WorldWideScience

Sample records for acid toxicity tolerance

  1. Toxicity and tolerance of aluminum in plants: tailoring plants to suit to acid soils.

    Science.gov (United States)

    Sade, Hemalatha; Meriga, Balaji; Surapu, Varalakshmi; Gadi, Jogeswar; Sunita, M S L; Suravajhala, Prashanth; Kavi Kishor, P B

    2016-04-01

    Aluminum (Al) stress is one of the serious limiting factors in plant productivity in acidic soils, which constitute about 50 % of the world's potentially arable lands and causes anywhere between 25 and 80 % of yield losses depending upon the species. The mechanism of Al toxicity and tolerance has been examined in plants, which is vital for crop improvement and enhanced food production in the future. Two mechanisms that facilitate Al tolerance in plants are Al exclusion from the roots and the ability to tolerate Al in the symplast or both. Although efforts have been made to unravel Al-resistant factors, many aspects remain unclear. Certain gene families such as MATE, ALMT, ASR, and ABC transporters have been implicated in some plants for resistance to Al which would enhance the opportunities for creating crop plants suitable to grow in acidic soils. Though QTLs have been identified related to Al-tolerance, no crop plant that is tolerant to Al has been evolved so far using breeding or molecular approaches. The remarkable changes that plants experience at the physiological, biochemical and molecular level under Al stress, the vast array of genes involved in Al toxicity-tolerance, the underlying signaling events and the holistic image of the molecular regulation, and the possibility of creating transgenics for Al tolerance are discussed in this review.

  2. Aluminium toxicity tolerance in crop plants: Present status of research

    African Journals Online (AJOL)

    ... tolerance of which genes of the Aluminium-activated malate transporter (ALMT) and multidrug and toxic compound extrusion (MATE) families are prominent. In this review, the progress of research in identifying aluminium toxicity tolerant genes is discussed. Keywords: Aluminium toxicity, soil acidity, hydroponic screening, ...

  3. The role of organic acids exuded from roots in phosphorus nutrition and aluminium tolerance in acidic soils

    Energy Technology Data Exchange (ETDEWEB)

    Hocking, P J; Randall, P J; Delhaize, E [CSIRO Plant Industry, Canberra (Australia); Keerthisinghe, G [International Atomic Energy Agency, Vienna (Austria)

    2000-06-01

    Soil acidity is a major problem of large areas of arable land on a global scale. Many acid soils are low in plant-available phosphorus (P) or are highly P-fixing, resulting in poor plant growth. In addition, aluminium (Al) is soluble in acid soils in the toxic Al{sup 3+} form, which also reduces plant growth. There is considerable evidence that both P deficiency and exposure to Al{sup 3+} stimulate the efflux of organic acids from roots of a range of species. Organic acids such as citrate, malate and oxalate are able to desorb or solubilise fixed soil P, making it available for plant uptake. Organic acids also chelate Al{sup 3+} to render it non-toxic, and are, therefore, involved in Al tolerance mechanisms. In this review, we discuss the literature on the role of organic acids exuded from roots in improving plant P uptake and Al-tolerance in acid soils. Research is now attempting to understand how P deficiency or exposure to Al{sup 3+} activates or induces organic acid efflux at the molecular level, with the aim of improving P acquisition and Al tolerance by conventional plant breeding and by genetic engineering. At the agronomic level, it is desirable that existing crop and pasture plants with enhanced soil-P uptake and tolerance to Al due to organic acid exudation are integrated into farming systems. (author)

  4. The role of organic acids exuded from roots in phosphorus nutrition and aluminium tolerance in acidic soils

    International Nuclear Information System (INIS)

    Hocking, P.J.; Randall, P.J.; Delhaize, E.; Keerthisinghe, G.

    2000-01-01

    Soil acidity is a major problem of large areas of arable land on a global scale. Many acid soils are low in plant-available phosphorus (P) or are highly P-fixing, resulting in poor plant growth. In addition, aluminium (Al) is soluble in acid soils in the toxic Al 3+ form, which also reduces plant growth. There is considerable evidence that both P deficiency and exposure to Al 3+ stimulate the efflux of organic acids from roots of a range of species. Organic acids such as citrate, malate and oxalate are able to desorb or solubilise fixed soil P, making it available for plant uptake. Organic acids also chelate Al 3+ to render it non-toxic, and are, therefore, involved in Al tolerance mechanisms. In this review, we discuss the literature on the role of organic acids exuded from roots in improving plant P uptake and Al-tolerance in acid soils. Research is now attempting to understand how P deficiency or exposure to Al 3+ activates or induces organic acid efflux at the molecular level, with the aim of improving P acquisition and Al tolerance by conventional plant breeding and by genetic engineering. At the agronomic level, it is desirable that existing crop and pasture plants with enhanced soil-P uptake and tolerance to Al due to organic acid exudation are integrated into farming systems. (author)

  5. Morpho-physiological analysis of tolerance to aluminum toxicity in rice varieties of North East India.

    Directory of Open Access Journals (Sweden)

    Jay Prakash Awasthi

    Full Text Available Aluminum (Al is the third most abundant metal in earth crust, whose chemical form is mainly dependent on soil pH. The most toxic form of Al with respect to plants is Al3+, which exists in soil pH <5. Acidic soil significantly limits crop production mainly due to Al3+ toxicity worldwide, impacting approximately 50% of the world's arable land (in North-Eastern India 80% soil are acidic. Al3+ toxicity in plants ensues root growth inhibition leading to less nutrient and water uptake impacting crop productivity as a whole. Rice is one of the chief grains which constitutes the staple food of two-third of the world population including India and is not untouched by Al3+ toxicity. Al contamination is a critical constraint to plant production in agricultural soils of North East India. 24 indigenous Indica rice varieties (including Badshahbhog as tolerant check and Mashuri as sensitive check were screened for Al stress tolerance in hydroponic plant growth system. Results show marked difference in growth parameters (relative growth rate, Root tolerance index, fresh and dry weight of root of rice seedlings due to Al (100 μM toxicity. Al3+ uptake and lipid peroxidation level also increased concomitantly under Al treatment. Histochemical assay were also performed to elucidate uptake of aluminum, loss of membrane integrity and lipid peroxidation, which were found to be more in sensitive genotypes at higher Al concentration. This study revealed that aluminum toxicity is a serious harmful problem for rice crop productivity in acid soil. Based on various parameters studied it's concluded that Disang is a comparatively tolerant variety whereas Joymati a sensitive variety. Western blot hybridization further strengthened the claim, as it demonstrated more accumulation of Glutathione reductase (GR protein in Disang rice variety than Joymati under stressed condition. This study also observed that the emergence of lethal toxic symptoms occurs only after 48h

  6. Morpho-physiological analysis of tolerance to aluminum toxicity in rice varieties of North East India.

    Science.gov (United States)

    Awasthi, Jay Prakash; Saha, Bedabrata; Regon, Preetom; Sahoo, Smita; Chowra, Umakanta; Pradhan, Amit; Roy, Anupam; Panda, Sanjib Kumar

    2017-01-01

    Aluminum (Al) is the third most abundant metal in earth crust, whose chemical form is mainly dependent on soil pH. The most toxic form of Al with respect to plants is Al3+, which exists in soil pH Eastern India 80% soil are acidic). Al3+ toxicity in plants ensues root growth inhibition leading to less nutrient and water uptake impacting crop productivity as a whole. Rice is one of the chief grains which constitutes the staple food of two-third of the world population including India and is not untouched by Al3+ toxicity. Al contamination is a critical constraint to plant production in agricultural soils of North East India. 24 indigenous Indica rice varieties (including Badshahbhog as tolerant check and Mashuri as sensitive check) were screened for Al stress tolerance in hydroponic plant growth system. Results show marked difference in growth parameters (relative growth rate, Root tolerance index, fresh and dry weight of root) of rice seedlings due to Al (100 μM) toxicity. Al3+ uptake and lipid peroxidation level also increased concomitantly under Al treatment. Histochemical assay were also performed to elucidate uptake of aluminum, loss of membrane integrity and lipid peroxidation, which were found to be more in sensitive genotypes at higher Al concentration. This study revealed that aluminum toxicity is a serious harmful problem for rice crop productivity in acid soil. Based on various parameters studied it's concluded that Disang is a comparatively tolerant variety whereas Joymati a sensitive variety. Western blot hybridization further strengthened the claim, as it demonstrated more accumulation of Glutathione reductase (GR) protein in Disang rice variety than Joymati under stressed condition. This study also observed that the emergence of lethal toxic symptoms occurs only after 48h irrespective of the dose used in the study.

  7. Genome-wide identification of Saccharomyces cerevisiae genes required for tolerance to acetic acid

    Directory of Open Access Journals (Sweden)

    Sá-Correia Isabel

    2010-10-01

    Full Text Available Abstract Background Acetic acid is a byproduct of Saccharomyces cerevisiae alcoholic fermentation. Together with high concentrations of ethanol and other toxic metabolites, acetic acid may contribute to fermentation arrest and reduced ethanol productivity. This weak acid is also a present in lignocellulosic hydrolysates, a highly interesting non-feedstock substrate in industrial biotechnology. Therefore, the better understanding of the molecular mechanisms underlying S. cerevisiae tolerance to acetic acid is essential for the rational selection of optimal fermentation conditions and the engineering of more robust industrial strains to be used in processes in which yeast is explored as cell factory. Results The yeast genes conferring protection against acetic acid were identified in this study at a genome-wide scale, based on the screening of the EUROSCARF haploid mutant collection for susceptibility phenotypes to this weak acid (concentrations in the range 70-110 mM, at pH 4.5. Approximately 650 determinants of tolerance to acetic acid were identified. Clustering of these acetic acid-resistance genes based on their biological function indicated an enrichment of genes involved in transcription, internal pH homeostasis, carbohydrate metabolism, cell wall assembly, biogenesis of mitochondria, ribosome and vacuole, and in the sensing, signalling and uptake of various nutrients in particular iron, potassium, glucose and amino acids. A correlation between increased resistance to acetic acid and the level of potassium in the growth medium was found. The activation of the Snf1p signalling pathway, involved in yeast response to glucose starvation, is demonstrated to occur in response to acetic acid stress but no evidence was obtained supporting the acetic acid-induced inhibition of glucose uptake. Conclusions Approximately 490 of the 650 determinants of tolerance to acetic acid identified in this work are implicated, for the first time, in tolerance to

  8. Initial root length in wheat is highly correlated with acid soil tolerance in the field

    Directory of Open Access Journals (Sweden)

    Jorge Fernando Pereira

    Full Text Available ABSTRACT: In acid soils, toxic aluminum ions inhibit plant root growth. In order to discriminate aluminum (Al tolerance, trustful screening techniques are required. In this study, 20 wheat cultivars, showing different levels of Al tolerance, were evaluated in a short-term soil experiment to access their relative root length (RRL. Moreover, the alleles of two important genes (TaALMT1 and TaMATE1B for Al tolerance in wheat were discriminated. Both of these genes encode membrane transporters responsible for the efflux of organic acids by the root apices that are thought to confer tolerance by chelating Al. Genotypes showing TaALMT1 alleles V and VI and an insertion at the TaMATE1B promoter were among the ones showing greater RRL. Mechanisms of Al tolerance, which are not associated with organic acid efflux, can be potentially present in two cultivars showing greater RRL among the ones carrying inferior TaALMT1 and TaMATE1B alleles. The RRL data were highly correlated with wheat performance in acid soil at three developmental stages, tillering (r = −0.93, p < 0.001, silking (r = −0.91, p < 0.001 and maturation (r = −0.90, p < 0.001, as well as with the classification index of aluminum toxicity in the field (r = −0.92, p < 0.001. Since the RRL was obtained after only six days of growth and it is highly correlated with plant performance in acid soil under field conditions, the short-term experiment detailed here is an efficient and rapid method for reliable screening of wheat Al tolerance.

  9. Suppression of a NAC-like transcription factor gene improves boron-toxicity tolerance in rice.

    Science.gov (United States)

    Ochiai, Kumiko; Shimizu, Akifumi; Okumoto, Yutaka; Fujiwara, Toru; Matoh, Toru

    2011-07-01

    We identified a gene responsible for tolerance to boron (B) toxicity in rice (Oryza sativa), named BORON EXCESS TOLERANT1. Using recombinant inbred lines derived from the B-toxicity-sensitive indica-ecotype cultivar IR36 and the tolerant japonica-ecotype cultivar Nekken 1, the region responsible for tolerance to B toxicity was narrowed to 49 kb on chromosome 4. Eight genes are annotated in this region. The DNA sequence in this region was compared between the B-toxicity-sensitive japonica cultivar Wataribune and the B-toxicity-tolerant japonica cultivar Nipponbare by eco-TILLING analysis and revealed a one-base insertion mutation in the open reading frame sequence of the gene Os04g0477300. The gene encodes a NAC (NAM, ATAF, and CUC)-like transcription factor and the function of the transcript is abolished in B-toxicity-tolerant cultivars. Transgenic plants in which the expression of Os04g0477300 is abolished by RNA interference gain tolerance to B toxicity.

  10. Suppression of a NAC-Like Transcription Factor Gene Improves Boron-Toxicity Tolerance in Rice1

    Science.gov (United States)

    Ochiai, Kumiko; Shimizu, Akifumi; Okumoto, Yutaka; Fujiwara, Toru; Matoh, Toru

    2011-01-01

    We identified a gene responsible for tolerance to boron (B) toxicity in rice (Oryza sativa), named BORON EXCESS TOLERANT1. Using recombinant inbred lines derived from the B-toxicity-sensitive indica-ecotype cultivar IR36 and the tolerant japonica-ecotype cultivar Nekken 1, the region responsible for tolerance to B toxicity was narrowed to 49 kb on chromosome 4. Eight genes are annotated in this region. The DNA sequence in this region was compared between the B-toxicity-sensitive japonica cultivar Wataribune and the B-toxicity-tolerant japonica cultivar Nipponbare by eco-TILLING analysis and revealed a one-base insertion mutation in the open reading frame sequence of the gene Os04g0477300. The gene encodes a NAC (NAM, ATAF, and CUC)-like transcription factor and the function of the transcript is abolished in B-toxicity-tolerant cultivars. Transgenic plants in which the expression of Os04g0477300 is abolished by RNA interference gain tolerance to B toxicity. PMID:21543724

  11. Linking waterlogging tolerance with Mn²⁺ toxicity: a case study for barley.

    Science.gov (United States)

    Huang, X; Shabala, S; Shabala, L; Rengel, Z; Wu, X; Zhang, G; Zhou, M

    2015-01-01

    Vast agricultural areas are affected by flooding, causing up to 80% yield reduction and resulting in multibillion dollar losses. Up to now, the focus of plant breeders was predominantly on detrimental effects of anoxia, while other (potentially equally important) traits were essentially neglected; one of these is soil elemental toxicity. Excess water triggers a progressive decrease in soil redox potential, thus increasing the concentration of Mn(2+) that can be toxic to plants if above a specific threshold. This work aimed to quantify the relative contribution of Mn(2+) toxicity to waterlogging stress tolerance, using barley as a case study. Twenty barley (Hordeum vulgare) genotypes contrasting in waterlogging stress tolerance were studied for their ability to cope with toxic (1 mm) amounts of Mn(2+) in the root rhizosphere. Under Mn(2+) toxicity, chlorophyll content of most waterlogging-tolerant genotypes (TX9425, Yerong, CPI-71284-48 and CM72) remained above 60% of the control value, whereas sensitive genotypes (Franklin and Naso Nijo) had 35% less chlorophyll than 35% of controls. Manganese concentration in leaves was not related to visual Mn(2+) toxicity symptoms, suggesting that various Mn(2+) tolerance mechanisms might operate in different tolerant genotypes, i.e. avoidance versus tissue tolerance. The overall significant (r = 0.60) correlation between tolerance to Mn(2+) toxicity and waterlogging in barley suggests that plant breeding for tolerance to waterlogging traits may be advanced by targeting mechanisms conferring tolerance to Mn(2+) toxicity, at least in this species. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.

  12. Aluminium tolerance and high phosphorus efficiency helps Stylosanthes better adapt to low-P acid soils.

    Science.gov (United States)

    Du, Yu-Mei; Tian, Jiang; Liao, Hong; Bai, Chang-Jun; Yan, Xiao-Long; Liu, Guo-Dao

    2009-06-01

    Stylosanthes spp. (stylo) is one of the most important pasture legumes used in a wide range of agricultural systems on acid soils, where aluminium (Al) toxicity and phosphorus (P) deficiency are two major limiting factors for plant growth. However, physiological mechanisms of stylo adaptation to acid soils are not understood. Twelve stylo genotypes were surveyed under field conditions, followed by sand and nutrient solution culture experiments to investigate possible physiological mechanisms of stylo adaptation to low-P acid soils. Stylo genotypes varied substantially in growth and P uptake in low P conditions in the field. Three genotypes contrasting in P efficiency were selected for experiments in nutrient solution and sand culture to examine their Al tolerance and ability to utilize different P sources, including Ca-P, K-P, Al-P, Fe-P and phytate-P. Among the three tested genotypes, the P-efficient genotype 'TPRC2001-1' had higher Al tolerance than the P-inefficient genotype 'Fine-stem' as indicated by relative tap root length and haematoxylin staining. The three genotypes differed in their ability to utilize different P sources. The P-efficient genotype, 'TPRC2001-1', had superior ability to utilize phytate-P. The findings suggest that possible physiological mechanisms of stylo adaptation to low-P acid soils might involve superior ability of plant roots to tolerate Al toxicity and to utilize organic P and Al-P.

  13. Tolerance and toxicity levels of boron in mung bean (vigna radiata (l.) wilczek) cultivars at early growth stages

    International Nuclear Information System (INIS)

    Hasnain, A.; Mahmood, S.; Akhtar, S.; Malik, S.A.; Bashir, N.

    2011-01-01

    Boron (B) toxicity has been recognized as a serious problem in arid and semi arid regions of the world. This study was aimed to determine critical levels of B by studying phenotypic variation for B-tolerance/ toxicity at the germination and seedling stage in three mung bean (Vigna radiata) cultivars; M-6, M-8 and 96009. Boron levels ranging from 0-20 ppm were applied using Boric acid. Germination, growth and photosynthetic attributes were significantly (p<0.001) influenced by varying B levels. However, the cultivars were significantly invariable for germination, seedling height and leaf number. B levels (5-10 ppm) appeared to be nutritionally critical whereas, 15-20 ppm induced B toxicity. The toxicity was expressed in terms of reduction in plant's growth as well as by visible symptoms which included chlorosis and necrosis of the foliage. The present study also demonstrated variation in B tolerance at the seedling stage in these cultivars. Among the tested cultivars, M-6 and M-8 exhibited better growth responses as compared with 96009. Fresh biomass and shoot: root ratio appeared to serve as selection criteria for B tolerance. The study further suggested screening of cultivars/ accessions on a large scale to explore more diversity of traits as well as the use of biochemical markers for mechanistic understanding of B tolerance. (author)

  14. Wheat genotypes differing in aluminum tolerance differ in their growth response to CO2 enrichment in acid soils

    OpenAIRE

    Tian, Qiuying; Zhang, Xinxin; Gao, Yan; Bai, Wenming; Ge, Feng; Ma, Yibing; Zhang, Wen-Hao

    2013-01-01

    Aluminum (Al) toxicity is a major factor limiting plant growth in acid soils. Elevated atmospheric CO2 [CO2] enhances plant growth. However, there is no report on the effect of elevated [CO2] on growth of plant genotypes differing in Al tolerance grown in acid soils. We investigated the effect of short-term elevated [CO2] on growth of Al-tolerant (ET8) and Al-sensitive (ES8) wheat plants and malate exudation from root apices by growing them in acid soils under ambient [CO2] and elevated [CO2]...

  15. Boron toxicity in rice (Oryza sativa L.). I. Quantitative trait locus (QTL) analysis of tolerance to boron toxicity.

    Science.gov (United States)

    Ochiai, K; Uemura, S; Shimizu, A; Okumoto, Y; Matoh, T

    2008-06-01

    Boron toxicity tolerance of rice plants was studied. Modern japonica subspecies such as Koshihikari, Nipponbare, and Sasanishiki were tolerant, whereas indica subspecies such as Kasalath and IR36 were intolerant to excessive application of boron (B), even though their shoot B contents under B toxicity were not significantly different. Recombinant inbred lines (RILs) of japonica Nekken-1 and indica IR36 were used for quantitative trait locus (QTL) analysis to identify the gene responsible for B toxicity tolerance. A major QTL that could explain 45% of the phenotypic variation was detected in chromosome 4. The QTL was confirmed using a population derived from a recombinant inbred line which is heterogenic at the QTL region. The QTL was also confirmed in other chromosome segment substitution lines (CSSLs).

  16. Roles of Organic Acid Anion Secretion in Aluminium Tolerance of Higher Plants

    Science.gov (United States)

    Yang, Lin-Tong; Qi, Yi-Ping; Jiang, Huan-Xin; Chen, Li-Song

    2013-01-01

    Approximately 30% of the world's total land area and over 50% of the world's potential arable lands are acidic. Furthermore, the acidity of the soils is gradually increasing as a result of the environmental problems including some farming practices and acid rain. At mildly acidic or neutral soils, aluminium(Al) occurs primarily as insoluble deposits and is essentially biologically inactive. However, in many acidic soils throughout the tropics and subtropics, Al toxicity is a major factor limiting crop productivity. The Al-induced secretion of organic acid (OA) anions, mainly citrate, oxalate, and malate, from roots is the best documented mechanism of Al tolerance in higher plants. Increasing evidence shows that the Al-induced secretion of OA anions may be related to the following several factors, including (a) anion channels or transporters, (b) internal concentrations of OA anions in plant tissues, (d) temperature, (e) root plasma membrane (PM) H+-ATPase, (f) magnesium (Mg), and (e) phosphorus (P). Genetically modified plants and cells with higher Al tolerance by overexpressing genes for the secretion and the biosynthesis of OA anions have been obtained. In addition, some aspects needed to be further studied are also discussed. PMID:23509687

  17. 78 FR 20029 - Castor Oil, Polymer With Adipic Acid, Linoleic Acid, Oleic Acid and Ricinoleic Acid; Tolerance...

    Science.gov (United States)

    2013-04-03

    ..., Polymer With Adipic Acid, Linoleic Acid, Oleic Acid and Ricinoleic Acid; Tolerance Exemption AGENCY... from the requirement of a tolerance for residues of castor oil, polymer with adipic acid, linoleic acid... pesticide formulation. Advance Polymer Technology submitted a petition to EPA under the Federal Food, Drug...

  18. Genome-wide association study to identify candidate loci and genes for Mn toxicity tolerance in rice.

    Directory of Open Access Journals (Sweden)

    Asis Shrestha

    Full Text Available Manganese (Mn is an essential micro-nutrient for plants, but flooded rice fields can accumulate high levels of Mn2+ leading to Mn toxicity. Here, we present a genome-wide association study (GWAS to identify candidate loci conferring Mn toxicity tolerance in rice (Oryza sativa L.. A diversity panel of 288 genotypes was grown in hydroponic solutions in a greenhouse under optimal and toxic Mn concentrations. We applied a Mn toxicity treatment (5 ppm Mn2+, 3 weeks at twelve days after transplanting. Mn toxicity caused moderate damage in rice in terms of biomass loss and symptom formation despite extremely high shoot Mn concentrations ranging from 2.4 to 17.4 mg g-1. The tropical japonica subpopulation was more sensitive to Mn toxicity than other subpopulations. Leaf damage symptoms were significantly correlated with Mn uptake into shoots. Association mapping was conducted for seven traits using 416741 single nucleotide polymorphism (SNP markers using a mixed linear model, and detected six significant associations for the traits shoot manganese concentration and relative shoot length. Candidate regions contained genes coding for a heavy metal transporter, peroxidase precursor and Mn2+ ion binding proteins. The significant marker SNP-2.22465867 caused an amino acid change in a gene (LOC_Os02g37170 with unknown function. This study demonstrated significant natural variation in rice for Mn toxicity tolerance and the possibility of using GWAS to unravel genetic factors responsible for such complex traits.

  19. Boron-toxicity tolerance in barley arising from efflux transporter amplification.

    Science.gov (United States)

    Sutton, Tim; Baumann, Ute; Hayes, Julie; Collins, Nicholas C; Shi, Bu-Jun; Schnurbusch, Thorsten; Hay, Alison; Mayo, Gwenda; Pallotta, Margaret; Tester, Mark; Langridge, Peter

    2007-11-30

    Both limiting and toxic soil concentrations of the essential micronutrient boron represent major limitations to crop production worldwide. We identified Bot1, a BOR1 ortholog, as the gene responsible for the superior boron-toxicity tolerance of the Algerian barley landrace Sahara 3771 (Sahara). Bot1 was located at the tolerance locus by high-resolution mapping. Compared to intolerant genotypes, Sahara contains about four times as many Bot1 gene copies, produces substantially more Bot1 transcript, and encodes a Bot1 protein with a higher capacity to provide tolerance in yeast. Bot1 transcript levels identified in barley tissues are consistent with a role in limiting the net entry of boron into the root and in the disposal of boron from leaves via hydathode guttation.

  20. Usnic acid controls the acidity tolerance of lichens

    International Nuclear Information System (INIS)

    Hauck, Markus; Juergens, Sascha-Rene

    2008-01-01

    The hypotheses were tested that, firstly, lichens producing the dibenzofuran usnic acid colonize substrates characterized by specific pH ranges, secondly, this preferred pH is in a range where soluble usnic acid and its corresponding anion occur in similar concentrations, and thirdly, usnic acid makes lichens vulnerable to acidity. Lichens with usnic acid prefer an ambient pH range between 3.5 and 5.5 with an optimum between 4.0 and 4.5. This optimum is close to the pK a1 value of usnic acid of 4.4. Below this optimum pH, dissolved SO 2 reduces the chlorophyll fluorescence yield more in lichens with than without their natural content of usnic acid. This suggests that usnic acid influences the acidity tolerance of lichens. The putative mechanism of the limited acidity tolerance of usnic acid-containing lichens is the acidification of the cytosol by molecules of protonated usnic acid shuttling protons through the plasma membrane at an apoplastic pH a1 . - Combined field and experimental data suggest that usnic acid makes lichens sensitive to acidity at pH <3.5

  1. Dissecting the assays to assess microbial tolerance to toxic chemicals in bioprocessing.

    Science.gov (United States)

    Zingaro, Kyle A; Nicolaou, Sergios A; Papoutsakis, Eleftherios T

    2013-11-01

    Microbial strains are increasingly used for the industrial production of chemicals and biofuels, but the toxicity of components in the feedstock and product streams limits process outputs. Selected or engineered microbes that thrive in the presence of toxic chemicals can be assessed using tolerance assays. Such assays must reasonably represent the conditions the cells will experience during the intended process and measure the appropriate physiological trait for the desired application. We review currently used tolerance assays, and examine the many parameters that affect assay outcomes. We identify and suggest the use of the best-suited assays for each industrial bioreactor operating condition, discuss next-generation assays, and propose a standardized approach for using assays to examine tolerance to toxic chemicals. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Thermochemical Wastewater Valorization via Enhanced Microbial Toxicity Tolerance

    Energy Technology Data Exchange (ETDEWEB)

    Beckham, Gregg T [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Thelhawadigedara, Lahiru Niroshan Jayakody [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Johnson, Christopher W [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Pleitner, Brenna P [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Cleveland, Nicholas S [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Michener, William E [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Olstad-Thompson, Jessica L [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Vardon, Derek R [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Whitham, Jason M. [Oak Ridge National Laboratory; Giannone, Richard J. [Oak Ridge National Laboratory; Klingeman, Dawn M. [Oak Ridge National Laboratory; Brown, Robert C. [Iowa State University; Brown, Steven D. [Oak Ridge National Laboratory; LanzaTech, Inc.; Hettich, Robert L. [Oak Ridge National Laboratory; Guss, Adam M. [Oak Ridge National Laboratory

    2018-04-17

    Thermochemical (TC) biomass conversion processes such as pyrolysis and liquefaction generate considerable amounts of wastewater, which often contains highly toxic compounds that are incredibly challenging to convert via standard wastewater treatment approaches such as anaerobic digestion. These streams represent a cost for TC biorefineries, and a potential valorization opportunity, if effective conversion methods are developed. The primary challenge hindering microbial conversion of TC wastewater is toxicity. In this study, we employ a robust bacterium, Pseudomonas putida, with TC wastewater streams to demonstrate that aldehydes are the most inhibitory compounds in these streams. Proteomics, transcriptomics, and fluorescence-based immunoassays of P. putida grown in a representative wastewater stream indicate that stress results from protein damage, which we hypothesize is a primary toxicity mechanism. Constitutive overexpression of the chaperone genes, groEL, groES, and clpB, in a genome-reduced P. putida strain improves the tolerance towards multiple TC wastewater samples up to 200-fold. Moreover, the concentration ranges of TC wastewater are industrially relevant for further bioprocess development for all wastewater streams examined here, representing different TC process configurations. Furthermore, we demonstrate proof-of-concept polyhydroxyalkanoate production from the usable carbon in an exemplary TC wastewater stream. Overall, this study demonstrates that protein quality control machinery and repair mechanisms can enable substantial gains in microbial tolerance to highly toxic substrates, including heterogeneous waste streams. When coupled to other metabolic engineering advances such as expanded substrate utilization and enhanced product accumulation, this study generally enables new strategies for biological conversion of highly-toxic, organic-rich wastewater via engineered aerobic monocultures or designer consortia.

  3. An Acetyltransferase Conferring Tolerance to Toxic Aromatic Amine Chemicals

    Science.gov (United States)

    Martins, Marta; Rodrigues-Lima, Fernando; Dairou, Julien; Lamouri, Aazdine; Malagnac, Fabienne; Silar, Philippe; Dupret, Jean-Marie

    2009-01-01

    Aromatic amines (AA) are a major class of environmental pollutants that have been shown to have genotoxic and cytotoxic potentials toward most living organisms. Fungi are able to tolerate a diverse range of chemical compounds including certain AA and have long been used as models to understand general biological processes. Deciphering the mechanisms underlying this tolerance may improve our understanding of the adaptation of organisms to stressful environments and pave the way for novel pharmaceutical and/or biotechnological applications. We have identified and characterized two arylamine N-acetyltransferase (NAT) enzymes (PaNAT1 and PaNAT2) from the model fungus Podospora anserina that acetylate a wide range of AA. Targeted gene disruption experiments revealed that PaNAT2 was required for the growth and survival of the fungus in the presence of toxic AA. Functional studies using the knock-out strains and chemically acetylated AA indicated that tolerance of P. anserina to toxic AA was due to the N-acetylation of these chemicals by PaNAT2. Moreover, we provide proof-of-concept remediation experiments where P. anserina, through its PaNAT2 enzyme, is able to detoxify the highly toxic pesticide residue 3,4-dichloroaniline in experimentally contaminated soil samples. Overall, our data show that a single xenobiotic-metabolizing enzyme can mediate tolerance to a major class of pollutants in a eukaryotic species. These findings expand the understanding of the role of xenobiotic-metabolizing enzyme and in particular of NATs in the adaptation of organisms to their chemical environment and provide a basis for new systems for the bioremediation of contaminated soils. PMID:19416981

  4. Effects of exogenous salicylic acid on cell wall polysaccharides and aluminum tolerance of trichosanthes kirilowii

    International Nuclear Information System (INIS)

    Xu, G.; Liu, D.; Xio, Y.; Liu, P.; Gao, P. P.; Cao, L.; Wu, Y.

    2015-01-01

    A hydroponic experiment was conducted to study the effects of exogenous salicylic acid (SA) on root length, relative aluminum content in the apical cell wall, acid phosphatase (APA) and pectin methyl esterase (PME) activity, root pectin, hemicellulose 1(HC1), and hemicellulose 2 (HC2) contents of Anguo Trichosanthes kirilowii (Al-tolerant genotype) and Pujiang T. kirilowii (Al-sensitive genotype) under 800 micro mol/L of aluminum stress. The results showed that the growth of Al-tolerant Anguo T. kirilowii and Al-sensitive Pujiang T. kirilowii was inhibited when exposed to 800 micro mol/L of aluminum solution. APA and PME activities were also enhanced for both genotypes. The contents of relative aluminum, pectin, HC1, and HC2, as well as Al accumulation in the root tips were increased under aluminum toxicity. Pujiang T. kirilowii showed higher enzyme activity and cell wall polysaccharide contents than Anguo T. kirilowii. In addition, the root cell wall pectin, HC1, and HC2 contents of Pujiang T. kirilowii were increased by a large margin, showing its greater sensitivity to aluminum toxicity. Root length is an important indicator of aluminum toxicity, and has an important relationship with cell wall polysaccharide content. Aluminum toxicity led to the accumulation of pectin and high PME activity, and also increased the number of free carboxyl groups, which have more aluminum binding sites. Membrane skim increased extensively with the increase in APA activity, damaging membrane structure and function. Different SA concentrations can decrease enzyme activity and cell wall polysaccharide content to some extent. With the addition of different SA concentrations, the root relative aluminum content, cell wall polysaccharide content, APA and PME activities decreased. Aluminum toxicity to both genotypes of T. kirilowii was relieved in different degrees as exogenous SA concentration increased. Inter-simple sequence repeat (ISSR) marker was used to examine the genetic distance

  5. Variation in shoot tolerance mechanisms not related to ion toxicity in barley

    KAUST Repository

    Tilbrook, Joanne

    2017-09-27

    Soil salinity can severely reduce crop growth and yield. Many studies have investigated salinity tolerance mechanisms in cereals using phenotypes that are relatively easy to measure. The majority of these studies measured the accumulation of shoot Na+ and the effect this has on plant growth. However, plant growth is reduced immediately after exposure to NaCl before Na+ accumulates to toxic concentrations in the shoot. In this study, nondestructive and destructive measurements are used to evaluate the responses of 24 predominately Australian barley (Hordeum vulgare L.) lines at 0, 150 and 250mMNaCl. Considerable variation for shoot tolerance mechanisms not related to ion toxicity (shoot ion-independent tolerance) was found, withsome lines being able to maintain substantial growth rates under salt stress, whereas others stopped growing. Hordeum vulgare spp. spontaneum accessions and barley landraces predominantly had the best shoot ion independent tolerance, although two commercial cultivars, Fathom and Skiff, also had high tolerance. The tolerance of cv. Fathom may be caused by a recent introgression from H. vulgare L. spp. spontaneum. This study shows that the most salt-tolerant barley lines are those that contain both shoot ion-independent tolerance and the ability to exclude Na+ from the shoot (and thus maintain high K+: Na+ ratios).

  6. Variation in shoot tolerance mechanisms not related to ion toxicity in barley

    KAUST Repository

    Tilbrook, Joanne; Schilling, Rhiannon K.; Berger, Bettina; Garcia, Alexandre F.; Trittermann, Christine; Coventry, Stewart; Rabie, Huwaida; Brien, Chris; Nguyen, Martin; Tester, Mark A.; Roy, Stuart J.

    2017-01-01

    Soil salinity can severely reduce crop growth and yield. Many studies have investigated salinity tolerance mechanisms in cereals using phenotypes that are relatively easy to measure. The majority of these studies measured the accumulation of shoot Na+ and the effect this has on plant growth. However, plant growth is reduced immediately after exposure to NaCl before Na+ accumulates to toxic concentrations in the shoot. In this study, nondestructive and destructive measurements are used to evaluate the responses of 24 predominately Australian barley (Hordeum vulgare L.) lines at 0, 150 and 250mMNaCl. Considerable variation for shoot tolerance mechanisms not related to ion toxicity (shoot ion-independent tolerance) was found, withsome lines being able to maintain substantial growth rates under salt stress, whereas others stopped growing. Hordeum vulgare spp. spontaneum accessions and barley landraces predominantly had the best shoot ion independent tolerance, although two commercial cultivars, Fathom and Skiff, also had high tolerance. The tolerance of cv. Fathom may be caused by a recent introgression from H. vulgare L. spp. spontaneum. This study shows that the most salt-tolerant barley lines are those that contain both shoot ion-independent tolerance and the ability to exclude Na+ from the shoot (and thus maintain high K+: Na+ ratios).

  7. Does lipophilicity of toxic compounds determine effects on drought tolerance of the soil collembolan Folsomia candida?

    International Nuclear Information System (INIS)

    Skovlund, Gitte; Damgaard, Christian; Bayley, Mark; Holmstrup, Martin

    2006-01-01

    The ability of Collembola to survive drought stress is crucial for their distribution in the terrestrial environment. Previous studies have suggested that several toxic compounds affect the drought tolerance of Folsomia candida in a synergistic manner and that these compounds have the feature in common that they elicit their toxicity by causing membrane damage. We hypothesised that the detrimental effect of toxic chemicals on drought tolerance in F. candida depends on the lipophilicity (log K ow ) of the compound because a higher log K ow would mean a closer interaction with membranes. In this study the three chemicals 4-nonylphenol, pyrene and p,p'-DDE were tested. Surprisingly, 4-nonylphenol, with the lowest log K ow , was the most potent with respect to reducing drought tolerance followed by pyrene, suggesting that interactions between drought tolerance and chemical stress do not depend on lipophilicity alone. - Toxic stress may reduce drought tolerance of Collembola

  8. Symbiotic effectiveness of acid-tolerant Bradyrhizobium strains with ...

    African Journals Online (AJOL)

    Symbiotic effectiveness of acid-tolerant Bradyrhizobium strains with soybean in low pH soil. C Appunu, B Dhar. Abstract. Eight acid tolerant strains of Bradyrhizobium isolated from soybean plants grown on acid soils in Madhya Pradesh, India, were examined for their ability to survive in soil and YEMB at low pH levels. All the ...

  9. Development of tolerance against toxic Microcystis aeruginosa in three cladocerans and the ecological implications

    International Nuclear Information System (INIS)

    Guo Nichun; Xie Ping

    2006-01-01

    This is the first experimental study to compare difference in the development of tolerance against toxic Microcystis among multi-species of cladocerans (Daphnia, Moina and Ceriodaphnia) pre-exposed to two M. aeruginosa PCC7820 strains (MC-containing and MC-free). Zooplankton were divided into S population (fed Scenedesmus), M-F population (fed Scenedesmus + MC-free Microcystis), and M-C population (fed Scenedesmus + MC-containing Microcystis). M-F and M-C populations were pre-exposed to Microcystis strains for 4 weeks, and their newborns were collected for experiments. A pre-exposure to MC-containing or MC-free Microcystis increased tolerance against toxic Microcystis. The marked increases in survival rate and median lethal time (LT 5 , 100-194% increase) in the M-C population of Ceriodaphnia suggest that small-sized cladocerans may develop stronger tolerance against Microcystis than large-sized ones when both groups are exposed to toxic Microcystis. This may explain why dominant Daphnia is usually replaced by small-sized cladocerans when cyanobacteria bloomed in summer in eutrophic lakes. - Three cladocerans pre-exposed to Microcystis developed different tolerance against toxic Microcystis, explaining zooplankton succession with blooms

  10. Development of tolerance against toxic Microcystis aeruginosa in three cladocerans and the ecological implications

    Energy Technology Data Exchange (ETDEWEB)

    Guo Nichun [Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Donghu South Road 7, Wuhan 430072 (China); Xie Ping [Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Donghu South Road 7, Wuhan 430072 (China)]. E-mail: xieping@ihb.ac.cn

    2006-10-15

    This is the first experimental study to compare difference in the development of tolerance against toxic Microcystis among multi-species of cladocerans (Daphnia, Moina and Ceriodaphnia) pre-exposed to two M. aeruginosa PCC7820 strains (MC-containing and MC-free). Zooplankton were divided into S population (fed Scenedesmus), M-F population (fed Scenedesmus + MC-free Microcystis), and M-C population (fed Scenedesmus + MC-containing Microcystis). M-F and M-C populations were pre-exposed to Microcystis strains for 4 weeks, and their newborns were collected for experiments. A pre-exposure to MC-containing or MC-free Microcystis increased tolerance against toxic Microcystis. The marked increases in survival rate and median lethal time (LT{sub 5}, 100-194% increase) in the M-C population of Ceriodaphnia suggest that small-sized cladocerans may develop stronger tolerance against Microcystis than large-sized ones when both groups are exposed to toxic Microcystis. This may explain why dominant Daphnia is usually replaced by small-sized cladocerans when cyanobacteria bloomed in summer in eutrophic lakes. - Three cladocerans pre-exposed to Microcystis developed different tolerance against toxic Microcystis, explaining zooplankton succession with blooms.

  11. Bacterial cells with improved tolerance to isobutyric acid

    DEFF Research Database (Denmark)

    2017-01-01

    Bacterial cells genetically modified to improve their tolerance to certain commodity chemicals, such as isobutyric acid and related compounds, and methods of preparing and using such bacterial cells for production of isobutyric acid and related compounds.......Bacterial cells genetically modified to improve their tolerance to certain commodity chemicals, such as isobutyric acid and related compounds, and methods of preparing and using such bacterial cells for production of isobutyric acid and related compounds....

  12. Manganese toxicity effects on nodulation and nitrogen fixation of beans (Phaseolus vulgaris L. ), in acid soils

    Energy Technology Data Exchange (ETDEWEB)

    Doebereiner, J

    1966-02-01

    Three greenhouse experiments were conducted to study manganese toxicity effects on the nitrogen fixing symbiosis of beans (Phaseolus vulgaris). Addition of 40 ppm of manganese to two acid soils affected nodulation and nitrogen fixation. Dependent on the Rhizobion strain either nodule numbers or efficiency in nitrogen fixation were reduced; the efficiency of one Rhizobium-host combination was more affected than another. Under less severe conditions of manganese toxicity, reduction of nodule numbers or of efficiency in nitrogen fixation could be compensated by an increase of nodule size. In the absence of manganese toxicity nodulation and nitrogen fixation of beans were abundant in a soil with pH 4.4. Naturally occurring manganese toxicity in a gray hydromorphic soil was eliminated by liming. The total nitrogen content of bean plants which were dependent on symbiotic nitrogen fixation decreased linearly with the logarithm of the manganese concentration in the plants. This did not happen when the plants were grown with mineral nitrogen. The role of manganese toxicity in the well known sensitivity to acid soil conditions of certain legumes and the importance of selection of manganese tolerant Rhizobium strains for the inoculation of beans in acid tropical soils, are discussed. 25 references, 1 figure, 6 tables.

  13. Omics analysis of acetic acid tolerance in Saccharomyces cerevisiae.

    Science.gov (United States)

    Geng, Peng; Zhang, Liang; Shi, Gui Yang

    2017-05-01

    Acetic acid is an inhibitor in industrial processes such as wine making and bioethanol production from cellulosic hydrolysate. It causes energy depletion, inhibition of metabolic enzyme activity, growth arrest and ethanol productivity losses in Saccharomyces cerevisiae. Therefore, understanding the mechanisms of the yeast responses to acetic acid stress is essential for improving acetic acid tolerance and ethanol production. Although 329 genes associated with acetic acid tolerance have been identified in the Saccharomyces genome and included in the database ( http://www.yeastgenome.org/observable/resistance_to_acetic_acid/overview ), the cellular mechanistic responses to acetic acid remain unclear in this organism. Post-genomic approaches such as transcriptomics, proteomics, metabolomics and chemogenomics are being applied to yeast and are providing insight into the mechanisms and interactions of genes, proteins and other components that together determine complex quantitative phenotypic traits such as acetic acid tolerance. This review focuses on these omics approaches in the response to acetic acid in S. cerevisiae. Additionally, several novel strains with improved acetic acid tolerance have been engineered by modifying key genes, and the application of these strains and recently acquired knowledge to industrial processes is also discussed.

  14. Genetic analysis of tolerance to boron toxicity in the legume Medicago truncatula.

    Science.gov (United States)

    Bogacki, Paul; Peck, David M; Nair, Ramakrishnan M; Howie, Jake; Oldach, Klaus H

    2013-03-27

    Medicago truncatula Gaertn. (barrel medic) is cultivated as a pasture legume for its high protein content and ability to improve soils through nitrogen fixation. Toxic concentrations of the micronutrient Boron (B) in agricultural soils hamper the production of cereal and leguminous crops. In cereals, the genetic analysis of B tolerance has led to the development of molecular selection tools to introgress and maintain the B tolerance trait in breeding lines. There is a comparable need for selection tools in legumes that grow on these toxic soils, often in rotation with cereals. Genetic variation for B tolerance in Medicago truncatula was utilised to generate two F2 populations from crosses between tolerant and intolerant parents. Phenotyping under B stress revealed a close correlation between B tolerance and biomass production and a segregation ratio explained by a single dominant locus. M. truncatula homologues of the Arabidopsis major intrinsic protein (MIP) gene AtNIP5;1 and the efflux-type transporter gene AtBOR1, both known for B transport, were identified and nearby molecular markers screened across F2 lines to verify linkage with the B-tolerant phenotype. Most (95%) of the phenotypic variation could be explained by the SSR markers h2_6e22a and h2_21b19a, which flank a cluster of five predicted MIP genes on chromosome 4. Three CAPS markers (MtBtol-1,-2,-3) were developed to dissect the region further. Expression analysis of the five predicted MIPs indicated that only MtNIP3 was expressed when leaf tissue and roots were assessed. MtNIP3 showed low and equal expression in the roots of tolerant and intolerant lines but a 4-fold higher expression level in the leaves of B-tolerant cultivars. The expression profile correlates closely with the B concentration measured in the leaves and roots of tolerant and intolerant plants. Whereas no significant difference in B concentration exists between roots of tolerant and intolerant plants, the B concentration in the leaves

  15. Acid and bile tolerance of spore-forming lactic acid bacteria.

    Science.gov (United States)

    Hyronimus, B; Le Marrec, C; Sassi, A H; Deschamps, A

    2000-11-01

    Criteria for screening probiotics such as bile tolerance and resistance to acids were studied with 13 spore-forming lactic acid producing bacteria. Different strains of Sporolactobacillus, Bacillus laevolacticus, Bacillus racemilacticus and Bacillus coagulans grown in MRS broth were subjected to low pH conditions (2, 2.5 and 3) and increasing bile concentrations. Among these microorganisms, Bacillus laevolacticus DSM 6475 and all Sporolactobacillus strains tested except Sporolactobacillus racemicus IAM 12395, were resistant to pH 3. Only Bacillus racemilacticus and Bacillus coagulans strains were tolerant to bile concentrations over 0.3% (w/v).

  16. Soil-based screening for iron toxicity tolerance in rice using pots

    Directory of Open Access Journals (Sweden)

    Mouritala Sikirou

    2016-10-01

    Full Text Available The objective of this study was to assess the reliability of pot-based screening method for iron (Fe toxicity tolerance in rice using soils from hot spots. Five lowland rice varieties with known reaction to Fe toxicity were grown in pots in a screen house for three seasons. Fe-toxic soils from two hot spot fields – Edozighi, Nigeria and Niaouli, Benin were used and soil from Africa Rice Center (AfricaRice experimental farm, Cotonou, Benin was included as control. Leaf bronzing score (LBS was determined at different stages, and grain yield was determined at maturity. Heritability was estimated using data across the three seasons. High heritability was recorded for LBS and grain yield. Grain yield reduction in stress treatment relative to control varied from 15 to 56% depending on the variety and soil. Bao Thai, Suakoko 8, and WITA 4 had better performance under Fe toxicity in terms of LBS, yield and relative yield reduction, whereas Bouake 189 and IR64 had poorer performance. Grain yield and LBS were significantly correlated but negatively at 60 days after sowing (DAS. Overall, the results found in this experiment were consistent with previous field studies. Therefore, pot screening using soils from hot spots can be used by rice breeding programs to reliably assess Fe toxicity tolerance ex situ.

  17. An investigation of boron-toxicity in leaves of two citrus species differing in boron-tolerance using comparative proteomics.

    Science.gov (United States)

    Sang, Wen; Huang, Zeng-Rong; Qi, Yi-Ping; Yang, Lin-Tong; Guo, Peng; Chen, Li-Song

    2015-06-18

    Limited data are available on boron (B)-toxicity-responsive proteins in plants. We first applied 2-dimensional electrophoresis (2-DE) to compare the effects of B-toxicity on leaf protein profiles in B-tolerant Citrus sinensis and B-intolerant Citrus grandis seedlings, and identified 27 (20) protein species with increased abundances and 23 (25) protein species with decreased abundances from the former (latter). Generally speaking, B-toxicity increased the abundances of protein species involved in antioxidation and detoxification, proteolysis, cell transport, and decreased the abundances of protein species involved in protein biosynthesis in the two citrus species. The higher B-tolerance of C. sinensis might include following several aspects: (a) protein species related to photosynthesis and energy metabolism in C. sinensis leaves were more adaptive to B-toxicity than in C. grandis ones, which was responsible for the higher photosynthesis and for the better maintenance of energy homeostasis in the former; and (b) the increased requirement for detoxification of reactive oxygen species and cytotoxic compounds due to decreased photosynthesis was less in B-toxic C. sinensis leaves than in B-toxic C. grandis ones. B-toxicity-responsive protein species involved in coenzyme biosynthesis differed between the two species, which might also contribute to the higher B-tolerance of C. sinensis. B-toxicity occurs in many regions all over the world, especially in arid and semiarid regions due to the raising of B-rich water tables with high B accumulated in topsoil. In China, B-toxicity often occurs in some citrus orchards. However, the mechanisms of citrus B-tolerance are still not fully understood. Here, we first used 2-DE to identify some new B-toxicity-responsive-proteins involved in carbohydrate and energy metabolism, antioxidation and detoxification, signal transduction and nucleotide metabolism. Our results showed that proteins involved in photosynthesis and energy metabolism

  18. TOLERANCE OF PEANUT GENOTYPES TO ACIDIC SOIL CONDITION

    Directory of Open Access Journals (Sweden)

    Astanto Kasno

    2013-06-01

    Full Text Available The acidic soil is generally less productive due to soil pH ranging from 3.1 to 5.0. However, it could be solved through soil amelioration, planting tolerant varieties to acidic soil condition, and a combination of both. Twenty peanut genotypes including two check varieties (Jerapah and Talam 1 were evaluated on dolomite-ameliorated and non ameliorated soil. In the greenhouse, the treatments were laid out in factorial design with four replications, while in the field using strip plot design with three replications. Assessment of tolerance was using Stressed Tolerance Index (STI according to Fernandez (1992. Results showed that dolomite application at dose equivalent to 0.5 x exchangeable Al was optimal in improving peanut growth, and peanut yield on acidic soil. Lines of GH3 (G/92088/92088-02-B-2-8-1 and GH 4 (G/92088/ 92088-02-B-2-8-2 genotypes had high STI with average yield of 2.47 tha-1 and 2.62 t ha-1 of dry pods and potential yield of 4.05 t ha-1 and 3.73 t ha-1 of dry pods, respectively as well as check varieties (Jerapah and Talam-1. It is concluded that peanut genotype of G/92088//92088-02-B-2-8-1 and G/92088//920 88- 02-B-2-8-2 were adaptable and tolerance to acidic, and tolerance of peanuts on acidic soil condition were probably controlled by the buffering mechanisms.

  19. Boron toxicity tolerance in barley through reduced expression of the multifunctional aquaporin HvNIP2;1.

    Science.gov (United States)

    Schnurbusch, Thorsten; Hayes, Julie; Hrmova, Maria; Baumann, Ute; Ramesh, Sunita A; Tyerman, Stephen D; Langridge, Peter; Sutton, Tim

    2010-08-01

    Boron (B) toxicity is a significant limitation to cereal crop production in a number of regions worldwide. Here we describe the cloning of a gene from barley (Hordeum vulgare), underlying the chromosome 6H B toxicity tolerance quantitative trait locus. It is the second B toxicity tolerance gene identified in barley. Previously, we identified the gene Bot1 that functions as an efflux transporter in B toxicity-tolerant barley to move B out of the plant. The gene identified in this work encodes HvNIP2;1, an aquaporin from the nodulin-26-like intrinsic protein (NIP) subfamily that was recently described as a silicon influx transporter in barley and rice (Oryza sativa). Here we show that a rice mutant for this gene also shows reduced B accumulation in leaf blades compared to wild type and that the mutant protein alters growth of yeast (Saccharomyces cerevisiae) under high B. HvNIP2;1 facilitates significant transport of B when expressed in Xenopus oocytes compared to controls and to another NIP (NOD26), and also in yeast plasma membranes that appear to have relatively high B permeability. We propose that tolerance to high soil B is mediated by reduced expression of HvNIP2;1 to limit B uptake, as well as by increased expression of Bot1 to remove B from roots and sensitive tissues. Together with Bot1, the multifunctional aquaporin HvNIP2;1 is an important determinant of B toxicity tolerance in barley.

  20. Calcium dependence of eugenol tolerance and toxicity in Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Stephen K Roberts

    Full Text Available Eugenol is a plant-derived phenolic compound which has recognised therapeutical potential as an antifungal agent. However little is known of either its fungicidal activity or the mechanisms employed by fungi to tolerate eugenol toxicity. A better exploitation of eugenol as a therapeutic agent will therefore depend on addressing this knowledge gap. Eugenol initiates increases in cytosolic Ca2+ in Saccharomyces cerevisiae which is partly dependent on the plasma membrane calcium channel, Cch1p. However, it is unclear whether a toxic cytosolic Ca2+elevation mediates the fungicidal activity of eugenol. In the present study, no significant difference in yeast survival was observed following transient eugenol treatment in the presence or absence of extracellular Ca2+. Furthermore, using yeast expressing apoaequorin to report cytosolic Ca2+ and a range of eugenol derivatives, antifungal activity did not appear to be coupled to Ca2+ influx or cytosolic Ca2+ elevation. Taken together, these results suggest that eugenol toxicity is not dependent on a toxic influx of Ca2+. In contrast, careful control of extracellular Ca2+ (using EGTA or BAPTA revealed that tolerance of yeast to eugenol depended on Ca2+ influx via Cch1p. These findings expose significant differences between the antifungal activity of eugenol and that of azoles, amiodarone and carvacrol. This study highlights the potential to use eugenol in combination with other antifungal agents that exhibit differing modes of action as antifungal agents to combat drug resistant infections.

  1. The fatty acid profile of rainbow trout liver cells modulates their tolerance to methylmercury and cadmium

    International Nuclear Information System (INIS)

    Ferain, Aline; Bonnineau, Chloé; Neefs, Ineke; Rees, Jean François; Larondelle, Yvan; Schamphelaere, Karel A.C.De; Debier, Cathy

    2016-01-01

    Highlights: • The phospholipid composition of rainbow trout liver cells was successfully changed. • Cell phospholipids influenced methylmercury (MeHg) and cadmium (Cd) toxicity. • Cells enriched in 18:3n-3, 20:5n-3 or 22:5n-6 were more resistant to MeHg and Cd. • Cell enrichment in 22:6n-3 increased resistance to Cd but not MeHg. - Abstract: The polyunsaturated fatty acid (PUFA) composition of fish tissues, which generally reflects that of the diet, affects various cellular properties such as membrane structure and fluidity, energy metabolism and susceptibility to oxidative stress. Since these cellular parameters can play an important role in the cellular response to organic and inorganic pollutants, a variation of the PUFA supply might modify the toxicity induced by such xenobiotics. In this work, we investigated whether the cellular fatty acid profile has an impact on the in vitro cell sensitivity to two environmental pollutants: methylmercury and cadmium. Firstly, the fatty acid composition of the rainbow trout liver cell line RTL-W1 was modified by enriching the growth medium with either alpha-linolenic acid (ALA, 18:3n-3), eicosapentaenoic acid (EPA, 20:5n-3), docosahexaenoic acid (DHA, 22:6n-3), linoleic acid (LA, 18:2n-6), arachidonic acid (AA, 20:4n-6) or docosapentaenoic acid (DPA, 22:5n-6). These modified cells and their control (no PUFA enrichment) were then challenged for 24 h with increasing concentrations of methylmercury or cadmium. We observed that (i) the phospholipid composition of the RTL-W1 cells was profoundly modulated by changing the PUFA content of the growth medium: major modifications were a high incorporation of the supplemented PUFA in the cellular phospholipids, the appearance of direct elongation and desaturation metabolites in the cellular phospholipids as well as a change in the gross phospholipid composition (PUFA and monounsaturated fatty acid (MUFA) levels and n-3/n-6 ratio); (ii) ALA, EPA and DPA enrichment significantly

  2. The fatty acid profile of rainbow trout liver cells modulates their tolerance to methylmercury and cadmium

    Energy Technology Data Exchange (ETDEWEB)

    Ferain, Aline, E-mail: aline.ferain@uclouvain.be [Institute of Life Sciences, Université catholique de Louvain, Place Croix du Sud 2/L7.05.08, B-1348 Louvain-la-Neuve (Belgium); Bonnineau, Chloé [Institute of Life Sciences, Université catholique de Louvain, Place Croix du Sud 2/L7.05.08, B-1348 Louvain-la-Neuve (Belgium); Irstea, UR MALY, Centre de Lyon-Villeurbanne, rue de la Doua 5/32108, F-69616 Villeurbanne (France); Neefs, Ineke; Rees, Jean François; Larondelle, Yvan [Institute of Life Sciences, Université catholique de Louvain, Place Croix du Sud 2/L7.05.08, B-1348 Louvain-la-Neuve (Belgium); Schamphelaere, Karel A.C.De [Laboratory of Environmental Toxicology and Aquatic Ecology, Environmental Toxicology Unit, Ghent University, J. Plateaustraat 22, B-9000 Ghent (Belgium); Debier, Cathy [Institute of Life Sciences, Université catholique de Louvain, Place Croix du Sud 2/L7.05.08, B-1348 Louvain-la-Neuve (Belgium)

    2016-08-15

    Highlights: • The phospholipid composition of rainbow trout liver cells was successfully changed. • Cell phospholipids influenced methylmercury (MeHg) and cadmium (Cd) toxicity. • Cells enriched in 18:3n-3, 20:5n-3 or 22:5n-6 were more resistant to MeHg and Cd. • Cell enrichment in 22:6n-3 increased resistance to Cd but not MeHg. - Abstract: The polyunsaturated fatty acid (PUFA) composition of fish tissues, which generally reflects that of the diet, affects various cellular properties such as membrane structure and fluidity, energy metabolism and susceptibility to oxidative stress. Since these cellular parameters can play an important role in the cellular response to organic and inorganic pollutants, a variation of the PUFA supply might modify the toxicity induced by such xenobiotics. In this work, we investigated whether the cellular fatty acid profile has an impact on the in vitro cell sensitivity to two environmental pollutants: methylmercury and cadmium. Firstly, the fatty acid composition of the rainbow trout liver cell line RTL-W1 was modified by enriching the growth medium with either alpha-linolenic acid (ALA, 18:3n-3), eicosapentaenoic acid (EPA, 20:5n-3), docosahexaenoic acid (DHA, 22:6n-3), linoleic acid (LA, 18:2n-6), arachidonic acid (AA, 20:4n-6) or docosapentaenoic acid (DPA, 22:5n-6). These modified cells and their control (no PUFA enrichment) were then challenged for 24 h with increasing concentrations of methylmercury or cadmium. We observed that (i) the phospholipid composition of the RTL-W1 cells was profoundly modulated by changing the PUFA content of the growth medium: major modifications were a high incorporation of the supplemented PUFA in the cellular phospholipids, the appearance of direct elongation and desaturation metabolites in the cellular phospholipids as well as a change in the gross phospholipid composition (PUFA and monounsaturated fatty acid (MUFA) levels and n-3/n-6 ratio); (ii) ALA, EPA and DPA enrichment significantly

  3. Prostate hypofractionated radiation therapy with injection of hyaluronic acid: acute toxicities in a phase 2 study.

    Science.gov (United States)

    Chapet, Olivier; Decullier, Evelyne; Bin, Sylvie; Faix, Antoine; Ruffion, Alain; Jalade, Patrice; Fenoglietto, Pascal; Udrescu, Corina; Enachescu, Ciprian; Azria, David

    2015-03-15

    Hypofractionated radiation therapy (RT) in prostate cancer can be developed only if the risk of rectal toxicity is controlled. In a multicenter phase 2 trial, hypofractionated irradiation was combined with an injection of hyaluronic acid (HA) to preserve the rectal wall. Tolerance of the injection and acute toxicity rates are reported. The study was designed to assess late grade 2 toxicity rates. The results described here correspond to the secondary objectives. Acute toxicity was defined as occurring during RT or within 3 months after RT and graded according to the Common Terminology Criteria for Adverse Events version 4.0. HA tolerance was evaluated with a visual analog scale during the injection and 30 minutes after injection and then by use of the Common Terminology Criteria at each visit. From 2010 to 2012, 36 patients with low-risk to intermediate-risk prostate cancer were included. The HA injection induced a mean pain score of 4.6/10 ± 2.3. Thirty minutes after the injection, 2 patients still reported pain (2/10 and 3/10), which persisted after the intervention. Thirty-three patients experienced at least 1 acute genitourinary toxicity and 20 patients at least 1 acute gastrointestinal toxicity. Grade 2 toxicities were reported for 19 patients with urinary obstruction, frequency, or both and for 1 patient with proctitis. No grade 3 or 4 toxicities were reported. At the 3-month visit, 4 patients described grade 2 obstruction or frequency, and no patients had any grade 2 gastrointestinal toxicities. The injection of HA makes it possible to deliver hypofractionated irradiation over 4 weeks with a dose per fraction of > 3 Gy, with limited acute rectal toxicity. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Prostate Hypofractionated Radiation Therapy With Injection of Hyaluronic Acid: Acute Toxicities in a Phase 2 Study

    International Nuclear Information System (INIS)

    Chapet, Olivier; Decullier, Evelyne; Bin, Sylvie; Faix, Antoine; Ruffion, Alain; Jalade, Patrice; Fenoglietto, Pascal; Udrescu, Corina; Enachescu, Ciprian; Azria, David

    2015-01-01

    Purpose: Hypofractionated radiation therapy (RT) in prostate cancer can be developed only if the risk of rectal toxicity is controlled. In a multicenter phase 2 trial, hypofractionated irradiation was combined with an injection of hyaluronic acid (HA) to preserve the rectal wall. Tolerance of the injection and acute toxicity rates are reported. Methods and Materials: The study was designed to assess late grade 2 toxicity rates. The results described here correspond to the secondary objectives. Acute toxicity was defined as occurring during RT or within 3 months after RT and graded according to the Common Terminology Criteria for Adverse Events version 4.0. HA tolerance was evaluated with a visual analog scale during the injection and 30 minutes after injection and then by use of the Common Terminology Criteria at each visit. Results: From 2010 to 2012, 36 patients with low-risk to intermediate-risk prostate cancer were included. The HA injection induced a mean pain score of 4.6/10 ± 2.3. Thirty minutes after the injection, 2 patients still reported pain (2/10 and 3/10), which persisted after the intervention. Thirty-three patients experienced at least 1 acute genitourinary toxicity and 20 patients at least 1 acute gastrointestinal toxicity. Grade 2 toxicities were reported for 19 patients with urinary obstruction, frequency, or both and for 1 patient with proctitis. No grade 3 or 4 toxicities were reported. At the 3-month visit, 4 patients described grade 2 obstruction or frequency, and no patients had any grade 2 gastrointestinal toxicities. Conclusions: The injection of HA makes it possible to deliver hypofractionated irradiation over 4 weeks with a dose per fraction of > 3 Gy, with limited acute rectal toxicity

  5. Prostate Hypofractionated Radiation Therapy With Injection of Hyaluronic Acid: Acute Toxicities in a Phase 2 Study

    Energy Technology Data Exchange (ETDEWEB)

    Chapet, Olivier, E-mail: olivier.chapet@chu-lyon.fr [Department of Radiation Oncology, Hospices Civils de Lyon, Centre Hospitalier Lyon Sud, Pierre Benite (France); EMR3738, Université Lyon 1, Lyon (France); Decullier, Evelyne; Bin, Sylvie [Pole Information Médicale Evaluation Recherche, Hospices Civils de Lyon, Lyon (France); Université Lyon 1, Lyon (France); EA SIS, Université de Lyon, Lyon (France); Faix, Antoine [Department of Urology, Clinique Beausoleil, Montpellier (France); Ruffion, Alain [Université Lyon 1, Lyon (France); Department of Urology, Hospices Civils de Lyon, Centre Hospitalier Lyon Sud, Pierre Benite (France); Jalade, Patrice [Department of Medical Physics, Hospices Civils de Lyon, Centre Hospitalier Lyon Sud, Pierre Benite (France); Fenoglietto, Pascal [Department of Radiation Oncology and Physics, Institut du Cancer de Montpellier, Montpellier (France); Udrescu, Corina; Enachescu, Ciprian [Department of Radiation Oncology, Hospices Civils de Lyon, Centre Hospitalier Lyon Sud, Pierre Benite (France); Azria, David [Department of Radiation Oncology and Physics, Institut du Cancer de Montpellier, Montpellier (France)

    2015-03-15

    Purpose: Hypofractionated radiation therapy (RT) in prostate cancer can be developed only if the risk of rectal toxicity is controlled. In a multicenter phase 2 trial, hypofractionated irradiation was combined with an injection of hyaluronic acid (HA) to preserve the rectal wall. Tolerance of the injection and acute toxicity rates are reported. Methods and Materials: The study was designed to assess late grade 2 toxicity rates. The results described here correspond to the secondary objectives. Acute toxicity was defined as occurring during RT or within 3 months after RT and graded according to the Common Terminology Criteria for Adverse Events version 4.0. HA tolerance was evaluated with a visual analog scale during the injection and 30 minutes after injection and then by use of the Common Terminology Criteria at each visit. Results: From 2010 to 2012, 36 patients with low-risk to intermediate-risk prostate cancer were included. The HA injection induced a mean pain score of 4.6/10 ± 2.3. Thirty minutes after the injection, 2 patients still reported pain (2/10 and 3/10), which persisted after the intervention. Thirty-three patients experienced at least 1 acute genitourinary toxicity and 20 patients at least 1 acute gastrointestinal toxicity. Grade 2 toxicities were reported for 19 patients with urinary obstruction, frequency, or both and for 1 patient with proctitis. No grade 3 or 4 toxicities were reported. At the 3-month visit, 4 patients described grade 2 obstruction or frequency, and no patients had any grade 2 gastrointestinal toxicities. Conclusions: The injection of HA makes it possible to deliver hypofractionated irradiation over 4 weeks with a dose per fraction of > 3 Gy, with limited acute rectal toxicity.

  6. 40 CFR 180.1090 - Lactic acid; exemption from the requirement of a tolerance.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Lactic acid; exemption from the... Exemptions From Tolerances § 180.1090 Lactic acid; exemption from the requirement of a tolerance. Lactic acid (2-hydroxypropanoic acid) is exempted from the requirement of a tolerance when used as a plant growth...

  7. Boron Toxicity Tolerance in Barley through Reduced Expression of the Multifunctional Aquaporin HvNIP2;11[W

    Science.gov (United States)

    Schnurbusch, Thorsten; Hayes, Julie; Hrmova, Maria; Baumann, Ute; Ramesh, Sunita A.; Tyerman, Stephen D.; Langridge, Peter; Sutton, Tim

    2010-01-01

    Boron (B) toxicity is a significant limitation to cereal crop production in a number of regions worldwide. Here we describe the cloning of a gene from barley (Hordeum vulgare), underlying the chromosome 6H B toxicity tolerance quantitative trait locus. It is the second B toxicity tolerance gene identified in barley. Previously, we identified the gene Bot1 that functions as an efflux transporter in B toxicity-tolerant barley to move B out of the plant. The gene identified in this work encodes HvNIP2;1, an aquaporin from the nodulin-26-like intrinsic protein (NIP) subfamily that was recently described as a silicon influx transporter in barley and rice (Oryza sativa). Here we show that a rice mutant for this gene also shows reduced B accumulation in leaf blades compared to wild type and that the mutant protein alters growth of yeast (Saccharomyces cerevisiae) under high B. HvNIP2;1 facilitates significant transport of B when expressed in Xenopus oocytes compared to controls and to another NIP (NOD26), and also in yeast plasma membranes that appear to have relatively high B permeability. We propose that tolerance to high soil B is mediated by reduced expression of HvNIP2;1 to limit B uptake, as well as by increased expression of Bot1 to remove B from roots and sensitive tissues. Together with Bot1, the multifunctional aquaporin HvNIP2;1 is an important determinant of B toxicity tolerance in barley. PMID:20581256

  8. Amino acid tolerance test using L-β-phenylalanine-125I

    International Nuclear Information System (INIS)

    Hafiez, A.A.; Megahed, Y.M.; Ismail, A.A.; Abdel-Wahab, M.F.; Khater, R.A.

    1978-01-01

    An amino acid tolerance test is described. L-β-phenylalanine- 125 I was used as representative of L-amino acids. The change in radioactivity of the blood after giving a test dose of tagged L-β-phenylalanine was also investigated. L-β-phenylalanine- 125 I tolerance curves were found to be irreproducible when the test dose was given without a carrier. The addition of 2.5 g untagged phenylalanine as a carrier to the test dose allowed a reproducible and precise type of tolerance curves. Metformin in a dose of 0.5 g t.d.s. for three days induced an inhibitory effect on amino acid absorption in normal persons. (author)

  9. Diversity in boron toxicity tolerance of Australian barley (Hordeum vulgare L.) genotypes.

    Science.gov (United States)

    Hayes, Julie E; Pallotta, Margaret; Garcia, Melissa; Öz, Mehmet Tufan; Rongala, Jay; Sutton, Tim

    2015-09-26

    Boron (B) is an important micronutrient for plant growth, but is toxic when levels are too high. This commonly occurs in environments with alkaline soils and relatively low rainfall, including many of the cereal growing regions of southern Australia. Four major genetic loci controlling tolerance to high soil B have been identified in the landrace barley, Sahara 3771. Genes underlying two of the loci encode the B transporters HvBot1 and HvNIP2;1. We investigated sequence and expression level diversity in HvBot1 and HvNIP2;1 across barley germplasm, and identified five novel coding sequence alleles for HvBot1. Lines were identified containing either single or multiple copies of the Sahara HvBot1 allele. We established that only the tandemly duplicated Sahara allele conferred B tolerance, and this duplicated allele was found only in a set of nine lines accessioned in Australian collections as Sahara 3763-3771. HvNIP2;1 coding sequences were highly conserved across barley germplasm. We identified the likely causative SNP in the 5'UTR of Sahara HvNIP2;1, and propose that the creation of a small upstream open reading frame interferes with HvNIP2;1 translation in Sahara 3771. Similar to HvBot1, the tolerant HvNIP2;1 allele was unique to the Sahara barley accessions. We identified a new source of the 2H B tolerance allele controlling leaf symptom development, in the landrace Ethiopia 756. Ethiopia 756, as well as the cultivar Sloop Vic which carries both the 2H and HvBot1 B tolerance alleles derived from Sahara 3771, may be valuable as alternative parents in breeding programs targeted to high soil B environments. There is significant diversity in B toxicity tolerance among contemporary Australian barley varieties but this is not related to variation at any of the four known B tolerance loci, indicating that novel, as yet undiscovered, sources of tolerance exist.

  10. Role Of Ascorbic Acid In Imparting Tolerance To Plants Against Oxidizing Pollutants

    Directory of Open Access Journals (Sweden)

    Priyanka Sharma

    2015-08-01

    Full Text Available Ascorbic acid is an antioxidant in plants which play important role in activation of many physiological and defense mechanisms. The level of ascorbic acid in plants is determinant of its tolerance against the adverse effect of oxidizing pollutants. The present study tries to relate the variation in ascorbic acid content with the tolerance and sensitivity of two selected plant species viz. Azadirachtaindica and Pongamiapinnata by calculating their Air Pollution Tolerance Index APTI during winter season from November to March in the urban city Delhi of North India. Moreover ascorbic acid is also an important part of chloroplast it protects different components of photosynthetic system from oxidative stress. Thus to understand the role of ascorbic acid in imparting tolerance to plants against oxidizing pollutants the changes in chlorophyll content of the selected plant species with variation in ambient ozone concentration was analysed. It was found that as per APTI values Azadirachta sp. came under tolerant range with highest ascorbic acid content whereas Pongamia sp. was under intermediate range with less ascorbic acid content. It was statistically established that ozone has no significant relation with chlorophyll content of Azadirachta sp. which has the highest ascorbic acid content. Whereas ambient ozone concentrations showed significant negative relation with the chlorophyll content of Pongamia sp. p 0.05. Thus it was observed that the plants with high ascorbic acid content are tolerant and have greater ability to remediate pollutants.

  11. Acute Toxicity of Castor Oil Bean Extract and Tolerance Level of ...

    African Journals Online (AJOL)

    The experiment was carried out to determine the acute toxicity of raw castor oil bean (Ricinus communis) extract and the tolerance level of raw castor oil bean by broilers. The seeds were ground, defatted with petroleum ether and the residue was subjected to extraction with phosphate-buffered saline. The extract volume ...

  12. Metabolic pathway engineering based on metabolomics confers acetic and formic acid tolerance to a recombinant xylose-fermenting strain of Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Ishii Jun

    2011-01-01

    Full Text Available Abstract Background The development of novel yeast strains with increased tolerance toward inhibitors in lignocellulosic hydrolysates is highly desirable for the production of bio-ethanol. Weak organic acids such as acetic and formic acids are necessarily released during the pretreatment (i.e. solubilization and hydrolysis of lignocelluloses, which negatively affect microbial growth and ethanol production. However, since the mode of toxicity is complicated, genetic engineering strategies addressing yeast tolerance to weak organic acids have been rare. Thus, enhanced basic research is expected to identify target genes for improved weak acid tolerance. Results In this study, the effect of acetic acid on xylose fermentation was analyzed by examining metabolite profiles in a recombinant xylose-fermenting strain of Saccharomyces cerevisiae. Metabolome analysis revealed that metabolites involved in the non-oxidative pentose phosphate pathway (PPP [e.g. sedoheptulose-7-phosphate, ribulose-5-phosphate, ribose-5-phosphate and erythrose-4-phosphate] were significantly accumulated by the addition of acetate, indicating the possibility that acetic acid slows down the flux of the pathway. Accordingly, a gene encoding a PPP-related enzyme, transaldolase or transketolase, was overexpressed in the xylose-fermenting yeast, which successfully conferred increased ethanol productivity in the presence of acetic and formic acid. Conclusions Our metabolomic approach revealed one of the molecular events underlying the response to acetic acid and focuses attention on the non-oxidative PPP as a target for metabolic engineering. An important challenge for metabolic engineering is identification of gene targets that have material importance. This study has demonstrated that metabolomics is a powerful tool to develop rational strategies to confer tolerance to stress through genetic engineering.

  13. Haloacetic acids in the aquatic environment. Part I: macrophyte toxicity

    International Nuclear Information System (INIS)

    Hanson, Mark L.; Solomon, Keith R.

    2004-01-01

    Haloacetic acids (HAAs) are contaminants of aquatic ecosystems with numerous sources, both anthropogenic and natural. The toxicity of HAAs to aquatic plants is generally uncharacterized. Laboratory tests were conducted with three macrophytes (Lemna gibba, Myriophyllum sibiricum and Myriophyllum spicatum) to assess the toxicity of five HAAs. Myriophyllum spp. has been proposed as required test species for pesticide registration in North America, but few studies have been conducted under standard test conditions. The HAAs in the present experiments were monochloroacetic acid (MCA), dichloroacetic acid (DCA), trichloroacetic acid (TCA), trifluoroacetic acid (TFA) and chlorodifluoroacetic acid (CDFA). MCA was the most toxic to Myriophyllum spp. with EC 50 values ranging from 8 to 12.4 mg/l depending on the endpoint, followed by DCA (EC 50 range 62-722.5 mg/l), TCA (EC 50 range 49.5-1702.6 mg/l), CDFA (EC 50 range 105.3 to >10,000 mg/l) and with TFA (EC 50 range 222.1 to 10,000 mg/l) the least toxic. Generally, L. gibba was less sensitive to HAA toxicity than Myriophyllum spp., with the difference in toxicity between them approximately threefold. The range of toxicity within Myriophyllum spp. was normally less than twofold. Statistically, plant length and node number were the most sensitive endpoints as they had the lowest observed coefficients of variation, but they were not the most sensitive to HAA toxicity. Toxicological sensitivity of endpoints varied depending on the measure of effect chosen and the HAA, with morphological endpoints usually an order of magnitude more sensitive than pigments for all plant species. Overall, mass and root measures tended to be the most sensitive indicators of HAA toxicity. The data from this paper were subsequently used in an ecological risk assessment for HAAs and aquatic plants. The assessment found HAAs to be of low risk to aquatic macrophytes and the results are described in the second manuscript of this series

  14. Thrombotic microangiopathy associated with Valproic acid toxicity.

    Science.gov (United States)

    Hebert, Sean A; Bohan, Timothy P; Erikson, Christian L; Swinford, Rita D

    2017-08-03

    Thrombotic microangiopathy (TMA) is a serious, sometimes life-threatening disorder marked by the presence of endothelial injury and microvascular thrombi. Drug-induced thrombotic microangiopathy (DI-TMA) is one specific TMA syndrome that occurs following drug exposure via drug-dependent antibodies or direct tissue toxicity. Common examples include calcineurin inhibitors Tacrolimus and Cyclosporine and antineoplastics Gemcitabine and Mitomycin. Valproic acid has not been implicated in DI-TMA. We present the first case of a patient meeting clinical criteria for DI-TMA following admission for valproic acid toxicity. An adolescent male with difficult to control epilepsy was admitted for impaired hepatic function while on valproic acid therapy. On the third hospital day, he developed severe metabolic lactic acidosis and multiorgan failure, prompting transfer to the pediatric intensive care unit. Progressive anemia and thrombocytopenia instigated an evaluation for thrombotic microangiopathy, where confirmed by concomitant hemolysis, elevated lactate dehydrogenase (LDH), low haptoglobin, and concurrent oliguric acute kidney injury. Thrombotic thrombocytopenic purpura was less likely with adequate ADAMTS13. Discontinuing valproic acid reversed the anemia, thrombocytopenia, and normalized the LDH and haptoglobin, supporting a drug-induced cause for the TMA. To the best of our knowledge, this is the first report of drug-induced TMA from valproic acid toxicity.

  15. TaALMT1 promoter sequence compositions, acid tolerance, and Al tolerance in wheat cultivars and landraces from Sichuan in China.

    Science.gov (United States)

    Han, C; Dai, S F; Liu, D C; Pu, Z J; Wei, Y M; Zheng, Y L; Wen, D J; Zhao, L; Yan, Z H

    2013-11-18

    Previous genetic studies on wheat from various sources have indicated that aluminum (Al) tolerance may have originated independently in USA, Brazil, and China. Here, TaALMT1 promoter sequences of 92 landraces and cultivars from Sichuan, China, were sequenced. Five promoter types (I', II, III, IV, and V) were observed in 39 cultivars, and only three promoter types (I, II, and III) were observed in 53 landraces. Among the wheat collections worldwide, only the Chinese Spring (CS) landrace native to Sichuan, China, carried the TaALMT1 promoter type III. Besides CS, two other Sichuan-bred landraces and six cultivars with TaALMT1 promoter type III were identified in this study. In the phylogenetic tree constructed based on the TaALMT1 promoter sequences, type III formed a separate branch, which was supported by a high bootstrap value. It is likely that TaALMT1 promoter type III originated from Sichuan-bred wheat landraces of China. In addition, the landraces with promoter type I showed the lowest Al tolerance among all landraces and cultivars. Furthermore, the cultivars with promoter type IV showed better Al tolerance than landraces with promoter type II. A comparison of acid tolerance and Al tolerance between cultivars and landraces showed that the landraces had better acid tolerance than the cultivars, whereas the cultivars showed better Al tolerance than the landraces. Moreover, significant difference in Al tolerance was also observed between the cultivars raised by the National Ministry of Agriculture and by Sichuan Province. Among the landraces from different regions, those from the East showed better acid tolerance and Al tolerance than those from the South and West of Sichuan. Additional Al-tolerant and acid-tolerant wheat lines were also identified.

  16. 40 CFR 180.1187 - L-glutamic acid; exemption from the requirement of a tolerance.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false L-glutamic acid; exemption from the... Exemptions From Tolerances § 180.1187 L-glutamic acid; exemption from the requirement of a tolerance. L-glutamic acid is exempt from the requirement of a tolerance on all food commodities when used in accordance...

  17. Role of mycorrhizal fungi and salicylic acid in salinity tolerance of ...

    African Journals Online (AJOL)

    Most researchers showed that inoculation of plants with mycorrhizal fungi and using salicylic acid increase tolerance of plants due to salinity. In this study, the effect of mycorrhizal fungi, including Glomus mosseae, Glomus intraradices, and salicylic acid (0.2 mM) on tolerance of green basil (Ocimum basilicum L.) to salinity ...

  18. Transcriptome profiling of genes and pathways associated with arsenic toxicity and tolerance in Arabidopsis

    Science.gov (United States)

    2014-01-01

    Background Arsenic (As) is a toxic metalloid found ubiquitously in the environment and widely considered an acute poison and carcinogen. However, the molecular mechanisms of the plant response to As and ensuing tolerance have not been extensively characterized. Here, we report on transcriptional changes with As treatment in two Arabidopsis accessions, Col-0 and Ws-2. Results The root elongation rate was greater for Col-0 than Ws-2 with As exposure. Accumulation of As was lower in the more tolerant accession Col-0 than in Ws-2. We compared the effect of As exposure on genome-wide gene expression in the two accessions by comparative microarray assay. The genes related to heat response and oxidative stresses were common to both accessions, which indicates conserved As stress-associated responses for the two accessions. Most of the specific response genes encoded heat shock proteins, heat shock factors, ubiquitin and aquaporin transporters. Genes coding for ethylene-signalling components were enriched in As-tolerant Col-0 with As exposure. A tolerance-associated gene candidate encoding Leucine-Rich Repeat receptor-like kinase VIII (LRR-RLK VIII) was selected for functional characterization. Genetic loss-of-function analysis of the LRR-RLK VIII gene revealed altered As sensitivity and the metal accumulation in roots. Conclusions Thus, ethylene-related pathways, maintenance of protein structure and LRR-RLK VIII-mediated signalling may be important mechanisms for toxicity and tolerance to As in the species. Here, we provide a comprehensive survey of global transcriptional regulation for As and identify stress- and tolerance-associated genes responding to As. PMID:24734953

  19. Understanding the tolerance of the industrial yeast Saccharomyces cerevisiae against a major class of toxic aldehyde compounds.

    Science.gov (United States)

    Liu, ZongLin Lewis

    2018-07-01

    Development of the next-generation biocatalyst is vital for fermentation-based industrial applications and a sustainable bio-based economy. Overcoming the major class of toxic compounds associated with lignocellulose-to-biofuels conversion is one of the significant challenges for new strain development. A significant number of investigations have been made to understand mechanisms of the tolerance for industrial yeast. It is humbling to learn how complicated the cell's response to the toxic chemicals is and how little we have known about yeast tolerance in the universe of the living cell. This study updates our current knowledge on the tolerance of industrial yeast against aldehyde inhibitory compounds at cellular, molecular and the genomic levels. It is comprehensive yet specific based on reproducible evidence and cross confirmed findings from different investigations using varied experimental approaches. This research approaches a rational foundation toward a more comprehensive understanding on the yeast tolerance. Discussions and perspectives are also proposed for continued exploring the puzzle of the yeast tolerance to aid the next-generation biocatalyst development.

  20. Influence of Leaf Tolerance Mechanisms and Rain on Boron Toxicity in Barley and Wheat1[C

    Science.gov (United States)

    Reid, Rob; Fitzpatrick, Kate

    2009-01-01

    Boron (B) toxicity is common in many areas of the world. Plant tolerance to high B varies widely and has previously been attributed to reduced uptake of B, most commonly as a result of B efflux from roots. In this study, it is shown that the expression of genes encoding B efflux transporters in leaves of wheat (Triticum aestivum) and barley (Hordeum vulgare) is associated with an ability of leaf tissues to withstand higher concentrations of B. In tolerant cultivars, necrosis in leaves occurred at B concentrations more than 2-fold higher than in sensitive cultivars. It is hypothesized that this leaf tolerance is achieved via redistribution of B by efflux transporters from sensitive symplastic compartments into the leaf apoplast. Measurements of B concentrations in leaf protoplasts, and of B released following infiltration of leaves, support this hypothesis. It was also shown that under B-toxic conditions, leaching of B from leaves by rain had a strong positive effect on growth of both roots and shoots. Measurements of rates of guttation and the concentration of B in guttation droplets indicated that the impact of guttation on the alleviation of B toxicity would be small. PMID:19625636

  1. Adaptive alterations in the fatty acids composition under induced oxidative stress in heavy metal-tolerant filamentous fungus Paecilomyces marquandii cultured in ascorbic acid presence.

    Science.gov (United States)

    Słaba, Mirosława; Gajewska, Ewa; Bernat, Przemysław; Fornalska, Magdalena; Długoński, Jerzy

    2013-05-01

    The ability of the heavy metal-tolerant fungus Paecilomyces marquandii to modulate whole cells fatty acid composition and saturation in response to IC50 of Cd, Pb, Zn, Ni, and Cu was studied. Cadmium and nickel caused the most significant growth reduction. In the mycelia cultured with all tested metals, with the exception of nickel, a rise in the fatty acid unsaturation was noted. The fungus exposure to Pb, Cu, and Ni led to significantly higher lipid peroxidation. P. marquandii incubated in the presence of the tested metals responded with an increase in the level of linoleic acid and escalation of electrolyte leakage. The highest efflux of electrolytes was caused by lead. In these conditions, the fungus was able to bind up to 100 mg g(-1) of lead, whereas the content of the other metals in the mycelium was significantly lower and reached from 3.18 mg g(-1) (Cu) to 15.21 mg g(-1) (Zn). Additionally, it was shown that ascorbic acid at the concentration of 1 mM protected fungal growth and prevented the changes in the fatty acid composition and saturation but did not alleviate lipid peroxidation or affect the increased permeability of membranes after lead exposure. Pro-oxidant properties of ascorbic acid in the copper-stressed cells manifested strong growth inhibition and enhanced metal accumulation as a result of membrane damage. Toxic metals action caused cellular modulations, which might contributed to P. marquandii tolerance to the studied metals. Moreover, these changes can enhance metal removal from contaminated environment.

  2. Acid, bile, and heat tolerance of free and microencapsulated probiotic bacteria.

    Science.gov (United States)

    Ding, W K; Shah, N P

    2007-11-01

    Eight strains of probiotic bacteria, including Lactobacillus rhamnosus, Bifidobacterium longum, L. salivarius, L. plantarum, L. acidophilus, L. paracasei, B. lactis type Bl-O4, and B. lactis type Bi-07, were studied for their acid, bile, and heat tolerance. Microencapsulation in alginate matrix was used to enhance survival of the bacteria in acid and bile as well as a brief exposure to heat. Free probiotic organisms were used as a control. The acid tolerance of probiotic organisms was tested using HCl in MRS broth over a 2-h incubation period. Bile tolerance was tested using 2 types of bile salts, oxgall and taurocholic acid, over an 8-h incubation period. Heat tolerance was tested by exposing the probiotic organisms to 65 degrees C for up to 1 h. Results indicated microencapsulated probiotic bacteria survived better (P strains. At 30 min of heat treatment, microencapsulated probiotic bacteria survived with an average loss of only 4.17-log CFU/mL, compared to 6.74-log CFU/mL loss with free probiotic bacteria. However, after 1 h of heating both free and microencapsulated probiotic strains showed similar losses in viability. Overall microencapsulation improved the survival of probiotic bacteria when exposed to acidic conditions, bile salts, and mild heat treatment.

  3. Correlation between oxalic acid production and copper tolerance in Wolfiporia cocos

    Science.gov (United States)

    C. A. Clausen; Frederick Green; B. M. Woodward; J. W. Evans; R. C. DeGroot

    2000-01-01

    The increased interest in copper-based wood preservatives has hastened the need for understanding why some fungi are able to attack copper-treated wood. Due in part to accumulation of oxalic acid by brown-rot fungi and visualization of copper oxalate crystals in wood decayed by known copper-tolerant decay fungi, oxalic acid has been implicated in copper tolerance by...

  4. Alleviating effects of calcium on cobalt toxicity in two barley genotypes differing in cobalt tolerance.

    Science.gov (United States)

    Lwalaba, Jonas Lwalaba Wa; Zvobgo, Gerald; Fu, Liangbo; Zhang, Xuelei; Mwamba, Theodore Mulembo; Muhammad, Noor; Mundende, Robert Prince Mukobo; Zhang, Guoping

    2017-05-01

    Cobalt (Co) contamination in soils is becoming a severe issue in environment safety and crop production. Calcium (Ca) , as a macro-nutrient element, shows the antagonism with many divalent heavy metals and the capacity of alleviating oxidative stress in plants. In this study, the protective role of Ca in alleviating Co stress was hydroponically investigated using two barley genotypes differing in Co toxicity tolerance. Barley seedlings exposed to 100µM Co showed the significant reduction in growth and photosynthetic rate, and the dramatic increase in the contents of reactive oxygen species (ROS), malondialdehyde (MDA), reduced glutathione (GSH) and oxidized glutathione (GSSG), and the activities of anti-oxidative enzymes, with Ea52 (Co-sensitive) being much more affected than Yan66 (Co-tolerant). Addition of Ca in growth medium alleviated Co toxicity by reducing Co uptake and enhancing the antioxidant capacity. The effect of Ca in alleviating Co toxicity was much greater in Yan66 than in Ea52. The results indicate that the alleviation of Co toxicity in barley plants by Ca is attributed to the reduced Co uptake and enhanced antioxidant capacity. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Aluminium tolerance in rice is antagonistic with nitrate preference and synergistic with ammonium preference.

    Science.gov (United States)

    Zhao, Xue Qiang; Guo, Shi Wei; Shinmachi, Fumie; Sunairi, Michio; Noguchi, Akira; Hasegawa, Isao; Shen, Ren Fang

    2013-01-01

    Acidic soils are dominated chemically by more ammonium and more available, so more potentially toxic, aluminium compared with neutral to calcareous soils, which are characterized by more nitrate and less available, so less toxic, aluminium. However, it is not known whether aluminium tolerance and nitrogen source preference are linked in plants. This question was investigated by comparing the responses of 30 rice (Oryza sativa) varieties (15 subsp. japonica cultivars and 15 subsp. indica cultivars) to aluminium, various ammonium/nitrate ratios and their combinations under acidic solution conditions. indica rice plants were generally found to be aluminium-sensitive and nitrate-preferring, while japonica cultivars were aluminium-tolerant and relatively ammonium-preferring. Aluminium tolerance of different rice varieties was significantly negatively correlated with their nitrate preference. Furthermore, aluminium enhanced ammonium-fed rice growth but inhibited nitrate-fed rice growth. The results suggest that aluminium tolerance in rice is antagonistic with nitrate preference and synergistic with ammonium preference under acidic solution conditions. A schematic diagram summarizing the interactions of aluminium and nitrogen in soil-plant ecosystems is presented and provides a new basis for the integrated management of acidic soils.

  6. Mechanisms of adaptation of small grains to soil acidity

    Directory of Open Access Journals (Sweden)

    Đalović Ivica G.

    2010-01-01

    Full Text Available Acid soils limit crop production on 30-40% of the world's arable land and up to 70% of the world's potentially arable land. Over 60% of the total arable lands in Serbia are acid soils. Soil acidity is determined by hydrogen (H+ in soil solution and it is influenced by edaphic, climatic, and biological factors. Major constraints for plant growth on acid mineral soils are toxic concentrations of mineral elements like Al of H+ and/or low mineral nutrient availability due to low solubility (e.g. P and Mo or low reserves and impaired uptake (e.g. Mg2+ at high H+ concentrations. Aluminum (Al toxicity is primary factor limiting crop production on acid soils. This review examines our current understanding of mechanisms of Al-toxicity, as well as the physiological and genetic basis for Al-toxicity and tolerance. Inhibition of root growth by Al leads to more shallow root systems, which may affect the capacity for mineral nutrient acquisition and increase the risk of drought stress. Of the two principal strategies (tolerance and avoidance of plants for adaptation to adverse soil conditions, the strategy of avoidance is more common for adaptation to acid mineral soils. At the same, the short view of the most important genetics tolerance mechanisms, developed and determined in some small grains genotypes, is showed as well.

  7. Organic Acid Characteristics and Tolerance of Sengon (Paraserianthes falcataria L Nielsen to Lead

    Directory of Open Access Journals (Sweden)

    Luluk Setyaningsih

    2012-12-01

    Full Text Available This study aimed to find out the lead tolerance of sengon (Paraserianthes falcataria seedling based on growth performance, tolerance index, and secretion and accumulation of organic acids content. Seedlings were exposed to lead (Pb with the concentration of 0, 0.5, 1, 1.5, 5, and 10 mM in liquid nutrient culture for 4 days in order to investigate secretion and accumulation  of  oxalic, malic, and citric content, and for 15 days to examine growth performance and tolerance index. The result showed that tolerance index and growth performance of sengon seedling were insignificant (p > 0.05 to the rising of Pb concentration up to 1.5 mM with tolerance index at least 95%, and even caused an increase of fresh weight.  However, the tolerance index and growth of sengon  decreased significantly due to Pb exposure of 5 and 10 mM.  Among the three organic acids, citrate was most dominant as compared to malate and oxalate.  Secretion of citrate increased significantly (p < 0.05 with the rising concentration of Pb 0.5, 1 and 1.5 mM,  reaching to 0.464, 0.540, and 0.587 µg mℓ-1, respectively, or rising according linear line (r = 0.9, p < 0.5.  Citrate accumulation showed inconsistent pattern with the rising Pb exposure.  The result suggested that sengon seedling have a slightly tolerance to lead by secretion of organic acid especially citric acid.Keywords: lead, sengon, tolerance, organic acid, liquid nutrient culture

  8. [Lipid synthesis by an acidic acid tolerant Rhodotorula glutinis].

    Science.gov (United States)

    Lin, Zhangnan; Liu, Hongjuan; Zhang, Jian'an; Wang, Gehua

    2016-03-01

    Acetic acid, as a main by-product generated in the pretreatment process of lignocellulose hydrolysis, significantly affects cell growth and lipid synthesis of oleaginous microorganisms. Therefore, we studied the tolerance of Rhodotorula glutinis to acetic acid and its lipid synthesis from substrate containing acetic acid. In the mixed sugar medium containing 6 g/L glucose and 44 g/L xylose, and supplemented with acetic acid, the cell growth was not:inhibited when the acetic acid concentration was below 10 g/L. Compared with the control, the biomass, lipid concentration and lipid content of R. glutinis increased 21.5%, 171% and 122% respectively when acetic acid concentration was 10 g/L. Furthermore, R. glutinis could accumulate lipid with acetate as the sole carbon source. Lipid concentration and lipid yield reached 3.20 g/L and 13% respectively with the initial acetic acid concentration of 25 g/L. The lipid composition was analyzed by gas chromatograph. The main composition of lipid produced with acetic acid was palmitic acid, stearic acid, oleic acid, linoleic acid and linolenic acid, including 40.9% saturated fatty acids and 59.1% unsaturated fatty acids. The lipid composition was similar to that of plant oil, indicating that lipid from oleaginous yeast R. glutinis had potential as the feedstock of biodiesel production. These results demonstrated that a certain concentration of acetic acid need not to be removed in the detoxification process when using lignocelluloses hydrolysate to produce microbial lipid by R. glutinis.

  9. Acid tolerance response and survival by oral bacteria.

    Science.gov (United States)

    Svensäter, G; Larsson, U B; Greif, E C; Cvitkovitch, D G; Hamilton, I R

    1997-10-01

    Using 21 species of oral bacteria, representing six acidogenic genera, we undertook to determine whether the pH-limiting exponential growth is related to the ability of the organisms to generate an acid-tolerance response that results in enhanced survival at low pH. The lower pH limit of exponential growth varied by more than two units with that of Neisseria A182 at pH 6.34; growth of Lactobacillus casei RB1014 stopped at pH 3.81, with species of Actinomyces, Enterococcus, Prevotella and Streptococcus falling between these limits. The working hypothesis was that the organisms with the higher pH limits for growth are unable to respond to acidic environments in order to survive, whereas the more aciduric organisms would possess or acquire acid tolerance. Adaptation to acid tolerance was tested by determining whether the prior exposure of exponential-phase cells to a low, sub-lethal pH would trigger the induction of a mechanism that would enhance survival at a pH killing pH 7.5 control cells. The killing pH varied from pH 4.5 for Prevotella intermedia ATCC 25611 to pH 2.3 for the three Lactobacillus casei strains in the study, with the three Streptococcus mutans strains killed at pH 3.0 for 3 h. The adaptation experiments revealed three groups of organisms: non-acid-responders, generally representing strains with the highest terminal pH values; weak acid-responders in the middle of the pH list, generating low numbers of survivors at one or two pH values, and the aciduric, strong responders generating a high number of survivors at pH values in the range 6.0 to 3.5, but not at pH 7.5. Predominant among the latter group were the S. mutans and Lactobacilli casei strains, with the most significant adaptive response exhibited by S. mutans LT11 and S. mutans Ingbritt, involving a process that required protein synthesis. Time course experiments with the latter organisms indicated that 90-120 min was required after exposure to the triggering pH before the acid response was

  10. Multidrug-Resistance and Toxic Metal Tolerance of Medically Important Bacteria Isolated from an Aquaculture System

    Science.gov (United States)

    Resende, Juliana Alves; Silva, Vânia L.; Fontes, Cláudia Oliveira; Souza-Filho, Job Alves; de Oliveira, Tamara Lopes Rocha; Coelho, Cíntia Marques; César, Dionéia Evangelista; Diniz, Cláudio Galuppo

    2012-01-01

    The use of antimicrobials and toxic metals should be considered carefully in aquaculture and surrounding environments. We aimed to evaluate medically relevant bacteria in an aquaculture system and their susceptibility to antimicrobials and toxic metals. Selective cultures for enterobacteria (ENT), non-fermenting Gram-negative rods (NFR) and Gram-positive cocci (GPC) were obtained from water samples collected in two different year seasons. The isolated bacteria were biochemically identified and antimicrobial and toxic metal susceptibility patterns were determined. Overall, 407 representative strains were recovered. In general, bacteria isolated from fish ponds showed higher multiple antibiotic resistance indices when compared to those isolated from a water-fed canal. Resistance to penicillin and azithromycin was observed more frequently in the GPC group, whereas resistance to ampicillin and ampicillin/sulbactam or gentamicin was observed more frequently in the ENT and NFR groups, respectively. All the isolated bacteria were tolerant to nickel, zinc, chromium and copper at high levels (≥1,024 μg mL−1), whereas tolerance to cadmium and mercury varied among the isolated bacteria (2–1,024 μg mL−1). Multidrug-resistant bacteria were more frequent and diverse in fish ponds than in the water-fed canal. A positive correlation was observed between antimicrobial resistance and metal tolerance. The data point out the need for water treatment associated with the aquaculture system. PMID:22972388

  11. Improving the cyanide toxicity tolerance of anaerobic reactor: Microbial interactions and toxin reduction

    International Nuclear Information System (INIS)

    Gupta, Pragya; Ahammad, S.Z.; Sreekrishnan, T.R.

    2016-01-01

    Highlights: • Anaerobic batch study of 110 days. • Acclimatization for cyanide biodegradation. • Understanding inhibitory effects of cyanide on methane generation and VFA production. • Identification of microorganisms tolerant to cyanide. • Community analysis using DGGE and qPCR analyses. - Abstract: Anaerobic biological treatment of high organics containing wastewater is amongst the preferred treatment options but poor tolerance to toxins makes its use prohibitive. In this study, efforts have been made to understand the key parameters for developing anaerobic reactor, resilient to cyanide toxicity. A laboratory scale anaerobic batch reactor was set up to treat cyanide containing wastewater. The reactor was inoculated with anaerobic sludge obtained from a wastewater treatment plant and fresh cow dung in the ratio of 3:1. The focus was on acclimatization and development of cyanide-degrading biomass and to understand the toxic effects of cyanide on the dynamic equilibrium between various microbial groups. The sludge exposed to cyanide was found to have higher bacterial diversity than the control. It was observed that certain hydrogenotrophic methanogens and bacterial groups were able to grow and produce methane in the presence of cyanide. Also, it was found that hydrogen utilizing methanogens were more cyanide tolerant than acetate utilizing methanogens. So, effluents from various industries like electroplating, coke oven plant, petroleum refining, explosive manufacturing, and pesticides industries which are having high concentrations of cyanide can be treated by favoring the growth of the tolerant microbes in the reactors. It will provide much better treatment efficiency by overcoming the inhibitory effects of cyanide to certain extent.

  12. Improving the cyanide toxicity tolerance of anaerobic reactor: Microbial interactions and toxin reduction

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Pragya; Ahammad, S.Z.; Sreekrishnan, T.R., E-mail: sree@iitd.ac.in

    2016-09-05

    Highlights: • Anaerobic batch study of 110 days. • Acclimatization for cyanide biodegradation. • Understanding inhibitory effects of cyanide on methane generation and VFA production. • Identification of microorganisms tolerant to cyanide. • Community analysis using DGGE and qPCR analyses. - Abstract: Anaerobic biological treatment of high organics containing wastewater is amongst the preferred treatment options but poor tolerance to toxins makes its use prohibitive. In this study, efforts have been made to understand the key parameters for developing anaerobic reactor, resilient to cyanide toxicity. A laboratory scale anaerobic batch reactor was set up to treat cyanide containing wastewater. The reactor was inoculated with anaerobic sludge obtained from a wastewater treatment plant and fresh cow dung in the ratio of 3:1. The focus was on acclimatization and development of cyanide-degrading biomass and to understand the toxic effects of cyanide on the dynamic equilibrium between various microbial groups. The sludge exposed to cyanide was found to have higher bacterial diversity than the control. It was observed that certain hydrogenotrophic methanogens and bacterial groups were able to grow and produce methane in the presence of cyanide. Also, it was found that hydrogen utilizing methanogens were more cyanide tolerant than acetate utilizing methanogens. So, effluents from various industries like electroplating, coke oven plant, petroleum refining, explosive manufacturing, and pesticides industries which are having high concentrations of cyanide can be treated by favoring the growth of the tolerant microbes in the reactors. It will provide much better treatment efficiency by overcoming the inhibitory effects of cyanide to certain extent.

  13. Comparative in vitro toxicity assessment of perfluorinated carboxylic acids.

    Science.gov (United States)

    Mahapatra, Cecon T; Damayanti, Nur P; Guffey, Samuel C; Serafin, Jennifer S; Irudayaraj, Joseph; Sepúlveda, Maria S

    2017-06-01

    Perfluoroalkyl and polyfluoroalkyl substances (PFASs) are synthetic fluorinated compounds that are highly bioaccumulative and persistent organic pollutants. Perfluorooctanoic acid (PFOA), an eight-carbon chain perfluorinated carboxylic acid, was used heavily for the production of fluoropolymers, but concerns have led to its replacement by shorter carbon chain homologues such as perfluorohexanoic acid (PFHxA) and perfluorobutanoic acid (PFBA). However, limited toxicity data exist for these substitutes. We evaluated the toxicity of PFOA, PFHxA and PFBA on a zebrafish liver cell line and investigated the effects of exposure on cell metabolism. Gross toxicity after 96 h of exposure was highest for PFOA and PFO - , while PFHxA and PFBA exhibited lower toxicity. Although the structural similarity of these compounds to fatty acids suggests the possibility of interference with the transport and metabolism of lipids, we could not detect any differential expression of peroxisome proliferator-activated receptor (ppar-α, -β and -γ), fabp3 and crot genes after 96 h exposure to up to 10 ppm of the test compounds. However, we observed localized lipid droplet accumulation only in PFBA-exposed cells. To study the effects of these compounds on cell metabolism, we conducted fluorescence lifetime imaging microscopy using naturally fluorescent biomarkers, NADH and FAD. The fluorescence lifetimes of NADH and FAD and the bound/free ratio of each of these coenzymes decreased in a dose- and carbon length-dependent manner, suggesting disruption of cell metabolism. In sum, our study revealed that PFASs with shorter carbon chains are less toxic than PFOA, and that exposure to sublethal dosage of PFOA, PFHxA or PFBA affects cell metabolism. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  14. Physiological and molecular analysis of selected Kenyan maize lines for aluminum tolerance

    Science.gov (United States)

    Aluminum (Al) toxicity is an important limitation to maize production in many tropical and sub-tropical acid soil areas. The aim of this study was to survey the variation in Al tolerance in a panel of maize lines adapted for Kenya and look for novel sources of Al tolerance. 112 Kenyan maize accessio...

  15. cDNA-AFLP analysis reveals the adaptive responses of citrus to long-term boron-toxicity.

    Science.gov (United States)

    Guo, Peng; Qi, Yi-Ping; Yang, Lin-Tong; Ye, Xin; Jiang, Huan-Xin; Huang, Jing-Hao; Chen, Li-Song

    2014-10-28

    Boron (B)-toxicity is an important disorder in agricultural regions across the world. Seedlings of 'Sour pummelo' (Citrus grandis) and 'Xuegan' (Citrus sinensis) were fertigated every other day until drip with 10 μM (control) or 400 μM (B-toxic) H3BO3 in a complete nutrient solution for 15 weeks. The aims of this study were to elucidate the adaptive mechanisms of citrus plants to B-toxicity and to identify B-tolerant genes. B-toxicity-induced changes in seedlings growth, leaf CO2 assimilation, pigments, total soluble protein, malondialdehyde (MDA) and phosphorus were less pronounced in C. sinensis than in C. grandis. B concentration was higher in B-toxic C. sinensis leaves than in B-toxic C. grandis ones. Here we successfully used cDNA-AFLP to isolate 67 up-regulated and 65 down-regulated transcript-derived fragments (TDFs) from B-toxic C. grandis leaves, whilst only 31 up-regulated and 37 down-regulated TDFs from B-toxic C. sinensis ones, demonstrating that gene expression is less affected in B-toxic C. sinensis leaves than in B-toxic C. grandis ones. These differentially expressed TDFs were related to signal transduction, carbohydrate and energy metabolism, nucleic acid metabolism, protein and amino acid metabolism, lipid metabolism, cell wall and cytoskeleton modification, stress responses and cell transport. The higher B-tolerance of C. sinensis might be related to the findings that B-toxic C. sinensis leaves had higher expression levels of genes involved in photosynthesis, which might contribute to the higher photosyntheis and light utilization and less excess light energy, and in reactive oxygen species (ROS) scavenging compared to B-toxic C. grandis leaves, thus preventing them from photo-oxidative damage. In addition, B-toxicity-induced alteration in the expression levels of genes encoding inorganic pyrophosphatase 1, AT4G01850 and methionine synthase differed between the two species, which might play a role in the B-tolerance of C. sinensis. C. sinensis

  16. The effect of pH on the toxicity of fatty acids and fatty acid amides to rainbow trout gill cells.

    Science.gov (United States)

    Bertin, Matthew J; Voronca, Delia C; Chapman, Robert W; Moeller, Peter D R

    2014-01-01

    Harmful algal blooms (HABs) expose aquatic organisms to multiple physical and chemical stressors during an acute time period. Algal toxins themselves may be altered by water chemistry parameters affecting their bioavailability and resultant toxicity. The purpose of this study was to determine the effects of two abiotic parameters (pH, inorganic metal salts) on the toxicity of fatty acid amides and fatty acids, two classes of lipids produced by harmful algae, including the golden alga, Prymnesium parvum, that are toxic to aquatic organisms. Rainbow trout gill cells were used as a model of the fish gill and exposed to single compounds and mixtures of compounds along with variations in pH level and concentration of inorganic metal salts. We employed artificial neural networks (ANNs) and standard ANOVA statistical analysis to examine and predict the effects of these abiotic parameters on the toxicity of fatty acid amides and fatty acids. Our results demonstrate that increasing pH levels increases the toxicity of fatty acid amides and inhibits the toxicity of fatty acids. This phenomenon is reversed at lower pH levels. Exposing gill cells to complex mixtures of chemical factors resulted in dramatic increases in toxicity compared to tests of single compounds for both the fatty acid amides and fatty acids. These findings highlight the potential of physicochemical factors to affect the toxicity of chemicals released during algal blooms and demonstrate drastic differences in the effect of pH on fatty acid amides and fatty acids. Published by Elsevier B.V.

  17. Screening of Non- Saccharomyces cerevisiae Strains for Tolerance to Formic Acid in Bioethanol Fermentation.

    Science.gov (United States)

    Oshoma, Cyprian E; Greetham, Darren; Louis, Edward J; Smart, Katherine A; Phister, Trevor G; Powell, Chris; Du, Chenyu

    2015-01-01

    Formic acid is one of the major inhibitory compounds present in hydrolysates derived from lignocellulosic materials, the presence of which can significantly hamper the efficiency of converting available sugars into bioethanol. This study investigated the potential for screening formic acid tolerance in non-Saccharomyces cerevisiae yeast strains, which could be used for the development of advanced generation bioethanol processes. Spot plate and phenotypic microarray methods were used to screen the formic acid tolerance of 7 non-Saccharomyces cerevisiae yeasts. S. kudriavzeii IFO1802 and S. arboricolus 2.3319 displayed a higher formic acid tolerance when compared to other strains in the study. Strain S. arboricolus 2.3319 was selected for further investigation due to its genetic variability among the Saccharomyces species as related to Saccharomyces cerevisiae and availability of two sibling strains: S. arboricolus 2.3317 and 2.3318 in the lab. The tolerance of S. arboricolus strains (2.3317, 2.3318 and 2.3319) to formic acid was further investigated by lab-scale fermentation analysis, and compared with S. cerevisiae NCYC2592. S. arboricolus 2.3319 demonstrated improved formic acid tolerance and a similar bioethanol synthesis capacity to S. cerevisiae NCYC2592, while S. arboricolus 2.3317 and 2.3318 exhibited an overall inferior performance. Metabolite analysis indicated that S. arboricolus strain 2.3319 accumulated comparatively high concentrations of glycerol and glycogen, which may have contributed to its ability to tolerate high levels of formic acid.

  18. Back to acid soil fields

    NARCIS (Netherlands)

    Carvalho, Geraldo; Schaffert, Robert Eugene; Malosetti Zunin, Marcos; Eeuwijk, van Fred

    2016-01-01

    Aluminum (Al) toxicity damages plant roots and limits crop production on acid soils, which comprise up to 50% of the world's arable lands. A major Al tolerance locus on chromosome 3, AltSB, controls aluminum tolerance in sorghum [Sorghum bicolor (L.) Moench] via SbMATE, an Al-activated plasma

  19. Subchronic toxicity evaluation of γ-aminobutyric acid (GABA) in rats.

    Science.gov (United States)

    Takeshima, Kazuhito; Yamatsu, Atsushi; Yamashita, Yusuke; Watabe, Kazuya; Horie, Noriko; Masuda, Kazuyuki; Kim, Mujo

    2014-06-01

    γ-Aminobutyric acid (GABA) is an amino acid compound contained in vegetables such as tomatoes and also widely distributed in mammals. GABA acts as an inhibitory neurotransmitter and promotes parasympathetic activity to provide several beneficial effects, for instance, relaxation, anti-stress, and insomnia. GABA, produced via a fermentation process, has been available as a functional food ingredient. As part of a program to assess its safety, GABA was administered by oral gavage at doses of 500, 1250, and 2500mg/kg body weight to groups of 10 male and 10 female Sprague-Dawley rats for 13weeks. Treatment was not associated with the test substance-related mortality and appeared to be well tolerated. There were no toxicologically and statistically significant changes in urinalysis, hematology, clinical chemistry parameters, and in necropsy findings. A few statistically significant changes in food consumption and body weights were noted in the male groups while any significant changes were not noted in female groups. There was no effect of treatment on organ weights or on the results of the histopathological examinations. The results of toxicity evaluation support the safety use of GABA and the potential use as a functional food ingredient. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Histidine protects against zinc and nickel toxicity in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    John T Murphy

    2011-03-01

    Full Text Available Zinc is an essential trace element involved in a wide range of biological processes and human diseases. Zinc excess is deleterious, and animals require mechanisms to protect against zinc toxicity. To identify genes that modulate zinc tolerance, we performed a forward genetic screen for Caenorhabditis elegans mutants that were resistant to zinc toxicity. Here we demonstrate that mutations of the C. elegans histidine ammonia lyase (haly-1 gene promote zinc tolerance. C. elegans haly-1 encodes a protein that is homologous to vertebrate HAL, an enzyme that converts histidine to urocanic acid. haly-1 mutant animals displayed elevated levels of histidine, indicating that C. elegans HALY-1 protein is an enzyme involved in histidine catabolism. These results suggest the model that elevated histidine chelates zinc and thereby reduces zinc toxicity. Supporting this hypothesis, we demonstrated that dietary histidine promotes zinc tolerance. Nickel is another metal that binds histidine with high affinity. We demonstrated that haly-1 mutant animals are resistant to nickel toxicity and dietary histidine promotes nickel tolerance in wild-type animals. These studies identify a novel role for haly-1 and histidine in zinc metabolism and may be relevant for other animals.

  1. 76 FR 77709 - Butyl acrylate-methacrylic acid-styrene polymer; Tolerance Exemption

    Science.gov (United States)

    2011-12-14

    ...This regulation establishes an exemption from the requirement of a tolerance for residues of 2-Propenoic acid, 2-methyl-, polymer with butyl 2-propenoate and ethenylbenzene (CAS Reg. No. 25036-16-2); also known as butyl acrylate-methacrylic acid-styrene polymer when used as an inert ingredient in a pesticide chemical formulation. Momentive Performance Materials submitted a petition to EPA under the Federal Food, Drug, and Cosmetic Act (FFDCA), requesting an exemption from the requirement of a tolerance. This regulation eliminates the need to establish a maximum permissible level for residues of 2-Propenoic acid, 2-methyl-, polymer with butyl 2-propenoate and ethenylbenzene on food or feed commodities.

  2. On the Toxicity of the Aromatic Diamines and their Tetramethylcarboxylic Acid Derivatives

    OpenAIRE

    Gili, Pedro; Mederos, Alfredo

    2000-01-01

    The use of the theoretical PALLAS 3.0 program, to study the toxic behaviour of tetramethylcarboxylic acids, potential pharmaceuticals derived from o-phenylenediamines, indicates that o-phenylenediamines are highly toxic (level 1), while the tetramethycarboxylic acid derivatives (o-PhDTA and 3,4-TDTA) are slightly toxic, similar to EDTA (level 3). Therefore these ligands o-PhDTA and 3,4-TDTA, similar to EDTA, can be used as sequestering agents of toxic metals and overload of essential metals i...

  3. Bilateral retrobulbar optic neuropathy as the only sign of zoledronic acid toxicity.

    Science.gov (United States)

    Lavado, Félix Manco; Prieto, Marta Para; Osorio, María Rosalba Ramoa; Gálvez, María Isabel López; Leal, Lucía Manzanas

    2017-10-01

    Bisphosphonates may rarely cause ocular adverse effects and retrobulbar optic neuropathy (RON) secondary to zoledronic acid is very rare. A 67-year-old man was referred because of progressive and painless decrease vision in the left eye. He had been treated with 7 cycles of zoledronic acid infusions because of metastatic prostate cancer. On examination, VA was 20/20 in the right eye (OD) and 20/50 in the left eye (OS). The optic nerve was unremarkable OU. Pattern visual evoked potentials (pVEP) and electroretinography were performed with the result of VEP responses abolished in OS, and the VEP waveform within the normal range amplitude and delayed peak latencies in OD. Due to the high suspicion of bilateral RON secondary to zoledronic acid, we decided to discontinue the treatment. Two months later, VA was 20/20 OD and hand motions OS, with relative afferent pupillary defect and a pallor of the optic disc in OS. The diagnosis of bilateral RON secondary to zoledronic acid infusions was confirmed, and it was only partially reversible. Zoledronic acid is a potent new generation bisphosphonate increasingly used in oncologic patients and it is usually well tolerated. Optic nerve toxicity is not a side effect recognised by either the Food and Drug Administration or the drug manufacturers, and to our knowledge, this is the first case of zoledronic acid-related bilateral RON with late onset. In conclusion, patients treated with bisphosphonates should be informed about the possibility of ocular side-effects, and ophthalmologists should be consider discontinuing the drug. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Understanding the Strategies to Overcome Phosphorus–Deficiency and Aluminum–Toxicity by Ryegrass Endophytic and Rhizosphere Phosphobacteria

    Directory of Open Access Journals (Sweden)

    Patricio J. Barra

    2018-06-01

    Full Text Available Phosphobacteria, secreting organic acids and phosphatases, usually favor plant performance in acidic soils by increasing phosphorus (P availability and aluminum (Al complexing. However, it is not well-known how P-deficiency and Al-toxicity affect the phosphobacteria physiology. Since P and Al problems often co-occur in acidic soils, we have therefore proposed the evaluation of the single and combined effects of P-deficiency and Al-toxicity on growth, organic acids secretion, malate dehydrogenase (mdh gene expression, and phosphatase activity of five Al-tolerant phosphobacteria previously isolated from ryegrass. These phosphobacteria were identified as Klebsiella sp. RC3, Stenotrophomona sp. RC5, Klebsiella sp. RCJ4, Serratia sp. RCJ6, and Enterobacter sp. RJAL6. The strains were cultivated in mineral media modified to obtain (i high P in absence of Al–toxicity, (ii high P in presence of Al–toxicity, (iii low P in absence of Al–toxicity, and (iv low P in presence of Al–toxicity. High and low P were obtained by adding KH2PO4 at final concentration of 1.4 and 0.05 mM, respectively. To avoid Al precipitation, AlCl3 × 6H2O was previously complexed to citric acid (sole carbon source in concentrations of 10 mM. The secreted organic acids were identified and quantified by HPLC, relative mdh gene expression was determined by qRT-PCR and phosphatase activity was colorimetrically determined using p-nitrophenyl phosphate as substrate. Our results revealed that although a higher secretion of all organic acids was achieved under P–deficiency, the patterns of organic acids secretion were variable and dependent on treatment and strain. The organic acid secretion is exacerbated when Al was added into media, particularly in the form of malic and citric acid. The mdh gene expression was significantly up–regulated by the strains RC3, RC5, and RCJ6 under P–deficiency and Al–toxicity. In general, Al–tolerant phosphobacteria under P deficiency

  5. A Clostridium Group IV Species Dominates and Suppresses a Mixed Culture Fermentation by Tolerance to Medium Chain Fatty Acids Products

    Science.gov (United States)

    Andersen, Stephen J.; De Groof, Vicky; Khor, Way Cern; Roume, Hugo; Props, Ruben; Coma, Marta; Rabaey, Korneel

    2017-01-01

    hexanoic acid concentration to 32 ± 2% below the steady-state average. As opposed to the current view of MCFA toxicity broadly leading to production collapse, this study demonstrates that varied tolerance to MCFA within the community can lead to the dominance of some species and the suppression of others, which can result in a decreased productivity of the fermentation. PMID:28265558

  6. Plant responses to metal toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Briat, J.F. [Montpellier-2 Univ., 34 (France). Biochimie et physiologie moleculaire des plantes, CNRS, URA 2133; Lebrun, M. [Montpellier-2 Univ., 34 (France). Biochimie et physiologie vegetale appliquee

    1999-01-01

    Increased metal concentration in the soils, up to toxic levels, is becoming an important environmental problem. Safety rule evolution will require solutions in order to cope with food safety rules, and to freeze metal leakage from heavily metal-poisoned soils, such as those from industrial fallows. In this context, plants could serve to develop bio-assays in order to promote new standards, more realistic than the mass of a given metal per kg of soil, that does not consider the metal bio-disponibility. Plants could also be used for phyto-extraction and/or phyto-stabilization. To reach these objectives, a genetic approach could be useful to generate metal-tolerant plants with enough biomass. In this work is more particularly studied the plant responses to metal toxicity. Metal toxicity for living organisms involves oxidative and /or genotoxic mechanisms. Plant protection against metal toxicity occurs, at least in part, through control of root metal uptake and of long distance metal transport. Inside cells, proteins such as ferritins and metallothioneins, and glutathione-derived peptides named phyto-chelatins, participate in excess metal storage and detoxification. Low molecular weight organic molecules, mainly organic acids and amino acids and their derivatives, also play an important role in plant metal homeostasis. When these systems are overloaded, oxidative stress defense mechanisms are activated. Molecular and cellular knowledge of these processes will be necessary to improve plant metal resistance. Occurrence of naturally tolerant plants which hyper accumulate metals provides helpful tools for this research. (authors) 130 refs.

  7. Identification and characterization of acidity-tolerant and aluminum ...

    African Journals Online (AJOL)

    An acidity-tolerant, aluminum resistant bacterium was isolated from tea soils in Kagoshima Experimental Station (Japan). Based on the morphological, physiological and biochemical characteristics and 16S rDNA nucleotide sequence analysis, the bacterium was identified as Bacillus sp. An 3 (DQ234657) in Bacillus cereus ...

  8. Thiamine plays a critical role in the acid tolerance of Listeria monocytogenes.

    Science.gov (United States)

    Madeo, Moira; O'Riordan, Niamh; Fuchs, Thilo M; Utratna, Marta; Karatzas, Kimon Andreas G; O'Byrne, Conor P

    2012-01-01

    Understanding the molecular basis of acid tolerance in the food-borne pathogen Listeria monocytogenes is important as this property contributes to survival in the food-chain and enhances survival within infected hosts. The aim of this study was to identify genes contributing to acid tolerance in L. monocytogenes using transposon mutagenesis and subsequently to elucidate the physiological role of these genes in acid tolerance. One mutant harboring a Tn917 insertion in the thiT gene (formerly lmo1429), which encodes a thiamine (vitamin B1) uptake system, was found to be highly sensitive to acid. The acid-sensitive phenotype associated with loss of this gene was confirmed with an independently isolated mutant, from which the thiT gene was deleted (∆thiT). Cells of both wild-type and ∆thiT mutant that were thiamine depleted were found to be significantly more acid sensitive than control cultures. Thiamine-depleted cultures failed to produce significant concentrations of acetoin, consistent with the known thiamine dependence of acetolactate synthase, an enzyme required for acetoin synthesis from pyruvate. As acetoin synthesis is a proton-consuming process, we suggest that the acid sensitivity observed in thiamine-depleted cultures may be owing to an inability to produce acetoin. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  9. Aluminum-Tolerant Pisolithus Ectomycorrhizas Confer Increased Growth, Mineral Nutrition, and Metal Tolerance to Eucalyptus in Acidic Mine Spoil

    Directory of Open Access Journals (Sweden)

    Louise Egerton-Warburton

    2015-01-01

    Full Text Available Ectomycorrhizal fungi (ECM may increase the tolerance of their host plants to Al toxicity by immobilizing Al in fungal tissues and/or improving plant mineral nutrition. Although these benefits have been demonstrated in in vitro (pure culture or short-term nutrient solution (hydroponic experiments, fewer studies have examined these benefits in the field. This study examined the growth, mineral nutrition, and Al levels in two Eucalyptus species inoculated with three Pisolithus ecotypes that varied in Al tolerance (in vitro and grown in mine spoil in the greenhouse and field. All three ecotypes of Pisolithus improved Eucalyptus growth and increased host plant tolerance to Al in comparison to noninoculated plants. However, large variations in plant growth and mineral nutrition were detected among the Pisolithus-inoculated plants; these differences were largely explained by the functional properties of the Pisolithus inoculum. Seedlings inoculated with the most Al-tolerant Pisolithus inoculum showed significantly higher levels of N, P, Ca, Mg, and K and lower levels of Al than seedlings inoculated with Al-sensitive ecotypes of Pisolithus. These findings indicate an agreement between the fungal tolerance to Al in vitro and performance in symbiosis, indicating that both ECM-mediated mineral nutrient acquisition and Al accumulation are important in increasing the host plant Al tolerance.

  10. Acid resistance, bile tolerance and antimicrobial properties of ...

    African Journals Online (AJOL)

    Maari is a fermented food condiment obtained by spontaneous fermentation of seeds from the baobab tree (Adansonia digitata). Nine dominant lactic acid bacteria (LAB) strains, isolated from traditional maari fermentation were examined for their resistance to pH 2.5, their tolerance to 0.3% bile and their antimicrobial ...

  11. A novel approach for rapidly and cost-effectively assessing toxicity of toxic metals in acidic water using an acidophilic iron-oxidizing biosensor.

    Science.gov (United States)

    Yang, Shih-Hung; Cheng, Kuo-Chih; Liao, Vivian Hsiu-Chuan

    2017-11-01

    Contamination by heavy metals and metalloids is a serious environmental and health concern. Acidic wastewaters are often associated with toxic metals which may enter and spread into agricultural soils. Several biological assays have been developed to detect toxic metals; however, most of them can only detect toxic metals in a neutral pH, not in an acidic environment. In this study, an acidophilic iron-oxidizing bacterium (IOB) Strain Y10 was isolated, characterized, and used to detect toxic metals toxicity in acidic water at pH 2.5. The colorimetric acidophilic IOB biosensor was based on the inhibition of the iron oxidizing ability of Strain Y10, an acidophilic iron-oxidizing bacterium, by metals toxicity. Our results showed that Strain Y10 is acidophilic iron-oxidizing bacterium. Thiobacillus caldus medium (TCM) (pH 2.5) supplied with both S 4 O 6 2- and glucose was the optimum growth medium for Strain Y10. The optimum temperature and pH for the growth of Strain Y10 was 45 °C and pH 2.5, respectively. Our study demonstrates that the color-based acidophilic IOB biosensor can be semi-quantitatively observed by eye or quantitatively measured by spectrometer to detect toxicity from multiple toxic metals at pH 2.5 within 45 min. Our study shows that monitoring toxic metals in acidic water is possible by using the acidophilic IOB biosensor. Our study thus provides a novel approach for rapid and cost-effective detection of toxic metals in acidic conditions that can otherwise compromise current methods of chemical analysis. This method also allows for increased efficiency when screening large numbers of environmental samples. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Effect of water hardness on peracetic acid toxicity to zebrafish, Danio rerio, embryos

    DEFF Research Database (Denmark)

    Marchand, Pierre_André; Strauss, David L.; Wienke, Andreas

    2013-01-01

    The use of peracetic acid (PAA) in aquaculture has been suggested as an alternative therapeutic agent. Few data are available concerning fish toxicity by PAA or factors that modify this toxicity. The aim of this study was to investigate the influence of water hardness on the acute toxicity of PAA...... acidic in low hardness. In conclusion, aquaculturists using PAA should pay attention to water hardness to avoid acidosis...

  13. Macroinvertebrate response to acid mine drainage: community metrics and on-line behavioural toxicity bioassay

    International Nuclear Information System (INIS)

    Gerhardt, A.; Janssens de Bisthoven, L.; Soares, A.M.V.M.

    2004-01-01

    The hypothesis is tested that toxicity of acid mine drainage can be detected by a selection of existing macroinvertebrate community and bioindicator metrices supplemented by toxicity tests with the local mosquitofish Gambusia holbrooki Girard and the shrimp Atyaephyra desmaresti Millet. The behavioural responses of A. desmaresti to acid mine drainage were recorded in the Multispecies Freshwater Biomonitor[reg], based on behaviour and survival as parameters. Bioassessment methods were based on community diversity, structure, function, and bioindicators and supplemented by chemical analysis (temperature, pH, metals). The Biological Monitoring Working Party adapted for the Iberian Peninsula, the number of predators (Coleoptera, Hemiptera) and the number of Ephemeroptera and Trichoptera taxa differentiated the sites well. The on-line toxicity test revealed pH-dependent acute toxicity of the acid mine drainage for the shrimp (LC 50 -48 h: pH-AMD=5.8) and a pH- dependent decrease in locomotory activity with the lowest-observed-response-times (LORTs) within 5 h of exposure. Shrimp were more sensitive to acid mine drainage than fish (LC 50 -48 h: pH-AMD=4.9). A new multimetric index combining toxicity testing and bioassessment methods is proposed. - Toxicity of acid mine drainage was evaluated by macroinvertebrate bioassessment and a new on-line rapid behavioural toxicity test with Atyaephyra desmaresti (Crustacea)

  14. Macroinvertebrate response to acid mine drainage: community metrics and on-line behavioural toxicity bioassay

    Energy Technology Data Exchange (ETDEWEB)

    Gerhardt, A.; Janssens de Bisthoven, L.; Soares, A.M.V.M

    2004-07-01

    The hypothesis is tested that toxicity of acid mine drainage can be detected by a selection of existing macroinvertebrate community and bioindicator metrices supplemented by toxicity tests with the local mosquitofish Gambusia holbrooki Girard and the shrimp Atyaephyra desmaresti Millet. The behavioural responses of A. desmaresti to acid mine drainage were recorded in the Multispecies Freshwater Biomonitor[reg], based on behaviour and survival as parameters. Bioassessment methods were based on community diversity, structure, function, and bioindicators and supplemented by chemical analysis (temperature, pH, metals). The Biological Monitoring Working Party adapted for the Iberian Peninsula, the number of predators (Coleoptera, Hemiptera) and the number of Ephemeroptera and Trichoptera taxa differentiated the sites well. The on-line toxicity test revealed pH-dependent acute toxicity of the acid mine drainage for the shrimp (LC{sub 50}-48 h: pH-AMD=5.8) and a pH- dependent decrease in locomotory activity with the lowest-observed-response-times (LORTs) within 5 h of exposure. Shrimp were more sensitive to acid mine drainage than fish (LC{sub 50}-48 h: pH-AMD=4.9). A new multimetric index combining toxicity testing and bioassessment methods is proposed. - Toxicity of acid mine drainage was evaluated by macroinvertebrate bioassessment and a new on-line rapid behavioural toxicity test with Atyaephyra desmaresti (Crustacea)

  15. Improved acid tolerance of Lactobacillus pentosus by error-prone whole genome amplification.

    Science.gov (United States)

    Ye, Lidan; Zhao, Hua; Li, Zhi; Wu, Jin Chuan

    2013-05-01

    Acid tolerance of Lactobacillus pentosus ATCC 8041 was improved by error-prone amplification of its genomic DNA using random primers and Taq DNA polymerase. The resulting amplification products were transferred into wild-type L. pentosus by electroporation and the transformants were screened for growth on low-pH agar plates. After only one round of mutation, one mutant (MT3) was identified that was able to completely consume 20 g/L of glucose to produce lactic acid at a yield of 95% in 1L MRS medium at pH 3.8 within 36 h, whereas no growth or lactic acid production was observed for the wild-type strain under the same conditions. The acid tolerance of mutant MT3 remained genetically stable for at least 25 subcultures. Therefore, the error-prone whole genome amplification technique is a very powerful tool for improving phenotypes of this lactic acid bacterium and may also be applicable for other microorganisms. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Alleviation of cadmium toxicity in Lemna minor by exogenous salicylic acid.

    Science.gov (United States)

    Lu, Qianqian; Zhang, Tingting; Zhang, Wei; Su, Chunlei; Yang, Yaru; Hu, Dan; Xu, Qinsong

    2018-01-01

    Cadmium (Cd) is a significant environmental pollutant in the aquatic environment. Salicylic acid (SA) is a ubiquitous phenolic compound. The goal of this study was to assess the morphological, physiological and biochemical changes in duckweed (L. minor) upon exposure to 10μM CdCl 2 , 10μM CdCl 2 plus 50μM SA, or 50μM SA for 7 days. Reversing the effects of Cd, SA decreased Cd accumulation in plants, improved accumulation of minerals (Ca, Mg, Fe, B, Mo) absorption, increased endogenous SA concentration, and phenylalanine ammonialyase (PAL) activity. Chlorosis-associated symptoms, the reduction in chlorophyll content, and the overproduction of reactive oxygen species induced by Cd exposure were largely reversed by SA. SA significantly decreased the toxic effects of Cd on the activities of the superoxide dismutase, peroxidase, catalase, ascorbate peroxidase, and glutathione reductase in the fronds of L. minor. Furthermore, SA reversed the detrimental effects of Cd on total ascorbate, glutathione, the ascorbic acid/oxidized dehydroascorbate and glutathione/glutathione disulphide ratios, lipid peroxidation, malondialdehyde concentration, lipoxygenase activity, and the accumulation of proline. SA induced the up-regulation of heat shock proteins (Hsp70) and attenuated the adverse effects of Cd on cell viability. These results suggest that SA confers tolerance to Cd stress in L. minor through different mechanisms. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Molecular Mechanisms of Ursodeoxycholic Acid Toxicity & Side Effects: Ursodeoxycholic Acid Freezes Regeneration & Induces Hibernation Mode

    Science.gov (United States)

    Kotb, Magd A.

    2012-01-01

    Ursodeoxycholic acid (UDCA) is a steroid bile acid approved for primary biliary cirrhosis (PBC). UDCA is reported to have “hepato-protective properties”. Yet, UDCA has “unanticipated” toxicity, pronounced by more than double number of deaths, and eligibility for liver transplantation compared to the control group in 28 mg/kg/day in primary sclerosing cholangitis, necessitating trial halt in North America. UDCA is associated with increase in hepatocellular carcinoma in PBC especially when it fails to achieve biochemical response (10 and 15 years incidence of 9% and 20% respectively). “Unanticipated” UDCA toxicity includes hepatitis, pruritus, cholangitis, ascites, vanishing bile duct syndrome, liver cell failure, death, severe watery diarrhea, pneumonia, dysuria, immune-suppression, mutagenic effects and withdrawal syndrome upon sudden halt. UDCA inhibits DNA repair, co-enzyme A, cyclic AMP, p53, phagocytosis, and inhibits induction of nitric oxide synthatase. It is genotoxic, exerts aneugenic activity, and arrests apoptosis even after cellular phosphatidylserine externalization. UDCA toxicity is related to its interference with drug detoxification, being hydrophilic and anti-apoptotic, has a long half-life, has transcriptional mutational abilities, down-regulates cellular functions, has a very narrow difference between the recommended (13 mg/kg/day) and toxic dose (28 mg/kg/day), and it typically transforms into lithocholic acid that induces DNA strand breakage, it is uniquely co-mutagenic, and promotes cell transformation. UDCA beyond PBC is unjustified. PMID:22942741

  18. Molecular Mechanisms of Ursodeoxycholic Acid Toxicity & Side Effects: Ursodeoxycholic Acid Freezes Regeneration & Induces Hibernation Mode

    Directory of Open Access Journals (Sweden)

    Magd A. Kotb

    2012-07-01

    Full Text Available Ursodeoxycholic acid (UDCA is a steroid bile acid approved for primary biliary cirrhosis (PBC. UDCA is reported to have “hepato-protective properties”. Yet, UDCA has “unanticipated” toxicity, pronounced by more than double number of deaths, and eligibility for liver transplantation compared to the control group in 28 mg/kg/day in primary sclerosing cholangitis, necessitating trial halt in North America. UDCA is associated with increase in hepatocellular carcinoma in PBC especially when it fails to achieve biochemical response (10 and 15 years incidence of 9% and 20% respectively. “Unanticipated” UDCA toxicity includes hepatitis, pruritus, cholangitis, ascites, vanishing bile duct syndrome, liver cell failure, death, severe watery diarrhea, pneumonia, dysuria, immune-suppression, mutagenic effects and withdrawal syndrome upon sudden halt. UDCA inhibits DNA repair, co-enzyme A, cyclic AMP, p53, phagocytosis, and inhibits induction of nitric oxide synthatase. It is genotoxic, exerts aneugenic activity, and arrests apoptosis even after cellular phosphatidylserine externalization. UDCA toxicity is related to its interference with drug detoxification, being hydrophilic and anti-apoptotic, has a long half-life, has transcriptional mutational abilities, down-regulates cellular functions, has a very narrow difference between the recommended (13 mg/kg/day and toxic dose (28 mg/kg/day, and it typically transforms into lithocholic acid that induces DNA strand breakage, it is uniquely co-mutagenic, and promotes cell transformation. UDCA beyond PBC is unjustified.

  19. Toxicity of penicillic acid for rat alveolar macrophages in vitro

    International Nuclear Information System (INIS)

    Sorenson, W.G.; Simpson, J.

    1985-01-01

    Penicillic acid (PA) is a polyketide mycotoxin produced by several species of Aspergillus and Penicillium. This mycotoxin is toxic in experimental animals and has also been reported to be carcinogenic. The cytotoxicity of penicillic acid was studied in rat albeolar macrophages (AM) in vitro. The effects of penicillic acid on membrane integrity were studied by measuring cell volume changes and 51 Cr release. There was a significant decrease in adenosine triphosphate (ATP) in cell cultures exposed to 1.0 mM penicillic acid for 4 hr. Inhibition of the incorporation of [ 3 H]leucine into protein was both dose- and time-dependent and protein synthesis was inhibited significantly after 2 hr exposure to ≥0.1 mM penicillic acid. RNA synthesis was inhibited to a lesser extent than protein synthesis. There was significant inhibition of phagocytosis after 2 hr exposure at ≥0.3 mM penicillic acid and the ED 50 for phagocytosis was 0.09 mM. Thus phagocytosis was more sensitive to the toxic effects of penicillic acid than any other cellular process studied. The data suggest the possibility of a respiratory hazard to agricultural workers exposed to contaminated grain

  20. Membrane engineering via trans unsaturated fatty acids production improves Escherichia coli robustness and production of biorenewables.

    Science.gov (United States)

    Tan, Zaigao; Yoon, Jong Moon; Nielsen, David R; Shanks, Jacqueline V; Jarboe, Laura R

    2016-05-01

    Constructing microbial biocatalysts that produce biorenewables at economically viable yields and titers is often hampered by product toxicity. For production of short chain fatty acids, membrane damage is considered the primary mechanism of toxicity, particularly in regards to membrane integrity. Previous engineering efforts in Escherichia coli to increase membrane integrity, with the goal of increasing fatty acid tolerance and production, have had mixed results. Herein, a novel approach was used to reconstruct the E. coli membrane by enabling production of a novel membrane component. Specifically, trans unsaturated fatty acids (TUFA) were produced and incorporated into the membrane of E. coli MG1655 by expression of cis-trans isomerase (Cti) from Pseudomonas aeruginosa. While the engineered strain was found to have no increase in membrane integrity, a significant decrease in membrane fluidity was observed, meaning that membrane polarization and rigidity were increased by TUFA incorporation. As a result, tolerance to exogenously added octanoic acid and production of octanoic acid were both increased relative to the wild-type strain. This membrane engineering strategy to improve octanoic acid tolerance was found to require fine-tuning of TUFA abundance. Besides improving tolerance and production of carboxylic acids, TUFA production also enabled increased tolerance in E. coli to other bio-products, e.g. alcohols, organic acids, aromatic compounds, a variety of adverse industrial conditions, e.g. low pH, high temperature, and also elevated styrene production, another versatile bio-chemical product. TUFA permitted enhanced growth due to alleviation of bio-product toxicity, demonstrating the general effectiveness of this membrane engineering strategy towards improving strain robustness. Copyright © 2016 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  1. Safety and tolerability of prolonged-release nicotinic acid in statin-treated patients

    NARCIS (Netherlands)

    Birjmohun, R. S.; Kastelein, J. J. P.; Poldermans, D.; Stroes, E. S. G.; Hostalek, U.; Assmann, G.

    2007-01-01

    Objective: To evaluate the safety and tolerability of prolonged -release nicotinic acid (Niaspan*) added to statin therapy in patients at increased cardiovascular risk. Methods: This was a 6-month, prospective, observational, multicentre, open-label evaluation of prolonged-release nicotinic acid

  2. Natural variation underlies alterations in NRAT1 expression and function that play a key role in rice aluminum tolerance

    Science.gov (United States)

    Aluminum (Al) toxicity is a major constraint for crop production on acid soils which comprise approximately 40% of arable land in the tropics and subtropics. Rice is the most Al tolerant cereal crop, and offers a good model for identifying Al tolerance genes and mechanisms. Here we investigated natu...

  3. Evaluating Genetic Variability of Sorghum Mutant Lines Tolerant to Acid Soil

    International Nuclear Information System (INIS)

    Puspitasari, W.; Human, S.; Wirnas, D.; Trikoesoemaningtyas

    2012-01-01

    High rainfall in some parts in Indonesia causes soil become acidic. The main constraint of acid soil is phosphor (P) deficiency and aluminum (Al) toxicity which decrease plant productivity. To overcome this problem, it is important to develop a crop variety tolerant to such conditions. Sorghum is probably one of the potential crops to meet that objective. Sorghum has been reported to have wide adaptability to various agro-ecology and can be used as food and animal feed. Unfortunately, sorghum is not Indonesian origin so its genetic variability is still low. From previous breeding works with induced mutation, some promising mutant lines have been developed. These mutant lines were included in the experiment carried out in Tenjo with soil condition was classified as acid soil with pH 4.8 and exchangeable-Al content 2.43 me/100 g. The objectives of this experiment were to study the magnitude of genetic variability of agronomy and grain quality characters in sorghum in order to facilitate the breeding improvement of the species. Plant materials used in this study were ten genotypes, including 6 mutant lines and 4 control varieties. The randomized block design with three replications was used in the experiment. The genetic variabilities of agronomic and grain quality characters existed among genotypes, such as plant height, number of leaves, stalk diameter, biomass weight, panicle length, grain yield per plant, 100 seed weight and tannin content in the grain. The broad sense heritabilities of agronomic characters were estimated ranging from medium to high. Grain yield showed significantly positive correlation with agronomic characters observed, but it was negatively correlated with protein content (author)

  4. Synthesis and role of salicylic acid in wheat varieties with different levels of cadmium tolerance

    Energy Technology Data Exchange (ETDEWEB)

    Kovács, Viktória; Gondor, Orsolya K.; Szalai, Gabriella; Darkó, Éva; Majláth, Imre; Janda, Tibor; Pál, Magda, E-mail: pal.magda@agrar.mta.hu

    2014-09-15

    Highlights: • Cd induces the salicylic acid metabolism in wheat. • Salicylic acid is synthesized via benzoic acid and/or ortho-hydroxy-cinnamic acid. • Cd tolerance can be explained by the highly induced glutathione metabolism. • Salicylic acid signalling is correlated with glutathione-related mechanisms. - Abstract: Wheat genotypes with different endogenous SA contents were investigated, in order to reveal how cadmium influences salicylic acid (SA) synthesis, and to find possible relationships between SA and certain protective compounds (members of the antioxidants and the heavy metal detoxification system) and between the SA content and the level of cadmium tolerance. Cadmium exposure induced SA synthesis, especially in the leaves, and it is suggested that the phenyl-propanoid synthesis pathway is responsible for the accumulation of SA observed after cadmium stress. Cadmium influenced the synthesis and activation of protective compounds to varying extents in wheat genotypes with different levels of tolerance; the roots and leaves also responded differently to cadmium stress. Although a direct relationship was not found between the initial SA levels and the degree of cadmium tolerance, the results suggest that the increase in the root SA level during cadmium stress in the Mv varieties could be related with the enhancement of the internal glutathione cycle, thus inducing the antioxidant and metal detoxification systems, which promote Cd stress tolerance in wheat seedlings. The positive correlation between certain SA-related compounds and protective compounds suggests that SA-related signalling may also play a role in the acclimation to heavy metal stress.

  5. Synthesis and role of salicylic acid in wheat varieties with different levels of cadmium tolerance

    International Nuclear Information System (INIS)

    Kovács, Viktória; Gondor, Orsolya K.; Szalai, Gabriella; Darkó, Éva; Majláth, Imre; Janda, Tibor; Pál, Magda

    2014-01-01

    Highlights: • Cd induces the salicylic acid metabolism in wheat. • Salicylic acid is synthesized via benzoic acid and/or ortho-hydroxy-cinnamic acid. • Cd tolerance can be explained by the highly induced glutathione metabolism. • Salicylic acid signalling is correlated with glutathione-related mechanisms. - Abstract: Wheat genotypes with different endogenous SA contents were investigated, in order to reveal how cadmium influences salicylic acid (SA) synthesis, and to find possible relationships between SA and certain protective compounds (members of the antioxidants and the heavy metal detoxification system) and between the SA content and the level of cadmium tolerance. Cadmium exposure induced SA synthesis, especially in the leaves, and it is suggested that the phenyl-propanoid synthesis pathway is responsible for the accumulation of SA observed after cadmium stress. Cadmium influenced the synthesis and activation of protective compounds to varying extents in wheat genotypes with different levels of tolerance; the roots and leaves also responded differently to cadmium stress. Although a direct relationship was not found between the initial SA levels and the degree of cadmium tolerance, the results suggest that the increase in the root SA level during cadmium stress in the Mv varieties could be related with the enhancement of the internal glutathione cycle, thus inducing the antioxidant and metal detoxification systems, which promote Cd stress tolerance in wheat seedlings. The positive correlation between certain SA-related compounds and protective compounds suggests that SA-related signalling may also play a role in the acclimation to heavy metal stress

  6. Copper tolerance of brown-rot fungi : time course of oxalic acid production

    Science.gov (United States)

    Frederick Green; Carol A. Clausen

    2003-01-01

    The increase in the use of non-arsenical copper-based wood preservatives in response to environmental concerns has been accompanied by interest in copper-tolerant decay fungi. Oxalic acid production by brown-rot fungi has been proposed as one mechanism of copper tolerance. Fifteen brown-rot fungi representing the genera Postia, Wolfiporia, Meruliporia, Gloeophyllum,...

  7. Involvement of Antioxidative Defense System in Rice Seedlings Exposed to Aluminum Toxicity and Phosphorus Deficiency

    Directory of Open Access Journals (Sweden)

    Tian-rong GUO

    2012-09-01

    Full Text Available Plants growing in acid soils may suffer both phosphorus (P deficiency and aluminum (Al toxicity. Hydroponic experiments were undertaken to assess the single and combination effects of Al toxicity and low P stress on seedling growth, chlorophyll and proline contents, antioxidative response and lipid peroxidation of two rice genotypes (Yongyou 8 and Xiushui 132 differing in Al tolerance. Al toxicity and P deficiency both inhibited rice seedling growth. The development of toxic symptoms was characterized by reduced chlorophyll content, increased proline and malondialdehyde contents in both roots and leaves, and increased peroxidase and superoxide dismutase activities in roots, but decreased in leaves. The stress condition induced more severe growth inhibition and oxidative stress in Yongyou 8, and Xiushui 132 showed higher tolerance to both Al toxicity and P deficiency. P deficiency aggravated Al toxicity to plant growth and induced more severe lipid peroxidation.

  8. Evidences of safety and tolerability of the zoledronic acid 5 mg yearly in the post-menopausal osteoporosis: the HORIZON project

    Directory of Open Access Journals (Sweden)

    F. Bertoldo

    2011-06-01

    Full Text Available Bisphosphonates are the most commonly prescribed medications for the treatment of osteoporosis. Despite evidence supporting the anti-fracture efficacy of aminobisphosphonates approximately 50% of patients do not follow their prescribed treatment regimen and/or discontinue treatment within the first year. Poor compliance is associated with negative outcomes, including increased fracture risk. Tolerability and safety are among the causes of poor compliance. Intravenous bisphosphonates avoids the gastrointestinal intolerance and the complex dosing instruction of the oral route ensuring full compliance which may provide improved efficacy. However, there are some concerns regarding potent intravenous bisphosphonates as zoledronic acid with respect to tolerability, mainly the acute phase response and to safety, mainly a theoretical risk of over suppression of bone turnover, renal toxicity and osteonecrosis of the jaw. In the HORIZON study, 152 patients on active treatment (82 or placebo (70 underwent to a bone biopsy after double tetracycline labeling. Bone biopsies (iliac crest were obtained at the final visit at month 36, 1 year after the last infusion. The biopsies were analyzed by histomorphometry on bone sections and by micro-CT (μCT analysis. 143 biopsies (76 zoledronic acid, 67 placebo had at least one μCT parameter measured and 111 were available for quantitative histomorphometry (59 zoledronic acid, 52 placebo. Micro-CT analysis of bone structure revealed higher trabecular bone volume (BV/TV, decreased trabecular separation (Tb.Sp, and a strong trend towards improvement in connectivity density in biopsies obtained from patients treated with zoledronic acid, indicating preservation of trabecular bone structure with respect to placebo. Histomorphometric analysis obtained from patients treated with zoledronic acid exhibited reduction of bone turnover, as suggested by decreased activation frequency (Ac.F by 63%, mineralizing surface (MS

  9. Is Boric Acid Toxic to Reproduction in Humans? Assessment of the Animal Reproductive Toxicity Data and Epidemiological Study Results.

    Science.gov (United States)

    Duydu, Yalçın; Başaran, Nurşen; Ustündağ, Aylin; Aydın, Sevtap; Undeğer, Ulkü; Ataman, Osman Yavuz; Aydos, Kaan; Düker, Yalçın; Ickstadt, Katja; Waltrup, Brita Schulze; Golka, Klaus; Bolt, Hermann Maximilian

    2016-01-01

    Boric acid and sodium borates are classified as toxic to reproduction in the CLP Regulation under "Category 1B" with the hazard statement of "H360FD". This classification is based on the reprotoxic effects of boric acid and sodium borates in animal experiments at high doses. However, boron mediated reprotoxic effects have not been proven in epidemiological studies so far. The epidemiological study performed in Bandırma boric acid production plant is the most comprehensive published study in this field with 204 voluntarily participated male workers. Sperm quality parameters (sperm morphology, concentration and motility parameters), FSH, LH and testosterone levels were determined in all participated employees as the reproductive toxicity biomarkers of males. However, boron mediated unfavorable effects on reproduction in male workers have not been determined even in the workers under very high daily boron exposure (0.21 mg B/kg-bw/day) conditions. The NOAEL for rat reproductive toxicity is equivalent to a blood boron level of 2020 ng/g. This level is higher than the mean blood boron concentration (223.89 ± 69.49 ng/g) of the high exposure group workers in Bandırma boric acid production plant (Turkey) by a factor of 9. Accordingly, classifying boric acid and sodium borates under "Category 1B" as "presumed reproductive human toxicant in the CLP regulation seems scientifically not reasonable. The results of the epidemiological studies (including the study performed in China) support for a down-classification of boric acid from the category 1B, H360FD to category 2, H361d, (suspected of damaging the unborn child).

  10. Mechanisms of waterlogging tolerance in wheat - a review of root and shoot physiology

    DEFF Research Database (Denmark)

    Herzog, Max; Striker, Gustavo G; Colmer, Timothy D

    2016-01-01

    :shoot ratio. Genotypes differ in seminal root anoxia tolerance, but mechanisms remain to be established; ethanol production rates do not explain anoxia tolerance. Root tip survival is short-term, and thereafter, seminal root re-growth upon re-aeration is limited. Genotypes differ in adventitious root numbers....... Although photosynthesis declines, sugars typically accumulate in shoots of waterlogged plants. Mn or Fe toxicity might occur in shoots of wheat on strongly acidic soils, but probably not more widely. Future breeding for waterlogging tolerance should focus on root internal aeration and better N...

  11. Trienoic fatty acids and plant tolerance of temperature

    Directory of Open Access Journals (Sweden)

    Routaboul Jean-Marc

    2002-01-01

    Full Text Available The biophysical reactions of light harvesting and electron transport during photosynthesis take place in a uniquely constructed bilayer, the thylakoid. In all photosynthetic eukaryotes, the complement of atypical glycerolipid molecules that form the foundation of this membrane are characterised by sugar head-groups and a very high level of unsaturation in the fatty acids that occupy the central portion of the thylakoid bilayer. alpha-linolenic (18:3 or a combination of 18:3 and hexadecatrienoic (16:3 acids typically account for approximately two-thirds of all thylakoid membrane fatty acids and over 90% of the fatty acids of monogalactosyl diacylglycerol, the major thylakoid lipid [1, 2]. The occurrence of trienoic fatty acids as a major component of the thylakoid membrane is especially remarkable since these fatty acids form highly reactive targets for active oxygen species and free radicals, which are often the by-products of oxygenic photosynthesis. Photosynthesis is one of the most temperature-sensitive functions of plant [3, 4]. There remains a widespread belief that these trienoic fatty acids might have some crucial role in plants to be of such universal occurrence, especially in photosynthesis tolerance of temperature [5].

  12. Cadmium toxicity induced contrasting patterns of concentrations of free sarcosine, specific amino acids and selected microelements in two Noccaea species.

    Science.gov (United States)

    Zemanová, Veronika; Pavlík, Milan; Pavlíková, Daniela

    2017-01-01

    Cadmium (Cd) toxicity affects numerous metabolic processes in plants. In the presence of Cd, plants accumulate specific amino acids which may be beneficial to developing Cd tolerance. Our study aimed to characterize the changes in the metabolism of selected free amino acids that are associated with Cd tolerance, and investigate the levels of selected microelements in order to relate these changes to the adaptation strategies of two metallophytes-Noccaea caerulescens (Redlschlag, Austria) and Noccaea praecox (Mežica, Slovenia). The plants were exposed to Cd contamination (90 mg Cd/kg soil) for 120 days in a pot experiment. Our results showed higher Cd accumulation in N. praecox compared to N. caerulescens. Cadmium contamination reduced the zinc and nickel levels in both species and a mixed effect was determined for copper and manganese content. Differences in free amino acid metabolism were observed between the two metallophytes growing under Cd-free and Cd-loaded conditions. Under Cd-free conditions, aromatic amino acids (phenylalanine, tryptophan and tyrosine) and branched-chain amino acids (leucine, isoleucine and valine) were accumulated more in the leaves of N. praecox than in N. caerulescens. Cd stress increased the content of these amino acids in both species but this increase was significant only in N. caerulescens leaves. Marked differences in the responses of the two species to Cd stress were shown for alanine, phenylalanine, threonine and sarcosine. Cadmium contamination also induced an increase of threonine as alanine and sarcosine decrease, which was larger in N. caerulescens than in N. praecox. All these factors contribute to the higher adaptation of N. praecox to Cd stress.

  13. Assessment of melamine and cyanuric acid toxicity in cats.

    Science.gov (United States)

    Puschner, Birgit; Poppenga, Robert H; Lowenstine, Linda J; Filigenzi, Michael S; Pesavento, Patricia A

    2007-11-01

    The major pet food recall associated with acute renal failure in dogs and cats focused initially on melamine as the suspect toxicant. In the course of the investigation, cyanuric acid was identified in addition to melamine in the offending food. The purpose of this study was to characterize the toxicity potential of melamine, cyanuric acid, and a combination of melamine and cyanuric acid in cats. In this pilot study, melamine was added to the diet of 2 cats at 0.5% and 1%, respectively. Cyanuric acid was added to the diet of 1 cat at increasing doses of 0.2%, 0.5%, and 1% over the course of 10 days. Melamine and cyanuric acid were administered together at 0%, 0.2%, 0.5%, and 1% to 1 cat per dose group. No effect on renal function was observed in cats fed with melamine or cyanuric acid alone. Cats dosed with a combination were euthanized at 48 hours after dosing because of acute renal failure. Urine and touch impressions of kidneys from all cats dosed with the combination revealed the presence of fan-shaped, birefringent crystals. Histopathologic findings were limited to the kidneys and included crystals primarily within tubules of the distal nephron, severe renal interstitial edema, and hemorrhage at the corticomedullary junction. The kidneys contained estimated melamine concentrations of 496 to 734 mg/kg wet weight and estimated cyanuric acid concentrations of 487 to 690 mg/kg wet weight. The results demonstrate that the combination of melamine and cyanuric acid is responsible for acute renal failure in cats.

  14. The role of retinoic acid in tolerance and immunity.

    Science.gov (United States)

    Hall, Jason A; Grainger, John R; Spencer, Sean P; Belkaid, Yasmine

    2011-07-22

    Vitamin A elicits a broad array of immune responses through its metabolite, retinoic acid (RA). Recent evidence indicates that loss of RA leads to impaired immunity, whereas excess RA can potentially promote inflammatory disorders. In this review, we discuss recent advances showcasing the crucial contributions of RA to both immunological tolerance and the elicitation of adaptive immune responses. Further, we provide a comprehensive overview of the cell types and factors that control the production of RA and discuss how host perturbations may affect the ability of this metabolite to control tolerance and immunity or to instigate pathology. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Metabolic pathways regulated by abscisic acid, salicylic acid and γ-aminobutyric acid in association with improved drought tolerance in creeping bentgrass (Agrostis stolonifera).

    Science.gov (United States)

    Li, Zhou; Yu, Jingjin; Peng, Yan; Huang, Bingru

    2017-01-01

    Abscisic acid (ABA), salicylic acid (SA) and γ-aminobutyric acid (GABA) are known to play roles in regulating plant stress responses. This study was conducted to determine metabolites and associated pathways regulated by ABA, SA and GABA that could contribute to drought tolerance in creeping bentgrass (Agrostis stolonifera). Plants were foliar sprayed with ABA (5 μM), GABA (0.5 mM) and SA (10 μM) or water (untreated control) prior to 25 days drought stress in controlled growth chambers. Application of ABA, GABA or SA had similar positive effects on alleviating drought damages, as manifested by the maintenance of lower electrolyte leakage and greater relative water content in leaves of treated plants relative to the untreated control. Metabolic profiling showed that ABA, GABA and SA induced differential metabolic changes under drought stress. ABA mainly promoted the accumulation of organic acids associated with tricarboxylic acid cycle (aconitic acid, succinic acid, lactic acid and malic acid). SA strongly stimulated the accumulation of amino acids (proline, serine, threonine and alanine) and carbohydrates (glucose, mannose, fructose and cellobiose). GABA enhanced the accumulation of amino acids (GABA, glycine, valine, proline, 5-oxoproline, serine, threonine, aspartic acid and glutamic acid) and organic acids (malic acid, lactic acid, gluconic acid, malonic acid and ribonic acid). The enhanced drought tolerance could be mainly due to the enhanced respiration metabolism by ABA, amino acids and carbohydrates involved in osmotic adjustment (OA) and energy metabolism by SA, and amino acid metabolism related to OA and stress-defense secondary metabolism by GABA. © 2016 Scandinavian Plant Physiology Society.

  16. Safety, tolerability, and cerebrospinal fluid penetration of ursodeoxycholic Acid in patients with amyotrophic lateral sclerosis.

    Science.gov (United States)

    Parry, Gareth J; Rodrigues, Cecilia M P; Aranha, Marcia M; Hilbert, Sarah J; Davey, Cynthia; Kelkar, Praful; Low, Walter C; Steer, Clifford J

    2010-01-01

    Amyotrophic lateral sclerosis is a progressive degenerative disease, which typically leads to death in 3 to 5 years. Neuronal cell death offers a potential target for therapeutic intervention. Ursodeoxycholic acid is a cytoprotective, endogenous bile acid that has been shown to be neuroprotective in experimental Huntington and Alzheimer diseases, retinal degeneration, and ischemic and hemorrhagic stroke. The objective of this research was to study the safety and the tolerability of ursodeoxycholic acid in amyotrophic lateral sclerosis and document effective and dose-dependent cerebrospinal fluid penetration. Eighteen patients were randomly assigned to receive ursodeoxycholic acid at doses of 15, 30, and 50 mg/kg of body weight per day. Serum and cerebrospinal fluid were obtained for analysis after 4 weeks of treatment. Treatment-emergent clinical and laboratory events were monitored weekly. Our data indicated that ursodeoxycholic acid is well tolerated by all subjects at all doses. We also showed that ursodeoxycholic acid is well absorbed after oral administration and crosses the blood-brain barrier in a dose-dependent manner. These results show excellent safety and tolerability of ursodeoxycholic acid. The drug penetrates the cerebrospinal fluid in a dose-dependent manner. A large, placebo-controlled clinical trial is needed to assess the efficacy of ursodeoxycholic acid in treating amyotrophic lateral sclerosis.

  17. Whey protein isolate improves acid and bile tolerances of Streptococcus thermophilus ST-M5 and Lactobacillus delbrueckii ssp. bulgaricus LB-12.

    Science.gov (United States)

    Vargas, Luis A; Olson, Douglas W; Aryana, Kayanush J

    2015-04-01

    Acid tolerance and bile tolerance are important probiotic characteristics. Whey proteins contain branched-chain amino acids, which play a role in muscle building and are popular among athletes. Increasing emphasis is being placed on diets containing less carbohydrate, less fat, and more protein. The effect of incremental additions of whey protein isolate (WPI) on probiotic characteristics of pure cultures is not known. The objective of this study was to determine the influence of added WPI on acid tolerance and bile tolerance of pure cultures of Streptococcus thermophilus ST-M5 and Lactobacillus bulgaricus LB-12. The WPI was used at 0 (control), 1, 2 and 3% (wt/vol). Assessment of acid tolerance was conducted on pure cultures at 30-min intervals for 2h of acid exposure and bile tolerance at 1-h intervals for 5h of bile exposure. Use of 1, 2, and 3% WPI improved acid tolerance of Strep. thermophilus ST-M5 and Lb. bulgaricus LB-12. The highest counts for acid tolerance of Strep. thermophilus ST-M5 and Lb. bulgaricus LB-12 were obtained when 3% WPI was used. Use of 2 and 3% WPI improved bile tolerance of Strep. thermophilus ST-M5 and Lb. bulgaricus LB-12 over 5h of bile exposure. The use of WPI is recommended to improve acid and bile tolerance of the yogurt culture bacteria Strep. thermophilus ST-M5 and Lb. bulgaricus LB-12. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  18. Macroinvertebrate response to acid mine drainage: community metrics and on-line behavioural toxicity bioassay

    Energy Technology Data Exchange (ETDEWEB)

    A. Gerhardt; L. Janssens de Bisthoven; A.M.V.M. Soares [University of Aveiro, Aveiro (Portugal). Department of Biology

    2004-07-01

    The hypothesis is tested that toxicity of acid mine drainage can be detected by a selection of existing macroinvertebrate community and bioindicator metrices supplemented by toxicity tests with the local mosquitofish Gambusia holbrooki Girard and the shrimp Atyaephyra desmaresti Millet. The behavioural responses of A. desmaresti to acid mine drainage were recorded in the Multispecies Freshwater Biomonitor{reg_sign}, based on behaviour and survival as parameters. Bioassessment methods were based on community diversity, structure, function, and bioindicators and supplemented by chemical analysis (temperature, pH, metals). The Biological Monitoring Working Party adapted for the Iberian Peninsula, the number of predators (Coleoptera, Hemiptera) and the number of Ephemeroptera and Trichoptera taxa differentiated the sites well. The on-line toxicity test revealed pH-dependent acute toxicity of the acid mine drainage for the shrimp (LC{sub 50}-48 h: pH-AMD=5.8) and a pH-dependent decrease in locomotory activity with the lowest-observed-response-times (LORTs) within 5 h of exposure. Shrimp were more sensitive to acid mine drainage than fish (LC{sub 50}-48 h: pH-AMD=4.9). A new multimetric index combining toxicity testing and bioassessment methods is proposed.

  19. 75 FR 40736 - Acetic Acid; Exemption from the Requirement of a Tolerance

    Science.gov (United States)

    2010-07-14

    ... an exemption from the requirement of a tolerance for residues of acetic acid, also known as vinegar... a maximum permissible level for residues of acetic acid, also known as vinegar. DATES: This... humans. It is also naturally produced during the fermentation process in a wide range of foods. In plants...

  20. Comparative environmental impacts of glyphosate and conventional herbicides when used with glyphosate-tolerant and non-tolerant crops

    International Nuclear Information System (INIS)

    Mamy, Laure; Gabrielle, Benoit; Barriuso, Enrique

    2010-01-01

    The introduction of glyphosate-tolerant (GT) crops is expected to mitigate the environmental contamination by herbicides because glyphosate is less persistent and toxic than the herbicides used on non-GT crops. Here, we compared the environmental balances of herbicide applications for both crop types in three French field trials. The dynamic of herbicides and their metabolites in soil, groundwater and air was simulated with PRZM model and compared to field measurements. The associated impacts were aggregated with toxicity potentials calculated with the fate and exposure model USES for several environmental endpoints. The impacts of GT systems were lower than those of non-GT systems, but the accumulation in soils of one glyphosate metabolite (aminomethylphosphonic acid) questions the sustainability of GT systems. The magnitude of the impacts depends on the rates and frequency of glyphosate application being highest for GT maize monoculture and lowest for combination of GT oilseed rape and non-GT sugarbeet crops. - The impacts of herbicide applications on glyphosate-tolerant crops could be higher than expected due to the accumulation of a metabolite of glyphosate in soils.

  1. Comparative environmental impacts of glyphosate and conventional herbicides when used with glyphosate-tolerant and non-tolerant crops

    Energy Technology Data Exchange (ETDEWEB)

    Mamy, Laure, E-mail: laure.mamy@versailles.inra.f [INRA-AgroParisTech, UMR 1091 Environnement et Grandes Cultures, 78850 Thiverval-Grignon (France); Gabrielle, Benoit, E-mail: benoit.gabrielle@agroparistech.f [INRA-AgroParisTech, UMR 1091 Environnement et Grandes Cultures, 78850 Thiverval-Grignon (France); Barriuso, Enrique, E-mail: barriuso@grignon.inra.f [INRA-AgroParisTech, UMR 1091 Environnement et Grandes Cultures, 78850 Thiverval-Grignon (France)

    2010-10-15

    The introduction of glyphosate-tolerant (GT) crops is expected to mitigate the environmental contamination by herbicides because glyphosate is less persistent and toxic than the herbicides used on non-GT crops. Here, we compared the environmental balances of herbicide applications for both crop types in three French field trials. The dynamic of herbicides and their metabolites in soil, groundwater and air was simulated with PRZM model and compared to field measurements. The associated impacts were aggregated with toxicity potentials calculated with the fate and exposure model USES for several environmental endpoints. The impacts of GT systems were lower than those of non-GT systems, but the accumulation in soils of one glyphosate metabolite (aminomethylphosphonic acid) questions the sustainability of GT systems. The magnitude of the impacts depends on the rates and frequency of glyphosate application being highest for GT maize monoculture and lowest for combination of GT oilseed rape and non-GT sugarbeet crops. - The impacts of herbicide applications on glyphosate-tolerant crops could be higher than expected due to the accumulation of a metabolite of glyphosate in soils.

  2. Toxicity of nickel and silver to Nostoc muscorum: interaction with ascorbic acid, glutathione, and sulfur-containing amino acids.

    Science.gov (United States)

    Rai, L C; Raizada, M

    1987-08-01

    Exposure of Nostoc muscorum to different concentrations of Ni and Ag brought about reduction in growth, carbon fixation, heterocyst production, and nitrogenase activity and increase in the loss of ions (K+, Na+). In an attempt to ameliorate the toxicity of test metals by ascorbic acid, glutathione, and sulfur-containing amino acids (L-cysteine and L-methionine), it was found that the level of protection by ascorbic acid and glutathione was more for Ag than Ni. However, metal-induced inhibition of growth and carbon fixation was equally ameliorated by methionine. But the level of protection by cysteine was quite different, i.e., 27% for Ni and 22% for Ag. Protection of metal toxicity in N. muscorum by amino acids lends further support to self-detoxifying ability of cyanobacteria because they are known to synthesize all essential amino acids.

  3. Removal of Arsenic Using Acid/Metal-Tolerant Sulfate Reducing Bacteria: A New Approach for Bioremediation of High-Arsenic Acid Mine Waters

    Directory of Open Access Journals (Sweden)

    Jennyfer Serrano

    2017-12-01

    Full Text Available Fluvial sediments, soils, and natural waters in northern Chile are characterized by high arsenic (As content. Mining operations in this area are potential sources of As and other metal contaminants, due to acid mine drainage (AMD generation. Sulfate Reducing Bacteria (SRB has been used for the treatment of AMD, as they allow for the reduction of sulfate, the generation of alkalinity, and the removal of dissolved heavy metals and metalloids by precipitation as insoluble metal sulfides. Thus, SRB could be used to remove As and other heavy metals from AMD, however the tolerance of SRB to high metal concentrations and low pH is limited. The present study aimed to quantify the impact of SRB in As removal under acidic and As-Fe-rich conditions. Our results show that SRB tolerate low pH (up to 3.5 and high concentrations of As (~3.6 mg·L−1. Batch experiments showed As removal of up to 73%, Iron (Fe removal higher than 78% and a neutralization of pH from acidic to circum-neutral conditions (pH 6–8. In addition, XRD analysis showed the dominance of amorphous minerals, while Scanning Electron Microscopy/Energy Dispersive X-ray Spectroscopy (SEM-EDX analysis showed associations between As, Fe, and sulfur, indicating the presence of Fe-S-As compounds or interaction of As species with amorphous and/or nanocrystalline phases by sorption processes. These results indicate that the As removal was mediated by acid/metal-tolerant SRB and open the potential for the application of new strains of acid/metal-tolerant SRB for the remediation of high-As acid mine waters.

  4. Influence of salicylic acid pre-treatment on cadmium tolerance and ...

    African Journals Online (AJOL)

    Dose-dependent changes in cadmium (Cd) tolerance, non-protein thiol (NP-SH) production and their relationship were investigated in sixteen-day-old flax (Linum usitatissimum L.) seedlings derived from seeds pre-soaked with various salicylic acid (SA) doses and grown hydroponically under increased Cd concentrations ...

  5. Microcystin uptake and biochemical responses in the freshwater clam Corbicula leana P. exposed to toxic and non-toxic Microcystis aeruginosa: Evidence of tolerance to cyanotoxins.

    Science.gov (United States)

    Pham, Thanh-Luu; Shimizu, Kazuya; Dao, Thanh-Son; Hong-Do, Lan-Chi; Utsumi, Motoo

    2015-01-01

    We investigated the accumulation and adverse effects of toxic and non-toxic Microcystis in the edible clam Corbicula leana . Treated clams were exposed to toxic Microcystis at 100 μg of MC (microcystin)-LR eq  L -1 for 10 days. The experimental organism was then placed in toxin-free water and fed on non-toxic Microcystis for the following 10 days for depuration. Filtering rates (FRs) by C. leana of toxic and non-toxic Microcystis and of the green alga Chlorella vulgaris as a control were estimated. Adverse effects were evaluated though the activity of catalase (CAT), superoxide dismutase (SOD) and glutathione S-transferase (GST). Clam accumulated MCs (up to 12.7 ± 2.5 μg g -1 dry weight (DW) of free MC and 4.2 ± 0.6 μg g -1 DW of covalently bound MC). Our results suggest that although both toxic and non-toxic cyanobacteria caused adverse effects by inducing the detoxification and antioxidant defense system, the clam was quite resistant to cyanotoxins. The estimated MC concentration in C. leana was far beyond the World Health Organization's (WHO) provisional tolerable daily intake (0.04 μg kg -1  day -1 ), suggesting that consuming clams harvested during cyanobacterial blooms carries a high health risk.

  6. Microcystin uptake and biochemical responses in the freshwater clam Corbicula leana P. exposed to toxic and non-toxic Microcystis aeruginosa: Evidence of tolerance to cyanotoxins

    Directory of Open Access Journals (Sweden)

    Thanh-Luu Pham

    2015-01-01

    Full Text Available We investigated the accumulation and adverse effects of toxic and non-toxic Microcystis in the edible clam Corbicula leana. Treated clams were exposed to toxic Microcystis at 100 μg of MC (microcystin-LReq L−1 for 10 days. The experimental organism was then placed in toxin-free water and fed on non-toxic Microcystis for the following 10 days for depuration. Filtering rates (FRs by C. leana of toxic and non-toxic Microcystis and of the green alga Chlorella vulgaris as a control were estimated. Adverse effects were evaluated though the activity of catalase (CAT, superoxide dismutase (SOD and glutathione S-transferase (GST. Clam accumulated MCs (up to 12.7 ± 2.5 μg g−1 dry weight (DW of free MC and 4.2 ± 0.6 μg g−1 DW of covalently bound MC. Our results suggest that although both toxic and non-toxic cyanobacteria caused adverse effects by inducing the detoxification and antioxidant defense system, the clam was quite resistant to cyanotoxins. The estimated MC concentration in C. leana was far beyond the World Health Organization's (WHO provisional tolerable daily intake (0.04 μg kg−1 day−1, suggesting that consuming clams harvested during cyanobacterial blooms carries a high health risk.

  7. Toxicity of copper chelates of azomethines and amino acids for Chlorella pyrenoidosa

    Energy Technology Data Exchange (ETDEWEB)

    Barashkov, G.K.; Rukhadze, E.G.; Talyzenkova, G.P.

    1979-01-01

    The authors have attempted to assess the toxicity of copper-containing compounds from the point of view of their interrelationship with the structural characteristics of the chelate compound and the structure of the ligand. The copper chelates of the azomethines tested may be provisionally divided into three types: A - complexes with N-alkly-azomethines; B - complexes with N-aryl-azomethines; C - binuclear complexes. Consideration was also given to chelates with aromatic and heterocyclic amino acids and to heteroligand chelates in which the copper atom coordinates azomethine and an amino acid simultaneously. Toxicity was determined by the method previously described and expressed as a critical concentration (C/sub cr/, mg Cu/liter) and in relative toxicity units (T/sub c/). The compounds investigated were obtained from the interaction between a bidentant ligand of an azomethine or anamino acid and copper acetate in a water-alcohol medium at pH 6-8. Since they are not very soluble in water, true solutions were obtained by using dimethyl sulfoxide.

  8. Characterization of Lactobacillus brevis L62 strain, highly tolerant to copper ions.

    Science.gov (United States)

    Mrvčić, Jasna; Butorac, Ana; Solić, Ema; Stanzer, Damir; Bačun-Družina, Višnja; Cindrić, Mario; Stehlik-Tomas, Vesna

    2013-01-01

    Lactic acid bacteria (LAB) as starter culture in food industry must be suitable for large-scale industrial production and possess the ability to survive in unfavorable processes and storage conditions. Approaches taken to address these problems include the selection of stress-resistant strains. In food industry, LAB are often exposed to metal ions induced stress. The interactions between LAB and metal ions are very poorly investigated. Because of that, the influence of non-toxic, toxic and antioxidant metal ions (Zn, Cu, and Mn) on growth, acid production, metal ions binding capacity of wild and adapted species of Leuconostoc mesenteroides L3, Lactobacillus brevis L62 and Lactobacillus plantarum L73 were investigated. The proteomic approach was applied to clarify how the LAB cells, especially the adapted ones, protect themselves and tolerate high concentrations of toxic metal ions. Results have shown that Zn and Mn addition into MRS medium in the investigated concentrations did not have effect on the bacterial growth and acid production, while copper ions were highly toxic, especially in static conditions. Leuc. mesenteroides L3 was the most efficient in Zn binding processes among the chosen LAB species, while L. plantarum L73 accumulated the highest concentration of Mn. L. brevis L62 was the most copper resistant species. Adaptation had a positive effect on growth and acid production of all species in the presence of copper. However, the adapted species incorporated less metal ions than the wild species. The exception was adapted L. brevis L62 that accumulated high concentration of copper ions in static conditions. The obtained results showed that L. brevis L62 is highly tolerant to copper ions, which allows its use as starter culture in fermentative processes in media with high concentration of copper ions.

  9. Dataset on usnic acid from Cladonia substellata Vainio (Lichen) schistosomiasis mansoni's vector control and environmental toxicity.

    Science.gov (United States)

    Andrade de Araújo, Hallysson Douglas; Dos Santos Silva, Luanna Ribeiro; de Siqueira, Williams Nascimento; Martins da Fonseca, Caíque Silveira; da Silva, Nicácio Henrique; de Albuquerque Melo, Ana Maria Mendonça; Barroso Martins, Mônica Cristina; de Menezes Lima, Vera Lúcia

    2018-04-01

    This text presents complementary data corresponding to schistosomiasis mansoni's vector control and enviromental toxicity using usnic acid. These informations support our research article "Toxicity of Usnic Acid from Cladonia substellata (Lichen) to embryos and adults of Biomphalaria glabrata " by Araújo et al. [1], and focuses on the analysis of the detailed data regarding the different concentrations of Usnic Acid and their efficiency to B. glabrata mortality and non-viability, as also to environmental toxicity, evaluated by A. salina mortality.

  10. Habituation of enterotoxigenic Staphylococcus aureus to Origanum vulgare L. essential oil does not induce direct-tolerance and cross-tolerance to salts and organic acids

    Directory of Open Access Journals (Sweden)

    Adassa Gama Tavares

    2015-09-01

    Full Text Available Enterotoxigenic Staphylococcus aureus strains that were isolated from foods were investigated for their ability to develop direct-tolerance and cross-tolerance to sodium chloride (NaCl, potassium chloride (KCl, lactic acid (LA and acetic acid (AA after habituation in sublethal amounts (1/2 of the minimum inhibitory concentration - 1/2 MIC and 1/4 of the minimum inhibitory concentration - 1/4 MIC of Origanum vulgare L. essential oil (OVEO. The habituation of S. aureus to 1/2 MIC and 1/4 MIC of OVEO did not induce direct-tolerance or cross-tolerance in the tested strains, as assessed by modulation of MIC values. Otherwise, exposing the strains to OVEO at sublethal concentrations maintained or increased the sensitivity of the cells to the tested stressing agents because the MIC values of OVEO, NaCl, KCl, LA and AA against the cells that were previously habituated to OVEO remained the same or decreased when compared with non-habituated cells. These data indicate that OVEO does not have an inductive effect on the acquisition of direct-tolerance or cross-tolerance in the tested enterotoxigenic strains of S. aureus to antimicrobial agents that are typically used in food preservation.

  11. Tolerância de cultivares de trigo a diferentes níveis de alumínio em solução nutritiva e no solo Tolerance op wheat cultivars to different levels of aluminum toxicity

    Directory of Open Access Journals (Sweden)

    Carlos Eduardo de Oliveira Camargo

    1981-01-01

    Full Text Available Foram estudados dez cultivares de trigo em soluções nutritivas contendo cinco diferentes níveis de alumínio tóxico. A tolerância foi medida pela capacidade de as raízes primárias continuarem a crescer em solução sem alumínio, após um período prévio de 48 horas em solução contendo uma concentração conhecida de alumínio. Os cultivares Siete Cerros e Tobari-66 foram sensíveis, respectivamente, a 1 e 3 ppm de alumínio. 'Alondra-S-46', 'Alondra-S-45' e 'IAC-17' foram sensíveis a 6 ppm; 'BH-1146', 'IAC-5', 'IAC-18', 'IAC-13' e 'Londrina' foram tolerantes a 10 ppm, porém 'BH-1146', 'IAC-18' e 'IAC-13' foram mais tolerantes que 'IAC-5' e 'Londrina'. Os cultivares BH-1146, IAC-17, Alondra-S-46, Tobari-66 e Siete Cerros foram cultivados em vasos contendo solo ácido mostrando a presença de alumínio. Metade do número de vasos recebeu uma aplicação de calcário. Os resultados desse experimento mostraram que o cultivar BH-1146 diferiu significativamente em produção de grãos por planta de 'Tobari-66', 'Alondra-S-46', 'IAC-17' e 'Siete Cerros'. Esse resultado confirmou a tolerância ao alumínio do cultivar BH-1146, observada quando se empregou solução nutritiva com a presença desse elemento.Ten wheat cultivars were studied to aluminum toxicity using five different levels of this element. The tolerance was measured taking into account the root growth in a aluminum-free complete nutrient solution after a previous Al treatment. With toxic amounts of Al, the primary roots did not grow at all and remained thickned at the tip as a typical Al injury. The wheat cultivars Siete Cerros and Tobari-66 were sensitive to 1 and 3 ppm of aluminum, respectively. The cultivars Alondra-S-46, Alondra-S-45 and IAC-17 were sensitive to 6 ppm. The cultivars BH-1146, IAC-5, IAC-18, IAC-13 and Londrina showed tolerance to 10 ppm but BH-1146, IAC-18 and IAC-13 were more tolerant than IAC-5 and Londrina. The cultivars BH-1146, IAC-17, Alondra-S-46

  12. Total fatty acid content of the plasma membrane of Saccharomyces cerevisiae is more responsible for ethanol tolerance than the degree of unsaturation.

    Science.gov (United States)

    Kim, Hyun-Soo; Kim, Na-Rae; Choi, Wonja

    2011-03-01

    The effect of change in unsaturated fatty acid composition on ethanol tolerance in Saccharomyces cerevisiae overexpressing ScOLE1 (∆9 fatty acid desaturase gene of S. cerevisiae), CaFAD2 (∆12 fatty acid desaturase gene of Candida albicans), or CaFAD3 (ω3 fatty acid desaturase gene of C. albicans) was examined. ScOLE1 over-expression increased the total unsaturated fatty acid content and enhanced ethanol tolerance, compared with a control strain. In contrast, overexpression of CaFAD2 and CaFAD3, which led to production of linoleic acid (18:2) and α-linolenic acid (18:3), respectively, neither changed total unsaturated fatty acids nor enhanced ethanol tolerance. The total unsaturated fatty acid content rather than the degree of unsaturation is thus an important factor for ethanol tolerance.

  13. [Toxicity of chongqing acid fogwater on rabbit alveolar macrophages in vitro].

    Science.gov (United States)

    Shu, W Q; Zhuo, J B

    1992-07-01

    We collected acid fogwater on a fogday and observed its toxic effects on rabbits' pulmonary alveolar macrophages (AM) in vitro. The fogwater was diluted into 4 concentrations: 1, 1/10, 1/100, and 1/1000 of the original fogwater and the exposure time was 12 hours. The results showed that both the AM's viability and the phagocytic capacity were depressed significantly, but the AM's lysosomal enzyme--acid phosphatase activity was found to be stimulated to increase. All these changes were directly correlated with the degree of pollution of the fogwater. Of these three toxicity indices, the most sensitive one was the change of AM's phagocytic capacity.

  14. Protective effect of eicosapentaenoic acid on ouabain toxicity in neonatal rat cardiac myocytes

    International Nuclear Information System (INIS)

    Hallaq, H.; Leaf, A.; Sellmayer, A.; Smith, T.W.

    1990-01-01

    Isolated neonatal cardiac myocytes have been utilized as a model for the study of cardiac arrhythmogenic factors. The myocytes respond to the toxic effects of a potent cardiac glycoside, ouabain at 0.1 mM, by an increase in their spontaneous beating rate and a reduction in amplitude of contractions resulting within minutes in a lethal state of contracture. Incubating the isolated myocytes for 3 endash 5 days in culture medium enriched with 5 μM arachidonic acid had no effect on the development of lethal contracture after subsequent exposure to 0.1 mM ouabain. By contrast, incubating the myocytes for 3 endash 5 days with 5 μM eicosapentaenoic acid completely prevented the toxic effects of ouabain at 0.1 mM. No differences in bumetanide-inhibitable 86 Rb flux were observed between the three preparations. However, measurements with fura-2 of cytosolic free calcium levels indicated that control and arachidonic acid-enriched myocytes developed toxic cytosolic calcium concentrations of 845 ± 29 and 757 ± 64 nM, respectively, on exposure to 0.1 mM ouabain, whereas in eicosapentaenoic acid-enriched myocytes, physiologic calcium levels were preserved. Incubating the myocytes with eicosapentaenoic acid for 3 endash 5 days resulted in a small reduction of arachidonic acid and a small but significant increase of eicosapentaenoic acid in membrane phospolipids of the myocytes

  15. Genetic analysis of aluminum tolerance in Brazilian barleys

    Directory of Open Access Journals (Sweden)

    Minella Euclydes

    2002-01-01

    Full Text Available Aluminum (Al toxicity is a major factor limiting barley growth in acid soils, and genotypes with adequate level of tolerance are needed for improving barley adaptation in Brazil. To study the inheritance of Al tolerance in Brazilian barleys, cultivars Antarctica 1, BR 1 and FM 404 were crossed to sensitive Kearney and PFC 8026, and intercrossed. Parental, F1, F2 and F6 generations were grown in nutrient solution containing 0.03, 0.05 and 0.07 mM of Al and classified for tolerance by the root tip hematoxylin staining assay. Tolerant by sensitive F2 progenies segregated three tolerant to one sensitive, fitting the 3:1 ratio expected for a single gene. The F6 populations segregated one tolerant to one sensitive also fitting a monogenic ratio. The F2 seedlings from crosses among tolerant genotypes scored the same as the parents. Since the population size used would allow detection of recombination as low as 7%, the complete absence of Al sensitive recombinants suggests that tolerance in these cultivars is most probably, controlled by the same gene. Thus, the potential for improving Al tolerance through recombination of these genotypes is very low and different gene sources should be evaluated.

  16. Toxicity of Select Organic Acids to the Slightly Thermophilic Acidophile Acidithiobaccillus Caldus

    Energy Technology Data Exchange (ETDEWEB)

    John E Aston; William A Apel; Brady D Lee; Brent M Peyton

    2009-02-01

    Acidithiobacillus caldus is a thermophilic acidophile found in commercial biomining, acid mine drainage systems, and natural environments. Previous work has characterized A. caldus as a chemolithotrophic autotroph capable of utilizing reduced sulfur compounds under aerobic conditions. Organic acids are especially toxic to chemolithotrophs in low-pH environments, where they diffuse more readily into the cell and deprotonate within the cytoplasm. In the present study, the toxic effects of oxaloacetate, pyruvate, 2-ketoglutarate, acetate, malate, succinate, and fumarate on A. caldus strain BC13 were examined under batch conditions. All tested organic acids exhibited some inhibitory effect. Oxaloacetate was observed to inhibit growth completely at a concentration of 250 µM, whereas other organic acids were completely inhibitory at concentrations of between 1,000 and 5,000 µM. In these experiments, the measured concentrations of organic acids decreased with time, indicating uptake or assimilation by the cells. Phospholipid fatty acid analyses indicated an effect of organic acids on the cellular envelope. Notable differences included an increase in cyclic fatty acids in the presence of organic acids, indicating possible instability of the cellular envelope. This was supported by field emission scanning-electron micrographs showing blebbing and sluffing in cells grown in the presence of organic acids.

  17. Chemical genomic guided engineering of gamma-valerolactone tolerant yeast.

    Science.gov (United States)

    Bottoms, Scott; Dickinson, Quinn; McGee, Mick; Hinchman, Li; Higbee, Alan; Hebert, Alex; Serate, Jose; Xie, Dan; Zhang, Yaoping; Coon, Joshua J; Myers, Chad L; Landick, Robert; Piotrowski, Jeff S

    2018-01-12

    Gamma valerolactone (GVL) treatment of lignocellulosic bomass is a promising technology for degradation of biomass for biofuel production; however, GVL is toxic to fermentative microbes. Using a combination of chemical genomics with the yeast (Saccharomyces cerevisiae) deletion collection to identify sensitive and resistant mutants, and chemical proteomics to monitor protein abundance in the presence of GVL, we sought to understand the mechanism toxicity and resistance to GVL with the goal of engineering a GVL-tolerant, xylose-fermenting yeast. Chemical genomic profiling of GVL predicted that this chemical affects membranes and membrane-bound processes. We show that GVL causes rapid, dose-dependent cell permeability, and is synergistic with ethanol. Chemical genomic profiling of GVL revealed that deletion of the functionally related enzymes Pad1p and Fdc1p, which act together to decarboxylate cinnamic acid and its derivatives to vinyl forms, increases yeast tolerance to GVL. Further, overexpression of Pad1p sensitizes cells to GVL toxicity. To improve GVL tolerance, we deleted PAD1 and FDC1 in a xylose-fermenting yeast strain. The modified strain exhibited increased anaerobic growth, sugar utilization, and ethanol production in synthetic hydrolysate with 1.5% GVL, and under other conditions. Chemical proteomic profiling of the engineered strain revealed that enzymes involved in ergosterol biosynthesis were more abundant in the presence of GVL compared to the background strain. The engineered GVL strain contained greater amounts of ergosterol than the background strain. We found that GVL exerts toxicity to yeast by compromising cellular membranes, and that this toxicity is synergistic with ethanol. Deletion of PAD1 and FDC1 conferred GVL resistance to a xylose-fermenting yeast strain by increasing ergosterol accumulation in aerobically grown cells. The GVL-tolerant strain fermented sugars in the presence of GVL levels that were inhibitory to the unmodified strain

  18. Enhancing tolerance of rice (Oryza sativa) to simulated acid rain by exogenous abscisic acid.

    Science.gov (United States)

    Wu, Xi; Liang, Chanjuan

    2017-02-01

    Abscisic acid (ABA) regulates much important plant physiological and biochemical processes and induces tolerance to different stresses. Here, we studied the regulation of exogenous ABA on adaptation of rice seedlings to simulated acid rain (SAR) stress by measuring biomass dry weight, stomatal conductance, net photosynthesis rate, nutrient elements, and endogenous hormones. The application of 10 μM ABA alleviated the SAR-induced inhibition on growth, stomatal conductance, net photosynthesis rate, and decreases in contents of nutrient (K, Mg, N, and P) and hormone (auxin, gibberellins, and zeatin). Moreover, 10 μM ABA could stimulate the Ca content as signaling molecules under SAR stress. Contrarily, the application of 100 μM ABA aggravated the SAR-induced inhibition on growth, stomatal conductance, net photosynthesis rate, and contents of nutrient and hormone. The results got after a 5-day recovery (without SAR) show that exogenous 10 μM ABA can promote self-restoration process in rice whereas 100 μM ABA hindered the restoration by increasing deficiency of nutrients and disturbing the balance of hormones. These results confirmed that exogenous ABA at proper concentration could enhance the tolerance of rice to SAR stress.

  19. Triphenyl phosphate-induced developmental toxicity in zebrafish: Potential role of the retinoic acid receptor

    Energy Technology Data Exchange (ETDEWEB)

    Isales, Gregory M.; Hipszer, Rachel A.; Raftery, Tara D. [Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC (United States); Chen, Albert; Stapleton, Heather M. [Division of Environmental Sciences and Policy, Nicholas School of the Environment, Duke University, Durham, NC (United States); Volz, David C., E-mail: volz@mailbox.sc.edu [Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC (United States)

    2015-04-15

    Highlights: • Triphenyl phosphate-induced toxicity in zebrafish embryos is enhanced in the presence of a retinoic acid receptor antagonist. • Triphenyl phosphate uptake or metabolism within zebrafish embryos is not altered in the presence of a retinoic acid receptor antagonist. • Triphenyl phosphate decreases expression of cytochrome P450 26a1 in zebrafish embryos. • Triphenyl phosphate inhibits retinoic acid-induced activation of human retinoic acid receptors. - Abstract: Using zebrafish as a model, we previously reported that developmental exposure to triphenyl phosphate (TPP) – a high-production volume organophosphate-based flame retardant – results in dioxin-like cardiac looping impairments that are independent of the aryl hydrocarbon receptor. Using a pharmacologic approach, the objective of this study was to investigate the potential role of retinoic acid receptor (RAR) – a nuclear receptor that regulates vertebrate heart morphogenesis – in mediating TPP-induced developmental toxicity in zebrafish. We first revealed that static exposure of zebrafish from 5–72 h post-fertilization (hpf) to TPP in the presence of non-toxic concentrations of an RAR antagonist (BMS493) significantly enhanced TPP-induced toxicity (relative to TPP alone), even though identical non-toxic BMS493 concentrations mitigated retinoic acid (RA)-induced toxicity. BMS493-mediated enhancement of TPP toxicity was not a result of differential TPP uptake or metabolism, as internal embryonic doses of TPP and diphenyl phosphate (DPP) – a primary TPP metabolite – were not different in the presence or absence of BMS493. Using real-time PCR, we then quantified the relative change in expression of cytochrome P450 26a1 (cyp26a1) – a major target gene for RA-induced RAR activation in zebrafish – and found that RA and TPP exposure resulted in a ∼5-fold increase and decrease in cyp26a1 expression, respectively, relative to vehicle-exposed embryos. To address whether TPP may

  20. Enzymatic regulation of organic acid metabolism in an alkali-tolerant ...

    African Journals Online (AJOL)

    Chloris virgata, an alkali-tolerant halophyte, was chosen as the test material for our research. The seedlings of C. virgata were treated with varying salt and alkali stress. First, the composition and content of organic acids in shoots were analyzed and the results indicated that there was not only a significant increase in total ...

  1. Use of Fatty Acid Methyl Ester Profiles to Compare Copper-Tolerant and Copper-Sensitive Strains of Pantoea ananatis.

    Science.gov (United States)

    Nischwitz, C; Gitaitis, R; Sanders, H; Langston, D; Mullinix, B; Torrance, R; Boyhan, G; Zolobowska, L

    2007-10-01

    ABSTRACT A survey was conducted to evaluate differences in fatty acid methyl ester (FAME) profiles among strains of Pantoea ananatis, causal agent of center rot of onion (Allium cepa), isolated from 15 different onion cultivars in three different sites in Georgia. Differences in FAME composition were determined by plotting principal components (PCs) in two-dimensional plots. Euclidean distance squared (ED(2)) values indicated a high degree of similarity among strains. Plotting of PCs calculated from P. ananatis strains capable of growing on media amended with copper sulfate pentahydrate (200 mug/ml) indicated that copper-tolerant strains grouped into tight clusters separate from clusters formed by wild-type strains. However, unlike copper-sensitive strains, the copper-tolerant strains tended to cluster by location. A total of 80, 60, and 73% of the strains from Tift1, Tift2, and Tattnall, respectively, exhibited either confluent growth or partial growth on copper-amended medium. However, all strains were sensitive to a mixture of copper sulfate pentahydrate (200 mug/ml) and maneb (40 mug/ml). When copper-tolerant clones were analyzed and compared with their wild-type parents, in all cases the plotting of PCs developed from copper-tolerant clones formed tight clusters separate from clusters formed by the parents. Eigenvalues generated from these tests indicated that two components provided a good summary of the data, accounting for 98, 98, and 96% of the standardized variance for strains Pna 1-15B, Pna 1-12B, and Pna 2-5A, respectively. Furthermore, feature 4 (cis-9-hexadecenoic acid/2-hydroxy-13-methyltetradecanoic acid) and feature 7 (cis-9/trans-12/cis-7-octadecenoic acid) were the highest or second highest absolute values for PC1 in all three strains of the parents versus copper-tolerant clones, and hexadecanoic acid was the highest absolute value for PC2 in all three strains. Along with those fatty acids, dodecanoic acid and feature 3 (3-hydroxytetradecanoic

  2. Differential toxicity and influence of salinity on acute toxicity of ...

    African Journals Online (AJOL)

    Differential toxicity and influence of salinity on acute toxicity of copper sulphate and lead nitrate against Oreochromis niloticus. KA Bawa-Allah, F Osuala, J Effiong. Abstract. This study investigated the salinity-tolerance of Oreochromis niloticus and the influence of salinity changes on the acute toxicities of copper sulphate ...

  3. Adaptive laboratory evolution of ethanologenic Zymomonas mobilis strain tolerant to furfural and acetic acid inhibitors.

    Science.gov (United States)

    Shui, Zong-Xia; Qin, Han; Wu, Bo; Ruan, Zhi-yong; Wang, Lu-shang; Tan, Fu-Rong; Wang, Jing-Li; Tang, Xiao-Yu; Dai, Li-Chun; Hu, Guo-Quan; He, Ming-Xiong

    2015-07-01

    Furfural and acetic acid from lignocellulosic hydrolysates are the prevalent inhibitors to Zymomonas mobilis during cellulosic ethanol production. Developing a strain tolerant to furfural or acetic acid inhibitors is difficul by using rational engineering strategies due to poor understanding of their underlying molecular mechanisms. In this study, strategy of adaptive laboratory evolution (ALE) was used for development of a furfural and acetic acid-tolerant strain. After three round evolution, four evolved mutants (ZMA7-2, ZMA7-3, ZMF3-2, and ZMF3-3) that showed higher growth capacity were successfully obtained via ALE method. Based on the results of profiling of cell growth, glucose utilization, ethanol yield, and activity of key enzymes, two desired strains, ZMA7-2 and ZMF3-3, were achieved, which showed higher tolerance under 7 g/l acetic acid and 3 g/l furfural stress condition. Especially, it is the first report of Z. mobilis strain that could tolerate higher furfural. The best strain, Z. mobilis ZMF3-3, has showed 94.84% theoretical ethanol yield under 3-g/l furfural stress condition, and the theoretical ethanol yield of ZM4 is only 9.89%. Our study also demonstrated that ALE method might also be used as a powerful metabolic engineering tool for metabolic engineering in Z. mobilis. Furthermore, the two best strains could be used as novel host for further metabolic engineering in cellulosic ethanol or future biorefinery. Importantly, the two strains may also be used as novel-tolerant model organisms for the genetic mechanism on the "omics" level, which will provide some useful information for inverse metabolic engineering.

  4. Melhoramento do trigo: XXX. Avaliação de linhagens com tolerância a toxicidade de alumínio, manganês e ferro em condições de campo Wheat breeding: XXX. Evaluation of inbred lines tolerant to aluminum, manganese and iron toxicities under field conditions

    Directory of Open Access Journals (Sweden)

    Carlos Eduardo de Oliveira Camargo

    1995-01-01

    cultivars used as parents were evaluated in four trials carried out in acid soils, at Itararé (1990-92 and Capão Bonito (1992 Experimental Stations and in five trials carried out in limed soils, at Campinas (1990-92 Experimental Center and in a private farm located in Cruzália (1990-91. The following parameters were assessed: grain yield, agronomic characteristics and disease resistance. Twenty inbred lines and 'BH-1146' presented greater grain yield than 'Siete Cerros' in acid soils indicating that Al3+ toxicity was one of the main factors limiting yield. In limed soils, differences in yield were not observed, considering all studied genotypes, showing that no association between low yield and Al3+ tolerance was found in this condition. The line 21 was moderately resistant to powdery mildew. All studied genotypes presented susceptibility to the causal agents of leaf spots. 'Siete Cerros' and the lines 3 to 12 exhibited short stature associated with logding resistance; the lines 13, 14 and 23 showed long heads; the line 12, the highest number of spikelets and grains per spike; and the line 17, the heaviest grains. These genotypes represented, valuable genetic sources for these characteristics.

  5. Guiding principle for crystalline Si photovoltaic modules with high tolerance to acetic acid

    Science.gov (United States)

    Masuda, Atsushi; Hara, Yukiko

    2018-04-01

    A guiding principle for highly reliable crystalline Si photovoltaic modules, especially those with high tolerance to acetic acid generated by hydrolysis reaction between water vapor and an ethylene-vinyl acetate (EVA) encapsulant, is proposed. Degradation behavior evaluated by the damp heat test strongly depends on Ag finger electrodes and also EVA encapsulants. The acetic acid concentration in EVA on the glass side directly determines the degradation behavior. The most important factor for high tolerance is the type of Ag finger electrode materials when using an EVA encapsulant. Photovoltaic modules using newly developed crystalline Si cells with improved Ag finger electrode materials keep their maximum power of 80% of the initial value even after the damp heat test at 85 °C and 85% relative humidity for 10000 h. The pattern of dark regions in electroluminescence images is also discussed on the basis of the dynamics of acetic acid in the modules.

  6. Why plants grow poorly on very acid soils: are ecologists missing the obvious?

    Science.gov (United States)

    Kidd, P S; Proctor, J

    2001-04-01

    Factors associated with soil acidity are considered to be limiting for plants in many parts of the world. This work was undertaken to investigate the role of the toxicity of hydrogen (H(+)) which seems to have been underconsidered by ecologists as an explanation of the reduced plant growth observed in very acid soils. Racial differences are reported in plant growth response to increasing acidity in the grass Holcus lanatus L. (Yorkshire-fog) and the tree Betula pendula Roth (Silver Birch). Soils and seeds were collected from four Scottish sites which covered a range of soils from acid (organic and mineral) to more base-rich. The sites and their pH (1:2.5 fresh soil:0.01 M CaCl(2)) were: Flanders Moss (FM), pH 3.2+/-0.03; Kippenrait Glen (KP), pH 4.8+/- 0.05; Kinloch Rannoch (KR), pH 6.1+/-0.16; and Sheriffmuir (SMM), pH 4.3+/-0.11. The growth rates of two races of H. lanatus, FM and KP, and three races of B. pendula (SMM, KP and KR) were measured in nutrient solution cultures at pH 2.0 (H. lanatus only), 3.0, 4.0, 5.0, and 5.6. Results showed races from acid organic soils (FM) were H(+)-tolerant while those from acid mineral soils (SMM) were Al(3+)-tolerant but not necessarily H(+)-tolerant. These results confirmed that populations were separately adapted to H(+) or Al(3+) toxicity and this was dependent upon the soil characteristics at their site of collection. The fact of plant adaptation to H(+) toxicity supports the view that this is an important factor in very acid soils.

  7. Role of the plasma membrane H(+)-ATPase in the regulation of organic acid exudation under aluminum toxicity and phosphorus deficiency.

    Science.gov (United States)

    Yu, Wenqian; Kan, Qi; Zhang, Jiarong; Zeng, Bingjie; Chen, Qi

    2016-01-01

    Aluminum (Al) toxicity and phosphorus (P) deficiency are 2 major limiting factors for plant growth and crop production in acidic soils. Organic acids exuded from roots have been generally regarded as a major resistance mechanism to Al toxicity and P deficiency. The exudation of organic acids is mediated by membrane-localized OA transporters, such as ALMT (Al-activated malate transporter) and MATE (multidrug and toxic compound extrusion). Beside on up-regulation expression of organic acids transporter gene, transcriptional, translational and post-translational regulation of the plasma membrane H(+)-ATPase are also involved in organic acid release process under Al toxicity and P deficiency. This mini-review summarizes the current knowledge about this field of study on the role of the plasma membrane H(+)-ATPase in organic acid exudation under Al toxicity and P deficiency conditions.

  8. Abscisic acid (ABA) sensitivity regulates desiccation tolerance in germinated Arabidopsis seeds

    NARCIS (Netherlands)

    Maia de Oliveira, J.; Dekkers, S.J.W.; Dolle, M.; Ligterink, W.; Hilhorst, H.W.M.

    2014-01-01

    During germination, orthodox seeds lose their desiccation tolerance (DT) and become sensitive to extreme drying. Yet, DT can be rescued, in a well-defined developmental window, by the application of a mild osmotic stress before dehydration. A role for abscisic acid (ABA) has been implicated in this

  9. Maternal effects of inducible tolerance against the toxic cyanobacterium Microcystis aeruginosa in the grazer Daphnia carinata

    International Nuclear Information System (INIS)

    Jiang, Xiaodong; Yang, Wei; Zhao, Shiye; Liang, Huishuang; Zhao, Yunlong; Chen, Liqiao; Li, Rui

    2013-01-01

    Cyanobacterial blooms are becoming potent agents of natural selection in aquatic ecosystems because of their high production of some toxins and increased frequency in recent decades with eutrophication and climate change. Maternal exposure to the toxic Microcystis aeruginosa significantly increased the intrinsic rates of population increase, average life span, and net reproductive rates of a clone of the planktonic grazer Daphnia carinata in an offspring environment where cyanobacteria were present, but not for two additional clones. Offspring from mothers exposed to M. aeruginosa had lower intrinsic rates of population increase, average life span, and net reproductive rates than individuals from unexposed mothers when fed exclusively a green alga. These results suggest that benefits, costs, and clonal variations of maternal effects of inducible tolerance should be considered when trying to understand ecological consequences of cyanobacterial blooms since they can shape the trophic interactions between cyanobacteria and daphnids. -- Highlights: •Maternal exposure to Microcystis aeruginosa significantly increased the offspring tolerance in a Daphnia carinata clone. •Another two clones, however, failed to response to maternal exposure. •Offspring from exposed mothers had lower fitness when fed exclusively a green alga. -- Capsule: Maternal exposure to the toxic Microcystis aeruginosa increased offspring fitness in one of three Daphnia carinata clones and carried a cost

  10. High acidity tolerance in lichens with fumarprotocetraric, perlatolic or thamnolic acids is correlated with low pKa1 values of these lichen substances

    International Nuclear Information System (INIS)

    Hauck, Markus; Juergens, Sascha-Rene; Huneck, Siegfried; Leuschner, Christoph

    2009-01-01

    The depsidone fumarprotocetraric acid as well as the depsides perlatolic and thamnolic acids are lichen secondary metabolites. Their first dissociation constants (pK a1 ) in methanol were determined to be 2.7 for perlatolic acid and 2.8 for fumarprotocetraric and thamnolic acids by UV spectroscopy. Lower pK a1 values are, so far, not known from lichen substances. Several lichens producing at least one of these compounds are known for their outstanding tolerance to acidic air pollution. This is demonstrated by evaluating published pH preferences for central European lichens. The low pK a1 values suggest that strong dissociation of the studied lichen substances is a prerequisite for the occurrence of lichens with these compounds on very acidic substrata, as protonated lichen substances of different chemical groups, but not their conjugated bases, are known to shuttle protons into the cytoplasm and thereby apparently damage lichens. - Depsides and depsidones with low pK a1 values occur in highly acidity-tolerant lichens.

  11. The role of tolerant genotypes and plant nutrients in the management of acid soil infertility in upland rice

    International Nuclear Information System (INIS)

    Sahrawat, K.L.; Jones, M.P.; Diatta, S.

    2000-01-01

    As in other parts of the humid tropics, acid-related problems are the major constraint to crop production on low-activity clay soils in the humid and sub-humid zones of West Africa. The upland ecosystem of West Africa is very important to rice production. About 70% of upland rice is grown in the humid zone of the sub-region. To increase and stabilize rice productivity of the acid uplands at reasonable levels, a strategy is needed that integrates the use of tolerant cultivars with soil and plant-nutrient management. Research conducted on Alfisols and Ultisols of the humid-forest and savannah zones in West Africa showed that upland rice is a robust crop, possessing a wide range of tolerance to acid-soil conditions. Recent research at WARDA showed also that acid-soil tolerance can be enhanced through interspecific Oryza sativa x O. glaberrima progenies, which not only possess increased tolerance of acid-soil conditions, but also have superior overall adaptability to diverse upland environments in the sub-region. Our research on the diagnosis of acid-soil infertility problems on the Ultisols and Alfisols of the humid savannah and forest zones indicates that P deficiency is the most important nutrient disorder for upland rice. In the forest zone, response to N depended on the application of P. In the savannah and forest-savannah transition zones, N deficiency was more important than P deficiency. Among other plant nutrients, the application of Ca and Mg (as plant nutrients) did not appear initially to improve the performance of acid-tolerant upland rice cultivars. The results from a long-term study on an Ultisol with four acid-tolerant rice cultivars, revealed that they differed in agronomic and physiological P efficiencies, and the efficiencies were higher at lower rates of P. The amounts of total P removed in three successive crops were similar for all four cultivars although P-harvest index was 10 to 12% higher in the P-efficient than the inefficient cultivars. The

  12. Neuroprotective effect of creatine against propionic acid toxicity in ...

    African Journals Online (AJOL)

    edoja

    2013-07-31

    Jul 31, 2013 ... Full Length Research Paper. Neuroprotective effect of creatine against propionic acid toxicity in neuroblastoma SH-SY5Y cells in culture. Afaf El-Ansary*, Ghada Abu-Shmais and Abeer Al-Dbass. Biochemistry Department, College of Science, King Saud University, P.O. Box 22452, Zip code 11495, Riyadh, ...

  13. Withania somnifera attenuates acid production, acid tolerance and extra-cellular polysaccharide formation of Streptococcus mutans biofilms.

    Science.gov (United States)

    Pandit, Santosh; Song, Kwang-Yeob; Jeon, Jae-Gyu

    2014-01-01

    Withania somnifera (Ashwagandha) is a plant of the Solanaceae family. It has been widely used as a remedy for a variety of ailments in India and Nepal. The plant has also been used as a controlling agent for dental diseases. The aim of the present study was to evaluate the activity of the methanol extract of W. somnifera against the physiological ability of cariogenic biofilms and to identify the components of the extract. To determine the activity of the extract, assays for sucrose-dependent bacterial adherence, glycolytic acid production, acid tolerance, and extracellular polysaccharide formation were performed using Streptococcus mutans biofilms. The viability change of S. mutans biofilms cells was also determined. A phytochemical analysis of the extract was performed using TLC and LC/MS/MS. The extract showed inhibitory effects on sucrose-dependent bacterial adherence (≥ 100 μg/ml), glycolytic acid production (≥ 300 μg/ml), acid tolerance (≥ 300 μg/ml), and extracellular polysaccharide formation (≥ 300 μg/ml) of S. mutans biofilms. However, the extract did not alter the viability of S. mutans biofilms cells in all concentrations tested. Based on the phytochemical analysis, the activity of the extract may be related to the presence of alkaloids, anthrones, coumarines, anthraquinones, terpenoids, flavonoids, and steroid lactones (withanolide A, withaferin A, withanolide B, withanoside IV, and 12-deoxy withastramonolide). These data indicate that W. somnifera may be a potential agent for restraining the physiological ability of cariogenic biofilms.

  14. Role of the plasma membrane H+-ATPase in the regulation of organic acid exudation under aluminum toxicity and phosphorus deficiency

    Science.gov (United States)

    Yu, Wenqian; Kan, Qi; Zhang, Jiarong; Zeng, Bingjie; Chen, Qi

    2016-01-01

    Aluminum (Al) toxicity and phosphorus (P) deficiency are 2 major limiting factors for plant growth and crop production in acidic soils. Organic acids exuded from roots have been generally regarded as a major resistance mechanism to Al toxicity and P deficiency. The exudation of organic acids is mediated by membrane-localized OA transporters, such as ALMT (Al-activated malate transporter) and MATE (multidrug and toxic compound extrusion). Beside on up-regulation expression of organic acids transporter gene, transcriptional, translational and post-translational regulation of the plasma membrane H+-ATPase are also involved in organic acid release process under Al toxicity and P deficiency. This mini-review summarizes the current knowledge about this field of study on the role of the plasma membrane H+-ATPase in organic acid exudation under Al toxicity and P deficiency conditions. PMID:26713714

  15. Evaluation of toxicity and biodegradability of cholinium amino acids ionic liquids.

    Directory of Open Access Journals (Sweden)

    Xue-Dan Hou

    Full Text Available Cholinium amino acid ionic liquids ([Ch][AA] ILs, which are wholly composed of renewable biomaterials, have recently been demonstrated to have very promising properties for applications in organic synthesis and biomass pretreatment. In this work, the toxicity of these ILs toward enzymes and bacteria was assessed, and the effect of the anion on these properties is discussed. The inhibitory potentials of this type of ILs to acetylcholinesterase were weaker approximately an order of magnitude than the traditional IL 1-butyl-3-methylimidazolium tetrafluoroborate. Additionally, the [Ch][AA] ILs displayed low toxicity toward the bacteria tested. Furthermore, the biodegradability of the [Ch][AA] ILs was evaluated via the closed bottle and CO(2 headspace tests using wastewater microorganisms. All the ILs were classified as 'readily biodegradable' based on their high levels of mineralization (62-87%. The presence of extra carboxyl or amide groups on the amino acid side chain rendered the ILs significantly more susceptible to microbial breakdown. In addition, for most of the [Ch][AA] ILs, low toxicity correlated with good biodegradability. The low toxicity and high biodegradability of these novel [Ch][AA] make them promising candidates for use as environmentally friendly solvents in large-scale applications.

  16. Toxic metal tolerance in native plant species grown in a vanadium mining area.

    Science.gov (United States)

    Aihemaiti, Aikelaimu; Jiang, Jianguo; Li, De'an; Li, Tianran; Zhang, Wenjie; Ding, Xutong

    2017-12-01

    Vanadium (V) has been extensively mined in China and caused soil pollution in mining area. It has toxic effects on plants, animals and humans, posing potential health risks to communities that farm and graze cattle adjacent to the mining area. To evaluate in situ phytoremediation potentials of native plants, V, chromium, copper and zinc concentrations in roots and shoots were measured and the bioaccumulation (BAF) and translocation (TF) efficiencies were calculated. The results showed that Setaria viridis accumulated greater than 1000 mg kg -1 V in its shoots and exhibited TF > 1 for V, Cr, Zn and BAF > 1 for Cu. The V accumulation amount in the roots of Kochia scoparia also surpassed 1000 mg kg -1 and showed TF > 1 for Zn. Chenopodium album had BAF > 1 for V and Zn and Daucus carota showed TF > 1 for Cu. Eleusine indica presented strong tolerance and high metal accumulations. S. viridis is practical for in situ phytoextractions of V, Cr and Zn and phytostabilisation of Cu in V mining area. Other species had low potential use as phytoremediation plant at multi-metal polluted sites, but showed relatively strong resistance to V, Cr, Cu and Zn toxicity, can be used to vegetate the contaminated soils and stabilise toxic metals in V mining area.

  17. Activation of the Glutamic Acid-Dependent Acid Resistance System in Escherichia coli BL21(DE3) Leads to Increase of the Fatty Acid Biotransformation Activity.

    Science.gov (United States)

    Woo, Ji-Min; Kim, Ji-Won; Song, Ji-Won; Blank, Lars M; Park, Jin-Byung

    The biosynthesis of carboxylic acids including fatty acids from biomass is central in envisaged biorefinery concepts. The productivities are often, however, low due to product toxicity that hamper whole-cell biocatalyst performance. Here, we have investigated factors that influence the tolerance of Escherichia coli to medium chain carboxylic acid (i.e., n-heptanoic acid)-induced stress. The metabolic and genomic responses of E. coli BL21(DE3) and MG1655 grown in the presence of n-heptanoic acid indicated that the GadA/B-based glutamic acid-dependent acid resistance (GDAR) system might be critical for cellular tolerance. The GDAR system, which is responsible for scavenging intracellular protons by catalyzing decarboxylation of glutamic acid, was inactive in E. coli BL21(DE3). Activation of the GDAR system in this strain by overexpressing the rcsB and dsrA genes, of which the gene products are involved in the activation of GadE and RpoS, respectively, resulted in acid tolerance not only to HCl but also to n-heptanoic acid. Furthermore, activation of the GDAR system allowed the recombinant E. coli BL21(DE3) expressing the alcohol dehydrogenase of Micrococcus luteus and the Baeyer-Villiger monooxygenase of Pseudomonas putida to reach 60% greater product concentration in the biotransformation of ricinoleic acid (i.e., 12-hydroxyoctadec-9-enoic acid (1)) into n-heptanoic acid (5) and 11-hydroxyundec-9-enoic acid (4). This study may contribute to engineering E. coli-based biocatalysts for the production of carboxylic acids from renewable biomass.

  18. Activation of the Glutamic Acid-Dependent Acid Resistance System in Escherichia coli BL21(DE3 Leads to Increase of the Fatty Acid Biotransformation Activity.

    Directory of Open Access Journals (Sweden)

    Ji-Min Woo

    Full Text Available The biosynthesis of carboxylic acids including fatty acids from biomass is central in envisaged biorefinery concepts. The productivities are often, however, low due to product toxicity that hamper whole-cell biocatalyst performance. Here, we have investigated factors that influence the tolerance of Escherichia coli to medium chain carboxylic acid (i.e., n-heptanoic acid-induced stress. The metabolic and genomic responses of E. coli BL21(DE3 and MG1655 grown in the presence of n-heptanoic acid indicated that the GadA/B-based glutamic acid-dependent acid resistance (GDAR system might be critical for cellular tolerance. The GDAR system, which is responsible for scavenging intracellular protons by catalyzing decarboxylation of glutamic acid, was inactive in E. coli BL21(DE3. Activation of the GDAR system in this strain by overexpressing the rcsB and dsrA genes, of which the gene products are involved in the activation of GadE and RpoS, respectively, resulted in acid tolerance not only to HCl but also to n-heptanoic acid. Furthermore, activation of the GDAR system allowed the recombinant E. coli BL21(DE3 expressing the alcohol dehydrogenase of Micrococcus luteus and the Baeyer-Villiger monooxygenase of Pseudomonas putida to reach 60% greater product concentration in the biotransformation of ricinoleic acid (i.e., 12-hydroxyoctadec-9-enoic acid (1 into n-heptanoic acid (5 and 11-hydroxyundec-9-enoic acid (4. This study may contribute to engineering E. coli-based biocatalysts for the production of carboxylic acids from renewable biomass.

  19. Improving Escherichia coli FucO for furfural tolerance by saturation mutagenesis of individual amino acid positions.

    Science.gov (United States)

    Zheng, Huabao; Wang, Xuan; Yomano, Lorraine P; Geddes, Ryan D; Shanmugam, Keelnatham T; Ingram, Lonnie O

    2013-05-01

    Furfural is an inhibitory side product formed during the depolymerization of hemicellulose with mineral acids. In Escherichia coli, furfural tolerance can be increased by expressing the native fucO gene (encoding lactaldehyde oxidoreductase). This enzyme also catalyzes the NADH-dependent reduction of furfural to the less toxic alcohol. Saturation mutagenesis was combined with growth-based selection to isolate a mutated form of fucO that confers increased furfural tolerance. The mutation responsible, L7F, is located within the interfacial region of FucO homodimers, replacing the most abundant codon for leucine with the most abundant codon for phenylalanine. Plasmid expression of the mutant gene increased FucO activity by more than 10-fold compared to the wild-type fucO gene and doubled the rate of furfural metabolism during fermentation. No inclusion bodies were evident with either the native or the mutated gene. mRNA abundance for the wild-type and mutant fucO genes differed by less than 2-fold. The Km (furfural) for the mutant enzyme was 3-fold lower than that for the native enzyme, increasing efficiency at low substrate concentrations. The L7F mutation is located near the FucO N terminus, within the ribosomal binding region associated with translational initiation. Free-energy calculations for mRNA folding in this region (nucleotides -7 to +37) were weak for the native gene (-4.1 kcal mol(-1)) but weaker still for the fucO mutant (-1.0 to -0.1 kcal mol(-1)). The beneficial L7F mutation in FucO is proposed to increase furfural tolerance by improving gene expression and increasing enzyme effectiveness at low substrate levels.

  20. Oxalic acid overproduction by copper-tolerant brown-rot basidiomycetes on southern yellow pine treated with copper-based preservatives

    Science.gov (United States)

    Carol A. Clausen; Frederick Green

    2003-01-01

    Accumulation of oxalic acid (OA) by brown-rot fungi and precipitation of copper oxalate crystals in wood decayed by copper-tolerant decay fungi has implicated OA in the mechanism of copper tolerance. Understanding the role of OA in copper tolerance is important due to an increasing reliance on copper-based wood preservatives. In this study, four copper-tolerant brown-...

  1. Genome-wide Escherichia coli stress response and improved tolerance towards industrially relevant chemicals

    DEFF Research Database (Denmark)

    Rau, Martin Holm; Calero Valdayo, Patricia; Lennen, Rebecca

    2016-01-01

    Economically viable biobased production of bulk chemicals and biofuels typically requires high product titers. During microbial bioconversion this often leads to product toxicity, and tolerance is therefore a critical element in the engineering of production strains. Here, a systems biology...... approach was employed to understand the chemical stress response of Escherichia coli, including a genome-wide screen for mutants with increased fitness during chemical stress. Twelve chemicals with significant production potential were selected, consisting of organic solvent-like chemicals (butanol......, hydroxy-γ-butyrolactone, 1,4-butanediol, furfural), organic acids (acetate, itaconic acid, levulinic acid, succinic acid), amino acids (serine, threonine) and membrane-intercalating chemicals (decanoic acid, geraniol). The transcriptional response towards these chemicals revealed large overlaps...

  2. Assessment of toxicity on chelating agent DTPA (diethylenetriaminepentaacetic acid)

    International Nuclear Information System (INIS)

    Fukuda, Satoshi

    1989-01-01

    DTPA (diethylenetriaminepentaacetic acid) is a very important chelating agent to decorporate the radionuclides such as plutonium and americium from human body. However, before DTPA will be administered to humans, the toxicity should be clarified. This report described the summary on data of DTPA toxicities obtained from animal experiments and assessment on the safety for humans, based on the results that compared their data among animal species. In short, Ca-DTPA is less toxic than Zn-DTPA when it is injected intravenously, while Zn-DTPA is less toxic than Ca-DTPA when it is administered orally. Both DTPAs acted on the serum calcium metabolism and induced the functional damages of cardiovascular system. Particularly, it is stressed that Zn-DTPA by intravenous injection occurred the heart failure, increases of blood pressure and pulse with hypocalcemia in even normal rats and beagle dogs. Other side effects by both DTPAs were also observed in the intestine, liver, kidney and bone. It is estimated that there are almost no species differences on DTPA toxicity between animals and humans. As a result, it is concluded that DTPA should be used very carefully for humans, with reference to the results obtained from animal experiments. (author) 61 refs

  3. Assessment of toxicity on chelating agent DTPA (diethylenetriaminepentaacetic acid)

    Energy Technology Data Exchange (ETDEWEB)

    Fukuda, Satoshi (National Inst. of Radiological Sciences, Chiba (Japan))

    1989-09-01

    DTPA (diethylenetriaminepentaacetic acid) is a very important chelating agent to decorporate the radionuclides such as plutonium and americium from human body. However, before DTPA will be administered to humans, the toxicity should be clarified. This report described the summary on data of DTPA toxicities obtained from animal experiments and assessment on the safety for humans, based on the results that compared their data among animal species. In short, Ca-DTPA is less toxic than Zn-DTPA when it is injected intravenously, while Zn-DTPA is less toxic than Ca-DTPA when it is administered orally. Both DTPAs acted on the serum calcium metabolism and induced the functional damages of cardiovascular system. Particularly, it is stressed that Zn-DTPA by intravenous injection occurred the heart failure, increases of blood pressure and pulse with hypocalcemia in even normal rats and beagle dogs. Other side effects by both DTPAs were also observed in the intestine, liver, kidney and bone. It is estimated that there are almost no species differences on DTPA toxicity between animals and humans. As a result, it is concluded that DTPA should be used very carefully for humans, with reference to the results obtained from animal experiments. (author) 61 refs.

  4. Biofilm-forming bacteria with varying tolerance to peracetic acid from a paper machine.

    Science.gov (United States)

    Rasimus, Stiina; Kolari, Marko; Rita, Hannu; Hoornstra, Douwe; Salkinoja-Salonen, Mirja

    2011-09-01

    Biofilms cause runnability problems in paper machines and are therefore controlled with biocides. Peracetic acid is usually effective in preventing bulky biofilms. This study investigated the microbiological status of a paper machine where low concentrations (≤ 15 ppm active ingredient) of peracetic acid had been used for several years. The paper machine contained a low amount of biofilms. Biofilm-forming bacteria from this environment were isolated and characterized by 16S rRNA gene sequencing, whole-cell fatty acid analysis, biochemical tests, and DNA fingerprinting. Seventy-five percent of the isolates were identified as members of the subclades Sphingomonas trueperi and S. aquatilis, and the others as species of the genera Burkholderia (B. cepacia complex), Methylobacterium, and Rhizobium. Although the isolation media were suitable for the common paper machine biofoulers Deinococcus, Meiothermus, and Pseudoxanthomonas, none of these were found, indicating that peracetic acid had prevented their growth. Spontaneous, irreversible loss of the ability to form biofilm was observed during subculturing of certain isolates of the subclade S. trueperi. The Sphingomonas isolates formed monoculture biofilms that tolerated peracetic acid at concentrations (10 ppm active ingredient) used for antifouling in paper machines. High pH and low conductivity of the process waters favored the peracetic acid tolerance of Sphingomonas sp. biofilms. This appears to be the first report on sphingomonads as biofilm formers in warm water using industries.

  5. Time-dependent uptake and toxicity of nickel to Enchytraeus crypticus in the presence of humic acid and fulvic acid

    NARCIS (Netherlands)

    He, Erkai; Qiu, Hao; Qiu, Rongliang; Rentenaar, Charlotte; Devresse, Quentin; Van Gestel, Cornelis A.M.

    2017-01-01

    The present study aimed to investigate the influence of different fractions of dissolved organic carbon (DOC) on the uptake and toxicity of nickel (Ni) in the soil invertebrate Enchytraeus crypticus after different exposure times. The addition of DOC as humic acid or fulvic acid significantly

  6. The acid tolerance response and pH adaptation of Enterococcus faecalis in extract of lime Citrus aurantiifolia from Aceh Indonesia.

    Science.gov (United States)

    Mubarak, Zaki; Soraya, Cut

    2018-01-01

    Background:  The objective of the present study was to evaluate the acid tolerance response and pH adaptation when Enterococcus faecalis interacted with extract of lime ( Citrus aurant iifolia ). Methods : We used E. faecalis ATCC 29212 and lime extract from Aceh, Indonesia. The microbe was analyzed for its pH adaptation, acid tolerance response, and adhesion assay using a light microscope with a magnification of x1000. Further, statistical tests were performed to analyze both correlation and significance of the acid tolerance and pH adaptation as well as the interaction activity. Results : E. faecalis was able to adapt to a very acidic environment (pH 2.9), which was characterized by an increase in its pH (reaching 4.2) at all concentrations of the lime extract (p lime extract based on spectrophotometric data (595 nm) (p lime extract was relatively stable within 6 up to 12 hours (p 0.05) based on the mass profiles of its interaction activity. Conclusions : E. faecalis can adapt to acidic environments (pH 2.9-4.2); it is also able to tolerate acid generated by Citrus auranti ifolia extract, revealing a stable interaction in the first 6-12 hours.

  7. Influence of salicylic acid on in vitro propagation and salt tolerance ...

    African Journals Online (AJOL)

    Salicylic acid (SA) has been reported to improve in vitro regeneration as well as induce abiotic stress tolerance in plants. The effects of varying SA concentrations (0, 0.5, and 1 mM) on in vitro shoot apices of two Hibiscus species, Hibiscus moscheutos (cv 'Luna Red') and Hibiscus acetosella, grown under various salt ...

  8. GID1 modulates stomatal response and submergence tolerance involving abscisic acid and gibberellic acid signaling in rice.

    Science.gov (United States)

    Du, Hao; Chang, Yu; Huang, Fei; Xiong, Lizhong

    2015-11-01

    Plant responses to abiotic stresses are coordinated by arrays of growth and developmental programs. Gibberellic acid (GA) and abscisic acid (ABA) play critical roles in the developmental programs and environmental responses, respectively, through complex signaling and metabolism networks. However, crosstalk between the two phytohormones in stress responses remains largely unknown. In this study, we report that GIBBERELLIN-INSENSITIVE DWARF 1 (GID1), a soluble receptor for GA, regulates stomatal development and patterning in rice (Oryza sativa L.). The gid1 mutant showed impaired biosynthesis of endogenous ABA under drought stress conditions, but it exhibited enhanced sensitivity to exogenous ABA. Scanning electron microscope and infrared thermal image analysis indicated an increase in the stomatal conductance in the gid1 mutant under drought conditions. Interestingly, the gid1 mutant had increased levels of chlorophyll and carbohydrates under submergence conditions, and showed enhanced reactive oxygen species (ROS)-scavenging ability and submergence tolerance compared with the wild-type. Further analyses suggested that the function of GID1 in submergence responses is partially dependent on ABA, and GA signaling by GID1 is involved in submergence tolerance by modulating carbohydrate consumption. Taken together, these findings suggest GID1 plays distinct roles in stomatal response and submergence tolerance through both the ABA and GA signaling pathways in rice. © 2014 Institute of Botany, Chinese Academy of Sciences.

  9. Overexpression of the tonoplast aquaporin AtTIP5;1 conferred tolerance to boron toxicity in Arabidopsis.

    Science.gov (United States)

    Pang, Yongqi; Li, Lijuan; Ren, Fei; Lu, Pingli; Wei, Pengcheng; Cai, Jinghui; Xin, Lingguo; Zhang, Juan; Chen, Jia; Wang, Xuechen

    2010-06-01

    Boron (B) toxicity to plants is responsible for low crop productivity in many regions of the world. Here we report a novel and effective means to alleviate the B toxicity to plants under high B circumstance. Functional characterization of AtTIP5;1, an aquaporin gene, revealed that overexpression of AtTIP5;1 (OxAtTIP5;1) in Arabidopsis significantly increased its tolerance to high B toxicity. Compared to wild-type plants, OxAtTIP5;1 plants exhibited longer hypocotyls, accelerated development, increased silique production under high B treatments. GUS staining and quantitative RT-PCR (qRT-PCR) results demonstrated that the expression of AtTIP5;1 was induced by high B concentration treatment. Subcellular localization analysis revealed that the AtTIP5;1-GFP fusion protein was localized on the tonoplast membrane, which was consistent with the prediction based on bioinformatics. Taken together, our results suggest that AtTIP5;1 is involved in B transport pathway possibly via vacuolar compartmentation for B, and that overexpression of AtTIP5;1 in plants may provide an effective way to overcome the problem resulting from high B concentration toxicity. Copyright 2010 Institute of Genetics and Developmental Biology and the Genetics Society of China. Published by Elsevier Ltd. All rights reserved.

  10. Identification of a STOP1-like protein in Eucalyptus that regulates transcription of Al tolerance genes.

    Science.gov (United States)

    Sawaki, Yoshiharu; Kobayashi, Yuriko; Kihara-Doi, Tomonori; Nishikubo, Nobuyuki; Kawazu, Tetsu; Kobayashi, Masatomo; Kobayashi, Yasufumi; Iuchi, Satoshi; Koyama, Hiroyuki; Sato, Shigeru

    2014-06-01

    Tolerance to soil acidity is an important trait for eucalyptus clones that are introduced to commercial forestry plantations in pacific Asian countries, where acidic soil is dominant in many locations. A conserved transcription factor regulating aluminum (Al) and proton (H⁺) tolerance in land-plant species, STOP1 (SENSITIVE TOPROTON RHIZOTOXICITY 1)-like protein, was isolated by polymerase chain reaction-based cloning, and then suppressed by RNA interference in hairy roots produced by Agrobacterium rhizogenes-mediated transformation. Eucalyptus STOP1-like protein complemented proton tolerance in an Arabidopsis thaliana stop1-mutant, and localized to the nucleus in a transient assay of a green fluorescent protein fusion protein expressed in tobacco leaves by Agrobacterium tumefaciens-mediated transformation. Genes encoding a citrate transporting MULTIDRUGS AND TOXIC COMPOUND EXTRUSION protein and an orthologue of ALUMINUM SENSITIVE 3 were suppressed in transgenic hairy roots in which the STOP1 orthologue was knocked down. In summary, we identified a series of genes for Al-tolerance in eucalyptus, including a gene for STOP1-like protein and the Al-tolerance genes it regulates. These genes may be useful for molecular breeding and genomic selection of elite clones to introduce into acid soil regions. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  11. Impact of desiccation and heat exposure stress on Salmonella tolerance to acidic conditions.

    Science.gov (United States)

    Richardson, Kurt E; Cox, Nelson A; Cosby, Douglas E; Berrang, Mark E

    2018-02-01

    In a recent study, the pH of commonly used Salmonella pre-enrichment media became acidic (pH 4.0 to 5.0) when feed or feed ingredients were incubated for 24 h. Acidic conditions have been reported to injure or kill Salmonella. In this study, cultures of four known feed isolates (S. montevideo, S. senftenberg, S. tennessee, and S. schwarzengrund) and four important processing plant isolates (S. typhimurium, S. enteritidis, S. infantis, and S. heidelberg) were grown on meat and bone meal and later subjected to desiccation and heat exposure to stress the microorganism. The impact of stress on the isolates ability to survive in acidic conditions ranging from pH 4.0 to 7.0 was compared to the non-stressed isolate. Cell injury was determined on xylose lysine tergitol 4 (XLT4) and cell death determined on nutrient agar (NA). When measured by cell death in non-stressed Salmonella, S. typhimurium was the most acid tolerant and S. heidelberg was the most acid sensitive whereas in stressed Salmonella, S. senftenberg was the most acid tolerant and S. tennessee was the most acid sensitive. The pH required to cause cell injury varied among isolates. With some isolates, the pH required for 50% cell death and 50% cell injury was similar. In other isolates, cell injury occurred at a more neutral pH. These findings suggest that the pH of pre-enrichment media may influence the recovery and bias the serotype of Salmonella recovered from feed during pre-enrichment.

  12. Screening of faba bean (Vicia faba L. accessions to acidity and aluminium stresses

    Directory of Open Access Journals (Sweden)

    Kiflemariam Y. Belachew

    2017-02-01

    Full Text Available Background Faba bean is an important starch-based protein crop produced worldwide. Soil acidity and aluminium toxicity are major abiotic stresses affecting its production, so in regions where soil acidity is a problem, there is a gap between the potential and actual productivity of the crop. Hence, we set out to evaluate acidity and aluminium tolerance in a range of faba bean germplasm using solution culture and pot experiments. Methods A set of 30 accessions was collected from regions where acidity and aluminium are or are not problems. The accessions were grown in solution culture and a subset of 10 was grown first in peat and later in perlite potting media. In solution culture, morphological parameters including taproot length, root regrowth and root tolerance index were measured, and in the pot experiments the key measurements were taproot length, plant biomass, chlorophyll concentration and stomatal conductance. Result Responses to acidity and aluminium were apparently independent. Accessions Dosha and NC 58 were tolerant to both stress. Kassa and GLA 1103 were tolerant to acidity showing less than 3% reduction in taproot length. Aurora and Messay were tolerant to aluminium. Babylon was sensitive to both, with up to 40% reduction in taproot length from acidity and no detectable recovery from Al3+ challenge. Discussion The apparent independence of the responses to acidity and aluminium is in agreement with the previous research findings, suggesting that crop accessions separately adapt to H+ and Al3+ toxicity as a result of the difference in the nature of soil parent materials where the accession originated. Differences in rankings between experiments were minor and attributable to heterogeneity of seed materials and the specific responses of accessions to the rooting media. Use of perlite as a potting medium offers an ideal combination of throughput, inertness of support medium, access to leaves for detection of their stress responses, and

  13. Plant Adaptation to Acid Soils: The Molecular Basis for Crop Aluminum Resistance.

    Science.gov (United States)

    Kochian, Leon V; Piñeros, Miguel A; Liu, Jiping; Magalhaes, Jurandir V

    2015-01-01

    Aluminum (Al) toxicity in acid soils is a significant limitation to crop production worldwide, as approximately 50% of the world's potentially arable soil is acidic. Because acid soils are such an important constraint to agriculture, understanding the mechanisms and genes conferring resistance to Al toxicity has been a focus of intense research interest in the decade since the last article on crop acid soil tolerance was published in this journal. An impressive amount of progress has been made during that time that has greatly increased our understanding of the diversity of Al resistance genes and mechanisms, how resistance gene expression is regulated and triggered by Al and Al-induced signals, and how the proteins encoded by these genes function and are regulated. This review examines the state of our understanding of the physiological, genetic, and molecular bases for crop Al tolerance, looking at the novel Al resistance genes and mechanisms that have been identified over the past ten years. Additionally, it examines how the integration of molecular and genetic analyses of crop Al resistance is starting to be exploited for the improvement of crop plants grown on acid soils via both molecular-assisted breeding and biotechnology approaches.

  14. Aciduricity and acid tolerance mechanisms of Streptococcus anginosus.

    Science.gov (United States)

    Sasaki, Minoru; Kodama, Yoshitoyo; Shimoyama, Yu; Ishikawa, Taichi; Kimura, Shigenobu

    2018-04-17

    Although Streptococcus anginosus constitutes a proportion of the normal flora of the gastrointestinal and genital tracts, and the oral cavity, it has been reported that S. anginosus infection could be closely associated with abscesses at various body sites, infective endocarditis, and upper gastrointestinal cancers. The colonization in an acidic environment due to the aciduricity of S. anginosus could be the etiology of the systemic infection of the bacteria. To elucidate the aciduricity and acid tolerance mechanisms of the microbe, we examined the viability and growth of S. anginosus under acidic conditions. The viabilities of S. anginosus NCTC 10713 and Streptococcus mutans ATCC 25175 at pH 4.0 showed as being markedly higher than those of Streptococcus sanguinis ATCC 10556, Streptococcus gordonii ATCC 10558, and Streptococcus mitis ATCC 49456; however, the viability was partially inhibited by dicyclohexylcarbodiimide, an H + -ATPase inhibitor, suggesting that H + -ATPase could play a role in the viability of S. anginosus under acidic conditions. In addition, S. anginosus NCTC 10713 could grow at pH 5.0 and showed a marked arginine deiminase (ADI) activity, unlike its ΔarcA mutant, deficient in the gene encoding ADI, and other streptococcal species, which indicated that ADI could also be associated with aciduricity. These results suggest that S. anginosus has significant aciduric properties, which can be attributed to these enzyme activities.

  15. Safety and tolerability of zoledronic acid and other bisphosphonates in osteoporosis management

    Directory of Open Access Journals (Sweden)

    Luca Dalle Carbonare

    2010-08-01

    Full Text Available Luca Dalle Carbonare, Mirko Zanatta, Adriano Gasparetto, Maria Teresa ValentiClinic of Internal Medicine D, Department of Medicine, University of Verona, ItalyAbstract: Bisphosphonates (BPs are widely used in the treatment of postmenopausal ­osteoporosis and other metabolic bone diseases. They bind strongly to bone matrix and reduce bone loss through inhibition of osteoclast activity. They are classified as nitrogen- and non-nitrogen-containing bisphosphonates (NBPs and NNBPs, respectively. The former inhibit farnesyl diphosphate synthase while the latter induce the production of toxic analogs of adenosine triphosphate. These mechanisms of action are associated with different antifracture efficacy, and NBPs show the most powerful action. Moreover, recent evidence indicates that NBPs can also stimulate osteoblast activity and differentiation. Several randomized control trials have demonstrated that NBPs significantly improve bone mineral density, suppress bone turnover, and reduce the incidence of both vertebral and nonvertebral fragility fractures. Although they are generally considered safe, some side effects are reported (esophagitis, acute phase reaction, hypocalcemia, uveitis, and compliance with therapy is often inadequate. In particular, gastrointestinal discomfort is frequent with the older daily oral administrations and is responsible for a high proportion of discontinuation. The most recent weekly and monthly formulations, and in particular the yearly infusion of zoledronate, significantly improve persistence with treatment, and optimize clinical, densitometric, and antifracture outcomes.Keywords: bisphosphonates, osteoporosis, safety, tolerability, zoledronic acid

  16. Effect of Toxicants on Fatty Acid Metabolism in HepG2 Cells

    Directory of Open Access Journals (Sweden)

    David Grünig

    2018-04-01

    Full Text Available Impairment of hepatic fatty acid metabolism can lead to liver steatosis and injury. Testing drugs for interference with hepatic fatty acid metabolism is therefore important. To find out whether HepG2 cells are suitable for this purpose, we investigated the effect of three established fatty acid metabolism inhibitors and of three test compounds on triglyceride accumulation, palmitate metabolism, the acylcarnitine pool and dicarboxylic acid accumulation in the cell supernatant and on ApoB-100 excretion in HepG2 cells. The three established inhibitors [etomoxir, methylenecyclopropylacetic acid (MCPA, and 4-bromocrotonic acid (4-BCA] depleted mitochondrial ATP at lower concentrations than cytotoxicity occurred, suggesting mitochondrial toxicity. They inhibited palmitate metabolism at similar or lower concentrations than ATP depletion, and 4-BCA was associated with cellular fat accumulation. They caused specific changes in the acylcarnitine pattern and etomoxir an increase of thapsic (C18 dicarboxylic acid in the cell supernatant, and did not interfere with ApoB-100 excretion (marker of VLDL export. The three test compounds (amiodarone, tamoxifen, and the cannabinoid WIN 55,212-2 depleted the cellular ATP content at lower concentrations than cytotoxicity occurred. They all caused cellular fat accumulation and inhibited palmitate metabolism at similar or higher concentrations than ATP depletion. They suppressed medium-chain acylcarnitines in the cell supernatant and amiodarone and tamoxifen impaired thapsic acid production. Tamoxifen and WIN 55,212-2 decreased cellular ApoB-100 excretion. In conclusion, the established inhibitors of fatty acid metabolism caused the expected effects in HepG2 cells. HepG cells proved to be useful for the detection of drug-associated toxicities on hepatocellular fatty acid metabolism.

  17. Nanocellulose coated with various free fatty acids can adsorb fumonisin B1, and decrease its toxicity.

    Science.gov (United States)

    Zadeh, Mohammad Hossein Balal; Shahdadi, Hossein

    2015-10-01

    The aim of this study was to evaluate the adsorption and biological properties of nanocellulose coated with free fatty acids (NCCFFAs). At first, nanocellulose was synthesized by acid hydrolysis, and then separately coated with different free fatty acids (FFAs), including lauric acid, alpha linoleic acid, oleic acid, and palmitic acid. Next, the serial concentrations of NCCFFAs (1, 10, 100, and 1000 μg/mL) was separately added to fumonisin B1 (FB1) at 1000 μg/mL, and separately incubated at 37 °C for 1, 2, and 3h. Then, the percentage of adsorption was calculated. In the next experiment, the viability of mouse liver cells was measured when they exposed to serial concentrations of NCCFFAs, FFAs, and FB1. This study showed that the increase of incubation time and concentration of NCCFFAs led to increase of FB1 adsorption. Although FFAs and NCCFFAs had no remarkable toxicity, the high toxicity was observed for FB1. Importantly, the toxicity of FB1 was highly decreased, when incubated together with FFAs or NCCFFAs. These novel adsorbents, NCCFFAs, can be used together with different foodstuffs to remove FB1. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Association and linkage analysis of aluminum tolerance genes in maize.

    Directory of Open Access Journals (Sweden)

    Allison M Krill

    Full Text Available BACKGROUND: Aluminum (Al toxicity is a major worldwide constraint to crop productivity on acidic soils. Al becomes soluble at low pH, inhibiting root growth and severely reducing yields. Maize is an important staple food and commodity crop in acidic soil regions, especially in South America and Africa where these soils are very common. Al exclusion and intracellular tolerance have been suggested as two important mechanisms for Al tolerance in maize, but little is known about the underlying genetics. METHODOLOGY: An association panel of 282 diverse maize inbred lines and three F2 linkage populations with approximately 200 individuals each were used to study genetic variation in this complex trait. Al tolerance was measured as net root growth in nutrient solution under Al stress, which exhibited a wide range of variation between lines. Comparative and physiological genomics-based approaches were used to select 21 candidate genes for evaluation by association analysis. CONCLUSIONS: Six candidate genes had significant results from association analysis, but only four were confirmed by linkage analysis as putatively contributing to Al tolerance: Zea mays AltSB like (ZmASL, Zea mays aluminum-activated malate transporter2 (ALMT2, S-adenosyl-L-homocysteinase (SAHH, and Malic Enzyme (ME. These four candidate genes are high priority subjects for follow-up biochemical and physiological studies on the mechanisms of Al tolerance in maize. Immediately, elite haplotype-specific molecular markers can be developed for these four genes and used for efficient marker-assisted selection of superior alleles in Al tolerance maize breeding programs.

  19. 76 FR 18899 - Indaziflam; Pesticide Tolerances

    Science.gov (United States)

    2011-04-06

    ... were generally observed in the available subchronic and chronic studies. No systemic toxicity was... limited to doses that also caused systemic toxicity in the adult. In the rat developmental toxicity study... to enforce the tolerance expression. The method is able to determine, separately, residues of...

  20. Production of itaconic acid from acetate by engineering acid-tolerant Escherichia coli W.

    Science.gov (United States)

    Noh, Myung Hyun; Lim, Hyun Gyu; Woo, Sung Hwa; Song, Jinyi; Jung, Gyoo Yeol

    2018-03-01

    Utilization of abundant and cheap carbon sources can effectively reduce the production cost and enhance the economic feasibility. Acetate is a promising carbon source to achieve cost-effective microbial processes. In this study, we engineered an Escherichia coli strain to produce itaconic acid from acetate. As acetate is known to inhibit cell growth, we initially screened for a strain with a high tolerance to 10 g/L of acetate in the medium, and the W strain was selected as the host. Subsequently, the WC strain was obtained by overexpression of cad (encoding cis-aconitate decarboxylase) using a synthetic promoter and 5' UTR. However, the WC strain produced only 0.13 g/L itaconic acid because of low acetate uptake. To improve the production, the acetate assimilating pathway and glyoxylate shunt pathway were amplified by overexpression of pathway genes as well as its deregulation. The resulting strain, WCIAG4 produced 3.57 g/L itaconic acid (16.1% of theoretical maximum yield) after 88 hr of fermentation with rapid acetate assimilation. These efforts support that acetate can be a potential feedstock for biochemical production with engineered E. coli. © 2017 Wiley Periodicals, Inc.

  1. High acidity tolerance in lichens with fumarprotocetraric, perlatolic or thamnolic acids is correlated with low pK{sub a1} values of these lichen substances

    Energy Technology Data Exchange (ETDEWEB)

    Hauck, Markus, E-mail: mhauck@gwdg.d [Albrecht von Haller Institute of Plant Sciences, Dept. Plant Ecology, University of Goettingen, Untere Karspuele 2, D-37073 Goettingen (Germany); Juergens, Sascha-Rene [Albrecht von Haller Institute of Plant Sciences, Dept. Plant Ecology, University of Goettingen, Untere Karspuele 2, D-37073 Goettingen (Germany); Huneck, Siegfried [Fliederweg 34a, D-06179 Langenbogen, Saalkreis (Germany); Leuschner, Christoph [Albrecht von Haller Institute of Plant Sciences, Dept. Plant Ecology, University of Goettingen, Untere Karspuele 2, D-37073 Goettingen (Germany)

    2009-10-15

    The depsidone fumarprotocetraric acid as well as the depsides perlatolic and thamnolic acids are lichen secondary metabolites. Their first dissociation constants (pK{sub a1}) in methanol were determined to be 2.7 for perlatolic acid and 2.8 for fumarprotocetraric and thamnolic acids by UV spectroscopy. Lower pK{sub a1} values are, so far, not known from lichen substances. Several lichens producing at least one of these compounds are known for their outstanding tolerance to acidic air pollution. This is demonstrated by evaluating published pH preferences for central European lichens. The low pK{sub a1} values suggest that strong dissociation of the studied lichen substances is a prerequisite for the occurrence of lichens with these compounds on very acidic substrata, as protonated lichen substances of different chemical groups, but not their conjugated bases, are known to shuttle protons into the cytoplasm and thereby apparently damage lichens. - Depsides and depsidones with low pK{sub a1} values occur in highly acidity-tolerant lichens.

  2. The barley MATE gene, HvAACT1, increases citrate efflux and Al3+ tolerance when expressed in wheat and barley

    Science.gov (United States)

    Zhou, Gaofeng; Delhaize, Emmanuel; Zhou, Meixue; Ryan, Peter R.

    2013-01-01

    Background and Aims Aluminium is toxic in acid soils because the soluble Al3+ inhibits root growth. A mechanism of Al3+ tolerance discovered in many plant species involves the release of organic anions from root apices. The Al3+-activated release of citrate from the root apices of Al3+-tolerant genotypes of barley is controlled by a MATE gene named HvAACT1 that encodes a citrate transport protein located on the plasma membrane. The aim of this study was to investigate whether expressing HvAACT1 with a constitutive promoter in barley and wheat can increase citrate efflux and Al3+ tolerance of these important cereal species. Methods HvAACT1 was over-expressed in wheat (Triticum aestivum) and barley (Hordeum vulgare) using the maize ubiquitin promoter. Root apices of transgenic and control lines were analysed for HvAACT1 expression and organic acid efflux. The Al3+ tolerance of transgenic and control lines was assessed in both hydroponic solution and acid soil. Key Results and Conclusions Increased HvAACT1 expression in both cereal species was associated with increased citrate efflux from root apices and enhanced Al3+ tolerance, thus demonstrating that biotechnology can complement traditional breeding practices to increase the Al3+ tolerance of important crop plants. PMID:23798600

  3. Overexpression of BdMATE Gene Improves Aluminum Tolerance in Setaria viridis

    Directory of Open Access Journals (Sweden)

    Ana P. Ribeiro

    2017-06-01

    Full Text Available Acidic soils are distributed worldwide, predominantly in tropical and subtropical areas, reaching around 50% of the arable soil. This type of soil strongly reduces crop production, mainly because of the presence of aluminum, which has its solubility increased at low pH levels. A well-known physiological mechanism used by plants to cope with Al stress involves activation of membrane transporters responsible for organic acid anions secretion from the root apex to the rhizosphere, which chelate Al, preventing its absorption by roots. In sorghum, a membrane transporter gene belonging to multidrug and toxic compound extrusion (MATE family was identified and characterized as an aluminum-activated citrate transporter gene responsible for Al tolerance in this crop. Setaria viridis is an emerging model for C4 species and it is an important model to validate some genes for further C4 crops transformation, such as sugarcane, maize, and wheat. In the present work, Setaria viridis was used as a model plant to overexpress a newly identified MATE gene from Brachypodium distachyon (BdMATE, closely related to SbMATE, for aluminum tolerance assays. Transgenic S. viridis plants overexpressing a BdMATE presented an improved Al tolerance phenotype, characterized by sustained root growth and exclusion of aluminum from the root apex in transgenic plants, as confirmed by hematoxylin assay. In addition, transgenic plants showed higher root citrate exudation into the rhizosphere, suggesting that Al tolerance improvement in these plants could be related to the chelation of the metal by the organic acid anion. These results suggest that BdMATE gene can be used to transform C4 crops of economic importance with improved aluminum tolerance.

  4. Differences in acid tolerance between Bifidobacterium breve BB8 and its acid-resistant derivative B. breve BB8dpH, revealed by RNA-sequencing and physiological analysis.

    Science.gov (United States)

    Yang, Xu; Hang, Xiaomin; Tan, Jing; Yang, Hong

    2015-06-01

    Bifidobacteria are common inhabitants of the human gastrointestinal tract, and their application has increased dramatically in recent years due to their health-promoting effects. The ability of bifidobacteria to tolerate acidic environments is particularly important for their function as probiotics because they encounter such environments in food products and during passage through the gastrointestinal tract. In this study, we generated a derivative, Bifidobacterium breve BB8dpH, which displayed a stable, acid-resistant phenotype. To investigate the possible reasons for the higher acid tolerance of B. breve BB8dpH, as compared with its parental strain B. breve BB8, a combined transcriptome and physiological approach was used to characterize differences between the two strains. An analysis of the transcriptome by RNA-sequencing indicated that the expression of 121 genes was increased by more than 2-fold, while the expression of 146 genes was reduced more than 2-fold, in B. breve BB8dpH. Validation of the RNA-sequencing data using real-time quantitative PCR analysis demonstrated that the RNA-sequencing results were highly reliable. The comparison analysis, based on differentially expressed genes, suggested that the acid tolerance of B. breve BB8dpH was enhanced by regulating the expression of genes involved in carbohydrate transport and metabolism, energy production, synthesis of cell envelope components (peptidoglycan and exopolysaccharide), synthesis and transport of glutamate and glutamine, and histidine synthesis. Furthermore, an analysis of physiological data showed that B. breve BB8dpH displayed higher production of exopolysaccharide and lower H(+)-ATPase activity than B. breve BB8. The results presented here will improve our understanding of acid tolerance in bifidobacteria, and they will lead to the development of new strategies to enhance the acid tolerance of bifidobacterial strains. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. 76 FR 50893 - Fluoxastrobin; Pesticide Tolerances

    Science.gov (United States)

    2011-08-17

    ... 30 days)..... None: There were no systemic or dermal toxicity findings in a 28-day dermal toxicity... to enforce the tolerance expression. Method No. 00604 is available for plant commodities and Method...

  6. Tolerância à toxicidade de alumínio de linhagens e híbridos de milho em solução nutritiva Aluminium toxicity tolerance of maize inbred lines and hybrids evaluated in nutrient solution

    Directory of Open Access Journals (Sweden)

    Maria Elisa Ayres Guidetti Zagatto Paterniani

    2002-04-01

    Full Text Available Avaliaram-se dez linhagens de milho do programa de melhoramento do Instituto Agronômico (IAC, em cruzamentos dialélicos e os 45 híbridos resultantes quanto à tolerância à toxicidade de alumínio em laboratório. Estimou-se a tolerância pelo comprimento líquido da radícula (CLR de plântulas em solução nutritiva contendo 4,5 mg.L-1 de alumínio, em ensaio sob delineamento experimental de blocos casualizados com quatro repetições, utilizando-se como padrões linhagens sensível e tolerante de IAC Taiúba. Apresentam-se, ainda, resultados da produtividade desses cruzamentos em ensaios de campo. Identificaram-se linhagens que constituem fontes de tolerância (L 06 e L 09 e híbridos tolerantes à toxicidade de alumínio com elevada produtividade em solos corrigidos. Na análise dialélica, o desdobramento dos efeitos de tratamentos, em capacidade geral (CGC e específica (CEC de combinação, indicou a predominância de efeitos aditivos na manifestação da tolerância ao alumínio tóxico. Obtiveram-se elevados valores de heterose, indicando a existência de interações não alélicas na manifestação do CLR. O híbrido HS 10X11 (denominado IAC 21 aliou alta produtividade e tolerância ao alumínio, apresentando a maior estimativa da CEC para CLR.Ten inbred lines and the resulting forty-five hybrids from the maize IAC breeding program were evaluated for Al tolerance by the nutrient solution technique. Net radicle lengths (CLR of plants grown with 4.5 mg.L-1 were used to estimate Al tolerance. The experimental design was randomized complete block with four replications, and it was used two divergent inbred lines IAC Taiuba as control for Al tolerance and sensitivity, respectively. In addition to these data, it is shown also the grain yield of the same materials from field plots. It was identified two inbred lines (L 06 and L 09 as Al tolerance sources and hybrids potentially adapted to acid soil conditions (tolerant to Al toxicity

  7. SALT TOLERANCE OF CROP PLANTS

    Directory of Open Access Journals (Sweden)

    Hamdia, M. A

    2010-09-01

    Full Text Available Several environmental factors adversely affect plant growth and development and final yield performance of a crop. Drought, salinity, nutrient imbalances (including mineral toxicities and deficiencies and extremes of temperature are among the major environmental constraints to crop productivity worldwide. Development of crop plants with stress tolerance, however, requires, among others, knowledge of the physiological mechanisms and genetic controls of the contributing traits at different plant developmental stages. In the past 2 decades, biotechnology research has provided considerable insights into the mechanism of biotic stress tolerance in plants at the molecular level. Furthermore, different abiotic stress factors may provoke osmotic stress, oxidative stress and protein denaturation in plants, which lead to similar cellular adaptive responses such as accumulation of compatible solutes, induction of stress proteins, and acceleration of reactive oxygen species scavenging systems. Recently, the authores try to improve plant tolerance to salinity injury through either chemical treatments (plant hormones, minerals, amino acids, quaternary ammonium compounds, polyamines and vitamins or biofertilizers treatments (Asymbiotic nitrogen-fixing bacteria, symbiotic nitrogen-fixing bacteria and mycorrhiza or enhanced a process used naturally by plants to minimise the movement of Na+ to the shoot, using genetic modification to amplify the process, helping plants to do what they already do - but to do it much better."

  8. Bile salt tolerance of Lactococcus lactis is enhanced by expression of bile salt hydrolase thereby producing less bile acid in the cells.

    Science.gov (United States)

    Bi, Jie; Liu, Song; Du, Guocheng; Chen, Jian

    2016-04-01

    Changes of bile salt tolerance, morphology and amount of bile acid within cells were studied to evaluate the exact effects of bile salt hydrolase (BSH) on bile salt tolerance of microorganism. The effect of BSHs on the bile salt tolerance of Lactococcus lactis was examined by expressing two BSHs (BSH1 and BSH2). Growth of L. lactis expressing BSH1 or BSH2 was better under bile salt stress compared to wild-type L. lactis. As indicated by transmission electron microscopy, bile acids released by the action of BSH induced the formation of micelles around the membrane surface of cells subject to conjugated bile salt stress. A similar micelle containing bile acid was observed in the cytoplasm by liquid chromatography-mass spectrometry. BSH1 produced fewer bile acid micelles in the cytoplasm and achieved better cell growth of L. lactis compared to BSH2. Expression of BSH improved bile salt tolerance of L. lactis but excessive production by BSH of bile acid micelles in the cytoplasm inhibited cell growth.

  9. Expression of PprI from Deinococcus radiodurans Improves Lactic Acid Production and Stress Tolerance in Lactococcus lactis.

    Directory of Open Access Journals (Sweden)

    Xiangrong Dong

    Full Text Available PprI is a general switch protein that regulates the expression of certain proteins involved in pathways of cellular resistance in the extremophilic bacterium Deinococcus radiodurans. In this study, we transformed pprI into Lactococcus lactis strain MG1363 using the lactococcal shuttle vector pMG36e and investigated its effects on the tolerance and lactic acid production of L. lactis while under stress. PprI was stably expressed in L. lactis as confirmed by western blot assays. L. lactis expressing PprI exhibited significantly improved resistance to oxidative stress and high osmotic pressure. This enhanced cellular tolerance to stressors might be due to the regulation of resistance-related genes (e.g., recA, recO, sodA, and nah by pprI. Moreover, transformed L. lactis demonstrated increased lactic acid production, attributed to enhanced lactate dehydrogenase activity. These results suggest that pprI can improve the tolerance of L. lactis to environmental stresses, and this transformed bacterial strain is a promising candidate for industrial applications of lactic acid production.

  10. Expression of PprI from Deinococcus radiodurans Improves Lactic Acid Production and Stress Tolerance in Lactococcus lactis.

    Science.gov (United States)

    Dong, Xiangrong; Tian, Bing; Dai, Shang; Li, Tao; Guo, Linna; Tan, Zhongfang; Jiao, Zhen; Jin, Qingsheng; Wang, Yanping; Hua, Yuejin

    2015-01-01

    PprI is a general switch protein that regulates the expression of certain proteins involved in pathways of cellular resistance in the extremophilic bacterium Deinococcus radiodurans. In this study, we transformed pprI into Lactococcus lactis strain MG1363 using the lactococcal shuttle vector pMG36e and investigated its effects on the tolerance and lactic acid production of L. lactis while under stress. PprI was stably expressed in L. lactis as confirmed by western blot assays. L. lactis expressing PprI exhibited significantly improved resistance to oxidative stress and high osmotic pressure. This enhanced cellular tolerance to stressors might be due to the regulation of resistance-related genes (e.g., recA, recO, sodA, and nah) by pprI. Moreover, transformed L. lactis demonstrated increased lactic acid production, attributed to enhanced lactate dehydrogenase activity. These results suggest that pprI can improve the tolerance of L. lactis to environmental stresses, and this transformed bacterial strain is a promising candidate for industrial applications of lactic acid production.

  11. 40 CFR 180.1023 - Propanoic acid; exemptions from the requirement of a tolerance.

    Science.gov (United States)

    2010-07-01

    ...) Propanoic acid is exempt from the requirement of a tolerance for residues in or on cattle, meat; cattle, meat byproducts; goat, meat; goat, meat byproducts; hog, meat; hog meat byproducts; horse, meat; horse, meat byproducts; sheep, meat; sheep meat byproducts; and, poultry, fat; poultry meat; poultry meat...

  12. Tolerance and safety of superficial chemical peeling with salicylic acid in various facial dermatoses

    Directory of Open Access Journals (Sweden)

    Iqbal Zafar

    2005-03-01

    Full Text Available BACKGROUND: Chemical peeling is a skin-wounding procedure that may have some potentially undesirable side-effects. AIMS: The present study is directed towards safety concerns associated with superficial chemical peeling with salicylic acid in various facial dermatoses. METHODS: The study was a non-comparative and a prospective one. Two hundred and sixty-eight patients of either sex, aged between 10 to 60 years, undergoing superficial chemical peeling for various facial dermatoses (melasma, acne vulgaris, freckles, post-inflammatory scars/pigmentation, actinic keratoses, plane facial warts, etc. were included in the study. Eight weekly peeling sessions were carried out in each patient. Tolerance to the procedure and any undesirable effects noted during these sessions were recorded. RESULTS: Almost all the patients tolerated the procedure well. Mild discomfort, burning, irritation and erythema were quite common but the incidence of major side-effects was very low and these too, were easily manageable. There was no significant difference in the incidence of side-effects between facial dermatoses (melasma, acne and other pigmentary disorders. CONCLUSION: Chemical peeling with salicylic acid is a well tolerated and safe treatment modality in many superficial facial dermatoses.

  13. Large-scale proteome analysis of abscisic acid and ABSCISIC ACID INSENSITIVE3-dependent proteins related to desiccation tolerance in Physcomitrella patens

    International Nuclear Information System (INIS)

    Yotsui, Izumi; Serada, Satoshi; Naka, Tetsuji; Saruhashi, Masashi; Taji, Teruaki; Hayashi, Takahisa; Quatrano, Ralph S.; Sakata, Yoichi

    2016-01-01

    Desiccation tolerance is an ancestral feature of land plants and is still retained in non-vascular plants such as bryophytes and some vascular plants. However, except for seeds and spores, this trait is absent in vegetative tissues of vascular plants. Although many studies have focused on understanding the molecular basis underlying desiccation tolerance using transcriptome and proteome approaches, the critical molecular differences between desiccation tolerant plants and non-desiccation plants are still not clear. The moss Physcomitrella patens cannot survive rapid desiccation under laboratory conditions, but if cells of the protonemata are treated by the phytohormone abscisic acid (ABA) prior to desiccation, it can survive 24 h exposure to desiccation and regrow after rehydration. The desiccation tolerance induced by ABA (AiDT) is specific to this hormone, but also depends on a plant transcription factor ABSCISIC ACID INSENSITIVE3 (ABI3). Here we report the comparative proteomic analysis of AiDT between wild type and ABI3 deleted mutant (Δabi3) of P. patens using iTRAQ (Isobaric Tags for Relative and Absolute Quantification). From a total of 1980 unique proteins that we identified, only 16 proteins are significantly altered in Δabi3 compared to wild type after desiccation following ABA treatment. Among this group, three of the four proteins that were severely affected in Δabi3 tissue were Arabidopsis orthologous genes, which were expressed in maturing seeds under the regulation of ABI3. These included a Group 1 late embryogenesis abundant (LEA) protein, a short-chain dehydrogenase, and a desiccation-related protein. Our results suggest that at least three of these proteins expressed in desiccation tolerant cells of both Arabidopsis and the moss are very likely to play important roles in acquisition of desiccation tolerance in land plants. Furthermore, our results suggest that the regulatory machinery of ABA- and ABI3-mediated gene expression for desiccation

  14. Large-scale proteome analysis of abscisic acid and ABSCISIC ACID INSENSITIVE3-dependent proteins related to desiccation tolerance in Physcomitrella patens

    Energy Technology Data Exchange (ETDEWEB)

    Yotsui, Izumi, E-mail: izumi.yotsui@riken.jp [Department of BioScience, Tokyo University of Agriculture 1-1-1 Sakuragaoka, Setagayaku, Tokyo, 156-8502 (Japan); Serada, Satoshi, E-mail: serada@nibiohn.go.jp [Laboratory of Immune Signal, National Institute of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, Osaka, 567-0085 (Japan); Naka, Tetsuji, E-mail: tnaka@nibiohn.go.jp [Laboratory of Immune Signal, National Institute of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, Osaka, 567-0085 (Japan); Saruhashi, Masashi, E-mail: s13db001@mail.saitama-u.ac.jp [Department of BioScience, Tokyo University of Agriculture 1-1-1 Sakuragaoka, Setagayaku, Tokyo, 156-8502 (Japan); Taji, Teruaki, E-mail: t3teruak@nodai.ac.jp [Department of BioScience, Tokyo University of Agriculture 1-1-1 Sakuragaoka, Setagayaku, Tokyo, 156-8502 (Japan); Hayashi, Takahisa, E-mail: t4hayash@nodai.ac.jp [Department of BioScience, Tokyo University of Agriculture 1-1-1 Sakuragaoka, Setagayaku, Tokyo, 156-8502 (Japan); Quatrano, Ralph S., E-mail: rsq@wustl.edu [Department of Biology, Washington University in St. Louis, St. Louis, MO, 63130-4899 (United States); Sakata, Yoichi, E-mail: sakata@nodai.ac.jp [Department of BioScience, Tokyo University of Agriculture 1-1-1 Sakuragaoka, Setagayaku, Tokyo, 156-8502 (Japan)

    2016-03-18

    Desiccation tolerance is an ancestral feature of land plants and is still retained in non-vascular plants such as bryophytes and some vascular plants. However, except for seeds and spores, this trait is absent in vegetative tissues of vascular plants. Although many studies have focused on understanding the molecular basis underlying desiccation tolerance using transcriptome and proteome approaches, the critical molecular differences between desiccation tolerant plants and non-desiccation plants are still not clear. The moss Physcomitrella patens cannot survive rapid desiccation under laboratory conditions, but if cells of the protonemata are treated by the phytohormone abscisic acid (ABA) prior to desiccation, it can survive 24 h exposure to desiccation and regrow after rehydration. The desiccation tolerance induced by ABA (AiDT) is specific to this hormone, but also depends on a plant transcription factor ABSCISIC ACID INSENSITIVE3 (ABI3). Here we report the comparative proteomic analysis of AiDT between wild type and ABI3 deleted mutant (Δabi3) of P. patens using iTRAQ (Isobaric Tags for Relative and Absolute Quantification). From a total of 1980 unique proteins that we identified, only 16 proteins are significantly altered in Δabi3 compared to wild type after desiccation following ABA treatment. Among this group, three of the four proteins that were severely affected in Δabi3 tissue were Arabidopsis orthologous genes, which were expressed in maturing seeds under the regulation of ABI3. These included a Group 1 late embryogenesis abundant (LEA) protein, a short-chain dehydrogenase, and a desiccation-related protein. Our results suggest that at least three of these proteins expressed in desiccation tolerant cells of both Arabidopsis and the moss are very likely to play important roles in acquisition of desiccation tolerance in land plants. Furthermore, our results suggest that the regulatory machinery of ABA- and ABI3-mediated gene expression for desiccation

  15. How Saccharomyces cerevisiae copes with toxic metals and metalloids.

    Science.gov (United States)

    Wysocki, Robert; Tamás, Markus J

    2010-11-01

    Toxic metals and metalloids are widespread in nature and can locally reach fairly high concentrations. To ensure cellular protection and survival in such environments, all organisms possess systems to evade toxicity and acquire tolerance. This review provides an overview of the molecular mechanisms that contribute to metal toxicity, detoxification and tolerance acquisition in budding yeast Saccharomyces cerevisiae. We mainly focus on the metals/metalloids arsenic, cadmium, antimony, mercury, chromium and selenium, and emphasize recent findings on sensing and signalling mechanisms and on the regulation of tolerance and detoxification systems that safeguard cellular and genetic integrity.

  16. Diversity and dynamics of rhizobial populations in acidic soils with aluminum and manganese toxicities in forest zones

    Directory of Open Access Journals (Sweden)

    Linda Manet

    2016-12-01

    Full Text Available Soil acidity in the humid forest zones of Cameroon is one of the major constraints to agricultural productivity. This study was carried out to assess the rhizobial communities of two acidic soils; with aluminum toxicity (Nkoemvone and manganese toxicity (Nkolbisson for their potential to improve soil fertility in Cameroon. These two soils were used to inoculate to the host plants cowpea and siratro. At harvest, 120 rhizobacterial isolates were extracted from the nodules of these two hosts and subjected to morphological characterization. Twenty isolates per site were selected and analyzed for their 16S rDNA genetic profile following restrictions with endonucleases of PCR products and electrophoresis. The restriction patterns of the 16S rDNA of the 40 isolates showed 12 different profiles. Eight occurred in both types of soils, where as 4 were specific to the manganese-toxic-acidic soil. While the Al toxicity reduced the nodulation and growth of both plants, the Mn toxicity mostly affect the cowpea. This study ascertained the distribution of rhizobia based on soil characteristics. Further molecular analyses would allow the identification of the isolates recovered as well as their phylogenetical relationships.

  17. Mixture toxicity of the antiviral drug Tamiflu (oseltamivir ethylester) and its active metabolite oseltamivir acid

    Energy Technology Data Exchange (ETDEWEB)

    Escher, Beate I., E-mail: b.escher@uq.edu.au [University of Queensland, National Research Centre for Environmental Toxicology (Entox), 39 Kessels Rd, Brisbane, Qld 4108 (Australia); Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Duebendorf (Switzerland); Bramaz, Nadine; Lienert, Judit; Neuwoehner, Judith [Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Duebendorf (Switzerland); Straub, Juerg Oliver [F.Hoffmann-La Roche Ltd, Corporate Safety, Health and Environmental Protection, 4070 Basel (Switzerland)

    2010-02-18

    Tamiflu (oseltamivir ethylester) is an antiviral agent for the treatment of influenza A and B. The pro-drug Tamiflu is converted in the human body to the pharmacologically active metabolite, oseltamivir acid, with a yield of 75%. Oseltamivir acid is indirectly photodegradable and slowly biodegradable in sewage works and sediment/water systems. A previous environmental risk assessment has concluded that there is no bioaccumulation potential of either of the compounds. However, little was known about the ecotoxicity of the metabolite. Ester hydrolysis typically reduces the hydrophobicity and thus the toxicity of a compound. In this case, a zwitterionic, but overall neutral species is formed from the charged parent compound. If the speciation and predicted partitioning into biological membranes is considered, the metabolite may have a relevant contribution to the overall toxicity. These theoretical considerations triggered a study to investigate the toxicity of oseltamivir acid (OA), alone and in binary mixtures with its parent compound oseltamivir ethylester (OE). OE and OA were found to be baseline toxicants in the bioluminescence inhibition test with Vibrio fischeri. Their mixture effect lay between predictions for concentration addition and independent action for the mixture ratio excreted in urine and nine additional mixture ratios of OE and OA. In contrast, OE was an order of magnitude more toxic than OA towards algae, with a more pronounced effect when the direct inhibition of photosystem II was used as toxicity endpoint opposed to the 24 h growth rate endpoint. The binary mixtures in this assay yielded experimental mixture effects that agreed with predictions for independent action. This is consistent with the finding that OE exhibits slightly enhanced toxicity, while OA acts as baseline toxicant. Therefore, with respect to mixture classification, the two compounds can be considered as acting according to different modes of toxic action, although there are

  18. Development of acid soils tolerant wheat for Uasin Ngishu and Trans Zoia District of Kenya

    International Nuclear Information System (INIS)

    Karanja, L.; Kinyua, M.G.; Njau, P.N.

    2001-01-01

    The study used three methods to introduce and stabilise genetic variations in acid soil tolerant lines, which included hybridization, introduction and double haploid system. The results showed significant difference among the test lines with R973 line (average yield 0.94 tons/ ha) showing superiority over the other lines. A significant (p<0.05) test weight performance between the tested lines, with the highest test weight of 42.7 gm per 1000 kernel wt for R972, is reported. More work in the development of suitable varieties for acid soils tolerance, with the need for integrated approach with the agronomist, soil scientist, the breeder and pathologists working together is recommended. Characterisation and Marker Assisted Selection as a more suitable method to handle the current situation is suggested

  19. Large-scale proteome analysis of abscisic acid and ABSCISIC ACID INSENSITIVE3-dependent proteins related to desiccation tolerance in Physcomitrella patens.

    Science.gov (United States)

    Yotsui, Izumi; Serada, Satoshi; Naka, Tetsuji; Saruhashi, Masashi; Taji, Teruaki; Hayashi, Takahisa; Quatrano, Ralph S; Sakata, Yoichi

    2016-03-18

    Desiccation tolerance is an ancestral feature of land plants and is still retained in non-vascular plants such as bryophytes and some vascular plants. However, except for seeds and spores, this trait is absent in vegetative tissues of vascular plants. Although many studies have focused on understanding the molecular basis underlying desiccation tolerance using transcriptome and proteome approaches, the critical molecular differences between desiccation tolerant plants and non-desiccation plants are still not clear. The moss Physcomitrella patens cannot survive rapid desiccation under laboratory conditions, but if cells of the protonemata are treated by the phytohormone abscisic acid (ABA) prior to desiccation, it can survive 24 h exposure to desiccation and regrow after rehydration. The desiccation tolerance induced by ABA (AiDT) is specific to this hormone, but also depends on a plant transcription factor ABSCISIC ACID INSENSITIVE3 (ABI3). Here we report the comparative proteomic analysis of AiDT between wild type and ABI3 deleted mutant (Δabi3) of P. patens using iTRAQ (Isobaric Tags for Relative and Absolute Quantification). From a total of 1980 unique proteins that we identified, only 16 proteins are significantly altered in Δabi3 compared to wild type after desiccation following ABA treatment. Among this group, three of the four proteins that were severely affected in Δabi3 tissue were Arabidopsis orthologous genes, which were expressed in maturing seeds under the regulation of ABI3. These included a Group 1 late embryogenesis abundant (LEA) protein, a short-chain dehydrogenase, and a desiccation-related protein. Our results suggest that at least three of these proteins expressed in desiccation tolerant cells of both Arabidopsis and the moss are very likely to play important roles in acquisition of desiccation tolerance in land plants. Furthermore, our results suggest that the regulatory machinery of ABA- and ABI3-mediated gene expression for desiccation

  20. Toxic epidermal necrolysis due to concomitant use of lamotrigine and valproic acid

    Directory of Open Access Journals (Sweden)

    Sukhjot Kaur

    2013-01-01

    Full Text Available Anti-epileptic drugs can be associated with a wide spectrum of cutaneous adverse reactions ranging from simple maculopapular rashes to more severe and life threatening reactions like Stevens-Johnson syndrome and toxic epidermal necrolysis. These rashes are well documented with older antiepileptic drugs like phenytoin, phenobarbitone and carbamazapine. Lamotrigine is a newer, unrelated antiepileptic drug that causes skin rashes in 3-10% of new users. Higher starting dose or rapid escalation, concurrent treatment with valproic acid, and a previous history of a rash with other antiepileptic drugs are well recognized risk factors for lamotrigine related serious rashes. We report two patients with toxic epidermal necrolysis, resulting from concomitant use of lamotrigine and valproic acid. It is emphasized that clinicians adhere to the recommended dosage guidelines and adopt a slow dose titration when initiating treatment with lamotrigine.

  1. Functional toxicity and tolerance patterns of bioavailable Pd(II), Pt(II), and Rh(III) on suspended Saccharomyces cerevisiae cells assayed in tandem by a respirometric biosensor

    Energy Technology Data Exchange (ETDEWEB)

    Frazzoli, Chiara; Mantovani, Alberto [Istituto Superiore di Sanita, Department of Food Safety and Veterinary Public Health and WHO/FAO Collaborating Centre for Veterinary Public Health, Rome (Italy); Dragone, Roberto [Consiglio Nazionale delle Ricerche, Institute for Complex Systems, Rome (Italy); Massimi, Cristiana [Istituto Superiore di Sanita, Department of Food Safety and Veterinary Public Health and WHO/FAO Collaborating Centre for Veterinary Public Health, Rome (Italy); University ' La Sapienza' , Department of Chemistry, Rome (Italy); Campanella, Luigi [University ' La Sapienza' , Department of Chemistry, Rome (Italy)

    2007-12-15

    Toxicological implications of exposure to bioavailable platinum group metals, here Pd, Pt, and Rh, are still to be clarified. This study obtained by a biosensor-based method preliminary information on potential effects on cellular metabolism as well as on possible tolerance mechanisms. Aerobic respiration was taken as the toxicological end point to perform tandem tests, namely functional toxicity test and tolerance test. Cells were suspended in the absence of essential constituents for growth. The dose-response curves obtained by exposure (2 h) to the metals (nanogram per gram range) suggested the same mechanisms of action, with Rh showing the greatest curve steepness and the lowest EC{sub 50} value. Conservative (95% lower confidence interval) EC{sub 10} values were 187, 85 and 51 ng g{sup -1} for Pt, Pd, and Rh respectively. Tolerance patterns were tested during the same runs. The full tolerance obtained after 12 h of exposure to each metal suggested mitochondrial inhibition of aerobic respiration as a target effect. The hazard rating of the metals in the tolerance test changed in the Rh EC{sub 50} range, where Rh showed the lowest toxicity. The observed tolerance might suggest a protective mechanism such as metallothionein induction at concentrations around the EC{sub 50} values. The performance of the bioassay was satisfactory, in terms of the limit of detection, repeatability, reproducibility, roboustness, sensibility, and stability; the method's critical uncertainty sources were identified for improvements. (orig.)

  2. Role of abscisic acid in strigolactone-induced salt stress tolerance in arbuscular mycorrhizal Sesbania cannabina seedlings.

    Science.gov (United States)

    Ren, Cheng-Gang; Kong, Cun-Cui; Xie, Zhi-Hong

    2018-05-03

    Strigolactones (SLs) are considered to be a novel class of phytohormone involved in plant defense responses. Currently, their relationships with other plant hormones, such as abscisic acid (ABA), during responses to salinity stress are largely unknown. In this study, the relationship between SL and ABA during the induction of H 2 O 2 - mediated tolerance to salt stress were studied in arbuscular mycorrhizal (AM) Sesbania cannabina seedlings. The SL levels increased after ABA treatments and decreased when ABA biosynthesis was inhibited in AM plants. Additionally, the expression levels of SL-biosynthesis genes in AM plants increased following treatments with exogenous ABA and H 2 O 2 . Furthermore, ABA-induced SL production was blocked by a pre-treatment with dimethylthiourea, which scavenges H 2 O 2 . In contrast, ABA production was unaffected by dimethylthiourea. Abscisic acid induced only partial and transient increases in the salt tolerance of TIS108 (a SL synthesis inhibitor) treated AM plants, whereas SL induced considerable and prolonged increases in salt tolerance after a pre-treatment with tungstate. These results strongly suggest that ABA is regulating the induction of salt tolerance by SL in AM S. cannabina seedlings.

  3. Acute toxicity and sublethal effects of gallic and pelargonic acids on the zebrafish Danio rerio.

    Science.gov (United States)

    Techer, Didier; Milla, Sylvain; Fontaine, Pascal; Viot, Sandrine; Thomas, Marielle

    2015-04-01

    Gallic and pelargonic acids are naturally found in a variety of plants and food products. Despite their extensive use in man-made applications, little is known regarding their potential risks to aquatic vertebrates. The aim of this work was to assess the acute toxicity of these polyphenolic and fatty acid compounds to the zebrafish. In order to get insights into sublethal effects, the enzyme activity of usual biomarkers related to oxidative stress and biotransformation were also assessed in fish. These latter included total superoxide dismutase, catalase as well as total glutathione peroxidase for antioxidant defence mechanisms and glutathione S-transferase for biotransformation related enzyme. Gallic acid was practically non-toxic (96-h lethal concentration (LC50) > 100 mg/L) whereas pelargonic acid was slightly toxic (96-h LC50 of 81.2 mg/L). Moreover, biomarker analyses indicated enhanced superoxide dismutase activity in fish exposed to 20, 40 and 100 mg/L of gallic acid compared to control. A dose-dependent induction of glutathione peroxidase and glutathione S-transferase was reported following gallic acid exposure at the tested concentrations of 10, 20 and 40 mg/L, with the exception of 100 mg/L of substance where basal activity levels were reported. In the case of pelargonic acid, there was no change in antioxidant enzyme activity while an inhibition of glutathione S-transferase was observed from organisms exposed to 45, 58 and 76 mg/L of test solution. The results concerning sublethal effects on biological parameters of zebrafish highlighted thereby the need for further investigations following chronic exposure to both organic acids.

  4. Can Adverse Effects of Acidity and Aluminum Toxicity be Alleviated by Appropriate Rootstock Selection in Cucumber?

    Directory of Open Access Journals (Sweden)

    Youssef Rouphael

    2016-08-01

    Full Text Available Low-pH and aluminium (Al stresses are the major constraints that limit crop yield in acidic soils. Grafting vegetable elite cultivars onto appropriate rootstocks may represent an effective tool to improve crop tolerance to acidity and Al toxicity. Two greenhouse hydroponic experiments were performed to evaluate growth, yield, biomass production, chlorophyll index, electrolyte leakage, mineral composition and assimilate partitioning in plant tissues of cucumber plants (Cucumis sativus L.‘Ekron’ either non-grafted or grafted onto ‘P360’ (Cucurbita maxima Duchesne × Cucurbita moschata Duchesne; E/C or figleaf gourd (Cucurbita ficifolia Bouché; E/F. Cucumber plants were cultured in pots and supplied with nutrient solutions having different pH and Al concentrations: pH 6, pH 3.5, pH 3.5 + 1.5 mM Al and pH 3.5 + 3 mM Al (Exp. 1, 14 d and pH 6, pH 3.5 and pH 3.5 +0.75 mM Al (Exp. 2, 67 d. Significant depression in shoot and root biomass was observed in response to acidity and Al concentrations, with Al-stress being more phytotoxic than low pH treatment. Significant decrease in yield, shoot and root biomass, leaf area, SPAD index, N, K, Ca, Mg, Mn, and B concentration in aerial parts (leaves and stems in response to low pH with more detrimental effects at pH 3.5 + Al. Grafted E/C plants grown under low pH and Al had higher yield, shoot and root biomass compared to E/F and non-grafted plants. This better crop performance of E/C plants in response to Al stress was related to i a reduced translocation of Al from roots to the shoot, ii a better shoot and root nutritional status in K, Ca, Mg, Mn, and Zn concentration, iii a higher chlorophyll synthesis, as well as iv the ability to maintain cell membrane stability and integrity (lower electrolyte leakage. Data provide insight into the role of grafting on Al stress tolerance in cucumber.

  5. Screening and characterization of ethanol-tolerant and thermotolerant acetic acid bacteria from Chinese vinegar Pei.

    Science.gov (United States)

    Chen, Yang; Bai, Ye; Li, Dongsheng; Wang, Chao; Xu, Ning; Hu, Yong

    2016-01-01

    Acetic acid bacteria (AAB) are important microorganisms in the vinegar industry. However, AAB have to tolerate the presence of ethanol and high temperatures, especially in submerged fermentation (SF), which inhibits AAB growth and acid yield. In this study, seven AAB that are tolerant to temperatures above 40 °C and ethanol concentrations above 10% (v/v) were isolated from Chinese vinegar Pei. All the isolated AAB belong to Acetobacter pasteurianus according to 16S rDNA analysis. Among all AAB, AAB4 produced the highest acid yield under high temperature and ethanol test conditions. At 4% ethanol and 30-40 °C temperatures, AAB4 maintained an alcohol-acid transform ratio of more than 90.5 %. High alcohol-acid transform ratio was still maintained even at higher temperatures, namely, 87.2, 77.1, 14.5 and 2.9% at 41, 42, 43 and 44 °C, respectively. At 30 °C and different initial ethanol concentrations (4-10%), the acid yield by AAB4 increased gradually, although the alcohol-acid transform ratio decreased to some extent. However, 46.5, 8.7 and 0.9% ratios were retained at ethanol concentrations of 11, 12 and 13%, respectively. When compared with AS1.41 (an AAB widely used in China) using a 10 L fermentor, AAB4 produced 42.0 g/L acetic acid at 37 °C with 10% ethanol, whereas AS1.41 almost stopped producing acetic acid. In conclusion, these traits suggest that AAB4 is a valuable strain for vinegar production in SF.

  6. The novel sRNA s015 improves nisin yield by increasing acid tolerance of Lactococcus lactis F44.

    Science.gov (United States)

    Qi, Jiakun; Caiyin, Qinggele; Wu, Hao; Tian, Kairen; Wang, Binbin; Li, Yanni; Qiao, Jianjun

    2017-08-01

    Nisin, a polycyclic antibacterial peptide produced by Lactococcus lactis, is stable at low pH. Improving the acid tolerance of L. lactis could thus enhance nisin yield. Small non-coding RNAs (sRNAs) play essential roles in acid tolerance by regulating their target mRNAs at the post-transcriptional level. In this study, a novel sRNA, s015, was identified in L. lactis F44 via the use of RNA sequencing, qRT-PCR analysis, and Northern blotting. s015 improved the acid tolerance of L. lactis and boosted nisin yield at low pH. In silico predictions enabled us to construct a library of possible s015 target mRNAs. Statistical analysis and validation suggested that s015 contains a highly conserved region (5'-GAAAAAAAC-3') that likely encompasses the regulatory core of the sRNA. atpG, busAB, cysD, ilvB, tcsR, ung, yudD, and ywdA were verified as direct targets of s015, and the interactions between s015 and its target genes were elucidated. This work provided new insight into the adaptation mechanism of L. lactis under acid stress.

  7. Toxic corneal epitheliopathy after intravitreal methotrexate and its treatment with oral folic acid.

    Science.gov (United States)

    Gorovoy, Ian; Prechanond, Tidarat; Abia, Maravillas; Afshar, Armin R; Stewart, Jay M

    2013-08-01

    To determine whether oral folic acid can ameliorate an iatrogenic, visually significant corneal epitheliopathy, which commonly occurs with intravitreal injections of methotrexate for the treatment of intraocular lymphoma. We report 2 cases of visually significant corneal epitheliopathy occurring after intravitreal injections of methotrexate for intraocular lymphoma. The first patient did not receive any treatment for the corneal disease, and the second patient with bilateral intraocular lymphoma received 1 mg of oral folic acid daily, a commonly used dosage for patients on systemic methotrexate. In the first patient without treatment, there was a complete regression of the corneal epithelial disease only when the frequency of intravitreal methotrexate was reduced from weekly to monthly as per a commonly used dosage regimen for methotrexate. In the second patient, the corneal disease improved 80% within 1 week of initiating oral folic acid for her eye already experiencing severe epitheliopathy during her weekly dosing regimen of methotrexate and also had significantly decreased epithelial disease in her second eye that started weekly intravitreal methotrexate several weeks after beginning oral folic acid. Currently, oral folic acid supplements are recommended for patients using systemic methotrexate to minimize drug toxicity. We suggest a similar use in patients undergoing intravitreal methotrexate injections to decrease toxic effects on the corneal epithelium.

  8. Study of calcium-dependent lead-tolerance on plants differing in their level of Ca-deficiency tolerance

    International Nuclear Information System (INIS)

    Antosiewicz, Danuta Maria

    2005-01-01

    The main aim of the study was to determine the role of calcium in the amelioration of lead toxic effects in plants with accordingly high/low level of Pb-tolerance and high/low Ca-deficiency tolerance. The study was performed on maize, rye, tomato and mustard. Plants were cultivated in modified Knop's solution. They were subjected to Ca-deficiency, and to lead nitrate administered in the presence of four calcium nitrate concentrations 3.0, 2.4, 1.2, 0.3 mM. Lead-tolerance and tolerance to Ca-deficiency were determined, as were concentration of the studied elements in plant tissues, and the Pb deposition pattern at the ultrastructural level (electron microscopy study, X-ray microanalysis). In all studied plants, lead toxicity increased as medium calcium content decreased, however, only in the Ca-deficiency sensitive mustard with low Pb-tolerance was it accompanied by a rise in tissue lead concentration. In contrast, lead root and shoot levels did not increase in the highly Ca-deficiency tolerant tomato, mustard and rye with high Pb-tolerance irrespective of the Ca 2+ regimens applied. Thus, in these plants, lead's unfavourable effects resulted only from the higher toxicity of the same amount of lead in tissues at low calcium in the medium. Of particular relevance is the finding by electron microscopy and X-ray microanalysis, that under low calcium in both highly Ca-deficiency tolerant and Ca-deficiency sensitive plants, less efficient Pb 2+ detoxification was accompanied by the restriction of the formation of large lead deposits in cell walls. Obtained results are novel in demonstrating calcium involvement in the lead deposition in the cell wall, thus in the regulation of the internal lead detoxification. - Calcium regulated lead deposition in cell walls of plants

  9. The Arabidopsis-related halophyte Thellungiella halophila: boron tolerance via boron complexation with metabolites?

    Science.gov (United States)

    Lamdan, Netta Li; Attia, Ziv; Moran, Nava; Moshelion, Menachem

    2012-04-01

    Tolerance to boron (B) is still not completely understood. We tested here the hypothesis that Thellungiella halophila, an Arabidopsis thaliana-related 'extremophile' plant, with abundance of B in its natural environment, is tolerant to B, and examined the potential mechanisms of this tolerance. With 1-10 mm B applied ([B](ext)) to Thellungiella and Arabidopsis grown in hydroponics, the steady-state accumulated B concentration ([B](int)) in the root was below [B](ext), and was similar in both, suggesting both extrude B actively. Whether grown in soil or hydroponically, the shoot [B](int) was higher in Arabidopsis than in Thellungiella, suggesting more effective net B exclusion by Thellungiella root. Arabidopsis exhibited toxicity symptoms including reduced shoot fresh weight (FW), but Thellungiella was not affected, even at similar levels of shoot-accumulated [B](int) (about 10 to 40 mm B in 'shoot water'), suggesting additional B tolerance mechanism in Thellungiella shoot. At [B](ext) = 5 mm, the summed shoot concentration of the potentially B-binding polyhydroxyl metabolites (malic acid, fructose, glucose, sucrose and citric acid) in Arabidopsis was below [B](int) , but in Thellungiella it was over twofold higher than [B](int) , and therefore likely to allow appreciable 1:2 boron-metabolite complexation in the shoot. This, we suggest, is an important component of Thellungiella B tolerance mechanism. © 2011 Blackwell Publishing Ltd.

  10. Improved training tolerance by supplementation with α-Keto acids in untrained young adults: a randomized, double blind, placebo-controlled trial

    Directory of Open Access Journals (Sweden)

    Liu Yuefei

    2012-08-01

    Full Text Available Abstract Background Exercise causes a variety of physiological and metabolic changes that can in turn reduce exercise tolerance. One of the potential mechanisms responsible for fatigue is “exercise-induced hyperammonemia”. Previous studies have shown that supplementation with amino acids can increase training tolerance. The α-keto acids are biochemical analogs of amino acids and can be converted to amino acids through transamination, thus reducing the cellular ammonia level. This double blind, placebo-controlled study was designed to investigate the effects of α-keto acid supplementation (KAS on training tolerance, training effect, and stress-recovery state. Methods Thirty-three untrained young male adults underwent four weeks of training (5 sessions/week; 30 minutes running at the individual anaerobic threshold followed by 3 x 3 minute sprints/each session. Throughout the 4 weeks of training and one week of recovery, subjects took α-ketoglutarate (AKG group, 0.2 g/kg/d, n = 9, branched-chain keto acids (BCKA group, 0.2 g/kg/d, n = 12 or isocaloric placebo (control group, n = 12 daily. Results The 4th week training volume, maximum power output and muscle torque were higher in the AKG group (175 ± 42 min, 412 ± 49 Watts and 293 ± 58 Newton meters, respectively, Prd week of training increased significantly in the control group (P Conclusions Under KAS, subjects could bear a higher training volume and reach a higher power output and peak muscle torque, accompanied by a better stress-recovery-state. Thus, KAS improves exercise tolerance and training effects along with a better stress-recovery state. Whether the improved training tolerance by KAS is associated with effects on ammonia homeostasis requires further observation.

  11. Associated mechanisms of aluminum tolerance in plants/ Mecanismos associados à tolerância ao alumínio em plantas

    Directory of Open Access Journals (Sweden)

    Cecília Estima Sacramento dos Reis

    2007-10-01

    Full Text Available Aluminum toxicity is one of the major limiting factor regarding plant development in acid soils. The use of liming for correcting soil pH is not viable for some of acid soil areas (technique or economic reasons, making the development of Al tolerant genotypes the best alternative. Thus, the tolerance mechanisms as well as the genetic basis of Al tolerance has deserved special attention in the scientific community. In the last years, a significant progress has been achieved towards these goals, as well as in developing cultivars adapted to acid soils. The Al tolerance mechanisms are divided basically in two classes: the exclusion mechanisms that act after absorption or blocking its entry in the root system and those involved in detoxification, complexing the Al in specific organelles, mainly in the vacuoles. In many species, physiological mechanisms have been reported as responsible for the activation of organic acids (mainly citrate and malate that act as Al quelating agents, however many process are not yet understood and cleared. Currently, the basis for the internal detoxification is becoming clear through organic acid complexes and there sequestering by the vacuoles. Other potential mechanisms are the target for discussions.A toxicidade do alumínio é um dos principais fatores limitantes do desenvolvimento das plantas em solos ácidos. Pelo fato da utilização de corretivos da acidez do solo não ser a estratégia mais viável em muitas situações com solos ácidos (por razões técnicas e econômicas, o desenvolvimento de genótipos tolerantes ao Al tem sido o caminho mais focado, assim a investigação dos mecanismos de tolerância bem como as bases genéticas da tolerância ao Al têm merecido atenção especial pela pesquisa científica. Nos últimos anos, foi gerado um significativo progresso no entendimento das bases dos mecanismos de tolerância ao Al, assim como no desenvolvimento de cultivares mais adaptados as condições de

  12. Simultaneous induction of jasmonic acid and disease-responsive genes signifies tolerance of American elm to Dutch elm disease

    Science.gov (United States)

    Sherif , S. M.; Shukla, M. R.; Murch, S. J.; Bernier, L.; Saxena, P. K.

    2016-01-01

    Dutch elm disease (DED), caused by three fungal species in the genus Ophiostoma, is the most devastating disease of both native European and North American elm trees. Although many tolerant cultivars have been identified and released, the tolerance mechanisms are not well understood and true resistance has not yet been achieved. Here we show that the expression of disease-responsive genes in reactions leading to tolerance or susceptibility is significantly differentiated within the first 144 hours post-inoculation (hpi). Analysis of the levels of endogenous plant defense molecules such as jasmonic acid (JA) and salicylic acid (SA) in tolerant and susceptible American elm saplings suggested SA and methyl-jasmonate as potential defense response elicitors, which was further confirmed by field observations. However, the tolerant phenotype can be best characterized by a concurrent induction of JA and disease-responsive genes at 96 hpi. Molecular investigations indicated that the expression of fungal genes (i.e. cerato ulmin) was also modulated by endogenous SA and JA and this response was unique among aggressive and non-aggressive fungal strains. The present study not only provides better understanding of tolerance mechanisms to DED, but also represents a first, verified template for examining simultaneous transcriptomic changes during American elm-fungus interactions. PMID:26902398

  13. Acute toxicity assessment of perfluorinated carboxylic acids towards the Baltic microalgae.

    Science.gov (United States)

    Latała, Adam; Nędzi, Marcin; Stepnowski, Piotr

    2009-09-01

    The presence of high-energy carbon-fluorine bonds in perfluoro compounds lends them great stability and causes them to be environmentally persistent. Relatively little is known about the acute toxicity of perfluorinated carboxylic acids (PFCAs) to ecotoxicological markers such as aquatic plants and animals. This study tested the toxicity of these compounds to the green alga Chlorella vulgaris, the diatom Skeletonema marinoi and the blue-green alga Geitlerinema amphibium, which are species representative of the algal flora of the Baltic Sea. The EC(50) values obtained range from 0.28 mM to 12.84 mM. A distinct relationship between hydrophobicity and toxicity is demonstrated. For every extra perfluoromethylene group in the alkyl chain, the toxicity increases twofold. LogEC(50) values are very well correlated linearly with both the number of carbon atoms in the perfluoroalkyl chain and the partition coefficients. The results also indicate that there are clear differences between the responses of particular taxonomic groups of algae: blue-green algae and diatoms are far more sensitive to PFCAs than green algae, probably because of differences in cell wall structure.

  14. Solvent-tolerant bacteria in biocatalysis.

    NARCIS (Netherlands)

    Bont, de J.A.M.

    1998-01-01

    The toxicity of fine chemicals to the producer organism is a problem in several biotechnological production processes. In several instances, an organic phase can be used to extract the toxic product from the aqueous phase during a fermentation. With the discovery of solvent-tolerant bacteria, more

  15. Amelioration of acidic soil increases the toxicity of the weak base carbendazim to the earthworm Eisenia fetida.

    Science.gov (United States)

    Liu, Kailin; Wang, Shaoyun; Luo, Kun; Liu, Xiangying; Yu, Yunlong

    2013-12-01

    Ameliorating acidic soils is a common practice and may affect the bioavailability of an ionizable organic pollutant to organisms. The toxicity of the weak base carbendazim to the earthworm (Eisenia fetida) was studied in an acidic soil (pH-H₂O, 4.6) and in the ameliorated soil (pH-H₂O, 7.5). The results indicated that the median lethal concentration of carbendazim for E. fetida decreased from 21.8 mg/kg in acidic soil to 7.35 mg/kg in the ameliorated soil. To understand why the amelioration increased carbendazim toxicity to the earthworm, the authors measured the carbendazim concentrations in the soil porewater. The authors found increased carbendazim concentrations in porewater, resulting in increased toxicity of carbendazim to earthworms. The increased pore concentrations result from decreased adsorption because of the effects of pH and calcium ions. © 2013 SETAC.

  16. Endogenous salicylic acid is required for promoting cadmium tolerance of Arabidopsis by modulating glutathione metabolisms

    International Nuclear Information System (INIS)

    Guo, Bin; Liu, Chen; Li, Hua; Yi, Keke; Ding, Nengfei; Li, Ningyu; Lin, Yicheng; Fu, Qinglin

    2016-01-01

    Highlights: • The role of endogenous SA in mediating Cd tolerance was explored using sid2 mutants. • Cd stress induces SA accumulation in a SID2 dependent way. • Depletion of SA causes negative effects on Cd tolerance. • Endogenous SA is required for promoting Cd tolerance by modulating GSH metabolism. • Possible mode of SA signaling through GR/GSH pathway under Cd toxicity was discussed. - Abstract: A few studies with NahG transgenic lines of Arabidopsis show that depletion of SA enhances cadmium (Cd) tolerance. However, it remains some uncertainties that the defence signaling may be a result of catechol accumulation in NahG transgenic lines but not SA deficiency. Here, we conducted a set of hydroponic assays with another SA-deficient mutant sid2 to examine the endogenous roles of SA in Cd tolerance, especially focusing on the glutathione (GSH) cycling. Our results showed that reduced SA resulted in negative effects on Cd tolerance, including decreased Fe uptake and chlorophyll concentration, aggravation of oxidative damage and growth inhibition. Cd exposure significantly increased SA concentration in wild-type leaves, but did not affect it in sid2 mutants. Depletion of SA did not disturb the Cd uptake in either roots or shoots. The reduced Cd tolerance in sid2 mutants is due to the lowered GSH status, which is associated with the decreased expression of serine acetyltransferase along with a decline in contents of non-protein thiols, phytochelatins, and the lowered transcription and activities of glutathione reductase1 (GR1) which reduced GSH regeneration. Finally, the possible mode of SA signaling through the GR/GSH pathway during Cd exposure is discussed.

  17. Endogenous salicylic acid is required for promoting cadmium tolerance of Arabidopsis by modulating glutathione metabolisms

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Bin, E-mail: ndgb@163.com [Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Geological Research Center For Agricultural Applications, China Geological Survey, Hangzhou (China); Liu, Chen; Li, Hua [Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Geological Research Center For Agricultural Applications, China Geological Survey, Hangzhou (China); Yi, Keke [Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou (China); Ding, Nengfei; Li, Ningyu; Lin, Yicheng [Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Geological Research Center For Agricultural Applications, China Geological Survey, Hangzhou (China); Fu, Qinglin, E-mail: fuql161@yahoo.com.cn [Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Geological Research Center For Agricultural Applications, China Geological Survey, Hangzhou (China)

    2016-10-05

    Highlights: • The role of endogenous SA in mediating Cd tolerance was explored using sid2 mutants. • Cd stress induces SA accumulation in a SID2 dependent way. • Depletion of SA causes negative effects on Cd tolerance. • Endogenous SA is required for promoting Cd tolerance by modulating GSH metabolism. • Possible mode of SA signaling through GR/GSH pathway under Cd toxicity was discussed. - Abstract: A few studies with NahG transgenic lines of Arabidopsis show that depletion of SA enhances cadmium (Cd) tolerance. However, it remains some uncertainties that the defence signaling may be a result of catechol accumulation in NahG transgenic lines but not SA deficiency. Here, we conducted a set of hydroponic assays with another SA-deficient mutant sid2 to examine the endogenous roles of SA in Cd tolerance, especially focusing on the glutathione (GSH) cycling. Our results showed that reduced SA resulted in negative effects on Cd tolerance, including decreased Fe uptake and chlorophyll concentration, aggravation of oxidative damage and growth inhibition. Cd exposure significantly increased SA concentration in wild-type leaves, but did not affect it in sid2 mutants. Depletion of SA did not disturb the Cd uptake in either roots or shoots. The reduced Cd tolerance in sid2 mutants is due to the lowered GSH status, which is associated with the decreased expression of serine acetyltransferase along with a decline in contents of non-protein thiols, phytochelatins, and the lowered transcription and activities of glutathione reductase1 (GR1) which reduced GSH regeneration. Finally, the possible mode of SA signaling through the GR/GSH pathway during Cd exposure is discussed.

  18. Toxicity and metal speciation in acid mine drainage treated by passive bioreactors

    Energy Technology Data Exchange (ETDEWEB)

    Neculita, C.M.; Vigneaul, B.; Zagury, G.J. [Ecole Polytechnic, Montreal, PQ (Canada)

    2008-08-15

    Sulfate-reducing passive bioreactors treat acid mine drainage (AMD) by increasing its pH and alkalinity and by removing metals as metal sulfide precipitates. In addition to discharge limits based on physicochemical parameters, however, treated effluent is required to be nontoxic. Acute and sublethal toxicity was assessed for effluent from 3.5-L column bioreactors filled with mixtures of natural organic carbon sources and operated at different hydraulic retention times (HRTs) for the treatment of a highly contaminated AMD. Effluent was first tested for acute (Daphnia magna and Oncorhynchus mykiss) and sublethal (Pseudokirchneriella subcapitata, Ceriodaphnia dabia, and Lemna minor) toxicity. Acute toxicity was observed for D. magna, and a toxicity identification evaluation (TIE) procedure was then performed to identify potential toxicants. Finally, metal speciation in the effluent was determined using ultrafiltration and geochemical modeling for the interpretation of the toxicity results. The 10-d HRT effluent was nonacutely lethal for 0. mykiss but acutely lethal for D. magna. The toxicity to D. magna, however, was removed by 2 h of aeration, and the TIE procedure suggested iron as a cause of toxicity. Sublethal toxicity of the 10-d HRT effluent was observed for all test species, but it was reduced compared to the raw AMD and to a 7.3-d HRT effluent. Data regarding metal speciation indicated instability of both effluents during aeration and were consistent with the toxicity being caused by iron. Column bioreactors in operation for more than nine months efficiently improved the physicochemical quality of highly contaminated AMD at different HRTs.

  19. Role of uptake of [14C]valine into protein in the development of tolerance to diisopropylphosphorofluoridate (DFP) toxicity

    International Nuclear Information System (INIS)

    Gupta, R.C.; Dettbarn, W.D.

    1986-01-01

    In a subchronic toxicity study male Sprague-Dawley rats were daily treated with diisopropylphosphorofluoridate (DFP) (0.5 mg/kg, sc) for 14 days. Maximum signs of anticholinesterase toxicity were observed during Days 4 and 5 comparable to those seen 10-15 min following a single sublethal dosage (1.5 mg DFP/kg, sc). Signs disappeared after Days 6-7 of exposure and rats became apparently normal during the remainder of the treatment period. Significant hypothermia was seen following the second to fifth doses with maximum effect after the fifth injection. Subsequent injections of DFP did not cause any reduction in temperature. Incorporation of [ 14 C]valine was measured 24 hr after the 5th and 14th injections of DFP, at a time when body temperature had recovered to control values. The rate of in vivo incorporation of [ 14 C]valine was measured 0.5, 1.0, and 2.0 hr after a subcutaneous injection of L-[1- 14 C]valine at a dose of 5 microCi/mmol/100 g body wt. After five injections the rate of L-[1- 14 C]valine uptake into the free amino acid pool and the incorporation into the protein bound pool was significantly (p less than 0.01) reduced in discrete brain regions, liver, kidney, and skeletal muscles. At the end of the 14-day treatment, protein synthesis in all the skeletal muscles tested had recovered completely (p greater than 0.01) to the values of nontreated control animals. In brain, liver, and kidney, however, no recovery was seen during this period. The recovery of protein synthesis in skeletal muscle may be one of the mechanisms that lead to tolerance development during prolonged administration of subacute concentrations of DFP

  20. Breaking Bad Delirium: Methamphetamine and Boric Acid Toxicity with Hallucinations and Pseudosepsis.

    Science.gov (United States)

    Johnson, Kayla; Stollings, Joanna L; Ely, E Wesley

    2017-02-01

    A 30-year-old patient presented with hallucinations and profound shock. He was initially misdiagnosed as having severe sepsis; once ingestions were considered, he was diagnosed as potentially having arsenic toxicity. The clinical story reveals many instructional lessons that could aid in the evaluation and management of future patients. This man presented with large amounts of blue crystals around his nose and lips from inhaling and eating boric acid (an ant poison) so he could, as he put it, kill the ants "pouring into my mouth and nose and up into my brain." His profound pseudosepsis and sustained delirium were induced by co-ingestion of methamphetamine and a large quantity of boric acid. Delirium is a form of acute brain dysfunction that often is multifactorial in critical illness and, when seen in septic shock, is associated with prolonged mechanical ventilation, increased length of hospital stay, medical costs, higher mortality, and long-term cognitive impairment resembling dementia. Pseudosepsis is a noninfectious condition most commonly seen with ingestions such as salicylate (aspirin) toxicity. This report emphasizes the need to recognize agents that contain boric acid as an etiology of unexplained delirium and profound shock.

  1. Zn pollution counteracts Cd toxicity in metal-tolerant ectomycorrhizal fungi and their host plant, Pinus sylvestris.

    Science.gov (United States)

    Krznaric, Erik; Wevers, Jan H L; Cloquet, Christophe; Vangronsveld, Jaco; Vanhaecke, Frank; Colpaert, Jan V

    2010-08-01

    Adaptive Zn and Cd tolerance have evolved in populations of the ectomycorrhizal fungus Suillus luteus. When exposed to high concentrations of both metals in vitro, a one-sided antagonism was apparent in the Zn- and Cd-tolerant isolates. Addition of high Zn concentrations restored growth of Cd-stressed isolates, but not vice versa. The antagonistic effect was not detected in a S. luteus isolate from non-contaminated land and in Paxillus involutus. The fungi were inoculated on pine seedlings and subsequently exposed to ecologically relevant Zn and Cd concentrations in single and mixed treatments. The applied doses severely reduced nutrient acquisition of non-mycorrhizal pines and pines inoculated with metal-sensitive S. luteus. Highest translocation of Zn and Cd to shoots occurred in the same plants. Seedlings inoculated with fungi collected from the polluted site reduced metal transfer to their host and maintained nutrient acquisition under high metal exposure. The isolate showing highest tolerance in vitro also offered best protection in symbiosis. The antagonistic effect of high Zn on Cd toxicity was confirmed in the plant experiment. The results indicate that a Zn- and Cd-polluted soil has selected ectomycorrhizal fungi that are able to survive and protect their phytobiont from nutrient starvation and excessive metal uptake. © 2009 Society for Applied Microbiology and Blackwell Publishing Ltd.

  2. Conversion of fusaric acid to fusarinol by Aspergillus niger: A detoxification reaction

    Science.gov (United States)

    The fungus Fusarium oxysporum causes wilt diseases of plants and produces a potent phytotoxin fusaric acid (FA) which is also toxic to many microorganisms. An Aspergillus strain with high tolerance to FA was isolated from soil. HPLC analysis of culture filtrates from A. niger grown with the addition...

  3. Arsenic tolerant Trichoderma sp. reduces arsenic induced stress in chickpea (Cicer arietinum).

    Science.gov (United States)

    Tripathi, Pratibha; Singh, Poonam C; Mishra, Aradhana; Srivastava, Suchi; Chauhan, Reshu; Awasthi, Surabhi; Mishra, Seema; Dwivedi, Sanjay; Tripathi, Preeti; Kalra, Alok; Tripathi, Rudra D; Nautiyal, Chandra S

    2017-04-01

    Toxic metalloids including arsenic (As) can neither be eliminated nor destroyed from environment; however, they can be converted from toxic to less/non-toxic forms. The form of As species and their concentration determines its toxicity in plants. Therefore, the microbe mediated biotransformation of As is crucial for its plant uptake and toxicity. In the present study the role of As tolerant Trichoderma in modulating As toxicity in chickpea plants was explored. Chickpea plants grown in arsenate spiked soil under green house conditions were inoculated with two plant growth promoting Trichoderma strains, M-35 (As tolerant) and PPLF-28 (As sensitive). Total As concentration in chickpea tissue was comparable in both the Trichoderma treatments, however, differences in levels of organic and inorganic As (iAs) species were observed. The shift in iAs to organic As species ratio in tolerant Trichoderma treatment correlated with enhanced plant growth and nutrient content. Arsenic stress amelioration in tolerant Trichoderma treatment was also evident through rhizospheric microbial community and anatomical studies of the stem morphology. Down regulation of abiotic stress responsive genes (MIPS, PGIP, CGG) in tolerant Trichoderma + As treatment as compared to As alone and sensitive Trichoderma + As treatment also revealed that tolerant strain enhanced the plant's potential to cope with As stress as compared to sensitive one. Considering the bioremediation and plant growth promotion potential, the tolerant Trichoderma may appear promising for its utilization in As affected fields for enhancing agricultural productivity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Adaptive Response and Tolerance to Acetic Acid in Saccharomyces cerevisiae and Zygosaccharomyces bailii: A Physiological Genomics Perspective.

    Science.gov (United States)

    Palma, Margarida; Guerreiro, Joana F; Sá-Correia, Isabel

    2018-01-01

    Acetic acid is an important microbial growth inhibitor in the food industry; it is used as a preservative in foods and beverages and is produced during normal yeast metabolism in biotechnological processes. Acetic acid is also a major inhibitory compound present in lignocellulosic hydrolysates affecting the use of this promising carbon source for sustainable bioprocesses. Although the molecular mechanisms underlying Saccharomyces cerevisiae response and adaptation to acetic acid have been studied for years, only recently they have been examined in more detail in Zygosaccharomyces bailii . However, due to its remarkable tolerance to acetic acid and other weak acids this yeast species is a major threat in the spoilage of acidic foods and beverages and considered as an interesting alternative cell factory in Biotechnology. This review paper emphasizes genome-wide strategies that are providing global insights into the molecular targets, signaling pathways and mechanisms behind S. cerevisiae and Z. bailii tolerance to acetic acid, and extends this information to other weak acids whenever relevant. Such comprehensive perspective and the knowledge gathered in these two yeast species allowed the identification of candidate molecular targets, either for the design of effective strategies to overcome yeast spoilage in acidic foods and beverages, or for the rational genome engineering to construct more robust industrial strains. Examples of successful applications are provided.

  5. Chitosan nanoparticles affect acid tolerance response in adhered cells of strpetococcus mutans

    DEFF Research Database (Denmark)

    Neilands, Julia; Sutherland, Duncan S; Resin, Anton

    2011-01-01

    In this study we evaluated the effect of chitosan nanoparticles on the acid tolerance response (ATR) of adhered Streptococcus mutans. An ATR was induced by exposing S. mutans to pH 5.5 for 2 h and confirmed by exposing the acid-adapted cells to pH 3.5 for 30 min, with the majority of cells...... appearing viable according to the LIVE/DEAD (R) technique. However, when chitosan nanoparticles were present during the exposure to pH 5.5, no ATR occurred as most cells appeared dead after the pH 3.5 shock. We conclude that the chitosan nanoparticles tested had the ability to hinder ATR induction...

  6. Synthesis and in vitro toxicity of new dodecaborate-containing amino acids

    International Nuclear Information System (INIS)

    Slepukhina, Irina; Gabel, Detlef

    2006-01-01

    Two unnatural, boron-containing amino acids were synthesized by alkylation of S-(2-cyanoethyl)-thio-undecahydro-closo-dodecaborate(2-). S-(2-amino-2-carboxylpropyl)-thio-undecahydro-closo-dodecaborate (2-), containing a quaternary carbon atom, and O-(5-amino-5-carboxylpentyl)-oxy-undecahydro-closo-dodecaborate(2-) were evaluated for in vitro toxicity using V 79 Chinese hamster cells. (author)

  7. Tolerance of plants to air pollutants. Shokubutsu no taiki osen taisei

    Energy Technology Data Exchange (ETDEWEB)

    Kondo, N.; Saji, H. (National Institute for Environmental Studies, Tsukuba (Japan))

    1992-11-10

    Attempts have been made to improve tolerance of plants to air pollutants by changing activities in detoxifying enzymes against toxic substances attributable to air pollutants, through gene manipulation. An air pollutant, absorbed in a plant through its stomata, produces toxic substances in the cells and damages the organism. Detailed discussions were given on the following: Stoma opening action and reaction; injuries attributable to air pollutants and detoxifying metabolism systems; ethylene and toxic enzymes of secondary toxic substances in an organism; different detoxifying mechanisms and active enzymes; and activation of detoxifying enzymes using genes. Pollution tolerance in plants is governed by inherent plant natures and environmental conditions. Plants that have two opposing functions of emerging damages from toxicity and preventing them with detoxifying capability are controlled with a complex and delicate balance. Changing pollution tolerance in plants may be possible by manipulating genes, but the importance is to elucidate what the tolerating enzymes are, and obtain their genes. Genes that could be used are very few in number. Expectations are placed on the future development. 122 refs., 4 figs.

  8. Accurate prediction of the toxicity of benzoic acid compounds in mice via oral without using any computer codes

    International Nuclear Information System (INIS)

    Keshavarz, Mohammad Hossein; Gharagheizi, Farhad; Shokrolahi, Arash; Zakinejad, Sajjad

    2012-01-01

    Highlights: ► A novel method is introduced for desk calculation of toxicity of benzoic acid derivatives. ► There is no need to use QSAR and QSTR methods, which are based on computer codes. ► The predicted results of 58 compounds are more reliable than those predicted by QSTR method. ► The present method gives good predictions for further 324 benzoic acid compounds. - Abstract: Most of benzoic acid derivatives are toxic, which may cause serious public health and environmental problems. Two novel simple and reliable models are introduced for desk calculations of the toxicity of benzoic acid compounds in mice via oral LD 50 with more reliance on their answers as one could attach to the more complex outputs. They require only elemental composition and molecular fragments without using any computer codes. The first model is based on only the number of carbon and hydrogen atoms, which can be improved by several molecular fragments in the second model. For 57 benzoic compounds, where the computed results of quantitative structure–toxicity relationship (QSTR) were recently reported, the predicted results of two simple models of present method are more reliable than QSTR computations. The present simple method is also tested with further 324 benzoic acid compounds including complex molecular structures, which confirm good forecasting ability of the second model.

  9. Coping With Metal Toxicity – Cues From Halophytes

    Directory of Open Access Journals (Sweden)

    Ganesh C. Nikalje

    2018-06-01

    Full Text Available Being the native flora of saline soil, halophytes are well studied for their salt tolerance and adaptation mechanism at the physiological, biochemical, molecular and metabolomic levels. However, these saline habitats are getting contaminated due to various anthropogenic activities like urban waste, agricultural runoff, mining, industrial waste that are rich in toxic metals and metalloids. These toxic metals impose detrimental effects on growth and development of most plant species. Halophytes by virtue of their tolerance to salinity also show high tolerance to heavy metals which is attributed to the enhanced root to shoot metal translocation and bioavailability. Halophytes rapidly uptake toxic ions from the root and transport them toward aerial parts by using different transporters which are involved in metal tolerance and homeostasis. A number of defense related physiological and biochemical strategies are known to be crucial for metal detoxification in halophytes however; there is paucity of information on the molecular regulators. Understanding of the phenomenon of cross-tolerance of salinity with other abiotic stresses in halophytes could very well boost their potential use in phytoremediation. In this article, we present an overview of heavy metal tolerance in case of halophytes, associated mechanisms and cross-tolerance of salinity with other abiotic stresses.

  10. A chronic toxicity test protocol using Caridina nilotica (Decapoda ...

    African Journals Online (AJOL)

    Salinization of freshwater resources is an increasing global problem, yet there is a paucity of chronic salinity tolerance data linked to very few chronic toxicity test protocols. This research aimed to generate a chronic toxicity test protocol and protective salinity tolerance data for the indigenous South African freshwater shrimp ...

  11. Essential fatty acids influence metabolic rate and tolerance of hypoxia in Dover sole ( Solea solea ) larvae and juveniles

    DEFF Research Database (Denmark)

    McKenzie, David; Lund, Ivar; Pedersen, Per Bovbjerg

    2008-01-01

    Dover sole (Solea solea, Linneaus 1758) were raised from first feeding on brine shrimp (Artemia sp.) with different contents and compositions of the essential fatty acids (EFA) arachidonic acid (ARA, 20:4n - 6); eicosapentaenoic acid (EPA, 20:5n - 3), and docosahexaenoic acid (DHA, 22:6n - 3......), and their metabolic rate and tolerance to hypoxia measured prior to and following metamorphosis and settlement. Four dietary Artemia preparations were compared: (1) un-enriched; (2) enriched with a commercial EFA mixture (Easy DHA SELCO Emulsion); (3) enriched with a marine fish oil combination (VEVODAR and Incromega...... DHA) to provide a high ratio of ARA to DHA, and (4) enriched with these fish oils to provide a low ratio of ARA to DHA. Sole fed un-enriched Artemia were significantly less tolerant to hypoxia than the other dietary groups. Larvae from this group had significantly higher routine metabolic rate (RMR...

  12. Beyond toxicity: a regulatory role for mitochondrial cyanide.

    Science.gov (United States)

    García, Irene; Gotor, Cecilia; Romero, Luis C

    2014-01-01

    In non-cyanogenic plants, cyanide is a co-product of ethylene and camalexin biosynthesis. To maintain cyanide at non-toxic levels, Arabidopsis plants express the mitochondrial β-cyanoalanine synthase CYS-C1. CYS-C1 knockout leads to an increased level of cyanide in the roots and leaves and a severe defect in root hair morphogenesis, suggesting that cyanide acts as a signaling factor in root development. During compatible and incompatible plant-bacteria interactions, cyanide accumulation and CYS-C1 gene expression are negatively correlated. Moreover, CYS-C1 mutation increases both plant tolerance to biotrophic pathogens and their susceptibility to necrotrophic fungi, indicating that cyanide could stimulate the salicylic acid-dependent signaling pathway of the plant immune system. We hypothesize that CYS-C1 is essential for maintaining non-toxic concentrations of cyanide in the mitochondria to facilitate cyanide's role in signaling.

  13. Efficient production of L-lactic acid by newly isolated thermophilic Bacillus coagulans WCP10-4 with high glucose tolerance.

    Science.gov (United States)

    Zhou, Xingding; Ye, Lidan; Wu, Jin Chuan

    2013-05-01

    A thermophilic Bacillus coagulans WCP10-4 with tolerance to high concentration of glucose was isolated from soil and used to produce optically pure L-lactic acid from glucose and starch. In batch fermentation at pH 6.0, 240 g/L of glucose was completely consumed giving 210 g/L of L-lactic acid with a yield of 95 % and a productivity of 3.5 g/L/h. In simultaneous saccharification and fermentation at 50 °C without sterilizing the medium, 200 g/L of corn starch was completely consumed producing 202.0 g/L of L-lactic acid. To the best of our knowledge, this strain shows the highest osmotic tolerance to glucose among the strains ever reported for lactic acid production. This is the first report of simultaneous saccharification and fermentation of starch for lactic acid production under a non-sterilized condition.

  14. Excretory nitrogen metabolism and defence against ammonia toxicity in air-breathing fishes.

    Science.gov (United States)

    Chew, S F; Ip, Y K

    2014-03-01

    With the development of air-breathing capabilities, some fishes can emerge from water, make excursions onto land or even burrow into mud during droughts. Air-breathing fishes have modified gill morphology and morphometry and accessory breathing organs, which would tend to reduce branchial ammonia excretion. As ammonia is toxic, air-breathing fishes, especially amphibious ones, are equipped with various strategies to ameliorate ammonia toxicity during emersion or ammonia exposure. These strategies can be categorized into (1) enhancement of ammonia excretion and reduction of ammonia entry, (2) conversion of ammonia to a less toxic product for accumulation and subsequent excretion, (3) reduction of ammonia production and avoidance of ammonia accumulation and (4) tolerance of ammonia at cellular and tissue levels. Active ammonia excretion, operating in conjunction with lowering of ambient pH and reduction in branchial and cutaneous NH₃ permeability, is theoretically the most effective strategy to maintain low internal ammonia concentrations. NH₃ volatilization involves the alkalization of certain epithelial surfaces and requires mechanisms to prevent NH₃ back flux. Urea synthesis is an energy-intensive process and hence uncommon among air-breathing teleosts. Aestivating African lungfishes detoxify ammonia to urea and the accumulated urea is excreted following arousal. Reduction in ammonia production is achieved in some air-breathing fishes through suppression of amino acid catabolism and proteolysis, or through partial amino acid catabolism leading to alanine formation. Others can slow down ammonia accumulation through increased glutamine synthesis in the liver and muscle. Yet, some others develop high tolerance of ammonia at cellular and tissue levels, including tissues in the brain. In summary, the responses of air-breathing fishes to ameliorate ammonia toxicity are many and varied, determined by the behaviour of the species and the nature of the environment in

  15. Acid stress response and protein induction in Campylobacter jejuni isolates with different acid tolerance

    DEFF Research Database (Denmark)

    Birk, Tina; Wik, Monica Takamiya; Lametsch, René

    2012-01-01

    with MALDI-TOF-TOF. The most acid-sensitive isolate was C. jejuni 327, followed by NCTC 11168 and isolate 305 as the most tolerant. Overall, induction of five proteins was observed within the pI range investigated: 19 kDa periplasmic protein (p19), thioredoxin-disulfide (TrxB), a hypothetical protein Cj0706......RT-PCR. In this transcriptomic analysis, only up-regulation of trxB and p19 was observed. CONCLUSIONS: A defined medium that supports the growth of a range of Campylobacter strains and suitable for proteomic analysis was developed. Mainly proteins normally involved in iron control and oxidative stress defence were induced...

  16. Reactions of clofibric acid with oxidative and reductive radicals—Products, mechanisms, efficiency and toxic effects

    International Nuclear Information System (INIS)

    Csay, Tamás; Rácz, Gergely; Salik, Ádám; Takács, Erzsébet; Wojnárovits, László

    2014-01-01

    The degradation of clofibric acid induced by hydroxyl radical, hydrated electron and O 2 −∙ /HO 2 ∙ reactive species was studied in aqueous solutions. Clofibric acid was decomposed more effectively by hydroxyl radical than by hydrated electron or O 2 −∙ /HO 2 ∙ . Various hydroxylated, dechlorinated and fragmentation products have been identified and quantified. A new LC–MS method was developed based on 18 O isotope labeling to follow the formation of hydroxylated derivatives of clofibric acid. Possible degradation pathways have been proposed. The overall degradation was monitored by determination of sum parameters like COD, TOC and AOX. It was found that the organic chlorine degrades very effectively prior to complete mineralization. After the treatment no toxic effect was found according to Vibrio fischeri tests. However, at early stages some of the reaction products were more harmful than clofibric acid. - Highlights: • Clofibric acid is effectively degraded by OH radical. • Main primary and secondary products are hydroxylated and dihydroxylated phenyl type derivatives of clofibric acid. • In air saturated aqueous solutions O 2 plays an important role in decomposition of the aromatic structure. • A new LC–MS method with 18 O-labeling was developed. • Early stage reaction products are more toxic to bacteria Vibrio fischeri than clofibric acid

  17. Back to Acid Soil Fields: The Citrate Transporter SbMATE Is a Major Asset for Sustainable Grain Yield for Sorghum Cultivated on Acid Soils

    Directory of Open Access Journals (Sweden)

    Geraldo Carvalho Jr

    2016-02-01

    Full Text Available Aluminum (Al toxicity damages plant roots and limits crop production on acid soils, which comprise up to 50% of the world’s arable lands. A major Al tolerance locus on chromosome 3, AltSB, controls aluminum tolerance in sorghum [Sorghum bicolor (L. Moench] via SbMATE, an Al-activated plasma membrane transporter that mediates Al exclusion from sensitive regions in the root apex. As is the case with other known Al tolerance genes, SbMATE was cloned based on studies conducted under controlled environmental conditions, in nutrient solution. Therefore, its impact on grain yield on acid soils remains undetermined. To determine the real world impact of SbMATE, multi-trait quantitative trait loci (QTL mapping in hydroponics, and, in the field, revealed a large-effect QTL colocalized with the Al tolerance locus AltSB, where SbMATE lies, conferring a 0.6 ton ha–1 grain yield increase on acid soils. A second QTL for Al tolerance in hydroponics, where the positive allele was also donated by the Al tolerant parent, SC283, was found on chromosome 9, indicating the presence of distinct Al tolerance genes in the sorghum genome, or genes acting in the SbMATE pathway leading to Al-activated citrate release. There was no yield penalty for AltSB, consistent with the highly localized Al regulated SbMATE expression in the root tip, and Al-dependent transport activity. A female effect of 0.5 ton ha–1 independently demonstrated the effectiveness of AltSB in hybrids. Al tolerance conferred by AltSB is thus an indispensable asset for sorghum production and food security on acid soils, many of which are located in developing countries.

  18. The impact of acid soil volume of reclaimed minespoils on plant growth in minilysimeters

    International Nuclear Information System (INIS)

    Shahandeh, H.; Hossner, L.R.; Birkhead, J.A.

    1996-01-01

    Limited data are available to assess the influence of randomly distributed acid soil, produced from acid forming materials (AFM), on growth and productivity of crops. This study evaluated the effect of amount and volume of acid soil on the growth of an acid tolerant plant (Coastal bermudga grass, Cynodon dactylon, L.) and an acid intolerant plant (Yuchi arrowleaf clover, Trifolium vesiculosum, Savi) in greenhouse lysimeters. Acid soil (pH=2.5) volumes up to 20% for Yuchi arrowleaf clover and up to 40% for Coastal bermuda grass did not significantly decrease dry matter yield. Concentrations of Al and Mn in plant tissue of clover and bermudagrass were below the toxicity level. In the presence of randomly distributed acid soil, plant roots continued to elongate in non-acid soil, by evading localized areas of low soil pH. These results suggest that the federally mandated zero tolerance for AFM in the top 1.2 m of reclaimed lands may not be reasonable. 18 refs., 7 figs., 2 tabs

  19. Effects of benzoic acid and cadmium toxicity on wheat seedlings

    Directory of Open Access Journals (Sweden)

    Kavita Yadav

    2013-06-01

    Full Text Available Benzoic acid (BA and Cd exhibit cumulative effects on plants due to their accumulation in the soil. The present study reports the effects of BA an allelochemical, Cd and their combinations on seed germination, seedling growth, biochemical parameters, and response of antioxidant enzymes in Triticum aestivum L. The experiment was conducted in sand supplemented with Hoagland nutrient solution. Benzoic acid was applied at concentrations of 0.5, 1.0, and 1.5 mM with or without Cd (7 mg L-1 to observe effects of allelochemical and Cd alone and in combination on wheat. Both stresses exhibited inhibitory effect on growth and metabolism of wheat seedlings. The allelochemical in single and combined treatments with Cd decreased seedling growth as compared to Cd stress. The two stresses significantly enhanced malondialdehyde content of wheat seedlings. The activity of other antioxidant enzymes, viz. superoxide dismutase (SOD, catalase (CAT, ascorbate peroxidase (APX, and guaiacol peroxidase (POX were also recorded. SOD increased in seedlings under the two stresses. CAT more prominently ameliorates the toxic effects of H2O2 as compared with APX and POX and protected wheat seedlings from oxidative stress. Allelochemical buttressed the toxic effect of Cd on wheat seedlings.

  20. Integrated phospholipidomics and transcriptomics analysis of Saccharomyces cerevisiae with enhanced tolerance to a mixture of acetic acid, furfural, and phenol

    Science.gov (United States)

    A mixture of acetic acid, furfural and phenol (AFP), three representative lignocellulose derived inhibitors, significantly inhibited the growth and bioethanol production of Saccharomyces cerevisiae. In order to uncover mechanisms behind the enhanced tolerance of an inhibitor-tolerant S.cerevisiae s...

  1. In Utero Domoic Acid Toxicity: A Fetal Basis to Adult Disease in the California Sea Lion (Zalophus californianus

    Directory of Open Access Journals (Sweden)

    Tanja S. Zabka

    2008-06-01

    Full Text Available California sea lions have been a repeated subject of investigation for early life toxicity, which has been documented to occur with increasing frequency from late February through mid-May in association with organochlorine (PCB and DDT poisoning and infectious disease in the 1970's and domoic acid poisoning in the last decade. The mass early life mortality events result from the concentrated breeding grounds and synchronization of reproduction over a 28 day post partum estrus cycle and 11 month in utero phase. This physiological synchronization is triggered by a decreasing photoperiod of 11.48 h/day that occurs approximately 90 days after conception at the major California breeding grounds. The photoperiod trigger activates implantation of embryos to proceed with development for the next 242 days until birth. Embryonic diapause is a selectable trait thought to optimize timing for food utilization and male migratory patterns; yet from the toxicological perspective presented here also serves to synchronize developmental toxicity of pulsed environmental events such as domoic acid poisoning. Research studies in laboratory animals have defined age-dependent neurotoxic effects during development and windows of susceptibility to domoic acid exposure. This review will evaluate experimental domoic acid neurotoxicity in developing rodents and, aided by comparative allometric projections, will analyze potential prenatal toxicity and exposure susceptibility in the California sea lion. This analysis should provide a useful tool to forecast fetal toxicity and understand the impact of fetal toxicity on adult disease of the California sea lion.

  2. 75 FR 26662 - Fluazinam; Pesticide Tolerances

    Science.gov (United States)

    2010-05-12

    ... due to systemic toxicity and not a result of frank neurotoxicity. No signs of neurotoxicity were... chromatography with electron capture detection (GC/ECD), is available to enforce the tolerance expression for...) enforcement method is also available to enforce the tolerance expression for wine grapes, which includes...

  3. Evaluation of buffers toxicity in tobacco cells: Homopiperazine-1,4-bis (2-ethanesulfonic acid) is a suitable buffer for plant cells studies at low pH.

    Science.gov (United States)

    Borgo, Lucélia

    2017-06-01

    Low pH is an important environmental stressor of plant root cells. Understanding the mechanisms of stress and tolerance to acidity is critical; however, there is no widely accepted pH buffer for studies of plant cells at low pH. Such a buffer might also benefit studies of Al toxicity, in which buffering at low pH is also important. The challenge is to find a buffer with minimal cellular effects. We examined the cytotoxicity and possible metabolic disturbances of four buffers that have adequate pK a values and potential use for studies in the pH range of 4.0-5.0. These were homopipes (homopiperazine-1,4-bis (2-ethanesulfonic acid); pK a1 4.4), 3,3-dimethylglutaric acid (pK a1 3.73), β-alanine (pK a1 3.70) and potassium biphthalate (pK a1 2.95; pK a2 5.41). First, tobacco BY-2 cells were grown in a rich medium containing 10 mM of each buffer or MES (2-(N-morpholino) ethanesulfonic acid) as a control, with the pH initially adjusted to 5.7. β-alanine was clearly toxic and dimethylgluturate and biphthalate were found to be cytostatic, in which no culture growth occurred but cell viability was either unaffected or decreased only after 5 days. Only homopipes allowed normal culture growth and cell viability. Homopipes (10 mM) was then tested in cell cultures with an initial pH of 4.3 ± 0.17 in minimal medium to examine whether its undissociated species (H 2 A) displayed any cellular effects and no cytotoxic effects were observed. It is possible to conclude that among tested buffers, homopipes is the most suitable for studies at low pH, and may be especially useful for aluminum toxicity experiments. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  4. Supported zirconium sulfate on carbon nanotubes as water-tolerant solid acid catalyst

    International Nuclear Information System (INIS)

    Juan, Joon Ching; Jiang Yajie; Meng Xiujuan; Cao Weiliang; Yarmo, Mohd Ambar; Zhang Jingchang

    2007-01-01

    A new solid acid of zirconium sulfate (CZ) was successfully supported on carbon nanotube (CNT) for esterification reaction. Preparation conditions of the supported CZ have been investigated, to obtain highest catalytic activity for esterification reaction. XRD, TEM, BET, X-ray photoelectron spectra (XPS) and in situ FTIR analysis has also been carried out to understand the characteristics of the catalyst. In the esterification of acrylic acid with n-octanol, the supported CZ exhibited high catalytic activity and stability. The catalytic activity was nearly unchanged during four times of reuse. XRD and TEM analysis indicated that CZ was finely dispersed on CNT. XPS analysis shows that the CZ species was preserved and the chemical environment of the CZ has changed after loaded on CNT. This finding show that CNT as CZ support is an efficient water-tolerant solid acid

  5. ALUMINUM TOXICITY VS SALICYLIC ACID EFFECTS IN PEARL MILLET METHYLOME.

    OpenAIRE

    Baba Ngom; Edward Mamati; Ibrahima Sarr; Josphert Kimatu.

    2018-01-01

    Aluminum toxicity is one of most distributed plant abiotic stress in the world, causing root inhibition and therefore crop losses. Plants continuously adapt its defense to abiotic stresses through different mechanisms including DNA methylation. The methylome variation is influenced by external cues from environment or by hormonal signals. Salicylic acid is one of the most important hormones in plants, directing growth and defense. Its application is seen having the capacity to elicit plant de...

  6. HAA1 and PRS3 overexpression boosts yeast tolerance towards acetic acid improving xylose or glucose consumption: unravelling the underlying mechanisms.

    Science.gov (United States)

    Cunha, Joana T; Costa, Carlos E; Ferraz, Luís; Romaní, Aloia; Johansson, Björn; Sá-Correia, Isabel; Domingues, Lucília

    2018-04-02

    Acetic acid tolerance and xylose consumption are desirable traits for yeast strains used in industrial biotechnological processes. In this work, overexpression of a weak acid stress transcriptional activator encoded by the gene HAA1 and a phosphoribosyl pyrophosphate synthetase encoded by PRS3 in a recombinant industrial Saccharomyces cerevisiae strain containing a xylose metabolic pathway was evaluated in the presence of acetic acid in xylose- or glucose-containing media. HAA1 or PRS3 overexpression resulted in superior yeast growth and higher sugar consumption capacities in the presence of 4 g/L acetic acid, and a positive synergistic effect resulted from the simultaneous overexpression of both genes. Overexpressing these genes also improved yeast adaptation to a non-detoxified hardwood hydrolysate with a high acetic acid content. Furthermore, the overexpression of HAA1 and/or PRS3 was found to increase the robustness of yeast cell wall when challenged with acetic acid stress, suggesting the involvement of the modulation of the cell wall integrity pathway. This study clearly shows HAA1 and/or, for the first time, PRS3 overexpression to play an important role in the improvement of industrial yeast tolerance towards acetic acid. The results expand the molecular toolbox and add to the current understanding of the mechanisms involved in higher acetic acid tolerance, paving the way for the further development of more efficient industrial processes.

  7. Role of glucuronidation for hepatic detoxification and urinary elimination of toxic bile acids during biliary obstruction.

    Directory of Open Access Journals (Sweden)

    Martin Perreault

    Full Text Available Biliary obstruction, a severe cholestatic condition, results in a huge accumulation of toxic bile acids (BA in the liver. Glucuronidation, a conjugation reaction, is thought to protect the liver by both reducing hepatic BA toxicity and increasing their urinary elimination. The present study evaluates the contribution of each process in the overall BA detoxification by glucuronidation. Glucuronide (G, glycine, taurine conjugates, and unconjugated BAs were quantified in pre- and post-biliary stenting urine samples from 12 patients with biliary obstruction, using liquid chromatography-tandem mass spectrometry (LC-MS/MS. The same LC-MS/MS procedure was used to quantify intra- and extracellular BA-G in Hepatoma HepG2 cells. Bile acid-induced toxicity in HepG2 cells was evaluated using MTS reduction, caspase-3 and flow cytometry assays. When compared to post-treatment samples, pre-stenting urines were enriched in glucuronide-, taurine- and glycine-conjugated BAs. Biliary stenting increased the relative BA-G abundance in the urinary BA pool, and reduced the proportion of taurine- and glycine-conjugates. Lithocholic, deoxycholic and chenodeoxycholic acids were the most cytotoxic and pro-apoptotic/necrotic BAs for HepG2 cells. Other species, such as the cholic, hyocholic and hyodeoxycholic acids were nontoxic. All BA-G assayed were less toxic and displayed lower pro-apoptotic/necrotic effects than their unconjugated precursors, even if they were able to penetrate into HepG2 cells. Under severe cholestatic conditions, urinary excretion favors the elimination of amidated BAs, while glucuronidation allows the conversion of cytotoxic BAs into nontoxic derivatives.

  8. Comparative proteomic analysis of aluminum tolerance in tibetan wild and cultivated barleys.

    Directory of Open Access Journals (Sweden)

    Huaxin Dai

    Full Text Available Aluminum (Al toxicity is a major limiting factor for plant production in acid soils. Wild barley germplasm is rich in genetic diversity and may provide elite genes for crop Al tolerance improvement. The hydroponic-experiments were performed to compare proteomic and transcriptional characteristics of two contrasting Tibetan wild barley genotypes Al- resistant/tolerant XZ16 and Al-sensitive XZ61 as well as Al-resistant cv. Dayton. Results showed that XZ16 had less Al uptake and translocation than XZ61 and Dayton under Al stress. Thirty-five Al-tolerance/resistance-associated proteins were identified and categorized mainly in metabolism, energy, cell growth/division, protein biosynthesis, protein destination/storage, transporter, signal transduction, disease/defense, etc. Among them, 30 were mapped on barley genome, with 16 proteins being exclusively up-regulated by Al stress in XZ16, including 4 proteins (S-adenosylmethionine-synthase 3, ATP synthase beta subunit, triosephosphate isomerase, Bp2A specifically expressed in XZ16 but not Dayton. The findings highlighted the significance of specific-proteins associated with Al tolerance, and verified Tibetan wild barley as a novel genetic resource for Al tolerance.

  9. Boron tolerance in NS wheat lines

    Directory of Open Access Journals (Sweden)

    Brdar Milka

    2006-01-01

    Full Text Available Boron is an essential micronutrient for higher plants. Present in excessive amounts boron becomes toxic and can limit plant growth and yield. Suppression of root growth is one of the symptoms of boron toxicity in wheat. This study was undertaken to investigate the response of 10 perspective NS lines of wheat to high concentrations of boron. Analysis of root growth was done on young plants, germinated and grown in the presence of different concentrations of boric acid (0, 50,100 and 150 mg/1. Significant differences occurred between analyzed genotypes and treatments regarding root length. Average suppression of root growth was between 11,6 and 34,2%, for line NS 252/02 are even noted 61,4% longer roots at treatments in relation to the control. Lines with mean suppression of root growth less than 20% (NS 101/02, NS 138/01, NS 53/03 and NS 73/02 may be considered as boron tolerant. Spearmans coefficients showed high level of agreement regarding rang of root length for genotypes treated with 100 and 150 mg H3BO3/l.

  10. Effects of Humic and Fulvic Acids on Silver Nanoparticle Stability, Dissolution, and Toxicity

    Science.gov (United States)

    Gunsolus, Ian L.; Mousavi, Maral P. S.; Hussein, Kadir; Bühlmann, Philippe; Haynes, Christy L.

    2015-01-01

    The colloidal stability of silver nanoparticles (AgNPs) in natural aquatic environments influences their transport and environmental persistence, while their dissolution to Ag+ influences their toxicity to organisms. Here, we characterize the colloidal stability, dissolution behavior, and toxicity of two industrially relevant classes of AgNPs (i.e., AgNPs stabilized by citrate or polyvinylpyrrolidone) after exposure to natural organic matter (NOM, i.e., Suwannee River Humic and Fulvic Acid Standards and Pony Lake Fulvic Acid Reference). We show that NOM interaction with the nanoparticle surface depends on (i) the NOM’s chemical composition, where sulfur- and nitrogen-rich NOM more significantly increases colloidal stability, and (ii) the affinity of the capping agent for the AgNP surface, where nanoparticles with loosely bound capping agents are more effectively stabilized by NOM. Adsorption of NOM is shown to have little effect on AgNP dissolution under most experimental conditions, the exception being when the NOM is rich in sulfur and nitrogen. Similarly, the toxicity of AgNPs to a bacterial model (Shewanella oneidensis MR-1) decreases most significantly in the presence of sulfur- and nitrogen-rich NOM. Our data suggest that the rate of AgNP aggregation and dissolution in aquatic environments containing NOM will depend on the chemical composition of the NOM, and that the toxicity of AgNPs to aquatic microorganisms is controlled primarily by the extent of nanoparticle dissolution. PMID:26047330

  11. Edaravone ameliorates the adverse effects of valproic acid toxicity in small intestine.

    Science.gov (United States)

    Oktay, S; Alev, B; Tunali, S; Emekli-Alturfan, E; Tunali-Akbay, T; Koc-Ozturk, L; Yanardag, R; Yarat, A

    2015-06-01

    Valproic acid (VPA) is a drug used for the treatment of epilepsy, bipolar psychiatric disorders, and migraine. Previous studies have reported an increased generation of reactive oxygen species and oxidative stress in the toxic mechanism of VPA. Edaravone, a free radical scavenger for clinical use, can quench free radical reaction by trapping a variety of free radical species. In this study, effect of edaravone on some small intestine biochemical parameters in VPA-induced toxicity was investigated. Thirty seven Sprague Dawley female rats were randomly divided into four groups. The groups include control group, edaravone (30 mg(-1) kg(-1) day(-1)) given group, VPA (0.5 g(-1) kg(-1) day(-1)) given group, VPA + edaravone (in same dose) given group. Edaravone and VPA were given intraperitoneally for 7 days. Biochemical parameters such as malondialdehyde, as an index of lipid peroxidation(LPO), sialic acid (SA), glutathione levels and glutathione peroxidase, glutathione-S-transferase, superoxide dismutase, catalase, myeloperoxidase, alkaline phosphatase (ALP), and tissue factor (TF) activities were determined in small intestine samples by colorimetric methods. Decreased small intestine antioxidant enzyme activities, increased LPO and SA levels, and increased activities of ALP and TF were detected in the VPA group. Based on our results edaravone may be suggested to reverse the oxidative stress and inflammation due to VPA-induced small intestine toxicity. © The Author(s) 2014.

  12. 75 FR 53586 - Bifenazate; Pesticide Tolerances

    Science.gov (United States)

    2010-09-01

    ... characterized and were seen at dose(s) that produce evidence of overt systemic toxicity. These effects included... system, and these findings may be due to secondary effect of overt systemic toxicity. Further, there is... Adequate enforcement methodology is available to enforce the tolerance expression. High-performance liquid...

  13. DENTINE CARIES: ACID-TOLERANT MICROORGANISMS AND ASPECTS ON COLLAGEN DEGRADATION.

    Science.gov (United States)

    Lager, Anders Hedenbjörk

    2014-01-01

    Dental caries is a common disease all over the world, despite the fact that it can be both effectively prevented and treated. It is driven by acids produced by oral microorganisms as a consequence of their metabolism of dietary carbohydrates. Given enough acid challenge, eventually the tooth enamel barrier will be broken down, and the carious lesion will extend into underlying hard tissue, forming a macroscopic cavity in the dentine. In comparison to biofilm on enamel, a dentine carious lesion provides a vastly different environment for the residing microorganisms. The environment influences the types and numbers of microorganisms that can colonize the dentine caries lesion. The overall aims for this thesis are to enumerate and further study microorganisms found in established dentine caries lesions and also to illuminate how host-derived proteolytic enzymes might contribute to this degradation, not only to better understand the caries process in dentine but also to find incitements for new methods to influence the natural progression of caries lesions. In Paper I, the numbers of remaining viable microorganisms after completed excavation using two excavation methods were investigated. Samples of carious dentine tissue were collected before and after excavation and cultivated on different agar media in different atmospheres. Analysis was performed by counting the number of colony-forming units (CFUs). Key findings: The number of remaining microorganisms after excavation was low for both methods, but some microorganisms always remained in the cavity floors even when the cavities were judged as caries free using normal clinical criteria. In Paper II, the acid tolerant microbiota in established dentine caries lesions was investigated. Samples were taken as in Paper I, but on three levels (superficial, center of lesion, floor of lesion after completed excavation). The samples were cultivated in anaerobic conditions on solid pH-selective agar media of different acidity

  14. Receptor-mediated radionuclide therapy with 90Y-DOTATOC in association with amino acid infusion: a phase I study

    International Nuclear Information System (INIS)

    Bodei, Lisa; Zoboli, Stefania; Grana, Chiara; Bartolomei, Mirco; Rocca, Paola; Caracciolo, Maurizio; Chinol, Marco; Paganelli, Giovanni; Cremonesi, Marta; Maecke, Helmut R.

    2003-01-01

    The aim of this study was to determine the maximum tolerated dose of 90 Y-DOTATOC per cycle administered in association with amino acid solution as kidney protection in patients with somatostatin receptor-positive tumours. Forty patients in eight groups received two cycles of 90 Y-DOTATOC, with activity increased by 0.37 GBq per group, starting at 2.96 and terminating at 5.55 GBq. All patients received lysine ± arginine infusion immediately before and after therapy. Forty-eight percent developed acute grade I-II gastrointestinal toxicity (nausea and vomiting) after amino acid infusion whereas no acute adverse reactions occurred after 90 Y-DOTATOC injection up to 5.55 GBq/cycle. Grade III haematological toxicity occurred in three of seven (43%) patients receiving 5.18 GBq, which was defined as the maximum tolerable activity per cycle. Objective therapeutic responses occurred. Five GBq per cycle is the recommended dosage of 90 Y-DOTATOC when amino acids are given to protect the kidneys. Although no patients developed acute kidney toxicity, delayed kidney toxicity remains a major concern, limiting the cumulative dose to 25 Gy. The way forward with this treatment would seem to be to identify more effective renal protective agents, in order to be able to increase the cumulative injectable activity and hence tumour dose. (orig.)

  15. Synthesis, Characterization, and Acute Oral Toxicity Evaluation of pH-Sensitive Hydrogel Based on MPEG, Poly(ε-caprolactone, and Itaconic Acid

    Directory of Open Access Journals (Sweden)

    Liwei Tan

    2013-01-01

    Full Text Available A kind of chemically cross-linked pH-sensitive hydrogels based on methoxyl poly(ethylene glycol-poly(caprolactone-acryloyl chloride (MPEG-PCL-AC, PECA, poly(ethylene glycol methyl ether methacrylate (MPEGMA, MEG, N,N-methylenebisacrylamide (BIS, and itaconic acid (IA were prepared without using any organic solvent by heat-initiated free radical method. The obtained macromonomers and hydrogels were characterized by 1H NMR and FT-IR, respectively. Morphology study of hydrogels was also investigated in this paper, and it showed that the hydrogels had good pH-sensitivity. The acute toxicity test and histopathological study were conducted in BALB/c mice. The results indicated that the maximum tolerance dose of the hydrogel was higher than 10000 mg/kg body weight. No morality or signs of toxicity were observed during the whole 7-day observation period. Compared to the control groups, there were no important adverse effects in the variables of hematology routine test and serum chemistry analysis both in male or female treatment group. Histopathological study also did not show any significant lesions, including heart, liver, lung, spleen, kidney, stomach, intestine, and testis. All the results demonstrated that this hydrogel was nontoxic after gavage. Thus, the hydrogel might be the biocompatible potential candidate for oral drug delivery system.

  16. Effect of elevated Al and pH on the growth and root morphology of Al-tolerant and Al-sensitive wheat seedlings in an acid soil

    Directory of Open Access Journals (Sweden)

    Md. Toufiq Iqbal

    2014-03-01

    Full Text Available Aluminium ion (Al3+ toxicity and hydrogen ion (H+ activity are the major constraints for plant growth in acid soil. This study was undertaken to determine the effect of pH and Al on the growth response and changes in root morphology of Al-tolerant (ET8 and Al-sensitive (ES8 wheat seedlings. Different levels of AlCl3 and CaCO3 were added to the soils to manipulate soil pH and extractable Al. The results showed that the bulk soil pH remained constant at pH 4.1 with further applications of AlCl3, and that the seedlings died at the 200 mg AlCl3/kg treatments. The ET8 seedlings responded better than the ES8 seedlings in both low and high Al and pH. The ET8 seedlings had higher root surface areas and root tip numbers than the ES8 seedlings in the Al treatment. In contrast, the ES8 had higher root diameters than the ET8 seedlings due to the elevated Al supply. Apoplast Al increased with the increase of soil available extractable Al, and declined with the decrease of soil extractable Al. The ET8 seedlings accumulated more Al in their apoplast than the ES8 seedlings. This study concluded that accumulation of Al in the apoplast is also involved in Al tolerance mechanism with the addition of organic acid exudation.

  17. Methodology adjustments for organic acid tolerance studies in oat under hydroponic systems

    Directory of Open Access Journals (Sweden)

    Mauricio Marini Kopp

    2009-06-01

    Full Text Available The occurrence of anaerobic conditions in hydromorphic soils favors the development of anaerobic microorganisms that produce phytotoxic substances representing primarily by organic acids. The selection of promising oat (Avena sativa L. genotypes for use in those situations requires field evaluations that can be cumbersome, making hydroponics a viable alternative. The objective of this work was to adjust a methodology to use in studies of tolerance to organic acids in oat under hydroponic systems. For such goal, the best germination system was determined in order to reduce the seedling initial establishment effects under hydroponics, the ideal concentration for screening genotypes and the best variable for stress evaluation. It was found that the most efficient germination system was "pleated germination paper" with small and husked seeds. The best concentration for studying organic acid tolerance ranged from 2.3 to 6.2 mM and the most suitable variable for the evaluation was root length.A ocorrência de condições anaeróbias nos solos hidromórficos favorece o desenvolvimento de microrganismos anaeróbios que produzem substâncias fitotóxicas representadas principalmente pelos ácidos orgânicos. A seleção de constituições genéticas de aveia (Avena sativa L. promissoras para utilização nestas situações requer avaliações de difícil execução no campo, tornando a utilização de sistemas hidropônicos mais vantajosa. O objetivo deste trabalho foi ajustar uma metodologia para ser utilizada em estudos de tolerância a ácidos orgânicos em aveia através de sistemas hidropônicos. Para tal fim foi determinada uma forma adequada de promover a germinação das sementes de maneira a reduzir os efeitos do estabelecimento inicial das plântulas na hidroponia, uma faixa de concentração ideal para discriminação dos genótipos e as variáveis de maior interesse para avaliação. O sistema de germinação mais eficiente é através de

  18. Effect of Marine Omega 3 Fatty Acids on Methylmercury-Induced Toxicity in Fish and Mammalian Cells In Vitro

    Directory of Open Access Journals (Sweden)

    O. J. Nøstbakken

    2012-01-01

    Full Text Available Methylmercury (MeHg is a ubiquitous environmental contaminant which bioaccumulates in marine biota. Fish constitute an important part of a balanced human diet contributing with health beneficial nutrients but may also contain contaminants such as MeHg. Interactions between the marine n-3 fatty acids eicosapentaenoic acid (20:5n-3, EPA and docosahexaenoic acid (22:6n-3, DHA with MeHg-induced toxicity were investigated. Different toxic and metabolic responses were studied in Atlantic salmon kidney (ASK cell line and the mammalian kidney-derived HEK293 cell line. Both cell lines were preincubated with DHA or EPA prior to MeHg-exposure, and cell toxicity was assessed differently in the cell lines by MeHg-uptake in cells (ASK and HEK293, proliferation (HEK293 and ASK, apoptosis (ASK, oxidation of the red-ox probe roGFP (HEK293, and regulation of selected toxicological and metabolic transcriptional markers (ASK. DHA was observed to decrease the uptake of MeHg in HEK293, but not in ASK cells. DHA also increased, while EPA decreased, MeHg-induced apoptosis in ASK. MeHg exposure induced changes in selected metabolic and known MeHg biomarkers in ASK cells. Both DHA and MeHg, but not EPA, oxidized roGFP in HEK293 cells. In conclusion, marine n-3 fatty acids may ameliorate MeHg toxicity, either by decreasing apoptosis (EPA or by reducing MeHg uptake (DHA. However, DHA can also augment MeHg toxicity by increasing oxidative stress and apoptosis when combined with MeHg.

  19. Use of a (Quantitative) Structure-Activity Relationship [(Q)SAR] model to predict the toxicity of naphthenic acids

    DEFF Research Database (Denmark)

    Frank, Richard; Sanderson, Hans; Kavanagh, Richard

    2010-01-01

    Naphthenic acids (NAs) are a complex mixture of carboxylic acids that are natural constituents of oil sand found in north-eastern Alberta, Canada.  NAs are released and concentrated in the alkaline water used in the extraction of bitumen from oil sand sediment.  NAs have been identified...... as the principal toxic components of oil sands process-affected water (OSPW), and microbial degradation of lower molecular weight (MW) NAs decreases the toxicity of NA mixtures in OSPW.  Analysis by proton nuclear magnetic resonance spectroscopy indicated that larger, more cyclic NAs contain greater carboxylic...

  20. Toxicity of common ions to marine organisms

    International Nuclear Information System (INIS)

    Pillard, D.A.; DuFresne, D.L.; Evans, J.

    1995-01-01

    Produced waters from oil and gas drilling operations are typically very saline, and these may cause acute toxicity to marine organisms due to osmotic imbalances as well as to an excess or deficiency of specific common ions. In order to better understand the relationship between toxicity and ion concentration, laboratory toxicity tests were conducted using mysid shrimp (Mysidopsis bahia), sheepshead minnow (Cyprinodon variegatus), and inland silverside (Menidia beryllina). For each species the ionic concentration of standard laboratory water was proportionally increased or decreased to produce test solutions with a range of salinities. Organisms were exposed for 48 hours. Individual ions (sodium, potassium, calcium, magnetsium, strontium, chloride, bromide, sulfate, bicarbonate, and borate) were also manipulated to examine individual ion toxicity. The three test species differ in their tolerance of salinity. Mysid shrimp show a marked decrease in survival at salinities less than approximately 5 ppt. Both fish species tolerated low salinity water, however, silversides were less tolerant of saline waters (salinity greater than 40 ppt). There were also significant differences in the responses of the organisms to different ions. The results show that the salinity of the test solution may play an important role in the responses of the organisms to the produced water effluent. Predictable toxicity/ion relationships developed in this study can be used to estimate whether toxicity in a produced water is a result of common ions, salinity, or some other unknown toxicant

  1. Diclofenac toxicity in Gyps vulture is associated with decreased uric acid excretion and not renal portal vasoconstriction.

    Science.gov (United States)

    Naidoo, V; Swan, G E

    2009-04-01

    Diclofenac (DF), a non-steroidal anti-inflammatory drug (NSAID), is largely regarded as one of the most devastating environmental toxicant in recent times, after accidental exposure via their food-chain lead to massive mortalities in three vulture species on the Asian subcontinent. Although the use of diclofenac was recently banned on the Indian subcontinent, following the favourable safety profile of meloxicam, its mechanism of toxicity remains unknown. In an attempt to establish this mechanism, we test three hypotheses using models established from either the domestic chicken (Gallus domesticus) or the African White-backed vulture (Gyps africanus). We demonstrate that both DF and meloxicam are toxic to renal tubular epithelial (RTE) cells following 12 h of exposure, due to an increase in production of reactive oxygen species (ROS), which could be temporarily ameliorated by pre-incubation with uric acid (UA). When cultures were incubated with either drug for only 2 h, meloxicam showed no toxicity in contrast to diclofenac. In both cases no increase in ROS production was evident. In addition, diclofenac decreased the transport of uric acid, by interfering with the p-amino-hippuric acid (PAH) channel. We conclude that vulture susceptibility to diclofenac results from a combination of an increased ROS, interference with UA transport and the duration of exposure.

  2. Potential citric acid exposure and toxicity to Hawaiian hoary bats (Lasiurus cinereus semotus) associated with Eleutherodactylus frog control.

    Science.gov (United States)

    Pitt, William C; Witmer, Gary W; Jojola, Susan M; Sin, Hans

    2014-04-01

    We examined potential exposure of Hawaiian hoary bats (Lasiurus cinereus semotus) to citric acid, a minimum risk pesticide registered for control of invasive Eleutherodactylus frog populations. Hoary bats are nocturnal insectivores that roost solitarily in foliage, federally listed as endangered, and are endemic to Hawaii. Oral ingestion during grooming of contaminated fur appears to be the principal route by which these bats might be exposed to citric acid. We made assessments of oral toxicity, citric acid consumption, retention of material on fur, and grooming using big brown bats (Eptesicus fuscus) as a surrogate species. We evaluated both ground application and aerial application of 16 % solutions of citric acid during frog control operations. Absorbent bat effigies exposed to ground and aerial operational spray applications retained means of 1.54 and 0.02 g, respectively, of dry citric acid, although retention by the effigies was much higher than bat carcasses drenched in citric acid solutions. A high dose delivered orally (2,811 mg/kg) was toxic to the big brown bats and emesis occurred in 1 bat dosed as low as the 759 mg/kg level. No effect was observed with the lower doses examined (≤ 542 mg/kg). Bats sprayed with 5 ml of 16 % (w/w) citric acid solution showed no evidence of intoxication. In field situations, it is unlikely that bats would be sprayed directly or ingest much citric acid retained by fur. Based on our observations, we believe Hawaiian hoary bats to be at very low risk from harmful exposure to a toxic dose of citric acid during frog control operations.

  3. Algal toxicity of the alternative disinfectants performic acid (PFA), peracetic acid (PAA), chlorine dioxide (ClO2) and their by-products hydrogen peroxide (H2O2) and chlorite (ClO2-).

    Science.gov (United States)

    Chhetri, Ravi Kumar; Baun, Anders; Andersen, Henrik Rasmus

    2017-05-01

    Environmental effect evaluation of disinfection of combined sewer overflow events with alternative chemical disinfectants requires that the environmental toxicity of the disinfectants and the main by-products of their use are known. Many disinfectants degrade quickly in water which should be included in the evaluation of both their toxicity as determined in standardized tests and their possible negative effect in the water environment. Here we evaluated according to the standardized ISO 8692 test the toxicity towards the green microalgae, Pseudokirchneriella subcapitata, of three disinfectants: performic acid (PFA), peracetic acid (PAA) and chlorine dioxide (ClO 2 ) as well as two by-products of their use: hydrogen peroxide (H 2 O 2 ) and chlorite. All of the five chemicals investigated showed clear toxicity to the algae with well-defined dose response curves. The EC 50 values ranged from 0.16 to 2.9mg/L based on nominal concentrations leading to the labeling of the chemicals as either toxic or very toxic. The five investigated chemicals decreased in toxicity in the order chlorine dioxide, performic acid, peracetic acid, chlorite and hydrogen peroxide. The stability of the chemicals increased in the same order as the toxicity decrease. This indicates that even though ClO 2 has the highest environmental hazard potential, it may still be suitable as an alternative disinfectant due to its rapid degradation in water. Copyright © 2016 Elsevier GmbH. All rights reserved.

  4. Dual responsive dysprosium-doped hydroxyapatite particles and toxicity reduction after functionalization with folic and glucuronic acids

    Energy Technology Data Exchange (ETDEWEB)

    Sánchez Lafarga, Ana Karen; Pacheco Moisés, Fermín P. [Departamento de Química, Universidad de Guadalajara, Marcelino García Barragán 1421, C.P. 44430, Guadalajara, Jalisco (Mexico); Gurinov, Andrey [Research Resources Center for Magnetic Resonance, Saint Petersburg State University, Universitetskij pr. 26, 198504 St. Petersburg (Russian Federation); Ortiz, Genaro Gabriel [Laboratorio Desarrollo-Envejecimiento, Enfermedades Neurodegenerativas, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano de Seguro Social (IMSS), Guadalajara, Jalisco (Mexico); Carbajal Arízaga, Gregorio Guadalupe, E-mail: gregoriocarbajal@yahoo.com.mx [Departamento de Química, Universidad de Guadalajara, Marcelino García Barragán 1421, C.P. 44430, Guadalajara, Jalisco (Mexico)

    2015-03-01

    The development of probes for biomedical applications demands materials with low toxicity levels besides fluorescence or magnetic properties to be detected by confocal microscopes or MRI resonators. Several drug delivery systems or other biomedical materials prepared with hydroxyapatite have been proposed, however, toxicity effects might arise when the size of particles is nanometric. In this study, hydroxyapatite functionalized with glucuronic or folic acids presented lower oxidative stress, measured from lipoperoxides and nitric oxide indicators in rats than pure hydroxyapatite. In separated experiments, hydroxyapatite was doped with dysprosium cations by coprecipitation producing a single crystal phase with fluorescent properties easily visualized by confocal microscopy when excited at 488 nm. These particles also presented the ability to modify the proton relaxation time in T1 maps collected by magnetic resonance imaging. These modified hydroxyapatite nanoparticles could be candidates to design bimodal probes with low toxicity. - Highlights: • Hydroxyapatite functionalized with glucuronic acid reduced oxidative stress in rats. • Functionalization with folic acid reduced oxidative stress in rats. • Dysprosium doping does not affect the crystalline structure of hydroxyapatite. • Dysprosium doped particles are visible in fluorescent microscope. • Dysprosium doped particles act as MRI contrast agents.

  5. Dual responsive dysprosium-doped hydroxyapatite particles and toxicity reduction after functionalization with folic and glucuronic acids

    International Nuclear Information System (INIS)

    Sánchez Lafarga, Ana Karen; Pacheco Moisés, Fermín P.; Gurinov, Andrey; Ortiz, Genaro Gabriel; Carbajal Arízaga, Gregorio Guadalupe

    2015-01-01

    The development of probes for biomedical applications demands materials with low toxicity levels besides fluorescence or magnetic properties to be detected by confocal microscopes or MRI resonators. Several drug delivery systems or other biomedical materials prepared with hydroxyapatite have been proposed, however, toxicity effects might arise when the size of particles is nanometric. In this study, hydroxyapatite functionalized with glucuronic or folic acids presented lower oxidative stress, measured from lipoperoxides and nitric oxide indicators in rats than pure hydroxyapatite. In separated experiments, hydroxyapatite was doped with dysprosium cations by coprecipitation producing a single crystal phase with fluorescent properties easily visualized by confocal microscopy when excited at 488 nm. These particles also presented the ability to modify the proton relaxation time in T1 maps collected by magnetic resonance imaging. These modified hydroxyapatite nanoparticles could be candidates to design bimodal probes with low toxicity. - Highlights: • Hydroxyapatite functionalized with glucuronic acid reduced oxidative stress in rats. • Functionalization with folic acid reduced oxidative stress in rats. • Dysprosium doping does not affect the crystalline structure of hydroxyapatite. • Dysprosium doped particles are visible in fluorescent microscope. • Dysprosium doped particles act as MRI contrast agents

  6. 75 FR 29435 - Diquat Dibromide; Pesticide Tolerances

    Science.gov (United States)

    2010-05-26

    ... exposure studies in rats, diquat dibromide showed evidence of severe systemic toxicity, including high... systemic toxicity (e.g., piloerection, diarrhea, urinary incontinence, upward curvature of the spine... Method (HPLC)) is available to enforce the tolerance expression. The method may be requested from: Chief...

  7. Preparation of five 3-MCPD fatty acid esters, and the effects of their chemical structures on acute oral toxicity in Swiss mice.

    Science.gov (United States)

    Liu, Man; Liu, Jie; Wu, Yizhen; Gao, Boyan; Wu, Pingping; Shi, Haiming; Sun, Xiangjun; Huang, Haiqiu; Wang, Thomas Ty; Yu, Liangli Lucy

    2017-02-01

    3-monochloro-1, 2-propanediol fatty acid esters (3-MCPDEs) comprise a group of food toxicants formed during food processing. 3-MCPDEs have received increasing attention concerning their potential negative effects on human health. However, reports on the toxicity of 3-MCPD esters are still limited. To determine the effects of fatty acid substitutions on the toxicity of their esters, 1-stearic, 1-oleic, 1-linoleic, 1-linoleic-2-palmitic and 1-palmitic-2-linoleic acid esters of 3-MCPD were synthesized and evaluated with respect to their acute oral toxicities in Swiss mice. 3-MCPDEs were obtained through the reaction of 3-MCPD and fatty acid chlorides, and their purities and structures were characterized by ultraperformance liquid chromatography-quadrupole-time of flight-mass spectrometry (UPLC-Q-TOF-MS), infrared, 1 H and 13 C spectroscopic analyses. Medial lethal doses of 1-stearic, 1-oleic, 1-linoleic, 1-linoleic-2-palmitic and 1-palmitic-2-linoleic acid esters were 2973.8, 2081.4, 2016.3, 5000 and > 5000 mg kg -1 body weight. For the first time, 3-MCPDEs were observed for their toxic effects in the thymus and lung. In addition, major histopathological changes, as well as blood urea nitrogen and creatinine, were examined for mice fed the five 3-MCPDEs. The results from the present study suggest that the degree of unsaturation, chain length, number of substitution and relative substitution locations of fatty acids might alter the toxicity of 3-MCPDEs. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  8. Effect of Microbial inoculation in combating the aluminium toxicity effect on growth of Zea mays.

    Science.gov (United States)

    Arora, P; Singh, G; Tiwari, A

    2017-07-31

    The present study is aimed at improving the aluminium tolerance in maize crop employing the potential of microbial inoculants in conferring resistance to these toxicities via production of certain chelating compounds like siderophores, exopolysachharides and organic acids. Acid soils have now-a-days become one of the key factors for limiting growth of many agriculturally important crops. Aluminium  is one of the major elements present in acid soils and is mainly responsible for toxicity in the soil. This aluminium is rapidly soluble in soil water and hence absorbed by plant roots under conditions where soil pH is below 5. This toxicity leads to severe root growth inhibition, thereby limiting the production of maize crops. It was observed that use of microbial inoculums can be helpful in elimination of these toxic compounds and prevent the inhibition of root growth . It was found that the soils contaminated with aluminium toxicity decreased the root length of maize plant significantly by 65% but Bacillus and Burkholderia inoculation increased this root length significantly by 1.4- folds and 2- folds respectively thereby combating the effect of aluminium toxicity. Aluminium concentration was found maximum in roots of plants which were grown under aluminium stress condition. But this aluminium accumulation decreased ̴ 2-folds when Burkholderia was used as seed inoculants under aluminium stress conditions. Also, at 60mM aluminium accumulation, phosphorus solubilisation in roots was found to be increased upto 30% on Burkholderia inoculation. However, Bacillus inoculation didn't show any significant difference in either of the case. Thus, the inoculation of seeds with Burkholderia isolates could prove to be a boon in sequestering aluminium toxicity in Zea mays.

  9. Salicylic acid confers salt tolerance in potato plants by improving water relations, gaseous exchange, antioxidant activities and osmoregulation.

    Science.gov (United States)

    Faried, Hafiz Nazar; Ayyub, Chaudhary Muhammad; Amjad, Muhammad; Ahmed, Rashid; Wattoo, Fahad Masoud; Butt, Madiha; Bashir, Mohsin; Shaheen, Muhammad Rashid; Waqas, Muhammad Ahmed

    2017-04-01

    Potato is an important vegetable; however, salt stress drastically affects its growth and yield. A pot experiment was therefore conducted to assess salicylic acid efficacy in improving performance of potato cultivars, grown under salt stress (50 mmol L -1 ). Salicylic acid at 0.5 mmol L -1 was sprayed on to potato plants after 1 week of salinity application. Salt stress effects were ameliorated by salicylic acid effectively in both the studied cultivars. N-Y LARA proved more responsive to salicylic acid application than 720-110 NARC, which confirmed genetic variation between cultivars. Salicylic acid scavenged reactive oxygen species by improving antioxidant enzyme activities (superoxide dismutase, catalase, peroxidases) and regulating osmotic adjustment (proline, phenolic contents), which led to enhanced water relation and gaseous exchange attributes, and thereby increased potassium availability and reduced sodium content in potato leaves. Moreover, potato tuber yield showed a positive correlation with potassium content, photosynthesis and antioxidant enzyme activities. Salt tolerance efficacy of salicylic acid is authenticated in improving potato crop performance under salt stress. Salicylic acid effect was more pronounced in N-Y LARA, reflecting greater tolerance than 720-110 NARC, which was confirmed as a susceptible cultivar. Hence salicylic acid at 0.5 mmol L -1 and cultivation of N-Y LARA may be recommended in saline soil. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  10. Toxicity of nalidixic acid on candida albicans, Saccharomyces cerevisiae, and Kluyveromyces lactis.

    Science.gov (United States)

    Sobieski, R J; Brewer, A R

    1976-03-01

    The antibacterial drug nalidixic acid (Nal) can suppress the growth of Candida albicans at levels of the drug normally found in urine. Growth suppression increases as drug levels are increased, and Nal also causes a similar proportional inhibition of the synthesis of all cellular macromolecules. However, growth temperature (25 versus 37 C) and the divalent cations Mg(2+) and Mn(2+) can increase C. albicans resistance to Nal. Also, nitrogen depletion of Candida shows that Nal-treated and untreated cells exhibit no difference in leucine uptake during readaptation to nitrogen. In Nal-treated, nitrogen-starved cells, ribonucleic acid and deoxyribonucleic acid (DNA) biosynthesis are less affected than in unstarved Nal-treated cells, but of the two nucleic acids DNA synthesis is the most affected. Nal-resistant strains of C. albicans exhibit a slight toxicity for macromolecular synthesis. Nal treatment of a synchronized population of Saccharomyces cerevisiae results in an increase in the culture mean doubling time of, at most, 20%, but Nal causes the loss of synchronous cell division. With a synchronized population of Kluyveromyces lactis, Nal causes an increase in the mean doubling time of upwards of 300%, with synchrony of cell division being maintained. It is known that S. cerevisiae asynchronously synthesizes mitochondrial DNA during the cell cycle, whereas with K. lactis it is synchronous. Thus, with C. albicans Nal toxicity is dependent both on the dose and the physiological state of the cell. Furthermore, Nal inhibits growth of yeast with synchronous mitochondrial DNA synthesis more adversely than yeast with asynchronous mitochondrial DNA synthesis.

  11. Toxicity of binary chemical munition destruction products: methylphosphonic acid, methylphosphinic acid, 2-diisopropylaminoethanol, DF neutralent, and QL neutralent.

    Science.gov (United States)

    Watson, Rebecca E; Hafez, Ahmed M; Kremsky, Jonathan N; Bizzigotti, George O

    2007-01-01

    This paper reports the toxicity and environmental impact of neutralents produced from the hydrolysis of binary chemical agent precursor chemicals DF (methylphosphonic difluoride) and QL (2-[bis(1-methylethyl)amino]ethyl ethyl methylphosphonite). Following a literature review of the neutralent mixtures and constituents, basic toxicity tests were conducted to fill data gaps, including acute oral and dermal median lethal dose assays, the Ames mutagenicity test, and ecotoxicity tests. For methylphosphonic acid (MPA), a major constituent of DF neutralent, the acute oral LD(50) in the Sprague-Dawley rat was measured at 1888 mg/kg, and the Ames test using typical tester strains of Salmonella typhimurium and Escherichia coli was negative. The 48-h LC(50) values for pH-adjusted DF neutralent with Daphnia magna and Cyprinodon variegatus were > 2500 mg/L and 1593 mg/L, respectively. The acute oral LD(50) values in the rat for QL neutralent constituents methylphosphinic acid (MP) and 2-diisopropylaminoethanol (KB) were both determined to be 940 mg/kg, and the Ames test was negative for both. Good Laboratory Practice (GLP)-compliant ecotoxicity tests for MP and KB gave 48-h D. magna EC(50) values of 6.8 mg/L and 83 mg/L, respectively. GLP-compliant 96-h C. variegatus assays on MP and KB gave LC(50) values of 73 and 252 mg/L, respectively, and NOEC values of 22 and 108 mg/L. QL neutralent LD(50) values for acute oral and dermal toxicity tests were both > 5000 mg/kg, and the 48-h LD(50) values for D. magna and C. variegatus were 249 and 2500 mg/L, respectively. Using these data, the overall toxicity of the neutralents was assessed.

  12. Two rice plasma membrane intrinsic proteins, OsPIP2;4 and OsPIP2;7, are involved in transport and providing tolerance to boron toxicity.

    Science.gov (United States)

    Kumar, Kundan; Mosa, Kareem A; Chhikara, Sudesh; Musante, Craig; White, Jason C; Dhankher, Om Parkash

    2014-01-01

    Boron (B) toxicity is responsible for low cereal crop production in a number of regions worldwide. In this report, we characterized two rice genes, OsPIP2;4 and OsPIP2;7, for their involvement in B permeability and tolerance. Transcript analysis demonstrated that the expression of OsPIP2;4 and OsPIP2;7 were downregulated in shoots and strongly upregulated in rice roots by high B treatment. Expression of both OsPIP2;4 and OsPIP2;7 in yeast HD9 strain lacking Fps1, ACR3, and Ycf1 resulted in an increased B sensitivity. Furthermore, yeast HD9 strain expressing OsPIP2;4 and OsPIP2;7 accumulated significantly higher B as compared to empty vector control, which suggests their involvement in B transport. Overexpression of OsPIP2;4 and OsPIP2;7 in Arabidopsis imparted higher tolerance under B toxicity. Arabidopsis lines overexpressing OsPIP2;4 and OsPIP2;7 showed significantly higher biomass production and greater root length, however there was no difference in B accumulation in long term uptake assay. Short-term uptake assay using tracer B (¹⁰B) in shoots and roots demonstrated increased ¹⁰B accumulation in Arabidopsis lines expressing OsPIP2;4 and OsPIP2;7, compare to wild type control plants. Efflux assay of B in the roots showed that ¹⁰B was effluxed from the Arabidopsis transgenic plants overexpressing OsPIP2;4 or OsPIP2;7 during the initial 1-h of assay. These data indicate that OsPIP2;4 and OsPIP2;7 are involved in mediating B transport in rice and provide tolerance via efflux of excess B from roots and shoot tissues. These genes will be highly useful in developing B tolerant crops for enhanced yield in the areas affected by high B toxicity.

  13. Quinolinic Acid, an Endogenous Molecule Combining Excitotoxicity, Oxidative Stress and Other Toxic Mechanisms

    Directory of Open Access Journals (Sweden)

    Verónica Pérez-De La Cruz

    2012-01-01

    Full Text Available Quinolinic acid (QUIN, an endogenous metabolite of the kynurenine pathway, is involved in several neurological disorders, including Huntington's disease, Alzheimer's disease, schizophrenia, HIV associated dementia (HAD etc. QUIN toxicity involves several mechanisms which trigger various metabolic pathways and transcription factors. The primary mechanism exerted by this excitotoxin in the central nervous system (CNS has been largely related with the overactivation of N-methyl-D-aspartate receptors and increased cytosolic Ca 2+ concentrations, followed by mitochondrial dysfunction, cytochrome c release, ATP exhaustion, free radical formation and oxidative damage. As a result, this toxic pattern is responsible for selective loss of middle size striatal spiny GABAergic neurons and motor alterations in lesioned animals. This toxin has recently gained attention in biomedical research as, in addition to its proven excitotoxic profile, a considerable amount of evidence suggests that oxidative stress and energetic disturbances are major constituents of its toxic pattern in the CNS. Hence, this profile has changed our perception of how QUIN-related disorders combine different toxic mechanisms resulting in brain damage. This review will focus on the description and integration of recent evidence supporting old and suggesting new mechanisms to explain QUIN toxicity.

  14. The impact of acid soil volume of reclaimed minespoils on plant growth in minilysimeters

    Energy Technology Data Exchange (ETDEWEB)

    Shahandeh, H.; Hossner, L.R.; Birkhead, J.A. [Texas A & M University, College Station, TX (United States). College of Agriculture and Life Science

    1996-06-01

    Limited data are available to assess the influence of randomly distributed acid soil, produced from acid forming materials (AFM), on growth and productivity of crops. This study evaluated the effect of amount and volume of acid soil on the growth of an acid tolerant plant (Coastal bermudga grass, {ital Cynodon dactylon}, L.) and an acid intolerant plant (Yuchi arrowleaf clover, {ital Trifolium vesiculosum}, Savi) in greenhouse lysimeters. Acid soil (pH=2.5) volumes up to 20% for Yuchi arrowleaf clover and up to 40% for Coastal bermuda grass did not significantly decrease dry matter yield. Concentrations of Al and Mn in plant tissue of clover and bermudagrass were below the toxicity level. In the presence of randomly distributed acid soil, plant roots continued to elongate in non-acid soil, by evading localized areas of low soil pH. These results suggest that the federally mandated zero tolerance for AFM in the top 1.2 m of reclaimed lands may not be reasonable. 18 refs., 7 figs., 2 tabs.

  15. Anaerobic biodegradability and toxicity of complex or toxicant wastewater

    International Nuclear Information System (INIS)

    Wills Betancur, B.A.

    1995-01-01

    As a first approximation to wastewater classification in susceptibility terms to treatment by anaerobic biological system, anaerobic biodegradability trials are accomplished to leached of sanitary landfill, to wastewater of coffee grain wet treatment plant and to wastewater of fumaric acid recuperation plant. In the last Plant, anaerobic toxicity trials and lethal toxicity on the Daphnia pulex micro-crustacean are made too. Anaerobic biological trials are made continuing the Wageningen University (Holland) Methodology (1.987). Lethal toxicity biological trials are made following the Standard Methods for the Examination of Water and Wastewater(18th edition, 1992). In development of this investigation project is found that fumaric acid recuperation plant leached it has a low anaerobic biodegradability, a high anaerobic toxicity and a high lethal toxicity over Daphnia pulex, for such reasons this leached is cataloged as complex and toxic wastewater. The other hand, wastewater of coffee grain wet treatment plant and wastewater of sanitary landfill they are both highly biodegradability and not-toxic, for such reasons these wastewaters are cataloged as susceptible to treatment by anaerobic biological system

  16. Pharmacokinetics, Safety and Tolerability of Melissa officinalis Extract which Contained Rosmarinic Acid in Healthy Individuals: A Randomized Controlled Trial.

    Directory of Open Access Journals (Sweden)

    Moeko Noguchi-Shinohara

    Full Text Available The aim of this study was to evaluate the safety, tolerability and pharmacokinetics of single dose of Melissa officinalis extract which contained rosmarinic acid, including food-effects in healthy individuals. A total of eleven healthy individuals were randomly assigned to treatment arms in the two studies [Study 1 (fasted state and Study 2 (fed state]. Rosmarinic acid in serum was measured by a coulometric detection method using High-Performance Liquid Chromatography electrochemical detector. The serum concentration of total rosmarinic acid peaked at 1 hour after administration of Melissa officinalis extract containing 500mg rosmarinic acid in fasted state, with a maximum serum concentration 162.20 nmol/ L. The area under the curve for intact rosmarinic acid was calculated from the serum concentration-time profile to be 832.13 nmol • hour/ L. Food intake increases area under the curve and delayed time at which the maximum serum concentration. Rosmarinic acid supplementation did not affect liver, kidney, or blood cell function parameters. No adverse event was reported by any of the participants due to the study treatment. Single dose of Melissa officinalis extract containing 500 mg rosmarinic acid appears to be safe and tolerable in healthy individuals. Food intake increased the exposure of rosmarinic acid and delayed absorption of rosmarinic acid in healthy individuals.

  17. Tolerability in the elderly population of high-dose alpha lipoic acid: a potential antioxidant therapy for the eye

    Directory of Open Access Journals (Sweden)

    Sarezky D

    2016-09-01

    Full Text Available Daniel Sarezky, Aaishah R Raquib, Joshua L Dunaief, Benjamin J Kim Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA Purpose: Alpha lipoic acid (ALA is an antioxidant and iron-chelating supplement that has potential benefits for geographic atrophy in dry age-related macular degeneration as well as other eye diseases. The purpose of this study was to determine the tolerability of ALA in the elderly population. Patients and methods: Fifteen subjects, age ≥65 years, took sequential ALA doses of 600, 800, and 1,200 mg. Each dose was taken once daily with a meal for 5 days. After each dose was taken by the subjects for 5 days, the subjects were contacted by phone, a review of systems was performed, and they were asked if they thought they could tolerate taking that dose of ALA for an extended period of time. Results: The 600 mg dose was well tolerated. At the 800 mg dose, one subject had an intolerable flushing sensation. At the 1,200 mg dose, two subjects had intolerable upper gastrointestinal side effects and one subject had an intolerable flushing sensation. Subjects taking gastrointestinal prophylaxis medications had no upper gastrointestinal side effects. Conclusion: High-dose ALA is not completely tolerated by the elderly. These preliminary data suggest that gastrointestinal prophylaxis may improve tolerability. (ClinicalTrials.gov, NCT02613572. Keywords: age-related macular degeneration, geographic atrophy, antioxidant, gastrointestinal, dietary supplements, lipoic acid

  18. Recovery of Pyruvic Acid using Tri-n-butylamine Dissolved in Non-Toxic Diluent (Rice Bran Oil)

    Science.gov (United States)

    Pal, Dharm; Keshav, Amit

    2016-04-01

    An attempt has been made to investigate the effectiveness of the vegetable oil based biocompatible solvent for the separation of pyruvic acid from fermentation broth, by using rice bran oil as natural, non-toxic diluent. Reactive extraction of pyruvic acid (0.1-0.5 k mol/m3) from aqueous solutions has been studied using tri-n-butylamine (TBA; 10-70 %) as an extractant dissolved in non toxic rice bran oil at T = 30 ± 1 °C. Results were presented in terms of distribution coefficient (Kd), extraction efficiency (E %), loading ratio (Z), and complexation constant (\\varphi_{α β }). Extraction equilibrium was interpreted using mass action modeling approach. Based on the extent of loading (Z < 0.5) only (1:1), pyruvic acid: TBA complex was proposed. Equilibrium complexation constant was evaluated to 1.22 m3/k mol. Results obtained are useful in understanding the extraction mechanism.

  19. Dietary supplementation of essential fatty acids in larval pikeperch (Sander lucioperca); short and long term effects on stress tolerance and metabolic physiology

    DEFF Research Database (Denmark)

    Lund, Ivar; Skov, Peter Vilhelm; Hansen, Benni Winding

    2012-01-01

    The present study examined the effects of feeding pike perch larvae Artemia, enriched with either docosahexanoic acid (DHA), arachidonic acid (ARA), oleic acid (OA), olive oil (OO) or a commercial enrichment DHA Selco (DS) on tissue lipid deposition, stress tolerance, growth and development...

  20. Isolation of butanol- and isobutanol-tolerant bacteria and physiological characterization of their butanol tolerance.

    Science.gov (United States)

    Kanno, Manabu; Katayama, Taiki; Tamaki, Hideyuki; Mitani, Yasuo; Meng, Xian-Ying; Hori, Tomoyuki; Narihiro, Takashi; Morita, Naoki; Hoshino, Tamotsu; Yumoto, Isao; Kimura, Nobutada; Hanada, Satoshi; Kamagata, Yoichi

    2013-11-01

    Despite their importance as a biofuel production platform, only a very limited number of butanol-tolerant bacteria have been identified thus far. Here, we extensively explored butanol- and isobutanol-tolerant bacteria from various environmental samples. A total of 16 aerobic and anaerobic bacteria that could tolerate greater than 2.0% (vol/vol) butanol and isobutanol were isolated. A 16S rRNA gene sequencing analysis revealed that the isolates were phylogenetically distributed over at least nine genera: Bacillus, Lysinibacillus, Rummeliibacillus, Brevibacillus, Coprothermobacter, Caloribacterium, Enterococcus, Hydrogenoanaerobacterium, and Cellulosimicrobium, within the phyla Firmicutes and Actinobacteria. Ten of the isolates were phylogenetically distinct from previously identified butanol-tolerant bacteria. Two relatively highly butanol-tolerant strains CM4A (aerobe) and GK12 (obligate anaerobe) were characterized further. Both strains changed their membrane fatty acid composition in response to butanol exposure, i.e., CM4A and GK12 exhibited increased saturated and cyclopropane fatty acids (CFAs) and long-chain fatty acids, respectively, which may serve to maintain membrane fluidity. The gene (cfa) encoding CFA synthase was cloned from strain CM4A and expressed in Escherichia coli. The recombinant E. coli showed relatively higher butanol and isobutanol tolerance than E. coli without the cfa gene, suggesting that cfa can confer solvent tolerance. The exposure of strain GK12 to butanol by consecutive passages even enhanced the growth rate, indicating that yet-unknown mechanisms may also contribute to solvent tolerance. Taken together, the results demonstrate that a wide variety of butanol- and isobutanol-tolerant bacteria that can grow in 2.0% butanol exist in the environment and have various strategies to maintain structural integrity against detrimental solvents.

  1. 77 FR 47539 - Paraquat Dichloride; Pesticide Tolerances

    Science.gov (United States)

    2012-08-09

    ... effects of paraquat. The effects of paraquat in lungs are considered systemic effects. There are no dermal toxicity studies suitable for evaluation of systemic lung effects in the toxicity database for paraquat... (PAM) Vol. II, is available for enforcing tolerances for residues of paraquat in/on plant commodities...

  2. Modulation of hexavalent chromium toxicity on Οriganum vulgare in an acidic soil amended with peat, lime, and zeolite.

    Science.gov (United States)

    Antoniadis, Vasileios; Zanni, Anna A; Levizou, Efi; Shaheen, Sabry M; Dimirkou, Anthoula; Bolan, Nanthi; Rinklebe, Jörg

    2018-03-01

    Dynamics of chromate (Cr(VI)) in contaminated soils may be modulated by decreasing its phytoavailability via the addition of organic matter-rich amendments, which might accelerate Cr(VI) reduction to inert chromite (Cr(III)) or high-cation exchange capacity amendments. We studied Cr(VI) phytoavailability of oregano in a Cr(VI)-spiked acidic soil non-treated (S) and treated with peat (SP), lime (SL), and zeolite (SZ). The addition of Cr(VI) increased the concentrations of Cr(VI) and Cr(III) in soils and plants, especially in the lime-amended soil. The plant biomass decreased in the lime-amended soil compared to the un-spiked soil (control) due to decreased plant phosphorus concentrations and high Cr(VI) concentrations in root at that treatment. Oregano in the peat-amended soil exhibited significantly less toxic effects, due to the role of organic matter in reducing toxic Cr(VI) to Cr(III) and boosted plant vigour in this treatment. In the lime-amended soil, the parameters of soil Cr(VI), soil Cr(III), and root Cr(III) increased significantly compared to the non-amended soil, indicating that Cr(VI) reduction to Cr(III) was accelerated at high pH. Added zeolite failed to decreased Cr(VI) level to soil and plant. Oregano achieved a total uptake of Cr(III) and Cr(VI) of 0.275 mg in plant kg -1 soil in a pot in the non-amended soil. We conclude that peat as soil amendment might be considered as a suitable option for decreasing Cr(VI) toxicity in soil and plant, and that oregano as tolerant plant species has a certain potential to be used as a Cr accumulator. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. [Roles of organic acid metabolism in plant adaptation to nutrient deficiency and aluminum toxicity stress].

    Science.gov (United States)

    Wang, Jianfei; Shen, Qirong

    2006-11-01

    Organic acids not only act as the intermediates in carbon metabolism, but also exert key roles in the plant adaptation to nutrient deficiency and metal stress and in the plant-microbe interactions at root-soil interface. From the viewpoint of plant nutrition, this paper reviewed the research progress on the formation and physiology of organic acids in plant, and their functions in nitrogen metabolism, phosphorus and iron uptake, aluminum tolerance, and soil ecology. New findings in the membrane transport of organic acids and the biotechnological manipulation of organic acids in transgenic model were also discussed. This novel perspectives of organic acid metabolism and its potential manipulation might present a possibility to understand the fundamental aspects of plant physiology, and lead to the new strategies to obtain crop varieties better adapted to environmental and metal stress.

  4. Assessment of the role of in situ generated (E)-2,4-diene-valproic acid in the toxicity of valproic acid and (E)-2-ene-valproic acid in sandwich-cultured rat hepatocytes

    Energy Technology Data Exchange (ETDEWEB)

    Surendradoss, Jayakumar; Chang, Thomas K.H.; Abbott, Frank S., E-mail: frank.abbott@ubc.ca

    2012-11-01

    Valproic acid (VPA) undergoes cytochrome P450-mediated desaturation to form 4-ene-VPA, which subsequently yields (E)-2,4-diene-VPA by β-oxidation. Another biotransformation pathway involves β-oxidation of VPA to form (E)-2-ene-VPA, which also generates (E)-2,4-diene-VPA by cytochrome P450-mediated desaturation. Although the synthetic form of (E)-2,4-diene-VPA is more hepatotoxic than VPA as shown in various experimental models, there is no conclusive evidence to implicate the in situ generated (E)-2,4-diene-VPA in VPA hepatotoxicity. The present study investigated the effects of modulating the in situ formation of (E)-2,4-diene-VPA on markers of oxidative stress (formation of 2′,7′-dichlorofluorescein; DCF), steatosis (accumulation of BODIPY 558/568 C{sub 12}), necrosis (release of lactate dehydrogenase; LDH), and on cellular total glutathione (GSH) levels in sandwich-cultured rat hepatocytes treated with VPA or (E)-2-ene-VPA. Treatment with either of these chemicals alone increased each of the toxicity endpoints. In VPA-treated hepatocytes, (E)-2,4-diene-VPA was detected only at trace levels, even after phenobarbital (PB) pretreatment and there was no effect on the toxicity of VPA. Furthermore, pretreatment with a cytochrome P450 enzyme inhibitor, 1-aminobenzotriazole (1-ABT), did not influence the extent of VPA toxicity in both PB-pretreated and vehicle-pretreated hepatocytes. However, in (E)-2-ene-VPA-treated hepatocytes, PB pretreatment greatly enhanced the levels of (E)-2,4-diene-VPA and this was accompanied by a further enhancement of the effects of (E)-2-ene-VPA on DCF formation, BODIPY accumulation, LDH release, and GSH depletion. Pretreatment with 1-ABT reduced the concentrations of (E)-2,4-diene-VPA and the extent of (E)-2-ene-VPA toxicity; however, this occurred in PB-pretreated hepatocytes, but not in control hepatocytes. In conclusion, in situ generated (E)-2,4-diene-VPA is not responsible for the hepatocyte toxicity of VPA, whereas it

  5. Hyaluronic acid improves "pleasantness" and tolerability of nebulized hypertonic saline in a cohort of patients with cystic fibrosis.

    Science.gov (United States)

    Buonpensiero, Paolo; De Gregorio, Fabiola; Sepe, Angela; Di Pasqua, Antonio; Ferri, Pasqualina; Siano, Maria; Terlizzi, Vito; Raia, Valeria

    2010-11-01

    Inhaled hypertonic saline improves lung function and decreases pulmonary exacerbations in people with cystic fibrosis. However, side effects such as cough, narrowing of airways and saltiness cause intolerance of the therapy in 8% of patients. The aim of our study was to compare the effect of an inhaled solution of hyaluronic acid and hypertonic saline with hypertonic solution alone on safety and tolerability. A total of 20 patients with cystic fibrosis aged 6 years and over received a single treatment regimen of 7% hypertonic saline solution or hypertonic solution with 0.1% hyaluronate for 2 days nonconsecutively after a washout period in an open crossover study. Cough, throat irritation, and salty taste were evaluated by a modified ordinal score for assessing tolerability; "pleasantness" was evaluated by a five-level, Likert-type scale. Forced expiratory volume in 1 second was registered before and after the end of the saline inhalations. All 20 patients (nine males, 11 females, mean age 13 years, range 8.9-17.7) completed the study. The inhaled solution of 0.1% hyaluronic acid and hypertonic saline significantly improved tolerability and pleasantness compared to hypertonic saline alone. No major adverse effects were observed. No difference was documented in pulmonary function tests between the two treatments. Hyaluronic acid combined with hypertonic saline solution may contribute to improved adherence to hypertonic saline therapy. Further clinical trials are needed to confirm our findings. Considering the extraordinary versatility of hyaluronic acid in biological reactions, perspective studies could define its applicability to halting progression of lung disease in cystic fibrosis.

  6. Amino acid sequence and biological characterization of BlatPLA₂, a non-toxic acidic phospholipase A₂ from the venom of the arboreal snake Bothriechis lateralis from Costa Rica.

    Science.gov (United States)

    Van der Laat, Marco; Fernández, Julián; Durban, Jordi; Villalobos, Eva; Camacho, Erika; Calvete, Juan J; Lomonte, Bruno

    2013-10-01

    Bothriechis is considered a monophyletic, basal genus of arboreal Neotropical pitvipers distributed across Middle America. The four species found in Costa Rica (B. lateralis, B. schlegeli, B. nigroviridis, B. supraciliaris) differ in their venom proteomic profiles, suggesting that different Bothriechis taxa have evolved diverse trophic strategies. In this study, we isolated a phospholipase A₂ (PLA₂) from B. lateralis venom, aiming at increasing our knowledge on the structural and functional characteristics of group II acidic PLA₂s, whose toxic actions are generally more restricted than those displayed by basic PLA₂s. The new acidic enzyme, BlatPLA₂, occurs as a monomer of 13,917 Da, in contrast to many basic group II PLA₂s which associate into dimers and often display myotoxicity and/or neurotoxicity. Its amino acid sequence of 122 residues predicts an isoelectric point of 4.7, and displays significant differences with previously characterized acidic PLA₂s, with which it shows a maximum sequence identity of 78%. BlatPLA₂ is catalytically active but appears to be devoid of major toxic activities, lacking intravenous or intracerebroventricular lethality, myotoxicity, in vitro anticoagulant activity, and platelet aggregation or inhibition effects. Phylogenetic relationships with similar group II enzymes suggest that BlatPLA₂ may represent a basal sequence to other acidic PLA₂s. Due to the metabolic cost of venom protein synthesis, the presence of a relatively abundant (9%) but non-toxic component is somewhat puzzling. Nevertheless, we hypothesize that BlatPLA₂ could have a role in the pre-digestion of prey, possibly having retained characteristics of ancestral PLA₂s without evolving towards potent toxicity. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Gama-aminobutyric acid accumulation in Elsholtzia splendens in response to copper toxicity*

    OpenAIRE

    Yang, Xiao-e; Peng, Hong-yun; Tian, Sheng-ke

    2005-01-01

    A solution with different Cu supply levels was cultured to investigate gama-aminobutyric acid (GABA) accumulation in Elsholtzia splendens, a native Chinese Cu-tolerant and accumulating plant species. Increasing Cu from 0.25 to 500 μmol/L significantly enhanced levels of GABA and histidine (His), but considerably decreased levels of aspartate (Asp) and glutamate (Glu) in the leaves. The leaf Asp level negatively correlated with leaf Cu level, while leaf GABA level positively correlated with le...

  8. Tolerância de genótipos de trigo comum, trigo duro e triticale à toxicidade de alumínio em soluções nutritivas Tolerance of bread wheat, durum wheat and triticale genotypes to aluminum toxicity in nutrient solution

    Directory of Open Access Journals (Sweden)

    Carlos Eduardo de Oliveira Camargo

    2006-01-01

    nutrient solution after a treatment of 48 hours in an aluminum solution associated with a particular salt concentration, according to the experiment. The bread wheats IAC-289, IAC-350 and IAC-370, the durum wheat IAC-1003 and the triticale IAC-5 genotypes were the most sensitive for increasing levels of Al3+in treatment nutrient solutions. Thus, they would be indicated only for cultivation in limed soils. The bread wheat IAC-24 and IAC-378 genotypes and the check cultivar BH-1146 were the most tolerant to Al3+ toxicity, being able to show good performance in acidic soils and/or to be used as genetic sources for tolerance in future crosses. Under constant temperature 25 ± 1ºC and pH 4,0 aluminum toxicity results in inhibition of root growth wich was dependent on the increase of the aluminum concentration or on the reduction of the salt concentration of the nutrient solution for all evaluated genotypes.

  9. Suppression of External NADPH Dehydrogenase—NDB1 in Arabidopsis thaliana Confers Improved Tolerance to Ammonium Toxicity via Efficient Glutathione/Redox Metabolism

    Science.gov (United States)

    Podgórska, Anna; Borysiuk, Klaudia; Tarnowska, Agata; Jakubiak, Monika; Burian, Maria; Rasmusson, Allan G.

    2018-01-01

    Environmental stresses, including ammonium (NH4+) nourishment, can damage key mitochondrial components through the production of surplus reactive oxygen species (ROS) in the mitochondrial electron transport chain. However, alternative electron pathways are significant for efficient reductant dissipation in mitochondria during ammonium nutrition. The aim of this study was to define the role of external NADPH-dehydrogenase (NDB1) during oxidative metabolism of NH4+-fed plants. Most plant species grown with NH4+ as the sole nitrogen source experience a condition known as “ammonium toxicity syndrome”. Surprisingly, transgenic Arabidopsis thaliana plants suppressing NDB1 were more resistant to NH4+ treatment. The NDB1 knock-down line was characterized by milder oxidative stress symptoms in plant tissues when supplied with NH4+. Mitochondrial ROS accumulation, in particular, was attenuated in the NDB1 knock-down plants during NH4+ treatment. Enhanced antioxidant defense, primarily concerning the glutathione pool, may prevent ROS accumulation in NH4+-grown NDB1-suppressing plants. We found that induction of glutathione peroxidase-like enzymes and peroxiredoxins in the NDB1-surpressing line contributed to lower ammonium-toxicity stress. The major conclusion of this study was that NDB1 suppression in plants confers tolerance to changes in redox homeostasis that occur in response to prolonged ammonium nutrition, causing cross tolerance among plants. PMID:29747392

  10. 76 FR 22045 - Fluopicolide; Pesticide Tolerances

    Science.gov (United States)

    2011-04-20

    ... regulation establishes tolerances for residues of fluopicolide and its metabolites in or on multiple... occurred at dose levels where significant maternal toxicity (severe body weight gain decrements and...

  11. High acidity tolerance in lichens with fumarprotocetraric, perlatolic or thamnolic acids is correlated with low pKa1 values of these lichen substances.

    Science.gov (United States)

    Hauck, Markus; Jürgens, Sascha-René; Huneck, Siegfried; Leuschner, Christoph

    2009-10-01

    The depsidone fumarprotocetraric acid as well as the depsides perlatolic and thamnolic acids are lichen secondary metabolites. Their first dissociation constants (pK(a1)) in methanol were determined to be 2.7 for perlatolic acid and 2.8 for fumarprotocetraric and thamnolic acids by UV spectroscopy. Lower pK(a1) values are, so far, not known from lichen substances. Several lichens producing at least one of these compounds are known for their outstanding tolerance to acidic air pollution. This is demonstrated by evaluating published pH preferences for central European lichens. The low pK(a1) values suggest that strong dissociation of the studied lichen substances is a prerequisite for the occurrence of lichens with these compounds on very acidic substrata, as protonated lichen substances of different chemical groups, but not their conjugated bases, are known to shuttle protons into the cytoplasm and thereby apparently damage lichens.

  12. Engineering microbes for tolerance to next-generation biofuels

    Directory of Open Access Journals (Sweden)

    Dunlop Mary J

    2011-09-01

    Full Text Available Abstract A major challenge when using microorganisms to produce bulk chemicals such as biofuels is that the production targets are often toxic to cells. Many biofuels are known to reduce cell viability through damage to the cell membrane and interference with essential physiological processes. Therefore, cells must trade off biofuel production and survival, reducing potential yields. Recently, there have been several efforts towards engineering strains for biofuel tolerance. Promising methods include engineering biofuel export systems, heat shock proteins, membrane modifications, more general stress responses, and approaches that integrate multiple tolerance strategies. In addition, in situ recovery methods and media supplements can help to ease the burden of end-product toxicity and may be used in combination with genetic approaches. Recent advances in systems and synthetic biology provide a framework for tolerance engineering. This review highlights recent targeted approaches towards improving microbial tolerance to next-generation biofuels with a particular emphasis on strategies that will improve production.

  13. Redistribution of boron in leaves reduces boron toxicity.

    Science.gov (United States)

    Reid, Robert J; Fitzpatrick, Kate L

    2009-11-01

    High soil boron (B) concentrations lead to the accumulation of B in leaves, causing the development of necrotic regions in leaf tips and margins, gradually extending back along the leaf. Plants vary considerably in their tolerance to B toxicity, and it was recently discovered that one of the tolerance mechanisms involved extrusion of B from the root. Expression of a gene encoding a root B efflux transporter was shown to be much higher in tolerant cultivars. In our current research we have shown that the same gene is also upregulated in leaves. However, unlike in the root, the increased activity of the B efflux transporter in the leaves cannot reduce the tissue B concentration. Instead, we have shown that in tolerant cultivars, these transporters redistribute B from the intracellular phase where it is toxic, into the apoplast which is much less sensitive to B. These results provide an explanation of why different cultivars with the same leaf B concentrations can show markedly different toxicity symptoms. We have also shown that rain can remove a large proportion of leaf B, leading to significant improvements of growth of both leaves and roots.

  14. Pretreatment by low-dose fibrates protects against acute free fatty acid-induced renal tubule toxicity by counteracting PPARα deterioration

    International Nuclear Information System (INIS)

    Takahashi, Kyoko; Kamijo, Yuji; Hora, Kazuhiko; Hashimoto, Koji; Higuchi, Makoto; Nakajima, Takero; Ehara, Takashi; Shigematsu, Hidekazu; Gonzalez, Frank J.; Aoyama, Toshifumi

    2011-01-01

    Development of a preventive strategy against tubular damage associated with proteinuria is of great importance. Recently, free fatty acid (FFA) toxicities accompanying proteinuria were found to be a main cause of tubular damage, which was aggravated by insufficiency of peroxisome proliferator-activated receptor alpha (PPARα), suggesting the benefit of PPARα activation. However, an earlier study using a murine acute tubular injury model, FFA-overload nephropathy, demonstrated that high-dose treatment of PPARα agonist (0.5% clofibrate diet) aggravated the tubular damage as a consequence of excess serum accumulation of clofibrate metabolites due to decreased kidney elimination. To induce the renoprotective effects of PPARα agonists without drug accumulation, we tried a pretreatment study using low-dose clofibrate (0.1% clofibrate diet) using the same murine model. Low-dose clofibrate pretreatment prevented acute tubular injuries without accumulation of its metabolites. The tubular protective effects appeared to be associated with the counteraction of PPARα deterioration, resulting in the decrease of FFAs influx to the kidney, maintenance of fatty acid oxidation, diminution of intracellular accumulation of undigested FFAs, and attenuation of disease developmental factors including oxidative stress, apoptosis, and NFκB activation. These effects are common to other fibrates and dependent on PPARα function. Interestingly, however, clofibrate pretreatment also exerted PPARα-independent tubular toxicities in PPARα-null mice with FFA-overload nephropathy. The favorable properties of fibrates are evident when PPARα-dependent tubular protective effects outweigh their PPARα-independent tubular toxicities. This delicate balance seems to be easily affected by the drug dose. It will be important to establish the appropriate dosage of fibrates for treatment against kidney disease and to develop a novel PPARα activator that has a steady serum concentration regardless of

  15. Normal tissue tolerance to external beam radiation therapy: The stomach; Dose de tolerance a l'irradiation des tissus sains: l'estomac

    Energy Technology Data Exchange (ETDEWEB)

    Oberdiac, P. [Service de radiotherapie, hopital de Bellevue, CHU de Saint-Etienne, 42 - Saint-Etienne (France); Mineur, L. [Unite d' oncologie digestive et radiotherapie, institut Sainte-Catherine, 84 - Avignon (France)

    2010-07-15

    In the following article, we will discuss general issues relating to acute and late gastric's radiation toxicities. The tolerance of the stomach to complete or partial organ irradiation is more un-appreciated than for most other organs. We consulted the Medline database via PubMed and used the key words gastric - radiotherapy - toxicity. Currently, 60 Gy or less is prescribed in gastric radiation therapy. Acute clinical toxicity symptoms are predominantly nausea and vomiting. Although there is a general agreement that the whole stomach tolerance is for doses of 40 to 45 Gy without unacceptable complication, it is well established that a stomach dose of 35 Gy increases the risk of ulcer complications. (authors)

  16. Increased Toxicity of Chemotherapeutic Drugs by All-Trans Retinoic Acid in Cd44 Cells

    Directory of Open Access Journals (Sweden)

    A Abbasi

    2016-03-01

    Full Text Available BACKGROUND AND OBJECTIVE: In recent studies, undifferentiated CD44 cells have been introduced as the major cause of chemotherapeutic drug resistance in esophageal cancer. In this study, we aimed to evaluate the effects of all-trans retinoic acid on reducing chemotherapeutic drug resistance and improving the associated toxic effects. METHODS: In this clinical study, CD44+ and CD44- cells were separated from KYSE-30 cell line, using magnetic-activated cell sorting (MACS method. The cytotoxic effects of retinoic acid treatment, combined with cisplatin and 5-fluorouracil, were separately evaluated in two cell groups, i.e., CD44+ and CD44-. Cytotoxicity was determined by identifying cellular metabolic activity, acridine orange/ethidium bromide staining, and flow cytometry. FINDINGS: In this study, CD44 marker was expressed in 6.25% of the cell population in KYSE-30 cell line. The results of flow cytometry revealed that treatment with a combination of retinoic acid and chemotherapeutic drugs could improve cell cycle arrest in CD44+ cells (p<0.05, unlike CD44- cells. Determination of cellular metabolic activity, increased cell apoptosis along with decreased half maximal inhibitory concentration (IC50, and acridine orange/ethidium bromide staining were indicative of the increased percentage of primary and secondary apoptotic CD44+ cells. However, in CD44- cells, these effects were only observed by using a combination of retinoic acid and cisplatin (p<0.05. CONCLUSION: The present results showed that all-trans retinoic acid could increase the toxicity of cisplatin and 5-fluorouracil in CD44+ cells.

  17. The developmental toxicity of perfluoroalkyl acids and their derivatives

    International Nuclear Information System (INIS)

    Lau, Christopher; Butenhoff, John L.; Rogers, John M.

    2004-01-01

    Perfluoroalkyl acids such as perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) have applications in numerous industrial and consumer products. Although the toxicology of some of these compounds has been investigated in the past, the widespread prevalence of PFOS and PFOA in humans, as demonstrated in recent bio-monitoring studies, has drawn considerable interest from the public and regulatory agencies as well as renewed efforts to better understand the hazards that may be inherent in these compounds. This review provides a brief overview of the perfluoroalkyl chemicals and a summary of the available information on the developmental toxicity of the eight-carbon compounds, PFOS and PFOA. Although the teratological potentials of some of these chemicals had been studied in the past and the findings were generally unremarkable, results from recent postnatal studies on developmental and reproductive indices have prompted consideration of their relevance to human health risk. Based on current understanding of the developmental effects of PFOS and PFOA in rodents, several avenues of research are suggested that would further support the risk assessment of these perfluorinated organic chemicals

  18. Acute effects of decaffeinated coffee and the major coffee components chlorogenic acid and trigonelline on glucose tolerance

    NARCIS (Netherlands)

    van Dijk, A.E.; Olthof, M.R.; Meeuse, J.C.; Seebus, E.; Heine, R.J.; van Dam, R.M.

    2009-01-01

    OBJECTIVE - Coffee consumption has been associated with lower risk of type 2 diabetes. We evaluated the acute effects of decaffeinated coffee and the major coffee components chlorogenic acid and trigonelline on glucose tolerance. RESEARCH DESIGN AND METHODS - We conducted a randomized crossover

  19. Protective effects of dietary glycine and glutamic acid toward the toxic effects of oxidized mustard oil in rabbits.

    Science.gov (United States)

    Zeb, Alam; Rahman, Saleem Ur

    2017-01-25

    The protective role of glycine and glutamic acid against the toxic effects of oxidized oil was studied for the first time. Mustard seed oil was thermally oxidized and characterized for quality characteristics and polyphenolic composition using reversed phase HPLC-DAD. Significant changes in the quality characteristics occurred with thermal oxidation. Fourteen polyphenolic compounds were identified and quantified in oils. Quercetin-3-glucoside, quercetin-3-feruloylsophoroside, catechin, quercetin-3-rutinoside, quercetin-3,7-diglucoside, sinapic acid and vanillic acid hexoside were the major compounds in the fresh and oxidized oil. Oxidized, un-oxidized mustard oils, glycine and glutamic acid were given to rabbits alone or in combination. The biochemical responses were studied in terms of haematological and biochemical parameters and histopathology. It has been observed that biochemical and haematological parameters were adversely affected by the oxidized oil, while supplementation of both amino acids was beneficial in normalizing these parameters. Both amino acids alone have no significant effects, however, oxidized oil affected the liver by enhancing fat accumulation, causing hepatitis, reactive Kupffer cells and necrosis. The co-administration of oxidized oils with glycine or glutamic acid revealed significant recovery of the liver structure and function. In conclusion, glycine or glutamic acid is beneficial and protective against food toxicity and can be considered as an ameliorative food supplement.

  20. Factors modifying the toxicity of total body irradiation (TBI) with bone marrow transplant

    International Nuclear Information System (INIS)

    Fish, B.L.; Moulder, J.E.

    1987-01-01

    In defined-flora, barrier-maintained rats, radiation nephritis is the principle late toxicity seen after single dose, high dose rate TBI with bone marrow transplant. Shielding the kidneys eliminates this late toxicity. If rats are exposed to a conventional microbiological environment during and after TBI and bone marrow transplant, the principle late toxicity is pneumonitis. Low dose rate TBI gives similar renal toxicity but at doses twice as large. Clinically, TBI and bone marrow transplant is preceded by intensive drug treatment, typically with cyclophosphamide (Cytoxan) and cytosine arabinoside (ara-C). Pretreatment with a standard cytoxan/ara-C regimen, has no effect on the gastrointestinal toxicity of TBI, but results in a decrease in marrow toxicity. Late renal toxicity still occurs when bone marrow transplants are given, but it is to early to determine whether drug treatment has affected late renal tolerance. Experiments are also underway to determine the effects of fractionated TBI (3, 6 and 9 fractions in 60 hours) on acute tolerance and on late tolerance after bone marrow transplantation

  1. Physiological, molecular, and cellular mechanisms of impaired seawater tolerance following exposure of Atlantic salmon, Salmo salar, smolts to acid and aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Monette, Michelle Y., E-mail: michelle.monette@yale.edu [Organismic and Evolutionary Biology Program, University of Massachusetts, Amherst, MA 01003 (United States); USGS, Conte Anadromous Fish Research Center, Turners Falls, MA 01376 (United States); Yada, Takashi [Freshwater Fisheries Research Department, National Research Institute of Fisheries Science, Nikko (Japan); Matey, Victoria [Department of Biology, San Diego State University, San Diego, CA 92182 (United States); McCormick, Stephen D. [Organismic and Evolutionary Biology Program, University of Massachusetts, Amherst, MA 01003 (United States); USGS, Conte Anadromous Fish Research Center, Turners Falls, MA 01376 (United States)

    2010-08-01

    We examined the physiological, molecular, and cellular mechanisms of impaired ion regulation in Atlantic salmon, Salmo salar, smolts following acute acid and aluminum (Al) exposure. Smolts were exposed to: control (pH 6.5, 3.4 {mu}g l{sup -1} Al), acid and low Al (LAl: pH 5.4, 11 {mu}g l{sup -1} Al), acid and moderate Al (MAl: pH 5.3, 42 {mu}g l{sup -1} Al), and acid and high Al (HAl: pH 5.4, 56 {mu}g l{sup -1} Al) for two and six days. At each time-point, smolts were sampled directly from freshwater treatment tanks and after a 24 h seawater challenge. Exposure to acid/MAl and acid/HAl led to accumulation of gill Al, substantial alterations in gill morphology, reduced gill Na{sup +}/K{sup +}-ATPase (NKA) activity, and impaired ion regulation in both freshwater and seawater. Exposure to acid/MAl for six days also led to a decrease in gill mRNA expression of the apical Cl{sup -} channel (cystic fibrosis transmembrane conductance regulator I), increased apoptosis upon seawater exposure, an increase in the surface expression of mitochondria-rich cells (MRCs) within the filament epithelium of the gill, but reduced abundance of gill NKA-positive MRCs. By contrast, smolts exposed to acid and the lowest Al concentration exhibited minor gill Al accumulation, slight morphological modifications in the gill, and impaired seawater tolerance in the absence of a detectable effect on freshwater ion regulation. These impacts were accompanied by decreased cell proliferation, a slight increase in the surface expression of MRCs within the filament epithelium, but no impact on gill apoptosis or total MRC abundance was observed. However, MRCs in the gills of smolts exposed to acid/LAl exhibited morphological alterations including decreased size, staining intensity, and shape factor. We demonstrate that the seawater tolerance of Atlantic salmon smolts is extremely sensitive to acute exposure to acid and low levels of Al, and that the mechanisms underlying this depend on the time

  2. Physiological, molecular, and cellular mechanisms of impaired seawater tolerance following exposure of Atlantic salmon, Salmo salar, smolts to acid and aluminum

    International Nuclear Information System (INIS)

    Monette, Michelle Y.; Yada, Takashi; Matey, Victoria; McCormick, Stephen D.

    2010-01-01

    We examined the physiological, molecular, and cellular mechanisms of impaired ion regulation in Atlantic salmon, Salmo salar, smolts following acute acid and aluminum (Al) exposure. Smolts were exposed to: control (pH 6.5, 3.4 μg l -1 Al), acid and low Al (LAl: pH 5.4, 11 μg l -1 Al), acid and moderate Al (MAl: pH 5.3, 42 μg l -1 Al), and acid and high Al (HAl: pH 5.4, 56 μg l -1 Al) for two and six days. At each time-point, smolts were sampled directly from freshwater treatment tanks and after a 24 h seawater challenge. Exposure to acid/MAl and acid/HAl led to accumulation of gill Al, substantial alterations in gill morphology, reduced gill Na + /K + -ATPase (NKA) activity, and impaired ion regulation in both freshwater and seawater. Exposure to acid/MAl for six days also led to a decrease in gill mRNA expression of the apical Cl - channel (cystic fibrosis transmembrane conductance regulator I), increased apoptosis upon seawater exposure, an increase in the surface expression of mitochondria-rich cells (MRCs) within the filament epithelium of the gill, but reduced abundance of gill NKA-positive MRCs. By contrast, smolts exposed to acid and the lowest Al concentration exhibited minor gill Al accumulation, slight morphological modifications in the gill, and impaired seawater tolerance in the absence of a detectable effect on freshwater ion regulation. These impacts were accompanied by decreased cell proliferation, a slight increase in the surface expression of MRCs within the filament epithelium, but no impact on gill apoptosis or total MRC abundance was observed. However, MRCs in the gills of smolts exposed to acid/LAl exhibited morphological alterations including decreased size, staining intensity, and shape factor. We demonstrate that the seawater tolerance of Atlantic salmon smolts is extremely sensitive to acute exposure to acid and low levels of Al, and that the mechanisms underlying this depend on the time-course and severity of Al exposure. We propose

  3. Physiological, molecular, and cellular mechanisms of impaired seawater tolerance following exposure of Atlantic salmon, Salmo salar, smolts to acid and aluminum

    Science.gov (United States)

    Monette, M.Y.; Yada, T.; Matey, V.; McCormick, S.D.

    2010-01-01

    We examined the physiological, molecular, and cellular mechanisms of impaired ion regulation in Atlantic salmon, Salmo salar, smolts following acute acid and aluminum (Al) exposure. Smolts were exposed to: control (pH 6.5, 3.4??gl-1 Al), acid and low Al (LAl: pH 5.4, 11??gl-1 Al), acid and moderate Al (MAl: pH 5.3, 42??gl-1 Al), and acid and high Al (HAl: pH 5.4, 56??gl-1 Al) for two and six days. At each time-point, smolts were sampled directly from freshwater treatment tanks and after a 24h seawater challenge. Exposure to acid/MAl and acid/HAl led to accumulation of gill Al, substantial alterations in gill morphology, reduced gill Na+/K+-ATPase (NKA) activity, and impaired ion regulation in both freshwater and seawater. Exposure to acid/MAl for six days also led to a decrease in gill mRNA expression of the apical Cl- channel (cystic fibrosis transmembrane conductance regulator I), increased apoptosis upon seawater exposure, an increase in the surface expression of mitochondria-rich cells (MRCs) within the filament epithelium of the gill, but reduced abundance of gill NKA-positive MRCs. By contrast, smolts exposed to acid and the lowest Al concentration exhibited minor gill Al accumulation, slight morphological modifications in the gill, and impaired seawater tolerance in the absence of a detectable effect on freshwater ion regulation. These impacts were accompanied by decreased cell proliferation, a slight increase in the surface expression of MRCs within the filament epithelium, but no impact on gill apoptosis or total MRC abundance was observed. However, MRCs in the gills of smolts exposed to acid/LAl exhibited morphological alterations including decreased size, staining intensity, and shape factor. We demonstrate that the seawater tolerance of Atlantic salmon smolts is extremely sensitive to acute exposure to acid and low levels of Al, and that the mechanisms underlying this depend on the time-course and severity of Al exposure. We propose that when smolts are

  4. Salicylic Acid Alleviates Aluminum Toxicity in Soybean Roots through Modulation of Reactive Oxygen Species Metabolism

    Directory of Open Access Journals (Sweden)

    Ning Liu

    2017-11-01

    Full Text Available As an important signal molecule, salicylic acid (SA improves plant tolerance to aluminum (Al stress. The objective of this study was to investigate the effects of exogenous SA application on the dynamics of endogenous SA and reactive oxygen species in soybean (Glycine max L. exposed to Al stress. The roots of soybean seedlings were exposed to a combination of AlCl3 (30 μM and SA (10 μM/PAC (100 μM, paclobutrazol, SA biosynthesis inhibitor for 3, 6, 9, and 12 h. Al stress induced an increase in endogenous SA concentration in a time-dependent manner, also verified by the up-regulated expression of GmNPR1, an SA-responsive gene. Al stress increased the activities of phenylalanine ammonia-lyase (PAL and benzoic acid 2-hydroxylase (BA2H, and the contents of SA, O2- and malondialdehyde (MDA in the root apex. The application of exogenous SA increased PAL and BA2H, and reduced O2- and MDA contents in soybean roots under Al stress. PAC inhibited the SA induced increase in BA2H activity. In addition, the SA application resulted in a rapid increase in hydrogen peroxide (H2O2 concentration under Al stress, followed by a sharp decrease. Compared with the plants exposed to Al alone, Al+SA plants possessed higher activities of superoxide dismutase, peroxidase, and ascorbate peroxidase, and lower catalase activity, indicating that SA alleviated Al-induced oxidative damage. These results suggested that PAL and BA2H were involved in Al-induced SA production and showed that SA alleviated the adverse effects of Al toxicity by modulating the cellular H2O2 level and the antioxidant enzyme activities in the soybean root apex.

  5. Salicylic acid alleviates aluminum toxicity in soybean roots through modulation of reactive oxygen species metabolism

    Science.gov (United States)

    Liu, Ning; Song, Fengbin; Zhu, Xiancan; You, Jiangfeng; Yang, Zhenming; Li, Xiangnan

    2017-11-01

    As an important signal molecule, salicylic acid (SA) improves plant tolerance to aluminum (Al) stress. The objective of this study was to investigate the effects of exogenous SA application on the dynamics of endogenous SA and reactive oxygen species in soybean (Glycine max L.) exposed to Al stress. The roots of soybean seedlings were exposed to a combination of AlCl3 (30 μM) and SA (10 μM)/PAC (100 μM, paclobutrazol, SA biosynthesis inhibitor) for 3, 6, 9 and 12 h. Al stress induced an increase in endogenous SA concentration in a time-dependent manner, also verified by the up-regulated expression of GmNPR1, an SA-responsive gene. Al stress increased the activities of phenylalanine ammonia-lyase (PAL) and benzoic acid 2-hydroxylase (BA2H), and the contents of SA, O2- and malondialdehyde (MDA) in the root apex. The application of exogenous SA increased PAL and BA2H, and reduced O2- and MDA contents in soybean roots under Al stress. PAC inhibited the SA induced increase in BA2H activity. In addition, the SA application resulted in a rapid increase in hydrogen peroxide (H2O2) concentration under Al stress, followed by a sharp decrease. Compared with the plants exposed to Al alone, Al+SA plants possessed higher activities of superoxide dismutase, peroxidase and ascorbate peroxidase, and lower catalase activity, indicating that SA alleviated Al-induced oxidative damage. These results suggested that PAL and BA2H were involved in Al-induced SA production and showed that SA alleviated the adverse effects of Al toxicity by modulating the cellular H2O2 level and the antioxidant enzyme activities in the soybean root apex.

  6. Cadmium spiked soil modulates root organic acids exudation and ionic contents of two differentially Cd tolerant maize (Zea mays L.) cultivars.

    Science.gov (United States)

    Javed, M Tariq; Akram, M Sohail; Tanwir, Kashif; Javed Chaudhary, Hassan; Ali, Qasim; Stoltz, Eva; Lindberg, Sylvia

    2017-07-01

    Our earlier work described that the roots of two maize cultivars, grown hydroponically, differentially responded to cadmium (Cd) stress by initiating changes in medium pH depending on their Cd tolerance. The current study investigated the root exudation, elemental contents and antioxidant behavior of the same maize cultivars [cv. 3062 (Cd-tolerant) and cv. 31P41 (Cd-sensitive)] under Cd stress. Plants were maintained in a rhizobox-like system carrying soil spiked with Cd concentrations of 0, 10, 20, 30, 40 and 50 μmol/kg soil. The root and shoot Cd contents increased, while Mg, Ca and Fe contents mainly decreased at higher Cd levels, and preferentially in the sensitive cultivar. Interestingly, the K contents increased in roots of cv. 3062 at low Cd treatments. The Cd stress caused acidosis of the maize root exudates predominantly in cv. 3062. The concentration of various organic acids was significantly increased in the root exudates of cv. 3062 with applied Cd levels. This effect was diminished in cv. 31P41 at higher Cd levels. Cd exposure increased the relative membrane permeability, anthocyanin (only in cv. 3062), proline contents and the activities of peroxidases (POD) and superoxide dismutase (SOD). The only exception was the catalase activity, which was diminished in both cultivars. Root Cd contents were positively correlated with the secretion of acetic acid, oxalic acid, glutamic acid, citric acid, and succinic acid. The antioxidants like POD and SOD exhibited a positive correlation with the organic acids under Cd stress. It is likly that a high exudation of dicarboxylic organic acids improves nutrient uptake and activities of antioxidants, which enables the tolerant cultivar to acclimatize in Cd polluted environment. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. 78 FR 13252 - Pyroxasulfone; Pesticide Tolerances

    Science.gov (United States)

    2013-02-27

    ... moderately toxic to rats following a 4-week dermal exposure producing local inflammation and systemic effects...) method) is available to enforce the tolerance expression. The method may be requested from: Chief...

  8. Synergistic Effects of Zinc Oxide Nanoparticles and Fatty Acids on Toxicity to Caco-2 Cells

    DEFF Research Database (Denmark)

    Cao, Yi; Roursgaard, Martin; Kermanizadeh, Ali

    2015-01-01

    epithelial (Caco-2) cells. The ZnO NPs exposure concentration dependently induced cytotoxicity to Caco-2 cells showing as reduced proliferation and activity measured by 3 different assays. PA exposure induced cytotoxicity, and coexposure to ZnO NPs and PA showed the largest cytotoxic effects. The presence......Fatty acids exposure may increase sensitivity of intestinal epithelial cells to cytotoxic effects of zinc oxide (ZnO) nanoparticles (NPs). This study evaluated the synergistic effects of ZnO NPs and palmitic acid (PA) or free fatty acids (FFAs) mixture (oleic/PA 2:1) on toxicity to human colon...

  9. Yellow phosphorus process to convert toxic chemicals to non-toxic products

    Science.gov (United States)

    Chang, S.G.

    1994-07-26

    The present invention relates to a process for generating reactive species for destroying toxic chemicals. This process first contacts air or oxygen with aqueous emulsions of molten yellow phosphorus. This contact results in rapid production of abundant reactive species such as O, O[sub 3], PO, PO[sub 2], etc. A gaseous or liquid aqueous solution organic or inorganic chemicals is next contacted by these reactive species to reduce the concentration of toxic chemical and result in a non-toxic product. The final oxidation product of yellow phosphorus is phosphoric acid of a quality which can be recovered for commercial use. A process is developed such that the byproduct, phosphoric acid, is obtained without contamination of toxic species in liquids treated. A gas stream containing ozone without contamination of phosphorus containing species is also obtained in a simple and cost-effective manner. This process is demonstrated to be effective for destroying many types of toxic organic, or inorganic, compounds, including polychlorinated biphenyls (PCB), aromatic chlorides, amines, alcohols, acids, nitro aromatics, aliphatic chlorides, polynuclear aromatic compounds (PAH), dyes, pesticides, sulfides, hydroxyamines, ureas, dithionates and the like. 20 figs.

  10. 78 FR 76987 - Mandipropamid; Pesticide Tolerances

    Science.gov (United States)

    2013-12-20

    ... screening battery. No systemic or dermal toxicity was observed following dermal exposure for 28 days, up to... mass spectrometric detection (LC/MS/MS), is available to enforce the tolerance expression. The method...

  11. 78 FR 60715 - Sedaxane; Pesticide Tolerances

    Science.gov (United States)

    2013-10-02

    ... 28-day dermal study did not show systemic toxicity at the limit dose of 1,000 milligrams/kilogram/day... Enforcement Methodology Adequate enforcement methodology is available to enforce the tolerance expression. A...

  12. A preclinical study on the rescue of normal tissue by nicotinic acid in high-dose treatment with APO866, a specific nicotinamide phosphoribosyltransferase inhibitor

    DEFF Research Database (Denmark)

    Olesen, Uffe Høgh; Thougaard, Annemette V; Jensen, Peter Buhl

    2010-01-01

    Inhibitor of nicotinamide phosphoribosyltransferase APO866 is a promising cancer drug currently in phase II clinical trials in oncology. Here, we present a strategy for increasing the therapeutic potential of APO866 through the rescue of normal tissues by coadministration of nicotinic acid (Vitamin...... B(3)). We examined the toxicity profile of APO866 in B6D2F1 mice and the effect of oral administration of nicotinic acid on tissue toxicity. Nicotinic acid (50 mg/kg) protects mice from death and severe toxicity from an APO866 dose (60 mg/kg) four times the monotherapy maximum tolerated dose (15 mg....../kg). In a panel of six cancer cell lines, we find that three (including ML-2 cells) are protected by nicotinic acid in vitro, whereas the cytotoxicity of APO866 remains unaffected in the remaining three (including A2780 cells). A selective biomarker for the protection by nicotinic acid was subsequently identified...

  13. Clostridium species strain BOH3 tolerates and transforms inhibitors from horticulture waste hydrolysates.

    Science.gov (United States)

    Yan, Yu; He, Jianzhong

    2017-08-01

    Conversion of lignocellulosic hydrolysate to biofuels is impeded by the toxic effects of inhibitors that are generated during pretreatment and hydrolysis processes. Here we describe a wild-type Clostridium sp. strain BOH3 with high tolerance to the lignocellulose-derived inhibitors and its capability to transform these inhibitors. Strain BOH3 is capable of tolerating over 60 mM furfural, 60 mM hydroxymethylfurfural, and 6.6 mM vanillin, respectively, and is able to convert 53.74 ± 0.37 mM furfural into furfuryl alcohol within 90 h. The high furfural tolerance and its biotransformation by strain BOH3, which is correlated to the high transcription levels of two short-chain dehydrogenase/reductases, enable strain BOH3 to produce 5.15 ± 0.52 g/L butanol from dilute sulfuric acid pretreated horticultural waste hydrolysate (HWH) that bypassed the detoxification step. The capability of strain BOH3 to produce butanol from un-detoxified HWH lays the foundation of cost-effective biofuel production from lignocellulosic materials.

  14. Pharmacokinetics, pharmacodynamics, and tolerability of verinurad, a selective uric acid reabsorption inhibitor, in healthy adult male subjects

    Directory of Open Access Journals (Sweden)

    Shen Z

    2017-07-01

    Full Text Available Zancong Shen,1 Michael Gillen,2 Jeffrey N Miner,1 Gail Bucci,1 David M Wilson,1 Jesse W Hall1 1Ardea Biosciences, Inc., San Diego, CA, 2AstraZeneca, Gaithersburg, MD, USA Purpose: Verinurad (RDEA3170 is a selective uric acid reabsorption inhibitor in clinical development for the treatment of gout and asymptomatic hyperuricemia. The aim of this study was to evaluate the pharmacokinetics, pharmacodynamics, and tolerability of verinurad in healthy adult males.Subjects and methods: This was a Phase I, randomized, double-blind, placebo-controlled, single and multiple ascending dose study. Panels of eight male subjects received a single oral dose of verinurad or placebo in either a fasted or fed state; panels of 10–12 male subjects received ascending doses of once-daily verinurad or placebo in a fasted state for 10 days. Serial blood and urine samples were assayed for verinurad and uric acid. Safety was assessed by adverse event (AE reports, laboratory tests, vital signs, and electrocardiograms (ECGs.Results: A total of 81 adult males completed the study. Following single doses of verinurad, maximum observed plasma concentration (Cmax and area under the plasma concentration–time curve (AUC increased in a dose-proportional manner; Cmax occurred at 0.5–0.75 hours and 1.25 hours in the fasted and fed states, respectively. Food decreased AUC by 23% and Cmax by 37%-53%. There was a modest accumulation of verinurad following multiple daily doses. Verinurad reduced serum urate levels by up to 62% (40 mg, single dose and 61% (10 mg, multiple dose. The increase in urinary excretion of uric acid was greatest in the first 6 hours after dosing and was still evident ≥24 hours for verinurad doses ≥2 mg. Verinurad was well tolerated at all doses. No serious AEs, severe AEs, discontinuations due to AEs, or clinically significant laboratory or ECG abnormalities were reported.Conclusion: Single and multiple doses of verinurad were well tolerated

  15. Boron-containing acids: preliminary evaluation of acute toxicity and access to the brain determined by Raman scattering spectroscopy.

    Science.gov (United States)

    Soriano-Ursúa, Marvin A; Farfán-García, Eunice D; López-Cabrera, Yessica; Querejeta, Enrique; Trujillo-Ferrara, José G

    2014-01-01

    Boron-containing compounds (BCCs), particularly boron containing acids (BCAs), have become attractive moieties or molecules in drug development. It has been suggested that when functional groups with boron atoms are added to well-known drugs, the latter are conferred with greater potency and efficacy in relation to their target receptors. However, the use of BCAs in drug development is limited due to the lack of a toxicological profile. Consequently, the aim of the present study was to evaluate the acute toxicity of boric and boronic acids. Thus, a determination was made of the lethal dose (LD50) of test compounds in male CD1 mice, as well as the effective dose required to negatively affect spontaneous motor activity and to produce notable behavioral abnormalities. After treatment of animals at different doses, macroscopic observations were made from a necropsy, and Raman scattering spectroscopic studies were carried out on brain tissue samples. In general, the results show that most of the tested BCAs have very low toxicity, evidenced by the high doses required to induce notable toxic effects (greater than 100 mg/kg of body weight for all compounds, except for 3-thyenilboronic acid). Such toxic effects, presumably mediated by action on the CNS, include eye damage, gastrointestinal effects (e.g., gastric-gut dilatation and fecal retention), sedation, hypnosis and/or trembling. This preliminary toxicological profile suggests that BCAs can be considered potential therapeutic agents or moieties to be added to other compounds in the development of new drugs. Future studies are required to explore possible chronic toxicity of BCCs. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. A review of the nature of naphthenic acid occurrence, toxicity, and fate in refinery and oil sands extraction wastewaters

    Energy Technology Data Exchange (ETDEWEB)

    Eickhoff [Maxxam, Calgary, AB (Canada)

    2010-07-01

    This PowerPoint presentation evaluated the occurrence, toxicity and fate of naphthenic acids (NA) in refinery and oil sands extraction waste waters. The chemistry of NA was reviewed. Factors affecting the aquatic toxicity of NA were discussed, and modes of toxicity were outlined. NA residues in fish were evaluated. Issues concerning the biodegradation, photolysis, and phytodegradation of NA were reviewed. Various phytoremediation techniques were presented. Results of the study indicated that acute toxicity to aquatic organisms was caused by narcosis. Sublethal impacts of NA included changes to growth, fertilization, reproduction, development, and hormone modifications. Varying rates of toxicity were observed in different NA, based on their size and molecular structure. While biodegradation can reduce the toxicity of NA, higher molecular weight NA can resist degradation and cause toxicity. tabs., figs.

  17. Silicon enhanced salt tolerance by improving the root water uptake and decreasing the ion toxicity in cucumber

    Directory of Open Access Journals (Sweden)

    Shiwen eWang

    2015-09-01

    Full Text Available Although the effects of silicon application on enhancing plant salt tolerance have been widely investigated, the underlying mechanism has remained unclear. In this study, seedlings of cucumber, a medium silicon accumulator plant, grown in 0.83 mM silicon solution for two weeks were exposed to 65 mM NaCl solution for another one week. The dry weight and shoot/root ratio were reduced by salt stress, but silicon application significantly alleviated these decreases. The chlorophyll concentration, net photosynthetic rate, transpiration rate and leaf water content were higher in plants treated with silicon than in untreated plants under salt stress conditions. Further investigation showed that salt stress decreased root hydraulic conductance (Lp, but that silicon application moderated this salt-induced decrease in Lp. The higher Lp in silicon-treated plants may account for the superior plant water balance. Moreover, silicon application significantly decreased Na+ concentration in the leaves while increasing K+ concentration. Simultaneously, both free and conjugated types of polyamines were maintained at high levels in silicon-treated plants, suggesting that polyamines may be involved in the ion toxicity. Our results indicate that silicon enhances the salt tolerance of cucumber through improving plant water balance by increasing the Lp and reducing Na+ content by increasing polyamine accumulation.

  18. Behavioral, clinical, and pathological characterization of acid metalliferous water toxicity in mallards

    Science.gov (United States)

    Isanhart, John P.; Wu, Hongmei; Pandher, Karamjeet; MacRae, Russell K.; Cox, Stephen B.; Hooper, Michael J.

    2011-01-01

    From September to November 2000, United States Fish and Wildlife Service biologists investigated incidents involving 221 bird deaths at 3 mine sites located in New Mexico and Arizona. These bird deaths primarily involved passerine and waterfowl species and were assumed to be linked to consumption of acid metalliferous water (AMW). Because all of the carcasses were found in or near pregnant leach solution ponds, tailings ponds, and associated lakes or storm water retention basins, an acute-toxicity study was undertaken using a synthetic AMW (SAMW) formulation based on the contaminant profile of a representative pond believed to be responsible for avian mortalities. An acute oral-toxicity trial was performed with a mixed-sex group of mallards (Anas platyrhynchos). After a 24-h pretreatment food and water fast, gorge drinking was evident in both SAMW treatment and control groups, with water consumption rates greatest during the initial drinking periods. Seven of nine treated mallards were killed in extremis within 12 h after the initiation of dose. Total lethal doses of SAMW ranged from 69.8 to 270.1 mL/kg (mean ± SE 127.9 ± 27.1). Lethal doses of SAMW were consumed in as few as 20 to 40 min after first exposure. Clinical signs of SAMW toxicity included increased serum uric acid, aspartate aminotransferase, creatine kinase, potassium, and P levels. PCV values of SAMW-treated birds were also increased compared with control mallards. Histopathological lesions were observed in the esophagus, proventriculus, ventriculus, and duodenum of SAMW-treated mallards, with the most distinctive being erosion and ulceration of the kaolin of the ventriculus, ventricular hemorrhage and/or congestion, and duodenal hemorrhage. Clinical, pathological, and tissue-residue results from this study are consistent with literature documenting acute metal toxicosis, especially copper (Cu), in avian species and provide useful diagnostic profiles for AMW toxicity or mortality events. Blood and

  19. Overexpression of a 9-cis-epoxycarotenoid dioxygenase gene in Nicotiana plumbaginifolia increases abscisic acid and phaseic acid levels and enhances drought tolerance.

    Science.gov (United States)

    Qin, Xiaoqiong; Zeevaart, Jan A D

    2002-02-01

    The plant hormone abscisic acid (ABA) plays important roles in seed maturation and dormancy and in adaptation to a variety of environmental stresses. An effort to engineer plants with elevated ABA levels and subsequent stress tolerance is focused on the genetic manipulation of the cleavage reaction. It has been shown in bean (Phaseolus vulgaris) that the gene encoding the cleavage enzyme (PvNCED1) is up-regulated by water stress, preceding accumulation of ABA. Transgenic wild tobacco (Nicotiana plumbaginifolia Viv.) plants were produced that overexpress the PvNCED1 gene either constitutively or in an inducible manner. The constitutive expression of PvNCED1 resulted in an increase in ABA and its catabolite, phaseic acid (PA). When the PvNCED1 gene was driven by the dexamethasone (DEX)-inducible promoter, a transient induction of PvNCED1 message and accumulation of ABA and PA were observed in different lines after application of DEX. Accumulation of ABA started to level off after 6 h, whereas the PA level continued to increase. In the presence of DEX, seeds from homozygous transgenic line TN1 showed a 4-d delay in germination. After spraying with DEX, the detached leaves from line TN1 had a drastic decrease in their water loss relative to control leaves. These plants also showed a marked increase in their tolerance to drought stress. These results indicate that it is possible to manipulate ABA levels in plants by overexpressing the key regulatory gene in ABA biosynthesis and that stress tolerance can be improved by increasing ABA levels.

  20. Effects, tolerance mechanisms and management of salt stress in grain legumes.

    Science.gov (United States)

    Farooq, Muhammad; Gogoi, Nirmali; Hussain, Mubshar; Barthakur, Sharmistha; Paul, Sreyashi; Bharadwaj, Nandita; Migdadi, Hussein M; Alghamdi, Salem S; Siddique, Kadambot H M

    2017-09-01

    Salt stress is an ever-present threat to crop yields, especially in countries with irrigated agriculture. Efforts to improve salt tolerance in crop plants are vital for sustainable crop production on marginal lands to ensure future food supplies. Grain legumes are a fascinating group of plants due to their high grain protein contents and ability to fix biological nitrogen. However, the accumulation of excessive salts in soil and the use of saline groundwater are threatening legume production worldwide. Salt stress disturbs photosynthesis and hormonal regulation and causes nutritional imbalance, specific ion toxicity and osmotic effects in legumes to reduce grain yield and quality. Understanding the responses of grain legumes to salt stress and the associated tolerance mechanisms, as well as assessing management options, may help in the development of strategies to improve the performance of grain legumes under salt stress. In this manuscript, we discuss the effects, tolerance mechanisms and management of salt stress in grain legumes. The principal inferences of the review are: (i) salt stress reduces seed germination (by up to more than 50%) either by inhibiting water uptake and/or the toxic effect of ions in the embryo, (ii) salt stress reduces growth (by more than 70%), mineral uptake, and yield (by 12-100%) due to ion toxicity and reduced photosynthesis, (iii) apoplastic acidification is a good indicator of salt stress tolerance, (iv) tolerance to salt stress in grain legumes may develop through excretion and/or compartmentalization of toxic ions, increased antioxidant capacity, accumulation of compatible osmolytes, and/or hormonal regulation, (v) seed priming and nutrient management may improve salt tolerance in grain legumes, (vi) plant growth promoting rhizobacteria and arbuscular mycorrhizal fungi may help to improve salt tolerance due to better plant nutrient availability, and (vii) the integration of screening, innovative breeding, and the development of

  1. Normal tissue tolerance to external beam radiation therapy: The stomach

    International Nuclear Information System (INIS)

    Oberdiac, P.; Mineur, L.

    2010-01-01

    In the following article, we will discuss general issues relating to acute and late gastric's radiation toxicities. The tolerance of the stomach to complete or partial organ irradiation is more un-appreciated than for most other organs. We consulted the Medline database via PubMed and used the key words gastric - radiotherapy - toxicity. Currently, 60 Gy or less is prescribed in gastric radiation therapy. Acute clinical toxicity symptoms are predominantly nausea and vomiting. Although there is a general agreement that the whole stomach tolerance is for doses of 40 to 45 Gy without unacceptable complication, it is well established that a stomach dose of 35 Gy increases the risk of ulcer complications. (authors)

  2. Involvement of WRKY Transcription Factors in Abscisic-Acid-Induced Cold Tolerance of Banana Fruit.

    Science.gov (United States)

    Luo, Dong-Lan; Ba, Liang-Jie; Shan, Wei; Kuang, Jian-Fei; Lu, Wang-Jin; Chen, Jian-Ye

    2017-05-10

    Phytohormone abscisic acid (ABA) and plant-specific WRKY transcription factors (TFs) have been implicated to play important roles in various stress responses. The involvement of WRKY TFs in ABA-mediated cold tolerance of economical fruits, such as banana fruit, however remains largely unknown. Here, we reported that ABA application could induce expressions of ABA biosynthesis-related genes MaNCED1 and MaNCED2, increase endogenous ABA contents, and thereby enhance cold tolerance in banana fruit. Four banana fruit WRKY TFs, designated as MaWRKY31, MaWRKY33, MaWRKY60, and MaWRKY71, were identified and characterized. All four of these MaWRKYs were nuclear-localized and displayed transactivation activities. Their expressions were induced by ABA treatment during cold storage. More importantly, the gel mobility shift assay and transient expression analysis revealed that MaWRKY31, MaWRKY33, MaWRKY60, and MaWRKY71 directly bound to the W-box elements in MaNCED1 and MaNCED2 promoters and activated their expressions. Taken together, our findings demonstrate that banana fruit WRKY TFs are involved in ABA-induced cold tolerance by, at least in part, increasing ABA levels via directly activating NECD expressions.

  3. 78 FR 46267 - Trifluralin; Pesticide Tolerance

    Science.gov (United States)

    2013-07-31

    ...), trifluralin was tested up to the limit dose (1000 mg/kg/day) and caused no systemic toxicity. Handler exposure... detection (ECD)) is available to enforce the tolerance expression. The method may be requested from: Chief...

  4. In Vitro and In Vivo Toxicity of Garcinia or Hydroxycitric Acid: A Review

    Directory of Open Access Journals (Sweden)

    Li Oon Chuah

    2012-01-01

    Full Text Available Obesity is one of the pandemic chronic diseases commonly associated with health disorders such as heart attack, high blood pressure, diabetes or even cancer. Among the current natural products for obesity and weight control, Garcinia or more specifically hydroxycitric acid (HCA extracted from Garcinia has been widely used. The evaluation of the potential toxicity of weight control supplement is of the utmost importance as it requires long term continuous consumption in order to maintain its effects. Majority of reports demonstrated the efficacy of Garcinia/HCA without any toxicity found. However, a few clinical toxicity reports on weight-loss diet supplements of which some were combinations that included Garcinia/HCA as an active ingredient showed potential toxicity towards spermatogenesis. Nonetheless, it cannot be concluded that Garcinia/HCA is unsafe. Those products which have been reported to possess adverse effects are either polyherbal or multi-component in nature. To date, there is no case study or report showing the direct adverse effect of HCA. The structure, mechanism of action, long history of the use of Garcinia/HCA and comprehensive scientific evidence had shown “no observed adverse effect level (NOAEL” at levels up to 2800 mg/day, suggesting its safety for use.

  5. Toxic Effects of Cannabis and Cannabinoids: Animal Data

    Directory of Open Access Journals (Sweden)

    Pierre Beaulieu

    2005-01-01

    Full Text Available The present article reviews the main toxic effects of cannabis and cannabinoids in animals. Toxic effects can be separated into acute and chronic classifications. Acute toxicity studies show that it is virtually impossible to die from acute administration of marijuana or tetrahydrocannabinol, the main psychoactive component of cannabis. Chronic toxicity involves lesions of airway and lung tissues, as well as problems of neurotoxicity, tolerance and dependence, and dysregulations in the immune and hormonal systems. Animal toxicity data, however, are difficult to extrapolate to humans.

  6. Feed Supplementation with Thermo-Tolerant, Lactic Acid-Producing Bacteria as Probiotics for Swine Husbandry

    International Nuclear Information System (INIS)

    Tongpim, Saowanit; Khammeng, Terdsak; Luanthisong, Pirat; Sakai, Kenji; Piadang, Nattayana

    2006-09-01

    This research work had an objective to employ the thermo tolerant, lactic acid-producing bacteria, Bacillus coagulans strain NF 1 7 as feed additive for swine raising. The bacterial isolate NF 1 7, kept in the culture collection of Khon Kaen University that could tolerate high temperature and produce lactic acid, was employed in this experiment. Cell suspension of isolate NF 1 7 was exposed to gamma irradiation at various doses (1-5 KGy). The isolated survivors were screened on the basis of forming larger colonies and clear zones than the parent strain NF 1 7 when grown on Glucose- Yeast extract-Peptone (GYP) containing CaCO 3 . We obtained 55 effective isolates which the isolate L 5 I2 to 14(5), designated as K 1 4 was chosen for further experiments. Isolate K 1 4 together with the parent strain were characterized using morphological, physiological and biochemical tests. They were all identified as Bacillus coagulans. All isolates had optimal growth pH of 6.5 and grew best at 42.50 o C. The strain K 1 4 could tolerate the temperature as high as 59 o C and was then employed in the fermentation of food waste that collected from the university cafeteria. It was found that food waste could support growth of Bacillus K 1 4 and produce about 107 to 108 CFU/g food waste within 1-3 days. Nutritional value of the fermented food waste in the form of protein was also increased. When mixing this selected bacterium as feed additive in daily pig rations, it was found that Bacillus K 1 4 helped increase feed conversion ratio and reduced the mortality in weaned piglets. Experiments were also performed with the growing pigs. It showed that Bacillus Sp. K 1 4 significantly improved the feed conversion ratio

  7. Prediction of Glucose Tolerance without an Oral Glucose Tolerance Test

    Directory of Open Access Journals (Sweden)

    Rohit Babbar

    2018-03-01

    Full Text Available IntroductionImpaired glucose tolerance (IGT is diagnosed by a standardized oral glucose tolerance test (OGTT. However, the OGTT is laborious, and when not performed, glucose tolerance cannot be determined from fasting samples retrospectively. We tested if glucose tolerance status is reasonably predictable from a combination of demographic, anthropometric, and laboratory data assessed at one time point in a fasting state.MethodsGiven a set of 22 variables selected upon clinical feasibility such as sex, age, height, weight, waist circumference, blood pressure, fasting glucose, HbA1c, hemoglobin, mean corpuscular volume, serum potassium, fasting levels of insulin, C-peptide, triglyceride, non-esterified fatty acids (NEFA, proinsulin, prolactin, cholesterol, low-density lipoprotein, HDL, uric acid, liver transaminases, and ferritin, we used supervised machine learning to estimate glucose tolerance status in 2,337 participants of the TUEF study who were recruited before 2012. We tested the performance of 10 different machine learning classifiers on data from 929 participants in the test set who were recruited after 2012. In addition, reproducibility of IGT was analyzed in 78 participants who had 2 repeated OGTTs within 1 year.ResultsThe most accurate prediction of IGT was reached with the recursive partitioning method (accuracy = 0.78. For all classifiers, mean accuracy was 0.73 ± 0.04. The most important model variable was fasting glucose in all models. Using mean variable importance across all models, fasting glucose was followed by NEFA, triglycerides, HbA1c, and C-peptide. The accuracy of predicting IGT from a previous OGTT was 0.77.ConclusionMachine learning methods yield moderate accuracy in predicting glucose tolerance from a wide set of clinical and laboratory variables. A substitution of OGTT does not currently seem to be feasible. An important constraint could be the limited reproducibility of glucose tolerance status during a

  8. Overexpression of an alfalfa GDP-mannose 3, 5-epimerase gene enhances acid, drought and salt tolerance in transgenic Arabidopsis by increasing ascorbate accumulation.

    Science.gov (United States)

    Ma, Lichao; Wang, Yanrong; Liu, Wenxian; Liu, Zhipeng

    2014-11-01

    GDP-mannose 3', 5'-epimerase (GME) catalyses the conversion of GDP-D-mannose to GDP-L-galactose, an important step in the ascorbic acid (ascorbic acid) biosynthetic pathway in higher plants. In this study, a novel cDNA fragment (MsGME) encoding a GME protein was isolated and characterised from alfalfa (Medicago sativa). An expression analysis confirmed that MsGME expression was induced by salinity, PEG and acidity stresses. MsGME overexpression in Arabidopsis enhanced tolerance of the transgenic plants to salt, drought and acid. Real-time PCR analysis revealed that the transcript levels of GDP-D-mannose pyrophosphorylase (GMP), L-galactose-phosphate 1-P phosphatase (GP) and GDP-L-galactose phosphorylase (GGP) were increased in transgenic Arabidopsis (T3 generation). Moreover, the ascorbate content was increased in transgenic Arabidopsis. Our results suggest that MsGME can effectively enhance tolerance of transgenic Arabidopsis to acid, drought and salt by increasing ascorbate accumulation.

  9. Astaxanthin and Docosahexaenoic Acid Reverse the Toxicity of the Maxi-K (BK Channel Antagonist Mycotoxin Penitrem A

    Directory of Open Access Journals (Sweden)

    Amira A. Goda

    2016-11-01

    Full Text Available Penitrem A (PA is a food mycotoxin produced by several terrestrial and few marine Penicillium species. PA is a potent tremorgen through selective antagonism of the calcium-dependent potassium BK (Maxi-K channels. Discovery of natural products that can prevent the toxic effects of PA is important for food safety. Astaxanthin (AST is a marine natural xanthophyll carotenoid with documented antioxidant activity. Unlike other common antioxidants, AST can cross blood brain barriers (BBBs, inducing neuroprotective effects. Docosahexaenoic acid (DHA is polyunsaturated ω-3 fatty acid naturally occurring in fish and algae. DHA is essential for normal neurological and cellular development. This study evaluated the protective activity of AST and DHA against PA-induced toxicity, in vitro on Schwann cells CRL-2765 and in vivo in the worm Caenorhbitidis elegans and Sprague Dawley rat models. PA inhibited the viability of Schwann cells, with an IC50 of 22.6 μM. Dose-dependent treatments with 10–100 μM DHA significantly reversed the PA toxicity at its IC50 dose, and improved the survival of Schwann cells to 70.5%–98.8%. Similarly, dose-dependent treatments with 10–20 μM AST reversed the PA toxicity at its IC50 dose and raised these cells’ survival to 61.7%–70.5%. BK channel inhibition in the nematode C. elegans is associated with abnormal reversal locomotion. DHA and AST counteracted the in vivo PA BK channel antagonistic activity in the C. elegans model. Rats fed a PA-contaminated diet showed high levels of glutamate (GLU, aspartate (ASP, and gamma amino butyric acid (GABA, with observed necrosis or absence of Purkinjie neurons, typical of PA-induced neurotoxicity. Dopamine (DA, serotonin (5-HT, and norepinephrine (NE levels were abnormal, Nitric Oxide (NO and Malondialdehyde (MDA levels were significantly increased, and total antioxidant capacity (TAC level in serum and brain homogenates was significantly decreased in PA-treated rats. DHA and AST

  10. Two-dimensional gel electrophoresis data in support of leaf comparative proteomics of two citrus species differing in boron-tolerance

    Directory of Open Access Journals (Sweden)

    Wen Sang

    2015-09-01

    Full Text Available Here, we provide the data from a comparative proteomics approach used to investigate the response of boron (B-tolerant ‘Xuegan’ (Citrus sinensis and B-intolerant ‘Sour pummelo’ (Citrus grandis leaves to B-toxicity. Using two-dimensional gel electrophoresis (2-DE technique, we identified 50 and 45 protein species with a fold change of more than 1.5 and a P-value of less than 0.05 from B-toxic C. sinensis and C. grandis leaves. These B-toxicity-responsive protein species were mainly involved in carbohydrate and energy metabolism, antioxidation and detoxification, stress responses, coenzyme biosynthesis, protein and amino acid metabolism, signal transduction, cell transport, cytoskeleton, nucleotide metabolism, and cell cycle and DNA processing. A detailed analysis of this data may be obtained from Sang et al. (J. Proteomics 114 (2015[1].

  11. Effect of Copper on Fatty-Acid Composition and Peroxidation of Lipids in the Roots of Copper Tolerant and Sensitive Silene-Cucubalus.

    NARCIS (Netherlands)

    De Vos, C.H.R.; TenBookum, W.M.; Vooijs, R.; Schat, H.; De Kok, L.J.

    1993-01-01

    The effect of high copper exposure in vivo on the lipid and fatty acid composition and lipid peroxidation was studied in the roots of plants from one copper sensitive and two copper tolerant genotypes of Silene cucubalus. At 0.5 muM Cu (control treatment) the compositions of lipids and fatty acids

  12. Protective efficacy of folic acid and vitamin B12 against nicotine-induced toxicity in pancreatic islets of the rat

    Directory of Open Access Journals (Sweden)

    Bhattacharjee Ankita

    2015-06-01

    Full Text Available Although cigarette smoking is associated with insulin resistance and an increased risk for type 2 diabetes, few studies have examined the effect of nicotine on the adult endocrine pancreas. In this study, male Wister rats were treated with nicotine (3 mg/kg body weight/day with or without supplementation of folic acid (36 μg/kg body weight/day or vitamin B12 (0.63 μg/kg body weight/day alone or in combination. Fasting blood glucose, insulin and HBA1C level and different oxidative and anti-oxidative stress parameters were measured and pancreatic tissue sections were stained with eosin-haematoxylene. Data were analysed by nonparametric statistics. The results revealed that nicotine induced prediabetes condition with subsequent damage to pancreatic islets in rats. Nicotine also caused oxidative stress in pancreatic tissue as evidenced by increased nitric oxide and malondialdehyde level and decreased superoxide dismutase, catalase and reduced glutathione level. Compared to vitamin B12 supplementation, folic acid blunted the nicotine-induced toxicity in pancreatic islets with higher efficacy. Further, folic acid and vitamin B12 in combination were able to confer significant protection on pancreatic islets against nicotine induced toxicity. These results suggest that supplementation of folic acid and vitamin B12 in combination may be a possible strategy of detoxification against nicotine-induced toxicity in pancreatic islets of the rat.

  13. Over-expression of SlJA2 decreased heat tolerance of transgenic tobacco plants via salicylic acid pathway.

    Science.gov (United States)

    Liu, Zhong-Ming; Yue, Meng-Meng; Yang, Dong-Yue; Zhu, Shao-Bo; Ma, Na-Na; Meng, Qing-Wei

    2017-04-01

    Over-expression of SlJA2 decreased the accumulation of SA, which resulted in significant physiological and gene expression changes in transgenic tobacco plants, leading to the decreased heat tolerance of transgenic tobacco. NAC family, the largest transcription factors in plants, responses to different environmental stimuli. Here, we isolated a typical NAC transcription factor (SlJA2) from tomato and got transgenic tobacco with SlJA2 over-expression. Expression of SlJA2 was induced by heat stress (42 °C), chilling stress (4 °C), drought stress, osmotic stress, abscisic acid, and salicylic acid. Over-expression of SlJA2 decreased the accumulation of salicylic acid by regulating expression of salicylic acid degradation gene under heat stress. Compared to WT plants, stomatal apertures and water loss increased in transgenic plants, and the damage of photosynthetic apparatus and chlorophyll breakdown were more serious in transgenic plants under heat stress. Meanwhile, more H 2 O 2 and O 2 ·- were accumulated transgenic plants and proline synthesis was restricted, which resulted in more serious oxidative damage compared to WT. qRT-PCR analysis showed that over-expression of SlJA2 could down-regulate genes involved in reactive oxygen species scavenging, proline biosynthesis, and response to heat stress. All the above results indicated that SlJA2 may be a negative regulator responded to plant's heat tolerance. Thus, this study provides new insight into roles of NAC family member in plant response to abiotic stress.

  14. Differential activation of genes related to aluminium tolerance in two contrasting rice cultivars.

    Science.gov (United States)

    Roselló, Maite; Poschenrieder, Charlotte; Gunsé, Benet; Barceló, Juan; Llugany, Mercè

    2015-11-01

    Rice (Oryza sativa) is a highly Al-tolerant crop. Among other mechanisms, a higher expression of STAR1/STAR2 (sensitive to Al rhizotoxicity1/2) genes and of Nrat1 (NRAMP Aluminium Transporter 1), and ALS1 (Aluminium sensitive 1) can at least in part be responsible for the inducible Al tolerance in this species. Here we analysed the responses to Al in two contrasting rice varieties. All analysed toxicity/tolerance markers (root elongation, Evans blue, morin and haematoxylin staining) indicated higher Al-tolerance in variety Nipponbare, than in variety Modan. Nipponbare accumulated much less Al in the roots than Modan. Aluminium supply caused stronger expression of STAR1 in Nipponbare than in Modan. A distinctively higher increase of Al-induced abscisic acid (ABA) accumulation was found in the roots of Nipponbare than in Modan. Highest ABA levels were observed in Nipponbare after 48 h exposure to Al. This ABA peak was coincident in time with the highest expression level of STAR1. It is proposed that ABA may be required for cell wall remodulation facilitated by the enhanced UDP-glucose transport to the walls through STAR1/STAR2. Contrastingly, in the roots of Modan the expression of both Nrat1 coding for a plasma membrane Al-transporter and of ALS1 coding for a tonoplast-localized Al transporter was considerably enhanced. Moreover, Modan had a higher Al-induced expression of ASR1 a gene that has been proposed to code for a reactive oxygen scavenging protein. In conclusion, the Al-exclusion strategy of Nipponbare, at least in part mediated by STAR1 and probably regulated by ABA, provided better protection against Al toxicity than the accumulation and internal detoxification strategy of Modan mediated by Nrat1, ALS1 and ARS1. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Boron stress response and accumulation potential of the extremely tolerant species Puccinellia frigida

    International Nuclear Information System (INIS)

    Rámila, Consuelo d.P.; Contreras, Samuel A.; Di Domenico, Camila; Molina-Montenegro, Marco A.; Vega, Andrea; Handford, Michael; Bonilla, Carlos A.

    2016-01-01

    Highlights: • P. frigida presents an extremely high boron toxicity threshold. • Restricting uptake and internal tolerance mechanisms could confer boron tolerance. • P. frigida is a boron hyperaccumulator over a wide range of concentrations. • The species has potential for phytoremediation purposes. - Abstract: Phytoremediation is a promising technology to tackle boron toxicity, which restricts agricultural activities in many arid and semi-arid areas. Puccinellia frigida is a perennial grass that was reported to hyperaccumulate boron in extremely boron-contaminated sites. To further investigate its potential for phytoremediation, we determined its response to boron stress under controlled conditions (hydroponic culture). Also, as a first step towards understanding the mechanisms underlying its extreme tolerance, we evaluated the presence and expression of genes related with boron tolerance. We found that P. frigida grew normally even at highly toxic boron concentrations in the medium (500 mg/L), and within its tissues (>5000 mg/kg DW). We postulate that the strategies conferring this extreme tolerance involve both restricting boron accumulation and an internal tolerance mechanism; this is consistent with the identification of putative genes involved in both mechanisms, including the expression of a possible boron efflux transporter. We also found that P. frigida hyperaccumulated boron over a wide range of boron concentrations. We propose that P. frigida could be used for boron phytoremediation strategies in places with different soil characteristics and boron concentrations. Further studies should pave the way for the development of clean and low-cost solutions to boron toxicity problems.

  16. Boron stress response and accumulation potential of the extremely tolerant species Puccinellia frigida

    Energy Technology Data Exchange (ETDEWEB)

    Rámila, Consuelo d.P. [Departamento de Ingeniería Hidráulica y Ambiental, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, 7820436 Santiago (Chile); Contreras, Samuel A.; Di Domenico, Camila [Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, 7820436 Santiago (Chile); Molina-Montenegro, Marco A. [Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Facultad de Ciencias del Mar, Universidad Católica del Norte, Larrondo 1281, Coquimbo (Chile); Instituto de Ciencias Biológicas, Universidad de Talca, Avda. Lircay s/n, Talca (Chile); Vega, Andrea [Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, 7820436 Santiago (Chile); Handford, Michael [Departmento de Biología, Facultad de Ciencias, Universidad de Chile, Avenida Las Palmeras 3425, 7800024 Santiago (Chile); Bonilla, Carlos A. [Departamento de Ingeniería Hidráulica y Ambiental, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, 7820436 Santiago (Chile); Centro de Desarrollo Urbano Sustentable (CEDEUS), Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, 7820436 Santiago (Chile); and others

    2016-11-05

    Highlights: • P. frigida presents an extremely high boron toxicity threshold. • Restricting uptake and internal tolerance mechanisms could confer boron tolerance. • P. frigida is a boron hyperaccumulator over a wide range of concentrations. • The species has potential for phytoremediation purposes. - Abstract: Phytoremediation is a promising technology to tackle boron toxicity, which restricts agricultural activities in many arid and semi-arid areas. Puccinellia frigida is a perennial grass that was reported to hyperaccumulate boron in extremely boron-contaminated sites. To further investigate its potential for phytoremediation, we determined its response to boron stress under controlled conditions (hydroponic culture). Also, as a first step towards understanding the mechanisms underlying its extreme tolerance, we evaluated the presence and expression of genes related with boron tolerance. We found that P. frigida grew normally even at highly toxic boron concentrations in the medium (500 mg/L), and within its tissues (>5000 mg/kg DW). We postulate that the strategies conferring this extreme tolerance involve both restricting boron accumulation and an internal tolerance mechanism; this is consistent with the identification of putative genes involved in both mechanisms, including the expression of a possible boron efflux transporter. We also found that P. frigida hyperaccumulated boron over a wide range of boron concentrations. We propose that P. frigida could be used for boron phytoremediation strategies in places with different soil characteristics and boron concentrations. Further studies should pave the way for the development of clean and low-cost solutions to boron toxicity problems.

  17. Overexpression of a 9-cis-Epoxycarotenoid Dioxygenase Gene in Nicotiana plumbaginifolia Increases Abscisic Acid and Phaseic Acid Levels and Enhances Drought Tolerance1

    Science.gov (United States)

    Qin, Xiaoqiong; Zeevaart, Jan A.D.

    2002-01-01

    The plant hormone abscisic acid (ABA) plays important roles in seed maturation and dormancy and in adaptation to a variety of environmental stresses. An effort to engineer plants with elevated ABA levels and subsequent stress tolerance is focused on the genetic manipulation of the cleavage reaction. It has been shown in bean (Phaseolus vulgaris) that the gene encoding the cleavage enzyme (PvNCED1) is up-regulated by water stress, preceding accumulation of ABA. Transgenic wild tobacco (Nicotiana plumbaginifolia Viv.) plants were produced that overexpress the PvNCED1 gene either constitutively or in an inducible manner. The constitutive expression of PvNCED1 resulted in an increase in ABA and its catabolite, phaseic acid (PA). When the PvNCED1 gene was driven by the dexamethasone (DEX)-inducible promoter, a transient induction of PvNCED1 message and accumulation of ABA and PA were observed in different lines after application of DEX. Accumulation of ABA started to level off after 6 h, whereas the PA level continued to increase. In the presence of DEX, seeds from homozygous transgenic line TN1 showed a 4-d delay in germination. After spraying with DEX, the detached leaves from line TN1 had a drastic decrease in their water loss relative to control leaves. These plants also showed a marked increase in their tolerance to drought stress. These results indicate that it is possible to manipulate ABA levels in plants by overexpressing the key regulatory gene in ABA biosynthesis and that stress tolerance can be improved by increasing ABA levels. PMID:11842158

  18. Photodegradation kinetics, transformation, and toxicity prediction of ketoprofen, carprofen, and diclofenac acid in aqueous solutions.

    Science.gov (United States)

    Li, Jian; Ma, Li-Yun; Li, Lu-Shuang; Xu, Li

    2017-12-01

    Photodegradation of 3 commonly used nonsteroidal anti-inflammatory drugs, ketoprofen, carprofen, and diclofenac acid, was conducted under ultraviolet (UV) irradiation. The kinetic results showed that the 3 pharmaceuticals obeyed the first-order reaction with decreasing rate constants of 1.54 × 10 -4 , 5.91 × 10 -5 , and 7.78 × 10 -6  s -1 for carprofen, ketoprofen, and diclofenac acid, respectively. Moreover, the main transformation products were identified by ion-pair liquid-liquid extraction combined with injection port derivatization-gas chromatography-mass spectrometry and high-performance liquid chromatography-quadrupole-time of flight mass spectrometric analysis. There were 8, 3, and 6 transformation products identified for ketoprofen, carprofen, and diclofenac acid, respectively. Decarboxylation, dechlorination, oxidation, demethylation, esterification, and cyclization were proposed to be associated with the transformation of the 3 pharmaceuticals. Toxicity prediction of the transformation products was conducted on the EPI Suite software based on ECOSAR model, and the results indicate that some of the transformation products were more toxic than the parent compounds. The present study provides the foundation to understand the transformation behavior of the studied pharmaceuticals under UV irradiation. Environ Toxicol Chem 2017;36:3232-3239. © 2017 SETAC. © 2017 SETAC.

  19. 76 FR 11344 - Difenoconazole; Pesticide Tolerances

    Science.gov (United States)

    2011-03-02

    ... LOAEL of 12.5 mg/kg/day; the parental systemic and off spring toxicity NOAEL was 1.25 mg/kg/day. 3... enforce the tolerance expression. The method determines residues of difenoconazole per se in or on crop...

  20. Investigating salt and naphthenic acids interactions in the toxicity of oil sands process water to freshwater invertebrates

    International Nuclear Information System (INIS)

    Turcotte, D.; Kautzman, M.; Wojnarowicz, P.; Cutter, J.; Bird, E.; Liber, K.

    2010-01-01

    The hot water extraction process used to produce bitumens from oil sands produces a large volume of oil sands process water (OSPW) that contain elevated concentrations of naphthenic acids (NA) and salts. Many oil sands reclamation projects are proposing the use of OSPW as part of reconstructed wetlands projects. This study investigated the toxicity of OSPW to freshwater invertebrates. The toxic interactions between NA and salinity on freshwater invertebrates were assessed. Bioassays with laboratory-cultured Ceriodaphnia dubia were conducted to determine the toxicity of OSPW from selected water bodies. The study showed that while the concentrations of NAs and salinity were elevated in OSPW waters that caused toxic responses, the concentrations of salinity ions varied greatly among the OSPW samples. Results of the study suggested that ion composition may be a factor in toxicity. Interactions between NAs and salinity were then assessed by performing bioassays with mixtures representing major ion combinations in OSPW.

  1. Hormesis in Cholestatic Liver Disease; Preconditioning with Low Bile Acid Concentrations Protects against Bile Acid-Induced Toxicity.

    Directory of Open Access Journals (Sweden)

    Esther M Verhaag

    Full Text Available Cholestasis is characterized by accumulation of bile acids and inflammation, causing hepatocellular damage. Still, liver damage markers are highest in acute cholestasis and drop when this condition becomes chronic, indicating that hepatocytes adapt towards the hostile environment. This may be explained by a hormetic response in hepatocytes that limits cell death during cholestasis.To investigate the mechanisms that underlie the hormetic response that protect hepatocytes against experimental cholestatic conditions.HepG2.rNtcp cells were preconditioned (24 h with sub-apoptotic concentrations (0.1-50 μM of various bile acids, the superoxide donor menadione, TNF-α or the Farsenoid X Receptor agonist GW4064, followed by a challenge with the apoptosis-inducing bile acid glycochenodeoxycholic acid (GCDCA; 200 μM for 4 h, menadione (50 μM, 6 h or cytokine mixture (CM; 6 h. Levels of apoptotic and necrotic cell death, mRNA expression of the bile salt export pump (ABCB11 and bile acid sensors, as well as intracellular GCDCA levels were analyzed.Preconditioning with the pro-apoptotic bile acids GCDCA, taurocholic acid, or the protective bile acids (tauroursodeoxycholic acid reduced GCDCA-induced caspase-3/7 activity in HepG2.rNtcp cells. Bile acid preconditioning did not induce significant levels of necrosis in GCDCA-challenged HepG2.rNtcp cells. In contrast, preconditioning with cholic acid, menadione or TNF-α potentiated GCDCA-induced apoptosis. GCDCA preconditioning specifically reduced GCDCA-induced cell death and not CM- or menadione-induced apoptosis. The hormetic effect of GCDCA preconditioning was concentration- and time-dependent. GCDCA-, CDCA- and GW4064- preconditioning enhanced ABCB11 mRNA levels, but in contrast to the bile acids, GW4064 did not significantly reduce GCDCA-induced caspase-3/7 activity. The GCDCA challenge strongly increased intracellular levels of this bile acid, which was not lowered by GCDCA-preconditioning.Sub-toxic

  2. Methamphetamine-induced dopaminergic toxicity prevented owing to the neuroprotective effects of salicylic acid.

    Science.gov (United States)

    Thrash-Williams, Bessy; Karuppagounder, Senthilkumar S; Bhattacharya, Dwipayan; Ahuja, Manuj; Suppiramaniam, Vishnu; Dhanasekaran, Muralikrishnan

    2016-06-01

    Methamphetamine (Schedule-II drug, U.S. Drug Enforcement Administration) is one of the most abused illicit drug following cocaine, marijuana, and heroin in the USA. There are numerous health impairments and substantial economic burden caused by methamphetamine abuse. Salicylic acid, potent anti-inflammatory drug and a known neuroprotectant has shown to protect against toxicity-induced by other dopaminergic neurotoxins. Hence, in this study we investigated the neuroprotective effects of salicylic acid against methamphetamine-induced toxicity in mice. The current study investigated the effects of sodium salicylate and/or methamphetamine on oxidative stress, monoamine oxidase, mitochondrial complex I & IV activities using spectrophotometric and fluorimetric methods. Behavioral analysis evaluated the effect on movement disorders-induced by methamphetamine. Monoaminergic neurotransmitter levels were evaluated using high pressure liquid chromatography-electrochemical detection. Methamphetamine caused significant generation of reactive oxygen species and decreased complex-I activity leading to dopamine depletion. Striatal dopamine depletion led to significant behavioral changes associated with movement disorders. Sodium salicylate (50 & 100mg/kg) significantly scavenged reactive oxygen species, blocked mitochondrial dysfunction and exhibited neuroprotection against methamphetamine-induced neurotoxicity. In addition, sodium salicylate significantly blocked methamphetamine-induced behavioral changes related to movement abnormalities. One of the leading causative theories in nigral degeneration associated with movement disorders such as Parkinson's disease is exposure to stimulants, drugs of abuse, insecticide and pesticides. These neurotoxic substances can induce dopaminergic neuronal insult by oxidative stress, apoptosis, mitochondrial dysfunction and inflammation. Salicylic acid due to its antioxidant and anti-inflammatory effects could provide neuroprotection against the

  3. Toxic Effects of Peracetic Acid Used as a Chemical Weapon During Workers Riots

    International Nuclear Information System (INIS)

    Jovic-Stosic, J.; Todorovic, V.; Segrt, Z.

    2007-01-01

    Peracetic acid (PAA) is a mixture of acetic acid and hydrogen peroxide, often used as antimicrobial agent on food processing equipment. It may explosively decompose on shock, friction or concussion. PAA is a strong oxidant, corrosive to the eyes, skin, respiratory and digestive tract. Depending on concentration, contact may cause severe burns of the skin or the eyes, and inhalation may cause lung edema. We report toxic effects of PAA used as a chemical weapon in workers riots. Group of workers attacked the security guards in beverage plant, throwing out beer bottles filled with PAA. Bottles exploded, producing irritant mists and fumes, and splashing some of the guards with acid. After about 20 minutes of exposure in the closed space, 30 persons were transported to the emergency room; 22 of them were transferred to the hospital. After the initial treatment, 10 patients were admitted for further treatment. The symptoms of exposure included burning sensation and pain of the eyes, throat and skin, cough and shortness of breath. Effects on the eyes included redness and corneal erosions. Pulmonary disturbances were prolonged expirium and wheezing by auscultation, and hypoxemia. Skin burns were ranged as grade I-III. Treatment included rinse of eyes and skin, systemic therapy with corticosteroids, beta adrenergic drugs and theophylline. Surgical treatment was necessary in grade III skin burns. A variety of common industrial chemicals may be misused as a chemical weapon. We point out the hazards of serious toxic effects of PAA if used in riots or terrorists attacks. (author)

  4. Toxicity of perfluorooctanoic acid towards earthworm and enzymatic activities in soil.

    Science.gov (United States)

    He, Wenxiang; Megharaj, Mallavarapu; Naidu, Ravi

    2016-07-01

    Perfluorooctanoic acid (PFOA) is a widespread persistent organic contaminant in the environment that has recently raised much of regulatory and public concern. Therefore, assessment of its ecological risk is a top priority research. Hence, this study investigated the toxicity of PFOA to beneficial microbial processes in the soil such as activities of dehydrogenase, urease and potential nitrification in addition to earthworm survival, weight loss and PFOA bioaccumulation in two contrasting soils. In general, PFOA caused inhibition of all the measured microbial processes in a dose-dependent manner and the inhibition was higher in Williamtown (WT) soil than Edinburgh (EB) soil. Thus, WT soil being sandy in nature with low clay content showed higher PFOA bioavailability and hence showed higher toxicity. There was no mortality in earthworms exposed up to 100 mg PFOA/kilogram soil in both the soils; however, there was a significant weight loss from 25 mg/kg onwards. This study clearly demonstrates that soil contamination of PFOA can lead to adverse effects on soil health.

  5. New insights into parental effects and toxicity: Mate availability and diet in the parental environment affect offspring responses to contaminants

    International Nuclear Information System (INIS)

    Plautz, Stephanie C.; Funkhouser, Meghan A.; Salice, Christopher J.

    2013-01-01

    Parental effects manifest as alterations in offspring phenotype resulting from the parental phenotype and/or parental environment. We evaluated the effects of parental diet quality and mating strategy on the toxicant tolerance of offspring in Biomphalaria glabrata snails. We raised snails either individually (self-fertilizing) or in groups of three (outcrossing) on a diet of uncooked lettuce, fish food, cooked lettuce, or cooked lettuce plus fish food. We then exposed their offspring to cadmium and malathion challenges. Cadmium tolerance varied with parental diet and was greater in the offspring of outcrossing snails than self-fertilizing snails. Malathion tolerance was not affected by parental diet but was greater in the offspring of outcrossing snails. These results indicate that offspring responses to stressors are heavily influenced by parental experience, but may depend on the specific stressor and the mechanism of action and/or detoxification. -- Highlights: •We reared parental snails either alone or in groups and fed them one of four diets. •We exposed their juvenile offspring to cadmium and malathion survival challenges. •Outcrossing increased toxicant tolerance of juveniles compared to self-fertilizing. •Parental diet affected juvenile offspring tolerance to cadmium but not malathion. •Toxicant characteristics likely influenced parental effects on toxicant tolerance. -- Both parental diet composition and mating strategy can significantly alter the toxicant tolerance of offspring, and toxicant characteristics likely influence the probability of parental effects

  6. Acclimation and tolerance of Artemia salina to copper salts

    Energy Technology Data Exchange (ETDEWEB)

    Saliba, L.J.; Krzyz, R.M.

    1976-01-01

    The brine shrimp Artemia salina L. was acclimated in sea water with cupric chloride, acetate, carbonate, and sulfate, each at concentrations of 0.1, 0.05 and 0.025 ppM Cu/sup + +/, together with sea water controls. Growth inhibition was observed in all four compounds, generally in direct relationship to the concentration. It was least in sulfate, and increased progressively in chloride, acetate and carbonate in that order. In toxicity tests, 2-week old larvae from each solution were exposed to concentrations of 10, 7.5, 5, 2.5 and 1 ppM Cu/sup + +/ of the same compounds, together with unacclimated larvae of the same age. Similar tests were held with 6-week old adults. Toxicity to unacclimated larvae and adults differed with the compounds, carbonate being the least toxic, followed by sulfate, chloride and acetate in increasing order. Larvae acclimated in chloride and sulfate showed an increased tolerance to 1 and 2.5 ppM Cu/sup + +/ compared to untreated controls. Tolerance was not enhanced from 5 ppM Cu/sup + +/ upwards. In both compounds, adults acclimated in 0.1 ppM Cu/sup + +/ showed an increased tolerance to concentrations between 1 and 7.5 ppM Cu/sup + +/ compared to controls. Considerable precipitation occurred with the high levels of this compound, thus effecting the ''final'' concentrations. No acclimation effect was observed in acetate for either larvae or adults. It is suggested that in A. salina, copper toxicity depends on the particular form of the metal, and that this difference is also evident in growth inhibition and in the potential acquisition of increased tolerance through exposure to low concentrations.

  7. Identification of genes and pathways associated with aluminum stress and tolerance using transcriptome profiling of wheat near-isogenic lines.

    Science.gov (United States)

    Houde, Mario; Diallo, Amadou Oury

    2008-08-27

    Aluminum is considered the most limiting factor for plant productivity in acidic soils, which cover large areas of the world's potential arable lands. The inhibition of root growth is recognized as the primary effect of Al toxicity. To identify genes associated with Al stress and tolerance, transcriptome analyses of four different wheat lines (2 Al-tolerant and 2 Al sensitive) that differ in their response to Al were performed. Microarray expression profiling revealed that 83 candidate genes are associated with Al stress and 25 are associated with tolerance. The stress-associated genes include important enzymes such as pyruvate dehydrogenase, alternative oxidase, and galactonolactone oxidase, ABC transporter and ascorbate oxido-reducatase. The Al tolerance-associated genes include the ALMT-1 malate transporter, glutathione S-transferase, germin/oxalate oxidase, fructose 1,6-bisphosphatase, cysteine-rich proteins, cytochrome P450 monooxygenase, cellulose synthase, zinc finger transcription factor, disease resistance response protein and F-box containing domain protein. In this survey, we identified stress- and tolerance-associated genes that may be involved in the detoxification of Al and reactive oxygen species. Alternative pathways could help maintain the supply of important metabolites (H2O2, ascorbate, NADH, and phosphate) needed for Al tolerance and root growth. The Al tolerance-associated genes may be key factors that regulate these pathways.

  8. 78 FR 13257 - Pyraflufen-ethyl; Pesticide Tolerances

    Science.gov (United States)

    2013-02-27

    .... months). No dermal or systemic toxicity was seen at the limit dose (1,000 mg/kg/day). [[Page 13260... enforcement methodology (gas chromatography-mass spectrometry (GC/MS)) is available to enforce the tolerance...

  9. Pretreatment and fermentation strategies to overcome the toxicity of acetic acid in hemicellulosic hydrolysates

    DEFF Research Database (Denmark)

    Mussatto, Solange I.

    Acetic acid is one of the most important toxic compounds present in hemicellulosic hydrolysates. In order to overcome this problem, several strategies were studied for both biomass pretreatment and fermentation steps. Biomass deacetylation by mild alkaline pretreatment or using high pressure CO2...... where acetic acid can also be integrated as a valuable final product. For the fermentation step, it is well known that hemicellulosic hydrolysates usually need to be detoxified prior use as fermentation medium in order to improve the performance of the microorganism to convert sugars in the product...... of interest. Although detoxification improves the fermentability of hydrolysates, this additional step adds cost and complexity to the process and generates extra waste products. In this sense, the adaptation of the fermenting microorganism to increased concentrations of acetic acid can be considered...

  10. Heavy metal tolerance in populations of Agrostis tenuis Sibth and other grasses

    Energy Technology Data Exchange (ETDEWEB)

    Gregory, R P.G.; Bradshaw, A D

    1965-01-01

    Populations of Agrostis tenuis can be found growing on a variety of different mine workings in conditions of metal contamination toxic to most higher plants. Samples of such populations together with samples of populations taken from ordinary pastures were tested for tolerance to high concentrations of copper, nickel, lead and zinc by measuring the effect of these metals on the rooting of tillers. The soils in which the populations were originally growing were analyzed for each of the four metals and the tolerances of the populations have been related to the levels of the metals in the soils. In general, the mine populations show remarkable tolerance to the particular metals present in high quantities in the soils of their original habitats: the pasture populations do not show this tolerance. The tolerance is specific, for, except in the case of zinc and nickel, tolerance to one metal is not accompanied by tolerance to any other. There must, therefore, be three specific tolerances in the one species. Individual tolerances can however occur together and this can be related to the occurrence of the two metals together in toxic quantities in the soil. The tolerances must be genetically controlled but the physiological mechanism involved is not clear. A number of other species were also shown to have populations tolerant to high levels of zinc. 27 references, 7 figures, 6 tables.

  11. Assessment of the effects of feed restriction and amino acid supplementation on glucose tolerance in llamas.

    Science.gov (United States)

    Cebra, Christopher K; Tornquist, Susan J; Jester, Rebecca M; Stelletta, Calogero

    2004-07-01

    To assess the effects of prolonged feed deprivation on glucose tolerance, insulin secretion, and lipid homeostasis in llamas. 9 adult female llamas. On each of 2 consecutive days, food was withheld from the llamas for 8 hours. Blood samples were collected before and 5, 15, 30, 45, 60, 120, and 240 minutes after IV injection of dextrose (0.5 g/kg) for determination of plasma insulin and serum glucose, triglyceride, and nonesterified fatty acid concentrations. Between experimental periods, the llamas received supplemental amino acids IV (185 mg/kg in solution). The llamas were then fed a limited diet (grass hay, 0.25% of body weight daily) for 23 days, after which the experimental procedures were repeated. Feed restriction decreased glucose tolerance and had slight effects on insulin secretion in llamas. Basal lipid fractions were higher after feed restriction, but dextrose administration resulted in similar reductions in serum lipid concentrations with and without feed restriction. Insulin secretion was decreased on the second day of each study period, which lessened reduction of serum lipid concentrations but did not affect glucose tolerance. Despite having a comparatively competent pancreatic response, feed-restricted llamas assimilated dextrose via an IV bolus more slowly than did llamas on full rations. However, repeated administration of dextrose reduced insulin secretion and could promote hyperglycemia and fat mobilization. These findings suggested that veterinarians should use alternative methods of supplying energy to camelids with long-term reduced feed intake or consider administering agents to improve the assimilation of glucose.

  12. 75 FR 8261 - Flumioxazin; Pesticide Tolerances

    Science.gov (United States)

    2010-02-24

    ... anomalies, including ventricular septal defects. In the two-generation reproduction study, systemic effects... which caused parental/systemic toxicity (red substance in vagina and increased mortality in females as... to enforce the tolerance expression: A gas chromatography/nitrogen- phosphorus detection (GC/NPD...

  13. Assessment of biochemical mechanisms of tolerance to chlorpyrifos in ancient and contemporary Daphnia pulicaria genotypes.

    Science.gov (United States)

    Simpson, Adam M; Jeyasingh, Punidan D; Belden, Jason B

    2017-12-01

    The evolution of tolerance to environmental contaminants in non-target taxa has been largely studied by comparing extant populations experiencing contrasting exposure. Previous research has demonstrated that "resurrected" genotypes from a population of Daphnia pulicaria express temporal variation in sensitivity to the insecticide chlorpyrifos. Ancient genotypes (1301-1646AD.) were on average more sensitive to this chemical compared to the contemporary genotypes (1967-1977AD.). To determine the physiological mechanisms of tolerance, a series of biochemical assays was performed on three ancient and three contemporary genotypes; these six genotypes exhibited the most sensitive and most tolerant phenotypes within the population, respectively. Metabolic tolerance mechanisms were evaluated using acute toxicity testing, while target-site tolerance was assessed via in vitro acetylcholinesterase (AChE) assays. Acute toxicity tests were conducted using i) the toxic metabolite chlorpyrifos-oxon (CPF-oxon) and ii) CPF-oxon co-applied with piperonyl butoxide (PBO), a known Phase-I metabolic inhibitor. Both series of toxicity tests reduced the mean variation in sensitivity between tolerant and sensitive genotypes. Exposure to CPF-O reduced the disparity from a 4.7-fold to 1.6-fold difference in sensitivity. The addition of PBO further reduced the variation to a 1.2-fold difference in sensitivity. In vitro acetylcholinesterase assays yielded no significant differences in constitutive activity or target-site sensitivity. These findings suggest that pathways involving Phase-I detoxification and/or bioactivation of chlorpyrifos play a significant role in dictating the microevolutionary trajectories of tolerance in this population. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Effect of Low pH and Aluminum Toxicity on the Photosynthetic Characteristics of Different Fast-Growing Eucalyptus Vegetatively Propagated Clones.

    Science.gov (United States)

    Yang, Mei; Tan, Ling; Xu, Yuanyuan; Zhao, Yihui; Cheng, Fei; Ye, Shaoming; Jiang, Weixin

    2015-01-01

    Knowing how acid soils and aluminum in soils may limit the growth of Eucalyptus trees in plantations is important because these plantations grow in many tropical and subtropical regions. Seedlings of four vegetatively propagated Eucalyptus clones, E. grandis × E. urophylla 'GLGU9'(G9), E. grandis × E. urophylla 'GLGU12' (G12), E. urophylla × E. camaldulensis 'GLUC3' (G3) and E. urophylla 'GLU4'(G4), were subjected to liquid culture with Hoagland nutrient solution for 40 days, then treated with four different treatments of acid and aluminum for 1 day. The four treatments used either pH 3.0 or 4.0 with or without added aluminum (4.4 mM) in all possible combinations; a control used no added aluminum at pH 4.8. Subsequently, the photosynthetic parameters and morphology of leaves from eucalypt seedlings were determined and observed. The results showed that the tested chlorophyll content, net photosynthetic rate, transpiration rate and water use efficiency were apparently inhibited by aluminum. Under uniform Al concentration (4.4 mM), the Al-induced limitation to photosynthetic parameters increased with pH, indicating acid stimulation to Al toxicity. Among all treatments, the most significant reduction was found in the combination of pH 3.0 and 4.4 mM Al. The photosynthetic and transpiration rates showed similar trends with G9 > G12 > G3 > G4, suggesting that G9 and G12 had higher Al-tolerance than other two clones. Microscopic observation revealed changes in leaf morphology when exposed to Al stress; for example, a reduced thickness of leaf epidermis and palisade tissue, the descendant palisade tissue/spongy tissue ratio and leaf tissue looseness. Overall, the acid and aluminum stress exerted negative effects on the photosynthetic activity of eucalypt seedlings, but the differences in tolerance to Al toxicity between the clones were favorable, offering potential to improve Eucalyptus plantation productivity by selecting Al tolerant clones.

  15. Effect of Low pH and Aluminum Toxicity on the Photosynthetic Characteristics of Different Fast-Growing Eucalyptus Vegetatively Propagated Clones

    Science.gov (United States)

    Yang, Mei; Tan, Ling; Xu, Yuanyuan; Zhao, Yihui; Cheng, Fei; Ye, Shaoming; Jiang, Weixin

    2015-01-01

    Knowing how acid soils and aluminum in soils may limit the growth of Eucalyptus trees in plantations is important because these plantations grow in many tropical and subtropical regions. Seedlings of four vegetatively propagated Eucalyptus clones, E. grandis × E. urophylla ‘GLGU9’(G9), E. grandis × E. urophylla ‘GLGU12’ (G12), E. urophylla × E. camaldulensis ‘GLUC3’ (G3) and E. urophylla ‘GLU4’(G4), were subjected to liquid culture with Hoagland nutrient solution for 40 days, then treated with four different treatments of acid and aluminum for 1 day. The four treatments used either pH 3.0 or 4.0 with or without added aluminum (4.4 mM) in all possible combinations; a control used no added aluminum at pH 4.8. Subsequently, the photosynthetic parameters and morphology of leaves from eucalypt seedlings were determined and observed. The results showed that the tested chlorophyll content, net photosynthetic rate, transpiration rate and water use efficiency were apparently inhibited by aluminum. Under uniform Al concentration (4.4 mM), the Al-induced limitation to photosynthetic parameters increased with pH, indicating acid stimulation to Al toxicity. Among all treatments, the most significant reduction was found in the combination of pH 3.0 and 4.4 mM Al. The photosynthetic and transpiration rates showed similar trends with G9 > G12 > G3 > G4, suggesting that G9 and G12 had higher Al-tolerance than other two clones. Microscopic observation revealed changes in leaf morphology when exposed to Al stress; for example, a reduced thickness of leaf epidermis and palisade tissue, the descendant palisade tissue/spongy tissue ratio and leaf tissue looseness. Overall, the acid and aluminum stress exerted negative effects on the photosynthetic activity of eucalypt seedlings, but the differences in tolerance to Al toxicity between the clones were favorable, offering potential to improve Eucalyptus plantation productivity by selecting Al tolerant clones. PMID

  16. Effect of Low pH and Aluminum Toxicity on the Photosynthetic Characteristics of Different Fast-Growing Eucalyptus Vegetatively Propagated Clones.

    Directory of Open Access Journals (Sweden)

    Mei Yang

    Full Text Available Knowing how acid soils and aluminum in soils may limit the growth of Eucalyptus trees in plantations is important because these plantations grow in many tropical and subtropical regions. Seedlings of four vegetatively propagated Eucalyptus clones, E. grandis × E. urophylla 'GLGU9'(G9, E. grandis × E. urophylla 'GLGU12' (G12, E. urophylla × E. camaldulensis 'GLUC3' (G3 and E. urophylla 'GLU4'(G4, were subjected to liquid culture with Hoagland nutrient solution for 40 days, then treated with four different treatments of acid and aluminum for 1 day. The four treatments used either pH 3.0 or 4.0 with or without added aluminum (4.4 mM in all possible combinations; a control used no added aluminum at pH 4.8. Subsequently, the photosynthetic parameters and morphology of leaves from eucalypt seedlings were determined and observed. The results showed that the tested chlorophyll content, net photosynthetic rate, transpiration rate and water use efficiency were apparently inhibited by aluminum. Under uniform Al concentration (4.4 mM, the Al-induced limitation to photosynthetic parameters increased with pH, indicating acid stimulation to Al toxicity. Among all treatments, the most significant reduction was found in the combination of pH 3.0 and 4.4 mM Al. The photosynthetic and transpiration rates showed similar trends with G9 > G12 > G3 > G4, suggesting that G9 and G12 had higher Al-tolerance than other two clones. Microscopic observation revealed changes in leaf morphology when exposed to Al stress; for example, a reduced thickness of leaf epidermis and palisade tissue, the descendant palisade tissue/spongy tissue ratio and leaf tissue looseness. Overall, the acid and aluminum stress exerted negative effects on the photosynthetic activity of eucalypt seedlings, but the differences in tolerance to Al toxicity between the clones were favorable, offering potential to improve Eucalyptus plantation productivity by selecting Al tolerant clones.

  17. The role of calcium, silicon and salicylic acid treatment in protection of canola plants against boron toxicity stress.

    Science.gov (United States)

    Metwally, Ashraf M; Radi, Abeer A; El-Shazoly, Rasha M; Hamada, Afaf M

    2018-01-22

    Boron (B) toxicity often limits crop yield and the quality of production in agricultural areas. Here, we investigated the effects of calcium (Ca), silicon (Si) and salicylic acid (SA) on development of B toxicity, B allocation in canola (Brassica napus cultivar Sarw 4) and its role in non-enzymatic antioxidants in relation to yield of this cultivar under B toxicity. Canola seedlings were subjected to four B levels induced by boric acid in the absence or presence of Ca, Si and SA. The results showed that Ca, Si and SA addition ameliorated the inhibition in canola growth, water content (WC), and improved siliqua number, siliqua weight and seed index. The B content in shoots and roots and total B accumulation in the whole plant were increased in control plants under B-toxicity-stress, and these parameters were significantly decreased by addition of Ca, Si and SA. The shoot ascorbate pool (ascorbate, AsA, and dehydroascorbate, DHA), α-tocopherol and phenolics (free and bound) were increased under B toxicity, and were significantly decreased in most cases by addition of Ca, Si and SA, except α-tocopherol, which increased at low B levels (0, 25 and 50 mg kg soil -1 ). The glutathione content did not obviously change by B stress, while added Ca, Si and SA inhibited its accumulation under B stress. In addition, B toxicity reduced the shoot flavonoids content; however, this reduction was not alleviated by the use of Ca, Si and SA treatments. It could be concluded that growth and yield of canola plants grown under high B concentration improved after external application of Ca, Si or SA.

  18. Effects of humic acid on the interactions between zinc oxide nanoparticles and bacterial biofilms.

    Science.gov (United States)

    Ouyang, Kai; Yu, Xiao-Ying; Zhu, Yunlin; Gao, Chunhui; Huang, Qiaoyun; Cai, Peng

    2017-12-01

    The effects of humic acid (HA) on interactions between ZnO nanoparticles (ZnO NPs) and Pseudomonas putida KT2440 biofilms at different maturity stages were investigated. Three stages of biofilm development were identified according to bacterial adenosine triphosphate (ATP) activity associated with biofilm development process. In the initial biofilm stage 1, the ATP content of bacteria was reduced by more than 90% when biofilms were exposed to ZnO NPs. However, in the mature biofilm stages 2 and 3, the ATP content was only slightly decreased. Biofilms at stage 3 exhibited less susceptibility to ZnO NPs than biofilms at stage 2. These results suggest that more mature biofilms have a significantly higher tolerance to ZnO NPs compared to young biofilms. In addition, biofilms with intact extracellular polymeric substances (EPS) showed higher tolerance to ZnO NPs than those without EPS, indicating that EPS play a key role in alleviating the toxic effects of ZnO NPs. In both pure ZnO NPs and ZnO-HA mixtures, dissolved Zn 2+ originating from the NPs significantly contributed to the overall toxicity. The presence of HA dramatically decreased the toxicity of ZnO NPs due to the binding of Zn 2+ on HA. The combined results from this work suggest that the biofilm maturity stages and environmental constituents (such as humic acid) are important factors to consider when evaluating potential risks of NPs to ecological systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Effects of humic acid on the interactions between zinc oxide nanoparticles and bacterial biofilms

    Energy Technology Data Exchange (ETDEWEB)

    Ouyang, Kai; Yu, Xiao-Ying; Zhu, Yunlin; Gao, Chunhui; Huang, Qiaoyun; Cai, Peng

    2017-12-01

    The effects of humic acid (HA) on interactions between ZnO nanoparticles (ZnO NPs) and Pseudomonas putida KT2440 biofilms at different maturity stages were investigated. Three stages of biofilm development were identified according to bacterial adenosine triphosphate (ATP) activity associated with biofilm development process. In the initial biofilm stage 1, the ATP content of bacteria was reduced by more than 90% when biofilms were exposed to ZnO NPs. However, in the mature biofilm stages 2 and 3, the ATP content was only slightly decreased. Biofilms at stage 3 exhibited less susceptibility to ZnO NPs than biofilms at stage 2. These results suggest that more mature biofilms have a significantly higher tolerance to ZnO NPs compared to young biofilms. In addition, biofilms with intact extracellular poly-meric substances (EPS) showed higher tolerance to ZnO NPs than those without EPS, indicating that EPS play a key role in alleviating the toxic effects of ZnO NPs. In both pure ZnO NPs and ZnO-HA mixtures, dissolved Zn2+ originating from the NPs significantly contributed to the overall toxicity. The presence of HA dramatically decreased the toxicity of ZnO NPs due to the binding of Zn2+ on HA. The combined results from this work suggest that the biofilm maturity stages and environmental constituents (such as humic acid) are important factors to consider when evaluating potential risks of NPs to ecological systems.

  20. Diversity and functional properties of acid-tolerant bacteria isolated from tea plantation soil of Assam.

    Science.gov (United States)

    Goswami, Gunajit; Deka, Priyadarshini; Das, Pompi; Bora, Sudipta Sankar; Samanta, Ramkrishna; Boro, Robin Chandra; Barooah, Madhumita

    2017-07-01

    In this study, we report on the bacterial diversity and their functional properties prevalent in tea garden soils of Assam that have low pH (3.8-5.5). Culture-dependent studies and phospholipid fatty acid analysis revealed a high abundance of Gram-positive bacteria. Further, 70 acid-tolerant bacterial isolates characterized using a polyphasic taxonomy approach could be grouped to the genus Bacillus, Lysinibacillus, Staphylococcus, Brevundimonas, Alcaligenes, Enterobacter, Klebsiella, Escherichia, and Aeromonas. Among the 70 isolates, 47 most promising isolates were tested for their plant growth promoting activity based on the production of Indole Acetic Acid (IAA), siderophore, and HCN as well as solubilization of phosphate, zinc, and potassium. Out of the 47 isolates, 10 isolates tested positive for the entire aforesaid plant growth promoting tests and further tested for quantitative analyses for production of IAA, siderophore, and phosphate solubilization at the acidic and neutral condition. Results indicated that IAA and siderophore production, as well as phosphate solubilization efficiency of the isolates decreased significantly (P ≤ 0.05) in the acidic environment. This study revealed that low soil pH influences bacterial community structure and their functional properties.

  1. Styrene maleic acid-encapsulated paclitaxel micelles: antitumor activity and toxicity studies following oral administration in a murine orthotopic colon cancer model

    Directory of Open Access Journals (Sweden)

    Parayath NN

    2016-08-01

    Full Text Available Neha N Parayath,1 Hayley Nehoff,1 Samuel E Norton,2 Andrew J Highton,2 Sebastien Taurin,1,3 Roslyn A Kemp,2 Khaled Greish1,4 1Department of Pharmacology and Toxicology, 2Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand; 3Department of Obstetrics and Gynecology, University of Utah, Salt Lake City, UT, USA; 4Princess Al-Jawhara Centre for Molecular Medicine, Arabian Gulf University, Manama, Kingdom of Bahrain Abstract: Oral administration of paclitaxel (PTX, a broad spectrum anticancer agent, is challenged by its low uptake due to its poor bioavailability, efflux through P-glycoprotein, and gastrointestinal toxicity. We synthesized PTX nanomicelles using poly(styrene-co-maleic acid (SMA. Oral administration of SMA-PTX micelles doubled the maximum tolerated dose (60 mg/kg vs 30 mg/kg compared to the commercially available PTX formulation (PTX [Ebewe]. In a murine orthotopic colon cancer model, oral administration of SMA-PTX micelles at doses 30 mg/kg and 60 mg/kg reduced tumor weight by 54% and 69%, respectively, as compared to the control group, while no significant reduction in tumor weight was observed with 30 mg/kg of PTX (Ebewe. In addition, toxicity of PTX was largely reduced by its encapsulation into SMA. Furthermore, examination of the tumors demonstrated a decrease in the number of blood vessels. Thus, oral delivery of SMA-PTX micelles may provide a safe and effective strategy for the treatment of colon cancer. Keywords: oral delivery, anticancer nanomedicine, CT-26, enhanced permeability and retention (EPR effect, HUVEC, antiangiogenic

  2. Reactions of clofibric acid with oxidative and reductive radicals-Products, mechanisms, efficiency and toxic effects

    Science.gov (United States)

    Csay, Tamás; Rácz, Gergely; Salik, Ádám; Takács, Erzsébet; Wojnárovits, László

    2014-09-01

    The degradation of clofibric acid induced by hydroxyl radical, hydrated electron and O2-•/HO2• reactive species was studied in aqueous solutions. Clofibric acid was decomposed more effectively by hydroxyl radical than by hydrated electron or O2-•/HO2•. Various hydroxylated, dechlorinated and fragmentation products have been identified and quantified. A new LC-MS method was developed based on 18O isotope labeling to follow the formation of hydroxylated derivatives of clofibric acid. Possible degradation pathways have been proposed. The overall degradation was monitored by determination of sum parameters like COD, TOC and AOX. It was found that the organic chlorine degrades very effectively prior to complete mineralization. After the treatment no toxic effect was found according to Vibrio fischeri tests. However, at early stages some of the reaction products were more harmful than clofibric acid.

  3. Randomized study comparing the efficacy and tolerance of a lipohydroxy acid shampoo to a ciclopiroxolamine shampoo in the treatment of scalp seborrheic dermatitis.

    Science.gov (United States)

    Seite, Sophie; Rougier, André; Talarico, Sergio

    2009-12-01

    The success of a dandruff treatment depends not only on the ability of a shampoo to control dandruff, but also on patient compliance, which is closely linked to the cosmetic attributes of the product. The aim of this study was to compare efficacy, tolerance, and cosmetic properties of a LHA Shampoo [containing 0.1% lipohydroxy acid (LHA) and 1.3% salicylic acid] to a CPO shampoo [containing 1.5% ciclopiroxolamine (CPO), 3% salicylic acid, and 0.5% menthol] in subjects with seborrheic dermatitis (SD) of the scalp. One hundred subjects with mild to moderate scalp SD were randomized to receive either the LHA shampoo or the CPO shampoo every 2 days for 4 weeks. Efficacy and tolerance were evaluated at days 0, 14, and 28. The LHA and the CPO shampoo both decreased symptoms of scale, erythema, itching, cutaneous discomfort, and dryness from baseline to day 28. A higher percentage of patients showed improvement in the group treated with the LHA formulation than in the group treated with the CPO formulation, but the difference did not reach statistical significance. At day 28, the tolerance and the global efficacy of the LHA shampoo were significantly better (P = 0.03 and P = 0.01, respectively) than those of the CPO shampoo. Furthermore, the cosmetic acceptability was better or significantly better for all the endpoints evaluated for the LHA shampoo (P = 0.02 for cleaning, P = 0.04 for lathering). In conclusion, these results demonstrated that the lipohydroxy acid shampoo evaluated in this study is a more convenient, efficient, safe, and well-tolerated cosmetic treatment for mild-to-moderate seborrheic dermatitis of the scalp than a ciclopiroxolamine shampoo.

  4. Identification of a transporter Slr0982 involved in ethanol tolerance in cyanobacterium Synechocystis sp. PCC 6803

    Directory of Open Access Journals (Sweden)

    Yanan eZhang

    2015-05-01

    Full Text Available Cyanobacteria have been engineered to produce ethanol through recent synthetic biology efforts. However, one major challenge to the cyanobacterial systems for high-efficiency ethanol production is their low tolerance to the ethanol toxicity. With a major goal to identify novel transporters involved in ethanol tolerance, we constructed gene knockout mutants for 58 transporter-encoding genes of Synechocystis sp. PCC 6803 and screened their tolerance change under ethanol stress. The efforts allowed discovery of a mutant of slr0982 gene encoding an ATP-binding cassette transporter which grew poorly in BG11 medium supplemented with 1.5% (v/v ethanol when compared with the wild type, and the growth loss could be recovered by complementing slr0982 in the ∆slr0982 mutant, suggesting that slr0982 is involved in ethanol tolerance in Synechocystis. To decipher the tolerance mechanism involved, a comparative metabolomic and network-based analysis of the wild type and the ethanol-sensitive ∆slr0982 mutant was performed. The analysis allowed the identification of four metabolic modules related to slr0982 deletion in the ∆slr0982 mutant, among which metabolites like sucrose and L-pyroglutamic acid which might be involved in ethanol tolerance, were found important for slr0982 deletion in the ∆slr0982 mutant. This study reports on the first transporter related to ethanol tolerance in Synechocystis, which could be a useful target for further tolerance engineering. In addition, metabolomic and network analysis provides important findings for better understanding of the tolerance mechanism to ethanol stress in Synechocystis.

  5. Copper tolerance and virulence in bacteria

    Science.gov (United States)

    Ladomersky, Erik; Petris, Michael J.

    2015-01-01

    Copper (Cu) is an essential trace element for all aerobic organisms. It functions as a cofactor in enzymes that catalyze a wide variety of redox reactions due to its ability to cycle between two oxidation states, Cu(I) and Cu(II). This same redox property of copper has the potential to cause toxicity if copper homeostasis is not maintained. Studies suggest that the toxic properties of copper are harnessed by the innate immune system of the host to kill bacteria. To counter such defenses, bacteria rely on copper tolerance genes for virulence within the host. These discoveries suggest bacterial copper intoxication is a component of host nutritional immunity, thus expanding our knowledge of the roles of copper in biology. This review summarizes our current understanding of copper tolerance in bacteria, and the extent to which these pathways contribute to bacterial virulence within the host. PMID:25652326

  6. Lactic Acid Production from Pretreated Hydrolysates of Corn Stover by a Newly Developed Bacillus coagulans Strain

    Science.gov (United States)

    Jiang, Ting; Qiao, Hui; Zheng, Zhaojuan; Chu, Qiulu; Li, Xin; Yong, Qiang; Ouyang, Jia

    2016-01-01

    An inhibitor-tolerance strain, Bacillus coagulans GKN316, was developed through atmospheric and room temperature plasma (ARTP) mutation and evolution experiment in condensed dilute-acid hydrolysate (CDH) of corn stover. The fermentabilities of other hydrolysates with B. coagulans GKN316 and the parental strain B. coagulans NL01 were assessed. When using condensed acid-catalyzed steam-exploded hydrolysate (CASEH), condensed acid-catalyzed liquid hot water hydrolysate (CALH) and condensed acid-catalyzed sulfite hydrolysate (CASH) as substrates, the concentration of lactic acid reached 45.39, 16.83, and 18.71 g/L by B. coagulans GKN316, respectively. But for B. coagulans NL01, only CASEH could be directly fermented to produce 15.47 g/L lactic acid. The individual inhibitory effect of furfural, 5-hydroxymethylfurfural (HMF), vanillin, syringaldehyde and p-hydroxybenzaldehyde (pHBal) on xylose utilization by B. coagulans GKN316 was also studied. The strain B. coagulans GKN316 could effectively convert these toxic inhibitors to the less toxic corresponding alcohols in situ. These results suggested that B. coagulans GKN316 was well suited to production of lactic acid from undetoxified lignocellulosic hydrolysates. PMID:26863012

  7. Lactic Acid Production from Pretreated Hydrolysates of Corn Stover by a Newly Developed Bacillus coagulans Strain.

    Science.gov (United States)

    Jiang, Ting; Qiao, Hui; Zheng, Zhaojuan; Chu, Qiulu; Li, Xin; Yong, Qiang; Ouyang, Jia

    2016-01-01

    An inhibitor-tolerance strain, Bacillus coagulans GKN316, was developed through atmospheric and room temperature plasma (ARTP) mutation and evolution experiment in condensed dilute-acid hydrolysate (CDH) of corn stover. The fermentabilities of other hydrolysates with B. coagulans GKN316 and the parental strain B. coagulans NL01 were assessed. When using condensed acid-catalyzed steam-exploded hydrolysate (CASEH), condensed acid-catalyzed liquid hot water hydrolysate (CALH) and condensed acid-catalyzed sulfite hydrolysate (CASH) as substrates, the concentration of lactic acid reached 45.39, 16.83, and 18.71 g/L by B. coagulans GKN316, respectively. But for B. coagulans NL01, only CASEH could be directly fermented to produce 15.47 g/L lactic acid. The individual inhibitory effect of furfural, 5-hydroxymethylfurfural (HMF), vanillin, syringaldehyde and p-hydroxybenzaldehyde (pHBal) on xylose utilization by B. coagulans GKN316 was also studied. The strain B. coagulans GKN316 could effectively convert these toxic inhibitors to the less toxic corresponding alcohols in situ. These results suggested that B. coagulans GKN316 was well suited to production of lactic acid from undetoxified lignocellulosic hydrolysates.

  8. Lactic Acid Production from Pretreated Hydrolysates of Corn Stover by a Newly Developed Bacillus coagulans Strain.

    Directory of Open Access Journals (Sweden)

    Ting Jiang

    Full Text Available An inhibitor-tolerance strain, Bacillus coagulans GKN316, was developed through atmospheric and room temperature plasma (ARTP mutation and evolution experiment in condensed dilute-acid hydrolysate (CDH of corn stover. The fermentabilities of other hydrolysates with B. coagulans GKN316 and the parental strain B. coagulans NL01 were assessed. When using condensed acid-catalyzed steam-exploded hydrolysate (CASEH, condensed acid-catalyzed liquid hot water hydrolysate (CALH and condensed acid-catalyzed sulfite hydrolysate (CASH as substrates, the concentration of lactic acid reached 45.39, 16.83, and 18.71 g/L by B. coagulans GKN316, respectively. But for B. coagulans NL01, only CASEH could be directly fermented to produce 15.47 g/L lactic acid. The individual inhibitory effect of furfural, 5-hydroxymethylfurfural (HMF, vanillin, syringaldehyde and p-hydroxybenzaldehyde (pHBal on xylose utilization by B. coagulans GKN316 was also studied. The strain B. coagulans GKN316 could effectively convert these toxic inhibitors to the less toxic corresponding alcohols in situ. These results suggested that B. coagulans GKN316 was well suited to production of lactic acid from undetoxified lignocellulosic hydrolysates.

  9. Mat rush (juncus effusus l.) trounces manganese toxicity through ultra-morphological modifications and manganese restriction in roots

    International Nuclear Information System (INIS)

    Najeeb, U.; Ali, S.

    2015-01-01

    This study appraised phyto-remediation efficiency and tolerance mechanism of Juncus effusus as was evidenced by ultrastructural modification in its roots under manganese (Mn) toxicity. Three-week-old J. effusus plants were treated with different concentrations of Mn (50, 100 and 500 M) in hydroponics. Although higher Mn levels caused modifications in growth, biomass, height and root morphological traits, J. effusus tolerated Mn toxicity without showing any obvious phyto-toxic symptoms even under the highest level of Mn (500 M). With incremental Mn levels in the growth media, the plants showed a steady increase in Mn uptake, while translocation factor (TF) for Mn declined. This illustrated the tendency of J. effusus plants to avoid Mn-induced stress by restricting maximum Mn in root tissues. Electron microscopy of root tip cells elucidated plant tolerance mechanism to Mn toxicity. Modification in cellular shape and size, and increased number of vacuoles and mitochondria appeared to play a major role in induction of tolerance against Mn toxicity, and ultimate survival of plant. (author)

  10. Temperature determines toxicity: Bisphenol A reduces thermal tolerance in fish

    International Nuclear Information System (INIS)

    Little, Alexander G.; Seebacher, Frank

    2015-01-01

    Bisphenol A (BPA) is a ubiquitous pollutant around the globe, but whether environmental concentrations have toxic effects remains controversial. BPA interferes with a number of nuclear receptor pathways, including several that mediate animal responses to environmental input. Because thermal acclimation is regulated by these pathways in fish, we hypothesized that the toxicity of BPA would change with ambient temperature. We exposed zebrafish (Danio rerio) to ecologically relevant and artificially high concentrations of BPA at two acclimation temperatures, and tested physiological responses at two test temperatures that corresponded to acclimation temperatures. We found ecologically relevant concentrations of BPA (20 μg l −1 ) impair swimming performance, heart rate, muscle and cardiac SERCA activity and gene expression. We show many of these responses are temperature-specific and non-monotonic. Our results suggest that BPA pollution can compound the effects of climate change, and that its effects are more dynamic than toxicological assessments currently account for. - Highlights: • Whether environmental levels of BPA have toxic effects on local ecology remains controversial. • We show that ecological concentrations of BPA impair physiological performance in fish. • We also show that the toxic effects of BPA are temperature-specific and non-monotonic with dose. • BPA pollution will likely compound the effects of climate change, and vice-versa. • The toxic effects of BPA appear to be more dynamic than toxicological assessments account for. - BPA pollution is likely to compound the effects of climate change, and climate change may worsen the effects of BPA exposure. Its effects are likely to be more dynamic than toxicological assessments currently account for

  11. Buffer capacity of food components influences the acid tolerance response in Salmonella Typhimurium during simulated gastric passage

    DEFF Research Database (Denmark)

    Aabo, Søren; Buschhardt, Tasja; Hansen, Tina Beck

    2014-01-01

    Food composition, buffer capacity, and fat and protein content have been shown to effect the gastric acid survival of pathogens (Waterman & Small 1998). In this study, simple food-model substances with different buffer capacities were investigated for their ability to support survival of stationary...... Heart Infusion Broth having a higher buffer capacity. We suggest this to be associated with a varying ability of Salmonella Typhimurium to mount a stationary phase acid tolerance response (ATR) depending on the buffer capacity of the food vehicle....... phase Salmonella Typhimurium during simulated gastric acid passage. We used a computer-controlled fermentor to employ pH changes in synthetic gastric fluid, mimicking the dynamic pH during gastric passage. In order to minimise variation, Salmonella enterica serovar Typhimurium was contained in dialysis...

  12. Tolerance of Pseudomonas aeruginosa in in-vitro biofilms to high-level peracetic acid disinfection.

    Science.gov (United States)

    Akinbobola, A B; Sherry, L; Mckay, W G; Ramage, G; Williams, C

    2017-10-01

    Biofilm has been suggested as a cause of disinfection failures in flexible endoscopes where no lapses in the decontamination procedure can be identified. To test this theory, the activity of peracetic acid, one of the widely used disinfectants in the reprocessing of flexible endoscopes, was evaluated against both planktonic and sessile communities of Pseudomonas aeruginosa. To investigate the ability of P. aeruginosa biofilm to survive high-level peracetic acid disinfection. The susceptibility of planktonic cells of P. aeruginosa and biofilms aged 24, 48, 96, and 192 h to peracetic acid was evaluated by estimating their viability using resazurin viability and plate count methods. The biomass of the P. aeruginosa biofilms was also quantified using Crystal Violet assay. Planktonic cells of P. aeruginosa were treated with 5-30 ppm concentration of peracetic acid in the presence of 3.0 g/L of bovine serum albumin (BSA) for 5 min. Biofilms of P. aeruginosa were also treated with various peracetic acid concentrations (100-3000 ppm) for 5 min. Planktonic cells of P. aeruginosa were eradicated by 20 ppm of peracetic acid, whereas biofilms showed an age-dependent tolerance to peracetic acid, and 96 h biofilm was only eradicated at peracetic acid concentration of 2500 ppm. Ninety-six-hour P. aeruginosa biofilm survives 5 min treatment with 2000 ppm of peracetic acid, which is the working concentration used in some endoscope washer-disinfectors. This implies that disinfection failure of flexible endoscopes might occur when biofilms build up in the lumens of endoscopes. Copyright © 2017. Published by Elsevier Ltd.

  13. Feed Supplementation with Thermo-Tolerant, Lactic Acid-Producing Bacteria as Probiotics for Swine Husbandry

    Energy Technology Data Exchange (ETDEWEB)

    Tongpim, Saowanit [Dept. of Microbiology, Fac. of Science, Khon Kaen Univ., Khon Kaen (Thailand); Khammeng, Terdsak [Dept. of Animal Science, Fac. of Agriculture, Khon kaen Univ., Khon kaen (Thailand); Luanthisong, Pirat [Rajamangala Univ., of Technology Isan, Karasin Campus, Karasin (Thailand); Sakai, Kenji [Dept. of Agricultural Chemistry, Fac. of Engineering, Oita Univ., Oita (Japan); Piadang, Nattayana [Office of Atoms for Peace, Bangkok (Thailand)

    2006-09-15

    This research work had an objective to employ the thermo tolerant, lactic acid-producing bacteria, Bacillus coagulans strain NF{sub 1}7 as feed additive for swine raising. The bacterial isolate NF{sub 1}7, kept in the culture collection of Khon Kaen University that could tolerate high temperature and produce lactic acid, was employed in this experiment. Cell suspension of isolate NF{sub 1}7 was exposed to gamma irradiation at various doses (1-5 KGy). The isolated survivors were screened on the basis of forming larger colonies and clear zones than the parent strain NF{sub 1}7 when grown on Glucose- Yeast extract-Peptone (GYP) containing CaCO{sub 3}. We obtained 55 effective isolates which the isolate L{sub 5}I2 to 14(5), designated as K{sub 1}4 was chosen for further experiments. Isolate K{sub 1}4 together with the parent strain were characterized using morphological, physiological and biochemical tests. They were all identified as Bacillus coagulans. All isolates had optimal growth pH of 6.5 and grew best at 42.50 {sup o}C. The strain K{sub 1}4 could tolerate the temperature as high as 59 {sup o}C and was then employed in the fermentation of food waste that collected from the university cafeteria. It was found that food waste could support growth of Bacillus K{sub 1}4 and produce about 107 to 108 CFU/g food waste within 1-3 days. Nutritional value of the fermented food waste in the form of protein was also increased. When mixing this selected bacterium as feed additive in daily pig rations, it was found that Bacillus K{sub 1}4 helped increase feed conversion ratio and reduced the mortality in weaned piglets. Experiments were also performed with the growing pigs. It showed that Bacillus Sp. K{sub 1}4 significantly improved the feed conversion ratio

  14. Abscisic Acid and Abiotic Stress Tolerance in Crop Plants

    Science.gov (United States)

    Sah, Saroj K.; Reddy, Kambham R.; Li, Jiaxu

    2016-01-01

    Abiotic stress is a primary threat to fulfill the demand of agricultural production to feed the world in coming decades. Plants reduce growth and development process during stress conditions, which ultimately affect the yield. In stress conditions, plants develop various stress mechanism to face the magnitude of stress challenges, although that is not enough to protect them. Therefore, many strategies have been used to produce abiotic stress tolerance crop plants, among them, abscisic acid (ABA) phytohormone engineering could be one of the methods of choice. ABA is an isoprenoid phytohormone, which regulates various physiological processes ranging from stomatal opening to protein storage and provides adaptation to many stresses like drought, salt, and cold stresses. ABA is also called an important messenger that acts as the signaling mediator for regulating the adaptive response of plants to different environmental stress conditions. In this review, we will discuss the role of ABA in response to abiotic stress at the molecular level and ABA signaling. The review also deals with the effect of ABA in respect to gene expression. PMID:27200044

  15. Acid tolerance in Salmonella typhimurium induced by culturing in the presence of organic acids at different growth temperatures.

    Science.gov (United States)

    Alvarez-Ordóñez, Avelino; Fernández, Ana; Bernardo, Ana; López, Mercedes

    2010-02-01

    The influence of growth temperature and acidification of the culture medium up to pH 4.25 with acetic, citric, lactic and hydrochloric acids on the growth and subsequent acid resistance at pH 3.0 of Salmonella typhimurium CECT 443 was studied. The minimum pH value which allowed for S. typhimurium growth within the temperature range of 25-37 degrees C was 4.5 when the pH was reduced using citric and hydrochloric acids, and 5.4 and 6.4 when lactic acid and acetic acid were used, respectively. At high (45 degrees C) or low (10 degrees C) temperatures, the growth pH boundary was increased about 1 pH unit. The growth temperature markedly modified the acid resistance of the resulting cells. In all cases, D-values were lower for cells grown at 10 degrees C and significantly increased with increasing growth temperature up to 37 degrees C, at which D-values obtained were up to 10 times higher. Cells grown at 45 degrees C showed D-values similar to those found for cells grown at 25 degrees C. The growth of cells in acidified media, regardless of the pH value, caused an increase in their acid resistance at the four incubation temperatures, although the magnitude of the Acid Tolerance Response (ATR) observed depended on the growth temperature. Acid adapted cultures at 10 degrees C showed D-values ranging from 5.75 to 6.91 min, which turned out to be about 2 times higher than those corresponding to non-acid adapted cultures, while higher temperatures induced an increase in D-values of at least 3.5 times. Another finding was that, while at 10 and 45 degrees C no significant differences among the effect of the different acids tested in inducing an ATR were observed, when cells were grown at 25 and 37 degrees C citric acid generally turned out to be the acid which induced the strongest ATR. Results obtained in this study show that growth temperature is an important factor affecting S. typhimurium acid resistance and could contribute to find new strategies based on intelligent

  16. Fractionation of fulvic acid by iron and aluminum oxides: influence on copper toxicity to Ceriodaphnia dubia

    Science.gov (United States)

    Smith, Kathleen S.; Ranville, James F.; Lesher, Emily K.; Diedrich, Daniel J.; McKnight, Diane M.; Sofield, Ruth M.

    2014-01-01

    This study examines the effect on aquatic copper toxicity of the chemical fractionation of fulvic acid (FA) that results from its association with iron and aluminum oxyhydroxide precipitates. Fractionated and unfractionated FAs obtained from streamwater and suspended sediment were utilized in acute Cu toxicity tests on ,i>Ceriodaphnia dubia. Toxicity test results with equal FA concentrations (6 mg FA/L) show that the fractionated dissolved FA was 3 times less effective at reducing Cu toxicity (EC50 13 ± 0.6 μg Cu/L) than were the unfractionated dissolved FAs (EC50 39 ± 0.4 and 41 ± 1.2 μg Cu/L). The fractionation is a consequence of preferential sorption of molecules having strong metal-binding (more aromatic) moieties to precipitating Fe- and Al-rich oxyhydroxides, causing the remaining dissolved FA to be depleted in these functional groups. As a result, there is more bioavailable dissolved Cu in the water and hence greater potential for Cu toxicity to aquatic organisms. In predicting Cu toxicity, biotic ligand models (BLMs) take into account dissolved organic carbon (DOC) concentration; however, unless DOC characteristics are accounted for, model predictions can underestimate acute Cu toxicity for water containing fractionated dissolved FA. This may have implications for water-quality criteria in systems containing Fe- and Al-rich sediment, and in mined and mineralized areas in particular. Optical measurements, such as specific ultraviolet absorbance at 254 nm (SUVA254), show promise for use as spectral indicators of DOC chemical fractionation and inferred increased Cu toxicity.

  17. Acclimation of Chlamydomonas reinhardtii to ultraviolet radiation and its impact on chemical toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Korkaric, Muris; Xiao, Mao [Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Toxicology, 8600 Duebendorf (Switzerland); ETH Zürich, Institute of Biogeochemistry and Pollutant Dynamics, 8092 Zürich (Switzerland); Behra, Renata [Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Toxicology, 8600 Duebendorf (Switzerland); Eggen, Rik I.L., E-mail: rik.eggen@eawag.ch [Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Toxicology, 8600 Duebendorf (Switzerland); ETH Zürich, Institute of Biogeochemistry and Pollutant Dynamics, 8092 Zürich (Switzerland)

    2015-10-15

    Highlights: • Systematic study of UVR acclimation and its impact on chemical toxicity in C. reinhardtii. • UVR acclimation is mediated through fast and reversible physiological defense mechanisms. • Pigment analysis suggests a role of lutein in UVR acclimation. • Co-tolerance to rose bengal suggests a role of singlet oxygen defense in UVR acclimation. • Knowledge on the toxic mechanism of chemicals needed to predict co-tolerance. - Abstract: The toxicity of chemical pollutants can be modulated under stressful environmental conditions, such as increased temperature, salinity or ultraviolet radiation (UVR), due to the interaction of effects during simultaneous stressor exposure. However, organisms may acclimate to such conditions by activation of physiological and biochemical defence mechanisms. In sequential exposures, organisms acclimated to environmental stressors may display an increased sensitivity or co-tolerance towards chemical pollutants. It has been suggested that co-tolerance might be expected for similarly acting stressors due to common defence mechanisms. To test this for combinations of UVR and chemical stressors, we first acclimatized the model green alga Chlamydomonas reinhardtii to UVR and subsequently compared the sensitivity of UVR pre-exposed and control algae towards chemicals. Selected chemicals all act on photosynthesis and thus share a common physiological target, but display distinct toxicity mechanisms. Results showed that UVR pre-exposure for four days partially inhibited algal growth and photosynthesis, but also increased algal tolerance to higher UVR levels, confirming UVR acclimation. HPLC analysis of algal pigments indicated that UVR acclimation might in part be explained by the protective function of lutein while the contribution of UVR absorbing compounds was less clear. Challenge exposure to chemicals in the absence of UVR showed that acclimated algae were co-tolerant to the photosensitizer rose bengal, but not to the

  18. Acclimation of Chlamydomonas reinhardtii to ultraviolet radiation and its impact on chemical toxicity

    International Nuclear Information System (INIS)

    Korkaric, Muris; Xiao, Mao; Behra, Renata; Eggen, Rik I.L.

    2015-01-01

    Highlights: • Systematic study of UVR acclimation and its impact on chemical toxicity in C. reinhardtii. • UVR acclimation is mediated through fast and reversible physiological defense mechanisms. • Pigment analysis suggests a role of lutein in UVR acclimation. • Co-tolerance to rose bengal suggests a role of singlet oxygen defense in UVR acclimation. • Knowledge on the toxic mechanism of chemicals needed to predict co-tolerance. - Abstract: The toxicity of chemical pollutants can be modulated under stressful environmental conditions, such as increased temperature, salinity or ultraviolet radiation (UVR), due to the interaction of effects during simultaneous stressor exposure. However, organisms may acclimate to such conditions by activation of physiological and biochemical defence mechanisms. In sequential exposures, organisms acclimated to environmental stressors may display an increased sensitivity or co-tolerance towards chemical pollutants. It has been suggested that co-tolerance might be expected for similarly acting stressors due to common defence mechanisms. To test this for combinations of UVR and chemical stressors, we first acclimatized the model green alga Chlamydomonas reinhardtii to UVR and subsequently compared the sensitivity of UVR pre-exposed and control algae towards chemicals. Selected chemicals all act on photosynthesis and thus share a common physiological target, but display distinct toxicity mechanisms. Results showed that UVR pre-exposure for four days partially inhibited algal growth and photosynthesis, but also increased algal tolerance to higher UVR levels, confirming UVR acclimation. HPLC analysis of algal pigments indicated that UVR acclimation might in part be explained by the protective function of lutein while the contribution of UVR absorbing compounds was less clear. Challenge exposure to chemicals in the absence of UVR showed that acclimated algae were co-tolerant to the photosensitizer rose bengal, but not to the

  19. Toxicity of a dental adhesive compared with ionizing radiation and zoledronic acid.

    Science.gov (United States)

    Alcaraz, Miguel; Olivares, Amparo; Achel, Daniel-Giyngiri; García-Cruz, Emilio; Fondevilla-Soler, Adriana; Canteras-Jordana, Manuel

    2015-07-01

    To determine the toxicity of aqueous dilutions of a universal self-priming dental adhesive (DA) and comparing these with those elicited by exposure to ionizing radiation (IR), Zoledronic acid (Z) treatment and the synergic effects of the combined treatment with IR+Z. The genotoxic effect of DA was determined by the increase in the frequency of micronuclei in cytokinesis-blocked in cultured human lymphocytes before and after exposure to 2Gy of X-rays. The cytotoxic effect was studied by using the MTT cell viability test in normal prostate cell lines (PNT2) after exposure to different X-ray doses (0Gy-20Gy). The cell lines divided into different groups and treated with different test substances: DA in presence of O2, DA in absence of O2, Z-treated and control. An in vitro dose-dependent and time-dependent cytotoxic effect of DA, Z and IR on PNT2 cells (p>0.001) was demonstrated. DA without-O2, following the recommendations of manufacturers, had a more pronounced effect of increasing cell death than DA with-O2 (p<0.001). In the genotoxicity assay, DA at 25% of its original concentration significantly increased chromosome damage (p<0.001). The samples studied were found to be toxic, and the samples photo-polymerized in absence of O2 showed a bigger cytotoxic effect comparable to the additive toxic effect showed by the combined treatment of IR+Z. Additional effort should be carried out to develop adhesives, which would reduce the release of hazardous substances; since toxic effects are similar to that reported by other agents whose clinical use is controlled by the health authorities.

  20. 76 FR 23891 - Pyrasulfotole; Pesticide Tolerances

    Science.gov (United States)

    2011-04-29

    ... data supporting the petition, EPA has revised the sorghum commodity terms and the proposed tolerances..., EPA has reviewed the available scientific data and other relevant information in support of this... retinal atrophy. Ocular toxicity is believed to be an indirect result of tyrosinemia caused by inhibition...

  1. 78 FR 20461 - Flumioxazin; Pesticide Tolerances

    Science.gov (United States)

    2013-04-05

    ... offspring were observed at doses lower than those that caused parental/systemic toxicity, and because the reproductive effects in offspring were considered to be more severe than the parental/systemic effects. 3... available to enforce the tolerance expression. The method may be requested from: Chief, Analytical Chemistry...

  2. Toxicity on aquatic organisms exposed to secondary effluent disinfected with chlorine, peracetic acid, ozone and UV radiation.

    Science.gov (United States)

    da Costa, Juliana Berninger; Rodgher, Suzelei; Daniel, Luiz Antonio; Espíndola, Evaldo Luiz Gaeta

    2014-11-01

    The toxic potential of four disinfectant agents (chlorine, ozone, peracetic acid and UV radiation), used in the disinfection of urban wastewater, was evaluated with respect to four aquatic organisms. Disinfection assays were carried out with wastewater from the city of Araraquara (São Paulo State, Brazil), and subsequently, toxicity bioassays were applied in order to verify possible adverse effects to the cladocerans (Ceriodaphnia silvestrii and Daphnia similis), midge larvae Chironomus xanthus and fish (Danio rerio). Under the experimental conditions tested, all the disinfectants were capable of producing harmful effects on the test organisms, except for C. xanthus. The toxicity of the effluent to C. silvestrii was observed to increase significantly as a result of disinfection using 2.5 mg L(-1) chlorine and 29.9 mg L(-1) ozone. Ozonation and chlorination significantly affected the survival of D. similis and D. rerio, causing mortality of 60 to 100 % in comparison to the non-disinfected effluent. In experiments with effluent treated with peracetic acid (PAA) and UV radiation, a statistically significant decrease in survival was only detected for D. rerio. This investigation suggested that the study of the ideal concentrations of disinfectants is a research need for ecologically safe options for the treatment of wastewater.

  3. Comparison of Salt Tolerance in Soja Based on Metabolomics of Seedling Roots

    Directory of Open Access Journals (Sweden)

    Mingxia Li

    2017-06-01

    Full Text Available Soybean is an important economic crop that is continually threatened by abiotic stresses, especially salt stress. Wild soybean is an important germplasm resource for the breeding of cultivated soybean. The root system plays a very important role in plant salt tolerance. To explore the salt tolerance-related mechanisms among Soja, we have demonstrated the seedling roots' growth and metabolomics in wild soybean, semi-wild soybean, and cultivated soybean under two types of salt stress by using gas chromatography-mass spectrometry. We characterized 47 kinds of differential metabolites under neutral salt stress, and isoleucine, serine, l-allothreonine, glutamic acid, phenylalanine, asparagines, aspartic acid, pentadecanoic acid, lignoceric acid, oleic acid, galactose, tagatose, d-arabitol, dihydroxyacetone, 3-hydroxybutyric acid, and glucuronic acid increased significantly in the roots of wild soybean seedlings. However, these metabolites were suppressed in semi-wild and cultivated soybeans. Amino acid, fatty acid, sugars, and organic acid synthesis and the secondary metabolism of antioxidants increased significantly in the roots of wild soybean seedling. Under alkaline salt stress, wild soybean contained significantly higher amounts of proline, glutamic acid, aspartic acid, l-allothreonine, isoleucine, serine, alanine, arachidic acid, oleic acid, cis-gondoic acid, fumaric acid, l-malic acid, citric acid, malonic acid, gluconic acid, 5-methoxytryptamine, salicylic acid, and fluorene than semi-wild and cultivated soybeans. Our study demonstrated that carbon and nitrogen metabolism, and the tricarboxylic acid (TCA cycle and receiver operating characteristics (especially the metabolism of phenolic substances of the seedling roots were important to resisting salt stress and showed a regular decreasing trend from wild soybean to cultivated soybean. The metabolomics's changes were critical factors in the evolution of salt tolerance among Soja. This study

  4. Selection and evaluation of CO2 tolerant indigenous microalga Scenedesmus dimorphus for unsaturated fatty acid rich lipid production under different culture conditions.

    Science.gov (United States)

    Vidyashankar, S; Deviprasad, K; Chauhan, V S; Ravishankar, G A; Sarada, R

    2013-09-01

    Five indigenous microalgal strains of Scenedesmus, Chlorococcum, Coelastrum, and Ankistrodesmus genera, isolated from Indian fresh water habitats, were studied for carbon-dioxide tolerance and its effect on growth, lipid and fatty acid profile. Scenedesmus dimorphus strain showed maximum growth (1.5 g/L) and lipid content (17.83% w/w) under CO2 supplementation, hence selected for detailed evaluation. The selected strain was alkaline adapted but tolerated (i) wide range of pH (5-11); (ii) elevated salinity levels (up to 100 mM, NaCl) with low biomass yields and increased carotenoids (19.34 mg/g biomass); (iii) elevated CO2 levels up to 15% v/v with enhancement in specific growth rate (0.137 d(-1)), biomass yield (1.57 g/L), lipid content (19.6% w/w) and CO2 biofixation rate (0.174 g L(-1) d(-1)). Unsaturated fatty acid content (alpha linolenic acid) increased with CO2 supplementation in the strain. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Wheat cultivar tolerance to boron deficiency and toxicity in nutrient solution

    Directory of Open Access Journals (Sweden)

    Furlani Ângela Maria Cangiani

    2003-01-01

    Full Text Available Field symptoms of open spikelets in wheat were observed in specific cultivars and supposedly related to low B soils and differential B requirement among cultivars. This study aimed to evaluate the response of four wheat (Triticum aestivum L. cultivars, IAC 24, IAC 60, IAC 287 and IAC 289, to increasing B concentrations in nutrient solution. The experiment was set up in a randomized complete block design, with four replicates and five B concentrations (0.0, 0.05, 0.2, 0.8 and 2.0 mg L-1, during 1997/1998, in a greenhouse. Plants were grown to maturity and evaluated for plant height, spike number and length, open spikelet number, grains per spike, plant parts dry matter, B, P, K, Ca and Mg leaf concentrations and total nutrient contents. The visual symptoms of B deficiency consisted of open spikelets, distorted spikes without grains. 'IAC 60' and 'IAC 287' had higher B efficiency, with the highest grain yields in lower B concentrations. The 'IAC 287' and 'IAC 24' were more tolerant to the highest B concentrations. 'IAC 24' required more B for grain production as compared to the other cultivars. The critical leaf B concentration for deficiency was 25 mg kg-1 of dry matter tissue for all cultivars, and for toxicity were: 44 to 45 mg kg-1 for 'IAC 60' and 'IAC 289'; 228 and 318 mg kg-1 for 'IAC 24' and 'IAC 287', respectively. Except for the highest B level in the nutrient solution, the leaf P, K, Ca and Mg concentrations and whole plant contents were in an adequate range in the plants and did not vary among cultivars.

  6. Abscisic acid enhances cold tolerance in honeybee larvae.

    Science.gov (United States)

    Ramirez, Leonor; Negri, Pedro; Sturla, Laura; Guida, Lucrezia; Vigliarolo, Tiziana; Maggi, Matías; Eguaras, Martín; Zocchi, Elena; Lamattina, Lorenzo

    2017-04-12

    The natural composition of nutrients present in food is a key factor determining the immune function and stress responses in the honeybee ( Apis mellifera ). We previously demonstrated that a supplement of abscisic acid (ABA), a natural component of nectar, pollen, and honey, increases honeybee colony survival overwinter. Here we further explored the role of ABA in in vitro -reared larvae exposed to low temperatures. Four-day-old larvae (L4) exposed to 25°C for 3 days showed lower survival rates and delayed development compared to individuals growing at a standard temperature (34°C). Cold-stressed larvae maintained higher levels of ABA for longer than do larvae reared at 34°C, suggesting a biological significance for ABA. Larvae fed with an ABA-supplemented diet completely prevent the low survival rate due to cold stress and accelerate adult emergence. ABA modulates the expression of genes involved in metabolic adjustments and stress responses: Hexamerin 70b, Insulin Receptor Substrate, Vitellogenin , and Heat Shock Proteins 70. AmLANCL2, the honeybee ABA receptor, is also regulated by cold stress and ABA. These results support a role for ABA increasing the tolerance of honeybee larvae to low temperatures through priming effects. © 2017 The Author(s).

  7. Abscisic acid enhances cold tolerance in honeybee larvae

    Science.gov (United States)

    Sturla, Laura; Guida, Lucrezia; Vigliarolo, Tiziana; Maggi, Matías; Eguaras, Martín; Zocchi, Elena; Lamattina, Lorenzo

    2017-01-01

    The natural composition of nutrients present in food is a key factor determining the immune function and stress responses in the honeybee (Apis mellifera). We previously demonstrated that a supplement of abscisic acid (ABA), a natural component of nectar, pollen, and honey, increases honeybee colony survival overwinter. Here we further explored the role of ABA in in vitro-reared larvae exposed to low temperatures. Four-day-old larvae (L4) exposed to 25°C for 3 days showed lower survival rates and delayed development compared to individuals growing at a standard temperature (34°C). Cold-stressed larvae maintained higher levels of ABA for longer than do larvae reared at 34°C, suggesting a biological significance for ABA. Larvae fed with an ABA-supplemented diet completely prevent the low survival rate due to cold stress and accelerate adult emergence. ABA modulates the expression of genes involved in metabolic adjustments and stress responses: Hexamerin 70b, Insulin Receptor Substrate, Vitellogenin, and Heat Shock Proteins 70. AmLANCL2, the honeybee ABA receptor, is also regulated by cold stress and ABA. These results support a role for ABA increasing the tolerance of honeybee larvae to low temperatures through priming effects. PMID:28381619

  8. Identification of genes and pathways associated with aluminum stress and tolerance using transcriptome profiling of wheat near-isogenic lines

    Directory of Open Access Journals (Sweden)

    Diallo Amadou

    2008-08-01

    Full Text Available Abstract Background Aluminum is considered the most limiting factor for plant productivity in acidic soils, which cover large areas of the world's potential arable lands. The inhibition of root growth is recognized as the primary effect of Al toxicity. To identify genes associated with Al stress and tolerance, transcriptome analyses of four different wheat lines (2 Al-tolerant and 2 Al sensitive that differ in their response to Al were performed. Results Microarray expression profiling revealed that 83 candidate genes are associated with Al stress and 25 are associated with tolerance. The stress-associated genes include important enzymes such as pyruvate dehydrogenase, alternative oxidase, and galactonolactone oxidase, ABC transporter and ascorbate oxido-reducatase. The Al tolerance-associated genes include the ALMT-1 malate transporter, glutathione S-transferase, germin/oxalate oxidase, fructose 1,6-bisphosphatase, cysteine-rich proteins, cytochrome P450 monooxygenase, cellulose synthase, zinc finger transcription factor, disease resistance response protein and F-box containing domain protein. Conclusion In this survey, we identified stress- and tolerance-associated genes that may be involved in the detoxification of Al and reactive oxygen species. Alternative pathways could help maintain the supply of important metabolites (H2O2, ascorbate, NADH, and phosphate needed for Al tolerance and root growth. The Al tolerance-associated genes may be key factors that regulate these pathways.

  9. Assessment of epoxidized soy bean oil (ESBO) migrating into foods: comparison with ESBO-like epoxy fatty acids in our normal diet.

    Science.gov (United States)

    Fankhauser-Noti, Anja; Fiselier, Katell; Biedermann-Brem, Sandra; Grob, Koni

    2006-08-01

    Epoxidized soy bean oil (ESBO) was found to be toxic for rats, but the toxic constituent is unknown. It became an issue as the migration from the gaskets in the lids for jars into oily foods regularly far exceeds the European legal limit (overall migration limit and specific migration limit derived from the tolerable daily intake (TDI)). In the context of risk management it was of interest to determine the epoxidized fatty acids of ESBO in those foods of our normal diet which are expected to contain the highest concentrations, i.e., oxidized edible oils (including degraded frying oils), fried foods, bakery ware and roasted meat. The contribution of epoxy oleic acid from ESBO to our diet turned out to be negligible. If this acid were the toxic component in ESBO, the toxicological assessment would primarily be a warning regarding oxidized fats and oils. The contribution of diepoxy linoleic acid from ESBO might be similar to the exposure from oxidized fats and oils of our diet, whereas the intake of triepoxy linolenic acid from ESBO exceeds that from normal food by around two orders of magnitude. Hence use of an epoxidized edible oil virtually free of linolenic acid would be inconspicuous in our diet.

  10. EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA); Scientific Opinion related to the Tolerable Upper Intake Level of eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA) and docosapentaenoic acid (DPA)

    DEFF Research Database (Denmark)

    Tetens, Inge

    Following a request from the European Commission, the Panel on Dietetic Products, Nutrition and Allergies was asked to deliver a scientific opinion on the Tolerable Upper Intake Level (UL) of the n-3 LCPUFAs eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA) and docosapentaenoic acid (DPA......). Available data are insufficient to establish a UL for n-3 LCPUFA (individually or combined) for any population group. At observed intake levels, consumption of n-3 LCPUFA has not been associated with adverse effects in healthy children or adults. Long-term supplemental intakes of EPA and DHA combined up...... to about 5 g/day do not appear to increase the risk of spontaneous bleeding episodes or bleeding complications, or affect glucose homeostasis immune function or lipid peroxidation, provided the oxidative stability of the n-3 LCPUFAs is guaranteed. Supplemental intakes of EPA and DHA combined at doses of 2...

  11. Correlation between oxalic acid production and tolerance of Tyromyces palustris strain TYP-6137 to N',N-naphthaloylhydroxamine

    Science.gov (United States)

    Rachel A. Arango; Patricia K. Lebow; Frederick III Green

    2009-01-01

    Eleven strains of T. palustris were evaluated for mass loss and production of phosphate buffer soluble oxalic acid on pine wood blocks treated with 0.5% N’,N-naphthaloylhydroxamine (NHA) in a soil-block test. After 12 weeks higher percentage mass loss was observed in control groups for 10 strains, while TYP-6137 was shown to be tolerant with no difference between the...

  12. Hepatic Toxicity of Perfluorocarboxylic Acids.

    Science.gov (United States)

    1996-07-01

    1995). 3. N. V. Reo, C. M. Goecke, L. Narayanan, and B. M. Jarnot. "Effects of Perfluoro-n-octanoic Acid , Perfluoro-n-decanoic Acid , and Clofibrate ...Artz, and B. M. Jarnot: "ILiver Phosphorous Metabolic Response to Perfluorocarboxylic Acids and Clofibrate in Rats and Guinea Pigs: A 31 P NMR Study...Peroxisome Induction by Perfluoro-n-decanoic Acid and Clofibrate in the Rat: Proliferation Versus Activity." International Society for the Study of

  13. Genome sequence of the acid-tolerant Desulfovibrio sp. DV isolated from the sediments of a Pb-Zn mine tailings dam in the Chita region, Russia

    Directory of Open Access Journals (Sweden)

    Anastasiia Kovaliova

    2017-03-01

    Full Text Available Here we report the draft genome sequence of the acid-tolerant Desulfovibrio sp. DV isolated from the sediments of a Pb-Zn mine tailings dam in the Chita region, Russia. The draft genome has a size of 4.9 Mb and encodes multiple K+-transporters and proton-consuming decarboxylases. The phylogenetic analysis based on concatenated ribosomal proteins revealed that strain DV clusters together with the acid-tolerant Desulfovibrio sp. TomC and Desulfovibrio magneticus. The draft genome sequence and annotation have been deposited at GenBank under the accession number MLBG00000000.

  14. 77 FR 13502 - Pyriofenone; Pesticide Tolerances

    Science.gov (United States)

    2012-03-07

    ... and grape, raisin. ISK BioSciences Corporation requested these tolerances under the Federal Food, Drug... maternal body weight gain and food consumption. There was no evidence of neurotoxicity and a developmental... pregnancy in a developmental toxicity study are assumed to be attributable to a single exposure and thus...

  15. 78 FR 25396 - Glyphosate; Pesticide Tolerances

    Science.gov (United States)

    2013-05-01

    ... found no systemic effects in any of the parameters examined (body weight, food consumption, clinical... evidence of carcinogenicity was found in mice or rats. In a chronic toxicity study in dogs, no systemic... chromatography (HPLC)) is available to enforce the tolerance expression. The method may be requested from: Chief...

  16. Naturally evolved enhanced Cd tolerance of Dianthus carthusianorum L. is not related to accumulation of thiol peptides and organic acids.

    Science.gov (United States)

    Wójcik, Małgorzata; Dresler, Sławomir; Plak, Andrzej; Tukiendorf, Anna

    2015-05-01

    Two contrasting ecotypes of Dianthus carthusianorum L., metallicolous (M) and nonmetallicolous (NM), were cultivated in hydroponics at 0-50 μM Cd for 14 days to compare their Cd accumulation, sensitivity and tolerance mechanisms. While both ecotypes contained similar concentrations of Cd in the shoots and roots, the M ecotype was more Cd-tolerant (as measured by fresh weight production and root and leaf viability). Both ecotypes accumulated phytochelatins (PCs) in response to Cd with a higher amount thereof found in the NM ecotype. Concentrations of PCs remained unchanged with increasing Cd concentrations in the root tissues, but their content in the shoots increased. The addition of L-buthionine-sulfoximine (BSO) diminished glutathione (GSH) accumulation and arrested PC production, which increased the sensitivity to Cd of the NM, but not M ecotype. Organic acids (malate and citrate) as well as proline accumulation did not change significantly after Cd exposition and was at the same level in both ecotypes. The enhanced Cd tolerance of the M ecotype of D. carthusianorum cannot be explained in terms of restricted Cd uptake and differential production of PCs, organic acids or proline; some other mechanisms must be involved in its adaptation to the high Cd content in the environment.

  17. A review of metal (Pb and Zn) sensitive and pH tolerant bioassay organisms for risk screening of metal-contaminated acidic soils

    International Nuclear Information System (INIS)

    Chapman, E.Emily V.; Dave, Göran; Murimboh, John D.

    2013-01-01

    To improve risk estimates at the screening stage of Ecological Risk Assessment (ERA), short duration bioassays tailored to undisturbed soil cores from the contaminated site could be useful. However, existing standardized bioassays use disturbed soil samples and often pH sensitive organisms. This is a problem as naturally acidic soils are widespread. Changing soil properties to suit the test organism may change metal bioavailability, leading to erroneous risk estimates. For bioassays in undisturbed soil cores to be effective, species able to withstand natural soil properties must be identified. This review presents a critical examination of bioassay species' tolerance of acidic soils and sensitivity to metal contaminants such as Pb and Zn. Promising organisms include; Dendrobaena octaedra, Folsomia candida, Caenorhabditis elegans, Oppia nitens, Brassica rapa, Trifolium pratense, Allium cepa, Quercus rubra and Acer rubrum. The MetSTICK test and the Bait lamina test were also identified as suitable microorganism tests. -- Highlights: •Risk screening of metal contaminated soils should consider metal bioavailability. •Metal bioavailability is dependent on soil properties such as pH. •Many standardized bioassay organisms are sensitive to acidic soils. •This review identifies acid tolerant and metal sensitive bioassays and species. •The identified tests can improve risk screening of acidic metal contaminated soil. -- This review identifies bioassay species able to withstand naturally acidic soils while being sensitive to metal contaminants

  18. Preclinical animal acute toxicity studies of new developed MRI contrast agent based on gadolinium

    Science.gov (United States)

    Nam, I. F.; Zhuk, V. V.

    2015-04-01

    Acute toxicity test of new developed MRI contrast agent based on disodium salt of gadopentetic acid complex were carried out on Mus musculus and Sprague Dawley rats according to guidelines of preclinical studies [1]. Groups of six animals each were selected for experiment. Death and clinical symptoms of animals were recorded during 14 days. As a result the maximum tolerated dose (MTD) for female mice is 2.8 mM/kg of body weight, male mice - 1.4 mM/kg, female rats - 2.8 mM/kg, male rats - 5.6 mM/kg of body weight. No Observed Adverse Effect Dose (NOAEL) for female mice is 1.4 mM/kg, male mice - 0.7 mM/kg, male and female rats - 0.7 mM/kg. According to experimental data new developed MRI contrast agent based on Gd-DTPA complex is low-toxic.

  19. Algal toxicity of the alternative disinfectants performic acid (PFA), peracetic acid (PAA), chlorine dioxide (ClO2) and their by-products hydrogen peroxide (H2O2) and chlorite (ClO2-)

    DEFF Research Database (Denmark)

    Chhetri, Ravi Kumar; Baun, Anders; Andersen, Henrik Rasmus

    2017-01-01

    Environmental effect evaluation of disinfection of combined sewer overflow events with alternative chemical disinfectants requires that the environmental toxicity of the disinfectants and the main by-products of their use are known. Many disinfectants degrade quickly in water which should......: performic acid (PFA), peracetic acid (PAA) and chlorine dioxide (ClO2) as well as two by-products of their use: hydrogen peroxide (H2O2) and chlorite. All of the five chemicals investigated showed clear toxicity to the algae with well-defined dose response curves. The EC50 values ranged from 0.16 to 2.9 mg...

  20. Comparison of Bile Acids and Acetaminophen Protein Adducts in Children and Adolescents with Acetaminophen Toxicity.

    Directory of Open Access Journals (Sweden)

    Laura James

    Full Text Available Metabolomics approaches have enabled the study of new mechanisms of liver injury in experimental models of drug toxicity. Disruption of bile acid homeostasis is a known mechanism of drug induced liver injury. The relationship of individual bile acids to indicators of oxidative drug metabolism (acetaminophen protein adducts and liver injury was examined in children with acetaminophen overdose, hospitalized children with low dose exposure to acetaminophen, and children with no recent exposure to acetaminophen. Nine bile acids were quantified through targeted metabolomic analysis in the serum samples of the three groups. Bile acids were compared to serum levels of acetaminophen protein adducts and alanine aminotransferase. Glycodeoxycholic acid, taurodeoxycholic acid, and glycochenodeoxycholic acid were significantly increased in children with acetaminophen overdose compared to healthy controls. Among patients with acetaminophen overdose, bile acids were higher in subjects with acetaminophen protein adduct values > 1.0 nmol/mL and modest correlations were noted for three bile acids and acetaminophen protein adducts as follows: taurodeoxycholic acid (R=0.604; p<0.001, glycodeoxycholic acid (R=0.581; p<0.001, and glycochenodeoxycholic acid (R=0.571; p<0.001. Variability in bile acids was greater among hospitalized children receiving low doses of acetaminophen than in healthy children with no recent acetaminophen exposure. Compared to bile acids, acetaminophen protein adducts more accurately discriminated among children with acetaminophen overdose, children with low dose exposure to acetaminophen, and healthy control subjects. In children with acetaminophen overdose, elevations of conjugated bile acids were associated with specific indicators of acetaminophen metabolism and non-specific indicators of liver injury.

  1. Heavy metal tolerance in plants: Role of transcriptomics, proteomics, metabolomics and ionomics

    Directory of Open Access Journals (Sweden)

    Samiksha eSingh

    2016-02-01

    Full Text Available Heavy metal contamination of soil and water causing toxicity/stress has become one important constraint to crop productivity and quality. This situation has further worsened by the increasing population growth and inherent food demand. It have been reported in several studies that counterbalancing toxicity, due to heavy metal requires complex mechanisms at molecular, biochemical, physiological, cellular, tissue and whole plant level, which might manifest in terms of improved crop productivity. Recent advances in various disciplines of biological sciences such as metabolomics, transcriptomics, proteomics etc. have assisted in the characterization of metabolites, transcription factors, stress-inducible proteins involved in heavy metal tolerance, which in turn can be utilized for generating heavy metal tolerant crops. This review summarizes various tolerance strategies of plants under heavy metal toxicity, covering the role of metabolites (metabolomics, trace elements (ionomics, transcription factors (transcriptomics, various stress-inducible proteins (proteomics as well as the role of plant hormones. We also provide a glance at strategies adopted by metal accumulating plants also known as metallophytes.

  2. Heavy Metal Tolerance in Plants: Role of Transcriptomics, Proteomics, Metabolomics, and Ionomics

    Science.gov (United States)

    Singh, Samiksha; Parihar, Parul; Singh, Rachana; Singh, Vijay P.; Prasad, Sheo M.

    2016-01-01

    Heavy metal contamination of soil and water causing toxicity/stress has become one important constraint to crop productivity and quality. This situation has further worsened by the increasing population growth and inherent food demand. It has been reported in several studies that counterbalancing toxicity due to heavy metal requires complex mechanisms at molecular, biochemical, physiological, cellular, tissue, and whole plant level, which might manifest in terms of improved crop productivity. Recent advances in various disciplines of biological sciences such as metabolomics, transcriptomics, proteomics, etc., have assisted in the characterization of metabolites, transcription factors, and stress-inducible proteins involved in heavy metal tolerance, which in turn can be utilized for generating heavy metal-tolerant crops. This review summarizes various tolerance strategies of plants under heavy metal toxicity covering the role of metabolites (metabolomics), trace elements (ionomics), transcription factors (transcriptomics), various stress-inducible proteins (proteomics) as well as the role of plant hormones. We also provide a glance of some strategies adopted by metal-accumulating plants, also known as “metallophytes.” PMID:26904030

  3. Development and Preliminary Assessment of Hemoperfusion Cartridge with Tannic Acid for Toxic Proteins' Precipitation: An In Vitro Model

    Directory of Open Access Journals (Sweden)

    Valquíria Miwa Hanai Yoshida

    2016-09-01

    Full Text Available Charcoal hemoperfusion (CHP is one of the extracorporeal removal techniques that are used to remove toxins from the body. CHP generally is considered the preferred method for extracorporeal extraction of several toxins—toxins that are adsorbed by activated charcoal. Assessments of the tannic acid's protective effects on ophidian poisoning are associated with the toxic proteins' precipitation by tannic acid. The challenge in treating a snakebite lies in removing the injected poison with minimal damage to blood constituent proteins. An alternative is CHP, and this investigation proposed to develop a column for hemoperfuser cartridge, combining charcoal granules trapped between layers of polymeric material conjugated to tannic acid, using an in vitro model scaled to the Wistar rat, which can be tested in an animal model. The cartridge was evaluated using the 22 full factorial design, in duplicate, as a method to study the effects of granulated-charcoal size and tannic acid concentration on the hematologic profile (platelet and leukocyte counts and biochemical profile (total serum protein and albumin dosages of sheep blood. The results demonstrate that charcoal in hemoperfuser cartridge: (1 decreases the serum in sheep blood volume, as consequence, (2 increases the serum proteins' concentration, and (iii exerts slight influence on albumin. The inclusion of tannic acid in hemoperfuser column precipitates some of serum proteins and albumin, decreasing their concentrations in the plasma serum. In conclusion, based on these effects we can suggest the use of 0.02 g tannic acid concentration and 8–20 mesh granulated charcoal in hemoperfuser cartridge for precipitating toxic proteins from snake venoms.

  4. Trigo duro: tolerância à toxicidade de alumínio, manganês e ferro em soluções nutritivas Durum wheat: tolerance to aluminum, manganese and iron toxicities in nutrient solutions

    Directory of Open Access Journals (Sweden)

    Carlos Eduardo de Oliveira Camargo

    1995-01-01

    Full Text Available Avaliou-se o comportamento diferencial de 23 linhagens de trigo duro (Triticum durum L. em compraração com os seguintes cultivares de trigo (T. aestivum L.: IAC-24, BH-1146, Siete Cerros e IAC-60, quanto aos níveis de Al3+ (0;0,2;0,4; 0,6; 0,8 e 1,0 mg/L, de Mn2+ (0,11; 300; 600 c 1.200 mg/L e de Fe2+ (0,56; 5; 10 e 20 mg/L em solução nutritiva. Os cultivares de trigo Siete Cerros (sensível à toxicidade de Al3+, BH-1146, IAC-60 e IAC-24 (tolerantes à toxicidade de Al3+, exibiram crescimento das raízes na presença de 1 mg/L de Al3+, e todas as linhagens de trigo duro avaliadas foram totalmente sensíveis a 0,4 mg/L de Al3+, com paralisação irreversível do crescimento das raízes. O aumento das concentrações de Mn2+(0,11 a 1.200 mg/L e de Fe2+ (0,56 a 20 mg/L nas soluções causou uma redução significativa no comprimento das raízes dos genótipos em estudo. As linhagens de trigo duro I (Avetoro "S" x Anhinga "S" - Purcell "S"/D.67.2, 2 (Cando - Yavaros "S", 6 (Chen "S" e 8 (Carcomum "S" apresentaram-se muito tolerantes à toxicidade de Mn2+ em relação ao controle 'Siete Cerros'. O 'Siete Cerros' e as linhagens de trigo duro 1, 6, 12 (CI 14955 x Yavaros "S"- Gediz "S"/Tropic Bird, 16 e 21 (Swan "S" c 20 (Boyeros "S"/Cocorit-71/5/Crane/Ganso//Marte "S"/3/Tildillo "S"/4/ Memo "S" exibiram tolerância à presença de elevadas quantidades de Fe2+ nas soluções nutritivas.Twenty three durum wheat inbred lines were evaluated with four bread wheat cultivars (IAC-24, BH-1146, Siete Cerros and IAC-60 in three experiments, using nutrient solutions. In the first experiment, the following levels of Al3+ were used: 0; 0.2; 0.4; 0.6; 0.8 and 1.0 mg/L; in the second experiment, the following levels of Mn2+ were used: 0.11; 300; 600 and 1.200 mg/L; and in the third experiment, Fe2+ was used at: 0.56; 5; 10 and 1.200 mg/L. The wheat cultivars Siete Cerros (sensitive to Al3+ toxicity and BH-1146, IAC-24 and IAC-60 (tolerant to Al3+ toxicity

  5. Application of the Hard and Soft, Acids and Bases (HSAB) theory to toxicant--target interactions.

    Science.gov (United States)

    Lopachin, Richard M; Gavin, Terrence; Decaprio, Anthony; Barber, David S

    2012-02-20

    Many chemical toxicants and/or their active metabolites are electrophiles that cause cell injury by forming covalent bonds with nucleophilic targets on biological macromolecules. Covalent reactions between nucleophilic and electrophilic reagents are, however, discriminatory since there is a significant degree of selectivity associated with these interactions. Over the course of the past few decades, the theory of Hard and Soft, Acids and Bases (HSAB) has proven to be a useful tool in predicting the outcome of such reactions. This concept utilizes the inherent electronic characteristic of polarizability to define, for example, reacting electrophiles and nucleophiles as either hard or soft. These HSAB definitions have been successfully applied to chemical-induced toxicity in biological systems. Thus, according to this principle, a toxic electrophile reacts preferentially with biological targets of similar hardness or softness. The soft/hard classification of a xenobiotic electrophile has obvious utility in discerning plausible biological targets and molecular mechanisms of toxicity. The purpose of this perspective is to discuss the HSAB theory of electrophiles and nucleophiles within a toxicological framework. In principle, covalent bond formation can be described by using the properties of their outermost or frontier orbitals. Because these orbital energies for most chemicals can be calculated using quantum mechanical models, it is possible to quantify the relative softness (σ) or hardness (η) of electrophiles or nucleophiles and to subsequently convert this information into useful indices of reactivity. This atomic level information can provide insight into the design of corroborative laboratory research and thereby help investigators discern corresponding molecular sites and mechanisms of toxicant action. The use of HSAB parameters has also been instrumental in the development and identification of potential nucleophilic cytoprotectants that can scavenge toxic

  6. APPLICATION OF THE HARD AND SOFT, ACIDS AND BASES (HSAB) THEORY TO TOXICANT-TARGET INTERACTIONS

    Science.gov (United States)

    LoPachin, Richard M.; Gavin, Terrence; DeCaprio, Anthony; Barber, David S.

    2011-01-01

    Many chemical toxicants and/or their active metabolites are electrophiles that cause cell injury by forming covalent bonds with nucleophilic targets on biological macromolecules. Covalent reactions between nucleophilic and electrophilic reagents are however discriminatory, since there is a significant degree of selectivity associated with these interactions. Over the course of the past few decades, the theory of Hard and Soft, Acid and Bases (HSAB) has proven to be a useful tool in predicting the outcome of such reactions. This concept utilizes the inherent electronic characteristic of polarizability to define, for example, reacting electrophiles and nucleophiles as either hard or soft. These HSAB definitions have been successfully applied to chemical-induced toxicity in biological systems. Thus, according to this principle, a toxic electrophile reacts preferentially with biological targets of similar hardness or softness. The soft/hard classification of a xenobiotic electrophile has obvious utility in discerning plausible biological targets and molecular mechanisms of toxicity. The purpose of this Perspective is to discuss the HSAB theory of electrophiles and nucleophiles within a toxicological framework. In principle, covalent bond formation can be described by using the properties of their outermost or frontier orbitals. Because these orbital energies for most chemicals can be calculated using quantum mechanical models, it is possible to quantify the relative softness (σ) or hardness (η) of electrophiles or nucleophiles and to subsequently convert this information into useful indices of reactivity. This atomic level information can provide insight into the design of corroborative laboratory research and thereby help investigators discern corresponding molecular sites and mechanisms of toxicant action. The use of HSAB parameters has also been instrumental in the development and identification of potential nucleophilic cytoprotectants that can scavenge toxic

  7. 40 CFR 180.473 - Glufosinate ammonium; tolerances for residues.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Glufosinate ammonium; tolerances for... § 180.473 Glufosinate ammonium; tolerances for residues. (a) General. Tolerances are established for residues of the herbicide glufosinate-ammonium (butanoic acid, 2-amino-4-(hydroxymethylphosphinyl...

  8. Ashwagandha leaf derived withanone protects normal human cells against the toxicity of methoxyacetic acid, a major industrial metabolite.

    Science.gov (United States)

    Priyandoko, Didik; Ishii, Tetsuro; Kaul, Sunil C; Wadhwa, Renu

    2011-05-04

    The present day lifestyle heavily depends on industrial chemicals in the form of agriculture, cosmetics, textiles and medical products. Since the toxicity of the industrial chemicals has been a concern to human health, the need for alternative non-toxic natural products or adjuvants that serve as antidotes are in high demand. We have investigated the effects of Ayurvedic herb Ashwagandha (Withania somnifera) leaf extract on methoxyacetic acid (MAA) induced toxicity. MAA is a major metabolite of ester phthalates that are commonly used in industry as gelling, viscosity and stabilizer reagents. We report that the MAA cause premature senescence of normal human cells by mechanisms that involve ROS generation, DNA and mitochondrial damage. Withanone protects cells from MAA-induced toxicity by suppressing the ROS levels, DNA and mitochondrial damage, and induction of cell defense signaling pathways including Nrf2 and proteasomal degradation. These findings warrant further basic and clinical studies that may promote the use of withanone as a health adjuvant in a variety of consumer products where the toxicity has been a concern because of the use of ester phthalates.

  9. Ashwagandha leaf derived withanone protects normal human cells against the toxicity of methoxyacetic acid, a major industrial metabolite.

    Directory of Open Access Journals (Sweden)

    Didik Priyandoko

    Full Text Available The present day lifestyle heavily depends on industrial chemicals in the form of agriculture, cosmetics, textiles and medical products. Since the toxicity of the industrial chemicals has been a concern to human health, the need for alternative non-toxic natural products or adjuvants that serve as antidotes are in high demand. We have investigated the effects of Ayurvedic herb Ashwagandha (Withania somnifera leaf extract on methoxyacetic acid (MAA induced toxicity. MAA is a major metabolite of ester phthalates that are commonly used in industry as gelling, viscosity and stabilizer reagents. We report that the MAA cause premature senescence of normal human cells by mechanisms that involve ROS generation, DNA and mitochondrial damage. Withanone protects cells from MAA-induced toxicity by suppressing the ROS levels, DNA and mitochondrial damage, and induction of cell defense signaling pathways including Nrf2 and proteasomal degradation. These findings warrant further basic and clinical studies that may promote the use of withanone as a health adjuvant in a variety of consumer products where the toxicity has been a concern because of the use of ester phthalates.

  10. Resilience of small intestinal beneficial bacteria to the toxicity of soybean oil fatty acids

    Science.gov (United States)

    Di Rienzi, Sara C; Jacobson, Juliet; Kennedy, Elizabeth A; Bell, Mary E; Shi, Qiaojuan; Waters, Jillian L; Lawrence, Peter; Brenna, J Thomas; Britton, Robert A; Walter, Jens

    2018-01-01

    Over the past century, soybean oil (SBO) consumption in the United States increased dramatically. The main SBO fatty acid, linoleic acid (18:2), inhibits in vitro the growth of lactobacilli, beneficial members of the small intestinal microbiota. Human-associated lactobacilli have declined in prevalence in Western microbiomes, but how dietary changes may have impacted their ecology is unclear. Here, we compared the in vitro and in vivo effects of 18:2 on Lactobacillus reuteri and L. johnsonii. Directed evolution in vitro in both species led to strong 18:2 resistance with mutations in genes for lipid biosynthesis, acid stress, and the cell membrane or wall. Small-intestinal Lactobacillus populations in mice were unaffected by chronic and acute 18:2 exposure, yet harbored both 18:2- sensitive and resistant strains. This work shows that extant small intestinal lactobacilli are protected from toxic dietary components via the gut environment as well as their own capacity to evolve resistance. PMID:29580380

  11. The Effect of Boric Acid and Borax on Oxidative Stress, Inflammation, ER Stress and Apoptosis in Cisplatin Toxication and Nephrotoxicity Developing as a Result of Toxication.

    Science.gov (United States)

    Hazman, Ömer; Bozkurt, Mehmet Fatih; Fidan, Abdurrahman Fatih; Uysal, Fadime Erkan; Çelik, Sefa

    2018-03-02

    The development of treatment protocols that can reduce side effects in chemotherapy applications is extremely important in terms of cancer treatment. In this context, it was aimed to investigate the effects of boric acid and borax on cisplatin toxicity (nephrotoxicity) in rats. In the experimental phase, eight groups were formed from rats. Boric acid and borax were given to the treatment groups with three different doses using gavage. On the fifth day of the study, cisplatin (10 mg/kg) was administered to all rats except the control group. At the end of the study, oxidative stress-related (GSH, MDA, PCO, GPx, 8-OHdG), inflammation-related (TNF-α, IL-1β, IL-18, MCP-1, ICAM, TGF-β), apoptosis-related (p53, caspase 1, 3, 8, 12, bcl-2, bcl-xL, NFkB), and ER stress-related (GRP78, ATF-6, PERK) basic parameters were analyzed in serum, erythrocyte, and kidney tissues. Kidney tissues were also examined by histopathological and immunohistochemical methods. Borax and boric acid at different doses decreased inflammation and oxidative stress caused by cisplatin toxicity and increased ER stress. As a result of the treatments applied to experimental animals, it was determined that boric acid and borax reduced apoptotic damage in kidney tissue, but the decrease was statistically significant only in 200 mg/kg boric acid-administered group. In the study, low anti-apoptotic effects of borate doses with the anti-inflammatory and antioxidant effect may be due to increased ER stress at the relevant doses. Further studies on the effects of boron compounds on ER stress and apoptotic mechanisms may clarify this issue. Thus, possible side effects or if there are new usage areas of borone compounds which have many usage areas in clinics can be detected.

  12. Mechanism of oral tolerance induction to therapeutic proteins.

    Science.gov (United States)

    Wang, Xiaomei; Sherman, Alexandra; Liao, Gongxian; Leong, Kam W; Daniell, Henry; Terhorst, Cox; Herzog, Roland W

    2013-06-15

    Oral tolerance is defined as the specific suppression of humoral and/or cellular immune responses to an antigen by administration of the same antigen through the oral route. Due to its absence of toxicity, easy administration, and antigen specificity, oral tolerance is a very attractive approach to prevent unwanted immune responses that cause a variety of diseases or that complicate treatment of a disease. Many researchers have induced oral tolerance to efficiently treat autoimmune and inflammatory diseases in different animal models. However, clinical trials yielded limited success. Thus, understanding the mechanisms of oral tolerance induction to therapeutic proteins is critical for paving the way for clinical development of oral tolerance protocols. This review will summarize progress on understanding the major underlying tolerance mechanisms and contributors, including antigen presenting cells, regulatory T cells, cytokines, and signaling pathways. Potential applications, examples for therapeutic proteins and disease targets, and recent developments in delivery methods are discussed. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Response of Chlamydomonas reinhardtii to naphthenic acid exposure

    Energy Technology Data Exchange (ETDEWEB)

    Goff, K.; Wilson, K. [Saskatchewan Univ., Saskatoon, SK (Canada); Headley, J. [Environment Canada, Ottawa, ON (Canada)

    2010-07-01

    This study examined the feasibility of using a model organism for the algal bioremediation of oil sands process water (OSPW), a highly toxic mixture of sediments, bitumen, ions, and organic and inorganic compounds. Naphthenic acids (NAs) are a contaminant class of particular concern. Bioremediation techniques may mitigate toxicity of OSPW in general, and NAs in particular. Although most studies on the biodegradation of NAs focus on the role of bacteria, fungi, and emergent macrophytes, studies have indicated that algae may also play a key role through direct degradation, biosequestration, or photosynthetic aeration of waters to promote other biological reactions. Chlamydomonas frigida is of particular interest, but no cultures are currently available. Therefore, this study used C. reinhardtii, a well-characterized model organism, to begin analysis of potential algal bioremediation of OSPW. Cultures of C. reinhardtii were grown heterotrophically in nutrient media spiked with a dilution series of NAs. Culture densities were measured to compile growth curves over time, changes in rate of growth, and survivability. Negative ion electrospray mass spectrometry was used to determine the concentration of NAs in solution in relation to growth rate and culture density. The study determined the tolerance of C. reinhardtii to NAs. A mechanism for this tolerance was then proposed.

  14. Reverse of Acute and Chronic Morphine Tolerance by Lithocholic Acid via Down-regulating UGT2B7

    Directory of Open Access Journals (Sweden)

    Zizhao Yang

    2016-11-01

    Full Text Available Lithocholic acid (LCA deposited in human livers always induces drastic pains which need analgesic drug, like morphine to release. Our research showed that LCA can effectively inhibit uridine 5'-diphospho-glucuronosyltransferase 2B7 (UGT2B7 in morphine tolerance-like human normal liver cells, HL-7702, then increase μ-opioid receptor (MOR and calcium-calmodulin dependent protein kinase IIα (CaMKIIα expression. In vivo assay, UGT2B7 was significantly repressed in the livers of acute or chronic morphine tolerance mice pretreated with LCA (10, 50 and 100 mg/kg, p.o.. To investigate the connections between LCA function performance and changes of UGT2B7 enzymatic activity in mice livers, two morphine metabolites, morphine-3-glucuronide (M3G and morphine-6-glucuronide (M6G were quantified by solid phase extraction (SPE-HPLC-MS/MS. The result indicated no matter in acute or chronic morphine tolerance, the concentrations of M3G and M6G were all decreased, the later one fell even more. Besides that, 50mg/kg of LCA administration can prevent auto-phosphorylation of CaMKIIα at Thr286 in acute or chronic morphine tolerance mice prefrontal cortexes (mPFCs due to synthesis increase of cyclic adenosine monophosphate (cAMP. As a consequence, UGT2B7 depression mediated by LCA can affect its selective catalysis ability to morphine, that may be responsible to acute or chronic morphine tolerance alleviation. These findings might assist to modify antinociception of morphine in clinic.

  15. Recent advances in the risk assessment of melamine and cyanuric acid in animal feed

    Energy Technology Data Exchange (ETDEWEB)

    Dorne, Jean Lou, E-mail: jean-lou.dorne@efsa.europa.eu [Unit on Contaminants, European Food Safety Authority, Largo N. Palli 5/A, 43121 Parma (Italy); Doerge, Daniel R. [NCTR, Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Road, Jefferson, AR 72079 (United States); Vandenbroeck, Marc [Unit on Contaminants, European Food Safety Authority, Largo N. Palli 5/A, 43121 Parma (Italy); Fink-Gremmels, Johanna [University of Utrecht (Netherlands); Mennes, Wim [RIVM, Bilthoven (Netherlands); Knutsen, Helle K. [Norwegian Institute of Public Health, Oslo (Norway); Vernazza, Francesco [Dietary and Chemical Monitoring, European Food Safety Authority, Largo N. Palli 5/A, 43121 Parma (Italy); Castle, Laurence [FERA, York (United Kingdom); Edler, Lutz [German Cancer Research Center, Heidelberg (Germany); Benford, Diane [Food Standard Agency, London (United Kingdom)

    2013-08-01

    Melamine can be present at low levels in food and feed mostly from its legal use as a food contact material in laminates and plastics, as a trace contaminant in nitrogen supplements used in animal feeds, and as a metabolite of the pesticide cyromazine. The mechanism of toxicity of melamine involves dose-dependent formation of crystals with either endogenous uric acid or a structural analogue of melamine, cyanuric acid, in renal tubules resulting in potential acute kidney failure. Co-exposure to melamine and cyanuric acid in livestock, fish, pets and laboratory animals shows higher toxicity compared with melamine or cyanuric acid alone. Evidence for crystal formation between melamine and other structural analogs i.e. ammelide and ammeline is limited. Illegal pet food adulterations with melamine and cyanuric acid and adulteration of milk with melamine resulted in melamine–cyanuric acid crystals, kidney damage and deaths of cats and dogs and melamine–uric acid stones, hospitalisation and deaths of children in China respectively. Following these incidents, the tolerable daily intake for melamine was re-evaluated by the U.S. Food and Drug Administration, the World Health Organisation, and the Scientific Panel on Contaminants in the Food Chain of the European Food Safety Authority (EFSA). This review provides an overview of toxicology, the adulteration incidents and risk assessments for melamine and its structural analogues. Particular focus is given to the recent EFSA risk assessment addressing impacts on animal and human health of background levels of melamine and structural analogues in animal feed. Recent research and future directions are discussed. - Highlights: ► Melamine in food and feed. ► Forms crystals in kidney with uric acid or cyanuric acid. ► Toxicity higher with cyanuric acid. ► Recent EFSA risk assessment. ► Animal and human health.

  16. Recent advances in the risk assessment of melamine and cyanuric acid in animal feed

    International Nuclear Information System (INIS)

    Dorne, Jean Lou; Doerge, Daniel R.; Vandenbroeck, Marc; Fink-Gremmels, Johanna; Mennes, Wim; Knutsen, Helle K.; Vernazza, Francesco; Castle, Laurence; Edler, Lutz; Benford, Diane

    2013-01-01

    Melamine can be present at low levels in food and feed mostly from its legal use as a food contact material in laminates and plastics, as a trace contaminant in nitrogen supplements used in animal feeds, and as a metabolite of the pesticide cyromazine. The mechanism of toxicity of melamine involves dose-dependent formation of crystals with either endogenous uric acid or a structural analogue of melamine, cyanuric acid, in renal tubules resulting in potential acute kidney failure. Co-exposure to melamine and cyanuric acid in livestock, fish, pets and laboratory animals shows higher toxicity compared with melamine or cyanuric acid alone. Evidence for crystal formation between melamine and other structural analogs i.e. ammelide and ammeline is limited. Illegal pet food adulterations with melamine and cyanuric acid and adulteration of milk with melamine resulted in melamine–cyanuric acid crystals, kidney damage and deaths of cats and dogs and melamine–uric acid stones, hospitalisation and deaths of children in China respectively. Following these incidents, the tolerable daily intake for melamine was re-evaluated by the U.S. Food and Drug Administration, the World Health Organisation, and the Scientific Panel on Contaminants in the Food Chain of the European Food Safety Authority (EFSA). This review provides an overview of toxicology, the adulteration incidents and risk assessments for melamine and its structural analogues. Particular focus is given to the recent EFSA risk assessment addressing impacts on animal and human health of background levels of melamine and structural analogues in animal feed. Recent research and future directions are discussed. - Highlights: ► Melamine in food and feed. ► Forms crystals in kidney with uric acid or cyanuric acid. ► Toxicity higher with cyanuric acid. ► Recent EFSA risk assessment. ► Animal and human health

  17. Dual responsive dysprosium-doped hydroxyapatite particles and toxicity reduction after functionalization with folic and glucuronic acids.

    Science.gov (United States)

    Sánchez Lafarga, Ana Karen; Pacheco Moisés, Fermín P; Gurinov, Andrey; Ortiz, Genaro Gabriel; Carbajal Arízaga, Gregorio Guadalupe

    2015-03-01

    The development of probes for biomedical applications demands materials with low toxicity levels besides fluorescence or magnetic properties to be detected by confocal microscopes or MRI resonators. Several drug delivery systems or other biomedical materials prepared with hydroxyapatite have been proposed, however, toxicity effects might arise when the size of particles is nanometric. In this study, hydroxyapatite functionalized with glucuronic or folic acids presented lower oxidative stress, measured from lipoperoxides and nitric oxide indicators in rats than pure hydroxyapatite. In separated experiments, hydroxyapatite was doped with dysprosium cations by coprecipitation producing a single crystal phase with fluorescent properties easily visualized by confocal microscopy when excited at 488nm. These particles also presented the ability to modify the proton relaxation time in T1 maps collected by magnetic resonance imaging. These modified hydroxyapatite nanoparticles could be candidates to design bimodal probes with low toxicity. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. A mild pulsed electric field condition that improves acid tolerance, growth, and protease activity of Lactobacillus acidophilus LA-K and Lactobacillus delbrueckii subspecies bulgaricus LB-12.

    Science.gov (United States)

    Najim, N; Aryana, Kayanush J

    2013-06-01

    Pulsed electric field (PEF) processing involves the application of pulses of voltage for less than 1 s to fluid products placed between 2 electrodes. The effect of mild PEF on beneficial characteristics of probiotic bacteria Lactobacillus acidophilus and Lactobacillus delbrueckii ssp. bulgaricus is not clearly understood. The objective of this study was to determine the influence of mild PEF conditions on acid tolerance, growth, and protease activity of Lb. acidophilus LA-K and Lactobacillus delbrueckii ssp. bulgaricus LB-12. A pilot plant PEF system (OSU-4M; The Ohio State University, Columbus) was used. The PEF treatments were positive square unipolar pulse width of 3 µs, pulse period of 0.5s, electric field strength of 1 kV/cm, delay time of 20 µs, flow rate of 60 mL/min, and 40.5°C PEF treatment temperature. Both Lb. acidophilus LA-K and Lb. bulgaricus LB-12 subjected to mild PEF conditions were acid tolerant until the end of the 120 min of incubation, unlike the Lb. bulgaricus control, which was not acid tolerant after 30 min. The mild PEF-treated Lb. acidophilus LA-K and Lb. bulgaricus LB-12 reached the logarithmic phase of growth an hour earlier than the control. Mild PEF conditions studied significantly improved acid tolerance, exponential growth, and protease activity of both Lb. acidophilus LA-K and Lb. bulgaricus LB-12 compared with the control. The mild PEF conditions studied can be recommended for pretreating cultures to enhance these desirable attributes. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  19. Salt tolerant SUV3 overexpressing transgenic rice plants conserve physicochemical properties and microbial communities of rhizosphere.

    Science.gov (United States)

    Sahoo, Ranjan K; Ansari, Mohammad W; Tuteja, Renu; Tuteja, Narendra

    2015-01-01

    Key concerns in the ecological evaluation of GM crops are undesirably spread, gene flow, other environmental impacts, and consequences on soil microorganism's biodiversity. Numerous reports have highlighted the effects of transgenic plants on the physiology of non-targeted rhizospheric microbes and the food chain via causing adverse effects. Therefore, there is an urgent need to develop transgenics with insignificant toxic on environmental health. In the present study, SUV3 overexpressing salt tolerant transgenic rice evaluated in New Delhi and Cuttack soil conditions for their effects on physicochemical and biological properties of rhizosphere. Its cultivation does not affect soil properties viz., pH, Eh, organic C, P, K, N, Ca, Mg, S, Na and Fe(2+). Additionally, SUV3 rice plants do not cause any change in the phenotype, species characteristics and antibiotic sensitivity of rhizospheric bacteria. The population and/or number of soil organisms such as bacteria, fungi and nematodes were unchanged in the soil. Also, the activity of bacterial enzymes viz., dehydrogenase, invertase, phenol oxidases, acid phosphatases, ureases and proteases was not significantly affected. Further, plant growth promotion (PGP) functions of bacteria such as siderophore, HCN, salicylic acid, IAA, GA, zeatin, ABA, NH3, phosphorus metabolism, ACC deaminase and iron tolerance were, considerably, not influenced. The present findings suggest ecologically pertinent of salt tolerant SUV3 rice to sustain the health and usual functions of the rhizospheric organisms. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Metabolic profiles of flooding-tolerant mechanism in early-stage soybean responding to initial stress.

    Science.gov (United States)

    Wang, Xin; Zhu, Wei; Hashiguchi, Akiko; Nishimura, Minoru; Tian, Jingkui; Komatsu, Setsuko

    2017-08-01

    Metabolomic analysis of flooding-tolerant mutant and abscisic acid-treated soybeans suggests that accumulated fructose might play a role in initial flooding tolerance through regulation of hexokinase and phosphofructokinase. Soybean is sensitive to flooding stress, which markedly reduces plant growth. To explore the mechanism underlying initial-flooding tolerance in soybean, mass spectrometry-based metabolomic analysis was performed using flooding-tolerant mutant and abscisic-acid treated soybeans. Among the commonly-identified metabolites in both flooding-tolerant materials, metabolites involved in carbohydrate and organic acid displayed same profile at initial-flooding stress. Sugar metabolism was highlighted in both flooding-tolerant materials with the decreased and increased accumulation of sucrose and fructose, respectively, compared to flooded soybeans. Gene expression of hexokinase 1 was upregulated in flooded soybean; however, it was downregulated in both flooding-tolerant materials. Metabolites involved in carbohydrate/organic acid and proteins related to glycolysis/tricarboxylic acid cycle were integrated. Increased protein abundance of phosphofructokinase was identified in both flooding-tolerant materials, which was in agreement with its enzyme activity. Furthermore, sugar metabolism was pointed out as the tolerant-responsive process at initial-flooding stress with the integration of metabolomics, proteomics, and transcriptomics. Moreover, application of fructose declined the increased fresh weight of plant induced by flooding stress. These results suggest that fructose might be the critical metabolite through regulation of hexokinase and phosphofructokinase to confer initial-flooding stress in soybean.

  1. Classification of baseline toxicants for QSAR predictions to replace fish acute toxicity studies.

    Science.gov (United States)

    Nendza, Monika; Müller, Martin; Wenzel, Andrea

    2017-03-22

    Fish acute toxicity studies are required for environmental hazard and risk assessment of chemicals by national and international legislations such as REACH, the regulations of plant protection products and biocidal products, or the GHS (globally harmonised system) for classification and labelling of chemicals. Alternative methods like QSARs (quantitative structure-activity relationships) can replace many ecotoxicity tests. However, complete substitution of in vivo animal tests by in silico methods may not be realistic. For the so-called baseline toxicants, it is possible to predict the fish acute toxicity with sufficient accuracy from log K ow and, hence, valid QSARs can replace in vivo testing. In contrast, excess toxicants and chemicals not reliably classified as baseline toxicants require further in silico, in vitro or in vivo assessments. Thus, the critical task is to discriminate between baseline and excess toxicants. For fish acute toxicity, we derived a scheme based on structural alerts and physicochemical property thresholds to classify chemicals as either baseline toxicants (=predictable by QSARs) or as potential excess toxicants (=not predictable by baseline QSARs). The step-wise approach identifies baseline toxicants (true negatives) in a precautionary way to avoid false negative predictions. Therefore, a certain fraction of false positives can be tolerated, i.e. baseline toxicants without specific effects that may be tested instead of predicted. Application of the classification scheme to a new heterogeneous dataset for diverse fish species results in 40% baseline toxicants, 24% excess toxicants and 36% compounds not classified. Thus, we can conclude that replacing about half of the fish acute toxicity tests by QSAR predictions is realistic to be achieved in the short-term. The long-term goals are classification criteria also for further groups of toxicants and to replace as many in vivo fish acute toxicity tests as possible with valid QSAR

  2. TOXICOPHORES AND QUANTITATIVE STRUCTURE -TOXICITY RELATIONSHIPS FOR SOME ENVIRONMENTAL POLLUTANTS

    Directory of Open Access Journals (Sweden)

    N. N. Gorinchoy

    2008-06-01

    Full Text Available The electron-conformational (EC method is employed to reveal the toxicophore and to predict aquatic toxicity quantitatively using as a training set a series of 51 compounds that have aquatic toxicity to fish. By performing conformational analysis (optimization of geometries of the low-energy conformers by the PM3 method and electronic structure calculations (by ab initio method corrected within the SM54/PM3 solvatation model, the Electron-Conformational Matrix of Congruity (ECMC was constructed for each conformation of these compounds. The toxicophore defined as the EC sub-matrix of activity (ECSA, a sub-matrix with matrix elements common to all the active compounds under consideration within minimal tolerances, is determined by an iterative procedure of comparison of their ECMC’s, gradually minimizing the tolerances. Starting with only the four most toxic compounds, their ECSA (toxicophore was found to consists of a 4x4 matrix (four sites with certain electronic and topologic characteristics which was shown to be present in 17 most active compounds. A structure-toxicity correlation between three toxicophore parameters and the activities of these 17 compounds with R2=0.94 was found. It is shown that the same toxicophore with larger tolerances satisfies the compounds with les activity, thus explicitly demonstrating how the activity is controlled by the tolerances quantitatively and which atoms (sites are most flexible in this respect. This allows for getting slightly different toxicophores for different levels of activity. For some active compounds that have no toxicophore a bimolecular mechanism of activity is suggested. Distinguished from other QSAR methods, no arbitrary descriptors and no statistics are involved in this EC structure-activity investigation.

  3. Rapid and Simultaneous Determination of Acetylsalicylic Acid, Paracetamol, and Their Degradation and Toxic Impurity Products by HPLC in Pharmaceutical Dosage Forms

    OpenAIRE

    AKAY, Cemal

    2008-01-01

    Aims: Determinations of drug impurity and drug degradation products are very important from both pharmacological and toxicological perspectives. Establishment of monitoring methods for impurities and degradation products during pharmaceutical development is necessary because of their potential toxicity. The aim of this study was to develop a rapid and simultaneous determination method for paracetamol and acetylsalicylic acid (ACA) and their degradation and toxic impurity products by high perf...

  4. Ethylene induced plant stress tolerance by Enterobacter sp. SA187 is mediated by 2‐keto‐4‐methylthiobutyric acid production

    KAUST Repository

    Zé licourt, Axel de; Synek, Lukas; Saad, Maged; Alzubaidy, Hanin S.; Jalal, Rewaa Sauod Mohammed; Xie, Yakun; Andres-Barrao, Cristina; Rolli, Eleonora; Guerard, Florence; Mariappan, Kiruthiga; Daur, Ihsanullah; Colcombet, Jean; Benhamed, Moussa; Depaepe, Thomas; Van Der Straeten, Dominique; Hirt, Heribert

    2018-01-01

    of mechanisms related to the beneficial association of SA187 with plants. SA187 colonizes both the surface and inner tissues of Arabidopsis roots and shoots. SA187 induces salt stress tolerance by production of bacterial 2-keto-4-methylthiobutyric acid (KMBA

  5. Differential response of plants to aluminum. A review

    OpenAIRE

    Valencia R, Rubén A; Ligarreto M, Gustavo A

    2012-01-01

    Aluminum toxicity is a major limiting factor to the growth and development of plants in acidic soils worldwide, occurring in 40% of arable soils. The root seems to be the object of aluminum toxicity, particularly the apex, producing a rapid inhibition of cell division and elongation of the root. Fortunately, plants differ in their ability to tolerate aluminum and grow in acidic soils. Tolerance mechanisms have commonly been defined in genetic and physiological terms, however, tolerance mechan...

  6. Ozone tolerance in snap bean is associated with elevated ascorbic acid in the leaf apoplast

    Energy Technology Data Exchange (ETDEWEB)

    Burkey, K.O. [North Carolina State Univ., United States Dept. of Agriculture-Agricultural Research Service, and Dept. of Crop Science, Raleigh, NC (United States); Eason, G. [North Carolina, State Univ., United States Dept. of Plant Pathology, Raleigh, NC (United States)

    2002-03-01

    Ascorbic acid (AA) in the leaf apoplast has the potential to limit ozone injury by participating in reactions that detoxify ozone and reactive oxygen intermediates and thus prevent plasma membrane damage. Genotypes of snap bean (Phaseolus vulgaris L) were compared in controlled environments and in open-top field chambers to assess the relationship between extracellular AA content and ozone tolerance. Vacuum infiltration methods were employed to separate leaf AA into extracellular and intracellular fractions. For plants grown in controlled environments at low ozone concentration (4 nmol mol{sup -1} ozone), leaf apoplast AA was significantly higher in tolerant genotypes (300-400 nmol g{sup -1} FW) compared with sensitive genotypes (approximately 50 nmol g{sup -1} FW), evidence that ozone tolerance is associated with elevated extracellular AA. For the open top chamber study, plants were grown in pots under charcoal-filtered air (CF) conditions and then either maintained under CF conditions (29 nmol mol{sup -1} ozone) or exposed to elevated ozone (67 nmol mol{sup -1} ozone). Following an 8-day treatment period, leaf apoplast AA was in the range of 100-190 nmol g{sup -1} FW for all genotypes, but no relationship was observed between apoplast AA content and ozone tolerance. The contrasting results in the two studies demonstrated a potential limitation in the interpretation of extracellular AA data. Apoplast AA levels presumably reflect the steady-state condition between supply from the cytoplasm and utilization within the cell wall. The capacity to detoxify ozone in the extracellular space may be underestimated under elevated ozone conditions where the dynamics of AA supply and utilization are not adequately represented by a steady-state measurement. (au)

  7. Increase in furfural tolerance by combinatorial overexpression of NAD salvage pathway enzymes in engineered isobutanol-producing E. coli.

    Science.gov (United States)

    Song, Hun-Suk; Jeon, Jong-Min; Kim, Hyun-Joong; Bhatia, Shashi Kant; Sathiyanarayanan, Ganesan; Kim, Junyoung; Won Hong, Ju; Gi Hong, Yoon; Young Choi, Kwon; Kim, Yun-Gon; Kim, Wooseong; Yang, Yung-Hun

    2017-12-01

    To reduce the furfural toxicity for biochemical production in E. coli, a new strategy was successfully applied by supplying NAD(P)H through the nicotine amide salvage pathway. To alleviate the toxicity, nicotinamide salvage pathway genes were overexpressed in recombinant, isobutanol-producing E. coli. Gene expression of pncB and nadE respectively showed increased tolerance to furfural among these pathways. The combined expression of pncB and nadE was the most effective in increasing the tolerance of the cells to toxic aldehydes. By comparing noxE- and fdh-harbouring strains, the form of NADH, rather than NAD + , was the major effector of furfural tolerance. Overall, this study is the application of the salvage pathway to isobutanol production in the presence of furfural, and this system seems to be applicable to alleviate furfural toxicity in the production of other biochemical. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Identification, stress tolerance, and antioxidant activity of lactic acid bacteria isolated from tropically grown fruits and leaves.

    Science.gov (United States)

    Fessard, Amandine; Bourdon, Emmanuel; Payet, Bertrand; Remize, Fabienne

    2016-07-01

    From 6 samples of tropically grown fruits and leaves, 10 lactic acid bacteria belonging Leuconostoc, Weissella, and Lactobacillus species were isolated and identified by 16S rRNA gene sequencing and (GTG)5 fingerprinting. Acidification kinetics determined from BHI broth cultures showed genus-related patterns. In particular, Weissella cibaria appeared to act as a potent acidifier. Tolerance of isolates to acid, oxidative, or salt stress was highly variable and strain dependent. Isolate S14 (Leuconostoc pseudomesenteroides) growth was not affected by the presence of 0.05% H2O2, while Lactobacillus spp. isolates (S17 and S29) were the most tolerant to pH 4.5. The growth of 4 isolates, S5 (Leuconostoc mesenteroides), S14 and S10 (Leuconostoc pseudomesenteroides), and S27 (W. cibaria), was not affected by 5% NaCl. Nutritional beneficial properties were examined through measurement of antioxidant activities of short-term fermented pineapple juice, such as LDL oxidation and polyphenol content, and through exopolysaccharide formation from sucrose. Two isolates, S14 and S27, increased the antioxidant capacity of pineapple juice. The robust capacity of W. cibaria and of Leuconostoc pseudomesenteroides for vegetable lactic fermentation aimed to ameliorate food nutritional and functional quality was highlighted.

  9. Deficiency of PdxR in Streptococcus mutans affects vitamin B6 metabolism, acid tolerance response and biofilm formation.

    Science.gov (United States)

    Liao, S; Bitoun, J P; Nguyen, A H; Bozner, D; Yao, X; Wen, Z T

    2015-08-01

    Streptococcus mutans, a key etiological agent of the human dental caries, lives primarily on the tooth surface in tenacious biofilms. The SMU864 locus, designated pdxR, is predicted to encode a member of the novel MocR/GabR family proteins, which are featured with a winged helix DNA-binding N-terminal domain and a C-terminal domain highly homologous to the pyridoxal phosphate-dependent aspartate aminotransferases. A pdxR-deficient mutant, TW296, was constructed using allelic exchange. PdxR deficiency in S. mutans had little effect on cell morphology and growth when grown in brain heart infusion. However, when compared with its parent strain, UA159, the PdxR-deficient mutant displayed major defects in acid tolerance response and formed significantly fewer biofilms (P mutans is known to require vitamin B6 to grow in defined medium, B6 vitamers, especially pyridoxal, were strongly inhibitory at millimolar concentrations, against S. mutans growth and biofilm formation. Our results suggest that PdxR in S. mutans plays an important role in regulation of vitamin B6 metabolism, acid tolerance response and biofilm formation. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Boron stress response and accumulation potential of the extremely tolerant species Puccinellia frigida.

    Science.gov (United States)

    Rámila, Consuelo D P; Contreras, Samuel A; Di Domenico, Camila; Molina-Montenegro, Marco A; Vega, Andrea; Handford, Michael; Bonilla, Carlos A; Pizarro, Gonzalo E

    2016-11-05

    Phytoremediation is a promising technology to tackle boron toxicity, which restricts agricultural activities in many arid and semi-arid areas. Puccinellia frigida is a perennial grass that was reported to hyperaccumulate boron in extremely boron-contaminated sites. To further investigate its potential for phytoremediation, we determined its response to boron stress under controlled conditions (hydroponic culture). Also, as a first step towards understanding the mechanisms underlying its extreme tolerance, we evaluated the presence and expression of genes related with boron tolerance. We found that P. frigida grew normally even at highly toxic boron concentrations in the medium (500mg/L), and within its tissues (>5000mg/kg DW). We postulate that the strategies conferring this extreme tolerance involve both restricting boron accumulation and an internal tolerance mechanism; this is consistent with the identification of putative genes involved in both mechanisms, including the expression of a possible boron efflux transporter. We also found that P. frigida hyperaccumulated boron over a wide range of boron concentrations. We propose that P. frigida could be used for boron phytoremediation strategies in places with different soil characteristics and boron concentrations. Further studies should pave the way for the development of clean and low-cost solutions to boron toxicity problems. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Toxicity of the styrene metabolite, phenylglyoxylic acid, in rats after three months' oral dosing

    DEFF Research Database (Denmark)

    Ladefoged, Ole; Lam, Henrik Rye; Ostergaard, G.

    1998-01-01

    Male Wistar rats were dosed with 0, 1250, 3750 or 5000 mg/l of phenylglyoxylic acid (PGA) (CAS no. 611-73-4) in the drinking water ad libitum for 3 months. During the entire treatment period, there were no gross signs of toxicity related to PGA. No changes in neurobehavior were found after using ....... Alternatively, the ototoxicity of styrene, like toluene, may be caused the parent compound itself and not by a metabolite like PGA. (C) 1998 Inter Press, inc....

  12. Effectiveness and Mechanisms of Antagonism of Toxic Effects of Cyanide by Alpha-Keto Acids.

    Science.gov (United States)

    1986-12-31

    until the miss-w near death. Lethal blood levels of cyanide in alpha-KG treated animl. as levels of 5-7 mcg cyani0e, which so 5-7 times the expected...lethal levels . rwm these studies, alpha-KC is effettive in antagonising administered dos of CH of five time the lethal dose before the toxic effects are...parameters in the dog .................. 26 Table 6 The effects of cyanide on 2,3 diphosphoglyceric acid .......... 28 Table 7 Stability of solution of ci

  13. A Nucleocytoplasmic Shuttling Protein in Oxidative Stress Tolerance

    Energy Technology Data Exchange (ETDEWEB)

    Ow, David W.; Song, Wen

    2003-03-26

    Plants for effective extraction of toxic metals and radionuclides must tolerate oxidative stress. To identify genes that enhance oxidative stress tolerance, an S. pombe cDNA expression plasmid library was screened for the ability to yield hypertolerant colonies. Here, we report on the properties of one gene that confers hypertolerance to cadmium and oxidizing chemicals. This gene appears to be conserved in other organisms as homologous genes are found in human, mouse, fruitfly and Arabidopsis. The fruitfly and Arabidopsis genes likewise enhance oxidative stress tolerance in fission yeast. During oxidative stress, the amount of mRNA does not change, but protein fusions to GFP relocate from the cytoplasm to the nucleus. The same pattern is observed with the Arabidopsis homologue-GFP fusion protein. This behavior suggests a signaling role in oxidative stress tolerance and these conserved proteins may be targets for engineering stress tolerant plants for phytoremediation.

  14. Genotypes Associated with Listeria monocytogenes Isolates Displaying Impaired or Enhanced Tolerances to Cold, Salt, Acid, or Desiccation Stress

    Science.gov (United States)

    Hingston, Patricia; Chen, Jessica; Dhillon, Bhavjinder K.; Laing, Chad; Bertelli, Claire; Gannon, Victor; Tasara, Taurai; Allen, Kevin; Brinkman, Fiona S. L.; Truelstrup Hansen, Lisbeth; Wang, Siyun

    2017-01-01

    The human pathogen Listeria monocytogenes is a large concern in the food industry where its continuous detection in food products has caused a string of recalls in North America and Europe. Most recognized for its ability to grow in foods during refrigerated storage, L. monocytogenes can also tolerate several other food-related stresses with some strains possessing higher levels of tolerances than others. The objective of this study was to use a combination of phenotypic analyses and whole genome sequencing to elucidate potential relationships between L. monocytogenes genotypes and food-related stress tolerance phenotypes. To accomplish this, 166 L. monocytogenes isolates were sequenced and evaluated for their ability to grow in cold (4°C), salt (6% NaCl, 25°C), and acid (pH 5, 25°C) stress conditions as well as survive desiccation (33% RH, 20°C). The results revealed that the stress tolerance of L. monocytogenes is associated with serotype, clonal complex (CC), full length inlA profiles, and the presence of a plasmid which was identified in 55% of isolates. Isolates with full length inlA exhibited significantly (p monocytogenes sequence types, a new inlA PMSC, and several connections between CCs and the presence/absence or variations of specific genetic elements. A whole genome single-nucleotide-variants phylogeny revealed sporadic distribution of tolerant isolates and closely related sensitive and tolerant isolates, highlighting that minor genetic differences can influence the stress tolerance of L. monocytogenes. Specifically, a number of cold and desiccation sensitive isolates contained PMSCs in σB regulator genes (rsbS, rsbU, rsbV). Collectively, the results suggest that knowing the sequence type of an isolate in addition to screening for the presence of full-length inlA and a plasmid, could help food processors and food agency investigators determine why certain isolates might be persisting in a food processing environment. Additionally, increased

  15. Multi-generation cadmium acclimation and tolerance in Daphnia magna Straus

    International Nuclear Information System (INIS)

    Muyssen, Brita T.A.; Janssen, Colin R.

    2004-01-01

    The cladoceran Daphnia magna was acclimated for seven generations to cadmium concentrations ranging from 0 (control) to 250 μg/l Cd (corresponding to a free ion activity of 4.60 nM Cd 2+ ). Acute and chronic cadmium tolerance as well as cadmium accumulation were monitored as a function of acclimation time. After two to three generations of acclimation to concentrations ranging from 0.23 to 1.11 nM Cd 2+ increases in acute tolerance were maximal (factor 7.2) and significant. Acclimation for seven generations to the same acclimation concentrations did result in an increased chronic cadmium tolerance (21 days EC 50 values increased). Organisms acclimated to 1.93 nM Cd 2+ were equally or more sensitive than non-acclimated daphnids in acute and chronic toxicity tests. Cadmium contents in D. magna increased significantly as a function of the acclimation concentration. Maximum body burdens of 236±30 μg Cd/g dry weight were measured in organisms exposed to 4.60 nM Cd 2+ , but detoxification mechanisms were only successful up to 82±20 μg Cd/g dry weight as this concentration did not cause major decreases in survival and reproduction in chronic toxicity tests. As the potential positive effect of acclimation on cadmium tolerance disappeared with successive acclimation generations and increasing acclimation concentrations, it is concluded that multi-generation acclimation studies are important for the evaluation of the long-term effects of environmental toxicants. - Multi-generation acclimation studies are important for evaluating long-term effects of aquatic pollutants

  16. Hydroxamic acid content and toxicity of rye at selected growth stages.

    Science.gov (United States)

    Rice, Clifford P; Park, Yong Bong; Adam, Frédérick; Abdul-Baki, Aref A; Teasdale, John R

    2005-08-01

    Rye (Secale cereale L.) is an important cover crop that provides many benefits to cropping systems including weed and pest suppression resulting from allelopathic substances. Hydroxamic acids have been identified as allelopathic compounds in rye. This research was conducted to improve the methodology for quantifying hydroxamic acids and to determine the relationship between hydroxamic acid content and phytotoxicity of extracts of rye root and shoot tissue harvested at selected growth stages. Detection limits for an LC/MS-MS method for analysis of hydroxamic acids from crude aqueous extracts were better than have been reported previously. (2R)-2-beta-D-Glucopyranosyloxy-4-hydroxy-(2H)-1,4-benzoxazin-3(4H)-one (DIBOA-G), 2,4-dihydroxy-(2H)-1,4-benzoxazin-3(4H)-one (DIBOA), benzoxazolin-2(3H)-one (BOA), and the methoxy-substituted form of these compounds, (2R)-2-beta-D-glucopyranosyloxy-4-hydroxy-7-methoxy-(2H)-1,4-benzoxazin-3(4H)-one (DIMBOA glucose), 2,4-hydroxy-7-methoxy-(2H)-1,4-benzoxazin-3(4H)-one (DIMBOA), and 6-methoxy-benzoxazolin-2(3H)-one (MBOA), were all detected in rye tissue. DIBOA and BOA were prevalent in shoot tissue, whereas the methoxy-substituted compounds, DIMBOA glucose and MBOA, were prevalent in root tissue. Total hydroxamic acid concentration in rye tissue generally declined with age. Aqueous crude extracts of rye shoot tissue were more toxic than extracts of root tissue to lettuce (Lactuca sativa L.) and tomato (Lycopersicon esculentum Mill.) root length. Extracts of rye seedlings (Feekes growth stage 2) were most phytotoxic, but there was no pattern to the phytotoxicity of extracts of rye sampled at growth stages 4 to 10.5.4, and no correlation of hydroxamic acid content and phytotoxicity (I50 values). Analysis of dose-response model slope coefficients indicated a lack of parallelism among models for rye extracts from different growth stages, suggesting that phytotoxicity may be attributed to compounds with different modes of action at

  17. Angiotensin II type 1 receptor blockers increase tolerance of cells to copper and cisplatin

    Directory of Open Access Journals (Sweden)

    Pieter Spincemaille

    2014-10-01

    Full Text Available The human pathology Wilson disease (WD is characterized by toxic copper (Cu accumulation in brain and liver, resulting in, among other indications, mitochondrial dysfunction and apoptosis of hepatocytes. In an effort to identify novel compounds that can alleviate Cu-induced toxicity, we screened the Pharmakon 1600 repositioning library using a Cu-toxicity yeast screen. We identified 2 members of the drug class of Angiotensin II Type 1 receptor blockers (ARBs that could increase yeast tolerance to Cu, namely Candesartan and Losartan. Subsequently, we show that specific ARBs can increase yeast tolerance to Cu and/or the chemotherapeutic agent cisplatin (Cp. The latter also induces mitochondrial dysfunction and apoptosis in mammalian cells. We further demonstrate that specific ARBs can prevent the prevalence of Cu-induced apoptotic markers in yeast, with Candesartan Cilexetil being the ARB which demonstrated most pronounced reduction of apoptosis-related markers. Next, we tested the sensitivity of a selection of yeast knockout mutants affected in detoxification of reactive oxygen species (ROS and Cu for Candesartan Cilexetil rescue in presence of Cu. These data indicate that Candesartan Cilexetil increases yeast tolerance to Cu irrespectively of major ROS-detoxifying proteins. Finally, we show that specific ARBs can increase mammalian cell tolerance to Cu, as well as decrease the prevalence of Cu-induced apoptotic markers. All the above point to the potential of ARBs in preventing Cu-induced toxicity in yeast and mammalian cells.

  18. SALT TOLERANCE OF CROP PLANTS

    OpenAIRE

    Hamdia, M. A; Shaddad, M. A. K.

    2010-01-01

    Several environmental factors adversely affect plant growth and development and final yield performance of a crop. Drought, salinity, nutrient imbalances (including mineral toxicities and deficiencies) and extremes of temperature are among the major environmental constraints to crop productivity worldwide. Development of crop plants with stress tolerance, however, requires, among others, knowledge of the physiological mechanisms and genetic controls of the contributing traits at different pla...

  19. Linking hydrogen-mediated boron toxicity tolerance with improvement of root elongation, water status and reactive oxygen species balance: a case study for rice.

    Science.gov (United States)

    Wang, Yu; Duan, Xingliang; Xu, Sheng; Wang, Ren; Ouyang, Zhaozeng; Shen, Wenbiao

    2016-12-01

    Boron is essential for plant growth but hazardous when present in excess. As the antioxidant properties of hydrogen gas (H 2 ) were recently described in plants, oxidative stress induced by excess boron was investigated along with other biological responses during rice (Oryza sativa) seed germination to study the beneficial role of H 2 METHODS: Rice seeds were pretreated with exogenous H 2 Using physiological, pharmacological and molecular approaches, the production of endogenous H 2 , growth status, reactive oxygen species (ROS) balance and relative gene expression in rice were measured under boron stress to investigate mechanisms of H 2 -mediated boron toxicity tolerance. In our test, boron-inhibited seed germination and seedling growth, and endogenous H 2 production, were obviously blocked by exogenously applying H 2 The re-establishment of ROS balance was confirmed by reduced lipid peroxidation and ROS accumulation. Meanwhile, activities of catalase (CAT) and peroxidase (POX) were increased. Suppression of pectin methylesterase (PME) activity and downregulation of PME transcripts by H 2 were consistent with the alleviation of root growth inhibition caused by boron. Water status was improved as well. This result was confirmed by the upregulation of genes encoding specific aquaporins (AQPs), the maintenance of low osmotic potential and high content of soluble sugar. Increased transcription of representative AQP genes (PIP2;7 in particular) and BOR2 along with decreased BOR1 mRNA may contribute to lowering boron accumulation. Hydrogen provides boron toxicity tolerance mainly by improving root elongation, water status and ROS balance. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. A combined physiological and proteomic approach to reveal lactic-acid-induced alterations in Lactobacillus casei Zhang and its mutant with enhanced lactic acid tolerance.

    Science.gov (United States)

    Wu, Chongde; Zhang, Juan; Chen, Wei; Wang, Miao; Du, Guocheng; Chen, Jian

    2012-01-01

    Lactobacillus casei has traditionally been recognized as a probiotic and frequently used as an adjunct culture in fermented dairy products, where acid stress is an environmental condition commonly encountered. In the present study, we carried out a comparative physiological and proteomic study to investigate lactic-acid-induced alterations in Lactobacillus casei Zhang (WT) and its acid-resistant mutant. Analysis of the physiological data showed that the mutant exhibited 33.8% higher glucose phosphoenolpyruvate:sugar phosphotransferase system activity and lower glycolytic pH compared with the WT under acidic conditions. In addition, significant differences were detected in both cells during acid stress between intracellular physiological state, including intracellular pH, H(+)-ATPase activity, and intracellular ATP pool. Comparison of the proteomic data based on 2D-DIGE and i-TRAQ indicated that acid stress invoked a global change in both strains. The mutant protected the cells against acid damage by regulating the expression of key proteins involved in cellular metabolism, DNA replication, RNA synthesis, translation, and some chaperones. Proteome results were validated by Lactobacillus casei displaying higher intracellular aspartate and arginine levels, and the survival at pH 3.3 was improved 1.36- and 2.10-fold by the addition of 50-mM aspartate and arginine, respectively. To our knowledge, this is the first demonstration that aspartate may be involved in acid tolerance in Lactobacillus casei. Results presented here may help us understand acid resistance mechanisms and help formulate new strategies to enhance the industrial applications of this species.

  1. Diglycolic acid, the toxic metabolite of diethylene glycol, chelates calcium and produces renal mitochondrial dysfunction in vitro.

    Science.gov (United States)

    Conrad, Taylor; Landry, Greg M; Aw, Tak Yee; Nichols, Royce; McMartin, Kenneth E

    2016-07-01

    Diethylene glycol (DEG) has caused many cases of acute kidney injury and deaths worldwide. Diglycolic acid (DGA) is the metabolite responsible for the renal toxicity, but its toxic mechanism remains unclear. To characterize the mitochondrial dysfunction produced from DGA by examining several mitochondrial processes potentially contributing to renal cell toxicity. The effect of DGA on mitochondrial membrane potential was examined in normal human proximal tubule (HPT) cells. Isolated rat kidney mitochondria were used to assess the effects of DGA on mitochondrial function, including respiratory parameters (States 3 and 4), electron transport chain complex activities and calcium-induced opening of the mitochondrial permeability transition pore. DGA was compared with ethylene glycol tetraacetic acid (EGTA) to determine calcium chelating ability. DGA cytotoxicity was assessed using lactate dehydrogenase leakage from cultured proximal tubule cells. DGA decreased the mitochondrial membrane potential in HPT cells. In rat kidney mitochondria, DGA decreased State 3 respiration, but did not affect State 4 respiration or the ADP/O ratio. DGA reduced glutamate/malate respiration at lower DGA concentrations (0.5 mmol/L) than succinate respiration (100 mmol/L). DGA inhibited Complex II activity without altering Complex I, III or IV activities. DGA blocked calcium-induced mitochondrial swelling, indicating inhibition of the calcium-dependent mitochondrial permeability transition. DGA and EGTA reduced the free calcium concentration in solution in an equimolar manner. DGA toxicity and mitochondrial dysfunction occurred as similar concentrations. DGA inhibited mitochondrial respiration, but without uncoupling oxidative phosphorylation. The more potent effect of DGA on glutamate/malate respiration and the inhibition of mitochondrial swelling was likely due to its chelation of calcium. These results indicate that DGA produces mitochondrial dysfunction by chelating calcium to

  2. Cd and Zn interactions and toxicity in ectomycorrhizal basidiomycetes in axenic culture

    Directory of Open Access Journals (Sweden)

    Vinicius H. De Oliveira

    2018-03-01

    Full Text Available Background Metal contamination in soils affects both above- and belowground communities, including soil microorganisms. Ectomycorrhizal (ECM fungi are an important component in belowground community and tolerant strains have great potential in enhancing plant-based remediation techniques. We assessed cadmium and zinc toxicity in five ECM species in liquid media (Hebeloma subsaponaceum; H. cylindrosporum; H. crustuliniforme; Scleroderma sp.; Austroboletus occidentalis and investigated the potential of Zn to alleviate Cd toxicity. Due to highly divergent results reported in the literature, liquid and solid media were compared experimentally for the first time in terms of differential toxicity thresholds in Cd and Zn interactions. Methods A wide range of Cd and Zn concentrations were applied to ectomycorrhizal fungi in axenic cultures (in mg L−1: 0; 1; 3; 9; 27; 81; 243 for the Cd treatments, and 0; 1; 30; 90; 270; 810; 2,430 for Zn. Combined Zn and Cd treatments were also applied to H. subsaponaceum and Scleroderma sp. Dry weight was recorded after 30 days, and in case of solid medium treatments, radial growth was also measured. Results and Discussion All species were adversely affected by high levels of Cd and Zn, and A. occidentalis was the most sensitive, with considerable biomass decrease at 1 mg L−1 Cd, while Scleroderma sp. and H. subsaponaceum were the most tolerant, which are species commonly found in highly contaminated sites. Cd was generally 10 times more toxic than Zn, which may explain why Zn had little impact in alleviating Cd effects. In some cases, Cd and Zn interactions led to a synergistic toxicity, depending on the concentrations applied and type of media used. Increased tolerance patterns were detected in fungi grown in solid medium and may be the cause of divergent toxicity thresholds found in the literature. Furthermore, solid medium allows measuring radial growth/mycelial density as endpoints which are informative and in

  3. The Origin of Sulfur Tolerance in Supported Platinum Catalysts: The Relationship between Structural and Catalytic Properties in Acidic and Alkaline Pt/LTL.

    NARCIS (Netherlands)

    Koningsberger, D.C.; Miller, J.T.

    1996-01-01

    The reactivity, structure, and sulfur tolerance is compared for platinum supported on acidic and alkaline LTL zeolite. In the absence of sulfur, EXAFS spectroscopy indicates that small metallic platinum particles of approximately 6 to 14 atoms/cluster are present. The TOF for neopentane

  4. Homology modeling and docking studies of a Δ9-fatty acid desaturase from a Cold-tolerant Pseudomonas sp. AMS8

    Directory of Open Access Journals (Sweden)

    Lawal Garba

    2018-03-01

    Full Text Available Membrane-bound fatty acid desaturases perform oxygenated desaturation reactions to insert double bonds within fatty acyl chains in regioselective and stereoselective manners. The Δ9-fatty acid desaturase strictly creates the first double bond between C9 and 10 positions of most saturated substrates. As the three-dimensional structures of the bacterial membrane fatty acid desaturases are not available, relevant information about the enzymes are derived from their amino acid sequences, site-directed mutagenesis and domain swapping in similar membrane-bound desaturases. The cold-tolerant Pseudomonas sp. AMS8 was found to produce high amount of monounsaturated fatty acids at low temperature. Subsequently, an active Δ9-fatty acid desaturase was isolated and functionally expressed in Escherichia coli. In this paper we report homology modeling and docking studies of a Δ9-fatty acid desaturase from a Cold-tolerant Pseudomonas sp. AMS8 for the first time to the best of our knowledge. Three dimensional structure of the enzyme was built using MODELLER version 9.18 using a suitable template. The protein model contained the three conserved-histidine residues typical for all membrane-bound desaturase catalytic activity. The structure was subjected to energy minimization and checked for correctness using Ramachandran plots and ERRAT, which showed a good quality model of 91.6 and 65.0%, respectively. The protein model was used to preform MD simulation and docking of palmitic acid using CHARMM36 force field in GROMACS Version 5 and Autodock tool Version 4.2, respectively. The docking simulation with the lowest binding energy, −6.8 kcal/mol had a number of residues in close contact with the docked palmitic acid namely, Ile26, Tyr95, Val179, Gly180, Pro64, Glu203, His34, His206, His71, Arg182, Thr85, Lys98 and His177. Interestingly, among the binding residues are His34, His71 and His206 from the first, second, and third conserved histidine motif, respectively

  5. Assessment of cadmium accumulation, toxicity, and tolerance in Brassicaceae and Fabaceae plants--implications for phytoremediation.

    Science.gov (United States)

    Anjum, Naser A; Umar, Shahid; Iqbal, Muhammad

    2014-09-01

    This study, based on a greenhouse pot culture experiment conducted with 15-day-old rapeseed (Brassica campestris L. cv. Pusa Gold; family Brassicaceae) and moong bean (Vigna radiata L. Wilczek cv. Pusa Ratna; family Fabaceae) plants treated with cadmium (Cd) concentrations (0, 50, and 100 mg kg(-1) soil), investigates their potential for Cd accumulation and tolerance, and dissects the underlying basic physiological/biochemical mechanisms. In both species, plant dry mass decreased, while Cd concentration of both root and shoot increased with increase in soil Cd. Roots harbored a higher amount of Cd (vs. shoot) in B. campestris, while the reverse applied to V. radiata. By comparison, root Cd concentration was higher in B. campestris than in V. radiata. The high Cd concentrations in B. campestris roots and V. radiata shoots led to significant elevation in oxidative indices, as measured in terms of electrolyte leakage, H2O2 content, and lipid peroxidation. Both plants displayed differential adaptation strategies to counteract the Cd burden-caused anomalies in their roots and shoots. In B. campestris, increasing Cd burden led to a significantly decreased reduced glutathione (GSH) content but a significant increase in activities of GSH reductase (GR), GSH peroxidase (GPX), and GSH sulfotransferase (GST). However, in V. radiata, increasing Cd burden caused significant increase in GSH content and GR activity, but a significant decline in activities of GPX and GST. Cross talks on Cd burden of tissues and the adapted Cd tolerance strategies against Cd burden-accrued toxicity indicated that B. campestris and V. radiata are good Cd stabilizer and Cd extractor, respectively, wherein a fine tuning among the major components (GR, GPX, GST, GSH) of the GSH redox system helped the plants to counteract differentially the Cd load-induced anomalies in tissues. On the whole, the physiological/biochemical characterization of the B. campestris and V. radiata responses to varying Cd

  6. Alleviation of cadmium toxicity in Medicago sativa by hydrogen-rich water

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Weiti; Gao, Cunyi; Fang, Peng [College of Life Sciences, Nanjing Agricultural University, Nanjing 210095 (China); Lin, Guoqing [Laboratory Center of Life Sciences, Co. Laboratory of Nanjing Agricultural University and Carl Zeiss Far East, Nanjing Agricultural University, Nanjing 210095 (China); Shen, Wenbiao, E-mail: wbshenh@njau.edu.cn [College of Life Sciences, Nanjing Agricultural University, Nanjing 210095 (China)

    2013-09-15

    Highlights: • HRW can alleviate Cd-induced alfalfa seedling growth inhibition and DNA laddering. • HRW alleviates Cd-induced oxidative stress by activating antioxidant enzymes. • Cd uptake in alfalfa seedling roots was decreased by HRW. • HRW can re-establish glutathione homeostasis under Cd stress. -- Abstract: Hydrogen gas (H{sub 2}) induces plant tolerance to several abiotic stresses, including salinity and paraquat exposure. However, the role of H{sub 2} in cadmium (Cd)-induced stress amelioration is largely unknown. Here, pretreatment with hydrogen-rich water (HRW) was used to characterize physiological roles and molecular mechanisms of H{sub 2} in the alleviation of Cd toxicity in alfalfa plants. Our results showed that the addition of HRW at 10% saturation significantly decreased contents of thiobarbituric acid reactive substances (TBARS) caused by Cd, and inhibited the appearance of Cd toxicity symptoms, including the improvement of root elongation and seedling growth. These responses were related to a significant increase in the total or isozymatic activities of representative antioxidant enzymes, or their corresponding transcripts. In vivo imaging of reactive oxygen species (ROS), and the detection of lipid peroxidation and the loss of plasma membrane integrity provided further evidence for the ability of HRW to improve Cd tolerance significantly, which was consistent with a significant enhancement of the ratio of reduced/oxidized (homo)glutathione ((h)GSH). Additionally, plants pretreated with HRW accumulated less amounts of Cd. Together, this study suggested that the usage of HRW could be an effective approach for Cd detoxification and could be explored in agricultural production systems.

  7. Alleviation of cadmium toxicity in Medicago sativa by hydrogen-rich water

    International Nuclear Information System (INIS)

    Cui, Weiti; Gao, Cunyi; Fang, Peng; Lin, Guoqing; Shen, Wenbiao

    2013-01-01

    Highlights: • HRW can alleviate Cd-induced alfalfa seedling growth inhibition and DNA laddering. • HRW alleviates Cd-induced oxidative stress by activating antioxidant enzymes. • Cd uptake in alfalfa seedling roots was decreased by HRW. • HRW can re-establish glutathione homeostasis under Cd stress. -- Abstract: Hydrogen gas (H 2 ) induces plant tolerance to several abiotic stresses, including salinity and paraquat exposure. However, the role of H 2 in cadmium (Cd)-induced stress amelioration is largely unknown. Here, pretreatment with hydrogen-rich water (HRW) was used to characterize physiological roles and molecular mechanisms of H 2 in the alleviation of Cd toxicity in alfalfa plants. Our results showed that the addition of HRW at 10% saturation significantly decreased contents of thiobarbituric acid reactive substances (TBARS) caused by Cd, and inhibited the appearance of Cd toxicity symptoms, including the improvement of root elongation and seedling growth. These responses were related to a significant increase in the total or isozymatic activities of representative antioxidant enzymes, or their corresponding transcripts. In vivo imaging of reactive oxygen species (ROS), and the detection of lipid peroxidation and the loss of plasma membrane integrity provided further evidence for the ability of HRW to improve Cd tolerance significantly, which was consistent with a significant enhancement of the ratio of reduced/oxidized (homo)glutathione ((h)GSH). Additionally, plants pretreated with HRW accumulated less amounts of Cd. Together, this study suggested that the usage of HRW could be an effective approach for Cd detoxification and could be explored in agricultural production systems

  8. Genome shuffling of Saccharomyces cerevisiae through recursive population mating to evolve tolerance to inhibitors of Spent Sulfite Liquor

    Energy Technology Data Exchange (ETDEWEB)

    Martin, V.J.J.; Pinel, D.J.; D' aoust, F. [Concordia Univ., Montreal, PQ (Canada). Dept. of Biological Sciences; Bajwa, P.K.; Trevors, J.T.; Lee, H. [Guelph Univ., ON (Canada). Dept. of Environmental Biology

    2009-07-01

    The biochemical steps in the conversion of cellulosics to biofuels include the pretreatment, hydrolysis and fermentation of substrates into a final product. Fermentation of lignocellulosic substrates derived from waste biomass requires metabolic engineering. A biochemical flow chart from the Tembec Biorefinery plant was presented in which Spent Sulfite Liquor (SSL) was used to add value to the pulp and paper industry. The sugars contained in this carbohydrate-rich effluent from sulfite pulping were used to produce ethanol. A robust, ethanologenic microorganism that can withstand the substrate toxicity was needed. Saccharomyces cerevisiae is currently used for the production of ethanol from SSL. This yeast will succumb to toxicity and inhibition, particularly in the most inhibitor rich forms of SSL such as hardwood SSL (HWSSL). A genome shuffling method was therefore developed to create a better SSL fermenting strain. This method was designed to improve polygenic traits by generating pools of mutants with improved phenotypes, followed by iterative recombination between their genomes. Through 5 rounds of recursive mating and screening, 3 strains that could survive and grow in undiluted HWSSL were obtained. The study demonstrated that the tolerance of these strains to SSL translates into an increased capacity to produce ethanol over time using this substrate, due to continued viability of the yeast population. Phenotypic analysis of the three strains revealed that the genome shuffling approach successfully co-evolved tolerance to acetic acid, NaCl (osmotic) and HMF. A systems biology analysis of strain R57 was initiated in order to establish the genetic basis for HWSSL tolerance. tabs., figs.

  9. Effects of heat, cold, acid and bile salt adaptations on the stress tolerance and protein expression of kefir-isolated probiotic Lactobacillus kefiranofaciens M1.

    Science.gov (United States)

    Chen, Ming-Ju; Tang, Hsin-Yu; Chiang, Ming-Lun

    2017-09-01

    Lactobacillus kefiranofaciens M1 is a probiotic strain isolated from Taiwanese kefir grains. The present study evaluated the effects of heat, cold, acid and bile salt adaptations on the stress tolerance of L. kefiranofaciens M1. The regulation of protein expression of L. kefiranofaciens M1 under these adaptation conditions was also investigated. The results showed that adaptation of L. kefiranofaciens M1 to heat, cold, acid and bile salts induced homologous tolerance and cross-protection against heterologous challenge. The extent of induced tolerance varied depending on the type and condition of stress. Proteomic analysis revealed that 27 proteins exhibited differences in expression between non-adapted and stress-adapted L. kefiranofaciens M1 cells. Among these proteins, three proteins involved in carbohydrate metabolism (triosephosphate isomerase, enolase and NAD-dependent glycerol-3-phosphate dehydrogenase), two proteins involved in pH homeostasis (ATP synthase subunits AtpA and AtpB), two stress response proteins (chaperones DnaK and GroEL) and one translation-related protein (30S ribosomal protein S2) were up-regulated by three of the four adaptation treatments examined. The increased synthesis of these stress proteins might play a critical protective role in the cellular defense against heat, cold, acid and bile salt stresses. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Abscisic acid induces biosynthesis of bisbibenzyls and tolerance to UV-C in the liverwort Marchantia polymorpha.

    Science.gov (United States)

    Kageyama, Akito; Ishizaki, Kimitsune; Kohchi, Takayuki; Matsuura, Hideyuki; Takahashi, Kosaku

    2015-09-01

    Environmental stresses are effective triggers for the biosynthesis of various secondary metabolites in plants, and phytohormones such as jasmonic acid and abscisic acid are known to mediate such responses in flowering plants. However, the detailed mechanism underlying the regulation of secondary metabolism in bryophytes remains unclear. In this study, the induction mechanism of secondary metabolites in the model liverwort Marchantia polymorpha was investigated. Abscisic acid (ABA) and ultraviolet irradiation (UV-C) were found to induce the biosynthesis of isoriccardin C, marchantin C, and riccardin F, which are categorized as bisbibenzyls, characteristic metabolites of liverworts. UV-C led to the significant accumulation of ABA. Overexpression of MpABI1, which encodes protein phosphatase 2C (PP2C) as a negative regulator of ABA signaling, suppressed accumulation of bisbibenzyls in response to ABA and UV-C irradiation and conferred susceptibility to UV-C irradiation. These data show that ABA plays a significant role in the induction of bisbibenzyl biosynthesis, which might confer tolerance against UV-C irradiation in M. polymorpha. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Organic amendments enhance Pb tolerance and accumulation during micropropagation of Daphne jasminea.

    Science.gov (United States)

    Wiszniewska, Alina; Muszyńska, Ewa; Hanus-Fajerska, Ewa; Smoleń, Sylwester; Dziurka, Michał; Dziurka, Kinga

    2017-01-01

    The study investigated the effects of organic amendments: pineapple pulp (PP) and agar hydrolyzate (AH), on micropropagation and Pb bioaccumulation and tolerance in a woody shrub Daphne jasminea cultured in vitro. The amendments were analyzed for their content of carbohydrates, phenolic acids, and phytohormones and added at a dose of 10 mL L -1 to the medium containing 1.0 mM lead nitrate. Micropropagation coefficient increased by 10.2-16.6 % in PP and AH variants, respectively. Growth tolerance index increased by 22.9-31.8 % for the shoots and by 60.1-82.4 % for the roots. In the absence of Pb, the additives inhibited multiplication and growth of microplantlets. PP and AH facilitated Pb accumulation in plant organs, especially in the roots. PP enhanced bioconcentration factor and AH improved Pb translocation to the shoots. Adaptation to Pb was associated with increased accumulation of phenolics and higher radical scavenging activity. Medium supplementation, particularly with AH, enhanced antiradical activity of Pb-adapted lines but reduced the content of phenolic compounds. The study results indicated that supplementation with organic amendments may be beneficial in in vitro selection against lead toxicity.

  12. Cell wall pectin methyl-esterification and organic acids of root tips involve in aluminum tolerance in Camellia sinensis.

    Science.gov (United States)

    Li, Dongqin; Shu, Zaifa; Ye, Xiaoli; Zhu, Jiaojiao; Pan, Junting; Wang, Weidong; Chang, Pinpin; Cui, Chuanlei; Shen, Jiazhi; Fang, Wanping; Zhu, Xujun; Wang, Yuhua

    2017-10-01

    Tea plant (Camellia sinensis (O.) Kuntze) can survive from high levels of aluminum (Al) in strongly acidic soils. However, the mechanism driving its tolerance to Al, the predominant factor limiting plant growth in acid condition, is still not fully understood. Here, two-year-old rooted cuttings of C. sinensis cultivar 'Longjingchangye' were used for Al resistance experiments. We found that the tea plants grew better in the presence of 0.4 mM Al than those grew under lower concentration of Al treatments (0 and 0.1 mM) as well as higher levels treatment (2 and 4 mM), confirming that appropriate Al increased tea plant growth. Hematoxylin staining assay showed that the apical region was the main accumulator in tea plant root. Subsequently, immunolocalization of pectins in the root tip cell wall showed a rise in low-methyl-ester pectin levels and a reduction of high-methyl-ester pectin content with the increasing Al concentration of treatments. Furthermore, we observed the increased expressions of C. sinensis pectin methylesterase (CsPME) genes along with the increasing de-esterified pectin levels during response to Al treatments. Additionally, the levels of organic acids increased steadily after treatment with 0.1, 0.4 or 2 mM Al, while they dropped after treatment with 4 mM Al. The organic acids secretion from root followed a similar trend. Similarly, a gradual increase in malate dehydrogenase (MDH), citrate synthase (CS) and glycolate oxidase (GO) enzyme activities and relevant metabolic genes expression were detected after the treatment of 0.1, 0.4 or 2 mM Al, while a sharp decrease was resulted from treatment with 4 mM Al. These results confirm that both pectin methylesterases and organic acids contribute to Al tolerance in C. sinensis. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  13. Studies on the toxic interaction between monensin and tiamulin in rats: toxicity and pathology.

    Science.gov (United States)

    Szücs, G; Bajnógel, J; Varga, A; Móra, Z; Laczay, P

    2000-01-01

    The characteristics of the toxic interaction between monensin and tiamulin were investigated in rats. A three-day comparative oral repeated-dose toxicity study was performed in Phase I, when the effects of monensin and tiamulin were studied separately (monensin 10, 30, and 50 mg/kg or tiamulin 40, 120, and 200 mg/kg body weight, respectively). In Phase II, the two compounds were administered simultaneously to study the toxic interaction (monensin 10 mg/kg and tiamulin 40 mg/kg b.w., respectively). Monensin proved to be toxic to rats at doses of 30 and 50 mg/kg. Tiamulin was well tolerated up to the dose of 200 mg/kg. After combined administration, signs of toxicity were seen (including lethality in females). Monensin caused a dose-dependent cardiotoxic effect and vacuolar degeneration of the skeletal muscles in the animals given 50 mg/kg. Both compounds exerted a toxic effect on the liver in high doses. After simultaneous administration of the two compounds, there was a mild effect on the liver (females only), hydropic degeneration of the myocardium and vacuolar degeneration of the skeletal muscles. The alteration seen in the skeletal muscles was more marked than that seen after the administration of 50 mg/kg monensin alone.

  14. 21 CFR 109.30 - Tolerances for polychlorinated biphenyls (PCB's).

    Science.gov (United States)

    2010-04-01

    ... Tolerances for polychlorinated biphenyls (PCB's). (a) Polychlorinated biphenyls (PCB's) are toxic, industrial chemicals. Because of their widespread, uncontrolled industrial applications, PCB's have become a persistent... unavoidable environmental or industrial contaminants are established for a sufficient period of time following...

  15. SlMAPK3 enhances tolerance to tomato yellow leaf curl virus (TYLCV) by regulating salicylic acid and jasmonic acid signaling in tomato (Solanum lycopersicum).

    Science.gov (United States)

    Li, Yunzhou; Qin, Lei; Zhao, Jingjing; Muhammad, Tayeb; Cao, Hehe; Li, Hailiang; Zhang, Yan; Liang, Yan

    2017-01-01

    Several recent studies have reported on the role of mitogen-activated protein kinase (MAPK3) in plant immune responses. However, little is known about how MAPK3 functions in tomato (Solanum lycopersicum L.) infected with tomato yellow leaf curl virus (TYLCV). There is also uncertainty about the connection between plant MAPK3 and the salicylic acid (SA) and jasmonic acid (JA) defense-signaling pathways. The results of this study indicated that SlMAPK3 participates in the antiviral response against TYLCV. Tomato seedlings were inoculated with TYLCV to investigate the possible roles of SlMAPK1, SlMAPK2, and SlMAPK3 against this virus. Inoculation with TYLCV strongly induced the expression and the activity of all three genes. Silencing of SlMAPK1, SlMAPK2, and SlMAPK3 reduced tolerance to TYLCV, increased leaf H2O2 concentrations, and attenuated expression of defense-related genes after TYLCV infection, especially in SlMAPK3-silenced plants. Exogenous SA and methyl jasmonic acid (MeJA) both significantly induced SlMAPK3 expression in tomato leaves. Over-expression of SlMAPK3 increased the transcript levels of SA/JA-mediated defense-related genes (PR1, PR1b/SlLapA, SlPI-I, and SlPI-II) and enhanced tolerance to TYLCV. After TYLCV inoculation, the leaves of SlMAPK3 over-expressed plants compared with wild type plants showed less H2O2 accumulation and greater superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX) activity. Overall, the results suggested that SlMAPK3 participates in the antiviral response of tomato to TYLCV, and that this process may be through either the SA or JA defense-signaling pathways.

  16. SlMAPK3 enhances tolerance to tomato yellow leaf curl virus (TYLCV by regulating salicylic acid and jasmonic acid signaling in tomato (Solanum lycopersicum.

    Directory of Open Access Journals (Sweden)

    Yunzhou Li

    Full Text Available Several recent studies have reported on the role of mitogen-activated protein kinase (MAPK3 in plant immune responses. However, little is known about how MAPK3 functions in tomato (Solanum lycopersicum L. infected with tomato yellow leaf curl virus (TYLCV. There is also uncertainty about the connection between plant MAPK3 and the salicylic acid (SA and jasmonic acid (JA defense-signaling pathways. The results of this study indicated that SlMAPK3 participates in the antiviral response against TYLCV. Tomato seedlings were inoculated with TYLCV to investigate the possible roles of SlMAPK1, SlMAPK2, and SlMAPK3 against this virus. Inoculation with TYLCV strongly induced the expression and the activity of all three genes. Silencing of SlMAPK1, SlMAPK2, and SlMAPK3 reduced tolerance to TYLCV, increased leaf H2O2 concentrations, and attenuated expression of defense-related genes after TYLCV infection, especially in SlMAPK3-silenced plants. Exogenous SA and methyl jasmonic acid (MeJA both significantly induced SlMAPK3 expression in tomato leaves. Over-expression of SlMAPK3 increased the transcript levels of SA/JA-mediated defense-related genes (PR1, PR1b/SlLapA, SlPI-I, and SlPI-II and enhanced tolerance to TYLCV. After TYLCV inoculation, the leaves of SlMAPK3 over-expressed plants compared with wild type plants showed less H2O2 accumulation and greater superoxide dismutase (SOD, peroxidase (POD, catalase (CAT, and ascorbate peroxidase (APX activity. Overall, the results suggested that SlMAPK3 participates in the antiviral response of tomato to TYLCV, and that this process may be through either the SA or JA defense-signaling pathways.

  17. Toxic industrial deposit remediation by ant activity

    Science.gov (United States)

    Jilkova, Veronika; Frouz, Jan

    2016-04-01

    Toxic industrial deposits are often contaminated by heavy metals and the substrates have low pH values. In such systems, soil development is thus slowed down by high toxicity and acidic conditions which are unfavourable to soil fauna. Ants (Hymenoptera, Formicidae) are considered tolerant to heavy metal pollution and are known to increase organic matter content and microbial activity in their nests. Here, we focused on soil remediation caused by three ant species (Formica sanguinea, Lasius niger, and Tetramorium sp.) in an ore-washery sedimentation basin near Chvaletice (Czech Republic). Soil samples were taken from the centre of ant nests and from the nest surroundings (>3 m from nests). Samples were then analyzed for microbial activity and biomass and contents of organic matter and nutrients. As a result, ant species that most influenced soil properties was F. sanguinea as there were higher microbial activity and total nitrogen and ammonia contents in ant nests than in the surrounding soil. We expected such a result because F. sanguinea builds conspicuous large nests and is a carnivorous species that brings substantial amounts of nitrogen in insect prey to their nests. Effects of the other two ant species might be lower because of smaller nests and different feeding habits as they rely mainly on honeydew from aphids or on plant seeds that do not contain much nutrients.

  18. Lactobacillus plantarum CCFM639 alleviates aluminium toxicity.

    Science.gov (United States)

    Yu, Leilei; Zhai, Qixiao; Liu, Xiaoming; Wang, Gang; Zhang, Qiuxiang; Zhao, Jianxin; Narbad, Arjan; Zhang, Hao; Tian, Fengwei; Chen, Wei

    2016-02-01

    Aluminium (Al) is the most abundant metal in the earth's crust. Al exposure can cause a variety of adverse physiological effects in humans and animals. Our aim was to demonstrate that specific probiotic bacteria can play a special physiologically functional role in protection against Al toxicity in mice. Thirty strains of lactic acid bacteria (LAB) were tested for their aluminium-binding ability, aluminium tolerance, their antioxidative capacity, and their ability to survive the exposure to artificial gastrointestinal (GI) juices. Lactobacillus plantarum CCFM639 was selected for animal experiments because of its excellent performance in vitro. Forty mice were divided into four groups: control, Al only, Al plus CCFM639, and Al plus deferiprone (DFP). CCFM639 was administered at 10(9) CFU once daily for 10 days, followed by a single oral dose of aluminium chloride hexahydrate at 5.14 mg aluminium (LD50) for each mouse. The results showed that CCFM639 treatment led to a significant reduction in the mortality rates with corresponding decrease in intestinal aluminium absorption and in accumulation of aluminium in the tissues and amelioration of hepatic histopathological damage. This probiotic treatment also resulted in alleviation of hepatic, renal, and cerebral oxidative stress. The treatment of L. plantarum CCFM639 has potential as a therapeutic dietary strategy against acute aluminium toxicity.

  19. Comparison of tolerance to soil acidity among crop plants. II. Tolerance to high levels of aluminum and manganese. Comparative plant nutrition

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, A; Hayakawa, Y

    1975-01-01

    Research was conducted by growing various species of plants in solutions containing high concentrations of manganese or aluminum. A comparison was made of the tolerance of these plants to low pH and to the manganese and aluminum. In addition, the element content of the plants was compared. Plants high in calcium were found to have an intermediate tolerance to high concentrations of manganese and aluminum. Gramineae had a high tolerance to these elements and to low pH. They also accumulated high levels of these elements. Legumes had a high tolerance to manganese and aluminum and to low pH. However, they also accumulated high levels of these elements. Legumes had a high tolerance to manganese and aluminum and to low pH. However, they also accumulated high levels of these elements. Cruciferae had a low tolerance to the elements and to low pH. They contained low levels of manganese and aluminum. Chenopodiaceae had a low tolerance to the elements as well as low element contents. However, they were highly tolerant to low pH.

  20. Buffer capacity of food components influences the acid tolerance response in Salmonella Typhimurium during simulated gastric passage

    DEFF Research Database (Denmark)

    Henriksen, Sidsel; Buschhardt, Tasja; Hansen, Tina Beck

    2014-01-01

    tubes, enabling simultaneous testing of biological triplicates under varying conditions. Surprisingly, we found that less buffered media provided higher protection of Salmonella, compared to media with high buffer capacity. By investigating the relative gene expression of rpoS and ompR encoding for two...... Heart Infusion Broth having a higher buffer capacity. We suggest this to be associated with a varying ability of Salmonella Typhimurium to mount a stationary phase acid tolerance response (ATR) depending on the buffer capacity of the food vehicle....

  1. 77 FR 3653 - Import Tolerances for Residues of Unapproved New Animal Drugs in Food

    Science.gov (United States)

    2012-01-25

    ... find a safe import tolerance. It could look at toxicity and residue data and build in a conservative... drugs covered by import tolerances are manufactured under good manufacturing practices (GMP)-like... resistant bacteria in or on the target animal and the potential impact on human health. C. International...

  2. Benefits of the maximum tolerated dose (MTD) and maximum tolerated concentration (MTC) concept in aquatic toxicology

    International Nuclear Information System (INIS)

    Hutchinson, Thomas H.; Boegi, Christian; Winter, Matthew J.; Owens, J. Willie

    2009-01-01

    There is increasing recognition of the need to identify specific sublethal effects of chemicals, such as reproductive toxicity, and specific modes of actions of the chemicals, such as interference with the endocrine system. To achieve these aims requires criteria which provide a basis to interpret study findings so as to separate these specific toxicities and modes of action from not only acute lethality per se but also from severe inanition and malaise that non-specifically compromise reproductive capacity and the response of endocrine endpoints. Mammalian toxicologists have recognized that very high dose levels are sometimes required to elicit both specific adverse effects and present the potential of non-specific 'systemic toxicity'. Mammalian toxicologists have developed the concept of a maximum tolerated dose (MTD) beyond which a specific toxicity or action cannot be attributed to a test substance due to the compromised state of the organism. Ecotoxicologists are now confronted by a similar challenge and must develop an analogous concept of a MTD and the respective criteria. As examples of this conundrum, we note recent developments in efforts to validate protocols for fish reproductive toxicity and endocrine screens (e.g. some chemicals originally selected as 'negatives' elicited decreases in fecundity or changes in endpoints intended to be biomarkers for endocrine modes of action). Unless analogous criteria can be developed, the potentially confounding effects of systemic toxicity may then undermine the reliable assessment of specific reproductive effects or biomarkers such as vitellogenin or spiggin. The same issue confronts other areas of aquatic toxicology (e.g., genotoxicity) and the use of aquatic animals for preclinical assessments of drugs (e.g., use of zebrafish for drug safety assessment). We propose that there are benefits to adopting the concept of an MTD for toxicology and pharmacology studies using fish and other aquatic organisms and the

  3. Ethylene induced plant stress tolerance by Enterobacter sp. SA187 is mediated by 2-keto-4-methylthiobutyric acid production.

    Directory of Open Access Journals (Sweden)

    Axel de Zélicourt

    2018-03-01

    Full Text Available Several plant species require microbial associations for survival under different biotic and abiotic stresses. In this study, we show that Enterobacter sp. SA187, a desert plant endophytic bacterium, enhances yield of the crop plant alfalfa under field conditions as well as growth of the model plant Arabidopsis thaliana in vitro, revealing a high potential of SA187 as a biological solution for improving crop production. Studying the SA187 interaction with Arabidopsis, we uncovered a number of mechanisms related to the beneficial association of SA187 with plants. SA187 colonizes both the surface and inner tissues of Arabidopsis roots and shoots. SA187 induces salt stress tolerance by production of bacterial 2-keto-4-methylthiobutyric acid (KMBA, known to be converted into ethylene. By transcriptomic, genetic and pharmacological analyses, we show that the ethylene signaling pathway, but not plant ethylene production, is required for KMBA-induced plant salt stress tolerance. These results reveal a novel molecular communication process during the beneficial microbe-induced plant stress tolerance.

  4. Recovery of anaerobic digestion after exposure to toxicants. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Yang, J.; Parkin, G.F.; Speece, R.E.

    1979-12-01

    The concept that methane fermentation cannot tolerate chronic or slug doses of toxicants has almost totally precluded methane fermentation as a viable contender for the treatment of industrial wastewaters. This study assayed a wide variety of toxicants, heavy metals, inorganic salts, organic chemicals, solvents, and antibiotics which are used in industrial processes and, therefore, appear in the industrial wastewaters therefrom. Toxicity was related to the reduction in methane production of a control containing no toxicant. The response of methane fermentation after exposure to a toxicant was assayed with unacclimated cultures as well as cultures which had been acclimated to increasing concentrations of the toxicant over long periods of time. The reversible nature of the toxicants was assayed by adding slug doses to plug flow anaerobic filters and recording gas production prior to, during, and after toxicant addition.

  5. 78 FR 30213 - 1-Naphthaleneacetic acid; Pesticide Tolerances

    Science.gov (United States)

    2013-05-22

    ... systemic effects and the dermal and inhalation endpoints are based on decreased body weight gain. Exposure...-AM-002), is available to enforce the tolerance expression for NAA in plant commodities. The method...

  6. Evaluation of single and joint toxic effects of diuron and its main metabolites on natural phototrophic biofilms using a pollution-induced community tolerance (PICT) approach.

    Science.gov (United States)

    Pesce, Stéphane; Lissalde, Sophie; Lavieille, Delphine; Margoum, Christelle; Mazzella, Nicolas; Roubeix, Vincent; Montuelle, Bernard

    2010-09-15

    This study assessed the single and joint acute toxicity of diuron and two of its metabolites (DCPMU and 3,4-DCA) on natural phototrophic biofilms using a PICT approach with photosynthesis bioassays. River biofilm communities were collected at three sampling stations exhibiting increasing concentrations of diuron, DCPMU and 3,4-DCA from upstream to downstream. Applied individually, the parent compound was more toxic than its metabolites, with DCPMU being more toxic than 3,4-DCA which only inhibited photosynthesis at very high concentrations (EC25 at about 5 mg/l). Sensitivity of biofilm communities to diuron and DCPMU decreased from upstream to downstream, revealing tolerance induction in contaminated sections of the river, as expected from the PICT concept. Nevertheless, PICT was not applicable for 3,4-DCA, which similarly affected upstream, intermediate and downstream biofilm communities. Chemical mixtures of diuron and DCPMU demonstrated additive effects whereas combinations with 3,4-DCA enhanced the observed effects. Our results reveal that the individual and combined presence of diuron and DCPMU in lotic ecosystems can have both short-term effects (as shown with bioassays) and long-term effects (as shown through the PICT approach) on phototrophic biofilms, whereas environmental concentrations of 3,4-DCA may not affect biofilm photosynthetic activity. 2010 Elsevier B.V. All rights reserved.

  7. Polyaromatic hydrocarbon (PAH) degradation potential of a new acid tolerant, diazotrophic P-solubilizing and heavy metal resistant bacterium Cupriavidus sp. MTS-7 isolated from long-term mixed contaminated soil.

    Science.gov (United States)

    Kuppusamy, Saranya; Thavamani, Palanisami; Megharaj, Mallavarapu; Lee, Yong Bok; Naidu, Ravi

    2016-11-01

    An isolate of Cupriavidus (strain MTS-7) was identified from a long-term PAHs and heavy metals mixed contaminated soil with the potential to biodegrade both LMW and HMW PAHs with added unique traits of acid and alkali tolerance, heavy metal tolerance, self-nutrient assimilation by N fixation and P solubilization. This strain completely degraded the model 3 (150 mg L(-1) Phe), 4 (150 mg L(-1) Pyr) and 5 (50 mg L(-1) BaP) ring PAHs in 4, 20 and 30 days, respectively. It could mineralize 90-100% of PAHs (200 mg L(-1) of Phe and Pyr) within 15 days across pH ranging from 5 to 8 and even in the presence of toxic metal contaminations. During biodegradation, the minimum inhibitory concentrations were 5 (Cu(2+)) and 3 (Cd(2+), Pb(2+), Zn(2+)) mg L(-1) of the potentially bioavailable metal ions and over 17 mg L(-1) metal levels was lethal for the microbe. Further, it could fix 217-274 μg mL(-1) of N and solubilize 79-135 μg mL(-1) of P while PAHs degradation. MTS-7 as a superior candidate could be thus used in the enhanced bioaugmentation and/or phytoremediation of long-term mixed contaminated sites. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Fatty acid composition of bacteria associated with the toxic dinoflagellate Ostreopsis lenticularis and with Caribbean Palythoa species.

    Science.gov (United States)

    Carballeira, N M; Emiliano, A; Sostre, A; Restituyo, J A; González, I M; Colón, G M; Tosteson, C G; Tosteson, T R

    1998-06-01

    The fatty acid composition of a Pseudomonas sp. (Alteromonas) and its host, the dinoflagellate Ostreopsis lenticularis, vectors in ciguatera fish poisoning, has been studied. The major fatty acids in O. lenticularis were 16:0, 20:5n-3, and 22:6n-3, but 18:2n-6, 18:3n-3, and 18:n-3 were also identified. In contrast to other dinoflagellates, 1 8:5n-3 was not detected in O. lenticularis. Even-chain fatty acids such as 9-16:1, 11-18:1, and 13-20:1 predominated in the Pseudomonas sp. from O. lenticularis, but 1 6-20% of (E)-11-methyl-12-octadecenoic acid was also identified. The chirality of the latter was confirmed by total synthesis (28% overall yield) starting from oxacyclotridecan-2-one. The fatty acid compositions of two other Pseudomonas species, from the palytoxin-producing zoanthids Palythoa mamillosa and P. caribdea, were also studied and were similar to that of the Pseudomonas sp. from O. lenticularis. The possibility of using some of these fatty acids as chemotaxonomic lipids in identifying marine animals that consume toxic dinoflagellates or zoanthids is discussed.

  9. Alginic Acid-Aided Dispersion of Carbon Nanotubes, Graphene, and Boron Nitride Nanomaterials for Microbial Toxicity Testing.

    Science.gov (United States)

    Wang, Ying; Mortimer, Monika; Chang, Chong Hyun; Holden, Patricia A

    2018-01-30

    Robust evaluation of potential environmental and health risks of carbonaceous and boron nitride nanomaterials (NMs) is imperative. However, significant agglomeration of pristine carbonaceous and boron nitride NMs due to strong van der Waals forces renders them not suitable for direct toxicity testing in aqueous media. Here, the natural polysaccharide alginic acid (AA) was used as a nontoxic, environmentally relevant dispersant with defined composition to disperse seven types of carbonaceous and boron nitride NMs, including multiwall carbon nanotubes, graphene, boron nitride nanotubes, and hexagonal boron nitride flakes, with various physicochemical characteristics. AA's biocompatibility was confirmed by examining AA effects on viability and growth of two model microorganisms (the protozoan Tetrahymena thermophila and the bacterium Pseudomonas aeruginosa ). Using 400 mg·L -1 AA, comparably stable NM (200 mg·L -1 ) stock dispersions were obtained by 30-min probe ultrasonication. AA non-covalently interacted with NM surfaces and improved the dispersibility of NMs in water. The dispersion stability varied with NM morphology and size rather than chemistry. The optimized dispersion protocol established here can facilitate preparing homogeneous NM dispersions for reliable exposures during microbial toxicity testing, contributing to improved reproducibility of toxicity results.

  10. Alginic Acid-Aided Dispersion of Carbon Nanotubes, Graphene, and Boron Nitride Nanomaterials for Microbial Toxicity Testing

    Directory of Open Access Journals (Sweden)

    Ying Wang

    2018-01-01

    Full Text Available Robust evaluation of potential environmental and health risks of carbonaceous and boron nitride nanomaterials (NMs is imperative. However, significant agglomeration of pristine carbonaceous and boron nitride NMs due to strong van der Waals forces renders them not suitable for direct toxicity testing in aqueous media. Here, the natural polysaccharide alginic acid (AA was used as a nontoxic, environmentally relevant dispersant with defined composition to disperse seven types of carbonaceous and boron nitride NMs, including multiwall carbon nanotubes, graphene, boron nitride nanotubes, and hexagonal boron nitride flakes, with various physicochemical characteristics. AA’s biocompatibility was confirmed by examining AA effects on viability and growth of two model microorganisms (the protozoan Tetrahymena thermophila and the bacterium Pseudomonas aeruginosa. Using 400 mg·L−1 AA, comparably stable NM (200 mg·L−1 stock dispersions were obtained by 30-min probe ultrasonication. AA non-covalently interacted with NM surfaces and improved the dispersibility of NMs in water. The dispersion stability varied with NM morphology and size rather than chemistry. The optimized dispersion protocol established here can facilitate preparing homogeneous NM dispersions for reliable exposures during microbial toxicity testing, contributing to improved reproducibility of toxicity results.

  11. Histopathological Study of Subacute Toxic Effects of Chloroacetic Acid on Albino Rats and its Correlation with Serum Levels of Malondialdehyde

    Directory of Open Access Journals (Sweden)

    Kafil Akhtar

    2012-04-01

    Full Text Available Human beings are increasingly being exposed to chloroacetic acid (CAA, a type of halo acetic acid. It would not be an exaggeration to say that almost the whole humankind today is affected by it or its metabolites. The concern over the carcinogenicity of haloacetic acids led the United States Environmental Protection Agency to regulate the allowable concentration of haloacetic acids in drinking water as part of the Disinfectants and Disinfection Byproducts Rule promulgated in 1998. Keeping this view in mind, the present study on histolopathological evaluation of different types of tissues viz., brain, kidney, liver, spleen and testes of Rattus norvegicus was performed, to find out the subacute toxicity of chloroacetic acid and correlation between CAA administration and changes in malondialdehyde (MDA level in blood.

  12. Surface Hydrophobicity Causes SO2 Tolerance in Lichens

    Science.gov (United States)

    Hauck, Markus; Jürgens, Sascha-René; Brinkmann, Martin; Herminghaus, Stephan

    2008-01-01

    Background and Aims The superhydrophobicity of the thallus surface in one of the most SO2-tolerant lichen species, Lecanora conizaeoides, suggests that surface hydrophobicity could be a general feature of lichen symbioses controlling their tolerance to SO2. The study described here tests this hypothesis. Methods Water droplets of the size of a raindrop were placed on the surface of air-dry thalli in 50 lichen species of known SO2 tolerance and contact angles were measured to quantify hydrophobicity. Key Results The wettability of lichen thalli ranges from strongly hydrophobic to strongly hydrophilic. SO2 tolerance of the studied lichen species increased with increasing hydrophobicity of the thallus surface. Extraction of extracellular lichen secondary metabolites with acetone reduced, but did not abolish the hydrophobicity of lichen thalli. Conclusions Surface hydrophobicity is the main factor controlling SO2 tolerance in lichens. It presumably originally evolved as an adaptation to wet habitats preventing the depression of net photosynthesis due to supersaturation of the thallus with water. Hydrophilicity of lichen thalli is an adaptation to dry or humid, but not directly rain-exposed habitats. The crucial role of surface hydrophobicity in SO2 also explains why many markedly SO2-tolerant species are additionally tolerant to other (chemically unrelated) toxic substances including heavy metals. PMID:18077467

  13. An Alfin-like gene from Atriplex hortensis enhances salt and drought tolerance and abscisic acid response in transgenic Arabidopsis.

    Science.gov (United States)

    Tao, Jian-Jun; Wei, Wei; Pan, Wen-Jia; Lu, Long; Li, Qing-Tian; Ma, Jin-Biao; Zhang, Wan-Ke; Ma, Biao; Chen, Shou-Yi; Zhang, Jin-Song

    2018-02-09

    Alfin-like (AL) is a small plant-specific gene family with prominent roles in root growth and abiotic stress response. Here, we aimed to identify novel stress tolerance AL genes from the stress-tolerant species Atriplex hortensis. Totally, we isolated four AhAL genes, all encoding nuclear-localized proteins with cis-element-binding and transrepression activities. Constitutive expression of AhAL1 in Arabidopsis facilitated plants to survive under saline condition, while expressing anyone of the other three AhAL genes led to salt-hypersensitive response, indicating functional divergence of AhAL family. AhAL1 also conferred enhanced drought tolerance, as judged from enhanced survival, improved growth, decreased malonaldehyde (MDA) content and reduced water loss in AhAL1-expressing plants compared to WT. In addition, abscisic acid (ABA)-mediated stomatal closure and inhibition of seed germination and primary root elongation were enhanced in AhAL1-transgenic plants. Further analysis demonstrated that AhAL1 could bind to promoter regions of GRF7, DREB1C and several group-A PP2C genes and repress their expression. Correspondingly, the expression levels of positive stress regulator genes DREB1A, DREB2A and three ABFs were all increased in AhAL1-expressing plants. Based on these results, AhAL1 was identified as a novel candidate gene for improving abiotic stress tolerance of crop plants.

  14. Aluminium Toxicity Targets in Plants

    Directory of Open Access Journals (Sweden)

    Sónia Silva

    2012-01-01

    Full Text Available Aluminium (Al is the third most abundant metallic element in soil but becomes available to plants only when the soil pH drops below 5.5. At those conditions, plants present several signals of Al toxicity. As reported by literature, major consequences of Al exposure are the decrease of plant production and the inhibition of root growth. The root growth inhibition may be directly/indirectly responsible for the loss of plant production. In this paper the most remarkable symptoms of Al toxicity in plants and the latest findings in this area are addressed. Root growth inhibition, ROS production, alterations on root cell wall and plasma membrane, nutrient unbalances, callose accumulation, and disturbance of cytoplasmic Ca2+ homeostasis, among other signals of Al toxicity are discussed, and, when possible, the behavior of Al-tolerant versus Al-sensitive genotypes under Al is compared.

  15. The Protective effect of Ellagic acid on rats’ ovarian fetus toxicity induced by cyclophosphamide

    Directory of Open Access Journals (Sweden)

    M Mousavi M

    2015-10-01

    Full Text Available Background & aim: Cyclophosphamide, an alkylating agent used in the treatment of cancer that has many side effects on different organs, including the gonads .The purpose of this study was to investigate the effects of an antioxidant Ellagic acid on cyclophosphamide -induced toxicity in rat fetal ovarian tissue. Methods: Forty two pregnant  female Wistar rats weighing 250-200 gr were randomly divided into seven groups.The first, second, third, fourth, fifth and sixth 5 mg/ kg cyclophosphamide on days 1, 13 and 18 were given intraperitoneal remote pregnancy .The fourth, fifth and sixth groups hour after receiving cyclophosphamide, Ellagic acid (10 mg/kg has received in the course of pregnancy.Control groups and seven group (normal during pregnancy daily orally received 0.5 mL of saline. After postpartum, Neonatal rats were anesthetized with ether. Animals were dissects, then Ovaries were removed and transferred to 10% formalin solution. After tissue processing, tissue sections were prepared and H&E stained.Data were analyzed by SPSSsoftware and One- way ANOVA test. Results: The groups that were exposed to cyclophosphamide ovarian mean of diameter, primordial follicle diameter and number of follicular cell of primordialin control group compared to ellagic acid treatments showed a significant decrease. Conclusion: The results showed that Ellagic acid due to its antioxidant properties could reduce the harmful effects caused by cyclophosphamide in the fetal ovary.

  16. Low pH, aluminum, and phosphorus coordinately regulate malate exudation through GmALMT1 to improve soybean adaptation to acid soils.

    Science.gov (United States)

    Liang, Cuiyue; Piñeros, Miguel A; Tian, Jiang; Yao, Zhufang; Sun, Lili; Liu, Jiping; Shaff, Jon; Coluccio, Alison; Kochian, Leon V; Liao, Hong

    2013-03-01

    Low pH, aluminum (Al) toxicity, and low phosphorus (P) often coexist and are heterogeneously distributed in acid soils. To date, the underlying mechanisms of crop adaptation to these multiple factors on acid soils remain poorly understood. In this study, we found that P addition to acid soils could stimulate Al tolerance, especially for the P-efficient genotype HN89. Subsequent hydroponic studies demonstrated that solution pH, Al, and P levels coordinately altered soybean (Glycine max) root growth and malate exudation. Interestingly, HN89 released more malate under conditions mimicking acid soils (low pH, +P, and +Al), suggesting that root malate exudation might be critical for soybean adaptation to both Al toxicity and P deficiency on acid soils. GmALMT1, a soybean malate transporter gene, was cloned from the Al-treated root tips of HN89. Like root malate exudation, GmALMT1 expression was also pH dependent, being suppressed by low pH but enhanced by Al plus P addition in roots of HN89. Quantitative real-time PCR, transient expression of a GmALMT1-yellow fluorescent protein chimera in Arabidopsis protoplasts, and electrophysiological analysis of Xenopus laevis oocytes expressing GmALMT1 demonstrated that GmALMT1 encodes a root cell plasma membrane transporter that mediates malate efflux in an extracellular pH-dependent and Al-independent manner. Overexpression of GmALMT1 in transgenic Arabidopsis, as well as overexpression and knockdown of GmALMT1 in transgenic soybean hairy roots, indicated that GmALMT1-mediated root malate efflux does underlie soybean Al tolerance. Taken together, our results suggest that malate exudation is an important component of soybean adaptation to acid soils and is coordinately regulated by three factors, pH, Al, and P, through the regulation of GmALMT1 expression and GmALMT1 function.

  17. Lactic Acid Bacteria Protects Caenorhabditis elegans from Toxicity of Graphene Oxide by Maintaining Normal Intestinal Permeability under different Genetic Backgrounds

    Science.gov (United States)

    Zhao, Yunli; Yu, Xiaoming; Jia, Ruhan; Yang, Ruilong; Rui, Qi; Wang, Dayong

    2015-11-01

    Lactic acid bacteria (LAB) is safe and useful for food and feed fermentation. We employed Caenorhabditis elegans to investigate the possible beneficial effect of LAB (Lactobacillus bulgaricus) pretreatment against toxicity of graphene oxide (GO) and the underlying mechanisms. LAB prevented GO toxicity on the functions of both primary and secondary targeted organs in wild-type nematodes. LAB blocked translocation of GO into secondary targeted organs through intestinal barrier by maintaining normal intestinal permeability in wild-type nematodes. Moreover, LAB prevented GO damage on the functions of both primary and secondary targeted organs in exposed nematodes with mutations of susceptible genes (sod-2, sod-3, gas-1, and aak-2) to GO toxicity by sustaining normal intestinal permeability. LAB also sustained the normal defecation behavior in both wild-type nematodes and nematodes with mutations of susceptible genes. Therefore, the beneficial role of LAB against GO toxicity under different genetic backgrounds may be due to the combinational effects on intestinal permeability and defecation behavior. Moreover, the beneficial effects of LAB against GO toxicity was dependent on the function of ACS-22, homologous to mammalian FATP4 to mammalian FATP4. Our study provides highlight on establishment of pharmacological strategy to protect intestinal barrier from toxicity of GO.

  18. Metabolic Pathways Involved in Carbon Dioxide Enhanced Heat Tolerance in Bermudagrass

    Directory of Open Access Journals (Sweden)

    Jingjin Yu

    2017-09-01

    Full Text Available Global climate changes involve elevated temperature and CO2 concentration, imposing significant impact on plant growth of various plant species. Elevated temperature exacerbates heat damages, but elevated CO2 has positive effects on promoting plant growth and heat tolerance. The objective of this study was to identify metabolic pathways affected by elevated CO2 conferring the improvement of heat tolerance in a C4 perennial grass species, bermudagrass (Cynodon dactylon Pers.. Plants were planted under either ambient CO2 concentration (400 μmol⋅mol-1 or elevated CO2 concentration (800 μmol⋅mol-1 and subjected to ambient temperature (30/25°C, day/night or heat stress (45/40°C, day/night. Elevated CO2 concentration suppressed heat-induced damages and improved heat tolerance in bermudagrass. The enhanced heat tolerance under elevated CO2 was attributed to some important metabolic pathways during which proteins and metabolites were up-regulated, including light reaction (ATP synthase subunit and photosystem I reaction center subunit and carbon fixation [(glyceraldehyde-3-phosphate dehydrogenase, GAPDH, fructose-bisphosphate aldolase, phosphoglycerate kinase, sedoheptulose-1,7-bisphosphatase and sugars of photosynthesis, glycolysis (GAPDH, glucose, fructose, and galactose and TCA cycle (pyruvic acid, malic acid and malate dehydrogenase of respiration, amino acid metabolism (aspartic acid, methionine, threonine, isoleucine, lysine, valine, alanine, and isoleucine as well as the GABA shunt (GABA, glutamic acid, alanine, proline and 5-oxoproline. The up-regulation of those metabolic processes by elevated CO2 could at least partially contribute to the improvement of heat tolerance in perennial grass species.

  19. Abscisic acid and transpiration rate are involved in the response to boron toxicity in Arabidopsis plants.

    Science.gov (United States)

    Macho-Rivero, Miguel Ángel; Camacho-Cristóbal, Juan José; Herrera-Rodríguez, María Begoña; Müller, Maren; Munné-Bosch, Sergi; González-Fontes, Agustín

    2017-05-01

    Boron (B) is an essential microelement for vascular plant development, but its toxicity is a major problem affecting crop yields in arid and semi-arid areas of the world. In the literature, several genes involved in abscisic acid (ABA) signalling and responses are upregulated in Arabidopsis roots after treatment with excess B. It is known that the AtNCED3 gene, which encodes a crucial enzyme for ABA biosynthesis, plays a key role in the plant response to drought stress. In this study, root AtNCED3 expression and shoot ABA content were rapidly increased in wild-type plants upon B-toxicity treatment. The Arabidopsis ABA-deficient nced3-2 mutant had higher transpiration rate, stomatal conductance and accumulated more B in their shoots than wild-type plants, facts that were associated with the lower levels of ABA in this mutant. However, in wild-type plants, B toxicity caused a significant reduction in stomatal conductance, resulting in a decreased transpiration rate. This response could be a mechanism to limit the transport of excess B from the roots to the leaves under B toxicity. In agreement with the higher transpiration rate of the nced3-2 mutant, this genotype showed an increased leaf B concentration and damage upon exposure to 5 mM B. Under B toxicity, ABA application decreased B accumulation in wild-type and nced3-2 plants. In summary, this work shows that excess B applied to the roots leads to rapid changes in AtNCED3 expression and gas exchange parameters that would contribute to restrain the B entry into the leaves, this effect being mediated by ABA. © 2016 Scandinavian Plant Physiology Society.

  20. Fatty acid synthase cooperates with glyoxalase 1 to protect against sugar toxicity.

    Directory of Open Access Journals (Sweden)

    Damien Garrido

    2015-02-01

    Full Text Available Fatty acid (FA metabolism is deregulated in several human diseases including metabolic syndrome, type 2 diabetes and cancers. Therefore, FA-metabolic enzymes are potential targets for drug therapy, although the consequence of these treatments must be precisely evaluated at the organismal and cellular levels. In healthy organism, synthesis of triacylglycerols (TAGs-composed of three FA units esterified to a glycerol backbone-is increased in response to dietary sugar. Saturation in the storage and synthesis capacity of TAGs is associated with type 2 diabetes progression. Sugar toxicity likely depends on advanced-glycation-end-products (AGEs that form through covalent bounding between amine groups and carbonyl groups of sugar or their derivatives α-oxoaldehydes. Methylglyoxal (MG is a highly reactive α-oxoaldehyde that is derived from glycolysis through a non-enzymatic reaction. Glyoxalase 1 (Glo1 works to neutralize MG, reducing its deleterious effects. Here, we have used the power of Drosophila genetics to generate Fatty acid synthase (FASN mutants, allowing us to investigate the consequence of this deficiency upon sugar-supplemented diets. We found that FASN mutants are lethal but can be rescued by an appropriate lipid diet. Rescued animals do not exhibit insulin resistance, are dramatically sensitive to dietary sugar and accumulate AGEs. We show that FASN and Glo1 cooperate at systemic and cell-autonomous levels to protect against sugar toxicity. We observed that the size of FASN mutant cells decreases as dietary sucrose increases. Genetic interactions at the cell-autonomous level, where glycolytic enzymes or Glo1 were manipulated in FASN mutant cells, revealed that this sugar-dependent size reduction is a direct consequence of MG-derived-AGE accumulation. In summary, our findings indicate that FASN is dispensable for cell growth if extracellular lipids are available. In contrast, FA-synthesis appears to be required to limit a cell

  1. Abscisic Acid Signaling and Abiotic Stress Tolerance in Plants: A Review on Current Knowledge and Future Prospects

    Science.gov (United States)

    Vishwakarma, Kanchan; Upadhyay, Neha; Kumar, Nitin; Yadav, Gaurav; Singh, Jaspreet; Mishra, Rohit K.; Kumar, Vivek; Verma, Rishi; Upadhyay, R. G.; Pandey, Mayank; Sharma, Shivesh

    2017-01-01

    Abiotic stress is one of the severe stresses of environment that lowers the growth and yield of any crop even on irrigated land throughout the world. A major phytohormone abscisic acid (ABA) plays an essential part in acting toward varied range of stresses like heavy metal stress, drought, thermal or heat stress, high level of salinity, low temperature, and radiation stress. Its role is also elaborated in various developmental processes including seed germination, seed dormancy, and closure of stomata. ABA acts by modifying the expression level of gene and subsequent analysis of cis- and trans-acting regulatory elements of responsive promoters. It also interacts with the signaling molecules of processes involved in stress response and development of seeds. On the whole, the stress to a plant can be susceptible or tolerant by taking into account the coordinated activities of various stress-responsive genes. Numbers of transcription factor are involved in regulating the expression of ABA responsive genes by acting together with their respective cis-acting elements. Hence, for improvement in stress-tolerance capacity of plants, it is necessary to understand the mechanism behind it. On this ground, this article enlightens the importance and role of ABA signaling with regard to various stresses as well as regulation of ABA biosynthetic pathway along with the transcription factors for stress tolerance. PMID:28265276

  2. Alleviation of nickel toxicity in finger millet (Eleusine coracana L. germinating seedlings by exogenous application of salicylic acid and nitric oxide

    Directory of Open Access Journals (Sweden)

    Kasi Viswanath Kotapati

    2017-06-01

    Full Text Available This study investigated the effect of salicylic acid (SA and sodium nitroprusside (SNP; NO donor on nickel (Ni toxicity in germinating finger millet seedlings. Fourteen-day-old finger millet plants were subjected to 0.5 mmol L−1 Ni overload and treated with 0.2 mmol L−1 salicylic acid and 0.2 mmol L−1 sodium nitroprusside to lessen the toxic effect of Ni. The Ni overload led to high accumulation in the roots of growing plants compared to shoots, causing oxidative stress. It further reduced root and shoot length, dry mass, total chlorophyll, and mineral content. Exogenous addition of either 0.2 mmol L−1 SA or 0.2 mmol L−1 SNP reduced the toxic effect of Ni, and supplementation with both SA and SNP significantly reduced the toxic effect of Ni and increased root and shoot length, chlorophyll content, dry mass, and mineral concentration in Ni-treated plants. The results show that oxidative stress can be triggered in finger millet plants by Ni stress by induction of lipoxygenase activity, increase in levels of proline, O2•− radical, MDA, and H2O2, and reduction in the activity of antioxidant enzymes such as CAT, SOD, and APX in shoots and roots. Exogenous application of SA or SNP, specifically the combination of SA + SNP, protects finger millet plants from oxidative stress observed under Ni treatment.

  3. Evaluating relative contribution of osmotolerance and tissue tolerance mechanisms toward salinity stress tolerance in three Brassica species.

    Science.gov (United States)

    Chakraborty, Koushik; Bose, Jayakumar; Shabala, Lana; Eyles, Alieta; Shabala, Sergey

    2016-10-01

    Three different species of Brassica, with differential salt sensitivity were used to understand physiological mechanisms of salt tolerance operating in these species and to evaluate the relative contribution of different strategies to cope with salt load. Brassica napus was the most tolerant species in terms of the overall performance, with Brassica juncea and Brassica oleracea being much more sensitive to salt stress with no obvious difference between them. While prominent reduction in net CO2 assimilation was observed in both sensitive species, physiological mechanisms beyond this reduction differed strongly. Brassica juncea plants possessed high osmotolerance and were able to maintain high transpiration rate but showed a significant reduction in leaf chlorophyll content and efficiency of leaf photochemistry. On the contrary, B. oleracea plants possessed the highest (among the three species) tissue tolerance but showed a very significant stomatal limitation of photosynthesis. Electrophysiological experiments revealed that the high tissue tolerance in B. oleracea was related to the ability of leaf mesophyll cells to maintain highly negative membrane potential in the presence of high apoplastic Na(+) . In addition to high osmotolerance, the most tolerant B. napus showed also lesser accumulation of toxic Na(+) and Cl(-) in the leaf, possessed moderate tissue tolerance and had a superior K(+) retention ability. Taken together, the results from this study indicate that the three Brassica species employ very different mechanisms to cope with salinity and, despite its overall sensitivity to salinity, B. oleracea could be recommended as a valuable 'donor' of tissue tolerance genes to confer this trait for marker-assisted breeding programs. © 2016 Scandinavian Plant Physiology Society.

  4. Mitochondrial dysfunction is involved in the toxic activity of boric acid against Saprolegnia.

    Directory of Open Access Journals (Sweden)

    Shimaa E Ali

    Full Text Available There has been a significant increase in the incidence of Saprolegnia infections over the past decades, especially after the banning of malachite green. Very often these infections are associated with high economic losses in salmonid farms and hatcheries. The use of boric acid to control the disease has been investigated recently both under in vitro and in vivo conditions, however its possible mode of action against fish pathogenic Saprolegnia is not known. In this study, we have explored the transformation in Saprolegnia spores/hyphae after exposure to boric acid (1 g/L over a period 4-24 h post treatment. Using transmission electron microscopy (TEM, early changes in Saprolegnia spores were detected. Mitochondrial degeneration was the most obvious sign observed following 4 h treatment in about 20% of randomly selected spores. We also investigated the effect of the treatment on nuclear division, mitochondrial activity and function using confocal laser scanning microscopy (CLSM. Fluorescence microscopy was also used to test the effect of treatment on mitochondrial membrane potential and formation of reactive oxygen species. Additionally, the viability and proliferation of treated spores that correlated to mitochondrial enzymatic activity were tested using an MTS assay. All obtained data pointed towards changes in the mitochondrial structure, membrane potential and enzymatic activity following treatment. We have found that boric acid has no effect on the integrity of membranes of Saprolegnia spores at concentrations tested. It is therefore likely that mitochondrial dysfunction is involved in the toxic activity of boric acid against Saprolegnia spp.

  5. Survival strategy of the salt-tolerant lactic acid bacterium, Tetragenococcus halophilus, to counteract koji mold, Aspergillus oryzae, in soy sauce brewing.

    Science.gov (United States)

    Nishimura, Ikuko; Shinohara, Yasutomo; Oguma, Tetsuya; Koyama, Yasuji

    2018-04-08

    In soy sauce brewing, the results of the fermentation of lactic acid greatly affect the quality of soy sauce. The soy sauce moromi produced with Aspergillus oryzae RIB40 allows the growth of Tetragenococcus halophilus NBRC 12172 but not T. halophilus D10. We isolated and identified heptelidic acid (HA), an inhibitor of glyceraldehyde-3-phosphate dehydrogenase (GAPDH), produced by A. oryzae RIB40 as the growth inhibitor of the salt-tolerant lactic acid bacteria. The growth inhibition of T. halophilus D10 by HA was suggested to be associated with the direct inhibition of GAPDH activity under high salt environment. The difference in the susceptibility to HA among various strains of T. halophilus was caused by the mutations in the gene encoding GAPDH.

  6. Elemental Composition of Two Rice Cultivars under Potentially Toxic an Aquept and Aquent

    Directory of Open Access Journals (Sweden)

    Adesola Olutayo OLALEYE

    2009-12-01

    Full Text Available Iron toxicity is a major nutrient disorder affecting rice production of wetland rice in the irrigated and rainfed ecosystem in West Africa sub-region. Little attention has been paid to evaluating nutrient contents of rice cultivars grown on such soils and their relationship to the iron toxicity scores, grain yield and dry matter yields. A pot experiment was conducted on two potentially Fe-toxic soils (Aeric Fluvaquent and Aeric Tropaquept. The experiment was a 2 x 2 x 4 factorial experiment with three replicates in arranged in a randomized fashion. The factors were two soil types, two rice cultivars (ITA 212 and tolerant (Suakoko 8 and four Fe 2+ levels (control, 1000, 3000 and 4000 mg L-1. The result showed that for both susceptible cultivar (ITA 212 and the relatively tolerant (Suakoko 8 cultivar, little or no differences were observed in their elemental composition with regards to micro and macro-nutrients. For the susceptible cultivar, results showed that none of the tissue nutrients significantly relates to iron toxicity scores (ITS, grain yield and dry matter yield on both soil types. However, for the tolerant cultivar, ITS was observed to be significantly related to tissue K and P contents on the two soil types respectively. Tissue Ca and Mg were observed to be significantly related to the dry matter yield (DMY on Aeric Tropquept. It could be concluded that for these rice cultivars grown on two potentially Fe-toxic soils, different tissue nutrients may trigger the manifestation of bronzing or yellowing symptoms of rice cultivars.

  7. Attempt at mapping acidic atmospheric pollution in the north of France in relation to the toxic sensitivity of epiphytic lichens

    Energy Technology Data Exchange (ETDEWEB)

    Gehu, J M; Bon, M; Delzenne, C; Rose, F

    1973-01-29

    The authors present, for the first time in France, a map of acidic atmospheric pollution (for the departments of Nord, Pas-de-calais and Somme) based on the study of the epiphytic lichen flora and its distribution in ten zones of toxic sensitivity, using the Hawksworth and Rose scale.

  8. Comparative leaching of six toxic metals from raw and chemically stabilized MSWI fly ash using citric acid.

    Science.gov (United States)

    Wang, Huawei; Fan, Xinxiu; Wang, Ya-Nan; Li, Weihua; Sun, Yingjie; Zhan, Meili; Wu, Guizhi

    2018-02-15

    The leaching behavior of six typical toxic metals (Pb, Zn, Cr, Cd, Cu and Ni) from raw and chemically stabilized (phosphate and chelating agent) municipal solid waste incineration (MSWI) fly ash were investigated using citric acid. Leaching tests indicated that phosphate stabilization can effectively decrease the leaching of Zn, Cd and Cr; whereas chelating agent stabilization shows a strong ability to lower the release of Pb, Cd and Cu, but instead increases the solubility of Zn and Cr at low pH conditions. Sequential extraction results suggested that the leaching of Pb, Zn and Cd in both the stabilized MSWI fly ash samples led to the decrease in Fe/Mn oxide fraction and the increase in exchangeable and carbonate fractions. The leaching of Cr was due to the decrease in exchangeable, carbonate and Fe/Mn oxide fractions in phosphate-stabilized and chelating agent-stabilized MSWI fly ash. The leaching of Cu in both stabilized MSWI fly ash was greatly ascribed to the decrease in Fe/Mn oxide and oxidisable fractions. Moreover, predicted curves by geochemical model indicated that both stabilized MSWI fly ash have the risk of releasing toxic metals under strong acid environment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Humic Acid Confers HIGH-AFFINITY K+ TRANSPORTER 1-Mediated Salinity Stress Tolerance in Arabidopsis.

    Science.gov (United States)

    Khaleda, Laila; Park, Hee Jin; Yun, Dae-Jin; Jeon, Jong-Rok; Kim, Min Gab; Cha, Joon-Yung; Kim, Woe-Yeon

    2017-12-31

    Excessive salt disrupts intracellular ion homeostasis and inhibits plant growth, which poses a serious threat to global food security. Plants have adapted various strategies to survive in unfavorable saline soil conditions. Here, we show that humic acid (HA) is a good soil amendment that can be used to help overcome salinity stress because it markedly reduces the adverse effects of salinity on Arabidopsis thaliana seedlings. To identify the molecular mechanisms of HA-induced salt stress tolerance in Arabidopsis, we examined possible roles of a sodium influx transporter HIGH-AFFINITY K+ TRANSPORTER 1 (HKT1). Salt-induced root growth inhibition in HKT1 overexpressor transgenic plants (HKT1-OX) was rescued by application of HA, but not in wild-type and other plants. Moreover, salt-induced degradation of HKT1 protein was blocked by HA treatment. In addition, the application of HA to HKT1-OX seedlings led to increased distribution of Na+ in roots up to the elongation zone and caused the reabsorption of Na+ by xylem and parenchyma cells. Both the influx of the secondary messenger calcium and its cytosolic release appear to function in the destabilization of HKT1 protein under salt stress. Taken together, these results suggest that HA could be applied to the field to enhance plant growth and salt stress tolerance via post-transcriptional control of the HKT1 transporter gene under saline conditions.

  10. Evaluation of different lactic acid bacterial strains for probiotic characteristics

    OpenAIRE

    B. Srinu,; T. Madhava Rao,; P. V. Mallikarjuna Reddy; K. Kondal Reddy

    2013-01-01

    Objective: The objective of the present study was to collect different Lactic acid bacterial strains from culture collection centers and screen their functional probiotic characteristics such as acid tolerance, bile tolerance, antibacterial activity and antibiotic sensitivity for their commercial use. Materials and Methods: Acid and bile tolerence of selected LAB(Lactic acid bacteria) was determined. The antibiotic resistance of Lactobacillus species was assessed using different antibiotic di...

  11. Evaluating the Metal Tolerance Capacity of Microbial Communities Isolated from Alberta Oil Sands Process Water.

    Directory of Open Access Journals (Sweden)

    Mathew L Frankel

    Full Text Available Anthropogenic activities have resulted in the intensified use of water resources. For example, open pit bitumen extraction by Canada's oil sands operations uses an estimated volume of three barrels of water for every barrel of oil produced. The waste tailings-oil sands process water (OSPW-are stored in holding ponds, and present an environmental concern as they are comprised of residual hydrocarbons and metals. Following the hypothesis that endogenous OSPW microbial communities have an enhanced tolerance to heavy metals, we tested the capacity of planktonic and biofilm populations from OSPW to withstand metal ion challenges, using Cupriavidus metallidurans, a known metal-resistant organism, for comparison. The toxicity of the metals toward biofilm and planktonic bacterial populations was determined by measuring the minimum biofilm inhibitory concentrations (MBICs and planktonic minimum inhibitory concentrations (MICs using the MBEC ™ assay. We observed that the OSPW community and C. metallidurans had similar tolerances to 22 different metals. While thiophillic elements (Te, Ag, Cd, Ni were found to be most toxic, the OSPW consortia demonstrated higher tolerance to metals reported in tailings ponds (Al, Fe, Mo, Pb. Metal toxicity correlated with a number of physicochemical characteristics of the metals. Parameters reflecting metal-ligand affinities showed fewer and weaker correlations for the community compared to C. metallidurans, suggesting that the OSPW consortia may have developed tolerance mechanisms toward metals present in their environment.

  12. MicroRNA as biomarkers of mitochondrial toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Baumgart, Bethany R., E-mail: bethany.baumgart@bms.com [Department of Toxicology, Drug Safety Evaluation, Bristol-Myers Squibb, 4401 Highway 62 East, Mount Vernon, IN 47620 (United States); Gray, Katherine L. [Department of Toxicology, Drug Safety Evaluation, Bristol-Myers Squibb, 4401 Highway 62 East, Mount Vernon, IN 47620 (United States); Woicke, Jochen [Department of Pathology, Drug Safety Evaluation, Bristol-Myers Squibb, 4401 Highway 62 East, Mount Vernon, IN 47620 (United States); Bunch, Roderick T.; Sanderson, Thomas P. [Department of Toxicology, Drug Safety Evaluation, Bristol-Myers Squibb, 4401 Highway 62 East, Mount Vernon, IN 47620 (United States); Van Vleet, Terry R. [Department of Investigative Toxicology and Pathology, Abbvie, 1 N. Waukegan Rd., North Chicago, IL 60064-6123, USA. (United States)

    2016-12-01

    Mitochondrial toxicity can be difficult to detect as most cells can tolerate reduced activity as long as minimal capacity for function is maintained. However, once minimal capacity is lost, apoptosis or necrosis occurs quickly. Identification of more sensitive, early markers of mitochondrial toxicity was the objective of this work. Rotenone, a mitochondrial complex I inhibitor, and 3-nitropropionic acid (3-NP), a mitochondrial complex II inhibitor, were administered daily to male Sprague–Dawley rats at subcutaneous doses of 0.1 or 0.3 mg/kg/day and intraperitoneal doses of 5 or 10 mg/kg/day, respectively, for 1 week. Samples of kidney, skeletal muscle (quadriceps femoris), and serum were collected for analysis of mitochondrial DNA (mtDNA) copy number and microRNA (miRNA) expression patterns. MtDNA was significantly decreased with administration of rotenone at 0.3 mg/kg/day and 3-NP at 5 and 10 mg/kg/day in the quadriceps femoris and with 3-NP at 10 mg/kg/day in the kidney. Additionally, rotenone and 3-NP treatment produced changes to miRNA expression that were similar in direction (i.e. upregulation, downregulation) to those previously linked to mitochondrial functions, such as mitochondrial damage and biogenesis (miR-122, miR-202-3p); regulation of ATP synthesis, abolished oxidative phosphorylation, and loss of membrane potential due to increased reactive oxygen species (ROS) production (miR-338-5p, miR-546, miR-34c); and mitochondrial DNA damage and depletion (miR-546). These results suggest that miRNAs may be sensitive biomarkers for early detection of mitochondrial toxicity. - Highlights: • MtDNA decreased after treatment with respiratory chain inhibitors rotenone and 3-NP. • Decrease in mtDNA is generally dose-related and indicative of mitochondrial toxicity. • Altered miRNA has reported roles in regulating mitochondrial function. • Induction of miR-338-5p in kidney and serum suggests potential as renal biomarker. • Induction of miR-122 implies

  13. Effects of cadmium stress on growth and amino acid metabolism in two Compositae plants.

    Science.gov (United States)

    Zhu, Guangxu; Xiao, Huayun; Guo, Qingjun; Zhang, Zhongyi; Zhao, Jingjing; Yang, Dan

    2018-08-30

    Cadmium, a high toxic heavy metal, is one of the most serious contaminants in soil and a potential threat to plant growth and human health. Amino acid metabolism has the central role in heavy metal stress resistance of plants. In this paper, a pot experiment was carried out to study the effects of different concentrations of cadmium (0, 3, 6, 12, 30 mg kg -1 ) on the growth, Cd accumulation and amino acid metabolism in two Compositae plants (Ageratum conyzoides L. and Crassocephalum crepidioides). The results showed that under cadmium stress, C. crepidioides accumulated more Cd in its shoot and was tolerant to Cd, whereas its low Cd-accumulating relative, A. conyzoides, suffered reduced growth. The Cd content in the aerial part of C. crepidioides exceeded the threshold of Cd-hyperaccumulator. Furthermore, the bioaccumulation factor (BCF) and biological transfer factor (BTF) values for Cd in C. crepidioides were > 1. Thus, C. crepidioides can be regarded as Cd-hyperaccumulator. The comparison between both studied plants indicated that Cd stress resulted in a differential but coordinated response of amino acid levels, which are playing a significant role in plant adaptation to Cd stress. Glu, Gln, Asp, Asn, Gaba, Val and Ala dominated the major amino acids. Higher Cd tolerance and Cd accumulation in C. crepidioides was associated with greater accumulation of free amino acids, especially for Gln and Asn, in C. crepidioides than in A. conyzoides. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Binding of Hg by bacterial extracellular polysaccharide: a possible role in Hg tolerance.

    Science.gov (United States)

    Cruz, Kimberly; Guézennec, Jean; Barkay, Tamar

    2017-07-01

    Bacteria employ adaptive mechanisms of mercury (Hg) tolerance to survive in environments containing elevated Hg concentrations. The potential of extracellular polysaccharides (EPS) production by bacteria as a mechanism of Hg tolerance has not been previously investigated. The objectives of this study were to determine if bacterial EPS sorb Hg, and if so does sorption provide protection against Hg toxicity. Purified EPS with different chemical compositions produced by bacterial isolates from microbial mats in French Polynesian atolls and deep-sea hydrothermal vents were assessed for Hg sorption. The data showed that EPS sorbed up to 82% of Hg from solution, that this sorption was dependent on EPS composition, and that sorption was a saturable mechanism. Hg uptake capacities ranged from 0.005 to 0.454 mmol Hg/g for the different EPS. To determine if EPS production could alter bacterial Hg tolerance, Escherichia coli K-12 strains and their EPS defective mutants were tested by the disc inhibition assay. Mercury inhibited growth in a dose-dependent manner with wild-type strains having smaller (~1 mm), but statistically significant, zones of inhibition than various mutants and this difference was related to a 2-fold decline in the amount of EPS produced by the mutants relative to cell biomass. These experiments identified colanic acid and hexosamine as Hg-binding moieties in EPS. Together these data indicate that binding of Hg to EPS affords a low level of resistance to the producing bacteria.

  15. Melatonin enhances cold tolerance in drought-primed wild-type and abscisic acid-deficient mutant barley.

    Science.gov (United States)

    Li, Xiangnan; Tan, Dun-Xian; Jiang, Dong; Liu, Fulai

    2016-10-01

    Melatonin is involved in multiple plant developmental processes and various stress responses. To explore the roles of melatonin played as well as its association with abscisic acid (ABA) in a process of drought priming-induced cold tolerance (DPICT), a wild-type barley and its ABA-deficient mutant Az34 counterpart were selected for comparison, in which the effects of melatonin application (either foliarly or rhizospherically) and/or drought priming on the cold tolerance of both types of barleys were systematically investigated. It was demonstrated that the early drought priming induced an increase of endogenous melatonin production, which is not ABA dependent. In addition, exogenously applied melatonin resulted in higher ABA concentration in the drought-primed plants than in the nonprimed plants when exposed to cold stress, indicating that ABA responded in a drought-dependent manner. The interplay of melatonin and ABA leads to plants maintaining better water status. Drought priming-induced melatonin accumulation enhanced the antioxidant capacity in both chloroplasts and mitochondria, which sustained the photosynthetic electron transport in photosynthetic apparatus of the plants under cold stress. These results suggest that the exogenous melatonin application enhances the DPICT by modulating subcellular antioxidant systems and ABA levels in barley. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Lead and zinc accumulation and tolerance in populations of six wetland plants

    Energy Technology Data Exchange (ETDEWEB)

    Deng, H. [Biology Department and Croucher Institute for Environmental Sciences, Hong Kong Baptist University, Kowloon, Hong Kong (China); Department of Environmental Science and Technology, East China Normal University, Shanghai (China); Ye, Z.H. [Biology Department and Croucher Institute for Environmental Sciences, Hong Kong Baptist University, Kowloon, Hong Kong (China); School of Life Sciences, Zhongshan (Sun Yat-sen) University, Guangzhou 510275 (China); Wong, M.H. [Biology Department and Croucher Institute for Environmental Sciences, Hong Kong Baptist University, Kowloon, Hong Kong (China)]. E-mail: mhwong@hkbu.edu.hk

    2006-05-15

    Wetland plants such as Typha latifolia and Phragmites australis have been indicated to show a lack of evolution of metal tolerance in metal-contaminated populations. The aim of the present study is to verify whether other common wetland plants such as Alternanthera philoxeroides and Beckmannia syzigachne, also possess the same characteristics. Lead and zinc tolerances in populations of six species collected from contaminated and clean sites were examined by hydroponics. In general, the contaminated populations did not show higher metal tolerance and accumulation than the controls. Similar growth responses and tolerance indices in the same metal treatment solution between contaminated and control populations suggest that metal tolerance in wetland plants are generally not further evolved by contaminated environment. The reasons may be related to the special root anatomy in wetland plants, the alleviated metal toxicity by the reduced rooting conditions and the relatively high innate metal tolerance in some species. - Populations from metal contaminated sites did not have significantly higher metal tolerance indices.

  17. Lead and zinc accumulation and tolerance in populations of six wetland plants

    International Nuclear Information System (INIS)

    Deng, H.; Ye, Z.H.; Wong, M.H.

    2006-01-01

    Wetland plants such as Typha latifolia and Phragmites australis have been indicated to show a lack of evolution of metal tolerance in metal-contaminated populations. The aim of the present study is to verify whether other common wetland plants such as Alternanthera philoxeroides and Beckmannia syzigachne, also possess the same characteristics. Lead and zinc tolerances in populations of six species collected from contaminated and clean sites were examined by hydroponics. In general, the contaminated populations did not show higher metal tolerance and accumulation than the controls. Similar growth responses and tolerance indices in the same metal treatment solution between contaminated and control populations suggest that metal tolerance in wetland plants are generally not further evolved by contaminated environment. The reasons may be related to the special root anatomy in wetland plants, the alleviated metal toxicity by the reduced rooting conditions and the relatively high innate metal tolerance in some species. - Populations from metal contaminated sites did not have significantly higher metal tolerance indices

  18. Possible mechanism for species difference on the toxicity of pivalic acid between dogs and rats

    International Nuclear Information System (INIS)

    Yamaguchi, Toshiro; Nakajima, Yoshitsugu; Nakamura, Yutaka

    2006-01-01

    In a high dose toxicity study of pivalic acid (PA), PA caused skeletal muscle disorder in dog, and a significant increase of pivaloyl carnitine (PC) was observed in canine muscle, but not in rat muscle. In order to understand species difference of the toxicity of PA, we compared the in vitro metabolism of PA among dog, rat and rabbit, especially focussing on the carnitine conjugate. Canine muscle showed low, but significant carnitine conjugating activity, while that of rat was negligible. Canine kidney mitochondria had significant activity in the pivaloyl CoA synthesis (7 nmol/mg protein/h), but muscle mitochondria showed only trace activity. Both kidney and muscle mitochondria displayed similar carnitine acyltransferase activity (2-3 nmol/mg protein/h) towards pivaloyl CoA. On the other hand, with respect to the activity of carnitine acyltransferase in the reverse direction using PC as substrate, canine muscle mitochondria showed higher activity than that of kidney mitochondria. This means that PC is not the final stable metabolite, but is converted easily to pivaloyl CoA in canine muscle. These results suggest one of the possible mechanisms for canine selective muscle disorder to be as follows. Only canine muscle can metabolize PA to its carnitine conjugate slowly, but significantly. In canine muscle, PC is not the final stable metabolite; it is easily converted to pivaloyl CoA. As carnitine conjugation is thought to be the only detoxification metabolic route in canine muscle, under certain circumstances such as carnitine deficiency, the risk of exposure with toxic pivaloyl CoA might increase and the CoASH pool in canine muscle might be exhausted, resulting in toxicity in canine muscle

  19. A molecular, genetic and physiological analysis of plant aluminum tolerance (abstract)

    International Nuclear Information System (INIS)

    Pineros, M.

    2005-01-01

    Aluminum (Al) toxicity is an important agronomic trait, limiting crop production on acid soils that comprise up to 50% of the world's potentially arable lands. A significant genetic variation in Al tolerance exists in both crop plants and Arabidopsis. The exploitation of this genetic variation to breed crops with increased Al tolerance has been a productive and active area of research, however, the underlying molecular, genetic and physiological bases are still not well understood. Only very recently was the first Al tolerance gene, ALMT1, isolated in wheat and shown to be a novel Al-activated malate transporter. Work in our laboratory has focused on using integrated genomic (gene and protein expression profiling), molecular genetic and physiological approaches to identify novel Al tolerance genes and the physiological mechanisms they control in the cereal crops maize and sorghum, and also in arabidopsis. In sorghum we had previously shown that Al tolerance is the result of a single locus, Alt/sub SB/ which maps to the top of sorghum chromosome 3 in a region totally distinct from where the major Al tolerance maps in wheat and other related members of the Triticeae. Very recently, we have used map-based cloning techniques in sorghum to clone Alt/sub SB/ and have found it is a novel Al tolerance gene. Here we will present a molecular characterization of the Alt/sub SB/ gene and also the physiological mechanism of sorghum Al tolerance it controls. In arabidopsis, we have previously shown that Al tolerance is a quantitative trait and have identified two major Al tolerance QTL on chromosomes 1 and 5. These genes function to confer tolerance via Al via activated root malate release. We found that a member of the arabidopsis gene family that is a close homolog to wheat ALMT1 maps near the largest tolerance QTL on chromosome 1 and have also found this gene encodes the Al-activated malate transport involved in arabidopsis Al tolerance. However, we have clear molecular

  20. Behavioural responses of Acroneuria lycoria (Ins. Plecopt. ) Larvae to acute and chronic acid exposure

    Energy Technology Data Exchange (ETDEWEB)

    McNichol, R.E.; Scherer, E.

    1987-01-01

    This study was designed to investigate the responses of a perlid stonefly, Acroneuria lycorias (Newman), to acute and chronic acid exposure. Larvae of this species are common in streams and rivers impacted by acidic precipitation. It is also a suggested standard toxicity test species, which in previous studies has proven to be very sensitive to some toxicants. The effects of acute and chronic acid exposure on the locomotor activity, microdistribution, and drift behaviour of the stonefly larvae were studied in laboratory streams. When subjected to a reduction in pH from 8.1 to 2.5 over an 8-h period, larvae showed little behavioural response down to pH 4.2. As the pH fell to 3.0, head-rubbing activity appeared and increased in frequency. At pH 3.0 and below, larvae showed increased gill-ventilatory movements and locomotor activity. Most larvae died within 14 h of exposure to pH 2.5; however, they did not abandon their preferred refuges before death. Larvae exposed to 5 pH levels between 4.5 and 8.2 for 30-50 d displayed no significant changes in locomotor activity, drift behaviour or microdistribution when compared to control animals. Results indicate that later instar larvae of this species are relatively acid tolerant. 29 refs 4 figs 1 tab