WorldWideScience

Sample records for acid toxic coal

  1. Up the stack : coal-fired electricity's toxic impact : an OCAA air quality report

    International Nuclear Information System (INIS)

    Rang, S.

    2002-07-01

    Ontario Power Generation (OPG) must report annually its releases and transfers of 268 chemicals to the federal National Pollutant Release Inventory (NPRI). Each OPG facility reports the amount of chemicals released to the air, land, water and injected under ground at the facility site. The facilities must also report the amount of chemicals that are transferred off-site for treatment, sewage, disposal, recycling or energy recovery. In 1999 and 2000, atmospheric releases from OPG's coal-fired plants accounted for a significant percentage of the total pollutants released for Ontario and Canada. OPG's facilities are often in the top 5 in Ontario and Canada for releases of various chemicals, including persistent toxic chemicals. In 1999, the Nanticoke coal-fired power plant on Lake Erie was ranked first in Canada for releases to the air. Data reported for the 1999 and 2000 reporting period for dioxins and furans, hexachlorobenzene, mercury, metals (chromium, nickel and arsenic), and acid gases such as hydrochloric acid, hydrogen fluoride, and sulphuric acid clearly indicates that OPG coal-fired plants are a leading source of air pollution in Canada and Ontario. The Ontario Clean Air Alliance suggests the data is sufficient to phase-out the use of coal for power generation in Ontario. It recommends conserving energy and replacing coal-fired power with renewable energy sources such as wind and water power. Converting coal facilities to high-efficiency natural gas units would also reduce the toxic impacts of OPG's coal-fired power plants. As an immediate first step, it was recommended that the government should ban non-emergency exports of coal-fired electricity during smog-alert periods in Ontario. 11 tabs

  2. Utilisation of chemically treated coal

    International Nuclear Information System (INIS)

    Bezovska, M.

    2002-01-01

    The numerous application of coal with high content of humic substances are known. They are used in many branches of industry. The complex study of the composition of coal from upper Nitra mines has directed research to its application in the field of ecology and agriculture. The effective sorption layers of this coal and their humic acids can trap a broad spectrum of toxic harmful substances present in industrial wastes, particularly heavy metals. A major source of humic acids is coal - the most abundant and predominant product of plant residue coalification. All ranks of coal contain humic acids but lignite from Novaky deposit represents the most easily available and concentrated from of humic acids. The possibilities of utilisation of humic acids to remove heavy metals from waste waters was studied. The residual concentrations of the investigated metals in the aqueous phase were determined by AAs. From the results follows that the samples of coals humic acids can be used for the heavy metal removal from metal solutions and the real acid mine water. Oxidised coal with high content of humic acids and nitrogen is used in agriculture as fertilizer. Humic acids are active component in coal and can help to utilize almost quantitatively nitrogen in soil. The humic substances block and stabilize toxic metal residues already present in soil. (author)

  3. Renal Cell Toxicity of Water-Soluble Coal Extracts from the Gulf Coast

    Science.gov (United States)

    Ojeda, A. S.; Ford, S.; Ihnat, M.; Gallucci, R. M.; Philp, P. R.

    2017-12-01

    In the Gulf Coast, many rural residents rely on private well water for drinking, cooking, and other domestic needs. A large portion of this region contains lignite coal deposits within shallow aquifers that potentially leach organic matter into the water supply. It is proposed that the organic matter leached from low-rank coal deposits contributes to the development of kidney disease, however, little work has been done to investigate the toxicity of coal extracts. In this study, human kidney cells (HK-2) were exposed to water-soluble extracts of Gulf Coast Coals to assess toxicity. Cell viability was measured by direct counts of total and necrotic cells. A dose-response curve was used to generate IC50 values, and the extracts showed significant toxicity that ranged from 0.5% w/v to 3% w/v IC50. The most toxic extract was from Louisiana where coal-derived organic material has been previously linked to high incidents of renal pelvic cancer (RPC). Although the toxic threshold measured in this study is significantly higher than the concentration of organic matter in the groundwater, typically affected areas may consume contaminated water over a lifetime. It is possible that the cumulative toxic effects of coal-derived material contribute to the development of disease.

  4. Utilisation of chemically treated coal

    Directory of Open Access Journals (Sweden)

    Bežovská Mária

    2002-03-01

    Full Text Available The numerous application of coal with high content of humic substances are known. They are used in many branches of industry. The complex study of the composition of coal from upper Nitra mines has directed research to its application in the field of ecology and agriculture. The effective sorption layers of this coal and their humic acids can to trap a broad spectrum of toxic harmful substances present in industrial wastes, particularly heavy metals. A major source of humic acids is coal - the most abundant and predominant product of plant residue coalification. All ranks of coal containt humic acids but lignite from Nováky deposit represents the most easily available and concentrated form of humic acids. Deep oxidation of coal by HNO3 oxidation - degradation has been performed to produce water-soluble-organic acids. The possibilities of utilisation of oxidised coal and humic acids to remove heavy metals from waste waters was studied. The residual concentrations of the investigated metals in the aqueous phase were determined by AAs. From the results follows that the samples of oxidised coal and theirs humic acids can be used for the heavy metal removal from metal solutions and the real acid mine water.Oxidised coal with a high content of humic acids and nitrogen is used in agriculture a fertilizer. Humic acids are active component in coal and help to utilize almost quantitatively nitrogen in soil. The humic substances block and stabiliz toxic metal residues already present in soil.

  5. Controlling air toxics through advanced coal preparation

    Energy Technology Data Exchange (ETDEWEB)

    Straszheim, W.E.; Buttermore, W.H.; Pollard, J.L. [Iowa State Univ., Ames, IA (United States)

    1995-11-01

    This project involves the assessment of advanced coal preparation methods for removing trace elements from coal to reduce the potential for air toxic emissions upon combustion. Scanning electron microscopy-based automated image analysis (SEM-AIA) and advanced washability analyses are being applied with state-of-the-art analytical procedures to predict the removal of elements of concern by advanced column flotation and to confirm the effectiveness of preparation on the quality of quantity of clean coal produced. Specific objectives are to maintain an acceptable recovery of combustible product, while improving the rejection of mineral-associated trace elements. Current work has focused on determining conditions for controlling column flotation system across its operating range and on selection and analysis of samples for determining trace element cleanability.

  6. Toxicity of coal-tar and asphalt sealants to eastern newts, Notophthalmus viridescens

    Energy Technology Data Exchange (ETDEWEB)

    Bommarito, T.; Sparling, D.W.; Halbrook, R.S. [South Illinois University, Carbondale, IL (United States). Cooperative Wildlife Research Laboratory

    2010-09-15

    Between 1970 and 2000 the concentration of total polycyclic aromatic hydrocarbons (TPAH) in several lakes across the country increased whereas those of other persistent organic pollutants (POPs) tended to remain stable or declined. Urbanized watersheds experienced greater rises in TPAH concentration compared to non-urban lakes. Sources for urban PAHs include industrial wastes, vehicular exhausts and oil leaks and sealants from pavement surfaces. Both coal-tar and asphalt sealants are used to protect surfaces but runoff from surfaces coated with coal-tar can have mean concentrations of 3500 mg TPAHs kg{sup -1}, much higher than runoff from asphalt-sealed or cement surfaces. Unaltered parent compounds of PAHs can have many lethal and sublethal toxic effects, but oxidation and UV radiation can alter the toxicity of these compounds, sometimes creating degradates that are many times more toxic than parent compounds. The purposes of this study were to determine if coal-tar sealants can be toxic to adult eastern newts (Notophthalmus viridescens) and to compare the toxicity of coal-tar sealant to that of asphalt sealant. Newts were exposed to sediments containing dried sealants ranging from 0 mg kg{sup -1} to 1500 mg kg{sup -1} under simultaneous exposure to UV radiation and visible light to determine concentration/response relationships. No significant mortality occurred with any treatment. Significant effects due to sealants included decreased righting ability and diminished liver enzyme activities. Coal-tar sealant was more effective in inducing these changes than was asphalt sealant.

  7. Preparation of fulvic acid and low-molecular organic acids by oxidation of weathered coal humic acid

    Energy Technology Data Exchange (ETDEWEB)

    Shinozuka, T.; Ito, A.; Sasaki, O.; Yazawa, Y.; Yamaguchi, T. [Chiba Institute of Technolgy, Chiba (Japan). Dept. of Industrial Chemistry

    2002-07-01

    Weathered coal contains much humic acid and a little fulvic acid. Therefore, the production of fulvic acid, the most valuable humic substance because of its water-solubility, was examined by ozone and hydrogen peroxide oxidation of humic acid extracted form Xinjiang (China) weathered coal. The resulting products of the oxidation were water soluble fulvic acid and organic acids, mainly formic acid and oxalic acid. The product yield of fulvic acid was 20 (C%) and that of organic acids were 39 (C%) for formic and acid 13 (C%) for oxalic acid. The formed fulvic acid showed a higher content of oxygen and carboxyl groups, than those of the extracted one from the original weathered coal.

  8. Occurrence and mobility of toxic elements in coals from endemic fluorosis areas in the Three Gorges Region, SW China.

    Science.gov (United States)

    Xiong, Yan; Xiao, Tangfu; Liu, Yizhang; Zhu, Jianming; Ning, Zengping; Xiao, Qingxiang

    2017-10-01

    Fluorine (F) is a topic of great interest in coal-combustion related endemic fluorosis areas. However, little extent research exists regarding the environmental geochemistry of toxic elements that are enriched in coals and coal wastes in traditional endemic fluorosis areas, particularly focusing on their occurrences and mobilities during the weathering-leaching processes of coals and coal wastes in the surface environment. This paper addressed the issue of toxic elements in coals and coal wastes in the Three Gorges Region, Southwest (SW) China, where endemic fluorosis has historically prevailed, and investigated the distribution, occurrence, mobility features, and associated potential health risks. For this purpose, a modified experiment combined with long-term humidity cell test and column leaching trial was applied to elucidate the mobility of toxic elements in coals and coal wastes. In addition, sequential chemical extraction (SCE) was used to ascertain the modes of occurrence of toxic elements. The results demonstrated that the contents of toxic elements in the study area followed the order: stone coals > gangues > coal balls > coals. Furthermore, modes of occurrence of toxic elements were obviously different in coals and coal wastes. For example, cadmium (Cd) was mainly associated with monosulfide fraction in coals, molybdenum (Mo) and arsenic (As) were mainly associated with carbonate and silicate in coal gangues and stone coals, chromium (Cr) mainly existed in silicate and insoluble matter in coal gangues and coal balls, thallium (Tl) mainly occurred in organic matter in stone coals and sulfide in coals, and the occurrence of antimony (Sb) varied with different kinds of samples. Moreover, a large amount of toxic elements released to the leachates during the weathering and leaching process, which might pollute the environment and threaten human health. Based on the geo-accumulation index (I geo ), single factor index (P i ) and Nemerow index (P N ), soils i n

  9. Air toxic emissions from the combustion of coal: Identifying and quantifying hazardous air pollutants from US coals

    Energy Technology Data Exchange (ETDEWEB)

    Szpunar, C.B.

    1992-09-01

    This report addresses the key air toxic emissions likely to emanate from continued and expanded use of domestic coal. It identifies and quantifies those trace elements specified in the US 1990 Clean Air Act Amendments, by tabulating selected characterization data on various source coals by region, state, and rank. On the basis of measurements by various researchers, this report also identifies those organic compounds likely to be derived from the coal combustion process (although their formation is highly dependent on specific boiler configurations and operating conditions).

  10. Air toxic emissions from the combustion of coal: Identifying and quantifying hazardous air pollutants from US coals

    International Nuclear Information System (INIS)

    Szpunar, C.B.

    1992-09-01

    This report addresses the key air toxic emissions likely to emanate from continued and expanded use of domestic coal. It identifies and quantifies those trace elements specified in the US 1990 Clean Air Act Amendments, by tabulating selected characterization data on various source coals by region, state, and rank. On the basis of measurements by various researchers, this report also identifies those organic compounds likely to be derived from the coal combustion process (although their formation is highly dependent on specific boiler configurations and operating conditions)

  11. Comprehensive assessment of toxic emissions from coal-fired power plants

    International Nuclear Information System (INIS)

    Brown, T.D.; Schmidt, C.E.; Radziwon, A.S.

    1991-01-01

    The Pittsburgh Energy Technology Center (PETC) of the US Department of Energy (DOE) has two current investigations, initiated before passage of the Clean Air Act Amendment (CAAA), that will determine the air toxic emissions from coal-fired electric utilities. DOE has contracted with Battelle Memorial Institute and Radian corporation to conduct studies focusing on the potential air toxics, both organic and inorganic, associated with different size fractions of fine particulate matter emitted from power plant stacks. Table 2 indicates the selected analytes to be investigated during these studies. PETC is also developing guidance on the monitoring of Hazardous Air Pollutants (HAPS) to be incorporated in the Environmental Monitoring plans for the demonstration projects in its Clean Coal Technology Program

  12. Mercury and halogens in coal--Their role in determining mercury emissions from coal combustion

    Science.gov (United States)

    Kolker, Allan; Quick, Jeffrey C.; Senior, Connie L.; Belkin, Harvey E.

    2012-01-01

    Mercury is a toxic pollutant. In its elemental form, gaseous mercury has a long residence time in the atmosphere, up to a year, allowing it to be transported long distances from emission sources. Mercury can be emitted from natural sources such as volcanoes, or from anthropogenic sources, such as coal-fired powerplants. In addition, all sources of mercury on the Earth's surface can re-emit it from land and sea back to the atmosphere, from which it is then redeposited. Mercury in the atmosphere is present in such low concentrations that it is not considered harmful. Once mercury enters the aquatic environment, however, it can undergo a series of biochemical transformations that convert a portion of the mercury originally present to methylmercury, a highly toxic organic form of mercury that accumulates in fish and birds. Many factors contribute to creation of methylmercury in aquatic ecosystems, including mercury availability, sediment and nutrient load, bacterial influence, and chemical conditions. In the United States, consumption of fish with high levels of methylmercury is the most common pathway for human exposure to mercury, leading the U.S. Environmental Protection Agency (EPA) to issue fish consumption advisories in every State. The EPA estimates that 50 percent of the mercury entering the atmosphere in the United States is emitted from coal-burning utility powerplants. An EPA rule, known as MATS (for Mercury and Air Toxics Standards), to reduce emissions of mercury and other toxic pollutants from powerplants, was signed in December 2011. The rule, which is currently under review, specifies limits for mercury and other toxic elements, such as arsenic, chromium, and nickel. MATS also places limits on emission of harmful acid gases, such as hydrochloric acid and hydrofluoric acid. These standards are the result of a 2010 detailed nationwide program by the EPA to sample stack emissions and thousands of shipments of coal to coal-burning powerplants. The United

  13. Investigation of virgin coals and coals subjected to a mild acid treatment

    Energy Technology Data Exchange (ETDEWEB)

    Clark, T.M.; Evans, B.J.; Wynter, C.; Pollak, H.; Taole, S.; Radcliffe, D. [University of Michigan, Ann Arbor, MI (United States). Dept. of Chemistry

    1998-06-01

    A quantitative determination of the relative marcasite/pyrite contents in virgin coals is possible by means of {sup 57}Fe Moessbauer spectroscopy. Complications arise however, when iron-containing silicates, carbonates, or other salts are present. The application of a mild chemical treatment involving hydrofluoric acid has been employed to remove these Fe-containing phases while leaving the iron-disulfide phases unaffected. Several South African coal samples with non-iron disulfide, Fe-containing phases ranging from 18 to 30 weight percent were subjected to a hydrofluoric acid leaching at room temperature. The loss of mineral matter with HF leaching correlates well with the mineral matter residue following low temperature ashing. The {sup 57}Fe Moessbauer spectra of the resulting coal samples indicate that only FeS{sub 2} phases are present and the absence of appreciable quantities of marcasite in the coals.

  14. Effect of acid treatment on thermal extraction yield in ashless coal production

    Energy Technology Data Exchange (ETDEWEB)

    Chunqi Li; Toshimasa Takanohashi; Takahiro Yoshida; Ikuo Saito; Hideki Aoki; Kiyoshi Mashimo [National Institute of Advanced Industrial Science and Technology, Tsukuba (Japan). Institute for Energy Utilization

    2004-04-01

    Coals of different ranks were acid-treated in aqueous methoxyethoxy acetic acid (MEAA), acetic acid (AA), and HCl. The acid-treated coals were extracted with polar N-methyl-2-pyrrolidinone (NMP) and nonpolar 1-methylnaphthalene (1MN) solvents at temperatures from 200 to 360{sup o}C for 10 60 min. The thermal extraction yields with NMP for some acid-treated low-rank coals increased greatly; for example, the extraction yield for Wyodak coal (%C; 75.0%) increased from 58.4% for the raw coal to 82.9% for coal treated in 1.0 M MEAA. Conversely, the extraction yields changed minimally for all the acid-treated coals extracted in 1-MN. The type and concentration of acid affected the extraction yield when NMP was used as the extraction solvent. With increasing MEAA concentration from 0.01 to 0.1 M, the extraction yield for Wyodak coal increased from 66.3 to 81.4%, and subsequently did not change clearly with concentration. Similar changes in the extraction yield with acid concentration were also observed with AA and HCl. The de-ashing ratio for coals acid-treated in MEAA, AA, and HCl also increased greatly with concentration from 0.01 to 0.1 M, which corresponded to the change in the thermal extraction yield in NMP. For the acid-treated coals, high extraction yields were obtained at lower extraction temperatures and shorter extraction times than for the raw coal. The mechanisms for the acid treatment and thermal extraction are discussed. 27 refs., 6 figs., 3 tabs.

  15. Fate of the naturally occurring radioactive materials during treatment of acid mine drainage with coal fly ash and aluminium hydroxide.

    Science.gov (United States)

    Madzivire, Godfrey; Maleka, Peane P; Vadapalli, Viswanath R K; Gitari, Wilson M; Lindsay, Robert; Petrik, Leslie F

    2014-01-15

    Mining of coal is very extensive and coal is mainly used to produce electricity. Coal power stations generate huge amounts of coal fly ash of which a small amount is used in the construction industry. Mining exposes pyrite containing rocks to H2O and O2. This results in the oxidation of FeS2 to form H2SO4. The acidic water, often termed acid mine drainage (AMD), causes dissolution of potentially toxic elements such as, Fe, Al, Mn and naturally occurring radioactive materials such as U and Th from the associated bedrock. This results in an outflow of AMD with high concentrations of sulphate ions, Fe, Al, Mn and naturally occurring radioactive materials. Treatment of AMD with coal fly ash has shown that good quality water can be produced which is suitable for irrigation purposes. Most of the potentially toxic elements (Fe, Al, Mn, etc) and substantial amounts of sulphate ions are removed during treatment with coal fly ash. This research endeavours to establish the fate of the radioactive materials in mine water with coal fly ash containing radioactive materials. It was established that coal fly ash treatment method was capable of removing radioactive materials from mine water to within the target water quality range for drinking water standards. The alpha and beta radioactivity of the mine water was reduced by 88% and 75% respectively. The reduced radioactivity in the mine water was due to greater than 90% removal of U and Th radioactive materials from the mine water after treatment with coal fly ash as ThO2 and UO2. No radioisotopes were found to leach from the coal fly ash into the mine water. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Characterization of the coal derived humic acids from Mukah, Sarawak as soil conditioner

    Directory of Open Access Journals (Sweden)

    Fong Sim Siong

    2006-01-01

    Full Text Available In Malaysia, abundant coal resources were found in Sarawak and Sabah. The utilization of coal resources, to date, is emphasized on the energy productions. The non-energy utilization as soil conditioner is unexplored. Therefore, this study attempted to characterize the coal humic acids extracted from Mukah coal and to evaluate its properties as soil conditioner. The coal humic acids from the regenerated sample were also assessed. The results revealed that different extractants and concentrations influenced the properties of humic acids. The extraction with KOH at 0.5 mol L-1 produced humic acids with low ash content and high acidic functional groups, which are substantial as soil conditioner. However, the yield was low. Regeneration of coal sample with 10% nitric acids improved the yield to an average of 83.45%. The acidic functional groups of nitrohumic acids were improved with the ash content remained at a low level.

  17. Geochemistry of Toxic Elements and Their Removal via the Preparation of High-Uranium Coal in Southwestern China

    Directory of Open Access Journals (Sweden)

    Piaopiao Duan

    2018-02-01

    Full Text Available High-uranium (U coal is the dominant form of coal in Southwestern China. However, directly utilizing this resource can also harm the environment because this element is radioactive; it is, therefore, necessary to clean this kind of coal before burning. This research studied the geochemistry of toxic elements and their partitioning during the preparation of high-U coal in China. The results show that high-U coals are mainly distributed in Southwestern China and are characterized by a high organic sulfur (S content and vanadium (V-chromium (Cr-molybdenum (Mo-U element assemblage. These elements are well-correlated with one another, but are all negatively related to ash yield, indicating that all four are syngenetic in origin and associated with organic materials. A mineralogical analysis shows that U in Ganhe and Rongyang coal occurs within fine-grained anatase, clay minerals, guadarramite, and pyrite, while V occurs in clay minerals, pyrite, and dolomite, and Cr occurs in dolomite. Other elements, such as fluorine (F, lead (Pb, selenium (Se, and mercury (Hg, mainly occur in pyrite. By applying a gravity separation method to separate minerals from coal, the content of the enrichment element assemblage of V-Cr-Mo-U in Rongyang coal is still shown to be higher than, or close to, that of the original feed because this element assemblage is derived from hydrothermal fluids during syngenetic or early diagenetic phases, but other elements (beryllium [Be], F, manganese [Mn], zinc [Zn], Pb, arsenic [As], Se, Hg can be efficiently removed. Once cleaned, the coal obtained by gravity separation was subject to a flotation test to separate minerals; these results indicate that while a portion of V and Cr can be removed, Mo and U remain difficult to extract. It is evident that the two most commonly utilized industrialized coal preparation methods, gravity separation and flotation, cannot effectively remove U from coal where this element occurs in large

  18. Trace element toxicity in VA mycorrhizal cucumber grown on weathered coal fly ash

    Energy Technology Data Exchange (ETDEWEB)

    Dosskey, M.G.; Adriano, D.C. (University of Georgia, Aiken, SC (United States). Savannah River Ecology Lab.)

    1993-11-01

    Mycorrhizal colonization is widely recognized as enhancing plant growth on severely disturbed sites. A greenhouse pot experiment was conducted to determine if inoculation with vesicular-arbuscular mycorrhizal (VAM) fungi will enhance vegetation establishment on abandoned coal fly ash basinss, Spores of Glomus intraradices (Schenck and Smith) and Glomus etunicatum (Becker and Gerdemann) were added to weathered precipitator ash (EC-0.91 dSm[sup -1], pH 5.0) and to a pasteurized soils of the same pH (Grossarenic Paleudult, 92% sand, 1% organic matter). Some soil and ash were left unamended as non-mycorrhizal controls. Cucumber (Cucumis sativus L. cv. Poinsette 76) seeds were sown, watered regularly, and fertilized periodically with macronutrient solution. By 8 weeks all ash-grown plants exhibited smaller leaves with leaf margin curl and necrosis, and plant biomass was significantly less (0.75x) than soil-grown plants. Based on analysis of 18 elements in plant tissues, toxicity to B, Mn, or Zn could have caused growth suppression, confirming trace element problems for plant growth on fly ash. For plants grown on fly ash, G. etunicatum was the only fungus that colonized roots (20% of root length reduced from 67% on soil) and it suppressed plant growth to 0.80 x that of uninoculated ash-grown plants. Correspondingly, shoot Zn concentration in G. etunicatum-inoculated plants was 3.5 x higher than in uninoculated plants and at generally toxic levels (273 mg kg[sup -1]). Glomus etunicatum had no other significant effects on elemental concentrations. These results indicate that VAM colonization in acid, weathered fly ash suppressed plant growth by facilitating uptake of Zn to toxic levels, and implies a limitation to successful use of VAM for vegetation establishment on abandoned coal fly ash basins.

  19. Preliminary Study on Benzoic Acid Adsorption from Crude Active Coals and Bentonite

    Directory of Open Access Journals (Sweden)

    Abbes Boucheta

    2016-04-01

    Full Text Available We studied the adsorption of pollutant benzoic acid by the modified bentonite of Maghnia (west of Algeria, and coal (Coal from the mines, southwest of Algeria, Bechar area under three forms, crude and activated. Kinetic data show that the balance of bentonite (as amended adsorbs organic acids better than activated and raw coal. Indeed, the intercalation of bentonite with benzoic acid causes an improvement in the texture of porous material, which allows its use in the adsorption of organic compounds. The adsorption isotherms (Langmuir and Freundlich indicate that the adsorption of benzoic acid by the coal and bentonite yielded results favorably. The results obtained showed the practical value of using the activated coal and bentonite (as amended in the field of remediation of water contaminated with organic pollutants

  20. TOXIC SUBSTANCES FROM COAL COMBUSTION-A COMPREHENSIVE ASSESSMENT

    Energy Technology Data Exchange (ETDEWEB)

    C.L. Senior; F. Huggins; G.P. Huffman; N. Shah; N. Yap; J.O.L. Wendt; W. Seames; M.R. Ames; A.F. Sarofim; S. Swenson; J.S. Lighty; A. Kolker; R. Finkelman; C.A. Palmer; S.J. Mroczkowski; J.J. Helble; R. Mamani-Paco; R. Sterling; G. Dunham; S. Miller

    2001-06-30

    The Clean Air Act Amendments of 1990 identify a number of hazardous air pollutants (HAPs) as candidates for regulation. Should regulations be imposed on HAP emissions from coal-fired power plants, a sound understanding of the fundamental principles controlling the formation and partitioning of toxic species during coal combustion will be needed. With support from the National Energy Technology Laboratory (NETL), the Electric Power Research Institute, and VTT (Finland), Physical Sciences Inc. (PSI) has teamed with researchers from USGS, MIT, the University of Arizona (UA), the University of Kentucky (UK), the University of Connecticut (UC), the University of Utah (UU) and the University of North Dakota Energy and Environmental Research Center (EERC) to develop a broadly applicable emissions model useful to regulators and utility planners. The new Toxics Partitioning Engineering Model (ToPEM) will be applicable to all combustion conditions including new fuels and coal blends, low-NOx combustion systems, and new power generation plants. Development of ToPEM will be based on PSI's existing Engineering Model for Ash Formation (EMAF). The work discussed in this report covers the Phase II program. Five coals were studied (three in Phase I and two new ones in Phase II). In this work UK has used XAFS and Moessbauer spectroscopies to characterize elements in project coals. For coals, the principal use was to supply direct information about certain hazardous and other key elements (iron) to complement the more complete indirect investigation of elemental modes of occurrence being carried out by colleagues at USGS. Iterative selective leaching using ammonium acetate, HCl, HF, and HNO3, used in conjunction with mineral identification/quantification, and microanalysis of individual mineral grains, has allowed USGS to delineate modes of occurrence for 44 elements. The Phase II coals show rank-dependent systematic differences in trace-element modes of occurrence. The work at

  1. Nitrosation and Nitration of Fulvic Acid, Peat and Coal with Nitric Acid.

    Directory of Open Access Journals (Sweden)

    Kevin A Thorn

    Full Text Available Nitrohumic acids, produced from base extraction of coals and peats oxidized with nitric acid, have received considerable attention as soil ammendments in agriculture. The nitration chemistry however is incompletely understood. Moreover, there is a need to understand the reaction of nitric acid with natural organic matter (NOM in general, in the context of a variety of environmental and biogeochemical processes. Suwannee River NOM, Suwannee River fulvic acid, and Pahokee Peat fulvic acid were treated with 15N-labeled nitric acid at concentrations ranging from 15% to 22% and analyzed by liquid and solid state 15N NMR spectroscopy. Bulk Pahokee peat and Illinois #6 coal were also treated with nitric acid, at 29% and 40% respectively, and analyzed by solid state 15N NMR spectroscopy. In addition to nitro groups from nitration of aromatic carbon, the 15N NMR spectra of all five samples exhibited peaks attributable to nitrosation reactions. These include nitrosophenol peaks in the peat fulvic acid and Suwannee River samples, from nitrosation of phenolic rings, and N-nitroso groups in the peat samples, from nitrosation of secondary amides or amines, the latter consistent with the peat samples having the highest naturally abundant nitrogen contents. Peaks attributable to Beckmann and secondary reactions of the initially formed oximes were present in all spectra, including primary amide, secondary amide, lactam, and nitrile nitrogens. The degree of secondary reaction product formation resulting from nitrosation reactions appeared to correlate inversely with the 13C aromaticities of the samples. The nitrosation reactions are most plausibly effected by nitrous acid formed from the reduction of nitric acid by oxidizable substrates in the NOM and coal samples.

  2. NOx, FINE PARTICLE AND TOXIC METAL EMISSIONS FROM THE COMBUSTION OF SEWAGE SLUDGE/COAL MIXTURES: A SYSTEMATIC ASSESSMENT

    Energy Technology Data Exchange (ETDEWEB)

    Jost O.L. Wendt

    2002-08-15

    This research project focuses on pollutants from the combustion of mixtures of dried municipal sewage sludge (MSS) and coal. The objective is to determine the relationship between (1) fraction sludge in the sludge/coal mixture, and (2) combustion conditions on (a) NOx concentrations in the exhaust, (b) the size segregated fine and ultra-fine particle composition in the exhaust, and (c) the partitioning of toxic metals between vapor and condenses phases, within the process. The proposed study will be conducted in concert with an existing ongoing research on toxic metal partitioning mechanisms for very well characterized pulverized coals alone. Both high NOx and low NOx combustion conditions will be investigated (unstaged and staged combustion). Tradeoffs between CO2 control, NOx control, and inorganic fine particle and toxic metal emissions will be determined. Previous research has yielded data on trace metal partitioning for MSS by itself, with natural gas assist, for coal plus MSS combustion together, and for coal alone. We have re-evaluated the inhalation health effects of ash aerosol from combustion of MSS both by itself and also together with coal. We have concluded that ash from the co-combustion of MSS and coal is very much worse from an inhalation health point of view, than ash from either MSS by itself or coal by itself. The reason is that ZnO is not the ''bad actor'' as had been suspected before, but the culprit is, rather, sulfated Zn. The MSS supplies the Zn and the coal supplies the sulfur, and so it is the combination of coal and MSS that makes that process environmentally bad. If MSS is to be burned, it should be burned without coal, in the absence of sulfur.

  3. Reducing Heavy Metal Element from Coal Bottom Ash by Using Citric Acid Leaching Treatment

    Directory of Open Access Journals (Sweden)

    Yahya Ahmad Asyari

    2017-01-01

    Full Text Available Coal ash is the residue that is produced during coal combustion for instance fly ash, bottom ash or boiler slag which was primarily produced from the combustion of coal. With growth in coal burning power station, huge amount of coal bottom ash (CBA considered as hazardous material which are normally disposed in an on-site disposal system without any commercialization purpose. Previous researchers have studied the extraction of silica from agricultural wastes such as palm ash and rice husk ash (RHA and CBA by using leaching treatment method. In this study, the weaker acid, citric acid solution was used to replace the strong acid in leaching treatment process. Result showed that the heavy metal content such as Copper (Cu, Zinc (Zn and Lead (Pb can be decrease. Meanwhile the silica can be extracted up to 44% from coal bottom ash using citric acid leaching treatment under the optimum reaction time of 60 minutes with solution temperature of 60°C and concentration of citric acid more than 2%.

  4. Acidic surface functional groups and mineral elements in Lakra coal (Sindh, Pakistan)

    International Nuclear Information System (INIS)

    Saeed, K.; Ishaq, M.; Ahjmad, I.; Shakirullah, M.; Haider, S.

    2010-01-01

    Surface acidity of virgin coal (Lakra Sindh, Pakistan) and variously extracted/leached coal samples with HNO/sub 3/ NaOH, and KMnO/sub 4/, were investigated by aqueous potentiometric titration employing KOH as a titrant. The titration curve of virgin coal showed that its surface might contain carboxylic, carbonyl, phenolic and other weak acidic functional groups such as enols and C-H bond. The titration curves of leached coal samples showed inflections at pH 4-11, being not similar the inflections of carboxylic groups. This inflection might be given by functional groups like CO/sub 2/, phenolic, enols and C-H. Mineral matter such as Fe, K, Zn, Mn and Ni were determined in the ash of coal by atomic absorption spectrophotometer and was found that Fe (3104 micro g/g) in the highest and Ni (36.05 micro g/g) in the lowest quantity is present in virgin coal sample. (author)

  5. Evidence of Coal-Fly-Ash Toxic Chemical Geoengineering in the Troposphere: Consequences for Public Health.

    Science.gov (United States)

    Herndon, J Marvin

    2015-08-11

    The widespread, intentional and increasingly frequent chemical emplacement in the troposphere has gone unidentified and unremarked in the scientific literature for years. The author presents evidence that toxic coal combustion fly ash is the most likely aerosolized particulate sprayed by tanker-jets for geoengineering, weather-modification and climate-modification purposes and describes some of the multifold consequences on public health. Two methods are employed: (1) Comparison of 8 elements analyzed in rainwater, leached from aerosolized particulates, with corresponding elements leached into water from coal fly ash in published laboratory experiments, and (2) Comparison of 14 elements analyzed in dust collected outdoors on a high-efficiency particulate air (HEPA) filter with corresponding elements analyzed in un-leached coal fly ash material. The results show: (1) the assemblage of elements in rainwater and in the corresponding experimental leachate are essentially identical. At a 99% confidence interval, they have identical means (T-test) and identical variances (F-test); and (2) the assemblage of elements in the HEPA dust and in the corresponding average un-leached coal fly ash are likewise essentially identical. The consequences on public health are profound, including exposure to a variety of toxic heavy metals, radioactive elements, and neurologically-implicated chemically mobile aluminum released by body moisture in situ after inhalation or through transdermal induction.

  6. FINE PARTICAL AND TOXIC METAL EMISSIONS FROM THE COMBUSTION OF SEWAGE SLUDGE/COAL MIXTURES: A SYSTEMATIC ASSESSMENT

    Energy Technology Data Exchange (ETDEWEB)

    Jost O.L. Wendt; Wayne S. Seames; Art Fernandez

    2003-09-21

    This research project focuses on pollutants from the combustion of mixtures of dried municipal sewage sludge (MSS) and pulverized coal. The objective was to determine potential tradeoffs between CO{sub 2} mitigation through using a CO{sub 2} neutral fuel, such as municipal sewage sludge, and the emergence of other potential problems such as the emission of toxic fly ash particles. The work led to new insight into mechanisms governing the partitioning of major and trace metals from the combustion of sewage sludge, and mixtures of coal and sewage sludge. The research also showed that the co-combustion of coal and sewage sludge emitted fine particulate matter that might potentially cause greater lung injury than that from the combustion of either coal alone or municipal sewage sludge alone. The reason appeared to be that the toxicity measured required the presence of large amounts of both zinc and sulfur in particles that were inhaled. MSS provided the zinc while coal provided the sulfur. Additional research showed that the toxic effects could most likely be engineered out of the process, through the introduction of kaolinite sorbent downstream of the combustion zone, or removing the sulfur from the fuel. These results are consequences of applying ''Health Effects Engineering'' to this issue. Health Effects Engineering is a new discipline arising out of this work, and is derived from using a collaboration of combustion engineers and toxicologists to mitigate the potentially bad health effects from combustion of this biomass fuel.

  7. A study of toxic emissions from a coal-fired power plant utilizing the SNOX innovative clean coal technology demonstration. Volume 1, Sampling/results/special topics: Final report

    Energy Technology Data Exchange (ETDEWEB)

    1994-07-01

    This study was one of a group of assessments of toxic emissions from coal-fired power plants, conducted for DOE during 1993. The motivation for those assessments was the mandate in the 1990 Clean Air Act Amendments that a study be made of emissions of hazardous air pollutants (HAPs) from electric utilities. The report is organized in two volumes. Volume 1: Sampling describes the sampling effort conducted as the basis for this study; Results presents the concentration data on HAPs in the several power plant streams, and reports the results of evaluations and calculations conducted with those data; and Special Topics report on issues such as comparison of sampling methods and vapor/solid distributions of HAPs. Volume 2: Appendices include quality assurance/quality control results, uncertainty analysis for emission factors, and data sheets. This study involved measurements of a variety of substances in solid, liquid, and gaseous samples from input, output, and process streams at the Innovative Clean Coal Technology Demonstration (ICCT) of the Wet Sulfuric Acid-Selective Catalytic Reduction (SNOX) process. The SNOX demonstration is being conducted at Ohio Edison`s Niles Boiler No. 2 which uses cyclone burners to burn bituminous coal. A 35 megawatt slipstream of flue gas from the boiler is used to demonstrate SNOX. The substances measured at the SNOX process were the following: 1. Five major and 16 trace elements, including mercury, chromium, cadmium, lead, selenium, arsenic, beryllium, and nickel; 2. Acids and corresponding anions (HCl, HF, chloride, fluoride, phosphate, sulfate); 3. Ammonia and cyanide; 4. Elemental carbon; 5. Radionuclides; 6. Volatile organic compounds (VOC); 7. Semi-volatile compounds (SVOC) including polynuclear aromatic hydrocarbons (PAH); and 8. Aldehydes.

  8. A study of toxic emissions from a coal-fired gasification plant. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-01

    Under the Fine Particulate Control/Air Toxics Program, the US Department of Energy (DOE) has been performing comprehensive assessments of toxic substance emissions from coal-fired electric utility units. An objective of this program is to provide information to the US Environmental Protection Agency (EPA) for use in evaluating hazardous air pollutant emissions as required by the Clean Air Act Amendments (CAAA) of 1990. The Electric Power Research Institute (EPRI) has also performed comprehensive assessments of emissions from many power plants and provided the information to the EPA. The DOE program was implemented in two. Phase 1 involved the characterization of eight utility units, with options to sample additional units in Phase 2. Radian was one of five contractors selected to perform these toxic emission assessments.Radian`s Phase 1 test site was at southern Company Service`s Plant Yates, Unit 1, which, as part of the DOE`s Clean Coal Technology Program, was demonstrating the CT-121 flue gas desulfurization technology. A commercial-scale prototype integrated gasification-combined cycle (IGCC) power plant was selected by DOE for Phase 2 testing. Funding for the Phase 2 effort was provided by DOE, with assistance from EPRI and the host site, the Louisiana Gasification Technology, Inc. (LGTI) project This document presents the results of that effort.

  9. Evidence of Coal-Fly-Ash Toxic Chemical Geoengineering in the Troposphere: Consequences for Public Health

    Directory of Open Access Journals (Sweden)

    J. Marvin Herndon

    2015-08-01

    Full Text Available The widespread, intentional and increasingly frequent chemical emplacement in the troposphere has gone unidentified and unremarked in the scientific literature for years. The author presents evidence that toxic coal combustion fly ash is the most likely aerosolized particulate sprayed by tanker-jets for geoengineering, weather-modification and climate-modification purposes and describes some of the multifold consequences on public health. Two methods are employed: (1 Comparison of 8 elements analyzed in rainwater, leached from aerosolized particulates, with corresponding elements leached into water from coal fly ash in published laboratory experiments, and (2 Comparison of 14 elements analyzed in dust collected outdoors on a high-efficiency particulate air (HEPA filter with corresponding elements analyzed in un-leached coal fly ash material. The results show: (1 the assemblage of elements in rainwater and in the corresponding experimental leachate are essentially identical. At a 99% confidence interval, they have identical means (T-test and identical variances (F-test; and (2 the assemblage of elements in the HEPA dust and in the corresponding average un-leached coal fly ash are likewise essentially identical. The consequences on public health are profound, including exposure to a variety of toxic heavy metals, radioactive elements, and neurologically-implicated chemically mobile aluminum released by body moisture in situ after inhalation or through transdermal induction.

  10. Environmental geochemistry of acid mine drainage water at Indus coal mine at Lakhra, Sindh Pakistan

    International Nuclear Information System (INIS)

    Siddique, I.; Shah, M.T.

    2000-01-01

    The annual coal production of Pakistan is about 3,637, 825 tones which is about 6% of the country's energy resources, out of this 1,241, 965 tones of coal was produced/ mined from the Lakhra coal field, District Dadu, Sindh which after the Thar coal field is the second largest coal field of Pakistan. At this coal field more than 58 mining companies are engaged in exploring the hidden wealth of the country. The problem of acid mine drainage, is caused by the passage or seepage of water, through mines where iron disulfides, usually pyrites, are exposed to the oxidizing action of water, air and bacteria, is the main problem faced by the mining companies. The geochemical analysis of acid mine drainage water collected from Indus coal mine no. 6 shows that beside its higher pH, total Dissolved Solids and Sulfates, it also posses higher amount of heavy metals like Cd, Cu, Pb, Co, Ni and Fe. This acid mine drainage water not only damages the mine structures but is also harmful to soil and ecology. (author)

  11. Source and Enrichment of Toxic Elements in Coal Seams around Mafic Intrusions: Constraints from Pyrites in the Yuandian Coal Mine in Anhui, Eastern China

    Directory of Open Access Journals (Sweden)

    Yanfei An

    2018-04-01

    Full Text Available Pyrite, a mineral that can cause potential environmental issues in coal mining, is commonly found in coal seams around intrusions. In this paper, pyrites from the Yuandian Coal Mine (Huaibei Coalfield, Anhui, Eastern China were studied using SEM, Raman and LA-ICP-MS. The pyrite morphologic and geochemical data suggest that (1 four pyrite generations are present (framboidal sedimentary pyrites (Py I in the original coal, coarse-grained magmatic pyrites (Py II in the intruding diabase, fine-grained metamorphic pyrites (Py III in the intrusive contact aureole, and spheroid/vein hydrothermal pyrites (Py IV in the cokeite; and (2 concentrations of cobalt, nickel, arsenic, selenium, lead and copper in the metamorphic pyrites are much higher than the other pyrite generations. We propose that mafic magmatism is the main contributor of the toxic elements to the intrusion-related cokeite at Yuandian.

  12. A study of toxic emissions from a coal-fired gasification plant

    Energy Technology Data Exchange (ETDEWEB)

    Williams, A.; Behrens, G. [Radian Corporation, Austin, TX (United States)

    1995-11-01

    Toxic emissions were measured in the gaseous, solid and aqueous effluent streams in a coal-fired gasification plant. Several internal process streams were also characterized to assess pollution control device effectiveness. The program, consisted of three major phases. Phase I was the toxics emission characterization program described above. phase II included the design, construction and shakedown testing of a high-temperature, high-pressure probe for collecting representative trace composition analysis of hot (1200{degrees}F) syngas. Phase III consisted of the collection of hot syngas samples utilizing the high-temperature probe. Preliminary results are presented which show the emission factors and removal efficiencies for several metals that are on the list of compounds defined by the Clean Air Act Amendments of 1990.

  13. The bonding of heavy metals on nitric acid-etched coal fly ashes functionalized with 2-mercaptoethanol or thioglycolic acid

    International Nuclear Information System (INIS)

    Muñoz, M.I.; Aller, A.J.; Littlejohn, D.

    2014-01-01

    Coal fly ash is a waste by-product of the coal fire industry, which generates many environmental problems. Alternative uses of this material would provide efficient solutions for this by-product. In this work, nitric acid-etched coal fly ash labelled with 2-mercaptoethanol or thioglycolic acid was assessed for retention of Al(III), As(III), Cu(II), Cd(II), Fe(III), Mn(II), Hg(II), Ni(II), Pb(II) and Zn(II) ions. The bonding characteristics between the organic compounds with the solid support, as well as with the metal ions, were evaluated using various surface analytical techniques. Visualization of the organically-functionalized coal fly ash particle was possible using scanning electron microscopy (SEM), while the elemental composition of the functionalized material, before and after retention of the metal ions, was obtained by energy dispersive (ED)-X ray spectrometry (XRS) and electrothermal atomic absorption spectrometry (ETAAS). Fourier transform infrared (FT-IR) spectrometry and Raman spectrometry were used to obtain information about the functional groups. It was found that some metal(oid) ions (As, Ni, Pb, Zn) were coordinated through the mercaptan group, while other metal(oid)s (Al, Cd, Cu, Fe, Hg, Mn) were apparently bonded to oxygen atoms. A low-cost and effective solid phase retention system for extraction of heavy metals from aqueous solutions was thus developed. - Graphical abstract: Nitric acid-etched coal fly ash labelled with 2-mercaptoethanol or thioglycolic acid was intended for the retention of heavy metals. The bonding characteristics between the organic compounds with the solid support, as well as with the metal ions, were evaluated using surface analytical techniques. - Highlights: • Coal fly ashes were organically-functionalized. • Organically-functionalized coal fly ashes were spectrometrically characterized. • Organically-functionalized coal fly ashes can be used as an effective solid sorbent for metal(oid)s. • This retention

  14. Efficacy assessment of acid mine drainage treatment with coal mining waste using Allium cepa L. as a bioindicator.

    Science.gov (United States)

    Geremias, Reginaldo; Bortolotto, Tiago; Wilhelm-Filho, Danilo; Pedrosa, Rozangela Curi; de Fávere, Valfredo Tadeu

    2012-05-01

    The aim of this study was to evaluate the efficacy of the treatment of acid mine drainage (AMD) with calcinated coal mining waste using Allium cepa L. as a bioindicator. The pH values and the concentrations of aluminum, iron, manganese, zinc, copper, lead and sulfate were determined before and after the treatment of the AMD with calcinated coal mining waste. Allium cepa L. was exposed to untreated and treated AMD, as well as to mineral water as a negative control (NC). At the end of the exposure period, the inhibition of root growth was measured and the mean effective concentration (EC(50)) was determined. Oxidative stress biomarkers such as lipid peroxidation (TBARS), protein carbonyls (PC), catalase activity (CAT) and reduced glutathione levels (GSH) in the fleshy leaves of the bulb, as well as the DNA damage index (ID) in meristematic cells, were evaluated. The results indicated that the AMD treatment with calcinated coal mining waste resulted in an increase in the pH and an expressive removal of aluminum, iron, manganese and zinc. A high sub-chronic toxicity was observed when Allium cepa L. was exposed to the untreated AMD. However, after the treatment no toxicity was detected. Levels of TBARS and PC, CAT activity and the DNA damage index were significantly increased (P<0.05) in Allium cepa L. exposed to untreated AMD when compared to treated AMD and also to negative controls. No significant alteration in the GSH content was observed. In conclusion, the use of calcinated coal mining waste associated with toxicological tests on Allium cepa L. represents an alternative system for the treatment and biomonitoring of these types of environmental contaminants. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Thermal stability of carboxylic acid functionality in coal; Sekitanchu ni sonzaisuru karubokishiruki no netsubunkai kyodo

    Energy Technology Data Exchange (ETDEWEB)

    Tsutsumi, Y.; Aida, T. [Kinki University, Osaka (Japan). Faculty of Engineering

    1996-10-28

    Carboxyl in coal was focused in discussing its pyrolytic behavior while tracking change of its absolute amount relative to the heating temperatures. A total of four kinds of coals, consisting of two kinds brown coals, sub-bituminous coal and bituminous coal were used. Change in the absolute amount of carboxyl due to heating varies with coalification degree. Decomposition starts in the bituminous coal from around 300{degree}C, and is rapidly accelerated when 400{degree}C is exceeded. Carboxyls in brown coals exist two to three times as much as those in bituminous and sub-bituminous coals, of which 40% is decomposed at a temperature as low as about 300{degree}C. Their pyrolytic behavior at temperatures higher than 400{degree}C resembles that of the bituminous coal. Carboxyls consist of those easy to decompose and difficult to decompose. Aromatic and aliphatic carboxylic acids with simple structure are stable at temperatures lower than 300{degree}C, and decompose abruptly from about 400{degree}C, hence their behavior resembles that of carboxyls in bituminous and sub-bituminous coals. Structure of low-temperature decomposing carboxyls in brown coals is not known, but it is assumed that humic acid originated from natural materials remains in the structure. 4 refs., 3 figs., 1 tab.

  16. Use of wet FGD material for revegetation of an abandoned acidic coal refuse pile

    International Nuclear Information System (INIS)

    Mafi, S.; Stehouwer, R.C.

    1996-01-01

    Wet FGD material has a neutralizing potential of 15% CaCO 3 . These properties may make it a beneficial amendment for revegetation of hyper-acidic coal refuse. In greenhouse and field experiments, coal refuse (pH = 2.5) was amended with wet FGD (300, 500, and 700 tons/acre). Amendment with FGD was as effective as agricultural lime (AL) in increasing refuse pH and decreasing soluble Al and Fe. Addition of compost to the FGD further increased pH and decreased soluble Al and Fe. Downward transport of Ca was greater with FGD than AL, but FGD did not increase leachate concentrations of S. Amendment with FGD increased refuse, leachate and plant tissue concentrations of B. Other trace elements were not increased by FGD. In the greenhouse, plant growth was similar with AL and FGD except during the first three months when AL produced more growth than FGD. The initial growth suppression by FGD was likely due to high soluble salts, and possibly by high B concentrations. During the first year of the field experiment plant growth was greater with FGD than with AL. In both the field and greenhouse experiments compost increased plant growth when combined with FGD. These experiments show revegetation of toxic coal refuse and improvement in drainage water quality is possible by amendment with FGD. Revegetation success will be improved by combined amendment with FGD and compost

  17. In Vitro Toxicity of Naturally Occurring Silica Nanoparticles in C1 Coal 
in Bronchial Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Guangjian LI

    2012-10-01

    Full Text Available Background and objective China’s Xuan Wei County in Yunnan Province have the world’s highest incidence of lung cancer in nonsmoking women-20 times higher than the rest of China. Previous studies showed, this high lung cancer incidence may be associated with the silica particles embedded in the production combustion from the C1 coal. The aim of this study is to separate the silica particles from production combustion from the C1 bituminous coal in Xuan Wei County of Yunnan Province, and study in vitro toxicity of naturally occurring silica particles on BEAS-2B. Methods ①Separating the silica particles from combustion products of C1 bituminous coal by physical method, observing the morphology by Scanning Electron Microscope, analysis elements by SEM-EDX, observed the single particle morphology by Transmission Electron Microscope, analyed its particle size distribution by Laser particle size analyzer, the surface area of silica particles were determined by BET nitrogen adsorption analysis; ②Cell viability of the experimental group (silica; naturally occurring, control group (silica; industrial produced and crystalline silica was detected by assay used the 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT method, and the reactive oxygen species (ROS, lactate dehydrogenase (LDH were determined after 24 h-72 h exposed to these particles. Results ①The physical method can separate silica particles from production combustion from the C1 bituminous coal, which have different size, and from 30 nm to 120 nm particles accounted for 86.8%, different morphology, irregular surface area and containing trace of aluminum, calcium and iron and other elements; ②Under the same concentration, the experiment group have higher toxicity on BEAS-2B than control groups. Conclusion ①Physical method can separate silica particles from production combustion from the C1 bituminous coal and not change the original morphology and containing trace;

  18. Increased occupational coal dust toxicity in blood of central heating system workers.

    Science.gov (United States)

    Tuluce, Yasin; Ozkol, Halil; Koyuncu, Ismail; Ine, Hatice

    2011-02-01

    Coal dust causes lung diseases in occupational exposure. Reactive oxygen species have been implicated in the pathogenesis of its toxicity. In this study, serum enzymes, lipid profile and other biochemical values with oxidant/antioxidant status in whole blood and serum of central heating system workers (CHSW; the persons responsible for heating the apartment with coal) were determined to reflect the cell injury. Blood samples were obtained from CHSW (n = 25) and healthy individuals (n = 25). All values were measured in whole blood and serum. ANOVA was used for the estimation of statistical data. In the group of CHSW, creatinine, ferritin, alanin aminotransferase, aspartate aminotransferase, creatine phosphokinase, gamma glutamyl transferase, lactate dehydrogenase and glutathione reductase activities as well as triglyceride, very low density lipoprotein, protein carbonyl and malondialdehide were significantly higher, while transferrin, high density lipoprotein and catalase (CAT) activities were lower than the group of healthy individuals. This result is consistent with hypothesis that respirable coal dust generates lipid and protein oxidation and induces leakage of serum enzymes by cell damage. It also leads to imbalance in antioxidant defense system, lipid profile and other biochemical parameters.

  19. Weathering behaviour of overburden-coal ash blending in relation to overburden management for acid mine drainage prevention in coal surface mine

    International Nuclear Information System (INIS)

    Gautama, R.S.; Kusuma, G.J.; Lestari, I.; Anggana, R.P.

    2010-01-01

    Potentially acid forming (PAF) materials are encapsulated with non-acid forming materials (NAF) in order to prevent acid mine drainage (AMD) in surface coal mines. NAF compaction techniques with fly and bottom ashes from coal-fired power plants are used in mines with limited amounts of NAF materials. This study investigated the weathering behaviour of blended overburden and coal combustion ash in laboratory conditions. Free draining column leach tests were conducted on different blending schemes. The weathering process was simulated by spraying the samples with de-ionized water once per day. The leachates were then analyzed using X-ray diffraction and fluorescence analyses in order to identify the mineral composition of the samples over a 14 week period. Results of the study indicated that the weathering process plays a significant role in controlling infiltration rates, and may increase the capability of capping materials to prevent infiltration into PAF materials. Fly- and bottom-ash additions improved the performance of the encapsulation materials. 3 refs., 4 tabs., 2 figs.

  20. Electrochemistry of carbonaceous materials; 2. Anodic electroactivity of coal slurries in 85% phosphoric acid media

    Energy Technology Data Exchange (ETDEWEB)

    Tomat, R.; Salmaso, R.; Zecchin, S. (CNR-Instituto di Polarografia ed Elettrochimica Preparative, Padova (Italy))

    1992-04-01

    Current-potential curves of suspended coal (Sulcis basin, Sardinia, Italy) in 85% H{sub 3}PO{sub 4} were taken on a platinum electrode at 100{degree}C. Anodic current in the potential range of 0-1.5 V versus saturated calomel electrode was due to some humic acid-type substances released by coal in the electrolyte. The leaching of organic matter increased with the lowering of the particle dimensions, and the related oxidation currents attained stable values even during slurry formation. Current-potential curves were still unchanged when coal was filtered off from the suspension. Previous washing of ground coal with diluted mineral acids, including H{sub 3}PO{sub 4}, did not dissolve any significant amount of the substances responsible for the electrochemical activity of the coal sample examined. 14 refs., 6 figs.

  1. Soil amendments promote vegetation establishment and control acidity in coal combustion waste

    Science.gov (United States)

    R.M. Danker; D.C. Adriano; Bon-Jun Koo; C.D. Barton

    2003-01-01

    The effects of adding various soil amendments and a pyrite oxidation inhibitor to aid in the establishment of vegetation and to reduce acid drainage (AD) from coal fly ash and coal reject (FA + CR*) were assessed in an outdoor mesocosm study. Preliminary greenhouse experiments and field observations at the U.S. Department of Energy's Savannah River Site (SRS)...

  2. A study of toxic emissions from a coal-fired power plant utilizing an ESP/Wet FGD system. Volume 1, Sampling, results, and special topics: Final report

    Energy Technology Data Exchange (ETDEWEB)

    1994-07-01

    This was one of a group of assessments of toxic emissions from coal-fired power plants, conducted for DOE-PETC in 1993 as mandated by the 1990 Clean Air Act. It is organized into 2 volumes; Volume 1 describes the sampling effort, presents the concentration data on toxic chemicals in several power plant streams, and reports the results of evaluations and calculations. The study involved solid, liquid, and gaseous samples from input, output, and process streams at Coal Creek Station Unit No. 1, Underwood, North Dakota (1100 MW mine-mouth plant burning lignite from the Falkirk mine located adjacent to the plant). This plant had an electrostatic precipitator and a wet scrubber flue gas desulfurization unit. Measurements were conducted on June 21--24, 26, and 27, 1993; chemicals measured were 6 major and 16 trace elements (including Hg, Cr, Cd, Pb, Se, As, Be, Ni), acids and corresponding anions (HCl, HF, chloride, fluoride, phosphate, sulfate), ammonia and cyanide, elemental C, radionuclides, VOCs, semivolatiles (incl. PAH, polychlorinated dioxins, furans), and aldehydes. Volume 2: Appendices includes process data log sheets, field sampling data sheets, uncertainty calculations, and quality assurance results.

  3. Haloacetic acids in the aquatic environment. Part I: macrophyte toxicity

    International Nuclear Information System (INIS)

    Hanson, Mark L.; Solomon, Keith R.

    2004-01-01

    Haloacetic acids (HAAs) are contaminants of aquatic ecosystems with numerous sources, both anthropogenic and natural. The toxicity of HAAs to aquatic plants is generally uncharacterized. Laboratory tests were conducted with three macrophytes (Lemna gibba, Myriophyllum sibiricum and Myriophyllum spicatum) to assess the toxicity of five HAAs. Myriophyllum spp. has been proposed as required test species for pesticide registration in North America, but few studies have been conducted under standard test conditions. The HAAs in the present experiments were monochloroacetic acid (MCA), dichloroacetic acid (DCA), trichloroacetic acid (TCA), trifluoroacetic acid (TFA) and chlorodifluoroacetic acid (CDFA). MCA was the most toxic to Myriophyllum spp. with EC 50 values ranging from 8 to 12.4 mg/l depending on the endpoint, followed by DCA (EC 50 range 62-722.5 mg/l), TCA (EC 50 range 49.5-1702.6 mg/l), CDFA (EC 50 range 105.3 to >10,000 mg/l) and with TFA (EC 50 range 222.1 to 10,000 mg/l) the least toxic. Generally, L. gibba was less sensitive to HAA toxicity than Myriophyllum spp., with the difference in toxicity between them approximately threefold. The range of toxicity within Myriophyllum spp. was normally less than twofold. Statistically, plant length and node number were the most sensitive endpoints as they had the lowest observed coefficients of variation, but they were not the most sensitive to HAA toxicity. Toxicological sensitivity of endpoints varied depending on the measure of effect chosen and the HAA, with morphological endpoints usually an order of magnitude more sensitive than pigments for all plant species. Overall, mass and root measures tended to be the most sensitive indicators of HAA toxicity. The data from this paper were subsequently used in an ecological risk assessment for HAAs and aquatic plants. The assessment found HAAs to be of low risk to aquatic macrophytes and the results are described in the second manuscript of this series

  4. Thrombotic microangiopathy associated with Valproic acid toxicity.

    Science.gov (United States)

    Hebert, Sean A; Bohan, Timothy P; Erikson, Christian L; Swinford, Rita D

    2017-08-03

    Thrombotic microangiopathy (TMA) is a serious, sometimes life-threatening disorder marked by the presence of endothelial injury and microvascular thrombi. Drug-induced thrombotic microangiopathy (DI-TMA) is one specific TMA syndrome that occurs following drug exposure via drug-dependent antibodies or direct tissue toxicity. Common examples include calcineurin inhibitors Tacrolimus and Cyclosporine and antineoplastics Gemcitabine and Mitomycin. Valproic acid has not been implicated in DI-TMA. We present the first case of a patient meeting clinical criteria for DI-TMA following admission for valproic acid toxicity. An adolescent male with difficult to control epilepsy was admitted for impaired hepatic function while on valproic acid therapy. On the third hospital day, he developed severe metabolic lactic acidosis and multiorgan failure, prompting transfer to the pediatric intensive care unit. Progressive anemia and thrombocytopenia instigated an evaluation for thrombotic microangiopathy, where confirmed by concomitant hemolysis, elevated lactate dehydrogenase (LDH), low haptoglobin, and concurrent oliguric acute kidney injury. Thrombotic thrombocytopenic purpura was less likely with adequate ADAMTS13. Discontinuing valproic acid reversed the anemia, thrombocytopenia, and normalized the LDH and haptoglobin, supporting a drug-induced cause for the TMA. To the best of our knowledge, this is the first report of drug-induced TMA from valproic acid toxicity.

  5. Maturation-related changes in the distribution of ester-bound fatty acids and alcohols in a coal series from the New Zealand Coal Band covering diagenetic to catagenetic coalification levels

    DEFF Research Database (Denmark)

    Glombitza, Clemens; Mangelsdorf, Kai; Horsfield, Brian

    2009-01-01

    A rank series of lignites and coals of low to moderate maturation levels (vitrinite reflectance (R0): 0.27–0.8%) from the New Zealand Coal Band were investigated using alkaline ester cleavage experiments to reveal compositional changes of ester bound components (fatty acids and alcohols) during...... increase during early catagenesis before decreasing again during main catagenesis. This intermittent increase was related to the short chain fatty acids. To obtain a maturity related signal and to eliminate facies related scattering in the amounts of fatty acids in the coal samples, the carbon preference...

  6. Action of coal gas on plants. II. Action on green plants

    Energy Technology Data Exchange (ETDEWEB)

    Wehmer, C

    1917-01-01

    Experiments were performed to determine the effects of coal gas on cress. Although the seeds are not killed by coal gas, they are prevented from germinating. Cress will grow in as much as 30% coal gas, but it will not survive higher concentrations. Coal gas contains both toxic and non-toxic constituents. CO, C/sub 2/H/sub 4/, C/sub 2/H/sub 2/, CS/sub 2/, H/sub 2/S are not toxic at concentrations found in coal gas. The toxic effects of coal gas are not caused by the lack of O/sub 2/, but by minor impurities in the gas.

  7. Toxicity of sediments potentially contaminated by coal mining and natural gas extraction to unionid mussels and commonly tested benthic invertebrates

    Science.gov (United States)

    Wang, Ning; Ingersoll, Christopher G.; Kunz, James L.; Brumbaugh, William G.; Kane, Cindy M.; Evans, R. Brian; Alexander, Steven; Walker, Craig; Bakaletz, Steve

    2013-01-01

    Sediment toxicity tests were conducted to assess potential effects of contaminants associated with coal mining or natural gas extraction activities in the upper Tennessee River basin and eastern Cumberland River basin in the United States. Test species included two unionid mussels (rainbow mussel, Villosa iris, and wavy-rayed lampmussel, Lampsilis fasciola, 28-d exposures), and the commonly tested amphipod, Hyalella azteca (28-d exposure) and midge, Chironomus dilutus (10-d exposure). Sediments were collected from seven test sites with mussel communities classified as impacted and in proximity to coal mining or gas extraction activities, and from five reference sites with mussel communities classified as not impacted and no or limited coal mining or gas extraction activities. Additional samples were collected from six test sites potentially with high concentrations of polycyclic aromatic hydrocarbons (PAHs) and from a test site contaminated by a coal ash spill. Mean survival, length, or biomass of one or more test species was reduced in 10 of 14 test samples (71%) from impacted areas relative to the response of organisms in the five reference samples. A higher proportion of samples was classified as toxic to mussels (63% for rainbow mussels, 50% for wavy-rayed lampmussels) compared with amphipods (38%) or midge (38%). Concentrations of total recoverable metals and total PAHs in sediments did not exceed effects-based probable effect concentrations (PECs). However, the survival, length, or biomasses of the mussels were reduced significantly with increasing PEC quotients for metals and for total PAHs, or with increasing sum equilibrium-partitioning sediment benchmark toxic units for PAHs. The growth of the rainbow mussel also significantly decreased with increasing concentrations of a major anion (chloride) and major cations (calcium and magnesium) in sediment pore water. Results of the present study indicated that (1) the findings from laboratory tests were generally

  8. Duckweed Lemna minor as a tool for testing toxicity of coal residues and polluted sediments

    Energy Technology Data Exchange (ETDEWEB)

    Jenner, H.A.; Janssen-Mommen, J.P.M. (Kema Environmental Services, Arnhem (Netherlands))

    1993-07-01

    Duckweed, Lemna minor, was used for testing single elements and leachates of coal ashes and sediments by expressing growth as surface coverage. The EC50 for the elements Cd, Cu, Zn, As(III), As(V), Se(IV), Se(VI), SeO[sub 2] were 0.86, 2.2, 4.4, 8.4, 297, 21, 67, 37 [mu]M respectively. Leachates were tested of pulverized coal fuel ash (PFA), including 'low NO[sub x]' ashes, coal gasification slag (CGS), and, as a reference, the polluted sediments of a canal. The concentrations of elements in leachates of 'low NO[sub x]' PFA were higher than those in leachates of conventional PFA. The leaching of anions from PFA was quicker than the cations. CGS showed an absolutely minimal element leaching. Comparison of the effects of conventional PFA with sediments from Rotterdam harbor, River Rhine, and the canal shows PFA to be the far less toxic one. The sediment samples from the canal demonstrated strong growth inhibition, probably due to high zinc concentrations originating from industrial activity.

  9. Duckweed Lemna minor as a tool for testing toxicity of coal residues and polluted sediments

    Energy Technology Data Exchange (ETDEWEB)

    Jenner, H A; Janssen-Mommen, J P.M. [Kema Environmental Services, Arnhem (Netherlands)

    1993-07-01

    Duckweed, Lemna minor, was used for testing single elements and leachates of coal ashes and sediments by expressing growth as surface coverage. The EC50 for the elements Cd, Cu, Zn, As(III), As(V), Se(IV), Se(VI), SeO[sub 2] were 0.86, 2.2, 4.4, 8.4, 297, 21, 67, 37 [mu]M respectively. Leachates were tested of pulverized coal fuel ash (PFA), including 'low NO[sub x]' ashes, coal gasification slag (CGS), and, as a reference, the polluted sediments of a canal. The concentrations of elements in leachates of 'low NO[sub x]' PFA were higher than those in leachates of conventional PFA. The leaching of anions from PFA was quicker than the cations. CGS showed an absolutely minimal element leaching. Comparison of the effects of conventional PFA with sediments from Rotterdam harbor, River Rhine, and the canal shows PFA to be the far less toxic one. The sediment samples from the canal demonstrated strong growth inhibition, probably due to high zinc concentrations originating from industrial activity.

  10. Phytotoxicity assessment of a methanolic coal dust extract in Lemna minor.

    Science.gov (United States)

    Coronado-Posada, Nadia; Cabarcas-Montalvo, Maria; Olivero-Verbel, Jesus

    2013-09-01

    Coal mining generates negative effects on environment, human health, hydrodynamics of mining areas and biodiversity. However, the impacts of this activity are less known in plants. Lemna minor is one of the most commonly used plants in aquatic toxicity tests due to its ubiquitous distribution in ponds and lakes, culture conditions and the free-floating habitat that exposes it to hydrophobic as well as dissolved compounds. The goal of this research was to evaluate the effects of a methanolic coal dust extract on L. minor. Macrophytes were exposed to six different concentrations of coal extract (from 7.81 to 250 mg/L) for 5 days, following the OECD test guideline 221. The coal extract had a half inhibitory concentration (IC50) of 99.66 (184.95-54.59) mg/L for the number of fronds. Several signs of toxicity such as chlorosis, reduction in the size of the fronds, abscission of fronds and roots, and the presence of necrotic tissues were observed at concentrations lower than the IC50. Preliminary Gas Chromatography-Mass Spectrometry analysis of the coal dust extract revealed the presence of several compounds, including, among others, alkanes, carboxylic acids and polycyclic aromatic hydrocarbons (PAHs), these lasts, may be responsible for some of the observed effects. These results demonstrated that coal dust has phytotoxic effects and should not be considered as an inert material. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Depolymerization of coal by O2 oxidation followed by acid hydrolysis; Sanso sanka-kasui bunkai ni yoru sekitan no teionkai jugo

    Energy Technology Data Exchange (ETDEWEB)

    Aizawa, S.; Hayashi, J.; Kumagai, H.; Chiba, T. [Hokkaido University, Sapporo (Japan). Center for Advanced Research of Energy Technology; Morooka, S. [Kyushu University, Fukuoka (Japan). Faculty of Engineering

    1996-10-28

    With an objective to elucidate characteristics of oxygen addition to coal, and characteristics of solvent extraction by means of depolymerization, experiments were performed on oxygen oxidation and acid hydrolysis of brown coals. Coals used for the experiments are Morwell (MW), Yallourn (YL) , South Banko (SB) and Wyoming (WY) coals. Test samples were suspended in weak alkaline aqueous solution, and then oxygen was blown into them with pressure kept at atmospheric pressure. After a lapse of a predetermined time, the samples were cooled, and made as acidic as pH 1.3 in hydrochloric acid, followed by acid hydrolysis. Oxygen consumption increased with the reaction time, and with the MW coal, one mol oxygen reacted to 11 mols of coal. Spectral analysis on the YL and WY coal experiments revealed that aliphatic carbon combined with aromatic carbon or ether group has turned to peroxide, whose C-C or C-O bond was broken down as a result of acid hydrolysis of the peroxide, producing oxygen containing compounds. As a result of the depolymerization, the rate of extraction by using DMF, DMSO and methanol/THF mixed solvent increased to 90% or higher. Proportion of bond and cutting-off affects largely collapse of the cross-link structure. The carbon conversion to volatiles was at most 4%. 1 ref., 10 figs.

  12. Isotopic and chemical characterization of coal in Pakistan

    International Nuclear Information System (INIS)

    Qureshi, R.M.; Hasany, S.M.; Javed, T.; Sajjad, M.I.; Shah, Z.; Rehman, H.

    1993-11-01

    Stable carbon isotope ratios (delta/sup 13/C PDB) and toxic/trace element concentration levels are determined for Tertiary coal samples collected from seven coal fields in Pakistan. No systematic isotope effects are found in the process of coal liquefaction from peat to Tertiary lignites and sub bituminous coal. Similarly, no age effects are observed during the Tertiary regime. The observed variations in the carbon isotopic composition of coal obtained from 'Sharigh coal field' and the 'Sor-Range/Degari coal field' in Baluchistan are attributed to the depositional environments. More sampling of stable carbon isotope analysis are required to validate these observations. Significant concentrations of toxic elements such as S, Cr, Cd and Pb in Makarwal coal may pose environmental and engineering/operational problems for thermal power plants. (author)

  13. Comparative in vitro toxicity assessment of perfluorinated carboxylic acids.

    Science.gov (United States)

    Mahapatra, Cecon T; Damayanti, Nur P; Guffey, Samuel C; Serafin, Jennifer S; Irudayaraj, Joseph; Sepúlveda, Maria S

    2017-06-01

    Perfluoroalkyl and polyfluoroalkyl substances (PFASs) are synthetic fluorinated compounds that are highly bioaccumulative and persistent organic pollutants. Perfluorooctanoic acid (PFOA), an eight-carbon chain perfluorinated carboxylic acid, was used heavily for the production of fluoropolymers, but concerns have led to its replacement by shorter carbon chain homologues such as perfluorohexanoic acid (PFHxA) and perfluorobutanoic acid (PFBA). However, limited toxicity data exist for these substitutes. We evaluated the toxicity of PFOA, PFHxA and PFBA on a zebrafish liver cell line and investigated the effects of exposure on cell metabolism. Gross toxicity after 96 h of exposure was highest for PFOA and PFO - , while PFHxA and PFBA exhibited lower toxicity. Although the structural similarity of these compounds to fatty acids suggests the possibility of interference with the transport and metabolism of lipids, we could not detect any differential expression of peroxisome proliferator-activated receptor (ppar-α, -β and -γ), fabp3 and crot genes after 96 h exposure to up to 10 ppm of the test compounds. However, we observed localized lipid droplet accumulation only in PFBA-exposed cells. To study the effects of these compounds on cell metabolism, we conducted fluorescence lifetime imaging microscopy using naturally fluorescent biomarkers, NADH and FAD. The fluorescence lifetimes of NADH and FAD and the bound/free ratio of each of these coenzymes decreased in a dose- and carbon length-dependent manner, suggesting disruption of cell metabolism. In sum, our study revealed that PFASs with shorter carbon chains are less toxic than PFOA, and that exposure to sublethal dosage of PFOA, PFHxA or PFBA affects cell metabolism. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  14. The effect of pH on the toxicity of fatty acids and fatty acid amides to rainbow trout gill cells.

    Science.gov (United States)

    Bertin, Matthew J; Voronca, Delia C; Chapman, Robert W; Moeller, Peter D R

    2014-01-01

    Harmful algal blooms (HABs) expose aquatic organisms to multiple physical and chemical stressors during an acute time period. Algal toxins themselves may be altered by water chemistry parameters affecting their bioavailability and resultant toxicity. The purpose of this study was to determine the effects of two abiotic parameters (pH, inorganic metal salts) on the toxicity of fatty acid amides and fatty acids, two classes of lipids produced by harmful algae, including the golden alga, Prymnesium parvum, that are toxic to aquatic organisms. Rainbow trout gill cells were used as a model of the fish gill and exposed to single compounds and mixtures of compounds along with variations in pH level and concentration of inorganic metal salts. We employed artificial neural networks (ANNs) and standard ANOVA statistical analysis to examine and predict the effects of these abiotic parameters on the toxicity of fatty acid amides and fatty acids. Our results demonstrate that increasing pH levels increases the toxicity of fatty acid amides and inhibits the toxicity of fatty acids. This phenomenon is reversed at lower pH levels. Exposing gill cells to complex mixtures of chemical factors resulted in dramatic increases in toxicity compared to tests of single compounds for both the fatty acid amides and fatty acids. These findings highlight the potential of physicochemical factors to affect the toxicity of chemicals released during algal blooms and demonstrate drastic differences in the effect of pH on fatty acid amides and fatty acids. Published by Elsevier B.V.

  15. Toxicity of granular activated carbon treated coal gasification water as determined by the Microtox test and Escherichia coli.

    Science.gov (United States)

    Makino, Y; Adams, J C; McTernan, W F

    1986-01-01

    The Microtox assay and various parameters (growth, ATP concentration and electrochemical detection) of Escherichia coli were used to assess the toxicity of various levels of granular activated carbon treated coal gasification process water. The generation time of E. coli was statistically significantly slower at the level of 50 percent treatment than any other level of treatment. No differences were seen for ATP concentration per cell or in the electrochemical detection methods for any level treatment. There was a very high correlation between total organic carbon removal by GAC treatment and reduction in toxicity as measured by the Microtox system. However, even the treated water which had 91 percent of the TOC removed was still highly toxic.

  16. Use of atomic absorption spectrometry to determine metallic impurities in coal

    International Nuclear Information System (INIS)

    Silva, M.J.S.F. da.

    1983-01-01

    The Brazilian Energetic Alternative Program expects the reduction of our dependence on foreign energy sources, by replacing fuel oil by mineral coal. Its gasification by means of nuclear energy must be also considered. However, the intensive burning of coal leads to serious environmental problems. During its combustion the release to atmosphere of toxic elements such as As, Hg, Pb, Zn and others is of great concern. Hence, it is important to have reliable analytical methods which can monitor inorganic constituents at various stages of coal production and utilization. The AAS is a suitable analytical technique to determine pollutants in coal because it is sensitive, simple, economic and cover a large range of concentration. The need of a previous treatment of sample is overcome by using an acid attack (HNO 3 + HClO 4 + HF) which has been proved to be rapid and efficient. (Author) [pt

  17. Acid leaching of coal: to produce clean fuels from Turkish lignite

    Energy Technology Data Exchange (ETDEWEB)

    Seferinoglu, Meryem [Mineral Research and Exploration Directorate (Turkey)], email: meryem_seferinoglu66@yahoo.com; Duzenli, Derya [Ankara Central Laboratory (Turkey)

    2011-07-01

    With the increasing concerns about the environment, energy producers and governments are looking at developing clean energy sources. However, Turkey has limited clean energy resources and is using low grade coal which has high sulphur content as an alternative energy source. The aim of this paper is to study the possibility of generating clean fuel from Edirne Lignite and to get a better understanding of chemical mechanisms involved in coal leaching with hydrofluoric acid (HF) solutions. Leaching was conducted on Edirne Lignite with HF solution at ambient temperature and the effects of parameters such as reaction time and concentration of acid solutions on the process were evaluated. The optimum conditions were found and it was shown that ash levels can be reduced from 28.9% to 10.5% and the calorific value increased by 500kcal/kg with the HF leaching method. This study demonstrated that the production of clean fuel from high sulphur lignite is possible.

  18. Toxicity to rainbow trout of spent still liquors from the distillation of coal

    Energy Technology Data Exchange (ETDEWEB)

    Herbert, D W.M.

    1962-01-01

    From a survey of the literature on the toxicity of ammonium salts, phenol, cyanide, and sulphide to rainbow trout, and from determinations of the toxicity of sodium thiocyanate and sodium thiosulphate, it is postulated that the toxicity of spent still liquors from the distillation of coal should be due mainly to their content of ammonia and monohydric phenols. This is confirmed by experiments showing that the toxicity of an equivalent mixture of ammonium chloride and phenol is nearly as great as that of a spent liquor from a gas works, and that phenol is almost as toxic as mixtures of the monohydric phenols known to be present in such liquors. Experiments on the effect of pH value, hardness, dissolved-oxygen concentration and temperature on the threshold concentration of monohydric phenols are described and compared with similar data for ammonia. Experiments with ammonia and phenols suggest that a mixture of these substances is at its threshold concentration when AS/AT/+PS/PT=I,AS and PS being the concentrations of un-ionized ammonia and monohydric phenols in solution and AT and PT being the threshold concentrations of these substances when tested individually in the same dilution water. A method based on these experiments for predicting the toxicity of ammonia-phenol mixtures from the chemical composition of their solutions is described, and evaluated against laboratory determinations of the toxicity of spent liquors from a coke oven, and against the death or survival of trout held captive in a stream polluted with spent liquor from a gas works. It is concluded that the correspondence between the predicted and observed toxicities is good enough for the method to be used as a basis for assessing whether trout could live in a stream to which a particular spent still liquor was discharged, or when deciding what treatment the effluent should receive to make it safe for such fish after discharge.

  19. On the Toxicity of the Aromatic Diamines and their Tetramethylcarboxylic Acid Derivatives

    OpenAIRE

    Gili, Pedro; Mederos, Alfredo

    2000-01-01

    The use of the theoretical PALLAS 3.0 program, to study the toxic behaviour of tetramethylcarboxylic acids, potential pharmaceuticals derived from o-phenylenediamines, indicates that o-phenylenediamines are highly toxic (level 1), while the tetramethycarboxylic acid derivatives (o-PhDTA and 3,4-TDTA) are slightly toxic, similar to EDTA (level 3). Therefore these ligands o-PhDTA and 3,4-TDTA, similar to EDTA, can be used as sequestering agents of toxic metals and overload of essential metals i...

  20. Coal comes clean

    International Nuclear Information System (INIS)

    Minchener, A.

    1991-01-01

    Coal's status as the dominant fuel for electricity generation is under threat because of concern over the environmental impacts of acid rain and the greenhouse effect. Sulphur dioxide and nitrogen oxides cause acid rain and carbon dioxide is the main greenhouse gas. All are produced when coal is burnt. Governments are therefore tightening the emission limits for fossil-fuel power plants. In the United Kingdom phased reductions of sulphur dioxide and nitrogen oxides emissions are planned. It will be the responsibility of the power generator to take the necessary steps to reduce the emissions. This will be done using a number of technologies which are explained and outlined briefly - flue gas desulfurization, separation of coal into high and low-sulphur coal, direct desulfurization of coal, circulating fluidised bed combustion, integrated-gasification combined cycle systems and topping cycles. All these technologies are aiming at cleaner, more efficient combustion of coal. (UK)

  1. Toxicity of Sodium Bicarbonate to Fish from Coal-Bed Natural Gas Production in the Tongue and Powder River Drainages, Montana and Wyoming

    Science.gov (United States)

    ,

    2006-01-01

    This study evaluates the sensitivity of aquatic life to sodium bicarbonate (NaHCO3), a major constituent of coal-bed natural gas-produced water. Excessive amounts of sodium bicarbonate in the wastewater from coal-bed methane natural gas production released to freshwater streams and rivers may adversely affect the ability of fish to regulate their ion uptake. The collaborative study focuses on the acute and chronic toxicity of sodium bicarbonate on select fish species in the Tongue and Powder River drainages in southeastern Montana and northeastern Wyoming. Sodium bicarbonate is not naturally present in appreciable concentrations within the surface waters of the Tongue and Powder River drainages; however, the coal-bed natural gas wastewater can reach levels over 1,000 milligrams per liter. Large concentrations have been shown to be acutely toxic to native fish (Mount and others, 1997). In 2003, with funding and guidance provided by the U.S. Environmental Protection Agency, the Montana Fish, Wildlife, and Parks and the U.S. Geological Survey initiated a collaborative study on the potential effects of coal-bed natural gas wastewater on aquatic life. A major goal of the study is to provide information to the State of Montana Water Quality Program needed to develop an aquatic life standard for sodium bicarbonate. The standard would allow the State, if necessary, to establish targets for sodium bicarbonate load reductions.

  2. Kinetic comparison of biological and conventional flotation of coal

    Energy Technology Data Exchange (ETDEWEB)

    Amini, E.; Oliazadeh, M.; Kolahdoozan, M. [University of Queensland, Brisbane, Qld. (Australia)

    2009-03-15

    Froth flotation is commonly used in coal processing to selectively recover the organic material (coal) from inorganic waste material. Tabas coal, located in east Iran, contains fine disseminated pyrite which is floated with coal during flotation, and hence decreasing the quality of the final concentrate. Reagents, such as sodium cyanide, are typically added to depress pyrite. Due to the toxicity of cyanide, alternative strategies for depressing pyrite flotation are being investigated. In this paper the metallurgical performance of Tabas coal treated with sodium cyanide is compared to that of Tabas coal which has undergone bacterial treatment using Acidithiobacillus ferrooxidans. Results indicate that bacterial treatment decreases the flotation rate of pyrite and improves the selectivity between coal and gangue. The possibility of using bacteria in place of toxic chemicals such as cyanide has significant environmental benefit.

  3. Atomic absorption spectrophotometry for the determination of metallic impurities in coal

    International Nuclear Information System (INIS)

    Silva, M.J.S.F. da.

    1983-06-01

    The Brazilian Energetic Alternative Program expects the reduction of our dependence on foreign energy sources, through replacing fuel oil by mineral coal. Its gasification by means of nuclear energy must be also considered. However, the intensive burning of coal leads to serious environmental problems. During its combustion the release, to atmosphere, of toxic elements such as As, Hg, Pb, Sb, Se, Cd, Zn and others is of great concern. Increase in atmospheric pollution will take place by burning increased amounts of coal. In addition, some of those elements are concentrated in fly ashes. The determination of impurities in coal is also important for the Figueiras Project in the Nuclebras Mineral Prospection Program. Hence, it is important to have reliable analytical methods which can monitor inorganic constituents at various stages of coal production and utilization. The atomic absorption spectrophotometry is a suitable analytical technique to determine pollutants in coal because it is sensitive, simple, economic and cover a large range of concentrations. The need of a previous treatment of the sample is overcome by using an acid attack (HNO 3 + HClO 4 + HF) which has proved to be rapid and efficient. (Author) [pt

  4. Native legume establishment on acidic coal mining overburden at Collie, Western Australia

    Energy Technology Data Exchange (ETDEWEB)

    Koch, J M; Bell, D T

    1985-12-01

    Nitrogen is often provided to impoverished overburden dumps through the establishment of legumes. Low indigenous soil nutrient levels, summer drought conditions and an acidic mining overburden represent major obstacles to successful rehabilitation of open-cut coal mining at Collie in southwest Western Australia. In this study, Acacia pulchella, a native Western Australian species often used in rehabilitation of mined lands, was shown to nodulate and grow in coal mining overburden with pH values less than 4.0 under glasshouse conditions. Plant growth (both top and root dry weight), nodule fresh weight, and nodulation success was best at pH near 5.0, a value only slightly lower than the typical soil pH of the native jarrah (Eucalyptus marginata) forest. Acetylene reduction rates were reduced by acidity and ranged from 8.2..mu..m C/sub 2/H/sub 4//g hr at pH 6.77 to 3.0..mu..m C/sub 2/H/sub 4//g hr at a pH of 3.98. Four additional plant species were found to occur and to nodulate on acid overburden material at Collie. 20 references.

  5. Mine Water Treatment in Hongai Coal Mines

    Science.gov (United States)

    Dang, Phuong Thao; Dang, Vu Chi

    2018-03-01

    Acid mine drainage (AMD) is recognized as one of the most serious environmental problem associated with mining industry. Acid water, also known as acid mine drainage forms when iron sulfide minerals found in the rock of coal seams are exposed to oxidizing conditions in coal mining. Until 2009, mine drainage in Hongai coal mines was not treated, leading to harmful effects on humans, animals and aquatic ecosystem. This report has examined acid mine drainage problem and techniques for acid mine drainage treatment in Hongai coal mines. In addition, selection and criteria for the design of the treatment systems have been presented.

  6. The effects of pretreatment and the addition of polar compounds on the production of 'HyperCoal' from subbituminous coals

    Energy Technology Data Exchange (ETDEWEB)

    Kensuke Masaki; Takahiro Yoshida; Chunqi Li; Toshimasa Takanohashi; Ikuo Saito [National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba (Japan). Institute for Energy Utilization

    2004-08-01

    The effects of acid and hydrothermal pretreatments and the addition of polar compounds on the production of ashless-coal (HyperCoal) from subbituminous coals using cost-effective industrial solvents were investigated. The extraction yield of Wyodak subbituminous coal (C%, 75.0%) using crude methylnaphthalene oil (CMNO) at 360{sup o}C was increased significantly by 19% following acid pretreatment; it was 41.3% for the raw coal and 60.5% for the acid-treated coal. The addition of strongly polar compounds, such as N-methyl-2-pyrrolidinone (NMP), also increased the extraction yields. For Pasir subbituminous coal (%, 73.0%) the yield increased by 10% from 54.3% for the raw coal to 64.2% when 20% NMP was added to CMNO. The highest extraction yield of 72.2% was obtained for acid-treated Wyodak coal using CMNO with 20% NMP added. The ash content in HyperCoal tended to decrease following acid pretreatment and was less than 200 ppm in some coals. Hydrothermal pretreatment had a negative effect on the thermal extraction at 360{sup o}C, but increased the yield at extraction temperatures below 200{sup o}C. 20 refs., 7 figs., 2 tabs.

  7. Projections of air toxic emissions from coal-fired utility combustion: Input for hazardous air pollutant regulators

    International Nuclear Information System (INIS)

    Szpunar, C.B.

    1993-01-01

    The US Environmental Protection Agency (EPA) is required by the 1990 CAAA to promulgate rules for all ''major'' sources of any of these HAPs. According to the HAPs section of the new Title III, any stationary source emitting 10 tons per year (TPY) of one HAP or 25 TPY of a combination of HAPs will be considered and designated a major source. In contrast to the original National Emission Standards for Hazardous Air Pollutants (NESHAP), which were designed to protect public health to ''an ample margin of safety,'' the new Title III, in its first phase, will regulate by industrial category those sources emitting HAPs in excess of the 10/25-TPY threshold levels, regardless of health risks. The trace elements normally associated with coal mineral matter and the various compounds formed during coal combustion have the potential to produce hazardous air toxic emissions from coal-fired electric utilities. Under Title III, the EPA is required to perform certain studies, prior to any regulation of electric utilities; these studies are currently underway. Also, the US Department of Energy (DOE) maintains a vested interest in addressing those energy policy questions affecting electric utility generation, coal mining, and steel producing critical to this country's economic well-being, where balancing the costs to the producers and users of energy with the benefits of environmental protection to the workers and the general populace remains of significant concern

  8. Coal surface control for advanced physical fine coal cleaning technologies

    Energy Technology Data Exchange (ETDEWEB)

    Morsi, B.I.; Chiang, S.H.; Sharkey, A.; Blachere, J.; Klinzing, G.; Araujo, G.; Cheng, Y.S.; Gray, R.; Streeter, R.; Bi, H.; Campbell, P.; Chiarlli, P.; Ciocco, M.; Hittle, L.; Kim, S.; Kim, Y.; Perez, L.; Venkatadri, R.

    1992-01-01

    This final report presents the research work carried out on the Coal Surface Control for Advanced Physical Fine Coal Cleaning Technologies project, sponsored by the US Department of Energy, Pittsburgh Energy Technology Center (DOE/PETC). The project was to support the engineering development of the selective agglomeration technology in order to reduce the sulfur content of US coals for controlling SO[sub 2] emissions (i.e., acid rain precursors). The overall effort was a part of the DOE/PETCs Acid Rain Control Initiative (ARCI). The overall objective of the project is to develop techniques for coal surface control prior to the advanced physical fine coal cleaning process of selective agglomeration in order to achieve 85% pyrite sulfur rejection at an energy recovery greater than 85% based on run-of-mine coal. The surface control is meant to encompass surface modification during grinding and laboratory beneficiation testing. The project includes the following tasks: Project planning; methods for analysis of samples; development of standard beneficiation test; grinding studies; modification of particle surface; and exploratory R D and support. The coal samples used in this project include three base coals, Upper Freeport - Indiana County, PA, Pittsburgh NO. 8 - Belmont County, OH, and Illinois No. 6 - Randolph County, IL, and three additional coals, Upper Freeport - Grant County- WV, Kentucky No. 9 Hopkins County, KY, and Wyodak - Campbell County, WY. A total of 149 drums of coal were received.

  9. Study of environmental pollution and mineralogical characterization of sediment rivers from Brazilian coal mining acid drainage

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Luis F.O., E-mail: felipeqma@hotmail.com [Environmental Science and Nanotechnology Department, Institute of Environmental Research and Human Development – IPADH, Capivari de Baixo, Santa Catarina (Brazil); Laboratory of Environmental Researches and Nanotechnology Development, Centro Universitário La Salle, Victor Barreto, 2288 Centro 92010-000, Canoas, RS (Brazil); Fdez- Ortiz de Vallejuelo, Silvia; Martinez-Arkarazo, Irantzu; Castro, Kepa [Department of Analytical Chemistry, University of the Basque Country (EHU/UPV), P.O. Box 644, 48080 Bilbao, Basque Country (Spain); Oliveira, Marcos L.S. [Environmental Science and Nanotechnology Department, Institute of Environmental Research and Human Development – IPADH, Capivari de Baixo, Santa Catarina (Brazil); Sampaio, Carlos H.; Brum, Irineu A.S. de [Universidade Federal do Rio Grande do Sul, Escola de Engenharia, Departamento de Metalurgia, Centro de Tecnologia, Av. Bento Gonçalves, 9500, Bairro Agronomia, CEP: 91501-970, Porto Alegre, RS (Brazil); Leão, Felipe B. de; Taffarel, Silvio R. [Laboratory of Environmental Researches and Nanotechnology Development, Centro Universitário La Salle, Victor Barreto, 2288 Centro 92010-000, Canoas, RS (Brazil); Madariaga, Juan M. [Department of Analytical Chemistry, University of the Basque Country (EHU/UPV), P.O. Box 644, 48080 Bilbao, Basque Country (Spain)

    2013-03-01

    Acid drainage from coal mines and metal mining is a major source of underground and surface water contamination in the world. The coal mining acid drainage (CMAD) from mine contains large amount of solids in suspension and a high content of sulphate and dissolved metals (Al, Mn, Zn, Cu, Pb, Fe, etc.) that finally are deposited in the rivers. Since this problem can persist for centuries after mine abandonment, it is necessary to apply multidisciplinary methods to determine the potential risk in a determinate area. These multidisciplinary methods must include molecular and elemental analysis and finally all information must be studied statistically. This methodology was used in the case of coal mining acid drainage from the Tubarao River (Santa Catarina, Brazil). During molecular analysis, Raman Spectroscopy, electron bean, and X-ray diffraction (XRD) have been proven very useful for the study of minerals present in sediment rivers near this CMAD. The obtained spectra allow the precise identification of the minerals as jarosite, quartz, clays, etc. The elemental analysis (Al, As, Fe, K, Na, Ba, Mg, Mn, Ti, V, Zn, Ag, Co, Li, Mo, Ni, Se, Sn, W, B, Cr, Cu, Pb and Sr) was realised by inductively coupled plasma mass spectrometry (ICP-MS). Statistical analysis (Principal Component Analysis) of these dates of concentration reveals the existence of different groups of samples with specific pollution profiles in different areas of the Tubarao River. Highlights: ► Increasing coal drainage sediments geochemical information will increase human health information in this area. ► Brazilian coal mining information will increase recuperation planning information. ► The nanominerals showed strong sorption ability to aqueous hazardous elements.

  10. Study of environmental pollution and mineralogical characterization of sediment rivers from Brazilian coal mining acid drainage

    International Nuclear Information System (INIS)

    Silva, Luis F.O.; Fdez- Ortiz de Vallejuelo, Silvia; Martinez-Arkarazo, Irantzu; Castro, Kepa; Oliveira, Marcos L.S.; Sampaio, Carlos H.; Brum, Irineu A.S. de; Leão, Felipe B. de; Taffarel, Silvio R.; Madariaga, Juan M.

    2013-01-01

    Acid drainage from coal mines and metal mining is a major source of underground and surface water contamination in the world. The coal mining acid drainage (CMAD) from mine contains large amount of solids in suspension and a high content of sulphate and dissolved metals (Al, Mn, Zn, Cu, Pb, Fe, etc.) that finally are deposited in the rivers. Since this problem can persist for centuries after mine abandonment, it is necessary to apply multidisciplinary methods to determine the potential risk in a determinate area. These multidisciplinary methods must include molecular and elemental analysis and finally all information must be studied statistically. This methodology was used in the case of coal mining acid drainage from the Tubarao River (Santa Catarina, Brazil). During molecular analysis, Raman Spectroscopy, electron bean, and X-ray diffraction (XRD) have been proven very useful for the study of minerals present in sediment rivers near this CMAD. The obtained spectra allow the precise identification of the minerals as jarosite, quartz, clays, etc. The elemental analysis (Al, As, Fe, K, Na, Ba, Mg, Mn, Ti, V, Zn, Ag, Co, Li, Mo, Ni, Se, Sn, W, B, Cr, Cu, Pb and Sr) was realised by inductively coupled plasma mass spectrometry (ICP-MS). Statistical analysis (Principal Component Analysis) of these dates of concentration reveals the existence of different groups of samples with specific pollution profiles in different areas of the Tubarao River. Highlights: ► Increasing coal drainage sediments geochemical information will increase human health information in this area. ► Brazilian coal mining information will increase recuperation planning information. ► The nanominerals showed strong sorption ability to aqueous hazardous elements

  11. Mine Water Treatment in Hongai Coal Mines

    Directory of Open Access Journals (Sweden)

    Dang Phuong Thao

    2018-01-01

    Full Text Available Acid mine drainage (AMD is recognized as one of the most serious environmental problem associated with mining industry. Acid water, also known as acid mine drainage forms when iron sulfide minerals found in the rock of coal seams are exposed to oxidizing conditions in coal mining. Until 2009, mine drainage in Hongai coal mines was not treated, leading to harmful effects on humans, animals and aquatic ecosystem. This report has examined acid mine drainage problem and techniques for acid mine drainage treatment in Hongai coal mines. In addition, selection and criteria for the design of the treatment systems have been presented.

  12. Potential risks of effluent from acid mine drainage treatment plants at abandoned coal mines.

    Science.gov (United States)

    Seo, Jaehwan; Kang, Sung-Wook; Ji, Wonhyun; Jo, Hun-Je; Jung, Jinho

    2012-06-01

    The lethal and sublethal toxicity of effluent from three acid mine drainage treatment plants were monitored from August 2009 to April 2010 using Daphnia magna (reference species) and Moina macrocopa (indigenous species). Acute lethal toxicity was observed in Samma effluent due to incomplete neutralization of acid mine drainages by the successive alkalinity producing system (SAPS). Additionally, there was no significant difference in toxicity values (TU) between D. magna and M. macrocopa (p water bodies.

  13. Seventh symposium on coal mine drainage research. NCA/BCR coal conference and Expo IV

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-01-01

    The Seventh Symposium on Coal Mine Drainage Research, sponsored by the National Coal Association and Bituminous Coal Research, Inc., was held at the Kentucky Fair and Exposition Center, Louisville, Kentucky, October 18-20, 1977. Seventeen papers from the proceedings have been entered individually into EDB and ERA. Topics covered include chemical reactions of pyrite oxidation and acid formation in spoil banks, abandoned mines, etc., formation of small acid lakes from the drainage and their neutralization by natural and other neutralization measures, trace elements in acid mine drainage, ground water contamination, limnology, effects of surface mined ground reclamation and neutralization, water purification and treatment, mining and coal preparation plant waste disposal, ash and fly ash disposal (to minimize leaching from the wastes), runoff from large coal storage stockpiles during storms (prevention of environmental effects by collection and neutralization by passing through an ash pond). (LTN)

  14. Coal-tar based pavement sealant toxicity to freshwater macroinvertebrates

    International Nuclear Information System (INIS)

    Bryer, Pamela J.; Scoggins, Mateo; McClintock, Nancy L.

    2010-01-01

    Non-point-source pollution is a major source of ecological impairment in urban stream systems. Recent work suggests that coal-tar pavement sealants, used extensively to protect parking areas, may be contributing a large portion of the polycyclic aromatic hydrocarbon (PAH) loading seen in urban stream sediments. The hypothesis that dried coal-tar pavement sealant flake could alter the macroinvertebrate communities native to streams in Austin, TX was tested using a controlled outdoor laboratory type approach. The treatment groups were: control, low, medium, and high with total PAH concentrations (TPAH = sum of 16 EPA priority pollutant PAHs) of 0.1, 7.5, 18.4, and 300 mg/kg respectively. The low, medium, and high treatments were created via the addition of dried coal-tar pavement sealant to a sterile soil. At the start of the 24-day exposure, sediment from a minimally impacted local reference site containing a community of live sediment-dwelling benthic macroinvertebrates was added to each replicate. An exposure-dependent response was found for several stream health measures and for several individual taxa. There were community differences in abundance (P = 0.0004) and richness (P < 0.0001) between treatments in addition to specific taxa responses, displaying a clear negative relationship with the amount of coal-tar sealant flake. These results support the hypothesis that coal-tar pavement sealants contain bioavailable PAHs that may harm aquatic environments. - Coal-tar pavement sealants degrade stream invertebrate communities.

  15. Decontamination of coal mine effluent generated at the Rajrappa coal mine using phytoremediation technology.

    Science.gov (United States)

    Lakra, Kalpana C; Lal, B; Banerjee, T K

    2017-06-03

    Toxicity of the effluent generated at the Rajrappa coal mine complex under the Central Coalfields Limited (CCL, a subsidiary of Coal India Limited) in Jharkhand, India was investigated. The concentrations (mg L -1 ) of all the toxic metals (Fe, Mn, Ni, Zn, Cu, Pb, Cr, and Cd) in the coal mine effluent were above the safe limit suggested by the Environmental Protection Agency (EPA 2003). Among these, Fe showed the highest concentration (18.21 ± 3.865), while Cr had the lowest effluent concentration (0.15 ± 0.014). Efforts were also made to detoxify the effluent using two species of aquatic macrophytes namely "'Salvinia molesta and Pistia stratiotes." After 10 days of phytoremediation, S. molesta removed Pb (96.96%) > Ni (97.01%) > Cu (96.77%) > Zn (96.38%) > Mn (96.22%) > Fe (94.12%) > Cr (92.85%) > Cd (80.99%), and P. stratiotes removed Pb (96.21%) > Fe (94.34%) > Ni (92.53%) > Mn (85.24%) > Zn (79.51%) > Cr (78.57%) > Cu (74.19%) > Cd (72.72%). The impact of coal mine exposure on chlorophyll content showed a significant decrease of 42.49% and 24.54% from control values in S. molesta and P. stratiotes, respectively, perhaps due to the damage inflicted by the toxic metals, leading to the decay of plant tissues.

  16. Mine Water Treatment in Hongai Coal Mines

    OpenAIRE

    Dang Phuong Thao; Dang Vu Chi

    2018-01-01

    Acid mine drainage (AMD) is recognized as one of the most serious environmental problem associated with mining industry. Acid water, also known as acid mine drainage forms when iron sulfide minerals found in the rock of coal seams are exposed to oxidizing conditions in coal mining. Until 2009, mine drainage in Hongai coal mines was not treated, leading to harmful effects on humans, animals and aquatic ecosystem. This report has examined acid mine drainage problem and techniques for acid mine ...

  17. A novel approach for rapidly and cost-effectively assessing toxicity of toxic metals in acidic water using an acidophilic iron-oxidizing biosensor.

    Science.gov (United States)

    Yang, Shih-Hung; Cheng, Kuo-Chih; Liao, Vivian Hsiu-Chuan

    2017-11-01

    Contamination by heavy metals and metalloids is a serious environmental and health concern. Acidic wastewaters are often associated with toxic metals which may enter and spread into agricultural soils. Several biological assays have been developed to detect toxic metals; however, most of them can only detect toxic metals in a neutral pH, not in an acidic environment. In this study, an acidophilic iron-oxidizing bacterium (IOB) Strain Y10 was isolated, characterized, and used to detect toxic metals toxicity in acidic water at pH 2.5. The colorimetric acidophilic IOB biosensor was based on the inhibition of the iron oxidizing ability of Strain Y10, an acidophilic iron-oxidizing bacterium, by metals toxicity. Our results showed that Strain Y10 is acidophilic iron-oxidizing bacterium. Thiobacillus caldus medium (TCM) (pH 2.5) supplied with both S 4 O 6 2- and glucose was the optimum growth medium for Strain Y10. The optimum temperature and pH for the growth of Strain Y10 was 45 °C and pH 2.5, respectively. Our study demonstrates that the color-based acidophilic IOB biosensor can be semi-quantitatively observed by eye or quantitatively measured by spectrometer to detect toxicity from multiple toxic metals at pH 2.5 within 45 min. Our study shows that monitoring toxic metals in acidic water is possible by using the acidophilic IOB biosensor. Our study thus provides a novel approach for rapid and cost-effective detection of toxic metals in acidic conditions that can otherwise compromise current methods of chemical analysis. This method also allows for increased efficiency when screening large numbers of environmental samples. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Reactivities of acid and/or tetralin pretreated Wandoan coal for a Curie point flash pyrolysis; Sanzen shori, tetralin yobaimae shori Wandoan tan no kyusoku netsubunkai

    Energy Technology Data Exchange (ETDEWEB)

    Kishino, M.; Sakanishi, K.; Korai, Y.; Mochida, I. [Kyushu University, Fukuoka (Japan). Institute of Advanced Material Study

    1996-10-28

    Discussions were given on effects of acid pretreatment and tetralin swelling in Wandoan coal on a Curie point flash pyrolysis (which used a Curie point pyrolyzer). Residue yield loss effects were obtained at 3.9% in hydrochloric acid pretreatment, and 6.2% in acetic acid pretreatment. The effects of tetralin swelling pretreatment were compared in the similar manner in terms of the residue yield loss. The effects were 4.0% in untreated coal, 2.0% in the hydrochloric acid pretreatment, and 0.6% in the acetic acid pretreatment. It is thought that components that can be activated by acetic acid have already been activated, but the remaining components would not be activated by tetralin. Average microporosity (area) in the remaining particle as a whole shows very little difference both in acetic acid pretreated coal and untreated coal. However, with the acetic acid pretreatment, pores smaller than 4{mu}m{sup 2} disappeared, and pores as large as 205 to 411{mu}m{sup 2} increased largely. This phenomenon was observed as an increase in foaming degree under microscopic observation, even if the average microporosity remains equal. Thermoplasticity of the coal increased, and so did volatilization reactivity as a result of the acetic acid pretreatment, resulting in appearance of a large number of large pores. 6 refs., 2 figs., 2 tabs.

  19. Developmental effects of aerosols and coal burning particles in zebrafish embryos

    International Nuclear Information System (INIS)

    Olivares, Alba; Drooge, Barend L. van; Casado, Marta; Prats, Eva; Serra, Montserrat; Ven, Leo T. van der; Kamstra, Jorke H.; Hamers, Timo; Hermsen, Sanne; Grimalt, Joan O.; Piña, Benjamin

    2013-01-01

    Embryo toxicity of particles generated by combustion processes is of special concern for human health. A significant part of these toxic effects is linked to the binding of some pollutants (like polycyclic aromatic hydrocarbons or PAHs) to the Aryl hydrocarbon Receptor (AhR) and the activation of target genes, like the cytochrome P4501A. This activity was analyzed for ambient air and coal-combustion particle extracts in zebrafish embryos (the cyp1aDarT assay) and in two single-cell bioassays: the yeast-based YCM-RYA and the DR-luc (rat cells) assay. Observed AhR ligand activity of samples generally correlated to the predicted toxic effect according to their PAH composition, except for one of the coal combustion samples with an anomalously high activity in the cyp1aDarT assay. This sample induced deformities in zebrafish embryos. We concluded that the combination of morphological and molecular assays may detect embryonic toxic effects that cannot be predicted from chemical analyses or single-cell bioassays. -- Highlights: ► Samples from air particulated matter and coal waste gob showed embryo toxicity in zebrafish. ► PAHs composition of samples does not adequately predict the toxic effects in zebrafish. ► Active coal waste gob samples show maximal AhR-ligand activity and induce deformations in zebrafish embryos. -- Aerosols and coal burning particles showed a strong developmental toxicity in zebrafish, in a degree that cannot be directly predicted from chemical analyses or single-cell bioassays

  20. Effect of water hardness on peracetic acid toxicity to zebrafish, Danio rerio, embryos

    DEFF Research Database (Denmark)

    Marchand, Pierre_André; Strauss, David L.; Wienke, Andreas

    2013-01-01

    The use of peracetic acid (PAA) in aquaculture has been suggested as an alternative therapeutic agent. Few data are available concerning fish toxicity by PAA or factors that modify this toxicity. The aim of this study was to investigate the influence of water hardness on the acute toxicity of PAA...... acidic in low hardness. In conclusion, aquaculturists using PAA should pay attention to water hardness to avoid acidosis...

  1. Bioassays for risk assessment of coal conversion products

    Energy Technology Data Exchange (ETDEWEB)

    Schacht, S.; Sinder, C.; Pfeifer, F.; Klein, J. [DMT-Gesellschaft fuer Forschung und Pruefung mbH, Essen (Germany)

    1999-07-01

    Traditional as well as biotechnological processing coal leads to complex mixtures of products. Besides chemical and physical characterization, which provides the information for product application, there is a need for bioassays to monitor properties that are probably toxic, mutagenic or cancerogenic. Investigations carried out focused on the selection, adaptation and validation of bioassays for the sensitive estimation of toxic effects. Organisms like bacteria, Daphnia magna and Scenedesmus subspicatus, representing different complexities in the biosphere, were selected as test systems for ecotoxicological and mutagenicity studies. The results obtained indicate that bioassays are, in principle, suitable tools for characterization and evaluation of coal-derived substances and bioconversion products. Using coal products, coal-relevant model compounds and bioconversion products, data for risk assessment are presented. (orig.)

  2. Coal preparation

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    The acid rain control legislation has prompted the Department of Energy (DOE) to seek new technology using the Clean Coal Technology program solicitation. The main goal of the program is to reduce SO 2 emissions below 9 Mt/a (10 million stpy) and NO x emission below 5.4 Mt/a (6 million stpy) by the year 2000. This would be accomplished by using precombustion, combustion, post combustion and conversion technology. Utilities are considering installing new scrubbers, switching fuel or possibly deep clean. However, the time required to implement the control technology is short. Due to the legislation, about 110 plants will have to adopt one of the approaches. This paper reports that in characterization of coal, Ames Laboratory used a scanning electron microscope- based, automated image analysis (SEM-AIA) technique to identify coal and mineral matter association. Various forms of organic sulfur were identified using peroxyacetic acid oxidation of coal. This was followed by subsequent microscopic, GC-MS, and HRMS analysis by Southern Illinois University. In ultrafine grinding of coal, it was reported by the Mining and Mineral Institute of Alabama that silica sand or flint shot used less energy compared to steel ball mills

  3. Prediction of acid mine drainage generation potential of various lithologies using static tests: Etili coal mine (NW Turkey) as a case study.

    Science.gov (United States)

    Yucel, Deniz Sanliyuksel; Baba, Alper

    2016-08-01

    The Etili neighborhood in Can County (northwestern Turkey) has large reserves of coal and has been the site of many small- to medium-scale mining operations since the 1980s. Some of these have ceased working while others continue to operate. Once activities cease, the mining facilities and fields are usually abandoned without rehabilitation. The most significant environmental problem is acid mine drainage (AMD). This study was carried out to determine the acid generation potential of various lithological units in the Etili coal mine using static test methods. Seventeen samples were selected from areas with high acidic water concentrations: from different alteration zones belonging to volcanic rocks, from sedimentary rocks, and from coals and mine wastes. Static tests (paste pH, standard acid-base accounting, and net acid generation tests) were performed on these samples. The consistency of the static test results showed that oxidation of sulfide minerals, especially pyrite-which is widely found not only in the alteration zones of volcanic rocks but also in the coals and mine wastes-is the main factor controlling the generation of AMD in this mine. Lack of carbonate minerals in the region also increases the occurrence of AMD.

  4. Macroinvertebrate response to acid mine drainage: community metrics and on-line behavioural toxicity bioassay

    International Nuclear Information System (INIS)

    Gerhardt, A.; Janssens de Bisthoven, L.; Soares, A.M.V.M.

    2004-01-01

    The hypothesis is tested that toxicity of acid mine drainage can be detected by a selection of existing macroinvertebrate community and bioindicator metrices supplemented by toxicity tests with the local mosquitofish Gambusia holbrooki Girard and the shrimp Atyaephyra desmaresti Millet. The behavioural responses of A. desmaresti to acid mine drainage were recorded in the Multispecies Freshwater Biomonitor[reg], based on behaviour and survival as parameters. Bioassessment methods were based on community diversity, structure, function, and bioindicators and supplemented by chemical analysis (temperature, pH, metals). The Biological Monitoring Working Party adapted for the Iberian Peninsula, the number of predators (Coleoptera, Hemiptera) and the number of Ephemeroptera and Trichoptera taxa differentiated the sites well. The on-line toxicity test revealed pH-dependent acute toxicity of the acid mine drainage for the shrimp (LC 50 -48 h: pH-AMD=5.8) and a pH- dependent decrease in locomotory activity with the lowest-observed-response-times (LORTs) within 5 h of exposure. Shrimp were more sensitive to acid mine drainage than fish (LC 50 -48 h: pH-AMD=4.9). A new multimetric index combining toxicity testing and bioassessment methods is proposed. - Toxicity of acid mine drainage was evaluated by macroinvertebrate bioassessment and a new on-line rapid behavioural toxicity test with Atyaephyra desmaresti (Crustacea)

  5. Macroinvertebrate response to acid mine drainage: community metrics and on-line behavioural toxicity bioassay

    Energy Technology Data Exchange (ETDEWEB)

    Gerhardt, A.; Janssens de Bisthoven, L.; Soares, A.M.V.M

    2004-07-01

    The hypothesis is tested that toxicity of acid mine drainage can be detected by a selection of existing macroinvertebrate community and bioindicator metrices supplemented by toxicity tests with the local mosquitofish Gambusia holbrooki Girard and the shrimp Atyaephyra desmaresti Millet. The behavioural responses of A. desmaresti to acid mine drainage were recorded in the Multispecies Freshwater Biomonitor[reg], based on behaviour and survival as parameters. Bioassessment methods were based on community diversity, structure, function, and bioindicators and supplemented by chemical analysis (temperature, pH, metals). The Biological Monitoring Working Party adapted for the Iberian Peninsula, the number of predators (Coleoptera, Hemiptera) and the number of Ephemeroptera and Trichoptera taxa differentiated the sites well. The on-line toxicity test revealed pH-dependent acute toxicity of the acid mine drainage for the shrimp (LC{sub 50}-48 h: pH-AMD=5.8) and a pH- dependent decrease in locomotory activity with the lowest-observed-response-times (LORTs) within 5 h of exposure. Shrimp were more sensitive to acid mine drainage than fish (LC{sub 50}-48 h: pH-AMD=4.9). A new multimetric index combining toxicity testing and bioassessment methods is proposed. - Toxicity of acid mine drainage was evaluated by macroinvertebrate bioassessment and a new on-line rapid behavioural toxicity test with Atyaephyra desmaresti (Crustacea)

  6. Bacteria and Acidic Drainage from Coal Refuse: Inhibition by Sodium Lauryl Sulfate and Sodium Benzoate

    OpenAIRE

    Dugan, Patrick R.; Apel, William A.

    1983-01-01

    The application of an aqueous solution of sodium lauryl sulfate and sodium benzoate to the surface of high-sulfur coal refuse resulted in the inhibition of iron-and sulfur-oxidizing chemoautotrophic bacteria and in the decrease of acidic drainage from the refuse, suggesting that acid drainage can be abated in the field by inhibiting iron- and sulfur-oxidizing bacteria.

  7. Synthesis Of 2- (1- Naphthyl) Ethanoic Acid ( Plant Growth Regulator ) From Coal Tar And Its Application

    International Nuclear Information System (INIS)

    Khin Mooh Theint; Tin Myint Htwe

    2011-12-01

    Plant growth regulators, which are commonly called as plant hormones, naturally produced non-nutrient chemical compounds involved in growth and development. Among the various kinds of plant growth regulators, 2- (1- Naphthyl ) ethanoic acid especially encourages the root development of the plant. In this work, NAA was successfuly synthesized from naphthalene which was extracted from coal tar. The purity of naphthalene, -Chloromethyl naphthalene, -Naphthyl acetonitrile, - Naphthyl acetic acid or 2 - ( 1-Naphthyl ) ethanoic acid were also confirmed by Thin Layer Chromatography, and by spectroscopy methods. The yield percent of NAA based on naphthalene was found to be 2.1%. The yield percent of naphthaleneFrom coal tar is found to be 4.09%. The effect of NAA on root development was also studied in different concentrations of soy bean (Glycine max)and cow pea (Vigna catjang walp).

  8. Toxic releases from power plants

    International Nuclear Information System (INIS)

    Rubin, E.S.

    1999-01-01

    Beginning in 1998, electric power plants burning coal or oil must estimate and report their annual releases of toxic chemicals listed in the Toxics Release Inventory (TRI) published by the US Environmental Protection Agency (EPA). This paper identifies the toxic chemicals of greatest significance for the electric utility sector and develops quantitative estimates of the toxic releases reportable to the TRI for a representative coal-fired power plant. Key factors affecting the magnitude and types of toxic releases for individual power plants also are discussed. A national projection suggests that the magnitude of electric utility industry releases will surpass those of the manufacturing industries which current report to the TRI. Risk communication activities at the community level will be essential to interpret and provide context for the new TRI results

  9. Dry sorbent injection of trona to control acid gases from a pilot-scale coal-fired combustion facility

    Directory of Open Access Journals (Sweden)

    Tiffany L. B. Yelverton

    2016-01-01

    Full Text Available  Gaseous and particulate emissions from the combustion of coal have been associated with adverse effects on human and environmental health, and have for that reason been subject to regulation by federal and state governments. Recent regulations by the United States Environmental Protection Agency have further restricted the emissions of acid gases from electricity generating facilities and other industrial facilities, and upcoming deadlines are forcing industry to consider both pre- and post-combustion controls to maintain compliance. As a result of these recent regulations, dry sorbent injection of trona to remove acid gas emissions (e.g. HCl, SO2, and NOx from coal combustion, specifically 90% removal of HCl, was the focus of the current investigation. Along with the measurement of HCl, SO2, and NOx, measurements of particulate matter (PM, elemental (EC, and organic carbon (OC were also accomplished on a pilot-scale coal-fired combustion facility. Gaseous and particulate emissions from a coal-fired combustor burning bituminous coal and using dry sorbent injection were the focus of the current study. From this investigation it was shown that high levels of trona were needed to achieve the goal of 90% HCl removal, but with this increased level of trona injection the ESP and BH were still able to achieve greater than 95% fine PM control. In addition to emissions reported, measurement of acid gases by standard EPA methods were compared to those of an infrared multi-component gas analyzer. This comparison revealed good correlation for emissions of HCl and SO2, but poor correlation in the measurement of NOx emissions.

  10. Health impacts of coal and coal use: Possible solutions

    Science.gov (United States)

    Finkelman, R.B.; Orem, W.; Castranova, V.; Tatu, C.A.; Belkin, H.E.; Zheng, B.; Lerch, H.E.; Maharaj, S.V.; Bates, A.L.

    2002-01-01

    Coal will be a dominant energy source in both developed and developing countries for at least the first half of the 21st century. Environmental problems associated with coal, before mining, during mining, in storage, during combustion, and postcombustion waste products are well known and are being addressed by ongoing research. The connection between potential environmental problems with human health is a fairly new field and requires the cooperation of both the geoscience and medical disciplines. Three research programs that illustrate this collaboration are described and used to present a range of human health problems that are potentially caused by coal. Domestic combustion of coal in China has, in some cases, severely affected human health. Both on a local and regional scale, human health has been adversely affected by coals containing arsenic, fluorine, selenium, and possibly, mercury. Balkan endemic nephropathy (BEN), an irreversible kidney disease of unknown origin, has been related to the proximity of Pliocene lignite deposits. The working hypothesis is that groundwater is leaching toxic organic compounds as it passes through the lignites and that these organics are then ingested by the local population contributing to this health problem. Human disease associated with coal mining mainly results from inhalation of particulate matter during the mining process. The disease is Coal Worker's Pneumoconiosis characterized by coal dust-induced lesions in the gas exchange regions of the lung; the coal worker's "black lung disease". ?? 2002 Elsevier Science B.V. All rights reserved.

  11. Clean coal technology: The new coal era

    Energy Technology Data Exchange (ETDEWEB)

    1994-01-01

    The Clean Coal Technology Program is a government and industry cofunded effort to demonstrate a new generation of innovative coal processes in a series of full-scale showcase`` facilities built across the country. Begun in 1986 and expanded in 1987, the program is expected to finance more than $6.8 billion of projects. Nearly two-thirds of the funding will come from the private sector, well above the 50 percent industry co-funding expected when the program began. The original recommendation for a multi-billion dollar clean coal demonstration program came from the US and Canadian Special Envoys on Acid Rain. In January 1986, Special Envoys Lewis and Davis presented their recommendations. Included was the call for a 5-year, $5-billion program in the US to demonstrate, at commercial scale, innovative clean coal technologies that were beginning to emerge from research programs both in the US and elsewhere in the world. As the Envoys said: if the menu of control options was expanded, and if the new options were significantly cheaper, yet highly efficient, it would be easier to formulate an acid rain control plan that would have broader public appeal.

  12. Steam versus coking coal and the acid rain program

    International Nuclear Information System (INIS)

    Lange, Ian

    2010-01-01

    The Clean Air Act of 1990 initiated a tradable permit program for emissions of sulfur dioxide from coal-fired power plants. One effect of this policy was a large increase in the consumption of low-sulfur bituminous coal by coal-fired power plants. However, low-sulfur bituminous coal is also the ideal coking coal for steel production. The analysis presented here will attempt to determine how the market responded to the increased consumption of low-sulfur bituminous coal by the electricity generation sector. Was there a decrease in the quality and/or quantity of coking coal consumption or did extraction increase? Most evidence suggests that the market for coking coal was unaffected, even as the extraction and consumption of low-sulfur bituminous coal for electricity generation increased substantially.

  13. Organosilicon fluid for cooling coal combine motors

    Energy Technology Data Exchange (ETDEWEB)

    Donets, I K; Dmitrenko, Yu N; Kovalev, Ye B; Sukhanov, V V; Tsingarelli, Ye P

    1983-01-01

    Results are presented of toxicological evaluation of the polymer organosilicon fluid FM-5.6AP which should be used as the cooling agent of the electric motors of coal combines. It was established that fluid FM-5.6AP belongs to the low-toxic substances that do not have skinresorptive, skin-damaging and cumulative effect, do not have a significant influence on phagocytosis of the coal dust, in depositing in the lungs and elimination. During experimental industrial tests of the motor using the fluid FM-5.6AP, no toxic effect of it on the body was revealed. The possibility is shown of using organosilicon fluid FM-5.6AP for cooling electric motors of coal combines.

  14. Coal-tar based pavement sealant toxicity to freshwater macroinvertebrates

    Energy Technology Data Exchange (ETDEWEB)

    Bryer, P.J.; Scoggins, M.; McClintock, N.L. [Lamar University, Beaumont, TX (United States). Dept. of Biology

    2010-05-15

    Non-point-source pollution is a major source of ecological impairment in urban stream systems. Recent work suggests that coal-tar pavement sealants, used extensively to protect parking areas, may be contributing a large portion of the polycyclic aromatic hydrocarbon (PAH) loading seen in urban stream sediments. The hypothesis that dried coal-tar pavement sealant flake could alter the macroinvertebrate communities native to streams in Austin, TX was tested using a controlled outdoor laboratory type approach. The treatment groups were: control, low, medium, and high with total PAH concentrations (TPAH = sum of 16 EPA priority pollutant PAHs) of 0.1, 7.5, 18.4, & 300 mg/kg respectively. The low, medium, and high treatments were created via the addition of dried coal-tar pavement sealant to a sterile soil. At the start of the 24-day exposure, sediment from a minimally impacted local reference site containing a community of live sediment-dwelling benthic macroinvertebrates was added to each replicate. An exposure-dependent response was found for several stream health measures and for several individual taxa. There were community differences in abundance (P = 0.0004) and richness (P < 0.0001) between treatments in addition to specific taxa responses, displaying a clear negative relationship with the amount of coal-tar sealant flake. These results support the hypothesis that coal-tar pavement sealants contain bioavailable PAHs that may harm aquatic environments.

  15. Molecular Mechanisms of Ursodeoxycholic Acid Toxicity & Side Effects: Ursodeoxycholic Acid Freezes Regeneration & Induces Hibernation Mode

    Science.gov (United States)

    Kotb, Magd A.

    2012-01-01

    Ursodeoxycholic acid (UDCA) is a steroid bile acid approved for primary biliary cirrhosis (PBC). UDCA is reported to have “hepato-protective properties”. Yet, UDCA has “unanticipated” toxicity, pronounced by more than double number of deaths, and eligibility for liver transplantation compared to the control group in 28 mg/kg/day in primary sclerosing cholangitis, necessitating trial halt in North America. UDCA is associated with increase in hepatocellular carcinoma in PBC especially when it fails to achieve biochemical response (10 and 15 years incidence of 9% and 20% respectively). “Unanticipated” UDCA toxicity includes hepatitis, pruritus, cholangitis, ascites, vanishing bile duct syndrome, liver cell failure, death, severe watery diarrhea, pneumonia, dysuria, immune-suppression, mutagenic effects and withdrawal syndrome upon sudden halt. UDCA inhibits DNA repair, co-enzyme A, cyclic AMP, p53, phagocytosis, and inhibits induction of nitric oxide synthatase. It is genotoxic, exerts aneugenic activity, and arrests apoptosis even after cellular phosphatidylserine externalization. UDCA toxicity is related to its interference with drug detoxification, being hydrophilic and anti-apoptotic, has a long half-life, has transcriptional mutational abilities, down-regulates cellular functions, has a very narrow difference between the recommended (13 mg/kg/day) and toxic dose (28 mg/kg/day), and it typically transforms into lithocholic acid that induces DNA strand breakage, it is uniquely co-mutagenic, and promotes cell transformation. UDCA beyond PBC is unjustified. PMID:22942741

  16. Molecular Mechanisms of Ursodeoxycholic Acid Toxicity & Side Effects: Ursodeoxycholic Acid Freezes Regeneration & Induces Hibernation Mode

    Directory of Open Access Journals (Sweden)

    Magd A. Kotb

    2012-07-01

    Full Text Available Ursodeoxycholic acid (UDCA is a steroid bile acid approved for primary biliary cirrhosis (PBC. UDCA is reported to have “hepato-protective properties”. Yet, UDCA has “unanticipated” toxicity, pronounced by more than double number of deaths, and eligibility for liver transplantation compared to the control group in 28 mg/kg/day in primary sclerosing cholangitis, necessitating trial halt in North America. UDCA is associated with increase in hepatocellular carcinoma in PBC especially when it fails to achieve biochemical response (10 and 15 years incidence of 9% and 20% respectively. “Unanticipated” UDCA toxicity includes hepatitis, pruritus, cholangitis, ascites, vanishing bile duct syndrome, liver cell failure, death, severe watery diarrhea, pneumonia, dysuria, immune-suppression, mutagenic effects and withdrawal syndrome upon sudden halt. UDCA inhibits DNA repair, co-enzyme A, cyclic AMP, p53, phagocytosis, and inhibits induction of nitric oxide synthatase. It is genotoxic, exerts aneugenic activity, and arrests apoptosis even after cellular phosphatidylserine externalization. UDCA toxicity is related to its interference with drug detoxification, being hydrophilic and anti-apoptotic, has a long half-life, has transcriptional mutational abilities, down-regulates cellular functions, has a very narrow difference between the recommended (13 mg/kg/day and toxic dose (28 mg/kg/day, and it typically transforms into lithocholic acid that induces DNA strand breakage, it is uniquely co-mutagenic, and promotes cell transformation. UDCA beyond PBC is unjustified.

  17. Toxicity of penicillic acid for rat alveolar macrophages in vitro

    International Nuclear Information System (INIS)

    Sorenson, W.G.; Simpson, J.

    1985-01-01

    Penicillic acid (PA) is a polyketide mycotoxin produced by several species of Aspergillus and Penicillium. This mycotoxin is toxic in experimental animals and has also been reported to be carcinogenic. The cytotoxicity of penicillic acid was studied in rat albeolar macrophages (AM) in vitro. The effects of penicillic acid on membrane integrity were studied by measuring cell volume changes and 51 Cr release. There was a significant decrease in adenosine triphosphate (ATP) in cell cultures exposed to 1.0 mM penicillic acid for 4 hr. Inhibition of the incorporation of [ 3 H]leucine into protein was both dose- and time-dependent and protein synthesis was inhibited significantly after 2 hr exposure to ≥0.1 mM penicillic acid. RNA synthesis was inhibited to a lesser extent than protein synthesis. There was significant inhibition of phagocytosis after 2 hr exposure at ≥0.3 mM penicillic acid and the ED 50 for phagocytosis was 0.09 mM. Thus phagocytosis was more sensitive to the toxic effects of penicillic acid than any other cellular process studied. The data suggest the possibility of a respiratory hazard to agricultural workers exposed to contaminated grain

  18. Advanced Acid Gas Separation Technology for the Utilization of Low Rank Coals

    Energy Technology Data Exchange (ETDEWEB)

    Kloosterman, Jeff

    2012-12-31

    Air Products has developed a potentially ground-breaking technology – Sour Pressure Swing Adsorption (PSA) – to replace the solvent-based acid gas removal (AGR) systems currently employed to separate sulfur containing species, along with CO{sub 2} and other impurities, from gasifier syngas streams. The Sour PSA technology is based on adsorption processes that utilize pressure swing or temperature swing regeneration methods. Sour PSA technology has already been shown with higher rank coals to provide a significant reduction in the cost of CO{sub 2} capture for power generation, which should translate to a reduction in cost of electricity (COE), compared to baseline CO{sub 2} capture plant design. The objective of this project is to test the performance and capability of the adsorbents in handling tar and other impurities using a gaseous mixture generated from the gasification of lower rank, lignite coal. The results of this testing are used to generate a high-level pilot process design, and to prepare a techno-economic assessment evaluating the applicability of the technology to plants utilizing these coals.

  19. Maturation related changes in the distribution of ester bound fatty acids and alcohols in a coal series from the New Zealand Coal Band covering diagenetic to catagenetic coalification levels

    Energy Technology Data Exchange (ETDEWEB)

    Glombitza, C.; Mangelsdorf, K.; Horsfield, B. [German Research Cemter of Geoscience GFZ, Potsdam (Germany)

    2009-10-15

    Several lignites and coals of low to moderate maturation levels from the New Zealand Coal Band were investigated using alkaline ester cleavage experiments to reveal compositional changes of ester bound components during increasing maturation. Ester bound alcohols are found to be present in highest amounts in the very immature lignite samples but show a rapid decrease during early diagenesis. Ester bound fatty acids also show an initial exponential decrease during diagenesis but reveal an intermittent increase during early catagenesis before decreasing again during main catagenesis. This was related to the short chain fatty acids. To obtain a maturity related signal and to eliminate facies related scattering in the amounts of fatty acids in the coal samples, the carbon preference index of fatty acids (CPIFA) parameter is introduced. For the long chain fatty acids the CPIFA decreases with increasing maturity. During diagenesis, the same trend can be observed for the short chain fatty acids but the intermittent increase in the amounts of short chain fatty acids is also accompanied by high CPIFA values. This indicates less altered organic biomass at this maturation level and is in contrast to the mature CPIFA signal of the long chain fatty acids of the same samples. Thus could be due to extremely different amounts of short and long chain fatty acids in the original source organic matter or it could due to the incorporation of immature bacterial biomass from deep microbial communities containing C{sub 16} and C{sub 18} fatty acids as main cell membrane components. Deep microbial life might be stimulated at this interval by the increasing release of thermally generated potential substrates from the organic matrix during early catagenesis. The high amounts of alcohols in the immature lignite samples are also visible in the alkene distribution from the open system pyrolysis experiments of the organic matrix before and after saponification.

  20. Bacteria and Acidic Drainage from Coal Refuse: Inhibition by Sodium Lauryl Sulfate and Sodium Benzoate

    Science.gov (United States)

    Dugan, Patrick R.; Apel, William A.

    1983-01-01

    The application of an aqueous solution of sodium lauryl sulfate and sodium benzoate to the surface of high-sulfur coal refuse resulted in the inhibition of iron-and sulfur-oxidizing chemoautotrophic bacteria and in the decrease of acidic drainage from the refuse, suggesting that acid drainage can be abated in the field by inhibiting iron- and sulfur-oxidizing bacteria. PMID:16346347

  1. Power generation from chemically cleaned coals: do environmental benefits of firing cleaner coal outweigh environmental burden of cleaning?

    DEFF Research Database (Denmark)

    Ryberg, Morten W.; Owsianiak, Mikolaj; Laurent, Alexis

    2015-01-01

    Power generation from high-ash coals is a niche technology for power generation, but coal cleaning is deemed necessary to avoid problems associated with low combustion efficiencies and to minimize environmental burdens associated with emissions of pollutants originating from ash. Here, chemical...... beneficiation of coals using acid and alkali–acid leaching procedures is evaluated as a potential coal cleaning technology employing life cycle assessment (LCA). Taking into account the environmental benefits from firing cleaner coal in pulverized coal power plants and the environmental burden of the cleaning...... itself, it is demonstrated that for a wide range of cleaning procedures and types of coal, chemical cleaning generally performs worse than combustion of the raw coals and physical cleaning using dense medium separation. These findings apply for many relevant impact categories, including climate change...

  2. Plan for injection of coal combustion byproducts into the Omega Mine for the reduction of acid mine drainage

    International Nuclear Information System (INIS)

    Gray, T.A.; Moran, T.C.; Broschart, D.W.; Smith, G.A.

    1998-01-01

    The Omega Mine Complex is located outside of Morgantown, West Virginia. The mine is in the Upper Freeport Coal, an acid-producing coal seam. The coal was mined in a manner that has resulted in acid mine drainage (AMD) discharges at multiple points. During the 1990's, the West Virginia Division of Environmental Protection (WVDEP) assumed responsibility for operating a collection and treatment system for the AMD. Collection and treatment costs are approximately $300,000 per year. Injecting grout into the mine workings to reduce AMD (and thus reducing treatment costs) is proposed. The procedure involves injecting grout mixes composed primarily of coal combustion byproducts (CCB's) and water, with a small quantity of cement. The intention of the injection program is to fill the mine voids in the north lobe of the Omega Mine (an area where most of the acidity is believed to be generated) with the grout, thus reducing the contact of air and water with potentially acidic material. The grout mix design consists of an approximate 1:1 ratio of fly ash to byproducts from fluidized bed combustion. Approximately 100 gallons of water per cubic yard of grout is used to achieve flowability. Observation of the mine workings via subsurface borings and downhole video camera confirmed that first-mined areas were generally open while second-mined areas were generally partially collapsed. The injection program was developed to account for this by utilizing closer injection hole spacing in second-mined areas. Construction began in January 1998, with grout injection expected to commence in mid-April 1998

  3. Potentially Toxic Elements and Health Risk Assessment in Farmland Systems around High-Concentrated Arsenic Coal Mining in Xingren, China

    Directory of Open Access Journals (Sweden)

    Ying-ju Li

    2018-01-01

    Full Text Available The health risk of potentially toxic elements (PTEs via contamination of the food chain has attracted widespread concern. The aim of this study is to evaluate the effects of PTEs in environment and human body (fingernail, hair, and blood of people living in agricultural soil near arsenic coal mining areas in Xingren County (Guizhou, southwest China. 89 crop samples which included vegetables, rice, maize, and coix seed and their corresponding soils and 17 local surface water and biological tissue samples (41 × 3 in near arsenic coal mining areas were collected, and the concentrations of potentially toxic elements (As, Cd, Cu, Cr, and Pb in all the samples were determined. The health risk assessment methods developed by the United States Environmental Protection Agency were employed to explore the potential health hazards of PTEs in soils growing crops. Results showed that 4 toxic elements, Cd, Cu, As, and Cr, were found to have different degrees of contamination in soils in the studied area. The total concentration of toxic elements (As, Cr, Cu, and Pb in fingernail, hair, and blood samples were 90.50, 69.31, and 6.90 mg·kg−1, respectively. Fingernail samples from females were more likely to show exposure to trace metals compared to males. As the age of the subject increased, the concentration of As also increased in all three biological samples. The risk assessment for the mean hazard index value from the consumption of local food crops was 14.81, indicating that consumers may experience adverse, noncarcinogenic health effects. The estimated mean total cancer risk value of was 5.3 × 10−3, which was approximately 10 to 1000 times higher than the acceptable range of 10−6–10−4, indicating serious carcinogenic risks for local people consuming crops from the area. This study provides evidence that local residents in this study area may be at a high risk of disease caused from toxic element exposure.

  4. Speciation of arsenic in Canadian feed-coal and combustion by-products

    Energy Technology Data Exchange (ETDEWEB)

    F. Goodarzi; F.E. Huggins [Natural Resourses Canada (Canada). Geological Survey of Canada-Calgary Division

    2003-07-01

    It is important to determine the oxidation state of arsenic in coal and coal combustion products, as this is generally the single most critical factor determining the toxicity of this element towards humans. However, the same factor is also important for understanding the volatility and reactions of arsenic forms in combustion and their leachability and mobility in ash-disposal situations. In this work, XAFS spectroscopy has been used to examine the speciation of arsenic in Canadian subbituminous and bituminous feed-coals and their combustion products. The concentration of arsenic in the feed-coals varied from < 2 ppm for subbituminous to 54 ppm for bituminous coals. Significant differences were noted in how arsenic occurs in subbituminous and bituminous coals, but, although such differences might influence the initial volatility and reactions of arsenic during coal combustion, arsenic is found almost entirely in the less toxic As{sup 5+} oxidation state in combustion products from both types of coal. (Abstract only)

  5. Is Boric Acid Toxic to Reproduction in Humans? Assessment of the Animal Reproductive Toxicity Data and Epidemiological Study Results.

    Science.gov (United States)

    Duydu, Yalçın; Başaran, Nurşen; Ustündağ, Aylin; Aydın, Sevtap; Undeğer, Ulkü; Ataman, Osman Yavuz; Aydos, Kaan; Düker, Yalçın; Ickstadt, Katja; Waltrup, Brita Schulze; Golka, Klaus; Bolt, Hermann Maximilian

    2016-01-01

    Boric acid and sodium borates are classified as toxic to reproduction in the CLP Regulation under "Category 1B" with the hazard statement of "H360FD". This classification is based on the reprotoxic effects of boric acid and sodium borates in animal experiments at high doses. However, boron mediated reprotoxic effects have not been proven in epidemiological studies so far. The epidemiological study performed in Bandırma boric acid production plant is the most comprehensive published study in this field with 204 voluntarily participated male workers. Sperm quality parameters (sperm morphology, concentration and motility parameters), FSH, LH and testosterone levels were determined in all participated employees as the reproductive toxicity biomarkers of males. However, boron mediated unfavorable effects on reproduction in male workers have not been determined even in the workers under very high daily boron exposure (0.21 mg B/kg-bw/day) conditions. The NOAEL for rat reproductive toxicity is equivalent to a blood boron level of 2020 ng/g. This level is higher than the mean blood boron concentration (223.89 ± 69.49 ng/g) of the high exposure group workers in Bandırma boric acid production plant (Turkey) by a factor of 9. Accordingly, classifying boric acid and sodium borates under "Category 1B" as "presumed reproductive human toxicant in the CLP regulation seems scientifically not reasonable. The results of the epidemiological studies (including the study performed in China) support for a down-classification of boric acid from the category 1B, H360FD to category 2, H361d, (suspected of damaging the unborn child).

  6. Geogenic organic contaminants in the low-rank coal-bearing Carrizo-Wilcox aquifer of East Texas, USA

    Science.gov (United States)

    Chakraborty, Jayeeta; Varonka, Matthew S.; Orem, William H.; Finkelman, Robert B.; Manton, William

    2017-01-01

    The organic composition of groundwater along the Carrizo-Wilcox aquifer in East Texas (USA), sampled from rural wells in May and September 2015, was examined as part of a larger study of the potential health and environmental effects of organic compounds derived from low-rank coals. The quality of water from the low-rank coal-bearing Carrizo-Wilcox aquifer is a potential environmental concern and no detailed studies of the organic compounds in this aquifer have been published. Organic compounds identified in the water samples included: aliphatics and their fatty acid derivatives, phenols, biphenyls, N-, O-, and S-containing heterocyclic compounds, polycyclic aromatic hydrocarbons (PAHs), aromatic amines, and phthalates. Many of the identified organic compounds (aliphatics, phenols, heterocyclic compounds, PAHs) are geogenic and originated from groundwater leaching of young and unmetamorphosed low-rank coals. Estimated concentrations of individual compounds ranged from about 3.9 to 0.01 μg/L. In many rural areas in East Texas, coal strata provide aquifers for drinking water wells. Organic compounds observed in groundwater are likely to be present in drinking water supplied from wells that penetrate the coal. Some of the organic compounds identified in the water samples are potentially toxic to humans, but at the estimated levels in these samples, the compounds are unlikely to cause acute health problems. The human health effects of low-level chronic exposure to coal-derived organic compounds in drinking water in East Texas are currently unknown, and continuing studies will evaluate possible toxicity.

  7. Assessment of melamine and cyanuric acid toxicity in cats.

    Science.gov (United States)

    Puschner, Birgit; Poppenga, Robert H; Lowenstine, Linda J; Filigenzi, Michael S; Pesavento, Patricia A

    2007-11-01

    The major pet food recall associated with acute renal failure in dogs and cats focused initially on melamine as the suspect toxicant. In the course of the investigation, cyanuric acid was identified in addition to melamine in the offending food. The purpose of this study was to characterize the toxicity potential of melamine, cyanuric acid, and a combination of melamine and cyanuric acid in cats. In this pilot study, melamine was added to the diet of 2 cats at 0.5% and 1%, respectively. Cyanuric acid was added to the diet of 1 cat at increasing doses of 0.2%, 0.5%, and 1% over the course of 10 days. Melamine and cyanuric acid were administered together at 0%, 0.2%, 0.5%, and 1% to 1 cat per dose group. No effect on renal function was observed in cats fed with melamine or cyanuric acid alone. Cats dosed with a combination were euthanized at 48 hours after dosing because of acute renal failure. Urine and touch impressions of kidneys from all cats dosed with the combination revealed the presence of fan-shaped, birefringent crystals. Histopathologic findings were limited to the kidneys and included crystals primarily within tubules of the distal nephron, severe renal interstitial edema, and hemorrhage at the corticomedullary junction. The kidneys contained estimated melamine concentrations of 496 to 734 mg/kg wet weight and estimated cyanuric acid concentrations of 487 to 690 mg/kg wet weight. The results demonstrate that the combination of melamine and cyanuric acid is responsible for acute renal failure in cats.

  8. Gaseous emissions from coal stockpiles

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-01-15

    Stockpiled coal undergoes atmospheric oxidation and desorption processes during open air storage. These processes release gases to the environment which may effect health and safety by their toxicity and flammability. In extreme cases, this could lead to a fire. This report discusses gaseous emissions from coal stockpiles. It covers gas emission mechanisms, and gas sampling and testing methods, before examining in more detail the principal gases that have been emitted. It concludes that there is limited research in this area and more data are needed to evaluate the risks of gaseous emissions. Some methods used to prevent coal self-heating and spontaneous combustion can be applied to reduce emissions from coal stockpiles.

  9. Macroinvertebrate response to acid mine drainage: community metrics and on-line behavioural toxicity bioassay

    Energy Technology Data Exchange (ETDEWEB)

    A. Gerhardt; L. Janssens de Bisthoven; A.M.V.M. Soares [University of Aveiro, Aveiro (Portugal). Department of Biology

    2004-07-01

    The hypothesis is tested that toxicity of acid mine drainage can be detected by a selection of existing macroinvertebrate community and bioindicator metrices supplemented by toxicity tests with the local mosquitofish Gambusia holbrooki Girard and the shrimp Atyaephyra desmaresti Millet. The behavioural responses of A. desmaresti to acid mine drainage were recorded in the Multispecies Freshwater Biomonitor{reg_sign}, based on behaviour and survival as parameters. Bioassessment methods were based on community diversity, structure, function, and bioindicators and supplemented by chemical analysis (temperature, pH, metals). The Biological Monitoring Working Party adapted for the Iberian Peninsula, the number of predators (Coleoptera, Hemiptera) and the number of Ephemeroptera and Trichoptera taxa differentiated the sites well. The on-line toxicity test revealed pH-dependent acute toxicity of the acid mine drainage for the shrimp (LC{sub 50}-48 h: pH-AMD=5.8) and a pH-dependent decrease in locomotory activity with the lowest-observed-response-times (LORTs) within 5 h of exposure. Shrimp were more sensitive to acid mine drainage than fish (LC{sub 50}-48 h: pH-AMD=4.9). A new multimetric index combining toxicity testing and bioassessment methods is proposed.

  10. Mobilisation and attenuation of boron during coal mine rehabilitation, Wangaloa, New Zealand

    International Nuclear Information System (INIS)

    Craw, D.; Rufaut, C.G.; Haffert, L.; Todd, A.

    2006-01-01

    Environmental mobility and fate of boron has been traced from source to discharge waters through the rehabilitated Wangaloa coal mine in southern New Zealand. The boron is derived initially from coal, which has up to 450 mg/kg B. The coal also contains pyrite (2-5 wt.% S), which oxidizes to yield a low-pH environment (typical pH 2-5). Weathering of coal-bearing waste rock liberates B into rainwater that infiltrates into waste rock or evaporates to leave a gypsum crust enriched in B, possibly as boric acid or colemanite as inferred from geochemical modelling. Surface waters dissolve this evaporative material periodically, yielding total B concentrations up to 6 mg/L, at pH<4.5. Some of the available B is taken up by plants that have been established on the waste rock, resulting in foliage B concentrations of up to 230 mg/kg (dry weight). Partial attenuation of dissolved B by adsorption to iron oxyhydroxide occurs as groundwater passes through waste rock, but this is inhibited by adsorption competition with dissolved sulphate (up to 600 mg/L). Groundwater flows from the mine through a pit lake and wetland, with total dissolved B near 1 mg/kg after dilution and limited adsorption attenuation has occurred. Despite the widespread B mobility throughout the rehabilitated mine, there is little evidence of B toxicity in plants. The B concentrations in discharging waters are in the environmentally safe range for most aquatic organisms, being neither deficient in B as a micronutrient, nor boron-toxic. (author)

  11. [Effect of soil phenolic acids on soil microbe of coal-mining depressed land after afforestation restoration by different tree species].

    Science.gov (United States)

    Ji, Li; Yang, Li Xue

    2017-12-01

    Phenolic acids are one of the most important factors that influence microbial community structure. Investigating the dynamic changes of phenolic acids and their relationship with the microbial community structure in plantation soils with different tree species could contribute to better understanding and revealing the mechanisms of microbial community changes under afforestation restoration in coal-mining subsidence areas. In this study, plantations of three conifer and one deciduous species (Pinus koraiensis, Larix gmelinii, Pinus sylvestris var. mongolica, and Populus ussuriensis) were established on abandoned coal-mining subsidence areas in Baoshan District, Shuangyashan City. The contents of soil phenols, 11 types of phenolic acids, and microbial communities in all plots were determined. The results showed that the contents of soil complex phenol in plantations were significantly higher than that of abandoned land overall. Specifically, soils in larch and poplar plantations had higher contents of complex phenol, while soils in larch and Korean pine plantations had greater contents of total phenol. Moreover, soil in the P. koraiensis plantation had a higher content of water-soluble phenol compared with abandoned lands. The determination of 11 phenolic acids indicated that the contents of ferulic acid, abietic acid, β-sitosterol, oleanolic acid, shikimic acid, linoleic acid, and stearic acid were higher in plantation soils. Although soil phenol contents were not related with soil microbial biomass, the individual phenolic acids showed a significant relationship with soil microbes. Ferulic acid, abietic acid, and β-sitosterol showed significant promoting effects on soil microbial biomass, and they showed positive correlations with fungi and fungi/bacteria ratio. These three phenolic acids had higher contents in the poplar plantation, suggesting that poplar affo-restation had a beneficial effect on soil quality in coal-mining subsidence areas.

  12. Biotransformation of Spanish coals by microorganisms; Biotransformacion de Carbones Espanoles por Microorganismos

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    some newly isolated microorganisms could solubilized different kinds of Spanish coals (hard coal, subbituminous coal and lignite). Certain fungi and bacteria could solubilized lignite when growing in a mineral medium. However, to solubilized higher rank coals (hard coal and subbituminous coal) microorganisms require a complete medium. Microorganisms, which showed higher capacity to solubilized coal, were incubated in the presence of coal (hard coal, subbituminous coal and lignite) at the optimal conditions to get coal liquefaction/solubilization. The resultant products were analysed by IR and UV/visible spectrometry. No major differences among the original coal, solubilized/liquefied coal and residual coal were detected. However, an increase in metallic carboxylate and a decrease in OH'- carboxylic groups were observed in the liquefied lignite. Humic acids derived from original lignite residual lignite and liquefied/solubilized lignite by microorganisms were analysed. Several differences were observed in the humic acids extracted from the liquefied lignite, such as an increase in the total acidity and in the proportion of the phenolic groups. Differences on the humic acid molecular weight were observed too. Several fungal and bacterial strains were able to grow using humic acids as sole carbon source. Microorganisms growing in humic acid were observed by Scanning Electron Microscopy. Besides, the coal solubilization capacity of several fungal strains (M2, m$ and AGI) growing in different culture media was assayed. In order to get some insight into the mechanisms of the liquefaction/solubilization of Spanish coals (hard coal, subbituminous coal and lignite) by these microorganisms, some features in the culture supernatants were studied: pH values; extracellular specific proteins; enzyme activities possibly related with coal solubilization and the presence of oxalate. M2 and M4 fungal strains grown in the presence of coal produced some specific extracellular proteins

  13. Biotransformation of Spanish coals by microorganisms; Biotransformacion de Carbones Espanoles por Microorganismos

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    some newly isolated microorganisms could solubilized different kinds of Spanish coals (hard coal, subbituminous coal and lignite). Certain fungi and bacteria could solubilized lignite when growing in a mineral medium. However, to solubilized higher rank coals (hard coal and subbituminous coal) microorganisms require a complete medium. Microorganisms, which showed higher capacity to solubilized coal, were incubated in the presence of coal (hard coal, subbituminous coal and lignite) at the optimal conditions to get coal liquefaction/solubilization. The resultant products were analysed by IR and UV/visible spectrometry. No major differences among the original coal, solubilized/liquefied coal and residual coal were detected. However, an increase in metallic carboxylate and a decrease in OH'- carboxylic groups were observed in the liquefied lignite. Humic acids derived from original lignite residual lignite and liquefied/solubilized lignite by microorganisms were analysed. Several differences were observed in the humic acids extracted from the liquefied lignite, such as an increase in the total acidity and in the proportion of the phenolic groups. Differences on the humic acid molecular weight were observed too. Several fungal and bacterial strains were able to grow using humic acids as sole carbon source. Microorganisms growing in humic acid were observed by Scanning Electron Microscopy. Besides, the coal solubilization capacity of several fungal strains (M2, m$ and AGI) growing in different culture media was assayed. In order to get some insight into the mechanisms of the liquefaction/solubilization of Spanish coals (hard coal, subbituminous coal and lignite) by these microorganisms, some features in the culture supernatants were studied: pH values; extracellular specific proteins; enzyme activities possibly related with coal solubilization and the presence of oxalate. M2 and M4 fungal strains grown in the presence of coal produced some specific extracellular

  14. A review of acidity generation and consumption in acidic coal mine lakes and their watersheds.

    Science.gov (United States)

    Blodau, Christian

    2006-10-01

    Lakes developing in former coal mine pits are often characterized by high concentrations of sulfate and iron and low pH. The review focuses on the causes for and fate of acidity in these lakes and their watersheds. Acidification is primarily caused by the generation of ferrous iron bearing and mineralized groundwater, transport through the groundwater-surface water interface, and subsequent iron oxidation and precipitation. Rates of acidity generation in mine tailings and dumps, and surface water are often similar (1 to >10 mol m(-2) yr(-1)). Weathering processes, however, often suffice to buffer groundwaters to only moderately acidic or neutral pH, depending on the suite of minerals present. In mine lakes, the acidity balance is further influenced by proton release from transformation of metastable iron hydroxysulfate minerals to goethite, and proton and ferrous iron sequestration by burial of iron sulfides and carbonates in sediments. These processes mostly cannot compensate acidity loading from the watershed, though. A master variable for almost all processes is the pH: rates of pyrite oxidation, ferrous iron oxidation, mineral dissolution, iron precipitation, iron hydroxide transformation, and iron and sulfate reduction are strongly pH dependent. While the principle mechanism of acidity generation and consumption and several controls are mostly understood, this cannot be said about the fate of acidity on larger spatial and temporal scales. Little is also known about critical loads and the internal regulation of biogeochemical iron, sulfur, and carbon cycling in acidic mine lakes.

  15. A review of acidity generation and consumption in acidic coal mine lakes and their watersheds

    International Nuclear Information System (INIS)

    Blodau, Christian

    2006-01-01

    Lakes developing in former coal mine pits are often characterized by high concentrations of sulfate and iron and low pH. The review focuses on the causes for and fate of acidity in these lakes and their watersheds. Acidification is primarily caused by the generation of ferrous iron bearing and mineralized groundwater, transport through the groundwater-surface water interface, and subsequent iron oxidation and precipitation. Rates of acidity generation in mine tailings and dumps, and surface water are often similar (1 to >10 mol m -2 yr -1 ). Weathering processes, however, often suffice to buffer groundwaters to only moderately acidic or neutral pH, depending on the suite of minerals present. In mine lakes, the acidity balance is further influenced by proton release from transformation of metastable iron hydroxysulfate minerals to goethite, and proton and ferrous iron sequestration by burial of iron sulfides and carbonates in sediments. These processes mostly cannot compensate acidity loading from the watershed, though. A master variable for almost all processes is the pH: rates of pyrite oxidation, ferrous iron oxidation, mineral dissolution, iron precipitation, iron hydroxide transformation, and iron and sulfate reduction are strongly pH dependent. While the principle mechanism of acidity generation and consumption and several controls are mostly understood, this cannot be said about the fate of acidity on larger spatial and temporal scales. Little is also known about critical loads and the internal regulation of biogeochemical iron, sulfur, and carbon cycling in acidic mine lakes. (author)

  16. Toxicity of nickel and silver to Nostoc muscorum: interaction with ascorbic acid, glutathione, and sulfur-containing amino acids.

    Science.gov (United States)

    Rai, L C; Raizada, M

    1987-08-01

    Exposure of Nostoc muscorum to different concentrations of Ni and Ag brought about reduction in growth, carbon fixation, heterocyst production, and nitrogenase activity and increase in the loss of ions (K+, Na+). In an attempt to ameliorate the toxicity of test metals by ascorbic acid, glutathione, and sulfur-containing amino acids (L-cysteine and L-methionine), it was found that the level of protection by ascorbic acid and glutathione was more for Ag than Ni. However, metal-induced inhibition of growth and carbon fixation was equally ameliorated by methionine. But the level of protection by cysteine was quite different, i.e., 27% for Ni and 22% for Ag. Protection of metal toxicity in N. muscorum by amino acids lends further support to self-detoxifying ability of cyanobacteria because they are known to synthesize all essential amino acids.

  17. Chemical and Spectroscopical Characterization of Humic Acids from two South Brazilian Coals of Different Ranks

    Directory of Open Access Journals (Sweden)

    Dick Deborah P.

    2002-01-01

    Full Text Available Humic acids (HA extracted from two coals of different ranks, from their regenerated samples and from a nitrated sample, were characterized by elemental analysis and by infra-red (FTIR, solid state 13C nuclear magnetic resonance (NMR and eletronic paramagnetic resonance (EPR spectroscopies. The low rank coal HA presented higher C and lower O contents, higher C/N and lower H/C and O/C ratios than high rank coal HA. NMR results showed that both samples were more aromatic and less carboxylic than common soil HA. Those characteristics may limit the coal HA efficiency as an appropriate soil conditioner and fertilizer. The regeneration process did not produce major alterations in the coal HA, except a decrease of the free radical content as determined by EPR spectroscopy. Probably, the regeneration conditions and time were not adequate to oxidize the samples. The obtained FTIR spectra were much alike, except that from the nitrated sample, where the absorption band at 1533 cm-1 confirms the presence of nitrated groups. The nitration process increased the N content and reduced the C/N ratio to values comparable to those reported for soil HA, but the aromaticity still remained high and the carboxylic content was lowered after the procedure.

  18. Phyto-bioconversion of hard coal in the Cynodon dactylon/coal rhizosphere.

    Science.gov (United States)

    Igbinigie, Eric E; Mutambanengwe, Cecil C Z; Rose, Peter D

    2010-03-01

    Fundamental processes involved in the microbial degradation of coal and its derivatives have been well documented. A mutualistic interaction between plant roots and certain microorganisms to aid growth of plants such as Cynodon dactylon (Bermuda grass) on hard coal dumps has recently been suggested. In the present study coal bioconversion activity of nonmycorrhizal fungi was investigated in the C. dactylon/coal rhizosphere. Fungal growth on 2% Duff-agar, gutation formation on nitric acid treated coal and submerged culture activity in nitrogen-rich and -deficient broth formed part of the screening and selection of the fungi. The selected fungal isolates were confirmed to be found in pristine C. dactylon/coal rhizosphere. To simulate bioconversion, a fungal aliquot of this rhizosphere was used as inoculum for a Perfusate fixed bed bioreactor, packed with coal. The results demonstrate an enhanced coal bioconversion facilitated by low molecular weight organics and the bioconversion of coal may be initiated by an introduction of nitrogen moieties to the coal substrate. These findings suggest a phyto-bioconversion of hard coal involving plant and microbes occurring in the rhizosphere to promote the growth of C. dactylon. An understanding of this relationship can serve as a benchmark for coal dumps rehabilitation as well as for the industrial scale bioprocessing of hard coal.

  19. Determination of toxicity of spoil substrates after brown coal mining using a laboratory reproduction test with .i.Enchytraeus crypticus./i. (Oligochaeta)

    Czech Academy of Sciences Publication Activity Database

    Frouz, Jan; Krištůfek, Václav; Bastl, J.; Kalčík, Jiří; Vaňková, H.

    2005-01-01

    Roč. 162, 1-2 (2005), s. 37-47 ISSN 0049-6979 R&D Projects: GA ČR(CZ) GA526/01/1055; GA ČR(CZ) GA526/03/1259; GA AV ČR(CZ) 1QS600220501 Institutional research plan: CEZ:AV0Z60660521 Keywords : brown coal mining * chronic toxicity test * enchytraeidae Subject RIV: EH - Ecology, Behaviour Impact factor: 1.258, year: 2005

  20. Prevention of formation of acid drainage from high-sulfur coal refuse by inhibition of iron- and sulfur-oxidizing microorganisms. 1. Preliminary experiments in controlled shaken flasks

    Energy Technology Data Exchange (ETDEWEB)

    Dugan, P.R.

    1987-01-01

    Changes of pH and sulfate concentration in high-sulfur coal refuse slurries are used as measurements of microbial pyrite oxidation in the laboratory. Sodium lauryl sulfate (SLS), alkylbenzene sulfonate (ABS), benzoic acid (BZ) and combinations of SLS plus BZ and ABS plus BZ effectively inhibited formation of sulfate and acid when added in concentrations greater than 50 mg/l to inoculated 20 or 30% coal refuse slurries. Here 25 mg/l concentrations of SLS, ABS and ABS plus BZ stimulated acid production. Formic, hexanoic, oxalic, propionic, and pyruvic acids at 0.1% concentrations were also effective inhibitors. Four different lignin sulfonates were only slightly effective inhibitors at 0.1% concentrations. It was concluded that acid formation resulting from microbial oxidation in high-sulfur coal refuse can be inhibited. 22 references.

  1. Toxicity of copper chelates of azomethines and amino acids for Chlorella pyrenoidosa

    Energy Technology Data Exchange (ETDEWEB)

    Barashkov, G.K.; Rukhadze, E.G.; Talyzenkova, G.P.

    1979-01-01

    The authors have attempted to assess the toxicity of copper-containing compounds from the point of view of their interrelationship with the structural characteristics of the chelate compound and the structure of the ligand. The copper chelates of the azomethines tested may be provisionally divided into three types: A - complexes with N-alkly-azomethines; B - complexes with N-aryl-azomethines; C - binuclear complexes. Consideration was also given to chelates with aromatic and heterocyclic amino acids and to heteroligand chelates in which the copper atom coordinates azomethine and an amino acid simultaneously. Toxicity was determined by the method previously described and expressed as a critical concentration (C/sub cr/, mg Cu/liter) and in relative toxicity units (T/sub c/). The compounds investigated were obtained from the interaction between a bidentant ligand of an azomethine or anamino acid and copper acetate in a water-alcohol medium at pH 6-8. Since they are not very soluble in water, true solutions were obtained by using dimethyl sulfoxide.

  2. Pyritic waste from precombustion coal cleaning: Amelioration with oil shale retort waste and sewage sludge for growth of soya beans

    International Nuclear Information System (INIS)

    Lewis, B.G.; Gnanapragasam, N.; Stevens, M.L.

    1994-01-01

    Solid residue from fossil fuel mining and utilization generally present little hazard to human health. However, because of the high volumes generated, they do pose unique disposal problems in terms of land use and potential degradation of soil and water. In the specific case of wastes from precombustion coal cleaning, the materials include sulfur compounds that undergo oxidation when exposed to normal atmospheric conditions and microbial action and then produce sulfuric acid. The wastes also contain compounds of metals and nonmetals at concentrations many times those present in the original raw coal. Additionally, the residues often contain coal particles and fragments that combust spontaneously if left exposed to the air, thus contributing to the air pollution that the coal cleaning process was designed to prevent. Federal and state efforts in the United States to ameliorate the thousands of hectares covered with these wastes have focused on neutralizing the acidity with limestone and covering the material with soil. The latter procedure creates additional degraded areas, which were originally farmland or wildlife habitat. It would seem preferable to reclaim the coal refuse areas without earth moving. The authors describe here experiments with neutralization of coal waste acidity using an alkaline waste derived from the extraction of oil from oil shale to grow soya beans (Glycine max. [L]) on a mixture of wastes and sewage sludge. Yield of plant material and content of nutrients an potentially toxic elements in the vegetation and in the growth mixtures were determined; results were compared with those for plants grown on an agricultural soil, with particular focus on boron

  3. The Development of Environmentally Friendly Technologies of Using Coals and Products of Their Enrichment in the Form of Coal Water Slurries

    Science.gov (United States)

    Murko, Vasily; Hamalainen, Veniamin

    2017-11-01

    The article presents the current state of the technology for production and combustion of fuel coal water slurries in Russia and foreign countries. Experimental and industrial facilities show the technological and economic efficiency of using this technology for disposal of wastes resulting after coal processing and enrichment. The feasibility studies of use of the technology at large Kuzbass thermal power stations are presented. The possibility of solving a serious environmental problem of reducing storage of the most toxic waste of coal enrichment in the location areas of coal washing plants and coal mining enterprises is demonstrated.

  4. Dataset on usnic acid from Cladonia substellata Vainio (Lichen) schistosomiasis mansoni's vector control and environmental toxicity.

    Science.gov (United States)

    Andrade de Araújo, Hallysson Douglas; Dos Santos Silva, Luanna Ribeiro; de Siqueira, Williams Nascimento; Martins da Fonseca, Caíque Silveira; da Silva, Nicácio Henrique; de Albuquerque Melo, Ana Maria Mendonça; Barroso Martins, Mônica Cristina; de Menezes Lima, Vera Lúcia

    2018-04-01

    This text presents complementary data corresponding to schistosomiasis mansoni's vector control and enviromental toxicity using usnic acid. These informations support our research article "Toxicity of Usnic Acid from Cladonia substellata (Lichen) to embryos and adults of Biomphalaria glabrata " by Araújo et al. [1], and focuses on the analysis of the detailed data regarding the different concentrations of Usnic Acid and their efficiency to B. glabrata mortality and non-viability, as also to environmental toxicity, evaluated by A. salina mortality.

  5. Ninth annual international Pittsburgh coal conference - proceedings

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    Over 200 papers are presented under the following headings: coal preparation; Clean Coal Technology Program status; pre- and post-utilization processing; advanced conversion technologies; integrated gasification combined cycle; indirect liquefaction; advanced liquefaction process development; conversion processes; coal - from a user's perspective; issues associated with coal use in heat engines; fundamentals of combustion; advanced combustion systems; low quality fuel applications/fluidised beds; combustion systems; ash and sludge disposal/utilization; developing SO 2 /NO x control technologies; technical overview of air toxics; scientific, economic and policy perspectives on global climate change; Clean Air Act compliance strategies; environmental policy/technology; spontaneous combustion; and special topics

  6. Biochemical Removal of HAP Precursors From Coal

    Energy Technology Data Exchange (ETDEWEB)

    Olson, G.; Tucker, L.; Richards, J.

    1997-07-01

    This project addresses DOE`s interest in advanced concepts for controlling emissions of air toxics from coal-fired utility boilers. We are determining the feasibility of developing a biochemical process for the precombustion removal of substantial percentages of 13 inorganic hazardous air pollutant (HAP) precursors from coal. These HAP precursors are Sb, As, Be, Cd, Cr, Cl, Co, F, Pb, Hg, Mn, Ni, and Se. Although rapid physical coal cleaning is done routinely in preparation plants, biochemical processes for removal of HAP precursors from coal potentially offer advantages of deeper cleaning, more specificity, and less coal loss. Compared to chemical processes for coal cleaning, biochemical processes potentially offer lower costs and milder process conditions. Pyrite oxidizing bacteria, most notably Thiobacillusferrooxidans, are being evaluated in this project for their ability to remove HAP precursors from U.S. coals.

  7. Biochemical Removal of HAP Precursors From Coal

    International Nuclear Information System (INIS)

    Olson, G.; Tucker, L.; Richards, J.

    1997-07-01

    This project addresses DOE's interest in advanced concepts for controlling emissions of air toxics from coal-fired utility boilers. We are determining the feasibility of developing a biochemical process for the precombustion removal of substantial percentages of 13 inorganic hazardous air pollutant (HAP) precursors from coal. These HAP precursors are Sb, As, Be, Cd, Cr, Cl, Co, F, Pb, Hg, Mn, Ni, and Se. Although rapid physical coal cleaning is done routinely in preparation plants, biochemical processes for removal of HAP precursors from coal potentially offer advantages of deeper cleaning, more specificity, and less coal loss. Compared to chemical processes for coal cleaning, biochemical processes potentially offer lower costs and milder process conditions. Pyrite oxidizing bacteria, most notably Thiobacillusferrooxidans, are being evaluated in this project for their ability to remove HAP precursors from U.S. coals

  8. [Toxicity of chongqing acid fogwater on rabbit alveolar macrophages in vitro].

    Science.gov (United States)

    Shu, W Q; Zhuo, J B

    1992-07-01

    We collected acid fogwater on a fogday and observed its toxic effects on rabbits' pulmonary alveolar macrophages (AM) in vitro. The fogwater was diluted into 4 concentrations: 1, 1/10, 1/100, and 1/1000 of the original fogwater and the exposure time was 12 hours. The results showed that both the AM's viability and the phagocytic capacity were depressed significantly, but the AM's lysosomal enzyme--acid phosphatase activity was found to be stimulated to increase. All these changes were directly correlated with the degree of pollution of the fogwater. Of these three toxicity indices, the most sensitive one was the change of AM's phagocytic capacity.

  9. Clean Coal Day '94 Hokkaido International Seminar; Clean coal day '94 Hokkaido kokusai seminar

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-06-01

    The lectures given at the seminar were 1) Coal energy be friendly toward the earth, 2) Clean coal technology in the United Kingdom, and 3) How clean coal should be in Australia. In lecture 1), remarks are made on the importance of coal and its future, coal that protects forest, whether coal is a dirty fuel, coal combustion tests started relative to environmental pollution, acid rain in China and coal combustion, briquets effective in energy conservation, etc. In lecture 2), remarks are made on the importance of coal utilization in the United Kingdom, current state of coal utilization in power generation, problems related to gasification furnaces, problems related to combustors, problems related to high-temperature gas cleaning, function of cleaning filters, advantages of high-temperature gas treatment, actualities of gas combustors, studies of gas combustors, etc. In lecture 3), remarks are made on Australia's coal situation, problems related to clean coal technology, problems related to coal preparation technology, potentialities of Australian brown coal, coal utilization in power generation, need of new technology development, current state of coal utilization in Australia, coal utilization in metal-making industry, international cooperation on technology, etc. (NEDO)

  10. Protective effect of eicosapentaenoic acid on ouabain toxicity in neonatal rat cardiac myocytes

    International Nuclear Information System (INIS)

    Hallaq, H.; Leaf, A.; Sellmayer, A.; Smith, T.W.

    1990-01-01

    Isolated neonatal cardiac myocytes have been utilized as a model for the study of cardiac arrhythmogenic factors. The myocytes respond to the toxic effects of a potent cardiac glycoside, ouabain at 0.1 mM, by an increase in their spontaneous beating rate and a reduction in amplitude of contractions resulting within minutes in a lethal state of contracture. Incubating the isolated myocytes for 3 endash 5 days in culture medium enriched with 5 μM arachidonic acid had no effect on the development of lethal contracture after subsequent exposure to 0.1 mM ouabain. By contrast, incubating the myocytes for 3 endash 5 days with 5 μM eicosapentaenoic acid completely prevented the toxic effects of ouabain at 0.1 mM. No differences in bumetanide-inhibitable 86 Rb flux were observed between the three preparations. However, measurements with fura-2 of cytosolic free calcium levels indicated that control and arachidonic acid-enriched myocytes developed toxic cytosolic calcium concentrations of 845 ± 29 and 757 ± 64 nM, respectively, on exposure to 0.1 mM ouabain, whereas in eicosapentaenoic acid-enriched myocytes, physiologic calcium levels were preserved. Incubating the myocytes with eicosapentaenoic acid for 3 endash 5 days resulted in a small reduction of arachidonic acid and a small but significant increase of eicosapentaenoic acid in membrane phospolipids of the myocytes

  11. Coal consumption minimizing by increasing thermal energy efficiency at ROMAG-PROD Heavy Water Plant

    International Nuclear Information System (INIS)

    Preda, Marius Cristian

    2006-01-01

    ROMAG-PROD Heavy Water Plant is a large thermal energy consumer using almost all the steam output from ROMAG-TERMO Power Plant - the steam cost weight in the total heavy water price is about 40%. The steam consumption minimizing by modernization of isotopic exchange facilities and engineering development in ROMAG-PROD Heavy Water Plant results in an corresponding decrease of coal amount burned at ROMAG-TERMO boilers. This decrease could be achieved mainly by the followings ways: - Facility wrappings integrity; - High performance heat exchangers; - Refurbished heat insulations; - Modified condenser-collecting pipeline routes; - High performance steam traps; - Heat electric wire. When coal is burned in Power Plant burners to obtain thermal energy, toxic emissions results in flue gases, such as: - CO 2 and NO x with impact on climate warming; - SO 2 which results in ozone layer thinning effect and in acid rain falls. From the value of steam output per burned coal: 1 GCal steam = 1.41 tone steam = 0.86 thermal MW = 1.1911 tones burned coal (lignite), it is obvious that by decreasing the thermal energy consumption provided for ROMAG PROD, a coal amount decrease is estimated at about 45 t/h, or about 394,200 t/year coal, which means about 10% of the current coal consumption at ROMAG-TERMO PP. At the same time, by reducing the burned coal amount, an yearly decrease in emissions into air to about 400,000 tones CO 2 is expected

  12. An overview of the western Maryland coal combustion by-products/acid mine drainage initiative, Part 1 of 3

    International Nuclear Information System (INIS)

    Petzrick, P.; Rafalko, L.G.; Lyons, C.

    1996-01-01

    The western Maryland coal combustion by-products (CCB)/acid mine drainage (AMD) initiative (the Initiative) is a public-private partnership exploring the use of CCBs to eliminate AMD from Maryland's abandoned coal mines. This dynamic partnership will sponsor a series of large scale experiments and demonstrations addressing the engineering problems that characterize the beneficial application of CCBs to prevent acid formation on a scale that is consistent with the large quantity of these materials that will be produced by power plants in or near western Maryland. The initial demonstration is the filling and sealing of a small hand dug mine (the Frazee Mine) under approximately ninety feet of overburden on Winding Ridge near Friendsville, Maryland. A second demonstration is being planned for the Kempton mine complex. Subsequent demonstrations will focus on reducing the cost of materials handling and mine injection and solving the engineering problems characteristic of filling abandoned mines in Maryland. The Initiative is the flagship activity in Maryland's overall Ash Utilization Program, the goal of which is to promote beneficial use of all coal combustion by-products

  13. Toxicity of Select Organic Acids to the Slightly Thermophilic Acidophile Acidithiobaccillus Caldus

    Energy Technology Data Exchange (ETDEWEB)

    John E Aston; William A Apel; Brady D Lee; Brent M Peyton

    2009-02-01

    Acidithiobacillus caldus is a thermophilic acidophile found in commercial biomining, acid mine drainage systems, and natural environments. Previous work has characterized A. caldus as a chemolithotrophic autotroph capable of utilizing reduced sulfur compounds under aerobic conditions. Organic acids are especially toxic to chemolithotrophs in low-pH environments, where they diffuse more readily into the cell and deprotonate within the cytoplasm. In the present study, the toxic effects of oxaloacetate, pyruvate, 2-ketoglutarate, acetate, malate, succinate, and fumarate on A. caldus strain BC13 were examined under batch conditions. All tested organic acids exhibited some inhibitory effect. Oxaloacetate was observed to inhibit growth completely at a concentration of 250 µM, whereas other organic acids were completely inhibitory at concentrations of between 1,000 and 5,000 µM. In these experiments, the measured concentrations of organic acids decreased with time, indicating uptake or assimilation by the cells. Phospholipid fatty acid analyses indicated an effect of organic acids on the cellular envelope. Notable differences included an increase in cyclic fatty acids in the presence of organic acids, indicating possible instability of the cellular envelope. This was supported by field emission scanning-electron micrographs showing blebbing and sluffing in cells grown in the presence of organic acids.

  14. Evaluation of the effects of coal fly ash amendments on the toxicity of a contaminated marine sediment

    Energy Technology Data Exchange (ETDEWEB)

    Burgess, R.M.; Perron, M.M.; Friedman, C.L.; Suuberg, E.M.; Pennell, K.G.; Cantwell, M.G.; Pelletier, M.C.; Ho, K.T.; Serbst, J.R.; Ryba, S.A. [US EPA, Narragansett, RI (USA). Office for Research and Development

    2009-01-15

    Approaches for cleaning up contaminated sediments range from dredging to in situ treatment. In this study, we discuss the effects of amending reference and contaminated sediments with coal fly ash to reduce the bioavailability and toxicity of a field sediment contaminated with polycyclic aromatic hydrocarbons (PAHs). Six fly ashes and a coconut charcoal were evaluated in 7-d whole sediment toxicity tests with a marine amphipod (Ampelisca abdita) and mysid (Americamysis bahia). Fly ashes with high carbon content and the coconut charcoal showed proficiency at reducing toxicity. Some of the fly ashes demonstrated toxicity in the reference treatments. It is suspected that some of this toxicity is related to the presence of ammonia associated with fly ashes as a result of postoxidation treatment to reduce nitrous oxide emissions. Relatively simple methods exist to remove ammonia from fly ash before use, and fly ashes with low ammonia content are available. Fly ashes were also shown to effectively reduce overlying water concentrations of several PAHs. No evidence was seen of the release of the metals cadmium, copper, nickel, or lead from the fly ashes. A preliminary 28-d polychaete bioaccumulation study with one of the high-carbon fly ashes and a reference sediment was also performed. Although preliminary, no evidence was seen of adverse effects to worm growth or lipid content or of accumulation of PAHs or mercury from exposure to the fly ash. These data show fly ashes with high carbon content could represent viable remedial materials for reducing the bioavailability of organic contaminants in sediments.

  15. Development of Graft Copolymer Flocculant Based on Acrylamide and Acrylic Acid for the dewatering of coal

    International Nuclear Information System (INIS)

    Mahmoud, G.A.; Abdel Khalek, M.A

    2012-01-01

    Most coal preparation processes were carried out in water medium. The water content of coal product has a negative impact on handling and specific energy value. The moisture content may be attributed to the proportion of fine coal, which presents the greatest dewatering problem. A novel polymeric flocculant has been developed by graft copolymerization of acrylamide (AAm) with acrylic acid (AAc) using gamma irradiation technique. The grafted copol621621ymer P(AAm/AAc) was characterized by Fourier-transform infrared spectroscopy (FTIR), and thermo-gravimetric analysis (TGA). The effects of reaction parameters, such as total absorbed dose, and monomer concentration on grafting yield were investigated. The flocculation performance of the graft copolymer P(AAm/AAc) was investigated in coal suspension. It was observed that the grafting ratio was one of the key factors for the flocculating effects. The copolymers with various grafting ratios showed different flocculating properties. It was found that as the grafting ratio increased, the flocculating effect also increased. The flocculation performance of the grafted copolymer was better than that of the commercial flocculant, poly-acrylamide (Magnafloc 1011).

  16. Brown coal derived humate inhibits contact hypersensitivity; An efficacy, toxicity and teratogenicity study in rats

    Energy Technology Data Exchange (ETDEWEB)

    Van Rensburg, C.E.J.; Snyman, J.R.; Mokoele, T.; Cromarty, A.D. [University of Pretoria, Pretoria (South Africa). Faculty of Health Science

    2007-10-15

    The effects of two humate products were compared to that of prednisolone on a contact hypersensitivity rat model. Rats, sensitized with dinitrofluorobenzene (DNFB), were placed on a daily oral treatment of 61 mg/kg BW of humate derived from either leonardite or bituminous coal or on prednisolone at one mg/kg BW and challenged 6 days later with a topical application of DNFB to the right ear. The inflamed ears were measured daily. In a toxicity study rats were exposed to daily oral treatment of leonardite humate at 1,000 mg/kg BW for 1 month. A teratogenicity study was done where pregnant rats were treated with 500 mg/kg BW on days 5 to 17 of pregnancy. Only the leonardite humate compared favourably with prednisolone in suppressing contact hypersensitivity. No signs of toxicity were observed and weight gain was normal during the 6-day and 1 month treatments and during the teratogenicity study with the leonardite humate. However, the rats on the other two products experienced slower weight gain. The identification of a naturally occurring nontoxic compound with anti-inflammatory activity is exciting and merits further evaluation in the treatment of patients suffering from inflammatory conditions.

  17. Cavities as the sources of acid mine process in the Niwka-Modrzejow Coal Mine (poland)

    International Nuclear Information System (INIS)

    Pluta, I.; Mazurkiewicz, M.

    2005-01-01

    Acid mine process is one of the most significant sources the pollution of surface water. The intensive process was discovered in the Niwka-Modrzejow Coal Mine at the level 100-130 m. In this paper the method of prevention by the filling cavities of wastes from energy plants was proposed. (authors)

  18. The Charfuel coal refining process

    International Nuclear Information System (INIS)

    Meyer, L.G.

    1991-01-01

    The patented Charfuel coal refining process employs fluidized hydrocracking to produce char and liquid products from virtually all types of volatile-containing coals, including low rank coal and lignite. It is not gasification or liquefaction which require the addition of expensive oxygen or hydrogen or the use of extreme heat or pressure. It is not the German pyrolysis process that merely 'cooks' the coal, producing coke and tar-like liquids. Rather, the Charfuel coal refining process involves thermal hydrocracking which results in the rearrangement of hydrogen within the coal molecule to produce a slate of co-products. In the Charfuel process, pulverized coal is rapidly heated in a reducing atmosphere in the presence of internally generated process hydrogen. This hydrogen rearrangement allows refinement of various ranks of coals to produce a pipeline transportable, slurry-type, environmentally clean boiler fuel and a slate of value-added traditional fuel and chemical feedstock co-products. Using coal and oxygen as the only feedstocks, the Charfuel hydrocracking technology economically removes much of the fuel nitrogen, sulfur, and potential air toxics (such as chlorine, mercury, beryllium, etc.) from the coal, resulting in a high heating value, clean burning fuel which can increase power plant efficiency while reducing operating costs. The paper describes the process, its thermal efficiency, its use in power plants, its pipeline transport, co-products, environmental and energy benefits, and economics

  19. Medical screening after a coal fly ash spill in Roane County, Tennessee.

    Science.gov (United States)

    Nichols, Gregory P; Cragle, Donna L; Benitez, John G

    2014-08-01

    To assess the health of community residents following a coal fly ash spill at the Tennessee Valley Authority Kingston Fossil Plant in Harriman, Tennessee, on December 22, 2008. A uniform health assessment was developed by epidemiologists at Oak Ridge Associated Universities and medical toxicologists at Vanderbilt University Medical Center. Residents who believed that their health may have been affected by the coal fly ash spill were invited to participate in the medical screening program. Among the 214 individuals who participated in the screening program, the most commonly reported symptoms were related to upper airway irritation. No evidence of heavy metal toxicity was found. This is the first report, to our knowledge, regarding the comprehensive health evaluation of a community after a coal fly ash spill. Because this evaluation was voluntary, the majority of residents screened represented those with a high percentage of symptoms and concerns about the potential for toxic exposure. Based on known toxicity of the constituents present in the coal fly ash, health complaints did not appear to be related to the fly ash. This screening model could be used to assess immediate or baseline toxicity concerns after other disasters.

  20. Biotoxicity assessment and toxicity mechanism on coal gasification wastewater (CGW): A comparative analysis of effluent from different treatment processes.

    Science.gov (United States)

    Ma, Weiwei; Han, Yuxing; Xu, Chunyan; Han, Hongjun; Zhu, Hao; Li, Kun; Zheng, Mengqi

    2018-05-04

    Even though coal gasification wastewater (CGW) treated by various biochemical treatment processes generally met the national discharge standard, its potential biotoxicity was still unknown. Therefore, in this study, bioassay with Tetrahymena thermophila (T. thermophila) was conducted to comprehensively evaluate the variation of biotoxicity in raw CGW and the treated effluent from lab-scale micro-electrolysis integrated with biological reactor (MEBR), single iron-carbon micro-electrolysis (ICME) and conventional activated sludge (CAS) processes. The results illustrated that raw CGW presented intensive acute toxicity with 24 h EC 50 value of 8.401% and toxic unit (TU) value of 11.90. Moreover, it performed significant cell membrane destruction and DNA damage even at 10% dilution concentration. The toxicant identification results revealed that multiple toxic polar compounds such as phenolic, heterocyclic and polycyclic aromatic compounds were the main contributors for biotoxicity. Furthermore, these compounds could accelerate oxidative stress, thereby inducing oxidative damage of cell membrane and DNA. As for treated effluent, TU value was decreased by 90.58% in MEBR process. An effective biotoxicity reduction was achieved in MEBR process owing to high removal efficiency in polar organic toxicants. In contrast, effluent from ICME and CAS processes presented relatively high acute toxicity and genotoxicity, because various heterocyclic and polycyclic aromatic compounds were difficult to be degraded in these processes. Therefore, it was suggested that MEBR was a potential and feasible process for improving CGW treatment and minimizing ecological risk. Copyright © 2018. Published by Elsevier B.V.

  1. Triphenyl phosphate-induced developmental toxicity in zebrafish: Potential role of the retinoic acid receptor

    Energy Technology Data Exchange (ETDEWEB)

    Isales, Gregory M.; Hipszer, Rachel A.; Raftery, Tara D. [Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC (United States); Chen, Albert; Stapleton, Heather M. [Division of Environmental Sciences and Policy, Nicholas School of the Environment, Duke University, Durham, NC (United States); Volz, David C., E-mail: volz@mailbox.sc.edu [Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC (United States)

    2015-04-15

    Highlights: • Triphenyl phosphate-induced toxicity in zebrafish embryos is enhanced in the presence of a retinoic acid receptor antagonist. • Triphenyl phosphate uptake or metabolism within zebrafish embryos is not altered in the presence of a retinoic acid receptor antagonist. • Triphenyl phosphate decreases expression of cytochrome P450 26a1 in zebrafish embryos. • Triphenyl phosphate inhibits retinoic acid-induced activation of human retinoic acid receptors. - Abstract: Using zebrafish as a model, we previously reported that developmental exposure to triphenyl phosphate (TPP) – a high-production volume organophosphate-based flame retardant – results in dioxin-like cardiac looping impairments that are independent of the aryl hydrocarbon receptor. Using a pharmacologic approach, the objective of this study was to investigate the potential role of retinoic acid receptor (RAR) – a nuclear receptor that regulates vertebrate heart morphogenesis – in mediating TPP-induced developmental toxicity in zebrafish. We first revealed that static exposure of zebrafish from 5–72 h post-fertilization (hpf) to TPP in the presence of non-toxic concentrations of an RAR antagonist (BMS493) significantly enhanced TPP-induced toxicity (relative to TPP alone), even though identical non-toxic BMS493 concentrations mitigated retinoic acid (RA)-induced toxicity. BMS493-mediated enhancement of TPP toxicity was not a result of differential TPP uptake or metabolism, as internal embryonic doses of TPP and diphenyl phosphate (DPP) – a primary TPP metabolite – were not different in the presence or absence of BMS493. Using real-time PCR, we then quantified the relative change in expression of cytochrome P450 26a1 (cyp26a1) – a major target gene for RA-induced RAR activation in zebrafish – and found that RA and TPP exposure resulted in a ∼5-fold increase and decrease in cyp26a1 expression, respectively, relative to vehicle-exposed embryos. To address whether TPP may

  2. Greening coal: breakthroughs and challenges in carbon capture and storage.

    Science.gov (United States)

    Stauffer, Philip H; Keating, Gordon N; Middleton, Richard S; Viswanathan, Hari S; Berchtold, Kathryn A; Singh, Rajinder P; Pawar, Rajesh J; Mancino, Anthony

    2011-10-15

    Like it or not, coal is here to stay, for the next few decades at least. Continued use of coal in this age of growing greenhouse gas controls will require removing carbon dioxide from the coal waste stream. We already remove toxicants such as sulfur dioxide and mercury, and the removal of CO₂ is the next step in reducing the environmental impacts of using coal as an energy source (i.e., greening coal). This paper outlines some of the complexities encountered in capturing CO₂ from coal, transporting it large distances through pipelines, and storing it safely underground.

  3. ICP-AES determination of rare earth elements in coal fly ash samples of thermal power stations: assessment of possible recovery and environmental impact of rare earth elements

    International Nuclear Information System (INIS)

    Premadas, A.; Mary, Thomas Anitha; Chakrapani, G.

    2013-01-01

    Accurate determination of rare earth elements (REEs) in ashes of thermal power plants is important in the current scenario due to its economic value, and the pollution caused if they are released in to the environment. Their toxicity to living organisms now gaining importance in international community, and some investigation shows it causes retardation in plant growth. In coal based thermal stations huge quantity of coal used annually as a fuel and lakhs of tones of waste is generated in the form of ashes. Therefore studies were carried out on three aspects - fairly rapid and accurate ICP-AES determination REEs in coal fly ash samples using addition technique, a preliminary acid leaching studies on coal received from three different fired thermal power stations using hydrochloric acid at pH 1 and 2, and quantify the REEs leached, and economic recovery of REEs using di-(2-ethylhexyl) phosphoric acid solvent extraction process or precipitation hydroxides using dilute ammonia solution. The standard addition method of REEs determination using rate and reproducible values, besides the analysis is fast compared to the ion exchange separation of REEs followed by the ICP-AES determination. (author)

  4. Role of the plasma membrane H(+)-ATPase in the regulation of organic acid exudation under aluminum toxicity and phosphorus deficiency.

    Science.gov (United States)

    Yu, Wenqian; Kan, Qi; Zhang, Jiarong; Zeng, Bingjie; Chen, Qi

    2016-01-01

    Aluminum (Al) toxicity and phosphorus (P) deficiency are 2 major limiting factors for plant growth and crop production in acidic soils. Organic acids exuded from roots have been generally regarded as a major resistance mechanism to Al toxicity and P deficiency. The exudation of organic acids is mediated by membrane-localized OA transporters, such as ALMT (Al-activated malate transporter) and MATE (multidrug and toxic compound extrusion). Beside on up-regulation expression of organic acids transporter gene, transcriptional, translational and post-translational regulation of the plasma membrane H(+)-ATPase are also involved in organic acid release process under Al toxicity and P deficiency. This mini-review summarizes the current knowledge about this field of study on the role of the plasma membrane H(+)-ATPase in organic acid exudation under Al toxicity and P deficiency conditions.

  5. Neuroprotective effect of creatine against propionic acid toxicity in ...

    African Journals Online (AJOL)

    edoja

    2013-07-31

    Jul 31, 2013 ... Full Length Research Paper. Neuroprotective effect of creatine against propionic acid toxicity in neuroblastoma SH-SY5Y cells in culture. Afaf El-Ansary*, Ghada Abu-Shmais and Abeer Al-Dbass. Biochemistry Department, College of Science, King Saud University, P.O. Box 22452, Zip code 11495, Riyadh, ...

  6. TIE for cyanides in groundwater at a former coal gasification plant

    Energy Technology Data Exchange (ETDEWEB)

    McLeay, M.; Cameron, M. [Hemmeram, Vancouver, BC (Canada); Elphick, J. [Nautilus Environmental Co., Burnaby, BC (Canada)

    2010-07-01

    Groundwater remediation efforts are underway at a former coal gasification plant site in British Columbia because the concentrations of cyanide and other substances were found to exceed aquatic life guidelines. Hemmera and Nautilus Environmental examined whether that groundwater was toxic to a variety of sensitive marine aquatic life species, and whether cyanide was the primary toxicant. Untreated groundwater containing cyanide, weak acid dissociable cyanide and free cyanide was tested for toxicity on bivalve larval survival, kelp zoospore germination, sea urchin gamete fertilization, and larval topsmelt survival and growth. The untreated groundwater was found to be toxic to kelp zoospores and sea urchin gametes, but relatively non-toxic to bivalve larvae and topsmelt. The following 4 toxicity identification evaluation (TIE) treatments were conducted on site groundwater: (1) acidification/aeration of the sample, (2) filtration of the sample through anion exchange media, (3) filtration of the sample through activated carbon, and (4) exposure of the sample to UV light. Both the cyanide concentration and the toxicity to kelp decreased considerably when the anion exchange treatment was applied. The results suggest that the toxicity may be attributed to cyanides in the groundwater. The information obtained from this study will be used to plan excavation water treatment strategies during site remediation as part of an ecological risk assessment for the site.

  7. TIE for cyanides in groundwater at a former coal gasification plant

    International Nuclear Information System (INIS)

    McLeay, M.; Cameron, M.; Elphick, J.

    2010-01-01

    Groundwater remediation efforts are underway at a former coal gasification plant site in British Columbia because the concentrations of cyanide and other substances were found to exceed aquatic life guidelines. Hemmera and Nautilus Environmental examined whether that groundwater was toxic to a variety of sensitive marine aquatic life species, and whether cyanide was the primary toxicant. Untreated groundwater containing cyanide, weak acid dissociable cyanide and free cyanide was tested for toxicity on bivalve larval survival, kelp zoospore germination, sea urchin gamete fertilization, and larval topsmelt survival and growth. The untreated groundwater was found to be toxic to kelp zoospores and sea urchin gametes, but relatively non-toxic to bivalve larvae and topsmelt. The following 4 toxicity identification evaluation (TIE) treatments were conducted on site groundwater: (1) acidification/aeration of the sample, (2) filtration of the sample through anion exchange media, (3) filtration of the sample through activated carbon, and (4) exposure of the sample to UV light. Both the cyanide concentration and the toxicity to kelp decreased considerably when the anion exchange treatment was applied. The results suggest that the toxicity may be attributed to cyanides in the groundwater. The information obtained from this study will be used to plan excavation water treatment strategies during site remediation as part of an ecological risk assessment for the site.

  8. The acidic functional groups of humic acid

    Energy Technology Data Exchange (ETDEWEB)

    Shanxiang, Li; Shuhe, Sun; Zhai Zongxi, Wu Qihu

    1983-09-01

    The acidic functional groups content, pK value, DELTAH and DELTAS of humic acid (HA) and nitro-humic acid (NHA) were determined by potentiometry, conductometry and calorimetric titration. The thermodynamic parameters of carboxylic groups and phenolic hydroxyl groups of humic acid are similar to that of simple hydroxy-benzoic acid. The configuration sites of acidic functional groups in humic acid from different coals are different. The carbonyl groups on aromatic rings are probably ortho to phenolic -OH for HA and NHA extracted from Huangxian's brown coal and Japanese lignite, while those from Lingshi's weathered coal are not. The weak -COOH groups of the latter possess higher chemical activity. The -COOH content in HA increases, phenolic -OH group decreases and the chemical acidity of acidic functional groups increases when HA is oxidized by nitric acid. (14 refs.)

  9. Environmental assessment and nano-mineralogical characterization of coal, overburden and sediment from Indian coal mining acid drainage

    Directory of Open Access Journals (Sweden)

    Madhulika Dutta

    2017-11-01

    Full Text Available The deterioration of environmental conditions is the major contributory factor to poor health and quality of life that hinders sustainable development in any region. Coal mining is one of the major industries that contribute to the economy of a country but it also impacts the environment. The chemical parameters of the coal, overburden, soil and sediments along with the coal mine drainage (CMD were investigated in order to understand the overall environmental impact from high sulphur coal mining at northeastern coalfield (India. It was found that the total sulphur content of the coal is noticeably high compared to the overburden (OB and soil. The volatile matter of the coal is sufficiently high against the high ash content of the soil and overburden. The water samples have a High Electrical Conductivity (EC and high Total Dissolve Solid (TDS. Lower values of pH, indicate the dissolution of minerals present in the coal as well as other minerals in the mine rejects/overburden. The chemical and nano-mineralogical composition of coal, soil and overburden samples was studied using a High Resolution-Transmission Electron Microscopy (HR-TEM, Energy Dispersive Spectroscopy (EDS, Selected-Area Diffraction (SAED, Field Emission-Scanning Electron Microscopy (FE-SEM/EDS, X-ray diffraction (XRD, Fourier Transform Infrared Spectroscopy (FTIR, Raman and Ion-Chromatographic analysis, and Mössbauer spectroscopy. From different geochemical analysis it has been found that the mine water sample from Ledo colliery has the lowest pH value of 3.30, Tirap colliery samples have the highest electrical conductivity value of 5.40 ms cm−1. Both Ledo and Tirap coals have total sulphur contents within the range 3–3.50%. The coal mine water from Tirap colliery (TW-15B has high values of Mg2+ (450 ppm, and Br− (227.17 ppm. XRD analysis revealed the presence of minerals including quartz and hematite in the coals. Mineral analysis of coal mine overburden (OB indicates

  10. Role of the plasma membrane H+-ATPase in the regulation of organic acid exudation under aluminum toxicity and phosphorus deficiency

    Science.gov (United States)

    Yu, Wenqian; Kan, Qi; Zhang, Jiarong; Zeng, Bingjie; Chen, Qi

    2016-01-01

    Aluminum (Al) toxicity and phosphorus (P) deficiency are 2 major limiting factors for plant growth and crop production in acidic soils. Organic acids exuded from roots have been generally regarded as a major resistance mechanism to Al toxicity and P deficiency. The exudation of organic acids is mediated by membrane-localized OA transporters, such as ALMT (Al-activated malate transporter) and MATE (multidrug and toxic compound extrusion). Beside on up-regulation expression of organic acids transporter gene, transcriptional, translational and post-translational regulation of the plasma membrane H+-ATPase are also involved in organic acid release process under Al toxicity and P deficiency. This mini-review summarizes the current knowledge about this field of study on the role of the plasma membrane H+-ATPase in organic acid exudation under Al toxicity and P deficiency conditions. PMID:26713714

  11. Evaluation of toxicity and biodegradability of cholinium amino acids ionic liquids.

    Directory of Open Access Journals (Sweden)

    Xue-Dan Hou

    Full Text Available Cholinium amino acid ionic liquids ([Ch][AA] ILs, which are wholly composed of renewable biomaterials, have recently been demonstrated to have very promising properties for applications in organic synthesis and biomass pretreatment. In this work, the toxicity of these ILs toward enzymes and bacteria was assessed, and the effect of the anion on these properties is discussed. The inhibitory potentials of this type of ILs to acetylcholinesterase were weaker approximately an order of magnitude than the traditional IL 1-butyl-3-methylimidazolium tetrafluoroborate. Additionally, the [Ch][AA] ILs displayed low toxicity toward the bacteria tested. Furthermore, the biodegradability of the [Ch][AA] ILs was evaluated via the closed bottle and CO(2 headspace tests using wastewater microorganisms. All the ILs were classified as 'readily biodegradable' based on their high levels of mineralization (62-87%. The presence of extra carboxyl or amide groups on the amino acid side chain rendered the ILs significantly more susceptible to microbial breakdown. In addition, for most of the [Ch][AA] ILs, low toxicity correlated with good biodegradability. The low toxicity and high biodegradability of these novel [Ch][AA] make them promising candidates for use as environmentally friendly solvents in large-scale applications.

  12. Injection of alkaline ashes into underground coal mines for acid mine drainage abatement

    International Nuclear Information System (INIS)

    Aljoe, W.W.

    1996-01-01

    The injection of alkaline coal combustion waste products into abandoned underground coal mines for acid mine drainage (AMD) abatement has obvious conceptual appeal. This paper summarizes the findings of the baseline hydrogeologic and water quality evaluations at two sites--one in West Virginia and one in Maryland--where field demonstrations of the technique are being pursued in cooperative efforts among State and Federal agencies and/or private companies. The West Virginia site produces severe AMD from three to seven AMD sources that are spaced over about a 1.2 km stretch of the down-dip side of the mine workings. By completely filling the most problematic portion of the mine workings with coal combustion ashes, the State expects that the costs and problems associated with AMD treatment will be greatly reduced. At the Maryland site, it is expected that the AMD from a relatively small target mine will be eliminated completely by filling the entire mine void with a grout composed of a mixture of fly ash, fluidized-bed combustion ash, and flue gas desulfurization sludge. This project will also demonstrate the potential cost-effectiveness of the technique at other sites, both for the purpose of AMD remediation and control of land subsidence

  13. Acidity of vapor plume from cooling tower mixed with flue gases emitted from coal-fired power plant.

    Science.gov (United States)

    Hlawiczka, Stanislaw; Korszun, Katarzyna; Fudala, Janina

    2016-06-01

    Acidity of products resulting from the reaction of flue gas components emitted from a coal-fired power plant with water contained in a vapor plume from a wet cooling tower was analyzed in a close vicinity of a power plant (710 m from the stack and 315 m from the cooling tower). Samples of this mixture were collected using a precipitation funnel where components of the mixed plumes were discharged from the atmosphere with the rainfall. To identify situations when the precipitation occurred at the same time as the wind directed the mixed vapor and flue gas plumes above the precipitation funnel, an ultrasound anemometer designed for 3D measurements of the wind field located near the funnel was used. Precipitation samples of extremely high acidity were identified - about 5% of samples collected during 12 months showed the acidity below pH=3 and the lowest recorded pH was 1.4. During the measurement period the value of pH characterizing the background acidity of the precipitation was about 6. The main outcome of this study was to demonstrate a very high, and so far completely underestimated, potential of occurrence of episodes of extremely acid depositions in the immediate vicinity of a coal-fired power plant. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Clean Coal Day '94 Hokkaido International Seminar; Clean coal day '94 Hokkaido kokusai seminar

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-06-01

    The lectures given at the seminar were 1) Coal energy be friendly toward the earth, 2) Clean coal technology in the United Kingdom, and 3) How clean coal should be in Australia. In lecture 1), remarks are made on the importance of coal and its future, coal that protects forest, whether coal is a dirty fuel, coal combustion tests started relative to environmental pollution, acid rain in China and coal combustion, briquets effective in energy conservation, etc. In lecture 2), remarks are made on the importance of coal utilization in the United Kingdom, current state of coal utilization in power generation, problems related to gasification furnaces, problems related to combustors, problems related to high-temperature gas cleaning, function of cleaning filters, advantages of high-temperature gas treatment, actualities of gas combustors, studies of gas combustors, etc. In lecture 3), remarks are made on Australia's coal situation, problems related to clean coal technology, problems related to coal preparation technology, potentialities of Australian brown coal, coal utilization in power generation, need of new technology development, current state of coal utilization in Australia, coal utilization in metal-making industry, international cooperation on technology, etc. (NEDO)

  15. Toxic substances from coal combustion -- A comprehensive assessment

    Energy Technology Data Exchange (ETDEWEB)

    Senior, C.L.; Huggins, F.E.; Huffman, G.P.; Shan, N.; Yap, N.; Wendt, J.O.L.; Seames, W.; Ames, M.R.; Sarofim, A.F.; Swenson, S.; Lighty, J.; Kolker, A.; Finkelman, R.; Palmer, C.; Mroczkowski, S.; Helble, J.; Mamani-Paco, R.; Sterling, R.; Dunham, G.; Miller, S.

    2000-08-17

    The final program review meeting of Phase II was held on June 22 in Salt Lake City. The goals of the meeting were to present work in progress and to identify the remaining critical experiments or analyses, particularly those involving collaboration among various groups. The information presented at the meeting is summarized in this report. Remaining fixed bed, bench-scale experiments at EERC were discussed. There are more ash samples which can be run. Of particular interest are high carbon ash samples to be generated by the University of Arizona this summer and some ash-derived sorbents that EERC has evaluated on a different program. The use of separation techniques (electrostatic or magnetic) was also discussed as a way to understand the active components in the ash with respect to mercury. XAFS analysis of leached and unleached ash samples from the University of Arizona was given a high priority. In order to better understand the fixed bed test results, CCSEM and Moessbauer analyses of those ash samples need to be completed. Utah plans to analyze the ash from the single particle combustion experiments for those major elements not measured by INAA. USGS must still complete mercury analyses on the whole coals and leaching residues. Priorities for further work at the SHRIMP-RG facility include arsenic on ash surfaces and mercury in sulfide minerals. Moessbauer analyses of coal samples from the University of Utah were completed; samples from the top and bottom layers of containers of five different coals showed little oxidation of pyrite in the top relative to the bottom except for Wyodak.

  16. Study on uranium leaching behavior from coal fly ash samples

    International Nuclear Information System (INIS)

    Police, S.; Maity, S.; Chaudhary, D.K.; Sahu, S.K.; Pandit, G.G.

    2017-01-01

    Leachability of trace and toxic metals from coal fly ash (FA) poses significant environmental problems especially ground and surface water contamination. In the present study, leachability of U using batch leaching tests (i.e., at various leachate pH values) and using TCLP was studied. Results of pH variation study indicate that, U has higher leachability in acidic medium as compared to slightly alkaline medium. The leachable U concentrations observed in pH variation study are well below the WHO safety limits. In TCLP leachates, the leachable U concentrations are found to be higher than that observed in pH variation study. (author)

  17. Assessment of toxicity on chelating agent DTPA (diethylenetriaminepentaacetic acid)

    International Nuclear Information System (INIS)

    Fukuda, Satoshi

    1989-01-01

    DTPA (diethylenetriaminepentaacetic acid) is a very important chelating agent to decorporate the radionuclides such as plutonium and americium from human body. However, before DTPA will be administered to humans, the toxicity should be clarified. This report described the summary on data of DTPA toxicities obtained from animal experiments and assessment on the safety for humans, based on the results that compared their data among animal species. In short, Ca-DTPA is less toxic than Zn-DTPA when it is injected intravenously, while Zn-DTPA is less toxic than Ca-DTPA when it is administered orally. Both DTPAs acted on the serum calcium metabolism and induced the functional damages of cardiovascular system. Particularly, it is stressed that Zn-DTPA by intravenous injection occurred the heart failure, increases of blood pressure and pulse with hypocalcemia in even normal rats and beagle dogs. Other side effects by both DTPAs were also observed in the intestine, liver, kidney and bone. It is estimated that there are almost no species differences on DTPA toxicity between animals and humans. As a result, it is concluded that DTPA should be used very carefully for humans, with reference to the results obtained from animal experiments. (author) 61 refs

  18. Assessment of toxicity on chelating agent DTPA (diethylenetriaminepentaacetic acid)

    Energy Technology Data Exchange (ETDEWEB)

    Fukuda, Satoshi (National Inst. of Radiological Sciences, Chiba (Japan))

    1989-09-01

    DTPA (diethylenetriaminepentaacetic acid) is a very important chelating agent to decorporate the radionuclides such as plutonium and americium from human body. However, before DTPA will be administered to humans, the toxicity should be clarified. This report described the summary on data of DTPA toxicities obtained from animal experiments and assessment on the safety for humans, based on the results that compared their data among animal species. In short, Ca-DTPA is less toxic than Zn-DTPA when it is injected intravenously, while Zn-DTPA is less toxic than Ca-DTPA when it is administered orally. Both DTPAs acted on the serum calcium metabolism and induced the functional damages of cardiovascular system. Particularly, it is stressed that Zn-DTPA by intravenous injection occurred the heart failure, increases of blood pressure and pulse with hypocalcemia in even normal rats and beagle dogs. Other side effects by both DTPAs were also observed in the intestine, liver, kidney and bone. It is estimated that there are almost no species differences on DTPA toxicity between animals and humans. As a result, it is concluded that DTPA should be used very carefully for humans, with reference to the results obtained from animal experiments. (author) 61 refs.

  19. Coal utilization in the twenty-first century: How much and for how long?

    International Nuclear Information System (INIS)

    Gluskoter, H.

    1993-01-01

    It is projected that coal usage in the US will increase at approximately the historic rate as electricity consumption increases. Because the life expectancy of powerplants and coal mines is in the tens of years, the electricity to be produced from coal in 2001 will be generated in plants currently on line or under construction, and almost all of the coal consumed will come from existing mines. Coal produces two-thirds of the world's electricity and, on a worldwide basis, will continue to be a major source of energy for the remainder of this century and for some time to come. It is the longer term projections of coal utilization, beyond the next few decades, that remain much more difficult to predict. Fossil fuels are present in the Earth in finite amounts and are not renewable on the human scale of existence. Therefore, a shift to other sources of energy must occur eventually. A doubling of population will create a demand for greatly increased energy production. Historically, a 1% increase in world domestic product has been accompanied by a 1% increase in energy consumption. In most regions of the world, coal could supply a major portion of the increased energy and could do so without requiring major technological advances in coal mining and coal utilization technologies. The large, extensive, and accessible resources of coal, the ability to utilize it, and the demand pressures from an expanding population all bode well for the future of coal. However, there are also factors that may contribute to limiting the future use of coal. They include environmental concerns (acid rain, air toxics, and global warming) and the rate at which nonfossil-fuel sources (perhaps solar and nuclear) are developed. Although many of the decisions that will influence the future use of coal will be based on economic and environmental considerations, it is more than likely that politics will also play an important role in all of those decisions

  20. Coal-tar based pavement sealant toxicity to freshwater macroinvertebrates.

    Science.gov (United States)

    Bryer, Pamela J; Scoggins, Mateo; McClintock, Nancy L

    2010-05-01

    Non-point-source pollution is a major source of ecological impairment in urban stream systems. Recent work suggests that coal-tar pavement sealants, used extensively to protect parking areas, may be contributing a large portion of the polycyclic aromatic hydrocarbon (PAH) loading seen in urban stream sediments. The hypothesis that dried coal-tar pavement sealant flake could alter the macroinvertebrate communities native to streams in Austin, TX was tested using a controlled outdoor laboratory type approach. The treatment groups were: control, low, medium, and high with total PAH concentrations (TPAH = sum of 16 EPA priority pollutant PAHs) of 0.1, 7.5, 18.4, & 300 mg/kg respectively. The low, medium, and high treatments were created via the addition of dried coal-tar pavement sealant to a sterile soil. At the start of the 24-day exposure, sediment from a minimally impacted local reference site containing a community of live sediment-dwelling benthic macroinvertebrates was added to each replicate. An exposure-dependent response was found for several stream health measures and for several individual taxa. There were community differences in abundance (P = 0.0004) and richness (P pavement sealants contain bioavailable PAHs that may harm aquatic environments. Copyright 2009 Elsevier Ltd. All rights reserved.

  1. Indian coal tars. II

    Energy Technology Data Exchange (ETDEWEB)

    Basu, A N; Bhatnagar, J N; Roy, A K

    1954-01-01

    Laboratory experiments were carried out on these efforts: (1) rank and specific-gravity fractions on tar yield; (2) addition of water to the coal charge, or steam during carbonization, on yield of tar and tar acids; (3) the presence of a cracking agent (shale) with and without steam addition on the yield of tar and tar acids (the particular shale used without steam reduced the yield, and the restricted use of steam brought the yield to the former noncatalyzed level); and (4) catalytic effect of three different samples of shale, firebrick, quartz, coke, and silica-alumina on the cracking of tar acids (the most active were two of the shales, a freshly-prepared coke, and the Al/sub 2/O/sub 3/-SiO/sub 2/ catalysts that gave conversion up to 98%). The products were mainly carbon, aromatic hydrocarbons of the naphthalene series and gases (CO and H/sub 2/). The yield of the tar becomes less as coal of lower specific gravity is used or when higher temperatures are used for carbonization. The mineral matter associated with Indian coals acts as a decomposition catalyst for tar acids, as shown by experiments on the decomposition of PhOH at temperatures above 800/sup 0/.

  2. Clean coal technology

    International Nuclear Information System (INIS)

    Abelson, P.H.

    1990-01-01

    One of the major technology challenges in the next decade will be to develop means of using coal imaginatively as a source of chemicals and in a more energy-efficient manner. The Clean Air Act will help to diminish the acid rain but will not reduce CO 2 emissions. The Department of Energy (DOE) is fostering many innovations that are likely to have a positive effect on coal usage. Of the different innovations in the use of coal fostered by DOE, two are of particular interest. One is the new pressurized fluid bed combustion (PFBC) combined-cycle demonstration. The PFBC plant now becoming operational can reduce SO 2 emissions by more than 90% and NO x emissions by 50-70%. A second new technology co-sponsored by DOE is the Encoal mild coal gasification project that will convert a sub-bituminous low-BTU coal into a useful higher BTU solid while producing significant amounts of a liquid fuel

  3. Time-dependent uptake and toxicity of nickel to Enchytraeus crypticus in the presence of humic acid and fulvic acid

    NARCIS (Netherlands)

    He, Erkai; Qiu, Hao; Qiu, Rongliang; Rentenaar, Charlotte; Devresse, Quentin; Van Gestel, Cornelis A.M.

    2017-01-01

    The present study aimed to investigate the influence of different fractions of dissolved organic carbon (DOC) on the uptake and toxicity of nickel (Ni) in the soil invertebrate Enchytraeus crypticus after different exposure times. The addition of DOC as humic acid or fulvic acid significantly

  4. POTENTIAL OF LIVESTOCK MANURE FOR COAL ACTIVATION

    Directory of Open Access Journals (Sweden)

    EllIN HARlIA HARlIA

    2017-06-01

    Full Text Available The natural methane formed by bacteria in anaerobic conditions is known as biogenic gas. Gas trapped in coal, formed through thermogenesis as well as biogenesisis known as coal-bed methane (CBM. The availability of organic material as decomposition of this material into methane is continuously required for the production of methane in the coal aquifer. The aim of this research was to investigate whether or not cattle feces bacteria were able to grow and produce methane in coal. Parameters measured were Volatile Fatty Acids (VFA and the production of biogas, such as nitrogen, hydrogen, carbon dioxide, and methane. Explorative method was used and data obtained was analyzed by descriptive approach. The results showed that the bacteria found in the feces survived in the coal and produce biogas. On day 2 when the process was at the acidogenesis phase, it produced VFA with the largest component of acetic acid. Acetic acid would undergo decarboxylation and reduction of CO2 followed by reactions of H2and CO2 to produce methane (CH4 and carbon dioxide (CO2 as the final products. ,

  5. Bioremediation potential of coal-tar-oil-contaminated soil

    International Nuclear Information System (INIS)

    Lajoie, C.A.

    1991-01-01

    The bioremediation of coal tar oil contaminated soil was investigated in 90 day laboratory simulation experiments. The effect of soil moisture, humic acid amendment, and coal tar oil concentration on the rate of disappearance of individual coal tar oil constituents (PAHs and related compounds) was determined by methylene chloride extraction and gas chromatography. Mass balance experiments determined the fate of both the individual 14 C-labeled PAHs phenanthrene, pyrene, and benzo(a)pyrene, and the total coal tar oil carbon. Mineralization, volatilization, incorporation into microbial biomass, disappearance of individual coal tar oil constitutents, and the distribution of residual 14 C-activity in different soil fractions were measured. The rate of disappearance of coal tar oil constituents increased with increasing soil moisture over the experimental range. Humic acid amendment initially enhanced the rate of disappearance, but decreased the extent of disappearance. The amount of contamination removed decreased at higher coal tar oil concentrations. The practical limit for biodegradation in the system tested appeared to be between 1.0 and 2.5% coal tar oil. Mineralization accounted for 40 to 50% of the applied coal tar oil. Volatilization was a minor pathway of disappearance

  6. Coal surface control for advanced physical fine coal cleaning technologies. Final report, September 19, 1988--August 31, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Morsi, B.I.; Chiang, S.H.; Sharkey, A.; Blachere, J.; Klinzing, G.; Araujo, G.; Cheng, Y.S.; Gray, R.; Streeter, R.; Bi, H.; Campbell, P.; Chiarlli, P.; Ciocco, M.; Hittle, L.; Kim, S.; Kim, Y.; Perez, L.; Venkatadri, R.

    1992-12-31

    This final report presents the research work carried out on the Coal Surface Control for Advanced Physical Fine Coal Cleaning Technologies project, sponsored by the US Department of Energy, Pittsburgh Energy Technology Center (DOE/PETC). The project was to support the engineering development of the selective agglomeration technology in order to reduce the sulfur content of US coals for controlling SO{sub 2} emissions (i.e., acid rain precursors). The overall effort was a part of the DOE/PETCs Acid Rain Control Initiative (ARCI). The overall objective of the project is to develop techniques for coal surface control prior to the advanced physical fine coal cleaning process of selective agglomeration in order to achieve 85% pyrite sulfur rejection at an energy recovery greater than 85% based on run-of-mine coal. The surface control is meant to encompass surface modification during grinding and laboratory beneficiation testing. The project includes the following tasks: Project planning; methods for analysis of samples; development of standard beneficiation test; grinding studies; modification of particle surface; and exploratory R&D and support. The coal samples used in this project include three base coals, Upper Freeport - Indiana County, PA, Pittsburgh NO. 8 - Belmont County, OH, and Illinois No. 6 - Randolph County, IL, and three additional coals, Upper Freeport - Grant County- WV, Kentucky No. 9 Hopkins County, KY, and Wyodak - Campbell County, WY. A total of 149 drums of coal were received.

  7. Chemical structure changes in coals after low-temperature oxidation and demineralization by acid treatment as revealed by high resolution solid state 13C NMR

    International Nuclear Information System (INIS)

    Tekely, P.; Nicole, D.; Delpuech, J.-J.; Totino, E.; Muller, J.F.

    1987-01-01

    13 C CP/MAS NMR has been used for characterization of chemical structure changes in coals after low-temperature oxidation and prolonged demineralization by acid treatment. In both cases the changes take place mainly in the aliphatic part of coal molecules. 21 refs.; 3 figs.; 2 tabs

  8. Removal of pollutants from poor quality coals by pyrolysis

    Directory of Open Access Journals (Sweden)

    Natas Panagiotis

    2006-01-01

    Full Text Available Combustion of poor quality coals and wastes is used today worldwide for energy production. However, this entails significant environmental risks due to the presence of polluting compounds in them, i. e. S, N, Hg, and Cl. In the complex environment of combustion these substances are forming conventional (i. e. SOx, NOx and toxic (PCDD/Fs pollutants, while, the highly toxic Hg is volatilized in the gas phase mainly as elemental mercury. Aiming to meet the recently adopted strict environmental standards, and the need of affordable in cost clean power production, a preventive fuels pre-treatment technique, based on low temperature carbonization, has been tested. Clean coals were produced from two poor quality Greek coals (Ptolemais and Megalopolis and an Australian coal sample, in a lab-scale fixed bed reactor under helium atmosphere and ambient pressure. The effect of carbonization temperature (200-900 °C and residence time (5-120 minutes on the properties of the chars, obtained after pyrolysis, was investigated. Special attention was paid to the removal of pollutants such as S, N, Hg, and Cl. To account for possible mineral matter effects, mainly on sulphur removal, tests were also performed with demineralized coal. Reactivity variation of produced clean coals was evaluated by performing non-isothermal combustion tests in a TA Q600 thermo gravimetric analyzer. Results showed that the low temperature carbonization technique might contribute to clean coal production by effectively removing the major part of the existing polluting compounds contained in coal. Therefore, depending on coal type, nitrogen, mercury, and chlorine abatement continuously increases with temperature, while sulphur removal seems to reach a plateau above 500-600 °C. More-over, the prolongation of carbonization time above 20 minutes does not affect the elemental conversion of the pollutants and carbonization at 500-600 °C for ~20 minutes may be considered sufficient for clean

  9. On the pollution of fly coal ashes issued from the thermal power plants

    International Nuclear Information System (INIS)

    Barca, F.; Drimer, D.; Georgescu, I.I.

    1992-01-01

    Coals in different steps of carbonization for the inorganic mass were investigated using UV-spectroscopy, Instrumental Neutron Activation Analysis and for Uranium the fission fragments track methods. It has been concluded that the toxic and radioactive elements are more concentrated in lower carbonized coals than in higher ones, i.e. pit coals. (Author)

  10. Vertical profile, source apportionment, and toxicity of PAHs in sediment cores of a wharf near the coal-based steel refining industrial zone in Kaohsiung, Taiwan.

    Science.gov (United States)

    Chen, Chih-Feng; Chen, Chiu-Wen; Ju, Yun-Ru; Dong, Cheng-Di

    2016-03-01

    Three sediment cores were collected from a wharf near a coal-based steel refining industrial zone in Kaohsiung, Taiwan. Analyses for 16 polycyclic aromatic hydrocarbons (PAHs) of the US Environmental Protection Agency priority list in the core sediment samples were conducted using gas chromatography-mass spectrometry. The vertical profiles of PAHs in the core sediments were assessed, possible sources and apportionment were identified, and the toxicity risk of the core sediments was determined. The results from the sediment analyses showed that total concentrations of the 16 PAHs varied from 11774 ± 4244 to 16755 ± 4593 ng/g dry weight (dw). Generally, the vertical profiles of the PAHs in the sediment cores exhibited a decreasing trend from the top to the lower levels of the S1 core and an increasing trend of PAHs from the top to the lower levels of the S2 and S3 cores. Among the core sediment samples, the five- and six-ring PAHs were predominantly in the S1 core, ranging from 42 to 54 %, whereas the composition of the PAHs in the S2 and S3 cores were distributed equally across three groups: two- and three-ring, four-ring, and five- and six-ring PAHs. The results indicated that PAH contamination at the site of the S1 core had a different source. The molecular indices and principal component analyses with multivariate linear regression were used to determine the source contributions, with the results showing that the contributions of coal, oil-related, and vehicle sources were 38.6, 35.9, and 25.5 %, respectively. A PAH toxicity assessment using the mean effect range-median quotient (m-ERM-q, 0.59-0.79), benzo[a]pyrene toxicity equivalent (TEQ(carc), 1466-1954 ng TEQ/g dw), and dioxin toxicity equivalent (TEQ(fish), 3036-4174 pg TEQ/g dw) identified the wharf as the most affected area. The results can be used for regular monitoring, and future pollution prevention and management should target the coal-based industries in this region for pollution reduction.

  11. Physico-chemical processes in acid mine drainage in coal mining, south Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Campaner, Veridiana Polvani; Luiz-silva, Wanilson. [Universidade Estadual de Campinas, Campinas (Brazil)

    2009-07-01

    Acid mine drainage generated from coal mine showed a pH of 3.2, high concentrations of SO{sub 4}{sup 2-}, Al, Fe, Mn, Zn and minor As, Cd, Co, Cr, Cu, Ni and Pb. The major reduction in the concentration occurred for Al, As, Cr, Fe and Pb after the treatment with CaO. The evolution of these acid waters within the tributary stream showed decreasing concentration for all soluble constituents, except Al. This natural attenuation was controlled by pH (6.4 to 10.8) as a result of concurrent mixing with tributary stream and reaction with local bedrock that contains limestone. Aluminum increasing concentration during this evolution seems to be related to an input of Al-enriched waters due to the leaching of silicate minerals in alkaline conditions. 47 refs., 3 figs., 3 tabs.

  12. Mercury and Air Toxic Element Impacts of Coal Combustion By-Product Disposal and Utilizaton

    Energy Technology Data Exchange (ETDEWEB)

    David Hassett; Loreal Heebink; Debra Pflughoeft-Hassett; Tera Buckley; Erick Zacher; Mei Xin; Mae Sexauer Gustin; Rob Jung

    2007-03-31

    The University of North Dakota Energy & Environmental Research Center (EERC) conducted a multiyear study to evaluate the impact of mercury and other air toxic elements (ATEs) on the management of coal combustion by-products (CCBs). The ATEs evaluated in this project were arsenic, cadmium, chromium, lead, nickel, and selenium. The study included laboratory tasks to develop measurement techniques for mercury and ATE releases, sample characterization, and release experiments. A field task was also performed to measure mercury releases at a field site. Samples of fly ash and flue gas desulfurization (FGD) materials were collected preferentially from full-scale coal-fired power plants operating both without and with mercury control technologies in place. In some cases, samples from pilot- and bench-scale emission control tests were included in the laboratory studies. Several sets of 'paired' baseline and test fly ash and FGD materials collected during full-scale mercury emission control tests were also included in laboratory evaluations. Samples from mercury emission control tests all contained activated carbon (AC) and some also incorporated a sorbent-enhancing agent (EA). Laboratory release experiments focused on measuring releases of mercury under conditions designed to simulate CCB exposure to water, ambient-temperature air, elevated temperatures, and microbes in both wet and dry conditions. Results of laboratory evaluations indicated that: (1) Mercury and sometimes selenium are collected with AC used for mercury emission control and, therefore, present at higher concentrations than samples collected without mercury emission controls present. (2) Mercury is stable on CCBs collected from systems both without and with mercury emission controls present under most conditions tested, with the exception of vapor-phase releases of mercury exposed to elevated temperatures. (3) The presence of carbon either from added AC or from unburned coal can result in mercury

  13. Evaluation of metals, metalloids, and ash mixture toxicity using sediment toxicity testing.

    Science.gov (United States)

    Stojak, Amber; Bonnevie, Nancy L; Jones, Daniel S

    2015-01-01

    In December 2008, a release of 4.1 million m(3) of coal ash from the Tennessee Valley Authority Kingston Fossil Plant occurred. Ash washed into the Emory River and migrated downstream into the Clinch and Tennessee Rivers. A Baseline Ecological Risk Assessment evaluated risks to ecological receptors from ash in the river system post-dredging. This article describes the approach used and results from sediment toxicity tests, discussing any causal relationships between ash, metals, and toxicity. Literature is limited in the realm of aquatic coal combustion residue (CCR) exposures and the potential magnitude of effects on benthic invertebrates. Sediment samples along a spectrum of ash content were used in a tiered toxicity testing approach and included a combination of 10 day sediment toxicity acute tests and longer-term, partial life cycle "definitive" tests with 2 species (Hyalella azteca and Chironomus dilutus). Arsenic, and to a lesser extent Se, in the ash was the most likely toxicant causing observed effects in the laboratory toxicity tests. Sites in the Emory River with the greatest statistical and biologically significant effects had As concentrations in sediments twice the probable effects concentration of 33 mg/kg. These sites contained greater than 50% ash. Sites with less than approximately 50% ash in sediments exhibited fewer significant toxic responses relative to the reference sediment in the laboratory. The results discussed here present useful evidence of only limited effects occurring from a worst-case exposure pathway. These results provided a valuable line of evidence for the overall assessment of risks to benthic invertebrates and to other ecological receptors, and were crucial to risk management and development of project remediation goals. © 2014 SETAC.

  14. Elemental characterization of coal ash and its leachates using sequential extraction techniques

    International Nuclear Information System (INIS)

    Landsberger, S.; Cerbus, J.F.; Larson, S.

    1995-01-01

    Over 50 million tons of coal ash are produced annually in North America. Technological improvements in air pollution control have decreased stack emissions but have also increased contaminant concentrations in the ash of coal-fired boiler applications. The leaching of heavy metals and other elements during regulatory tests may cause coal ash to be classified as hazardous waste, complicating land disposal. The hazardous nature of coal ash remains unclear because current toxicity tests fail to effectively characterize the elemental distribution and chemical solubility of trace metals in the landfill environment. Leaching characteristics of ash samples can be investigated with various laboratory extraction procedures in association with multi-elemental analytical techniques (e.g., neutron activation analysis and inductively coupled plasma - atomic emission spectroscopy). Such methods provide more thorough analyses of coal ash leaching dynamics than the regulatory assessments can demonstrate. Regulatory elements including Ag, As, Ba, Cd, Cr, Hg, Pb, and Se were shown to remain in largely insoluble forms while elements such as B and S leached at higher levels. Experimental results may assist operators of coal-fired boiler industries in selecting coal types and disposal options to curtail the leaching of potentially toxic inorganic contaminants. (author) 12 refs.; 4 figs.; 3 tabs

  15. 29 CFR 1915.1002 - Coal tar pitch volatiles; interpretation of term.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Coal tar pitch volatiles; interpretation of term. 1915.1002 Section 1915.1002 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH... Toxic and Hazardous Substances § 1915.1002 Coal tar pitch volatiles; interpretation of term. Note: The...

  16. Effect of Toxicants on Fatty Acid Metabolism in HepG2 Cells

    Directory of Open Access Journals (Sweden)

    David Grünig

    2018-04-01

    Full Text Available Impairment of hepatic fatty acid metabolism can lead to liver steatosis and injury. Testing drugs for interference with hepatic fatty acid metabolism is therefore important. To find out whether HepG2 cells are suitable for this purpose, we investigated the effect of three established fatty acid metabolism inhibitors and of three test compounds on triglyceride accumulation, palmitate metabolism, the acylcarnitine pool and dicarboxylic acid accumulation in the cell supernatant and on ApoB-100 excretion in HepG2 cells. The three established inhibitors [etomoxir, methylenecyclopropylacetic acid (MCPA, and 4-bromocrotonic acid (4-BCA] depleted mitochondrial ATP at lower concentrations than cytotoxicity occurred, suggesting mitochondrial toxicity. They inhibited palmitate metabolism at similar or lower concentrations than ATP depletion, and 4-BCA was associated with cellular fat accumulation. They caused specific changes in the acylcarnitine pattern and etomoxir an increase of thapsic (C18 dicarboxylic acid in the cell supernatant, and did not interfere with ApoB-100 excretion (marker of VLDL export. The three test compounds (amiodarone, tamoxifen, and the cannabinoid WIN 55,212-2 depleted the cellular ATP content at lower concentrations than cytotoxicity occurred. They all caused cellular fat accumulation and inhibited palmitate metabolism at similar or higher concentrations than ATP depletion. They suppressed medium-chain acylcarnitines in the cell supernatant and amiodarone and tamoxifen impaired thapsic acid production. Tamoxifen and WIN 55,212-2 decreased cellular ApoB-100 excretion. In conclusion, the established inhibitors of fatty acid metabolism caused the expected effects in HepG2 cells. HepG cells proved to be useful for the detection of drug-associated toxicities on hepatocellular fatty acid metabolism.

  17. Nanocellulose coated with various free fatty acids can adsorb fumonisin B1, and decrease its toxicity.

    Science.gov (United States)

    Zadeh, Mohammad Hossein Balal; Shahdadi, Hossein

    2015-10-01

    The aim of this study was to evaluate the adsorption and biological properties of nanocellulose coated with free fatty acids (NCCFFAs). At first, nanocellulose was synthesized by acid hydrolysis, and then separately coated with different free fatty acids (FFAs), including lauric acid, alpha linoleic acid, oleic acid, and palmitic acid. Next, the serial concentrations of NCCFFAs (1, 10, 100, and 1000 μg/mL) was separately added to fumonisin B1 (FB1) at 1000 μg/mL, and separately incubated at 37 °C for 1, 2, and 3h. Then, the percentage of adsorption was calculated. In the next experiment, the viability of mouse liver cells was measured when they exposed to serial concentrations of NCCFFAs, FFAs, and FB1. This study showed that the increase of incubation time and concentration of NCCFFAs led to increase of FB1 adsorption. Although FFAs and NCCFFAs had no remarkable toxicity, the high toxicity was observed for FB1. Importantly, the toxicity of FB1 was highly decreased, when incubated together with FFAs or NCCFFAs. These novel adsorbents, NCCFFAs, can be used together with different foodstuffs to remove FB1. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Determination of metals by total reflection X-ray fluorescence and evaluation of toxicity of a river impacted by coal mining in the south of Brazil.

    Science.gov (United States)

    Lattuada, R M; Menezes, C T B; Pavei, P T; Peralba, M C R; Dos Santos, J H Z

    2009-04-30

    Metal (Fe, Mn, Zn, Ni, Cd, and Pb) concentrations in the region of Criciuma (Brazil), a region impacted by coal mining, were determined in water and sediments using total reflection X-ray fluorescence (TXRF) spectroscopy. Samples were collected from the Mãe Luzia River (south Brazil) at five different stations, from the source down to the river mouth (Ararangua estuary). Water and sediment toxicity were also evaluated using bioassays with Daphnia magna as the bioindicator. The metal present in the highest concentrations both in water (1.3-11 mg L(-1)) and in sediments (34-142 mg L(-1)) was iron. Results suggest an influence of coal mining on the aquatic receptors, showing a clear relationship between metal content (mostly Fe) and ecotoxicity.

  19. Effect of microwave radiation on coal flotation

    Energy Technology Data Exchange (ETDEWEB)

    Ozbayoglu, G.; Depci, T.; Ataman, N. [Middle East Technical University, Ankara (Turkey). Mining Engineering Department

    2009-07-01

    Most low-rank coals are high in moisture and acid functional groups, therefore showing poor floatability. Drying, which removes the water molecules trapped in the pores and adsorbed at the surface of coal, decreases the hydrophilic character and improves the floatability. Microwave heating, whose simplest application is drying, was applied at 0.9 kW power level for 60 sec exposure time in the experiments to decrease the moisture content of coal in order to enhance the hydrophobicity. The flotation tests of microwave-treated coal by using heptanol and octanol lead to a higher flotation yield and ash removal than original coal.

  20. Utilization of coal-biomass fly ash in reactive barriers for treating acid mine drainage

    International Nuclear Information System (INIS)

    Penney, K.; Mohammedelhassan, E.; Catalan, L.J.

    2009-01-01

    Coal- and biomass-derived fly ash (CBFA) was used as a reactive barrier system for treating acid mine drainage. Two reactive barriers were investigated, notably a flow-through reactive barrier with minimum disruption to the existing flow regime, and a low-permeability barrier for the construction of containment dams. A synthetic acid mine drainage system was prepared in a laboratory. Kinetic column tests were conducted to analyze the effects of acid mine drainage flow on the hydraulic conductivity and leachate composition for mixtures of mine tailings and CBFA. The tests demonstrated that a mixture of the CBFA of between 10 to 50 per cent with mine tailings increased the pH and decreased the dissolved concentrations of heavy metals in acid mine drainage. Mineral precipitation caused large reductions in hydraulic conductivity in relation to the cumulative amounts of acid mine drainage flowing through the columns. It was concluded that the number of progressive pore volumes of acid mine drainage required for achieving reductions in hydraulic conductivity is inversely related to the fly ash content of the column packs. 13 refs., 4 tabs., 7 figs.

  1. A study of toxic emissions from a coal-fired power plant utilizing an ESP while demonstrating the ICCT CT-121 FGD Project. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-16

    The US Department of Energy is performing comprehensive assessments of toxic emissions from eight selected coal-fired electric utility units. This program responds to the Clean Air Act Amendments of 1990, which require the US Environmental Protection Agency (EPA) to evaluate emissions of hazardous air pollutants (HAPs) from electric utility power plants for Potential health risks. The resulting data will be furnished to EPA utility power plants and health risk determinations. The assessment of emissions involves the collection and analysis of samples from the major input, process, and output streams of each of the eight power plants for selected hazardous Pollutants identified in Title III of the Clean Air Act. Additional goals are to determine the removal efficiencies of pollution control subsystems for these selected pollutants and the Concentrations associated with the particulate fraction of the flue gas stream as a function of particle size. Material balances are being performed for selected pollutants around the entire power plant and several subsystems to identify the fate of hazardous substances in each utility system. Radian Corporation was selected to perform a toxics assessment at a plant demonstrating an Innovative Clean Coal Technology (ICCT) Project. The site selected is Plant Yates Unit No. 1 of Georgia Power Company, which includes a Chiyoda Thoroughbred-121 demonstration project.

  2. Discovery and ramifications of incidental Magnéli phase generation and release from industrial coal-burning.

    Science.gov (United States)

    Yang, Yi; Chen, Bo; Hower, James; Schindler, Michael; Winkler, Christopher; Brandt, Jessica; Di Giulio, Richard; Ge, Jianping; Liu, Min; Fu, Yuhao; Zhang, Lijun; Chen, Yuru; Priya, Shashank; Hochella, Michael F

    2017-08-08

    Coal, as one of the most economic and abundant energy sources, remains the leading fuel for producing electricity worldwide. Yet, burning coal produces more global warming CO 2 relative to all other fossil fuels, and it is a major contributor to atmospheric particulate matter known to have a deleterious respiratory and cardiovascular impact in humans, especially in China and India. Here we have discovered that burning coal also produces large quantities of otherwise rare Magnéli phases (Ti x O 2x-1 with 4 ≤ x ≤ 9) from TiO 2 minerals naturally present in coal. This provides a new tracer for tracking solid-state emissions worldwide from industrial coal-burning. In its first toxicity testing, we have also shown that nanoscale Magnéli phases have potential toxicity pathways that are not photoactive like TiO 2 phases, but instead seem to be biologically active without photostimulation. In the future, these phases should be thoroughly tested for their toxicity in the human lung.Solid-state emissions from coal burning remain an environmental concern. Here, the authors have found that TiO2 minerals present in coal are converted into titanium suboxides during burning, and initial biotoxicity screening suggests that further testing is needed to look into human lung consequences.

  3. Polymers for combatting sudden outbursts in coal mines

    Energy Technology Data Exchange (ETDEWEB)

    Gadzhiev, G P; Sukhanov, V V

    1988-02-01

    Describes investigations in coal mines in the Donetsk basin (hazardous because of the high methane presence, the risk of outbursts of coal and gas, underground fires and the high dust levels) with the aim of studying the toxic emissions of formaldehyde and methanol produced when a urea formaldehyde resin binder is applied to the coal seam. The measurements taken led to the following recommendations: the amount of free formaldehyde in the binder should be limited to 0.5%; the use of concentrated (50%) solutions should be limited to 10 l per ton of coal in areas where there are geologic faults; underground workings need ventilation of at least 200 m/sup 3//min; the binder should be introduced to the borehole separately from the water and hardener; individual protection measures and wet dusting should be used during coal extraction; a period of not less than 4 months should elapse between application of the resin and commencement of coal extraction; there should be at least 80 m between the point where the binder is applied and the coal face.

  4. Black coal 1981/82. Annual report

    Energy Technology Data Exchange (ETDEWEB)

    1982-10-01

    Above all, the report places the part played by coal in the world's energy supply into the foreground. Aspects of energy economy (trend and supply of the world's energy demand, world coal market, energy market of the Federal Republic of Germany), of energy policy (long-term sales prospects, stabilization of production capacity, the markets of German black coal, the scope of action required, environmental protection, carbon dioxide immission, acid rain and forest deterioration, coal upgrading) and sociopolitical aspects (status of personnel, protection against occupational accidents and diseases) are dealt with. The statistical part is attached in the form of a folder.

  5. Reactivity of mechanical activated coals for special utilization

    Energy Technology Data Exchange (ETDEWEB)

    Turcaniova, L.; Kadarova, J.; Imrich, P.; Liptaj, T.; Vidlar, J.; Vasek, J.; Foldyna, F.; Sitek, J.; Balaz, P. [Slovak Academy of Science, Kosice (Slovakia). Inst. of Geotechnology

    2004-09-01

    The paper presents the coal activation effect as disintegration in the nano-submicron range and destruction carbon structure. The Slovak brown coal activated in planetary mill is characterised by destruction of organic structure of coal. The biggest activation effect connected with the destruction of C-C bonds of sp{sup 3} carbons has been confirmed by {sup 13}C NMR spectroscopy in the chemical structure of humic acids extracted from the coal sample activated for a period of 60 min. The specific surface of humic acids is much smaller then that of mechanically activated sample from which they were extracted. The black Czech coal was activated by two stage disintegration. In the first stage of mechanochemical activation using Grinding Aqueous Caustic Leaching, GACL method, a fine dispersed semiproduct is formed with the size of particles from 2.5 to 9000 nm. The additional disintegration using water jet increases the effect of disintegration in the submicron area of the coal product. The volume distribution maximum achieves in this stage about 60 wt% of 750 nm grains.

  6. The neutralization of acidic coal mine lakes by additions of natural organic matter: a mesocosm test

    International Nuclear Information System (INIS)

    Brugam, R.B.; Gastineau, J.; Ratcliff, E.

    1995-01-01

    Cylindrical polyethylene enclosures 3 m in length and 1 m in diameter reaching from the surface to the bottom were constructed in an acid (pH=3.1) lake on a coal surface mine in southern Illinois. Wheat straw was added to the enclosures to test the effects of dissimilatory sulfate reduction on water chemistry. Added straw increased sulfide concentrations, raised pH to 6.5, reduced O 2 and increased acid neutralizing capacity of the enclosed water columns when compared with a control enclosure and with the open lake. Generation of acid neutralizing capacity exceeded the standing stock of sulfide indicating that sulfide was removed either by precipitation of FeS or outgassing of H 2 S. The pH and acid neutralizing capacity within the enclosures eventually returned to the level of the surrounding lake because of water exchange around the enclosure walls. Our results show that additions of organic matter to acid surface mine lakes result in the generation of acid neutralizing capacity

  7. Toxicity mitigation and solidification of municipal solid waste incinerator fly ash using alkaline activated coal ash

    International Nuclear Information System (INIS)

    Ivan Diaz-Loya, E.; Allouche, Erez N.; Eklund, Sven; Joshi, Anupam R.; Kupwade-Patil, Kunal

    2012-01-01

    Highlights: ► Incinerator fly ash (IFA) is added to an alkali activated coal fly ash (CFA) matrix. ► Means of stabilizing the incinerator ash for use in construction applications. ► Concrete made from IFA, CFA and IFA-CFA mixes was chemically characterized. ► Environmentally friendly solution to IFA disposal by reducing its toxicity levels. - Abstract: Municipal solid waste (MSW) incineration is a common and effective practice to reduce the volume of solid waste in urban areas. However, the byproduct of this process is a fly ash (IFA), which contains large quantities of toxic contaminants. The purpose of this research study was to analyze the chemical, physical and mechanical behaviors resulting from the gradual introduction of IFA to an alkaline activated coal fly ash (CFA) matrix, as a mean of stabilizing the incinerator ash for use in industrial construction applications, where human exposure potential is limited. IFA and CFA were analyzed via X-ray fluorescence (XRF), X-ray diffraction (XRD) and Inductive coupled plasma (ICP) to obtain a full chemical analysis of the samples, its crystallographic characteristics and a detailed count of the eight heavy metals contemplated in US Title 40 of the Code of Federal Regulations (40 CFR). The particle size distribution of IFA and CFA was also recorded. EPA’s Toxicity Characteristic Leaching Procedure (TCLP) was followed to monitor the leachability of the contaminants before and after the activation. Also images obtained via Scanning Electron Microscopy (SEM), before and after the activation, are presented. Concrete made from IFA, CFA and IFA-CFA mixes was subjected to a full mechanical characterization; tests include compressive strength, flexural strength, elastic modulus, Poisson’s ratio and setting time. The leachable heavy metal contents (except for Se) were below the maximum allowable limits and in many cases even below the reporting limit. The leachable Chromium was reduced from 0.153 down to 0.0045 mg

  8. Development of Real-Time Coal Monitoring Instrument

    Energy Technology Data Exchange (ETDEWEB)

    Rajan Gurjar, Ph.D.

    2010-06-17

    Relying on coal for energy requires optimizing the extraction of heat content from various blends of coal fuel and reducing harmful constituents and byproducts. Having a real-time measurement instrument provides relevant information about toxic constituents released in the atmosphere from burning coal and optimizes the performance of a power plant. A few commercial instruments exist and have been in operation for more than a decade. However, most of these instruments are based on radioactive sources and are bulky, expensive and time-consuming. The proposed instrument is based on the Laser Induced Breakdown Spectroscopy (LIBS). The advantage of LIBS is that it is a standoff instrument, does not require sample preparation and provides precise information about sample constituents.

  9. Prevention of formation of acid drainage from high-sulfur coal refuse by inhibition of iron- and sulfur-oxidizing microorganisms. II. Inhibition in run of mine refuse under simulated field conditions

    Energy Technology Data Exchange (ETDEWEB)

    Dugan, P.R.

    1987-01-01

    The combination of sodium lauryl sulfate and benzoic acid effectively inhibits iron- and sulfur-oxidizing bacteria in coal refuse and prevents the conversion of iron pyrite to sulfate, ferric iron, and sulfuric acid, thereby significantly reducing the formation of acidic drainage from coal refuse. The inhibitors were effective in a concentration of 1.1. mg/kg refuse, and data indicate that the SLS was in excess of the concentration required. The treatment was compatible with the use of lime for neutralization of acid present prior to inhibition of its formation.

  10. Environmental aspects of coal trace elements

    International Nuclear Information System (INIS)

    Swaine, D.J.

    1992-01-01

    The increasing use of coal, especially for power production, means that more attention is being given to environmental aspects. Some matters, for example, acid mine drainage, acid deposition and the relevance of coal-derived carbon and nitrogen oxides to the greenhouse effect are still being investigated in order to find methods of mitigation. However, much less attention has been given to possible untoward effects from trace elements in coal during mining, preparation and use. Occasional emotional outbursts, based on insufficient evidence, focus attention on arsenic, lead, cadmium, mercury and uranium. The best way to counter such claims is to provide proper information as a basis for more informed judgments. The comments contained in this article are mostly based on work done at the Commonwealth Science and Industrial Research Organization (CSIRO)

  11. Extraction of hydrocarbon products from shales and coals

    Energy Technology Data Exchange (ETDEWEB)

    Reed, V Z

    1918-05-17

    A process is disclosed of extracting hydrocarbon oil matter from petroleum-bearing shales and coals which comprises subjecting a mass of such shale or coal, before distillation to the solvent action of material containing an acid, permitting the solvent material to pass through the mass of shale or coal, and recovering the combined solvent and extracted matter.

  12. Clean coal technology and advanced coal-based power plants

    International Nuclear Information System (INIS)

    Alpert, S.B.

    1991-01-01

    Clean Coal Technology is an arbitrary terminology that has gained increased use since the 1980s when the debate over acid raid issues intensified over emissions of sulfur dioxide and nitrogen oxides. In response to political discussions between Prime Minister Brian Mulroney of Canada and President Ronald Reagan in 1985, the US government initiated a demonstration program by the Department of Energy (DOE) on Clean Coal Technologies, which can be categorized as: 1. precombustion technologies wherein sulfur and nitrogen are removed before combustion, combustion technologies that prevent or lower emissions as coal is burned, and postcombustion technologies wherein flue gas from a boiler is treated to remove pollutants, usually transforming them into solids that are disposed of. The DOE Clean Coal Technology (CCT) program is being carried out with $2.5 billion of federal funds and additional private sector funds. By the end of 1989, 38 projects were under way or in negotiation. These projects were solicited in three rounds, known as Clean Coal I, II, and III, and two additional solicitations are planned by DOE. Worldwide about 100 clean coal demonstration projects are being carried out. This paper lists important requirements of demonstration plants based on experience with such plants. These requirements need to be met to allow a technology to proceed to commercial application with ordinary risk, and represent the principal reasons that a demonstration project is necessary when introducing new technology

  13. Manganese toxicity effects on nodulation and nitrogen fixation of beans (Phaseolus vulgaris L. ), in acid soils

    Energy Technology Data Exchange (ETDEWEB)

    Doebereiner, J

    1966-02-01

    Three greenhouse experiments were conducted to study manganese toxicity effects on the nitrogen fixing symbiosis of beans (Phaseolus vulgaris). Addition of 40 ppm of manganese to two acid soils affected nodulation and nitrogen fixation. Dependent on the Rhizobion strain either nodule numbers or efficiency in nitrogen fixation were reduced; the efficiency of one Rhizobium-host combination was more affected than another. Under less severe conditions of manganese toxicity, reduction of nodule numbers or of efficiency in nitrogen fixation could be compensated by an increase of nodule size. In the absence of manganese toxicity nodulation and nitrogen fixation of beans were abundant in a soil with pH 4.4. Naturally occurring manganese toxicity in a gray hydromorphic soil was eliminated by liming. The total nitrogen content of bean plants which were dependent on symbiotic nitrogen fixation decreased linearly with the logarithm of the manganese concentration in the plants. This did not happen when the plants were grown with mineral nitrogen. The role of manganese toxicity in the well known sensitivity to acid soil conditions of certain legumes and the importance of selection of manganese tolerant Rhizobium strains for the inoculation of beans in acid tropical soils, are discussed. 25 references, 1 figure, 6 tables.

  14. Characterization of a coal tailing deposit for zero waste mine in the Brazilian coal field of Santa Catarina

    International Nuclear Information System (INIS)

    Amaral Filho, J.R.; Schneider, I.A.H.; Tubino, R.M.C.; Brum de, I.A.S.; Miltzarek, G.; Sampaio, C.H.

    2010-01-01

    Coal tailings deposits in Brazil are occupying large areas of land while also generating acid mine drainage (AMD) that includes heavy metals. This paper described an analytical study of a typical coal tailings deposit. The study objective was to separate low density, intermediate density, and high density fractions for future reuse. Particle size analysis, disymmetric studies, X-ray diffraction, and tests conducted to determine ash, total sulphur, and acid bases were conducted in order to characterize the coal tailings samples. Results of the study demonstrated a size distribution of 67 percent coarse, 14 percent fine, and 19 percent ultra-fine particles. The gravimetric concentration method was used to recover 34.2 percent of the total deposit for future energy use. Approximately 9.2 percent of the remaining deposit was a pyrite concentrate. The acid generating potential of the remaining materials was reduced by approximately 60 percent. 9 refs., 1 tab., 2 figs.

  15. Utilization of coal/biomass fly ash and bentonite as a low permeability barrier for the containment of acid-generating mine tailings

    International Nuclear Information System (INIS)

    Penney, K.; Mohamedelhassan, E.; Catalan, L.J.J.

    2009-01-01

    The control and treatment of acid mine drainage (AMD) in decommissioned mine sites is a major environmental challenge. In general, AMD has a low pH, high acidity, and elevated concentrations of heavy metals. This study investigated the use of coal/biomass fly ash (CBFA) and CBFA/bentonite mixtures as a low permeability seal to contain acid generating mine tailings and treat AMD. Although pure CBFA is effective as a reactive barrier to treat most toxic metals in AMD, its initial hydraulic conductivity exceeds the maximum regulatory requirement of 1 x 10 -7 cm/s. Therefore, 3 cases were investigated, notably CBFA only; CBFA amended with low percentages of bentonite; and layering of CBFA and CBFA amended with bentonite. Practical geoenvironmental applications for low permeability CBFA or bentonite/CBFA mixtures include a cap overlying reactive mine tailings, a containment pond liner, and a core in containment dams and dykes. Mixing 10 per cent by mass bentonite with CBFA decreased the hydraulic conductivity to 1 x 10 -7 cm/s or less throughout the entire permeation by water and AMD. The installation of a layer of pure CBFA upstream of the bentonite/CBFA mixture resulted in a further decrease in hydraulic conductivity over time by preventing the collapse of the bentonite double layer and promoting precipitation of gypsum and ettringite in the CBFA layer. The effluent from all tested bentonite/CBFA barriers met the regulatory requirements for chemical parameters, except for aluminum which was leached from the CBFA. 14 refs., 3 tabs., 10 figs.

  16. Diversity and dynamics of rhizobial populations in acidic soils with aluminum and manganese toxicities in forest zones

    Directory of Open Access Journals (Sweden)

    Linda Manet

    2016-12-01

    Full Text Available Soil acidity in the humid forest zones of Cameroon is one of the major constraints to agricultural productivity. This study was carried out to assess the rhizobial communities of two acidic soils; with aluminum toxicity (Nkoemvone and manganese toxicity (Nkolbisson for their potential to improve soil fertility in Cameroon. These two soils were used to inoculate to the host plants cowpea and siratro. At harvest, 120 rhizobacterial isolates were extracted from the nodules of these two hosts and subjected to morphological characterization. Twenty isolates per site were selected and analyzed for their 16S rDNA genetic profile following restrictions with endonucleases of PCR products and electrophoresis. The restriction patterns of the 16S rDNA of the 40 isolates showed 12 different profiles. Eight occurred in both types of soils, where as 4 were specific to the manganese-toxic-acidic soil. While the Al toxicity reduced the nodulation and growth of both plants, the Mn toxicity mostly affect the cowpea. This study ascertained the distribution of rhizobia based on soil characteristics. Further molecular analyses would allow the identification of the isolates recovered as well as their phylogenetical relationships.

  17. Mixture toxicity of the antiviral drug Tamiflu (oseltamivir ethylester) and its active metabolite oseltamivir acid

    Energy Technology Data Exchange (ETDEWEB)

    Escher, Beate I., E-mail: b.escher@uq.edu.au [University of Queensland, National Research Centre for Environmental Toxicology (Entox), 39 Kessels Rd, Brisbane, Qld 4108 (Australia); Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Duebendorf (Switzerland); Bramaz, Nadine; Lienert, Judit; Neuwoehner, Judith [Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Duebendorf (Switzerland); Straub, Juerg Oliver [F.Hoffmann-La Roche Ltd, Corporate Safety, Health and Environmental Protection, 4070 Basel (Switzerland)

    2010-02-18

    Tamiflu (oseltamivir ethylester) is an antiviral agent for the treatment of influenza A and B. The pro-drug Tamiflu is converted in the human body to the pharmacologically active metabolite, oseltamivir acid, with a yield of 75%. Oseltamivir acid is indirectly photodegradable and slowly biodegradable in sewage works and sediment/water systems. A previous environmental risk assessment has concluded that there is no bioaccumulation potential of either of the compounds. However, little was known about the ecotoxicity of the metabolite. Ester hydrolysis typically reduces the hydrophobicity and thus the toxicity of a compound. In this case, a zwitterionic, but overall neutral species is formed from the charged parent compound. If the speciation and predicted partitioning into biological membranes is considered, the metabolite may have a relevant contribution to the overall toxicity. These theoretical considerations triggered a study to investigate the toxicity of oseltamivir acid (OA), alone and in binary mixtures with its parent compound oseltamivir ethylester (OE). OE and OA were found to be baseline toxicants in the bioluminescence inhibition test with Vibrio fischeri. Their mixture effect lay between predictions for concentration addition and independent action for the mixture ratio excreted in urine and nine additional mixture ratios of OE and OA. In contrast, OE was an order of magnitude more toxic than OA towards algae, with a more pronounced effect when the direct inhibition of photosystem II was used as toxicity endpoint opposed to the 24 h growth rate endpoint. The binary mixtures in this assay yielded experimental mixture effects that agreed with predictions for independent action. This is consistent with the finding that OE exhibits slightly enhanced toxicity, while OA acts as baseline toxicant. Therefore, with respect to mixture classification, the two compounds can be considered as acting according to different modes of toxic action, although there are

  18. Recent advances in prediction of emission of hazardous air pollutants from coal-fired power plants

    International Nuclear Information System (INIS)

    Senior, C.L.; Helble, J.J.; Sarofim, A.F.

    2000-01-01

    Coal-fired power plants are a primary source of mercury discharge into the atmosphere along with fine particulates containing arsenic, selenium, cadmium, and other hazardous air pollutants. Information regarding the speciation of these toxic metals is necessary to accurately predict their atmospheric transport and fate in the environment. New predictive tools have been developed to allow utilities to better estimate the emissions of toxic metals from coal-fired power plants. These prediction equations are based on fundamental physics and chemistry and can be applied to a wide variety of fuel types and combustion conditions. The models have significantly improved the ability to predict the emissions of air toxic metals in fine particulate and gas-phase mercury. In this study, the models were successfully tested using measured mercury speciation and mass balance information collected from coal-fired power plants

  19. Toxic epidermal necrolysis due to concomitant use of lamotrigine and valproic acid

    Directory of Open Access Journals (Sweden)

    Sukhjot Kaur

    2013-01-01

    Full Text Available Anti-epileptic drugs can be associated with a wide spectrum of cutaneous adverse reactions ranging from simple maculopapular rashes to more severe and life threatening reactions like Stevens-Johnson syndrome and toxic epidermal necrolysis. These rashes are well documented with older antiepileptic drugs like phenytoin, phenobarbitone and carbamazapine. Lamotrigine is a newer, unrelated antiepileptic drug that causes skin rashes in 3-10% of new users. Higher starting dose or rapid escalation, concurrent treatment with valproic acid, and a previous history of a rash with other antiepileptic drugs are well recognized risk factors for lamotrigine related serious rashes. We report two patients with toxic epidermal necrolysis, resulting from concomitant use of lamotrigine and valproic acid. It is emphasized that clinicians adhere to the recommended dosage guidelines and adopt a slow dose titration when initiating treatment with lamotrigine.

  20. Acute toxicity and sublethal effects of gallic and pelargonic acids on the zebrafish Danio rerio.

    Science.gov (United States)

    Techer, Didier; Milla, Sylvain; Fontaine, Pascal; Viot, Sandrine; Thomas, Marielle

    2015-04-01

    Gallic and pelargonic acids are naturally found in a variety of plants and food products. Despite their extensive use in man-made applications, little is known regarding their potential risks to aquatic vertebrates. The aim of this work was to assess the acute toxicity of these polyphenolic and fatty acid compounds to the zebrafish. In order to get insights into sublethal effects, the enzyme activity of usual biomarkers related to oxidative stress and biotransformation were also assessed in fish. These latter included total superoxide dismutase, catalase as well as total glutathione peroxidase for antioxidant defence mechanisms and glutathione S-transferase for biotransformation related enzyme. Gallic acid was practically non-toxic (96-h lethal concentration (LC50) > 100 mg/L) whereas pelargonic acid was slightly toxic (96-h LC50 of 81.2 mg/L). Moreover, biomarker analyses indicated enhanced superoxide dismutase activity in fish exposed to 20, 40 and 100 mg/L of gallic acid compared to control. A dose-dependent induction of glutathione peroxidase and glutathione S-transferase was reported following gallic acid exposure at the tested concentrations of 10, 20 and 40 mg/L, with the exception of 100 mg/L of substance where basal activity levels were reported. In the case of pelargonic acid, there was no change in antioxidant enzyme activity while an inhibition of glutathione S-transferase was observed from organisms exposed to 45, 58 and 76 mg/L of test solution. The results concerning sublethal effects on biological parameters of zebrafish highlighted thereby the need for further investigations following chronic exposure to both organic acids.

  1. Coal reverse flotation. Part II: Cleaning of a subbituminous coal

    Energy Technology Data Exchange (ETDEWEB)

    Ding, K.J.; Laskowski, J.S. [University of British Columbia, Vancouver, BC (Canada). Dept. for Mining Engineering

    2006-01-15

    Reverse flotation of a subbituminous coal was investigated and it turned out that a large amount of DTAC was needed in this process. The application of the zero-conditioning time method along with the use of PAM significantly reduced DTAC consumption from over 6 kg/t down to 1.375 kg/t. Dextrin was necessary to improve the selectivity. The addition of a dispersant (tannic acid) improved further the quality of concentrate. The concentrate ash content of 16.7% at 50.4% yield was obtained for the feed ash content of 34.6%. Although this gives only about 64% combustible recovery, since the inherent ash content for this coal was determined to be 10% the room for further improvement is very limited. The best separation was obtained around a natural pH of 7.5-8.4 for this coal.

  2. Conditions for the formation and atmospheric dispersion of a toxic, heavy gas layer during thermal metamorphism of coal and evaporite deposits by sill intrusion

    Science.gov (United States)

    Storey, Michael; Hankin, Robin K. S.

    2010-05-01

    There is compelling evidence for massive discharge of volatiles, including toxic species, into the atmosphere at the end of the Permian. It has been argued that most of the gases were produced during thermal metamorphism of coal and evaporite deposits in the East Siberia Tunguska basin following sill intrusion (Retallack and Jahren, 2008; Svensen et al., 2009). The release of the volatiles has been proposed as a major cause of environmental and extinction events at the end of the Permian, with venting of carbon gases and halocarbons to the atmosphere leading to global warming and atmospheric ozone depletion (Svensen et al., 2009) Here we consider the conditions required for the formation and dispersion of toxic, heavier than air, gas plumes, made up of a mixture of CO2, CH4, H2S and SO2 and formed during the thermal metamorphism of C- and S- rich sediments. Dispersion models and density considerations within a range of CO2/CH4 ratios and volatile fluxes and temperatures, for gas discharge by both seepage and from vents, allow the possibility that following sill emplacement much of the vast East Siberia Tunguska basin was - at least intermittently - covered by a heavy, toxic gas layer that was unfavorable for life. Dispersion scenarios for a heavy gas layer beyond the Siberian region during end-Permian times will be presented. REFERENCES G. J. Retallack and A. H. Jahren, Methane release from igneous intrusion of coal during Late Permian extinction events, Journal of Geology, volume 116, 1-20, 2008 H. Svensen et al., Siberian gas venting and the end-Permian environmental crisis, Earth and Planetary Science Letters, volume 277, 490-500, 2009

  3. Toxic corneal epitheliopathy after intravitreal methotrexate and its treatment with oral folic acid.

    Science.gov (United States)

    Gorovoy, Ian; Prechanond, Tidarat; Abia, Maravillas; Afshar, Armin R; Stewart, Jay M

    2013-08-01

    To determine whether oral folic acid can ameliorate an iatrogenic, visually significant corneal epitheliopathy, which commonly occurs with intravitreal injections of methotrexate for the treatment of intraocular lymphoma. We report 2 cases of visually significant corneal epitheliopathy occurring after intravitreal injections of methotrexate for intraocular lymphoma. The first patient did not receive any treatment for the corneal disease, and the second patient with bilateral intraocular lymphoma received 1 mg of oral folic acid daily, a commonly used dosage for patients on systemic methotrexate. In the first patient without treatment, there was a complete regression of the corneal epithelial disease only when the frequency of intravitreal methotrexate was reduced from weekly to monthly as per a commonly used dosage regimen for methotrexate. In the second patient, the corneal disease improved 80% within 1 week of initiating oral folic acid for her eye already experiencing severe epitheliopathy during her weekly dosing regimen of methotrexate and also had significantly decreased epithelial disease in her second eye that started weekly intravitreal methotrexate several weeks after beginning oral folic acid. Currently, oral folic acid supplements are recommended for patients using systemic methotrexate to minimize drug toxicity. We suggest a similar use in patients undergoing intravitreal methotrexate injections to decrease toxic effects on the corneal epithelium.

  4. Coal fired flue gas mercury emission controls

    CERN Document Server

    Wu, Jiang; Pan, Weiguo; Pan, Weiping

    2015-01-01

    Mercury (Hg) is one of the most toxic heavy metals, harmful to both the environment and human health. Hg is released into the atmosphere from natural and anthropogenic sources and its emission control has caused much concern. This book introduces readers to Hg pollution from natural and anthropogenic sources and systematically describes coal-fired flue gas mercury emission control in industry, especially from coal-fired power stations. Mercury emission control theory and experimental research are demonstrated, including how elemental mercury is oxidized into oxidized mercury and the effect of

  5. Acute toxicity assessment of perfluorinated carboxylic acids towards the Baltic microalgae.

    Science.gov (United States)

    Latała, Adam; Nędzi, Marcin; Stepnowski, Piotr

    2009-09-01

    The presence of high-energy carbon-fluorine bonds in perfluoro compounds lends them great stability and causes them to be environmentally persistent. Relatively little is known about the acute toxicity of perfluorinated carboxylic acids (PFCAs) to ecotoxicological markers such as aquatic plants and animals. This study tested the toxicity of these compounds to the green alga Chlorella vulgaris, the diatom Skeletonema marinoi and the blue-green alga Geitlerinema amphibium, which are species representative of the algal flora of the Baltic Sea. The EC(50) values obtained range from 0.28 mM to 12.84 mM. A distinct relationship between hydrophobicity and toxicity is demonstrated. For every extra perfluoromethylene group in the alkyl chain, the toxicity increases twofold. LogEC(50) values are very well correlated linearly with both the number of carbon atoms in the perfluoroalkyl chain and the partition coefficients. The results also indicate that there are clear differences between the responses of particular taxonomic groups of algae: blue-green algae and diatoms are far more sensitive to PFCAs than green algae, probably because of differences in cell wall structure.

  6. Mine waters: Acidic to circumneutral

    Science.gov (United States)

    Nordstrom, D. Kirk

    2011-01-01

    Acid mine waters, often containing toxic concentrations of Fe, Al, Cu, Zn, Cd, Pb, Ni, Co, and Cr, can be produced from the mining of coal and metallic deposits. Values of pH for acid mine waters can range from –3.5 to 5, but even circumneutral (pH ≈ 7) mine waters can have high concentrations of As, Sb, Mo, U, and F. When mine waters are discharged into streams, lakes, and the oceans, serious degradation of water quality and injury to aquatic life can ensue, especially when tailings impoundments break suddenly. The main acid-producing process is the exposure of pyrite to air and water, which promotes oxidative dissolution, a reaction catalyzed by microbes. Current and future mining should plan for the prevention and remediation of these contaminant discharges by the application of hydrogeochemical principles and available technologies, which might include remining and recycling of waste materials.

  7. Amelioration of acidic soil increases the toxicity of the weak base carbendazim to the earthworm Eisenia fetida.

    Science.gov (United States)

    Liu, Kailin; Wang, Shaoyun; Luo, Kun; Liu, Xiangying; Yu, Yunlong

    2013-12-01

    Ameliorating acidic soils is a common practice and may affect the bioavailability of an ionizable organic pollutant to organisms. The toxicity of the weak base carbendazim to the earthworm (Eisenia fetida) was studied in an acidic soil (pH-H₂O, 4.6) and in the ameliorated soil (pH-H₂O, 7.5). The results indicated that the median lethal concentration of carbendazim for E. fetida decreased from 21.8 mg/kg in acidic soil to 7.35 mg/kg in the ameliorated soil. To understand why the amelioration increased carbendazim toxicity to the earthworm, the authors measured the carbendazim concentrations in the soil porewater. The authors found increased carbendazim concentrations in porewater, resulting in increased toxicity of carbendazim to earthworms. The increased pore concentrations result from decreased adsorption because of the effects of pH and calcium ions. © 2013 SETAC.

  8. Mice housed on coal dust-contaminated sand: A model to evaluate the impacts of coal mining on health.

    Science.gov (United States)

    Caballero-Gallardo, Karina; Olivero-Verbel, Jesus

    2016-03-01

    Coal dust is the most important air pollutant in coal mining in regards to producing deleterious health effects. It permeates the surrounding environment threatening public health. The aim of this study was to evaluate the toxic effects associated with exposure to sand contaminated with coal dust particles below 38 μm in diameter, obtained from a mineral sample collected in the largest coal mine in South America, La Loma, Cesar, Colombia. Sterilized sand was spiked with coal dust to obtain concentrations ranging from zero to 4% coal dust. To model natural exposure, mice were housed for eight weeks in boxes containing this mixture as bedding after which, they were euthanized and blood and tissue samples were collected. Real time PCR analysis revealed an increase in Cyp1A1 mRNA for living on sand with coal dust concentrations greater than 2% compared to mice living on sand without coal dust. Unexpectedly, for mice on coal dust-polluted sand, Sod1, Scd1 and Nqo1 hepatic mRNA were downregulated. The Comet assay in peripheral blood cells and the micronucleus test in blood smears, showed a significant potential genotoxic effect only at the highest coal dust concentration. Histopathological analysis revealed vascular congestion and peribronchial inflammation in the lungs. A dose-response relationship for the presence of hepatic steatosis, vacuolization and nuclei enlargements was observed in the exposed animals. The data suggest living on a soil polluted with coal dust induces molecular, cellular and histopathological changes in mice. Accordingly, the proposed model can be used to identify deleterious effects of exposure to coal dust deposited in soils that may pose health risks for surrounding wildlife populations. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Toxicity and metal speciation in acid mine drainage treated by passive bioreactors

    Energy Technology Data Exchange (ETDEWEB)

    Neculita, C.M.; Vigneaul, B.; Zagury, G.J. [Ecole Polytechnic, Montreal, PQ (Canada)

    2008-08-15

    Sulfate-reducing passive bioreactors treat acid mine drainage (AMD) by increasing its pH and alkalinity and by removing metals as metal sulfide precipitates. In addition to discharge limits based on physicochemical parameters, however, treated effluent is required to be nontoxic. Acute and sublethal toxicity was assessed for effluent from 3.5-L column bioreactors filled with mixtures of natural organic carbon sources and operated at different hydraulic retention times (HRTs) for the treatment of a highly contaminated AMD. Effluent was first tested for acute (Daphnia magna and Oncorhynchus mykiss) and sublethal (Pseudokirchneriella subcapitata, Ceriodaphnia dabia, and Lemna minor) toxicity. Acute toxicity was observed for D. magna, and a toxicity identification evaluation (TIE) procedure was then performed to identify potential toxicants. Finally, metal speciation in the effluent was determined using ultrafiltration and geochemical modeling for the interpretation of the toxicity results. The 10-d HRT effluent was nonacutely lethal for 0. mykiss but acutely lethal for D. magna. The toxicity to D. magna, however, was removed by 2 h of aeration, and the TIE procedure suggested iron as a cause of toxicity. Sublethal toxicity of the 10-d HRT effluent was observed for all test species, but it was reduced compared to the raw AMD and to a 7.3-d HRT effluent. Data regarding metal speciation indicated instability of both effluents during aeration and were consistent with the toxicity being caused by iron. Column bioreactors in operation for more than nine months efficiently improved the physicochemical quality of highly contaminated AMD at different HRTs.

  10. Mice housed on coal dust-contaminated sand: A model to evaluate the impacts of coal mining on health

    Energy Technology Data Exchange (ETDEWEB)

    Caballero-Gallardo, Karina, E-mail: kcaballerog@unicartagena.edu.co; Olivero-Verbel, Jesus, E-mail: joliverov@unicartagena.edu.co

    2016-03-01

    Coal dust is the most important air pollutant in coal mining in regards to producing deleterious health effects. It permeates the surrounding environment threatening public health. The aim of this study was to evaluate the toxic effects associated with exposure to sand contaminated with coal dust particles below 38 μm in diameter, obtained from a mineral sample collected in the largest coal mine in South America, La Loma, Cesar, Colombia. Sterilized sand was spiked with coal dust to obtain concentrations ranging from zero to 4% coal dust. To model natural exposure, mice were housed for eight weeks in boxes containing this mixture as bedding after which, they were euthanized and blood and tissue samples were collected. Real time PCR analysis revealed an increase in Cyp1A1 mRNA for living on sand with coal dust concentrations greater than 2% compared to mice living on sand without coal dust. Unexpectedly, for mice on coal dust-polluted sand, Sod1, Scd1 and Nqo1 hepatic mRNA were downregulated. The Comet assay in peripheral blood cells and the micronucleus test in blood smears, showed a significant potential genotoxic effect only at the highest coal dust concentration. Histopathological analysis revealed vascular congestion and peribronchial inflammation in the lungs. A dose–response relationship for the presence of hepatic steatosis, vacuolization and nuclei enlargements was observed in the exposed animals. The data suggest living on a soil polluted with coal dust induces molecular, cellular and histopathological changes in mice. Accordingly, the proposed model can be used to identify deleterious effects of exposure to coal dust deposited in soils that may pose health risks for surrounding wildlife populations. - Highlights: • Mice were exposed to coal dust-contaminated sand. • mRNA Markers for PAH exposure, lipid metabolism and oxidative stress increased. • ALT activity in plasma increased at the highest exposure to coal dust. • Liver tissues of exposed

  11. Coal: a human history

    Energy Technology Data Exchange (ETDEWEB)

    Freese, B.

    2002-12-01

    Prized as 'the best stone in Britain' by Roman invaders who carved jewellery out of it, coal has transformed societies, powered navies, fueled economies, and expanded frontiers. It made China a twelfth-century superpower, inspired the writing of the Communist Manifesto, and helped the northern states win the American Civil War. Yet the mundane mineral that built our global economy - and even today powers our electrical plants - has also caused death, disease, and environmental destruction. As early as 1306, King Edward I tried to ban coal (unsuccessfully) because its smoke became so obnoxious. Its recent identification as a primary cause of global warming has made it a cause celebre of a new kind. In this book, Barbara Freese takes us on an historical journey that begins three hundred million years ago and spans the globe. From the 'Great Stinking Fogs' of London to the rat-infested coal mines of Pennsylvania, from the impoverished slums of Manchester to the toxic city streets of Beijing, this book describes an ordinary substance that has done extraordinary things.

  12. Breaking Bad Delirium: Methamphetamine and Boric Acid Toxicity with Hallucinations and Pseudosepsis.

    Science.gov (United States)

    Johnson, Kayla; Stollings, Joanna L; Ely, E Wesley

    2017-02-01

    A 30-year-old patient presented with hallucinations and profound shock. He was initially misdiagnosed as having severe sepsis; once ingestions were considered, he was diagnosed as potentially having arsenic toxicity. The clinical story reveals many instructional lessons that could aid in the evaluation and management of future patients. This man presented with large amounts of blue crystals around his nose and lips from inhaling and eating boric acid (an ant poison) so he could, as he put it, kill the ants "pouring into my mouth and nose and up into my brain." His profound pseudosepsis and sustained delirium were induced by co-ingestion of methamphetamine and a large quantity of boric acid. Delirium is a form of acute brain dysfunction that often is multifactorial in critical illness and, when seen in septic shock, is associated with prolonged mechanical ventilation, increased length of hospital stay, medical costs, higher mortality, and long-term cognitive impairment resembling dementia. Pseudosepsis is a noninfectious condition most commonly seen with ingestions such as salicylate (aspirin) toxicity. This report emphasizes the need to recognize agents that contain boric acid as an etiology of unexplained delirium and profound shock.

  13. Drainage from coal mines: Chemistry and environmental problems

    International Nuclear Information System (INIS)

    Wildeman, T.

    1991-01-01

    Much of the research on coal-mine drainage chemistry was conducted a decade ago, and now increased environmental awareness has brought about renewed interest in the findings. Consideration of the trace minerals and elements in coal points to the possible generation of acidic waters upon weathering, especially when pyrite is present. When pyrite weathers, it produces H + and Fe 3+ which catalyze the incongruent weathering of other carbonates and sulfides. In this weathering mechanism, catalysis by bacteria is important. Of the environmental problems in coal mine drainage, the mineral acidity of the water is the most serious. This is caused not only by the H + , but also by Mn 4+ , Fe 3+ , and Al 3+ that are found or generated within the drainage. Case studies in Kentucky, Pennsylvania, Illinois, and Colorado show that the abundance and form of pyrite in the deposit and in the overburden determines the level of acidity and the concentration of heavy metal pollutants in the drainage. Recent trends in environmental enforcement that emphasize integrated stream water standards and biotoxicity assays point to the possibility that the concentrations of heavy metals in coal mine drainages may cause environmental concern

  14. Coal background paper. Coal demand

    International Nuclear Information System (INIS)

    1997-01-01

    Statistical data are presented on coal demands in IEA and OECD member countries and in other countries. Coal coaking and coaking coal consumption data are tabulated, and IEA secretariat's coal demand projections are summarized. Coal supply and production data by countries are given. Finally, coal trade data are presented, broken down for hard coal, steam coal, coking coal (imports and export). (R.P.)

  15. Coal and Open-pit surface mining impacts on American Lands (COAL)

    Science.gov (United States)

    Brown, T. A.; McGibbney, L. J.

    2017-12-01

    Mining is known to cause environmental degradation, but software tools to identify its impacts are lacking. However, remote sensing, spectral reflectance, and geographic data are readily available, and high-performance cloud computing resources exist for scientific research. Coal and Open-pit surface mining impacts on American Lands (COAL) provides a suite of algorithms and documentation to leverage these data and resources to identify evidence of mining and correlate it with environmental impacts over time.COAL was originally developed as a 2016 - 2017 senior capstone collaboration between scientists at the NASA Jet Propulsion Laboratory (JPL) and computer science students at Oregon State University (OSU). The COAL team implemented a free and open-source software library called "pycoal" in the Python programming language which facilitated a case study of the effects of coal mining on water resources. Evidence of acid mine drainage associated with an open-pit coal mine in New Mexico was derived by correlating imaging spectrometer data from the JPL Airborne Visible/InfraRed Imaging Spectrometer - Next Generation (AVIRIS-NG), spectral reflectance data published by the USGS Spectroscopy Laboratory in the USGS Digital Spectral Library 06, and GIS hydrography data published by the USGS National Geospatial Program in The National Map. This case study indicated that the spectral and geospatial algorithms developed by COAL can be used successfully to analyze the environmental impacts of mining activities.Continued development of COAL has been promoted by a Startup allocation award of high-performance computing resources from the Extreme Science and Engineering Discovery Environment (XSEDE). These resources allow the team to undertake further benchmarking, evaluation, and experimentation using multiple XSEDE resources. The opportunity to use computational infrastructure of this caliber will further enable the development of a science gateway to continue foundational COAL

  16. Collaborative Studies for Mercury Characterization in Coal and Coal Combustion Products, Republic of South Africa

    Science.gov (United States)

    Kolker, Allan; Senior, Constance L.; van Alphen, Chris

    2014-12-15

    adsorption on unburned carbon and minimizing the concentration of sulfuric acid vapor in the flue gas. Equipment options for improving Hg capture include addition of fabric filters, use of halogenated sorbents, and addition of flue gas desulfurization (FGD) scrubbers, listed in order of increasing cost. The capital cost of adding FGD scrubbers to existing plants is probably too high to be justified on the grounds of Hg removal alone. However, if future regulations require reductions in sulfur dioxide emissions, and FGDs are installed to meet these standards, further reduction in Hg emissions will be a co-benefit of this installation.In this revised version, corrected results for the suite of 42 samples of feed coal and 8 density separates determined by inductively coupled plasma-mass spectrometry (ICP-MS) replace results originally reported in the 2014 version of this report. In many cases, especially for the transition metals, values reported here are lower than those originally reported, and in some cases, the corrected results are less than 50 percent of their original values. Note that results for mercury (Hg) and halogens contained in the original report are unaffected by revisions to ICP-MS data included here. This revised version also includes the following updates: (1) data for selenium, which were not available for inclusion in the original publication, are now provided; (2) results for ICP-MS trace element data are expressed here on a whole-coal dry basis to facilitate comparison with published results for coals elsewhere; and (3) the text has been updated to take into account the U.S. Supreme Court decision of June 29, 2015, which puts on hold implementation of U.S. Environmental Protection Agency Mercury and Air Toxics Standards in the United States.

  17. Synthesis and in vitro toxicity of new dodecaborate-containing amino acids

    International Nuclear Information System (INIS)

    Slepukhina, Irina; Gabel, Detlef

    2006-01-01

    Two unnatural, boron-containing amino acids were synthesized by alkylation of S-(2-cyanoethyl)-thio-undecahydro-closo-dodecaborate(2-). S-(2-amino-2-carboxylpropyl)-thio-undecahydro-closo-dodecaborate (2-), containing a quaternary carbon atom, and O-(5-amino-5-carboxylpentyl)-oxy-undecahydro-closo-dodecaborate(2-) were evaluated for in vitro toxicity using V 79 Chinese hamster cells. (author)

  18. Accurate prediction of the toxicity of benzoic acid compounds in mice via oral without using any computer codes

    International Nuclear Information System (INIS)

    Keshavarz, Mohammad Hossein; Gharagheizi, Farhad; Shokrolahi, Arash; Zakinejad, Sajjad

    2012-01-01

    Highlights: ► A novel method is introduced for desk calculation of toxicity of benzoic acid derivatives. ► There is no need to use QSAR and QSTR methods, which are based on computer codes. ► The predicted results of 58 compounds are more reliable than those predicted by QSTR method. ► The present method gives good predictions for further 324 benzoic acid compounds. - Abstract: Most of benzoic acid derivatives are toxic, which may cause serious public health and environmental problems. Two novel simple and reliable models are introduced for desk calculations of the toxicity of benzoic acid compounds in mice via oral LD 50 with more reliance on their answers as one could attach to the more complex outputs. They require only elemental composition and molecular fragments without using any computer codes. The first model is based on only the number of carbon and hydrogen atoms, which can be improved by several molecular fragments in the second model. For 57 benzoic compounds, where the computed results of quantitative structure–toxicity relationship (QSTR) were recently reported, the predicted results of two simple models of present method are more reliable than QSTR computations. The present simple method is also tested with further 324 benzoic acid compounds including complex molecular structures, which confirm good forecasting ability of the second model.

  19. Characterization of Activated Carbon from Coal and Its Application as Adsorbent on Mine Acid Water Treatment

    Directory of Open Access Journals (Sweden)

    Siti Hardianti

    2017-06-01

    Full Text Available Anthracite and Sub-bituminous as activated carbon raw material had been utilized especially in mining field as adsorbent of dangerous heavy metal compound resulted in mining activity. Carbon from coal was activated physically and chemically in various temperature and particle sizes. Characterization was carried out in order to determine the adsorbent specification produced hence can be used and applied accordingly. Proximate and ultimate analysis concluded anthracite has fixed carbon 88.91% while sub-bituminous 49.05%. NaOH was used in chemical activation while heated at 400-500°C whereas physical activation was conducted at 800-1000°C. Activated carbon has high activity in adsorbing indicated by high iodine number resulted from analysis. SEM-EDS result confirmed that activated carbon made from coal has the quality in accordance to SNI and can be used as adsorbent in acid water treatment.

  20. Study on Al2O3 extraction from activated coal gangue under different calcination atmospheres

    Science.gov (United States)

    Dong, Ling; Liang, Xinxing; Song, Qiang; Gao, Gewu; Song, Lihua; Shu, Yuanfeng; Shu, Xinqian

    2017-12-01

    Coal gangue was calcinated under air, nitrogen, carbon dioxide, air-hydrogen, and hydrogen atmospheres. The effects of different calcination temperatures and atmospheres on the mineral composition of activated coal gangue were investigated by X-ray diffraction. Moreover, the acid leaching kinetics of aluminum oxide from coal gangue was investigated with sulfuric acid. It showed that the air atmosphere promoted kaolinite decomposition during coal gangue calcination. The hydrogen atmosphere promoted the activation and decomposition of kaolinite at reaction temperatures exceeding 650°C. The carbon dioxide atmosphere eliminated the influence of residual carbon on coal gangue. When the ratio of acid/coal gangue was 1.5 and reaction temperature was 650°C, the sulfuric acid leaching rate under air, air-hydrogen, carbon dioxide, hydrogen and nitrogen atmospheres were 93.66%, 90.90%, 84.06%, 81.91% and 77.54% respectively. The acid leaching reaction process conformed to unreacted shrinking core model of particle unchanged, and was controlled by the interfacial chemical reaction. The reaction kinetic equation for the leaching process was 1-(1-x)1/3=kt with an apparent activation energy of 48.97 kJ/mol.

  1. Reactions of clofibric acid with oxidative and reductive radicals—Products, mechanisms, efficiency and toxic effects

    International Nuclear Information System (INIS)

    Csay, Tamás; Rácz, Gergely; Salik, Ádám; Takács, Erzsébet; Wojnárovits, László

    2014-01-01

    The degradation of clofibric acid induced by hydroxyl radical, hydrated electron and O 2 −∙ /HO 2 ∙ reactive species was studied in aqueous solutions. Clofibric acid was decomposed more effectively by hydroxyl radical than by hydrated electron or O 2 −∙ /HO 2 ∙ . Various hydroxylated, dechlorinated and fragmentation products have been identified and quantified. A new LC–MS method was developed based on 18 O isotope labeling to follow the formation of hydroxylated derivatives of clofibric acid. Possible degradation pathways have been proposed. The overall degradation was monitored by determination of sum parameters like COD, TOC and AOX. It was found that the organic chlorine degrades very effectively prior to complete mineralization. After the treatment no toxic effect was found according to Vibrio fischeri tests. However, at early stages some of the reaction products were more harmful than clofibric acid. - Highlights: • Clofibric acid is effectively degraded by OH radical. • Main primary and secondary products are hydroxylated and dihydroxylated phenyl type derivatives of clofibric acid. • In air saturated aqueous solutions O 2 plays an important role in decomposition of the aromatic structure. • A new LC–MS method with 18 O-labeling was developed. • Early stage reaction products are more toxic to bacteria Vibrio fischeri than clofibric acid

  2. Effects of benzoic acid and cadmium toxicity on wheat seedlings

    Directory of Open Access Journals (Sweden)

    Kavita Yadav

    2013-06-01

    Full Text Available Benzoic acid (BA and Cd exhibit cumulative effects on plants due to their accumulation in the soil. The present study reports the effects of BA an allelochemical, Cd and their combinations on seed germination, seedling growth, biochemical parameters, and response of antioxidant enzymes in Triticum aestivum L. The experiment was conducted in sand supplemented with Hoagland nutrient solution. Benzoic acid was applied at concentrations of 0.5, 1.0, and 1.5 mM with or without Cd (7 mg L-1 to observe effects of allelochemical and Cd alone and in combination on wheat. Both stresses exhibited inhibitory effect on growth and metabolism of wheat seedlings. The allelochemical in single and combined treatments with Cd decreased seedling growth as compared to Cd stress. The two stresses significantly enhanced malondialdehyde content of wheat seedlings. The activity of other antioxidant enzymes, viz. superoxide dismutase (SOD, catalase (CAT, ascorbate peroxidase (APX, and guaiacol peroxidase (POX were also recorded. SOD increased in seedlings under the two stresses. CAT more prominently ameliorates the toxic effects of H2O2 as compared with APX and POX and protected wheat seedlings from oxidative stress. Allelochemical buttressed the toxic effect of Cd on wheat seedlings.

  3. The Content of Toxic Metals in Agricultural Produce near a Coal Mine: Case Study KCB in Lazarevac, Serbia

    Directory of Open Access Journals (Sweden)

    Ana Koprivica

    2018-03-01

    Full Text Available The monitoring and analysis of concentrations of toxic metals (lead and cadmium in soils and crops indicate that farmland in Serbia is generally not polluted, and the quality of soils is naturally good. Such soils are therefore suitable for organic farming. All noted instances of contamination by toxic metals are of a local nature only, and the result of fertilizers and pesticides, municipal waste, exhaust gases, nearby production facilities, smelting plants, mines, tailings ponds, etc. Locations of this type need to be monitored regularly, and the status of the soil and crops assessed. The results presented in this paper place special emphasis on lead and cadmium. In this regard, the sampling of 67 plant foodstuffs that are being grown in Baroševac village, located in the immediate vicinity of the Kolubara coal mine, was carried out. Fruit samples represented 14.9% and vegetable samples 85.1% of the total sample. The heavy metal content (lead/cadmium in seven samples was above the limits prescribed by the Regulations. Overall exposure of the adult population of Baroševac, calculated on the basis of all samples (67 in total, was 0.89 µg lead per kg of body weight per week, representing only 3.5% provisional tolerable weekly intake (PTWI, and 0.46 cadmium per kg of body weight, which amounts to 6.7% PTWI. Both values point to the fact that the risk is low, even in the case of populations with high exposure to these toxic metals. This suggests that sustainable development may be possible in the near future.

  4. In Utero Domoic Acid Toxicity: A Fetal Basis to Adult Disease in the California Sea Lion (Zalophus californianus

    Directory of Open Access Journals (Sweden)

    Tanja S. Zabka

    2008-06-01

    Full Text Available California sea lions have been a repeated subject of investigation for early life toxicity, which has been documented to occur with increasing frequency from late February through mid-May in association with organochlorine (PCB and DDT poisoning and infectious disease in the 1970's and domoic acid poisoning in the last decade. The mass early life mortality events result from the concentrated breeding grounds and synchronization of reproduction over a 28 day post partum estrus cycle and 11 month in utero phase. This physiological synchronization is triggered by a decreasing photoperiod of 11.48 h/day that occurs approximately 90 days after conception at the major California breeding grounds. The photoperiod trigger activates implantation of embryos to proceed with development for the next 242 days until birth. Embryonic diapause is a selectable trait thought to optimize timing for food utilization and male migratory patterns; yet from the toxicological perspective presented here also serves to synchronize developmental toxicity of pulsed environmental events such as domoic acid poisoning. Research studies in laboratory animals have defined age-dependent neurotoxic effects during development and windows of susceptibility to domoic acid exposure. This review will evaluate experimental domoic acid neurotoxicity in developing rodents and, aided by comparative allometric projections, will analyze potential prenatal toxicity and exposure susceptibility in the California sea lion. This analysis should provide a useful tool to forecast fetal toxicity and understand the impact of fetal toxicity on adult disease of the California sea lion.

  5. ALUMINUM TOXICITY VS SALICYLIC ACID EFFECTS IN PEARL MILLET METHYLOME.

    OpenAIRE

    Baba Ngom; Edward Mamati; Ibrahima Sarr; Josphert Kimatu.

    2018-01-01

    Aluminum toxicity is one of most distributed plant abiotic stress in the world, causing root inhibition and therefore crop losses. Plants continuously adapt its defense to abiotic stresses through different mechanisms including DNA methylation. The methylome variation is influenced by external cues from environment or by hormonal signals. Salicylic acid is one of the most important hormones in plants, directing growth and defense. Its application is seen having the capacity to elicit plant de...

  6. Role of glucuronidation for hepatic detoxification and urinary elimination of toxic bile acids during biliary obstruction.

    Directory of Open Access Journals (Sweden)

    Martin Perreault

    Full Text Available Biliary obstruction, a severe cholestatic condition, results in a huge accumulation of toxic bile acids (BA in the liver. Glucuronidation, a conjugation reaction, is thought to protect the liver by both reducing hepatic BA toxicity and increasing their urinary elimination. The present study evaluates the contribution of each process in the overall BA detoxification by glucuronidation. Glucuronide (G, glycine, taurine conjugates, and unconjugated BAs were quantified in pre- and post-biliary stenting urine samples from 12 patients with biliary obstruction, using liquid chromatography-tandem mass spectrometry (LC-MS/MS. The same LC-MS/MS procedure was used to quantify intra- and extracellular BA-G in Hepatoma HepG2 cells. Bile acid-induced toxicity in HepG2 cells was evaluated using MTS reduction, caspase-3 and flow cytometry assays. When compared to post-treatment samples, pre-stenting urines were enriched in glucuronide-, taurine- and glycine-conjugated BAs. Biliary stenting increased the relative BA-G abundance in the urinary BA pool, and reduced the proportion of taurine- and glycine-conjugates. Lithocholic, deoxycholic and chenodeoxycholic acids were the most cytotoxic and pro-apoptotic/necrotic BAs for HepG2 cells. Other species, such as the cholic, hyocholic and hyodeoxycholic acids were nontoxic. All BA-G assayed were less toxic and displayed lower pro-apoptotic/necrotic effects than their unconjugated precursors, even if they were able to penetrate into HepG2 cells. Under severe cholestatic conditions, urinary excretion favors the elimination of amidated BAs, while glucuronidation allows the conversion of cytotoxic BAs into nontoxic derivatives.

  7. Effects of Humic and Fulvic Acids on Silver Nanoparticle Stability, Dissolution, and Toxicity

    Science.gov (United States)

    Gunsolus, Ian L.; Mousavi, Maral P. S.; Hussein, Kadir; Bühlmann, Philippe; Haynes, Christy L.

    2015-01-01

    The colloidal stability of silver nanoparticles (AgNPs) in natural aquatic environments influences their transport and environmental persistence, while their dissolution to Ag+ influences their toxicity to organisms. Here, we characterize the colloidal stability, dissolution behavior, and toxicity of two industrially relevant classes of AgNPs (i.e., AgNPs stabilized by citrate or polyvinylpyrrolidone) after exposure to natural organic matter (NOM, i.e., Suwannee River Humic and Fulvic Acid Standards and Pony Lake Fulvic Acid Reference). We show that NOM interaction with the nanoparticle surface depends on (i) the NOM’s chemical composition, where sulfur- and nitrogen-rich NOM more significantly increases colloidal stability, and (ii) the affinity of the capping agent for the AgNP surface, where nanoparticles with loosely bound capping agents are more effectively stabilized by NOM. Adsorption of NOM is shown to have little effect on AgNP dissolution under most experimental conditions, the exception being when the NOM is rich in sulfur and nitrogen. Similarly, the toxicity of AgNPs to a bacterial model (Shewanella oneidensis MR-1) decreases most significantly in the presence of sulfur- and nitrogen-rich NOM. Our data suggest that the rate of AgNP aggregation and dissolution in aquatic environments containing NOM will depend on the chemical composition of the NOM, and that the toxicity of AgNPs to aquatic microorganisms is controlled primarily by the extent of nanoparticle dissolution. PMID:26047330

  8. Edaravone ameliorates the adverse effects of valproic acid toxicity in small intestine.

    Science.gov (United States)

    Oktay, S; Alev, B; Tunali, S; Emekli-Alturfan, E; Tunali-Akbay, T; Koc-Ozturk, L; Yanardag, R; Yarat, A

    2015-06-01

    Valproic acid (VPA) is a drug used for the treatment of epilepsy, bipolar psychiatric disorders, and migraine. Previous studies have reported an increased generation of reactive oxygen species and oxidative stress in the toxic mechanism of VPA. Edaravone, a free radical scavenger for clinical use, can quench free radical reaction by trapping a variety of free radical species. In this study, effect of edaravone on some small intestine biochemical parameters in VPA-induced toxicity was investigated. Thirty seven Sprague Dawley female rats were randomly divided into four groups. The groups include control group, edaravone (30 mg(-1) kg(-1) day(-1)) given group, VPA (0.5 g(-1) kg(-1) day(-1)) given group, VPA + edaravone (in same dose) given group. Edaravone and VPA were given intraperitoneally for 7 days. Biochemical parameters such as malondialdehyde, as an index of lipid peroxidation(LPO), sialic acid (SA), glutathione levels and glutathione peroxidase, glutathione-S-transferase, superoxide dismutase, catalase, myeloperoxidase, alkaline phosphatase (ALP), and tissue factor (TF) activities were determined in small intestine samples by colorimetric methods. Decreased small intestine antioxidant enzyme activities, increased LPO and SA levels, and increased activities of ALP and TF were detected in the VPA group. Based on our results edaravone may be suggested to reverse the oxidative stress and inflammation due to VPA-induced small intestine toxicity. © The Author(s) 2014.

  9. Body ion loss as a bioindicator of water quality impaired by coal mining

    International Nuclear Information System (INIS)

    Grippo, R.S.; Dunson, W.A.

    1994-01-01

    Protection of surface waters receiving discharges from coal mines is currently based on performance standards set by the EPA after passage of the Clean Water Act. These standards were technology-driven and reflect the Best Achievable Control Technology (BAT) available at the time of promulgation. Changes proposed as part of the upcoming reauthorization of the US Clean Water Act suggest that such technology-based standards may be reevaluated in light of more recent information on the toxicological effect of mine discharges on aquatic biota. The authors present here a physiological-based method for evaluating the site-specific toxicity of mine-derived discharges into receiving waters. They tested the usefulness of the body ion loss rate bioassay by exposing fathead minnows, brook charr and stoneflies to coal mine-impacted waters (elevated acidity and trace metals) in the field and to artificial mine water (AMW) in the laboratory. Body ion loss rate was significantly correlated with levels of mine pollution in the field. Body ion loss measured in AMW revealed strong interactions between metals and acid. Because the test animals exhibited differing levels of sensitivity to mine discharge, the selection of an appropriate organism for the body ion loss bioassay may vary depending on the (1) physical characteristics, (2) chemical characteristics and (3) pre-existing level of mine impact of the receiving waters

  10. Management of coal combustion wastes

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-02-01

    It has been estimated that 780 Mt of coal combustion products (CCPs) were produced worldwide in 2010. Only about 53.5% were utilised, the rest went to storage or disposal sites. Disposal of coal combustion waste (CCW) on-site at a power plant may involve decades-long accumulation of waste, with hundreds of thousands, if not millions, of tonnes of dry ash or wet ash slurry being stored. In December 2008, a coal combustion waste pond in Kingston, Tennessee, USA burst. Over 4 million cubic metres of ash sludge poured out, burying houses and rivers in tonnes of toxic waste. Clean-up is expected to continue into 2014 and will cost $1.2 billion. The incident drew worldwide attention to the risk of CCW disposal. This caused a number of countries to review CCW management methods and regulations. The report begins by outlining the physical and chemical characteristics of the different type of ashes generated in a coal-fired power plant. The amounts of CCPs produced and regulations on CCW management in selected countries have been compiled. The CCW disposal methods are then discussed. Finally, the potential environmental impacts and human health risks of CCW disposal, together with the methods used to prevent them, are reviewed.

  11. Emission of toxic explosive and fire hazardous gases in coal piles stored under atmospheric conditions. Part I

    International Nuclear Information System (INIS)

    Grossman, S.L.; Cohen, H.

    1998-01-01

    Bituminous coal stockpiles stored in open air undergo weathering processes due to low temperature oxidation (40-100 degree C) resulting in quality deterioration. The process is accompanied by emission of hazardous explosive gases such as molecular hydrogen and low molecular weight organic gases. The article describes the process of low temperature oxidation of coal and goes on to report on simulation experiments carried out to assess the oxidation resistance of various coals stored in Israel, performed in small glass batch reactors and on the monitoring of temperatures and gas evolved in large coal piles stored in open air (performed using a portable unit which can penetrate up to 7 meters inside a coal pile). Molecular hydrogen emissions were found in small concentrations, in all types of coal studied. The amount of hydrogen formed in the batch reactors is linearly dependent on the amount of oxygen consumed in the coal oxidation process and also on the temperature. It was only slightly dependent on the coal mass and independent of particle size. Previous published work has only mentioned hydrogen emission at higher temperatures (240 degree C)

  12. Effect of flotation on preparation of coal-water slurries

    Energy Technology Data Exchange (ETDEWEB)

    Ding, K.; Laskowski, J.S. [University of British Columbia, Vancouver, BC (Canada)

    2009-07-01

    In order to study the effect of flotation reagents on the properties of coal-water slurry, a sub-bituminous coal was cleaned via either forward flotation or reverse flotation. The froth product from the forward flotation, obtained with the use of diesel oil and MIBC, and the tailings of the reverse flotation, carried out with dextrin-tannic acid depressants and dodecyltrimethylammonium chloride collector, were used in the preparation of coal-water slurries. It was shown that while it was possible to obtain the coal-water slurry with a high-solids content from the coal rendered hydrophilic (tailings from the coal reverse flotation), in the case of the hydrophobic product (froth product from the forward flotation) a dispersing agent was required to obtain the coal-water slurry of the same high-solids content.

  13. Direct liquefaction of low-rank coals under mild conditions

    Energy Technology Data Exchange (ETDEWEB)

    Braun, N.; Rinaldi, R. [Max-Planck-Institut fuer Kohlenforschung, Muelheim an der Ruhr (Germany)

    2013-11-01

    Due to decreasing of petroleum reserves, direct coal liquefaction is attracting renewed interest as an alternative process to produce liquid fuels. The combination of hydrogen peroxide and coal is not a new one. In the early 1980, Vasilakos and Clinton described a procedure for desulfurization by leaching coal with solutions of sulphuric acid/H{sub 2}O{sub 2}. But so far, H{sub 2}O{sub 2} has never been ascribed a major role in coal liquefaction. Herein, we describe a novel approach for liquefying low-rank coals using a solution of H{sub 2}O{sub 2} in presence of a soluble non-transition metal catalyst. (orig.)

  14. Effect of Marine Omega 3 Fatty Acids on Methylmercury-Induced Toxicity in Fish and Mammalian Cells In Vitro

    Directory of Open Access Journals (Sweden)

    O. J. Nøstbakken

    2012-01-01

    Full Text Available Methylmercury (MeHg is a ubiquitous environmental contaminant which bioaccumulates in marine biota. Fish constitute an important part of a balanced human diet contributing with health beneficial nutrients but may also contain contaminants such as MeHg. Interactions between the marine n-3 fatty acids eicosapentaenoic acid (20:5n-3, EPA and docosahexaenoic acid (22:6n-3, DHA with MeHg-induced toxicity were investigated. Different toxic and metabolic responses were studied in Atlantic salmon kidney (ASK cell line and the mammalian kidney-derived HEK293 cell line. Both cell lines were preincubated with DHA or EPA prior to MeHg-exposure, and cell toxicity was assessed differently in the cell lines by MeHg-uptake in cells (ASK and HEK293, proliferation (HEK293 and ASK, apoptosis (ASK, oxidation of the red-ox probe roGFP (HEK293, and regulation of selected toxicological and metabolic transcriptional markers (ASK. DHA was observed to decrease the uptake of MeHg in HEK293, but not in ASK cells. DHA also increased, while EPA decreased, MeHg-induced apoptosis in ASK. MeHg exposure induced changes in selected metabolic and known MeHg biomarkers in ASK cells. Both DHA and MeHg, but not EPA, oxidized roGFP in HEK293 cells. In conclusion, marine n-3 fatty acids may ameliorate MeHg toxicity, either by decreasing apoptosis (EPA or by reducing MeHg uptake (DHA. However, DHA can also augment MeHg toxicity by increasing oxidative stress and apoptosis when combined with MeHg.

  15. Use of a (Quantitative) Structure-Activity Relationship [(Q)SAR] model to predict the toxicity of naphthenic acids

    DEFF Research Database (Denmark)

    Frank, Richard; Sanderson, Hans; Kavanagh, Richard

    2010-01-01

    Naphthenic acids (NAs) are a complex mixture of carboxylic acids that are natural constituents of oil sand found in north-eastern Alberta, Canada.  NAs are released and concentrated in the alkaline water used in the extraction of bitumen from oil sand sediment.  NAs have been identified...... as the principal toxic components of oil sands process-affected water (OSPW), and microbial degradation of lower molecular weight (MW) NAs decreases the toxicity of NA mixtures in OSPW.  Analysis by proton nuclear magnetic resonance spectroscopy indicated that larger, more cyclic NAs contain greater carboxylic...

  16. Coal fired flue gas mercury emission controls

    International Nuclear Information System (INIS)

    Wu, Jiang; Pan, Weiguo; Cao, Yan; Pan, Weiping

    2015-01-01

    Mercury (Hg) is one of the most toxic heavy metals, harmful to both the environment and human health. Hg is released into the atmosphere from natural and anthropogenic sources and its emission control has caused much concern. This book introduces readers to Hg pollution from natural and anthropogenic sources and systematically describes coal-fired flue gas mercury emission control in industry, especially from coal-fired power stations. Mercury emission control theory and experimental research are demonstrated, including how elemental mercury is oxidized into oxidized mercury and the effect of flue gas contents on the mercury speciation transformation process. Mercury emission control methods, such as existing APCDs (air pollution control devices) at power stations, sorbent injection, additives in coal combustion and photo-catalytic methods are introduced in detail. Lab-scale, pilot-scale and full-scale experimental studies of sorbent injection conducted by the authors are presented systematically, helping researchers and engineers to understand how this approach reduces the mercury emissions in flue gas and to apply the methods in mercury emission control at coal-fired power stations.

  17. Coal fired flue gas mercury emission controls

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Jiang; Pan, Weiguo [Shanghai Univ. of Electric Power (China); Cao, Yan; Pan, Weiping [Western Kentucky Univ., Bowling Green, KY (United States)

    2015-05-01

    Mercury (Hg) is one of the most toxic heavy metals, harmful to both the environment and human health. Hg is released into the atmosphere from natural and anthropogenic sources and its emission control has caused much concern. This book introduces readers to Hg pollution from natural and anthropogenic sources and systematically describes coal-fired flue gas mercury emission control in industry, especially from coal-fired power stations. Mercury emission control theory and experimental research are demonstrated, including how elemental mercury is oxidized into oxidized mercury and the effect of flue gas contents on the mercury speciation transformation process. Mercury emission control methods, such as existing APCDs (air pollution control devices) at power stations, sorbent injection, additives in coal combustion and photo-catalytic methods are introduced in detail. Lab-scale, pilot-scale and full-scale experimental studies of sorbent injection conducted by the authors are presented systematically, helping researchers and engineers to understand how this approach reduces the mercury emissions in flue gas and to apply the methods in mercury emission control at coal-fired power stations.

  18. Petrography and microanalysis of Pennsylvanian coal-ball concretions (Herrin Coal, Illinois Basin, USA): Bearing on fossil plant preservation and coal-ball origins

    Science.gov (United States)

    Siewers, Fredrick D.; Phillips, Tom L.

    2015-11-01

    Petrographic analyses of 25 coal balls from well-studied paleobotanical profiles in the Middle Pennsylvanian Herrin Coal (Westphalian D, Illinois Basin) and five select coal balls from university collections, indicate that Herrin Coal-ball peats were permineralized by fibrous and non-fibrous carbonates. Fibrous carbonates occur in fan-like to spherulitic arrays in many intracellular (within tissue) pores, and are best developed in relatively open extracellular (between plant) pore spaces. Acid etched fibrous carbonates appear white under reflected light and possess a microcrystalline texture attributable to abundant microdolomite. Scanning electron microscopy, X-ray diffraction, and electron microprobe analysis demonstrate that individual fibers have a distinct trigonal prism morphology and are notable for their magnesium content (≈ 9-15 mol% MgCO3). Non-fibrous carbonates fill intercrystalline spaces among fibers and pores within the peat as primary precipitates and neomorphic replacements. In the immediate vicinity of plant cell walls, non-fibrous carbonates cut across fibrous carbonates as a secondary, neomorphic phase attributed to coalification of plant cell walls. Dolomite occurs as diagenetic microdolomite associated with the fibrous carbonate phase, as sparite replacements, and as void-filling cement. Maximum dolomite (50-59 wt.%) is in the top-of-seam coal-ball zone at the Sahara Mine, which is overlain by the marine Anna Shale. Coal-ball formation in the Herrin Coal began with the precipitation of fibrous high magnesium calcite. The trigonal prism morphology of the carbonate fibers suggests rapid precipitation from super-saturated, meteoric pore waters. Carbonate precipitation from marine waters is discounted on the basis of stratigraphic, paleobotanical, and stable isotopic evidence. Most non-fibrous carbonate is attributable to later diagenetic events, including void-fill replacements, recrystallization, and post-depositional fracture fills. Evidence

  19. Diclofenac toxicity in Gyps vulture is associated with decreased uric acid excretion and not renal portal vasoconstriction.

    Science.gov (United States)

    Naidoo, V; Swan, G E

    2009-04-01

    Diclofenac (DF), a non-steroidal anti-inflammatory drug (NSAID), is largely regarded as one of the most devastating environmental toxicant in recent times, after accidental exposure via their food-chain lead to massive mortalities in three vulture species on the Asian subcontinent. Although the use of diclofenac was recently banned on the Indian subcontinent, following the favourable safety profile of meloxicam, its mechanism of toxicity remains unknown. In an attempt to establish this mechanism, we test three hypotheses using models established from either the domestic chicken (Gallus domesticus) or the African White-backed vulture (Gyps africanus). We demonstrate that both DF and meloxicam are toxic to renal tubular epithelial (RTE) cells following 12 h of exposure, due to an increase in production of reactive oxygen species (ROS), which could be temporarily ameliorated by pre-incubation with uric acid (UA). When cultures were incubated with either drug for only 2 h, meloxicam showed no toxicity in contrast to diclofenac. In both cases no increase in ROS production was evident. In addition, diclofenac decreased the transport of uric acid, by interfering with the p-amino-hippuric acid (PAH) channel. We conclude that vulture susceptibility to diclofenac results from a combination of an increased ROS, interference with UA transport and the duration of exposure.

  20. Potential citric acid exposure and toxicity to Hawaiian hoary bats (Lasiurus cinereus semotus) associated with Eleutherodactylus frog control.

    Science.gov (United States)

    Pitt, William C; Witmer, Gary W; Jojola, Susan M; Sin, Hans

    2014-04-01

    We examined potential exposure of Hawaiian hoary bats (Lasiurus cinereus semotus) to citric acid, a minimum risk pesticide registered for control of invasive Eleutherodactylus frog populations. Hoary bats are nocturnal insectivores that roost solitarily in foliage, federally listed as endangered, and are endemic to Hawaii. Oral ingestion during grooming of contaminated fur appears to be the principal route by which these bats might be exposed to citric acid. We made assessments of oral toxicity, citric acid consumption, retention of material on fur, and grooming using big brown bats (Eptesicus fuscus) as a surrogate species. We evaluated both ground application and aerial application of 16 % solutions of citric acid during frog control operations. Absorbent bat effigies exposed to ground and aerial operational spray applications retained means of 1.54 and 0.02 g, respectively, of dry citric acid, although retention by the effigies was much higher than bat carcasses drenched in citric acid solutions. A high dose delivered orally (2,811 mg/kg) was toxic to the big brown bats and emesis occurred in 1 bat dosed as low as the 759 mg/kg level. No effect was observed with the lower doses examined (≤ 542 mg/kg). Bats sprayed with 5 ml of 16 % (w/w) citric acid solution showed no evidence of intoxication. In field situations, it is unlikely that bats would be sprayed directly or ingest much citric acid retained by fur. Based on our observations, we believe Hawaiian hoary bats to be at very low risk from harmful exposure to a toxic dose of citric acid during frog control operations.

  1. Algal toxicity of the alternative disinfectants performic acid (PFA), peracetic acid (PAA), chlorine dioxide (ClO2) and their by-products hydrogen peroxide (H2O2) and chlorite (ClO2-).

    Science.gov (United States)

    Chhetri, Ravi Kumar; Baun, Anders; Andersen, Henrik Rasmus

    2017-05-01

    Environmental effect evaluation of disinfection of combined sewer overflow events with alternative chemical disinfectants requires that the environmental toxicity of the disinfectants and the main by-products of their use are known. Many disinfectants degrade quickly in water which should be included in the evaluation of both their toxicity as determined in standardized tests and their possible negative effect in the water environment. Here we evaluated according to the standardized ISO 8692 test the toxicity towards the green microalgae, Pseudokirchneriella subcapitata, of three disinfectants: performic acid (PFA), peracetic acid (PAA) and chlorine dioxide (ClO 2 ) as well as two by-products of their use: hydrogen peroxide (H 2 O 2 ) and chlorite. All of the five chemicals investigated showed clear toxicity to the algae with well-defined dose response curves. The EC 50 values ranged from 0.16 to 2.9mg/L based on nominal concentrations leading to the labeling of the chemicals as either toxic or very toxic. The five investigated chemicals decreased in toxicity in the order chlorine dioxide, performic acid, peracetic acid, chlorite and hydrogen peroxide. The stability of the chemicals increased in the same order as the toxicity decrease. This indicates that even though ClO 2 has the highest environmental hazard potential, it may still be suitable as an alternative disinfectant due to its rapid degradation in water. Copyright © 2016 Elsevier GmbH. All rights reserved.

  2. Ninth annual coal preparation, utilization, and environmental control contractors conference: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    Papers are grouped under the following sessions: compliance technology; high-efficiency preparation; characterization; advanced technologies; alternative fuels; coal utilization; industrial/commercial combustor development; combustion; superclean emission systems; carbon dioxide recovery and reuse; air toxics and fine particulates; air toxics sampling and analysis workshop; and combined poster session. Selected papers have been processed separately for inclusion in the Energy Science and Technology Database.

  3. Eleventh annual coal preparation, utilization, and environmental control contractors conference: Proceedings

    International Nuclear Information System (INIS)

    1995-01-01

    The 75 papers contained in this volume are divided into the following sections: compliance technology; technology base activities; high efficiency preparation; air toxics (especially mercury); air toxics and CO 2 control; superclean emissions; Combustion 2000; advanced research; commercial and industrial combustion systems; alternative fuels; environmental control; and coal utilization. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database

  4. Geochemical characteristics of dissolved rare earth elements in acid mine drainage from abandoned high-As coal mining area, southwestern China.

    Science.gov (United States)

    Li, Xuexian; Wu, Pan

    2017-09-01

    Acid mine drainage (AMD) represents a major source of water pollution in the small watershed of Xingren coalfield in southwestern Guizhou Province. A detailed geochemical study was performed to investigate the origin, distribution, and migration of REEs by determining the concentrations of REEs and major solutes in AMD samples, concentrations of REEs in coal, bedrocks, and sediment samples, and modeling REEs aqueous species. The results highlighted that all water samples collected in the mining area are identified as low pH, high concentrations of Fe, Al, SO 4 2- and distinctive As and REEs. The spatial distributions of REEs showed a peak in where it is nearby the location of discharging of AMD, and then decrease significantly with distance away from the mining areas. Lots of labile REEs have an origin of coal and bedrocks, whereas the acid produced by the oxidation of pyrite is a prerequisite to cause the dissolution of coal and bedrocks, and then promoting REEs release in AMD. The North American Shale Composite (NASC)-normalized REE patterns of coal and bedrocks are enriched in light REEs (LREEs) and middle REEs (MREEs) relative to heavy REEs (HREEs). Contrary to these solid samples, AMD samples showed slightly enrichment of MREEs compared with LREEs and HREEs. This behavior implied that REEs probably fractionate during acid leaching, dissolution of bedrocks, and subsequent transport, so that the MREEs is primarily enriched in AMD samples. Calculation of REEs inorganic species for AMD demonstrated that sulfate complexes (Ln(SO 4 ) + and Ln(SO 4 ) 2 - ) predominate in these species, accounting for most of proportions for the total REEs species. The high concentrations of dissolved SO 4 2- and low pH play a decisive role in controlling the presence of REEs in AMD, as these conditions are necessary for formation of stable REEs-sulfate complexes in current study. The migration and transportation of REEs in AMD are more likely constrained by adsorption and co

  5. Dual responsive dysprosium-doped hydroxyapatite particles and toxicity reduction after functionalization with folic and glucuronic acids

    Energy Technology Data Exchange (ETDEWEB)

    Sánchez Lafarga, Ana Karen; Pacheco Moisés, Fermín P. [Departamento de Química, Universidad de Guadalajara, Marcelino García Barragán 1421, C.P. 44430, Guadalajara, Jalisco (Mexico); Gurinov, Andrey [Research Resources Center for Magnetic Resonance, Saint Petersburg State University, Universitetskij pr. 26, 198504 St. Petersburg (Russian Federation); Ortiz, Genaro Gabriel [Laboratorio Desarrollo-Envejecimiento, Enfermedades Neurodegenerativas, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano de Seguro Social (IMSS), Guadalajara, Jalisco (Mexico); Carbajal Arízaga, Gregorio Guadalupe, E-mail: gregoriocarbajal@yahoo.com.mx [Departamento de Química, Universidad de Guadalajara, Marcelino García Barragán 1421, C.P. 44430, Guadalajara, Jalisco (Mexico)

    2015-03-01

    The development of probes for biomedical applications demands materials with low toxicity levels besides fluorescence or magnetic properties to be detected by confocal microscopes or MRI resonators. Several drug delivery systems or other biomedical materials prepared with hydroxyapatite have been proposed, however, toxicity effects might arise when the size of particles is nanometric. In this study, hydroxyapatite functionalized with glucuronic or folic acids presented lower oxidative stress, measured from lipoperoxides and nitric oxide indicators in rats than pure hydroxyapatite. In separated experiments, hydroxyapatite was doped with dysprosium cations by coprecipitation producing a single crystal phase with fluorescent properties easily visualized by confocal microscopy when excited at 488 nm. These particles also presented the ability to modify the proton relaxation time in T1 maps collected by magnetic resonance imaging. These modified hydroxyapatite nanoparticles could be candidates to design bimodal probes with low toxicity. - Highlights: • Hydroxyapatite functionalized with glucuronic acid reduced oxidative stress in rats. • Functionalization with folic acid reduced oxidative stress in rats. • Dysprosium doping does not affect the crystalline structure of hydroxyapatite. • Dysprosium doped particles are visible in fluorescent microscope. • Dysprosium doped particles act as MRI contrast agents.

  6. Dual responsive dysprosium-doped hydroxyapatite particles and toxicity reduction after functionalization with folic and glucuronic acids

    International Nuclear Information System (INIS)

    Sánchez Lafarga, Ana Karen; Pacheco Moisés, Fermín P.; Gurinov, Andrey; Ortiz, Genaro Gabriel; Carbajal Arízaga, Gregorio Guadalupe

    2015-01-01

    The development of probes for biomedical applications demands materials with low toxicity levels besides fluorescence or magnetic properties to be detected by confocal microscopes or MRI resonators. Several drug delivery systems or other biomedical materials prepared with hydroxyapatite have been proposed, however, toxicity effects might arise when the size of particles is nanometric. In this study, hydroxyapatite functionalized with glucuronic or folic acids presented lower oxidative stress, measured from lipoperoxides and nitric oxide indicators in rats than pure hydroxyapatite. In separated experiments, hydroxyapatite was doped with dysprosium cations by coprecipitation producing a single crystal phase with fluorescent properties easily visualized by confocal microscopy when excited at 488 nm. These particles also presented the ability to modify the proton relaxation time in T1 maps collected by magnetic resonance imaging. These modified hydroxyapatite nanoparticles could be candidates to design bimodal probes with low toxicity. - Highlights: • Hydroxyapatite functionalized with glucuronic acid reduced oxidative stress in rats. • Functionalization with folic acid reduced oxidative stress in rats. • Dysprosium doping does not affect the crystalline structure of hydroxyapatite. • Dysprosium doped particles are visible in fluorescent microscope. • Dysprosium doped particles act as MRI contrast agents

  7. Preparation of five 3-MCPD fatty acid esters, and the effects of their chemical structures on acute oral toxicity in Swiss mice.

    Science.gov (United States)

    Liu, Man; Liu, Jie; Wu, Yizhen; Gao, Boyan; Wu, Pingping; Shi, Haiming; Sun, Xiangjun; Huang, Haiqiu; Wang, Thomas Ty; Yu, Liangli Lucy

    2017-02-01

    3-monochloro-1, 2-propanediol fatty acid esters (3-MCPDEs) comprise a group of food toxicants formed during food processing. 3-MCPDEs have received increasing attention concerning their potential negative effects on human health. However, reports on the toxicity of 3-MCPD esters are still limited. To determine the effects of fatty acid substitutions on the toxicity of their esters, 1-stearic, 1-oleic, 1-linoleic, 1-linoleic-2-palmitic and 1-palmitic-2-linoleic acid esters of 3-MCPD were synthesized and evaluated with respect to their acute oral toxicities in Swiss mice. 3-MCPDEs were obtained through the reaction of 3-MCPD and fatty acid chlorides, and their purities and structures were characterized by ultraperformance liquid chromatography-quadrupole-time of flight-mass spectrometry (UPLC-Q-TOF-MS), infrared, 1 H and 13 C spectroscopic analyses. Medial lethal doses of 1-stearic, 1-oleic, 1-linoleic, 1-linoleic-2-palmitic and 1-palmitic-2-linoleic acid esters were 2973.8, 2081.4, 2016.3, 5000 and > 5000 mg kg -1 body weight. For the first time, 3-MCPDEs were observed for their toxic effects in the thymus and lung. In addition, major histopathological changes, as well as blood urea nitrogen and creatinine, were examined for mice fed the five 3-MCPDEs. The results from the present study suggest that the degree of unsaturation, chain length, number of substitution and relative substitution locations of fatty acids might alter the toxicity of 3-MCPDEs. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  8. Study on surface morphology and physicochemical properties of raw and activated South African coal and coal fly ash

    Science.gov (United States)

    Mishra, S. B.; Langwenya, S. P.; Mamba, B. B.; Balakrishnan, M.

    South African coal and coal fly ash were selected as the raw materials to be used for study of their morphology and physicochemical properties and their respective activated carbons for adsorption applications. Coal and fly ash were individually steam activated at a temperature range of 550-1000 °C for 1 h in a muffle furnace using cylindrical stainless steel containers. Scanning electron micrographs revealed a change in surface morphology with more mineral matter available on the surface of the coal particles due to increased devolatilization. However, in the case of fly ash, the macerals coalesced to form agglomerates and the presence of unburnt carbon constituted pores of diameter between 50 and 100 nm. The BET surface area of coal improved significantly from 5.31 to 52.12 m 2/g whereas in case of fly ash the surface area of the raw sample which was originally 0.59 m 2/g and upon activation increased only up to 2.04 m 2/g. The chemical composition of the fly ash confirmed that silica was the major component which was approximately 60% by weight fraction. The impact of this study was to highlight the importance of using raw materials such as coal and a waste product, in the form of coal ash, in order to produce affordable activated carbon that can be used in drinking water treatment. This would therefore ensure that the quality of water supplied to communities for drinking is not contaminated especially by toxic organic compounds.

  9. Toxicity of nalidixic acid on candida albicans, Saccharomyces cerevisiae, and Kluyveromyces lactis.

    Science.gov (United States)

    Sobieski, R J; Brewer, A R

    1976-03-01

    The antibacterial drug nalidixic acid (Nal) can suppress the growth of Candida albicans at levels of the drug normally found in urine. Growth suppression increases as drug levels are increased, and Nal also causes a similar proportional inhibition of the synthesis of all cellular macromolecules. However, growth temperature (25 versus 37 C) and the divalent cations Mg(2+) and Mn(2+) can increase C. albicans resistance to Nal. Also, nitrogen depletion of Candida shows that Nal-treated and untreated cells exhibit no difference in leucine uptake during readaptation to nitrogen. In Nal-treated, nitrogen-starved cells, ribonucleic acid and deoxyribonucleic acid (DNA) biosynthesis are less affected than in unstarved Nal-treated cells, but of the two nucleic acids DNA synthesis is the most affected. Nal-resistant strains of C. albicans exhibit a slight toxicity for macromolecular synthesis. Nal treatment of a synchronized population of Saccharomyces cerevisiae results in an increase in the culture mean doubling time of, at most, 20%, but Nal causes the loss of synchronous cell division. With a synchronized population of Kluyveromyces lactis, Nal causes an increase in the mean doubling time of upwards of 300%, with synchrony of cell division being maintained. It is known that S. cerevisiae asynchronously synthesizes mitochondrial DNA during the cell cycle, whereas with K. lactis it is synchronous. Thus, with C. albicans Nal toxicity is dependent both on the dose and the physiological state of the cell. Furthermore, Nal inhibits growth of yeast with synchronous mitochondrial DNA synthesis more adversely than yeast with asynchronous mitochondrial DNA synthesis.

  10. The chronic toxicity of sodium bicarbonate, a major component of coal bed natural gas produced waters

    Science.gov (United States)

    Farag, Aïda M.; Harper, David D.

    2014-01-01

    Sodium bicarbonate (NaHCO3) is the principal salt in coal bed natural gas produced water from the Powder River Structural Basin, Wyoming, USA, and concentrations of up to 3000 mg NaHCO3/L have been documented at some locations. No adequate studies have been performed to assess the chronic effects of NaHCO3 exposure. The present study was initiated to investigate the chronic toxicity and define sublethal effects at the individual organism level to explain the mechanisms of NaHCO3 toxicity. Three chronic experiments were completed with fathead minnows (Pimephales promelas), 1 with white suckers (Catostomus commersoni), 1 with Ceriodaphnia dubia, and 1 with a freshwater mussel, (Lampsilis siliquoidea). The data demonstrated that approximately 500 mg NaHCO3/L to 1000 mg NaHCO3/L affected all species of experimental aquatic animals in chronic exposure conditions. Freshwater mussels were the least sensitive to NaHCO3 exposure, with a 10-d inhibition concentration that affects 20% of the sample population (IC20) of 952 mg NaHCO3/L. The IC20 for C. dubia was the smallest, at 359 mg NaHCO3/L. A significant decrease in sodium–potassium adenosine triphosphatase (Na+/K+ ATPase) together with the lack of growth effects suggests that Na+/K+ ATPase activity was shut down before the onset of death. Several histological anomalies, including increased incidence of necrotic cells, suggested that fish were adversely affected as a result of exposure to >450 mg NaHCO3/L.

  11. International Coal Report's coal year 1991

    Energy Technology Data Exchange (ETDEWEB)

    McCloskey, G [ed.

    1991-05-31

    Following introductory articles on factors affecting trade in coal and developments in the freight market, tables are given for coal exports and coal imports for major countries worldwide for 1989 and 1990. Figures are also included for coal consumption in Canada and the Eastern bloc,, power station consumption in Japan, coal supply and demand in the UK, electric utility coal consumption and stocks in the USA, coal production in Australia, Canada and USA by state, and world hard coal production. A final section gives electricity production and hard coal deliveries in the EEC, sales of imported and local coal and world production of pig iron and steel.

  12. Toxicity of binary chemical munition destruction products: methylphosphonic acid, methylphosphinic acid, 2-diisopropylaminoethanol, DF neutralent, and QL neutralent.

    Science.gov (United States)

    Watson, Rebecca E; Hafez, Ahmed M; Kremsky, Jonathan N; Bizzigotti, George O

    2007-01-01

    This paper reports the toxicity and environmental impact of neutralents produced from the hydrolysis of binary chemical agent precursor chemicals DF (methylphosphonic difluoride) and QL (2-[bis(1-methylethyl)amino]ethyl ethyl methylphosphonite). Following a literature review of the neutralent mixtures and constituents, basic toxicity tests were conducted to fill data gaps, including acute oral and dermal median lethal dose assays, the Ames mutagenicity test, and ecotoxicity tests. For methylphosphonic acid (MPA), a major constituent of DF neutralent, the acute oral LD(50) in the Sprague-Dawley rat was measured at 1888 mg/kg, and the Ames test using typical tester strains of Salmonella typhimurium and Escherichia coli was negative. The 48-h LC(50) values for pH-adjusted DF neutralent with Daphnia magna and Cyprinodon variegatus were > 2500 mg/L and 1593 mg/L, respectively. The acute oral LD(50) values in the rat for QL neutralent constituents methylphosphinic acid (MP) and 2-diisopropylaminoethanol (KB) were both determined to be 940 mg/kg, and the Ames test was negative for both. Good Laboratory Practice (GLP)-compliant ecotoxicity tests for MP and KB gave 48-h D. magna EC(50) values of 6.8 mg/L and 83 mg/L, respectively. GLP-compliant 96-h C. variegatus assays on MP and KB gave LC(50) values of 73 and 252 mg/L, respectively, and NOEC values of 22 and 108 mg/L. QL neutralent LD(50) values for acute oral and dermal toxicity tests were both > 5000 mg/kg, and the 48-h LD(50) values for D. magna and C. variegatus were 249 and 2500 mg/L, respectively. Using these data, the overall toxicity of the neutralents was assessed.

  13. Quinolinic Acid, an Endogenous Molecule Combining Excitotoxicity, Oxidative Stress and Other Toxic Mechanisms

    Directory of Open Access Journals (Sweden)

    Verónica Pérez-De La Cruz

    2012-01-01

    Full Text Available Quinolinic acid (QUIN, an endogenous metabolite of the kynurenine pathway, is involved in several neurological disorders, including Huntington's disease, Alzheimer's disease, schizophrenia, HIV associated dementia (HAD etc. QUIN toxicity involves several mechanisms which trigger various metabolic pathways and transcription factors. The primary mechanism exerted by this excitotoxin in the central nervous system (CNS has been largely related with the overactivation of N-methyl-D-aspartate receptors and increased cytosolic Ca 2+ concentrations, followed by mitochondrial dysfunction, cytochrome c release, ATP exhaustion, free radical formation and oxidative damage. As a result, this toxic pattern is responsible for selective loss of middle size striatal spiny GABAergic neurons and motor alterations in lesioned animals. This toxin has recently gained attention in biomedical research as, in addition to its proven excitotoxic profile, a considerable amount of evidence suggests that oxidative stress and energetic disturbances are major constituents of its toxic pattern in the CNS. Hence, this profile has changed our perception of how QUIN-related disorders combine different toxic mechanisms resulting in brain damage. This review will focus on the description and integration of recent evidence supporting old and suggesting new mechanisms to explain QUIN toxicity.

  14. Fatty Acid and Carbon Isotopic Evidence for type I Methanotrophs in Microbial Mats from a Shallow Marine Gas Seep, Coal Oil Point, CA.

    Science.gov (United States)

    Ding, H.; Valentine, D.

    2005-12-01

    To study the microbial community in a Southern California seep field, sediment and bacterial mat samples were collected from natural gas-bearing and gas-free surfaces at two distinct seeps in the Coal Oil Point seep field, offshore Santa Barbara. Fatty acids in these samples were extracted, analyzed and identified. Using gas chromatography (GC), more than 30 different fatty acids were separated. Generally, fatty acid concentrations in natural gas-bearing samples were about 5-fold higher compared to gas-free samples. Using gas chromatography mass sepctrometry (GC-MS), all separated fatty acids were identified in each sample. The major constituents included saturated 14:0, 16:0, 18:0, branched i-15, a-15 and unsaturated 16:1 and 18:1 series fatty acids. GC-IRMS (isotope ratio mass spectrometry) analysis provided the 13C of all major fatty acids and some 16:1 series fatty acids were found to be more depleted than -40% in samples associated with gas seepage. After treatment with dimethyl disufide (DMDS), the 16:1 series fatty acids were resolved into five distinct components, including common composition 16:1(7), bacterial specific i-16:1(7) and typical biomarkers of type I methnotrophs 16:1(8), 16(6) and 16:1(5), suggesting an important role for methnotrophs in seep sediments and microbial mats. These results provide evidence for the activity of type I methanotrophic bacteria in microbial mats and surficial sediments at the Coal Oil Point seep field, and have implications for methane cycling in this and other seep

  15. Activated carbons from Mongolian coals by thermal treatment

    Directory of Open Access Journals (Sweden)

    A Ariunaa

    2014-09-01

    Full Text Available Mongolian different rank coals were used as raw material to prepare activatedcarbons by physical activation method. The coal derived carbons were oxidized with nitric acid in order to introduce surface oxygen groups. The ultimate elemental analysis, scanning electron microscopy, surface area, pore size distribution analysis and selective neutralization method were used to characterize the surface properties of activated carbons, oxidizedcarbons and raw coals. The effect of coal grade on the adsorption properties of the carbons were studied. It was concluded that Naryn sukhait bituminous coal could be serve as suitable raw material for production of activated carbons for removal of heavy metal ions from solution.DOI: http://dx.doi.org/10.5564/mjc.v12i0.174 Mongolian Journal of Chemistry Vol.12 2011: 60-64

  16. Influence of liming and topsoil thickness on vegetative growth and leachate quality on acidic coal refuse

    International Nuclear Information System (INIS)

    Li, R.S.; Daniels, W.L.

    1998-01-01

    Coal waste materials inhibit direct vegetation establishment due to adverse physical and chemical properties, particularly low water retention and high potential acidity. The Moss No. 1 coal refuse pile is located in Dickenson County, Virginia, and was idled in the late 1980's with little topsoil resource available for final closure. The refuse was acidic (Total-S = 0.38%; pH = 3.6), black, high (70%) in coarse fragments, and had a low water holding capacity (4.5% in 6.0 over a two-year period, which resulted in greater vegetative cover and biomass than the control plots. All topsoil treatments resulted in greater vegetative cover and biomass than plots treated with lime only due to improved surface soil physical and chemical properties. A topsoil treatment of 60 cm gave the thickest vegetative cover and biomass yield. Such a treatment, however, would be cost-prohibitive at this location. Application of 27 Mg/ha of lime to the refuse surface along with 15 cm of topsoil produced acceptable two-year vegetative cover and biomass, and appeared to be the optimal treatment for this particular situation. Both liming and topsoil had no affect on leachate pH and the electrical conductivity in leachates collected below the plots. This suggests that surface revegetation will have little effect on the quality of water draining through the pile, so long term water treatment requirements may not be reduced by successfully revegetating the pile surface

  17. Recovery of Rare Earth Elements from Coal and Coal Byproducts via a Closed Loop Leaching Process: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, Richard [Battelle Memorial Inst., Columbus, OH (United States); Heinrichs, Michael [Battelle Memorial Inst., Columbus, OH (United States); Argumedo, Darwin [Battelle Memorial Inst., Columbus, OH (United States); Taha, Rachid [Battelle Memorial Inst., Columbus, OH (United States); Winecki, Slawomir [Battelle Memorial Inst., Columbus, OH (United States); Johnson, Kathryn [Battelle Memorial Inst., Columbus, OH (United States); Lane, Ann [Battelle Memorial Inst., Columbus, OH (United States); Riordan, Daniel [Battelle Memorial Inst., Columbus, OH (United States)

    2017-08-31

    Objectives: Through this grant, Battelle proposes to address Area of Interest (AOI) 1 to develop a bench-scale technology to economically separate, extract, and concentrate mixed REEs from coal ash. U.S. coal and coal byproducts provide the opportunity for a domestic source of REEs. The DOE’s National Energy Technology Laboratory (NETL) has characterized various coal and coal byproducts samples and has found varying concentrations of REE ranging up to 1,000 parts per million by weight. The primary project objective is to validate the economic viability of recovering REEs from the coal byproduct coal ash using Battelle’s patented closed-loop Acid Digestion Process (ADP). This will be accomplished by selecting coal sources with the potential to provide REE concentrations above 300 parts per million by weight, collecting characterization data for coal ash samples generated via three different methods, and performing a Techno-Economic Analysis (TEA) for the proposed process. The regional availability of REE-laden coal ash, the regional market for rare earth concentrates, and the system capital and operating costs for rare earth recovery using the ADP technology will be accounted for in the TEA. Limited laboratory testing will be conducted to generate the parameters needed for the design of a bench scale system for REE recovery. The ultimate project outcome will be the design for an optimized, closed loop process to economically recovery REEs such that the process may be demonstrated at the bench scale in a Phase 2 project. Project Description: The project will encompass evaluation of the ADP technology for the economic recovery of REEs from coal and coal ash. The ADP was originally designed and demonstrated for the U.S. Army to facilitate demilitarization of cast-cured munitions via acid digestion in a closed-loop process. Proof of concept testing has been conducted on a sample of Ohio-based Middle Kittanning coal and has demonstrated the feasibility of recovering

  18. Production development and utilization of Zimmer Station wet FGD by-products. Final report. Volume 4, A laboratory study conducted in fulfillment of Phase 2, Objective 1 titled. Inhibition of acid production in coal refuse amended with calcium sulfite and calcium sulfate - containing FGD solids

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Y. L. [Ohio State Univ., Wooster, OH (United States); Dick, W. A. [Ohio State Univ., Wooster, OH (United States); Stehouwer, R. C. [Ohio State Univ., Wooster, OH (United States); Bigham, J. M. [Ohio State Univ., Wooster, OH (United States)

    1998-06-30

    Control of S02 emission from coal combustion requires desulfurization of coal before its combustion to produce coal refuse. Alternatively, gaseous emissions from coal combustion may be scrubbed to yield flue gas desulfurization (FGD) by-products that include calcium sulfite (CaSO3∙0.5H2O or simply CaS03). Acid production in coal refuse due to pyrite oxidation and disposal of large amounts of FGD can cause environmental degradation. Addition of CaS03 and CaS03-containing FGD to coal refuse may reduce the amounts of oxygen and ferric ion available to oxidize pyrite because the sulfite moiety in CaS03 is a strong reductant and thus may mitigate acid production in coal refuse. In Chapter 1, it was shown that CaS03 efficiently scavenged dissolved oxygen and ferric ion in water under the conditions commonly encountered in a coal refuse disposal environment. In the presence ofCaS03, the concentration of dissolved oxygen in water exposed to the atmosphere declined to below 0.01 mg L"1 at pH <8.0. In Chapter 2, it was demonstrated that CaS03 prevented a pH drop in coal refuse slurry when 0.2 gCaS03 was added to a 2% fresh coal refuse slurry every three days. Calcium sulfite also inhibited acid leaching from fresh coal refuse in bench-scale columns under controlled conditions. During the initial 13 weeks of leaching, the total amounts of titratable acidity, soluble H\\ Fe, and Al from CaS03-treated refuse (6.4 gin 50 g fresh coal refuse) were only 26%,10%, 32%, and 39% of those of the control columns, respectively. A combination of CaS03 with CaC03 or fly ash enhanced the inhibitory effect of CaS03 on acid leaching. Calcium sulfite-containing FGD which combined CaS03, CaC03, fly ash, and gypsum showed a much stronger inhibitory effect on acid leaching than CaS03 alone. This

  19. Eleventh annual coal preparation, utilization, and environmental control contractors conference: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    The 75 papers contained in this volume are divided into the following sections: compliance technology; technology base activities; high efficiency preparation; air toxics (especially mercury); air toxics and CO{sub 2} control; superclean emissions; Combustion 2000; advanced research; commercial and industrial combustion systems; alternative fuels; environmental control; and coal utilization. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  20. Anaerobic biodegradability and toxicity of complex or toxicant wastewater

    International Nuclear Information System (INIS)

    Wills Betancur, B.A.

    1995-01-01

    As a first approximation to wastewater classification in susceptibility terms to treatment by anaerobic biological system, anaerobic biodegradability trials are accomplished to leached of sanitary landfill, to wastewater of coffee grain wet treatment plant and to wastewater of fumaric acid recuperation plant. In the last Plant, anaerobic toxicity trials and lethal toxicity on the Daphnia pulex micro-crustacean are made too. Anaerobic biological trials are made continuing the Wageningen University (Holland) Methodology (1.987). Lethal toxicity biological trials are made following the Standard Methods for the Examination of Water and Wastewater(18th edition, 1992). In development of this investigation project is found that fumaric acid recuperation plant leached it has a low anaerobic biodegradability, a high anaerobic toxicity and a high lethal toxicity over Daphnia pulex, for such reasons this leached is cataloged as complex and toxic wastewater. The other hand, wastewater of coffee grain wet treatment plant and wastewater of sanitary landfill they are both highly biodegradability and not-toxic, for such reasons these wastewaters are cataloged as susceptible to treatment by anaerobic biological system

  1. Toxicity of 35 trace elements in coal to freshwater biota: a data base with automated retrieval capabilities. [313 references

    Energy Technology Data Exchange (ETDEWEB)

    Cushman, R. M.; Hildebrand, S. G.; Strand, R. H.; Anderson, R. M.

    1977-06-01

    Data are tabulated on the toxicity to freshwater biota of 35 trace elements with the potential for release to the environment from coal conversion effluents. The entire data base is presented on a microfiche appended to the document, in the interest of portability and accessibility. The data were gathered from a variety of research papers, compendia, and reviews. Details of water chemistry and test conditions are presented when available from the documents consulted. The data base may be used by referring directly to the tabulated data as they appear on the microfiche, or, with appropriate computer facilities, by manipulation (sorting, subsetting, or merging) of the data to meet the particular needs of the investigator. The data may be used as they appear in the data base, or the data base may be used to index the cited original papers.

  2. Environmental Geochemistry and Acid Mine Drainage Evaluation of an Abandoned Coal Waste Pile at the Alborz-Sharghi Coal Washing Plant, NE Iran

    Energy Technology Data Exchange (ETDEWEB)

    Jodeiri Shokri, Behshad, E-mail: b.jodeiri@hut.ac.ir [Hamedan University of Technology (HUT), Department of Mining Engineering (Iran, Islamic Republic of); Doulati Ardejani, Faramarz [University of Tehran, School of Mining, College of Engineering (Iran, Islamic Republic of); Ramazi, Hamidreza [Amirkabir University of Technology (Tehran Polytechnic), Department of Mining and Metallurgical Engineering (Iran, Islamic Republic of)

    2016-09-15

    In this paper, an abandoned waste coal pile, which is resulted from Alborz-Sharghi coal washing plant, NE of Iran was mineralogically and geochemically characterized to evaluate pyrite oxidation, acid mine drainage (AMD) generation, and trace element mobility. After digging ten trenches and vertical sampling, a quantitative method including the atomic absorption test, and the quality-based methods including optical study were carried out for determination of pyrite fractions in the waste pile. The geochemical results revealed that the fraction of remaining pyrite increased with depth, indicating that pyrite oxidation is limited to the shallower depths of the pile which were confirmed by variations of sulfate, pH, EC, and carbonate with depth of the pile. To evaluate the trend of trace elements and mineralogical constituents of the waste particles, the samples were analyzed by using XRD, ICP-MS, and ICP-OES methods. The results showed the secondary and neutralizing minerals comprising gypsum have been formed below the oxidation zone. Besides, positive values of net neutralization potential indicated that AMD generation has not taken in the waste pile. In addition, variations of trace elements with depth reveal that Pb and Zn exhibited increasing trends from pile surface toward the bottom sampling trenches while another of them such as Cu and Ni had decreasing trends with increasing depth of the waste pile.

  3. Effect of Oxidation Time on Humic Acid Yields

    International Nuclear Information System (INIS)

    Khin Thidar Cho; May Zin Lwin

    2010-12-01

    In this study,humic acids were produced from coal under controlled conditions by using different oxidation time. This research studies on the behaviour of coal during oxidation process. The coal used as raw material in this research was obtained from Ka Lay Wa, Sagaing Division . The coals were oxidized at the different oxidation times from 76 hr to 380 hr at the temperature 150 5C. The yields of humic acid, the ultimate analysis (percentage of carbon, hydrogen, nitrogen and oxygen) and the proximate analysis (percentage of volatile, ash and moisture) were done in this study. The functional groups and structural entities of the obtained humic acids were identified by using Fourier Transform Infrared Spectrophotometer (FTIR). The yield percentage of prepared humic acid in Ka Lay Wa coal was found to be 3%.

  4. Washability and Distribution Behaviors of Trace Elements of a High-Sulfur Coal, SW Guizhou, China

    Directory of Open Access Journals (Sweden)

    Wei Cheng

    2018-02-01

    Full Text Available The float-sink test is a commonly used technology for the study of coal washability, which determines optimal separation density for coal washing based on the desired sulfur and ash yield of the cleaned coal. In this study, the float-sink test is adopted for a high-sulfur Late Permian coal from Hongfa coalmine (No.26, southwestern Guizhou, China, to investigate its washability, and to analyze the organic affinities and distribution behaviors of some toxic and valuable trace elements. Results show that the coal is difficult to separate in terms of desulfurization. A cleaned coal could theoretically be obtained with a yield of 75.50%, sulfur 2.50%, and ash yield 11.33% when the separation density is 1.57 g/cm3. Trace elements’ distribution behaviors during the gravity separation were evaluated by correlation analysis and calculation. It was found that Cs, Ga, Ta, Th, Rb, Sb, Nb, Hf, Ba, Pb, In, Cu, and Zr are of significant inorganic affinity; while Sn, Co, Re, U, Mo, V, Cr, Ni, and Be are of relatively strong organic affinity. LREE (Light rare earth elements, however, seem to have weaker organic affinity than HREE (Heavy rare earth elements, which can probably be attributed to lanthanide contraction. When the separation density is 1.60 g/cm3, a large proportion of Sn, Be, Cr, U, V, Mo, Ni, Cd, Pb, and Cu migrate to the cleaned coal, but most of Mn, Sb and Th stay in the gangue. Coal preparation provides alternativity for either toxic elements removal or valuable elements preconcentration in addition to desulfurization and deashing. The enrichment of trace elements in the cleaned coal depends on the predetermined separation density which will influence the yields and ash yields of the cleaned coal.

  5. Adsorptive removal of organics from aqueous phase by acid-activated coal fly ash: preparation, adsorption, and Fenton regenerative valorization of "spent" adsorbent.

    Science.gov (United States)

    Wang, Nannan; Hao, Linlin; Chen, Jiaqing; Zhao, Qiang; Xu, Han

    2018-05-01

    Raw coal fly ash was activated to an adsorbent by sulfuric acid impregnation. The activation condition, the adsorption capacity, and the regenerative valorization of the adsorbent were studied. The results show that the optimal preparation conditions of the adsorbent are [H 2 SO 4 ] = 1 mol L -1 , activation time = 30 min, the ratio of coal fly ash to acid = 1:20 (g:mL), calcination temperature = 100 °C. The adsorption of p-nitrophenol on the adsorbent accords with the pseudo-second-order kinetic equation and the adsorption rate constant is 0.089 g mg -1  min -1 . The adsorption on this adsorbent can be considered enough after 35 min, when the corresponding adsorption capacity is 1.07 mg g -1 (85.6% of p-nitrophenol removal). Compared with raw coal fly ash, the adsorbent has a stable adsorption performance at low pH range (pH = 1-6) and the adsorption of p-nitrophenol is an exothermic process. Ninety minutes is required for the regenerative valorization of saturated adsorbent by Fenton process. The regenerative valorization for this saturated adsorbent can reach 89% under the optimal proposed conditions (30 °C, pH = 3, [H 2 O 2 ] = 5.0 mmol L -1 , [Fe 2+ ] = 5.5 mmol L -1 ). Within 15 experimental runs, the adsorbent has a better and better stability with the increase of experimental runs. Finally, the mechanism of activating coal fly ash is proposed, being verified by the results of the SEM and BET test.

  6. Recovery of Pyruvic Acid using Tri-n-butylamine Dissolved in Non-Toxic Diluent (Rice Bran Oil)

    Science.gov (United States)

    Pal, Dharm; Keshav, Amit

    2016-04-01

    An attempt has been made to investigate the effectiveness of the vegetable oil based biocompatible solvent for the separation of pyruvic acid from fermentation broth, by using rice bran oil as natural, non-toxic diluent. Reactive extraction of pyruvic acid (0.1-0.5 k mol/m3) from aqueous solutions has been studied using tri-n-butylamine (TBA; 10-70 %) as an extractant dissolved in non toxic rice bran oil at T = 30 ± 1 °C. Results were presented in terms of distribution coefficient (Kd), extraction efficiency (E %), loading ratio (Z), and complexation constant (\\varphi_{α β }). Extraction equilibrium was interpreted using mass action modeling approach. Based on the extent of loading (Z < 0.5) only (1:1), pyruvic acid: TBA complex was proposed. Equilibrium complexation constant was evaluated to 1.22 m3/k mol. Results obtained are useful in understanding the extraction mechanism.

  7. Leaching characteristics of toxic constituents from coal fly ash mixed soils under the influence of pH

    Energy Technology Data Exchange (ETDEWEB)

    Komonweeraket, Kanokwan [Department of Civil and Environmental Engineering, University of Wisconsin, Madison, WI 53706 (United States); Cetin, Bora, E-mail: bora.cetin@sdsmt.edu [College of Engineering, University of Georgia, Athens, GA 30602 (United States); Benson, Craig H., E-mail: chbenson@wisc.edu [Department of Civil and Environmental Engineering, University of Wisconsin, Madison, WI 53706 (United States); Aydilek, Ahmet H., E-mail: aydilek@umd.edu [Department of Civil and Environmental Engineering, University of Maryland, College Park, MD 20742 (United States); Edil, Tuncer B., E-mail: edil@engr.wisc.edu [Department of Civil and Environmental Engineering, University of Wisconsin, Madison, WI 53706 (United States)

    2015-04-15

    Highlights: • The impact of pH on the leaching of elements and metals from fly ash mixed soils. • Generally Ca, Cd, Mg, and Sr follows a cationic leaching pattern. • The leaching of As and Se shows an oxyanionic leaching pattern. • The leaching behavior of elements does not change based on material type. • Different fly ash types show different abilities in immobilizing trace elements. - Abstract: Leaching behaviors of Arsenic (As), Barium (Ba), Calcium (Ca), Cadmium (Cd), Magnesium (Mg), Selenium (Se), and Strontium (Sr) from soil alone, coal fly ash alone, and soil-coal fly ash mixtures, were studied at a pH range of 2–14 via pH-dependent leaching tests. Seven different types of soils and coal fly ashes were tested. Results of this study indicated that Ca, Cd, Mg, and Sr showed cationic leaching pattern while As and Se generally follows an oxyanionic leaching pattern. On the other hand, leaching of Ba presented amphoteric-like leaching pattern but less pH-dependent. In spite of different types and composition of soil and coal fly ash investigated, the study reveals the similarity in leaching behavior as a function of pH for a given element from soil, coal fly ash, and soil-coal fly ash mixtures. The similarity is most likely due to similar controlling mechanisms (e.g., solubility, sorption, and solid-solution formation) and similar controlling factors (e.g., leachate pH and redox conditions). This offers the opportunity to transfer knowledge of coal fly ash that has been extensively characterized and studied to soil stabilized with coal fly ash. It is speculated that unburned carbon in off-specification coal fly ashes may provide sorption sites for Cd resulting in a reduction in concentration of these elements in leachate from soil-coal fly ash mixture. Class C fly ash provides sufficient CaO to initiate the pozzolanic reaction yielding hydrated cement products that oxyanions, including As and Se, can be incorporated into.

  8. Review : Pollution due to Coal Mining Activity and its Impact on Environment

    Directory of Open Access Journals (Sweden)

    Andi Arif Setiawan

    2018-03-01

    Full Text Available Utilization of natural resources in the form of coal mines has a positive impact on economic and energy development, in addition to coal mining activities have a negative impact on the environment that result in environmental pollution in soil, water, and air. Pollution begins when clearing land, taking exploitation, transporting, stockpile and when the coal is burned. When land clearing causes damage to forest ecosystems. At the time of exploitation impact on air pollution by coal dust particles, the erosion, siltation of the river, the pollution of heavy metals and the formation of acid mine drainage (AMD. The high acid conditions cause the faster heavy metals such as Hg, Cd, Pb, Cr, Cu, Zn and Ni present in the coal dissolved and carried to the waters. Coal stockpile activity also causes pollution in the air, soil, and water. At the time the coal is burned as an energy source causes the emission of hazardous materials into the air of Hg, As, Se and CO2 gas, NOx, SO2. This condition has an impact on the environment and ultimately on human health.

  9. Fossil fuels. Commercializing clean coal technologies

    International Nuclear Information System (INIS)

    Fultz, Keith O.; Sprague, John W.; Kirk, Roy J.; Clark, Marcus R. Jr.; Greene, Richard M.; Buncher, Carole S.; Kleigleng, Robert G.; Imbrogno, Frank W.

    1989-03-01

    Coal, an abundant domestic energy source, provides 25 percent of the nation's energy needs, but its use contributes to various types of pollution, including acid rain. The Department of Energy (DOE) has a Clean Coal Technology (CCT) program whose goal is to expand the use of coal in an environmentally safe manner by contributing to the cost of projects demonstrating the commercial applications of emerging clean coal technologies. Concerned about the implementation of the CCT program, the Chairman, Subcommittee on Energy and Power, House Committee on Energy and Commerce, requested GAO to report on (1) DOE's process of negotiating cooperative agreements with project sponsors, (2) changes DOE has made to the program, (3) the status of funded projects, and (4) the interrelationship between acid rain control proposals and the potential commercialization of clean coal technologies. Under the CCT program, DOE funds up to 50 percent of the cost of financing projects that demonstrate commercial applications of emerging clean coal technologies. DOE has conducted two solicitations for demonstration project proposals and is planning a third solicitation by May 1989. The Congress has appropriated $400 million for the first solicitation, or round one of the program, $575 million for round two, and $575 million for round three, for a total of $1.55 billion. For the round-one solicitation, DOE received 51 proposals from project sponsors. As of December 31, 1988, DOE had funded nine projects and was in the process of negotiating cooperative financial assistance agreements with sponsors of four projects. In September 1988, DOE selected 16 round-two projects from 55 proposals submitted and began the process of negotiating cooperative agreements with the project sponsors. The Congress has debated the need to reduce acid rain-causing emissions associated with fossil fuel combustion. The 100th Congress considered but did not enact about 20 acid rain control bills. On February 9, 1989

  10. Atmospheric toxic metals emission inventory and spatial characteristics from anthropogenic sources of Guangdong province, China

    Science.gov (United States)

    Cher, S.; Menghua, L.; Xiao, X.; Yuqi, W.; Zhuangmin, Z.; Zhijiong, H.; Cheng, L.; Guanglin, J.; Zibing, Y.; Junyu, Z.

    2017-12-01

    Atmospheric toxic metals (TMs) are part of particulate matters, and may create adverse effects on the environment and human health depending upon their bioavailability and toxicity. Localized emission inventory is fundamental for parsing of toxic metals to identify key sources in order to formulate efficient toxic metals control strategies. With the use of the latest municipal level environment statistical data, this study developed a bottom-up emission inventory of five toxic metals (Hg, As, Pb, Cd, Cr) from anthropogenic activities in Guangdong province for the year of 2014. Major atmospheric toxic metals sources including combustion sources (coal, oil, biomass, municipal solid waste) and industrial process sources (cement production, nonferrous metal smelting, iron and steel industry, battery and fluorescent lamp production) were investigated. Results showed that: (1) The total emissions of Hg, As, Pb, Cd, Cr in Guangdong province were 18.14, 32.59, 411.34, 13.13, 84.16 t, respectively. (2) Different pollutants have obvious characteristics of emission sources. For total Hg emission, 46% comes from combustion sources, of which 32% from coal combustion and 8% from MSW combustion. Other 54% comes from industrial processes, which dominated by the cement (19%), fluorescent lamp (18%) and battery production (13%). Of the total Hg emission, 69% is released as Hg0 , 29% as Hg2+ , and only 2% as Hgp due to strict particulate matters controls policies. For As emissions, coal combustion, nonferrous metal smelting and iron and steel industry contributed approximate 48%, 25% and 24%, respectively. Pb emissions primarily come from battery production (42%), iron and steel industry (21%) and on-road mobile gasoline combustion (17%). Cd and Cr emissions were dominated by nonferrous metal smelting (71%) and iron and steel industry (82%), respectively. (3) In term of the spatial distribution, emissions of atmospheric toxic metals are mainly concentrated in the central region of

  11. Air toxics provisions of the Clean Air Act: Potential impacts on energy

    International Nuclear Information System (INIS)

    Hootman, H.A.; Vernet, J.E.

    1991-11-01

    This report provides an overview of the provisions of the Clean Air Act and its Amendments of 1990 that identify hazardous air pollutant (HAP) emissions and addresses their regulation by the US Environmental Protection Agency (EPA). It defines the major energy sector sources of these HAPs that would be affected by the regulations. Attention is focused on regulations that would cover coke oven emissions; chromium emission from industrial cooling towers and the electroplating process; HAP emissions from tank vessels, asbestos-related activities, organic solvent use, and ethylene oxide sterilization; and emissions of air toxics from municipal waste combustors. The possible implications of Title III regulations for the coal, natural gas, petroleum, uranium, and electric utility industries are examined. The report discusses five major databases of HAP emissions: (1) TRI (EPA's Toxic Release Inventory); (2) PISCES (Power Plant Integrated Systems: Chemical Emissions Studies developed by the Electric Power Research Institute); (3) 1985 Emissions Inventory on volatile organic compounds (used for the National Acid Precipitation Assessment Program); (4) Particulate Matter Species Manual (EPA); and (5) Toxics Emission Inventory (National Aeronautics and Space Administration). It also offers information on emission control technologies for municipal waste combustors

  12. Direct estimation of diffuse gaseous emissions from coal fires: current methods and future directions

    Science.gov (United States)

    Engle, Mark A.; Olea, Ricardo A.; O'Keefe, Jennifer M. K.; Hower, James C.; Geboy, Nicholas J.

    2013-01-01

    Coal fires occur in nature spontaneously, contribute to increases in greenhouse gases, and emit atmospheric toxicants. Increasing interest in quantifying coal fire emissions has resulted in the adaptation and development of specialized approaches and adoption of numerical modeling techniques. Overview of these methods for direct estimation of diffuse gas emissions from coal fires is presented in this paper. Here we take advantage of stochastic Gaussian simulation to interpolate CO2 fluxes measured using a dynamic closed chamber at the Ruth Mullins coal fire in Perry County, Kentucky. This approach allows for preparing a map of diffuse gas emissions, one of the two primary ways that gases emanate from coal fires, and establishing the reliability of the study both locally and for the entire fire. Future research directions include continuous and automated sampling to improve quantification of gaseous coal fire emissions.

  13. Postsedimentary Alterations of Coal-bearing Rocks and New Factors Affecting their Quality and Ingredient Composition as Exemplified by the Akhaltsikhe Brown Coal Deposit (Georgia)

    International Nuclear Information System (INIS)

    Maghalashvili, G.

    2008-01-01

    It has been established that in the case when coal-bearing rocks are represented by bentonitic clays, coal undergoes significant alterations, for the bentonitic clays, as a strong absorbent, absorb from the coal under conditions of natural humidity part of organics (humic acids, gums and other moving composite substances) thus depleting the coal, increasing its ash content and accordingly decreasing its calorific capacity. In this case it is expedient to exploit the coal and ''black'' or organics-saturated rocks selectively. It has also been established that the organics-saturated ''black'' bentonite is an excellent organic and mineral fertilizer that has been tested by the autor in the patented man-made soil. At the same time, in the case of coal briquetting, it may be used as a bonding material. (author)

  14. Nanometre-sized pores in coal: Variations between coal basins and coal origin

    Science.gov (United States)

    Sakurovs, Richard; Koval, Lukas; Grigore, Mihaela; Sokolava, Anna; Ruppert, Leslie F.; Melnichenko, Yuri B.

    2018-01-01

    We have used small angle neutron scattering (SANS) to investigate the differences in methane and hexane penetration in pores in bituminous coal samples from the U.S., Canada, South Africa, and China, and maceral concentrates from Australian coals. This work is an extension of previous work that showed consistent differences between the extent of penetration by methane into 10–20 nm size pores in inertinite in bituminous coals from Australia, North America and Poland.In this study we have confirmed that there are differences in the response of inertinite to methane and hexane penetration in coals sourced from different coal basins. Inertinite in Permian Australian coals generally has relatively high numbers of pores in the 2.5–250 nm size range and the pores are highly penetrable by methane and hexane; coals sourced from Western Canada had similar penetrability to these Australian coals. However, the penetrability of methane and hexane into inertinite from the Australian Illawarra Coal Measures (also Permian) is substantially less than that of the other Australian coals; there are about 80% fewer 12 nm pores in Illawarra inertinite compared to the other Australian coals examined. The inertinite in coals sourced from South Africa and China had accessibility intermediate between the Illawarra coals and the other Australian coals.The extent of hexane penetration was 10–20% less than CD4 penetration into the same coal and this difference was most pronounced in the 5–50 nm pore size range. Hexane and methane penetrability into the coals showed similar trends with inertinite content.The observed variations in inertinite porosity between coals from different coal regions and coal basins may explain why previous studies differ in their observations of the relationships between gas sorption behavior, permeability, porosity, and maceral composition. These variations are not simply a demarcation between Northern and Southern Hemisphere coals.

  15. Assessment of the role of in situ generated (E)-2,4-diene-valproic acid in the toxicity of valproic acid and (E)-2-ene-valproic acid in sandwich-cultured rat hepatocytes

    Energy Technology Data Exchange (ETDEWEB)

    Surendradoss, Jayakumar; Chang, Thomas K.H.; Abbott, Frank S., E-mail: frank.abbott@ubc.ca

    2012-11-01

    Valproic acid (VPA) undergoes cytochrome P450-mediated desaturation to form 4-ene-VPA, which subsequently yields (E)-2,4-diene-VPA by β-oxidation. Another biotransformation pathway involves β-oxidation of VPA to form (E)-2-ene-VPA, which also generates (E)-2,4-diene-VPA by cytochrome P450-mediated desaturation. Although the synthetic form of (E)-2,4-diene-VPA is more hepatotoxic than VPA as shown in various experimental models, there is no conclusive evidence to implicate the in situ generated (E)-2,4-diene-VPA in VPA hepatotoxicity. The present study investigated the effects of modulating the in situ formation of (E)-2,4-diene-VPA on markers of oxidative stress (formation of 2′,7′-dichlorofluorescein; DCF), steatosis (accumulation of BODIPY 558/568 C{sub 12}), necrosis (release of lactate dehydrogenase; LDH), and on cellular total glutathione (GSH) levels in sandwich-cultured rat hepatocytes treated with VPA or (E)-2-ene-VPA. Treatment with either of these chemicals alone increased each of the toxicity endpoints. In VPA-treated hepatocytes, (E)-2,4-diene-VPA was detected only at trace levels, even after phenobarbital (PB) pretreatment and there was no effect on the toxicity of VPA. Furthermore, pretreatment with a cytochrome P450 enzyme inhibitor, 1-aminobenzotriazole (1-ABT), did not influence the extent of VPA toxicity in both PB-pretreated and vehicle-pretreated hepatocytes. However, in (E)-2-ene-VPA-treated hepatocytes, PB pretreatment greatly enhanced the levels of (E)-2,4-diene-VPA and this was accompanied by a further enhancement of the effects of (E)-2-ene-VPA on DCF formation, BODIPY accumulation, LDH release, and GSH depletion. Pretreatment with 1-ABT reduced the concentrations of (E)-2,4-diene-VPA and the extent of (E)-2-ene-VPA toxicity; however, this occurred in PB-pretreated hepatocytes, but not in control hepatocytes. In conclusion, in situ generated (E)-2,4-diene-VPA is not responsible for the hepatocyte toxicity of VPA, whereas it

  16. Corrosion test by low-temperature coal tar

    Energy Technology Data Exchange (ETDEWEB)

    Ando, S; Yamamoto, S

    1952-01-01

    Corrosive actions of various fractions of low-temperature coal tar against mild steel or Cr 13-steel were compared at their boiling states. Corrosions became severe when the boiling points exceeded 240/sup 0/. The acidic fractions were more corrosive. In all instances, corrosion was excessive at the beginning of immersion testing and then gradually became mild; boiling accelerated the corrosion. Cr 13-steel was corrosion-resistant to low-temperature coal-tar fractions.

  17. Amino acid sequence and biological characterization of BlatPLA₂, a non-toxic acidic phospholipase A₂ from the venom of the arboreal snake Bothriechis lateralis from Costa Rica.

    Science.gov (United States)

    Van der Laat, Marco; Fernández, Julián; Durban, Jordi; Villalobos, Eva; Camacho, Erika; Calvete, Juan J; Lomonte, Bruno

    2013-10-01

    Bothriechis is considered a monophyletic, basal genus of arboreal Neotropical pitvipers distributed across Middle America. The four species found in Costa Rica (B. lateralis, B. schlegeli, B. nigroviridis, B. supraciliaris) differ in their venom proteomic profiles, suggesting that different Bothriechis taxa have evolved diverse trophic strategies. In this study, we isolated a phospholipase A₂ (PLA₂) from B. lateralis venom, aiming at increasing our knowledge on the structural and functional characteristics of group II acidic PLA₂s, whose toxic actions are generally more restricted than those displayed by basic PLA₂s. The new acidic enzyme, BlatPLA₂, occurs as a monomer of 13,917 Da, in contrast to many basic group II PLA₂s which associate into dimers and often display myotoxicity and/or neurotoxicity. Its amino acid sequence of 122 residues predicts an isoelectric point of 4.7, and displays significant differences with previously characterized acidic PLA₂s, with which it shows a maximum sequence identity of 78%. BlatPLA₂ is catalytically active but appears to be devoid of major toxic activities, lacking intravenous or intracerebroventricular lethality, myotoxicity, in vitro anticoagulant activity, and platelet aggregation or inhibition effects. Phylogenetic relationships with similar group II enzymes suggest that BlatPLA₂ may represent a basal sequence to other acidic PLA₂s. Due to the metabolic cost of venom protein synthesis, the presence of a relatively abundant (9%) but non-toxic component is somewhat puzzling. Nevertheless, we hypothesize that BlatPLA₂ could have a role in the pre-digestion of prey, possibly having retained characteristics of ancestral PLA₂s without evolving towards potent toxicity. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Performance of a passive treatment system for net-acidic coal mine drainage over five years of operation.

    Science.gov (United States)

    Matthies, Romy; Aplin, Andrew C; Jarvis, Adam P

    2010-09-15

    A full-scale passive treatment system (PTS) was commissioned in 2003 to treat two net-acidic coal mine water discharges in the Durham coalfield, UK. The principal aim of the PTS was to decrease concentrations of iron (3.2) and alkalinity (> or =0 mg L(-1) CaCO(3) eq). Secondary objectives were to decrease zinc (treatment, water qualities were improved by 84% in the case of Fe, 87% Al, 83% acidity, 51% Zn, 23% Mn and 29% SO(4)(2)(-). Alkalinity (74%) and pH (95% as H(+)) were increased. Area adjusted removal rates (Fe=1.49+/-0.66 g d(-1) m(-2); acidity=6.7+/-4.9 g d(-1) m(-2)) were low compared to design criteria, mainly due to load limitation. Disregarding seasonality effects, acidity removal and effluent pH were stable over time. A substantial temporal decrease in calcium and alkalinity generation suggests that limestone is increasingly armoured. Once pH is no longer buffered by the carbonate system, metals could be remobilized, putting treatment efficiency at risk. Copyright 2010 Elsevier B.V. All rights reserved.

  19. Investigation of the efect of the coal particle sizes on the interfacial and rheological properties of coal-water slurry fuels

    Energy Technology Data Exchange (ETDEWEB)

    Kihm, K.D.; Deignan, P. [Texas A& M Univ., College Station, TX (United States)

    1995-11-01

    Experiments were conducted to investigate the effect of particle size on coal-water slurry (CWS) surface tension properties. Two different coal powder samples of different size ranges were obtained through sieving of coal from the Upper Elkhorn Seam. The surfactant (anionic DDBS-soft, dodecylbenzene sulfonic acid) concentration varied from 0 to 1.0% in weight while the coal loading remained at 40% in weight for all the cases. A du Nouy ring tensiometer and a maximum bubble pressure tensiometer measured the static and dynamic surface tensions, respectively, The results show that both static and dynamic surface tensions tend to increase with decreasing coal particle sizes suspended in CWS fuels. Examination of the peak pressure, minimum pressure, surfactant diffusion time, and dead time were also made to correlate these microscopic pressure behavior with the macroscopic dynamic surface tension and to examine the accuracy of the experiment.

  20. Application of coals as sorbents for the removal of Cr from aqueous waste streams

    Energy Technology Data Exchange (ETDEWEB)

    Lakatos, J.; Brown, S.D.; Snape, C.E. [University of Miskolc, Miskolc (Hungary). Dept. of Analytical Chemistry

    2001-09-01

    The study reported further understanding of how various electron transfer processes operate for Cr(VI) with a view to using coals for the removal of Cr(VI) from waste streams. Skye peat, Spanish and German lignites, UK high and low volatility bituminous coals and an activated carbon were used. After treatment to remove exchangeable cations, ion exchange experiments were conducted in 0.1 M acetic acid-sodium acetate (1:1) buffer and 0.05 M sulphuric acid solutions and the slurries were agitated once a day. The ion concentrations in the solutions were determined by flame atomic absorption spectroscopy. The Cr(VI) renaming in solution was determined by the standard calorimetric 1,5-diphenylcarbazide method. Peat and low rank (Spanish Mequinenza) coal exhibited a larger capacity for Cr(VI) removal than bituminous coal. Redox mechanisms are operative coupled with the oxidation of the coal and peat surfaces. Desorption of Cr(III) formed by reduction which occurs in strongly acidic media also needs to be considered. 1 ref., 3 figs.

  1. Investigation on characterization and liquefaction of coals from Tavan tolgoi deposit

    Directory of Open Access Journals (Sweden)

    B Purevsuren

    2014-10-01

    Full Text Available On the basis of proximate, ultimate, petrographic and IR analysis results have been confirmed that the Tavan tolgoi coal is a high-rank G mark stone coal. The results of X-ray fluorescence analysis of coal ash show that the Tavan tolgoi coal is a subbituminous coal. The ash of Tavan tolgoi coal has an acidic character. The results of pyrolysis of Tavan tolgoi coal at different heating temperatures show that a maximum yield - 5.0% of liquid product can be obtained at 700°C. The results of thermal dissolution of Tavan tolgoi coal in tetralin with constant mass ratio between coal and tetralin (1:1.8 at 450°C show that 50.0% of liquid product can be obtained after thermal decomposition of the COM (coal organic matter. DOI: http://dx.doi.org/10.5564/mjc.v14i0.191 Mongolian Journal of Chemistry 14 (40, 2013, p12-19

  2. Coal mining and water quality: Criciuma's case

    International Nuclear Information System (INIS)

    Fernandes, Lincoln

    1999-01-01

    abandoned mines (mainly after 1990, year of the implantation of the free trade for the coal sector), that did not finish their reclamation works. These sites are still producing acid drainage; n the sub-basins of the rivers Mae Luzia and Sangao there are several dumping tailings, probably connected to abandoned mines. These tailings are permanent fonts of sulfuric acid; even the mines in operation, in accordance with the official regulations, drain to the rivers, eventually, acid mine drainage, with no previous treatment. (author)

  3. Poisoning by coal smoke containing arsenic and fluoride

    Energy Technology Data Exchange (ETDEWEB)

    An, D.; He, Y.G.; Hu, Q.X. [Guizhou Sanitary and Epidemiological Station, Guiyang (China)

    1997-02-01

    An investigation was made into a disease involving skin pigmentation, keratosis of the hands and feet, dental discoloration, and generalized bone and joint pain, stiffness and rigidity, in the village of Bazhi, Zhijin County, Ghizhou Province, People`s Republic of China. Measurements were made of the arsenic and fluoride levels of coal, water, air, food, urine and hair in Bazhi and a control village, Xinzhai, in which coal with a low arsenic content was used. Up to 188 people, including children, in Bazhi and 752 in Xinzhai, were examined for the presence of chronic arsenium, skeletal fluorosis, dental fluorosis and electrocardiogram abnormalities. The coal in Bazhi was found to contain high levels of arsenic and fluoride resulting, after burning in homes without an adequate chimney systems, in pollution of air and food with arsenic and fluoride. The coal in Xinzhai did not cause arsenic pollution but did produce a higher level of fluoride pollution. It was concluded that the endemic disease in Bazhi was caused by pollution by coal smoke containing arsenic and fluoride. It is suggested that arsenic may act synergistically with fluoride so that a lower level of fluoride may produce fluoride toxicity with dental and skeletal fluorosis.

  4. Ultra High Efficiency ESP for Fine Particulate and Air Toxics Control

    International Nuclear Information System (INIS)

    Srinivasachar, Srivats; Pease, Benjamin R.; Porle, Kjell; Mauritzson, Christer; Haythornthwaite, Sheila

    1997-01-01

    Nearly ninety percent of U.S. coal-fired utility boilers are equipped with electrostatic precipitators (ESP). Cost effective retrofittable ESP technologies are the only means to accomplish Department of Energy's (DOE) goal of a major reduction in fine particulate and air toxic emissions from coal-fired power plants. Particles in the size range of 0.1 to 5 (micro)m typically escape ESPs. Metals, such as arsenic, cadmium, lead, molybdenum and antimony, concentrate on these particles. This is the main driver for improved fine particulate control. Vapor phase emissions of mercury, selenium and arsenic are also of major concern. Current dry ESPs, which operate at temperatures greater than 280 F, provide little control for vapor phase toxics. The need for inherent improvement to ESPs has to be considered keeping in perspective the current trend towards the use of low sulfur coals. Switching to low sulfur coals is the dominant approach for SO 2 emission reduction in the utility industry. Low sulfur coals generate high resistivity ash, which can cause an undesirable phenomenon called ''back corona.'' Higher particulate emissions occur if there is back corona in the ESP. Results of the pilot-scale testing identified the ''low temperature ESP'' concept to have the biggest impact for the two low sulfur coals investigated. Lowering the flue gas temperature to 220 F provided the maximum impact in terms of decreased emissions. Intermediate operating temperatures (reduction from 340 to 270 F) also gave significant ESP performance improvement. A significant reduction in particulate emissions was also noted when the flue gas humidity was increased (temperature held constant) from the baseline condition for these moderately high resistivity ash coals. Independent control of flue gas humidity and temperature was an important and a notable element in this project. Mercury emissions were also measured as a function of flue gas temperature. Mercury emissions decreased as the flue gas

  5. Sulfur Rich Coal Gasification and Low Impact Methanol Production

    Directory of Open Access Journals (Sweden)

    Andrea Bassani

    2018-03-01

    Full Text Available In recent times, the methanol was employed in numerous innovative applications and is a key compound widely used as a building block or intermediate for producing synthetic hydrocarbons, solvents, energy storage medium and fuel. It is a source of clean, sustainable energy that can be produced from traditional and renewable sources: natural gas, coal, biomass, landfill gas and power plant or industrial emissions. An innovative methanol production process from coal gasification is proposed in this work. A suitable comparison between the traditional coal to methanol process and the novel one is provided and deeply discussed. The most important features, with respect to the traditional ones, are the lower carbon dioxide emissions (about 0.3% and the higher methanol production (about 0.5% without any addition of primary sources. Moreover, it is demonstrated that a coal feed/fuel with a high sulfur content allows higher reductions of carbon dioxide emissions. The key idea is to convert hydrogen sulfide and carbon dioxide into syngas (a mixture of hydrogen and carbon monoxide by means of a regenerative thermal reactor. This is the Acid Gas to Syngas technology, a completely new and effective route of processing acid gases. The main concept is to feed an optimal ratio of hydrogen sulphide and carbon monoxide and to preheat the inlet acid gas before the combustion. The reactor is simulated using a detailed kinetic scheme.

  6. Acute inhalation toxicity of carbonyl sulfide

    Energy Technology Data Exchange (ETDEWEB)

    Benson, J.M.; Hahn, F.F.; Barr, E.B. [and others

    1995-12-01

    Carbonyl sulfide (COS), a colorless gas, is a side product of industrial procedures sure as coal hydrogenation and gasification. It is structurally related to and is a metabolite of carbon disulfide. COS is metabolized in the body by carbonic anhydrase to hydrogen sulfide (H{sub 2}S), which is thought to be responsible for COS toxicity. No threshold limit value for COS has been established. Results of these studies indicate COS (with an LC{sub 50} of 590 ppm) is slightly less acutely toxic than H{sub 2}S (LC{sub 50} of 440 ppm).

  7. Evaluation of remediation of coal mining wastewater by chitosan microspheres using biomarkers

    Energy Technology Data Exchange (ETDEWEB)

    Benassi, J.C.; Laus, R.; Geremias, R.; Lima, P.L.; Menezes, C.T.B.; Laranjeira, M.C.M.; Wilhelm, D.; Favere, V.T.; Pedrosa, R.C. [Universidade Federal de Santa Catarina, Florianopolis (Brazil)

    2006-11-15

    The aim of this work was to evaluate the remediation of mining wastewater effluents by chitosan microspheres using biomarkers of exposure and effect. DNA damage (Comet assay) and several biomarkers of oxidative stress, such as lipoperoxidation levels (TBARS), superoxide dismutase (SOD), catalase (CAT), and glutathione S-transferase (GST) activities, and contents of reduced glutathione (GSH), were measured in blood and liver of tilapia (Oreochromis niloticus) exposed for 7, 15, and 30 days to dechlorinated tap water, 10% coal mining wastewater (CMW), and coal mining wastewater treated with chitosan microspheres (RCM). The results obtained indicated that the use of oxidative stress biomarkers were useful tools for the toxicity evaluation of coal mining effluents and also suggest that chitosan microspheres may be used as an alternative approach for remediation of coal mining wastewaters.

  8. Microbially-Enhanced Coal Bed Methane: Strategies for Increased Biogenic Production

    Science.gov (United States)

    Davis, K.; Barhart, E. P.; Schweitzer, H. D.; Cunningham, A. B.; Gerlach, R.; Hiebert, R.; Fields, M. W.

    2014-12-01

    Coal is the largest fossil fuel resource in the United States. Most of this coal is deep in the subsurface making it costly and potentially dangerous to extract. However, in many of these deep coal seams, methane, the main component of natural gas, has been discovered and successfully harvested. Coal bed methane (CBM) currently accounts for approximately 7.5% of the natural gas produced in the U.S. Combustion of natural gas produces substantially less CO2 and toxic emissions (e.g. heavy metals) than combustion of coal or oil thereby making it a cleaner energy source. In the large coal seams of the Powder River Basin (PRB) in southeast Montana and northeast Wyoming, CBM is produced almost entirely by biogenic processes. The in situ conversion of coal to CBM by the native microbial community is of particular interest for present and future natural gas sources as it provides the potential to harvest energy from coal seams with lesser environmental impacts than mining and burning coal. Research at Montana State University has shown the potential for enhancing the subsurface microbial processes that produce CBM. Long-term batch enrichments have investigated the methane enhancement potential of yeast extract as well as algal and cyanobacterial biomass additions with increased methane production observed with all three additions when compared to no addition. Future work includes quantification of CBM enhancement and normalization of additions. This presentation addresses the options thus far investigated for increasing CBM production and the next steps for developing the enhanced in situ conversion of coal to CBM.

  9. Recent advances in the use of synchrotron radiation for the analysis of coal combustion products

    Energy Technology Data Exchange (ETDEWEB)

    Manowitz, B. [Brookhaven National Lab., Upton, NY (United States)

    1995-11-01

    Two major coal combustion problems are the formation and build-up of slag deposits on heat transfer surfaces and the production and control of toxic species in coal combustion emissions. The use of synchrotron radiation for the analysis of coal combustion products can play a role in the better understanding of both these phenomena. An understanding of the chemical composition of such slags under boiler operating conditions and as a function of the mineral composition of various coals is one ultimate goal of this program. The principal constituents in the ash of many coals are the oxides of Si, Al, Fe, Ca, K, S, and Na. The analytical method required must be able to determine the functional forms of all these elements both in coal and in coal ash at elevated temperatures. One unique way of conducting these analyses is by x-ray spectroscopy.

  10. Pretreatment by low-dose fibrates protects against acute free fatty acid-induced renal tubule toxicity by counteracting PPARα deterioration

    International Nuclear Information System (INIS)

    Takahashi, Kyoko; Kamijo, Yuji; Hora, Kazuhiko; Hashimoto, Koji; Higuchi, Makoto; Nakajima, Takero; Ehara, Takashi; Shigematsu, Hidekazu; Gonzalez, Frank J.; Aoyama, Toshifumi

    2011-01-01

    Development of a preventive strategy against tubular damage associated with proteinuria is of great importance. Recently, free fatty acid (FFA) toxicities accompanying proteinuria were found to be a main cause of tubular damage, which was aggravated by insufficiency of peroxisome proliferator-activated receptor alpha (PPARα), suggesting the benefit of PPARα activation. However, an earlier study using a murine acute tubular injury model, FFA-overload nephropathy, demonstrated that high-dose treatment of PPARα agonist (0.5% clofibrate diet) aggravated the tubular damage as a consequence of excess serum accumulation of clofibrate metabolites due to decreased kidney elimination. To induce the renoprotective effects of PPARα agonists without drug accumulation, we tried a pretreatment study using low-dose clofibrate (0.1% clofibrate diet) using the same murine model. Low-dose clofibrate pretreatment prevented acute tubular injuries without accumulation of its metabolites. The tubular protective effects appeared to be associated with the counteraction of PPARα deterioration, resulting in the decrease of FFAs influx to the kidney, maintenance of fatty acid oxidation, diminution of intracellular accumulation of undigested FFAs, and attenuation of disease developmental factors including oxidative stress, apoptosis, and NFκB activation. These effects are common to other fibrates and dependent on PPARα function. Interestingly, however, clofibrate pretreatment also exerted PPARα-independent tubular toxicities in PPARα-null mice with FFA-overload nephropathy. The favorable properties of fibrates are evident when PPARα-dependent tubular protective effects outweigh their PPARα-independent tubular toxicities. This delicate balance seems to be easily affected by the drug dose. It will be important to establish the appropriate dosage of fibrates for treatment against kidney disease and to develop a novel PPARα activator that has a steady serum concentration regardless of

  11. Colour and toxic characteristics of metakaolinite–hematite pigment for integrally coloured concrete, prepared from iron oxide recovered from a water treatment plant of an abandoned coal mine

    International Nuclear Information System (INIS)

    Sadasivam, Sivachidambaram; Thomas, Hywel Rhys

    2016-01-01

    A metakaolinite-hematite (KH) red pigment was prepared using an ocherous iron oxide sludge recovered from a water treatment plant of an abandoned coal mine. The KH pigment was prepared by heating the kaolinite and the iron oxide sludge at kaolinite's dehydroxylation temperature. Both the raw sludge and the KH specimen were characterised for their colour properties and toxic characteristics. The KH specimen could serve as a pigment for integrally coloured concrete and offers a potential use for the large volumes of the iron oxide sludge collected from mine water treatment plants. - Graphical abstract: A kaolinite based red pigment was prepared using an ocherous iron oxide sludge recovered from an abandoned coal mine water treatment plant. Display Omitted - Highlights: • A red pigment was prepared by heating a kaolinite and an iron oxide sludge. • The iron oxide and the pigment were characterised for their colour properties. • The red pigment can be a potential element for integrally coloured concrete.

  12. Increased Toxicity of Chemotherapeutic Drugs by All-Trans Retinoic Acid in Cd44 Cells

    Directory of Open Access Journals (Sweden)

    A Abbasi

    2016-03-01

    Full Text Available BACKGROUND AND OBJECTIVE: In recent studies, undifferentiated CD44 cells have been introduced as the major cause of chemotherapeutic drug resistance in esophageal cancer. In this study, we aimed to evaluate the effects of all-trans retinoic acid on reducing chemotherapeutic drug resistance and improving the associated toxic effects. METHODS: In this clinical study, CD44+ and CD44- cells were separated from KYSE-30 cell line, using magnetic-activated cell sorting (MACS method. The cytotoxic effects of retinoic acid treatment, combined with cisplatin and 5-fluorouracil, were separately evaluated in two cell groups, i.e., CD44+ and CD44-. Cytotoxicity was determined by identifying cellular metabolic activity, acridine orange/ethidium bromide staining, and flow cytometry. FINDINGS: In this study, CD44 marker was expressed in 6.25% of the cell population in KYSE-30 cell line. The results of flow cytometry revealed that treatment with a combination of retinoic acid and chemotherapeutic drugs could improve cell cycle arrest in CD44+ cells (p<0.05, unlike CD44- cells. Determination of cellular metabolic activity, increased cell apoptosis along with decreased half maximal inhibitory concentration (IC50, and acridine orange/ethidium bromide staining were indicative of the increased percentage of primary and secondary apoptotic CD44+ cells. However, in CD44- cells, these effects were only observed by using a combination of retinoic acid and cisplatin (p<0.05. CONCLUSION: The present results showed that all-trans retinoic acid could increase the toxicity of cisplatin and 5-fluorouracil in CD44+ cells.

  13. The developmental toxicity of perfluoroalkyl acids and their derivatives

    International Nuclear Information System (INIS)

    Lau, Christopher; Butenhoff, John L.; Rogers, John M.

    2004-01-01

    Perfluoroalkyl acids such as perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) have applications in numerous industrial and consumer products. Although the toxicology of some of these compounds has been investigated in the past, the widespread prevalence of PFOS and PFOA in humans, as demonstrated in recent bio-monitoring studies, has drawn considerable interest from the public and regulatory agencies as well as renewed efforts to better understand the hazards that may be inherent in these compounds. This review provides a brief overview of the perfluoroalkyl chemicals and a summary of the available information on the developmental toxicity of the eight-carbon compounds, PFOS and PFOA. Although the teratological potentials of some of these chemicals had been studied in the past and the findings were generally unremarkable, results from recent postnatal studies on developmental and reproductive indices have prompted consideration of their relevance to human health risk. Based on current understanding of the developmental effects of PFOS and PFOA in rodents, several avenues of research are suggested that would further support the risk assessment of these perfluorinated organic chemicals

  14. Determination of Cd, Hg, Pb and Tl in coal and coal fly ash slurries using electrothermal vaporization inductively coupled plasma mass spectrometry and isotopic dilution

    Energy Technology Data Exchange (ETDEWEB)

    Maia, S.M.; Pozebon, D.; Curtius, A.J. [Univ. Federal de Santa Catarina, Florianopolis, SC (Brazil)

    2003-07-01

    A method has been investigated for the determination of Cd, Hg, Pb and Tl in coal and in coal fly ash, using slurry sampling electrothermal vaporization inductively coupled plasma mass spectrometry and isotope dilution. The slurry, 25 mg ml{sup -1}, was prepared by mixing the powdered sample (less than or equal to 36 - 45 mm) with acid solutions (nitric acid for coal and nitric and hydrofluoric acids for coal fly ash) and submitting the mixture to an ultrasonic agitation, letting it stand afterwards in a water bath at 60{sup o}C for 2 h. An ultrasonic probe was used to homogenize the slurry in the autosampler cup just before its introduction into the graphite tube. The best conditions were determined regarding analyte sensitivity, furnace temperature program, amount of modifier, acid concentration, gas flow rate and particle size. For Hg, the pyrolysis stage was omitted and a low vaporization temperature was used (450 - 1000{sup o}C); the residual matrix was eliminated in the first step of the following cycle. The modifiers used were: Pd for Cd and Tl; Au, Ir or Pd for Hg; Ir or Pd for Pb. The accuracy of the method was checked by analyzing six certified coal reference materials (SARM 20, SARM 19, BCR No. 40, BCR No. 180, BCR No. 181 and NIST 1630a) and one certified coal fly ash (NIST 1633b). With one exception (Hg in BCR No. 180), the found concentrations were typically within 95% confidence interval of the certified values, or close enough to the recommended values, as long as the samples were ground to a small enough particle size. The limits of detection were typically around 0.08 {mu}g g{sup -1}, 0.03 {mu}g g{sup -1}, 1 {mu}g g{sup -1} and 0.02 {mu}g g{sup -1} for Cd, Hg, Pb and Tl, respectively. The precision was also adequate with relative standard deviations of usually < 5%.

  15. The reaction of acid mine drainage with fly ash from coal combustion

    International Nuclear Information System (INIS)

    Kim, A.G.

    1999-01-01

    The placement of alkaline fly ash in abandoned, reclaimed or active surface coal mines is intended to reduce the amount of acid mine drainage (AMD) produced at such sites by neutralization, inhibition of acid forming bacteria, encapsulation of the pyrite or water diversion. A continuing concern with this application is the potential release of trace elements from the fly ash when it is placed in contact with AMD. To investigate the possible release of antimony, arsenic, barium, boron, cadmium, chromium, cobalt, copper, lead, nickel, selenium, and zinc from fly ash, a series of column leaching tests were conducted. A one kg fly ash sample, placed in a 5-cm by 1 m acrylic columns, was leached at a nominal rate of 250 mL/d for between 30 and 60 days. The leachant solutions were deionized water, and dilute solutions of sulfuric acid and ferric chloride. Leaching tests have been completed on 28 fly ash samples. leachate data, analyzed as the mass extracted with respect to the concentration in the solid, indicate that the release of trace elements is variable, with only barium and zinc extracted at greater than 50 pct of the amount present in the original sample. As a comparison, water quality changes have been monitored at three sites where fly ash grout was injected after reclamation to control AMD. When compared before and after grouting, small increases in pH and decreases in acidity at discharge points were observed. Concentrations of trace metals were found to be comparable in treated and untreated areas. When grouted and ungrouted areas were compared, the effect of the fly ash was shown to be localized in the areas of injection. These studies indicated that when fly ash is used as a reagent to control of AMD, the release of trace elements is relatively small

  16. Protective effects of dietary glycine and glutamic acid toward the toxic effects of oxidized mustard oil in rabbits.

    Science.gov (United States)

    Zeb, Alam; Rahman, Saleem Ur

    2017-01-25

    The protective role of glycine and glutamic acid against the toxic effects of oxidized oil was studied for the first time. Mustard seed oil was thermally oxidized and characterized for quality characteristics and polyphenolic composition using reversed phase HPLC-DAD. Significant changes in the quality characteristics occurred with thermal oxidation. Fourteen polyphenolic compounds were identified and quantified in oils. Quercetin-3-glucoside, quercetin-3-feruloylsophoroside, catechin, quercetin-3-rutinoside, quercetin-3,7-diglucoside, sinapic acid and vanillic acid hexoside were the major compounds in the fresh and oxidized oil. Oxidized, un-oxidized mustard oils, glycine and glutamic acid were given to rabbits alone or in combination. The biochemical responses were studied in terms of haematological and biochemical parameters and histopathology. It has been observed that biochemical and haematological parameters were adversely affected by the oxidized oil, while supplementation of both amino acids was beneficial in normalizing these parameters. Both amino acids alone have no significant effects, however, oxidized oil affected the liver by enhancing fat accumulation, causing hepatitis, reactive Kupffer cells and necrosis. The co-administration of oxidized oils with glycine or glutamic acid revealed significant recovery of the liver structure and function. In conclusion, glycine or glutamic acid is beneficial and protective against food toxicity and can be considered as an ameliorative food supplement.

  17. Applications of micellar enzymology to clean coal technology. [Laccase

    Energy Technology Data Exchange (ETDEWEB)

    Walsh, C.T.

    1990-04-27

    This project is designed to develop methods for pre-combustion coal remediation by implementing recent advances in enzyme biochemistry. The novel approach of this study is incorporation of hydrophilic oxidative enzymes in reverse micelles in an organic solvent. Enzymes from commercial sources or microbial extracts are being investigated for their capacity to remove organic sulfur from coal by oxidation of the sulfur groups, splitting of C-S bonds and loss of sulfur as sulfuric acid. Dibenzothiophene (DBT) and ethylphenylsulfide (EPS) are serving as models of organic sulfur-containing components of coal in initial studies.

  18. Basic studies on coal liquefaction reaction, reforming and utilization of liquefaction products

    Energy Technology Data Exchange (ETDEWEB)

    Shiraishi, M. (National Institute for Resources and Environment, Tsukuba (Japan))

    1993-09-01

    This report describes the achievement of research and development of coal liquefaction technologies in the Sunshine Project for FY 1992, regarding the coal liquefaction reaction, reforming and utilization of liquefaction products. For the fundamental study on coal liquefaction reaction, were investigated effect of asphaltene in petroleum residue on coprocessing, pretreatment effect in coprocessing of Taiheiyo coal and tarsand bitumen using oil soluble catalyst, solubilization and liquefaction of Taiheiyo coal at mild conditions with the aid of super acid, and flash hydropyrolysis of finely pulverized swollen coal under high hydrogen pressure. On the other hand, for the study on hydrotreatment of coal derived liquid, were investigated catalytic hydroprocessing of Wandoan coal liquids, production of gasoline from coal liquids by fluid catalytic cracking, solvent extraction of phenolic compounds from coal liquids, and separation of hetero compounds in coal liquid by means of high pressure crystallization. Further progress in these studies has been confirmed. 9 figs., 6 tabs.

  19. Acid drainage from coal mining: Effect on paddy soil and productivity of rice.

    Science.gov (United States)

    Choudhury, Burhan U; Malang, Akbar; Webster, Richard; Mohapatra, Kamal P; Verma, Bibhash C; Kumar, Manoj; Das, Anup; Islam, Mokidul; Hazarika, Samarendra

    2017-04-01

    Overburden and acid drainage from coal mining is transforming productive agricultural lands to unproductive wasteland in some parts of Northeast India. We have investigated the adverse effects of acid mine drainage on the soil of rice paddy and productivity by comparing them with non-mined land and abandoned paddy fields of Jaintia Hills in Northeast India. Pot experiments with a local rice cultivar (Myngoi) as test crop evaluated biological productivity of the contaminated soil. Contamination from overburden and acid mine drainage acidified the soil by 0.5 pH units, increased the exchangeable Al 3+ content 2-fold and its saturation on clay complexes by 53%. Available sulfur and extractable heavy metals, namely Fe, Mn and Cu increased several-fold in excess of critical limits, while the availability of phosphorus, potassium and zinc contents diminished by 32-62%. The grain yield of rice was 62% less from fields contaminated with acid mine drainage than from fields that have not suffered. Similarly, the amounts of vegetation, i.e. shoots and roots, in pots filled with soil from fields that received acid mine drainage were 59-68% less than from uncontaminated land (average shoot weight: 7.9±2.12gpot -1 ; average root weight: 3.40±1.15gpot -1 ). Paddy fields recovered some of their productivity 4years after mining ceased. Step-wise multiple regression analysis affirmed that shoot weight in the pots and grain yield in field were significantly (p<0.01) and positively influenced by the soil's pH and its contents of K, N and Zn, while concentration of S in excess of threshold limits in contaminated soil significantly (p<0.01) reduced the weight of shoots in the pots and grain yield in the field. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Mechanisms of Vanadium Recovery from Stone Coal by Novel BaCO3/CaO Composite Additive Roasting and Acid Leaching Technology

    Directory of Open Access Journals (Sweden)

    Zhenlei Cai

    2016-03-01

    Full Text Available In this report, the vanadium recovery mechanisms by novel BaCO3/CaO composite additive roasting and acid leaching technology, including the phase transformations and the vanadium leaching kinetics, were studied. The purpose of this manuscript is to realize and improve the vanadium recovery from stone coal using BaCO3/CaO as the composite additive. The results indicated that during the composite additive BaCO3/CaO roasting process, the monoclinic crystalline structure of muscovite (K(Al,V2[Si3AlO10](OH2 was converted into the hexagonal crystalline structure of BaSi4O9 and the tetragonal crystalline structure of Gehlenite (Ca2Al2SiO7, which could, therefore, facilitate the release and extraction of vanadium. Vanadium in leaching residue was probably in the form of vanadate or pyrovanadate of barium and calcium, which were hardly extracted during the sulfuric acid leaching process. The vanadium leaching kinetic analysis indicated that the leaching process was controlled by the diffusion through a product layer. The apparent activation energy could be achieved as 46.51 kJ/mol. The reaction order with respect to the sulfuric acid concentration was 1.1059. The kinetic model of vanadium recovery from stone coal using novel composite additive BaCO3/CaO could be finally established.

  1. Colour and toxic characteristics of metakaolinite-hematite pigment for integrally coloured concrete, prepared from iron oxide recovered from a water treatment plant of an abandoned coal mine

    Science.gov (United States)

    Sadasivam, Sivachidambaram; Thomas, Hywel Rhys

    2016-07-01

    A metakaolinite-hematite (KH) red pigment was prepared using an ocherous iron oxide sludge recovered from a water treatment plant of an abandoned coal mine. The KH pigment was prepared by heating the kaolinite and the iron oxide sludge at kaolinite's dehydroxylation temperature. Both the raw sludge and the KH specimen were characterised for their colour properties and toxic characteristics. The KH specimen could serve as a pigment for integrally coloured concrete and offers a potential use for the large volumes of the iron oxide sludge collected from mine water treatment plants.

  2. Synergistic Effects of Zinc Oxide Nanoparticles and Fatty Acids on Toxicity to Caco-2 Cells

    DEFF Research Database (Denmark)

    Cao, Yi; Roursgaard, Martin; Kermanizadeh, Ali

    2015-01-01

    epithelial (Caco-2) cells. The ZnO NPs exposure concentration dependently induced cytotoxicity to Caco-2 cells showing as reduced proliferation and activity measured by 3 different assays. PA exposure induced cytotoxicity, and coexposure to ZnO NPs and PA showed the largest cytotoxic effects. The presence......Fatty acids exposure may increase sensitivity of intestinal epithelial cells to cytotoxic effects of zinc oxide (ZnO) nanoparticles (NPs). This study evaluated the synergistic effects of ZnO NPs and palmitic acid (PA) or free fatty acids (FFAs) mixture (oleic/PA 2:1) on toxicity to human colon...

  3. Cleaning up coal-fired plants : multi-pollutant technology

    Energy Technology Data Exchange (ETDEWEB)

    Granson, E.

    2009-06-15

    Coal is the source of 41 per cent of the world's electricity. Emission reduction technologies are needed to address the rapid growth of coal-fired plants in developing countries. This article discussed a multi-pollutant technology currently being developed by Natural Resources Canada's CANMET Energy Technology Centre. The ECO technology was designed to focus on several types of emissions, including sulfur oxides (SOx), nitrogen oxides (NOx), mercury and particulates, as well as acid gases and other metals from the exhaust gas of coal-fired plants. The ECO process converts and absorbs incoming pollutants in a wet electrostatic precipitator while at the same time producing a valuable fertilizer. The ECO system is installed as part of the plant's existing particulate control device and treats flue gas in 3 process steps: (1) a dielectric barrier discharge reactor oxidizes gaseous pollutants to higher oxides; (2) an ammonia scrubber then removes sulfur dioxide (SO{sub 2}) not converted by the reactor while also removing the NOx; and (3) the wet electrostatic precipitator captures acid aerosols produced by the discharge reactor. A diagram of the ECO process flow was included. It was concluded that the systems will be installed in clean coal plants by 2015. 2 figs.

  4. Yellow phosphorus process to convert toxic chemicals to non-toxic products

    Science.gov (United States)

    Chang, S.G.

    1994-07-26

    The present invention relates to a process for generating reactive species for destroying toxic chemicals. This process first contacts air or oxygen with aqueous emulsions of molten yellow phosphorus. This contact results in rapid production of abundant reactive species such as O, O[sub 3], PO, PO[sub 2], etc. A gaseous or liquid aqueous solution organic or inorganic chemicals is next contacted by these reactive species to reduce the concentration of toxic chemical and result in a non-toxic product. The final oxidation product of yellow phosphorus is phosphoric acid of a quality which can be recovered for commercial use. A process is developed such that the byproduct, phosphoric acid, is obtained without contamination of toxic species in liquids treated. A gas stream containing ozone without contamination of phosphorus containing species is also obtained in a simple and cost-effective manner. This process is demonstrated to be effective for destroying many types of toxic organic, or inorganic, compounds, including polychlorinated biphenyls (PCB), aromatic chlorides, amines, alcohols, acids, nitro aromatics, aliphatic chlorides, polynuclear aromatic compounds (PAH), dyes, pesticides, sulfides, hydroxyamines, ureas, dithionates and the like. 20 figs.

  5. Coal geopolitics

    International Nuclear Information System (INIS)

    Giraud, P.N.; Suissa, A.; Coiffard, J.; Cretin, D.

    1991-01-01

    This book divided into seven chapters, describes coal economic cycle. Chapter one: coals definition; the principle characteristics and properties (origin, calorific power, international classification...) Chapter two: the international coal cycle: coal mining, exploration, coal reserves estimation, coal handling coal industry and environmental impacts. Chapter three: the world coal reserves. Chapter four: the consumptions, productions and trade. Chapter five: the international coal market (exporting mining companies; importing companies; distributors and spot market operators) chapter six: the international coal trade chapter seven: the coal price formation. 234 refs.; 94 figs. and tabs [fr

  6. Boron-containing acids: preliminary evaluation of acute toxicity and access to the brain determined by Raman scattering spectroscopy.

    Science.gov (United States)

    Soriano-Ursúa, Marvin A; Farfán-García, Eunice D; López-Cabrera, Yessica; Querejeta, Enrique; Trujillo-Ferrara, José G

    2014-01-01

    Boron-containing compounds (BCCs), particularly boron containing acids (BCAs), have become attractive moieties or molecules in drug development. It has been suggested that when functional groups with boron atoms are added to well-known drugs, the latter are conferred with greater potency and efficacy in relation to their target receptors. However, the use of BCAs in drug development is limited due to the lack of a toxicological profile. Consequently, the aim of the present study was to evaluate the acute toxicity of boric and boronic acids. Thus, a determination was made of the lethal dose (LD50) of test compounds in male CD1 mice, as well as the effective dose required to negatively affect spontaneous motor activity and to produce notable behavioral abnormalities. After treatment of animals at different doses, macroscopic observations were made from a necropsy, and Raman scattering spectroscopic studies were carried out on brain tissue samples. In general, the results show that most of the tested BCAs have very low toxicity, evidenced by the high doses required to induce notable toxic effects (greater than 100 mg/kg of body weight for all compounds, except for 3-thyenilboronic acid). Such toxic effects, presumably mediated by action on the CNS, include eye damage, gastrointestinal effects (e.g., gastric-gut dilatation and fecal retention), sedation, hypnosis and/or trembling. This preliminary toxicological profile suggests that BCAs can be considered potential therapeutic agents or moieties to be added to other compounds in the development of new drugs. Future studies are required to explore possible chronic toxicity of BCCs. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. A review of the nature of naphthenic acid occurrence, toxicity, and fate in refinery and oil sands extraction wastewaters

    Energy Technology Data Exchange (ETDEWEB)

    Eickhoff [Maxxam, Calgary, AB (Canada)

    2010-07-01

    This PowerPoint presentation evaluated the occurrence, toxicity and fate of naphthenic acids (NA) in refinery and oil sands extraction waste waters. The chemistry of NA was reviewed. Factors affecting the aquatic toxicity of NA were discussed, and modes of toxicity were outlined. NA residues in fish were evaluated. Issues concerning the biodegradation, photolysis, and phytodegradation of NA were reviewed. Various phytoremediation techniques were presented. Results of the study indicated that acute toxicity to aquatic organisms was caused by narcosis. Sublethal impacts of NA included changes to growth, fertilization, reproduction, development, and hormone modifications. Varying rates of toxicity were observed in different NA, based on their size and molecular structure. While biodegradation can reduce the toxicity of NA, higher molecular weight NA can resist degradation and cause toxicity. tabs., figs.

  8. Influence of nitric acid concentration on the characteristics of active carbons obtained from a mineral coal

    Energy Technology Data Exchange (ETDEWEB)

    Khelifi, A.; Temdrara, L.; Addoun, A. [Laboratoire d' Etude Physicochimique des Materiaux et Application a l' Environnement, Faculte de Chimie, USTHB, BP. 32 El Alia, Bab Ezzouar 16111, Algiers (Algeria); Almazan-Almazan, M.C.; Perez-Mendoza, M.; Domingo-Garcia, M.; Lopez-Garzon, F.J [Departamento de Quimica Inorganica, Facultad de Ciencias, 18071 Granada (Spain); Lopez-Domingo, F.J. [Departamento de CCIA, ETS de Ingenieria Informatica y Telecomunicacion, Granada, 18071 (Spain)

    2010-10-15

    This paper deals with the effect of the concentration of nitric acid solutions on the properties of activated carbons obtained by the oxidation of a parent activated carbon. For this purpose a mineral coal from Algeria has been used as raw material to prepare the parent active carbon AC. This was further treated with nitric acid solutions. The analysis of the samples includes the chemical and textural characterization. The former was carried out by selective titrations and FTIR spectroscopy. The latter, by nitrogen and carbon dioxide adsorption at 77 and 273 K, respectively, and by adsorption of organic probes (benzene, dichloromethane, cyclohexane and 2,2-dimethyl butane) at 303 K. The nitrogen adsorption isotherms have been analysed by using the BET equation, {alpha}{sub s}-method and molecular simulation. The Dubinin-Radushkevich approach has been applied to the carbon dioxide and vapours adsorption data. The results show that the treatment with 2 N nitric acid solution is very appropriate because it introduces a large amount of oxygen containing groups with a small change of the textural characteristics of the parent AC. More concentrated nitric acid solutions change in large extent the textural properties although they also introduce large amount of chemical groups. (author)

  9. Behavioral, clinical, and pathological characterization of acid metalliferous water toxicity in mallards

    Science.gov (United States)

    Isanhart, John P.; Wu, Hongmei; Pandher, Karamjeet; MacRae, Russell K.; Cox, Stephen B.; Hooper, Michael J.

    2011-01-01

    From September to November 2000, United States Fish and Wildlife Service biologists investigated incidents involving 221 bird deaths at 3 mine sites located in New Mexico and Arizona. These bird deaths primarily involved passerine and waterfowl species and were assumed to be linked to consumption of acid metalliferous water (AMW). Because all of the carcasses were found in or near pregnant leach solution ponds, tailings ponds, and associated lakes or storm water retention basins, an acute-toxicity study was undertaken using a synthetic AMW (SAMW) formulation based on the contaminant profile of a representative pond believed to be responsible for avian mortalities. An acute oral-toxicity trial was performed with a mixed-sex group of mallards (Anas platyrhynchos). After a 24-h pretreatment food and water fast, gorge drinking was evident in both SAMW treatment and control groups, with water consumption rates greatest during the initial drinking periods. Seven of nine treated mallards were killed in extremis within 12 h after the initiation of dose. Total lethal doses of SAMW ranged from 69.8 to 270.1 mL/kg (mean ± SE 127.9 ± 27.1). Lethal doses of SAMW were consumed in as few as 20 to 40 min after first exposure. Clinical signs of SAMW toxicity included increased serum uric acid, aspartate aminotransferase, creatine kinase, potassium, and P levels. PCV values of SAMW-treated birds were also increased compared with control mallards. Histopathological lesions were observed in the esophagus, proventriculus, ventriculus, and duodenum of SAMW-treated mallards, with the most distinctive being erosion and ulceration of the kaolin of the ventriculus, ventricular hemorrhage and/or congestion, and duodenal hemorrhage. Clinical, pathological, and tissue-residue results from this study are consistent with literature documenting acute metal toxicosis, especially copper (Cu), in avian species and provide useful diagnostic profiles for AMW toxicity or mortality events. Blood and

  10. A method for producing a water and coal suspension

    Energy Technology Data Exchange (ETDEWEB)

    Mutase, T.; Khongo, T.; Minemura, N.; Nakai, S.; Ogura, K.; Savada, M.

    1983-08-30

    Coal dust (100 parts with a 95 to 99 percent content of particles with a size of 7 to 150 micrometers) is loaded into a mixture of hydrocarbon oil (1 to 20 parts) and water (300 to 1,000 parts) and mixed for 3 to 5 minutes at a rotation frequency of 1,800 to 1,500 per minute. The agglomerates of the coal dust and hydrocarbon (Uv) (100 parts) produced in this manner are then mixed with water (25 to 60 parts), an anion surfacant (PAV) (from 0.1 to 2 parts) which has high dispersion activity and a nonionogenic surfacant (0.1 to 2 parts) which has an HLB indicator of from 7 to 17 (preferably 13) to ensure a high consistency of the aqueous suspension of high quality coal, characterized by high fluidity (dynamic viscosity from 0.5 to 1.4 pascals times seconds). It is preferable to use a heavy oil fraction, kerosene, residue from oil distillation or an anthracite coal resin as the hydrocarbon oil. Separation of the ash from the suspension is increased by adding the surfacants and a water soluble inorganic salt which provides for an alkalinity of the aqueous solution (a pH of 7). It is recommended that a salt of alkylbenzolsulfo acid, a sodium salt of polyoxyethylenalkylphenolsulfo acid, sodium laurylsulfate, ammonium lauryl sulfate polyoxyethylensorbitantristearate, polyoxyethylenlaurylic acid, polyoxyethylennonylphenol ether or polyoxyethyllauric ether be used as the surfacant.

  11. REMOVAL OF TRICHLOROACETIC ACID FROM THE AQUEOUS SOLUTIONS USING NATURAL AND ACTIVATED LIGNITE COALS

    Directory of Open Access Journals (Sweden)

    Hüseyin GÜLENSOY

    1998-02-01

    Full Text Available In these studies, a typical lignite coal found near Istanbul (Yeniköy and its activated products were used to adsorb TCA from aqueous solutions. Particle sizes of coal samples and the concentrations of TCA solutions were chosen as parameters against the fixed amount of adsorbent. The maximum efficiency has been obtained for the coal having (-120 + 150 mesh size fraction activated by heating. As a result, it was shown that these kinds of lignite coals could be used as a good adsorbent. In addition, it was also proved that both the removal and recovery of TCA from some waste waters would easily be possible.

  12. Coal structure and reactivity changes induced by chemical demineralisation

    Energy Technology Data Exchange (ETDEWEB)

    Rubiera, F.; Arenillas, A.; Pevida, C.; Garcia, R.; Pis, J.J. [Department of Energy and Environment, Instituto Nacional del Carbon, CSIC, Apartado 73, 33080 Oviedo (Spain); Steel, K.M.; Patrick, J.W. [Fuel Technology Group, School of Chemical, Environmental and Mining Engineering, Nottingham University, University Park, NG7 2RD Nottingham (United Kingdom)

    2002-12-01

    The aim of this work was to determine the influence that an advanced demineralisation procedure has on the combustion characteristics of coal. A high-volatile bituminous coal with 6.2% ash content was treated in a mixture of hydrofluoric and fluorosilicic acids (HF/H{sub 2}SiF{sub 6}). Nitric acid was used either as a pretreatment, or as a washing stage after HF/H{sub 2}SiF{sub 6} demineralisation, with an ash content as low as 0.3% being attained in the latter case. The structural changes produced by the chemical treatment were evaluated by comparison of the FTIR spectra of the raw and treated coal samples. The devolatilisation and combustibility behaviour of the samples was studied by using a thermobalance coupled to a mass spectrometer (TGA-MS) for evolved gas analysis. The combustibility characteristics of the cleaned samples were clearly improved, there being a decrease in SO{sub 2} emissions.

  13. Injection of FGD Grout to Abate Acid Mine Drainage in Underground Coal Mines

    Energy Technology Data Exchange (ETDEWEB)

    Mafi, S.; Damian, M.T.; Senita, R.E.; Jewitt, W.C.; Bair, S.; Chin, Y.C.; Whitlatch, E.; Traina, S.; Wolfe, W.

    1997-07-01

    Acid Mine Drainage (AMD) from abandoned underground coal mines in Ohio is a concern for both residents and regulatory agencies. Effluent from these mines is typically characterized by low pH and high iron and sulfate concentrations and may contaminate local drinking-water supplies and streams. The objective of this project is to demonstrate the technical feasibility of injecting cementitious alkaline materials, such as Flue Gas Desulfurization (FGD) material to mitigate current adverse environmental impacts associated with AMD in a small, abandoned deep mine in Coshocton County Ohio. The Flue Gas Desulfurization material will be provided from American Electric Power`s (AEP) Conesville Plant. It will be injected as a grout mix that will use Fixated Flue Gas Desulfurization material and water. The subject site for this study is located on the border of Coshocton and Muskingum Counties, Ohio, approximately 1.5 miles south-southwest of the town of Wills Creek. The study will be performed at an underground mine designated as Mm-127 in the Ohio Department of Natural Resources register, also known as the Roberts-Dawson Mine. The mine operated in the mid-1950s, during which approximately 2 million cubic feet of coal was removed. Effluent discharging from the abandoned mine entrances has low pH in the range of 2.8-3.0 that drains directly into Wills Creek Lake. The mine covers approximately 14.6 acres. It is estimated that 26,000 tons of FGD material will be provided from AEP`s Conesville Power Plant located approximately 3 miles northwest of the subject site.

  14. Injection of FGD Grout to Abate Acid Mine Drainage in Underground Coal Mines

    International Nuclear Information System (INIS)

    Mafi, S.; Damian, M.T.; Senita, R.E.; Jewitt, W.C.; Bair, S.; Chin, Y.C.; Whitlatch, E.; Traina, S.; Wolfe, W.

    1997-07-01

    Acid Mine Drainage (AMD) from abandoned underground coal mines in Ohio is a concern for both residents and regulatory agencies. Effluent from these mines is typically characterized by low pH and high iron and sulfate concentrations and may contaminate local drinking-water supplies and streams. The objective of this project is to demonstrate the technical feasibility of injecting cementitious alkaline materials, such as Flue Gas Desulfurization (FGD) material to mitigate current adverse environmental impacts associated with AMD in a small, abandoned deep mine in Coshocton County Ohio. The Flue Gas Desulfurization material will be provided from American Electric Power's (AEP) Conesville Plant. It will be injected as a grout mix that will use Fixated Flue Gas Desulfurization material and water. The subject site for this study is located on the border of Coshocton and Muskingum Counties, Ohio, approximately 1.5 miles south-southwest of the town of Wills Creek. The study will be performed at an underground mine designated as Mm-127 in the Ohio Department of Natural Resources register, also known as the Roberts-Dawson Mine. The mine operated in the mid-1950s, during which approximately 2 million cubic feet of coal was removed. Effluent discharging from the abandoned mine entrances has low pH in the range of 2.8-3.0 that drains directly into Wills Creek Lake. The mine covers approximately 14.6 acres. It is estimated that 26,000 tons of FGD material will be provided from AEP's Conesville Power Plant located approximately 3 miles northwest of the subject site

  15. The Clean Coal Technology Program: Options for SO2, NOx, and particulate control

    International Nuclear Information System (INIS)

    Strakey, J.P.; Hargis, R.; Eastman, M.L.; Santore, R.R.

    1992-01-01

    There are currently 42 active projects in the Clean Coal Technology Program. The Pittsburgh Energy Technology Center (PETC) is responsible for managing 30 of these projects: five projects under Clean Coal 1, ten projects under Clean Coal 2, nine projects under Clean Coal 3, and six projects under Clean Coal 4. This paper describes each of the PETC projects, including the technologies involved and the project status. Many of the projects will use advanced approaches to meet current and future requirements for particulate and air toxic emissions. Discussion of these aspects have been expanded in this summary paper to address the focus of this symposium. Additional information can be provided to interested particles either through DOE, the participant or the technology supplier. Numerous non-federal organizations including state and utility/industry research groups provide important co-funding and other support for these CCT projects. Space limitations prohibit listing them in this paper; however, a complete listing can be found in the Clean Coal Technology Demonstration Program Update 1990. Appendix A to this paper contains flow diagrams for all the projects

  16. Catastrophic dispersion of coal fly ash into oceans during the latest Permian extinction

    Energy Technology Data Exchange (ETDEWEB)

    Grasby, S.E.; Sanei, H.; Beauchamp, B. [Geological Survey Canada Calgary, Calgary, AB (Canada)

    2011-02-15

    During the latest Permian extinction about 250 Myr ago, more than 90% of marine species went extinct, and biogeochemical cycles were disrupted globally. The cause of the disruption is unclear, but a link between the eruption of the Siberian Trap flood basalts and the extinction has been suggested on the basis of the rough coincidence of the two events. The flood basalt volcanism released CO{sub 2}. In addition, related thermal metamorphism of Siberian coal measures and organic-rich shales led to the emission of methane, which would have affected global climate and carbon cycling, according to model simulations. This scenario is supported by evidence for volcanic eruptions and gas release in the Siberian Tunguska Basin, but direct indicators of coal combustion have not been detected. Here we present analyses of terrestrial carbon in marine sediments that suggest a substantial amount of char was deposited in Permian aged rocks from the Canadian High Arctic immediately before the mass extinction. Based on the geochemistry and petrology of the char, we propose that the char was derived from the combustion of Siberian coal and organic-rich sediments by flood basalts, which was then dispersed globally. The char is remarkably similar to modern coal fly ash, which can create toxic aquatic conditions when released as slurries. We therefore speculate that the global distribution of ash could have created toxic marine conditions.

  17. In Vitro and In Vivo Toxicity of Garcinia or Hydroxycitric Acid: A Review

    Directory of Open Access Journals (Sweden)

    Li Oon Chuah

    2012-01-01

    Full Text Available Obesity is one of the pandemic chronic diseases commonly associated with health disorders such as heart attack, high blood pressure, diabetes or even cancer. Among the current natural products for obesity and weight control, Garcinia or more specifically hydroxycitric acid (HCA extracted from Garcinia has been widely used. The evaluation of the potential toxicity of weight control supplement is of the utmost importance as it requires long term continuous consumption in order to maintain its effects. Majority of reports demonstrated the efficacy of Garcinia/HCA without any toxicity found. However, a few clinical toxicity reports on weight-loss diet supplements of which some were combinations that included Garcinia/HCA as an active ingredient showed potential toxicity towards spermatogenesis. Nonetheless, it cannot be concluded that Garcinia/HCA is unsafe. Those products which have been reported to possess adverse effects are either polyherbal or multi-component in nature. To date, there is no case study or report showing the direct adverse effect of HCA. The structure, mechanism of action, long history of the use of Garcinia/HCA and comprehensive scientific evidence had shown “no observed adverse effect level (NOAEL” at levels up to 2800 mg/day, suggesting its safety for use.

  18. The effect of zeolite treatment by acids on sodium adsorption ratio of coal seam gas water.

    Science.gov (United States)

    Wang, Xiaoyu; Ozdemir, Orhan; Hampton, Marc A; Nguyen, Anh V; Do, Duong D

    2012-10-15

    Many coal seam gas (CSG) waters contain a sodium ion concentration which is too high relative to calcium and magnesium ions for environment acceptance. Natural zeolites can be used as a cheap and effective method to control sodium adsorption ratio (SAR, which is a measure of the relative preponderance of sodium to calcium and magnesium) due to its high cation exchange capacity. In this study, a natural zeolite from Queensland was examined for its potential to treat CSG water to remove sodium ions to lower SAR and reduce the pH value. The results demonstrate that acid activated zeolite at 30%wt solid ratio can reduce the sodium content from 563.0 to 182.7 ppm; the pH from 8.74 to 6.95; and SAR from 70.3 to 18.5. Based on the results of the batch experiments, the sodium adsorption capacity of the acid-treated zeolite is three times greater than that of the untreated zeolite. Both the untreated and acid-treated zeolite samples were characterized using zeta potential, surface characterization, DTA/TG and particle size distribution in order to explain their adsorption behaviours. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. The chemical transformation of calcium in Shenhua coal during combustion in a muffle furnace

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Sida [North China Electric Power Univ., Beijing (China). School of Energy, Power and Mechanical Engineering; Ministry of Education, Beijing (China). Key Lab. of Condition Monitoring and Control for Power Plant Equipment; Zhuo, Yuqun; Chen, Changhe [Tsinghua Univ., Beijing (China). Dept. of Thermal Engineering; Ministry of Education, Beijing (China). Key Lab. for Thermal Science and Power Engineering; Shu, Xinqian [China Univ. of Mining and Technology, Beijing (China). School of Chemical and Environmental Engineering

    2013-07-01

    The chemical reaction characteristics of calcium in three samples of Shenhua coal, i.e. raw sample, hydrochloric acid washed sample and hydrochloric acid washed light fraction, during combustion in a muffle furnace have been investigated in this paper. Ca is bound by calcite and organic matter in Shenhua coal. X ray diffraction (XRD) phase analysis has been conducted to these samples' combustion products obtained by heating at different temperatures. It has been found that the organically-bound calcium could easily react with clays and transform into gehlenite and anorthite partially if combusted under 815 C, whilst the excluded minerals promoted the conversion of gehlenite to anorthite. Calcite in Shenhua coal decomposed into calcium oxide and partially transformed into calcium sulfate under 815 C, and formed gehlenite and anorthite under 1,050 C. Calcite and other HCl-dissolved minerals in Shenhua coal were responsible mainly for the characteristic that the clay minerals in Shenhua coal hardly became mullite during combustion.

  20. Acute toxicity of sodium bicarbonate, a major component of coal bed natural gas produced waters, to 13 aquatic species as defined in the laboratory

    Science.gov (United States)

    Harper, David D.; Farag, Aïda M.; Skaar, Don

    2014-01-01

    Water produced during coal bed natural gas (CBNG) extraction in the Powder River Structural Basin of Wyoming and Montana (USA) may contain concentrations of sodium bicarbonate (NaHCO3) of more than 3000 mg/L. The authors evaluated the acute toxicity of NaHCO3, also expressed as bicarbonate (HCO3−), to 13 aquatic organisms. Of the 13 species tested, 7 had a median lethal concentration (LC50) less than 2000 mg/L NaHCO3, or 1300 mg/L HCO3−. The most sensitive species were Ceriodaphnia dubia, freshwater mussels (Lampsilis siliquoidea), pallid sturgeon (Scaphirhynchus albus), and shovelnose sturgeon (Scaphirhynchus platorynchus). The respective LC50s were 989 mg/L, 1120 mg/L, 1249 mg/L, and 1430 mg/L NaHCO3, or 699 mg/L, 844 mg/L, 831 mg/L, and 1038 mg/L HCO3−. Age affected the sensitivity of fathead minnows, even within life stage. Two days posthatch, fathead minnows were more sensitive to NaHCO3 and HCO3− compared with 4-d-old fish, even though fish up to 14 d old are commonly used for toxicity evaluations. The authors recommend that ion toxicity exposures be conducted with organisms less than 24 h posthatch to ensure that experiments document the most sensitive stage of development. The results of the present study, along with historical and current research regarding the toxicity of bicarbonate, may be useful to establish regulatory standards for HCO3−.

  1. Coal 1992

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    ACR's Coal 1992, the successor to the ACR Coal Marketing Manual, contains a comprehensive set of data on many aspects of the Australian coal industry for several years leading up to 1992. Tables and text give details of coal production and consumption in New South Wales, Queensland and other states. Statistics of the Australian export industry are complemented by those of South Africa, USA, New Zealand, Canada, Indonesia, China, Colombia, Poland and ex-USSR. Also listed are prices of Australian coking and non-coking coal, Australian coal stocks (and those of other major countries), loading port capacities, freight rates and coal quality requirements (analysis of coals by brand and supplier). A listing of Australian coal exporting companies is provided. A description of the spot Coal Screen Dealing System is given. World hard coal imports are listed by country and coal imports by major Asian countries tabulated. A forecast of demand by coal type and country up to the year 2000 is included.

  2. Characterization of Coal Porosity for Naturally Tectonically Stressed Coals in Huaibei Coal Field, China

    Science.gov (United States)

    Li, Xiaoshi; Hou, Quanlin; Li, Zhuo; Wei, Mingming

    2014-01-01

    The enrichment of coalbed methane (CBM) and the outburst of gas in a coal mine are closely related to the nanopore structure of coal. The evolutionary characteristics of 12 coal nanopore structures under different natural deformational mechanisms (brittle and ductile deformation) are studied using a scanning electron microscope (SEM) and low-temperature nitrogen adsorption. The results indicate that there are mainly submicropores (2~5 nm) and supermicropores (coal and mesopores (10~100 nm) and micropores (5~10 nm) in brittle deformed coal. The cumulative pore volume (V) and surface area (S) in brittle deformed coal are smaller than those in ductile deformed coal which indicates more adsorption space for gas. The coal with the smaller pores exhibits a large surface area, and coal with the larger pores exhibits a large volume for a given pore volume. We also found that the relationship between S and V turns from a positive correlation to a negative correlation when S > 4 m2/g, with pore sizes coal. The nanopore structure (coal. PMID:25126601

  3. Ultrafine ash aerosols from coal combustion: Characterization and health effects

    Energy Technology Data Exchange (ETDEWEB)

    William P. Linak; Jong-Ik Yoo; Shirley J. Wasson; Weiyan Zhu; Jost O.L. Wendt; Frank E. Huggins; Yuanzhi Chen; Naresh Shah; Gerald P. Huffman; M. Ian Gilmour [US Environmental Protection Agency, Research Triangle Park, NC (United States). National Risk Management Research Laboratory

    2007-07-01

    Ultrafine coal fly-ash particles withdiameters less than 0.5 {mu}m typically comprise less than 1% of the total fly-ash mass. This paper reports research focused on both characterization and health effects of primary ultrafine coal ash aerosols alone. Ultrafine, fine, and coarse ash particles were segregated and collected from a coal burned in a 20 kW laboratory combustor and two additional coals burned in an externally heated drop tube furnace. Extracted samples from both combustors were characterized by transmission electron microscopy (TEM), wavelength dispersive X-ray fluorescence(WD-XRF) spectroscopy, Moessbauer spectroscopy, and X-ray absorption fine structure (XAFS) spectroscopy. Pulmonary inflammation was characterized by albumin concentrations in mouse lung lavage fluid after instillation of collected particles in saline solutions and a single direct inhalation exposure. Results indicate that coal ultrafine ash sometimes contains significant amounts of carbon, probably soot originating from coal tar volatiles, depending on coal type and combustion device. Surprisingly, XAFS results revealed the presence of chromium and thiophenic sulfur in the ultrafine ash particles. The instillation results suggested potential lung injury, the severity of which could be correlated with the carbon (soot) content of the ultrafines. This increased toxicity is consistent with theories in which the presence of carbon mediates transition metal (i.e., Fe) complexes, as revealed in this work by TEM and XAFS spectroscopy, promoting reactive oxygenspecies, oxidation-reduction cycling, and oxidative stress. 24 refs., 7 figs.

  4. Coal upgrading

    Energy Technology Data Exchange (ETDEWEB)

    Nunes, S. [IEA Clean Coal Centre, London (United Kingdom)

    2009-10-15

    This report examines current technologies and those likely to be used to produce cleaner coal and coal products, principally for use in power generation and metallurgical applications. Consideration is also given to coal production in the leading coal producing countries, both with developed and developing industries. A range of technologies are considered. These include the coal-based liquid fuel called coal water mixture (CWM) that may compete with diesel, the production of ultra-clean coal (UCC) and coal liquefaction which competes with oil and its products. Technologies for upgrading coal are considered, especially for low rank coals (LRC), since these have the potential to fill the gap generated by the increasing demand for coal that cannot be met by higher quality coals. Potential advantages and downsides of coal upgrading are outlined. Taking into account the environmental benefits of reduced pollution achieved through cleaner coal and reduced transport costs, as well as other positive aspects such as a predictable product leading to better boiler design, the advantages appear to be significant. The drying of low rank coals improves the energy productively released during combustion and may also be used as an adjunct or as part of other coal processing procedures. Coal washing technologies vary in different countries and the implications of this are outlined. Dry separation technologies, such as dry jigging and electrostatic separation, are also described. The demonstration of new technologies is key to their further development and demonstrations of various clean coal technologies are considered. A number of approaches to briquetting and pelletising are available and their use varies from country to country. Finally, developments in upgrading low rank coals are described in the leading coal producing countries. This is an area that is developing rapidly and in which there are significant corporate and state players. 81 refs., 32 figs., 3 tabs.

  5. Astaxanthin and Docosahexaenoic Acid Reverse the Toxicity of the Maxi-K (BK Channel Antagonist Mycotoxin Penitrem A

    Directory of Open Access Journals (Sweden)

    Amira A. Goda

    2016-11-01

    Full Text Available Penitrem A (PA is a food mycotoxin produced by several terrestrial and few marine Penicillium species. PA is a potent tremorgen through selective antagonism of the calcium-dependent potassium BK (Maxi-K channels. Discovery of natural products that can prevent the toxic effects of PA is important for food safety. Astaxanthin (AST is a marine natural xanthophyll carotenoid with documented antioxidant activity. Unlike other common antioxidants, AST can cross blood brain barriers (BBBs, inducing neuroprotective effects. Docosahexaenoic acid (DHA is polyunsaturated ω-3 fatty acid naturally occurring in fish and algae. DHA is essential for normal neurological and cellular development. This study evaluated the protective activity of AST and DHA against PA-induced toxicity, in vitro on Schwann cells CRL-2765 and in vivo in the worm Caenorhbitidis elegans and Sprague Dawley rat models. PA inhibited the viability of Schwann cells, with an IC50 of 22.6 μM. Dose-dependent treatments with 10–100 μM DHA significantly reversed the PA toxicity at its IC50 dose, and improved the survival of Schwann cells to 70.5%–98.8%. Similarly, dose-dependent treatments with 10–20 μM AST reversed the PA toxicity at its IC50 dose and raised these cells’ survival to 61.7%–70.5%. BK channel inhibition in the nematode C. elegans is associated with abnormal reversal locomotion. DHA and AST counteracted the in vivo PA BK channel antagonistic activity in the C. elegans model. Rats fed a PA-contaminated diet showed high levels of glutamate (GLU, aspartate (ASP, and gamma amino butyric acid (GABA, with observed necrosis or absence of Purkinjie neurons, typical of PA-induced neurotoxicity. Dopamine (DA, serotonin (5-HT, and norepinephrine (NE levels were abnormal, Nitric Oxide (NO and Malondialdehyde (MDA levels were significantly increased, and total antioxidant capacity (TAC level in serum and brain homogenates was significantly decreased in PA-treated rats. DHA and AST

  6. Coal pile leachate treatment

    Energy Technology Data Exchange (ETDEWEB)

    Davis, E C; Kimmitt, R R

    1982-09-01

    The steam plant located at the Oak Ridge National Laboratory was converted from oil- to coal-fired boilers. In the process, a diked, 1.6-ha coal storage yard was constructed. The purpose of this report is to describe the treatment system designed to neutralize the estimated 18,000 m/sup 3/ of acidic runoff that will be produced each year. A literature review and laboratory treatability study were conducted which identified two treatment systems that will be employed to neutralize the acidic runoff. The first, a manually operated system, will be constructed at a cost of $200,000 and will operate for an interim period of four years. This system will provide for leachate neutralization until a more automated system can be brought on-line. The second, a fully automated system, is described and will be constructed at an estimated cost of $650,000. This automated runoff treatment system will ensure that drainage from the storage yard meets current National Pollutant Discharge Elimination System Standards for pH and total suspended solids, as well as future standards, which are likely to include several metals along with selected trace elements.

  7. Mode of occurrence of chromium in four US coals

    Science.gov (United States)

    Huggins, Frank E.; Shah, N.; Huffman, G.P.; Kolker, A.; Crowley, S.; Palmer, C.A.; Finkelman, R.B.

    2000-01-01

    The mode of occurrence of chromium in three US bituminous coals and one US subbituminous has been examined using both X-ray absorption fine structure (XAFS) spectroscopy and a selective leaching protocol supplemented by scanning electron microscopy (SEM) and electron microprobe measurements. A synthesis of results from both methods indicates that chromium occurs principally in two forms in the bituminous coals: the major occurrence of chromium is associated with the macerals and is not readily leached by any reagent, whereas a second, lesser occurrence, which is leachable in hydrofluoric acid (HF), is associated with the clay mineral, illite. The former occurrence is believed to be a small particle oxyhydroxide phase (CrO(OH)). One coal also contained a small fraction (<5%) of the chromium in the form of a chromian magnetite, and the leaching protocol indicated the possibility of a similar small fraction of chromium in sulfide form in all three coals. There was little agreement between the two techniques on the mode of occurrence of chromium in the subbituminous coal; however, only a limited number of subbituminous coals have been analyzed by either technique. The chromium in all four coals was trivalent as no evidence was found for the Cr6+ oxidation state in any coal.

  8. Assessing effects of chemical treatment on mechanical properties of transported anthracite

    Energy Technology Data Exchange (ETDEWEB)

    Danil' chenko, I M; Sukhanov, V V; Putilina, O.N.

    1984-10-01

    A method is discussed for control of anthracite comminution during coal haulage in underground mines. Coal hauled by belt conveyors was sprayed with MFF-M urea formaldehyde resin and oxalic acid used as a hardener. Design of the UAP experimental spraying system successfully tested in some coal mines in the Donbass is shown in a scheme. Effects of anthracite spraying on toxicity of fire gases were analyzed. Gas emission was analyzed at 300 C and at 1000 C. Content of the following compounds in fire gases was determined: hydrocyanic acid, ammonia, nitrogen oxides, formaldehyde, methanol. Evaluations showed that toxicity increase was within the permissible limits with the exception of hydrocyanic acid. In the case of underground fires in areas of haulage lines with resin spraying systems, members of rescue teams should use special equipment protecting the respiratory system from hydrocyanic acid. 2 references.

  9. Neutron activation analysis of Turkish coals Pt. 2

    International Nuclear Information System (INIS)

    Ayanoglu, S.F.; Guenduez, G.

    1978-01-01

    The analyses of the ashes of coals given in Part I were carried out and the percentage transferences of the elements into ash were determined (experimental parameters are given in Part I). Tabulated data are given. The dependence of the transferences of arsenic and selenium, known as very strong toxicants, on the particle size burnt and on the burning temperature was investigated. (T.G.)

  10. Research on the Composition and Distribution of Organic Sulfur in Coal.

    Science.gov (United States)

    Zhang, Lanjun; Li, Zenghua; Yang, Yongliang; Zhou, Yinbo; Li, Jinhu; Si, Leilei; Kong, Biao

    2016-05-13

    The structure and distribution of organic sulfur in coals of different rank and different sulfur content were studied by combining mild organic solvent extraction with XPS technology. The XPS results have shown that the distribution of organic sulfur in coal is related to the degree of metamorphism of coal. Namely, thiophenic sulfur content is reduced with decreasing metamorphic degree; sulfonic acid content rises with decreasing metamorphic degree; the contents of sulfate sulfur, sulfoxide and sulfone are rarely related with metamorphic degree. The solvent extraction and GC/MS test results have also shown that the composition and structure of free and soluble organic sulfur small molecules in coal is closely related to the metamorphic degree of coal. The free organic sulfur small molecules in coal of low metamorphic degree are mainly composed of aliphatic sulfides, while those in coal of medium and high metamorphic degree are mainly composed of thiophenes. Besides, the degree of aromatization of organic sulfur small molecules rises with increasing degree of coalification.

  11. Fiscal 1997 survey of the overseas coal import base preparation/improvement. Survey of a coal flow in China; 1997 nendo kaigaitan yunyu kiban seibi sokushin chosa. Chugoku ni okeru coal flow ni kansuru chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    The paper surveyed the preparation of the coal transportation infrastructure, status of its running, economical efficiency, etc. in terms mainly of the trend of coal production/consumption in China, and coal railroad/water transportation and electric power transportation by mine-mouth power generation. From the survey, the following conclusions were obtained. As to the coal which China uses as a main energy for maintaining the present high economic growth as targeted, there will remain the coal transportation problem between production site (north and west) and consumption site (east and south) still in the future (in 2000 and 2010). China is now facing with a big turning point in a socioeconomic aspect. The advancing opening market policy brought steep rises in energy prices such as coal and electric power, which is affecting various fields. Further, the energy related laws, which were unprepared, are abruptly being prepared, and the environment for the introduction of foreign investment, which is expected to be accelerated, is being prepared. In the future, attention should be paid to environmental problems such as air pollution, acid rain and global warming. 48 figs., 96 tabs.

  12. Protective efficacy of folic acid and vitamin B12 against nicotine-induced toxicity in pancreatic islets of the rat

    Directory of Open Access Journals (Sweden)

    Bhattacharjee Ankita

    2015-06-01

    Full Text Available Although cigarette smoking is associated with insulin resistance and an increased risk for type 2 diabetes, few studies have examined the effect of nicotine on the adult endocrine pancreas. In this study, male Wister rats were treated with nicotine (3 mg/kg body weight/day with or without supplementation of folic acid (36 μg/kg body weight/day or vitamin B12 (0.63 μg/kg body weight/day alone or in combination. Fasting blood glucose, insulin and HBA1C level and different oxidative and anti-oxidative stress parameters were measured and pancreatic tissue sections were stained with eosin-haematoxylene. Data were analysed by nonparametric statistics. The results revealed that nicotine induced prediabetes condition with subsequent damage to pancreatic islets in rats. Nicotine also caused oxidative stress in pancreatic tissue as evidenced by increased nitric oxide and malondialdehyde level and decreased superoxide dismutase, catalase and reduced glutathione level. Compared to vitamin B12 supplementation, folic acid blunted the nicotine-induced toxicity in pancreatic islets with higher efficacy. Further, folic acid and vitamin B12 in combination were able to confer significant protection on pancreatic islets against nicotine induced toxicity. These results suggest that supplementation of folic acid and vitamin B12 in combination may be a possible strategy of detoxification against nicotine-induced toxicity in pancreatic islets of the rat.

  13. Photodegradation kinetics, transformation, and toxicity prediction of ketoprofen, carprofen, and diclofenac acid in aqueous solutions.

    Science.gov (United States)

    Li, Jian; Ma, Li-Yun; Li, Lu-Shuang; Xu, Li

    2017-12-01

    Photodegradation of 3 commonly used nonsteroidal anti-inflammatory drugs, ketoprofen, carprofen, and diclofenac acid, was conducted under ultraviolet (UV) irradiation. The kinetic results showed that the 3 pharmaceuticals obeyed the first-order reaction with decreasing rate constants of 1.54 × 10 -4 , 5.91 × 10 -5 , and 7.78 × 10 -6  s -1 for carprofen, ketoprofen, and diclofenac acid, respectively. Moreover, the main transformation products were identified by ion-pair liquid-liquid extraction combined with injection port derivatization-gas chromatography-mass spectrometry and high-performance liquid chromatography-quadrupole-time of flight mass spectrometric analysis. There were 8, 3, and 6 transformation products identified for ketoprofen, carprofen, and diclofenac acid, respectively. Decarboxylation, dechlorination, oxidation, demethylation, esterification, and cyclization were proposed to be associated with the transformation of the 3 pharmaceuticals. Toxicity prediction of the transformation products was conducted on the EPI Suite software based on ECOSAR model, and the results indicate that some of the transformation products were more toxic than the parent compounds. The present study provides the foundation to understand the transformation behavior of the studied pharmaceuticals under UV irradiation. Environ Toxicol Chem 2017;36:3232-3239. © 2017 SETAC. © 2017 SETAC.

  14. Nuclear magnetic resonance studies of ancient buried wood-II. Observations on the origin of coal from lignite to bituminous coal

    Science.gov (United States)

    Hatcher, P.G.; Breger, I.A.; Szeverenyi, N.; Maciel, G.E.

    1982-01-01

    Coalified logs ranging in age from Late Pennsylvania to Miocene and in rank from lignite B to bituminous coal were analyzed by 13C nuclear magnetic resonance (NMR) utilizing the cross-polarization, magic-angle spinning technique, as well as by infrared spectroscopy. The results of this study indicate that at least three major stages of coalification can be observed as wood gradually undergoes transformation to bituminous coal. The first stage involves hydrolysis and loss of cellulose from wood with retention and differential concentration of the resistant lignin. The second stage involves conversion of the lignin residues directly to coalified wood of lignitic rank, during which the oxygen content of intermediate diagenetic products remains constant as the hydrogen content and the carbon content increases. These changes are thought to involve loss of methoxyl groups, water, and C3 side chains from the lignin. In the third major stage of coalification, the coalified wood increases in rank to subbituminous and bituminous coal; during this stage the oxygen content decreases, hydrogen remains constant, and the carbon content increases. These changes are thought to result from loss of soluble humic acids that are rich in oxygen and that are mobilized during compaction and dewatering. Relatively resistant resinous substances are differentially concentrated in the coal during this stage. The hypothesis that humic acids are formed as mobile by-products of the coalification of lignin and function only as vehicles for removal of oxygen represents a dramatic departure from commonly accepted views that they are relatively low-molecular-weight intermediates formed during the degradation of lignin that then condense to form high-molecular-weight coal structures. ?? 1982.

  15. Thermal effects from the release of selenium from a coal combustion during high-temperature processing: a review.

    Science.gov (United States)

    Hu, Jianjun; Sun, Qiang; He, Huan

    2018-04-11

    The release of selenium (Se) during coal combustion can have serious impacts on the ecological environment and human health. Therefore, it is very important to study the factors that concern the release of Se from coal combustion. In this paper, the characteristics of the release of Se from coal combustion, pyrolysis, and gasification of different coal species under different conditions are studied. The results show that the amount of released Se increases at higher combustion temperatures. There are obvious increases in the amount of released Se especially in the temperature range of 300 to 800 °C. In addition, more Se is released from the coal gasification than coal combustion process, but more Se is released from coal combustion than pyrolysis. The type of coal, rate of heating, type of mineral ions, and combustion atmosphere have different effects on the released percentage of Se. Therefore, having a good understanding of the factors that surround the release of Se during coal combustion, and then establishing the combustion conditions can reduce the impacts of this toxic element to humans and the environment.

  16. Bio-coal briquettes using low-grade coal

    Science.gov (United States)

    Estiaty, L. M.; Fatimah, D.; Widodo

    2018-02-01

    The technology in using briquettes for fuel has been widely used in many countries for both domestic and industrial purposes. Common types of briquette used are coal, peat, charcoal, and biomass. Several researches have been carried out in regards to the production and the use of briquettes. Recently, researches show that mixing coal and biomass will result in an environmentally friendly briquette with better combustion and physical characteristics. This type of briquette is known as bio-coal briquettes. Bio-coal briquettes are made from agriculture waste and coal, which are readily available, cheap and affordable. Researchers make these bio-coal briquettes with different aims and objectives, depending on the issues to address, e.g. utilizing agricultural waste as an alternative energy to replace fossil fuels that are depleting its reserves, adding coal to biomass in order to add calorific value to bio-coal briquette, and adding biomass to coal to improve its chemical and physical properties. In our research, biocoal briquettes are made to utilize low grade coal. The biomass we use, however, is different from the ones used in past researches because it has undergone fermentation. The benefits of using such biomass are 1. Fermentation turns the hemi cellulose into a simpler form, so that the burning activation energy decreases while the calorific value increases. 2. Enzym produced will bind to heavy metals from coal as co-factors, forming metals that are environmentally friendly.

  17. Coal

    International Nuclear Information System (INIS)

    Teissie, J.; Bourgogne, D. de; Bautin, F.

    2001-12-01

    Coal world production represents 3.5 billions of tons, plus 900 millions of tons of lignite. 50% of coal is used for power generation, 16% by steel making industry, 5% by cement plants, and 29% for space heating and by other industries like carbo-chemistry. Coal reserves are enormous, about 1000 billions of tons (i.e. 250 years of consumption with the present day rate) but their exploitation will be in competition with less costly and less polluting energy sources. This documents treats of all aspects of coal: origin, composition, calorific value, classification, resources, reserves, production, international trade, sectoral consumption, cost, retail price, safety aspects of coal mining, environmental impacts (solid and gaseous effluents), different technologies of coal-fired power plants and their relative efficiency, alternative solutions for the recovery of coal energy (fuel cells, liquefaction). (J.S.)

  18. CoalVal-A coal resource valuation program

    Science.gov (United States)

    Rohrbacher, Timothy J.; McIntosh, Gary E.

    2010-01-01

    CoalVal is a menu-driven Windows program that produces cost-of-mining analyses of mine-modeled coal resources. Geological modeling of the coal beds and some degree of mine planning, from basic prefeasibility to advanced, must already have been performed before this program can be used. United States Geological Survey mine planning is done from a very basic, prefeasibility standpoint, but the accuracy of CoalVal's output is a reflection of the accuracy of the data entered, both for mine costs and mine planning. The mining cost analysis is done by using mine cost models designed for the commonly employed, surface and underground mining methods utilized in the United States. CoalVal requires a Microsoft Windows? 98 or Windows? XP operating system and a minimum of 1 gigabyte of random access memory to perform operations. It will not operate on Microsoft Vista?, Windows? 7, or Macintosh? operating systems. The program will summarize the evaluation of an unlimited number of coal seams, haulage zones, tax entities, or other area delineations for a given coal property, coalfield, or basin. When the reader opens the CoalVal publication from the USGS website, options are provided to download the CoalVal publication manual and the CoalVal Program. The CoalVal report is divided into five specific areas relevant to the development and use of the CoalVal program: 1. Introduction to CoalVal Assumptions and Concepts. 2. Mine Model Assumption Details (appendix A). 3. CoalVal Project Tutorial (appendix B). 4. Program Description (appendix C). 5. Mine Model and Discounted Cash Flow Formulas (appendix D). The tutorial explains how to enter coal resource and quality data by mining method; program default values for production, operating, and cost variables; and ones own operating and cost variables into the program. Generated summary reports list the volume of resource in short tons available for mining, recoverable short tons by mining method; the seam or property being mined

  19. Investigating salt and naphthenic acids interactions in the toxicity of oil sands process water to freshwater invertebrates

    International Nuclear Information System (INIS)

    Turcotte, D.; Kautzman, M.; Wojnarowicz, P.; Cutter, J.; Bird, E.; Liber, K.

    2010-01-01

    The hot water extraction process used to produce bitumens from oil sands produces a large volume of oil sands process water (OSPW) that contain elevated concentrations of naphthenic acids (NA) and salts. Many oil sands reclamation projects are proposing the use of OSPW as part of reconstructed wetlands projects. This study investigated the toxicity of OSPW to freshwater invertebrates. The toxic interactions between NA and salinity on freshwater invertebrates were assessed. Bioassays with laboratory-cultured Ceriodaphnia dubia were conducted to determine the toxicity of OSPW from selected water bodies. The study showed that while the concentrations of NAs and salinity were elevated in OSPW waters that caused toxic responses, the concentrations of salinity ions varied greatly among the OSPW samples. Results of the study suggested that ion composition may be a factor in toxicity. Interactions between NAs and salinity were then assessed by performing bioassays with mixtures representing major ion combinations in OSPW.

  20. Hormesis in Cholestatic Liver Disease; Preconditioning with Low Bile Acid Concentrations Protects against Bile Acid-Induced Toxicity.

    Directory of Open Access Journals (Sweden)

    Esther M Verhaag

    Full Text Available Cholestasis is characterized by accumulation of bile acids and inflammation, causing hepatocellular damage. Still, liver damage markers are highest in acute cholestasis and drop when this condition becomes chronic, indicating that hepatocytes adapt towards the hostile environment. This may be explained by a hormetic response in hepatocytes that limits cell death during cholestasis.To investigate the mechanisms that underlie the hormetic response that protect hepatocytes against experimental cholestatic conditions.HepG2.rNtcp cells were preconditioned (24 h with sub-apoptotic concentrations (0.1-50 μM of various bile acids, the superoxide donor menadione, TNF-α or the Farsenoid X Receptor agonist GW4064, followed by a challenge with the apoptosis-inducing bile acid glycochenodeoxycholic acid (GCDCA; 200 μM for 4 h, menadione (50 μM, 6 h or cytokine mixture (CM; 6 h. Levels of apoptotic and necrotic cell death, mRNA expression of the bile salt export pump (ABCB11 and bile acid sensors, as well as intracellular GCDCA levels were analyzed.Preconditioning with the pro-apoptotic bile acids GCDCA, taurocholic acid, or the protective bile acids (tauroursodeoxycholic acid reduced GCDCA-induced caspase-3/7 activity in HepG2.rNtcp cells. Bile acid preconditioning did not induce significant levels of necrosis in GCDCA-challenged HepG2.rNtcp cells. In contrast, preconditioning with cholic acid, menadione or TNF-α potentiated GCDCA-induced apoptosis. GCDCA preconditioning specifically reduced GCDCA-induced cell death and not CM- or menadione-induced apoptosis. The hormetic effect of GCDCA preconditioning was concentration- and time-dependent. GCDCA-, CDCA- and GW4064- preconditioning enhanced ABCB11 mRNA levels, but in contrast to the bile acids, GW4064 did not significantly reduce GCDCA-induced caspase-3/7 activity. The GCDCA challenge strongly increased intracellular levels of this bile acid, which was not lowered by GCDCA-preconditioning.Sub-toxic

  1. Survey of the potential environmental and health impacts in the immediate aftermath of the coal ash spill in Kingston, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Laura Ruhl; Avner Vengosh; Gary S. Dwyer; Heileen Hsu-Kim; Amrika Deonarine; Mike Bergin; Julia Kravchenko [Duke University, Durham, NC (United States). Division of Earth and Ocean Sciences

    2009-08-15

    An investigation of the potential environmental and health impacts in the immediate aftermath of one of the largest coal ash spills in U.S. history at the Tennessee Valley Authority (TVA) Kingston coal-burning power plant has revealed three major findings. First, the surface release of coal ash with high levels of toxic elements (As = 75 mg/kg; Hg = 150 {mu}g/kg) and radioactivity ({sup 226}Ra + {sup 228}Ra = 8 pCi/g) to the environment has the potential to generate resuspended ambient fine particles (<10 {mu}m) containing these toxics into the atmosphere that may pose a health risk to local communities. Second, leaching of contaminants from the coal ash caused contamination of surface waters in areas of restricted water exchange, but only trace levels were found in the downstream Emory and Clinch Rivers due to river dilution. Third, the accumulation of Hg- and As-rich coal ash in river sediments has the potential to have an impact on the ecological system in the downstream rivers by fish poisoning and methylmercury formation in anaerobic river sediments. 61 refs., 2 figs., 3 tabs.

  2. Methamphetamine-induced dopaminergic toxicity prevented owing to the neuroprotective effects of salicylic acid.

    Science.gov (United States)

    Thrash-Williams, Bessy; Karuppagounder, Senthilkumar S; Bhattacharya, Dwipayan; Ahuja, Manuj; Suppiramaniam, Vishnu; Dhanasekaran, Muralikrishnan

    2016-06-01

    Methamphetamine (Schedule-II drug, U.S. Drug Enforcement Administration) is one of the most abused illicit drug following cocaine, marijuana, and heroin in the USA. There are numerous health impairments and substantial economic burden caused by methamphetamine abuse. Salicylic acid, potent anti-inflammatory drug and a known neuroprotectant has shown to protect against toxicity-induced by other dopaminergic neurotoxins. Hence, in this study we investigated the neuroprotective effects of salicylic acid against methamphetamine-induced toxicity in mice. The current study investigated the effects of sodium salicylate and/or methamphetamine on oxidative stress, monoamine oxidase, mitochondrial complex I & IV activities using spectrophotometric and fluorimetric methods. Behavioral analysis evaluated the effect on movement disorders-induced by methamphetamine. Monoaminergic neurotransmitter levels were evaluated using high pressure liquid chromatography-electrochemical detection. Methamphetamine caused significant generation of reactive oxygen species and decreased complex-I activity leading to dopamine depletion. Striatal dopamine depletion led to significant behavioral changes associated with movement disorders. Sodium salicylate (50 & 100mg/kg) significantly scavenged reactive oxygen species, blocked mitochondrial dysfunction and exhibited neuroprotection against methamphetamine-induced neurotoxicity. In addition, sodium salicylate significantly blocked methamphetamine-induced behavioral changes related to movement abnormalities. One of the leading causative theories in nigral degeneration associated with movement disorders such as Parkinson's disease is exposure to stimulants, drugs of abuse, insecticide and pesticides. These neurotoxic substances can induce dopaminergic neuronal insult by oxidative stress, apoptosis, mitochondrial dysfunction and inflammation. Salicylic acid due to its antioxidant and anti-inflammatory effects could provide neuroprotection against the

  3. Toxic Effects of Peracetic Acid Used as a Chemical Weapon During Workers Riots

    International Nuclear Information System (INIS)

    Jovic-Stosic, J.; Todorovic, V.; Segrt, Z.

    2007-01-01

    Peracetic acid (PAA) is a mixture of acetic acid and hydrogen peroxide, often used as antimicrobial agent on food processing equipment. It may explosively decompose on shock, friction or concussion. PAA is a strong oxidant, corrosive to the eyes, skin, respiratory and digestive tract. Depending on concentration, contact may cause severe burns of the skin or the eyes, and inhalation may cause lung edema. We report toxic effects of PAA used as a chemical weapon in workers riots. Group of workers attacked the security guards in beverage plant, throwing out beer bottles filled with PAA. Bottles exploded, producing irritant mists and fumes, and splashing some of the guards with acid. After about 20 minutes of exposure in the closed space, 30 persons were transported to the emergency room; 22 of them were transferred to the hospital. After the initial treatment, 10 patients were admitted for further treatment. The symptoms of exposure included burning sensation and pain of the eyes, throat and skin, cough and shortness of breath. Effects on the eyes included redness and corneal erosions. Pulmonary disturbances were prolonged expirium and wheezing by auscultation, and hypoxemia. Skin burns were ranged as grade I-III. Treatment included rinse of eyes and skin, systemic therapy with corticosteroids, beta adrenergic drugs and theophylline. Surgical treatment was necessary in grade III skin burns. A variety of common industrial chemicals may be misused as a chemical weapon. We point out the hazards of serious toxic effects of PAA if used in riots or terrorists attacks. (author)

  4. Coking coal outlook from a coal producer's perspective

    International Nuclear Information System (INIS)

    Thrasher, E.

    2008-01-01

    Australian mine production is recovering from massive flooding while Canadian coal shipments are limited by mine and rail capacity. Polish, Czech, and Russian coking coal shipments have been reduced and United States coking coal shipments are reaching their maximum capacity. On the demand side, the Chinese government has increased export taxes on metallurgical coal, coking coal, and thermal coal. Customers seem to be purchasing in waves and steel prices are declining. This presentation addressed the global outlook for coal as well as the challenges ahead in terms of supply and demand. Supply challenges include regulatory uncertainty; environmental permitting; labor; and geology of remaining reserves. Demand challenges include global economic uncertainty; foreign exchange values; the effect of customers making direct investments in mining operations; and freight rates. Consolidation of the coal industry continued and several examples were provided. The presentation also discussed other topics such as coking coal production issues; delayed mining permits and environmental issues; coking coal contract negotiations; and stock values of coking coal producers in the United States. It was concluded that consolidation will continue throughout the natural resource sector. tabs., figs

  5. Toxicity of perfluorooctanoic acid towards earthworm and enzymatic activities in soil.

    Science.gov (United States)

    He, Wenxiang; Megharaj, Mallavarapu; Naidu, Ravi

    2016-07-01

    Perfluorooctanoic acid (PFOA) is a widespread persistent organic contaminant in the environment that has recently raised much of regulatory and public concern. Therefore, assessment of its ecological risk is a top priority research. Hence, this study investigated the toxicity of PFOA to beneficial microbial processes in the soil such as activities of dehydrogenase, urease and potential nitrification in addition to earthworm survival, weight loss and PFOA bioaccumulation in two contrasting soils. In general, PFOA caused inhibition of all the measured microbial processes in a dose-dependent manner and the inhibition was higher in Williamtown (WT) soil than Edinburgh (EB) soil. Thus, WT soil being sandy in nature with low clay content showed higher PFOA bioavailability and hence showed higher toxicity. There was no mortality in earthworms exposed up to 100 mg PFOA/kilogram soil in both the soils; however, there was a significant weight loss from 25 mg/kg onwards. This study clearly demonstrates that soil contamination of PFOA can lead to adverse effects on soil health.

  6. Coal contract cost reduction through resale of coal

    International Nuclear Information System (INIS)

    Simon, R.

    1990-01-01

    The weak coal market of the 1980's has enabled utilities and other users of coal to enjoy stable or falling prices for coal supplies. Falling prices for coal stimulated the renegotiation of numerous coal contracts in recent years, as buyers look to take advantage of lower fuel prices available in the marketplace. This paper examines the use of coal resale transactions as a means of reducing fuel costs, and analyzes the benefits and risks associated with such transactions

  7. Emission factors of polycyclic and nitro-polycyclic aromatic hydrocarbons from residential combustion of coal and crop residue pellets.

    Science.gov (United States)

    Yang, Xiaoyang; Liu, Shijie; Xu, Yisheng; Liu, Yu; Chen, Lijiang; Tang, Ning; Hayakawa, Kazuichi

    2017-12-01

    Polycyclic aromatic hydrocarbons (PAHs) and nitro-polycyclic aromatic hydrocarbons (NPAHs) are toxic pollutants mainly produced during fossil fuel combustion. Domestic coal stoves, which emit large amounts of PAHs and NPAHs, are widely used in the Chinese countryside. In this study, emission factors (Efs) for 13 PAH species and 21 NPAH species for four raw coal (three bituminous and one anthracite), one honeycomb briquette, and one crop residue pellet (peanut hulls) samples burned in a typical Chinese rural cooking stove were determined experimentally. The PAH and NPAH Efs for the six fuels were 3.15-49 mg/kg and 0.32-100 μg/kg, respectively. Peanut hulls had very high Efs for both PAHs and NPAHs, and honeycomb briquettes had the lowest Efs. 2-Nitropyrene and 2-nitrofluoranthene, which are NPAHs typically found in secondary organic aerosol, were detected in the emissions from some fuels, suggesting that chemical reactions may have occurred in the dilution tunnel between the flue gas leaving the stove and entering the sampler. The 1-nitropyrene to pyrene diagnostic ratios for coal and peanut hulls were 0.0001 ± 0.0001 and 0.0005, respectively. These were in the same order of magnitude as reference ratios for emissions during coal combustion. The 6-nitrobenzo[a]pyrene to benzo[a]pyrene ratios for the fuels were determined, and the ratios for coal and peanut hulls were 0.0010 ± 0.0001 and 0.0014, respectively. The calculated potential toxic risks indicated that peanut hull emissions were very toxic, especially in terms of NPAHs, compared with emissions from the other fuels. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Advanced combustor design concept to control NOx and air toxics

    Energy Technology Data Exchange (ETDEWEB)

    Eddings, E.G.; Pershing, D.W.; Molina, A.; Sarofim, A.F.; Spinti, J.P.; Veranth, J.

    1999-03-29

    Direct coal combustion needs to be a primary energy source for the electric utility industry and for heavy manufacturing during the next several decades because of the availability and economic advantage of coal relative to other fuels and because of the time required to produce major market penetration in the energy field. However, the major obstacle to coal utilization is a set of ever-tightening environmental regulations at both the federal and local level. It is, therefore, critical that fundamental research be conducted to support the development of low-emission, high-efficiency pulverized coal power systems. The objective of this program was to develop fundamental understanding regarding the impact of fuel and combustion changes on NOx formation, carbon burnout and air toxic emissions from pulverized coal (pc) combustion. During pc combustion, nitrogen in the coal can be oxidized to form nitrogen oxides (NO{sub x}). The 1990 Clean Air Act Amendments established much stricter NO{sub x} emissions limits for new and existing coal-fired plants, so there has been renewed interest in the processes by which NO{sub x} forms in pc flames. One of the least understood aspects of NO{sub x} formation from pc combustion is the process by which char-N (nitrogen remaining in the char after devolatilization) forms either NO{sub x} or N{sub 2}, and the development of a fundamental understanding of this process was a major focus of this research. The overall objective of this program was to improve the ability of combustion system designers and boiler manufacturers to build high efficiency, low emission pulverized coal systems by improving the design tools available to the industry. The specific program goals were to: Use laboratory experiments and modeling to develop fundamental understanding for a new submodel for char nitrogen oxidation (a critical piece usually neglected in most NOx models.); Use existing bench scale facilities to investigate alternative schemes to

  9. Pretreatment and fermentation strategies to overcome the toxicity of acetic acid in hemicellulosic hydrolysates

    DEFF Research Database (Denmark)

    Mussatto, Solange I.

    Acetic acid is one of the most important toxic compounds present in hemicellulosic hydrolysates. In order to overcome this problem, several strategies were studied for both biomass pretreatment and fermentation steps. Biomass deacetylation by mild alkaline pretreatment or using high pressure CO2...... where acetic acid can also be integrated as a valuable final product. For the fermentation step, it is well known that hemicellulosic hydrolysates usually need to be detoxified prior use as fermentation medium in order to improve the performance of the microorganism to convert sugars in the product...... of interest. Although detoxification improves the fermentability of hydrolysates, this additional step adds cost and complexity to the process and generates extra waste products. In this sense, the adaptation of the fermenting microorganism to increased concentrations of acetic acid can be considered...

  10. Combustion behaviour of ultra clean coal obtained by chemical demineralisation

    Energy Technology Data Exchange (ETDEWEB)

    F. Rubiera; A. Arenillas; B. Arias; J.J. Pis; I. Suarez-Ruiz; K.M. Steel; J.W. Patrick [Instituto Nacional del Carbon, CSIC, Oviedo (Spain)

    2003-10-01

    The increasing environmental concern caused by the use of fossil fuels and the concomitant need for improved combustion efficiency is leading to the development of new coal cleaning and utilisation processes. However, the benefits achieved by the removal of most mineral matter from coal either by physical or chemical methods can be annulled if poor coal combustibility characteristics are attained. In this work a high volatile bituminous coal with 6% ash content was subjected to chemical demineralisation via hydrofluoric and nitric acid leaching, the ash content of the clean coal was reduced to 0.3%. The original and treated coals were devolatilised in a drop tube furnace and the structure and morphology of the resultant chars was analysed by optical and scanning electron microscopies. The reactivity characteristics of the chars were studied by isothermal combustion tests in air at different temperatures in a thermogravimetric system. Comparison of the combustion behaviour and pollutant emissions of both coals was conducted in a drop tube furnace operating at 1000{sup o}C. The results of this work indicate that the char obtained from the chemically treated coal presents very different structure, morphology and reactivity behaviour than the char from the original coal. The changes induced by the chemical treatment increased the combustion efficiency determined in the drop tube furnace, in fact higher burnout levels were obtained for the demineralised coal.

  11. Engineering development of advance physical fine coal cleaning for premium fuel applications

    Energy Technology Data Exchange (ETDEWEB)

    Jha, M.C.; Smit, F.J.; Shields, G.L. [AMAX R& D Center/ENTECH Global Inc., Golden, CO (United States)

    1995-11-01

    The objective of this project is to develop the engineering design base for prototype fine coal cleaning plants based on Advanced Column Flotation and Selective Agglomeration processes for premium fuel and near-term applications. Removal of toxic trace elements is also being investigated. The scope of the project includes laboratory research and bench-scale testing of each process on six coals followed by design, construction, and operation of a 2 tons/hour process development unit (PDU). Three coals will be cleaned in tonnage quantity and provided to DOE and its contractors for combustion evaluation. Amax R&D (now a subsidiary of Cyprus Amax Mineral Company) is the prime contractor. Entech Global is managing the project and performing most of the research and development work as an on-site subcontractor. Other participants in the project are Cyprus Amax Coal Company, Arcanum, Bechtel, TIC, University of Kentucky and Virginia Tech. Drs. Keller of Syracuse and Dooher of Adelphi University are consultants.

  12. Investigations on the enrichment behaviour of toxic heavy metals in the mass flows of a coal power station

    International Nuclear Information System (INIS)

    Biehusen, U.

    1980-01-01

    In the present work solid sample material from a coal power plant has been analyzed, and by means of establishing a mass balance and calculating enrichment factors the question of how the heavy-metals having entered the power plant via the coal are distributed over the individual mass flows leaving the plant has been explained. Radioactive substances that get into the plant with the uranium and thorium contained in the coal have been considered in the same way. (orig./EF) [de

  13. Impacts of Natural Surfactant Soybean Phospholipid on Wettability of High-rank Coal Reservoir

    Science.gov (United States)

    Lyu, S.; Xiao, Y.; Yuan, M.; Wang, S.

    2017-12-01

    It is significant to change the surface wettability of coal rock with the surfactant in coal mining and coalbed methane exploitation. Soybean phospholipid (SP) is a kind of natural zwitterionic surfactant which is non-toxic and degradable. In order to study the effects of soybean phospholipid on wettability of high-rank coal in Qinshui Basin, some experiments including surface tension test, contact angle measurement on the coal surface, coal fines imbibition, observation of dispersion effect and gas permeability test were carried out, and water locking mechanism of fracturing fluid in micro fractures of coal reservoir was analyzed. The results show that the surface of high-rank coal was negatively charged in solution and of weak hydrophilicity. The soybean phospholipid with the mass fraction of 0.1% reduced the surface tension of water by 69%, and increased the wettability of coal. Meanwhile, the soybean phospholipid helped coal fines to disperse by observation of the filter cake with the scanning electron microscope. The rising rate of soybean phospholipid solution in the pipe filled with coal fines was lower than that of anionic and cationic surfactant, higher than that of clean water and non-ionic surfactant. Composite surfactant made up of soybean phospholipid and OP-10 at the ratio of 1:3 having a low surface tension and large contact angle, reduced the capillary force effectively, which could be conducive to discharge of fracturing fluid from coal reservoir micro fracture and improve the migration channels of gas. Therefore it has a broad application prospect.

  14. Australian Coal Company Risk Factors: Coal and Oil Prices

    OpenAIRE

    M. Zahid Hasan; Ronald A. Ratti

    2014-01-01

    Examination of panel data on listed coal companies on the Australian exchange over January 1999 to February 2010 suggests that market return, interest rate premium, foreign exchange rate risk, and coal price returns are statistically significant in determining the excess return on coal companies’ stock. Coal price return and oil price return increases have statistically significant positive effects on coal company stock returns. A one per cent rise in coal price raises coal company returns ...

  15. Applications of micellar enzymology to clean coal technology. Second quarterly report

    Energy Technology Data Exchange (ETDEWEB)

    Walsh, C.T.

    1990-04-27

    This project is designed to develop methods for pre-combustion coal remediation by implementing recent advances in enzyme biochemistry. The novel approach of this study is incorporation of hydrophilic oxidative enzymes in reverse micelles in an organic solvent. Enzymes from commercial sources or microbial extracts are being investigated for their capacity to remove organic sulfur from coal by oxidation of the sulfur groups, splitting of C-S bonds and loss of sulfur as sulfuric acid. Dibenzothiophene (DBT) and ethylphenylsulfide (EPS) are serving as models of organic sulfur-containing components of coal in initial studies.

  16. Coal Tar and Coal-Tar Pitch

    Science.gov (United States)

    Learn about coal-tar products, which can raise your risk of skin cancer, lung cancer, and other types of cancer. Examples of coal-tar products include creosote, coal-tar pitch, and certain preparations used to treat skin conditions such as eczema, psoriasis, and dandruff.

  17. Higher coronary heart disease and heart attack morbidity in Appalachian coal mining regions.

    Science.gov (United States)

    Hendryx, Michael; Zullig, Keith J

    2009-11-01

    This study analyzes the U.S. 2006 Behavioral Risk Factor Surveillance System survey data (N=235,783) to test whether self-reported cardiovascular disease rates are higher in Appalachian coal mining counties compared to other counties after control for other risks. Dependent variables include self-reported measures of ever (1) being diagnosed with cardiovascular disease (CVD) or with a specific form of CVD including (2) stroke, (3) heart attack, or (4) angina or coronary heart disease (CHD). Independent variables included coal mining, smoking, BMI, drinking, physician supply, diabetes co-morbidity, age, race/ethnicity, education, income, and others. SUDAAN Multilog models were estimated, and odds ratios tested for coal mining effects. After control for covariates, people in Appalachian coal mining areas reported significantly higher risk of CVD (OR=1.22, 95% CI=1.14-1.30), angina or CHD (OR=1.29, 95% CI=1.19-1.39) and heart attack (OR=1.19, 95% CI=1.10-1.30). Effects were present for both men and women. Cardiovascular diseases have been linked to both air and water contamination in ways consistent with toxicants found in coal and coal processing. Future research is indicated to assess air and water quality in coal mining communities in Appalachia, with corresponding environmental programs and standards established as indicated.

  18. Coal summit II

    Energy Technology Data Exchange (ETDEWEB)

    1983-01-01

    Various papers were presented on world coal trade. Papers include: Poland as a producer and exporter of coal; the dynamics of world coal trade; Cerrejon coal production perspectives; present state of the Australian coal industry; present state of the EC coal market and future prospects; prospects of US coal exports to Europe; forecast of Italian coal supply and demand through 1990; statistics from coal transportation outlook; status of world coal ports.

  19. The role of calcium, silicon and salicylic acid treatment in protection of canola plants against boron toxicity stress.

    Science.gov (United States)

    Metwally, Ashraf M; Radi, Abeer A; El-Shazoly, Rasha M; Hamada, Afaf M

    2018-01-22

    Boron (B) toxicity often limits crop yield and the quality of production in agricultural areas. Here, we investigated the effects of calcium (Ca), silicon (Si) and salicylic acid (SA) on development of B toxicity, B allocation in canola (Brassica napus cultivar Sarw 4) and its role in non-enzymatic antioxidants in relation to yield of this cultivar under B toxicity. Canola seedlings were subjected to four B levels induced by boric acid in the absence or presence of Ca, Si and SA. The results showed that Ca, Si and SA addition ameliorated the inhibition in canola growth, water content (WC), and improved siliqua number, siliqua weight and seed index. The B content in shoots and roots and total B accumulation in the whole plant were increased in control plants under B-toxicity-stress, and these parameters were significantly decreased by addition of Ca, Si and SA. The shoot ascorbate pool (ascorbate, AsA, and dehydroascorbate, DHA), α-tocopherol and phenolics (free and bound) were increased under B toxicity, and were significantly decreased in most cases by addition of Ca, Si and SA, except α-tocopherol, which increased at low B levels (0, 25 and 50 mg kg soil -1 ). The glutathione content did not obviously change by B stress, while added Ca, Si and SA inhibited its accumulation under B stress. In addition, B toxicity reduced the shoot flavonoids content; however, this reduction was not alleviated by the use of Ca, Si and SA treatments. It could be concluded that growth and yield of canola plants grown under high B concentration improved after external application of Ca, Si or SA.

  20. Partitioning of elements during coal combustion and leaching experiments

    Energy Technology Data Exchange (ETDEWEB)

    Wang Wen-feng; Qin Yong; Song Dang-yu; Wang Jun-yi [China University of Mining & Technology, Xuzhou (China). School of Resources and Earth Science

    2009-04-15

    The mineral component and content of sulfur and 42 major and trace elements of the feed coal, fly and bottom ashes collected from Shizuishan coal-fired power plant, Ningxia, China were analyzed using AFS, INAA, ICP-MS, ICP-AES, XRD. Based on the coal combustion and leaching experiments, the partitioning of these elements during coal combustion and the leaching behavior of the 11 potentially hazardous elements, including As, Cd, Co, Cr, Hg, Mo, Ni, Pb, Se, Th and U were investigated. The results show that the distribution of elements in the fly and bottom ashes is controlled by their volatilities and modes of occurrence in the coal. The degree of volatilization of elements may be mainly associated with boiling/melting points of these elements and their compounds. The elements easily volatilized, organically bound or associated with sub-micrometer and nano minerals (e.g. Al and Na) tend to be enriched in the fine fractions of fly ash, and most elements do not vaporize which are approximately equally partitioned in the fly and bottom ashes. The emission rates of As, Cr, K, Mg, Mn, Mo, Pb, Sb, and Zn are notably influenced by the temperature ranging from 877 to 1300{sup o}C. The leaching behavior of elements depend significantly on their geochemical properties and modes of occurrence. The elements with a low degree of volatilization are not easily leached, while volatile elements easily leached under the acid conditions. Arsenic, B Br, Cd, Cu, Hg, Pb, S, Sb and Se show a higher emission rate during coal combustion, and the leached concentrations of Cd, Co, Mo, Ni and U in the acid media exceed their limited concentrations recommended in relevant environment quality standards for water, which will harm the environment. 32 refs., 4 figs., 4 tabs.

  1. SYNTHESIS OF METHACRYLATES FROM COAL-DERIVED SYNGAS

    Energy Technology Data Exchange (ETDEWEB)

    Jang, B.W.L.; Spivey, J.J.; Gogate, M.R.; Zoeller, J.R.; Colberg, R.D.; Choi, G.N.

    1999-12-01

    Research Triangle Institute (RTI), Eastman Chemical Company, and Bechtel have developed a novel process for synthesis of methyl methacrylate (MMA) from coal-derived syngas, under a contract from the US Department of Energy/Fossil Energy Technology Center (DOE/FETC). This project has resulted in five US patents (four already published and one pending publication). It has served as the basis for the technical and economic assessment of the production of this high-volume intermediate from coal-derived synthesis gas. The three-step process consists of the synthesis of a propionate from ethylene carbonylation using coal-derived CO, condensation of the propionate with formaldehyde to form methacrylic acid (MAA); and esterification of MAA with methanol to yield MMA. The first two steps, propionate synthesis and condensation catalysis, are the key technical challenges and the focus of the research presented here.

  2. Reactions of clofibric acid with oxidative and reductive radicals-Products, mechanisms, efficiency and toxic effects

    Science.gov (United States)

    Csay, Tamás; Rácz, Gergely; Salik, Ádám; Takács, Erzsébet; Wojnárovits, László

    2014-09-01

    The degradation of clofibric acid induced by hydroxyl radical, hydrated electron and O2-•/HO2• reactive species was studied in aqueous solutions. Clofibric acid was decomposed more effectively by hydroxyl radical than by hydrated electron or O2-•/HO2•. Various hydroxylated, dechlorinated and fragmentation products have been identified and quantified. A new LC-MS method was developed based on 18O isotope labeling to follow the formation of hydroxylated derivatives of clofibric acid. Possible degradation pathways have been proposed. The overall degradation was monitored by determination of sum parameters like COD, TOC and AOX. It was found that the organic chlorine degrades very effectively prior to complete mineralization. After the treatment no toxic effect was found according to Vibrio fischeri tests. However, at early stages some of the reaction products were more harmful than clofibric acid.

  3. Assessment of elements in coal related to environmental concern

    International Nuclear Information System (INIS)

    Diah Dwiana Lestiani; Muhayatun Santoso; Natalia Adventini

    2010-01-01

    National energy consumption increases rapidly in line with the economic growth and population. Indonesian government plans to develop electrical power plant 10 000 MW program to anticipate this matter, first step of which is focused on coal power plant. In this study, coal combustion was assessed on its environmental impact. Determination of trace and toxic elements was applied by instrumental neutron activation analysis. Samples were irradiated in Rabbit System at GA Siwabessy, Serpong, in reactor with neutron flux ~10 13 n.cm -2 .s -1 , then counted using HPGe detector. The method was validated by analysis of standard reference material NIST SRM 1633b coal fly ash. The results showed that Al and Cr concentrations were 2.1 0±0.80 and 7.63±1.45 mg/kg, respectively, and other elements such as Al, Co, Cs, Ce, Fe, K, La, Mn, Na, Sc, Sm, Ti, and V were still in the range of those in other world coals. Comparison the elements in coal with the elements in fly ash and bottom ash for relative enrichment index, mass balance calculation and mass flow estimation using assumption was also carried out to estimate the total emission estimation related the environmental concerned elements. The total emission of As, Co and Cr were in the range of 0.84-2.28 kg/day or equivalent to 0.49-1.23 % of total elemental mass content in coal. This also indicated that these elements were captured 98-99 % before released to the environment. (author)

  4. Interaction and the structures of coal

    Science.gov (United States)

    Opaprakasit, Pakorn

    The origin of a decrease in the amount of soluble material from coal upon a reflux treatment has been investigated in an attempt to obtain insight into the nature of the interaction in the macromolecular network structure of coal. This decrease in the extractable material is a result of an increase in the amount of physical cross-links associated with secondary interactions. The alternate possibility of covalent cross-link formation by ether linkage was found to be unlikely because the coal hydroxyl content remains unchanged upon heat treatment. The functional groups responsible for forming these physical cross-links and their contents vary from coal to coal with coal rank. Carboxylate/cation complexes, similar to those found in ionomers, dominate in low rank coal. In high rank coal, the clusters involving pi-cation interactions were observed. Both mechanisms seem to play a role in mid rank coals. These physical cross-links are responsible for a lowering of the extraction yield of coal, but are disrupted by a treatment with acid solution, resulting in an increase in the extraction yield. As a consequence, the cross-links in coal structure should be classified into two types; a "permanent" covalent cross-link, which break under extreme conditions such as chemical reaction and pyrolysis, and "reversible" cross-links, largely associated with ionomer-like structure and pi-cation interactions. The interaction between a "magic" solvent of N-methylpyrollidone and carbon disulfide (NMP/CS2) and its role in the unusual extractability enhancement of Upper Freeport coal has also been investigated. The results strongly suggest that NMP/CS2 mixed solvents form complexes with cations. These mixed solvents are capable of forming a solid complex with cations from NaOH and some simple salts, such as NaCl and LiCl. Given that Upper Freeport coal contains a large amount of mineral matter, it is not surprising that these types of complexes could be formed in the present of the mixed

  5. Formation of the gaseous phase of impurity elements from coal combustion at a thermal power plant

    International Nuclear Information System (INIS)

    Kizil'shtein, L.Ya.; Levchenko, S.V.; Peretyakt'ko, A.G.

    1991-01-01

    Data are reported on the distribution of impurity elements in their principal carriers: organic matter, iron sulfides, and clays. Tests with high-temperature combustion of coals and argillites indicate that elements associated with clay minerals largely remain in ash and slag. They do not pass to the gas phase - a factor to be considered in assessment of environmental impact from thermal power plants and specification of toxic concentration levels of impurity elements in coal

  6. Engineering development of advanced coal-fired low-emissions boiler system. Phase II subsystem test design and plan - an addendum to the Phase II RD & T Plan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-05-01

    Shortly after the year 2000 it is expected that new generating plants will be needed to meet the growing demand for electricity and to replace the aging plants that are nearing the end of their useful service life. The plants of the future will need to be extremely clean, highly efficient and economical. Continuing concerns over acid rain, air toxics, global climate changes, ozone depletion and solid waste disposal are expected to further then regulations. In the late 1980`s it was commonly believed that coal-fired power plants of the future would incorporate either some form of Integrated Gasification Combined Cycle (IGCC) or first generation Pressurized Fluidized Bed Combustion (PFBS) technologies. However, recent advances In emission control techniques at reduced costs and auxiliary power requirements coupled with significant improvements In steam turbine and cycle design have clearly indicated that pulverized coal technology can continue to be competitive In both cost and performance. In recognition of the competitive potential for advanced pulverized coal-fired systems with other emerging advanced coal-fired technologies, DOE`s Pittsburgh Energy Technology Center (PETC) began a research and development initiative In late 1990 named, Combustion 2000, with the intention of preserving and expanding coal as a principal fuel In the Generation of electrical power. The project was designed for two stages of commercialization, the nearer-term Low Emission Boiler System (LEBS) program, and for the future, the High Performance Power System (HIPPS) program. B&W is participating In the LEBS program.

  7. Fungal degradation of coal as a pretreatment for methane production

    Science.gov (United States)

    Haider, Rizwan; Ghauri, Muhammad A.; SanFilipo, John R.; Jones, Elizabeth J.; Orem, William H.; Tatu, Calin A.; Akhtar, Kalsoom; Akhtar, Nasrin

    2013-01-01

    Coal conversion technologies can help in taking advantage of huge low rank coal reserves by converting those into alternative fuels like methane. In this regard, fungal degradation of coal can serve as a pretreatment step in order to make coal a suitable substrate for biological beneficiation. A fungal isolate MW1, identified as Penicillium chrysogenum on the basis of fungal ITS sequences, was isolated from a core sample of coal, taken from a well drilled by the US. Geological Survey in Montana, USA. The low rank coal samples, from major coal fields of Pakistan, were treated with MW1 for 7 days in the presence of 0.1% ammonium sulfate as nitrogen source and 0.1% glucose as a supplemental carbon source. Liquid extracts were analyzed through Excitation–Emission Matrix Spectroscopy (EEMS) to obtain qualitative estimates of solubilized coal; these analyses indicated the release of complex organic functionalities. In addition, GC–MS analysis of these extracts confirmed the presence of single ring aromatics, polyaromatic hydrocarbons (PAHs), aromatic nitrogen compounds and aliphatics. Subsequently, the released organics were subjected to a bioassay for the generation of methane which conferred the potential application of fungal degradation as pretreatment. Additionally, fungal-mediated degradation was also prospected for extracting some other chemical entities like humic acids from brown coals with high huminite content especially from Thar, the largest lignite reserve of Pakistan.

  8. Assessing metal pollution in ponds constructed for controlling runoff from reclaimed coal mines.

    Science.gov (United States)

    Miguel-Chinchilla, Leticia; González, Eduardo; Comín, Francisco A

    2014-08-01

    Constructing ponds to protect downstream ecosystems is a common practice in opencast coal mine reclamation. As these ponds remain integrated in the landscape, it is important to evaluate the extent of the effect of mine pollution on these ecosystems. However, this point has not been sufficiently addressed in the literature. The main objective of this work was to explore the metal pollution in man-made ponds constructed for runoff control in reclaimed opencast coal mines over time. To do so, we evaluated the concentration of ten heavy metals in the water, sediment, and Typha sp. in 16 runoff ponds ranging from 1 to 19 years old that were constructed in reclaimed opencast coal mines of northeastern Spain. To evaluate degree of mining pollution, we compared these data to those from a pit lake created in a local unreclaimed mine and to local streams as an unpolluted reference, as well as comparing toxicity levels in aquatic organisms. The runoff ponds showed toxic concentrations of Al, Cu, and Ni in the water and As and Ni in the sediment, which were maintained over time. Metal concentrations in runoff ponds were higher than in local streams, and macrophytes showed high metal concentrations. Nevertheless, metal concentrations in water and sediment in runoff ponds were lower than those in the pit lake. This study highlights the importance of mining reclamation to preserve the health of aquatic ecosystems and suggests the existence of chronic metal toxicity in the ponds, potentially jeopardizing pond ecological functions and services.

  9. Chemical treatment of coal by grinding and aqueous caustic leaching

    Energy Technology Data Exchange (ETDEWEB)

    Balaz, P.; LaCount, R.B.; Kern, D.G.; Turcaniova, L. [Slovak Academy of Sciences, Kosice (Slovakia). Inst. of Geotechnics

    2001-04-01

    The aim of this work has been to point out the possibility of using GACL process for chemical cleaning of brown coal Nivaky (Slovakia) and Pittsburgh coal. Simultaneous grinding and aqueous chemical leaching, which is the principle of the process, reduces the inorganic and inorganic sulfur content in both coals. Dearsenificiation nearly up to 96% is detected in GACL-treated samples of Novaky coal. The possibility of enhancing the recovery of humic acid as a consequence of GACL treatment is demonstrated. The process under study works under atmospheric pressure, temperature of 90{degree}C and NaOH consumption, which is six times lower compared with the MCL process. Further research is needed to minimize the wear of grinding media and to improve the washing step. 24 refs., 7 figs., 3 tabs.

  10. Determination of oxygen and nitrogen in coal by instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Hamrin, C.E. Jr.; Johannes, A.H.; James, W.D. Jr.; Sun, G.H.; Ehmann, W.D.

    1979-01-01

    The purpose of this study was to measure oxygen and nitrogen in coals using instrumental neutron activation analysis. For six U.S. coals total oxygen ranged from 9.4 to 28.7% and total nitrogen varied from 0.72 to 1.61%. To obtain values of organic oxygen and nitrogen either a low-temperature-ashing (LTA) method or an acid-treatment (AT) method was suitable for bituminous coals. The mean difference of the experimentally determined values (Osub(dmmf))sub(LTA) - (Osub(dmmf))sub(AT) = -0.82, s = 0.51, [dmmf = dry, mineral-matter-free basis], was found to be statistically significant at the 95% confidence level, but the comparable difference for nitrogen was not. By the LTA method oxygen and nitrogen on the dmmf basis for bituminous coals showed no statistically significant difference with calculated dmmf values. Nitrogen was detected in all the LTAs varying from 0.38 to 1.67%. Formation of insoluble CaF 2 in the acid-treatment method caused an interference in the nitrogen determination due to the 19 F (n, 2n) 18 F reaction but was correctable. In addition, recoil proton reactions on C and O leading to the formation of 13 N must be accounted for in all nitrogen determinations in the coal matrix. (author)

  11. Quantitative analysis of phenol and alkylphenols in Brazilian coal tar

    Directory of Open Access Journals (Sweden)

    Elina Bastos Caramão

    2004-04-01

    Full Text Available The main purpose of this work is the identification and quantification of phenolic compounds in coal tar samples from a ceramics factory in Cocal (SC, Brazil. The samples were subjected to preparative scale liquid chromatography, using Amberlyst A-27TM ion-exchange resin as stationary phase. The fractions obtained were classified as "acids" and "BN" (bases and neutrals. The identification and quantification of phenols, in the acid fraction, was made by gas chromatography coupled to mass spectrometry (GC/MS. Nearly twenty-five phenols were identified in the samples and nine of them were also quantified. The results showed that coal tar has large quantities of phenolic compounds of industrial interest.

  12. Mechanism underlying the action of waterglass in the flotation of Karaganda coals

    Energy Technology Data Exchange (ETDEWEB)

    Vlasova, N S; Shchegoleva, E N

    1979-05-01

    The effectiveness of activated waterglass in the flotation of coals containing a considerable amount of clay is governed basically by the selectivity of the silicic acid and its dissociation products in relation to the coal surface and the surface of the dirt, as well as its stability and the degree of hydration of the fixed layer of reagent.

  13. Characterization and effectiveness of remining abandoned coal mines in Pennsylvania

    International Nuclear Information System (INIS)

    Hawkins, J.W.

    1995-01-01

    Under an approved remining program, mine operators can remine abandoned coal mines without assuming legal responsibility for treatment of the previously degraded water, as long as the discharging waters are not further degraded and other regulatory requirements are satisfied. A US Bureau of Mines review of 105 remining permits in Pennsylvania indicates that remining results in substantial reclamation of abandoned mine lands, utilization of significant quantities of coal, and reduction of contaminant loads (acidity and iron) from degraded mine drainage discharges. Normality tests performed on the water quality and flow data indicate generally nonnormal distributions and extreme right-skewness tending toward lower values. The water quality of underground coal mines was observed to be more highly degraded in terms of acidity, iron, and sulfate than that of surface coal mines. The optimum baseline sampling scenario is 12 months in duration at a frequency of one sample per month. Analysis of water quality and flow rates before and after remining indicates that a majority of the mines exhibited either no change or a significant decrease in pollution rate because of remining. The discharge flow rate was the dominant controlling factor when the post-remining contaminant load was significantly better or worse than the baseline (pre-mining) load

  14. Assessment of direct radiological risk and indirect associated toxic risks originated by Coal-Fired Power Plants

    OpenAIRE

    Dinis, M. L.; Fiúza, António; Góis, Joaquim; Carvalho, José Soeiro de; Meira Castro, A C

    2011-01-01

    Over the past few decades there has been some discussion concerning the increase of the natural background radiation originated by coal-fired power plants, due to the uranium and thorium content present in combustion ashes. The radioactive decay products of uranium and thorium, such as radium, radon, polonium, bismuth and lead, are also released in addition to a significant amount of 40K. Since the measurement of radioactive elements released by the gaseous emissions of coal power plants i...

  15. Evaluation of AFBC co-firing of coal and hospital wastes

    Energy Technology Data Exchange (ETDEWEB)

    1991-02-01

    The purpose of this program is to expand the use of coal by utilizing CFB (circulating fluidized bed) technology to provide an environmentally safe method for disposing of waste materials. Hospitals are currently experiencing a waste management crisis. In many instances, they are no longer permitted to burn pathological and infectious wastes in incinerators. Older hospital incinerators are not capable of maintaining the stable temperatures and residence times necessary in order to completely destroy toxic substances before release into the atmosphere. In addition, the number of available landfills which can safely handle these substances is decreasing each year. The purpose of this project is to conduct necessary research investigating whether the combustion of the hospital wastes in a coal-fired circulating fluidized bed boiler will effectively destroy dioxins and other hazardous substances before release into the atmosphere. If this is proven feasible, in light of the quantity of hospital wastes generated each year, it would create a new market for coal -- possibly 50 million tons/year.

  16. Mathematical modelling of demineralisation of high sulphur coal by bioleaching

    Energy Technology Data Exchange (ETDEWEB)

    Weerasekara, N.S.; Frutos, F.J.G.; Cara, J.; Lockwood, F.C. [University of London Imperial College of Science Technology & Medicine, London (United Kingdom)

    2008-02-15

    During coal combustion various toxic compounds are generated from its sulphur content. Their environmental impacts are considered to be very important. While there are various conventional preparation methods to remove the sulphur in the fuel, recent work reveals that newly-isolated micro-organisms, naturally present in coal, have the ability to reduce its sulphur content. The removal of sulphur using biological leaching involving acidophilic iron oxidising bacteria like Acidithiobacillus ferrooxidans and Leptospirillum ferrooxidans are examined and a computational technique based on computational fluid dynamics is developed to model the biological leaching of sulphur from coal. The model was validated against a pack-column experiment carried out for iron separation during 60 days. The mathematical model predicted iron separation over time is similar to experimental measurements, with an average difference of 5.5%. According to the experimental results, there was an overall reduction of 33% of pyrite, whereas the model prediction was 32%. The model results shows overall good agreement with pack-column experimental data.

  17. Coal-92

    International Nuclear Information System (INIS)

    Hillring, B.; Sparre, C.

    1992-11-01

    Swedish consumption of coal and coke during 1991 and trends in technology, environment and market aspects of coal use are reported. Steam coal use in the heating sector was unchanged from 1991, 1.2 Mtons. Reduced consumption in smaller district heating units (due to conversion to biofuels and gas) was compensated by increased use for power generation in cogeneration plants. Coal consumption in industry fell 0.10 Mton to 0.84 Mton due to lower production in one industry branch. Import of steam coal was 1.1 Mton (down 0.5 Mton from 1990) since new rules for strategic reserves allowed a reduction of stocks. During the last five years stocks have been reduced by 2 Mtons. Import of metallurgical coal was 1.6 Mton, unchanged from 1990. The report also gives statistics for the coal using plants in Sweden, on coal R and D, and on emission laws for coal firing. (9 tabs., 2 figs.)

  18. Physics of coal methane: decisive role of iron compounds

    Energy Technology Data Exchange (ETDEWEB)

    Gavriljuk, V. G., E-mail: gavr@imp.kiev.ua; Skoblik, A. P. [G.V. Kurdyumov Institute for Metal Physics (Ukraine); Shanina, B. D.; Konchits, A. A. [V. Ye. Lashkarev Institute for Semiconductor Physics (Ukraine)

    2016-12-15

    The role of iron in formation of the coal methane is clarified based on the studies performed on the coal samples taken from different mines in Donetsk coal basin. Using Mössbauer spectroscopy, a correlation is found between the iron content and methane capacity of coal seams. By means of electron paramagnetic resonance, it is found that iron increases the concentration of non-compensated electron spins, i.e. dangled bonds at the carbon atoms. These bonds can be occupied by hydrogen atoms as a prerequisite of methane formation. The two-valence iron is shown to be the most effective in the increase of spin concentration. By using the ion mass spectrometry, the modelling of methane formation is carried out on the mechanical mixture of the iron-free reactor graphite, iron compounds and diluted sulphuric acid as a source of hydrogen atoms. The proposed mechanism is also confirmed by methane formation in the mixture of iron compounds and the coal from the mine where the iron and methane are practically absent.

  19. The Clean Coal Program's contributions to addressing the requirements of the Clean Air Act Amendments of 1990

    International Nuclear Information System (INIS)

    Miller, R.L.

    1992-01-01

    The purpose of this paper is to examine the potential contributions of the US Department of Energy's Clean Coal Program (CCP) to addressing the requirements of the Clean Air Act (CAA) Amendments of 1990 (CAA90). Initially funded by Congress in 1985, the CCP is a government and industry co-funded effort to demonstrate a new generation of more efficient, economically feasible, and environmentally acceptable coal technologies in a series of full- scale ''showcase'' facilities built across the country. The CCP is expected to provide funding for more than $5 billion of projects during five rounds of competition, with at least half of the funding coming from the private sector. To date, 42 projects have been selected in the first 4 rounds of the CCP. The CAA and amendments form the basis for regulating emissions of air pollutants to protect health and the environment throughout the United States. Although the origin of the CAA can be traced back to 1955, many amendments passed since that time are testimony to the iterative process involved in the regulation of air pollution. Three key components of CAA90, the first major amendments to the CAA since 1977, include mitigation measures to reduce levels of (1) acid deposition, (2) toxic air pollutants, and (3) ambient concentrations of air pollutants. This paper focuses on the timeliness of clean coal technologies in contributing to these provisions of CAA90

  20. Fractionation of fulvic acid by iron and aluminum oxides: influence on copper toxicity to Ceriodaphnia dubia

    Science.gov (United States)

    Smith, Kathleen S.; Ranville, James F.; Lesher, Emily K.; Diedrich, Daniel J.; McKnight, Diane M.; Sofield, Ruth M.

    2014-01-01

    This study examines the effect on aquatic copper toxicity of the chemical fractionation of fulvic acid (FA) that results from its association with iron and aluminum oxyhydroxide precipitates. Fractionated and unfractionated FAs obtained from streamwater and suspended sediment were utilized in acute Cu toxicity tests on ,i>Ceriodaphnia dubia. Toxicity test results with equal FA concentrations (6 mg FA/L) show that the fractionated dissolved FA was 3 times less effective at reducing Cu toxicity (EC50 13 ± 0.6 μg Cu/L) than were the unfractionated dissolved FAs (EC50 39 ± 0.4 and 41 ± 1.2 μg Cu/L). The fractionation is a consequence of preferential sorption of molecules having strong metal-binding (more aromatic) moieties to precipitating Fe- and Al-rich oxyhydroxides, causing the remaining dissolved FA to be depleted in these functional groups. As a result, there is more bioavailable dissolved Cu in the water and hence greater potential for Cu toxicity to aquatic organisms. In predicting Cu toxicity, biotic ligand models (BLMs) take into account dissolved organic carbon (DOC) concentration; however, unless DOC characteristics are accounted for, model predictions can underestimate acute Cu toxicity for water containing fractionated dissolved FA. This may have implications for water-quality criteria in systems containing Fe- and Al-rich sediment, and in mined and mineralized areas in particular. Optical measurements, such as specific ultraviolet absorbance at 254 nm (SUVA254), show promise for use as spectral indicators of DOC chemical fractionation and inferred increased Cu toxicity.

  1. A newer concept of setting up coal refineries in coal utilising industries through environmentally sound clean coal technology of organosuper refining of coals

    International Nuclear Information System (INIS)

    Sharma, D.K.

    1994-01-01

    In order to reduce the losses of premium organic matter of coal and its immense potential energy which is present in the form of stronger interatomic and intramolecular bonding energies, a newer and convenient technique of recovering the premium organic matter from low grade coals by organosuper-refining technique which operates under ambient pressure conditions has been developed. The residual coal obtained can be used as environmentally clean fuel or as a feedstock for the industries based on carbonization and gasification. It is suggested that a beginning be made by setting up coal refineries in coal utilizing industries on the basis of the presently developed new technology of organosuper-refining of coals to recover premium grade organic chemical feed stocks from coals before utilizing coal by techniques such as bubble bed or recirculatory fluidized bed or pulverized coal combustion in thermal power stations, carbonization in steel plants or other carbonization units, gasification in fertilizer industries or in integrated coal gasification combined cycle power generation. Thus, coal refineries may produce value added aromatic chemical feed stocks, formed coke or coke manufacturing; and carbon fillers for polymers. (author). 100 refs., 1 fig

  2. Acid mine drainage

    Science.gov (United States)

    Bigham, Jerry M.; Cravotta, Charles A.

    2016-01-01

    Acid mine drainage (AMD) consists of metal-laden solutions produced by the oxidative dissolution of iron sulfide minerals exposed to air, moisture, and acidophilic microbes during the mining of coal and metal deposits. The pH of AMD is usually in the range of 2–6, but mine-impacted waters at circumneutral pH (5–8) are also common. Mine drainage usually contains elevated concentrations of sulfate, iron, aluminum, and other potentially toxic metals leached from rock that hydrolyze and coprecipitate to form rust-colored encrustations or sediments. When AMD is discharged into surface waters or groundwaters, degradation of water quality, injury to aquatic life, and corrosion or encrustation of engineered structures can occur for substantial distances. Prevention and remediation strategies should consider the biogeochemical complexity of the system, the longevity of AMD pollution, the predictive power of geochemical modeling, and the full range of available field technologies for problem mitigation.

  3. Prostate hypofractionated radiation therapy with injection of hyaluronic acid: acute toxicities in a phase 2 study.

    Science.gov (United States)

    Chapet, Olivier; Decullier, Evelyne; Bin, Sylvie; Faix, Antoine; Ruffion, Alain; Jalade, Patrice; Fenoglietto, Pascal; Udrescu, Corina; Enachescu, Ciprian; Azria, David

    2015-03-15

    Hypofractionated radiation therapy (RT) in prostate cancer can be developed only if the risk of rectal toxicity is controlled. In a multicenter phase 2 trial, hypofractionated irradiation was combined with an injection of hyaluronic acid (HA) to preserve the rectal wall. Tolerance of the injection and acute toxicity rates are reported. The study was designed to assess late grade 2 toxicity rates. The results described here correspond to the secondary objectives. Acute toxicity was defined as occurring during RT or within 3 months after RT and graded according to the Common Terminology Criteria for Adverse Events version 4.0. HA tolerance was evaluated with a visual analog scale during the injection and 30 minutes after injection and then by use of the Common Terminology Criteria at each visit. From 2010 to 2012, 36 patients with low-risk to intermediate-risk prostate cancer were included. The HA injection induced a mean pain score of 4.6/10 ± 2.3. Thirty minutes after the injection, 2 patients still reported pain (2/10 and 3/10), which persisted after the intervention. Thirty-three patients experienced at least 1 acute genitourinary toxicity and 20 patients at least 1 acute gastrointestinal toxicity. Grade 2 toxicities were reported for 19 patients with urinary obstruction, frequency, or both and for 1 patient with proctitis. No grade 3 or 4 toxicities were reported. At the 3-month visit, 4 patients described grade 2 obstruction or frequency, and no patients had any grade 2 gastrointestinal toxicities. The injection of HA makes it possible to deliver hypofractionated irradiation over 4 weeks with a dose per fraction of > 3 Gy, with limited acute rectal toxicity. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Prostate Hypofractionated Radiation Therapy With Injection of Hyaluronic Acid: Acute Toxicities in a Phase 2 Study

    International Nuclear Information System (INIS)

    Chapet, Olivier; Decullier, Evelyne; Bin, Sylvie; Faix, Antoine; Ruffion, Alain; Jalade, Patrice; Fenoglietto, Pascal; Udrescu, Corina; Enachescu, Ciprian; Azria, David

    2015-01-01

    Purpose: Hypofractionated radiation therapy (RT) in prostate cancer can be developed only if the risk of rectal toxicity is controlled. In a multicenter phase 2 trial, hypofractionated irradiation was combined with an injection of hyaluronic acid (HA) to preserve the rectal wall. Tolerance of the injection and acute toxicity rates are reported. Methods and Materials: The study was designed to assess late grade 2 toxicity rates. The results described here correspond to the secondary objectives. Acute toxicity was defined as occurring during RT or within 3 months after RT and graded according to the Common Terminology Criteria for Adverse Events version 4.0. HA tolerance was evaluated with a visual analog scale during the injection and 30 minutes after injection and then by use of the Common Terminology Criteria at each visit. Results: From 2010 to 2012, 36 patients with low-risk to intermediate-risk prostate cancer were included. The HA injection induced a mean pain score of 4.6/10 ± 2.3. Thirty minutes after the injection, 2 patients still reported pain (2/10 and 3/10), which persisted after the intervention. Thirty-three patients experienced at least 1 acute genitourinary toxicity and 20 patients at least 1 acute gastrointestinal toxicity. Grade 2 toxicities were reported for 19 patients with urinary obstruction, frequency, or both and for 1 patient with proctitis. No grade 3 or 4 toxicities were reported. At the 3-month visit, 4 patients described grade 2 obstruction or frequency, and no patients had any grade 2 gastrointestinal toxicities. Conclusions: The injection of HA makes it possible to deliver hypofractionated irradiation over 4 weeks with a dose per fraction of > 3 Gy, with limited acute rectal toxicity

  5. Prostate Hypofractionated Radiation Therapy With Injection of Hyaluronic Acid: Acute Toxicities in a Phase 2 Study

    Energy Technology Data Exchange (ETDEWEB)

    Chapet, Olivier, E-mail: olivier.chapet@chu-lyon.fr [Department of Radiation Oncology, Hospices Civils de Lyon, Centre Hospitalier Lyon Sud, Pierre Benite (France); EMR3738, Université Lyon 1, Lyon (France); Decullier, Evelyne; Bin, Sylvie [Pole Information Médicale Evaluation Recherche, Hospices Civils de Lyon, Lyon (France); Université Lyon 1, Lyon (France); EA SIS, Université de Lyon, Lyon (France); Faix, Antoine [Department of Urology, Clinique Beausoleil, Montpellier (France); Ruffion, Alain [Université Lyon 1, Lyon (France); Department of Urology, Hospices Civils de Lyon, Centre Hospitalier Lyon Sud, Pierre Benite (France); Jalade, Patrice [Department of Medical Physics, Hospices Civils de Lyon, Centre Hospitalier Lyon Sud, Pierre Benite (France); Fenoglietto, Pascal [Department of Radiation Oncology and Physics, Institut du Cancer de Montpellier, Montpellier (France); Udrescu, Corina; Enachescu, Ciprian [Department of Radiation Oncology, Hospices Civils de Lyon, Centre Hospitalier Lyon Sud, Pierre Benite (France); Azria, David [Department of Radiation Oncology and Physics, Institut du Cancer de Montpellier, Montpellier (France)

    2015-03-15

    Purpose: Hypofractionated radiation therapy (RT) in prostate cancer can be developed only if the risk of rectal toxicity is controlled. In a multicenter phase 2 trial, hypofractionated irradiation was combined with an injection of hyaluronic acid (HA) to preserve the rectal wall. Tolerance of the injection and acute toxicity rates are reported. Methods and Materials: The study was designed to assess late grade 2 toxicity rates. The results described here correspond to the secondary objectives. Acute toxicity was defined as occurring during RT or within 3 months after RT and graded according to the Common Terminology Criteria for Adverse Events version 4.0. HA tolerance was evaluated with a visual analog scale during the injection and 30 minutes after injection and then by use of the Common Terminology Criteria at each visit. Results: From 2010 to 2012, 36 patients with low-risk to intermediate-risk prostate cancer were included. The HA injection induced a mean pain score of 4.6/10 ± 2.3. Thirty minutes after the injection, 2 patients still reported pain (2/10 and 3/10), which persisted after the intervention. Thirty-three patients experienced at least 1 acute genitourinary toxicity and 20 patients at least 1 acute gastrointestinal toxicity. Grade 2 toxicities were reported for 19 patients with urinary obstruction, frequency, or both and for 1 patient with proctitis. No grade 3 or 4 toxicities were reported. At the 3-month visit, 4 patients described grade 2 obstruction or frequency, and no patients had any grade 2 gastrointestinal toxicities. Conclusions: The injection of HA makes it possible to deliver hypofractionated irradiation over 4 weeks with a dose per fraction of > 3 Gy, with limited acute rectal toxicity.

  6. Bilateral retrobulbar optic neuropathy as the only sign of zoledronic acid toxicity.

    Science.gov (United States)

    Lavado, Félix Manco; Prieto, Marta Para; Osorio, María Rosalba Ramoa; Gálvez, María Isabel López; Leal, Lucía Manzanas

    2017-10-01

    Bisphosphonates may rarely cause ocular adverse effects and retrobulbar optic neuropathy (RON) secondary to zoledronic acid is very rare. A 67-year-old man was referred because of progressive and painless decrease vision in the left eye. He had been treated with 7 cycles of zoledronic acid infusions because of metastatic prostate cancer. On examination, VA was 20/20 in the right eye (OD) and 20/50 in the left eye (OS). The optic nerve was unremarkable OU. Pattern visual evoked potentials (pVEP) and electroretinography were performed with the result of VEP responses abolished in OS, and the VEP waveform within the normal range amplitude and delayed peak latencies in OD. Due to the high suspicion of bilateral RON secondary to zoledronic acid, we decided to discontinue the treatment. Two months later, VA was 20/20 OD and hand motions OS, with relative afferent pupillary defect and a pallor of the optic disc in OS. The diagnosis of bilateral RON secondary to zoledronic acid infusions was confirmed, and it was only partially reversible. Zoledronic acid is a potent new generation bisphosphonate increasingly used in oncologic patients and it is usually well tolerated. Optic nerve toxicity is not a side effect recognised by either the Food and Drug Administration or the drug manufacturers, and to our knowledge, this is the first case of zoledronic acid-related bilateral RON with late onset. In conclusion, patients treated with bisphosphonates should be informed about the possibility of ocular side-effects, and ophthalmologists should be consider discontinuing the drug. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Toxicity of a dental adhesive compared with ionizing radiation and zoledronic acid.

    Science.gov (United States)

    Alcaraz, Miguel; Olivares, Amparo; Achel, Daniel-Giyngiri; García-Cruz, Emilio; Fondevilla-Soler, Adriana; Canteras-Jordana, Manuel

    2015-07-01

    To determine the toxicity of aqueous dilutions of a universal self-priming dental adhesive (DA) and comparing these with those elicited by exposure to ionizing radiation (IR), Zoledronic acid (Z) treatment and the synergic effects of the combined treatment with IR+Z. The genotoxic effect of DA was determined by the increase in the frequency of micronuclei in cytokinesis-blocked in cultured human lymphocytes before and after exposure to 2Gy of X-rays. The cytotoxic effect was studied by using the MTT cell viability test in normal prostate cell lines (PNT2) after exposure to different X-ray doses (0Gy-20Gy). The cell lines divided into different groups and treated with different test substances: DA in presence of O2, DA in absence of O2, Z-treated and control. An in vitro dose-dependent and time-dependent cytotoxic effect of DA, Z and IR on PNT2 cells (p>0.001) was demonstrated. DA without-O2, following the recommendations of manufacturers, had a more pronounced effect of increasing cell death than DA with-O2 (p<0.001). In the genotoxicity assay, DA at 25% of its original concentration significantly increased chromosome damage (p<0.001). The samples studied were found to be toxic, and the samples photo-polymerized in absence of O2 showed a bigger cytotoxic effect comparable to the additive toxic effect showed by the combined treatment of IR+Z. Additional effort should be carried out to develop adhesives, which would reduce the release of hazardous substances; since toxic effects are similar to that reported by other agents whose clinical use is controlled by the health authorities.

  8. Coal waste management practices in the USA:an overview

    Institute of Scientific and Technical Information of China (English)

    Yoginder P. Chugh; Paul T. Behum

    2014-01-01

    This paper provides an overview of coal waste management practices with two case studies and an estimate of management cost in 2010 US dollars. Processing of as-mined coal typically results in considerable amount of coarse and fine coal processing wastes because of in-seam and out-of-seam dilution mining. Processing plant clean coal recovery values run typically 50%–80%. Trace metals and sulfur may be present in waste materials that may result in leachate water with corrosive charac-teristics. Water discharges may require special measures such as liner and collection systems, and treatment to neutralize acid drainage and/or water quality for trace elements. The potential for variations in coal waste production and quality depends upon mining or processing, plus the long-term methods of waste placement. The changes in waste generation rates and engineering properties of the coal waste during the life of the facility must be considered. Safe, economical and environmentally acceptable management of coal waste involves consideration of geology, soil and rock mechanics, hydrology, hydraulics, geochemistry, soil science, agronomy and environmental sciences. These support all aspects of the regulatory environment including the design and construction of earth and rock embankments and dams, as well as a wide variety of waste disposal structures. Development of impoundments is critical and require considerations of typical water-impounding dams and additional requirements of coal waste disposal impoundments. The primary purpose of a coal waste disposal facility is to dispose of unusable waste materials from mining. However, at some sites coal waste impoundments serve to provide water storage capacity for processing and flood attenuation.

  9. Late Cretaceous coal overlying karstic bauxite deposits in the Parnassus-Ghiona Unit, Central Greece: Coal characteristics and depositional environment

    Energy Technology Data Exchange (ETDEWEB)

    Kalaitzidis, Stavros; Siavalas, George; Christanis, Kimon [Dept. of Geology, University of Patras, 26504 Rio-Patras (Greece); Skarpelis, Nikos [Dept. of Geology and Geoenvironment, University of Athens, 15784 Zografou (Greece); Araujo, Carla Viviane [Petrobras-Cenpes GEOQ/PDEXP, Rua Horacio Macedo n 950, Cidade Universitaria - Ilha do Fundao, 21941-915 Rio de Janeiro (Brazil)

    2010-04-01

    The Pera-Lakkos coal located on top of bauxite deposits in the Ghiona mining district (Central Greece), is the only known Mesozoic (Late Cretaceous) coal in the country. It was derived from herbaceous plants and algae growing in mildly brackish mires that formed behind a barrier system during a regression of the sea, on a karstified limestone partly filled in with bauxitic detritus. Petrological, mineralogical and geochemical data point to the predominance of reducing conditions and intense organic matter degradation in the palaeomires. O/C vs. H/C and OI vs. HI plots, based on elemental analysis and Rock-Eval data, characterize kerogen types I/II. This reflects the relatively high liptinite content of the coal. Besides kerogen composition, O/C vs. H/C plot for the Pera-Lakkos coals is in accordance with a catagenesis stage of maturation in contrast with vitrinite reflectance and T{sub max} from Rock-Eval pyrolysis, which indicate the onset of oil window maturation stage. Suppression of vitrinite reflectance should be considered and the high liptinite content corroborates this hypothesis. Despite some favourable aspects for petroleum generation presented by the Pera-Lakkos coal, its maximum thickness (up to 50 cm) points to a restricted potential for petroleum generation. Coal oxidation took place either during the late stage of peat formation, due to wave action accompanying the subsequent marine transgression, or epigenetically after the emergence of the whole sequence due to percolation of drainage waters. Both options are also supported by the REE shale-normalized profiles, which demonstrate an upwards depletion in the coal layer. Oxidation also affected pyrite included in the coal; this led to the formation of acidic (sulfate-rich) solutions, which percolated downwards resulting in bleaching of the upper part of the underlying bauxite. (author)

  10. Adsorption of lignite-derived humic acids on coal-based mesoporous activated carbons.

    Science.gov (United States)

    Lorenc-Grabowska, Ewa; Gryglewicz, Grazyna

    2005-04-15

    The adsorption by a coal-based mesoporous activated carbon of humic acids (HAs) isolated from two Polish lignites was studied. For comparison, a commercial Aldrich humic acid was also included into this study. The differences in chemical structure and functional groups of HAs were determined by elemental analysis and infrared spectroscopy DRIFT. Two activated carbons used differed in terms of mesopore volume, mesopore size distribution, and chemical properties of the surface. The kinetics of adsorption of HAs have been discussed using three kinetic models, i.e., the first-order Lagergren model, the pseudo-second-order model, and the intraparticle diffusion model. It was found that the adsorption of HAs from alkaline solution on mesoporous activated carbon proceeds according to the pseudo-second-order model. The correlation coefficients were close to 1. The intraparticle diffusion of HA molecules within the carbon particle was identified to be the rate-limiting step. Comparing the two activated carbons, the carbon with a higher volume of pores with widths of 10-50 nm showed a greater removal efficiency of HA. An increase in the Freundlich adsorption capacity with decreasing carbon content of HA was observed. Among the HAs studied, S-HA shows characteristics indicating the highest contribution of small-size fraction. The S-HA was removed by both activated carbons to the highest extent. The effect of pH solution on the adsorption of HA was examined over the range pH 5.4-12.2. It was found that the extent of adsorption decreased with decreasing pH of the solution.

  11. Predicted coal production trends in Kentucky: The results of available coal resources, coal quality demands, and regulatory factors

    International Nuclear Information System (INIS)

    Watson, W.D.

    1993-01-01

    Many factors affect the viability of regional coal production markets including (1) coal quality and recoverable tonnage, (2) coal mining cost, (3) the regional and time varying patterns of coal demand growth, (4) regulations and other institutional constraints that affect coal demand and utilization, and (5) the regional array of coal transport modes and rates. This analysis integrates these factors into an assessment of coal production prospects (separately) for eastern and western Kentucky coal producing counties for the decade of the 90's. The integration indicates that eastern Kentucky coal production will peak and begin to decline by the end of the decade whereas western Kentucky coal production will continue to grow. No single factor explains these trends. There is plenty of available minable coal. The combination of changes in environmental regulations, some increase in coal mining costs, and the mining-out of low sulfur reserves are the main factors that account for the production trends

  12. Variability of Mercury Content in Coal Matter From Coal Seams of The Upper Silesia Coal Basin

    Science.gov (United States)

    Wierzchowski, Krzysztof; Chećko, Jarosław; Pyka, Ireneusz

    2017-12-01

    The process of identifying and documenting the quality parameters of coal, as well as the conditions of coal deposition in the seam, is multi-stage and extremely expensive. The taking and analyzing of seam samples is the method of assessment of the quality and quantity parameters of coals in deep mines. Depending on the method of sampling, it offers quite precise assessment of the quality parameters of potential commercial coals. The main kind of seam samples under consideration are so-called "documentary seam samples", which exclude dirt bands and other seam contaminants. Mercury content in coal matter from the currently accessible and exploited coal seams of the Upper Silesian Coal Basin (USCB) was assessed. It was noted that the mercury content in coal seams decreases with the age of the seam and, to a lesser extent, seam deposition depth. Maps of the variation of mercury content in selected lithostratigraphic units (layers) of the Upper Silesian Coal Basin have been created.

  13. Toxicity on aquatic organisms exposed to secondary effluent disinfected with chlorine, peracetic acid, ozone and UV radiation.

    Science.gov (United States)

    da Costa, Juliana Berninger; Rodgher, Suzelei; Daniel, Luiz Antonio; Espíndola, Evaldo Luiz Gaeta

    2014-11-01

    The toxic potential of four disinfectant agents (chlorine, ozone, peracetic acid and UV radiation), used in the disinfection of urban wastewater, was evaluated with respect to four aquatic organisms. Disinfection assays were carried out with wastewater from the city of Araraquara (São Paulo State, Brazil), and subsequently, toxicity bioassays were applied in order to verify possible adverse effects to the cladocerans (Ceriodaphnia silvestrii and Daphnia similis), midge larvae Chironomus xanthus and fish (Danio rerio). Under the experimental conditions tested, all the disinfectants were capable of producing harmful effects on the test organisms, except for C. xanthus. The toxicity of the effluent to C. silvestrii was observed to increase significantly as a result of disinfection using 2.5 mg L(-1) chlorine and 29.9 mg L(-1) ozone. Ozonation and chlorination significantly affected the survival of D. similis and D. rerio, causing mortality of 60 to 100 % in comparison to the non-disinfected effluent. In experiments with effluent treated with peracetic acid (PAA) and UV radiation, a statistically significant decrease in survival was only detected for D. rerio. This investigation suggested that the study of the ideal concentrations of disinfectants is a research need for ecologically safe options for the treatment of wastewater.

  14. Coal blending preparation for non-carbonized coal briquettes

    Science.gov (United States)

    Widodo; Fatimah, D.; Estiaty, L. M.

    2018-02-01

    Referring to the national energy policy targets for the years 2025, the government has launched the use of coal briquettes as an alternative energy replacement for kerosene and firewood. Non-carbonized briquettes in the form of coal briquettes as well as bio-coal briquettes are used in many small-medium industries and households, and are rarely used by large industries. The standard quality of coal briquettes used as raw material for non-carbonized briquettes is a minimum calorific value of 4,400 kcal/kg (adb); total sulfur at a maximum of 1% (adb), and water content at plants), the environment of deposition, and the geological conditions of the surrounding area, so that the coal deposits in each region will be different as well as the amount and also the quality. Therefore, the quantity and the quality of coal in each area are different to be eligible in the making of briquettes to do blending. In addition to the coal blending, it is also necessary to select the right materials in the making of coal briquettes and bio-coal briquettes. The formulation of the right mixture of material in the making of briquettes, can be produced of good quality and environmental friendly.

  15. Tenth annual coal preparation, utilization, and environmental control contractors conference: Proceedings. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    1994-08-01

    Volume I contains papers presented at the following sessions: high efficiency preparation; advanced physical coal cleaning; superclean emission systems; air toxics and mercury measurement and control workshop; and mercury measurement and control workshop. Selected papers have been processed for inclusion in the Energy Science and Technology Database.

  16. National Coal Utilization Assessment: a preliminary assessment of coal utilizaton in the South. [Southern USA to 2020; forecasting

    Energy Technology Data Exchange (ETDEWEB)

    Berry, L. B.; Bjornstad, D. J.; Boercker, F. D.

    1978-01-01

    Some of the major problems and issues related to coal development and use in the South are identified and assessed assuming a base-case energy scenario for the next 45 years. This scenario assumes a midrange of coal use and a relatively high rate of nuclear use over the forecast period. The potential impacts from coal development and use are significant, particularly in the 1990-2020 time period. Practically all available sites suitable for power plant development in the assessment will be utilized by 2020. Overall, sulfur dioxide will be well below the annual primary standard; however, several local hot-spot areas were identified. In addition, sulfate concentrations will be increased significantly, particularly over Virginia, West Virginia, and northern Kentucky. Coal mining is expected to affect 6 of the 12 major ecological regions. Coal mining will lead to increased average suspended sediment concentrations in some river basins, and special measures will be required to control acid discharges from active mines in pyritic regions. The increased mining of coal and subsequent sulfur dioxide increases from its combustion may also give rise to a land-use confrontation with food and fiber production. Potential health effects from exposure to sulfur dioxide and sulfates are expected to increase rapidly in several areas, particularly in parts of Kentucky, Maryland, District of Columbia, and Georgia. Regional social costs should be relatively low, although some site-specific costs are expected to be very high. Alternative energy technologies, careful siting selection, and deployment of environmental control technologies and operating policies will be required to reduce or mitigate these potential impacts.

  17. Higher coronary heart disease and heart attack morbidity in Appalachian coal mining regions

    Energy Technology Data Exchange (ETDEWEB)

    Hendryx, M.; Zullig, K.J. [West Virginia University, Morgantown, WV (United States). Dept. of Community Medicine

    2009-11-15

    This study analyzes the U.S. 2006 Behavioral Risk Factor Surveillance System survey data (N = 235,783) to test whether self-reported cardiovascular disease rates are higher in Appalachian coal mining counties compared to other counties after control for other risks. Dependent variables include self-reported measures of ever (1) being diagnosed with cardiovascular disease (CVD) or with a specific form of CVD including (2) stroke, (3) heart attack, or (4) angina or coronary heart disease (CHD). Independent variables included coal mining, smoking, BMI, drinking, physician supply, diabetes co-morbidity, age, race/ethnicity, education, income, and others. SUDAAN Multilog models were estimated, and odds ratios tested for coal mining effects. After control for covariates, people in Appalachian coal mining areas reported significantly higher risk of CVD (OR = 1.22, 95% CI = 1.14-1.30), angina or CHO (OR = 1.29, 95% C1 = 1.19-1.39) and heart attack (OR = 1.19, 95% C1 = 1.10-1.30). Effects were present for both men and women. Cardiovascular diseases have been linked to both air and water contamination in ways consistent with toxicants found in coal and coal processing. Future research is indicated to assess air and water quality in coal mining communities in Appalachia, with corresponding environmental programs and standards established as indicated.

  18. Firing a sub-bituminous coal in pulverized coal boilers configured for bituminous coals

    Energy Technology Data Exchange (ETDEWEB)

    N. Spitz; R. Saveliev; M. Perelman; E. Korytni; B. Chudnovsky; A. Talanker; E. Bar-Ziv [Ben-Gurion University of the Negev, Beer-Sheva (Israel)

    2008-07-15

    It is important to adapt utility boilers to sub-bituminous coals to take advantage of their environmental benefits while limiting operation risks. We discuss the performance impact that Adaro, an Indonesian sub-bituminous coal with high moisture content, has on opposite-wall and tangentially-fired utility boilers which were designed for bituminous coals. Numerical simulations were made with GLACIER, a computational-fluid-dynamic code, to depict combustion behavior. The predictions were verified with full-scale test results. For analysis of the operational parameters for firing Adaro coal in both boilers, we used EXPERT system, an on-line supervision system developed by Israel Electric Corporation. It was concluded that firing Adaro coal, compared to a typical bituminous coal, lowers NOx and SO{sub 2} emissions, lowers LOI content and improves fouling behavior but can cause load limitation which impacts flexible operation. 21 refs., 7 figs., 3 tabs.

  19. Investigation of the remaining major and trace elements in clean coal generated by organic solvent extraction

    Energy Technology Data Exchange (ETDEWEB)

    Jie Wang; Chunqi Li; Kinya Sakanishi; Tetsuya Nakazato; Hiroaki Tao; Toshimasa Takanohashi; Takayuki Takarada; Ikuo Saito [National Institute Advanced Industrial Science and Technology (AIST), Ibaraki (Japan). Energy Technology Research Institute

    2005-09-01

    A sub-bituminous Wyodak coal (WD coal) and a bituminous Illinois No. 6 coal (IL coal) were thermally extracted with 1-methylnaphthalene (1-MN) and N-methyl-2-pyrrolidone (NMP) to produce clean extract. A mild pretreatment with acetic acid was also carried out. Major and trace inorganic elements in the raw coals and resultant extracts were determined by means of inductively coupled plasma optical emission spectrometry (ICP-OES), flow injection inductively coupled plasma mass spectrometry (FI-ICP-MS), and cold vapor atomic absorption spectrometry (CV-AAS). It was found that the extraction with 1-MN resulted in 73-100% reductions in the concentration of Li, Be, V, Ga, As, Se, Sr, Cd, Ba, Hg, and Pb. The extraction with NMP yielded more extract than that with 1-MN, but it retained more organically associated major and trace metals in the extracts. In the extraction of WD coal with NMP, the acid pretreatment not only significantly enhanced the extraction yield but also significantly reduced the concentrations of alkaline earth elements such as Be, Ca, Mg, Sr, and Ba in the extract. In addition, the modes of occurrence of trace elements in the coals were discussed according to their extraction behaviors. 30 refs., 2 figs., 5 tabs.

  20. Health and environmental effects of coal-fired electric power plants

    International Nuclear Information System (INIS)

    Morris, S.C.; Hamilton, L.D.

    1984-05-01

    This paper describes health and environmental impacts of coal-fired electric power plants. Effects on man, agriculture, and natural ecosystems are considered. These effects may result from direct impacts or exposures via air, water, and food chains. The paper is organized by geographical extent of effect. Occupational health impacts and local environmental effects such as noise and solid waste leachate are treated first. Then, regional effects of air pollution, including acid rain, are analyzed. Finally, potential global impacts are examined. Occupational health concerns considered include exposure to noise, dust, asbestos, mercury, and combustion products, and resulting injury and disease. Local effects considered include noise; air and water emissions of coal storage piles, solid waste operations, and cooling systems. Air pollution, once an acute local problem, is now a regional concern. Acute and chronic direct health effects are considered. Special attention is given to potential effects of radionuclides in coal and of acid rain. Finally, potential global impacts associated with carbon dioxide emissions are considered. 88 references, 9 tables

  1. Assessment of the content of arsenic in solid by-products from coal combustion

    Directory of Open Access Journals (Sweden)

    Wierońska Faustyna

    2017-01-01

    Full Text Available The coal combustion processes constitute one of the major sources of heavy metals emission into the atmosphere. From the point of view of the reduction of the emission of heavy metals and the selection of the correct exhaust gas treatment system, it is important to monitor the amount of trace elements in the solid fuels and in the solid by-products from coal combustion. One of these highly toxic elements is arsenic. The average content of arsenic in Polish hard coals and lignites is 0 ÷ 40 mg/kg [1] and 5 ÷ 15 mg/kg [2], respectively. The world average content of arsenic in hard coals and lignites, is equal to 9.0 ± 0.8 and 7.4 ± 1.4 mg/kg [3], respectively. During coal combustion processes, a significant amount of arsenic enters the atmosphere through gases and fly ashes. The proportions in which those two forms of arsenic occur in exhaust gases depend on the conditions of combustion processes [4]. The aim of the research was to determine the content of arsenic in coal blends and by-products of their combustion (slag, fly ash, gypsum, filter cakes. The determination of the arsenic quantity was performed using the Atomic Absorption Spectrometry with the electrothermal atomization.

  2. Proposition of primary methods for nitrogen oxides emissions reduction at coal-fired 200 MW power unit (Yugoslavia)

    International Nuclear Information System (INIS)

    Repic, B.; Mladenovic, R.; Crnomarkovic, N.

    1997-01-01

    The combustion of coal is followed by increased pollution of the environment with toxic products. Together with the generation of other pollutants, the emission of nitrogen oxides (NO x ) represents, due to its high toxicity, a great environmental risk. Appropriate measures must be taken for lowering NO x emission, both on new facilities and those already in operation. Basic technologies (primary reduction methods) of several generations, developed until now and used in practice, are presented in the paper. The technologies applicable on domestic facilities and adjusted to domestic coals have been given particular consideration. Proposition of primary methods for NO x emission reduction at coal-fired 200 MW power unit at TPS 'Nikola Tesla' is analyzed. The following methods have been considered in detail: flue gases recirculation, multi-stage combustion, low-NO x burners, additional over-fire air, multi-stage air intake into the furnace, staged fuel injection, grinding fineness increase, etc. Considerations were performed according to existing constructive characteristics of the furnace and the burners, and characteristics of used fuels, i. e. lignites from Kolubara pit. (Author)

  3. Geochemistry of coals, coal ashes and combustion wastes from coal-fired power stations

    International Nuclear Information System (INIS)

    Vassilev, S.V.; Vassileva, C.G.

    1997-01-01

    Contents, concentration trends, and modes of occurrence of 67 elements in coals, coal ashes, and combustion wastes at eleven Bulgarian thermoelectric power stations (TPS) were studied. A number of trace elements in coal and coal ash have concentrations greater than their respective worldwide average contents (Clarke values). Trace elements are concentrated mainly in the heavy accessory minerals and organic matter in coal. In decreasing order of significance, the trace elements in coal may occur as: element-organic compounds; impurities in the mineral matter; major components in the mineral matter; major and impurity components in the inorganic amorphous matter; and elements in the fluid constituent. A number of trace elements in the waste products, similar to coal ashes, exceed known Clarke contents. Trace elements are mainly enriched in non-magnetic, heavy and fine-grained fractions of fly ash. They are commonly present as impurities in the glass phases, and are included in the crystalline components. Their accessory crystalline phases, element-organic compounds, liquid and gas forms, are of subordinate importance. Some elements from the chalcophile, lithophile and siderophile groups may release into the atmosphere during coal burning. For others, the combustion process appears to be a powerful factor causing their relative enrichment in the fly ash and rarely in the bottom ash and slag. 65 refs., 1 fig., 11 tabs

  4. Development of biological coal gasification (MicGAS process). Final report, May 1, 1990--May 31, 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    ARCTECH has developed a novel process (MicGAS) for direct, anaerobic biomethanation of coals. Biomethanation potential of coals of different ranks (Anthracite, bitumious, sub-bitumious, and lignites of different types), by various microbial consortia, was investigated. Studies on biogasification of Texas Lignite (TxL) were conducted with a proprietary microbial consortium, Mic-1, isolated from hind guts of soil eating termites (Zootermopsis and Nasutitermes sp.) and further improved at ARCTECH. Various microbial populations of the Mic-1 consortium carry out the multi-step MicGAS Process. First, the primary coal degraders, or hydrolytic microbes, degrade the coal to high molecular weight (MW) compounds. Then acedogens ferment the high MW compounds to low MW volatile fatty acids. The volatile fatty acids are converted to acetate by acetogens, and the methanogens complete the biomethanation by converting acetate and CO{sub 2} to methane.

  5. New coal

    Energy Technology Data Exchange (ETDEWEB)

    1979-07-01

    Specially dedicated to coal, this edition comprises a series of articles of general interest dealing with the position of the French coalmining industry (interview with M.P. Gardent), the coal market in France, the work of CERCHAR, etc. New techniques, in-situ gasification of deep coal, gasification of coal by nuclear methods, the conversion of coal into petrol, the Emile Huchet power plant of Houilleres du Bassin de Lorraine, etc., are dealt with.

  6. Biodesulfurization of coals of different rank: Effect on combustion behavior

    Energy Technology Data Exchange (ETDEWEB)

    Rubiera, F.; Arenillas, A.; Fuente, E.; Pis, J.J. [CSIC, Oviedo (Spain). Inst. Nacional del Carbon; Marteinz, O.; Moran, A. [Univ. de Leon (Spain). Escuela de Ingenieria Tecnica Minera

    1999-02-01

    The emission of sulfur oxides during the combustion of coal is one of the causes, among other air pollution problems, of acid rain. The contribution of coal as the mainstay of power production will be determined by whether its environmental performance is equal or superior to other supply options. In this context, desulfurization of coal before combustion by biological methods was studied. Four Spanish high-sulfur content coals of different rank were inoculated with bacteria isolated from mine-drainage waters and with naturally occurring bacteria inherent in the coals to be treated. Higher levels of desulfurization were obtained in the case of the samples treated with their own accompanying bacteria and when aeration was increased. All the samples were amenable to the biodepyritization processes. However, it is of little value to achieve large sulfur reductions if a decrease in coal combustion performance is obtained in the process. For this reason, a comparison was made between the combustibility characteristics of the original coals and those of the biodesulfurized samples. Results indicated that combustibility was not substantially modified by the overall biological treatment. The benefits of reduced sulfur emissions into the atmosphere ought to be taken into account as part of the general evaluation of the processes.

  7. Combustion and environmental performance of clean coal end products

    Energy Technology Data Exchange (ETDEWEB)

    Skodras, G.; Sakellaropoulos, G. [Centre for Research and Technology, Hellas, Ptolemaidas-Kozanis, Ptolemaida (Greece). Inst. for Solid Fuel Technolgy and Applications]|[Aristotle Univ. of Thessaloniki, Thessaloniki (Greece). Dept. of Chemical Engineering, Chemical Process Engineering Lab]|[Chemical Process Engineering Research Inst., Thessaloniki (Greece). Lab. of Solid Fuels and Environment; Someus, E. [Thermal Desorption Technology Group (Greece); Grammelis, P.; Amarantos, P.S. [Centre for Research and Technology, Hellas, Ptolemaidas-Kozanis, Ptolemaida (Greece). Inst. for Solid Fuel Technolgy and Applications; Palladas, A.; Basinas, P.; Natas, P.; Prokopidou, M.; Diamantopoulou, I.; Sakellaropoulos, G. [Aristotle Univ. of Thessaloniki, Thessaloniki (Greece). Dept. of Chemical Engineering, Chemical Process Engineering Lab

    2006-07-01

    Clean and affordable power production is needed in order to achieve sustainable economic development. This paper focused on clean coal technologies in which coal-fired power plants are used in conjunction with large amounts of renewable energy sources to offer a high level of process safety and long term management of all residual operation streams. Thermal Desorption Recycle-Reduce-Reuse Technology (TDT-3R) was described as being a promising solid fuel pretreatment process for clean energy production up to 300 MWe capacities. TDT-3R is based on low temperature carbonisation fuel pre-treatment principles, which produce cleansed anthracite type fuels from coal and other carbonaceous material such as biomass and organic wastes. The combustion efficiency of such clean coals and the environmental performance of the TDT-3R process were investigated in this study via pilot scale tests of clean fuel production. Tests included flue gas emissions monitoring, raw fuel and product characterisation and thermogravimetric tests, polychlorinated dibenzo-p-dioxins and dibenzo-furans, and heavy metals analyses, and toxicity tests. Raw material included coal and biomass, such as willow, straw and demolition wood. The fuels were heated in a rotary kiln operating at 550 degrees C under slightly vacuum conditions. Clean coals were tested either alone or in conjunction with biomass fuels in a pilot scale combustion facility at Dresden, Germany. The clean coal samples were shown to have higher fixed carbon and ash content and lower volatiles compared to the respective raw coal samples. The major advantage of the TDT-3R process is the production of fuels with much lower pollutants content. Low nitrogen, sulphur, chlorine and heavy metal contents result in produced fuels that have excellent environmental performance, allow boiler operation in higher temperatures and overall better efficiency. Moreover, the use of clean fuels reduces deposition problems in the combustion chamber due to the

  8. Hepatic Toxicity of Perfluorocarboxylic Acids.

    Science.gov (United States)

    1996-07-01

    1995). 3. N. V. Reo, C. M. Goecke, L. Narayanan, and B. M. Jarnot. "Effects of Perfluoro-n-octanoic Acid , Perfluoro-n-decanoic Acid , and Clofibrate ...Artz, and B. M. Jarnot: "ILiver Phosphorous Metabolic Response to Perfluorocarboxylic Acids and Clofibrate in Rats and Guinea Pigs: A 31 P NMR Study...Peroxisome Induction by Perfluoro-n-decanoic Acid and Clofibrate in the Rat: Proliferation Versus Activity." International Society for the Study of

  9. Effect of sewage sludge on formation of acidic ground water at a reclaimed coal mine

    Science.gov (United States)

    Cravotta, C.A.

    1998-01-01

    Data on rock, ground water, vadose water, and vadose gas chemistry were collected for two years after sewage sludge was applied at a reclaimed surface coal mine in Pennsylvania to determine if surface-applied sludge is an effective barrier to oxygen influx, contributes metals and nutrients to ground water, and promotes the acidification of ground water. Acidity, sulfate, and metals concentrations were elevated in the ground water (6- to 21-m depth) from spoil relative to unmined rock because of active oxidation of pyrite and dissolution of aluminosilicate, carbonate, and Mn-Fe-oxide minerals in the spoil. Concentrations of acidity, sulfate, metals (Fe, Mn, Al, Cd, Cu, Cr, Ni, Zn), and nitrate, and abundances of iron-oxidizing bacteria were elevated in the ground water from sludge-treated spoil relative to untreated spoil having a similar mineral composition; however, gaseous and dissolved oxygen concentrations did not differ between the treatments. Abundances of iron-oxidizing bacteria in the ground water samples were positively correlated with concentrations of ammonia, nitrate, acidity, metals, and sulfate. Concentrations of metals in vadose water samples (oxidation of pyrite by nitrate. Thus, sewage sludge added to pyritic spoil can increase the growth of iron-oxidizing bacteria, the oxidation of pyrite, and the acidification of ground water. Nevertheless, the overall effects on ground water chemistry from the sludge were small and probably short-lived relative to the effects from mining only.

  10. A novel procedure to detect low molecular weight compounds released by alkaline ester cleavage from low maturity coals to assess its feedstock for deep microbial life

    DEFF Research Database (Denmark)

    Glombitza, Clemens; Mangelsdorf, Kai; Horsfield, Brian

    2009-01-01

    and South Island of New Zealand (NZ) were examined to assess the amount of bound LMW organic acids. Formate, acetate and oxalate were detected in significant amounts whereas the amounts of these compounds decrease with increasing maturity of the coal sample. This decrease of LMW organic acids mainly...... for the investigation of low molecular weight (LMW) organic acids linked to the kerogen matrix is presented. These LMW organic acids form a potential feedstock for deep microbial populations. Twelve coal samples of different maturity (vitrinite reflectance (R0) of 0.28–0.80%) from several coal mines on the North...... and generation rates of LMW organic acids indicate that the NZ coals investigated exhibit the potential to feed deep terrestrial microbial life with appropriate substrates over geological time spans....

  11. Industrial use of coal and clean coal technology

    Energy Technology Data Exchange (ETDEWEB)

    Leibson, I; Plante, J J.M.

    1990-06-01

    This report builds upon two reports published in 1988, namely {ital The use of Coal in the Industrial, Commercial, Residential and Transportation Sectors} and {ital Innovative Clean Coal Technology Deployment}, and provides more specific recommendations pertaining to coal use in the US industrial sector. The first chapter addresses industrial boilers which are common to many industrial users. The subsequent nine chapters cover the following: coke, iron and steel industries; aluminium and other metals; glass, brick, ceramic, and gypsum industries; cement and lime industries; pulp and paper industry; food and kindred products; durable goods industry; textile industry; refining and chemical industry. In addition, appendices supporting the contents of the study are provided. Each chapter covers the following topics as applicable: energy overview of the industry sector being discussed; basic processes; foreign experience; impediments to coal use; incentives that could make coal a fuel of choice; current and projected use of clean coal technology; identification of coal technology needs; conclusions; recommendations.

  12. Recovery of invertebrate and vertebrate populations in a coal ash stressed drainage system

    Energy Technology Data Exchange (ETDEWEB)

    Cherry, D.S.; Larrick, S.R.; Guthrie, R.K.; Davis, E.M.; Sherberger, F.F.

    1979-09-01

    The influence of coal ash effluent on the densities of macrobenthic invertebrate and mosquitofish populations in a swamp drainage system was studied. Samples were collected during a period of 50 mo. Three perturbations in the swamp systemash siltation, low pH, and toxic elementscaused changes in population densities. Siltation from inefficient effluent management caused the greatest drop in invertebrate populations, and pH declines from flyash addition caused the greatest mosquitofish population reductions. Dipterans and odonates were most tolerant to coal ash stress. Invertebrate population recovery was observed on completion of an efficient ash retaining basin. (13 graphs, 28 references, 3 tables)

  13. Mechanism of the action of water glass in the flotation of Karaganda coals

    Energy Technology Data Exchange (ETDEWEB)

    Vlasova, N S; Shchegoleva, E N

    1979-01-01

    The effectiveness of activated waterglass in the flotation of coals containing a considerable amount of clay is governed basically by the selctivity of the silicic acid and its dissociation products in relation to the coal surface and the surface of the dirt, as well as its stability and the degree of hydration of the fixed layer of reagent.

  14. Algal toxicity of the alternative disinfectants performic acid (PFA), peracetic acid (PAA), chlorine dioxide (ClO2) and their by-products hydrogen peroxide (H2O2) and chlorite (ClO2-)

    DEFF Research Database (Denmark)

    Chhetri, Ravi Kumar; Baun, Anders; Andersen, Henrik Rasmus

    2017-01-01

    Environmental effect evaluation of disinfection of combined sewer overflow events with alternative chemical disinfectants requires that the environmental toxicity of the disinfectants and the main by-products of their use are known. Many disinfectants degrade quickly in water which should......: performic acid (PFA), peracetic acid (PAA) and chlorine dioxide (ClO2) as well as two by-products of their use: hydrogen peroxide (H2O2) and chlorite. All of the five chemicals investigated showed clear toxicity to the algae with well-defined dose response curves. The EC50 values ranged from 0.16 to 2.9 mg...

  15. Disposing of coal combustion residues in inactive surface mines: Effects on water quality

    International Nuclear Information System (INIS)

    Kim, A.G.; Ackman, T.E.

    1994-01-01

    The disposal of coal combustion residues (CCR) in surface and underground coal mines can provide a stable, low-maintenance alternative to landfills, benefiting the mining and electric power industries. The material may be able to improve water quality at acid generating abandoned or reclaimed coal mine sites. Most combustion residues are alkaline, and their addition to the subsurface environment could raise the pH, limiting the propagation of pyrite oxidizing bacteria and reducing the rate of acid generation. Many of these CCR are also pozzolanic, capable of forming cementitious grouts. Grouts injected into the buried spoil may decrease its permeability and porosity, diverting water away from the pyritic material. Both mechanisms, alkaline addition and water diversion, are capable of reducing the amount of acid produced at the disposal site. The US Bureau of Mines is cooperating in a test of subsurface injection of CCR into a reclaimed surface mine. Initially, a mixture of fly ash, lime, and acid mine drainage (AMD) sludge was injected. Lime was the source of calcium for the formation of the pozzolanic grout. Changes in water quality parameters (pH, acidity, anions, and trace metals) in water samples from wells and seeps indicate a small but significant improvement after CCR injection. Changes in the concentration of heavy metals in the water flowing across the site were apparently influenced by the presence of flyash

  16. Comparison of Bile Acids and Acetaminophen Protein Adducts in Children and Adolescents with Acetaminophen Toxicity.

    Directory of Open Access Journals (Sweden)

    Laura James

    Full Text Available Metabolomics approaches have enabled the study of new mechanisms of liver injury in experimental models of drug toxicity. Disruption of bile acid homeostasis is a known mechanism of drug induced liver injury. The relationship of individual bile acids to indicators of oxidative drug metabolism (acetaminophen protein adducts and liver injury was examined in children with acetaminophen overdose, hospitalized children with low dose exposure to acetaminophen, and children with no recent exposure to acetaminophen. Nine bile acids were quantified through targeted metabolomic analysis in the serum samples of the three groups. Bile acids were compared to serum levels of acetaminophen protein adducts and alanine aminotransferase. Glycodeoxycholic acid, taurodeoxycholic acid, and glycochenodeoxycholic acid were significantly increased in children with acetaminophen overdose compared to healthy controls. Among patients with acetaminophen overdose, bile acids were higher in subjects with acetaminophen protein adduct values > 1.0 nmol/mL and modest correlations were noted for three bile acids and acetaminophen protein adducts as follows: taurodeoxycholic acid (R=0.604; p<0.001, glycodeoxycholic acid (R=0.581; p<0.001, and glycochenodeoxycholic acid (R=0.571; p<0.001. Variability in bile acids was greater among hospitalized children receiving low doses of acetaminophen than in healthy children with no recent acetaminophen exposure. Compared to bile acids, acetaminophen protein adducts more accurately discriminated among children with acetaminophen overdose, children with low dose exposure to acetaminophen, and healthy control subjects. In children with acetaminophen overdose, elevations of conjugated bile acids were associated with specific indicators of acetaminophen metabolism and non-specific indicators of liver injury.

  17. Development and Preliminary Assessment of Hemoperfusion Cartridge with Tannic Acid for Toxic Proteins' Precipitation: An In Vitro Model

    Directory of Open Access Journals (Sweden)

    Valquíria Miwa Hanai Yoshida

    2016-09-01

    Full Text Available Charcoal hemoperfusion (CHP is one of the extracorporeal removal techniques that are used to remove toxins from the body. CHP generally is considered the preferred method for extracorporeal extraction of several toxins—toxins that are adsorbed by activated charcoal. Assessments of the tannic acid's protective effects on ophidian poisoning are associated with the toxic proteins' precipitation by tannic acid. The challenge in treating a snakebite lies in removing the injected poison with minimal damage to blood constituent proteins. An alternative is CHP, and this investigation proposed to develop a column for hemoperfuser cartridge, combining charcoal granules trapped between layers of polymeric material conjugated to tannic acid, using an in vitro model scaled to the Wistar rat, which can be tested in an animal model. The cartridge was evaluated using the 22 full factorial design, in duplicate, as a method to study the effects of granulated-charcoal size and tannic acid concentration on the hematologic profile (platelet and leukocyte counts and biochemical profile (total serum protein and albumin dosages of sheep blood. The results demonstrate that charcoal in hemoperfuser cartridge: (1 decreases the serum in sheep blood volume, as consequence, (2 increases the serum proteins' concentration, and (iii exerts slight influence on albumin. The inclusion of tannic acid in hemoperfuser column precipitates some of serum proteins and albumin, decreasing their concentrations in the plasma serum. In conclusion, based on these effects we can suggest the use of 0.02 g tannic acid concentration and 8–20 mesh granulated charcoal in hemoperfuser cartridge for precipitating toxic proteins from snake venoms.

  18. The world behind electricity from coal. The dubious origin of coal for Dutch coal-fired power plants

    International Nuclear Information System (INIS)

    2008-01-01

    Five energy companies in the Netherlands want to build additional coal-fired power plants: Essent and Nuon, the German company RWE and E.ON and the Belgian company Electrabel. Coal-fired power plants emit 70 percent more CO2 than gas-fired power plants. Especially because of the threat to the climate Greenpeace believes that no more coal-fired power plants should be built. In this publication Greenpeace explores the pollution, the working conditions and human rights with regard to the exploitation of coal. That has been elaborated for the three countries from which Dutch energy companies import coal: South Africa, Colombia and Indonesia. In addition to information about the origin of coal also insight is given into the coal market (stocks and use), the enormous coal transport and the world trade [nl

  19. Application of the Hard and Soft, Acids and Bases (HSAB) theory to toxicant--target interactions.

    Science.gov (United States)

    Lopachin, Richard M; Gavin, Terrence; Decaprio, Anthony; Barber, David S

    2012-02-20

    Many chemical toxicants and/or their active metabolites are electrophiles that cause cell injury by forming covalent bonds with nucleophilic targets on biological macromolecules. Covalent reactions between nucleophilic and electrophilic reagents are, however, discriminatory since there is a significant degree of selectivity associated with these interactions. Over the course of the past few decades, the theory of Hard and Soft, Acids and Bases (HSAB) has proven to be a useful tool in predicting the outcome of such reactions. This concept utilizes the inherent electronic characteristic of polarizability to define, for example, reacting electrophiles and nucleophiles as either hard or soft. These HSAB definitions have been successfully applied to chemical-induced toxicity in biological systems. Thus, according to this principle, a toxic electrophile reacts preferentially with biological targets of similar hardness or softness. The soft/hard classification of a xenobiotic electrophile has obvious utility in discerning plausible biological targets and molecular mechanisms of toxicity. The purpose of this perspective is to discuss the HSAB theory of electrophiles and nucleophiles within a toxicological framework. In principle, covalent bond formation can be described by using the properties of their outermost or frontier orbitals. Because these orbital energies for most chemicals can be calculated using quantum mechanical models, it is possible to quantify the relative softness (σ) or hardness (η) of electrophiles or nucleophiles and to subsequently convert this information into useful indices of reactivity. This atomic level information can provide insight into the design of corroborative laboratory research and thereby help investigators discern corresponding molecular sites and mechanisms of toxicant action. The use of HSAB parameters has also been instrumental in the development and identification of potential nucleophilic cytoprotectants that can scavenge toxic

  20. APPLICATION OF THE HARD AND SOFT, ACIDS AND BASES (HSAB) THEORY TO TOXICANT-TARGET INTERACTIONS

    Science.gov (United States)

    LoPachin, Richard M.; Gavin, Terrence; DeCaprio, Anthony; Barber, David S.

    2011-01-01

    Many chemical toxicants and/or their active metabolites are electrophiles that cause cell injury by forming covalent bonds with nucleophilic targets on biological macromolecules. Covalent reactions between nucleophilic and electrophilic reagents are however discriminatory, since there is a significant degree of selectivity associated with these interactions. Over the course of the past few decades, the theory of Hard and Soft, Acid and Bases (HSAB) has proven to be a useful tool in predicting the outcome of such reactions. This concept utilizes the inherent electronic characteristic of polarizability to define, for example, reacting electrophiles and nucleophiles as either hard or soft. These HSAB definitions have been successfully applied to chemical-induced toxicity in biological systems. Thus, according to this principle, a toxic electrophile reacts preferentially with biological targets of similar hardness or softness. The soft/hard classification of a xenobiotic electrophile has obvious utility in discerning plausible biological targets and molecular mechanisms of toxicity. The purpose of this Perspective is to discuss the HSAB theory of electrophiles and nucleophiles within a toxicological framework. In principle, covalent bond formation can be described by using the properties of their outermost or frontier orbitals. Because these orbital energies for most chemicals can be calculated using quantum mechanical models, it is possible to quantify the relative softness (σ) or hardness (η) of electrophiles or nucleophiles and to subsequently convert this information into useful indices of reactivity. This atomic level information can provide insight into the design of corroborative laboratory research and thereby help investigators discern corresponding molecular sites and mechanisms of toxicant action. The use of HSAB parameters has also been instrumental in the development and identification of potential nucleophilic cytoprotectants that can scavenge toxic

  1. Synthesis of zeolites coal ash in surfactant modified in application and removal of orange 8 acid solution: study in batch, fixed bed column and evaluation ecotoxicological

    International Nuclear Information System (INIS)

    Magdalena, Carina Pitwak

    2015-01-01

    In this study, synthesized zeolitic material from coal ash and modified cationic surfactant was used for removing the acid dye Orange 8 (AL8) by adsorption process using moving bed and fixed-bed column. The raw material and adsorbents were characterized by different techniques, such as X-ray diffraction, X-ray fluorescence spectroscopy, among others. The adsorption of AL8 was performed by moving bed in order to optimize the results when they are launched in a fixed bed. The effects of adsorption on zeolite AL8 were compared: (1) Effect of counterions Br - and Cl - surfactant used in the modification of the zeolite; (2) effect of type of coal ash used as raw material in the synthesis of zeolites (fly and bottom). The following adsorbents were used in the study: fly and bottom zeolite modified by surfactant hexadecyltrimethylammonium bromide (ZLMS-Br-Br and ZPMS-Br) and fly zeolite modified by surfactant hexadecyltrimethylammonium chloride (ZLMS-Cl). The pseudo-second-order kinetic described the adsorption of the dye on all adsorbents. The equilibrium time was reached 40, 60 and 120 min for ZLMS-Br, ZLMS-Cl and ZPMS-Br, respectively. The adsorption equilibrium was analyzed by the equations of the models of linear and nonlinear isotherms of Langmuir, Freundlich, Temkin and Dubinin- Radushkevivh (DR) and the criterion of best fit was evaluated using the error functions.The DR model was adjusted better to the experimental data for the system AL8 / ZLMS-Br, the Freundlich model for AL8 / ZLMS-Cl and Langmuir for AL8 / ZPMS. According to the Langmuir maximum adsorption capacity was 4.67, 1.48 and 1.38 mg g -1 for ZLMS-Br, ZLMS-Cl and ZPMS-Br, in order. In studies employing fixed bed columns, the effects of inlet concentration (20- 30 mg L -1 ), flow rate (4.0 -5.3 mL min -1 ) and the bed height (5, 5 - 6.5 cm) above the breakthrough curves characteristics in the adsorption system were determined. The Adams-Bohart, Thomas, Yoon-Nelson models were applied to experimental

  2. Atmospheric emissions of F, As, Se, Hg, and Sb from coal-fired power and heat generation in China.

    Science.gov (United States)

    Chen, Jian; Liu, Guijian; Kang, Yu; Wu, Bin; Sun, Ruoyu; Zhou, Chuncai; Wu, Dun

    2013-02-01

    Coal is one of the major energy resources in China, with nearly half of produced Chinese coal used for power and heat generation. The large use of coal for power and heat generation in China may result in significant atmospheric emissions of toxic volatile trace elements (i.e. F, As, Se, Hg, and Sb). For the purpose of estimating the atmospheric emissions from coal-fired power and heat generation in China, a simple method based on coal consumption, concentration and emission factor of trace element was adopted to calculate the gaseous emissions of elements F, As, Se, Hg, and Sb. Results indicate that about 162161, 236, 637, 172, and 33 t F, As, Se, Hg, and Sb, respectively, were introduced into atmosphere from coal combustion by power and heat generation in China in 2009. The atmospheric emissions of F, As, Se, Hg, and Sb by power and heat generation increased from 2005 to 2009 with increasing coal consumptions. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  3. Transcriptome Analysis of Invasive Plants in Response to Mineral Toxicity of Reclaimed Coal-Mine Soil in the Appalachian Region.

    Science.gov (United States)

    Saminathan, Thangasamy; Malkaram, Sridhar A; Patel, Dharmesh; Taylor, Kaitlyn; Hass, Amir; Nimmakayala, Padma; Huber, David H; Reddy, Umesh K

    2015-09-01

    Efficient postmining reclamation requires successful revegetation. By using RNA sequencing, we evaluated the growth response of two invasive plants, goutweed (Aegopodium podagraria L.) and mugwort (Artemisia vulgaris), grown in two Appalachian acid-mine soils (MS-I and -II, pH ∼ 4.6). Although deficient in macronutrients, both soils contained high levels of plant-available Al, Fe and Mn. Both plant types showed toxicity tolerance, but metal accumulation differed by plant and site. With MS-I, Al accumulation was greater for mugwort than goutweed (385 ± 47 vs 2151 ± 251 μg g-1). Al concentration was similar between mine sites, but its accumulation in mugwort was greater with MS-I than MS-II, with no difference in accumulation by site for goutweed. An in situ approach revealed deregulation of multiple factors such as transporters, transcription factors, and metal chelators for metal uptake or exclusion. The two plant systems showed common gene expression patterns for different pathways. Both plant systems appeared to have few common heavy-metal pathway regulators addressing mineral toxicity/deficiency in both mine sites, which implies adaptability of invasive plants for efficient growth at mine sites with toxic waste. Functional genomics can be used to screen for plant adaptability, especially for reclamation and phytoremediation of contaminated soils and waters.

  4. Ashwagandha leaf derived withanone protects normal human cells against the toxicity of methoxyacetic acid, a major industrial metabolite.

    Science.gov (United States)

    Priyandoko, Didik; Ishii, Tetsuro; Kaul, Sunil C; Wadhwa, Renu

    2011-05-04

    The present day lifestyle heavily depends on industrial chemicals in the form of agriculture, cosmetics, textiles and medical products. Since the toxicity of the industrial chemicals has been a concern to human health, the need for alternative non-toxic natural products or adjuvants that serve as antidotes are in high demand. We have investigated the effects of Ayurvedic herb Ashwagandha (Withania somnifera) leaf extract on methoxyacetic acid (MAA) induced toxicity. MAA is a major metabolite of ester phthalates that are commonly used in industry as gelling, viscosity and stabilizer reagents. We report that the MAA cause premature senescence of normal human cells by mechanisms that involve ROS generation, DNA and mitochondrial damage. Withanone protects cells from MAA-induced toxicity by suppressing the ROS levels, DNA and mitochondrial damage, and induction of cell defense signaling pathways including Nrf2 and proteasomal degradation. These findings warrant further basic and clinical studies that may promote the use of withanone as a health adjuvant in a variety of consumer products where the toxicity has been a concern because of the use of ester phthalates.

  5. Ashwagandha leaf derived withanone protects normal human cells against the toxicity of methoxyacetic acid, a major industrial metabolite.

    Directory of Open Access Journals (Sweden)

    Didik Priyandoko

    Full Text Available The present day lifestyle heavily depends on industrial chemicals in the form of agriculture, cosmetics, textiles and medical products. Since the toxicity of the industrial chemicals has been a concern to human health, the need for alternative non-toxic natural products or adjuvants that serve as antidotes are in high demand. We have investigated the effects of Ayurvedic herb Ashwagandha (Withania somnifera leaf extract on methoxyacetic acid (MAA induced toxicity. MAA is a major metabolite of ester phthalates that are commonly used in industry as gelling, viscosity and stabilizer reagents. We report that the MAA cause premature senescence of normal human cells by mechanisms that involve ROS generation, DNA and mitochondrial damage. Withanone protects cells from MAA-induced toxicity by suppressing the ROS levels, DNA and mitochondrial damage, and induction of cell defense signaling pathways including Nrf2 and proteasomal degradation. These findings warrant further basic and clinical studies that may promote the use of withanone as a health adjuvant in a variety of consumer products where the toxicity has been a concern because of the use of ester phthalates.

  6. Resilience of small intestinal beneficial bacteria to the toxicity of soybean oil fatty acids

    Science.gov (United States)

    Di Rienzi, Sara C; Jacobson, Juliet; Kennedy, Elizabeth A; Bell, Mary E; Shi, Qiaojuan; Waters, Jillian L; Lawrence, Peter; Brenna, J Thomas; Britton, Robert A; Walter, Jens

    2018-01-01

    Over the past century, soybean oil (SBO) consumption in the United States increased dramatically. The main SBO fatty acid, linoleic acid (18:2), inhibits in vitro the growth of lactobacilli, beneficial members of the small intestinal microbiota. Human-associated lactobacilli have declined in prevalence in Western microbiomes, but how dietary changes may have impacted their ecology is unclear. Here, we compared the in vitro and in vivo effects of 18:2 on Lactobacillus reuteri and L. johnsonii. Directed evolution in vitro in both species led to strong 18:2 resistance with mutations in genes for lipid biosynthesis, acid stress, and the cell membrane or wall. Small-intestinal Lactobacillus populations in mice were unaffected by chronic and acute 18:2 exposure, yet harbored both 18:2- sensitive and resistant strains. This work shows that extant small intestinal lactobacilli are protected from toxic dietary components via the gut environment as well as their own capacity to evolve resistance. PMID:29580380

  7. Influence of coal properties on mercury uptake from aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Lakatos, J.; Brown, S.D.; Snape, C.E. [Miskolc University, Miskolc-Egyetemvaros (Hungary). Research Inst. of Applied Chemistry

    1999-10-01

    The uptake of mercury (II) from aqueous solution by a range of coals has been studied and the results have been compared to those for a number of other sorbents, including commercial active carbons and cation-exchange resins. At pH 5 in a buffer medium, the capacities for mercury removal of the low-rank coals and the oxidized bituminous coals investigated are comparable to those of the other sorbents tested. For the lignites investigated, a high content of organic sulfur does not markedly affect the capacity for mercury uptake in relatively neutral and low chloride media, owing to redox reactions being the most likely mechanism involved. However, in highly acidic solutions, the capacities for mercury uptake are considerably greater for the high-sulfur coals investigated than for their low-sulfur counterparts due to chelation being the major sorption process involved. 36 refs., 4 figs., 7 tabs.

  8. The Effect of Boric Acid and Borax on Oxidative Stress, Inflammation, ER Stress and Apoptosis in Cisplatin Toxication and Nephrotoxicity Developing as a Result of Toxication.

    Science.gov (United States)

    Hazman, Ömer; Bozkurt, Mehmet Fatih; Fidan, Abdurrahman Fatih; Uysal, Fadime Erkan; Çelik, Sefa

    2018-03-02

    The development of treatment protocols that can reduce side effects in chemotherapy applications is extremely important in terms of cancer treatment. In this context, it was aimed to investigate the effects of boric acid and borax on cisplatin toxicity (nephrotoxicity) in rats. In the experimental phase, eight groups were formed from rats. Boric acid and borax were given to the treatment groups with three different doses using gavage. On the fifth day of the study, cisplatin (10 mg/kg) was administered to all rats except the control group. At the end of the study, oxidative stress-related (GSH, MDA, PCO, GPx, 8-OHdG), inflammation-related (TNF-α, IL-1β, IL-18, MCP-1, ICAM, TGF-β), apoptosis-related (p53, caspase 1, 3, 8, 12, bcl-2, bcl-xL, NFkB), and ER stress-related (GRP78, ATF-6, PERK) basic parameters were analyzed in serum, erythrocyte, and kidney tissues. Kidney tissues were also examined by histopathological and immunohistochemical methods. Borax and boric acid at different doses decreased inflammation and oxidative stress caused by cisplatin toxicity and increased ER stress. As a result of the treatments applied to experimental animals, it was determined that boric acid and borax reduced apoptotic damage in kidney tissue, but the decrease was statistically significant only in 200 mg/kg boric acid-administered group. In the study, low anti-apoptotic effects of borate doses with the anti-inflammatory and antioxidant effect may be due to increased ER stress at the relevant doses. Further studies on the effects of boron compounds on ER stress and apoptotic mechanisms may clarify this issue. Thus, possible side effects or if there are new usage areas of borone compounds which have many usage areas in clinics can be detected.

  9. Coal information 1995

    International Nuclear Information System (INIS)

    1996-01-01

    This volume is a comprehensive reference book on current world coal market trends and long-term prospects to 2010. It contains an in-depth analysis of the 1995 international coal market covering prices, demand, trade, supply and production capacity as well as over 450 pages of country specific statistics on OECD and key non-OECD coal producing and consuming countries. The book also includes a summary of environmental policies on climate change and on coal-related air quality issues as well as essential facts on coal-fired power stations in coal-importing regions, on coal ports world-wide and on emission standards for coal-fired boilers in OECD countries. Coal Information is one of a series of annual IEA statistical publications on major energy sources; other reports are Oil and Gas Information and Electricity Information. Coal Information 1995 is published in July 1996. (author)

  10. Test and survey on a next generation coal liquefying catalyst. Coal molecule scientific test and survey as the base for commercializing the coal liquefying technology; Jisedai sekitan ekika shokubai shiken chosa. Sekitan ekika gijutsu shogyoka kiban to shite no sekitan bunshi kagaku shiken chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    The test and survey on a next generation coal liquefying catalyst present a new proposal to raise catalytic activity in coal liquefaction, and perform demonstration experiments in a laboratory scale to search for possibility of developing a new coal liquefying catalyst from various viewpoints. To explain, discussions were given on the catalyst to perform the followings: liquefaction under extremely mild conditions by using ultra strong acids not limited only to metals; ion exchange method and swell carrying method to raise catalyst dispersion very highly, enhance the catalytic activity, and reduce the amount of catalyst to be used; mechanism of producing catalyst activating species to further enhance the activity of iron catalysts; and pursuit of morphological change in the activating species. The coal molecule scientific test and survey as the base for commercializing the coal liquefying technology performed the studies on the following items: pretreatment of coal that can realize reduction of coal liquefaction cost; configuration of the liquefaction reaction, liquefying catalysts, hydrocarbon gas generating mechanism, status of catalysts after liquefaction reaction, and reduction in gas purification cost by using gas separating membranes. Future possibilities were further searched through frank and constructive opinion exchanges among the committee members. (NEDO)

  11. The clean coal technologies for lignitic coal power generation in Pakistan

    International Nuclear Information System (INIS)

    Mir, S.; Raza, Z.; Aziz-ur-Rehman, A.

    1995-01-01

    Pakistan contains huge reserves of lignitic coals. These are high sulphur, high ash coals. In spite of this unfortunate situation, the heavy demand for energy production, requires the development utilization of these indigenous coal reserves to enhance energy production. The central of the environmental pollution caused by the combustion of these coals has been a major hindrance in their utilization. Recently a substantial reduction in coal combustion emissions have been achieved through the development of clean coal technologies. Pakistan through the transfer and adaptation of the advanced clean coal technologies can utilize incurring the high sulphur coals for energy production without incurring the environmental effects that the developed countries have experienced in the past. The author discusses the recently developed clean coal utilization technologies, their applications economies and feasibility of utilization with specific reference to Pakistan''s coal. (author)

  12. Coal information 1996

    International Nuclear Information System (INIS)

    1997-01-01

    Coal Information (1997 edition) is the latest edition of a publication that has been produced annually by the IEA since 1983. The report is intended to provide both Member countries of the OECD and those employed in all sectors of the coal industry with information on current world coal market trends and long-term prospects. It includes information on coal prices, demand, trade, supply, production capacity, transport, environmental issues (including emission standards for coal-fired boilers), coal ports, coal-fired power stations and coal used in non -OECD countries. Part I of the publication contains a wide ranging review of world coal market developments in 1996 and current prospects to 2010. The review is based on historical data of OECD energy supply and demand, data on other world regions, projections of OECD coal supply, demand and trade and information provided by the CIAB. Part II provides, in tabular and graphical form, a more detailed and comprehensive statistical picture of coal developments and future prospects for coal in the OECD, by region and for individual Member countries. Readers interested in projections are strongly advised to read the notes for individual countries in Principles and Definitions in Part II. Coal statistics for non-OECD countries are presented in Part III of the book. Summary data are available on hard coal supply and end-use statistics for about 40 countries and regions world-wide. Data are based on official national submissions to the United Nations in Geneva and New York, national energy publications, information provided to the IEA Secretariat by national statistical offices as well as other unofficial Secretariat sources. Further information on coal used in non-OECD countries is published annually by the IEA in Energy Statistics and Balances of Non-OECD Countries. Also included in Part III are the Survey of Coal Ports world-wide and the Survey of Coal-fired Power Stations in coal-importing countries

  13. Coal industry annual 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-01

    Coal Industry Annual 1997 provides comprehensive information about US coal production, number of mines, prices, productivity, employment, productive capacity, and recoverable reserves. US Coal production for 1997 and previous years is based on the annual survey EIA-7A, Coal Production Report. This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report includes a national total coal consumption for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. 14 figs., 145 tabs.

  14. Coal industry annual 1997

    International Nuclear Information System (INIS)

    1998-12-01

    Coal Industry Annual 1997 provides comprehensive information about US coal production, number of mines, prices, productivity, employment, productive capacity, and recoverable reserves. US Coal production for 1997 and previous years is based on the annual survey EIA-7A, Coal Production Report. This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report includes a national total coal consumption for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. 14 figs., 145 tabs

  15. Reduction of phosphorites with semicoke from Kansk-Achinsk coal

    Energy Technology Data Exchange (ETDEWEB)

    Musaeva, S A; Ershov, V A; Mel' nik, A P; Lavrov, B A; Ossovskaya, N S; Beglov, B M; Tadzhiev, T Kh

    1985-10-01

    This paper presents the results obtained in the study of the kinetics of solid-phase reduction of Kyzyl-kum phosphorites having the natural acidity ratio with semicoke produced from Kansk-Achinsk coal. Experimental details are also given. (6 refs.)

  16. Subchronic toxicity evaluation of γ-aminobutyric acid (GABA) in rats.

    Science.gov (United States)

    Takeshima, Kazuhito; Yamatsu, Atsushi; Yamashita, Yusuke; Watabe, Kazuya; Horie, Noriko; Masuda, Kazuyuki; Kim, Mujo

    2014-06-01

    γ-Aminobutyric acid (GABA) is an amino acid compound contained in vegetables such as tomatoes and also widely distributed in mammals. GABA acts as an inhibitory neurotransmitter and promotes parasympathetic activity to provide several beneficial effects, for instance, relaxation, anti-stress, and insomnia. GABA, produced via a fermentation process, has been available as a functional food ingredient. As part of a program to assess its safety, GABA was administered by oral gavage at doses of 500, 1250, and 2500mg/kg body weight to groups of 10 male and 10 female Sprague-Dawley rats for 13weeks. Treatment was not associated with the test substance-related mortality and appeared to be well tolerated. There were no toxicologically and statistically significant changes in urinalysis, hematology, clinical chemistry parameters, and in necropsy findings. A few statistically significant changes in food consumption and body weights were noted in the male groups while any significant changes were not noted in female groups. There was no effect of treatment on organ weights or on the results of the histopathological examinations. The results of toxicity evaluation support the safety use of GABA and the potential use as a functional food ingredient. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Geochemical evolution of acidic ground water at a reclaimed surface coal mine in western Pennsylvania

    Science.gov (United States)

    Cravotta,, Charles A.

    1991-01-01

    Concentrations of dissolved sulfate and acidity in ground water increase downflow in mine spoil and underlying bedrock at a reclaimed surface coal mine in the bituminous field of western Pennsylvania. Elevated dissolved sulfate and negligible oxygen in ground water from bedrock about 100 feet below the water table suggest that pyritic sulfur is oxidized below the water table, in a system closed to oxygen. Geochemical models for the oxidation of pyrite (FeS2) and production of sulfate (SO42-) and acid (H+) are presented to explain the potential role of oxygen (O2) and ferric iron (Fe3+) as oxidants. Oxidation of pyrite by O2 and Fe3+ can occur under oxic conditions above the water table, whereas oxidation by Fe3+ also can occur under anoxic conditions below the water table. The hydrated ferric-sulfate minerals roemerite [Fe2+Fe43+(SO4)4·14H2O], copiapite [Fe2+Fe43+(SO4)6(OH)2·20H20], and coquimbite [Fe2(SO4)3·9H2O] were identified with FeS2 in coal samples, and form on the oxidizing surface of pyrite in an oxic system above the water table. These soluble ferric-sulfate 11 salts11 can dissolve with recharge waters or a rising water table releasing Fe3+, SO42-. and H+, which can be transported along closed-system ground-water flow paths to pyrite reaction sites where O2 may be absent. The Fe3+ transported to these sites can oxidize pyritic sulfur. The computer programs WATEQ4F and NEWBAL were used to compute chemical speciation and mass transfer, respectively, considering mineral dissolution and precipitation reactions plus mixing of waters from different upflow zones. Alternative mass-balance models indicate that (a) extremely large quantities of O2, over 100 times its aqueous solubility, can generate the observed concentrations of dissolved SO42- from FeS2, or (b) under anoxic conditions, Fe3+ from dissolved ferric-sulfate minerals can oxidize FeS2 along closed-system ground-water flow paths. In a system open to O2, such as in the unsaturated zone, the aqueous

  18. Dual responsive dysprosium-doped hydroxyapatite particles and toxicity reduction after functionalization with folic and glucuronic acids.

    Science.gov (United States)

    Sánchez Lafarga, Ana Karen; Pacheco Moisés, Fermín P; Gurinov, Andrey; Ortiz, Genaro Gabriel; Carbajal Arízaga, Gregorio Guadalupe

    2015-03-01

    The development of probes for biomedical applications demands materials with low toxicity levels besides fluorescence or magnetic properties to be detected by confocal microscopes or MRI resonators. Several drug delivery systems or other biomedical materials prepared with hydroxyapatite have been proposed, however, toxicity effects might arise when the size of particles is nanometric. In this study, hydroxyapatite functionalized with glucuronic or folic acids presented lower oxidative stress, measured from lipoperoxides and nitric oxide indicators in rats than pure hydroxyapatite. In separated experiments, hydroxyapatite was doped with dysprosium cations by coprecipitation producing a single crystal phase with fluorescent properties easily visualized by confocal microscopy when excited at 488nm. These particles also presented the ability to modify the proton relaxation time in T1 maps collected by magnetic resonance imaging. These modified hydroxyapatite nanoparticles could be candidates to design bimodal probes with low toxicity. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Acid rain and its environmental effects: Recent scientific advances

    Science.gov (United States)

    Burns, Douglas A.; Aherne, Julian; Gay, David A.; Lehmann, Christopher M. B.

    2016-12-01

    The term 'acid rain' refers to atmospheric deposition of acidic constituents that impact the earth as rain, snow, particulates, gases, and vapor. Acid rain was first recognized by Ducros (1845) and subsequently described by the English chemist Robert Angus Smith (Smith, 1852) whose pioneering studies linked the sources to industrial emissions and included early observations of deleterious environmental effects (Smith, 1872). Smith's work was largely forgotten until the mid-20th century when observations began to link air pollution to the deposition of atmospheric sulfate (SO42-) and other chemical constituents, first near the metal smelter at Sudbury, Ontario, Canada, and later at locations in Europe, North America, and Australia (Gorham, 1961). Our modern understanding of acid rain as an environmental problem caused largely by regional emissions of sulfur dioxide (SO2) and nitrogen oxides (NOx) stems from observations in the 1960s and early 1970s in Sweden by Svante Odén (Odén, 1976), and in North America by Gene Likens and colleagues (Likens and Bormann, 1974). These scientists and many who followed showed the link to emissions from coal-fired power plants and other industrial sources, and documented the environmental effects of acid rain such as the acidification of surface waters and toxic effects on vegetation, fish, and other biota.

  20. Slagging behavior of upgraded brown coal and bituminous coal in 145 MW practical coal combustion boiler

    Energy Technology Data Exchange (ETDEWEB)

    Akiyama, Katsuya; Pak, Haeyang; Takubo, Yoji [Kobe Steel, Ltd, Kobe (Japan). Mechanical Engineering Research Lab.; Tada, Toshiya [Kobe Steel, Ltd, Takasago (Japan). Coal and Energy Technology Dept.; Ueki, Yasuaki [Nagoya Univ. (Japan). Energy Science Div.; Yoshiie, Ryo; Naruse, Ichiro [Nagoya Univ. (Japan). Dept. of Mechanical Science and Engineering

    2013-07-01

    The purpose of this study is to quantitatively evaluate behaviors of ash deposition during combustion of Upgraded Brown Coal (UBC) and bituminous coal in a 145 MW practical coal combustion boiler. A blended coal consisting 20 wt% of the UBC and 80 wt% of the bituminous coal was burned for the combustion tests. Before the actual ash deposition tests, the molten slag fractions of ash calculated by chemical equilibrium calculations under the combustion condition was adopted as one of the indices to estimate the tendency of ash deposition. The calculation results showed that the molten slag fraction for UBC ash reached approximately 90% at 1,523 K. However, that for the blended coal ash became about 50%. These calculation results mean that blending the UBC with a bituminous coal played a role in decreasing the molten slag fraction. Next, the ash deposition tests were conducted, using a practical pulverized coal combustion boiler. A water-cooled stainless-steel tube was inserted in locations at 1,523 K in the boiler to measure the amount of ash deposits. The results showed that the mass of deposited ash for the blended coal increased and shape of the deposited ash particles on the tube became large and spherical. This is because the molten slag fraction in ash for the blended coal at 1,523 K increased and the surface of deposited ash became sticky. However, the mass of the deposited ash for the blended coal did not greatly increase and no slagging problems occurred for 8 days of boiler operation under the present blending conditions. Therefore, appropriate blending of the UBC with a bituminous coal enables the UBC to be used with a low ash melting point without any ash deposition problems in a practical boiler.

  1. Mechanisms of coal solubilization by the deuteromycetes Trichoderma atroviride and Fusarium oxysporum

    Energy Technology Data Exchange (ETDEWEB)

    Hoelker, U.; Ludwig, S.; Scheel, T.; Hoefer, M. [Bonn Univ. (Germany). Botanisches Inst. und Botanischer Garten

    1999-07-01

    Three different mechanisms can be envisaged that are used by fungi to solubilize coal: the production of alkaline substances, the extrusion of chelators and, of special interest in the scope of biotechnology, the action of enzymes. Whether these mechanisms are operating separately or in various combinations has not yet been finally assessed. The two deuteromycetes Fusarium oxysporum and Trichoderma atroviride solubilize coal by synergistic effects of various different mechanisms depending on the cell metabolism. F. oxysporum seems to solubilize coal by increasing the pH of the mycelial surroundings and by the action of chelators induced during growth in glutamate-containing media (without involvement of enzymes). T. atroviride, on the other hand, appears to use, in addition to an alkaline pH and a high chelator activity, at least two classes of enzyme activity to attack coal: hydrolytic activity for coal solubilization and ligninolytic activity for degradation of humic acids. (orig.)

  2. Coal yearbook 1993

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    This book is the first coal yearbook published by ATIC (France). In a first chapter, economical context of coal worldwide market is analyzed: comparative evaluations on coal exports and imports, coal industry, prices, production in USA, Australia, South Africa, China, former USSR, Poland, Colombia, Venezuela and Indonesia are given. The second chapter describes the french energy context: national coal production, imports, sectorial analysis, maritime transport. The third chapter describes briefly the technologies of clean coal and energy saving developed by Charbonnages de France: fossil-fuel power plants with combined cycles and cogeneration, fluidized beds for the recovery of coal residues, recycling of agricultural wastes (sugar cane wastes) in thermal power plant, coal desulfurization for air pollution abatement. In the last chapter, statistical data on coal, natural gas and crude oil are offered: world production, world imports, world exports, french imports, deliveries to France, coal balance, french consumption of primary energy, power generation by fuel type

  3. Improved biomass and lipid production in a mixotrophic culture of Chlorella sp. KR-1 with addition of coal-fired flue-gas.

    Science.gov (United States)

    Praveenkumar, Ramasamy; Kim, Bohwa; Choi, Eunji; Lee, Kyubock; Park, Ji-Yeon; Lee, Jin-Suk; Lee, Young-Chul; Oh, You-Kwan

    2014-11-01

    Industrial CO2-rich flue-gases, owing to their eco-toxicity, have yet to be practically exploited for microalgal biomass and lipid production. In this study, various autotrophic and mixotrophic culture modes for an oleaginous microalga, Chlorella sp. KR-1 were compared for the use in actual coal-fired flue-gas. Among the mixotrophic conditions tested, the fed-batch feedings of glucose and the supply of air in dark cycles showed the highest biomass (561 mg/L d) and fatty-acid methyl-ester (168 mg/L d) productivities. This growth condition also resulted in the maximal population of microalgae and the minimal population and types of KR-1-associated-bacterial species as confirmed by particle-volume-distribution and denaturing-gradient-gel-electrophoresis (DGGE) analyses. Furthermore, microalgal lipid produced was assessed, based on its fatty acid profile, to meet key biodiesel standards such as saponification, iodine, and cetane numbers. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Rapid and Simultaneous Determination of Acetylsalicylic Acid, Paracetamol, and Their Degradation and Toxic Impurity Products by HPLC in Pharmaceutical Dosage Forms

    OpenAIRE

    AKAY, Cemal

    2008-01-01

    Aims: Determinations of drug impurity and drug degradation products are very important from both pharmacological and toxicological perspectives. Establishment of monitoring methods for impurities and degradation products during pharmaceutical development is necessary because of their potential toxicity. The aim of this study was to develop a rapid and simultaneous determination method for paracetamol and acetylsalicylic acid (ACA) and their degradation and toxic impurity products by high perf...

  5. Prospects for coal and clean coal technology in the Philippines

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-03-15

    This report examines the current energy outlook for the Philippines in regard not only to coal but also other energy resources. The history of the power sector, current state of play and future plans to meet the increasing energy demand from a growing population are discussed. There is also analysis of the trends for coal demand and production, imports and exports of coal and the types of coal-fired power stations that have been built. This includes examination of the legislation involving coal and the promotion of clean coal technologies.

  6. Toxicity and tolerance of aluminum in plants: tailoring plants to suit to acid soils.

    Science.gov (United States)

    Sade, Hemalatha; Meriga, Balaji; Surapu, Varalakshmi; Gadi, Jogeswar; Sunita, M S L; Suravajhala, Prashanth; Kavi Kishor, P B

    2016-04-01

    Aluminum (Al) stress is one of the serious limiting factors in plant productivity in acidic soils, which constitute about 50 % of the world's potentially arable lands and causes anywhere between 25 and 80 % of yield losses depending upon the species. The mechanism of Al toxicity and tolerance has been examined in plants, which is vital for crop improvement and enhanced food production in the future. Two mechanisms that facilitate Al tolerance in plants are Al exclusion from the roots and the ability to tolerate Al in the symplast or both. Although efforts have been made to unravel Al-resistant factors, many aspects remain unclear. Certain gene families such as MATE, ALMT, ASR, and ABC transporters have been implicated in some plants for resistance to Al which would enhance the opportunities for creating crop plants suitable to grow in acidic soils. Though QTLs have been identified related to Al-tolerance, no crop plant that is tolerant to Al has been evolved so far using breeding or molecular approaches. The remarkable changes that plants experience at the physiological, biochemical and molecular level under Al stress, the vast array of genes involved in Al toxicity-tolerance, the underlying signaling events and the holistic image of the molecular regulation, and the possibility of creating transgenics for Al tolerance are discussed in this review.

  7. Coal-tar-based pavement sealcoat, polycyclic aromatic Hydrocarbons (PAHs), and environmental health

    Science.gov (United States)

    Mahler, B.J.; Van Metre, P.C.

    2011-01-01

    Studies by the U.S. Geological Survey (USGS) have identified coal-tar-based sealcoat-the black, viscous liquid sprayed or painted on asphalt pavement such as parking lots-as a major source of polycyclic aromatic hydrocarbon (PAH) contamination in urban areas for large parts of the Nation. Several PAHs are suspected human carcinogens and are toxic to aquatic life.

  8. Electrochemistry of carbonaceous materials. 3. Reactivity of redox couples with coal slurries in 85% phosphoric acid media

    Energy Technology Data Exchange (ETDEWEB)

    Tomat, R.; Salmaso, R.; Zecchin, S. [CNR - Istituto di Polarografia ed Elettrochimica Preparativa, Padova (Italy)

    1994-02-01

    Sardinian subbituminous coal slurries were oxidized in 85% H{sub 3}PO{sub 4} by metal ions (Ce{sup 4+}, V{sup 5+}, V{sup 4+}, Mn{sup 3+} and Fe{sup 3+}) and the effects of metal ion concentration, coal content of slurry, coal particle size and temperature were examined. 19 refs., 3 figs., 2 tabs.

  9. Rosebud SynCoal Partnership, SynCoal{reg_sign} demonstration technology update

    Energy Technology Data Exchange (ETDEWEB)

    Sheldon, R.W. [Rosebud SynCoal Partnership, Billings, MT (United States)

    1997-12-31

    An Advanced Coal Conversion Process (ACCP) technology being demonstrated in eastern Montana (USA) at the heart of one of the world`s largest coal deposits is providing evidence that the molecular structure of low-rank coals can be altered successfully to produce a unique product for a variety of utility and industrial applications. The product is called SynCoal{reg_sign} and the process has been developed by the Rosebud SynCoal Partnership (RSCP) through the US Department of Energy`s multi-million dollar Clean Coal Technology Program. The ACCP demonstration process uses low-pressure, superheated gases to process coal in vibrating fluidized beds. Two vibratory fluidized processing stages are used to heat and convert the coal. This is followed by a water spray quench and a vibratory fluidized stage to cool the coal. Pneumatic separators remove the solid impurities from the dried coal. There are three major steps to the SynCoal{reg_sign} process: (1) thermal treatment of the coal in an inert atmosphere, (2) inert gas cooling of the hot coal, and (3) removal of ash minerals. When operated continuously, the demonstration plant produces over 1,000 tons per day (up to 300,000 tons per year) of SynCoal{reg_sign} with a 2% moisture content, approximately 11,800b Btu/lb and less than 1.0 pound of SO{sub 2} per million Btu. This product is obtained from Rosebud Mine sub-bituminous coal which starts with 25% moisture, 8,600 Btu/lb and approximately 1.6 pounds of SO{sub 2} per million Btu.

  10. Pemodelan Penyebaran Batuan Potensial Pembentuk Asam Pada Kawasan Penambangan Batubara Tambang Terbuka Di Muara Lawa, Kabupaten Kutai Barat, Kalimantan Timur (Modeling Distribution of Rock Potential Acid Forming in Open Pit Coal Mining Areas)

    OpenAIRE

    Devy, Shalaho Dina; Hendrayana, Heru; Putra, Dony Prakasa Eka; Sugiharto, Eko

    2016-01-01

    The impact of open pit coal mining is the emergence of Acid Mine Water (AMD) around the mining environment that affect the quality of the mine water, aquatic biota, water and soil quality. Therefore, early information to anticipate these impacts is the identification potential acid rock and distribution model as a guide for the mining plan. Geological and geochemical study of rocks is important in knowing the distribution of rock Potential Acid Formning (PAF) and Non Acid Forming (NAF). Minin...

  11. Self-scrubbing coal

    International Nuclear Information System (INIS)

    Kindig, J.K.

    1992-01-01

    More than 502 million tons - 65 percent of all coal shipped to utilities in 1990 - were above 1.2 pounds of sulfur dioxide per million Btu. Most of the coal, even though cleaned in conventional coal preparation plants, still does not meet the emission limitation the Clean Air Act Amendments mandate for the year 2000. To cope with this fact, most utilities plan to switch to low sulfur (western U.S. or Central Appalachian) coal or install scrubbers. Both solutions have serous drawbacks. Switching puts local miners out of work and weakens the economy in the utility's service territory. Scrubbing requires a major capital expenditure by the utility. Scrubbers also increase the operating complexity and costs of the generating station and produce yet another environmental problem, scrubber sludge. Employing three new cost-effective technologies developed by Customer Coals International (CCl), most non-compliance coals east of the Mississippi River can be brought into year-2000 compliance. The compliance approach employed, depends upon the characteristics of the raw coal. Three types of raw coal are differentiated, based upon the amount of organic sulfur in the coals and the ease (or difficultly) of liberating the pyrite. They are: Low organic sulfur content and pyrite that liberates easily. Moderate organic sulfur content and pyrite that liberates easily. High organic sulfur content or the pyrite liberates with difficulty. In this paper examples of each type of raw coal are presented below, and the compliance approach employed for each is described. The names of the beneficiated coal products produced from each type of raw coal give above are: Carefree Coal, Self-Scrubbing Coal and Dry-Scrubbing Coal

  12. The application of the coal grain analysis method to coal liberation studies

    Energy Technology Data Exchange (ETDEWEB)

    O' Brien, G.; Firth, B.; Adair, B. [CSIRO Earth Science & Resource Engineering Brisbane, Qld. (Australia)

    2011-07-01

    Emerging coal markets such as the use of coal for conversion to liquid fuels and its use in fuels cells and as coal water slurries in diesel engines require coal products with different coal quality specifications than those applicable to traditional coal markets of coke making and conventional power generation. As well as quantifying coals in terms of their chemical and physical properties, detailed knowledge of the mineral inclusions within the coal particles is required to identify coals that are suited to economically produce the low-ash value coals required for these markets. After mining and processing, some particles can consist of essentially pure components of a single maceral or mineral phase whilst others are composite particles that are comprised of varying amounts of macerals and minerals. The proportion of particles that are present as pure components or as composites will be a function of the characteristics of the coal and the particle size. In general, it is considered that size reduction will result in liberation and hence increased yield. The amount of liberation that occurs during crushing or grinding a coal is however coal specific. Particle characterization information provided by an optical microscopic-imaging method, Coal Grain Analysis, was used to identify coals that might benefit from additional crushing to improve recovery of clean coal by new density separation techniques and by flotation. As expected, the results of these studies suggest that the degree of liberation that is obtained is coal specific, and, hence, yield improvements are also coal specific. Hence a quantitative method of investigating this issue is required.

  13. Fast and safe gas detection from underground coal fire by drone fly over.

    Science.gov (United States)

    Dunnington, Lucila; Nakagawa, Masami

    2017-10-01

    Underground coal fires start naturally or as a result of human activities. Besides burning away the important non-renewable energy resource and causing financial losses, burning coal seams emit carbon dioxide, carbon monoxide, sulfur oxide and methane, and is a leading cause of smog, acid rain, global warming, and air toxins. In the U.S. alone, the combined cost of coal-fire remediation projects that have been completed, budgeted, or projected by the U.S. Department of the Interior's Office of Surface Mining Remediation and Enforcement (OSM), exceeds $1 billion. It is estimated that these fires generate as much as 3% of the world's annual carbon dioxide emissions and consume as much as 5% of its minable coal. Considering the magnitude of environmental impact and economic loss caused by burning underground coal seams, we have developed a new, safe, reliable surface measurement of coal fire gases to assess the nature of underground coal fires. We use a drone mounted with gas sensors. Drone collected gas concentration data provides a safe alternative for evaluating the rank of a burning coal seam. In this study, a new method of determining coal rank by gas ratios is developed. Coal rank is valuable for defining parameters of a coal seam such as burn temperature, burn rate, and volume of burning seam. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Comparative emissions from Pakistani coals and traditional coals

    Energy Technology Data Exchange (ETDEWEB)

    Du, Y X [Guangzhou Medical College (China). Dept. of Hygiene; Huang, L F [Guangzhou Health and Anti-epidemic Station (China)

    1994-12-31

    Briquette coal has been widely used for domestic cooking and heating in many Chinese cites over the last two decades. To determine whether burning briquette coal contributes significantly to indoor air pollution, a study was performed in cities-of Southern China in which the measured levels of SO{sub 2}, NO{sub x}, TSP, SD, B(a)P in the kitchens of coal burning families were compared with levels obtained in families using gas. Significantly higher contentions of these pollutants, whose peaks correlated with daily cooking episodes, were detected in coal burning families. The levels of TSP and B(a)P were further found to be dependent on cooking methods, with deep frying and stir-frying of meat generating the most indoor TSP and B(a)P. Briquette coal burning was found to be the source of B(a)P contamination in food. A higher incidence of chronic pharyngitis as well as a suppressed salivary bacteriolytic enzyme activity were found in children of coal burning families. Epidemiologic and laboratory studies also show a close association between coal burning and the incidence of lung cancer in females. (author)

  15. Third symposium on coal preparation. NCA/BCR coal conference and Expo IV

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-01-01

    The third Symposium on Coal preparation, sponsored by the National Coal Association and Bituminous Coal Research, Inc., was held at the Kentucky Fair and Exposition Center, Louisville, Kentucky, October 18-20, 1977. Fourteen papers from the proceedings have been entered individually into EDB and ERA; five additional papers had been entered previously from other sources. Topics covered involved chemical comminution and chemical desulfurization of coal (aimed at reducing sulfur sufficiently with some coals to meet air quality standards without flue gas desulfurization), coal cleaning concepts, removing coal fines and recycling wash water, comparative evaluation of coal preparation methods, coal refuse disposal without polluting the environment, spoil bank reprocessing, noise control in coal preparation plants, etc. (LTN)

  16. Microwave-assisted co-pyrolysis of brown coal and corn stover for oil production.

    Science.gov (United States)

    Zhang, Yaning; Fan, Liangliang; Liu, Shiyu; Zhou, Nan; Ding, Kuan; Peng, Peng; Anderson, Erik; Addy, Min; Cheng, Yanling; Liu, Yuhuan; Li, Bingxi; Snyder, John; Chen, Paul; Ruan, Roger

    2018-07-01

    The controversial synergistic effect between brown coal and biomass during co-pyrolysis deserves further investigation. This study detailed the oil production from microwave-assisted co-pyrolysis of brown coal (BC) and corn stover (CS) at different CS/BC ratios (0, 0.33, 0.50, 0.67, and 1) and pyrolysis temperatures (500, 550, and 600 °C). The results showed that a higher CS/BC ratio resulted in higher oil yield, and a higher pyrolysis temperature increased oil yield for brown coal and coal/corn mixtures. Corn stover and brown coal showed different pyrolysis characteristics, and positive synergistic effect on oil yield was observed only at CS/BC ratio of 0.33 and pyrolysis temperature of 600 °C. Oils from brown coal mainly included hydrocarbons and phenols whereas oils from corn stover and coal/corn mixtures were dominated by ketones, phenols, and aldehydes. Positive synergistic effects were observed for ketones, aldehydes, acids, and esters whereas negative synergistic effects for hydrocarbons, phenols and alcohols. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Desulphurisation of coal pyrolysis and magnetic separation. Desulfuracion de carbones mediante pirolisis y separacion magnetica

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz, J.C.; Ayala, N.; Ibarra, J.V.; Moliner, R.; Miranda, J.L.; Vazquez, A. (CENIM, Madrid (Spain))

    1991-07-01

    The desulphurisation of coal intended for use inthermal power stations is a priority issue in the national strategy for the reduction of acid rain. This article studies the feasibility of eliminating pyritic sulphur from coal by physical methods using high intensity pyrolysis and magnetic separation. 6 refs., 9 figs., 4 tabs.

  18. Toxicity mitigation and solidification of municipal solid waste incinerator fly ash using alkaline activated coal ash.

    Science.gov (United States)

    Diaz-Loya, E Ivan; Allouche, Erez N; Eklund, Sven; Joshi, Anupam R; Kupwade-Patil, Kunal

    2012-08-01

    Municipal solid waste (MSW) incineration is a common and effective practice to reduce the volume of solid waste in urban areas. However, the byproduct of this process is a fly ash (IFA), which contains large quantities of toxic contaminants. The purpose of this research study was to analyze the chemical, physical and mechanical behaviors resulting from the gradual introduction of IFA to an alkaline activated coal fly ash (CFA) matrix, as a mean of stabilizing the incinerator ash for use in industrial construction applications, where human exposure potential is limited. IFA and CFA were analyzed via X-ray fluorescence (XRF), X-ray diffraction (XRD) and Inductive coupled plasma (ICP) to obtain a full chemical analysis of the samples, its crystallographic characteristics and a detailed count of the eight heavy metals contemplated in US Title 40 of the Code of Federal Regulations (40 CFR). The particle size distribution of IFA and CFA was also recorded. EPA's Toxicity Characteristic Leaching Procedure (TCLP) was followed to monitor the leachability of the contaminants before and after the activation. Also images obtained via Scanning Electron Microscopy (SEM), before and after the activation, are presented. Concrete made from IFA, CFA and IFA-CFA mixes was subjected to a full mechanical characterization; tests include compressive strength, flexural strength, elastic modulus, Poisson's ratio and setting time. The leachable heavy metal contents (except for Se) were below the maximum allowable limits and in many cases even below the reporting limit. The leachable Chromium was reduced from 0.153 down to 0.0045 mg/L, Arsenic from 0.256 down to 0.132 mg/L, Selenium from 1.05 down to 0.29 mg/L, Silver from 0.011 down to .001 mg/L, Barium from 2.06 down to 0.314 mg/L and Mercury from 0.007 down to 0.001 mg/L. Although the leachable Cd exhibited an increase from 0.49 up to 0.805 mg/L and Pd from 0.002 up to 0.029 mg/L, these were well below the maximum limits of 1.00 and 5

  19. Characteristics of an open-cut coal mine fire pollution event

    Science.gov (United States)

    Reisen, Fabienne; Gillett, Rob; Choi, Jason; Fisher, Gavin; Torre, Paul

    2017-02-01

    On 9 February 2014, embers from a nearby grass/shrub fire spotted into an unused part of the Hazelwood open-cut brown coal mine located in the Latrobe Valley of Victoria, Australia and started a fire that spread rapidly and extensively throughout the mine under strong south-westerly winds and burned over a period of 45 days. The close proximity of the town to the coal mine and the low buoyancy of the smoke plume led to the accumulation of dense smoke levels in the township of Morwell (population of 14,000) particularly under south-westerly winds. A maximum daily PM2.5 concentration of 731 μg m-3 and 8-h CO concentration of 33 ppm were measured at Morwell South, the closest residential area located approximately 500 m from the mine. These concentrations were significantly higher than national air quality standards. Air quality monitoring undertaken in the Latrobe Valley showed that smoke from the Hazelwood mine fire affected a wide area, with particle air quality standards also exceeded in Traralgon (population of 25,000) located approximately 13 km from the mine. Pollutant levels were significantly elevated in February, decreased in March once the fire abated and then returned to background levels once the fire was declared safe at the end of March. While the smoke extent was of a similar order of magnitude to other major air pollution events worldwide, a closer look at emissions ratios showed that the open combustion of lignite brown coal in the Hazelwood mine was different to open combustion of biomass, including peat. It suggested that the dominant combustion process was char combustion. While particle and carbon monoxide monitoring started approximately 4 days after the fire commenced when smoke levels were very high, targeted monitoring of air toxics only began on 26 February (17 days after the fire) when smoke levels had subsided. Limited research on emission factors from open-cut coal mine fires make it difficult to assess the likely concentrations of air

  20. Toxicity of the styrene metabolite, phenylglyoxylic acid, in rats after three months' oral dosing

    DEFF Research Database (Denmark)

    Ladefoged, Ole; Lam, Henrik Rye; Ostergaard, G.

    1998-01-01

    Male Wistar rats were dosed with 0, 1250, 3750 or 5000 mg/l of phenylglyoxylic acid (PGA) (CAS no. 611-73-4) in the drinking water ad libitum for 3 months. During the entire treatment period, there were no gross signs of toxicity related to PGA. No changes in neurobehavior were found after using ....... Alternatively, the ototoxicity of styrene, like toluene, may be caused the parent compound itself and not by a metabolite like PGA. (C) 1998 Inter Press, inc....

  1. Effectiveness and Mechanisms of Antagonism of Toxic Effects of Cyanide by Alpha-Keto Acids.

    Science.gov (United States)

    1986-12-31

    until the miss-w near death. Lethal blood levels of cyanide in alpha-KG treated animl. as levels of 5-7 mcg cyani0e, which so 5-7 times the expected...lethal levels . rwm these studies, alpha-KC is effettive in antagonising administered dos of CH of five time the lethal dose before the toxic effects are...parameters in the dog .................. 26 Table 6 The effects of cyanide on 2,3 diphosphoglyceric acid .......... 28 Table 7 Stability of solution of ci

  2. Coal industry annual 1993

    Energy Technology Data Exchange (ETDEWEB)

    1994-12-06

    Coal Industry Annual 1993 replaces the publication Coal Production (DOE/FIA-0125). This report presents additional tables and expanded versions of tables previously presented in Coal Production, including production, number of mines, Productivity, employment, productive capacity, and recoverable reserves. This report also presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for a wide audience including the Congress, Federal and State agencies, the coal industry, and the general public. In addition, Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility Power Producers who are not in the manufacturing, agriculture, mining, construction, or commercial sectors. This consumption is estimated to be 5 million short tons in 1993.

  3. Coal industry annual 1993

    International Nuclear Information System (INIS)

    1994-01-01

    Coal Industry Annual 1993 replaces the publication Coal Production (DOE/FIA-0125). This report presents additional tables and expanded versions of tables previously presented in Coal Production, including production, number of mines, Productivity, employment, productive capacity, and recoverable reserves. This report also presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for a wide audience including the Congress, Federal and State agencies, the coal industry, and the general public. In addition, Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility Power Producers who are not in the manufacturing, agriculture, mining, construction, or commercial sectors. This consumption is estimated to be 5 million short tons in 1993

  4. Examination of soil contaminated by coal-liquids by size exclusion chromatography in 1-methyl-2-pyrrolidinone solution to evaluate interference from humic and fulvic acids and extracts from peat.

    Science.gov (United States)

    Morgan, T J; Herod, A A; Brain, S A; Chambers, F M; Kandiyoti, R

    2005-11-18

    Soil from a redundant coke oven site has been examined by extraction of soluble materials using 1-methyl-2-pyrrolidinone (NMP) followed by size exclusion chromatography (SEC) of the extracted material. The extracted material was found to closely resemble a high temperature coal tar pitch. Standard humic and fulvic acids were also examined since these materials are very soluble in NMP and would be extracted with pitch if present in the soil. Humic substances derived from peat samples and NMP-extracts of peats were also examined. The results show that the humic and fulvic substances were not extracted directly by NMP from peats. They were extracted using caustic soda solution and were different from the peat extracts in NMP. These results indicate that humic and fulvic acids were soluble in NMP in the protonated polyelectrolyte form but not in the original native polyelectrolyte form. The extraction of soil using NMP followed by SEC appears to be a promising method for identifying contamination by coal-based industries.

  5. Control of air toxics

    International Nuclear Information System (INIS)

    Livengood, C.D.

    1995-01-01

    For more than 10 years, Argonne National Laboratory has supported the US DOE's Flue Gas Cleanup Program objective by developing new or improved environmental controls for industries that use fossil fuels. Argonne's pollutant emissions research has ranged from experiments in the basic chemistry of pollution-control systems, through laboratory-scale process development and testing, to pilot-scale field tests of several technologies. The work on air toxics is currently divided into two components: Investigating measures to improve the removal of mercury in existing pollution-control systems applied to coal combustion; and, Developing sensors and control techniques for emissions found in the textile industry

  6. Coal and Energy.

    Science.gov (United States)

    Bryant, Reba; And Others

    This teaching unit explores coal as an energy resource. Goals, student objectives, background information, and activity options are presented for each major section. The sections are: (1) an introduction to coal (which describes how and where coal was formed and explains the types of coal); (2) the mining of coal (including the methods and ways of…

  7. Asia's coal and clean coal technology market potential

    International Nuclear Information System (INIS)

    Johnson, C.J.; Binsheng Li

    1992-01-01

    The Asian region is unique in the world in having the highest economic growth rate, the highest share of coal in total primary energy consumption and the highest growth rate in electricity generation capacity. The outlook for the next two decades is for accelerated efforts to control coal related emissions of particulates and SO 2 and to a lessor extent NO x and CO 2 . Only Japan has widespread use of Clean Coal Technologies (CCTs) however a number of economies have plans to install CCTs in future power plants. Only CCTs for electricity generation are discussed, and are defined for the purpose of this paper as technologies that substantially reduce SO 2 and/or NO x emissions from coal-fired power plants. The main theses of this paper are that major increases in coal consumption will occur over the 1990-2010 period, and this will be caccompanied by major increases in coal related pollution in some Asian economies. Coal fired electricity generation is projected to grow at a high rate of about 6.9 percent per year over the 1990-2010 period. CCTs are projected to account for about 150 GW of new coal-fired capacity over the 1990-2010 period of about one-third of all new coal-fired capacity. A speculative conclusion is that China will account for the largest share of CCT additions over the 1990-2010 period. Both the US and Japan have comparative advantages that might be combined through cooperation and joint ventures to gain a larger share of the evolving CCT market in Asia. 5 refs., 7 figs., 4 tabs

  8. Dew point measurements of flue gases in steam generators with brown coal combustion

    Energy Technology Data Exchange (ETDEWEB)

    Schinkel, W.

    1980-01-01

    This paper examines empirical data on sulfuric acid condensation and resulting internal corrosion in brown coal fired steam generators. Due to the high sulfur content in brown coal (0.5% to 5.0%) and relative short duration of the gases in the combustion chamber the concentrations of sulfur trioxide present in the flue gases can condense at the heat exchange surfaces of the steam generators. A number of diagrams show sulfuric acid dew point temperatures depending on brown coal sulfur content, the influence of combustion air supply on the dew point, and condensing speed and the rate of corrosion in relation to different heat exchange surface temperatures. The conclusion is made that a five-fold increase in corrosion can be caused by a 10 K higher flue gas dew point, a 5 K cooling of heating surfaces can also cause heavy corrosion at a certain dew point. Maximum corrosion results at 20 to 50 K differences between flue gas dew point and heat exchange surfaces. Optimum operation of steam generators with minimal internal corrosion requires the consideration of flue gas and heating surface temperatures as well as flue gas sulfur acid dew points. (10 refs.) (In German)

  9. Coal - 96

    International Nuclear Information System (INIS)

    Sparre, C.

    1996-09-01

    The report deals mainly with coal consumption, but also gives some information about technology, environmental aspects and markets. Data have been collected by questionnaires or via telephone. The use of steam coal for heating was 0.8 Mtons (down 20% from 1994). Cogeneration plants were the main users. Taxes and environmental reasons cause a reduction of the coal use that will probably continue the next years. Use of steam coal in industry has been constant at a level of 0.7 Mtons. The import of metallurgical coal rests constant at a level of 1.6 Mtons. 1.2 Mtons of coke was produced, and 0.3 Mtons imported. The PFBC-plant at Vaertan, Stockholm used 0.13 Mtons of coal, while some coal fired power plants have been converted to peat and wood fuels. The average price of steam coal imported to Sweden in 1995 was 333 SEK/ton, 6% higher than in 1994. The contract prices for delivery 1996 are about the same as at the end of 1995. All cogeneration plants have some sort of SO 2 removal system, mostly wet-dry. The largest plant, at Vaesteraas, has recently invested in a SCR system for NO x removal. Most other plants are using low NO x burners or SNCR systems, based on ammonia or urea, which reduce the emissions 50 - 70%. Some statistic about the world coal market is also given in the report

  10. Hydroxamic acid content and toxicity of rye at selected growth stages.

    Science.gov (United States)

    Rice, Clifford P; Park, Yong Bong; Adam, Frédérick; Abdul-Baki, Aref A; Teasdale, John R

    2005-08-01

    Rye (Secale cereale L.) is an important cover crop that provides many benefits to cropping systems including weed and pest suppression resulting from allelopathic substances. Hydroxamic acids have been identified as allelopathic compounds in rye. This research was conducted to improve the methodology for quantifying hydroxamic acids and to determine the relationship between hydroxamic acid content and phytotoxicity of extracts of rye root and shoot tissue harvested at selected growth stages. Detection limits for an LC/MS-MS method for analysis of hydroxamic acids from crude aqueous extracts were better than have been reported previously. (2R)-2-beta-D-Glucopyranosyloxy-4-hydroxy-(2H)-1,4-benzoxazin-3(4H)-one (DIBOA-G), 2,4-dihydroxy-(2H)-1,4-benzoxazin-3(4H)-one (DIBOA), benzoxazolin-2(3H)-one (BOA), and the methoxy-substituted form of these compounds, (2R)-2-beta-D-glucopyranosyloxy-4-hydroxy-7-methoxy-(2H)-1,4-benzoxazin-3(4H)-one (DIMBOA glucose), 2,4-hydroxy-7-methoxy-(2H)-1,4-benzoxazin-3(4H)-one (DIMBOA), and 6-methoxy-benzoxazolin-2(3H)-one (MBOA), were all detected in rye tissue. DIBOA and BOA were prevalent in shoot tissue, whereas the methoxy-substituted compounds, DIMBOA glucose and MBOA, were prevalent in root tissue. Total hydroxamic acid concentration in rye tissue generally declined with age. Aqueous crude extracts of rye shoot tissue were more toxic than extracts of root tissue to lettuce (Lactuca sativa L.) and tomato (Lycopersicon esculentum Mill.) root length. Extracts of rye seedlings (Feekes growth stage 2) were most phytotoxic, but there was no pattern to the phytotoxicity of extracts of rye sampled at growth stages 4 to 10.5.4, and no correlation of hydroxamic acid content and phytotoxicity (I50 values). Analysis of dose-response model slope coefficients indicated a lack of parallelism among models for rye extracts from different growth stages, suggesting that phytotoxicity may be attributed to compounds with different modes of action at

  11. Dyes removal of textile wastewater onto surfactant modified zeolite from coal ash and evaluation of the toxic effects

    International Nuclear Information System (INIS)

    Ferreira, Patricia Cunico

    2015-01-01

    process, acute effects were substantially reduced after adsorption treatment of aqueous solution with SN and ST by ZMF, as well as their hydrolysed forms, showing no toxicity after removal of 100% of colour. After treatment with ZPM there was an increase of the toxicity, with exception of SHN and STH dyes that do not show toxicity after the treatment. Toxicity Identification Evaluation tests (TIE) were realized in order to identify what substances were causing the observed toxicity for the SN, ST and the leached of ZMF and ZMB. The acute effects were significantly reduced after manipulation with Solid-Phase Extraction (SPE) and Ethylenediaminetetraacetic acid (EDTA) for the leached of ZMB and ZMF. The dyes showed reduced in the toxicity after manipulation with EDTA indicating that the toxicants are mostly cationic metals. (author)

  12. Characterization, leachability and valorization through combustion of residual chars from gasification of coals with pine.

    Science.gov (United States)

    Galhetas, Margarida; Lopes, Helena; Freire, Márcia; Abelha, Pedro; Pinto, Filomena; Gulyurtlu, Ibrahim

    2012-04-01

    This paper presents the study of the combustion of char residues produced during co-gasification of coal with pine with the aim of characterizing them for their potential use for energy. These residues are generally rich in carbon with the presence of other elements, with particular concern for heavy metals and pollutant precursors, depending on the original fuel used. The evaluation of environmental toxicity of the char residues was performed through application of different leaching tests (EN12457-2, US EPA-1311 TCLP and EA NEN 7371:2004). The results showed that the residues present quite low toxicity for some of pollutants. However, depending on the fuel used, possible presence of other pollutants may bring environmental risks. The utilization of these char residues for energy was in this study evaluated, by burning them as a first step pre-treatment prior to landfilling. The thermo-gravimetric analysis and ash fusibility studies revealed an adequate thermochemical behavior, without presenting any major operational risks. Fluidized bed combustion was applied to char residues. Above 700°C, very high carbon conversion ratios were obtained and it seemed that the thermal oxidation of char residues was easier than that of the coals. It was found that the char tendency for releasing SO(2) during its oxidation was lower than for the parent coal, while for NO(X) emissions, the trend was observed to increase NO(X) formation. However, for both pollutants the same control techniques might be applied during char combustion, as for coal. Furthermore, the leachability of ashes resulting from the combustion of char residues appeared to be lower than those produced from direct coal combustion. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Recovering uranium from coal in-situ. Final report, February 1980-July 1981

    International Nuclear Information System (INIS)

    1981-01-01

    In Situ Technology, Inc., ''InTech,'' has designed a new process for recovery of uranium from coal in situ. Prime objectives of the program reported herein are to reduce two uncertainties related to eventual commercialization of the process. The first uncertainty concerns appropriate field sites and their potential. The work involved laboratory tests and analysis of field samples, burning the samples to ash and leaching uranium from residual ash at laboratory scale, and burning the samples to ash and leaching uranium from residual ash at pilot plant scale. Laboratory and pilot plant tests were designed to simulate significant elements of the underground process. Field samples from New Mexico averaged 0.061% U 3 O 8 and from North Dakota 0.058% of U 3 O 8 in the coal, both on a dry basis. Phase I laboratory tests on New Mexico field samples were successfully conducted with no difficulties in reducing uraniferous coal to ash. Leaching tests resulted in uranium recoveries to 77.9% with acid leach and to 56% with alkaline leach. Phase II laboratory and pilot plant scale tests were successfully conducted on North Dakota field samples, but required supplemental fuel and/or enrichment for reducing uraniferous coal to ash. Acid leaching of residual ash resulted in uranium recoveries to 83.8%. Acid consumption was 71.0 pounds per ton during pilot plant scale leaching tests. The overall analysis and test program is considered to be highly successful and resulted in significant reduction of the uncertainties for eventual commercialization of the process. 3 refs

  14. Influence of metal additives on pyrolysis behavior of bituminous coal by TG-FTIR analysis

    Energy Technology Data Exchange (ETDEWEB)

    Su, Wenjuan; Fang, Mengxiang; Cen, Jianmeng; Li, Chao; Luo, Zhongyang; Cen, Kefa [Zhejiang Univ., Hangzhou (China). State Key Lab. of Clean Energy Utilization

    2013-07-01

    To study the catalytic effects of alkali, alkaline earth and transition metal additives on coal pyrolysis behavior, bituminous coal loaded NaCl, KCl, CaCl{sub 2}, MgCl{sub 2}, FeCl{sub 3} and NiCl{sub 2} was respectively investigated using Thermogravimetry and Fourier Transform Infrared Spectroscopy (TG-FTIR). Results indicated that the maximum mass loss rate decreased under the metal additives in the primary pyrolysis stage. The total mass loss of pyrolysis was reduced in metals catalyzed pyrolysis except for Na loaded sample. Kinetic analysis was taken for all samples adopting the method of Coats-Redfern. Activation energy of raw coal in the primary pyrolysis stage was 92.15vkJ.mol{sup -1}, which was lowered to 44.59-73.42 kJ.mol{sup -1} under metal additives. The orders of catalytic effect for this bituminous coal were Mg > Fe > Ca > Ni > K > Na according to their activation energies. Several investigated volatiles including CH{sub 4}, CO{sub 2}, CO, toluene, phenol and formic acid were identified from FTIR spectra. The yields of CH{sub 4}, CO{sub 2}, toluene, phenol and formic acid were decreased, but the evolution of CO was increased. The presence of metals in the coal samples have been involved in a repeated bond-forming and bond-breaking process, which greatly hindered the release of tars during pyrolysis as the tar precursors were connected to coal/char matrix and were thermally cracked, becoming a part of char.

  15. Swelling behavior of several bituminous coals and their thermally treated coals

    Energy Technology Data Exchange (ETDEWEB)

    Shui, Heng-fu; Cao, Mei-xia; Wang, Zhi-cai [Anhui University of Technology, Maanshan (China). School of Chemistry & Chemical Engineering

    2007-07-01

    The swelling behavior in different solvents of 4 bituminous coals with different ranks and their residues from extraction by CS{sub 2}/NMP mixed solvent (l:1 in volume) were measured. The change in swelling property of the four coals thermally treated at different temperature was observed. The results show that the swelling ratio decreases with increasing rank of coal. For lower rank bituminous coals the swelling ratios in polar solvent are higher than those in non-polar solvent, and this difference decreases with increasing rank. The cross-linking densities of the four residues decrease, and the swelling ratios increase compared with those of raw coals. The swelling ratios of the four thermally treated coals under 150{sup o}C in CS{sub 2} increase, suggesting the decrease in crosslinking density of them. When the thermal treatment temperature increases to 240{sup o}C, the swelling rations of the other three coals in NMP and CS{sub 2} increase again except gas coal, demonstrating the further decrease in crosslinking density. This result is coincident with the extraction yield change in the mixed solvent of the thermally treated coal. For example, the extraction yield of lean coal treated at 240{sup o}C increases from 6.9% to 17.3%. FT-IR results show the removal of oxygen group of the thermally treated coals. This may explain the increase in swelling ratio and extraction yield in the mixed solvent of coal after thermal treatment. The cross-linking density of the thermally treated coal decreases because of the break of hydrogen bonds due to removal of C = 0 and -OH oxygen groups during the thermal treatment, resulting in the increases of swelling ratio and extraction yield in the mixed solvent of thermally treated coal compared with those of raw coal. 15 refs., 3 figs., 6 tabs.

  16. The geochemistry and bioreactivity of fly-ash from coal-burning power stations

    Energy Technology Data Exchange (ETDEWEB)

    Jones, T.; Wlodarczyk, A.; Koshy, L.; Brown, P.; Longyi, S.; BeruBe, K. [Cardiff University, Cardiff (United Kingdom). School of Earth & Ocean Science

    2009-07-01

    Fly-ash is a byproduct of the combustion of coal in power stations for the generation of electricity. The fly-ash forms from the melting of incombustible minerals found naturally in the coal. The very high coal combustion temperatures result in the formation of microscopic glass particles from which minerals such as quartz, haematite and mullite can later recrystallize. In addition to these minerals, the glassy fly-ash contains a number of leachable metals. Mullite is a well-known material in the ceramics industry and a known respiratory hazard. Macroscopically mullite can be found in a large range of morphologies; however microscopic crystals appear to favour a fibrous habit. Fly-ash is a recognized bioreactive material in rat lung, generating hydroxyl radicals, releasing iron, and causing DNA damage. However, the mechanisms of the bioreactivity are still unclear and the relative contributions of the minerals and leachable metals to that toxicity are not well known.

  17. Market-based carbon abatement policies: the case of coal subsidy phase-out

    International Nuclear Information System (INIS)

    Okogu, B.E.; Birol, F.

    1993-01-01

    The issue of coal subsidies in industrialized countries is explored and basic econometric techniques are used to quantify the impact on carbon emissions of phasing out such subsidies. Components with other measures for reducing global carbon emissions, such as a carbon or energy tax, deregulation of the coal market has at least equal merit in terms of cost, and it is certainly cheaper than engineering-based approaches, moreover, a policy of coal-subsidy phase-out will have a positive impact on the drive for a cleaner global environment and regional problems, such as acid rain. Coal mining is also an important source of the second major greenhouse gas, methane. Yet coal is the least taxed of all fossil fuels and enjoys significant subsidies in a number of industrialized countries. This raised serious doubts about the real intentions of the proposed new energy and environmental taxes in Europe and North America. (3 figures, 3 tables) (UK)

  18. Proceedings of the sixth APEC Coal Flow Seminar. Coal in the new millennium

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-08-01

    The 6th APEC Coal Flow Seminar titled on 'The coal in the new millennium' was held in Korea from March 14 to March 16, 2000, and the proceedings were summed up. In this seminar, as to economies of coal consumption countries and coal supply countries in the APEC region, discussions were made on coal supply/demand, coal price, environmental problems and others. The keynote address was 'Twenty first century coal in the APEC region and Republic of Korea' given by Mr. Gam Yeol Lee from Korea. The main theme of the seminar was 'The status quo for the coal market,' and lectures titled on the following were given from Japan: 'The status quo of coal purchase by the Japanese electric company and its outlook' and 'A perspective of coal fired IPP under environmental constraints and deregulation of electricity.' Lectures from Australia: 'Responding to coal market growth in APEC regions by the Australian coal industry' and 'The coal price impact on coal supply and demand.' Further discussions were made on 'The long-term outlook for coal supply/demand' and 'Economies report on the outlook for coal supply/demand.' (NEDO)

  19. Coal industry annual 1996

    International Nuclear Information System (INIS)

    1997-11-01

    This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States.This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 24 million short tons for 1996. 14 figs., 145 tabs

  20. Coal industry annual 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-11-01

    This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States.This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 24 million short tons for 1996. 14 figs., 145 tabs.

  1. Coal Industry Annual 1995

    International Nuclear Information System (INIS)

    1996-10-01

    This report presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 21 million short tons for 1995

  2. Coal Industry Annual 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    This report presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 21 million short tons for 1995.

  3. South Blackwater Coal`s maintenance program

    Energy Technology Data Exchange (ETDEWEB)

    Nash, J. [South Blackwater Coal Limited, Blackwater, Qld. (Australia)

    1998-09-01

    The South Blackwater operation consists of two opencut mining areas and two underground mines (Laleham and Kenmure) near Blackwater in central Queensland, all of which supply coal to a central coal preparation plant. South Blackwater Coal Ltd. recently developed a maintenance improvement programme, described in this article. The programme involved implementation systems of key performance indicators (KPIs), benchmaking, condition monitoring, work planning and control, failure analysis and maintenance audit. Some improvements became almost immediately apparent, others were quite gradual. Major results included: improved availability (and reliability) of all opencast fleets, improvements in rear dump availability; reduced maintenance man-hours for opencast fleets; and increased availability of the coal handling and preparation plant. The paper is an edited version of that presented at the `Maintenance in mining conference` 16-19 March 1998, held in Bali, Indonesia. 4 figs., 2 photos.

  4. Hard coal; Steinkohle

    Energy Technology Data Exchange (ETDEWEB)

    Loo, Kai van de; Sitte, Andreas-Peter [Gesamtverband Steinkohle e.V., Herne (Germany)

    2013-04-01

    The year 2012 benefited from a growth of the consumption of hard coal at the national level as well as at the international level. Worldwide, the hard coal still is the number one energy source for power generation. This leads to an increasing demand for power plant coal. In this year, the conversion of hard coal into electricity also increases in this year. In contrast to this, the demand for coking coal as well as for coke of the steel industry is still declining depending on the market conditions. The enhanced utilization of coal for the domestic power generation is due to the reduction of the nuclear power from a relatively bad year for wind power as well as reduced import prices and low CO{sub 2} prices. Both justify a significant price advantage for coal in comparison to the utilisation of natural gas in power plants. This was mainly due to the price erosion of the inexpensive US coal which partly was replaced by the expansion of shale gas on the domestic market. As a result of this, the inexpensive US coal looked for an outlet for sales in Europe. The domestic hard coal has continued the process of adaptation and phase-out as scheduled. Two further hard coal mines were decommissioned in the year 2012. RAG Aktiengesellschaft (Herne, Federal Republic of Germany) running the hard coal mining in this country begins with the preparations for the activities after the time of mining.

  5. Health effects of arsenic, fluorine, and selenium from indoor burning of Chinese coal.

    Science.gov (United States)

    Guijian, Liu; Liugen, Zheng; Duzgoren-Aydin, Nurdan S; Lianfen, Gao; Junhua, Liu; Zicheng, Peng

    2007-01-01

    China's economy has developed rapidly in the last two decades, leading to an increase in energy consumption and consequently emissions from energy generation. Coal is a primary energy source in China because of its abundance and will continue to be used in the future. The dominance of coal in energy production is expected to result in increasing levels of exposure to environmental pollution in China. Toxic trace elements emitted during coal combustion are the main sources of indoor air pollution. They are released into the atmosphere mainly in the forms of fine ash and vapors and have the potential to adversely affect human health. Those trace elements, which volatilize during combustion, are hazardous air pollutants (HAPs) and are particularly rich in Chinese coals. Among the HAPs, arsenic (As), fluorine (F), and selenium (Se) have already been identified as pollutants that can induce severe health problems. In this review, the geochemical characteristics of As, F, and Se, including their concentration, distribution, and mode of occurrences in Chinese coal, are documented and discussed. Our investigations have confirmed the current As- and F-induced epidemics in Guizhou (Southwest China) and Se epidemic in Hubei (Northeast China). In this study, diagnostic symptoms of arseniasis, fluorosis, and selenosis are also illustrated.

  6. Health effects of arsenic, fluorine, and selenium from indoor burning of Chinese coal

    Energy Technology Data Exchange (ETDEWEB)

    Guijian, L.; Liugen, Z.; DuzgorenAydin, N.S.; Lianfen, G.; Junhua, L.; Zicheng, P. [University of Science and Technology of China, Hefei Anhui (China)

    2007-07-01

    China's economy has developed rapidly in the last two decades, leading to an increase in energy consumption and consequently emissions from energy generation. Coal is a primary energy source in China because of its abundance and will continue to be used in the future. The dominance of coal in energy production is expected to result in increasing levels of exposure to environmental pollution in China. Toxic trace elements emitted during coal combustion are the main sources of indoor air pollution. They are released into the atmosphere mainly in the forms of fine ash and vapors and have the potential to adversely affect human health. Those trace elements, which volatilize during combustion, are hazardous air pollutants (HAPs) and are particularly rich in Chinese coals. Among the HAPs, arsenic (As), fluorine (F), and selenium (Se) have already been identified as pollutants that can induce severe health problems. In this review, the geochemical characteristics of As, F, and Se, including their concentration, distribution, and mode of occurrences in Chinese coal, are documented and discussed. Our investigations have confirmed the current As- and F-induced epidemics in Guizhou (Southwest China) and Se epidemic in Hubei (Northeast China). In this study, diagnostic symptoms of arseniasis, fluorosis, and selenosis are also illustrated.

  7. Coal prices rise

    International Nuclear Information System (INIS)

    McLean, A.

    2001-01-01

    Coking and semi hard coking coal price agreements had been reached, but, strangely enough, the reaching of common ground on semi soft coking coal, ultra low volatile coal and thermal coal seemed some way off. More of this phenomenon later, but suffice to say that, traditionally, the semi soft and thermal coal prices have fallen into place as soon as the hard, or prime, coking coal prices have been determined. The rise and rise of the popularity of the ultra low volatile coals has seen demand for this type of coal grow almost exponentially. Perhaps one of the most interesting facets of the coking coal settlements announced to date is that the deals appear almost to have been preordained. The extraordinary thing is that the preordination has been at the prescience of the sellers. Traditionally, coking coal price fixing has been the prerogative of the Japanese Steel Mills (JSM) cartel (Nippon, NKK, Kawasaki, Kobe and Sumitomo) who presented a united front to a somewhat disorganised force of predominantly Australian and Canadian sellers. However, by the time JFY 2001 had come round, the rules of the game had changed

  8. Clean coal technology demonstration program: Program update 1996-97

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-10-01

    The Clean Coal Technology Demonstration Program (known as the CCT Program) reached a significant milestone in 1996 with the completion of 20 of the 39 active projects. The CCT Program is responding to a need to demonstrate and deploy a portfolio of technologies that will assure the U.S. recoverable coal reserves of 297 billion tons could continue to supply the nation`s energy needs economically and in a manner that meets the nation`s environmental objectives. This portfolio of technologies includes environmental control devices that contributed to meeting the accords on transboundary air pollution recommended by the Special Envoys on Acid Rain in 1986. Operational, technical, environmental, and economic performance information and data are now flowing from highly efficient, low-emission, advanced power generation technologies that will enable coal to retain its prominent role into the next millennium. Further, advanced technologies are emerging that will enhance the competitive use of coal in the industrial sector, such as in steelmaking. Coal processing technologies will enable the entire coal resource base to be used while complying with environmental requirements. These technologies are producing products used by utilities and industrial processes. The capability to coproduce products, such as liquid and solid fuels, electricity, and chemicals, is being demonstrated at a commercial scale by projects in the CCT Program. In summary, this portfolio of technologies is satisfying the national need to maintain a multifuel energy mix in which coal is a key component because of its low-cost, availability, and abundant supply within the nation`s borders.

  9. Co-combustion of coal and non-recyclable paper & plastic waste in a fluidised bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Boavida, D.; Abelha, P.; Gulyurtlu, I.; Cabrita, I. [DEECA-INETI, Lisbon (Portugal)

    2002-07-01

    Co-combustion of waste with coal was carried out using a fluidised bed combustor with the aim of achieving a fuel mixture with little variations in its heating value and simultaneously reducing the accumulation of non-toxic waste material by upgrading them for energy purposes. Results obtained indicate that the feeding of waste materials could present serious problems which could render conditions for a stable combustion difficult to achieve. The waste was fed mixed with coal and there was some difference observed in results regarding the combustion efficiency and emissions. Part of the combustion of waste material, contrary to that of coal, was observed to take place in the freeboard where the temperature was as much as 150{degree}C above that of the bed. 6 refs., 8 figs., 8 tabs.

  10. Oxidation and carbonisation of coals: a case study of coal fire affected coals from the Wuda coalfield, Inner Mongolia, China

    Science.gov (United States)

    Kus, Jolanta; Meyer, Uwe; Ma, Jianwei; Chen-Brauchler, Dai

    2010-05-01

    At the coalfield of Wuda (Inner Mongolia, PR China) extensive underground coal fires cause widespread thermal and oxidative effects in coal seams. Within phase B of the Coal Fire Research Project of the Sino-German Initiative, methods for innovative fire-extinguishing technologies were investigated in multifaceted research approaches. Extensive investigations of oxidative and thermally affected coal seams in coal fire zone 18 were conducted in 2008 prior to application of new fire-extinguishing methods. We present results from the outcrop of coal seam No. 4 in the fire zone 18. The coal of seam No. 4 is of Early Permian age and belongs stratigraphically to the Shanxi Formation. The unaffected coal displays a high volatile bituminous A rank with a background value of random vitrinite reflectance ranging from 0.90 to 0.96 % Rr. Coal channel samples were coallected at actively extracted coal faces along multiple profiles with surface temperatures ranging from about 50° to 600°C. Microscopic examinations revealed a variety of products of coal exposure to the fire. Within coal samples, a marked rise in vitrinite reflectance from background values to 5.55% Rr (6.00 % Rmax) is encountered. In addition, a number of coal samples showed suppressed vitrinite reflectances ranging between 0.82 to 0.88% Rr. Further, seemingly heat unaffected coal samples display intensive development of oxidations rims at coal grain edges and cracks as well as shrinkage cracks and formation of iron oxides/hydroxides. Instead, thermally affected coal samples with higher coalification grade are further characterised by development of macropores (devolatilisation pores) in vitrinitic streaks, transformation of liptinite to meta-liptinite and micrinite as well as by natural coke particles of mostly porous nature and fine to coarse grained anisotropic mosaic. Coal petrographic investigations confirmed a hypothesis that both, oxidations as well as low temperature carbonisation govern the thermal

  11. Selenium transformation in coal mine spoils: Its environmental impact assessment

    Energy Technology Data Exchange (ETDEWEB)

    Harness, J.; Atalay, A.; Koll, K.J.; Zhang, H.; Maggon, D.

    1991-12-31

    The objective of this program was to conduct an environmental impact assessment study for selenium from coal mine spoils. The use of in-situ lysimetry to predict selenium speciation, transformation, and mobility under natural conditions was evaluated. The scope of the study was to construct and test field-scale lysimeter and laboratory mini-column to assess mobility and speciation of selenium in coal mine overburden and soil systems; to conduct soil and groundwater sampling throughout the state of Oklahoma for an overall environmental impact assessment of selenium; and to conduct an in-depth literature review on the solubility, speciation, mobility, and toxicity of selenium from various sources. Groundwater and surface soil samples were also collected from each county in Oklahoma. Data collected from the lysimeter study indicated that selenium in the overburden of the abandoned mine site was mainly found in the selenite form. The amount of selenite found was too low and immobile to be of concern to the environment. The spoil had equilibrated long enough (over 50 years) that most of the soluble forms of selenium have already been lost. Examination of the overburden indicated the presence of pyrite crystals that precipitated over time. The laboratory mini-column study indicated that selenite is quite immobile and remained on the overburden material even after leaching with dilute acid. Data from groundwater samples indicated that based on the current permissible level for selenium in groundwater (0.01 mg Se/L), Oklahoma groundwater is widely contaminated with the element. However, according to the new regulation (0.05 mg Se/L), which is to be promulgated in 1992, only 9 of the 77 counties in the state exceed the limit.

  12. Sustainability Assessment of Coal-Fired Power Plants with Carbon Capture and Storage

    Energy Technology Data Exchange (ETDEWEB)

    Widder, Sarah H.; Butner, R. Scott; Elliott, Michael L.; Freeman, Charles J.

    2011-11-30

    Carbon capture and sequestration (CCS) has the ability to dramatically reduce carbon dioxide (CO2) emissions from power production. Most studies find the potential for 70 to 80 percent reductions in CO2 emissions on a life-cycle basis, depending on the technology. Because of this potential, utilities and policymakers are considering the wide-spread implementation of CCS technology on new and existing coal plants to dramatically curb greenhouse gas (GHG) emissions from the power generation sector. However, the implementation of CCS systems will have many other social, economic, and environmental impacts beyond curbing GHG emissions that must be considered to achieve sustainable energy generation. For example, emissions of nitrogen oxides (NOx), sulfur oxides (SOx), and particulate matter (PM) are also important environmental concerns for coal-fired power plants. For example, several studies have shown that eutrophication is expected to double and acidification would increase due to increases in NOx emissions for a coal plant with CCS provided by monoethanolamine (MEA) scrubbing. Potential for human health risks is also expected to increase due to increased heavy metals in water from increased coal mining and MEA hazardous waste, although there is currently not enough information to relate this potential to actual realized health impacts. In addition to environmental and human health impacts, supply chain impacts and other social, economic, or strategic impacts will be important to consider. A thorough review of the literature for life-cycle analyses of power generation processes using CCS technology via the MEA absorption process, and other energy generation technologies as applicable, yielded large variability in methods and core metrics. Nonetheless, a few key areas of impact for CCS were developed from the studies that we reviewed. These are: the impact of MEA generation on increased eutrophication and acidification from ammonia emissions and increased toxicity

  13. Proceedings of the sixth APEC Coal Flow Seminar. Coal in the new millennium

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-08-01

    The 6th APEC Coal Flow Seminar titled on 'The coal in the new millennium' was held in Korea from March 14 to March 16, 2000, and the proceedings were summed up. In this seminar, as to economies of coal consumption countries and coal supply countries in the APEC region, discussions were made on coal supply/demand, coal price, environmental problems and others. The keynote address was 'Twenty first century coal in the APEC region and Republic of Korea' given by Mr. Gam Yeol Lee from Korea. The main theme of the seminar was 'The status quo for the coal market,' and lectures titled on the following were given from Japan: 'The status quo of coal purchase by the Japanese electric company and its outlook' and 'A perspective of coal fired IPP under environmental constraints and deregulation of electricity.' Lectures from Australia: 'Responding to coal market growth in APEC regions by the Australian coal industry' and 'The coal price impact on coal supply and demand.' Further discussions were made on 'The long-term outlook for coal supply/demand' and 'Economies report on the outlook for coal supply/demand.' (NEDO)

  14. Coal -98

    International Nuclear Information System (INIS)

    Sparre, C.

    1998-01-01

    The following report deals with the use of coal and coke during 1997. Some information about technic, environmental questions and markets are also given. Data have been collected by questionnaires to major users and by telephone to minor users. Preliminary statistical data from SCB have also been used. The use of steam coal for heating purposes during 1997 was 730 000 tons and about 500 000 tons lower than in 1996. The extremely high figures of 1996 were due to twice the production of electricity because of lack of hydro power. The co-generation plants were the main users of coal. The minor plants have increased their use of forest fuels. Probably the use of steam coal will go down in the immediate years both in the heat generating and the co-generating plants. Some foreign analysts, however, estimate a doubled use of coal for energy use after 2020 because of the plans to phase out the nuclear power. During the top year 1987 coal was used in 18 hot water plants and 11 co-generation plants. 1997 these figures are 2 and 8. Taxes and environmental reasons explain this trend. The use of steam coal in the industry has been constant at the level 700 000 tons. This level is supposed to be constant or to vary with business cycles. The import of metallurgical coal in 1997 was 1.6 mill tons like the year before. 1.2 mill tons coke were produced. The coke consumption in the industry was 1.5 Mill tons. 0.3 mill tons of coke were imported. Several other plants have plans to replace the coal with forest fuels, waste fuels and NG. Even the biggest plant, Vaesteraas, has plans to build a block for bio fuels. Helsingborg has started to use wood pellets. The pellets replace most of the coal for the heat production in the co-generation plant. Norrkoeping Kraft AB has taken a fluid bed boiler for different fuels in operation, leading to more than half the coal consumption compared with previous years. They have also rebuilt one of their travelling grates for bio fuels. Stockholm

  15. Coal marketing manual 1987

    Energy Technology Data Exchange (ETDEWEB)

    1987-01-01

    This manual provides information on the international coal market in tabulated format. Statistics are presented for the Australian coal industry, exports, currency movements, world coal production, coal and coke imports and exports. Detailed information is provided on the Australian coal industry including mine specific summaries. Pricing summaries for thermal and coking coal in 1987, coal quality standards and specifications, trends in coal prices and stocks. Imports and exports for World coal and coke, details of shipping, international ports and iron and steel production. An exporters index of Australian and overseas companies with industry and government contacts is included. 15 figs., 67 tabs.

  16. Trends in the Rare Earth Element Content of U.S.-Based Coal Combustion Fly Ashes.

    Science.gov (United States)

    Taggart, Ross K; Hower, James C; Dwyer, Gary S; Hsu-Kim, Heileen

    2016-06-07

    Rare earth elements (REEs) are critical and strategic materials in the defense, energy, electronics, and automotive industries. The reclamation of REEs from coal combustion fly ash has been proposed as a way to supplement REE mining. However, the typical REE contents in coal fly ash, particularly in the United States, have not been comprehensively documented or compared among the major types of coal feedstocks that determine fly ash composition. The objective of this study was to characterize a broad selection of U.S. fly ashes of varied geological origin in order to rank their potential for REE recovery. The total and nitric acid-extractable REE content for more than 100 ash samples were correlated with characteristics such as the major element content and coal basin to elucidate trends in REE enrichment. Average total REE content (defined as the sum of the lanthanides, yttrium, and scandium) for ashes derived from Appalachian sources was 591 mg kg(-1) and significantly greater than in ashes from Illinois and Powder River basin coals (403 and 337 mg kg(-1), respectively). The fraction of critical REEs (Nd, Eu, Tb, Dy, Y, and Er) in the fly ashes was 34-38% of the total and considerably higher than in conventional ores (typically less than 15%). Powder River Basin ashes had the highest extractable REE content, with 70% of the total REE recovered by heated nitric acid digestion. This is likely due to the higher calcium content of Powder River Basin ashes, which enhances their solubility in nitric acid. Sc, Nd, and Dy were the major contributors to the total REE value in fly ash, based on their contents and recent market prices. Overall, this study shows that coal fly ash production could provide a substantial domestic supply of REEs, but the feasibility of recovery depends on the development of extraction technologies that could be tailored to the major mineral content and origins of the feed coal for the ash.

  17. Comparative sensitivity of aquatic invertebrate and vertebrate species to wastewater from an operational coal mine in central Queensland, Australia.

    Science.gov (United States)

    Lanctôt, C; Wilson, S P; Fabbro, L; Leusch, F D L; Melvin, S D

    2016-07-01

    Coal excavation and refinement processes generate substantial volumes of contaminated effluent that may be detrimental to aquatic ecosystems. As such, understanding the impacts of coal mine water releases on aquatic animals and ecosystems is essential for effectively managing and protecting neighboring environments. Such information will ultimately be applied towards developing ongoing monitoring strategies that are protective of native wildlife. Despite intensive mining operations in Australia, few studies have documented toxicity associated with coal mine wastewater (CMW) on native species. To address existing knowledge gaps, we investigated acute toxicity (48-96h) using eight native invertebrate species and sub-chronic effects (2 week) using three vertebrate species following exposure to wastewater from two dams (CMW1 and CMW2) located at an open-cut coal mine licensed to discharge into the Fitzroy catchment (Queensland, Australia). Wastewater from these sites is characterized by elevated conductivity, pH, sulfates as well as relatively high total and dissolved metal(loid)s (including As, Al, B, Cu, Mn, Ni, Se and Zn). Acute exposures revealed cladocerans (Daphnia carinata) and planarians (Dugesia sp.) to be the most sensitive species, exhibiting significant mortality after 48 and 96h exposure to CMW2, respectively. Neither wastewater was found to elicit acute toxicity in vertebrates, but a range of sub-lethal morphological effects were observed following the sub-chronic exposures. The overall response pattern was characterized by decreased condition factor and hepatosomatic index in the fish Hypseleotris compressa and Pseudomugil signifier, and in Limnodynastes peronii tadpoles. Tadpoles were generally more sensitive compared to the two fish species. Differences in responses were observed amongst CMW1 and CMW2, which likely relates to differences in physico-chemical properties between sites. Our results have identified several candidate vertebrate and

  18. Workability of coal seams in the Upper Silesian Coal Basin

    Energy Technology Data Exchange (ETDEWEB)

    Sikora, W; Fels, M; Soltysik, K

    1978-04-01

    This paper presents results of an investigation on workability of coal seams of stratigraphic groups from 100 to 700 in the: Upper Silesian Coal Basin. Analyzed are 2900 petrographic logs taken in the longwall workings and in narrow openings as well as about 9000 individual samples. Workability of coal seams, floors and partings is determined. Workability is described by the indicator f, (according to the Protodyakonov shatter method) and the indicator U, (compression strength of the unshaped test samples). The mean percentage content of indivi dual petrographic groups of coal as well as the mean workability indicator, f, of coals in the stratigraphic groups of coal seams in Upper Silesia are also determined.

  19. Health and Safety Assessment in Lakhra Coal Mines and Its Mitigation Measures

    Directory of Open Access Journals (Sweden)

    Sallahuddin Panhwar

    2017-04-01

    Full Text Available The coal mine excavation, transportation and coal cutting process are involved in hazards and risks that can result in fatalities, injuries and diseases, if these are not properly managed. This study has been undertaken for assessment of the safety and health issues amongst the mines workers. Convenience sampling technique was exercised upon 97 mine workers and interviewed with the help of set questionnaire. Personnel protection to workplace environment was monitored by using physical observation and scientific analysis. All parameters were measured against national and international protocols pertaining to labor law at coal mines. It has been determined that very high risk was persisting while mine excavation, coal cutting and transportation processes. Previous record of last five years was suggesting that 04 deaths happened due to roof fall, 03 fatalities occurred through suffocation by inhaling toxic gases, one causality happened via rope haulage pulley, and also one death due to stone fall down from mine shaft. 121 workers injured in different kinds of accidents within five years. It has been learnt from in-depth analysis that maximum of health risk and subsequent health damages are triggering due to lack of awareness, non-compliance of labor as well as mines laws. Thus, it is recommended that government should not allow coal mining contractors and companies, those which are failing in compliance with the suggested standards.

  20. Diglycolic acid, the toxic metabolite of diethylene glycol, chelates calcium and produces renal mitochondrial dysfunction in vitro.

    Science.gov (United States)

    Conrad, Taylor; Landry, Greg M; Aw, Tak Yee; Nichols, Royce; McMartin, Kenneth E

    2016-07-01

    Diethylene glycol (DEG) has caused many cases of acute kidney injury and deaths worldwide. Diglycolic acid (DGA) is the metabolite responsible for the renal toxicity, but its toxic mechanism remains unclear. To characterize the mitochondrial dysfunction produced from DGA by examining several mitochondrial processes potentially contributing to renal cell toxicity. The effect of DGA on mitochondrial membrane potential was examined in normal human proximal tubule (HPT) cells. Isolated rat kidney mitochondria were used to assess the effects of DGA on mitochondrial function, including respiratory parameters (States 3 and 4), electron transport chain complex activities and calcium-induced opening of the mitochondrial permeability transition pore. DGA was compared with ethylene glycol tetraacetic acid (EGTA) to determine calcium chelating ability. DGA cytotoxicity was assessed using lactate dehydrogenase leakage from cultured proximal tubule cells. DGA decreased the mitochondrial membrane potential in HPT cells. In rat kidney mitochondria, DGA decreased State 3 respiration, but did not affect State 4 respiration or the ADP/O ratio. DGA reduced glutamate/malate respiration at lower DGA concentrations (0.5 mmol/L) than succinate respiration (100 mmol/L). DGA inhibited Complex II activity without altering Complex I, III or IV activities. DGA blocked calcium-induced mitochondrial swelling, indicating inhibition of the calcium-dependent mitochondrial permeability transition. DGA and EGTA reduced the free calcium concentration in solution in an equimolar manner. DGA toxicity and mitochondrial dysfunction occurred as similar concentrations. DGA inhibited mitochondrial respiration, but without uncoupling oxidative phosphorylation. The more potent effect of DGA on glutamate/malate respiration and the inhibition of mitochondrial swelling was likely due to its chelation of calcium. These results indicate that DGA produces mitochondrial dysfunction by chelating calcium to