest that residues along TM5 are critical for ASBT function but are not directly involved in substrate translocation.

  1. The Effect of Pueraria Lobata/Rehmannia Glutinosa and Exercise on Fatty Acid Transporters Expression in Ovariectomized Rats Skeletal Muscles

    Kim, Hye Jin; Yoon, Hae Min; Kwon, Oran; Lee, Won Jun

    2016-01-01

    [Purpose] Pueraria lobata/rehmannia glutinosa (PR) and exercise have been receiving a lot of attention from postmenopausal women, as a result of the side effects of estrogen replacement therapy. However, the effects of PR and exercise on fatty acid transporters (FATPs), which play essential role in fatty acid transport, have not been studied. In this study, we evaluated the effects of PR and aerobic exercise on FATP1, FABPpm and FAT/CD36 expression in ovariectomized rat skeletal muscles. [Methods] Sixty rats were randomly divided into 6 groups: (1)HSV; high fat diet (HFD)+sedentary+vehicle, (2)HSP; HFD+sedentary+PR, (3)HSH; HFD+sedentary+17β-estradiol, (4)HEV; HFD+exercise+vehicle, (5) HEP; HFD+exercise+PR, (6)HEH; HFD+exercise+17β-estradiol. Exercise consisted of treadmill exercise (1-4th week: 15 m/min for 30 min, 5-8th week: 18 m/min for 40 min, 5 times/week). [Results] Exercise does not alter FATP1 and FAT/CD36 gene levels in soleus and plantaris muscles. In contrast, exercise had main effect on up-regulation of FABPpm mRNA expression in both muscles. However, FABPpm level was not increased by exercise combined with treatments, indicative of no additive effects of PR or hormone on FABPpm gene expression. On the other hand, immunohistochemistry result showed that translocation of FATPs proteins to plasma membrane were higher in PR, exercise groups, and exercise combined with PR groups in both muscles. [Conclusion] These result showed that aerobic exercise and PR may help increase fat-oxidation through the induction of FABPpm, a muscle specific transporter, in OVX rat skeletal muscles. In addition, FABPpm expression is possibly regulated post-transcriptionally in exercise, or pre-translationally in PR. PMID:27757385

  2. GDM-Induced Macrosomia Is Reversed by Cav-1 via AMPK-Mediated Fatty Acid Transport and GLUT1-Mediated Glucose Transport in Placenta

    Wang, Di; Yang, Ruirui; Sang, Hui; Han, Linlin; Zhu, Yuexia; Lu, Yanyan; Tan, Yeke; Shang, Zhanping

    2017-01-01

    Objective To investigate if the role of Cav-1 in GDM-induced macrosomia is through regulating AMPK signaling pathway in placenta. Methods We used diagnostic criteria of gestational diabetes mellitus (GDM) and macrosomia to separate and compare placental protein and mRNA levels from GDM with macrosomia group (GDMM), GDM with normal birth weight group (GDMN) and normal glucose tolerance (NGT) with normal birth weight group (CON). Western blotting was performed to examine differentially expressed proteins of caveolin-1 (Cav-1) and Adenosine monophosphate-activated protein kinase (AMPK) signaling pathway related proteins, including phosphorylated-AMPKα(Thr172), AMPKα, phosphorylated-Acetyl-CoA carboxylase(Ser79) (p-ACC(Ser79)), ACC and glucose transporter 1 (GLUT1) in placenta between the three groups. The mRNA levels of Cav-1, AMPKα, ACC and GLUT1 in placenta were measured by real time-PCR. Results In the GDMM placenta group, both protein and mRNA levels of Cav-1 were down-regulated, while GLUT1 was up-regulated; the phosphorylation and mRNA levels of ACC and AMPKα were decreased, but total ACC protein levels were increased compared to both the GDMN (pGLUT1 protein levels. Besides, in GDMM group placental mRNA levels, NBW had a positive correlation with GLUT1 (pGLUT1 (pGLUT1. Conclusion GDM-induced macrosomias have more severe inhibition of Cav-1 expression in placenta. Cav-1 is associated with placental glucose and fatty acid transport via the induction of AMPK signaling pathway and the reduction of GLUT1 signaling pathway to reverse GDM-induced macrosomia. PMID:28125642

  3. Molecular mechanism of substrate specificity in the bacterial neutral amino acid transporter LeuT.

    Noskov, Sergei Y

    2008-12-01

    The recently published X-ray structure of LeuT, a Na(+)/Cl(-)-dependent neurotransmitter transporter, has provided fresh impetus to efforts directed at understanding the molecular principles governing specific neurotransmitter transport. The combination of the LeuT crystal structure with the results of molecular simulations enables the functional data on specific binding and transport to be related to molecular structure. All-atom FEP and molecular dynamics (MD) simulations of LeuT embedded in an explicit membrane were performed alongside a decomposition analysis to dissect the molecular determinants of the substrate specificity of LeuT. It was found that the ligand must be in a zwitterionic (ZW) form to bind tightly to the transporter. The theoretical results on the absolute binding-free energies for leucine, alanine, and glycine show that alanine can be a potent substrate for LeuT, although leucine is preferred, which is consistent with the recent experimental data (Singh et al., Nature 2007;448:952-956). Furthermore, LeuT displays robust specificity for leucine over glycine. Interestingly, the ability of LeuT to discriminate between substrates relies on the dynamics of residues that form its binding pocket (e.g., F253 and Q250) and the charged side chains (R30-D404) from a second coordination shell. The water-mediated R30-D404 salt bridge is thought to be part of the extracellular (EC) gate of LeuT. The introduction of a polar ligand such as glycine to the water-depleted binding pocket of LeuT gives rise to structural rearrangements of the R30-D404-Q250 hydrogen-bonding network and leads to increased hydration of the binding pocket. Conformational changes associated with the broken hydrogen bond between Q250 and R30 are shown to be important for tight and selective ligand binding to LeuT.

  4. The ABC transporter ABC40 encodes a phenylacetic acid export system in Penicillium chrysogenum

    Weber, Stefan S.; Kovalchuk, Andriy; Bovenberg, Roe A. L.; Driessen, Arnold J. M.

    2012-01-01

    The filamentous fungus Penicillium chrysogenum is used for the industrial production of beta-lactam antibiotics. The pathway for beta-lactam biosynthesis has been resolved and involves the enzyme phenylacetic acid CoA ligase that is responsible for the CoA activation of the side chain precursor phen

  5. Basic Amino Acid Transport in Plasma Membrane Vesicles of Penicillium chrysogenum

    Hillenga, Dirk J.; Versantvoort, Hanneke J.M.; Driessen, Arnold J.M.; Konings, Wil N.

    1996-01-01

    The characteristics of the basic amino acid permease (system VI) of the filamentous fungus Penicillium chrysogenum were studied in plasma membranes fused with liposomes containing the beef heart mitochondrial cytochrome c oxidase. In the presence of reduced cytochrome c, the hybrid membranes accumul

  6. Organelles involved in the intracellular transport of newly synthesized aminopeptidase N and their acidity

    Hansen, Gert Helge; Danielsen, E M; Sjöström, H;

    1989-01-01

    in the microvillar membrane, the Golgi complex, apical small smooth vesicles, and various acidic lysosomal/endosomal-like organelles. By culturing mucosal explants in the presence of either cycloheximide or (3-(2,4-dinitroanilino)-3-amino-N-methylpropylamine) (DAMP) it was demonstrated that the apical small smooth...

  7. Mycobacterium tuberculosis proteins involved in mycolic acid synthesis and transport localize dynamically to the old growing pole and septum.

    Carel, Clément; Nukdee, Kanjana; Cantaloube, Sylvain; Bonne, Mélanie; Diagne, Cheikh T; Laval, Françoise; Daffé, Mamadou; Zerbib, Didier

    2014-01-01

    Understanding the mechanism that controls space-time coordination of elongation and division of Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), is critical for fighting the tubercle bacillus. Most of the numerous enzymes involved in the synthesis of Mycolic acid - Arabinogalactan-Peptidoglycan complex (MAPc) in the cell wall are essential in vivo. Using a dynamic approach, we localized Mtb enzymes belonging to the fatty acid synthase-II (FAS-II) complexes and involved in mycolic acid (MA) biosynthesis in a mycobacterial model of Mtb: M. smegmatis. Results also showed that the MA transporter MmpL3 was present in the mycobacterial envelope and was specifically and dynamically accumulated at the poles and septa during bacterial growth. This localization was due to its C-terminal domain. Moreover, the FAS-II enzymes were co-localized at the poles and septum with Wag31, the protein responsible for the polar localization of mycobacterial peptidoglycan biosynthesis. The dynamic localization of FAS-II and of the MA transporter with Wag31, at the old-growing poles and at the septum suggests that the main components of the mycomembrane may potentially be synthesized at these precise foci. This finding highlights a major difference between mycobacteria and other rod-shaped bacteria studied to date. Based on the already known polar activities of envelope biosynthesis in mycobacteria, we propose the existence of complex polar machinery devoted to the biogenesis of the entire envelope. As a result, the mycobacterial pole would represent the Achilles' heel of the bacillus at all its growing stages.

  8. Diurnal variations of mouse plasma and hepatic bile acid concentrations as well as expression of biosynthetic enzymes and transporters.

    Yu-Kun Jennifer Zhang

    Full Text Available BACKGROUND: Diurnal fluctuation of bile acid (BA concentrations in the enterohepatic system of mammals has been known for a long time. Recently, BAs have been recognized as signaling molecules beyond their well-established roles in dietary lipid absorption and cholesterol homeostasis. METHODS AND RESULTS: The current study depicted diurnal variations of individual BAs detected by ultra-performance liquid chromatography/mass spectrometry (UPLC/MS in serum and livers collected from C57BL/6 mice fed a regular chow or a chow containing cholestyramine (resin. Circadian rhythms of mRNA of vital BA-related nuclear receptors, enzymes, and transporters in livers and ilea were determined in control- and resin-fed mice, as well as in farnesoid X receptor (FXR null mice. The circadian profiles of BAs showed enhanced bacterial dehydroxylation during the fasting phase and efficient hepatic reconjugation of BAs in the fed phase. The resin removed more than 90% of BAs with β-hydroxy groups, such as muricholic acids and ursodeoxycholic acid, from serum and livers, but did not exert as significant influence on CA and CDCA in both compartments. Both resin-fed and FXR-null mouse models indicate that BAs regulate their own biosynthesis through the FXR-regulated ileal fibroblast growth factor 15. BA flux also influences the daily mRNA levels of multiple BA transporters. CONCLUSION: BA concentration and composition exhibit circadian variations in mouse liver and serum, which influences the circadian rhythms of BA metabolizing genes in liver and ileum. The diurnal variations of BAs appear to serve as a signal that coordinates daily nutrient metabolism in mammals.

  9. Atmospheric transport of mineral dust from the Indo-Gangetic Plain: Temporal variability, acid processing, and iron solubility

    Srinivas, Bikkina; Sarin, M. M.; Rengarajan, R.

    2014-08-01

    transport of chemical constituents from the Indo-Gangetic Plain (IGP) to the Bay of Bengal is a conspicuous seasonal feature that occurs during the late NE-monsoon (December-March). With this perspective, aerosol composition and abundance of mineral dust have been studied during November 2009 to March 2010 from a sampling site (Kharagpur: 22.3°N, 87.3°E) in the IGP, representing the atmospheric outflow to the Bay of Bengal. The chemical composition of PM2.5 suggests the dominance of nss-SO42- (6.9-24.3 µg m-3); whereas the abundance of mineral dust varied from 3 to 18 µg m-3. The concentration of aerosol iron (FeTot) and its fractional solubility (Fews % = Fews/FeTot *100, where Fews is the water-soluble fraction of FeTot) varied from 60 to 1144 ng m-3 and from 6.7 to 26.5%, respectively. A striking similarity in the temporal variability of total inorganic acidity (TIA = NO3- + nss-SO42-) and Fews (%) provides evidence for acid processing of mineral dust (alluvium) during atmospheric transport from the IGP. The contribution of TIA to water-soluble inorganic species [(nss-SO42- + NO3-)/ΣWSIS], mass ratios of Ca/Al and Fe/Al, and abundance of dust (%) and Fews (%) in the IGP-outflow are similar to the aerosol composition over the Bay of Bengal. With the rapid increase in anthropogenic activities over south and south-east Asia, the enhanced fractional solubility of aerosol iron (attributed to acid processing of mineral dust) has implications to further increase in the air-sea deposition of Fe to the Ocean surface.

  10. Characterization of a Chinese hamster-human hybrid cell line with increased system L amino acid transport activity.

    Lobaton, C D; Moreno, A; Oxender, D L

    1984-03-01

    We have studied leucine transport in several Chinese hamster-human hybrid cell lines obtained by fusion of a temperature-sensitive line of Chinese hamster ovary cells, ts025C1, and normal human leukocytes. A hybrid cell line exhibiting a twofold increase in L-leucine uptake over that in the parental cell line was found. This hybrid cell line, 158CnpT-1, was temperature resistant, whereas the parental Chinese hamster ovary mutant, ts025C1, contained a temperature-sensitive leucyl-tRNA synthetase mutation. An examination of the different amino acid transport systems in this hybrid cell line revealed a specific increase of system L activity with no significant changes in systems A and ASC. The Vmax for L-leucine uptake exhibited by the hybrid 158CnpT-1 was twice that in the CHO parental mutant, ts025C1. Cytogenetic analysis showed that the hybrid 158CnpT-1 contains four complete human chromosomes (numbers 4, 5, 10, and 21) and three interspecific chromosomal translocations in a total complement of 34 chromosomes. Biochemical and cytogenetic analysis of segregant clones obtained from hybrid 158CnpT-1 showed that the primary temperature resistance and high system L transport phenotypes can be segregated from this hybrid independently. The loss of the primary temperature resistance was associated with the loss of the human chromosome 5, as previously reported by other laboratories, whereas the loss of the high leucine transport phenotype, which is associated with a lesser degree of temperature resistance, was correlated with the loss of human chromosome 20.

  11. Mutation of aspartic acid-351, lysine-352, and lysine-515 alters the Ca2+ transport activity of the Ca2+-ATPase expressed in COS-1 cells.

    Maruyama, K; MacLennan, D H

    1988-01-01

    Full-length cDNAs encoding neonatal and adult isoforms of the Ca2+-ATPase of rabbit fast-twitch skeletal muscle sarcoplasmic reticulum were expressed transiently in COS-1 cells. The microsomal fraction isolated from transfected COS-1 cells contained immunoreactive Ca2+-ATPase and catalyzed Ca2+ transport at rates at least 15-fold above controls. No differences were observed in either the rates or Ca2+ dependency of Ca2+ transport catalyzed by the two isoforms. Aspartic acid-351, the site of formation of the catalytic acyl phosphate in the enzyme, was mutated to asparagine, glutamic acid, serine, threonine, histidine, or alanine. In every case, Ca2+ transport activity and Ca2+-dependent phosphorylation were eliminated. Ca2+ transport was also eliminated by mutation of lysine-352 to arginine, glutamine, or glutamic acid or by mutation of Asp351-Lys352 to Lys351-Asp352. Mutation of lysine-515, the site of fluorescein isothiocyanate modification in the enzyme, resulted in diminished Ca2+ transport activity as follows: arginine, 60%; glutamine, 25%; glutamic acid, 5%. These results demonstrate the absolute requirement of acylphosphate formation for the Ca2+ transport function and define a residue important for ATP binding. They also demonstrate the feasibility of a thorough analysis of active sites in the Ca2+-ATPase by expression and site-specific mutagenesis. Images PMID:2966962

  12. Bis(imidazolium) salts derived from amino acids as receptors and transport agents for chloride anions

    González-Mendoza, Laura; Altava, Belén; Burguete, M.I.; Escorihuela, Jorge; Hernando, Elsa; Luis, S.V.; Quesada, Roberto; Vicent, Cristian

    2015-01-01

    The binding properties of bis(imidazolium) hosts 1a-c derived from amino acids towards different anions have been studied by 1H NMR titration experiments in 95:05 CD3CN:H2O at 303 K, ESI-MS and theoretical calculations. Among this family, the salt 1c showed a stro

  13. Structural and transport properties of Nafion in hydrobromic-acid solutions

    Kusoglu, A; Cho, KT; Prato, RA; Weber, AZ

    2013-12-01

    Proton-exchange membranes are key solid-state ion carriers in many relevant energy technologies including flow batteries, fuel cells, and solar-fuel generators. In many of these systems, the membranes are in contact with electrolyte solutions. In this paper, we focus on the impact of different HBr, a flow-battery and exemplary acid electrolyte, external concentrations on the conductivity of Nafion, a perfluorosulfonic acid membrane that is commonly used in many energy-related applications. The peak and then decrease in conductivity is correlated with measured changes in the water and HBr content within the membrane. In addition, small-angle x-ray scattering is used to probe the nanostructure to correlate how the interactions of the bromide ion with the fixed sulfonic-acid sites impact conductivity and hydrophilic domain distance. It is also shown that membrane pretreatment has a large impact on the underlying structure/function relationship. The obtained data and results are useful for delineation of optimal operating regimes for flow batteries and similar technologies as well as in understanding underlying structure/function relationships of ionomers in electrolyte solutions. (C) 2013 Elsevier B.V. All rights reserved.

  14. Sheep erythrocyte membrane binding and transfer of long-chain fatty acids

    Bojesen, Inge Norby; Bojesen, Eigil

    1999-01-01

    Palmitic acid, oleic acid, linoleic acid, arachidonic acid, sheep erythrocyte ghosts, transporting elements, transport kinetics, fatty acid transport, transport rate constants......Palmitic acid, oleic acid, linoleic acid, arachidonic acid, sheep erythrocyte ghosts, transporting elements, transport kinetics, fatty acid transport, transport rate constants...

  15. Phloem Transport of Fructans in the Crassulacean Acid Metabolism Species Agave deserti1

    Wang, Ning; Nobel, Park S.

    1998-01-01

    Four oligofructans (neokestose, 1-kestose, nystose, and an un-identified pentofructan) occurred in the vascular tissues and phloem sap of mature leaves of Agave deserti. Fructosyltransferases (responsible for fructan biosynthesis) also occurred in the vascular tissues. In contrast, oligofructans and fructosyltransferases were virtually absent from the chlorenchyma, suggesting that fructan biosynthesis was restricted to the vascular tissues. On a molar basis, these oligofructans accounted for 46% of the total soluble sugars in the vascular tissues (sucrose [Suc] for 26%) and for 19% in the phloem sap (fructose for 24% and Suc for 53%). The Suc concentration was 1.8 times higher in the cytosol of the chlorenchyma cells than in the phloem sap; the nystose concentration was 4.9 times higher and that of pentofructan was 3.2 times higher in the vascular tissues than in the phloem sap. To our knowledge, these results provide the first evidence that oligofructans are synthesized and transported in the phloem of higher plants. The polymer-trapping mechanism proposed for dicotyledonous C3 species may also be valid for oligofructan transport in monocotyledonous species, such as A. deserti, which may use a symplastic pathway for phloem loading of photosynthates in its mature leaves. PMID:9490769

  16. Phloem Transport of Fructans in the Crassulacean Acid Metabolism Species Agave deserti

    Wang; Nobel

    1998-02-01

    Four oligofructans (neokestose, 1-kestose, nystose, and an un-identified pentofructan) occurred in the vascular tissues and phloem sap of mature leaves of Agave deserti. Fructosyltransferases (responsible for fructan biosynthesis) also occurred in the vascular tissues. In contrast, oligofructans and fructosyltransferases were virtually absent from the chlorenchyma, suggesting that fructan biosynthesis was restricted to the vascular tissues. On a molar basis, these oligofructans accounted for 46% of the total soluble sugars in the vascular tissues (sucrose [Suc] for 26%) and for 19% in the phloem sap (fructose for 24% and Suc for 53%). The Suc concentration was 1.8 times higher in the cytosol of the chlorenchyma cells than in the phloem sap; the nystose concentration was 4.9 times higher and that of pentofructan was 3.2 times higher in the vascular tissues than in the phloem sap. To our knowledge, these results provide the first evidence that oligofructans are synthesized and transported in the phloem of higher plants. The polymer-trapping mechanism proposed for dicotyledonous C3 species may also be valid for oligofructan transport in monocotyledonous species, such as A. deserti, which may use a symplastic pathway for phloem loading of photosynthates in its mature leaves.

  17. Geochemical controls on the partitioning and hydrological transport of metals in a non-acidic river system

    J. Thorslund

    2014-08-01

    Full Text Available The speciation of metals, i.e. in which chemical form they occur, controls their mobility, bioavailability and toxicity. The overall objective of this study is to extend the knowledge on the spreading of metals in non-acidic river systems; this knowledge is currently much more limited than the knowledge on metal behavior under acidic conditions that for instance are found in acid mine drainage systems. We combine novel measurements of metal spreading under distinctly high-pH conditions (up to 9.6 in the Tuul River at the Zaamar Goldfield mining site (Upper Lake Baikal Drainage Basin, Mongolia with a geochemical modelling approach (Visual MINTEQ. Total mass flows of several metals (Al, Cd, Fe, Mn, Pb and V showed net increases over the mining site, with metals in suspension generally dominating the total export from the site. Model results showed that a main difference from acid mine drainage geochemistry is that the prevailing high pH causes precipitation of ferrihydrite and gibbsite, which removed between 90 to 100% of Fe and Al from solution. This notably influenced the behavior of As, Pb and V since their solubilities are controlled by sorption onto ferrihydrite. The combined effects from such geochemical processes (precipitation, sorption hence explain the high impact of suspended transport to total transport under high pH conditions. Arsenic furthermore showed dissolved concentrations above health risk-based guideline values in several locations and can thus be of main toxic concern in the upper Lake Baikal Drainage Basin. Moreover, present modelling showed that in particular the solubility of Fe, Pb and Zn can increase considerably as DOC concentrations increase due to metal-organic complexation. In high pH systems, seasonality of DOC concentrations can therefore have a major influence on the spreading and toxicity of these metals, as can DOC trends caused by land use change. Present results also suggest that the behavior of Cr, Cu and Mo

  18. Geochemical controls on the partitioning and hydrological transport of metals in a non-acidic river system

    Thorslund, J.; Jarsjö, J.; Wällstedt, T.; Mörth, C. M.; Lychagin, M. Y.; Chalov, S. R.

    2014-08-01

    The speciation of metals, i.e. in which chemical form they occur, controls their mobility, bioavailability and toxicity. The overall objective of this study is to extend the knowledge on the spreading of metals in non-acidic river systems; this knowledge is currently much more limited than the knowledge on metal behavior under acidic conditions that for instance are found in acid mine drainage systems. We combine novel measurements of metal spreading under distinctly high-pH conditions (up to 9.6) in the Tuul River at the Zaamar Goldfield mining site (Upper Lake Baikal Drainage Basin, Mongolia) with a geochemical modelling approach (Visual MINTEQ). Total mass flows of several metals (Al, Cd, Fe, Mn, Pb and V) showed net increases over the mining site, with metals in suspension generally dominating the total export from the site. Model results showed that a main difference from acid mine drainage geochemistry is that the prevailing high pH causes precipitation of ferrihydrite and gibbsite, which removed between 90 to 100% of Fe and Al from solution. This notably influenced the behavior of As, Pb and V since their solubilities are controlled by sorption onto ferrihydrite. The combined effects from such geochemical processes (precipitation, sorption) hence explain the high impact of suspended transport to total transport under high pH conditions. Arsenic furthermore showed dissolved concentrations above health risk-based guideline values in several locations and can thus be of main toxic concern in the upper Lake Baikal Drainage Basin. Moreover, present modelling showed that in particular the solubility of Fe, Pb and Zn can increase considerably as DOC concentrations increase due to metal-organic complexation. In high pH systems, seasonality of DOC concentrations can therefore have a major influence on the spreading and toxicity of these metals, as can DOC trends caused by land use change. Present results also suggest that the behavior of Cr, Cu and Mo would be much

  19. Overexpression of human fatty acid transport protein 2/very long chain acyl-CoA synthetase 1 (FATP2/Acsvl1) reveals distinct patterns of trafficking of exogenous fatty acids.

    Melton, Elaina M; Cerny, Ronald L; DiRusso, Concetta C; Black, Paul N

    2013-11-01

    In mammals, the fatty acid transport proteins (FATP1 through FATP6) are members of a highly conserved family of proteins, which function in fatty acid transport proceeding through vectorial acylation and in the activation of very long chain fatty acids, branched chain fatty acids and secondary bile acids. FATP1, 2 and 4, for example directly function in fatty acid transport and very long chain fatty acids activation while FATP5 does not function in fatty acid transport but activates secondary bile acids. In the present work, we have used stable isotopically labeled fatty acids differing in carbon length and saturation in cells expressing FATP2 to gain further insights into how this protein functions in fatty acid transport and intracellular fatty acid trafficking. Our previous studies showed the expression of FATP2 modestly increased C16:0-CoA and C20:4-CoA and significantly increased C18:3-CoA and C22:6-CoA after 4h. The increases in C16:0-CoA and C18:3-CoA suggest FATP2 must necessarily partner with a long chain acyl CoA synthetase (Acsl) to generate C16:0-CoA and C18:3-CoA through vectorial acylation. The very long chain acyl CoA synthetase activity of FATP2 is consistent in the generation of C20:4-CoA and C22:6-CoA coincident with transport from their respective exogenous fatty acids. The trafficking of exogenous fatty acids into phosphatidic acid (PA) and into the major classes of phospholipids (phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylinositol (PI), and phosphatidyserine (PS)) resulted in distinctive profiles, which changed with the expression of FATP2. The trafficking of exogenous C16:0 and C22:6 into PA was significant where there was 6.9- and 5.3-fold increased incorporation, respectively, over the control; C18:3 and C20:4 also trended to increase in the PA pool while there were no changes for C18:1 and C18:2. The trafficking of C18:3 into PC and PI trended higher and approached significance. In the case of C20:4, expression of

  20. [Significance of considering hemoglobin derivatives and acid-base balance in the evaluation of the blood oxygen-transport system].

    Matiushichev, V B; Shamratova, V G; Krapivko, Iu K

    2009-12-01

    Factor analysis was used to study the pattern of relationships of a number of hematological parameters in clinically healthy young subjects and in patients with moderate anemia. The level of total hemoglobin and the concentration of red blood cells were ascertained to control blood oxygen-transporting function in not full measure and these might be referred to as basic characteristics only conventionally. To clarify the picture, these criteria should be supplemented by the information on other parameters. It is concluded that the introduction of the ratio of a number of hemoglobin derivatives, blood oxygen regimen and acid-base balance can substantially increase the validity of clinical opinions as to this blood function.

  1. Amino acid residues involved in ligand preference of the Snf3 transporter-like sensor in Saccharomyces cerevisiae

    Dietvorst, J.; Karhumaa, Kaisa; Kielland-Brandt, Morten;

    2010-01-01

    -methylglucoside and 6-deoxyglucose. The signalling proficiency of a non-phosphorylatable analogue strongly supports the notion that sensing through Snf3 does not require sugar phosphorylation. Sequence comparisons of Snf3 to glucose transporters indicated amino acid residues possibly involved in sensing of sugars other...... than glucose. By site-specific mutagenesis of the structural gene, roles of specific residues in Snf3 could he established. Change of isoleucine-374 to valine ill transmembrane segment 7 of Snf3 partially abolished sensing of fructose mannose. while mutagenesis causing it change of phenylalanine-462 (4......) tyrosine ill transmembrane segment 10 of Snf3 abolished sensing of fructose. Neither of these amino :kill changes affected the ability of Snf3 to sense glucose, nor did they permit Snf3 to sense galactose. These data indicate it similarity between it ligand binding site of the sensor Snf3 and binding sites...

  2. Gamma aminobutyric acid transporter subtype 1 gene knockout mice: a new model for attention deficit/hyperactivity disorder

    Ping Yang; Guoqiang Cai; Youqing Cai; Jian Fei; Guoxiang Liu

    2013-01-01

    Attention deficit/hyperactivity disorder (ADHD) is characterized by hyperactivity,impaired sustained attention,impulsivity,and is usually accompanied by varying degrees of learning difficulties and lack of motor coordination.However,the pathophysiology and etiology of ADHD remain inconclusive so far.Our previous studies have demonstrated that the gamma aminobutyric acid transporter subtype 1 (GAT1) gene knockout (ko) mouse (gat1-/-)is hyperactive and exhibited impaired memory performance in the Morris water maze.In the current study,we found that the gat1-/-mice showed low levels of attentional focusing and increased impulsivity.In addition,the gat1-/-mice displayed ataxia characterized by defects in motor coordination and balance skills.The hyperactivity in the ko mice was reduced by both methylphenidate and amphetamine.Collectively,these results suggest that GAT1 ko mouse is a new animal model for ADHD studying and GAT1 may be a new target to treat ADHD.

  3. The ileal lipid binding protein is required for efficient absorption and transport of bile acids in the distal portion of the murine small intestine.

    Dana Praslickova

    Full Text Available The ileal lipid binding protein (ilbp is a cytoplasmic protein that binds bile acids with high affinity. However evidence demonstrating the role of this protein in bile acid transport and homeostasis is missing. We created a mouse strain lacking ilbp (Fabp6(-/- mice and assessed the impact of ilbp deficiency on bile acid homeostasis and transport in vivo. Elimination of ilbp increased fecal bile acid excretion (54.2%, P<0.05 in female but not male Fabp6(-/- mice. The activity of cholesterol 7α-hydroxylase (cyp7a1, the rate-controlling enzyme of the classical bile acid biosynthetic pathway, was significantly increased in female (63.5%, P<0.05 but not in male Fabp6(-/- mice. The amount of [(3H]taurocholic acid (TCA excreted by 24 h after oral administration was 102% (P<0.025 higher for female Fabp6(-/- mice whereas it was 57.3% (P<0.01 lower for male Fabp6(-/- mice, compared to wild-type mice. The retained fraction of the [(3H]TCA localized in the small and large intestines was increased by 22% (P<0.02 and decreased by 62.7% (P<0.01, respectively, in male Fabp6(-/- mice relative wild-type mice, whereas no changes were seen in female Fabp6(-/- mice. Mucosal to serosal bile acid transport using everted distal gut sacs was decreased by 74% (P<0.03 in both sexes of Fabp6(-/- mice as compared to wild-type mice. The results demonstrate that ilbp is involved in the apical to basolateral transport of bile acids in ileal enterocytes, and is vital for the maintenance of bile acid homeostasis in the enterohepatic circulation (EHC in mice.

  4. Interleukin-1β inhibits insulin signaling and prevents insulin-stimulated system A amino acid transport in primary human trophoblasts.

    Aye, Irving L M H; Jansson, Thomas; Powell, Theresa L

    2013-12-05

    Interleukin-1β (IL-1β) promotes insulin resistance in tissues such as liver and skeletal muscle; however the influence of IL-1β on placental insulin signaling is unknown. We recently reported increased IL-1β protein expression in placentas of obese mothers, which could contribute to insulin resistance. In this study, we tested the hypothesis that IL-1β inhibits insulin signaling and prevents insulin-stimulated amino acid transport in cultured primary human trophoblast (PHT) cells. Cultured trophoblasts isolated from term placentas were treated with physiological concentrations of IL-1β (10pg/ml) for 24h. IL-1β increased the phosphorylation of insulin receptor substrate-1 (IRS-1) at Ser307 (inhibitory) and decreased total IRS-1 protein abundance but did not affect insulin receptor β expression. Furthermore, IL-1β inhibited insulin-stimulated phosphorylation of IRS-1 (Tyr612, activation site) and Akt (Thr308) and prevented insulin-stimulated increase in PI3K/p85 and Grb2 protein expression. IL-1β alone stimulated cRaf (Ser338), MEK (Ser221) and Erk1/2 (Thr202/Tyr204) phosphorylation. The inflammatory pathways nuclear factor kappa B and c-Jun N-terminal kinase, which are involved in insulin resistance, were also activated by IL-1β treatment. Moreover, IL-1β inhibited insulin-stimulated System A, but not System L amino acid uptake, indicating functional impairment of insulin signaling. In conclusion, IL-1β inhibited the insulin signaling pathway by inhibiting IRS-1 signaling and prevented insulin-stimulated System A transport, thereby promoting insulin resistance in cultured PHT cells. These findings indicate that conditions which lead to increased systemic maternal or placental IL-1β levels may attenuate the effects of maternal insulin on placental function and consequently fetal growth.

  5. Silencing of ABCC13 transporter in wheat reveals its involvement in grain development, phytic acid accumulation and lateral root formation.

    Bhati, Kaushal Kumar; Alok, Anshu; Kumar, Anil; Kaur, Jagdeep; Tiwari, Siddharth; Pandey, Ajay Kumar

    2016-07-01

    Low phytic acid is a trait desired in cereal crops and can be achieved by manipulating the genes involved either in its biosynthesis or its transport in the vacuoles. Previously, we have demonstrated that the wheat TaABCC13 protein is a functional transporter, primarily involved in heavy metal tolerance, and a probable candidate gene to achieve low phytate wheat. In the current study, RNA silencing was used to knockdown the expression of TaABCC13 in order to evaluate its functional importance in wheat. Transgenic plants with significantly reduced TaABCC13 transcripts in either seeds or roots were selected for further studies. Homozygous RNAi lines K1B4 and K4G7 exhibited 34-22% reduction of the phytic acid content in the mature grains (T4 seeds). These transgenic lines were defective for spike development, as characterized by reduced grain filling and numbers of spikelets. The seeds of transgenic wheat had delayed germination, but the viability of the seedlings was unaffected. Interestingly, early emergence of lateral roots was observed in TaABCC13-silenced lines as compared to non-transgenic lines. In addition, these lines also had defects in metal uptake and development of lateral roots in the presence of cadmium stress. Our results suggest roles of TaABCC13 in lateral root initiation and enhanced sensitivity towards heavy metals. Taken together, these data demonstrate that wheat ABCC13 is functionally important for grain development and plays an important role during detoxification of heavy metals.

  6. Clavulanic acid enhances glutamate transporter subtype I (GLT-1) expression and decreases reinforcing efficacy of cocaine in mice.

    Kim, Jae; John, Joel; Langford, Dianne; Walker, Ellen; Ward, Sara; Rawls, Scott M

    2016-03-01

    The β-lactam antibiotic ceftriaxone (CTX) reduces cocaine reinforcement and relapse in preclinical assays through a mechanism involving activation of glutamate transporter subtype 1 (GLT-1). However, its poor brain penetrability and intravenous administration route may limit its therapeutic utility for indications related to CNS diseases. An alternative is clavulanic acid (CA), a structural analog of CTX that retains the β-lactam core required for GLT-1 activity but displays enhanced brain penetrability and oral activity relative to CTX. Here, we tested the hypothesis that CA (1, 10 mg/kg ip) would enhance GLT-1 expression and decrease cocaine self-administration (SA) in mice, but at lower doses than CTX. Experiments revealed that GLT-1 transporter expression in the nucleus accumbens of mice treated with repeated CA (1, 10 mg/kg) was enhanced relative to saline-treated mice. Repeated CA treatment (1 mg/kg) reduced the reinforcing efficacy of cocaine (0.56 mg/kg/inf) in mice maintained on a progressive-ratio (PR) schedule of reinforcement but did not affect acquisition of cocaine SA under fixed-ratio responding or acquisition or retention of learning. These findings suggest that the β-lactamase inhibitor CA can activate the cellular glutamate reuptake system in the brain reward circuit and reduce cocaine's reinforcing efficacy at 100-fold lower doses than CTX.

  7. Association study of polymorphisms in the excitatory amino acid transporter 2 gene (SLC1A2 with schizophrenia

    Iwata Nakao

    2004-08-01

    Full Text Available Abstract Background The glutamatergic dysfunction hypothesis of schizophrenia suggests that genes involved in glutametergic transmission are candidates for schizophrenic susceptibility genes. We have been performing systematic association studies of schizophrenia with the glutamate receptor and transporter genes. In this study we report an association study of the excitatory amino acid transporter 2 gene, SLC1A2 with schizophrenia. Methods We genotyped 100 Japanese schizophrenics and 100 controls recruited from the Kyushu area for 11 single nucleotide polymorphism (SNP markers distributed in the SLC1A2 region using the direct sequencing and pyrosequencing methods, and examined allele, genotype and haplotype association with schizophrenia.The positive finding observed in the Kyushu samples was re-examined using 100 Japanese schizophrenics and 100 controls recruited from the Aichi area. Results We found significant differences in genotype and allele frequencies of SNP2 between cases and controls (P = 0.013 and 0.008, respectively. After Bonferroni corrections, the two significant differences disappeared. We tested haplotype associations for all possible combinations of SNP pairs. SNP2 showed significant haplotype associations with the disease (P = 9.4 × 10-5, P = 0.0052 with Bonferroni correction, at the lowest in 8 combinations. Moreover, the significant haplotype association of SNP2-SNP7 was replicated in the cumulative analysis of our two sample sets. Conclusion We concluded that at least one susceptibility locus for schizophrenia is probably located within or nearby SLC1A2 in the Japanese population.

  8. The genetic variation in Monocarboxylic acid transporter 2 (MCT2) has functional and clinical relevance with male infertility

    Jinu Lee; Dong Ryul Lee; Suman Lee

    2014-01-01

    Monocarboxylic acid transporter 2(MCT2) transports pyruvate and lactate outside and inside of sperms, mainly as energy sources and plays roles in the regulation of spermatogenesis. We investigated the association among genetic variations in theMCT2 gene, male infertility andMCT2 expression levels in sperm. The functional and genetic signiifcance of the intron 2(+28201A>G, rs10506398) and 3’ untranslated region(UTR) single nucleotide polymorphism(SNP)(+2626G>A, rs10506399) of MCT2 variants were investigated. Two MCT2 polymorphisms were associated with male infertility(n=471,PA) had a strong association with the oligoasthenoteratozoospermia(OAT) group. The+2626GG type had an almost 2.4‑fold higher sperm count than that of the+2626AA type(+2626GG; 66×106vs+2626AA; 27×106, P<0.0001). The MCT2‑3’ UTR SNP may be important for expression, as it is located at the MCT23’ UTR. The average MCT2 protein amount in sperm of the+2626GG type was about two times higher than that of the+2626AA type. The results suggest that genetic variation in MCT2 has functional and clinical relevance with male infertility.

  9. The genetic variation in Monocarboxylic acid transporter 2 (MCT2 has functional and clinical relevance with male infertility

    Jinu Lee

    2014-10-01

    Full Text Available Monocarboxylic acid transporter 2 (MCT2 transports pyruvate and lactate outside and inside of sperms, mainly as energy sources and plays roles in the regulation of spermatogenesis. We investigated the association among genetic variations in the MCT2 gene, male infertility and MCT2 expression levels in sperm. The functional and genetic significance of the intron 2 (+28201A > G, rs10506398 and 3' untranslated region (UTR single nucleotide polymorphism (SNP (+2626G > A, rs10506399 of MCT2 variants were investigated. Two MCT2 polymorphisms were associated with male infertility (n = 471, P A had a strong association with the oligoasthenoteratozoospermia (OAT group. The +2626GG type had an almost 2.4-fold higher sperm count than that of the +2626AA type (+2626GG; 66 × 10 6 vs +2626AA; 27 × 10 6 , P < 0.0001. The MCT2-3' UTR SNP may be important for expression, as it is located at the MCT2 3' UTR. The average MCT2 protein amount in sperm of the +2626GG type was about two times higher than that of the +2626AA type. The results suggest that genetic variation in MCT2 has functional and clinical relevance with male infertility.

  10. Effect of medium-chain glycerides on the membrane transport of D-glucose and sulfanilic acid in the intestinal brush-border membrane vesicles.

    Sagara, K; Higaki, K; Yamazaki, A; Hashida, M; Sezaki, H

    1990-01-01

    To clarify the influence of medium-chain glycerides (MCG) on a biological membrane, we investigated the membrane transport of D-glucose and sulfanilic acid in the brush-border membrane (BBM) vesicles pretreated with MCG. The size distribution of the BBM vesicles determined by electron microscopic observation was not significantly different between the vesicles incorporated with MCG and those of the control. However, the amount of D-glucose taken up by the vesicles at an equilibrated stage (30 min) was significantly decreased in the MCG-treated ones based on unit content of protein. Based on these results we estimated the membrane transport of D-glucose and sulfanilic acid in consideration of vesiculation or filter-capturing efficiency in MCG-treated vesicles. The rates of Na+ gradient-independent D-glucose transport and sulfanilic acid transport were significantly greater in MCG-treated vesicles than in the control. On the other hand, the magnitude of overshooting effect in Na+ gradient-dependent uptake of D-glucose in MCG-treated vesicles was maintained similar to the control. Comparison of kinetic parameters for active D-glucose transport at different concentrations indicated that Km and Vmax were not significantly different between MCG-treated and the control vesicles. These results indicated that passive diffusion of D-glucose and sulfanilic acid was significantly increased but Na(+)-glucose cotransporter was not significantly changed by the incorporation of MCG in the intestinal BBM vesicles.

  11. Conservation of structure and mechanism in primary and secondary transporters exemplified by SiaP, a sialic acid binding virulence factor from Haemophilus influenzae.

    Müller, Axel; Severi, Emmanuele; Mulligan, Christopher; Watts, Andrew G; Kelly, David J; Wilson, Keith S; Wilkinson, Anthony J; Thomas, Gavin H

    2006-08-04

    Extracytoplasmic solute receptors (ESRs) are important components of solute uptake systems in bacteria, having been studied extensively as parts of ATP binding cassette transporters. Herein we report the first crystal structure of an ESR protein from a functionally characterized electrochemical ion gradient dependent secondary transporter. This protein, SiaP, forms part of a tripartite ATP-independent periplasmic transporter specific for sialic acid in Haemophilus influenzae. Surprisingly, the structure reveals an overall topology similar to ATP binding cassette ESR proteins, which is not apparent from the sequence, demonstrating that primary and secondary transporters can share a common structural component. The structure of SiaP in the presence of the sialic acid analogue 2,3-didehydro-2-deoxy-N-acetylneuraminic acid reveals the ligand bound in a deep cavity with its carboxylate group forming a salt bridge with a highly conserved Arg residue. Sialic acid binding, which obeys simple bimolecular association kinetics as determined by stopped-flow fluorescence spectroscopy, is accompanied by domain closure about a hinge region and the kinking of an alpha-helix hinge component. The structure provides insight into the evolution, mechanism, and substrate specificity of ESR-dependent secondary transporters that are widespread in prokaryotes.

  12. Fecal bile acid excretion and messenger RNA expression levels of ileal transporters in high risk gallstone patients

    Miquel Juan

    2009-12-01

    Full Text Available Abstract Background Cholesterol gallstone disease (GS is highly prevalent among Hispanics and American Indians. In GS, the pool of bile acids (BA is decreased, suggesting that BA absorption is impaired. In Caucasian GS patients, mRNA levels for ileal BA transporters are decreased. We aimed to determine fecal BA excretion rates, mRNA levels for ileal BA transporter genes and of regulatory genes of BA synthesis in Hispanic GS patients. Results Excretion of fecal BA was measured in seven GS females and in ten GS-free individuals, all with a body mass index 2O3 (300 mg/day for 10 days, and fecal specimens were collected on the last 3 days. Chromium was measured by a colorimetric method, and BA was quantitated by gas chromatography/mass spectroscopy. Intake of calories, nutrients, fiber and cholesterol were similar in the GS and GS-free subjects. Mean BA excretion levels were 520 ± 80 mg/day for the GS-free group, and 461 ± 105 mg/day for the GS group. Messenger RNA expression levels were determined by RT-PCR on biopsy samples obtained from ileum during diagnostic colonoscopy (14 GS-free controls and 16 GS patients and from liver during surgery performed at 8 and 10 AM (12 GS and 10 GS-free patients operated on for gastrointestinal malignancies, all with a body mass index Conclusion Hispanics with GS have fecal BA excretion rates and mRNA levels of genes for ileal BA transporters that are similar to GS-free subjects. However, mRNA expression levels of Cyp7A1 are increased in GS, indicating that regulation of BA synthesis is abnormal in Hispanics with GS.

  13. Short-term adaptation of the ruminal epithelium involves abrupt changes in sodium and short-chain fatty acid transport.

    Schurmann, Brittney L; Walpole, Matthew E; Górka, Pawel; Ching, John C H; Loewen, Matthew E; Penner, Gregory B

    2014-10-01

    The objectives of this study were to determine the effect of an increase in diet fermentability on 1) the rate and extent to which short-chain fatty acid (SCFA) absorption pathways adapt relative to changes in Na(+) transport, 2) the epithelial surface area (SA), and 3) the barrier function of the bovine ruminal epithelium. Twenty-five Holstein steer calves were assigned to either the control diet (CON; 91.5% hay and 8.5% supplement) or a moderately fermentable diet (50% hay; 41.5% barley grain (G), and 8.5% supplement) fed for 3 (G3), 7 (G7), 14 (G14), or 21 days (G21). All calves were fed at 2.25% body weight at 0800. Calves were killed (at 1000), and ruminal tissue was collected to determine the rate and pathway of SCFA transport, Na(+) transport and barrier function in Ussing chambers. Tissue was also collected for SA measurement and gene expression. Mean reticular pH decreased from 6.90 for CON to 6.59 for G7 and then increased (quadratic P epithelium was not affected (P > 0.10) by dietary treatment, the net Na(+) flux increased by 125% within 7 days (quadratic P = 0.016). Total acetate and butyrate flux increased from CON to G21, where passive diffusion was the primary SCFA absorption pathway affected. Increased mannitol flux, tissue conductance, and tendencies for increased expression of IL-1β and TLR2 indicated reduced rumen epithelium barrier function. This study indicates that an increase in diet fermentability acutely increases Na(+) and SCFA absorption in the absence of increased SA, but reduces barrier function.

  14. Photodetection and transport properties of surface capped silicon nanowires arrays with polyacrylic acid

    Kamran Rasool

    2013-08-01

    Full Text Available Efficient hybrid photodetector consisting of silicon nanowires (SiNWs (∼40 μm capped with Polyacrylic Acid (PAA is demonstrated. Highly diluted PAA with deionized (DI water was spun directly on vertical SiNW arrays prepared by metal assisted electroless chemical etching (MACE technique. We have observed ∼9, 4 and 9 times enhancement in responsivity, detectivity and external quantum efficiency in SiNWs/PAA hybrid device in comparison to SiNWs only device. Higher electrical current and photodetection may be due to the increment of hydrophilic content (acceptor like states on SiNWs interface. The higher photosensitivity can also be attributed to the presence of low refractive index PAA around SiNWs which causes funneling of photon energy into SiNWs. Surface roughness of SiNWs leads to immobilization of charge carriers and hence shows persistent photoconductivity.

  15. Reactive transport of gentisic acid in a hematite-coated sand column: Experimental study and modeling

    Hanna, K.; Rusch, B.; Lassabatere, L.; Hofmann, A.; Humbert, B.

    2010-06-01

    The adsorption of gentisic acid (GA) by hematite nano-particles was examined under static and dynamic conditions by conducting batch and column tests. To simulate natural sediments, the iron oxide was deposited on 10 μm quartz particles. The GA adsorption was described by a surface complexation model fitted to pH-adsorption curves with GA concentrations of 0.1-1 mM in a pH range of 3-10. The surface was described with one type of site ( tbnd FeOH°), while gentisic acid at the surface was described by two surface complexes ( tbnd FeLH 2°, log Kint = 8.9 and tbnd FeLH -, log Kint = -8.2). Modeling was conducted with PHREEQC-2 using the MINTEQ database. From a kinetic point of view, the intrinsic chemical reactions were likely to be the rate-limiting step of sorption (˜10 -3 s -1) while external and internal mass transfer rates (˜10 2 s -1) were much faster. Under flow through conditions (column), adsorption of GA to hematite-coated sand was about 7-times lower than under turbulent mixing (batch). This difference could not be explained by chemical adsorption kinetics as shown by test calculations run with HYDRUS-1D software. Surface complexation model simulations however successfully described the data when the surface area was adjusted, suggesting that under flow conditions the accessibility to the reactive surface sites was reduced. The exact mechanism responsible for the increased mobility of GA could not be determined but some parameters suggested that decreased external mass transfer between solution and surface may play a significant role under flow through conditions.

  16. Transport of perfluoroalkyl acids in a water-saturated sediment column investigated under near-natural conditions.

    Vierke, Lena; Möller, Axel; Klitzke, Sondra

    2014-03-01

    The aim of this study was to gain an understanding of the transport of C4-10 perfluoroalkyl carboxylic acids (PFCAs) and C4,6,8 perfluoroalkyl sulfonic acids (PFSAs) in a water-saturated sediment column representing a riverbank filtration scenario under near-natural conditions. Short-chain PFCAs and PFSAs with up to six C-atoms showed complete tracer-like breakthrough. Longer chain ones were retarded due to sorption to the sediment or due to other processes in the aqueous phase. The study reports the first column derived sediment-water partition coefficients ranging from 0.01 cm(3) g(-1) to 0.41 cm(3) g(-1) for C4,6 PFSAs and from 0.0 cm(3) g(-1) to 6.5 cm(3) g(-1) for C4,5,6,8,9 PFCAs. The results clearly indicate that short-chain PFCAs and PFSAs may pose a problem if contaminated surface waters are used for drinking water production via riverbank filtration.

  17. Excitatory amino acid transporters tonically restrain nTS synaptic and neuronal activity to modulate cardiorespiratory function.

    Matott, Michael P; Ruyle, Brian C; Hasser, Eileen M; Kline, David D

    2016-03-01

    The nucleus tractus solitarii (nTS) is the initial central termination site for visceral afferents and is important for modulation and integration of multiple reflexes including cardiorespiratory reflexes. Glutamate is the primary excitatory neurotransmitter in the nTS and is removed from the extracellular milieu by excitatory amino acid transporters (EAATs). The goal of this study was to elucidate the role of EAATs in the nTS on basal synaptic and neuronal function and cardiorespiratory regulation. The majority of glutamate clearance in the central nervous system is believed to be mediated by astrocytic EAAT 1 and 2. We confirmed the presence of EAAT 1 and 2 within the nTS and their colocalization with astrocytic markers. EAAT blockade withdl-threo-β-benzyloxyaspartic acid (TBOA) produced a concentration-related depolarization, increased spontaneous excitatory postsynaptic current (EPSC) frequency, and enhanced action potential discharge in nTS neurons. Solitary tract-evoked EPSCs were significantly reduced by EAAT blockade. Microinjection of TBOA into the nTS of anesthetized rats induced apneic, sympathoinhibitory, depressor, and bradycardic responses. These effects mimicked the response to microinjection of exogenous glutamate, and glutamate responses were enhanced by EAAT blockade. Together these data indicate that EAATs tonically restrain nTS excitability to modulate cardiorespiratory function.

  18. Na+,K+-ATPase amino acids involved in transport of the 3rd sodium ion

    Holm, Rikke; Einholm, Anja P.; Toustrup-Jensen, Mads Schak;

    . I have mutated several residues of the rat α1 isoform related to the channel structure and have characterized the effects on Na+ and K+ affinities and the E2-E1 and E1P-E2P conformational transitions of the pump cycle. Mutation D928N of rat α1, equivalent to D923N of human α3, shows a conspicuous...... reduction of apparent Na+ affinity without effect on external K+ affinity. D928L shows a large reduction of apparent Na+ affinity, even though the E2-E1 conformational equilibrium is shifted strongly in favor of the Na+ binding E1 form. Located deeper in the channel than D923/928 is Q856. Mutants Q856L, Q...... α3 mutant D923N, which is associated with RDP [1]. D923 is located in the cytoplasmic half of transmembrane helix M8 in a putative transport channel between M5, M7, M8 and M10. The external K+ sites behaved wild type (wt)-like in the mutant, suggesting that D923 is associated with the third Na+ ion...

  19. Hydration state of goats transported by road for 12 hours during the hot-dry conditions and the modulating role of ascorbic acid.

    Minka, Salka Ndazo; Ayo, Joseph Olusegun

    2012-01-01

    This study investigated the effects of 12 hr of road transportation during the hot-dry conditions and the modulating role of ascorbic acid (AA) on the hydration state of goats. Twenty goats who served as treatment goats received oral administration of 100 mg/kg body weight of AA, whereas another 20 control goats received sterile water; thereafter, the goats were loaded and transported. The study determined changes in skin thickness; albumin (Alb); total protein (TP); elimination of the gut content; fecal water; urine specific gravity (SG); and pH before, during, and after the transportation. The result obtained in the control goats showed significant (p .05). In conclusion, 12-hr road transportation of goats induced dehydration, which may affect the welfare and health status of the goats. The administration of AA ameliorated the risk of adverse effects of handling, loading, transportation, and hot-dry conditions on hydration state of goats.

  20. Hereditary folate malabsorption: A positively charged amino acid at position 113 of the proton-coupled folate transporter (PCFT/SLC46A1) is required for folic acid binding

    Lasry, Inbal; Berman, Bluma [The Fred Wyszkowski Cancer Research Laboratory, Dept. of Biology, Technion-Israel Institute of Technology, Haifa 32000 (Israel); Glaser, Fabian [Bioinformatics Knowledge Unit, The Lorry I. Lokey Interdisciplinary Center for Life Sciences and Engineering, Technion, Haifa 32000 (Israel); Jansen, Gerrit [Department of Rheumatology, VU University Medical Center, Amsterdam (Netherlands); Assaraf, Yehuda G., E-mail: assaraf@tx.technion.ac.il [The Fred Wyszkowski Cancer Research Laboratory, Dept. of Biology, Technion-Israel Institute of Technology, Haifa 32000 (Israel)

    2009-08-28

    The proton-coupled folate transporter (PCFT/SLC46A1) mediates intestinal folate uptake at acidic pH. Some loss of folic acid (FA) transport mutations in PCFT from hereditary folate malabsorption (HFM) patients cluster in R113, thereby suggesting a functional role for this residue. Herein, unlike non-conservative substitutions, an R113H mutant displayed 80-fold increase in the FA transport Km while retaining parental Vmax, hence indicating a major fall in folate substrate affinity. Furthermore, consistent with the preservation of 9% of parental transport activity, R113H transfectants displayed a substantial decrease in the FA growth requirement relative to mock transfectants. Homology modeling based on the crystal structures of the Escherichia coli transporter homologues EmrD and glycerol-3-phosphate transporter revealed that the R113H rotamer properly protrudes into the cytoplasmic face of the minor cleft normally occupied by R113. These findings constitute the first demonstration that a basic amino acid at position 113 is required for folate substrate binding.

  1. The EGF Receptor Promotes the Malignant Potential of Glioma by Regulating Amino Acid Transport System xc(-).

    Tsuchihashi, Kenji; Okazaki, Shogo; Ohmura, Mitsuyo; Ishikawa, Miyuki; Sampetrean, Oltea; Onishi, Nobuyuki; Wakimoto, Hiroaki; Yoshikawa, Momoko; Seishima, Ryo; Iwasaki, Yoshimi; Morikawa, Takayuki; Abe, Shinya; Takao, Ayumi; Shimizu, Misato; Masuko, Takashi; Nagane, Motoo; Furnari, Frank B; Akiyama, Tetsu; Suematsu, Makoto; Baba, Eishi; Akashi, Koichi; Saya, Hideyuki; Nagano, Osamu

    2016-05-15

    Extracellular free amino acids contribute to the interaction between a tumor and its microenvironment through effects on cellular metabolism and malignant behavior. System xc(-) is composed of xCT and CD98hc subunits and functions as a plasma membrane antiporter for the uptake of extracellular cystine in exchange for intracellular glutamate. Here, we show that the EGFR interacts with xCT and thereby promotes its cell surface expression and function in human glioma cells. EGFR-expressing glioma cells manifested both enhanced antioxidant capacity as a result of increased cystine uptake, as well as increased glutamate, which promotes matrix invasion. Imaging mass spectrometry also revealed that brain tumors formed in mice by human glioma cells stably overexpressing EGFR contained higher levels of reduced glutathione compared with those formed by parental cells. Targeted inhibition of xCT suppressed the EGFR-dependent enhancement of antioxidant capacity in glioma cells, as well as tumor growth and invasiveness. Our findings establish a new functional role for EGFR in promoting the malignant potential of glioma cells through interaction with xCT at the cell surface. Cancer Res; 76(10); 2954-63. ©2016 AACR.

  2. Oxygenated metabolites of anandamide and 2-arachidonoylglycerol : conformational analysis and interaction with cannabinoid receptors, membrane transporter, and fatty acid amide hydrolase

    Vliegenthart, J.F.G.; Stelt, M. van der; Kuik, J.A. van; Zadelhoff, G. van; Leeflang, B.R.; Veldink, G.A.; Finazzi Agrò, A.; Maccarrone, M.

    2002-01-01

    This study was aimed at finding structural requirements for the interaction of the acyl chain of endocannabinoids with cannabinoid receptors, membrane transporter protein, and fatty acid amide hydrolase (FAAH). To this end, the flexibility of the acyl chain was restricted by introduction of an 1-hyd

  3. Transport and Retention of TiO2 Rutile Nanoparticles in Saturated Porous Media: Influence of Solution pH, Ionic Strength, and the Presence of Humic Acid

    The influence of solution pH, ionic strength, and varying concentrations of the Suwannee River Humic Acid (SRHA) on the transport of titanium dioxide (TiO2, rutile) nanoparticle aggregates (nTiO2) in saturated porous media was investigated through systematically examining the tra...

  4. Equilibrative nucleoside (ENTs) and cationic amino acid (CATs) transporters: implications in foetal endothelial dysfunction in human pregnancy diseases.

    Casanello, Paola; Escudero, Carlos; Sobrevia, Luis

    2007-01-01

    Gestational diabetes (GD, characterized by abnormal D-glucose metabolism), intrauterine growth restriction (IUGR, a disease associated with reduced oxygen delivery (hypoxia) to the foetus), and preeclampsia (PE, a pregnancy complication characterized by high blood pressure, proteinuria and increased vascular resistance), induce foetal endothelial dysfunction with implications in adult life and increase the risk of vascular diseases. Synthesis of nitric oxide (NO) and uptake of L-arginine (the NO synthase (NOS) substrate) and adenosine (a vasoactive endogenous nucleoside) by the umbilical vein endothelium is altered in pregnancies with GD, IUGR or PE. Mechanisms underlying these alterations include differential expression of equilibrative nucleoside transporters (ENTs), cationic amino acid transporters (CATs), and NOS. Modulation of ENTs, CATs, and NOS expression and activity in endothelium involves protein kinase C (PKC), mitogen-activated protein kinases p42 and p44 (p42/44(mapk)), calcium, and phosphatidyl inositol 3 kinase (PI3k), among others. Elevated extracellular D-glucose and hypoxia alter human endothelial function. However, information regarding the transcriptional modulation of ENTs, CATs, and NOS is limited. This review focuses on the effect of transcriptional and post-transcriptional regulatory mechanisms involved in the modulation of ENTs and CATs, and NOS expression and activity, and the consequences for foetal endothelial function in GD, IUGR and PE. The available information will contribute to a better understanding of the cell and molecular basis of the altered vascular endothelial function in these pregnancy diseases and will emphasize the key role of this type of epithelium in placental function and the normal foetal development and growth.

  5. Accumulation and Transport of 1-Aminocyclopropane-1-Carboxylic Acid (ACC) in Plants: Current Status, Considerations for Future Research and Agronomic Applications.

    Vanderstraeten, Lisa; Van Der Straeten, Dominique

    2017-01-01

    1-aminocyclopropane-1-carboxylic acid (ACC) is a non-protein amino acid acting as the direct precursor of ethylene, a plant hormone regulating a wide variety of vegetative and developmental processes. ACC is the central molecule of ethylene biosynthesis. The rate of ACC formation differs in response to developmental, hormonal and environmental cues. ACC can be conjugated to three derivatives, metabolized in planta or by rhizobacteria using ACC deaminase, and is transported throughout the plant over short and long distances, remotely leading to ethylene responses. This review highlights some recent advances related to ACC. These include the regulation of ACC synthesis, conjugation and deamination, evidence for a role of ACC as an ethylene-independent signal, short and long range ACC transport, and the identification of a first ACC transporter. Although unraveling the complex mechanism of ACC transport is in its infancy, new questions emerge together with the identification of a first transporter. In the light of the future quest for additional ACC transporters, this review presents perspectives of the novel findings and includes considerations for future research toward applications in agronomy.

  6. CAP-D3 Promotes Bacterial Clearance in Human Intestinal Epithelial Cells by Repressing Expression of Amino Acid Transporters

    Kemp, Jacqueline R.; Nickerson, Kourtney P.; Deutschman, Emily; Kim, Yeojung; West, Gail; Sadler, Tammy; Stylianou, Eleni; Krokowski, Dawid; Hatzoglou, Maria; de la Motte, Carol; Rubin, Brian P.; Fiocchi, Claudio

    2015-01-01

    BACKGROUND & AIMS Defects in colonic epithelial barrier defenses are associated with ulcerative colitis (UC). The proteins that regulate bacterial clearance in the colonic epithelium have not been completely identified. The chromosome-associated protein D3 (dCAP-D3), regulates responses to bacterial infection. We examined whether CAP-D3 promotes bacterial clearance in human colonic epithelium. METHODS Clearance of Salmonella or adherent-invasive Escherichia coli LF82 was assessed by gentamycin protection assays in HT-29 and Caco-2 cells expressing small hairpin RNAs against CAP-D3. We used immunoblot assays to measure levels of CAP-D3 in colonic epithelial cells from patients with UC and healthy individuals (controls). RNA sequencing identified genes activated by CAP-D3. We analyzed the roles of CAP-D3 target genes in bacterial clearance using gentamycin protection and immunofluorescence assays and studies with pharmacologic inhibitors. RESULTS CAP-D3 expression was reduced in colonic epithelial cells from patients with active UC. Reduced CAP-D3 expression decreased autophagy and impaired intracellular bacterial clearance by HT-29 and Caco-2 colonic epithelial cells. Lower levels of CAP-D3 increased transcription of genes encoding SLC7A5 and SLC3A2, whose products heterodimerize to form an amino acid transporter in HT-29 cells following bacterial infection; levels of SLC7A5–SLC3A2 were increased in tissues from patients with UC, compared with controls. Reduced CAP-D3 in HT-29 cells resulted in earlier recruitment of SLC7A5 to Salmonella-containing vacuoles, increased activity of mTORC1, and increased survival of bacteria. Inhibition of SLC7A5–SLC3A2 or mTORC1 activity rescued the bacterial clearance defects of CAP-D3– deficient cells. CONCLUSIONS CAP-D3 downregulates transcription of genes that encode amino acid transporters (SLC7A5 and SLC3A2) to promote bacterial autophagy by colon epithelial cells. Levels of CAP-D3 protein are reduced in patients with

  7. Quantification of the xylem-to-phloem transfer of amino acids by use of inulin [14C]carboxylic acid as xylem transport marker

    Bel, A.J.E. van

    1984-01-01

    Inulin [¹⁴C] carboxylic acid and ¹⁴C.labelled amino acid (a-aminoisobutyric acid (aib) and valine) solutions were introduced into the transpiration stream through the cut stem bases of young (4-12 leaves) tomato plants. Inulin carboxylic acid (inu) was translocated exclusively by the xylem, whereas

  8. L-leucine, L-methionine, and L-phenylalanine share a Na(+)/K (+)-dependent amino acid transporter in shrimp hepatopancreas.

    Duka, Ada; Ahearn, Gregory A

    2013-08-01

    Hepatopancreatic brush border membrane vesicles (BBMV), made from Atlantic White shrimp (Litopenaeus setiferus), were used to characterize the transport properties of (3)H-L-leucine influx by these membrane systems and how other essential amino acids and the cations, sodium and potassium, interact with this transport system. (3)H-L-leucine uptake by BBMV was pH-sensitive and occurred against transient transmembrane concentration gradients in both Na(+)- and K(+)-containing incubation media, suggesting that either cation was capable of providing a driving force for amino acid accumulation. (3)H-L-leucine uptake in NaCl or KCl media were each three times greater in acidic pH (pH 5.5) than in alkaline pH (pH 8.5). The essential amino acid, L-methionine, at 20 mM significantly (p  0.05) and may represent an L-methionine- and cation-independent transport system. (3)H-L-leucine influxes in both NaCl and KCl incubation media were hyperbolic functions of [L-leucine], following the carrier-mediated Michaelis-Menten equation. In NaCl, (3)H-L-leucine influx displayed a low apparent K M (high affinity) and low apparent J max, while in KCl the transport exhibited a high apparent K M (low affinity) and high apparent J max. L-methionine or L-phenylalanine (7 and 20 mM) were competitive inhibitors of (3)H-L-leucine influxes in both NaCl and KCl media, producing a significant (p phenylalanine-shared carrier system that is enhanced by acidic pH and can be stimulated by either Na(+) or K(+) acting as co-transport drivers binding to shared activator sites.

  9. Estradiol enhances effects of fructose rich diet on cardiac fatty acid transporter CD36 and triglycerides accumulation.

    Korićanac, Goran; Tepavčević, Snežana; Romić, Snježana; Živković, Maja; Stojiljković, Mojca; Milosavljević, Tijana; Stanković, Aleksandra; Petković, Marijana; Kamčeva, Tina; Žakula, Zorica

    2012-11-05

    Fructose rich diet increases hepatic triglycerides production and has deleterious cardiac effects. Estrogens are involved in regulation of lipid metabolism as well, but their effects are cardio beneficial. In order to study effects of fructose rich diet on the main heart fatty acid transporter CD36 and the role of estrogens, we subjected ovariectomized female rats to the standard diet or fructose rich diet, with or without estradiol (E2) replacement. The following parameters were analyzed: feeding behavior, visceral adipose tissue mass, plasma lipids, cardiac CD36 expression, localization and insulin regulation, as well as the profile of cardiac lipids. Results show that fructose rich diet significantly increased plasma triglycerides and decreased plasma free fatty acid (FFA) concentration, while E2 additionally emphasized FFA decrease. The fructose diet increased cardiac plasma membrane content of CD36 in the basal and insulin-stimulated states, and decreased its low density microsomes content. The E2 in fructose-fed rats raised the total cardiac protein content of CD36, its presence in plasma membranes and low density microsomes, and cardiac deposition of triglycerides, as well. Although E2 counteracts fructose in some aspects of lipid metabolism, and separately they have opposite cardiac effects, in combination with fructose rich diet, E2 additionally enhances CD36 presence in plasma membranes of cardiac cells and triglycerides accumulation, which paradoxically might promote deleterious effects of fructose diet on cardiac lipid metabolism. Taken together, the results presented in this work are of high importance for clinical administration of estrogens in females with a history of type 2 diabetes.

  10. Overexpression of OsWRKY72 gene interferes in the abscisic acid signal and auxin transport pathway of Arabidopsis

    Song Yu; Chen Ligang; Zhang Liping; Yu Diqiu

    2010-09-01

    Through activating specific transcriptional programmes, plants can launch resistance mechanisms to stressful environments and acquire a new equilibrium between development and defence. To screen the rice WRKY transcription factor which functions in abiotic stress tolerance and modulates the abscisic acid (ABA) response, we generated a whole array of 35S-OsWRKY transgenic Arabidopsis. In this study, we report that 35S-OsWRKY72 transgenic Arabidopsis, whose seed germination was retarded under normal conditions, emerged more sensitive to mannitol, NaCl, ABA stresses and sugar starvation than vector plants. Meanwhile, 35S-OsWRKY72 transgenic Arabidopsis displayed early flowering, reduced apical dominance, lost high temperature-induced hypocotyl elongation response, and enhanced gravitropism response, which were similar to the auxin-related gene mutants aux1, axr1 and bud1. Further, semi-quantitative RT-PCR showed that the expression patterns of three auxin-related genes AUX1, AXR1 and BUD1 were significantly altered in rosette leaves and inflorescences of 35S-OsWRKY72 plants compared with control Arabidopsis, and two ABA-related genes ABA2 and ABI4 were induced in 35S-OsWRKY72 seedlings. In addition, northern blot analysis indicated that, in rice, OsWRKY72 was inducible by polyethylene glycol (PEG), NaCl, naphthalene acetic acid (NAA), ABA and 42°C, similar to its orthologue AtWRKY75 in Arabidopsis, implying that these two WRKY genes might be required for multiple physiological processes in their plants. Together, these results suggest that OsWRKY72 interferes in the signal cross-talk between the ABA signal and auxin transport pathway in transgenic Arabidopsis.

  11. Growth of embryo and gene expression of nutrient transporters in the small intestine of the domestic pigeon (Columba livia).

    Chen, Ming-xia; Li, Xiang-guang; Yang, Jun-xian; Gao, Chun-qi; Wang, Bin; Wang, Xiu-qi; Yan, Hui-chao

    2015-06-01

    The objective of this study was to investigate the relationship between gene expression of nutrient (amino acid, peptide, sodium and proton) transporters in the small intestine and embryonic growth in domestic pigeons (Columba livia). One hundred and twenty-five fertilized eggs were randomly assigned into five groups and were incubated under optimal conditions (temperature of 38.1 °C and relative humidity of 55%). Twenty embryos/birds from each group were sacrificed by cervical dislocation on embryonic day (E) 9, 11, 13, 15 and day of hatch (DOH). The eggs, embryos (without yolk sac), and organs (head, brain, heart, liver, lungs, kidney, gizzard, small intestine, legs, and thorax) were dissected, cleaned, and weighed. Small intestine samples were collected for RNA isolation. The mRNA abundance of intestinal nutrient transporters was evaluated by real-time reverse transcription-polymerase chain reaction (RT-PCR). We classified these ten organs into four types according to the changes in relative weight during embryonic development. In addition, the gene expression of nutrient transporters was differentially regulated by embryonic day. The mRNA abundances of b(0,+)AT, EAAT3, y(+)LAT2, PepT1, LAT4, NHE2, and NHE3 increased linearly with age, whereas mRNA abundances of CAT1, CAT2, LAT1, EAAT2, SNAT1, and SNAT2 were increased to higher levels on E9 or E11 and then decreased to lower levels until DOH. The results of correlation analysis showed that the gene expressions of b(0,+)AT, EAAT3, PepT1, LAT4, NHE2, NHE3, and y(+)LAT2 had positive correlations with body weight (0.71

  12. Coordinated induction of bile acid detoxification and alternative elimination in mice: role of FXR-regulated organic solute transporter-alpha/beta in the adaptive response to bile acids.

    Zollner, Gernot; Wagner, Martin; Moustafa, Tarek; Fickert, Peter; Silbert, Dagmar; Gumhold, Judith; Fuchsbichler, Andrea; Halilbasic, Emina; Denk, Helmut; Marschall, Hanns-Ulrich; Trauner, Michael

    2006-05-01

    The bile acid receptor farnesoid X receptor (FXR) is a key regulator of hepatic defense mechanisms against bile acids. A comprehensive study addressing the role of FXR in the coordinated regulation of adaptive mechanisms including biosynthesis, metabolism, and alternative export together with their functional significance is lacking. We therefore fed FXR knockout (FXR(-/-)) mice with cholic acid (CA) and ursodeoxycholic acid (UDCA). Bile acid synthesis and hydroxylation were assessed by real-time RT-PCR for cytochrome P-450 (Cyp)7a1, Cyp3a11, and Cyp2b10 and mass spectrometry-gas chromatography for determination of bile acid composition. Expression of the export systems multidrug resistance proteins (Mrp)4-6 in the liver and kidney and the recently identified basoalteral bile acid transporter, organic solute transporter (Ost-alpha/Ost-beta), in the liver, kidney, and intestine was also investigated. CA and UDCA repressed Cyp7a1 in FXR(+/+) mice and to lesser extents in FXR(-/-) mice and induced Cyp3a11 and Cyp2b10 independent of FXR. CA and UDCA were hydroxylated in both genotypes. CA induced Ost-alpha/Ost-beta in the liver, kidney, and ileum in FXR(+/+) but not FXR(-/-) mice, whereas UDCA had only minor effects. Mrp4 induction in the liver and kidney correlated with bile acid levels and was observed in UDCA-fed and CA-fed FXR(-/-) animals but not in CA-fed FXR(+/+) animals. Mrp5/6 remained unaffected by bile acid treatment. In conclusion, we identified Ost-alpha/Ost-beta as a novel FXR target. Absent Ost-alpha/Ost-beta induction in CA-fed FXR(-/-) animals may contribute to increased liver injury in these animals. The induction of bile acid hydroxylation and Mrp4 was independent of FXR but could not counteract liver toxicity sufficiently. Limited effects of UDCA on Ost-alpha/Ost-beta may jeopardize its therapeutic efficacy.

  13. Fission yeast arrestin-related trafficking adaptor, Arn1/Any1, is ubiquitinated by Pub1 E3 ligase and regulates endocytosis of Cat1 amino acid transporter

    Akio Nakashima

    2014-05-01

    Full Text Available The Tsc1–Tsc2 complex homologous to human tuberous sclerosis complex proteins governs amino acid uptake by regulating the expression and intracellular distribution of amino acid transporters in Schizosaccharomyces pombe. Here, we performed a genetic screening for molecules that are involved in amino acid uptake and found Arn1 (also known as Any1. Arn1 is homologous to ART1, an arrestin-related trafficking adaptor (ART in Saccharomyces cerevisiae, and contains a conserved arrestin motif, a ubiquitination site, and two PY motifs. Overexpression of arn1+ confers canavanine resistance on cells, whereas its disruption causes hypersensitivity to canavanine. We also show that Arn1 regulates endocytosis of the Cat1 amino acid transporter. Furthermore, deletion of arn1+ suppresses a defect of amino acid uptake and the aberrant Cat1 localization in tsc2Δ. Arn1 interacts with and is ubiquitinated by the Pub1 ubiquitin ligase, which is necessary to regulate Cat1 endocytosis. Cat1 undergoes ubiquitinations on lysine residues within the N-terminus, which are mediated, in part, by Arn1 to determine Cat1 localization. Correctively, Arn1 is an ART in S. pombe and contributes to amino acid uptake through regulating Cat1 endocytosis in which Tsc2 is involved.

  14. Fishy Business: Effect of Omega-3 Fatty Acids on Zinc Transporters and Free Zinc Availability in Human Neuronal Cells

    Damitha De Mel; Cenk Suphioglu

    2014-01-01

    Omega-3 (ω-3) fatty acids are one of the two main families of long chain polyunsaturated fatty acids (PUFA). The main omega-3 fatty acids in the mammalian body are α-linolenic acid (ALA), docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA). Central nervous tissues of vertebrates are characterized by a high concentration of omega-3 fatty acids. Moreover, in the human brain, DHA is considered as the main structural omega-3 fatty acid, which comprises about 40% of the PUFAs in total. DHA...

  15. Application of quantitative targeted absolute proteomics to profile protein expression changes of hepatic transporters and metabolizing enzymes during cholic acid-promoted liver regeneration.

    Miura, Takayuki; Tachikawa, Masanori; Ohtsuka, Hideo; Fukase, Koji; Nakayama, Shun; Sakata, Naoaki; Motoi, Fuyuhiko; Naitoh, Takeshi; Katayose, Yu; Uchida, Yasuo; Ohtsuki, Sumio; Terasaki, Tetsuya; Unno, Michiaki

    2017-02-26

    Preoperative administration of cholic acid (CA) may be an option to increase the liver volume before elective liver resection surgery, so it is important to understand its effects on liver functionality for drug transport and metabolism. The purpose of this study was to clarify the absolute protein expression dynamics of transporters and metabolizing enzymes in the liver of mice fed CA-containing diet for 5 days (CA1) and mice fed CA-containing diet for 5 days followed by diet without CA for 7 days (CA2), in comparison with non CA-fed control mice. The CA1 group showed the increased liver weight, cell proliferation index, and oxidative stress, but no increase of apoptosis. Quantitative targeted absolute proteomics revealed (i) decreases in basolateral bile acid transporters ntcp, oatp1a1, oatp1b2, bile acid synthesis-related enzymes cyp7a1 and cyp8b1, and drug transporters bcrp, mrp6, ent1, oatp2b1, and (ii) increases in glutathione biosynthetic enzymes and drug-metabolizing enzyme cyp3a11. Liver concentrations of reduced and oxidized glutathione were both increased. In the CA2 group, the increased liver weight was maintained, while the biochemical features and protein profiles were restored to the non-CA-fed control levels. These findings suggest that CA administration alters liver functionality per body during liver regeneration and restoration.

  16. Major involvement of Na(+) -dependent multivitamin transporter (SLC5A6/SMVT) in uptake of biotin and pantothenic acid by human brain capillary endothelial cells.

    Uchida, Yasuo; Ito, Katsuaki; Ohtsuki, Sumio; Kubo, Yoshiyuki; Suzuki, Takashi; Terasaki, Tetsuya

    2015-07-01

    The purpose of this study was to clarify the expression of Na(+) -dependent multivitamin transporter (SLC5A6/SMVT) and its contribution to the supply of biotin and pantothenic acid to the human brain via the blood-brain barrier. DNA microarray and immunohistochemical analyses confirmed that SLC5A6 is expressed in microvessels of human brain. The absolute expression levels of SLC5A6 protein in isolated human and monkey brain microvessels were 1.19 and 0.597 fmol/μg protein, respectively, as determined by a quantitative targeted absolute proteomics technique. Using an antibody-free method established by Kubo et al. (2015), we found that SLC5A6 was preferentially localized at the luminal membrane of brain capillary endothelium. Knock-down analysis using SLC5A6 siRNA showed that SLC5A6 accounts for 88.7% and 98.6% of total [(3) H]biotin and [(3) H]pantothenic acid uptakes, respectively, by human cerebral microvascular endothelial cell line hCMEC/D3. SLC5A6-mediated transport in hCMEC/D3 was markedly inhibited not only by biotin and pantothenic acid, but also by prostaglandin E2, lipoic acid, docosahexaenoic acid, indomethacin, ketoprofen, diclofenac, ibuprofen, phenylbutazone, and flurbiprofen. This study is the first to confirm expression of SLC5A6 in human brain microvessels and to provide evidence that SLC5A6 is a major contributor to luminal uptake of biotin and pantothenic acid at the human blood-brain barrier. In humans, it was unclear (not concluded) about what transport system at the blood-brain barrier (BBB) is responsible for the brain uptakes of two vitamins, biotin and pantothenic acid, which are necessary for brain proper function. This study clarified for the first time that the solute carrier 5A6/Na(+) -dependent multivitamin transporter SLC5A6/SMVT is responsible for the supplies of biotin and pantothenic acid into brain across the BBB in humans. DHA, docosahexaenoic acid; NSAID, non-steroidal anti-inflammatory drug; PGE2, prostaglandin E2.

  17. 4,4-Dimethyl- and diastereomeric 4-hydroxy-4-methyl-(2S)-glutamate analogues display distinct pharmacological profiles at ionotropic glutamate receptors and excitatory amino acid transporters

    Bunch, Lennart; Pickering, Darryl S; Gefflaut, Thierry;

    2009-01-01

    this approach has provided important insight into the structure-activity relationships (SAR) for ionotropic and metabotropic glutamate receptors (iGluRs and mGluRs), as well as the excitatory amino acid transporters (EAATs). In this work, three 4,4-disubstituted Glu analogues 1-3, which are hybrid structures......Subtype-selective ligands are of great interest to the scientific community, as they provide a tool for investigating the function of one receptor or transporter subtype when functioning in its native environment. Several 4-substituted (S)-glutamate (Glu) analogues were synthesized, and altogether...

  18. Lipid Transport through the Fetoplacental Barrier by the Fatty Acid-Binding Proteins in Pregnant Women with Herpes Virus Infection in the third Trimester

    Michael T. Lucenko, PhD, ScD

    2012-12-01

    Full Text Available In this study, the transport of the long chain polyunsaturated fatty acids (LCPUFAs from the lacunar blood through the syncytiotrophoblast of the placental villi to the fetal cord blood via a saturable protein-mediated mechanism by the heart-type fatty acid-binding proteins (H-FABPs has been examined. Exacerbation of the herpes simplex viruses (HSV-1 in the third trimester of gestation reduces the delivery of the fatty acid-binding proteins to the syncytiotrophoblast. During exacerbation of the HSV-1 infection, the selective transfer of the LCPUFAs across the syncytiotrophoblast basal plasma membrane into the fetal cord blood was observed. The supply of anti-inflammatory ω-3 PUFAs was reduced; however, the inflow of inflammatory arachidonic acid and other ω-6 PUFAs into the fetal blood was increased.

  19. Nucleoside transporter expression and activity is regulated during granulocytic differentiation of NB4 cells in response to all-trans-retinoic acid.

    Flanagan, Sheryl A; Meckling, Kelly A

    2007-07-01

    NB4 cells express multiple nucleoside transporters (NTs), including: hENT1 (es), and hENT2 (ei), and the CNT subtype referred to as, csg; a concentrative sensitive guanosine specific transporter. csg activity is a distinguishing feature of the NB4 cell line and its presence suggests a particular requirement of these cells for guanosine salvage. Proliferation and differentiation pathways determine, in part, the number of NTs in cells and tissues. In this study, all-trans-retinoic acid (ATRA)-induced granulocytic differentiation of NB4 cells resulted in biphasic changes in guanosine transport. Transient increases in csg and es activity, the result of an increase in V(max) (pmol/muls) of both transporter systems, served as early markers of differentiation while expression of a fully differentiated phenotype was accompanied by a selective loss of csg activity and the return of es activity to that of proliferating cells. Intracellular incorporation of [(3)H]-guanosine decreased as cells matured despite increased transport rates and suggested a reduced intracellular requirement of NB4-granulocytes compared to their proliferating counterparts. Whether a loss of csg activity could serve to assess clinical response to differentiation therapies is not known. Nitrobenzylthioinosine (NBMPR) binding sites within nuclear membrane (NM) preparations, suggested the presence of functional intracellular NTs. An increase in plasma membrane (PM) associated transporters coincided with the early increase in guanosine transport and a decrease in NBMPR binding to NM fractions and suggests that intracellular NTs may serve as a reserve pool for translocation to the (PM) when additional transport capacity is required. The modulation of transporters during differentiation could potentially regulate drug bioavailability and cytotoxicity and should be evaluated prior to combining differentiating agents with traditional nucleoside analogs in the treatment of APL.

  20. Application of Physiologically-Based Pharmacokinetic Modeling to Explore the Role of Kidney Transporters in Renal Reabsorption of Perfluorooctanoic Acid in the Rat

    Worley, Rachel Rogers; Fisher, Jeffrey

    2015-01-01

    Renal elimination and the resulting clearance of perfluorooctanoic acid (PFOA) from the serum exhibit pronounced sex differences in the adult rat. The literature suggests that this is largely due to hormonally regulated expression of organic anion transporters (OATs) on the apical and basolateral membranes of the proximal tubule cells that facilitate excretion and reabsorption of PFOA from the filtrate into the blood. Previously developed PBPK models of PFOA exposure in the rat have not been parameterized to specifically account for transporter-mediated renal elimination. We developed a PBPK model for PFOA in the male and female rat to explore the role of Oat1, Oat3, and Oatp1a1 in sex-specific renal reabsorption and excretion of PFOA. Descriptions of the kinetic behavior of these transporters were extrapolated from in vitro studies and the model was used to simulate time-course serum, liver, and urine data for intravenous (IV) and oral exposures in both sexes. Model predicted concentrations of PFOA in the liver, serum, and urine showed good agreement with experimental data for both the male and female rat indicating that in vitro derived physiological descriptions of transporter-mediated renal reabsorption can successfully predict sex-dependent excretion of PFOA in the rat. This study supports the hypothesis that sex-specific serum half-lives for PFOA are largely driven by expression of transporters in the kidney and contributes to the development of PBPK modeling as a tool for evaluating the role of transporters in renal clearance. PMID:26522833

  1. Responses of serum electrolytes of goats to twelve hours of road transportation during the hot-dry season in Nigeria, and the effect of pretreatment with ascorbic acid

    J.O. Ayo

    2009-09-01

    Full Text Available Twenty goats which served as the experimental group were administered ascorbic acid (AA per os at a dosage rate of 100 mg/kg body mass, while 20 others served as controls and were given 10 mt each of sterile water. Forty minutes after the administration and loading, the goats were transported for 12 h. Handling and loading of the experimental and control groups of goats decreased (P < 0.05 the potassium and sodium serum concentrations. The concentration of serum chloride, sodium and calcium increased significantly (P< 0.05 immediately post-transportation, while potassium and magnesium decreased (P < 0.05 in the control goats. In AA-treated goats sodium and magnesium concentrations decreased abruptly (P< 0.05, while calcium increased significantly (P< 0.05 after transportation. Handling, loading and transportation adversely affected the electrolyte balance of the goats which suggested respiratory alkalosis, dehydration and muscular damage in the transported goats, and the administration of AA alleviated the adverse effects of road transportation stress on serum electrolytes.

  2. Responses of serum electrolytes of goats to twelve hours of road transportation during the hot-dry season in Nigeria, and the effect of pretreatment with ascorbic acid.

    Ayo, J O; Minka, N S; Sackey, A K B; Adelaiye, A B

    2009-12-01

    Twenty goats which served as the experimental group were administered ascorbic acid (AA) per os at a dosage rate of 100 mg/kg body mass, while 20 others served as controls and were given 10 ml each of sterile water. Forty minutes after the administration and loading, the goats were transported for 12 h. Handling and loading of the experimental and control groups of goats decreased (P < 0.05) the potassium and sodium serum concentrations. The concentration of serum chloride, sodium and calcium increased significantly (P < 0.05) immediately post-transportation, while potassium and magnesium decreased (P < 0.05) in the control goats. In AA-treated goats sodium and magnesium concentrations decreased abruptly (P < 0.05), while calcium increased significantly (P < 0.05) after transportation. Handling, loading and transportation adversely affected the electrolyte balance of the goats which suggested respiratory alkalosis, dehydration and muscular damage in the transported goats, and the administration of AA alleviated the adverse effects of road transportation stress on serum electrolytes.

  3. Exercise-induced translocation of protein kinase C and production of diacylglycerol and phosphatidic acid in rat skeletal muscle in vivo. Relationship to changes in glucose transport.

    Cleland, P J; Appleby, G J; Rattigan, S; Clark, M G

    1989-10-25

    Contraction-induced translocation of protein kinase C (Richter E.A., Cleland, P.J.F., Rattigan, S., and Clark, M.G. (1987) FEBS Lett. 217, 232-236) implies a role for this enzyme in muscle contraction or the associated metabolic adjustments. In the present study, this role is further examined particularly in relation to changes in glucose transport. Electrical stimulation of the sciatic nerve of the anesthetized rat in vivo led to a time-dependent translocation of protein kinase C and a 2-fold increase in the concentrations of both diacylglycerol and phosphatidic acid. Maximum values for the latter were reached at 2 min and preceded the maximum translocation of protein kinase C (10 min). Stimulation of muscles in vitro increased the rate of glucose transport, but this required 20 min to reach maximum. There was no reversal of translocation or decrease in the concentrations of diacylglycerol and phosphatidic acid even after 30 min of rest following a 5-min period of stimulation in vivo. Translocation was not influenced by variations in applied load at maximal fiber recruitment but was dependent on the frequency of nontetanic stimuli, reaching a maximum at 4 Hz. The relationship between protein kinase C and glucose transport was also explored by varying the number of tetanic stimuli. Whereas only one train of stimuli (200 ms, 100 Hz) was required for maximal effects on protein kinase C, diacylglycerol, and phosphatidic acid, more than 35 trains of stimuli were required to activate glucose transport. It is concluded that the production of diacylglycerol and the translocation of protein kinase C may be causally related. However, if the translocated protein kinase C is involved in the activation of glucose transport during muscle contractions, an accumulated exposure to Ca2+, resulting from multiple contractions, would appear to be necessary.

  4. Transport of C-13-labelled linoleic and C-13-labelled caprylic acid in rat plasma after administration of specific structured triacylglycerols

    Vistisen, Bodil; Høy, Carl-Erik

    2004-01-01

    -labelled fatty acid) by gavage. A maximum transport of 0.5% of the administered C-13-labelled 18:2n-6 was observed in 1mL rat plasma both after administration of L*L*L* and ML*M, while approximately 0.04% of the administered C-13-labelled 8:0 was detected in 1mL plasma following administration of M...

  5. Serotonin Transporter (5-HTT) and gamma-Aminobutyric Acid Receptor Subunit beta3 (GABRB3) Gene Polymorphisms are not Associated with Autism in the IMGSA Families

    Maestrini, E.; Lai, C.; Marlow, A.;

    1999-01-01

    Previous studies have suggested that the serotonin transporter (5-HTT) gene and the gamma-aminobutyric acid receptor subunit beta3 (GABRB3) gene, or other genes in the 15q11-q13 region, are possibly involved in susceptibility to autism. To test this hypothesis we performed an association study...... and the GABRB3 genes are unlikely to play a major role in the aetiology of autism in our family data set....

  6. Low Red Blood Cell Vitamin C Concentrations Induce Red Blood Cell Fragility: A Link to Diabetes Via Glucose, Glucose Transporters, and Dehydroascorbic Acid

    Hongbin Tu

    2015-11-01

    Full Text Available Strategies to prevent diabetic microvascular angiopathy focus on the vascular endothelium. Because red blood cells (RBCs are less deformable in diabetes, we explored an original concept linking decreased RBC deformability to RBC ascorbate and hyperglycemia. We characterized ascorbate concentrations from human and mouse RBCs and plasma, and showed an inverse relationship between RBC ascorbate concentrations and deformability, measured by osmotic fragility. RBCs from ascorbate deficient mice were osmotically sensitive, appeared as spherocytes, and had decreased β-spectrin. These aberrancies reversed with ascorbate repletion in vivo. Under physiologic conditions, only ascorbate's oxidation product dehydroascorbic acid (DHA, a substrate for facilitated glucose transporters, was transported into mouse and human RBCs, with immediate intracellular reduction to ascorbate. In vitro, glucose inhibited entry of physiologic concentrations of dehydroascorbic acid into mouse and human RBCs. In vivo, plasma glucose concentrations in normal and diabetic mice and humans were inversely related to respective RBC ascorbate concentrations, as was osmotic fragility. Human RBC β-spectrin declined as diabetes worsened. Taken together, hyperglycemia in diabetes produced lower RBC ascorbate with increased RBC rigidity, a candidate to drive microvascular angiopathy. Because glucose transporter expression, DHA transport, and its inhibition by glucose differed for mouse versus human RBCs, human experimentation is indicated.

  7. Alisol B 23-acetate protects against ANIT-induced hepatotoxity and cholestasis, due to FXR-mediated regulation of transporters and enzymes involved in bile acid homeostasis

    Meng, Qiang; Chen, Xin-li; Wang, Chang-yuan; Liu, Qi; Sun, Hui-jun; Sun, Peng-yuan; Huo, Xiao-kui; Liu, Zhi-hao; Yao, Ji-hong; Liu, Ke-xin, E-mail: kexinliu@dlmedu.edu.cn

    2015-03-15

    Intrahepatic cholestasis is a clinical syndrome with systemic and intrahepatic accumulation of excessive toxic bile acids that ultimately cause hepatobiliary injury. Appropriate regulation of bile acids in hepatocytes is critically important for protection against liver injury. In the present study, we characterized the protective effect of alisol B 23-acetate (AB23A), a natural triterpenoid, on alpha-naphthylisothiocyanate (ANIT)-induced liver injury and intrahepatic cholestasis in mice and further elucidated the mechanisms in vivo and in vitro. AB23A treatment dose-dependently protected against liver injury induced by ANIT through reducing hepatic uptake and increasing efflux of bile acid via down-regulation of hepatic uptake transporters (Ntcp) and up-regulation of efflux transporter (Bsep, Mrp2 and Mdr2) expression. Furthermore, AB23A reduced bile acid synthesis through repressing Cyp7a1 and Cyp8b1, increased bile acid conjugation through inducing Bal, Baat and bile acid metabolism through an induction in gene expression of Sult2a1. We further demonstrate the involvement of farnesoid X receptor (FXR) in the hepatoprotective effect of AB23A. The changes in transporters and enzymes, as well as ameliorative liver histology in AB23A-treated mice were abrogated by FXR antagonist guggulsterone in vivo. In vitro evidences also directly demonstrated the effect of AB23A on FXR activation in a dose-dependent manner using luciferase reporter assay in HepG2 cells. In conclusion, AB23A produces protective effect against ANIT-induced hepatotoxity and cholestasis, due to FXR-mediated regulation of transporters and enzymes. - Highlights: • AB23A has at least three roles in protection against ANIT-induced liver injury. • AB23A decreases Ntcp, and increases Bsep, Mrp2 and Mdr2 expression. • AB23A represses Cyp7a1 and Cyp8b1 through inducing Shp and Fgf15 expression. • AB23A increases bile acid metabolism through inducing Sult2a1 expression. • FXR activation is involved

  8. Linoleic acid suppresses cholesterol efflux and ATP-binding cassette transporters in murine bone marrow-derived macrophages

    Individuals with type 2 diabetes mellitus (T2DM) are at increased risk of developing cardiovascular disease (CVD), possibly associated with elevated plasma free fatty acid concentrations. Paradoxically, evidence suggests that unsaturated, compared to saturated fatty acids, suppress macrophage chole...

  9. Administration of Exogenous Growth Hormone Is Associated with Changes in Plasma and Intracellular Mammary Amino Acid Profiles and Abundance of the Mammary Gland Amino Acid Transporter SLC3A2 in Mid-Lactation Dairy Cows

    Quentin L Sciascia; David Pacheco; McCoard, Susan A.

    2015-01-01

    The objectives of this study were to (1) identify changes in plasma and mammary intracellular amino acid (AA) profiles in dairy cows treated with growth hormone (GH), and (2) evaluate the expression of mammary gland genes involved in the transport of AA identified in (1). Eight non-pregnant (n = 4 per group) lactating dairy cows were treated with a single subcutaneous injection of either a slow-release formulation of commercially available GH (Lactotropin 500 mg) or physiological saline solut...

  10. Involvement of Vacuolar Sequestration and Active Transport in Tolerance of Saccharomyces cerevisiae to Hop Iso-α-Acids

    Hazelwood, L.A.; Walsh, M.C.; Pronk, J.T.; Daran, J.M.

    2009-01-01

    The hop plant, Humulus lupulus L., has an exceptionally high content of secondary metabolites, the hop -acids, which possess a range of beneficial properties, including antiseptic action. Studies performed on the mode of action of hop iso--acids have hitherto been restricted to lactic acid bacteria.

  11. Endocytosis of the Aspartic Acid/Glutamic Acid Transporter Dip5 Is Triggered by Substrate-Dependent Recruitment of the Rsp5 Ubiquitin Ligase via the Arrestin-Like Protein Aly2 ▿

    Hatakeyama, Riko; Kamiya, Masao; Takahara, Terunao; Maeda, Tatsuya

    2010-01-01

    Endocytosis of nutrient transporters is stimulated under various conditions, such as elevated nutrient availability. In Saccharomyces cerevisiae, endocytosis is triggered by ubiquitination of transporters catalyzed by the E3 ubiquitin ligase Rsp5. However, how the ubiquitination is accelerated under certain conditions remains obscure. Here we demonstrate that closely related proteins Aly2/Art3 and Aly1/Art6, which are poorly characterized members of the arrestin-like protein family, mediate endocytosis of the aspartic acid/glutamic acid transporter Dip5. In aly2Δ cells, Dip5 is stabilized at the plasma membrane and is not endocytosed efficiently. Efficient ubiquitination of Dip5 is dependent on Aly2. aly1Δ cells also show deficiency in Dip5 endocytosis, although less remarkably than aly2Δ cells. Aly2 physically interacts in vivo with Rsp5 at its PY motif and also with Dip5, thus serving as an adaptor linking Rsp5 with Dip5 to achieve Dip5 ubiquitination. Importantly, the interaction between Aly2 and Dip5 is accelerated in response to elevated aspartic acid availability. This result indicates that the regulation of Dip5 endocytosis is accomplished by dynamic recruitment of Rsp5 via Aly2. PMID:20956561

  12. Occurrence and transport of 17 perfluoroalkyl acids in 12 coastal rivers in south Bohai coastal region of China with concentrated fluoropolymer facilities.

    Wang, Pei; Lu, Yonglong; Wang, Tieyu; Fu, Yaning; Zhu, Zhaoyun; Liu, Shijie; Xie, Shuangwei; Xiao, Yang; Giesy, John P

    2014-07-01

    Perfluoroalkyl acids (PFAAs) are emerging contaminants that have raised great concern in recent years. While PFAAs manufacturing becomes regulated in developed countries, production has been partly shifted to China. Eight fluoropolymer manufacturing facilities located in the South Bohai coastal region, one of the most populated areas of China, have been used to manufacture PFAA-related substances since 2001. The environmental consequence of the intensive production of PFAAs in this region remains largely unknown. We analyzed 17 PFAAs in twelve coastal rivers of this region, and found staggeringly high concentrations of perfluorooctanoic acid (PFOA) ranging from 0.96 to 4534.41 ng/L. The highest concentration was observed in the Xiaoqing River which received effluents from certain fluoropolymer facilities. Principal component analysis indicated similar sources of several perfluoroalkyl carboxylic acids (PFCAs) in all rivers, which indicated that atmospheric transport, wastewater treatment and surface runoff also acted as important supplements to direct discharge to surface water.

  13. Perfecting a method of micro-analysis of water and acetic acid in a cocoa bean in the course of drying: applying to determine transportation coefficients

    Nganhou, J.; Njomo, D.; Bénet, J. C.; Augier, F.; Berthomieu, G.

    2003-09-01

    This article is about the study of the diffusion of water and acetic acid in a grain of cocoa in course of drying. The authors present a method of microanalysis which enables the analysis of each little slice of the grain : a precise measurement of each slice is realised in view of the analysis from the centre to the surface of the grain with the aid of a cutting apparatus, designed and realised to this effect. At each instant of the drying process, the profiles of water and acetic acid contents are then determined. A one dimensional diffusion model enables a shell by shell evaluation of the diffusion of water and acid in the cocoa grain. The results obtained show an augmentation of transport coefficients in course of drying. We however observe a decrease of the diffusion coefficient of water to the low moisture content : what makes us think of the appearance of crusting phenomenon.

  14. Carrier-mediated ¿-aminobutyric acid transport across the basolateral membrane of human intestinal Caco-2 cell monolayers

    Nielsen, Carsten Uhd; Carstensen, Mette; Brodin, Birger

    2012-01-01

    -affinity transporter is Na(+) and Cl(-) dependent. The substrate specificity of the high-affinity transporter was further studied and Gly-Sar, Leucine, gaboxadol, sarcosine, lysine, betaine, 5-hydroxythryptophan, proline and glycine reduced the GABA uptake to approximately 44-70% of the GABA uptake in the absence...

  15. Data set for cloning and characterization of heterologous transporters in Saccharomyces cerevisiae and identification of important amino acids for xylose utilization

    Chengqiang Wang

    2015-09-01

    Full Text Available The efficient uptake is important for the xylose utilization by Saccharomyces cerevisiae. A heterogenous transporter Mgt05196p was cloned from Meyerozyma guilliermondii and expressed in Saccharomyces cerevisiae [1]. This data article contains the transport characteristics of Mgt05196p in S. cerevisiae. The fluorescence of fusion protein Mgt05196p-GFP expressing strain was located on the cell surface demonstrated that the heterogenous transporter Mgt05196p was targeted to the plasma membrane of S. cerevisiae. The expressing of Mgt05196p in the hxt null S. cerevisiae endowed the strain with the glucose and d-xylose absorption capacity, as well as expressing the native d-xylose transporter Gal2p. The transmembrane domains of Mgt05196p were predicted and compared with the XylEp, whose crystal structure was revealed. And then, the homologous modeling of Mgt05196p was built basing on the XylEp to find out the crucial amino acid residues for sugars binding and transport.

  16. Regulation of the High-Affinity Nitrate Transport System in Wheat Roots by Exogenous Abscisic Acid and Glutamine

    Chao Cai; Xue-Qiang Zhao; Yong-Guan Zhu; Bin Li; Yi-Ping Tong; Zhen-Sheng Li

    2007-01-01

    Nitrate is a major nitrogen (N) source for most crops.Nitrate uptake by root cells is a key step of nitrogen metabolism and has been widely studied at the physiological and molecular levels.Understanding how nitrate uptake is regulated will help us engineer crops with improved nitrate uptake efficiency.The present study investigated the regulation of the high-affinity nitrate transport system (HATS) by exogenous abscisic acid (ABA) and glutamine (Gin) in wheat (Triticum aestivum L.) roots.Wheat seedlings grown in nutrient solution containing 2 mmollL nitrate as the only nitrogen source for 2 weeks were deprived of N for 4d and were then transferred to nutrient solution containing 50 μmol/L ABA, and 1 mmol/L Gin in the presence or absence of 2 mmol/L nitrate for 0, 0.5, 1, 2, 4, and 8 h.Treated wheat plants were then divided into two groups.One group of plants was used to investigate the mRNA levels of the HATS components NRT2 and NAR2 genes in roots through semi-quantitative RT-PCR approach, and the other set of plants were used to measure high-affinity nitrate influx rates in a nutrient solution containing 0.2 mmol/L 15 N-labeled nitrate.The results showed that exogenous ABA induced the expression of the TaNRT2.1, TaNRT2.2, TaNRT2.3, TaNAR2.1, and TaNAR2.2 genes in roots when nitrate was not present in the nutrient solution, but did not further enhance the induction of these genes by nitrate.Glutamine, which has been shown to inhibit the expression of NRT2 genes when nitrate is present in the growth media, did not inhibit this induction.When Gin was supplied to a nitrate-free nutrient solution, the expression of these five genes in roots was induced.These results imply that the inhibition by Gin of NRT2 expression occurs only when nitrate is present in the growth media.Although exogenous ABA and Gin induced HATS genes in the roots of wheat, they did not induce nitrate influx.

  17. Detergent-induced stabilization and improved 3D map of the human heteromeric amino acid transporter 4F2hc-LAT2.

    Marcel Meury

    Full Text Available Human heteromeric amino acid transporters (HATs are membrane protein complexes that facilitate the transport of specific amino acids across cell membranes. Loss of function or overexpression of these transporters is implicated in several human diseases such as renal aminoacidurias and cancer. HATs are composed of two subunits, a heavy and a light subunit, that are covalently connected by a disulphide bridge. Light subunits catalyse amino acid transport and consist of twelve transmembrane α-helix domains. Heavy subunits are type II membrane N-glycoproteins with a large extracellular domain and are involved in the trafficking of the complex to the plasma membrane. Structural information on HATs is scarce because of the difficulty in heterologous overexpression. Recently, we had a major breakthrough with the overexpression of a recombinant HAT, 4F2hc-LAT2, in the methylotrophic yeast Pichia pastoris. Microgram amounts of purified protein made possible the reconstruction of the first 3D map of a human HAT by negative-stain transmission electron microscopy. Here we report the important stabilization of purified human 4F2hc-LAT2 using a combination of two detergents, i.e., n-dodecyl-β-D-maltopyranoside and lauryl maltose neopentyl glycol, and cholesteryl hemisuccinate. The superior quality and stability of purified 4F2hc-LAT2 allowed the measurement of substrate binding by scintillation proximity assay. In addition, an improved 3D map of this HAT could be obtained. The detergent-induced stabilization of the purified human 4F2hc-LAT2 complex presented here paves the way towards its crystallization and structure determination at high-resolution, and thus the elucidation of the working mechanism of this important protein complex at the molecular level.

  18. Acute cold and exercise training up-regulate similar aspects of fatty acid transport and catabolism in house sparrows (Passer domesticus).

    Zhang, Yufeng; Carter, Travis; Eyster, Kathleen; Swanson, David L

    2015-12-01

    Summit maximum thermoregulatory metabolic rate (Msum) and maximum exercise metabolic rate (MMR) both increase in response to acute cold or exercise training in birds. Because lipids are the main fuel supporting both thermogenesis and exercise in birds, adjustments to lipid transport and catabolic capacities may support elevated energy demands from cold and exercise training. To examine a potential mechanistic role for lipid transport and catabolism in organismal cross-training effects (exercise effects on both exercise and thermogenesis, and vice versa), we measured enzyme activities and mRNA and protein expression in pectoralis muscle for several key steps of lipid transport and catabolism pathways in house sparrows (Passer domesticus) during acute exercise and cold training. Both training protocols elevated pectoralis protein levels of fatty acid translocase (FAT/CD36), cytosolic fatty acid-binding protein, and citrate synthase (CS) activity. However, mRNA expression of FAT/CD36 and both mRNA and protein expression of plasma membrane fatty acid-binding protein did not change for either training group. CS activities in supracoracoideus, leg and heart, and carnitine palmitoyl transferase (CPT) and β-hydroxyacyl CoA-dehydrogenase activities in all muscles did not vary significantly with either training protocol. Both Msum and MMR were significantly positively correlated with CPT and CS activities. These data suggest that up-regulation of trans-sarcolemmal and intramyocyte lipid transport capacities and cellular metabolic intensities, along with previously documented increases in body and pectoralis muscle masses and pectoralis myostatin (a muscle growth inhibitor) levels, are common mechanisms underlying the training effects of both exercise and shivering in birds.

  19. Involvement of vacuolar sequestration and active transport in tolerance of Saccharomyces cerevisiae to hop iso-alpha-acids.

    Hazelwood, Lucie A; Walsh, Michael C; Pronk, Jack T; Daran, Jean-Marc

    2010-01-01

    The hop plant, Humulus lupulus L., has an exceptionally high content of secondary metabolites, the hop alpha-acids, which possess a range of beneficial properties, including antiseptic action. Studies performed on the mode of action of hop iso-alpha-acids have hitherto been restricted to lactic acid bacteria. The present study investigated molecular mechanisms of hop iso-alpha-acid resistance in the model eukaryote Saccharomyces cerevisiae. Growth inhibition occurred at concentrations of hop iso-alpha-acids that were an order of magnitude higher than those found with hop-tolerant prokaryotes. Chemostat-based transcriptome analysis and phenotype screening of the S. cerevisiae haploid gene deletion collection were used as complementary methods to screen for genes involved in hop iso-alpha-acid detoxification and tolerance. This screening and further analysis of deletion mutants confirmed that yeast tolerance to hop iso-alpha-acids involves three major processes, active proton pumping into the vacuole by the vacuolar-type ATPase to enable vacuolar sequestration of iso-alpha-acids and alteration of cell wall structure and, to a lesser extent, active export of iso-alpha-acids across the plasma membrane. Furthermore, iso-alpha-acids were shown to affect cellular metal homeostasis by acting as strong zinc and iron chelators.

  20. L-Glutamate supplementation improves small intestinal architecture and enhances the expressions of jejunal mucosa amino acid receptors and transporters in weaning piglets.

    Meng Lin

    Full Text Available L-Glutamate is a major oxidative fuel for the small intestine. However, few studies have demonstrated the effect of L-glutamate on the intestinal architecture and signaling of amino acids in the small intestine. The aim of this study was to investigate the effects of dietary L-glutamate supplementation on the intestinal architecture and expressions of jejunal mucosa amino acid receptors and transporters in weaning piglets. A total of 120 weaning piglets aged 35 ± 1 days with an average body weight at 8.91 ± 0.45 kg were randomly allocated to two treatments with six replicates of ten piglets each, fed with diets containing 1.21% alanine, or 2% L-glutamate. L-Glutamate supplementation increased the activity of glutamate oxaloacetate transaminase (GOT in the jejunal mucosa. Also, the mRNA expression level of jejunal mucosa glutamine synthetase (GS was increased by L-glutamate supplementation. The height of villi in duodenal and jejunal segments, and the relative mRNA expression of occludin and zonula occludens protein-1 (ZO-1 in jejunal mucosa were increased by dietary L-glutamate supplementation. L-Glutamate supplementation increased plasma concentrations of glutamate, arginine, histidine, isoleucine, leucine, methionine, phenylalanine and threonine. L-Glutamate supplementation also increased the relative mRNA expression of the jejunal mucosa Ca(2+-sensing receptor (CaR, metabotropic glutamate receptor 1 (mGluR1 and metabotropic glutamate receptor 4 (mGluR4, and neutral amino acid transporter B(0-like (SLC1A5 in the jejunal mucosa. These findings suggest that dietary addition of 2% L-glutamate improves the intestinal integrity and influences the expression of amino acid receptors and transporters in the jejunum of weaning, which is beneficial for the improvement of jejunal nutrients for digestion and absorption.

  1. Library screening by means of mass spectrometry (MS) binding assays-exemplarily demonstrated for a pseudostatic library addressing γ-aminobutyric acid (GABA) transporter 1 (GAT1).

    Sindelar, Miriam; Wanner, Klaus T

    2012-09-01

    In the present study, the application of mass spectrometry (MS) binding assays as a tool for library screening is reported. For library generation, dynamic combinatorial chemistry (DCC) was used. These libraries can be screened by means of MS binding assays when appropriate measures are taken to render the libraries pseudostatic. That way, the efficiency of MS binding assays to determine ligand binding in compound screening with the ease of library generation by DCC is combined. The feasibility of this approach is shown for γ-aminobutyric acid (GABA) transporter 1 (GAT1) as a target, representing the most important subtype of the GABA transporters. For the screening, hydrazone libraries were employed that were generated in the presence of the target by reacting various sets of aldehydes with a hydrazine derivative that is delineated from piperidine-3-carboxylic acid (nipecotic acid), a common fragment of known GAT1 inhibitors. To ensure that the library generated is pseudostatic, a large excess of the nipecotic acid derivative is employed. As the library is generated in a buffer system suitable for binding and the target is already present, the mixtures can be directly analyzed by MS binding assays-the process of library generation and screening thus becoming simple to perform. The binding affinities of the hits identified by deconvolution were confirmed in conventional competitive MS binding assays performed with single compounds obtained by separate synthesis. In this way, two nipecotic acid derivatives exhibiting a biaryl moiety, 1-{2-[2'-(1,1'-biphenyl-2-ylmethylidene)hydrazine]ethyl}piperidine-3-carboxylic acid and 1-(2-{2'-[1-(2-thiophenylphenyl)methylidene]hydrazine}ethyl)piperidine-3-carboxylic acid, were found to be potent GAT1 ligands exhibiting pK(i) values of 6.186 ± 0.028 and 6.229 ± 0.039, respectively. This method enables screening of libraries, whether generated by conventional chemistry or DCC, and is applicable to all kinds of targets including

  2. A replacement of the active-site aspartic acid residue 293 in mouse cathepsin D affects its intracellular stability, processing and transport in HEK-293 cells.

    Partanen, Sanna; Storch, Stephan; Löffler, Hans-Gerhard; Hasilik, Andrej; Tyynelä, Jaana; Braulke, Thomas

    2003-01-01

    The substitution of an active-site aspartic acid residue by asparagine in the lysosomal protease cathepsin D (CTSD) results in a loss of enzyme activity and severe cerebrocortical atrophy in a novel form of neuronal ceroid lipofuscinosis in sheep [Tyynelä, Sohar, Sleat, Gin, Donnelly, Baumann, Haltia and Lobel (2000) EMBO J. 19, 2786-2792]. In the present study we have introduced the corresponding mutation by replacing aspartic acid residue 293 with asparagine (D293N) into the mouse CTSD cDNA to analyse its effect on synthesis, transport and stability in transfected HEK-293 cells. The complete inactivation of mutant D293N mouse CTSD was confirmed by a newly developed fluorimetric quantification system. Moreover, in the heterologous overexpression systems used, mutant D293N mouse CTSD was apparently unstable and proteolytically modified during early steps of the secretory pathway, resulting in a loss of mass by about 1 kDa. In the affected sheep, the endogenous mutant enzyme was stable but also showed the shift in its molecular mass. In HEK-293 cells, the transport of the mutant D293N mouse CTSD to the lysosome was delayed and associated with a low secretion rate compared with wild-type CTSD. These data suggest that the mutation may result in a conformational change which affects stability, processing and transport of the enzyme. PMID:12350228

  3. Residues in the extracellular loop 4 are critical for maintaining the conformational equilibrium of the gamma-aminobutyric acid transporter-1

    MacAulay, Nanna; Meinild, Anne-Kristine; Zeuthen, Thomas;

    2003-01-01

    We mutated residues Met345 and Thr349 in the rat gamma-aminobutyric acid transporter-1 (GAT-1) to histidines (M345H and T349H). These two residues are located four amino acids apart at the extracellular end of transmembrane segment 7 in a region of GAT-1 that we have previously suggested undergoes...... conformational changes critical for the transport process. The two single mutants and the double mutant (M345H/T349H) were expressed in Xenopus laevis oocytes, and their steady-state and presteady-state kinetics were examined and compared with wild type GAT-1 by using the two-electrode voltage clamp method...... affinity, a decrease in apparent Na+ affinity, a profound shift in the Q/Vm relationship to more negative potentials, and a decreased Li+-induced leak current. The data are consistent with a shift in the conformational equilibrium of the mutant transporters, with M345H stabilized in an outward...

  4. Improving D-glucaric acid production from myo-inositol in E. coli by increasing MIOX stability and myo-inositol transport.

    Shiue, Eric; Prather, Kristala L J

    2014-03-01

    D-glucaric acid has been explored for a myriad of potential uses, including biopolymer production and cancer treatment. A biosynthetic route to produce D-glucaric acid from glucose has been constructed in Escherichia coli (Moon et al., 2009b), and analysis of the pathway revealed myo-inositol oxygenase (MIOX) to be the least active enzyme. To increase pathway productivity, we explored protein fusion tags for increased MIOX solubility and directed evolution for increased MIOX activity. An N-terminal SUMO fusion to MIOX resulted in a 75% increase in D-glucaric acid production from myo-inositol. While our directed evolution efforts did not yield an improved MIOX variant, our screen isolated a 941 bp DNA fragment whose expression led to increased myo-inositol transport and a 65% increase in D-glucaric acid production from myo-inositol. Overall, we report the production of up to 4.85 g/L of D-glucaric acid from 10.8 g/L myo-inositol in recombinant E. coli.

  5. Dopamine-induced apoptosis in human neuronal cells: inhibition by nucleic acides antisense to the dopamine transporter

    Porat, S.; Gabbay, M.; Tauber, M.; Ratovitski, T.; Blinder, E.; Simantov, R. [Department of Molecular Genetics, Weizmann Institute of Science Rehovot 76100 (Israel)

    1996-09-01

    Human neuroblastoma NMB cells take up [{sup 3}H]dopamine in a selective manner indicating that dopamine transporters are responsible for this uptake. These cells were therefore used as a model to study dopamine neurotoxicity, and to elucidate the role of dopamine transporters in controlling cell death. Treatment with 0.05-0.4 mM dopamine changed cells' morphology within 4 h, accompanied by retraction of processes, shrinkage, apoptosis-like atrophy, accumulation of apoptotic particles, DNA fragmentation and cell death. Cycloheximide inhibited dopamine's effect, suggesting that induction of apoptosis by dopamine was dependent upon protein synthesis. Dopamine cytotoxicity, monitored morphologically by flow cytometric analysis, and by lactate dehydrogenase released, was blocked by cocaine but not by the noradrenaline and serotonin uptake blockers desimipramine and imipramine, respectively. Attempting to inhibit dopamine transport and toxicity in a drug-free and highly selective way, three 18-mer dopamine transporter antisense phosphorothioate oligonucleotides (numbers 1, 2 and 3) and a new plasmid vector expressing the entire rat dopamine transporter complementary DNA in the antisense orientation were prepared and tested. Antisense phosphorothioate oligonucleotide 3 inhibited [{sup 3}H]dopamine uptake in a time- and dose-dependent manner. Likewise, transient transfection of NMB cells with the plasmid expressing dopamine transporter complementary DNA in the antisense orientation partially blocked [{sup 3}H]dopamine uptake. Antisense phosphorothioate oligonucleotide 3 also decreased, dose-dependently, the toxic effect of dopamine and 6-hydroxydopamine. Western blot analysis with newly prepared anti-human dopamine transporter antibodies showed that antisense phosphorothioate oligonucleotide 3 decreased the transporter protein level. These studies contribute to better understand the mechanism of dopamine-induced apoptosis and neurotoxicity. (Copyright (c) 1996

  6. Metabolism of [3-{sup 3}H]oleanolic acid in the isolated ``Calendula officinalis`` leaf cells and transport of the synthesized glycosides, to the cell wall and the extracellular space

    Szakiel, A.; Wasiukiewicz, I.; Janiszowska, W. [Warsaw Univ. (Poland). Katedra Biochemii

    1995-12-31

    It has been shown for the first time that [3-{sup 3}H]oleanolic acid glycosides formed in the cytosol of ``C. officinalis`` leaf cells are transported to the extracellular space in the form of pentaglucoside VI (44%), whereas glucuronides derived from [3-{sup 3}H]oleanolic acid 3-O-monoglucuronide (29%) as well as a part of glucosides (24%) were transported into the cell walls. (author). 15 refs, 2 figs, 1 tab.

  7. Prolactin and the dietary protein/carbohydrate ratio regulate the expression of SNAT2 amino acid transporter in the mammary gland during lactation.

    Velázquez-Villegas, Laura A; López-Barradas, Adriana M; Torres, Nimbe; Hernández-Pando, Rogelio; León-Contreras, Juan Carlos; Granados, Omar; Ortíz, Victor; Tovar, Armando R

    2015-05-01

    The sodium coupled neutral amino acid transporter 2 (SNAT2/SAT2/ATA2) is expressed in the mammary gland (MG) and plays an important role in the uptake of alanine and glutamine which are the most abundant amino acids transported into this tissue during lactation. Thus, the aim of this study was to assess the amount and localization of SNAT2 before delivery and during lactation in rat MG, and to evaluate whether prolactin and the dietary protein/carbohydrate ratio might influence SNAT2 expression in the MG, liver and adipose tissue during lactation. Our results showed that SNAT2 protein abundance in the MG increased during lactation and this increase was maintained along this period, while 24 h after weaning it tended to decrease. To study the effect of prolactin on SNAT2 expression, we incubated MG explants or T47D cells transfected with the SNAT2 promoter with prolactin, and we observed in both studies an increase in the SNAT2 expression or promoter activity. Consumption of a high-protein/low carbohydrate diet increased prolactin concentration, with a concomitant increase in SNAT2 expression not only in the MG during lactation, but also in the liver and adipose tissue. There was a correlation between SNAT2 expression and serum prolactin levels depending on the amount of dietary protein/carbohydrate ratio consumed. These findings suggest that prolactin actively supports lactation providing amino acids to the gland through SNAT2 for the synthesis of milk proteins.

  8. Increased placental fatty acid transporter 6 and binding protein 3 expression and fetal liver lipid accumulation in a mouse model of obesity in pregnancy.

    Díaz, Paula; Harris, Jessica; Rosario, Fredrick J; Powell, Theresa L; Jansson, Thomas

    2015-12-15

    Obesity in pregnancy is associated with increased fetal growth and adiposity, which, in part, is determined by transplacental nutrient supply. Trophoblast uptake and intracellular trafficking of lipids are dependent on placental fatty acid transport proteins (FATP), translocase (FAT/CD36), and fatty acid binding proteins (FABP). We hypothesized that maternal obesity in mice leads to increased placental expression of FAT/CD36, FATPs, and FABPs, and lipid accumulation in the fetal liver. C57/BL6J female mice were fed either a control (C; n = 10) or an obesogenic (OB; n = 10) high-fat, high-sugar diet before mating and throughout pregnancy. At E18.5, placentas and fetal livers were collected. Trophoblast plasma membranes (TPM) were isolated from placental homogenates. Expression of FAT/CD36 and FATP (TPM) and FABP (homogenates) was determined by immunoblotting. Gene expression was assessed by RT-quantitative PCR. Sections of fetal livers were stained for Oil Red O, and lipid droplets were quantified. TPM protein expression of FAT/CD36, FATP 2, and FATP 4 was comparable between C and OB groups. Conversely, TPM FATP 6 expression was increased by 35% in OB compared with C placentas without changes in mRNA expression. FABPs 1, 3-5 and PPARγ were expressed in homogenates, and FABP 3 expression increased 27% in OB compared with C placentas; however, no changes were observed in mRNA expression. Lipid droplet accumulation was 10-fold higher in the livers of fetuses from OB compared with C group. We propose that increased lipid transport capacity in obese mice promotes transplacental fatty acid transport and contributes to excess lipid accumulation in the fetal liver.

  9. Transport of ARS-labeled hydroxyapatite nanoparticles in saturated granular media is influenced by surface charge variability even in the presence of humic acid

    Wang, Dengjun [Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, No. 71 East Beijing Road, Nanjing 210008 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100049 (China); Bradford, Scott A. [U.S. Salinity Laboratory, Agricultural Research Service, United States Department of Agriculture, 450 W. Big Springs Road, Riverside, CA 92507 (United States); Harvey, Ronald W. [U.S. Geological Survey, 3215 Marine Street, Boulder, CO 80303 (United States); Hao, Xiuzhen [Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, No. 71 East Beijing Road, Nanjing 210008 (China); Zhou, Dongmei, E-mail: dmzhou@issas.ac.cn [Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, No. 71 East Beijing Road, Nanjing 210008 (China)

    2012-08-30

    Highlights: Black-Right-Pointing-Pointer The transport and retention kinetics of ARS-labeled hydroxyapatite nanoparticles (ARS-nHAP) were investigated over a range of ionic strengths in the presence of humic acid. Black-Right-Pointing-Pointer A two-site kinetic attachment model predicted both the breakthrough curves and retention profiles of ARS-nHAP quite well. Black-Right-Pointing-Pointer The retention profiles of ARS-nHAP exhibited hyperexponential shapes for all the test conditions. Black-Right-Pointing-Pointer Surface charge heterogeneities on the collector surfaces and especially within the ARS-nHAP population contributed to hyperexponential retention profiles. - Abstract: Hydroxyapatite nanoparticle (nHAP) is increasingly being used to remediate soils and water polluted by metals and radionuclides. The transport and retention of Alizarin red S (ARS)-labeled nHAP were investigated in water-saturated granular media. Experiments were carried out over a range of ionic strength (I{sub c}, 0-50 mM NaCl) conditions in the presence of 10 mg L{sup -1} humic acid. The transport of ARS-nHAP was found to decrease with increasing suspension I{sub c} in part, because of enhanced aggregation and chemical heterogeneity. The retention profiles (RPs) of ARS-nHAP exhibited hyperexponential shapes (a decreasing rate of retention with increasing transport distance) for all test conditions, suggesting that some of the attachment was occurring under unfavorable conditions. Surface charge heterogeneities on the collector surfaces and especially within the ARS-nHAP population were contributing causes for the hyperexponential RPs. Consideration of the effect(s) of I{sub c} in the presence of HA is needed to improve the efficacy of nHAP for scavenging metals and actinides in real soils and groundwater environments.

  10. Low-protein amino acid-supplemented diets for growing pigs: effect on expression of amino acid transporters, serum concentration, performance, and carcass composition.

    Morales, A; Buenabad, L; Castillo, G; Arce, N; Araiza, B A; Htoo, J K; Cervantes, M

    2015-05-01

    Pigs fed protein-bound AA appear to have a higher abundance of AA transporters for their absorption in the jejunum compared with the duodenum. However, there is limited data about the effect of dietary free AA, readily available in the duodenum, on the duodenal abundance of AA transporters and its impact on pig performance. Forty-eight pigs (24.3 kg initial BW) distributed in 4 treatments were used to evaluate the effect of the CP level and form (free vs. protein bound) in which AA are added to diets on the expression of AA transporters in the 3 small intestine segments, serum concentration of AA, and performance. Dietary treatments based on wheat and soybean meal (SBM) were 1) low-CP (14%) diet supplemented with L-Lys, L-Thr, DL-Met, L-Leu, L-Ile, L-Val, L-His, L-Trp, and L-Phe (LPAA); 2) as in the LPAA but with added L-Gly as a N source (LPAA+N); 3) intermediate CP content (16%) supplemented with L-Lys HCl, L-Thr, and DL-Met (MPAA); and 4) high-CP (22%) diet (HP) without free AA. At the end of the experiment, 8 pigs from LPAA and HP were sacrificed to collect intestinal mucosa and blood samples and to dissect the carcasses. There were no differences in ADG, ADFI, G:F, and weights of carcass components and some visceral organs between treatments. Weights of the large intestine and kidney were higher in HP pigs (P protein in HP wheat-SBM diets without affecting pig performance; nonessential N does not seem to be limiting in very low-protein wheat-SBM diets for growing pigs. Also, the inclusion of free AA in the diet appears to affect their serum concentration and the expression of the AA transporter b0,+ in the duodenum of pigs.

  11. Effects of humic acids and microorganisms on decabromodiphenyl ether, 4,4′-dibromodiphenyl ether and anthracene transportation in soil

    2010-01-01

    In this study, effects of humic acids (HA) and microorganisms on the migration of hydrophobic organic contaminants (HOCs), decabromodiphenyl ether (BDE-209), 4,4′-dibromodiphenyl ether (BDE-15) and anthracene, in soils were examined. More soil particles were dispersed into the colloidal phase (0.22-1 μm) in the presence of HA and/or microorganisms as a result of increased erosion and friction. The study suggested that PBDEs (BDE-209 and BDE-15) and anthracene in soils would be transported to other places by soil colloids with surface and underground water flow given the high concentrations of HA and microorganisms in the natural environment.

  12. Expression of thyroid hormone transporters in the human placenta and changes associated with intrauterine growth restriction.

    Loubière, L S; Vasilopoulou, E; Bulmer, J N; Taylor, P M; Stieger, B; Verrey, F; McCabe, C J; Franklyn, J A; Kilby, M D; Chan, S-Y

    2010-04-01

    Thyroid hormones (TH) are important for the development of the human fetus and placenta from very early gestation. The transplacental passage of TH from mother to fetus and the supply of TH into trophoblasts require the expression of placental TH plasma membrane transporters. We describe the ontogeny of the TH transporters MCT8, MCT10, LAT1, LAT2, OATP1A2 and OATP4A1 in a large series (n = 110) of normal human placentae across gestation and describe their expression changes with intrauterine fetal growth restriction (IUGR n = 22). Quantitative RT-PCR revealed that all the mRNAs encoding TH transporters are expressed in human placenta from 6 weeks gestation and throughout pregnancy. MCT8, MCT10, OATP1A2 and LAT1 mRNA expression increased with gestation. OATP4A1 and CD98 (LATs obligatory associated protein) mRNA expression reached a nadir in mid-gestation before increasing towards term. LAT2 mRNA expression did not alter throughout gestation. Immunohistochemistry localised MCT10 and OATP1A2 to villous cytotrophoblasts and syncytiotrophoblasts, and extravillous trophoblasts while OATP4A1 was preferentially expressed in the villous syncytiotrophoblasts. Whilst MCT8 protein expression was increased, MCT10 mRNA expression was decreased in placentae from IUGR pregnancies delivered in the early 3rd trimester compared to age matched appropriately grown for gestational age controls. No significant change was found in the mRNA expression of the other transporters with IUGR. In conclusion, several TH transporters are present in the human placenta from early 1st trimester with varying patterns of expression throughout gestation. Their coordinated effects may regulate both transplacental TH passage and TH supply to trophoblasts, which are critical for the normal development of the fetus and placenta. Increased MCT8 and decreased MCT10 expression within placentae of pregnancies complicated by IUGR may contribute to aberrant development of the fetoplacental unit.

  13. Regulation of Monocarboxylic Acid Transporter 1 Trafficking by the Canonical Wnt/β-Catenin Pathway in Rat Brain Endothelial Cells Requires Cross-talk with Notch Signaling.

    Liu, Zejian; Sneve, Mary; Haroldson, Thomas A; Smith, Jeffrey P; Drewes, Lester R

    2016-04-01

    The transport of monocarboxylate fuels such as lactate, pyruvate, and ketone bodies across brain endothelial cells is mediated by monocarboxylic acid transporter 1 (MCT1). Although the canonical Wnt/β-catenin pathway is required for rodent blood-brain barrier development and for the expression of associated nutrient transporters, the role of this pathway in the regulation of brain endothelial MCT1 is unknown. Here we report expression of nine members of the frizzled receptor family by the RBE4 rat brain endothelial cell line. Furthermore, activation of the canonical Wnt/β-catenin pathway in RBE4 cells via nuclear β-catenin signaling with LiCl does not alter brain endothelialMct1mRNA but increases the amount of MCT1 transporter protein. Plasma membrane biotinylation studies and confocal microscopic examination of mCherry-tagged MCT1 indicate that increased transporter results from reduced MCT1 trafficking from the plasma membrane via the endosomal/lysosomal pathway and is facilitated by decreased MCT1 ubiquitination following LiCl treatment. Inhibition of the Notch pathway by the γ-secretase inhibitorN-[N-(3,5-difluorophenacetyl)-l-alanyl]-S-phenylglycinet-butyl ester negated the up-regulation of MCT1 by LiCl, demonstrating a cross-talk between the canonical Wnt/β-catenin and Notch pathways. Our results are important because they show, for the first time, the regulation of MCT1 in cerebrovascular endothelial cells by the multifunctional canonical Wnt/β-catenin and Notch signaling pathways.

  14. The gut microbiota ellagic acid-derived metabolite urolithin A and its sulfate conjugate are substrates for the drug efflux transporter breast cancer resistance protein (ABCG2/BCRP).

    González-Sarrías, Antonio; Miguel, Verónica; Merino, Gracia; Lucas, Ricardo; Morales, Juan C; Tomás-Barberán, Francisco; Alvarez, Ana I; Espín, Juan C

    2013-05-08

    The breast cancer resistance protein (BCRP/ABCG2) is a drug efflux transporter that can affect the pharmacological and toxicological properties of many molecules. Urolithins, metabolites produced by the gut microbiota from ellagic acid (EA) and ellagitannins, have been acknowledged with in vivo anti-inflammatory and cancer chemopreventive properties. This study evaluated whether urolithins (Uro-A, -B, -C, and -D) and their main phase II metabolites Uro-A sulfate, Uro-A glucuronide, and Uro-B glucuronide as well as their precursor EA were substrates for ABCG2/BCRP. Parental and Bcrp1-transduced MDCKII cells were used for active transport assays. Uro-A and, to a lesser extent, Uro-A sulfate showed a significant increase in apically directed translocation in Bcrp1-transduced cells. Bcrp1 did not show affinity for the rest of the tested compounds. Data were confirmed for murine, human, bovine, and ovine BCRP-transduced subclones as well as with the use of the selective BCRP inhibitor Ko143. The transport inhibition by Uro-A was analyzed by flow cytometry compared to Ko143 using the antineoplastic agent mitoxantrone as a model substrate. Results showed that Uro-A was able to inhibit mitoxantrone transport in a dose-dependent manner. This study reports for the first time that Uro-A and its sulfate conjugate are ABCG2/BCRP substrates. The results suggest that physiologically relevant concentrations of these gut microbiota-derived metabolites could modulate ABCG2/BCRP-mediated transport processes and mechanisms of cancer drug resistance. Further in vivo investigations are warranted.

  15. The role of vitamin A in bile acid synthesis and transport and the relevance for cholestatic liver disease

    Hoeke, Martijn Oscar

    2013-01-01

    Opname van vetoplosbaar vitamine A in de darm is afhankelijk van galzouten, deze worden geproduceerd door de lever en geven gal haar emulgerende eigenschap. Galzouten zijn potentieel toxische moleculen, synthese en transport in de enterohepatische kringloop wordt daarom nauwkeurig gereguleerd. Galzo

  16. Sodium-Dependent Transport of Neutral Amino Acids by Whole Cells and Membrane Vesicles of Streptococcus bovis, a Ruminal Bacterium

    Russell, James B.; Strobel, Herbert J.; Driessen, Arnold J.M.; Konings, Wilhelmus

    1988-01-01

    Streptococcus bovis JB1 cells were able to transport serine, threonine, or alanine, but only when they were incubated in sodium buffers. If glucose-energized cells were washed in potassium phosphate and suspended in potassium phosphate buffer, there was no detectable uptake. Cells deenergized with 2

  17. Cd and Ni transport and accumulation in the halophyte Sesuvium portulacastrum: implication of organic acids in these processes

    Tahar eGhnaya

    2015-03-01

    Full Text Available The implication of organic acids in Cd and Ni translocation was studied in the halophyte species Sesuvium portulacastrum. Citric, fumaric, malic and ascorbic acids were separated and quantified by HPLC technique in shoots, roots and xylem saps of plants grown on nutrient solutions added with 50 µM Cd, 100 µM Ni and the combination of 50 µM Cd + 100 µM Ni. Results showed that Cd had no significant impact on biomass production while Ni and the combination of both metals drastically affected plant development. Cadmium and Ni concentrations in tissues and xylem sap were higher in plants individually exposed to heavy metal application than in those subjected to the combined treatment Cd + Ni, suggesting a possible competition between these metals for absorption. Both metals applied separately or in combination induced an increase in citrate concentration in shoots and xylem sap but a decrease of this concentration in the roots. However a minor relationship was observed between metal application and fumaric, malic and ascorbic acids. Both observations suggest the implication of citric acid in Cd, Ni translocation and shoot accumulation in S. portulacastrum. The relatively high accumulation of citric acid in xylem sap and shoot of S. portulacastrum could be involved in metal chelation and thus contributes to heavy metal tolerance in this species.

  18. Enhanced GLUT4-Dependent Glucose Transport Relieves Nutrient Stress in Obese Mice Through Changes in Lipid and Amino Acid Metabolism.

    Gurley, Jami M; Ilkayeva, Olga; Jackson, Robert M; Griesel, Beth A; White, Phillip; Matsuzaki, Satochi; Qaisar, Rizwan; Van Remmen, Holly; Humphries, Kenneth M; Newgard, Christopher B; Olson, Ann Louise

    2016-12-01

    Impaired GLUT4-dependent glucose uptake is a contributing factor in the development of whole-body insulin resistance in obese patients and obese animal models. Previously, we demonstrated that transgenic mice engineered to express the human GLUT4 gene under the control of the human GLUT4 promoter (i.e., transgenic [TG] mice) are resistant to obesity-induced insulin resistance. A likely mechanism underlying increased insulin sensitivity is increased glucose uptake in skeletal muscle. The purpose of this study was to investigate the broader metabolic consequences of enhanced glucose uptake into muscle. We observed that the expression of several nuclear and mitochondrially encoded mitochondrial enzymes was decreased in TG mice but that mitochondrial number, size, and fatty acid respiration rates were unchanged. Interestingly, both pyruvate and glutamate respiration rates were decreased in TG mice. Metabolomics analyses of skeletal muscle samples revealed that increased GLUT4 transgene expression was associated with decreased levels of some tricarboxylic acid intermediates and amino acids, whereas the levels of several glucogenic amino acids were elevated. Furthermore, fasting acyl carnitines in obese TG mice were decreased, indicating that increased GLUT4-dependent glucose flux decreases nutrient stress by altering lipid and amino acid metabolism in skeletal muscle.

  19. Molecular characterization of the citrate transporter gene TaMATE1 and expression analysis of upstream genes involved in organic acid transport under Al stress in bread wheat (Triticum aestivum).

    Garcia-Oliveira, Ana Luísa; Martins-Lopes, Paula; Tolrá, Roser; Poschenrieder, Charlotte; Tarquis, Marta; Guedes-Pinto, Henrique; Benito, César

    2014-11-01

    In bread wheat, besides malate, the importance of citrate efflux for Al tolerance has also been reported. For better understanding the Al tolerance mechanism in bread wheat, here, we performed both a molecular characterization of the citrate transporter gene TaMATE1 and an investigation on the upstream variations in citrate and malate transporter genes. TaMATE1 belong to multidrug transporter protein family, which are located on the long arm of homoeologous group 4 chromosomes (TaMATE1-4A, TaMATE1-4B TaMATE1-4D). TaMATE1 homoeologues transcript expression study exhibited the preponderance of homoeologue TaMATE1-4B followed by TaMATE1-4D whereas homoeologue TaMATE1-4A seemed to be silenced. TaMATE1, particularly homoeologue TaMATE1-4B and TaALMT1 transcripts were much more expressed in the root apices than in shoots of Al tolerant genotype Barbela 7/72/92 under both control and Al stress conditions. In addition, in both tissues of Barbela 7/72/92, higher basal levels of these gene transcripts were observed than in Anahuac (Al sensitive). Noticeably, the presence of a transposon in the upstream of TaMATE1-4B in Barbela 7/72/92 seems to be responsible for its higher transcript expression where it may confer citrate efflux. Thus, promoter variations (transposon in TaMATE1-4B upstream and type VI promoter in TaALMT1) associated with higher basal transcript expression of TaMATE1-4B and TaALMT1 clearly show how different mechanisms for Al tolerance operate simultaneously in a single genotype. In conclusion, our results demonstrate that Barbela 7/72/92 has favorable alleles for these organic acids transporter genes which could be utilized through genomic assisted selection to develop improved cultivars for acidic soils.

  20. Mutation of G234 amino acid residue in candida albicans drug-resistance-related protein Rta2p is associated with fluconazole resistance and dihydrosphingosine transport.

    Zhang, Shi-Qun; Miao, Qi; Li, Li-Ping; Zhang, Lu-Lu; Yan, Lan; Jia, Yu; Cao, Yong-Bing; Jiang, Yuan-Ying

    2015-01-01

    Widespread and repeated use of azoles has led to the rapid development of drug resistance in Candida albicans. Our previous study found Rta2p, a membrane protein with 7 transmembrane domains, was involved in calcineurin-mediated azole resistance and sphingoid long-chain base release in C. albicans. Conserved amino acids in the transmembrane domain of Rta2p were subjected to site-directed mutagenesis. The sensitivity of C. albicans to fluconazole in vitro was examined by minimum inhibitory concentration and killing assay, and the therapeutic efficacy of fluconazole in vivo was performed by systemic mice candidiasis model. Furthermore, dihydrosphingosine transport activity was detected by NBD labeled D-erythro-dihydrosphingosine uptake and release assay, and the sensitivity to sphingolipid biosynthesis inhibitors. We successfully constructed 14 mutant strains of Rta2p, screened them by minimum inhibitory concentration and found Ca(2+) did not completely induce fluconazole resistance with G158E and G234S mutations. Furthermore, we confirmed that G234S mutant enhanced the therapeutic efficacy of fluconazole against systemic candidiasis and significantly increased the accumulation of dihydrosphingosine by decreasing its release. However, G158E mutant didn't affect drug therapeutic efficacy in vivo and dihydrosphingosine transport in C. albicans. G234 of Rta2p in C. albicans is crucial in calcineurin-mediated fluconazole resistance and dihydrosphingosine transport.

  1. Mutation of G234 amino acid residue in Candida albicans drug-resistance-related protein Rta2p is associated with fluconazole resistance and dihydrosphingosine transport

    Zhang, Shi-Qun; Miao, Qi; Li, Li-Ping; Zhang, Lu-lu; Yan, Lan; Jia, Yu; Cao, Yong-Bing; Jiang, Yuan-Ying

    2015-01-01

    Widespread and repeated use of azoles has led to the rapid development of drug resistance in Candida albicans. Our previous study found Rta2p, a membrane protein with 7 transmembrane domains, was involved in calcineurin-mediated azole resistance and sphingoid long-chain base release in C. albicans. Conserved amino acids in the transmembrane domain of Rta2p were subjected to site-directed mutagenesis. The sensitivity of C. albicans to fluconazole in vitro was examined by minimum inhibitory concentration and killing assay, and the therapeutic efficacy of fluconazole in vivo was performed by systemic mice candidiasis model. Furthermore, dihydrosphingosine transport activity was detected by NBD labeled D-erythro-dihydrosphingosine uptake and release assay, and the sensitivity to sphingolipid biosynthesis inhibitors. We successfully constructed 14 mutant strains of Rta2p, screened them by minimum inhibitory concentration and found Ca2+ did not completely induce fluconazole resistance with G158E and G234S mutations. Furthermore, we confirmed that G234S mutant enhanced the therapeutic efficacy of fluconazole against systemic candidiasis and significantly increased the accumulation of dihydrosphingosine by decreasing its release. However, G158E mutant didn't affect drug therapeutic efficacy in vivo and dihydrosphingosine transport in C. albicans. G234 of Rta2p in C. albicans is crucial in calcineurin-mediated fluconazole resistance and dihydrosphingosine transport. PMID:26220356

  2. The Next Generation Non-competitive Active Polyester Nanosystems for Transferrin Receptor-mediated Peroral Transport Utilizing Gambogic Acid as a Ligand.

    Saini, P; Ganugula, R; Arora, M; Kumar, M N V Ravi

    2016-01-01

    The current methods for targeted drug delivery utilize ligands that must out-compete endogenous ligands in order to bind to the active site facilitating the transport. To address this limitation, we present a non-competitive active transport strategy to overcome intestinal barriers in the form of tunable nanosystems (NS) for transferrin receptor (TfR) utilizing gambogic acid (GA), a xanthanoid, as its ligand. The NS made using GA conjugated poly(lactide-co-glycolide) (PLGA) have shown non-competitive affinity to TfR evaluated in cell/cell-free systems. The fluorescent PLGA-GA NS exhibited significant intestinal transport and altered distribution profile compared to PLGA NS in vivo. The PLGA-GA NS loaded with cyclosporine A (CsA), a model peptide, upon peroral dosing to rodents led to maximum plasma concentration of CsA at 6 h as opposed to 24 h with PLGA-NS with at least 2-fold higher levels in brain at 72 h. The proposed approach offers new prospects for peroral drug delivery and beyond.

  3. Facilitated transport of Cr(III) through activated composite membrane containing di-(2-ethylhexyl)phosphoric acid (DEHPA) as carrier agent

    Arslan, Gulsin [Department of Chemistry, Selcuk University, 42031, Campus, Konya (Turkey); Tor, Ali, E-mail: ator@selcuk.edu.tr [Department of Environmental Engineering, Selcuk University, 42031 Campus, Konya (Turkey); Cengeloglu, Yunus; Ersoz, Mustafa [Department of Chemistry, Selcuk University, 42031, Campus, Konya (Turkey)

    2009-06-15

    The facilitated transport of chromium(III) through activated composite membrane (ACM) containing di-(2-ethylhexyl) phosphoric acid (DEHPA) was investigated. DEHPA was immobilised by interfacial polymerisation on polysulfone layer which was deposited on non-woven fabric by using spin coater. Then, ACM was characterised by using scanning electron microscopy (SEM), contact angle measurements and atomic force microscopy (AFM). Initially, batch experiments of liquid-liquid distribution of Cr(III) and the extractant (DEHPA) were carried out to determine the appropriate pH of the feed phase and the results showed that maximum extraction of Cr(III) was achieved at a pH of 4. It was also found that Cr(III) and DEHPA reacted in 1/1 molar ratio. The effects of Cr(III) (in feed phase), HCl (in stripping phase) and DEHPA (in ACM) concentrations were investigated. DEHPA concentration varies from 0.1 to 1.0 M and it was determined that the transport of Cr(III) increased with the carrier concentration up to 0.8 M. It was also observed that the transport of Cr(III) through the ACM tended to increase with Cr(III) and HCl concentrations. The stability of ACM was also confirmed with replicate experiments.

  4. Characterization of Na(+) transport to gain insight into the mechanism of acid-base and ion regulation in white sturgeon (Acipenser transmontanus).

    Shartau, Ryan B; Brix, Kevin V; Brauner, Colin J

    2017-02-01

    Freshwater fish actively take up ions via specific transporters to counter diffusive losses to their hypotonic environment. While much is known about the specific mechanisms employed by teleosts, almost nothing is known about the basal fishes, such as white sturgeon (Acipenser transmontanus) which may offer insight into the evolution of osmo- and ionoregulation in fishes. We investigated Na(+) uptake in juvenile white sturgeon in the presence and absence of transporter inhibitors. We found that sturgeon acclimated to 100μmoll(-1) Na(+) have Na(+) uptake kinetics typical of teleosts and that a Na(+)/H(+) exchanger (NHE) is the predominant transporter for Na(+) uptake. White sturgeon are tolerant to hypercarbia-induced respiratory acidoses and recover blood pH (pHe) at 1.5kPa PCO2 but not at higher PCO2 (6kPa PCO2) where they preferentially regulate intracellular pH (pHi). It was hypothesized that during exposure to hypercarbia Na(+) uptake would increase at CO2 tensions at which fish were capable of pHe regulation but decrease at higher tensions when they were preferentially regulating pHi. We found that Na(+) uptake did not increase at 1.5kPa PCO2, but at 6kPa PCO2 Na(+) uptake was reduced by 95% while low water pH equivalent to 6kPa PCO2 reduced Na(+) uptake by 71%. Lastly, we measured net acid flux during hypercarbia, which indicates that net acid flux is not associated with Na(+) uptake. These findings indicate Na(+) uptake in sturgeon is not different from freshwater teleosts but is sensitive to hypercarbia and is not associated with pHe compensation during hypercarbia.

  5. Effect of folate-binding protein on intestinal transport of folic acid and 5-methyltetrahydrofolate across Caco-2 cells

    Verwei, M.; Berg, H. van den; Havenaar, R.; Groten, J.P.

    2005-01-01

    Background: Milk products are a potential matrix for fortification with synthetic folic acid or natural 5-methyltetrahydrofolate (5-CH 3-H4folate) to enhance the daily folate intake. In milk, folate occurs bound to folatebinding proteins (FBP). Our previous studies with an in vitro gastrointestinal

  6. Production of the flavor compound benzaldehyde by lactic acid bacteria: role of manganese and its transport systems in Lactobacillus plantarum

    Nierop Groot, M.N.

    2001-01-01

    One of the aims of the research described in this thesis (Chapter 1 and 2) was to investigate the conversion of phenylalanine to the aromatic flavor compound benzaldehyde in lactic acid bacteria (LAB) (Chapter 3). Lactobacillus plantarum was used as the model organism to study phenylalanine degradat

  7. FUBT, a putative MFS transporter, promotes secretion of fusaric acid in the cotton pathogen Fusarium oxysporum f.sp. vasinfectum

    Fusaric acid (FA), a phytotoxic polyketide produced by Fusarium oxysporum f. sp. vasinfectum (FOV), has been shown to be associated with disease symptoms on cotton. A gene located upstream of the polyketide synthase gene responsible for the biosynthesis of FA is predicted to encode a member of the ...

  8. Na(+) dependent acid-base transporters in the choroid plexus; insights from slc4 and slc9 gene deletion studies.

    Christensen, Henriette L; Nguyen, An T; Pedersen, Fredrik D; Damkier, Helle H

    2013-10-22

    The choroid plexus epithelium (CPE) is located in the ventricular system of the brain, where it secretes the majority of the cerebrospinal fluid (CSF) that fills the ventricular system and surrounds the central nervous system. The CPE is a highly vascularized single layer of cuboidal cells with an unsurpassed transepithelial water and solute transport rate. Several members of the slc4a family of bicarbonate transporters are expressed in the CPE. In the basolateral membrane the electroneutral Na(+) dependent Cl(-)/HCO3 (-) exchanger, NCBE (slc4a10) is expressed. In the luminal membrane, the electrogenic Na(+):HCO3 (-) cotransporter, NBCe2 (slc4a5) is expressed. The electroneutral Na(+):HCO3 (-) cotransporter, NBCn1 (slc4a7), has been located in both membranes. In addition to the bicarbonate transporters, the Na(+)/H(+) exchanger, NHE1 (slc9a1), is located in the luminal membrane of the CPE. Genetically modified mice targeting slc4a2, slc4a5, slc4a7, slc4a10, and slc9a1 have been generated. Deletion of slc4a5, 7 or 10, or slc9a1 has numerous impacts on CP function and structure in these mice. Removal of the transporters affects brain ventricle size (slc4a5 and slc4a10) and intracellular pH regulation (slc4a7 and slc4a10). In some instances, removal of the proteins from the CPE (slc4a5, 7, and 10) causes changes in abundance and localization of non-target transporters known to be involved in pH regulation and CSF secretion. The focus of this review is to combine the insights gathered from these knockout mice to highlight the impact of slc4 gene deletion on the CSF production and intracellular pH regulation resulting from the deletion of slc4a5, 7 and 10, and slc9a1. Furthermore, the review contains a comparison of the described human mutations of these genes to the findings in the knockout studies. Finally, the future perspective of utilizing these proteins as potential targets for the treatment of CSF disorders will be discussed.

  9. Coordinated Regulation of the Neutral Amino Acid Transporter SNAT2 and the Protein Phosphatase Subunit GADD34 Promotes Adaptation to Increased Extracellular Osmolarity*

    Krokowski, Dawid; Jobava, Raul; Guan, Bo-Jhih; Farabaugh, Kenneth; Wu, Jing; Majumder, Mithu; Bianchi, Massimiliano G.; Snider, Martin D.; Bussolati, Ovidio; Hatzoglou, Maria

    2015-01-01

    Cells respond to shrinkage induced by increased extracellular osmolarity via programmed changes in gene transcription and mRNA translation. The immediate response to this stress includes the induction of expression of the neutral amino acid transporter SNAT2. Increased SNAT2-mediated uptake of neutral amino acids is an essential adaptive mechanism for restoring cell volume. In contrast, stress-induced phosphorylation of the α subunit of the translation initiation factor eIF2 (eIF2α) can promote apoptosis. Here we show that the response to mild hyperosmotic stress involves regulation of the phosphorylation of eIF2α by increased levels of GADD34, a regulatory subunit of protein phosphatase 1 (PP1). The induction of GADD34 was dependent on transcriptional control by the c-Jun-binding cAMP response element in the GADD34 gene promoter and posttranscriptional stabilization of its mRNA. This mechanism differs from the regulation of GADD34 expression by other stresses that involve activating transcription factor 4 (ATF4). ATF4 was not translated during hyperosmotic stress despite an increase in eIF2α phosphorylation. The SNAT2-mediated increase in amino acid uptake was enhanced by increased GADD34 levels in a manner involving decreased eIF2α phosphorylation. It is proposed that the induction of the SNAT2/GADD34 axis enhances cell survival by promoting the immediate adaptive response to stress. PMID:26041779

  10. Transport of the alpha-amino-mono-carboxylic acid L-alanine by the beta-alanine carrier of the rabbit ileum

    Andersen, Vibeke; Munck, B G

    1987-01-01

    The proposal that the beta-alanine carrier of the rabbit ileum is a high affinity carrier of the neutral amino acids was examined by means of measurements of influx across the brush border membrane of the intact epithelium using L-alanine as a representative of the neutral amino acids. Confirming...... the proposal, evidence was provided for mutual competitive inhibition between beta-alanine and L-alanine; and it was also demonstrated that a process contributes to the influx of L-alanine, which is characterized by a maximum rate of transport equal to that of beta-alanine and a Kt, which is equal to the Ki...... of L-alanine against the influx of beta-alanine. In the concentration range 0.01 to 0.125 mM the influx of L-alanine was found to be linearly related to the concentration indicating a significant unstirred layer influence on present and previous estimates of the Kt values for influx of amino acids...

  11. D-Serine Is a Substrate for Neutral Amino Acid Transporters ASCT1/SLC1A4 and ASCT2/SLC1A5, and Is Transported by Both Subtypes in Rat Hippocampal Astrocyte Cultures.

    Foster, Alan C; Farnsworth, Jill; Lind, Genevieve E; Li, Yong-Xin; Yang, Jia-Ying; Dang, Van; Penjwini, Mahmud; Viswanath, Veena; Staubli, Ursula; Kavanaugh, Michael P

    2016-01-01

    N-methyl-D-aspartate (NMDA) receptors play critical roles in synaptic transmission and plasticity. Activation of NMDA receptors by synaptically released L-glutamate also requires occupancy of co-agonist binding sites in the tetrameric receptor by either glycine or D-serine. Although D-serine appears to be the predominant co-agonist at synaptic NMDA receptors, the transport mechanisms involved in D-serine homeostasis in brain are poorly understood. In this work we show that the SLC1 amino acid transporter family members SLC1A4 (ASCT1) and SLC1A5 (ASCT2) mediate homo- and hetero-exchange of D-serine with physiologically relevant kinetic parameters. In addition, the selectivity profile of D-serine uptake in cultured rat hippocampal astrocytes is consistent with uptake mediated by both ASCT1 and ASCT2. Together these data suggest that SLC1A4 (ASCT1) may represent an important route of Na-dependent D-serine flux in the brain that has the ability to regulate extracellular D-serine and thereby NMDA receptor activity.

  12. D-Serine Is a Substrate for Neutral Amino Acid Transporters ASCT1/SLC1A4 and ASCT2/SLC1A5, and Is Transported by Both Subtypes in Rat Hippocampal Astrocyte Cultures.

    Alan C Foster

    Full Text Available N-methyl-D-aspartate (NMDA receptors play critical roles in synaptic transmission and plasticity. Activation of NMDA receptors by synaptically released L-glutamate also requires occupancy of co-agonist binding sites in the tetrameric receptor by either glycine or D-serine. Although D-serine appears to be the predominant co-agonist at synaptic NMDA receptors, the transport mechanisms involved in D-serine homeostasis in brain are poorly understood. In this work we show that the SLC1 amino acid transporter family members SLC1A4 (ASCT1 and SLC1A5 (ASCT2 mediate homo- and hetero-exchange of D-serine with physiologically relevant kinetic parameters. In addition, the selectivity profile of D-serine uptake in cultured rat hippocampal astrocytes is consistent with uptake mediated by both ASCT1 and ASCT2. Together these data suggest that SLC1A4 (ASCT1 may represent an important route of Na-dependent D-serine flux in the brain that has the ability to regulate extracellular D-serine and thereby NMDA receptor activity.

  13. Effects of glutamate decarboxylase and gamma-aminobutyric acid (GABA) transporter on the bioconversion of GABA in engineered Escherichia coli.

    Le Vo, Tam Dinh; Kim, Tae Wan; Hong, Soon Ho

    2012-05-01

    Gamma-aminobutyric acid (GABA) is a non-essential amino acid and a precursor of pyrrolidone, a monomer of nylon 4. GABA can be biosynthesized through the decarboxylation of L: -glutamate by glutamate decarboxylase. In this study, the effects of glutamate decarboxylase (gadA, gadB), glutamate/GABA antiporter (gadC) and GABA aminotransferase (gabT) on GABA production were investigated in Escherichia coli. Glutamate decarboxylase was overexpressed alone or with the glutamate/GABA antiporter to enhance GABA synthesis. GABA aminotransferase, which redirects GABA into the TCA cycle, was knock-out mutated. When gadB and gadC were co-overexpressed in the gabT mutant strain, a final GABA concentration of 5.46 g/l was obtained from 10 g/l of monosodium glutamate (MSG), which corresponded to a GABA yield of 89.5%.

  14. Peroxisome protein transportation affects metabolism of branched-chain fatty acids that critically impact growth and development of C. elegans.

    Rencheng Wang

    Full Text Available The impact of specific lipid molecules, including fatty acid variants, on cellular and developmental regulation is an important research subject that remains under studied. Monomethyl branched-chain fatty acids (mmBCFAs are commonly present in multiple organisms including mammals, however our understanding of mmBCFA functions is very limited. C. elegans has been the premier model system to study the functions of mmBCFAs and their derived lipids, as mmBCFAs have been shown to play essential roles in post-embryonic development in this organism. To understand more about the metabolism of mmBCFAs in C. elegans, we performed a genetic screen for suppressors of the L1 developmental arrest phenotype caused by mmBCFA depletion. Extensive characterization of one suppressor mutation identified prx-5, which encodes an ortholog of the human receptor for the type-1 peroxisomal targeting signal protein. Our study showed that inactivating prx-5 function compromised the peroxisome protein import, resulting in an increased level of branched-chain fatty acid C17ISO in animals lacking normal mmBCFA synthesis, thereby restoring wild-type growth and development. This work reveals a novel connection between peroxisomal functions and mmBCFA metabolism.

  15. Influence of variable chemical conditions on EDTA-enhanced transport of metal ions in mildly acidic groundwater

    Kent, D.B.; Davis, J.A.; Joye, J.L.; Curtis, G.P.

    2008-01-01

    Adsorption of Ni and Pb on aquifer sediments from Cape Cod, Massachusetts, USA increased with increasing pH and metal-ion concentration. Adsorption could be described quantitatively using a semi-mechanistic surface complexation model (SCM), in which adsorption is described using chemical reactions between metal ions and adsorption sites. Equilibrium reactive transport simulations incorporating the SCMs, formation of metal-ion-EDTA complexes, and either Fe(III)-oxyhydroxide solubility or Zn desorption from sediments identified important factors responsible for trends observed during transport experiments conducted with EDTA complexes of Ni, Zn, and Pb in the Cape Cod aquifer. Dissociation of Pb-EDTA by Fe(III) is more favorable than Ni-EDTA because of differences in Ni- and Pb-adsorption to the sediments. Dissociation of Ni-EDTA becomes more favorable with decreasing Ni-EDTA concentration and decreasing pH. In contrast to Ni, Pb-EDTA can be dissociated by Zn desorbed from the aquifer sediments. Variability in adsorbed Zn concentrations has a large impact on Pb-EDTA dissociation.

  16. Inhibition of intestinal bile acid transporter Slc10a2 improves triglyceride metabolism and normalizes elevated plasma glucose levels in mice.

    Thomas Lundåsen

    Full Text Available Interruption of the enterohepatic circulation of bile acids increases cholesterol catabolism, thereby stimulating hepatic cholesterol synthesis from acetate. We hypothesized that such treatment should lower the hepatic acetate pool which may alter triglyceride and glucose metabolism. We explored this using mice deficient of the ileal sodium-dependent BA transporter (Slc10a2 and ob/ob mice treated with a specific inhibitor of Slc10a2. Plasma TG levels were reduced in Slc10a2-deficient mice, and when challenged with a sucrose-rich diet, they displayed a reduced response in hepatic TG production as observed from the mRNA levels of several key enzymes in fatty acid synthesis. This effect was paralleled by a diminished induction of mature sterol regulatory element-binding protein 1c (Srebp1c. Unexpectedly, the SR-diet induced intestinal fibroblast growth factor (FGF 15 mRNA and normalized bile acid synthesis in Slc10a2-/- mice. Pharmacologic inhibition of Slc10a2 in diabetic ob/ob mice reduced serum glucose, insulin and TGs, as well as hepatic mRNA levels of Srebp1c and its target genes. These responses are contrary to those reported following treatment of mice with a bile acid binding resin. Moreover, when key metabolic signal transduction pathways in the liver were investigated, those of Mek1/2-Erk1/2 and Akt were blunted after treatment of ob/ob mice with the Slc10a2 inhibitor. It is concluded that abrogation of Slc10a2 reduces hepatic Srebp1c activity and serum TGs, and in the diabetic ob/ob model it also reduces glucose and insulin levels. Hence, targeting of Slc10a2 may be a promising strategy to treat hypertriglyceridemia and diabetes.

  17. Metabolic reprogramming through fatty acid transport protein 1 (FATP1 regulates macrophage inflammatory potential and adipose inflammation

    Amy R. Johnson

    2016-07-01

    Conclusion: Our findings provide evidence that FATP1 is a novel regulator of MΦ activation through control of substrate metabolism. Absence of FATP1 exacerbated pro-inflammatory activation in vitro and increased local and systemic components of the metabolic syndrome in HFD-fed Fatp1B−/− mice. In contrast, gain of FATP1 activity in MΦs suggested that Fatp1-mediated activation of fatty acids, substrate switch to glucose, oxidative stress, and lipid mediator synthesis are potential mechanisms. We demonstrate for the first time that FATP1 provides a unique mechanism by which the inflammatory tone of adipose and systemic metabolism may be regulated.

  18. Two non-steroidal anti-inflammatory drugs, niflumic acid and diclofenac, inhibit the human glutamate transporter EAAT1 through different mechanisms.

    Takahashi, Kanako; Ishii-Nozawa, Reiko; Takeuchi, Kouichi; Nakazawa, Ken; Sato, Kaoru

    2010-01-01

    We investigated the effects of non-steroidal anti-inflammatory drugs on substrate-induced currents of L-glutamate (L-Glu) transporter EAAT1 expressed in Xenopus laevis oocytes. Niflumic acid (NFA) and diclofenac inhibited L-Glu-induced current through EAAT1 in a non-competitive manner. NFA produced a leftward shift in reversal potential (E(rev)) of L-Glu-induced current and increased current amplitude at the potentials more negative than -100 mV. Diclofenac had no effects on E(rev) and inhibited the current amplitude to the same extent at all negative potentials. These results indicate that NFA and diclofenac inhibit the L-Glu-induced EAAT1 current via different mechanisms.

  19. Efficient production of gamma-aminobutyric acid using Escherichia coli by co-localization of glutamate synthase, glutamate decarboxylase, and GABA transporter.

    Dung Pham, Van; Somasundaram, Sivachandiran; Lee, Seung Hwan; Park, Si Jae; Hong, Soon Ho

    2016-01-01

    Gamma-aminobutyric acid (GABA) is an important bio-product, which is used in pharmaceutical formulations, nutritional supplements, and biopolymer monomer. The traditional GABA process involves the decarboxylation of glutamate. However, the direct production of GABA from glucose is a more efficient process. To construct the recombinant strains of Escherichia coli, a novel synthetic scaffold was introduced. By carrying out the co-localization of glutamate synthase, glutamate decarboxylase, and GABA transporter, we redirected the TCA cycle flux to GABA pathway. The genetically engineered E. coli strain produced 1.08 g/L of GABA from 10 g/L of initial glucose. Thus, with the introduction of a synthetic scaffold, we increased GABA production by 2.2-fold. The final GABA concentration was increased by 21.8% by inactivating competing pathways.

  20. Reactive solute transport in an acidic stream: Experimental pH increase and simulation of controls on pH, aluminum, and iron

    Broshears, R.E.; Runkel, R.L.; Kimball, B.A.; McKnight, Diane M.; Bencala, K.E.

    1996-01-01

    Solute transport simulations quantitatively constrained hydrologic and geochemical hypotheses about field observations of a pH modification in an acid mine drainage stream. Carbonate chemistry, the formation of solid phases, and buffering interactions with the stream bed were important factors in explaining the behavior of pH, aluminum, and iron. The precipitation of microcrystalline gibbsite accounted for the behavior of aluminum; precipitation of Fe(OH)3 explained the general pattern of iron solubility. The dynamic experiment revealed limitations on assumptions that reactions wer