WorldWideScience

Sample records for acid synthase type

  1. Expanding the product portfolio of fungal type I fatty acid synthases.

    Science.gov (United States)

    Zhu, Zhiwei; Zhou, Yongjin J; Krivoruchko, Anastasia; Grininger, Martin; Zhao, Zongbao K; Nielsen, Jens

    2017-02-20

    Fungal type I fatty acid synthases (FASs) are mega-enzymes with two separated, identical compartments, in which the acyl carrier protein (ACP) domains shuttle substrates to catalytically active sites embedded in the chamber wall. We devised synthetic FASs by integrating heterologous enzymes into the reaction chambers and demonstrated their capability to convert acyl-ACP or acyl-CoA from canonical fatty acid biosynthesis to short/medium-chain fatty acids and methyl ketones.

  2. Cloning and sequence analysis of putative type II fatty acid synthase genes from Arachis hypogaea L.

    Indian Academy of Sciences (India)

    Meng-Jun Li; Ai-Qin Li; Han Xia; Chuan-Zhi Zhao; Chang-Sheng Li; Shu-Bo Wan; Yu-Ping Bi; Xing-Jun Wang

    2009-06-01

    The cultivated peanut is a valuable source of dietary oil and ranks fifth among the world oil crops. Plant fatty acid biosynthesis is catalysed by type II fatty acid synthase (FAS) in plastids and mitochondria. By constructing a full-length cDNA library derived from immature peanut seeds and homology-based cloning, candidate genes of acyl carrier protein (ACP), malonyl-CoA:ACP transacylase, -ketoacyl-ACP synthase (I, II, III), -ketoacyl-ACP reductase, -hydroxyacyl-ACP dehydrase and enoyl-ACP reductase were isolated. Sequence alignments revealed that primary structures of type II FAS enzymes were highly conserved in higher plants and the catalytic residues were strictly conserved in Escherichia coli and higher plants. Homologue numbers of each type II FAS gene expressing in developing peanut seeds varied from 1 in KASII, KASIII and HD to 5 in ENR. The number of single-nucleotide polymorphisms (SNPs) was quite different in each gene. Peanut type II FAS genes were predicted to target plastids except ACP2 and ACP3. The results suggested that peanut may contain two type II FAS systems in plastids and mitochondria. The type II FAS enzymes in higher plants may have similar functions as those in E. coli.

  3. Cloning and sequence analysis of putative type II fatty acid synthase genes from Arachis hypogaea L.

    Science.gov (United States)

    Li, Meng-Jun; Li, Ai-Qin; Xia, Han; Zhao, Chuan-Zhi; Li, Chang-Sheng; Wan, Shu-Bo; Bi, Yu-Ping; Wang, Xing-Jun

    2009-06-01

    The cultivated peanut is a valuable source of dietary oil and ranks fifth among the world oil crops. Plant fatty acid biosynthesis is catalysed by type II fatty acid synthase (FAS) in plastids and mitochondria. By constructing a full-length cDNA library derived from immature peanut seeds and homology-based cloning, candidate genes of acyl carrier protein (ACP), malonyl-CoA:ACP transacylase, beta-ketoacyl-ACP synthase (I, II, III), beta-ketoacyl-ACP reductase, beta-hydroxyacyl-ACP dehydrase and enoyl-ACP reductase were isolated. Sequence alignments revealed that primary structures of type II FAS enzymes were highly conserved in higher plants and the catalytic residues were strictly conserved in Escherichia coli and higher plants. Homologue numbers of each type II FAS gene expressing in developing peanut seeds varied from 1 in KASII, KASIII and HD to 5 in ENR. The number of single-nucleotide polymorphisms (SNPs) was quite different in each gene. Peanut type II FAS genes were predicted to target plastids except ACP2 and ACP3. The results suggested that peanut may contain two type II FAS systems in plastids and mitochondria. The type II FAS enzymes in higher plants may have similar functions as those in E. coli.

  4. Type III polyketide synthase is involved in the biosynthesis of protocatechuic acid in Aspergillus niger.

    Science.gov (United States)

    Lv, Yangyong; Xiao, Jing; Pan, Li

    2014-11-01

    Genomic studies have shown that not only plants but also filamentous fungi contain type III polyketide synthases. To study the function of type III polyketide synthase (AnPKSIII) in Aspergillus niger, a deletion strain (delAnPKSIII) and an overexpression strain (oeAnPKSIII) were constructed in A. niger MA169.4, a derivative of the wild-type (WT) A. niger ATCC 9029 that produces large quantities of gluconic acid. Alterations in the metabolites were analyzed by HPLC when the extract of the overexpression strain was compared with extracts of the WT and deletion strains. Protocatechuic acid (PCA; 3,4-dihydroxybenzoic acid, 3.2 mg/l) was isolated and identified as the main product of AnPKSIII when inductively expressed in A. niger MA169.4. The molecular weight of PCA was 154.1 (m/z 153.1 [M-H](-)), was detected by ESI-MS in the negative ionization mode, and (1)H and (13)C NMR data confirmed its structure.

  5. Biosynthesis of biphenyls and benzophenones--evolution of benzoic acid-specific type III polyketide synthases in plants.

    Science.gov (United States)

    Beerhues, Ludger; Liu, Benye

    2009-01-01

    Type III polyketide synthases (PKSs) generate a diverse array of secondary metabolites by varying the starter substrate, the number of condensation reactions, and the mechanism of ring closure. Among the starter substrates used, benzoyl-CoA is a rare starter molecule. Biphenyl synthase (BIS) and benzophenone synthase (BPS) catalyze the formation of identical linear tetraketide intermediates from benzoyl-CoA and three molecules of malonyl-CoA but use alternative intramolecular cyclization reactions to form 3,5-dihydroxybiphenyl and 2,4,6-trihydroxybenzophenone, respectively. In a phylogenetic tree, BIS and BPS group together closely, indicating that they arise from a relatively recent functional diversification of a common ancestral gene. The functionally diverse PKSs, which include BIS and BPS, and the ubiquitously distributed chalcone synthases (CHSs) form separate clusters, which originate from a gene duplication event prior to the speciation of the angiosperms. BIS is the key enzyme of biphenyl metabolism. Biphenyls and the related dibenzofurans are the phytoalexins of the Maloideae. This subfamily of the Rosaceae includes a number of economically important fruit trees, such as apple and pear. When incubated with ortho-hydroxybenzoyl (salicoyl)-CoA, BIS catalyzes a single decarboxylative condensation with malonyl-CoA to form 4-hydroxycoumarin. A well-known anticoagulant derivative of this enzymatic product is dicoumarol. Elicitor-treated cell cultures of Sorbus aucuparia also formed 4-hydroxycoumarin when fed with the N-acetylcysteamine thioester of salicylic acid (salicoyl-NAC). BPS is the key enzyme of benzophenone metabolism. Polyprenylated benzophenone derivatives with bridged polycyclic skeletons are widely distributed in the Clusiaceae (Guttiferae). Xanthones are regioselectively cyclized benzophenone derivatives. BPS was converted into a functional phenylpyrone synthase (PPS) by a single amino acid substitution in the initiation/elongation cavity. The

  6. Crystallization and X-ray diffraction studies of a complete bacterial fatty-acid synthase type I

    Energy Technology Data Exchange (ETDEWEB)

    Enderle, Mathias [Goethe University Frankfurt, Max-von-Laue-Strasse 15, 60438 Frankfurt am Main (Germany); Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried (Germany); McCarthy, Andrew [EMBL Grenoble, 71 Avenue des Martyrs, 38042 Grenoble CEDEX 9 (France); Paithankar, Karthik Shivaji, E-mail: paithankar@em.uni-frankfurt.de [Goethe University Frankfurt, Max-von-Laue-Strasse 15, 60438 Frankfurt am Main (Germany); Grininger, Martin, E-mail: paithankar@em.uni-frankfurt.de [Goethe University Frankfurt, Max-von-Laue-Strasse 15, 60438 Frankfurt am Main (Germany); Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried (Germany)

    2015-10-23

    Bacterial and fungal type I fatty-acid synthases (FAS I) are evolutionarily connected, as bacterial FAS I is considered to be the ancestor of fungal FAS I. In this work, the production, crystallization and X-ray diffraction data analysis of a bacterial FAS I are reported. While a deep understanding of the fungal and mammalian multi-enzyme type I fatty-acid synthases (FAS I) has been achieved in recent years, the bacterial FAS I family, which is narrowly distributed within the Actinomycetales genera Mycobacterium, Corynebacterium and Nocardia, is still poorly understood. This is of particular relevance for two reasons: (i) although homologous to fungal FAS I, cryo-electron microscopic studies have shown that bacterial FAS I has unique structural and functional properties, and (ii) M. tuberculosis FAS I is a drug target for the therapeutic treatment of tuberculosis (TB) and therefore is of extraordinary importance as a drug target. Crystals of FAS I from C. efficiens, a homologue of M. tuberculosis FAS I, were produced and diffracted X-rays to about 4.5 Å resolution.

  7. Biphenyl synthase, a novel type III polyketide synthase.

    Science.gov (United States)

    Liu, B; Raeth, T; Beuerle, T; Beerhues, L

    2007-05-01

    Biphenyls and dibenzofurans are the phytoalexins of the Maloideae, a subfamily of the economically important Rosaceae. The carbon skeleton of the two classes of antimicrobial secondary metabolites is formed by biphenyl synthase (BIS). A cDNA encoding this key enzyme was cloned from yeast-extract-treated cell cultures of Sorbus aucuparia. BIS is a novel type III polyketide synthase (PKS) that shares about 60% amino acid sequence identity with other members of the enzyme superfamily. Its preferred starter substrate is benzoyl-CoA that undergoes iterative condensation with three molecules of malonyl-CoA to give 3,5-dihydroxybiphenyl via intramolecular aldol condensation. BIS did not accept CoA-linked cinnamic acids such as 4-coumaroyl-CoA. This substrate, however, was the preferential starter molecule for chalcone synthase (CHS) that was also cloned from S. aucuparia cell cultures. While BIS expression was rapidly, strongly and transiently induced by yeast extract treatment, CHS expression was not. In a phylogenetic tree, BIS grouped together closely with benzophenone synthase (BPS) that also uses benzoyl-CoA as starter molecule but cyclizes the common intermediate via intramolecular Claisen condensation. The molecular characterization of BIS thus contributes to the understanding of the functional diversity and evolution of type III PKSs.

  8. Critical aspartic acid residues in pseudouridine synthases.

    Science.gov (United States)

    Ramamurthy, V; Swann, S L; Paulson, J L; Spedaliere, C J; Mueller, E G

    1999-08-01

    The pseudouridine synthases catalyze the isomerization of uridine to pseudouridine at particular positions in certain RNA molecules. Genomic data base searches and sequence alignments using the first four identified pseudouridine synthases led Koonin (Koonin, E. V. (1996) Nucleic Acids Res. 24, 2411-2415) and, independently, Santi and co-workers (Gustafsson, C., Reid, R., Greene, P. J., and Santi, D. V. (1996) Nucleic Acids Res. 24, 3756-3762) to group this class of enzyme into four families, which display no statistically significant global sequence similarity to each other. Upon further scrutiny (Huang, H. L., Pookanjanatavip, M., Gu, X. G., and Santi, D. V. (1998) Biochemistry 37, 344-351), the Santi group discovered that a single aspartic acid residue is the only amino acid present in all of the aligned sequences; they then demonstrated that this aspartic acid residue is catalytically essential in one pseudouridine synthase. To test the functional significance of the sequence alignments in light of the global dissimilarity between the pseudouridine synthase families, we changed the aspartic acid residue in representatives of two additional families to both alanine and cysteine: the mutant enzymes are catalytically inactive but retain the ability to bind tRNA substrate. We have also verified that the mutant enzymes do not release uracil from the substrate at a rate significant relative to turnover by the wild-type pseudouridine synthases. Our results clearly show that the aligned aspartic acid residue is critical for the catalytic activity of pseudouridine synthases from two additional families of these enzymes, supporting the predictive power of the sequence alignments and suggesting that the sequence motif containing the aligned aspartic acid residue might be a prerequisite for pseudouridine synthase function.

  9. Biosynthesis of Dictyostelium Discoideum Differentation-Inducing Factor by a Hybrid Type I Fatty Acid A-Type III polyketide synthase

    Energy Technology Data Exchange (ETDEWEB)

    Austin,M.; Saito, T.; Bowman, M.; Haydock, S.; Kato, A.; Moore, B.; Kay, R.; Noel, J.

    2006-01-01

    Differentiation-inducing factors (DIFs) are well known to modulate formation of distinct communal cell types from identical Dictyostelium discoideum amoebas, but DIF biosynthesis remains obscure. We report complimentary in vivo and in vitro experiments identifying one of two {approx}3,000-residue D. discoideum proteins, termed 'steely', as responsible for biosynthesis of the DIF acylphloroglucinol scaffold. Steely proteins possess six catalytic domains homologous to metazoan type I fatty acid synthases (FASs) but feature an iterative type III polyketide synthase (PKS) in place of the expected FAS C-terminal thioesterase used to off load fatty acid products. This new domain arrangement likely facilitates covalent transfer of steely N-terminal acyl products directly to the C-terminal type III PKS active sites, which catalyze both iterative polyketide extension and cyclization. The crystal structure of a steely C-terminal domain confirms conservation of the homodimeric type III PKS fold. These findings suggest new bioengineering strategies for expanding the scope of fatty acid and polyketide biosynthesis.

  10. A Novel Class of Plant Type III Polyketide Synthase Involved in Orsellinic Acid Biosynthesis from Rhododendron dauricum

    Science.gov (United States)

    Taura, Futoshi; Iijima, Miu; Yamanaka, Eriko; Takahashi, Hironobu; Kenmoku, Hiromichi; Saeki, Haruna; Morimoto, Satoshi; Asakawa, Yoshinori; Kurosaki, Fumiya; Morita, Hiroyuki

    2016-01-01

    Rhododendron dauricum L. produces daurichromenic acid, the anti-HIV meroterpenoid consisting of sesquiterpene and orsellinic acid (OSA) moieties. To characterize the enzyme responsible for OSA biosynthesis, a cDNA encoding a novel polyketide synthase (PKS), orcinol synthase (ORS), was cloned from young leaves of R. dauricum. The primary structure of ORS shared relatively low identities to those of PKSs from other plants, and the active site of ORS had a unique amino acid composition. The bacterially expressed, recombinant ORS accepted acetyl-CoA as the preferable starter substrate, and produced orcinol as the major reaction product, along with four minor products including OSA. The ORS identified in this study is the first plant PKS that generates acetate-derived aromatic tetraketides, such as orcinol and OSA. Interestingly, OSA production was clearly enhanced in the presence of Cannabis sativa olivetolic acid cyclase, suggesting that the ORS is involved in OSA biosynthesis together with an unidentified cyclase in R. dauricum. PMID:27729920

  11. Comparison of backbone dynamics of the type III antifreeze protein and antifreeze-like domain of human sialic acid synthase

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yong-Geun [Gyeongsang National University, Department of Chemistry and Research Institute of Natural Science (Korea, Republic of); Park, Chin-Ju [Gwangju Institute of Science and Technology, Division of Liberal Arts and Sciences and Department of Chemistry (Korea, Republic of); Kim, Hee-Eun; Seo, Yeo-Jin; Lee, Ae-Ree; Choi, Seo-Ree; Lee, Shim Sung; Lee, Joon-Hwa, E-mail: joonhwa@gnu.ac.kr [Gyeongsang National University, Department of Chemistry and Research Institute of Natural Science (Korea, Republic of)

    2015-02-15

    Antifreeze proteins (AFPs) are found in a variety of cold-adapted (psychrophilic) organisms to promote survival at subzero temperatures by binding to ice crystals and decreasing the freezing temperature of body fluids. The type III AFPs are small globular proteins that consist of one α-helix, three 3{sub 10}-helices, and two β-strands. Sialic acids play important roles in a variety of biological functions, such as development, recognition, and cell adhesion and are synthesized by conserved enzymatic pathways that include sialic acid synthase (SAS). SAS consists of an N-terminal catalytic domain and a C-terminal antifreeze-like (AFL) domain, which is similar to the type III AFPs. Despite having very similar structures, AFL and the type III AFPs exhibit very different temperature-dependent stability and activity. In this study, we have performed backbone dynamics analyses of a type III AFP (HPLC12 isoform) and the AFL domain of human SAS (hAFL) at various temperatures. We also characterized the structural/dynamic properties of the ice-binding surfaces by analyzing the temperature gradient of the amide proton chemical shift and its correlation with chemical shift deviation from random coil. The dynamic properties of the two proteins were very different from each other. While HPLC12 was mostly rigid with a few residues exhibiting slow motions, hAFL showed fast internal motions at low temperature. Our results provide insight into the molecular basis of thermostability and structural flexibility in homologous psychrophilic HPLC12 and mesophilic hAFL proteins.

  12. Mycocerosic acid synthase exemplifies the architecture of reducing polyketide synthases.

    Science.gov (United States)

    Herbst, Dominik A; Jakob, Roman P; Zähringer, Franziska; Maier, Timm

    2016-03-24

    Polyketide synthases (PKSs) are biosynthetic factories that produce natural products with important biological and pharmacological activities. Their exceptional product diversity is encoded in a modular architecture. Modular PKSs (modPKSs) catalyse reactions colinear to the order of modules in an assembly line, whereas iterative PKSs (iPKSs) use a single module iteratively as exemplified by fungal iPKSs (fiPKSs). However, in some cases non-colinear iterative action is also observed for modPKSs modules and is controlled by the assembly line environment. PKSs feature a structural and functional separation into a condensing and a modifying region as observed for fatty acid synthases. Despite the outstanding relevance of PKSs, the detailed organization of PKSs with complete fully reducing modifying regions remains elusive. Here we report a hybrid crystal structure of Mycobacterium smegmatis mycocerosic acid synthase based on structures of its condensing and modifying regions. Mycocerosic acid synthase is a fully reducing iPKS, closely related to modPKSs, and the prototype of mycobacterial mycocerosic acid synthase-like PKSs. It is involved in the biosynthesis of C20-C28 branched-chain fatty acids, which are important virulence factors of mycobacteria. Our structural data reveal a dimeric linker-based organization of the modifying region and visualize dynamics and conformational coupling in PKSs. On the basis of comparative small-angle X-ray scattering, the observed modifying region architecture may be common also in modPKSs. The linker-based organization provides a rationale for the characteristic variability of PKS modules as a main contributor to product diversity. The comprehensive architectural model enables functional dissection and re-engineering of PKSs.

  13. Biosynthesis of Akaeolide and Lorneic Acids and Annotation of Type I Polyketide Synthase Gene Clusters in the Genome of Streptomyces sp. NPS554

    Directory of Open Access Journals (Sweden)

    Tao Zhou

    2015-01-01

    Full Text Available The incorporation pattern of biosynthetic precursors into two structurally unique polyketides, akaeolide and lorneic acid A, was elucidated by feeding experiments with 13C-labeled precursors. In addition, the draft genome sequence of the producer, Streptomyces sp. NPS554, was performed and the biosynthetic gene clusters for these polyketides were identified. The putative gene clusters contain all the polyketide synthase (PKS domains necessary for assembly of the carbon skeletons. Combined with the 13C-labeling results, gene function prediction enabled us to propose biosynthetic pathways involving unusual carbon-carbon bond formation reactions. Genome analysis also indicated the presence of at least ten orphan type I PKS gene clusters that might be responsible for the production of new polyketides.

  14. Geranyl diphosphate synthase molecules, and nucleic acid molecules encoding same

    Science.gov (United States)

    Croteau, Rodney Bruce; Burke, Charles Cullen

    2008-06-24

    In one aspect, the present invention provides isolated nucleic acid molecules that each encode a geranyl diphosphate synthase protein, wherein each isolated nucleic acid molecule hybridizes to a nucleic acid molecule consisting of the sequence set forth in SEQ ID NO:1 under conditions of 5.times.SSC at 45.degree. C. for one hour. The present invention also provides isolated geranyl diphosphate synthase proteins, and methods for altering the level of expression of geranyl diphosphate synthase protein in a host cell.

  15. Fatty acid synthase inhibitors isolated from Punica granatum L

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, He-Zhong [School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, (China); Ma, Qing-Yun; Liang, Wen-Juan; Huang, Sheng-Zhuo; Dai, Hao-Fu; Wang, Peng-Cheng; Zhao, You-Xing, E-mail: zhaoyx1011@163.com [Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou (China); Fan, Hui-Jin; Ma, Xiao-Feng, E-mail: maxiaofeng@gucas.ac.cn [College of Life Sciences, Graduate University of Chinese Academy of Sciences, Beijing (China)

    2012-05-15

    The aim of this work is the isolation of fatty acid synthase (FAS) inhibitors from the ethyl acetate extracts of fruit peels of Punica granatum L. Bioassay-guided chemical investigation of the fruit peels resulted in the isolation of seventeen compounds mainly including triterpenoids and phenolic compounds, from which one new oleanane-type triterpene (punicaone) along with fourteen known compounds were isolated for the first time from this plant. Seven isolates were evaluated for inhibitory activities of FAS and two compounds showed to be active. Particularly, flavogallonic acid exhibited strong FAS inhibitory activity with IC{sub 50} value of 10.3 {mu}mol L{sup -1}. (author)

  16. A Single Amino Acid Substitution Converts Benzophenone Synthase into Phenylpyrone Synthase*

    OpenAIRE

    Klundt, Tim; Bocola, Marco; Lütge, Maren; Beuerle, Till; Liu, Benye; Beerhues, Ludger

    2009-01-01

    Benzophenone metabolism provides a number of plant natural products with fascinating chemical structures and intriguing pharmacological activities. Formation of the carbon skeleton of benzophenone derivatives from benzoyl-CoA and three molecules of malonyl-CoA is catalyzed by benzophenone synthase (BPS), a member of the superfamily of type III polyketide synthases. A point mutation in the active site cavity (T135L) transformed BPS into a functional phenylpyrone synthase (PPS). The dramatic ch...

  17. Intracerebroventricular administration of Shiga toxin type 2 altered the expression levels of neuronal nitric oxide synthase and glial fibrillary acidic protein in rat brains.

    Science.gov (United States)

    Boccoli, Javier; Loidl, C Fabián; Lopez-Costa, Juan José; Creydt, Virginia Pistone; Ibarra, Cristina; Goldstein, Jorge

    2008-09-16

    Shiga toxin (Stx) from enterohemorrhagic Escherichia coli (STEC) is the main cause of hemorrhagic colitis which may derive into Hemolytic Uremic Syndrome (HUS) and acute encephalopathy, one of the major risk factors for infant death caused by the toxin. We have previously demonstrated that intracerebroventricular administration of Stx2 causes neuronal death and glial cell damage in rat brains. In the present work, we observed that the intracerebroventricular administration of Stx2 increased the expression of glial fibrillary acidic protein (GFAP) leading to astrogliosis. Confocal microscopy showed reactive astrocytes in contact with Stx2-containing neurons. Immunocolocalization of increased GFAP and Stx2 in astrocytes was also observed. This insult in the brain was correlated with changes in the expression and activity of neuronal nitric oxide synthase (nNOS) by using the NADPH-diaphorase histochemical technique (NADPH-d HT). A significant decrease in NOS/NADPH-d-positive neurons and NOS/NADPH-d activity was observed in cerebral cortex and striatum, whereas an opposite effect was found in the hypothalamic paraventricular nucleus. We concluded that the i.c.v. administration of Stx2 promotes a typical pattern of brain injury showing reactive astrocytes and an alteration in the number and activity of nNOS/NADPH-d. According to the functional state of nNOS/NADPH-d and to brain cell morphology data, it could be inferred that the i.c.v. administration of Stx2 leads to either a neurodegenerative or a neuroprotective mechanism in the affected brain areas. The present animal model resembles the encephalopathy developed in Hemolytic Uremic Syndrome (HUS) patients by STEC intoxication.

  18. Reduced Expression of Lipoic Acid Synthase Accelerates Diabetic Nephropathy

    OpenAIRE

    Yi, Xianwen; Xu, Longquan; Hiller, Sylvia; Kim, Hyung-Suk; Nickeleit, Volker; James, Leighton R; Maeda, Nobuyo

    2011-01-01

    Oxidative stress contributes to the pathogenesis of diabetic nephropathy. In mitochondria, lipoic acid synthase produces α-lipoic acid, an antioxidant and an essential cofactor in α-ketoacid dehydrogenase complexes, which participate in glucose oxidation and ATP generation. Administration of lipoic acid abrogates diabetic nephropathy in animal models, but whether lower production of endogenous lipoic acid promotes diabetic nephropathy is unknown. Here, we crossed mice heterozygous for lipoic ...

  19. Exploiting the Biosynthetic Potential of Type III Polyketide Synthases

    Directory of Open Access Journals (Sweden)

    Yan Ping Lim

    2016-06-01

    Full Text Available Polyketides are structurally and functionally diverse secondary metabolites that are biosynthesized by polyketide synthases (PKSs using acyl-CoA precursors. Recent studies in the engineering and structural characterization of PKSs have facilitated the use of target enzymes as biocatalysts to produce novel functionally optimized polyketides. These compounds may serve as potential drug leads. This review summarizes the insights gained from research on type III PKSs, from the discovery of chalcone synthase in plants to novel PKSs in bacteria and fungi. To date, at least 15 families of type III PKSs have been characterized, highlighting the utility of PKSs in the development of natural product libraries for therapeutic development.

  20. Caenorhabditis elegans F09E10.3 Encodes a Putative 3-Oxoacyl-Thioester Reductase of Mitochondrial Type 2 Fatty Acid Synthase FASII that Is Functional in Yeast

    Directory of Open Access Journals (Sweden)

    Aner Gurvitz

    2009-01-01

    Full Text Available Caenorhabditis elegans F09E10.3 (dhs-25 was identified as encoding a 3-oxoacyl-thioester reductase, potentially of the mitochondrial type 2 fatty acid synthase (FASII system. Mitochondrial FASII is a relatively recent discovery in metazoans, and the relevance of this process to animal physiology has not been elucidated. A good animal model to study the role of FASII is the nematode C. elegans. However, the components of nematode mitochondrial FASII have hitherto evaded positive identification. The nematode F09E10.3 protein was ectopically expressed without an additional mitochondrial targeting sequence in Saccharomyces cerevisiae mutant cells lacking the homologous mitochondrial FASII enzyme 3-oxoacyl-ACP reductase Oar1p. These yeast oar1Δ mutants are unable to respire, grow on nonfermentable carbon sources, or synthesize sufficient levels of lipoic acid. Mutant yeast cells producing a full-length mitochondrial F09E10.3 protein contained NAD+-dependent 3-oxoacyl-thioester reductase activity and resembled the corresponding mutant overexpressing native Oar1p for the above-mentioned phenotype characteristics. This is the first identification of a metazoan 3-oxoacyl-thioester reductase (see Note Added in Proof.

  1. Differential in radiosensitizing potency of enantiomers of the fatty acid synthase inhibitor C75

    Science.gov (United States)

    Babich, John W.; Mairs, Robert J.

    2016-01-01

    Abstract The elevated activity of fatty acid synthase has been reported in a number of cancer types. Inhibition of this enzyme has been demonstrated to induce cancer cell death and reduce tumor growth. In addition, the fatty acid synthase inhibitor drug C75 has been reported to synergistically enhance the cancer‐killing ability of ionizing radiation. However, clinical use of C75 has been limited due to its producing weight loss, believed to be caused by alterations in the activity of carnitine palmitoyltransferase‐1. C75 is administered in the form of a racemic mixture of (−) and (+) enantiomers that may differ in their regulation of fatty acid synthase and carnitine palmitoyltransferase‐1. Therefore, we assessed the relative cancer‐killing potency of different enantiomeric forms of C75 in prostate cancer cells. These results suggest that (−)‐C75 is the more cytotoxic enantiomer and has greater radiosensitizing capacity than (+)‐C75. These observations will stimulate the development of fatty acid synthase inhibitors that are selective for cancer cells and enhance the tumor‐killing activity of ionizing radiation, while minimizing weight loss in cancer patients. PMID:27901292

  2. A Single Amino Acid Substitution Converts Benzophenone Synthase into Phenylpyrone Synthase*

    Science.gov (United States)

    Klundt, Tim; Bocola, Marco; Lütge, Maren; Beuerle, Till; Liu, Benye; Beerhues, Ludger

    2009-01-01

    Benzophenone metabolism provides a number of plant natural products with fascinating chemical structures and intriguing pharmacological activities. Formation of the carbon skeleton of benzophenone derivatives from benzoyl-CoA and three molecules of malonyl-CoA is catalyzed by benzophenone synthase (BPS), a member of the superfamily of type III polyketide synthases. A point mutation in the active site cavity (T135L) transformed BPS into a functional phenylpyrone synthase (PPS). The dramatic change in both substrate and product specificities of BPS was rationalized by homology modeling. The mutation may open a new pocket that accommodates the phenyl moiety of the triketide intermediate but limits polyketide elongation to two reactions, resulting in phenylpyrone formation. 3-Hydroxybenzoyl-CoA is the second best starter molecule for BPS but a poor substrate for PPS. The aryl moiety of the triketide intermediate may be trapped in the new pocket by hydrogen bond formation with the backbone, thereby acting as an inhibitor. PPS is a promising biotechnological tool for manipulating benzoate-primed biosynthetic pathways to produce novel compounds. PMID:19710020

  3. Palmitate action to inhibit glycogen synthase and stimulate protein phosphatase 2A increases with risk factors for type 2 diabetes.

    Science.gov (United States)

    Mott, David M; Stone, Karen; Gessel, Mary C; Bunt, Joy C; Bogardus, Clifton

    2008-02-01

    Recent studies have suggested that abnormal regulation of protein phosphatase 2A (PP2A) is associated with Type 2 diabetes in rodent and human tissues. Results with cultured mouse myotubes support a mechanism for palmitate activation of PP2A, leading to activation of glycogen synthase kinase 3. Phosphorylation and inactivation of glycogen synthase by glycogen synthase kinase 3 could be the mechanism for long-chain fatty acid inhibition of insulin-mediated carbohydrate storage in insulin-resistant subjects. Here, we test the effects of palmitic acid on cultured muscle glycogen synthase and PP2A activities. Palmitate inhibition of glycogen synthase fractional activity is increased in subjects with high body mass index compared with subjects with lower body mass index (r = -0.43, P = 0.03). Palmitate action on PP2A varies from inhibition in subjects with decreased 2-h plasma glucose concentration to activation in subjects with increased 2-h plasma glucose concentration (r = 0.45, P < 0.03) during oral glucose tolerance tests. The results do not show an association between palmitate effects on PP2A and glycogen synthase fractional activity. We conclude that subjects at risk for Type 2 diabetes have intrinsic differences in palmitate regulation of at least two enzymes (PP2A and glycogen synthase), contributing to abnormal insulin regulation of glucose metabolism.

  4. Amino acids conferring herbicide resistance in tobacco acetohydroxyacid synthase.

    Science.gov (United States)

    Le, Dung Tien; Choi, Jung-Do; Tran, Lam-Son Phan

    2010-01-01

    Acetohydroxyacid synthase (AHAS) (EC 4.1.3.18) is a target of commercially available herbicides such as sulfonylurea, imidazolinone, and triazolopyrimidine. In plants and microorganisms, AHAS catalyzes the first common reaction in the biosynthesis pathways leading to leucine, isoleucine and valine. Intensive studies using different approaches - including site-directed mutagenesis, molecular modeling and structural analysis - on plant AHAS-s have contributed to the understanding of the herbicide-AHAS interaction. Knowledge of the critical roles of amino acid residues of plant AHAS in conferring herbicide resistance will enable the creation of new herbicide-tolerant AHAS which could be used to develop herbicide-resistant transgenic plants. Moreover, such information will also elucidate design strategies for more efficient herbicides that could also kill weeds resistant to previously used AHAS-inhibiting herbicides. In this review, we summarize the results of intensive searches for amino acid residues and their substitutions that confer herbicide resistance in tobacco AHAS.

  5. Arabidopsis ETO1 specifically interacts with and negatively regulates type 2 1-aminocyclopropane-1-carboxylate synthases

    Directory of Open Access Journals (Sweden)

    Saito Koji

    2005-08-01

    Full Text Available Abstract Background In Arabidopsis, ETO1 (ETHYLENE-OVERPRODUCER1 is a negative regulator of ethylene evolution by interacting with AtACS5, an isoform of the rate-limiting enzyme, 1-aminocyclopropane-1-carboxylate synthases (ACC synthase or ACS, in ethylene biosynthetic pathway. ETO1 directly inhibits the enzymatic activity of AtACS5. In addition, a specific interaction between ETO1 and AtCUL3, a constituent of a new type of E3 ubiquitin ligase complex, suggests the molecular mechanism in promoting AtACS5 degradation by the proteasome-dependent pathway. Because orthologous sequences to ETO1 are found in many plant species including tomato, we transformed tomato with Arabidopsis ETO1 to evaluate its ability to suppress ethylene production in tomato fruits. Results Transgenic tomato lines that overexpress Arabidopsis ETO1 (ETO1-OE did not show a significant delay of fruit ripening. So, we performed yeast two-hybrid assays to investigate potential heterologous interaction between ETO1 and three isozymes of ACC synthases from tomato. In the yeast two-hybrid system, ETO1 interacts with LE-ACS3 as well as AtACS5 but not with LE-ACS2 or LE-ACS4, two major isozymes whose gene expression is induced markedly in ripening fruits. According to the classification of ACC synthases, which is based on the C-terminal amino acid sequences, both LE-ACS3 and AtACS5 are categorized as type 2 isozymes and possess a consensus C-terminal sequence. In contrast, LE-ACS2 and LE-ACS4 are type 1 and type 3 isozymes, respectively, both of which do not possess this specific C-terminal sequence. Yeast two-hybrid analysis using chimeric constructs between LE-ACS2 and LE-ACS3 revealed that the type-2-ACS-specific C-terminal tail is required for interaction with ETO1. When treated with auxin to induce LE-ACS3, seedlings of ETO1-OE produced less ethylene than the wild type, despite comparable expression of the LE-ACS3 gene in the wild type. Conclusion These results suggest that ETO1

  6. Cloning and functional analysis of the second geranylgeranyl diphosphate synthase gene influencing helvolic acid biosynthesis in Metarhizium anisopliae.

    Science.gov (United States)

    Singkaravanit, Suthitar; Kinoshita, Hiroshi; Ihara, Fumio; Nihira, Takuya

    2010-07-01

    A gene (ggs2) having high similarity to the geranylgeranyl diphosphate synthase (GGPP synthase) gene was cloned from Metarhizium anisopliae NAFF635007. The ggs2 gene (1,239-bp open reading frame with no intron) encoded a protein of 412 amino acids, and the transcription occurred only after late log-phase during the growth. Gene disruption of ggs2, performed to clarify the function in M. anisopliae, resulted in decreased GGPP synthase activity together with a slight delay of sporulation. An high performance liquid chromatography (HPLC) comparison of compound profiles between the wild-type strain and the disruptant revealed that a compound was abolished by the ggs2 disruption. Purification and structural elucidation by 1H-NMR and mass spectrometry analyses revealed that the lost compound is helvolic acid. Furthermore, the pathogenicity assay against two species of insect larvae revealed that the ggs2-disruptant possessed much weaker toxicity than the wild-type strain. Based on these results, it was concluded that ggs2 encodes the GGPP synthase influencing the biosynthesis of secondary metabolites in various species, including helvolic acid in M. anisopliae. To the best of our knowledge, this is the first report to identify a GGPP synthase gene related to secondary metabolism in entomopathogenic fungi.

  7. Expression of fatty acid synthase in nonalcoholic fatty liver disease.

    Science.gov (United States)

    Dorn, Christoph; Riener, Marc-Oliver; Kirovski, Georgi; Saugspier, Michael; Steib, Kathrin; Weiss, Thomas S; Gäbele, Erwin; Kristiansen, Glen; Hartmann, Arndt; Hellerbrand, Claus

    2010-03-25

    Nonalcoholic fatty liver disease (NAFLD) is characterized by hepatic lipid accumulation which starts with simple hepatic steatosis and may progress toward inflammation (nonalcoholic steatohepatitis [NASH]). Fatty acid synthase (FASN) catalyzes the last step in fatty acid biosynthesis, and thus, it is believed to be a major determinant of the maximal hepatic capacity to generate fatty acids by de novo lipogenesis. The aim of this study was to analyze the correlation between hepatic steatosis and inflammation with FASN expression. In vitro incubation of primary human hepatocytes with fatty acids dose-dependently induced cellular lipid-accumulation and FASN expression, while stimulation with TNF did not affect FASN levels. Further, hepatic FASN expression was significantly increased in vivo in a murine model of hepatic steatosis without significant inflammation but not in a murine NASH model as compared to control mice. Also, FASN expression was not increased in mice subjected to bile duct ligation, an experimental model characterized by severe hepatocellular damage and inflammation. Furthermore, FASN expression was analyzed in 102 human control or NAFLD livers applying tissue micro array technology and immunohistochemistry, and correlated significantly with the degree of hepatic steatosis, but not with inflammation or ballooning of hepatocytes. Quantification of FASN mRNA expression in human liver samples confirmed significantly higher FASN levels in hepatic steatosis but not in NASH, and expression of SREBP1, which is the main transcriptional regulator of FASN, paralleled FASN expression levels in human and experimental NAFLD. In conclusion, the transcriptional induction of FASN expression in hepatic steatosis is impaired in NASH, while hepatic inflammation in the absence of steatosis does not affect FASN expression, suggesting that FASN may serve as a new diagnostic marker or therapeutic target for the progression of NAFLD.

  8. Surface exposed amino acid differences between mesophilic and thermophilic phosphoribosyl diphosphate synthase

    DEFF Research Database (Denmark)

    Hove-Jensen, Bjarne; McGuire, James N

    2004-01-01

    The amino acid sequence of 5-phospho-alpha-D-ribosyl 1-diphosphate synthase from the thermophile Bacillus caldolyticus is 81% identical to the amino acid sequence of 5-phospho-alpha-D-ribosyl 1-diphosphate synthase from the mesophile Bacillus subtilis. Nevertheless the enzyme from the two organisms...... competitive with respect to ATP. A predicted structure of the B. caldolyticus enzyme based on homology modelling with the structure of B. subtilis 5-phospho-alpha-D-ribosyl 1-diphosphate synthase shows 92% of the amino acid differences to be on solvent exposed surfaces in the hexameric structure....

  9. Effects and mechanism of acid rain on plant chloroplast ATP synthase.

    Science.gov (United States)

    Sun, Jingwen; Hu, Huiqing; Li, Yueli; Wang, Lihong; Zhou, Qing; Huang, Xiaohua

    2016-09-01

    Acid rain can directly or indirectly affect plant physiological functions, especially photosynthesis. The enzyme ATP synthase is the key in photosynthetic energy conversion, and thus, it affects plant photosynthesis. To clarify the mechanism by which acid rain affects photosynthesis, we studied the effects of acid rain on plant growth, photosynthesis, chloroplast ATP synthase activity and gene expression, chloroplast ultrastructure, intracellular H(+) level, and water content of rice seedlings. Acid rain at pH 4.5 remained the chloroplast structure unchanged but increased the expression of six chloroplast ATP synthase subunits, promoted chloroplast ATP synthase activity, and increased photosynthesis and plant growth. Acid rain at pH 4.0 or less decreased leaf water content, destroyed chloroplast structure, inhibited the expression of six chloroplast ATP synthase subunits, decreased chloroplast ATP synthase activity, and reduced photosynthesis and plant growth. In conclusion, acid rain affected the chloroplast ultrastructure, chloroplast ATPase transcription and activity, and P n by changing the acidity in the cells, and thus influencing the plant growth and development. Finally, the effects of simulated acid rain on the test indices were found to be dose-dependent.

  10. Increased fatty acid synthase expression in prostate biopsy cores predicts higher Gleason score in radical prostatectomy specimen

    OpenAIRE

    HAMADA, SHINSUKE; Horiguchi, Akio; Kuroda, Kenji; Ito, Keiichi; ASANO, TOMOHIKO; Miyai, Kosuke; Iwaya, Keiichi

    2014-01-01

    Background Fatty acid synthase (FAS) is highly expressed in various types of cancer, and elevated expression of FAS has been suggested to be a predictor of tumor aggressiveness and poor prognosis. We examined whether FAS expression in prostate biopsy cores could predict the pathological characteristics of radical prostatectomy (RP) specimens. Methods Paraffin-embedded prostate biopsy cores, obtained from 102 patients who subsequently underwent RP, were immunostained with polyclonal anti-FAS a...

  11. A conditional mutant of the fatty acid synthase unveils unexpected cross talks in mycobacterial lipid metabolism.

    Science.gov (United States)

    Cabruja, Matías; Mondino, Sonia; Tsai, Yi Ting; Lara, Julia; Gramajo, Hugo; Gago, Gabriela

    2017-02-01

    Unlike most bacteria, mycobacteria rely on the multi-domain enzyme eukaryote-like fatty acid synthase I (FAS I) to make fatty acids de novo. These metabolites are precursors of the biosynthesis of most of the lipids present both in the complex mycobacteria cell wall and in the storage lipids inside the cell. In order to study the role of the type I FAS system in Mycobacterium lipid metabolism in vivo, we constructed a conditional mutant in the fas-acpS operon of Mycobacterium smegmatis and analysed in detail the impact of reduced de novo fatty acid biosynthesis on the global architecture of the cell envelope. As expected, the mutant exhibited growth defect in the non-permissive condition that correlated well with the lower expression of fas-acpS and the concomitant reduction of FAS I, confirming that FAS I is essential for survival. The reduction observed in FAS I provoked an accumulation of its substrates, acetyl-CoA and malonyl-CoA, and a strong reduction of C12 to C18 acyl-CoAs, but not of long-chain acyl-CoAs (C19 to C24). The most intriguing result was the ability of the mutant to keep synthesizing mycolic acids when fatty acid biosynthesis was impaired. A detailed comparative lipidomic analysis showed that although reduced FAS I levels had a strong impact on fatty acid and phospholipid biosynthesis, mycolic acids were still being synthesized in the mutant, although with a different relative species distribution. However, when triacylglycerol degradation was inhibited, mycolic acid biosynthesis was significantly reduced, suggesting that storage lipids could be an intracellular reservoir of fatty acids for the biosynthesis of complex lipids in mycobacteria. Understanding the interaction between FAS I and the metabolic pathways that rely on FAS I products is a key step to better understand how lipid homeostasis is regulated in this microorganism and how this regulation could play a role during infection in pathogenic mycobacteria.

  12. Starter substrate specificities of wild-type and mutant polyketide synthases from Rutaceae.

    Science.gov (United States)

    Lukacin, Richard; Schreiner, Stephan; Silber, Katrin; Matern, Ulrich

    2005-02-01

    Chalcone synthases (CHSs) and acridone synthases (ACSs) belong to the superfamily of type III polyketide synthases (PKSs) and condense the starter substrate 4-coumaroyl-CoA or N-methylanthraniloyl-CoA with three malonyl-CoAs to produce flavonoids and acridone alkaloids, respectively. ACSs which have been cloned exclusively from Ruta graveolens share about 75-85% polypeptide sequence homology with CHSs from other plant families, while 90% similarity was observed with CHSs from Rutaceae, i.e., R. graveolens, Citrus sinensis and Dictamnus albus. CHSs cloned from many plants do not accept N-methylanthraniloyl-CoA as a starter substrate, whereas ACSs were shown to possess some side activity with 4-coumaroyl-CoA. The transformation of an ACS to a functional CHS with 10% residual ACS activity was accomplished previously by substitution of three amino acids through the corresponding residues from Ruta-CHS1 (Ser132Thr, Ala133Ser and Val265Phe). Therefore, the reverse triple mutation of Ruta-CHS1 (mutant R2) was generated, which affected only insignificantly the CHS activity and did not confer ACS activity. However, competitive inhibition of CHS activity by N-methylanthraniloyl-CoA was observed for the mutant in contrast to wild-type CHSs. Homology modeling of ACS2 with docking of 1,3-dihydroxy-N-methylacridone suggested that the starter substrates for CHS or ACS reaction are placed in different topographies in the active site pocket. Additional site specific substitutions (Asp205Pro/Thr206Asp/His207Ala or Arg60Thr and Val100Ala/Gly218Ala, respectively) diminished the CHS activity to 75-50% of the wild-type CHS1 without promoting ACS activity. The results suggest that conformational changes in the periphery beyond the active site cavity volumes determine the product formation by ACSs vs. CHSs in R. graveolens. It is likely that ACS has evolved from CHS, but the sole enlargement of the active site pocket as in CHS1 mutant R2 is insufficient to explain this process.

  13. Deletion of the carboxyl-terminal region of 1-aminocyclopropane-1-carboxylic acid synthase, a key protein in the biosynthesis of ethylene, results in catalytically hyperactive, monomeric enzyme.

    Science.gov (United States)

    Li, N; Mattoo, A K

    1994-03-04

    1-Aminocyclopropane-1-carboxylic acid (ACC) synthase is a key enzyme regulating biosynthesis of the plant hormone ethylene. The expression of an enzymatically active, wound-inducible tomato (Lycopersicon esculentum L. cv Pik-Red) ACC synthase (485 amino acids long) in a heterologous Escherichia coli system allowed us to study the importance of hypervariable COOH terminus in enzymatic activity and protein conformation. We constructed several deletion mutants of the gene, expressed these in E. coli, purified the protein products to apparent homogeneity, and analyzed both conformation and enzyme kinetic parameters of the wild-type and truncated ACC syntheses. Deletion of the COOH terminus through Arg429 results in complete inactivation of the enzyme. Deletion of 46-52 amino acids from the COOH terminus results in an enzyme that has nine times higher affinity for the substrate S-adenosylmethionine than the wild-type enzyme. The highly efficient, truncated ACC synthase was found to be a monomer of 52 +/- 1.8 kDa as determined by gel filtration, whereas the wild-type ACC synthase, analyzed under similar conditions, is a dimer. These results demonstrate that the non-conserved COOH terminus of ACC synthase affects its enzymatic function as well as dimerization.

  14. Blockade of fatty acid synthase triggers significant apoptosis in mantle cell lymphoma.

    Directory of Open Access Journals (Sweden)

    Pascal Gelebart

    Full Text Available Fatty acid synthase (FASN, a key player in the de novo synthetic pathway of long-chain fatty acids, has been shown to contribute to the tumorigenesis in various types of solid tumors. We here report that FASN is highly and consistently expressed in mantle cell lymphoma (MCL, an aggressive form of B-cell lymphoid malignancy. Specifically, the expression of FASN was detectable in all four MCL cell lines and 15 tumors examined. In contrast, benign lymphoid tissues and peripheral blood mononuclear cells from normal donors were negative. Treatment of MCL cell lines with orlistat, a FASN inhibitor, resulted in significant apoptosis. Knockdown of FASN expression using siRNA, which also significantly decreased the growth of MCL cells, led to a dramatic decrease in the cyclin D1 level. β-catenin, which has been previously reported to be upregulated in a subset of MCL tumors, contributed to the high level of FASN in MCL cells, Interesting, siRNA knock-down of FASN in turn down-regulated β-catenin. In conclusion, our data supports the concept that FASN contributes to the pathogenesis of MCL, by collaborating with β-catenin. In view of its high and consistent expression in MCL, FASN inhibitors may hold promises for treating MCL.

  15. Metabolic engineering of Pseudomonas putida for production of docosahexaenoic acid based on a myxobacterial PUFA synthase.

    Science.gov (United States)

    Gemperlein, Katja; Zipf, Gregor; Bernauer, Hubert S; Müller, Rolf; Wenzel, Silke C

    2016-01-01

    Long-chain polyunsaturated fatty acids (LC-PUFAs) can be produced de novo via polyketide synthase-like enzymes known as PUFA synthases, which are encoded by pfa biosynthetic gene clusters originally discovered from marine microorganisms. Recently similar gene clusters were detected and characterized in terrestrial myxobacteria revealing several striking differences. As the identified myxobacterial producers are difficult to handle genetically and grow very slowly we aimed to establish heterologous expression platforms for myxobacterial PUFA synthases. Here we report the heterologous expression of the pfa gene cluster from Aetherobacter fasciculatus (SBSr002) in the phylogenetically distant model host bacteria Escherichia coli and Pseudomonas putida. The latter host turned out to be the more promising PUFA producer revealing higher production rates of n-6 docosapentaenoic acid (DPA) and docosahexaenoic acid (DHA). After several rounds of genetic engineering of expression plasmids combined with metabolic engineering of P. putida, DHA production yields were eventually increased more than threefold. Additionally, we applied synthetic biology approaches to redesign and construct artificial versions of the A. fasciculatus pfa gene cluster, which to the best of our knowledge represents the first example of a polyketide-like biosynthetic gene cluster modulated and synthesized for P. putida. Combination with the engineering efforts described above led to a further increase in LC-PUFA production yields. The established production platform based on synthetic DNA now sets the stage for flexible engineering of the complex PUFA synthase.

  16. Mechanistic studies of 3-deoxy-D-manno-octulosonic acid 8-phosphate synthase

    Energy Technology Data Exchange (ETDEWEB)

    Dotson, G.D.; Woodard, R.W. [Univ. of Michigan, Ann Arbor, MI (United States)

    1994-12-01

    The enzyme 3-deOXY-D-manno-octulosonic acid 8-phosphate synthase (KDO 8-P synthase) catalyses the condensation of arabinose 5-phosphate (A 5-P) with phosphoenolpyruvate (PEP) to give the unique eight-carbon acidic sugar 3-deoxy-D-nianno-octulosonic acid 8-phosphate (KDO 8-P) found only in gram-negative bacteria and required for lipid A maturation and cellular growth. The E. coli gene kdsA that encodes KDO 8-P synthase has been amplified by standard PCR methodologies. The synthetic gene, subcloned into the expression vector pT7-7 was used to infect E. coli BL 21 (DE 3). Purification of crude supernatant from this transformant on Q Sepharose yields >200 mg of near-homogeneous KDO 8-P synthase per liter of cell culture. To explore the mechanism of KDO 8-P synthase, we prepared (E)- and (Z)-(3{sup 2}H)PEP, (2-{sup 13}C)PEP, and (2-{sup 13}C,{sup 18}O)PEP chemically from the appropriately labeled 3-bromopyruvates by reaction with trimethylphosphite under Perkow reaction conditions. Our {sup 1}H-NMR analysis of the stereochemistry at C3 of the KDO 8-Ps, obtained by separate incubation of (E)- and (Z)-(3-{sup 2}H)PEP with A 5-P in the presence of KDO 8-P synthase, demonstrated that the reaction is stereospecific with respect to both the C3 of PEP and the C1 carbonyl of A 5-P. (Z)-(3-{sup 2}H)PEP gave predominantly (3S)-(3{sup 2}H)KDO 8-P and (E)-(3-{sup 2}H)PEP gave predominantly (3R)-(3{sup 2}H)KDO-8P, which indicates condensation of the si face of PEP upon the re face of A 5-P-an orientation analogous to that seen with the similar aldehyde Iyase DAH 7-P synthase. The fate of the enolic oxygen of (2-{sup 13}C, {sup 18}O)PEP, during the course of the KDO 8-P synthase-catalyzed reaction as monitored by both {sup 13}C- and {sup 31}P-NMR spectroscopy demonstrated that the inorganic phosphate (Pi) and not the KDO 8-P contained the {sup 18}O.

  17. Crystallization of Δ{sup 1}-tetrahydrocannabinolic acid (THCA) synthase from Cannabis sativa

    Energy Technology Data Exchange (ETDEWEB)

    Shoyama, Yoshinari; Takeuchi, Ayako; Taura, Futoshi [Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan); Tamada, Taro; Adachi, Motoyasu; Kuroki, Ryota [Neutron Science Research Center, Japan Atomic Energy Research Institute, 2-4 Shirakata-Shirane, Tokai, Ibaraki 319-1195 (Japan); Shoyama, Yukihiro; Morimoto, Satoshi, E-mail: morimoto@phar.kyushu-u.ac.jp [Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan)

    2005-08-01

    Δ{sup 1}-Tetrahydrocannabinolic acid (THCA) synthase from C. sativa was crystallized. The crystal diffracted to 2.7 Å resolution with sufficient quality for further structure determination. Δ{sup 1}-Tetrahydrocannabinolic acid (THCA) synthase is a novel oxidoreductase that catalyzes the biosynthesis of the psychoactive compound THCA in Cannabis sativa (Mexican strain). In order to investigate the structure–function relationship of THCA synthase, this enzyme was overproduced in insect cells, purified and finally crystallized in 0.1 M HEPES buffer pH 7.5 containing 1.4 M sodium citrate. A single crystal suitable for X-ray diffraction measurement was obtained in 0.09 M HEPES buffer pH 7.5 containing 1.26 M sodium citrate. The crystal diffracted to 2.7 Å resolution at beamline BL41XU, SPring-8. The crystal belonged to the primitive cubic space group P432, with unit-cell parameters a = b = c = 178.2 Å. The calculated Matthews coefficient was approximately 4.1 or 2.0 Å{sup 3} Da{sup −1} assuming the presence of one or two molecules of THCA synthase in the asymmetric unit, respectively.

  18. Linkage of the human inducible nitric oxide synthase gene to type 1 diabetes.

    Science.gov (United States)

    Johannesen, J; Pie, A; Pociot, F; Kristiansen, O P; Karlsen, A E; Nerup, J

    2001-06-01

    Exposure of human pancreatic islets to a mixture of cytokines induces expression of the inducible nitric oxide synthase (iNOS), impairs beta-cell function, and induces apoptosis. We performed a mutational scanning of all 27 exons of the human NOS2 gene and linkage transmission disequilibrium testing of identified NOS2 polymorphisms in a Danish nationwide type 1 diabetes mellitus (IDDM) family collection. Mutational screening was performed using PCR-amplified exons, followed by single stranded conformation polymorphism and verification of potential polymorphisms by sequencing. The transmission disequilibrium test was performed in an IDDM family material comprising 257 Danish families; 154 families were affected sibling pair families, and 103 families were simplex families. In total, 10 polymorphisms were identified in 8 exons, of which 4 were tested in the family material. A C/T single nucleotide polymorphism in exon 16 resulting in an amino acid substitution, Ser(608)Leu, showed linkage to IDDM in human leukocyte antigen DR3/4-positive affected offspring (P = 0.008; corrected P = 0.024). No other distorted transmission patterns were found for any other tested single nucleotide polymorphism or constructed haplotypes with the exception of those including data from exon 16. In conclusion, linkage of the human NOS2 gene to IDDM in a subset of patients supports a pathogenic role of nitric oxide in human IDDM.

  19. Influence of Different Levels of Lipoic Acid Synthase Gene Expression on Diabetic Nephropathy

    Science.gov (United States)

    Xu, Longquan; Hiller, Sylvia; Simington, Stephen; Nickeleit, Volker; Maeda, Nobuyo; James, Leighton R.; Yi, Xianwen

    2016-01-01

    Oxidative stress is implicated in the pathogenesis of diabetic nephropathy (DN) but outcomes of many clinical trials are controversial. To define the role of antioxidants in kidney protection during the development of diabetic nephropathy, we have generated a novel genetic antioxidant mouse model with over- or under-expression of lipoic acid synthase gene (Lias). These models have been mated with Ins2Akita/+ mice, a type I diabetic mouse model. We compare the major pathologic changes and oxidative stress status in two new strains of the mice with controls. Our results show that Ins2Akita/+ mice with under-expressed Lias gene, exhibit higher oxidative stress and more severe DN features (albuminuria, glomerular basement membrane thickening and mesangial matrix expansion). In contrast, Ins2Akita/+ mice with highly-expressed Lias gene display lower oxidative stress and less DN pathologic changes. Our study demonstrates that strengthening endogenous antioxidant capacity could be an effective strategy for prevention and treatment of DN. PMID:27706190

  20. Effect of abscisic and gibberellic acids on malate synthase transcripts in germinating castor bean seeds.

    Science.gov (United States)

    Rodriguez, D; Dommes, J; Northcote, D H

    1987-05-01

    Several clones complementary to malate synthase mRNA have been identified in a complementary-DNA library to mRNA from castor bean endosperm. One of these clones has been used as a probe to measure levels of transcripts during seed germination and the effects of gibberellic acid and abscisic acid on these levels have been examined.Malate synthase transcripts increased during germination and GA3 advanced their appearance in the endosperm. Exogenously applied ABA inhibited the accumulation of transcripts over a time course of germination but the addition of GA3 counteracted its inhibitory effects. The data confirmed previous reports which indicated that the action of both growth regulators was on transcript accumulation and that there is a coordinated induction of the enzymes involved in the lipid metabolism in oil seeds.

  1. An active site mutant of Escherichia coli cyclopropane fatty acid synthase forms new non-natural fatty acids providing insights on the mechanism of the enzymatic reaction.

    Science.gov (United States)

    E, Guangqi; Drujon, Thierry; Correia, Isabelle; Ploux, Olivier; Guianvarc'h, Dominique

    2013-12-01

    We have produced and purified an active site mutant of the Escherichia coli cyclopropane fatty acid synthase (CFAS) by replacing the strictly conserved G236 within cyclopropane synthases, by a glutamate residue, which corresponds to E146 of the homologous mycolic acid methyltransferase, Hma, producing hydroxymethyl mycolic acids. The G236E CFAS mutant had less than 1% of the in vitro activity of the wild type enzyme. We expressed the G236E CFAS mutant in an E. coli (DE3) strain in which the chromosomal cfa gene had been deleted. After extraction of phospholipids and conversion into the corresponding fatty acid methyl esters (FAMEs), we observed the formation of cyclopropanated FAMEs suggesting that the mutant retained some of the normal activity in vivo. However, we also observed the formation of new C17 methyl-branched unsaturated FAMEs whose structures were determined using GC/MS and NMR analyses. The double bond was located at different positions 8, 9 or 10, and the methyl group at position 10 or 9. Thus, this new FAMEs are likely arising from a 16:1 acyl chain of a phospholipid that had been transformed by the G236E CFAS mutant in vivo. The reaction catalyzed by this G236E CFAS mutant thus starts by the methylation of the unsaturated acyl chain at position 10 or 9 yielding a carbocation at position 9 or 10 respectively. It follows then two competing steps, a normal cyclopropanation or hydride shift/elimination events giving different combinations of alkenes. This study not only provides further evidence that cyclopropane synthases (CSs) form a carbocationic intermediate but also opens the way to CSs engineering for the synthesis of non-natural fatty acids.

  2. Accumulation of wound-inducible ACC synthase transcript in tomato fruit is inhibited by salicylic acid and polyamines.

    Science.gov (United States)

    Li, N; Parsons, B L; Liu, D R; Mattoo, A K

    1992-02-01

    Regulation of wound-inducible 1-aminocyclopropane-1-carboxylic acid (ACC) synthase expression was studied in tomato fruit (Lycopersicon esculentum cv. Pik-Red). A 70 base oligonucleotide probe homologous to published ACC synthase cDNA sequences was successfully used to identify and analyze regulation of a wound-inducible transcript. The 1.8 kb ACC synthase transcript increased upon wounding the fruit as well as during fruit ripening. Salicylic acid, an inhibitor of wound-responsive genes in tomato, inhibited the wound-induced accumulation of the ACC synthase transcript. Further, polyamines (putrescine, spermidine and spermine) that have anti-senescence properties and have been shown to inhibit the development of ACC synthase activity, inhibited the accumulation of the wound-inducible ACC synthase transcript. The inhibition by spermine was greater than that caused by putrescine or spermidine. The transcript level of a wound-repressible glycine-rich protein gene and that of the constitutively expressed rRNA were not affected as markedly by either salicylic acid or polyamines. These data suggest that salicylic acid and polyamines may specifically regulate ethylene biosynthesis at the level of ACC synthase transcript accumulation.

  3. Campylobacter jejuni fatty acid synthase II: Structural and functional analysis of [beta]-hydroxyacyl-ACP dehydratase (FabZ)

    Energy Technology Data Exchange (ETDEWEB)

    Kirkpatrick, Andrew S.; Yokoyama, Takeshi; Choi, Kyoung-Jae; Yeo, Hye-Jeong; (Houston)

    2009-08-14

    Fatty acid biosynthesis is crucial for all living cells. In contrast to higher organisms, bacteria use a type II fatty acid synthase (FAS II) composed of a series of individual proteins, making FAS II enzymes excellent targets for antibiotics discovery. The {beta}-hydroxyacyl-ACP dehydratase (FabZ) catalyzes an essential step in the FAS II pathway. Here, we report the structure of Campylobacter jejuni FabZ (CjFabZ), showing a hexamer both in crystals and solution, with each protomer adopting the characteristic hot dog fold. Together with biochemical analysis of CjFabZ, we define the first functional FAS II enzyme from this pathogen, and provide a framework for investigation on roles of FAS II in C. jejuni virulence

  4. Inhibitor of fatty acid synthase induced apoptosis in human colonic cancer cells

    Institute of Scientific and Technical Information of China (English)

    Pei Lin Huang; Zhen Sheng Dai; Yue Lin Jin; Shi Neng Zhu; Shi Lun Lu

    2000-01-01

    @@INTRODUCTION The treatment of human epithelial malignancies is limited by drug resistance and toxic and side effects,which results in the failure in the treatment of majority of advanced cancer victims. To seek for a new, and specific antineoplastic therapy will provide hope for tumor treatment. Although disordered intermediary metabolism in cancer cells has been known for many years, much of the work focused on abnormal glucose catabolism. At the same time, little attention has been paid to fatty acid synthasis in tumor tissues, dispite of the significance of fatty acid synthase (FAS) in some clinical human ovarian[1], breast[2], colorectal[3],and prostatic cancers[4,5]. Tumor cells which express high levels of fatty acid synthesizing enzymes use endogeneously synthesized fatty acids for membrance biosynthesis and appear to export large amounts of lipid. In contrast, normal cells preferentially utilize diary lipid.

  5. Fatty Acid Synthase Polymorphisms, Tumor Expression, Body Mass Index, Prostate Cancer Risk, and Survival

    Science.gov (United States)

    Nguyen, Paul L.; Ma, Jing; Chavarro, Jorge E.; Freedman, Matthew L.; Lis, Rosina; Fedele, Giuseppe; Fiore, Christopher; Qiu, Weiliang; Fiorentino, Michelangelo; Finn, Stephen; Penney, Kathryn L.; Eisenstein, Anna; Schumacher, Fredrick R.; Mucci, Lorelei A.; Stampfer, Meir J.; Giovannucci, Edward; Loda, Massimo

    2010-01-01

    Purpose Fatty acid synthase (FASN) regulates de novo lipogenesis, body weight, and tumor growth. We examined whether common germline single nucleotide polymorphisms (SNPs) in the FASN gene affect prostate cancer (PCa) risk or PCa-specific mortality and whether these effects vary by body mass index (BMI). Methods In a prospective nested case-control study of 1,331 white patients with PCa and 1,267 age-matched controls, we examined associations of five common SNPs within FASN (and 5 kb upstream/downstream, R2 > 0.8) with PCa incidence and, among patients, PCa-specific death and tested for an interaction with BMI. Survival analyses were repeated for tumor FASN expression (n = 909). Results Four of the five SNPs were associated with lethal PCa. SNP rs1127678 was significantly related to higher BMI and interacted with BMI for both PCa risk (Pinteraction = .004) and PCa mortality (Pinteraction = .056). Among overweight men (BMI ≥ 25 kg/m2), but not leaner men, the homozygous variant allele carried a relative risk of advanced PCa of 2.49 (95% CI, 1.00 to 6.23) compared with lean men with the wild type. Overweight patients carrying the variant allele had a 2.04 (95% CI, 1.31 to 3.17) times higher risk of PCa mortality. Similarly, overweight patients with elevated tumor FASN expression had a 2.73 (95% CI, 1.05 to 7.08) times higher risk of lethal PCa (Pinteraction = .02). Conclusion FASN germline polymorphisms were significantly associated with risk of lethal PCa. Significant interactions of BMI with FASN polymorphisms and FASN tumor expression suggest FASN as a potential link between obesity and poor PCa outcome and raise the possibility that FASN inhibition could reduce PCa-specific mortality, particularly in overweight men. PMID:20679621

  6. Crystal Structure and Substrate Specificity of Human Thioesterase 2: INSIGHTS INTO THE MOLECULAR BASIS FOR THE MODULATION OF FATTY ACID SYNTHASE*

    OpenAIRE

    Ritchie, Melissa K.; Johnson, Lynnette C.; Clodfelter, Jill E.; Pemble, Charles W.; Fulp, Brian E.; Furdui, Cristina M.; Kridel, Steven J.; Lowther, W. Todd

    2015-01-01

    The type I fatty acid synthase (FASN) is responsible for the de novo synthesis of palmitate. Chain length selection and release is performed by the C-terminal thioesterase domain (TE1). FASN expression is up-regulated in cancer, and its activity levels are controlled by gene dosage and transcriptional and post-translational mechanisms. In addition, the chain length of fatty acids produced by FASN is controlled by a type II thioesterase called TE2 (E.C. 3.1.2.14). TE2 has been implicated in br...

  7. Fatty acid synthase cooperates with glyoxalase 1 to protect against sugar toxicity.

    Science.gov (United States)

    Garrido, Damien; Rubin, Thomas; Poidevin, Mickael; Maroni, Brigitte; Le Rouzic, Arnaud; Parvy, Jean-Philippe; Montagne, Jacques

    2015-02-01

    Fatty acid (FA) metabolism is deregulated in several human diseases including metabolic syndrome, type 2 diabetes and cancers. Therefore, FA-metabolic enzymes are potential targets for drug therapy, although the consequence of these treatments must be precisely evaluated at the organismal and cellular levels. In healthy organism, synthesis of triacylglycerols (TAGs)-composed of three FA units esterified to a glycerol backbone-is increased in response to dietary sugar. Saturation in the storage and synthesis capacity of TAGs is associated with type 2 diabetes progression. Sugar toxicity likely depends on advanced-glycation-end-products (AGEs) that form through covalent bounding between amine groups and carbonyl groups of sugar or their derivatives α-oxoaldehydes. Methylglyoxal (MG) is a highly reactive α-oxoaldehyde that is derived from glycolysis through a non-enzymatic reaction. Glyoxalase 1 (Glo1) works to neutralize MG, reducing its deleterious effects. Here, we have used the power of Drosophila genetics to generate Fatty acid synthase (FASN) mutants, allowing us to investigate the consequence of this deficiency upon sugar-supplemented diets. We found that FASN mutants are lethal but can be rescued by an appropriate lipid diet. Rescued animals do not exhibit insulin resistance, are dramatically sensitive to dietary sugar and accumulate AGEs. We show that FASN and Glo1 cooperate at systemic and cell-autonomous levels to protect against sugar toxicity. We observed that the size of FASN mutant cells decreases as dietary sucrose increases. Genetic interactions at the cell-autonomous level, where glycolytic enzymes or Glo1 were manipulated in FASN mutant cells, revealed that this sugar-dependent size reduction is a direct consequence of MG-derived-AGE accumulation. In summary, our findings indicate that FASN is dispensable for cell growth if extracellular lipids are available. In contrast, FA-synthesis appears to be required to limit a cell-autonomous accumulation

  8. Fatty acid synthase cooperates with glyoxalase 1 to protect against sugar toxicity.

    Directory of Open Access Journals (Sweden)

    Damien Garrido

    2015-02-01

    Full Text Available Fatty acid (FA metabolism is deregulated in several human diseases including metabolic syndrome, type 2 diabetes and cancers. Therefore, FA-metabolic enzymes are potential targets for drug therapy, although the consequence of these treatments must be precisely evaluated at the organismal and cellular levels. In healthy organism, synthesis of triacylglycerols (TAGs-composed of three FA units esterified to a glycerol backbone-is increased in response to dietary sugar. Saturation in the storage and synthesis capacity of TAGs is associated with type 2 diabetes progression. Sugar toxicity likely depends on advanced-glycation-end-products (AGEs that form through covalent bounding between amine groups and carbonyl groups of sugar or their derivatives α-oxoaldehydes. Methylglyoxal (MG is a highly reactive α-oxoaldehyde that is derived from glycolysis through a non-enzymatic reaction. Glyoxalase 1 (Glo1 works to neutralize MG, reducing its deleterious effects. Here, we have used the power of Drosophila genetics to generate Fatty acid synthase (FASN mutants, allowing us to investigate the consequence of this deficiency upon sugar-supplemented diets. We found that FASN mutants are lethal but can be rescued by an appropriate lipid diet. Rescued animals do not exhibit insulin resistance, are dramatically sensitive to dietary sugar and accumulate AGEs. We show that FASN and Glo1 cooperate at systemic and cell-autonomous levels to protect against sugar toxicity. We observed that the size of FASN mutant cells decreases as dietary sucrose increases. Genetic interactions at the cell-autonomous level, where glycolytic enzymes or Glo1 were manipulated in FASN mutant cells, revealed that this sugar-dependent size reduction is a direct consequence of MG-derived-AGE accumulation. In summary, our findings indicate that FASN is dispensable for cell growth if extracellular lipids are available. In contrast, FA-synthesis appears to be required to limit a cell

  9. Carnosol and carnosic acids from Salvia officinalis inhibit microsomal prostaglandin E2 synthase-1.

    Science.gov (United States)

    Bauer, Julia; Kuehnl, Susanne; Rollinger, Judith M; Scherer, Olga; Northoff, Hinnak; Stuppner, Hermann; Werz, Oliver; Koeberle, Andreas

    2012-07-01

    Prostaglandin E(2) (PGE(2)), the most relevant eicosanoid promoting inflammation and tumorigenesis, is formed by cyclooxygenases (COXs) and PGE(2) synthases from free arachidonic acid. Preparations of the leaves of Salvia officinalis are commonly used in folk medicine as an effective antiseptic and anti-inflammatory remedy and possess anticancer activity. Here, we demonstrate that a standard ethyl acetate extract of S. officinalis efficiently suppresses the formation of PGE(2) in a cell-free assay by direct interference with microsomal PGE(2) synthase (mPGES)-1. Bioactivity-guided fractionation of the extract yielded closely related fractions that potently suppressed mPGES-1 with IC(50) values between 1.9 and 3.5 μg/ml. Component analysis of these fractions revealed the diterpenes carnosol and carnosic acid as potential bioactive principles inhibiting mPGES-1 activity with IC(50) values of 5.0 μM. Using a human whole-blood assay as a robust cell-based model, carnosic acid, but not carnosol, blocked PGE(2) generation upon stimulation with lipopolysaccharide (IC(50) = 9.3 μM). Carnosic acid neither inhibited the concomitant biosynthesis of other prostanoids [6-keto PGF(1α), 12(S)-hydroxy-5-cis-8,10-trans-heptadecatrienoic acid, and thromboxane B(2)] in human whole blood nor affected the activities of COX-1/2 in a cell-free assay. Together, S. officinalis extracts and its ingredients carnosol and carnosic acid inhibit PGE(2) formation by selectively targeting mPGES-1. We conclude that the inhibitory effect of carnosic acid on PGE(2) formation, observed in the physiologically relevant whole-blood model, may critically contribute to the anti-inflammatory and anticarcinogenic properties of S. officinalis.

  10. Natural fatty acid synthase inhibitors as potent therapeutic agents for cancers: A review.

    Science.gov (United States)

    Zhang, Jia-Sui; Lei, Jie-Ping; Wei, Guo-Qing; Chen, Hui; Ma, Chao-Ying; Jiang, He-Zhong

    2016-09-01

    Context Fatty acid synthase (FAS) is the only mammalian enzyme to catalyse the synthesis of fatty acid. The expression level of FAS is related to cancer progression, aggressiveness and metastasis. In recent years, research on natural FAS inhibitors with significant bioactivities and low side effects has increasingly become a new trend. Herein, we present recent research progress on natural fatty acid synthase inhibitors as potent therapeutic agents. Objective This paper is a mini overview of the typical natural FAS inhibitors and their possible mechanism of action in the past 10 years (2004-2014). Method The information was collected and compiled through major databases including Web of Science, PubMed, and CNKI. Results Many natural products induce cancer cells apoptosis by inhibiting FAS expression, with fewer side effects than synthetic inhibitors. Conclusion Natural FAS inhibitors are widely distributed in plants (especially in herbs and foods). Some natural products (mainly phenolics) possessing potent biological activities and stable structures are available as lead compounds to synthesise promising FAS inhibitors.

  11. Reduced insulin-mediated citrate synthase activity in cultured skeletal muscle cells from patients with type 2 diabetes

    DEFF Research Database (Denmark)

    Ørtenblad, Niels; Mogensen, Martin; Petersen, Ingrid;

    2005-01-01

    responded to high levels of insulin and/or palmitate. These results provide evidence for an intrinsic defect in CS activity, which may play a role in the pathogenesis of T2D. Moreover, the data suggest that insulin resistance at the CS level can be induced by exposure to high free fatty acid levels.......In myotubes established from patients with type 2 diabetes (T2D), lipid oxidation and insulin-mediated glucose oxidation are reduced, whereas in myotubes from obese non-diabetic subjects, exposure to palmitate impairs insulin-mediated glucose oxidation. To determine the underlying mechanisms...... of these metabolic malfunctions, we studied mitochondrial respiration, uncoupled respiration and oxidative enzyme activities (citrate synthase (CS), 3-hydroxy-acyl-CoA-dehydrogenase activity (HAD)) before and after acute exposure to insulin and/or palmitate in myotubes established from healthy lean and obese...

  12. Molecular evolution and sequence divergence of plant chalcone synthase and chalcone synthase-Like genes.

    Science.gov (United States)

    Han, Yingying; Zhao, Wenwen; Wang, Zhicui; Zhu, Jingying; Liu, Qisong

    2014-06-01

    Plant chalcone synthase (CHS) and CHS-Like (CHSL) proteins are polyketide synthases. In this study, we evaluated the molecular evolution of this gene family using representative types of CHSL genes, including stilbene synthase (STS), 2-pyrone synthase (2-PS), bibenzyl synthase (BBS), acridone synthase (ACS), biphenyl synthase (BIS), benzalacetone synthase, coumaroyl triacetic acid synthase (CTAS), and benzophenone synthase (BPS), along with their CHS homologs from the same species of both angiosperms and gymnosperms. A cDNA-based phylogeny indicated that CHSLs had diverse evolutionary patterns. STS, ACS, and 2-PS clustered with CHSs from the same species (late diverged pattern), while CTAS, BBS, BPS, and BIS were distant from their CHS homologs (early diverged pattern). The amino-acid phylogeny suggested that CHS and CHSL proteins formed clades according to enzyme function. The CHSs and CHSLs from Polygonaceae and Arachis had unique evolutionary histories. Synonymous mutation rates were lower in late diverged CHSLs than in early diverged ones, indicating that gene duplications occurred more recently in late diverged CHSLs than in early diverged ones. Relative rate tests proved that late diverged CHSLs had unequal rates to CHSs from the same species when using fatty acid synthase, which evolved from the common ancestor with the CHS superfamily, as the outgroup, while the early diverged lineages had equal rates. This indicated that late diverged CHSLs experienced more frequent mutation than early diverged CHSLs after gene duplication, allowing obtaining new functions in relatively short period of time.

  13. The Experiment Study of Kaiyuqingre's Prescription on the Expression of Sterol Regulatory Element Binding Protein-1c and Fatty Acid Synthase in Peritoneal Adipose Tissue of Spontaneous Type 2 Diabetes Mellitus Rats(OLETF rats)%开郁清热方干预自发2型糖尿病大鼠腹腔脂肪组织SREBP-1c、FAS表达的实验研究

    Institute of Scientific and Technical Information of China (English)

    朴春丽; 仝小林; 韩笑

    2011-01-01

    目的:研究开郁清热方对自发2型糖尿病大鼠(OLETF大鼠)腹腔脂肪组织SIREBP-1c、FAS蛋白及mRNA表达的影响.方法:将成模OLETF大鼠随机分为模型组、二甲双胍组、开郁清热方组,以LETO大鼠为空白对照组.采用免第疫组化、RT-PCR法检测腹腔脂肪组织SREBP-1c、FAS蛋白及mRNA的表达.结果:开郁清热方组的脂肪组织SBEBP-1c、FAS蛋白及mPNA表达水平较模型组明显减低(P<0.01,P<0.05).结论:开郁清热方具有降低自发2型糖尿病大鼠脂肪组织SREBP-lc、FAS蛋白及mRNA表达的作用.%Objective: To observe the effect of Kaiyuqingre's Prescription on the protein and mRNA expression of sterol regulatory element binding protein - 1c and fatty acid synthase in peritoneal adipose tissue of spontaneous Type 2 Diabetes Mellitus rats(OLEFF rats). Methods :A control study was carried out between the OLETF rats and LETO rats,and all OLETF rats were divided into three groups randomly:Model group,Metformin group and Kaiyuqingre′s Prescription group. Immunohistochemical method and real-time flourescent quantitative polymerase chain reaction(PCR)technology were used to detect the expression of sterol regulatory element binding protein - 1c and fatty acid synthaso in adipose tissue from the protein and gene levels in each group. Results: The sterol regulatory dement binding protein - 1c and fatty acid synthase protein and mRNA expression in rats 'adipose tissue:Contrast to Modal group,the Kaiyuqingre′s Prescription group is significantly lower. Conclusion :Kaiyuqingre's Prescription has a role of reducing the expression of protein and mRNA of sterol regulatory dement binding protein - 1c and fatty acid synthase in adipose tissue of spontaneous Type 2 Diabetes Mellitus rats.

  14. Molecular cloning and differential expressions of two cDNA encoding Type III polyketide synthase in different tissues of Curcuma longa L.

    Science.gov (United States)

    Resmi, M S; Soniya, E V

    2012-01-10

    Type III polyketide synthase family of enzymes play an important role in the biosynthesis of flavonoids and a variety of plant polyphenols by condensing multiple acetyl units derived from malonyl Co-A to thioester linked starter molecules covalently bound in the PKS active site. Turmeric (Curucma longa L.) through diverse metabolic pathways produces a large number of metabolites, of which curcuminoids had gained much attention due to its immense pharmaceutical value. Recent identification of multiple curcuminoid synthases from turmeric lead us to look for additional Type III PKS from this plant. The current study describes the occurrence of a multigene family of Type III PKS enzymes in C. longa by RT-PCR based genomic screening. We have also isolated two new Type III PKS, ClPKS9 and ClPKS10 using homology based RT-PCR and data mining. The comparative sequence and phylogenetic analysis revealed that the two PKSs belong to different groups with only 56% sequence similarity at their amino acid level. ClPKS9 shows all possible sequence requirements for a typical chalcone synthase whereas ClPKS10 shows promising variation at amino acid level and high similarity to reported curcuminoid synthases. ClPKS9 and ClPKS10 exhibited distinct tissue specific expression pattern in C. longa with the ClPKS9 transcript abundant in shoot and rhizome than leaves whereas ClPKS10 transcript was found to be high in leaf and very low in rhizome and root. Therefore it was concluded that ClPKS9 and ClPKS10 may have divergent function in planta, with possible role in typical chalcone forming reaction and curcuminoid scaffold biosynthetic pathway respectively.

  15. Structure of the ent-Copalyl Diphosphate Synthase PtmT2 from Streptomyces platensis CB00739, a Bacterial Type II Diterpene Synthase.

    Science.gov (United States)

    Rudolf, Jeffrey D; Dong, Liao-Bin; Cao, Hongnan; Hatzos-Skintges, Catherine; Osipiuk, Jerzy; Endres, Michael; Chang, Chin-Yuan; Ma, Ming; Babnigg, Gyorgy; Joachimiak, Andrzej; Phillips, George N; Shen, Ben

    2016-08-31

    Terpenoids are the largest and most structurally diverse family of natural products found in nature, yet their presence in bacteria is underappreciated. The carbon skeletons of terpenoids are generated through carbocation-dependent cyclization cascades catalyzed by terpene synthases (TSs). Type I and type II TSs initiate cyclization via diphosphate ionization and protonation, respectively, and protein structures of both types are known. Most plant diterpene synthases (DTSs) possess three α-helical domains (αβγ), which are thought to have arisen from the fusion of discrete, ancestral bacterial type I TSs (α) and type II TSs (βγ). Type II DTSs of bacterial origin, of which there are no structurally characterized members, are a missing piece in the structural evolution of TSs. Here, we report the first crystal structure of a type II DTS from bacteria. PtmT2 from Streptomyces platensis CB00739 was verified as an ent-copalyl diphosphate synthase involved in the biosynthesis of platensimycin and platencin. The crystal structure of PtmT2 was solved at a resolution of 1.80 Å, and docking studies suggest the catalytically active conformation of geranylgeranyl diphosphate (GGPP). Site-directed mutagenesis confirmed residues involved in binding the diphosphate moiety of GGPP and identified DxxxxE as a potential Mg(2+)-binding motif for type II DTSs of bacterial origin. Finally, both the shape and physicochemical properties of the active sites are responsible for determining specific catalytic outcomes of TSs. The structure of PtmT2 fundamentally advances the knowledge of bacterial TSs, their mechanisms, and their role in the evolution of TSs.

  16. Para-aminobenzoic acid (PABA synthase enhances thermotolerance of mushroom Agaricus bisporus.

    Directory of Open Access Journals (Sweden)

    Zhonglei Lu

    Full Text Available Most mushrooms are thermo-sensitive to temperatures over 23°C, which greatly restricts their agricultural cultivation. Understanding mushroom's innate heat-tolerance mechanisms may facilitate genetic improvements of their thermotolerance. Agaricus bisporus strain 02 is a relatively thermotolerant mushroom strain, while strain 8213 is quite thermo-sensitive. Here, we compared their responses at proteomic level to heat treatment at 33°C. We identified 73 proteins that are differentially expressed between 02 and 8213 or induced upon heat stress in strain 02 itself, 48 of which with a known identity. Among them, 4 proteins are constitutively more highly expressed in 02 than 8213; and they can be further upregulated in response to heat stress in 02, but not in 8213. One protein is encoded by the para-aminobenzoic acid (PABA synthase gene Pabs, which has been shown to scavenge the reactive oxygen species in vitro. Pabs mRNA and its chemical product PABA show similar heat stress induction pattern as PABA synthase protein and are more abundant in 02, indicating transcriptional level upregulation of Pabs upon heat stress. A specific inhibitor of PABA synthesis impaired thermotolerance of 02, while exogenous PABA or transgenic overexpression of 02 derived PABA synthase enhanced thermotolerance of 8213. Furthermore, compared to 8213, 02 accumulated less H2O2 but more defense-related proteins (e.g., HSPs and Chitinase under heat stress. Together, these results demonstrate a role of PABA in enhancing mushroom thermotolerance by removing H2O2 and elevating defense-related proteins.

  17. Para-aminobenzoic acid (PABA) synthase enhances thermotolerance of mushroom Agaricus bisporus.

    Science.gov (United States)

    Lu, Zhonglei; Kong, Xiangxiang; Lu, Zhaoming; Xiao, Meixiang; Chen, Meiyuan; Zhu, Liang; Shen, Yuemao; Hu, Xiangyang; Song, Siyang

    2014-01-01

    Most mushrooms are thermo-sensitive to temperatures over 23°C, which greatly restricts their agricultural cultivation. Understanding mushroom's innate heat-tolerance mechanisms may facilitate genetic improvements of their thermotolerance. Agaricus bisporus strain 02 is a relatively thermotolerant mushroom strain, while strain 8213 is quite thermo-sensitive. Here, we compared their responses at proteomic level to heat treatment at 33°C. We identified 73 proteins that are differentially expressed between 02 and 8213 or induced upon heat stress in strain 02 itself, 48 of which with a known identity. Among them, 4 proteins are constitutively more highly expressed in 02 than 8213; and they can be further upregulated in response to heat stress in 02, but not in 8213. One protein is encoded by the para-aminobenzoic acid (PABA) synthase gene Pabs, which has been shown to scavenge the reactive oxygen species in vitro. Pabs mRNA and its chemical product PABA show similar heat stress induction pattern as PABA synthase protein and are more abundant in 02, indicating transcriptional level upregulation of Pabs upon heat stress. A specific inhibitor of PABA synthesis impaired thermotolerance of 02, while exogenous PABA or transgenic overexpression of 02 derived PABA synthase enhanced thermotolerance of 8213. Furthermore, compared to 8213, 02 accumulated less H2O2 but more defense-related proteins (e.g., HSPs and Chitinase) under heat stress. Together, these results demonstrate a role of PABA in enhancing mushroom thermotolerance by removing H2O2 and elevating defense-related proteins.

  18. Stable expression of lipocalin-type prostaglandin D synthase in cultured preadipocytes impairs adipogenesis program independently of endogenous prostanoids

    Energy Technology Data Exchange (ETDEWEB)

    Hossain, Mohammad Salim; Chowdhury, Abu Asad; Rahman, Mohammad Sharifur [Department of Life Science and Biotechnology, Shimane University, 1060 Nishikawatsu-cho, Matsue, Shimane 690-8504 (Japan); Nishimura, Kohji [Department of Molecular and Functional Genomics, Center for Integrated Research in Science, Shimane University, 1060 Nishikawatsu-cho, Matsue, Shimane 690-8504 (Japan); Jisaka, Mitsuo; Nagaya, Tsutomu [Department of Life Science and Biotechnology, Shimane University, 1060 Nishikawatsu-cho, Matsue, Shimane 690-8504 (Japan); Shono, Fumiaki [Department of Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, 180 Yamashiro-cho, Tokushima-shi, Tokushima 770-8514 (Japan); Yokota, Kazushige, E-mail: yokotaka@life.shimane-u.ac.jp [Department of Life Science and Biotechnology, Shimane University, 1060 Nishikawatsu-cho, Matsue, Shimane 690-8504 (Japan)

    2012-02-15

    Lipocalin-type prostaglandin D synthase (L-PGDS) expressed preferentially in adipocytes is responsible for the synthesis of PGD{sub 2} and its non-enzymatic dehydration products, PGJ{sub 2} series, serving as pro-adipogenic factors. However, the role of L-PGDS in the regulation of adipogenesis is complex because of the occurrence of several derivatives from PGD{sub 2} and their distinct receptor subtypes as well as other functions such as a transporter of lipophilic molecules. To manipulate the expression levels of L-PGDS in cultured adipocytes, cultured preadipogenic 3T3-L1 cells were transfected stably with a mammalian expression vector having cDNA encoding murine L-PGDS oriented in the sense direction. The isolated cloned stable transfectants with L-PGDS expressed higher levels of the transcript and protein levels of L-PGDS, and synthesized PGD{sub 2} from exogenous arachidonic acid at significantly higher levels. By contrast, the synthesis of PGE{sub 2} remained unchanged, indicating no influence on the reactions of cyclooxygenase (COX) and PGE synthase. Furthermore, the ability of those transfectants to synthesize {Delta}{sup 12}-PGJ{sub 2} increased more greatly during the maturation phase. The sustained expression of L-PGDS in cultured stable transfectants hampered the storage of fats during the maturation phase of adipocytes, which was accompanied by the reduced gene expression of adipocyte-specific markers reflecting the down-regulation of the adipogenesis program. The suppressed adipogenesis was not rescued by either exogenous aspirin or peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}) agonists including troglitazone and {Delta}{sup 12}-PGJ{sub 2}. Taken together, the results indicate the negative regulation of the adipogenesis program by the enhanced expression of L-PGDS through a cellular mechanism involving the interference of the PPAR{gamma} signaling pathway without the contribution of endogenous pro-adipogenic prostanoids

  19. Presence of fatty acid synthase inhibitors in the rhizome of Alpinia officinarum hance.

    Science.gov (United States)

    Li, Bing-Hui; Tian, Wei-Xi

    2003-08-01

    The galangal (the rhizome of Alpinia officinarum, Hance) is popular in Asia as a traditional herbal medicine. The present study reports that the galangal extract (GE) can potently inhibit fatty-acid synthase (FAS, E.C.2.3.1.85). The inhibition consists of both reversible inhibition with an IC50 value of 1.73 microg dried GE/ml, and biphasic slow-binding inactivation. Subsequently the reversible inhibition and slow-binding inactivation to FAS were further studied. The inhibition of FAS by galangin, quercetin and kaempferol, which are the main flavonoids existing in the galangal, showed that quercetin and kaempferol had potent reversible inhibitory activity, but all three flavonoids had no obvious slow-binding inactivation. Analysis of the kinetic results led to the conclusion that the inhibitory mechanism of GE is totally different from that of some other previously reported inhibitors of FAS, such as cerulenin, EGCG (epigallocatechin gallate) and C75.

  20. Isolation and Molecular Characterization of 1-Aminocyclopropane-1-carboxylic Acid Synthase Genes in Hevea brasiliensis

    Directory of Open Access Journals (Sweden)

    Jia-Hong Zhu

    2015-02-01

    Full Text Available Ethylene is an important factor that stimulates Hevea brasiliensis to produce natural rubber. 1-Aminocyclopropane-1-carboxylic acid synthase (ACS is a rate-limiting enzyme in ethylene biosynthesis. However, knowledge of the ACS gene family of H. brasiliensis is limited. In this study, nine ACS-like genes were identified in H. brasiliensis. Sequence and phylogenetic analysis results confirmed that seven isozymes (HbACS1–7 of these nine ACS-like genes were similar to ACS isozymes with ACS activity in other plants. Expression analysis results showed that seven ACS genes were differentially expressed in roots, barks, flowers, and leaves of H. brasiliensis. However, no or low ACS gene expression was detected in the latex of H. brasiliensis. Moreover, seven genes were differentially up-regulated by ethylene treatment. These results provided relevant information to help determine the functions of the ACS gene in H. brasiliensis, particularly the functions in regulating ethylene stimulation of latex production.

  1. Modulation of lipocalin-type prostaglandin D2 synthase expression in catfish seminal vesicles by thyroid disrupting agents and hormones.

    Science.gov (United States)

    Sreenivasulu, Gunti; Pavani, Ayinampudi; Sudhakumari, Cheni-Chery; Dutta-Gupta, Aparna; Senthilkumaran, Balasubramanian

    2013-11-01

    Thyroid hormones play crucial role in several biological processes including reproduction. Disruption of normal thyroid status by environmental contaminants can cause severe impairment in reproductive functions. In our previous study, we reported down-regulation of a protein in seminal vesicular fluid of air-breathing catfish, Clarias gariepinus during experimentally induced hyperthyroidism. N-terminal amino acid sequence analysis followed by search in sequence database denoted it to be lipocalin-type prostaglandin D2 synthase (ptgds-b). In the present study, we cloned full-length cDNA of ptgds-b based on the N-terminal amino acid sequence. Surprisingly, Northern blot as well as RT-PCR analysis demonstrated the presence of ptgds-b transcript predominantly in seminal vesicles and developing testis. Further, ptgds-b mRNA significantly decreased in seminal vesicles following L-thyroxine overdose while there was an increased expression of ptgds-b after depletion of thyroid hormone by thiourea and withdrawal of the treatments reverted this effect. Treatment of catfish with human chorionic gonadotropin and estradiol significantly reduced ptgds-b expression. Taken together, we report ptgds-b as a thyroid hormone regulated protein in the seminal vesicles in addition to gonadotropin and estradiol. Further studies might explain the exclusive presence of ptgds-b in seminal vesicles and developing testis yet present data evaluated it as a putative biomarker for thyroid hormone disruption.

  2. Expression of D-myo-inositol-3-phosphate synthase in soybean. Implications for phytic acid biosynthesis.

    Science.gov (United States)

    Hegeman, C E; Good, L L; Grabau, E A

    2001-04-01

    Phytic acid, a phosphorylated derivative of myo-inositol, functions as the major storage form of phosphorus in plant seeds. Myo-inositol phosphates, including phytic acid, play diverse roles in plants as signal transduction molecules, osmoprotectants, and cell wall constituents. D-myo-inositol-3-phosphate synthase (MIPS EC 5.5.1.4) catalyzes the first step in de novo synthesis of myo-inositol. A soybean (Glycine max) MIPS cDNA (GmMIPS1) was isolated by reverse transcriptase-PCR using consensus primers designed from highly conserved regions in other plant MIPS sequences. Southern-blot analysis and database searches indicated the presence of at least four MIPS genes in the soybean genome. Northern-blot and immunoblot analyses indicated higher MIPS expression and accumulation in immature seeds than in other soybean tissues. MIPS was expressed early in the cotyledonary stage of seed development. The GmMIPS1 expression pattern suggested that it encodes a MIPS isoform that functions in seeds to generate D-myo-inositol-3-phosphate as a substrate for phytic acid biosynthesis.

  3. Structural analysis of protein-protein interactions in type I polyketide synthases.

    Science.gov (United States)

    Xu, Wei; Qiao, Kangjian; Tang, Yi

    2013-01-01

    Polyketide synthases (PKSs) are responsible for synthesizing a myriad of natural products with agricultural, medicinal relevance. The PKSs consist of multiple functional domains of which each can catalyze a specified chemical reaction leading to the synthesis of polyketides. Biochemical studies showed that protein-substrate and protein-protein interactions play crucial roles in these complex regio-/stereo-selective biochemical processes. Recent developments on X-ray crystallography and protein NMR techniques have allowed us to understand the biosynthetic mechanism of these enzymes from their structures. These structural studies have facilitated the elucidation of the sequence-function relationship of PKSs and will ultimately contribute to the prediction of product structure. This review will focus on the current knowledge of type I PKS structures and the protein-protein interactions in this system.

  4. Crystallization and preliminary crystallographic analysis of an acridone-producing novel multifunctional type III polyketide synthase from Huperzia serrata

    Energy Technology Data Exchange (ETDEWEB)

    Morita, Hiroyuki [Mitsubishi Kagaku Institute of Life Sciences (MITILS), 11 Minamiooya, Machida, Tokyo 194-8511 (Japan); Kondo, Shin; Kato, Ryohei [Innovation Center Yokohama, Mitsubishi Chemical Corporation, 1000 Kamoshida, Aoba, Yokohama, Kanagawa 227-8502 (Japan); Wanibuchi, Kiyofumi; Noguchi, Hiroshi [School of Pharmaceutical Sciences, University of Shizuoka and the COE21 Program, Shizuoka 422-8526 (Japan); Sugio, Shigetoshi, E-mail: sugio.shigetoshi@mw.m-kagaku.co.jp [Innovation Center Yokohama, Mitsubishi Chemical Corporation, 1000 Kamoshida, Aoba, Yokohama, Kanagawa 227-8502 (Japan); Abe, Ikuro, E-mail: sugio.shigetoshi@mw.m-kagaku.co.jp [School of Pharmaceutical Sciences, University of Shizuoka and the COE21 Program, Shizuoka 422-8526 (Japan); PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012 (Japan); Kohno, Toshiyuki, E-mail: sugio.shigetoshi@mw.m-kagaku.co.jp [Mitsubishi Kagaku Institute of Life Sciences (MITILS), 11 Minamiooya, Machida, Tokyo 194-8511 (Japan)

    2007-07-01

    An acridone-producing novel type III polyketide synthase from H. serrata has been overexpressed in E. coli, purified and crystallized. Diffraction data have been collected to 2.0 Å. Polyketide synthase 1 (PKS1) from Huperzia serrata is a plant-specific type III polyketide synthase that shows an unusually versatile catalytic potential, producing various aromatic tetraketides, including chalcones, benzophenones, phlorogulucinols and acridones. Recombinant H. serrata PKS1 expressed in Escherichia coli was crystallized using the hanging-drop vapour-diffusion method. The crystals belonged to space group I222 or I2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 73.3, b = 85.0, c = 137.7 Å, α = β = γ = 90.0°. Diffraction data were collected to 2.0 Å resolution using synchrotron radiation at BL24XU of SPring-8.

  5. A new type of proton coordination in an F(1F(o-ATP synthase rotor ring.

    Directory of Open Access Journals (Sweden)

    Laura Preiss

    Full Text Available We solved the crystal structure of a novel type of c-ring isolated from Bacillus pseudofirmus OF4 at 2.5 A, revealing a cylinder with a tridecameric stoichiometry, a central pore, and an overall shape that is distinct from those reported thus far. Within the groove of two neighboring c-subunits, the conserved glutamate of the outer helix shares the proton with a bound water molecule which itself is coordinated by three other amino acids of outer helices. Although none of the inner helices contributes to ion binding and the glutamate has no other hydrogen bonding partner than the water oxygen, the site remains in a stable, ion-locked conformation that represents the functional state present at the c-ring/membrane interface during rotation. This structure reveals a new, third type of ion coordination in ATP synthases. It appears in the ion binding site of an alkaliphile in which it represents a finely tuned adaptation of the proton affinity during the reaction cycle.

  6. Protection of INS-1 Cells from Free Fatty Acid-induced Apoptosis by Inhibiting the Glycogen Synthase Kinase-3

    Institute of Scientific and Technical Information of China (English)

    WU Wei; LUO Xiaoping

    2007-01-01

    To examine the role of glycogen synthase kinase 3 (GSK-3) in the apoptosis of pancreatic β-cells to better understand the pathogenesis and to find new approach to the treatment of type 2 dia-betes, apoptosis was induced by oleic acid (OA) in INS-1 cells and the activity of GSK-3 was inhib-ited by LiCl. The PI staining and flow cytometry were employed for the evaluation of apoptosis. The phosphorylation level of GSK-3 was detected by Western blotting. The results showed that OA at 0.4 mmol/L could cause conspicuous apoptosis of INS-1 cells and the activity of GSK-3 was significantly increased. After the treatment with 24 mmol/L of LiCl, a inhibitor of GSK-3, the OA-induced apop-tosis of INS-1 cells was lessened and the phosphorylation of GSK-3 was increased remarkably. It is concluded that GSK-3 activation plays an important role in OA-induced apoptosis in pancreatic β-cells and inhibition of the GSK-3 activity can effectively protect INS-1 cells from the OA-induced apoptosis. Our study provides a new experimental basis and target for the clinical treatment of type-2 diabetes.

  7. Up-regulation of fatty acid synthase induced by EGFR/ERK activation promotes tumor growth in pancreatic cancer

    Energy Technology Data Exchange (ETDEWEB)

    Bian, Yong, E-mail: drbiany@126.com [Department of Science and Technology, Nanjing University of Chinese Medicine, 210023 (China); Yu, Yun [College of Pharmacy, Nanjing University of Chinese Medicine, 210023 (China); Wang, Shanshan; Li, Lin [Department of Science and Technology, Nanjing University of Chinese Medicine, 210023 (China)

    2015-08-07

    Lipid metabolism is dysregulated in many human diseases including atherosclerosis, type 2 diabetes and cancers. Fatty acid synthase (FASN), a key lipogenic enzyme involved in de novo lipid biosynthesis, is significantly upregulated in multiple types of human cancers and associates with tumor progression. However, limited data is available to understand underlying biological functions and clinical significance of overexpressed FASN in pancreatic ductal adenocarcinoma (PDAC). Here, upregulated FASN was more frequently observed in PDAC tissues compared with normal pancreas in a tissue microarray. Kaplan–Meier survival analysis revealed that high expression level of FASN resulted in a significantly poor prognosis of PDAC patients. Knockdown or inhibition of endogenous FASN decreased cell proliferation and increased cell apoptosis in HPAC and AsPC-1 cells. Furthermore, we demonstrated that EGFR/ERK signaling accounts for elevated FASN expression in PDAC as ascertained by performing siRNA assays and using specific pharmacological inhibitors. Collectively, our results indicate that FASN exhibits important roles in tumor growth and EGFR/ERK pathway is responsible for upregulated expression of FASN in PDAC. - Highlights: • Increased expression of FASN indicates a poor prognosis in PDAC. • Elevated FASN favors tumor growth in PDAC in vitro. • Activation of EGFR signaling contributes to elevated FASN expression.

  8. Differential expression of fatty acid synthase genes, Acl, Fat and Kas, in Capsicum fruit.

    Science.gov (United States)

    Aluru, Maneesha R; Mazourek, Michael; Landry, Laurie G; Curry, Jeanne; Jahn, Molly; O'Connell, Mary A

    2003-07-01

    The biosynthesis of capsaicinoids in the placenta of chilli fruit is modelled to require components of the fatty acid synthase (FAS) complex. Three candidate genes for subunits in this complex, Kas, Acl, and Fat, isolated based on differential expression, were characterized. Transcription of these three genes was placental-specific and RNA abundance was positively correlated with degree of pungency. Kas and Acl were mapped to linkage group 1 and Fat to linkage group 6. None of the genes is linked to the pungency locus, C, on linkage group 2. KAS accumulation was positively correlated with pungency. Western blots of placental extracts and histological sections both demonstrated that the accumulation of this enzyme was correlated with fruit pungency and KAS was immunolocalized to the expected cell layer, the placental epidermis. Enzyme activity of the recombinant form of the placental-specific KAS was confirmed using crude cell extracts. These FAS components are fruit-specific members of their respective gene families. These genes are predicted to be associated with Capsicum fruit traits, for example, capsaicinoid biosynthesis or fatty acid biosynthesis necessary for placental development.

  9. Fatty acid synthase - Modern tumor cell biology insights into a classical oncology target.

    Science.gov (United States)

    Buckley, Douglas; Duke, Gregory; Heuer, Timothy S; O'Farrell, Marie; Wagman, Allan S; McCulloch, William; Kemble, George

    2017-02-12

    Decades of preclinical and natural history studies have highlighted the potential of fatty acid synthase (FASN) as a bona fide drug target for oncology. This review will highlight the foundational concepts upon which this perspective is built. Published studies have shown that high levels of FASN in patient tumor tissues are present at later stages of disease and this overexpression predicts poor prognosis. Preclinical studies have shown that experimental overexpression of FASN in previously normal cells leads to changes that are critical for establishing a tumor phenotype. Once the tumor phenotype is established, FASN elicits several changes to the tumor cell and becomes intertwined with its survival. The product of FASN, palmitate, changes the biophysical nature of the tumor cell membrane; membrane microdomains enable the efficient assembly of signaling complexes required for continued tumor cell proliferation and survival. Membranes densely packed with phospholipids containing saturated fatty acids become resistant to the action of other chemotherapeutic agents. Inhibiting FASN leads to tumor cell death while sparing normal cells, which do not have the dependence of this enzyme for normal functions, and restores membrane architecture to more normal properties thereby resensitizing tumors to killing by chemotherapies. One compound has recently reached clinical studies in solid tumor patients and highlights the need for continued evaluation of the role of FASN in tumor cell biology. Significant advances have been made and much remains to be done to optimally apply this class of pharmacological agents for the treatment of specific cancers.

  10. Mechanism of Orlistat Hydrolysis by the Thioesterase of Human Fatty Acid Synthase.

    Science.gov (United States)

    Fako, Valerie E; Zhang, Jian-Ting; Liu, Jing-Yuan

    2014-10-03

    Fatty acid synthase (FASN), the sole protein capable of de novo synthesis of free fatty acids, is overexpressed in a wide variety of human cancers and is associated with poor prognosis and aggressiveness of these cancers. Orlistat, an FDA-approved drug for obesity treatment that inhibits pancreatic lipases in the GI tract, also inhibits the thioesterase (TE) of human FASN. The cocrystal structure of TE with orlistat shows a pseudo TE dimer containing two different forms of orlistat in the active site, an intermediate that is covalently bound to a serine residue (Ser(2308)) and a hydrolyzed and inactivated product. In this study, we attempted to understand the mechanism of TE-catalyzed orlistat hydrolysis by examining the role of the hexyl tail of the covalently bound orlistat in water activation for hydrolysis using molecular dynamics simulations. We found that the hexyl tail of the covalently bound orlistat undergoes a conformational transition, which is accompanied by destabilization of a hydrogen bond between a hydroxyl moiety of orlistat and the catalytic His(2481) of TE that in turn leads to an increased hydrogen bonding between water molecules and His(2481) and increased chance for water activation to hydrolyze the covalent bond between orlistat and Ser(2308). Thus, the conformation of the hexyl tail of orlistat plays an important role in orlistat hydrolysis. Strategies that stabilize the hexyl tail may lead to the design of more potent irreversible inhibitors that target FASN and block TE activity with greater endurance.

  11. Engineering a Polyketide Synthase for In Vitro Production of Adipic Acid.

    Science.gov (United States)

    Hagen, Andrew; Poust, Sean; Rond, Tristan de; Fortman, Jeffrey L; Katz, Leonard; Petzold, Christopher J; Keasling, Jay D

    2016-01-15

    Polyketides have enormous structural diversity, yet polyketide synthases (PKSs) have thus far been engineered to produce only drug candidates or derivatives thereof. Thousands of other molecules, including commodity and specialty chemicals, could be synthesized using PKSs if composing hybrid PKSs from well-characterized parts derived from natural PKSs was more efficient. Here, using modern mass spectrometry techniques as an essential part of the design-build-test cycle, we engineered a chimeric PKS to enable production one of the most widely used commodity chemicals, adipic acid. To accomplish this, we introduced heterologous reductive domains from various PKS clusters into the borrelidin PKS' first extension module, which we previously showed produces a 3-hydroxy-adipoyl intermediate when coincubated with the loading module and a succinyl-CoA starter unit. Acyl-ACP intermediate analysis revealed an unexpected bottleneck at the dehydration step, which was overcome by introduction of a carboxyacyl-processing dehydratase domain. Appending a thioesterase to the hybrid PKS enabled the production of free adipic acid. Using acyl-intermediate based techniques to "debug" PKSs as described here, it should one day be possible to engineer chimeric PKSs to produce a variety of existing commodity and specialty chemicals, as well as thousands of chemicals that are difficult to produce from petroleum feedstocks using traditional synthetic chemistry.

  12. Prostaglandin H synthase-mediated bioactivation of the amino acid pyrolysate product Trp P-2

    Energy Technology Data Exchange (ETDEWEB)

    Petry, T.W.; Krauss, R.S.; Eling, T.E.

    1986-08-01

    We report evidence that the mutagen and carcinogen 3-amino-1-methyl-5H pyrido(4,3b)indole (Trp P-2) is a substrate for co-oxidation by prostaglandin H synthase (PHS) in ram seminal vesicle (RSV) microsomes. Trp P-2 serves as a reducing cofactor for the hydroperoxidase activity of PHS as shown by the concentration-dependent inhibition of the hydroperoxidase catalyzed incorporation of molecular oxygen into phenylbutazone. Spectral data suggest that this metabolism results in disruption of the double bond conjugation within the nucleus of the molecule. A single metabolite peak which was dependent upon arachidonic acid and substrate concentration was separated from the parent compound by h.p.l.c. following incubation with RSV microsomes. Co-oxidation of Trp P-2 produced reactive intermediates which bound covalently to microsomal protein (9 nmol/mg) and to calf thymus DNA (475 pmol/mg). Binding was inhibited by indomethacin, and supported by substitution of hydrogen peroxide for arachidonic acid. These data suggest a possible role for PHS in the in situ activation of Trp P-2 to its ultimate carcinogenic form in tissues which contain PHS.

  13. Increased phosphorylation of skeletal muscle glycogen synthase at NH2-terminal sites during physiological hyperinsulinemia in type 2 diabetes

    DEFF Research Database (Denmark)

    Højlund, Kurt; Staehr, Peter; Hansen, Bo Falck;

    2003-01-01

    In type 2 diabetes, insulin activation of muscle glycogen synthase (GS) is impaired. This defect plays a major role for the development of insulin resistance and hyperglycemia. In animal muscle, insulin activates GS by reducing phosphorylation at both NH(2)- and COOH-terminal sites, but the mecha...

  14. Expression of dehydratase domains from a polyunsaturated fatty acid synthase increases the production of fatty acids in Escherichia coli.

    Science.gov (United States)

    Oyola-Robles, Delise; Rullán-Lind, Carlos; Carballeira, Néstor M; Baerga-Ortiz, Abel

    2014-02-05

    Increasing the production of fatty acids by microbial fermentation remains an important step toward the generation of biodiesel and other portable liquid fuels. In this work, we report an Escherichia coli strain engineered to overexpress a fragment consisting of four dehydratase domains from the polyunsaturated fatty acid (PUFA) synthase enzyme complex from the deep-sea bacterium, Photobacterium profundum. The DH1-DH2-UMA enzyme fragment was excised from its natural context within a multi-enzyme PKS and expressed as a stand-alone protein. Fatty acids were extracted from the cell pellet, esterified with methanol and quantified by GC-MS analysis. Results show that the E. coli strain expressing the DH tetradomain fragment was capable of producing up to a 5-fold increase (80.31 mg total FA/L culture) in total fatty acids over the negative control strain lacking the recombinant enzyme. The enhancement in production was observed across the board for all the fatty acids that are typically made by E. coli. The overexpression of the DH tetradomain did not affect E. coli cell growth, thus showing that the observed enhancement in fatty acid production was not a result of effects associated with cell density. The observed enhancement was more pronounced at lower temperatures (3.8-fold at 16 °C, 3.5-fold at 22 °C and 1.5-fold at 30 °C) and supplementation of the media with 0.4% glycerol did not result in an increase in fatty acid production. All these results taken together suggest that either the dehydration of fatty acid intermediates are a limiting step in the E. coli fatty acid biosynthesis machinery, or that the recombinant dehydratase domains used in this study are also capable of catalyzing thioester hydrolysis of the final products. The enzyme in this report is a new tool which could be incorporated into other existing strategies aimed at improving fatty acid production in bacterial fermentations toward accessible biodiesel precursors.

  15. Characterization and analysis of the cotton cyclopropane fatty acid synthase family and their contribution to cyclopropane fatty acid synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Yu X. H.; Shanklin J.; Rawat, R.

    2011-05-01

    Cyclopropane fatty acids (CPA) have been found in certain gymnosperms, Malvales, Litchi and other Sapindales. The presence of their unique strained ring structures confers physical and chemical properties characteristic of unsaturated fatty acids with the oxidative stability displayed by saturated fatty acids making them of considerable industrial interest. While cyclopropenoid fatty acids (CPE) are well-known inhibitors of fatty acid desaturation in animals, CPE can also inhibit the stearoyl-CoA desaturase and interfere with the maturation and reproduction of some insect species suggesting that in addition to their traditional role as storage lipids, CPE can contribute to the protection of plants from herbivory. Three genes encoding cyclopropane synthase homologues GhCPS1, GhCPS2 and GhCPS3 were identified in cotton. Determination of gene transcript abundance revealed differences among the expression of GhCPS1, 2 and 3 showing high, intermediate and low levels, respectively, of transcripts in roots and stems; whereas GhCPS1 and 2 are both expressed at low levels in seeds. Analyses of fatty acid composition in different tissues indicate that the expression patterns of GhCPS1 and 2 correlate with cyclic fatty acid (CFA) distribution. Deletion of the N-terminal oxidase domain lowered GhCPS's ability to produce cyclopropane fatty acid by approximately 70%. GhCPS1 and 2, but not 3 resulted in the production of cyclopropane fatty acids upon heterologous expression in yeast, tobacco BY2 cell and Arabidopsis seed. In cotton GhCPS1 and 2 gene expression correlates with the total CFA content in roots, stems and seeds. That GhCPS1 and 2 are expressed at a similar level in seed suggests both of them can be considered potential targets for gene silencing to reduce undesirable seed CPE accumulation. Because GhCPS1 is more active in yeast than the published Sterculia CPS and shows similar activity when expressed in model plant systems, it represents a strong candidate gene

  16. Characterization and analysis of the cotton cyclopropane fatty acid synthase family and their contribution to cyclopropane fatty acid synthesis

    Directory of Open Access Journals (Sweden)

    Rawat Richa

    2011-05-01

    Full Text Available Abstract Background Cyclopropane fatty acids (CPA have been found in certain gymnosperms, Malvales, Litchi and other Sapindales. The presence of their unique strained ring structures confers physical and chemical properties characteristic of unsaturated fatty acids with the oxidative stability displayed by saturated fatty acids making them of considerable industrial interest. While cyclopropenoid fatty acids (CPE are well-known inhibitors of fatty acid desaturation in animals, CPE can also inhibit the stearoyl-CoA desaturase and interfere with the maturation and reproduction of some insect species suggesting that in addition to their traditional role as storage lipids, CPE can contribute to the protection of plants from herbivory. Results Three genes encoding cyclopropane synthase homologues GhCPS1, GhCPS2 and GhCPS3 were identified in cotton. Determination of gene transcript abundance revealed differences among the expression of GhCPS1, 2 and 3 showing high, intermediate and low levels, respectively, of transcripts in roots and stems; whereas GhCPS1 and 2 are both expressed at low levels in seeds. Analyses of fatty acid composition in different tissues indicate that the expression patterns of GhCPS1 and 2 correlate with cyclic fatty acid (CFA distribution. Deletion of the N-terminal oxidase domain lowered GhCPS's ability to produce cyclopropane fatty acid by approximately 70%. GhCPS1 and 2, but not 3 resulted in the production of cyclopropane fatty acids upon heterologous expression in yeast, tobacco BY2 cell and Arabidopsis seed. Conclusions In cotton GhCPS1 and 2 gene expression correlates with the total CFA content in roots, stems and seeds. That GhCPS1 and 2 are expressed at a similar level in seed suggests both of them can be considered potential targets for gene silencing to reduce undesirable seed CPE accumulation. Because GhCPS1 is more active in yeast than the published Sterculia CPS and shows similar activity when expressed in model

  17. Inhibition of fatty acid synthase by amentoflavone reduces coxsackievirus B3 replication.

    Science.gov (United States)

    Wilsky, Steffi; Sobotta, Katharina; Wiesener, Nadine; Pilas, Johanna; Althof, Nadine; Munder, Thomas; Wutzler, Peter; Henke, Andreas

    2012-02-01

    Coxsackievirus B3 (CVB3) is a human pathogen that causes acute and chronic infections, but an antiviral drug to treat these diseases has not yet been developed for clinical use. Several intracellular pathways are altered to assist viral transcription, RNA replication, and progeny release. Among these, fatty acid synthase (FAS) expression is increased. In order to test the potential of FAS inhibition as an anti-CVB3 strategy, several experiments were performed, including studies on the correlation of CVB3 replication and FAS expression in human Raji cells and an analysis of the time and dose dependence of the antiviral effect of FAS inhibition due to treatment with amentoflavone. The results demonstrate that CVB3 infection induces an up-regulation of FAS expression already at 1 h postinfection (p.i.). Incubation with increasing concentrations of amentoflavone inhibited CVB3 replication significantly up to 8 h p.i. In addition, suppression of p38 MAP kinase activity by treatment with SB239063 decreased FAS expression as well as viral replication. These data provide evidence that FAS inhibition via amentoflavone administration might present a target for anti-CVB3 therapy.

  18. Potent Inhibitory Effect of Chinese Dietary Spices on Fatty Acid Synthase.

    Science.gov (United States)

    Jiang, Bing; Liang, Yan; Sun, Xuebing; Liu, Xiaoxin; Tian, Weixi; Ma, Xiaofeng

    2015-09-01

    Dietary spices have been adopted in cooking since ancient times to enhance flavor and also as food preservatives and disease remedies. In China, the use of spices and other aromatic plants as food flavoring is an integral part of dietary behavior, but relatively little is known about their functions. Fatty acid synthase (FAS) has been recognized as a remedy target, and its inhibitors might be applied in disease treatment. The present work was designed to assess the inhibitory activities on FAS of spices extracts in Chinese menu. The in vitro inhibitory activities on FAS of 22 extracts of spices were assessed by spectrophotometrically monitoring oxidation of NADPH at 340 nm. Results showed that 20 spices extracts (90.9 %) exhibited inhibitory activities on FAS, with half inhibition concentration (IC(50)) values ranging from 1.72 to 810.7 μg/ml. Among them, seven spices showed strong inhibitory effect with IC(50) values lower than 10 μg/ml. These findings suggest that a large proportion of the dietary spices studied possess promising inhibitory activities on FAS, and subsequently might be applied in the treatment of obesity and obesity-related human diseases.

  19. Genome-wide changes accompanying knockdown of fatty acid synthase in breast cancer

    Directory of Open Access Journals (Sweden)

    Smith Jeffrey W

    2007-06-01

    Full Text Available Abstract Background The lipogenic enzyme fatty acid synthase (FAS is up-regulated in a wide variety of cancers, and is considered a potential metabolic oncogene by virtue of its ability to enhance tumor cell survival. Inhibition of tumor FAS causes both cell cycle arrest and apoptosis, indicating FAS is a promising target for cancer treatment. Results Here, we used gene expression profiling to conduct a global study of the cellular processes affected by siRNA mediated knockdown of FAS in MDA-MB-435 mammary carcinoma cells. The study identified 169 up-regulated genes (≥ 1.5 fold and 110 down-regulated genes (≤ 0.67 fold in response to knockdown of FAS. These genes regulate several aspects of tumor function, including metabolism, cell survival/proliferation, DNA replication/transcription, and protein degradation. Quantitative pathway analysis using Gene Set Enrichment Analysis software further revealed that the most pronounced effect of FAS knockdown was down-regulation in pathways that regulate lipid metabolism, glycolysis, the TCA cycle and oxidative phosphorylation. These changes were coupled with up-regulation in genes involved in cell cycle arrest and death receptor mediated apoptotic pathways. Conclusion Together these findings reveal a wide network of pathways that are influenced in response to FAS knockdown and provide new insight into the role of this enzyme in tumor cell survival and proliferation.

  20. Electron microscope and small angle neutron scattering studies of chicken liver fatty acid synthase

    Energy Technology Data Exchange (ETDEWEB)

    Stoops, J.K.; Wakil, S.J.; Uberbacher, E.C.; Bunick, G.J.

    1986-05-01

    Electron microscopic studies of negatively stained chicken liver fatty acid synthase revealed images of various shapes and sizes. The dimeric structures could be related to each other as rod-life in open form and C-like in closed form. The rods measure 200A and 50A in their major and minor axis, respectively. The C-shaped structures have a diameter ranging from 70-100A, representing the degree to which they are closed. The model that most accurately represents the native enzyme was determined using small angle neutron scattering of the active enzyme in solution. These studies resulted in considerable refinement of the model obtained by electron microscopy. The enzyme has a radius of gyration of 58A and the scattering curves were best fit by a model in which the dimeric enzyme consisted of two side by side ellipsoidal cylinders with overall dimension of 150A X 136A X 60A. The molecule has a cleft extending the length of the major axis with a 5A overlap between the two cylinders. The ellipsoidal cross section of the subunit has a major and minor axis and 70 and 60A, respectively. This model is compatible with the linear functional model proposed earlier.

  1. Fatty acid biosynthesis in Pseudomonas aeruginosa is initiated by the FabY class of β-ketoacyl acyl carrier protein synthases.

    Science.gov (United States)

    Yuan, Yanqiu; Sachdeva, Meena; Leeds, Jennifer A; Meredith, Timothy C

    2012-10-01

    The prototypical type II fatty acid synthesis (FAS) pathway in bacteria utilizes two distinct classes of β-ketoacyl synthase (KAS) domains to assemble long-chain fatty acids, the KASIII domain for initiation and the KASI/II domain for elongation. The central role of FAS in bacterial viability and virulence has stimulated significant effort toward developing KAS inhibitors, particularly against the KASIII domain of the β-acetoacetyl-acyl carrier protein (ACP) synthase FabH. Herein, we show that the opportunistic pathogen Pseudomonas aeruginosa does not utilize a FabH ortholog but rather a new class of divergent KAS I/II enzymes to initiate the FAS pathway. When a P. aeruginosa cosmid library was used to rescue growth in a fabH downregulated strain of Escherichia coli, a single unannotated open reading frame, PA5174, complemented fabH depletion. While deletion of all four KASIII domain-encoding genes in the same P. aeruginosa strain resulted in a wild-type growth phenotype, deletion of PA5174 alone specifically attenuated growth due to a defect in de novo FAS. Siderophore secretion and quorum-sensing signaling, particularly in the rhl and Pseudomonas quinolone signal (PQS) systems, was significantly muted in the absence of PA5174. The defect could be repaired by intergeneric complementation with E. coli fabH. Characterization of recombinant PA5174 confirmed a preference for short-chain acyl coenzyme A (acyl-CoA) substrates, supporting the identification of PA5174 as the predominant enzyme catalyzing the condensation of acetyl coenzyme A with malonyl-ACP in P. aeruginosa. The identification of the functional role for PA5174 in FAS defines the new FabY class of β-ketoacyl synthase KASI/II domain condensation enzymes.

  2. The Identification of Maize and Arabidopsis Type I FLAVONE SYNTHASEs Links Flavones with Hormones and Biotic Interactions.

    Science.gov (United States)

    Falcone Ferreyra, María Lorena; Emiliani, Julia; Rodriguez, Eduardo José; Campos-Bermudez, Valeria Alina; Grotewold, Erich; Casati, Paula

    2015-10-01

    Flavones are a major group of flavonoids with diverse functions and are extensively distributed in land plants. There are two different classes of FLAVONE SYNTHASE (FNS) enzymes that catalyze the conversion of the flavanones into flavones. The FNSI class comprises soluble Fe(2+)/2-oxoglutarate-dependent dioxygenases, and FNSII enzymes are oxygen- and NADPH-dependent cytochrome P450 membrane-bound monooxygenases. Here, we describe the identification and characterization of FNSI enzymes from maize (Zea mays) and Arabidopsis (Arabidopsis thaliana). In maize, ZmFNSI-1 is expressed at significantly higher levels in silks and pericarps expressing the 3-deoxy flavonoid R2R3-MYB regulator P1, suggesting that ZmFNSI-1 could be the main enzyme for the synthesis of flavone O-glycosides. We also show here that DOWNY MILDEW RESISTANT6 (AtDMR6), the Arabidopsis homologous enzyme to ZmFNSI-1, has FNSI activity. While dmr6 mutants show loss of susceptibility to Pseudomonas syringae, transgenic dmr6 plants expressing ZmFNSI-1 show similar susceptibility to wild-type plants, demonstrating that ZmFNSI-1 can complement the mutant phenotype. AtDMR6 expression analysis showed a tissue- and developmental stage-dependent pattern, with high expression in cauline and senescing leaves. Finally, we show that Arabidopsis cauline and senescing leaves accumulate apigenin, demonstrating that Arabidopsis plants have an FNSI activity involved in the biosynthesis of flavones. The results presented here also suggest cross talk between the flavone and salicylic acid pathways in Arabidopsis; in this way, pathogens would induce flavones to decrease salicylic acid and, hence, increase susceptibility.

  3. Inhibition of nitric oxide synthase lowers fatty acid oxidation in preeclampsia-like mice at early gestational stage

    Institute of Scientific and Technical Information of China (English)

    MA Rui-qiong; SUN Min-na; YANG Zi

    2011-01-01

    Background Preeclampsia is one of hypertensive disorders in pregnancy. It is associated with abnormal lipid metabolism, including fatty acid oxidation metabolism. Long chain 3-hydroxyacyI-CoA dehydrogenase (LCHAD) plays an indispensable role in the oxidation of fatty acids. It has been reported that nitric oxide (NO) is one of the regulatory factors of the fatty acid oxidation pathway. The aim of this research was to investigate whether the nitric oxide synthase (NOS)inhibitor L-NAME may cause down-regulation of LCHAD in the pathogenesis of preeclampsia.Methods Pregnant wild-type (WT) mice were treated with L-NAME or normal saline (NS) during gestation days 7-18 (early group), days 11-18 (mid group) and days 16-18 (late group), and apoE-/- mice served as a control. Systolic blood pressure (SBP), urine protein, feto-placental outcome, plasma lipid levels and NO concentrations were measured, and the expression of mRNA and protein for LCHAD in placental tissue were determined by real-time polymerase chain reaction (RT-PCR) and Western blotting, respectively.Results In WT and apoE-/- mice, SBP and urinary protein increased following L-NAME injection. Fetal and placental weights and NO concentrations were reduced and total cholesterol, triglycerides and free fatty acid levels were increased in early and mid L-NAME groups in WT and apoE-/- mice, compared with the NS group. There was no significant difference between the late L-NAME group and NS group. RT-PCR and Western blotting analysis showed that the mRNA and protein levels of LCHAD expression were significantly down-regulated in the early and mid L-NAME groups but not in the late L-NAME group in the WT and apoE-/- mice compared with the corresponding NS groups.Conclusions Inhibition of NO in early and mid gestation in mice may cause hyperlipidemia and suppression of fatty acid oxidation, whereas preeclampsia-like conditions in late gestation may be a maternal vascular response to inhibition of NO.

  4. Sterol regulation of human fatty acid synthase promoter I requires nuclear factor-Y- and Sp-1-binding sites.

    Science.gov (United States)

    Xiong, S; Chirala, S S; Wakil, S J

    2000-04-11

    To understand cholesterol-mediated regulation of human fatty acid synthase promoter I, we tested various 5'-deletion constructs of promoter I-luciferase reporter gene constructs in HepG2 cells. The reporter gene constructs that contained only the Sp-1-binding site (nucleotides -82 to -74) and the two tandem sterol regulatory elements (SREs; nucleotides -63 to -46) did not respond to cholesterol. Only the reporter gene constructs containing a nuclear factor-Y (NF-Y) sequence, the CCAAT sequence (nucleotides -90 to -86), an Sp-1 sequence, and the two tandem SREs responded to cholesterol. The NF-Y-binding site, therefore, is essential for cholesterol response. Mutating the SREs or the NF-Y site and inserting 4 bp between the Sp-1- and NF-Y-binding sites both resulted in a minimal cholesterol response of the reporter genes. Electrophoretic mobility-shift assays using anti-SRE-binding protein (SREBP) and anti-NF-Ya antibodies confirmed that these SREs and the NF-Y site bind the respective factors. We also identified a second Sp-1 site located between nucleotides -40 and -30 that can substitute for the mutated Sp-1 site located between nucleotides -82 and -74. The reporter gene expression of the wild-type promoter and the Sp-1 site (nucleotides -82 to -74) mutant promoter was similar when SREBP1a [the N-terminal domain of SREBP (amino acids 1-520)] was constitutively overexpressed, suggesting that Sp-1 recruits SREBP to the SREs. Under the same conditions, an NF-Y site mutation resulted in significant loss of reporter gene expression, suggesting that NF-Y is required to activate the cholesterol response.

  5. First discovery of two polyketide synthase genes for mitorubrinic acid and mitorubrinol yellow pigment biosynthesis and implications in virulence of Penicillium marneffei.

    Directory of Open Access Journals (Sweden)

    Patrick C Y Woo

    Full Text Available BACKGROUND: The genome of P. marneffei, the most important thermal dimorphic fungus causing respiratory, skin and systemic mycosis in China and Southeast Asia, possesses 23 polyketide synthase (PKS genes and 2 polyketide synthase nonribosomal peptide synthase hybrid (PKS-NRPS genes, which is of high diversity compared to other thermal dimorphic pathogenic fungi. We hypothesized that the yellow pigment in the mold form of P. marneffei could also be synthesized by one or more PKS genes. METHODOLOGY/PRINCIPAL FINDINGS: All 23 PKS and 2 PKS-NRPS genes of P. marneffei were systematically knocked down. A loss of the yellow pigment was observed in the mold form of the pks11 knockdown, pks12 knockdown and pks11pks12 double knockdown mutants. Sequence analysis showed that PKS11 and PKS12 are fungal non-reducing PKSs. Ultra high performance liquid chromatography-photodiode array detector/electrospray ionization-quadruple time of flight-mass spectrometry (MS and MS/MS analysis of the culture filtrates of wild type P. marneffei and the pks11 knockdown, pks12 knockdown and pks11pks12 double knockdown mutants showed that the yellow pigment is composed of mitorubrinic acid and mitorubrinol. The survival of mice challenged with the pks11 knockdown, pks12 knockdown and pks11pks12 double knockdown mutants was significantly better than those challenged with wild type P. marneffei (P<0.05. There was also statistically significant decrease in survival of pks11 knockdown, pks12 knockdown and pks11pks12 double knockdown mutants compared to wild type P. marneffei in both J774 and THP1 macrophages (P<0.05. CONCLUSIONS/SIGNIFICANCE: The yellow pigment of the mold form of P. marneffei is composed of mitorubrinol and mitorubrinic acid. This represents the first discovery of PKS genes responsible for mitorubrinol and mitorubrinic acid biosynthesis. pks12 and pks11 are probably responsible for sequential use in the biosynthesis of mitorubrinol and mitorubrinic acid

  6. Evolution of Conifer Diterpene Synthases: Diterpene Resin Acid Biosynthesis in Lodgepole Pine and Jack Pine Involves Monofunctional and Bifunctional Diterpene Synthases1[W][OA

    Science.gov (United States)

    Hall, Dawn E.; Zerbe, Philipp; Jancsik, Sharon; Quesada, Alfonso Lara; Dullat, Harpreet; Madilao, Lina L.; Yuen, Macaire; Bohlmann, Jörg

    2013-01-01

    Diterpene resin acids (DRAs) are major components of pine (Pinus spp.) oleoresin. They play critical roles in conifer defense against insects and pathogens and as a renewable resource for industrial bioproducts. The core structures of DRAs are formed in secondary (i.e. specialized) metabolism via cycloisomerization of geranylgeranyl diphosphate (GGPP) by diterpene synthases (diTPSs). Previously described gymnosperm diTPSs of DRA biosynthesis are bifunctional enzymes that catalyze the initial bicyclization of GGPP followed by rearrangement of a (+)-copalyl diphosphate intermediate at two discrete class II and class I active sites. In contrast, similar diterpenes of gibberellin primary (i.e. general) metabolism are produced by the consecutive activity of two monofunctional class II and class I diTPSs. Using high-throughput transcriptome sequencing, we discovered 11 diTPS from jack pine (Pinus banksiana) and lodgepole pine (Pinus contorta). Three of these were orthologous to known conifer bifunctional levopimaradiene/abietadiene synthases. Surprisingly, two sets of orthologous PbdiTPSs and PcdiTPSs were monofunctional class I enzymes that lacked functional class II active sites and converted (+)-copalyl diphosphate, but not GGPP, into isopimaradiene and pimaradiene as major products. Diterpene profiles and transcriptome sequences of lodgepole pine and jack pine are consistent with roles for these diTPSs in DRA biosynthesis. The monofunctional class I diTPSs of DRA biosynthesis form a new clade within the gymnosperm-specific TPS-d3 subfamily that evolved from bifunctional diTPS rather than monofunctional enzymes (TPS-c and TPS-e) of gibberellin metabolism. Homology modeling suggested alterations in the class I active site that may have contributed to their functional specialization relative to other conifer diTPSs. PMID:23370714

  7. Identification of amino acid networks governing catalysis in the closed complex of class I terpene synthases.

    Science.gov (United States)

    Schrepfer, Patrick; Buettner, Alexander; Goerner, Christian; Hertel, Michael; van Rijn, Jeaphianne; Wallrapp, Frank; Eisenreich, Wolfgang; Sieber, Volker; Kourist, Robert; Brück, Thomas

    2016-02-23

    Class I terpene synthases generate the structural core of bioactive terpenoids. Deciphering structure-function relationships in the reactive closed complex and targeted engineering is hampered by highly dynamic carbocation rearrangements during catalysis. Available crystal structures, however, represent the open, catalytically inactive form or harbor nonproductive substrate analogs. Here, we present a catalytically relevant, closed conformation of taxadiene synthase (TXS), the model class I terpene synthase, which simulates the initial catalytic time point. In silico modeling of subsequent catalytic steps allowed unprecedented insights into the dynamic reaction cascades and promiscuity mechanisms of class I terpene synthases. This generally applicable methodology enables the active-site localization of carbocations and demonstrates the presence of an active-site base motif and its dominating role during catalysis. It additionally allowed in silico-designed targeted protein engineering that unlocked the path to alternate monocyclic and bicyclic synthons representing the basis of a myriad of bioactive terpenoids.

  8. Differential regulation of two types of monogalactosyldiacylglylcerol synthase in membrane lipid remodeling under phosphate-limited conditions in sesame plants

    Directory of Open Access Journals (Sweden)

    Mie eShimojima

    2013-11-01

    Full Text Available Phosphate (Pi limitation causes drastic lipid remodeling in plant membranes. Glycolipids substitute for the phospholipids that are degraded, thereby supplying Pi needed for essential biological processes. Two major types of remodeling of membrane lipids occur in higher plants: whereas one involves an increase in the concentration of sulfoquinovosyldiacylglycerol in plastids to compensate for a decreased concentration of phosphatidylglycerol, the other involves digalactosyldiacylglycerol (DGDG synthesis in plastids and the export of DGDG to extraplastidial membranes to compensate for reduced abundances of phospholipids. Lipid remodeling depends on an adequate supply of monogalactosyldiacylglycerol (MGDG, which is a substrate that supports the elevated rate of DGDG synthesis that is induced by low Pi availability. Regulation of MGDG synthesis has been analyzed most extensively using the model plant Arabidopsis thaliana, although orthologous genes that encode putative MGDG synthases exist in photosynthetic organisms from bacteria to higher plants. We recently hypothesized that two types of MGDG synthase diverged after the appearance of seed plants. This divergence might have both enabled plants to adapt to a wide range of Pi availability in soils and contributed to the diversity of seed plants. In the work presented here, we found that membrane lipid remodeling also takes place in sesame, which is one of the most common traditional crops grown in Asia. We identified two types of MGDG synthase from sesame (encoded by SeMGD1 and SeMGD2 and analyzed their enzymatic properties. Our results show that both genes correspond to the Arabidopsis type-A and -B isoforms of MGDG synthase. Notably, whereas Pi limitation up-regulates only the gene encoding the type-B isoform of Arabidopsis, low Pi availability up-regulates the expression of both SeMGD1 and SeMGD2. We discuss the significance of the different responses to low Pi availability in sesame and

  9. Gene identification and functional analysis of methylcitrate synthase in citric acid-producing Aspergillus niger WU-2223L.

    Science.gov (United States)

    Kobayashi, Keiichi; Hattori, Takasumi; Honda, Yuki; Kirimura, Kohtaro

    2013-01-01

    Methylcitrate synthase (EC 2.3.3.5; MCS) is a key enzyme of the methylcitric acid cycle localized in the mitochondria of eukaryotic cells and related to propionic acid metabolism. In this study, cloning of the gene mcsA encoding MCS and heterologous expression of it in Escherichia coli were performed for functional analysis of the MCS of citric acid-producing Aspergillus niger WU-2223L. Only one copy of mcsA (1,495 bp) exists in the A. niger WU-2223L chromosome. It encodes a 51-kDa polypeptide consisting of 465 amino acids containing mitochondrial targeting signal peptides. Purified recombinant MCS showed not only MCS activity (27.6 U/mg) but also citrate synthase (EC 2.3.3.1; CS) activity (26.8 U/mg). For functional analysis of MCS, mcsA disruptant strain DMCS-1, derived from A. niger WU-2223L, was constructed. Although A. niger WU-2223L showed growth on propionate as sole carbon source, DMCS-1 showed no growth. These results suggest that MCS is an essential enzyme in propionic acid metabolism, and that the methylcitric acid cycle operates functionally in A. niger WU-2223L. To determine whether MCS makes a contribution to citric acid production, citric acid production tests on DMCS-1 were performed. The amount of citric acid produced from glucose consumed by DMCS-1 in citric acid production medium over 12 d of cultivation was on the same level to that by WU-2223L. Thus it was found that MCS made no contribution to citric acid production from glucose in A. niger WU-2223L, although MCS showed CS activity.

  10. Wounding stimulates ALLENE OXIDE SYNTHASE gene and increases the level of jasmonic acid in Ipomoea nil cotyledons

    Directory of Open Access Journals (Sweden)

    Emilia Wilmowicz

    2016-03-01

    Full Text Available Allene oxide synthase (AOS encodes the first enzyme in the lipoxygenase pathway, which is responsible for jasmonic acid (JA formation. In this study we report the molecular cloning and characterization of InAOS from Ipomoea nil. The full-length gene is composed of 1662 bp and encodes for 519 amino acids. The predicted InAOS contains PLN02648 motif, which is evolutionarily conserved and characteristic for functional enzymatic proteins. We have shown that wounding led to a strong stimulation of the examined gene activity in cotyledons and an increase in JA level, which suggest that this compound may be a modulator of stress responses in I. nil.

  11. Immunohistochemical expressions of fatty acid synthase and phosphorylated c-Met in thyroid carcinomas of follicular origin.

    Science.gov (United States)

    Liu, Jing; Brown, Robert E

    2011-01-01

    Thyroid carcinoma is the most common endocrine malignancy and the first cause of death among endocrine cancers. Fatty acid synthase (FASN) and c-Met are overexpressed in many types of human cancers. Recent studies have suggested a functional interaction between FASN and c-Met. However, their roles in thyroid carcinomas have not been fully investigated. In this study, we evaluated the expressions of FASN and phosphorylated (p)-c-Met by using immunohistochemistry in thyroid carcinomas of follicular origin, from 32 patients. The adjacent non-neoplastic thyroid tissue was also evaluated for comparison. Immunoreactive intensity and extensiveness were semi-quantified. The overexpression of FASN was observed in a subset of papillary thyroid carcinomas (PTC) including the classical type and tall cell, follicular, trabecular/insular and diffuse sclerosing variants, a subset of follicular thyroid carcinomas (FTC), and the PTC and FTC components in anaplastic thyroid carcinomas (ATC). No overexpression was observed in the ATCs per se and the columnar cell, solid, and cribriform variants of PTCs. All Hürthle cell variant FTCs and non-neoplastic Hürthle cells demonstrated positive staining for FASN while the non-neoplastic follicular cells without Hürthle cell change were negative. An association in overexpression between FASN and p-c-Met was observed in the majority of carcinomas as well as in the non-neoplastic Hürthle cells. In conclusion, overexpressions of FASN and p-c-Met were observed in a subset of thyroid carcinomas of follicular origin, which may be of values for targeted therapy and predicting prognosis while the positive immunostaining for these immunomarkers may be nonspecific for Hürthle cell thyroid carcinomas.

  12. A copal-8-ol diphosphate synthase from the angiosperm Cistus creticus subsp. creticus is a putative key enzyme for the formation of pharmacologically active, oxygen-containing labdane-type diterpenes.

    Science.gov (United States)

    Falara, Vasiliki; Pichersky, Eran; Kanellis, Angelos K

    2010-09-01

    The resin of Cistus creticus subsp. creticus, a plant native to Crete, is rich in labdane-type diterpenes with significant antimicrobial and cytotoxic activities. The full-length cDNA of a putative diterpene synthase was isolated from a C. creticus trichome cDNA library. The deduced amino acid sequence of this protein is highly similar (59%-70% identical) to type B diterpene synthases from other angiosperm species that catalyze a protonation-initiated cyclization. The affinity-purified recombinant Escherichia coli-expressed protein used geranylgeranyl diphosphate as substrate and catalyzed the formation of copal-8-ol diphosphate. This diterpene synthase, therefore, was named CcCLS (for C. creticus copal-8-ol diphosphate synthase). Copal-8-ol diphosphate is likely to be an intermediate in the biosynthesis of the oxygen-containing labdane-type diterpenes that are abundant in the resin of this plant. RNA gel-blot analysis revealed that CcCLS is preferentially expressed in the trichomes, with higher transcript levels found in glands on young leaves than on fully expanded leaves, while CcCLS transcript levels increased after mechanical wounding. Chemical analyses revealed that labdane-type diterpene production followed a similar pattern, with higher concentrations in trichomes of young leaves and increased accumulation upon wounding.

  13. Effect of estrogen on gene expression of fatty acid synthase in periosteum

    Institute of Scientific and Technical Information of China (English)

    ZHENG Rui-min; LIN Shou-qing; LIU Yong; HUANG Man-ting; GONG Wei-yan; WU Zhi-hong

    2009-01-01

    Background Estrogen deficiency contributes to postmenopausal osteoporosis.Periosteum might be a potential target of estrogen,but the underlying mechanism at gene level is far from being elucidated.The objective of this study was to investigate the correlation between estrogen and fatty acid synthase(FAS)expression in periosteum.Methods Human periosteum cells were cultured in vitro.Expressed genes in the substrated cDNA library were verified using semi-quantitative PCR and real-time PCR.The expression of FAS in periosteum of ovarectomized(OVX)SD rats was investigated.Results FAS gene was most significantly expressed in the subtracted cDNA library of periosteal cells screened by semi-quantitative PCR.Low FAS expression was verified by real-time PCR in the estrogen exposed human periosteum rather than in the control.The estradiol levels were(20.81±12.62)pg/ml,(19.64±4.35)pg/ml and(13.47+1.84)pg/ml in the sham group,the control,and the OVX group,respectively.The estradiol levels in the OVX group was significantly lower(P=0.0386).The FAS gene expression in periosteum in the OVX group,sham group,and control group was 3.09±1.97,1.33±0.47 and 1.51±1.32,respectively.The gene expression in the OVX group was significantly higher (P=0.0372).Conclusion Estrogen modulates FAS gene expression in in vitro human perisoteum as well as in in vivo rat periosteum.

  14. Homology analyses of the protein sequences of fatty acid synthases from chicken liver, rat mammary gland, and yeast

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Soo-Ik (Harvard Medical School, Boston, MA (USA)); Hammes, G.G. (Univ. of California, Santa Barbara (USA))

    1989-11-01

    Homology analyses of the protein sequences of chicken liver and rat mammary gland fatty acid synthases were carried out. The amino acid sequences of the chicken and rat enzymes are 67% identical. If conservative substitutions are allowed, 78% of the amino acids are matched. A region of low homologies exists between the functional domains, in particular around amino acid residues 1059-1264 of the chicken enzyme. Homologies between the active sites of chicken and rat and of chicken and yeast enzymes have been analyzed by an alignment method. A high degree of homology exists between the active sites of the chicken and rat enzymes. However, the chicken and yeast enzymes show a lower degree of homology. The DADPH-binding dinucleotide folds of the {beta}-ketoacyl reductase and the enoyl reductase sites were identified by comparison with a known consensus sequence for the DADP- and FAD-binding dinucleotide folds. The active sites of all of the enzymes are primarily in hydrophobic regions of the protein. This study suggests that the genes for the functional domains of fatty acid synthase were originally separated, and these genes were connected to each other by using different connecting nucleotide sequences in different species. An alternative explanation for the differences in rat and chicken is a common ancestry and mutations in the joining regions during evolution.

  15. β-Ketoacyl-acyl Carrier Protein Synthase I (KASI Plays Crucial Roles in the Plant Growth and Fatty Acids Synthesis in Tobacco

    Directory of Open Access Journals (Sweden)

    Tianquan Yang

    2016-08-01

    Full Text Available Fatty acids serve many functions in plants, but the effects of some key genes involved in fatty acids biosynthesis on plants growth and development are not well understood yet. To understand the functions of 3-ketoacyl-acyl-carrier protein synthase I (KASI in tobacco, we isolated two KASI homologs, which we have designated NtKASI-1 and NtKASI-2. Expression analysis showed that these two KASI genes were transcribed constitutively in all tissues examined. Over-expression of NtKASI-1 in tobacco changed the fatty acid content in leaves, whereas over-expressed lines of NtKASI-2 exhibited distinct phenotypic features such as slightly variegated leaves and reduction of the fatty acid content in leaves, similar to the silencing plants of NtKASI-1 gene. Interestingly, the silencing of NtKASI-2 gene had no discernibly altered phenotypes compared to wild type. The double silencing plants of these two genes enhanced the phenotypic changes during vegetative and reproductive growth compared to wild type. These results uncovered that these two KASI genes had the partially functional redundancy, and that the KASI genes played a key role in regulating fatty acids synthesis and in mediating plant growth and development in tobacco.

  16. β-Ketoacyl-acyl Carrier Protein Synthase I (KASI) Plays Crucial Roles in the Plant Growth and Fatty Acids Synthesis in Tobacco.

    Science.gov (United States)

    Yang, Tianquan; Xu, Ronghua; Chen, Jianghua; Liu, Aizhong

    2016-08-08

    Fatty acids serve many functions in plants, but the effects of some key genes involved in fatty acids biosynthesis on plants growth and development are not well understood yet. To understand the functions of 3-ketoacyl-acyl-carrier protein synthase I (KASI) in tobacco, we isolated two KASI homologs, which we have designated NtKASI-1 and NtKASI-2. Expression analysis showed that these two KASI genes were transcribed constitutively in all tissues examined. Over-expression of NtKASI-1 in tobacco changed the fatty acid content in leaves, whereas over-expressed lines of NtKASI-2 exhibited distinct phenotypic features such as slightly variegated leaves and reduction of the fatty acid content in leaves, similar to the silencing plants of NtKASI-1 gene. Interestingly, the silencing of NtKASI-2 gene had no discernibly altered phenotypes compared to wild type. The double silencing plants of these two genes enhanced the phenotypic changes during vegetative and reproductive growth compared to wild type. These results uncovered that these two KASI genes had the partially functional redundancy, and that the KASI genes played a key role in regulating fatty acids synthesis and in mediating plant growth and development in tobacco.

  17. A human fatty acid synthase inhibitor binds β-ketoacyl reductase in the keto-substrate site.

    Science.gov (United States)

    Hardwicke, Mary Ann; Rendina, Alan R; Williams, Shawn P; Moore, Michael L; Wang, Liping; Krueger, Julie A; Plant, Ramona N; Totoritis, Rachel D; Zhang, Guofeng; Briand, Jacques; Burkhart, William A; Brown, Kristin K; Parrish, Cynthia A

    2014-09-01

    Human fatty acid synthase (hFAS) is a complex, multifunctional enzyme that is solely responsible for the de novo synthesis of long chain fatty acids. hFAS is highly expressed in a number of cancers, with low expression observed in most normal tissues. Although normal tissues tend to obtain fatty acids from the diet, tumor tissues rely on de novo fatty acid synthesis, making hFAS an attractive metabolic target for the treatment of cancer. We describe here the identification of GSK2194069, a potent and specific inhibitor of the β-ketoacyl reductase (KR) activity of hFAS; the characterization of its enzymatic and cellular mechanism of action; and its inhibition of human tumor cell growth. We also present the design of a new protein construct suitable for crystallography, which resulted in what is to our knowledge the first co-crystal structure of the human KR domain and includes a bound inhibitor.

  18. Biochemistry: Acetohydroxyacid Synthase

    Directory of Open Access Journals (Sweden)

    Pham Ngoc Chien

    2010-02-01

    Full Text Available Acetohydroxyacid synthase (AHAS, EC 2.2.1.6; formerly known as acetolactate synthase, ALS is a thiamin-and FAD-dependent enzyme which catalyses the first common step in the biosynthesis of the branched-chain amino acids (BCAA isoleucine, leucine and valine. The enzyme is inhibited by several commercial herbicides and has been studied over the last 20 to 30 years. A short introductory note about acetohydroxyacid synthase has been provided.

  19. The Nutrient-Dependent O-GlcNAc Modification Controls the Expression of Liver Fatty Acid Synthase.

    Science.gov (United States)

    Baldini, Steffi F; Wavelet, Cindy; Hainault, Isabelle; Guinez, Céline; Lefebvre, Tony

    2016-08-14

    Liver Fatty Acid Synthase (FAS) is pivotal for de novo lipogenesis. Loss of control of this metabolic pathway contributes to the development of liver pathologies ranging from steatosis to nonalcoholic steatohepatitis (NASH) which can lead to cirrhosis and, less frequently, to hepatocellular carcinoma. Therefore, deciphering the molecular mechanisms governing the expression and function of key enzymes such as FAS is crucial. Herein, we link the availability of this lipogenic enzyme to the nutrient-dependent post-translational modification O-GlcNAc that is thought to be deregulated in metabolic diseases (diabetes, obesity, and metabolic syndrome). We demonstrate that expression and activity of liver FAS correlate with O-GlcNAcylation contents in ob/ob mice and in mice fed with a high-carbohydrate diet both in a transcription-dependent and -independent manner. More importantly, inhibiting the removal of O-GlcNAc residues in mice intraperitoneally injected with the selective and potent O-GlcNAcase (OGA) inhibitor Thiamet-G increases FAS expression. FAS and O-GlcNAc transferase (OGT) physically interact, and FAS is O-GlcNAc modified. Treatment of a liver cell line with drugs or nutrients that elevate the O-GlcNAcylation interferes with FAS expression. Inhibition of OGA increases the interaction between FAS and the deubiquitinase Ubiquitin-specific protease-2a (USP2A) in vivo and ex vivo, providing mechanistic insights into the control of FAS expression through O-GlcNAcylation. Together, these results reveal a new type of regulation of FAS, linked to O-GlcNAcylation status, and advance our knowledge on deregulation of lipogenesis in diverse forms of liver diseases.

  20. An Arabidopsis callose synthase

    DEFF Research Database (Denmark)

    Ostergaard, Lars; Petersen, Morten; Mattsson, Ole

    2002-01-01

    in the Arabidopsis mpk4 mutant which exhibits systemic acquired resistance (SAR), elevated beta-1,3-glucan synthase activity, and increased callose levels. In addition, AtGsl5 is a likely target of salicylic acid (SA)-dependent SAR, since AtGsl5 mRNA accumulation is induced by SA in wild-type plants, while...... expression of the nahG salicylate hydroxylase reduces AtGsl5 mRNA levels in the mpk4 mutant. These results indicate that AtGsl5 is likely involved in callose synthesis in flowering tissues and in the mpk4 mutant....

  1. Increased fatty acid synthase as a potential therapeutic target in multiple myeloma

    Institute of Scientific and Technical Information of China (English)

    Wei-qin WANG; Xiao-ying ZHAO; Hai-yan WANG; Yun LIANG

    2008-01-01

    Objective: To determine fatty acid synthase (FAS) expression in human multiple myeloma and verify its potential as a therapeutic target in multiple myeloma. Methods: FAS expression was determined by immunohistochemistry, reverse-transcription polymerase chain reaction (RT-PCR) and immunoblot analysis in bone marrow samples obtained from 27 patients with multiple myeloma (MM patients) and peripheral blood mononuclear cells (PBMCs) obtained from 12 healthy donors. In parallel, additional analyses were performed on 2 human multiple myeloma cell lines, U266 and RPMI8226. U266 cells were treated with cerulenin at various concentrations (5 to 320μg/ml) for 24 h, and metabolic activity was measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays. Apoptosis was evaluated by dual Annexin V/PI (propidium iodide) labeling and flow cytometry (FCM) in U266 cells treated with 20μg/ml cerulenin for 12 h or 24 h. Results: By immunohistochemistry, we found that 19 of 27 bone marrow samples obtained from MM patients expressed significantly high levels of FAS. Similarly, by RT-PCR, 22 of 27 bone marrow samples obtained from MM patients, U266 and RPMI8226 showed FAS expression, whereas PBMC samples from 12 healthy donors did not express detectable level of FAS. FAS protein expression was confirmed by immunoblot analysis in 16 of 27 bone marrow samples obtained from MM patients, U266 and RPMI8226 cell lines, and no FAS protein expression was detected in PBMC samples from 12 healthy donors. U266 cells were highly sensitive to cerulenin treatment, with a dosage-related effect on metabolic activity, as a measure for cell proliferation. U266 cells treated with20 μg/ml cerulenin for 12 and 24h also showed early sign of apoptosis with 56.9% and 69.3% Annexin V+/PI+ cells, and late apoptotic and necrotic cells with 3.2% and 17.6% Annexin V+/PI+ cells. Conclusion: Increased FAS expression existed in multiple myeloma samples and human myeloma cell lines

  2. Fatty Acid Synthase: A Metabolic Enzyme and Candidate Oncogene in Prostate Cancer

    Science.gov (United States)

    Migita, Toshiro; Ruiz, Stacey; Fornari, Alessandro; Fiorentino, Michelangelo; Priolo, Carmen; Zadra, Giorgia; Inazuka, Fumika; Grisanzio, Chiara; Palescandolo, Emanuele; Shin, Eyoung; Fiore, Christopher; Xie, Wanling; Kung, Andrew L.; Febbo, Phillip G.; Subramanian, Aravind; Mucci, Lorelei; Ma, Jing; Signoretti, Sabina; Stampfer, Meir; Hahn, William C.; Finn, Stephen

    2009-01-01

    Background Overexpression of the fatty acid synthase (FASN) gene has been implicated in prostate carcinogenesis. We sought to directly assess the oncogenic potential of FASN. Methods We used immortalized human prostate epithelial cells (iPrECs), androgen receptor–overexpressing iPrECs (AR-iPrEC), and human prostate adenocarcinoma LNCaP cells that stably overexpressed FASN for cell proliferation assays, soft agar assays, and tests of tumor formation in immunodeficient mice. Transgenic mice expressing FASN in the prostate were generated to assess the effects of FASN on prostate histology. Apoptosis was evaluated by Hoechst 33342 staining and by fluorescence-activated cell sorting in iPrEC-FASN cells treated with stimulators of the intrinsic and extrinsic pathways of apoptosis (ie, camptothecin and anti-Fas antibody, respectively) or with a small interfering RNA (siRNA) targeting FASN. FASN expression was compared with the apoptotic index assessed by the terminal deoxynucleotidyltransferase-mediated UTP end-labeling method in 745 human prostate cancer samples by using the least squares means procedure. All statistical tests were two-sided. Results Forced expression of FASN in iPrECs, AR-iPrECs, and LNCaP cells increased cell proliferation and soft agar growth. iPrECs that expressed both FASN and androgen receptor (AR) formed invasive adenocarcinomas in immunodeficient mice (12 of 14 mice injected formed tumors vs 0 of 14 mice injected with AR-iPrEC expressing empty vector (P < .001, Fisher exact test); however, iPrECs that expressed only FASN did not. Transgenic expression of FASN in mice resulted in prostate intraepithelial neoplasia, the incidence of which increased from 10% in 8- to 16-week-old mice to 44% in mice aged 7 months or more (P  = .0028, Fisher exact test), but not in invasive tumors. In LNCaP cells, siRNA-mediated silencing of FASN resulted in apoptosis. FASN overexpression protected iPrECs from apoptosis induced by camptothecin but did not

  3. Type 2 Diabetes and Uric Acid Nephrolithiasis

    Science.gov (United States)

    Maalouf, Naim M.

    2008-09-01

    Type 2 diabetes is associated with an increased propensity for uric acid nephrolithiasis. In individuals with diabetes, this increased risk is due to a lower urine pH that results from obesity, dietary factors, and impaired renal ammoniagenesis. The epidemiology and pathogenesis of uric acid stone disease in patients with diabetes are hereby reviewed, and potential molecular mechanisms are proposed.

  4. Wild-type phosphoribosylpyrophosphate synthase (PRS) from Mycobacterium tuberculosis: a bacterial class II PRS?

    Science.gov (United States)

    Breda, Ardala; Martinelli, Leonardo K B; Bizarro, Cristiano V; Rosado, Leonardo A; Borges, Caroline B; Santos, Diógenes S; Basso, Luiz A

    2012-01-01

    The 5-phospho-α-D-ribose 1-diphosphate (PRPP) metabolite plays essential roles in several biosynthetic pathways, including histidine, tryptophan, nucleotides, and, in mycobacteria, cell wall precursors. PRPP is synthesized from α-D-ribose 5-phosphate (R5P) and ATP by the Mycobacterium tuberculosis prsA gene product, phosphoribosylpyrophosphate synthase (MtPRS). Here, we report amplification, cloning, expression and purification of wild-type MtPRS. Glutaraldehyde cross-linking results suggest that MtPRS predominates as a hexamer, presenting varied oligomeric states due to distinct ligand binding. MtPRS activity measurements were carried out by a novel coupled continuous spectrophotometric assay. MtPRS enzyme activity could be detected in the absence of P(i). ADP, GDP and UMP inhibit MtPRS activity. Steady-state kinetics results indicate that MtPRS has broad substrate specificity, being able to accept ATP, GTP, CTP, and UTP as diphosphoryl group donors. Fluorescence spectroscopy data suggest that the enzyme mechanism for purine diphosphoryl donors follows a random order of substrate addition, and for pyrimidine diphosphoryl donors follows an ordered mechanism of substrate addition in which R5P binds first to free enzyme. An ordered mechanism for product dissociation is followed by MtPRS, in which PRPP is the first product to be released followed by the nucleoside monophosphate products to yield free enzyme for the next round of catalysis. The broad specificity for diphosphoryl group donors and detection of enzyme activity in the absence of P(i) would suggest that MtPRS belongs to Class II PRS proteins. On the other hand, the hexameric quaternary structure and allosteric ADP inhibition would place MtPRS in Class I PRSs. Further data are needed to classify MtPRS as belonging to a particular family of PRS proteins. The data here presented should help augment our understanding of MtPRS mode of action. Current efforts are toward experimental structure determination of

  5. Wild-type phosphoribosylpyrophosphate synthase (PRS from Mycobacterium tuberculosis: a bacterial class II PRS?

    Directory of Open Access Journals (Sweden)

    Ardala Breda

    Full Text Available The 5-phospho-α-D-ribose 1-diphosphate (PRPP metabolite plays essential roles in several biosynthetic pathways, including histidine, tryptophan, nucleotides, and, in mycobacteria, cell wall precursors. PRPP is synthesized from α-D-ribose 5-phosphate (R5P and ATP by the Mycobacterium tuberculosis prsA gene product, phosphoribosylpyrophosphate synthase (MtPRS. Here, we report amplification, cloning, expression and purification of wild-type MtPRS. Glutaraldehyde cross-linking results suggest that MtPRS predominates as a hexamer, presenting varied oligomeric states due to distinct ligand binding. MtPRS activity measurements were carried out by a novel coupled continuous spectrophotometric assay. MtPRS enzyme activity could be detected in the absence of P(i. ADP, GDP and UMP inhibit MtPRS activity. Steady-state kinetics results indicate that MtPRS has broad substrate specificity, being able to accept ATP, GTP, CTP, and UTP as diphosphoryl group donors. Fluorescence spectroscopy data suggest that the enzyme mechanism for purine diphosphoryl donors follows a random order of substrate addition, and for pyrimidine diphosphoryl donors follows an ordered mechanism of substrate addition in which R5P binds first to free enzyme. An ordered mechanism for product dissociation is followed by MtPRS, in which PRPP is the first product to be released followed by the nucleoside monophosphate products to yield free enzyme for the next round of catalysis. The broad specificity for diphosphoryl group donors and detection of enzyme activity in the absence of P(i would suggest that MtPRS belongs to Class II PRS proteins. On the other hand, the hexameric quaternary structure and allosteric ADP inhibition would place MtPRS in Class I PRSs. Further data are needed to classify MtPRS as belonging to a particular family of PRS proteins. The data here presented should help augment our understanding of MtPRS mode of action. Current efforts are toward experimental structure

  6. Benzalacetone Synthase

    Directory of Open Access Journals (Sweden)

    Ikuro eAbe

    2012-03-01

    Full Text Available Benzalacetone synthase, from the medicinal plant Rheum palmatum (Polygonaceae (RpBAS, is a plant-specific chalcone synthase (CHS superfamily of type III polyketide synthase (PKS. RpBAS catalyzes the one-step, decarboxylative condensation of 4-coumaroyl-CoA with malonyl-CoA to produce the C6-C4 benzalacetone scaffold. The X-ray crystal structures of RpBAS confirmed that the diketide-forming activity is attributable to the characteristic substitution of the conserved active-site "gatekeeper" Phe with Leu. Furthermore, the crystal structures suggested that RpBAS employs novel catalytic machinery for the thioester bond cleavage of the enzyme-bound diketide intermediate and the final decarboxylation reaction to produce benzalacetone. Finally, by exploiting the remarkable substrate tolerance and catalytic versatility of RpBAS, precursor-directed biosynthesis efficiently generated chemically and structurally divergent, unnatural novel polyketide scaffolds. These findings provided a structural basis for the functional diversity of the type III PKS enzymes.

  7. A new type of Na(+-driven ATP synthase membrane rotor with a two-carboxylate ion-coupling motif.

    Directory of Open Access Journals (Sweden)

    Sarah Schulz

    Full Text Available The anaerobic bacterium Fusobacterium nucleatum uses glutamate decarboxylation to generate a transmembrane gradient of Na⁺. Here, we demonstrate that this ion-motive force is directly coupled to ATP synthesis, via an F₁F₀-ATP synthase with a novel Na⁺ recognition motif, shared by other human pathogens. Molecular modeling and free-energy simulations of the rotary element of the enzyme, the c-ring, indicate Na⁺ specificity in physiological settings. Consistently, activity measurements showed Na⁺ stimulation of the enzyme, either membrane-embedded or isolated, and ATP synthesis was sensitive to the Na⁺ ionophore monensin. Furthermore, Na⁺ has a protective effect against inhibitors targeting the ion-binding sites, both in the complete ATP synthase and the isolated c-ring. Definitive evidence of Na⁺ coupling is provided by two identical crystal structures of the c₁₁ ring, solved by X-ray crystallography at 2.2 and 2.6 Å resolution, at pH 5.3 and 8.7, respectively. Na⁺ ions occupy all binding sites, each coordinated by four amino acids and a water molecule. Intriguingly, two carboxylates instead of one mediate ion binding. Simulations and experiments demonstrate that this motif implies that a proton is concurrently bound to all sites, although Na⁺ alone drives the rotary mechanism. The structure thus reveals a new mode of ion coupling in ATP synthases and provides a basis for drug-design efforts against this opportunistic pathogen.

  8. Fish Oil Supplementation and Fatty Acid Synthase Expression in the Prostate: A Randomized Controlled Trial. Addendum

    Science.gov (United States)

    2011-07-01

    acids ( PUFA ), particularly omega -3 fatty acids , inhibits SREBP-1 activation, resulting in a decreased transcription of FAS. 15. SUBJECT TERMS Prostate...Cancer; Lipid Metabolism; Clinical Trial; Omega -3 Fatty Acids 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES...controls, Menendez et al demonstrated that addition of omega -3 fatty acids (-3 FA), docosahexanoic acid (DHA), alpha- linolenic acid

  9. Endothelial Nitric Oxide Synthase Gene Polymorphism (G894T and Diabetes Mellitus (Type II among South Indians

    Directory of Open Access Journals (Sweden)

    T. Angeline

    2011-01-01

    Full Text Available The objective of the study is to find out whether the endothelial nitric oxide synthase (eNOS G894T single-nucleotide polymorphism is associated with type 2 diabetes mellitus in South Indian (Tamil population. A total number of 260 subjects comprising 100 type 2 diabetic mellitus patients and 160 healthy individuals with no documented history of diabetes were included for the study. DNA was isolated, and eNOS G894T genotyping was performed using the polymerase chain reaction followed by restriction enzyme analysis using Ban II. The genotype distribution in patients and controls were compatible with the Hardy-Weinberg expectations (P>0.05. Odds ratio indicates that the occurrence of mutant genotype (GT/TT was 7.2 times (95% CI = 4.09–12.71 more frequent in the cases than in controls. Thus, the present study demonstrates that there is an association of endothelial nitric oxide synthase gene (G894T polymorphism with diabetes mellitus among South Indians.

  10. New Inducible Nitric Oxide Synthase and Cyclooxygenase-2 Inhibitors, Nalidixic Acid Linked to Isatin Schiff Bases via Certain l-Amino Acid Bridges.

    Science.gov (United States)

    Naglah, Ahmed M; Ahmed, Atallah F; Wen, Zhi-Hong; Al-Omar, Mohamed A; Amr, Abd El-Galil E; Kalmouch, Atef

    2016-04-15

    A series of new Schiff bases were synthesized by condensation of isatins with the nalidixic acid-l-amino acid hydrazides. Prior to hydrazide formation, a peptide linkage has been prepared via coupling of nalidixic acid with appropriate l-amino acid methyl esters to yield 3a-c. The chemical structures of the new Schiff bases (5b and 5d-h) were confirmed by means of IR, NMR, mass spectroscopic, and elemental analyses. The anti-inflammatory activity of these Schiff bases was evaluated via measurement of the expressed inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in the lipopolysaccharide (LPS)-stimulated RAW264.7 macrophage cells model. The Schiff bases exhibited significant dual inhibitory effect against the induction of the pro-inflammatory iNOS and COX-2 proteins with variable potencies. However, they strongly down-regulated the iNOS expression to the level of 16.5% ± 7.4%-42.2% ± 19.6% compared to the effect on COX-2 expression (bases, relative to that of COX-2, seems to be a reflection of the combined suppressive effects exerted by their nalidixic acid, isatins (4a-c), and l-amino acid moieties against iNOS expression. These synthesized nalidixic acid-l-amino acid-isatin conjugates can be regarded as a novel class of anti-inflammatory antibacterial agents.

  11. Fish Oil Supplementation and Fatty Acid Synthase Expression in the Prostate: A Randomized Controlled Trial

    Science.gov (United States)

    2008-03-01

    expression and fatty acid synthesis. Research in normal cells has demonstrated that dietary supplementation with polyunsaturated fatty acids ( PUFA ...particularly omega -3 fatty acids , inhibits SREBP-1 activation, resulting in a decreased transcription of FAS. 15. SUBJECT TERMS Prostate Cancer...Lipid Medtabolism, Clinical Trial; Omega -3 Fatty Acids 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a. NAME

  12. Elevated salicylic acid levels conferred by increased expression of ISOCHORISMATE SYNTHASE 1 contribute to hyperaccumulation of SUMO1 conjugates in the Arabidopsis mutant early in short days 4.

    Science.gov (United States)

    Villajuana-Bonequi, Mitzi; Elrouby, Nabil; Nordström, Karl; Griebel, Thomas; Bachmair, Andreas; Coupland, George

    2014-07-01

    Post-translational modification of proteins by attachment of small ubiquitin-like modifier (SUMO) is essential for plant growth and development. Mutations in the SUMO protease early in short days 4 (ESD4) cause hyperaccumulation of conjugates formed between SUMO and its substrates, and phenotypically are associated with extreme early flowering and impaired growth. We performed a suppressor mutagenesis screen of esd4 and identified a series of mutants called suppressor of esd4 (sed), which delay flowering, enhance growth and reduce hyperaccumulation of SUMO conjugates. Genetic mapping and genome sequencing indicated that one of these mutations (sed111) is in the gene salicylic acid induction-deficient 2 (SID2), which encodes ISOCHORISMATE SYNTHASE I, an enzyme required for biosynthesis of salicylic acid (SA). Analyses showed that compared with wild-type plants, esd4 contains higher levels of SID2 mRNA and about threefold more SA, whereas sed111 contains lower SA levels. Other sed mutants also contain lower SA levels but are not mutant for SID2, although most reduce SID2 mRNA levels. Therefore, higher SA levels contribute to the small size, early flowering and elevated SUMO conjugate levels of esd4. Our results support previous data indicating that SUMO homeostasis influences SA biosynthesis in wild-type plants, and also demonstrate that elevated levels of SA strongly increase the abundance of SUMO conjugates.

  13. Dysregulation of glycogen synthase COOH- and NH2-terminal phosphorylation by insulin in obesity and type 2 diabetes mellitus

    DEFF Research Database (Denmark)

    Højlund, Kurt; Birk, Jesper Bratz; Klein, Ditte Kjærsgaard

    2009-01-01

    Context: Insulin-stimulated glucose disposal is impaired in obesity and type 2 diabetes mellitus (T2DM) and is tightly linked to impaired skeletal muscle glucose uptake and storage. Impaired activation of glycogen synthase (GS) by insulin is a well-established defect in both obesity and T2DM......, but the underlying mechanisms remain unclear. Design and Participants: Insulin action was investigated in a matched cohort of lean healthy, obese nondiabetic, and obese type 2 diabetic subjects by the euglycemic-hyperinsulinemic clamp technique combined with muscle biopsies. Activity, site-specific phosphorylation......, and upstream signaling of GS were evaluated in skeletal muscle. Results: GS activity correlated inversely with phosphorylation of GS site 2+2a and 3a. Insulin significantly decreased 2+2a phosphorylation in lean subjects only and induced a larger dephosphorylation at site 3 in lean compared with obese subjects...

  14. Neuronal nitric oxide synthase is dislocated in type I fibers of myalgic muscle but can recover with physical exercise training

    DEFF Research Database (Denmark)

    Jensen, L; Andersen, L L; Schrøder, H D

    2015-01-01

    Trapezius myalgia is the most common type of chronic neck pain. While physical exercise reduces pain and improves muscle function, the underlying mechanisms remain unclear. Nitric oxide (NO) signaling is important in modulating cellular function, and a dysfunctional neuronal NO synthase (nNOS) may...... contribute to an ineffective muscle function. This study investigated nNOS expression and localization in chronically painful muscle. Forty-one women clinically diagnosed with trapezius myalgia (MYA) and 18 healthy controls (CON) were included in the case-control study. Subsequently, MYA were randomly...... assigned to either 10 weeks of specific strength training (SST, n = 18), general fitness training (GFT, n = 15), or health information (REF, n = 8). Distribution of fiber type, cross-sectional area, and sarcolemmal nNOS expression did not differ between MYA and CON. However, MYA showed increased...

  15. Monoterpene synthases from common sage (Salvia officinalis)

    Energy Technology Data Exchange (ETDEWEB)

    Croteau, Rodney Bruce (Pullman, WA); Wise, Mitchell Lynn (Pullman, WA); Katahira, Eva Joy (Pullman, WA); Savage, Thomas Jonathan (Christchurch 5, NZ)

    1999-01-01

    cDNAs encoding (+)-bornyl diphosphate synthase, 1,8-cineole synthase and (+)-sabinene synthase from common sage (Salvia officinalis) have been isolated and sequenced, and the corresponding amino acid sequences has been determined. Accordingly, isolated DNA sequences (SEQ ID No:1; SEQ ID No:3 and SEQ ID No:5) are provided which code for the expression of (+)-bornyl diphosphate synthase (SEQ ID No:2), 1,8-cineole synthase (SEQ ID No:4) and (+)-sabinene synthase SEQ ID No:6), respectively, from sage (Salvia officinalis). In other aspects, replicable recombinant cloning vehicles are provided which code for (+)-bornyl diphosphate synthase, 1,8-cineole synthase or (+)-sabinene synthase, or for a base sequence sufficiently complementary to at least a portion of (+)-bornyl diphosphate synthase, 1,8-cineole synthase or (+)-sabinene synthase DNA or RNA to enable hybridization therewith. In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding (+)-bornyl diphosphate synthase, 1,8-cineole synthase or (+)-sabinene synthase. Thus, systems and methods are provided for the recombinant expression of the aforementioned recombinant monoterpene synthases that may be used to facilitate their production, isolation and purification in significant amounts. Recombinant (+)-bornyl diphosphate synthase, 1,8-cineole synthase and (+)-sabinene synthase may be used to obtain expression or enhanced expression of (+)-bornyl diphosphate synthase, 1,8-cineole synthase and (+)-sabinene synthase in plants in order to enhance the production of monoterpenoids, or may be otherwise employed for the regulation or expression of (+)-bornyl diphosphate synthase, 1,8-cineole synthase and (+)-sabinene synthase, or the production of their products.

  16. In vitro evidence that D-serine disturbs the citric acid cycle through inhibition of citrate synthase activity in rat cerebral cortex.

    Science.gov (United States)

    Zanatta, Angela; Schuck, Patrícia Fernanda; Viegas, Carolina Maso; Knebel, Lisiane Aurélio; Busanello, Estela Natacha Brandt; Moura, Alana Pimentel; Wajner, Moacir

    2009-11-17

    The present work investigated the in vitro effects of D-serine (D-Ser) on important parameters of energy metabolism in cerebral cortex of young rats. The parameters analyzed were CO(2) generation from glucose and acetate, glucose uptake and the activities of the respiratory chain complexes I-IV, of the citric acid cycle enzymes citrate synthase, aconitase, isocitrate dehydrogenase, alpha-ketoglutarate dehydrogenase, succinate dehydrogenase, fumarase and malate dehydrogenase and of creatine kinase and Na(+),K(+)-ATPase. Our results show that D-Ser significantly reduced CO(2) production from acetate, but not from glucose, reflecting an impairment of the citric acid cycle function. Furthermore, D-Ser did not affect glucose uptake. We also observed that the activity of the mitochondrial enzyme citrate synthase from mitochondrial preparations and purified citrate synthase was significantly inhibited by D-Ser, whereas the other activities of the citric acid cycle as well as the activities of complexes I-III, II-III, II and IV of the respiratory chain, creatine kinase and Na(+),K(+)-ATPase were not affected by this D-amino acid. We also found that L-serine did not affect citrate synthase activity from mitochondrial preparations and purified enzyme. The data indicate that D-Ser impairs the citric acid cycle activity via citrate synthase inhibition, therefore compromising energy metabolism production in cerebral cortex of young rats. Therefore, it is presumed that this mechanism may be involved at least in part in the neurological damage found in patients affected by disorders in which D-Ser metabolism is impaired, with altered cerebral concentrations of this D-amino acid.

  17. Gene expression profiles of inducible nitric oxide synthase and cytokines in Leishmania major-infected macrophage-like RAW 264.7 cells treated with gallic acid

    NARCIS (Netherlands)

    Radtke, O.A.; Kiderlen, A.F.; Kayser, Oliver; Kolodziej, H

    2004-01-01

    The effects of gallic acid on the gene expressions of inducible nitric oxide synthase (iNOS) and the cytokines interleukin (IL)-1, IL-10, IL-12, IL-18, TNF-alpha, and interferon (IFN)-gamma were investigated by reverse-transcription polymerase chain reaction (RT-PCR). The experiments were performed

  18. Design and structure-activity relationships of potent and selective inhibitors of undecaprenyl pyrophosphate synthase (UPPS): tetramic, tetronic acids and dihydropyridin-2-ones.

    Science.gov (United States)

    Peukert, Stefan; Sun, Yingchuan; Zhang, Rui; Hurley, Brian; Sabio, Mike; Shen, Xiaoyu; Gray, Christen; Dzink-Fox, JoAnn; Tao, Jianshi; Cebula, Regina; Wattanasin, Sompong

    2008-03-15

    Based on a pharmacophore hypothesis substituted tetramic and tetronic acid 3-carboxamides as well as dihydropyridin-2-one-3-carboxamides were investigated as inhibitors of undecaprenyl pyrophosphate synthase (UPPS) for use as novel antimicrobial agents. Synthesis and structure-activity relationship patterns for this class of compounds are discussed. Selectivity data and antibacterial activities for selected compounds are provided.

  19. Fatty acid synthase as a factor required for exercise-induced cognitive enhancement and dentate gyrus cellular proliferation.

    Science.gov (United States)

    Chorna, Nataliya E; Santos-Soto, Iván J; Carballeira, Nestor M; Morales, Joan L; de la Nuez, Janneliz; Cátala-Valentin, Alma; Chornyy, Anatoliy P; Vázquez-Montes, Adrinel; De Ortiz, Sandra Peña

    2013-01-01

    Voluntary running is a robust inducer of adult hippocampal neurogenesis. Given that fatty acid synthase (FASN), the key enzyme for de novo fatty acid biosynthesis, is critically involved in proliferation of embryonic and adult neural stem cells, we hypothesized that FASN could mediate both exercise-induced cell proliferation in the subgranular zone (SGZ) of the dentate gyrus (DG) and enhancement of spatial learning and memory. In 20 week-old male mice, voluntary running-induced hippocampal-specific upregulation of FASN was accompanied also by hippocampal-specific accumulation of palmitate and stearate saturated fatty acids. In experiments addressing the functional role of FASN in our experimental model, chronic intracerebroventricular (i.c.v.) microinfusions of C75, an irreversible FASN inhibitor, and significantly impaired exercise-mediated improvements in spatial learning and memory in the Barnes maze. Unlike the vehicle-injected mice, the C75 group adopted a non-spatial serial escape strategy and displayed delayed escape latencies during acquisition and memory tests. Furthermore, pharmacologic blockade of FASN function with C75 resulted in a significant reduction, compared to vehicle treated controls, of the number of proliferative cells in the DG of running mice as measured by immunoreactive to Ki-67 in the SGZ. Taken together, our data suggest that FASN plays an important role in exercise-mediated cognitive enhancement, which might be associated to its role in modulating exercise-induced stimulation of neurogenesis.

  20. Fatty acid synthase as a factor required for exercise-induced cognitive enhancement and dentate gyrus cellular proliferation.

    Directory of Open Access Journals (Sweden)

    Nataliya E Chorna

    Full Text Available Voluntary running is a robust inducer of adult hippocampal neurogenesis. Given that fatty acid synthase (FASN, the key enzyme for de novo fatty acid biosynthesis, is critically involved in proliferation of embryonic and adult neural stem cells, we hypothesized that FASN could mediate both exercise-induced cell proliferation in the subgranular zone (SGZ of the dentate gyrus (DG and enhancement of spatial learning and memory. In 20 week-old male mice, voluntary running-induced hippocampal-specific upregulation of FASN was accompanied also by hippocampal-specific accumulation of palmitate and stearate saturated fatty acids. In experiments addressing the functional role of FASN in our experimental model, chronic intracerebroventricular (i.c.v. microinfusions of C75, an irreversible FASN inhibitor, and significantly impaired exercise-mediated improvements in spatial learning and memory in the Barnes maze. Unlike the vehicle-injected mice, the C75 group adopted a non-spatial serial escape strategy and displayed delayed escape latencies during acquisition and memory tests. Furthermore, pharmacologic blockade of FASN function with C75 resulted in a significant reduction, compared to vehicle treated controls, of the number of proliferative cells in the DG of running mice as measured by immunoreactive to Ki-67 in the SGZ. Taken together, our data suggest that FASN plays an important role in exercise-mediated cognitive enhancement, which might be associated to its role in modulating exercise-induced stimulation of neurogenesis.

  1. Δ9-Tetrahydrocannabinolic acid synthase: The application of a plant secondary metabolite enzyme in biocatalytic chemical synthesis.

    Science.gov (United States)

    Lange, Kerstin; Schmid, Andreas; Julsing, Mattijs K

    2016-09-10

    Δ(9)-Tetrahydrocannabinolic acid synthase (THCAS) from the secondary metabolism of Cannabis sativa L. catalyzes the oxidative formation of an intramolecular CC bond in cannabigerolic acid (CBGA) to synthesize Δ(9)-tetrahydrocannabinolic acid (THCA), which is the direct precursor of Δ(9)-tetrahydrocannabinol (Δ(9)-THC). Aiming on a biotechnological production of cannabinoids, we investigated the potential of the heterologously produced plant oxidase in a cell-free system on preparative scale. THCAS was characterized in an aqueous/organic two-liquid phase setup in order to solubilize the hydrophobic substrate and to allow in situ product removal. Compared to the single phase aqueous setup the specific activity decreased by a factor of approximately 2 pointing to a substrate limitation of CBGA in the two-liquid phase system. However, the specific activity remained stable for at least 3h illustrating the benefit of the two-liquid phase setup. In a repeated-batch setup, THCAS showed only a minor loss of specific activity in the third batch pointing to a high intrinsic stability and high solvent tolerance of the enzyme. Maximal space-time-yields of 0.121gL(-1)h(-1) were reached proving the two-liquid phase concept suitable for biotechnological production of cannabinoids.

  2. The endothelial nitric oxide synthase gene and risk of diabetic nephropathy and development of cardiovascular disease in type 1 diabetes

    DEFF Research Database (Denmark)

    Möllsten, Anna; Lajer, Maria Stenkil; Jorsal, Anders

    2009-01-01

    Nitric oxide (NO) is important in the maintenance of vascular tone and regulation of blood pressure. NO may also play a role in the development of both nephropathy and cardiovascular disease (CVD) in patients with diabetes. The susceptibility to nephropathy and CVD depends to some extent on genetic...... factors, therefore polymorphisms in the gene coding for endothelial NO-synthase, NOS3, can affect the risk of developing these diseases. Type 1 diabetes patients attending the Steno Diabetes Center, Denmark, between 1993 and 2001 were enrolled in this study. A total of 458 cases with diabetic nephropathy...... (albumin excretion >300 mg/24h) and 319 controls with persistent normoalbuminuria ( or =20 years of diabetes duration at follow-up were identified. Patients were followed until death or end of the study. Associations between seven NOS3-gene polymorphisms and nephropathy, progression...

  3. Fatty Acid Synthase Activity as a Target for c-Met Driven Prostate Cancer

    Science.gov (United States)

    2013-07-01

    polyunsaturated fatty acids ( PUFAs ), rich in a Mediterranean diet, can reduce FASN activity. This activity has been shown to reduce Her2 expression as a...et al., Rapid and selective detection of fatty acylated proteins using omega - alkynyl- fatty acids and click chemistry. J Lipid Res, 2010. 51(6): p...Protein Phosphatase 2A PUFA Polyunsaturated Fatty Acids PTEN Phosphatase and Tensin Homolog RTK Receptor Tyrosine Kinase SREBP-1 Sterol

  4. Fatty acid synthase plays a role in cancer metabolism beyond providing fatty acids for phospholipid synthesis or sustaining elevations in glycolytic activity.

    Science.gov (United States)

    Hopperton, Kathryn E; Duncan, Robin E; Bazinet, Richard P; Archer, Michael C

    2014-01-15

    Fatty acid synthase is over-expressed in many cancers and its activity is required for cancer cell survival, but the role of endogenously synthesized fatty acids in cancer is unknown. It has been suggested that endogenous fatty acid synthesis is either needed to support the growth of rapidly dividing cells, or to maintain elevated glycolysis (the Warburg effect) that is characteristic of cancer cells. Here, we investigate both hypotheses. First, we compared utilization of fatty acids synthesized endogenously from (14)C-labeled acetate to those supplied exogenously as (14)C-labeled palmitate in the culture medium in human breast cancer (MCF-7 and MDA-MB-231) and untransformed breast epithelial cells (MCF-10A). We found that cancer cells do not produce fatty acids that are different from those derived from exogenous palmitate, that these fatty acids are esterified to the same lipid and phospholipid classes in the same proportions, and that their distribution within neutral lipids is not different from untransformed cells. These results suggest that endogenously synthesized fatty acids do not fulfill a specific function in cancer cells. Furthermore, we observed that cancer cells excrete endogenously synthesized fatty acids, suggesting that they are produced in excess of requirements. We next investigated whether lipogenic activity is involved in the maintenance of high glycolytic activity by culturing both cancer and non-transformed cells under anoxic conditions. Although anoxia increased glycolysis 2-3 fold, we observed no concomitant increase in lipogenesis. Our results indicate that breast cancer cells do not have a specific qualitative or quantitative requirement for endogenously synthesized fatty acids and that increased de novo lipogenesis is not required to sustain elevations in glycolytic activity induced by anoxia in these cells.

  5. Structure of the ent -Copalyl Diphosphate Synthase PtmT2 from Streptomyces platensis CB00739, a Bacterial Type II Diterpene Synthase

    Energy Technology Data Exchange (ETDEWEB)

    Rudolf, Jeffrey D.; Dong, Liao-Bin; Cao, Hongnan; Hatzos-Skintges, Catherine; Osipiuk, Jerzy; Endres, Michael; Chang, Chin-Yuan; Ma, Ming; Babnigg, Gyorgy; Joachimiak, Andrzej; Phillips, George N.; Shen, Ben

    2016-08-31

    Terpenoids are the largest and most structurally diverse family of natural products found in nature, yet their presence in bacteria is underappreciated. The carbon skeletons of terpenoids are generated through carbocation-dependent cyclization cascades catalyzed by terpene synthases (TSs). Type I and type II TSs initiate cyclization via diphosphate ionization and protonation, respectively, and protein structures of both types are known. Most plant diterpene synthases (DTSs) possess three alpha-helical domains (alpha beta gamma), which are thought to have arisen from the fusion of discrete, ancestral bacterial type I TSs (alpha) and type II TSs (beta gamma). Type II DTSs of bacterial origin, of which there are no structurally characterized members, are a missing piece in the structural evolution of TSs. Here, we report the first crystal structure of a type II DTS from bacteria. PtnaT2 from Streptomyces platensis CB00739 was verified as an ent-copalyl diphosphate synthase involved in the biosynthesis of platensimycin and platencin. The crystal structure of PtmT2 was solved at a resolution of 1.80 angstrom, and docking studies suggest the catalytically active conformation of geranylgeranyl diphosphate (GGPP). Site-directed mutagenesis confirmed residues involved in binding the diphosphate moiety of GGPP and identified DxxxxE as a potential Mg2+-binding motif for type II DTSs of bacterial origin. Finally, both the shape and physicochemical properties of the active sites are responsible for determining specific catalytic outcomes of TSs. The structure of PtmT2 fundamentally advances the knowledge of bacterial TSs, their mechanisms, and their role in the evolution of TSs.

  6. Geranyl diphosphate synthase from mint

    Energy Technology Data Exchange (ETDEWEB)

    Croteau, R.B.; Wildung, M.R.; Burke, C.C.; Gershenzon, J.

    1999-03-02

    A cDNA encoding geranyl diphosphate synthase from peppermint has been isolated and sequenced, and the corresponding amino acid sequence has been determined. Accordingly, an isolated DNA sequence (SEQ ID No:1) is provided which codes for the expression of geranyl diphosphate synthase (SEQ ID No:2) from peppermint (Mentha piperita). In other aspects, replicable recombinant cloning vehicles are provided which code for geranyl diphosphate synthase or for a base sequence sufficiently complementary to at least a portion of the geranyl diphosphate synthase DNA or RNA to enable hybridization therewith (e.g., antisense geranyl diphosphate synthase RNA or fragments of complementary geranyl diphosphate synthase DNA which are useful as polymerase chain reaction primers or as probes for geranyl diphosphate synthase or related genes). In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding geranyl diphosphate synthase. Thus, systems and methods are provided for the recombinant expression of geranyl diphosphate synthase that may be used to facilitate the production, isolation and purification of significant quantities of recombinant geranyl diphosphate synthase for subsequent use, to obtain expression or enhanced expression of geranyl diphosphate synthase in plants in order to enhance the production of monoterpenoids, to produce geranyl diphosphate in cancerous cells as a precursor to monoterpenoids having anti-cancer properties or may be otherwise employed for the regulation or expression of geranyl diphosphate synthase or the production of geranyl diphosphate. 5 figs.

  7. Geranyl diphosphate synthase from mint

    Energy Technology Data Exchange (ETDEWEB)

    Croteau, Rodney Bruce (Pullman, WA); Wildung, Mark Raymond (Colfax, WA); Burke, Charles Cullen (Moscow, ID); Gershenzon, Jonathan (Jena, DE)

    1999-01-01

    A cDNA encoding geranyl diphosphate synthase from peppermint has been isolated and sequenced, and the corresponding amino acid sequence has been determined. Accordingly, an isolated DNA sequence (SEQ ID No:1) is provided which codes for the expression of geranyl diphosphate synthase (SEQ ID No:2) from peppermint (Mentha piperita). In other aspects, replicable recombinant cloning vehicles are provided which code for geranyl diphosphate synthase or for a base sequence sufficiently complementary to at least a portion of the geranyl diphosphate synthase DNA or RNA to enable hybridization therewith (e.g., antisense geranyl diphosphate synthase RNA or fragments of complementary geranyl diphosphate synthase DNA which are useful as polymerase chain reaction primers or as probes for geranyl diphosphate synthase or related genes). In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding geranyl diphosphate synthase. Thus, systems and methods are provided for the recombinant expression of geranyl diphosphate synthase that may be used to facilitate the production, isolation and purification of significant quantities of recombinant geranyl diphosphate synthase for subsequent use, to obtain expression or enhanced expression of geranyl diphosphate synthase in plants in order to enhance the production of monoterpenoids, to produce geranyl diphosphate in cancerous cells as a precursor to monoterpenoids having anti-cancer properties or may be otherwise employed for the regulation or expression of geranyl diphosphate synthase or the production of geranyl diphosphate.

  8. Role of carglumic acid in the treatment of acute hyperammonemia due to N-acetylglutamate synthase deficiency

    Directory of Open Access Journals (Sweden)

    Häberle J

    2011-08-01

    Full Text Available Johannes HäberleKinderspital Zürich, Abteilung Stoffwechsel, Zürich, SwitzerlandAbstract: N-acetylglutamate synthase (NAGS deficiency is a rare inborn error of metabolism affecting ammonia detoxification in the urea cycle. The product of NAGS is N-acetylglutamate which is the absolutely required allosteric activator of the first urea cycle enzyme carbamoylphosphate synthetase 1. In defects of NAGS, the urea cycle function can be severely affected resulting in fatal hyperammonemia in neonatal patients or at any later stage in life. NAGS deficiency can be treated with a structural analog of N-acetylglutamate, N-carbamyl-L-glutamate, which is available for enteral use as a licensed drug. Since NAGS deficiency is an extremely rare disorder, reports on the use of N-carbamyl-L-glutamate are mainly based on single patients. According to these, the drug is very effective in treating acute hyperammonemia by avoiding the need for detoxification during the acute metabolic decompensation. Also during long-term treatment, N-carbamyl-L-glutamate is effective in maintaining normal plasma ammonia levels and avoiding the need for additional drug therapy or protein-restricted diet. Open questions remain which concern the optimal dosage in acute and long-term use of N-carbamyl-L-glutamate and potential additional disorders in which the drug might also be effective in treating acute hyperammonemia. This review focuses on the role of N-carbamyl-L-glutamate for the treatment of acute hyperammonemia due to primary NAGS deficiency but will briefly discuss the current knowledge on the role of N-carbamyl-L-glutamate for treatment of secondary NAGS deficiencies.Keywords: carglumic acid, carbamylglutamate, N-carbamyl-L-glutamate, N-acetylglutamate synthase deficiency, NAGS deficiency, hyperammonemia

  9. In Silico Structure Prediction of Human Fatty Acid Synthase-Dehydratase: A Plausible Model for Understanding Active Site Interactions.

    Science.gov (United States)

    John, Arun; Umashankar, Vetrivel; Samdani, A; Sangeetha, Manoharan; Krishnakumar, Subramanian; Deepa, Perinkulam Ravi

    2016-01-01

    Fatty acid synthase (FASN, UniProt ID: P49327) is a multienzyme dimer complex that plays a critical role in lipogenesis. Consequently, this lipogenic enzyme has gained tremendous biomedical importance. The role of FASN and its inhibition is being extensively researched in several clinical conditions, such as cancers, obesity, and diabetes. X-ray crystallographic structures of some of its domains, such as β-ketoacyl synthase, acetyl transacylase, malonyl transacylase, enoyl reductase, β-ketoacyl reductase, and thioesterase, (TE) are already reported. Here, we have attempted an in silico elucidation of the uncrystallized dehydratase (DH) catalytic domain of human FASN. This theoretical model for DH domain was predicted using comparative modeling methods. Different stand-alone tools and servers were used to validate and check the reliability of the predicted models, which suggested it to be a highly plausible model. The stereochemical analysis showed 92.0% residues in favorable region of Ramachandran plot. The initial physiological substrate β-hydroxybutyryl group was docked into active site of DH domain using Glide. The molecular dynamics simulations carried out for 20 ns in apo and holo states indicated the stability and accuracy of the predicted structure in solvated condition. The predicted model provided useful biochemical insights into the substrate-active site binding mechanisms. This model was then used for identifying potential FASN inhibitors using high-throughput virtual screening of the National Cancer Institute database of chemical ligands. The inhibitory efficacy of the top hit ligands was validated by performing molecular dynamics simulation for 20 ns, where in the ligand NSC71039 exhibited good enzyme inhibition characteristics and exhibited dose-dependent anticancer cytotoxicity in retinoblastoma cancer cells in vitro.

  10. New Inducible Nitric Oxide Synthase and Cyclooxygenase-2 Inhibitors, Nalidixic Acid Linked to Isatin Schiff Bases via Certain l-Amino Acid Bridges

    Directory of Open Access Journals (Sweden)

    Ahmed M. Naglah

    2016-04-01

    Full Text Available A series of new Schiff bases were synthesized by condensation of isatins with the nalidixic acid-l-amino acid hydrazides. Prior to hydrazide formation, a peptide linkage has been prepared via coupling of nalidixic acid with appropriate l-amino acid methyl esters to yield 3a–c. The chemical structures of the new Schiff bases (5b and 5d–h were confirmed by means of IR, NMR, mass spectroscopic, and elemental analyses. The anti-inflammatory activity of these Schiff bases was evaluated via measurement of the expressed inducible nitric oxide synthase (iNOS and cyclooxygenase-2 (COX-2 in the lipopolysaccharide (LPS-stimulated RAW264.7 macrophage cells model. The Schiff bases exhibited significant dual inhibitory effect against the induction of the pro-inflammatory iNOS and COX-2 proteins with variable potencies. However, they strongly down-regulated the iNOS expression to the level of 16.5% ± 7.4%–42.2% ± 19.6% compared to the effect on COX-2 expression (<56.4% ± 3.1% inhibition at the same concentration (10 μM. The higher iNOS inhibition activity of the tested Schiff bases, relative to that of COX-2, seems to be a reflection of the combined suppressive effects exerted by their nalidixic acid, isatins (4a–c, and l-amino acid moieties against iNOS expression. These synthesized nalidixic acid-l-amino acid-isatin conjugates can be regarded as a novel class of anti-inflammatory antibacterial agents.

  11. Regulation of expression of citrate synthase by the retinoic acid receptor-related orphan receptor α (RORα.

    Directory of Open Access Journals (Sweden)

    Christine Crumbley

    Full Text Available The retinoic acid receptor-related orphan receptor α (RORα is a member of the nuclear receptor superfamily of transcription factors that plays an important role in regulation of the circadian rhythm and metabolism. Mice lacking a functional RORα display a range of metabolic abnormalities including decreased serum cholesterol and plasma triglycerides. Citrate synthase (CS is a key enzyme of the citric acid cycle that provides energy for cellular function. Additionally, CS plays a critical role in providing citrate derived acetyl-CoA for lipogenesis and cholesterologenesis. Here, we identified a functional RORα response element (RORE in the promoter of the CS gene. ChIP analysis demonstrates RORα occupancy of the CS promoter and a putative RORE binds to RORα effectively in an electrophoretic mobility shift assay and confers RORα responsiveness to a reporter gene in a cotransfection assay. We also observed a decrease in CS gene expression and CS enzymatic activity in the staggerer mouse, which has a mutation of in the Rora gene resulting in nonfunctional RORα protein. Furthermore, we found that SR1001 a RORα inverse agonist eliminated the circadian pattern of expression of CS mRNA in mice. These data suggest that CS is a direct RORα target gene and one mechanism by which RORα regulates lipid metabolism is via regulation of CS expression.

  12. Improvement of glyphosate resistance through concurrent mutations in three amino acids of the Ochrobactrum 5-enopyruvylshikimate-3-phosphate synthase.

    Science.gov (United States)

    Tian, Yong-Sheng; Xu, Jing; Xiong, Ai-Sheng; Zhao, Wei; Fu, Xiao-Yan; Peng, Ri-He; Yao, Quan-Hong

    2011-12-01

    A mutant of 5-enopyruvylshikimate-3-phosphate synthase from Ochrobactrum anthropi was identified after four rounds of DNA shuffling and screening. Its ability to restore the growth of the mutant ER2799 cell on an M9 minimal medium containing 300 mM glyphosate led to its identification. The mutant had mutations in seven amino acids: E145G, N163H, N267S, P318R, M377V, M425T, and P438L. Among these mutations, N267S, P318R, and M425T have never been previously reported as important residues for glyphosate resistance. However, in the present study they were found by site-directed mutagenesis to collectively contribute to the improvement of glyphosate tolerance. Kinetic analyses of these three mutants demonstrated that the effectiveness of these three individual amino acid alterations on glyphosate tolerance was in the order P318R > M425T > N267S. The results of the kinetic analyses combined with a three-dimensional structure modeling of the location of P318R and M425T demonstrate that the lower hemisphere's upper surface is possibly another important region for glyphosate resistance. Furthermore, the transgenic Arabidopsis was obtained to confirm the potential of the mutant in developing glyphosate-resistant crops.

  13. Jinggangmycin increases fecundity of the brown planthopper, Nilaparvata lugens (Stål) via fatty acid synthase gene expression.

    Science.gov (United States)

    Li, Lei; Jiang, Yiping; Liu, Zongyu; You, Linlin; Wu, You; Xu, Bing; Ge, Linquan; Stanley, David; Song, Qisheng; Wu, Jincai

    2016-01-01

    The antibiotic jinggangmycin (JGM) is mainly used in controlling the rice sheath blight, Rhizoctonia solani, in China. JGM also enhances reproduction of the brown planthopper (BPH), Nilaparvata lugens (Stål). To date, however, molecular mechanisms of the enhancement are unclear. Our related report documented the influence of foliar JGM sprays on ovarian protein content. Here, we used isobaric tags for relative and absolute quantitation (iTRAQ) protocols to analyze ovarian proteins of BPH females following JGM spray (JGM-S) and topical application (JGM-T). We recorded changes in expression of 284 proteins (142↑ and 142↓) in JGM-S compared to the JGM-S control group (S-control); 267 proteins were differentially expressed (130↑ and 137↓) in JGM-T compared to the JGM-T control group (T-control), of which, 22 proteins were up-regulated in both groups. Comparing the JGM-S to the JGM-T group, 114 proteins were differentially expressed (62↑ and 52↓). Based on the biological significance of fatty acids, pathway annotation and enrichment analysis, we designed a dsRNA construct to silence a gene encoding fatty acid synthase (FAS). FAS was more highly expressed in JGM-S vs S-control and JGM-S vs JGM-T groups. The dsFAS treatment reduced fecundity by about 46% and reduced ovarian and fat body fatty acid concentrations in JGM-S-treated females relative to controls. We infer FAS provides critically needed fatty acids to support JGM-enhanced fecundity in BPH.

  14. Role of calcium signaling in the activation of mitochondrial nitric oxide synthase and citric acid cycle.

    Science.gov (United States)

    Traaseth, Nathaniel; Elfering, Sarah; Solien, Joseph; Haynes, Virginia; Giulivi, Cecilia

    2004-07-23

    An apparent discrepancy arises about the role of calcium on the rates of oxygen consumption by mitochondria: mitochondrial calcium increases the rate of oxygen consumption because of the activation of calcium-activated dehydrogenases, and by activating mitochondrial nitric oxide synthase (mtNOS), decreases the rates of oxygen consumption because nitric oxide is a competitive inhibitor of cytochrome oxidase. To this end, the rates of oxygen consumption and nitric oxide production were followed in isolated rat liver mitochondria in the presence of either L-Arg (to sustain a mtNOS activity) or N(G)-monomethyl-L-Arg (NMMA, a competitive inhibitor of mtNOS) under State 3 conditions. In the presence of NMMA, the rates of State 3 oxygen consumption exhibited a K(0.5) of 0.16 microM intramitochondrial free calcium, agreeing with those required for the activation of the Krebs cycle. By plotting the difference between the rates of oxygen consumption in State 3 with L-Arg and with NMMA at various calcium concentrations, a K(0.5) of 1.2 microM intramitochondrial free calcium was obtained, similar to the K(0.5) (0.9 microM) of the dependence of the rate of nitric oxide production on calcium concentrations. The activation of dehydrogenases, followed by the activation of mtNOS, would lead to the modulation of the Krebs cycle activity by the modulation of nitric oxide on the respiratory rates. This would ensue in changes in the NADH/NAD and ATP/ADP ratios, which would influence the rate of the cycle and the oxygen diffusion.

  15. Characterization of maize roothairless6 which encodes a D-type cellulose synthase and controls the switch from bulge formation to tip growth

    Science.gov (United States)

    Li, Li; Hey, Stefan; Liu, Sanzhen; Liu, Qiang; McNinch, Colton; Hu, Heng-Cheng; Wen, Tsui-Jung; Marcon, Caroline; Paschold, Anja; Bruce, Wesley; Schnable, Patrick S.; Hochholdinger, Frank

    2016-01-01

    Root hairs are tubular extensions of the epidermis. Root hairs of the monogenic recessive maize mutant roothairless 6 (rth6) are arrested after bulge formation during the transition to tip growth and display a rough cell surface. BSR-Seq in combination with Seq-walking and subsequent analyses of four independently generated mutant alleles established that rth6 encodes CSLD5 a plasma membrane localized 129 kD D-type cellulose synthase with eight transmembrane domains. Cellulose synthases are required for the biosynthesis of cellulose, the most abundant biopolymer of plant cell walls. Phylogenetic analyses revealed that RTH6 is part of a monocot specific clade of D-type cellulose synthases. D-type cellulose synthases are highly conserved in the plant kingdom with five gene family members in maize and homologs even among early land plants such as the moss Physcomitrella patens or the clubmoss Selaginella moellendorffii. Expression profiling demonstrated that rth6 transcripts are highly enriched in root hairs as compared to all other root tissues. Moreover, in addition to the strong knock down of rth6 expression in young primary roots of the mutant rth6, the gene is also significantly down-regulated in rth3 and rth5 mutants, while it is up-regulated in rth2 mutants, suggesting that these genes interact in cell wall biosynthesis. PMID:27708345

  16. Direct Inhibition of Cellular Fatty Acid Synthase Impairs Replication of Respiratory Syncytial Virus and Other Respiratory Viruses.

    Directory of Open Access Journals (Sweden)

    Yamini M Ohol

    Full Text Available Fatty acid synthase (FASN catalyzes the de novo synthesis of palmitate, a fatty acid utilized for synthesis of more complex fatty acids, plasma membrane structure, and post-translational palmitoylation of host and viral proteins. We have developed a potent inhibitor of FASN (TVB-3166 that reduces the production of respiratory syncytial virus (RSV progeny in vitro from infected human lung epithelial cells (A549 and in vivo from mice challenged intranasally with RSV. Addition of TVB-3166 to the culture medium of RSV-infected A549 cells reduces viral spread without inducing cytopathic effects. The antiviral effect of the FASN inhibitor is a direct consequence of reducing de novo palmitate synthesis; similar doses are required for both antiviral activity and inhibition of palmitate production, and the addition of exogenous palmitate to TVB-3166-treated cells restores RSV production. TVB-3166 has minimal effect on RSV entry but significantly reduces viral RNA replication, protein levels, viral particle formation and infectivity of released viral particles. TVB-3166 substantially impacts viral replication, reducing production of infectious progeny 250-fold. In vivo, oral administration of TVB-3166 to RSV-A (Long-infected BALB/c mice on normal chow, starting either on the day of infection or one day post-infection, reduces RSV lung titers 21-fold and 9-fold respectively. Further, TVB-3166 also inhibits the production of RSV B, human parainfluenza 3 (PIV3, and human rhinovirus 16 (HRV16 progeny from A549, HEp2 and HeLa cells respectively. Thus, inhibition of FASN and palmitate synthesis by TVB-3166 significantly reduces RSV progeny both in vitro and in vivo and has broad-spectrum activity against other respiratory viruses. FASN inhibition may alter the composition of regions of the host cell membrane where RSV assembly or replication occurs, or change the membrane composition of RSV progeny particles, decreasing their infectivity.

  17. Down-regulation of hepatic urea synthesis by oxypurines: xanthine and uric acid inhibit N-acetylglutamate synthase.

    Science.gov (United States)

    Nissim, Itzhak; Horyn, Oksana; Nissim, Ilana; Daikhin, Yevgeny; Caldovic, Ljubica; Barcelona, Belen; Cervera, Javier; Tuchman, Mendel; Yudkoff, Marc

    2011-06-24

    We previously reported that isobutylmethylxanthine (IBMX), a derivative of oxypurine, inhibits citrulline synthesis by an as yet unknown mechanism. Here, we demonstrate that IBMX and other oxypurines containing a 2,6-dione group interfere with the binding of glutamate to the active site of N-acetylglutamate synthetase (NAGS), thereby decreasing synthesis of N-acetylglutamate, the obligatory activator of carbamoyl phosphate synthase-1 (CPS1). The result is reduction of citrulline and urea synthesis. Experiments were performed with (15)N-labeled substrates, purified hepatic CPS1, and recombinant mouse NAGS as well as isolated mitochondria. We also used isolated hepatocytes to examine the action of various oxypurines on ureagenesis and to assess the ameliorating affect of N-carbamylglutamate and/or l-arginine on NAGS inhibition. Among various oxypurines tested, only IBMX, xanthine, or uric acid significantly increased the apparent K(m) for glutamate and decreased velocity of NAGS, with little effect on CPS1. The inhibition of NAGS is time- and dose-dependent and leads to decreased formation of the CPS1-N-acetylglutamate complex and consequent inhibition of citrulline and urea synthesis. However, such inhibition was reversed by supplementation with N-carbamylglutamate. The data demonstrate that xanthine and uric acid, both physiologically occurring oxypurines, inhibit the hepatic synthesis of N-acetylglutamate. An important and novel concept emerging from this study is that xanthine and/or uric acid may have a role in the regulation of ureagenesis and, thus, nitrogen homeostasis in normal and disease states.

  18. Fatty acid synthase inhibitors induce apoptosis in non-tumorigenic melan-a cells associated with inhibition of mitochondrial respiration.

    Directory of Open Access Journals (Sweden)

    Franco A Rossato

    Full Text Available The metabolic enzyme fatty acid synthase (FASN is responsible for the endogenous synthesis of palmitate, a saturated long-chain fatty acid. In contrast to most normal tissues, a variety of human cancers overexpress FASN. One such cancer is cutaneous melanoma, in which the level of FASN expression is associated with tumor invasion and poor prognosis. We previously reported that two FASN inhibitors, cerulenin and orlistat, induce apoptosis in B16-F10 mouse melanoma cells via the intrinsic apoptosis pathway. Here, we investigated the effects of these inhibitors on non-tumorigenic melan-a cells. Cerulenin and orlistat treatments were found to induce apoptosis and decrease cell proliferation, in addition to inducing the release of mitochondrial cytochrome c and activating caspases-9 and -3. Transfection with FASN siRNA did not result in apoptosis. Mass spectrometry analysis demonstrated that treatment with the FASN inhibitors did not alter either the mitochondrial free fatty acid content or composition. This result suggests that cerulenin- and orlistat-induced apoptosis events are independent of FASN inhibition. Analysis of the energy-linked functions of melan-a mitochondria demonstrated the inhibition of respiration, followed by a significant decrease in mitochondrial membrane potential (ΔΨm and the stimulation of superoxide anion generation. The inhibition of NADH-linked substrate oxidation was approximately 40% and 61% for cerulenin and orlistat treatments, respectively, and the inhibition of succinate oxidation was approximately 46% and 52%, respectively. In contrast, no significant inhibition occurred when respiration was supported by the complex IV substrate N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD. The protection conferred by the free radical scavenger N-acetyl-cysteine indicates that the FASN inhibitors induced apoptosis through an oxidative stress-associated mechanism. In combination, the present results demonstrate that cerulenin

  19. Up-Regulation of Excitatory Amino Acid Transporters EAAT3 and EAAT4 by Lithium Sensitive Glycogen Synthase Kinase GSK3ß

    Directory of Open Access Journals (Sweden)

    Abeer Abousaab

    2016-12-01

    Full Text Available Background: Cellular uptake of glutamate by the excitatory amino-acid transporters (EAATs decreases excitation and thus participates in the regulation of neuroexcitability. Kinases impacting on neuronal function include Lithium-sensitive glycogen synthase kinase GSK3ß. The present study thus explored whether the activities of EAAT3 and/or EAAT4 isoforms are sensitive to GSK3ß. Methods: cRNA encoding wild type EAAT3 (SLC1A1 or EAAT4 (SLC1A6 was injected into Xenopus oocytes without or with additional injection of cRNA encoding wild type GSK3ß or the inactive mutant K85AGSK3ß. Dual electrode voltage clamp was performed in order to determine glutamate-induced current (IEAAT. Results: Appreciable IEAAT was observed in EAAT3 or EAAT4 expressing but not in water injected oocytes. IEAAT was significantly increased by coexpression of GSK3ß but not by coexpression of K85AGSK3ß. Coexpression of GSK3ß increased significantly the maximal IEAAT in EAAT3 or EAAT4 expressing oocytes, without significantly modifying apparent affinity of the carriers. Lithium (1 mM exposure for 24 hours decreased IEAAT in EAAT3 and GSK3ß expressing oocytes to values similar to IEAAT in oocytes expressing EAAT3 alone. Lithium did not significantly modify IEAAT in oocytes expressing EAAT3 without GSK3ß. Conclusions: Lithium-sensitive GSK3ß is a powerful regulator of excitatory amino acid transporters EAAT3 and EAAT4.

  20. Inhibition of Fatty Acid Synthase in Prostate Cancer by Olristat, a Novel Therapeutic

    Science.gov (United States)

    2006-11-01

    inhibition of tumour growth (Gabrielson et al, 2001; Pizer et al, 2001). Subcutaneous xenografts of MCF7 breast cancer cells in nude mice treated with...malonyl-CoA, which leads to inhibition of carnitine palmitoyltransferase-1 and, indirectly, the fatty acid oxidation pathway (Thupari et al, 2001

  1. Habitat‑specific type I polyketide synthases in soils and street sediments

    NARCIS (Netherlands)

    Hill, Patrick; Piel, Jörn; Aris‑Brosou, Stéphane; Krištůfek, Václav; Boddy, Christopher N.; Dijkhuizen, Lubbert

    2014-01-01

    Actinomycetes produce many pharmaceutically useful compounds through type I polyketide biosynthetic pathways. Soil has traditionally been an important source for these actinomycete-derived pharmaceuticals. As the rate of antibiotic discovery has decreased and the incidence of antibiotic resistance h

  2. Dysregulation of muscle glycogen synthase in recovery from exercise in type 2 diabetes

    DEFF Research Database (Denmark)

    Pedersen, Andreas J T; Hingst, Janne Rasmuss; Friedrichsen, Martin

    2015-01-01

    obese controls. CONCLUSIONS/INTERPRETATION: Exercise-induced activation of muscle GS in obesity and type 2 diabetes involves dephosphorylation of GS at sites 3a + 3b and 2 + 2a and enhanced substrate affinity, which is likely to facilitate glucose partitioning towards storage. Lower GS activity...... and increased phosphorylation at sites 2 + 2a in type 2 diabetes in the recovery period imply an impaired response to exercise....... and substrate affinity in obesity and type 2 diabetes. METHODS: Obese men with type 2 diabetes (n = 13) and weight-matched controls (n = 14) underwent euglycaemic-hyperinsulinaemic clamps in the rested state and 3 h after 60 min of cycling (70% maximal pulmonary oxygen uptake [[Formula: see text

  3. Neuronal Nitric Oxide Synthase Is Dislocated in Type I Fibers of Myalgic Muscle but Can Recover with Physical Exercise Training

    Directory of Open Access Journals (Sweden)

    L. Jensen

    2015-01-01

    Full Text Available Trapezius myalgia is the most common type of chronic neck pain. While physical exercise reduces pain and improves muscle function, the underlying mechanisms remain unclear. Nitric oxide (NO signaling is important in modulating cellular function, and a dysfunctional neuronal NO synthase (nNOS may contribute to an ineffective muscle function. This study investigated nNOS expression and localization in chronically painful muscle. Forty-one women clinically diagnosed with trapezius myalgia (MYA and 18 healthy controls (CON were included in the case-control study. Subsequently, MYA were randomly assigned to either 10 weeks of specific strength training (SST, n=18, general fitness training (GFT, n=15, or health information (REF, n=8. Distribution of fiber type, cross-sectional area, and sarcolemmal nNOS expression did not differ between MYA and CON. However, MYA showed increased sarcoplasmic nNOS localization (18.8 ± 12 versus 12.8 ± 8%, P=0.049 compared with CON. SST resulted in a decrease of sarcoplasm-localized nNOS following training (before 18.1 ± 12 versus after 12.0 ± 12%; P=0,027. We demonstrate that myalgic muscle displays altered nNOS localization and that 10 weeks of strength training normalize these disruptions, which supports previous findings of impaired muscle oxygenation during work tasks and reduced pain following exercise.

  4. The role of glycogen synthase in the development of hyperglycemia in type 2 diabetes - 'To store or not to store glucose, that's the question'

    DEFF Research Database (Denmark)

    Beck-Nielsen, Henning

    2012-01-01

    This review deals with the role of glycogen storage in skeletal muscle for the development of insulin resistance and type 2 diabetes. Specifically, the role of the enzyme glycogen synthase, which seems to be locked in its hyperphosphorylated and inactivated state, is discussed. This defect seems...... to be secondary to ectopic lipid disposition in the muscle cells. These molecular defects are discussed in the context of the overall pathophysiology of hyperglycemia in type 2 diabetic subjects. Copyright © 2012 John Wiley & Sons, Ltd....

  5. Cloning and characterization of the gene encoding β-amyrin synthase in the glycyrrhizic acid biosynthetic pathway in Glycyrrhiza uralensis

    Directory of Open Access Journals (Sweden)

    Honghao Chen

    2013-12-01

    Full Text Available Glycyrrhiza uralensis is considered to be one of the most important herbs in traditional Chinese medicine due to its numerous pharmacological effects particularly its ability to relieve cough and act as a mucolytic. Based on previous research, these effects are mediated by a number of active ingredients, especially glycyrrhizic acid (GA. In the present study, a gene encoding β-amyrin synthase (β-AS involved in GA biosynthesis in G. uralensis has been cloned and expressed in Saccharomyces cerevisiae. The cloned enzyme showed similar activity to native enzymes isolated from other Glycyrrhiza species to catalyze the conversion of 2,3-oxidosqualene into β-amyrin. In fact the β-AS gene is particularly important in the GA biosynthetic pathway in G. uralensis. The complete sequence of the enzyme was determined and a phylogenetic tree based on the β-AS gene of G. uralensis and 20 other species was created. This showed that Glycyrrhiza glabra had the closest kinship with G. uralensis. The results of this work will be useful in determining how to improve the efficacy of G. uralensis by improving its GA content and in exploring the biosynthesis of GA in vitro.

  6. Effects of a fatty acid synthase inhibitor on adipocyte differentiation of mouse 3T3-L1 cells

    Institute of Scientific and Technical Information of China (English)

    Li-hong LIU; Xiao-kui WANG; Yuan-dong HU; Jian-lei KANG; Li-li WANG; Song LI

    2004-01-01

    AIM: To investigate the influence of C75, a fatty acid synthase inhibitor, on adipocyte differentiation. METHODS:Mouse 3T3-L1 preadipocytes were induced to differentiation by insulin, isobutylmethylxanthine, and dexamethasone.Oil red O staining was performed and activity of glycerol-3-phosphate dehydrogenase (GPDH) was measured. The level of peroxisome proliferators-activated receptor γ (PPARγ) mRNA was assayed by semi-quantitative reverse transcription PCR. RESULTS: C75 blocked the adipogenic conversion in a dose-dependent manner and the inhibitory effects occurred both in the early phases (48 h) and in the latter phases (8 d) of the process. Treatment with C75 for 8 d induced more decrease in lipid content than 48 h (P<0.01). Treatment with C75 50 mg/L for 48 h or 8 d decreased GPDH activity by 52.8 % and 31.2 % of Vehicle, respectively. Treatment with C75 10-50 mg/L for 48 h or 8 d down-regulated PPARγ mRNA expression compared with control (P<0.01). CONCLUSION: C75 blocked the adipocyte differentiation, which was related with down-regulation of PPARγ mRNA.

  7. Identification of autoantibody against fatty acid synthase in hepatocellular carcinoma mouse model and its application to diagnosis of HCC.

    Science.gov (United States)

    Heo, Chang-Kyu; Woo, Mi-Kyung; Yu, Dae-Yeul; Lee, Ju Yeon; Yoo, Jong Shin; Yoo, Hyang Sook; Ko, Jeong Heon; Kim, Jin-Man; Choi, Jong Young; Kim, In Gyu; Paik, Sang Gi; Cho, Eun-Wie

    2010-06-01

    Autoantibodies, which are generated by immune system recognizing the presence of the abnormal tumor-associated antigens, are promising biomarkers for early detection of tumors. Recently, we established a B cell hybridoma pool derived from H-ras12V transgenic mouse, a typical hepatocellular carcinoma model, as a source of tumor-associated autoantibodies without using any extracellular antigens and have characterized the specific target antigens against them. K1 autoantibody, one of them, was investigated in this study and its target antigen was identified by mass spectrometric analysis as fatty acid synthase (FASN), an important oncogenic protein. Moreover, a specific mimotope against K1 autoantibody was screened from the cyclic random hepta-peptide phage library and, using it as a coating antigen for ELISA, we could distinguish patients with hepatocellular carcinoma (HCC) vs. normal subjects with 96.55% sensitivity and 100% specificity. These results imply that anti-FASN autoantibody is induced in patients with HCC and detection of anti-FASN autoantibody can be used for the diagnosis of HCC.

  8. Triterpenoic Acids from Apple Pomace Enhance the Activity of the Endothelial Nitric Oxide Synthase (eNOS).

    Science.gov (United States)

    Waldbauer, Katharina; Seiringer, Günter; Nguyen, Dieu Linh; Winkler, Johannes; Blaschke, Michael; McKinnon, Ruxandra; Urban, Ernst; Ladurner, Angela; Dirsch, Verena M; Zehl, Martin; Kopp, Brigitte

    2016-01-13

    Pomace is an easy-accessible raw material for the isolation of fruit-derived compounds. Fruit consumption is associated with health-promoting effects, such as the prevention of cardiovascular disease. Increased vascular nitric oxide (NO) bioavailability, for example, due to an enhanced endothelial nitric oxide synthase (eNOS) activity, could be one molecular mechanism mediating this effect. To identify compounds from apple (Malus domestica Borkh.) pomace that have the potential to amplify NO bioavailability via eNOS activation, a bioassay-guided fractionation of the methanol/water (70:30) extract has been performed using the (14)C-L-arginine to (14)C-L-citrulline conversion assay (ACCA) in the human endothelium-derived cell line EA.hy926. Phytochemical characterization of the active fractions was performed using the spectrophotometric assessment of the total phenolic content, as well as TLC, HPLC-DAD-ELSD, and HPLC-MS analyses. Eleven triterpenoic acids, of which one is a newly discovered compound, were identified as the main constituents in the most active fraction, accompanied by only minor contents of phenolic compounds. When tested individually, none of the tested compounds exhibited significant eNOS activation. Nevertheless, cell stimulation with the reconstituted compound mixture restored eNOS activation, validating the potential of apple pomace as a source of bioactive components.

  9. Expression of Fatty Acid Synthase Depends on NAC1 and Is Associated with Recurrent Ovarian Serous Carcinomas.

    Science.gov (United States)

    Ueda, Stefanie M; Yap, Kai Lee; Davidson, Ben; Tian, Yuan; Murthy, Vivek; Wang, Tian-Li; Visvanathan, Kala; Kuhajda, Francis P; Bristow, Robert E; Zhang, Hui; Shih, Ie-Ming

    2010-01-01

    Our previous reports demonstrated that NAC1, a BTB/POZ domain-containing nuclear protein, upregulates in recurrent ovarian serous carcinoma and participates in developing drug resistance in cancer cells. The current study applies quantitative proteomics to identify the proteins controlled by NAC1 by comparing the proteomes of SKOV3 cells with and without expression of a dominant negative NAC1 construct, N130. From the proteins that are downregulated by N130 (upregulated by NAC1), we chose to further characterize fatty acid synthase (FASN). Similar to change in protein level, the FASN transcript level in SKOV3 cells was significantly reduced by N130 induction or by NAC1 knockdown. Immunohistochemistry showed that NAC1 and FASN immunointensities in ovarian serous carcinoma tissues had a highly significant correlation (P 1 in serous carcinomas was associated with a worse overall survival time (P NAC1 is essential for FASN expression in ovarian serous carcinomas and the expression of FASN significantly correlates with tumor recurrence and disease aggressiveness. The dependence of drug resistant tumor cells on FASN suggests a potential application of FASN-based therapeutics for recurrent ovarian cancer patients.

  10. Expression of Fatty Acid Synthase Depends on NAC1 and Is Associated with Recurrent Ovarian Serous Carcinomas

    Directory of Open Access Journals (Sweden)

    Stefanie M. Ueda

    2010-01-01

    Full Text Available Our previous reports demonstrated that NAC1, a BTB/POZ domain-containing nuclear protein, upregulates in recurrent ovarian serous carcinoma and participates in developing drug resistance in cancer cells. The current study applies quantitative proteomics to identify the proteins controlled by NAC1 by comparing the proteomes of SKOV3 cells with and without expression of a dominant negative NAC1 construct, N130. From the proteins that are downregulated by N130 (upregulated by NAC1, we chose to further characterize fatty acid synthase (FASN. Similar to change in protein level, the FASN transcript level in SKOV3 cells was significantly reduced by N130 induction or by NAC1 knockdown. Immunohistochemistry showed that NAC1 and FASN immunointensities in ovarian serous carcinoma tissues had a highly significant correlation (P1 in serous carcinomas was associated with a worse overall survival time (P<.01. Finally, C93, a new FASN inhibitor, induced massive apoptosis in carboplatin/paclitaxel resistant ovarian cancer cells. In conclusion, we show that NAC1 is essential for FASN expression in ovarian serous carcinomas and the expression of FASN significantly correlates with tumor recurrence and disease aggressiveness. The dependence of drug resistant tumor cells on FASN suggests a potential application of FASN-based therapeutics for recurrent ovarian cancer patients.

  11. Divergence of cuticular hydrocarbons in two sympatric grasshopper species and the evolution of fatty acid synthases and elongases across insects

    Science.gov (United States)

    Finck, Jonas; Berdan, Emma L.; Mayer, Frieder; Ronacher, Bernhard; Geiselhardt, Sven

    2016-01-01

    Cuticular hydrocarbons (CHCs) play a major role in the evolution of reproductive isolation between insect species. The CHC profiles of two closely related sympatric grasshopper species, Chorthippus biguttulus and C. mollis, differ mainly in the position of the first methyl group in major methyl-branched CHCs. The position of methyl branches is determined either by a fatty acid synthase (FAS) or by elongases. Both protein families showed an expansion in insects. Interestingly, the FAS family showed several lineage-specific expansions, especially in insect orders with highly diverse methyl-branched CHC profiles. We found five putative FASs and 12 putative elongases in the reference transcriptomes for both species. A dN/dS test showed no evidence for positive selection acting on FASs and elongases in these grasshoppers. However, one candidate FAS showed species-specific transcriptional differences and may contribute to the shift of the methyl-branch position between the species. In addition, transcript levels of four elongases were expressed differentially between the sexes. Our study indicates that complex methyl-branched CHC profiles are linked to an expansion of FASs genes, but that species differences can also mediated at the transcriptional level. PMID:27677406

  12. A type-B response regulator drives the expression of the hydroxymethylbutenyl diphosphate synthase gene in periwinkle.

    Science.gov (United States)

    Ginis, Olivia; Oudin, Audrey; Guirimand, Grégory; Chebbi, Mouadh; Courdavault, Vincent; Glévarec, Gaëlle; Papon, Nicolas; Crèche, Joel; Courtois, Martine

    2012-10-15

    In plant cytokinin (CK) signaling, type-B response regulators (RRs) act as major players in orchestrating the transcriptome changes in response to CK. However, their direct targets are poorly known. The identification of putative type-ARR1 motifs located within the promoter of the CK-responsive hydroxyl methyl butenyl diphosphate synthase (HDS) gene from the methyl erythritol phosphate (MEP) pathway prompted us to investigate the ability of a previously isolated periwinkle type-B RR (CrRR5) that presents high homologies with ARR1 to interact with the promoter. Electrophoretic mobility shift assays (EMSAs) demonstrated that the CrRR5 DNA-binding domain binds specifically type-ARR1 motifs within the HDS promoter. We also established through yellow fluorescent protein (YFP) imaging the targeting of CrRR5 into cell nucleus in accordance with its putative function of transcription factor. In transient assays performed on periwinkle cells cultivated with CK, overexpression of the full-length CrRR5 or a truncated CrRR5 engineering a constitutive active form (35S:ΔDDK) did not affect the HDS promoter activity that reached a threshold. By contrast, in absence of CK, overexpression of CrRR5ΔDDK enhanced promoter activity up to the threshold level observed in cells grown with CK. Our results strongly suggest that CrRR5 directly transactivates the HDS promoter. CrRR5 is the first identified transcription factor mediating the CK signaling that targets a gene from the MEP pathway involved in isoprenoid metabolism. Moreover, CrRR5 could play a role in a regulatory mechanism controlling CK homeostasis in periwinkle cells.

  13. Solution structures of the acyl carrier protein domain from the highly reducing type I iterative polyketide synthase CalE8.

    Directory of Open Access Journals (Sweden)

    Jackwee Lim

    Full Text Available Biosynthesis of the enediyne natural product calicheamicins γ(1 (I in Micromonospora echinospora ssp. calichensis is initiated by the iterative polyketide synthase (PKS CalE8. Recent studies showed that CalE8 produces highly conjugated polyenes as potential biosynthetic intermediates and thus belongs to a family of highly-reducing (HR type I iterative PKSs. We have determined the NMR structure of the ACP domain (meACP of CalE8, which represents the first structure of a HR type I iterative PKS ACP domain. Featured by a distinct hydrophobic patch and a glutamate-residue rich acidic patch, meACP adopts a twisted three-helix bundle structure rather than the canonical four-helix bundle structure. The so-called 'recognition helix' (α2 of meACP is less negatively charged than the typical type II ACPs. Although loop-2 exhibits greater conformational mobility than other regions of the protein with a missing short helix that can be observed in most ACPs, two bulky non-polar residues (Met(992, Phe(996 from loop-2 packed against the hydrophobic protein core seem to restrict large movement of the loop and impede the opening of the hydrophobic pocket for sequestering the acyl chains. NMR studies of the hydroxybutyryl- and octanoyl-meACP confirm that meACP is unable to sequester the hydrophobic chains in a well-defined central cavity. Instead, meACP seems to interact with the octanoyl tail through a distinct hydrophobic patch without involving large conformational change of loop-2. NMR titration study of the interaction between meACP and the cognate thioesterase partner CalE7 further suggests that their interaction is likely through the binding of CalE7 to the meACP-tethered polyene moiety rather than direct specific protein-protein interaction.

  14. Putative monofunctional type I polyketide synthase units: a dinoflagellate-specific feature?

    Directory of Open Access Journals (Sweden)

    Karsten Eichholz

    Full Text Available Marine dinoflagellates (alveolata are microalgae of which some cause harmful algal blooms and produce a broad variety of most likely polyketide synthesis derived phycotoxins. Recently, novel polyketide synthesase (PKS transcripts have been described from the Florida red tide dinoflagellate Karenia brevis (gymnodiniales which are evolutionarily related to Type I PKS but were apparently expressed as monofunctional proteins, a feature typical of Type II PKS. Here, we investigated expression units of PKS I-like sequences in Alexandrium ostenfeldii (gonyaulacales and Heterocapsa triquetra (peridiniales at the transcript and protein level. The five full length transcripts we obtained were all characterized by polyadenylation, a 3' UTR and the dinoflagellate specific spliced leader sequence at the 5'end. Each of the five transcripts encoded a single ketoacylsynthase (KS domain showing high similarity to K. brevis KS sequences. The monofunctional structure was also confirmed using dinoflagellate specific KS antibodies in Western Blots. In a maximum likelihood phylogenetic analysis of KS domains from diverse PKSs, dinoflagellate KSs formed a clade placed well within the protist Type I PKS clade between apicomplexa, haptophytes and chlorophytes. These findings indicate that the atypical PKS I structure, i.e., expression as putative monofunctional units, might be a dinoflagellate specific feature. In addition, the sequenced transcripts harbored a previously unknown, apparently dinoflagellate specific conserved N-terminal domain. We discuss the implications of this novel region with regard to the putative monofunctional organization of Type I PKS in dinoflagellates.

  15. Polyunsaturated fatty acids reduce Fatty Acid Synthase and Hydroxy-Methyl-Glutaryl CoA-Reductase gene expression and promote apoptosis in HepG2 cell line

    Directory of Open Access Journals (Sweden)

    Miccolis Angelica

    2011-01-01

    Full Text Available Abstract Background n-3 and n-6 polyunsaturated fatty acids (PUFAs are the two major classes of PUFAs encountered in the diet, and both classes of fatty acids are required for normal human health. Moreover, PUFAs have effects on diverse pathological processes impacting chronic disease, such as cardiovascular and immune disease, neurological disease, and cancer. Aim To investigate the effects of eicosapentaenoic acid (EPA and arachidonic acid (ARA on the proliferation and apoptosis of human hepatoma cell line HepG2 after exposure to increasing concentrations of EPA or ARA for 48 h. Moreover, in the same cells the gene expression of Fatty Acid Synthase (FAS and 3-Hydroxy-3-Methyl-Glutaryl Coenzyme A Reductase (HMG-CoAR was also investigated. Method Cell growth and apoptosis were assayed by MTT and ELISA test, respectively after cell exposure to increasing concentrations of EPA and ARA. Reverse-transcription and real-time PCR was used to detect FAS and HMG-CoAR mRNA levels in treated cells. Results Our findings show that EPA inhibits HepG2 cell growth in a dose-dependent manner, starting from 25 μM (P Conclusion Our results demonstrate that EPA and ARA inhibit HepG2 cell proliferation and induce apoptosis. The down-regulation of FAS and HMG-CoAR gene expression by EPA and ARA might be one of the mechanisms for the anti-proliferative properties of PUFAs in an in vitro model of hepatocellular carcinoma.

  16. Comparative Amino Acids Studies on Phac Synthases and Proteases as Well as Establishing a New Trend in Experimental Design

    Directory of Open Access Journals (Sweden)

    Amro Abd al fattah Amara

    2012-04-01

    Full Text Available ABSTRACT: A question addressed in this study is: why similar enzymes are classified into different subclasses? As an example, PhaC synthases are classified according to four different classes (I, II, III and IV. To answer this question we proposed that besides the catalytic residues, the overall amino acids (AAs present are responsible for the differences observed. The AAs’ composition affects the structure/function/substrate specificity (SFS of these enzymes. The differences between the classes in various PhaC synthases and proteases were analysed to support our argument. Homology and phylogenic tree of some selected PhaC synthases of different strains (representing the four classes were demonstrated. The properties of a specific class of enzyme could not be changed into those of another by changing the catalytic residues. Moreover, these differences could not be detected from the proteins’ 3D structures, despite clear differences at the AAs level. Another question was also addressed: could we benefit from the various existing protein databases in the field of biotechnology? To answer this, we introduced a model for an Experimental Design based on the information in the protein database (for strains available in our lab regarding their ability to degrade castor oil. Two enzymes in the phenol degradation pathway, phenol 2-monooxygenase and catechol 1,2-dioxygenase, and a lipase enzyme were analysed. These enzymes were screened and analysed according to the BLAST-protein database and BRENDA. The comprehensive enzyme information system compared six strains against each other, including: Pseudomonas aeruginosa, Bacillus subtilis, Bacillus pumilus, Bacillus thuringiensis, Bacillus licheniformis, and Geobacillus stearothermophilus. Only P. aeruginosa proved to have the three required enzymes and was suitable for the production of lipases from castor oil (crude castor oil is usually contaminated with phenol as indicated by the databases. In

  17. Inhibition of Fatty Acid Synthase in Prostate Cancer by Orlistat, a Novel Therapeutic

    Science.gov (United States)

    2007-11-01

    maintained in DMEM/F12 and F10 media supplemented with 10% foetal bovine serum (FBS), 2 mM L-glutamine, 100 IU ml1 penicillin, and 100mg ml1 streptomycin...several cancer cell lines. FAS inhibition can cause accumulation of malonyl-CoA, which leads to inhibition of carnitine palmitoyltransferase-1 and...HeLa, and FS-4 cell lines were obtained from American Type Culture Collection (Manassas, VA). Cell culture medium and supplements were from

  18. Discovery Strategies of Bioactive Compounds Synthesized by Nonribosomal Peptide Synthetases and Type-I Polyketide Synthases Derived from Marine Microbiomes

    Directory of Open Access Journals (Sweden)

    Grigoris D. Amoutzias

    2016-04-01

    Full Text Available Considering that 70% of our planet’s surface is covered by oceans, it is likely that undiscovered biodiversity is still enormous. A large portion of marine biodiversity consists of microbiomes. They are very attractive targets of bioprospecting because they are able to produce a vast repertoire of secondary metabolites in order to adapt in diverse environments. In many cases secondary metabolites of pharmaceutical and biotechnological interest such as nonribosomal peptides (NRPs and polyketides (PKs are synthesized by multimodular enzymes named nonribosomal peptide synthetases (NRPSes and type-I polyketide synthases (PKSes-I, respectively. Novel findings regarding the mechanisms underlying NRPS and PKS evolution demonstrate how microorganisms could leverage their metabolic potential. Moreover, these findings could facilitate synthetic biology approaches leading to novel bioactive compounds. Ongoing advances in bioinformatics and next-generation sequencing (NGS technologies are driving the discovery of NRPs and PKs derived from marine microbiomes mainly through two strategies: genome-mining and metagenomics. Microbial genomes are now sequenced at an unprecedented rate and this vast quantity of biological information can be analyzed through genome mining in order to identify gene clusters encoding NRPSes and PKSes of interest. On the other hand, metagenomics is a fast-growing research field which directly studies microbial genomes and their products present in marine environments using culture-independent approaches. The aim of this review is to examine recent developments regarding discovery strategies of bioactive compounds synthesized by NRPS and type-I PKS derived from marine microbiomes and to highlight the vast diversity of NRPSes and PKSes present in marine environments by giving examples of recently discovered bioactive compounds.

  19. Discovery Strategies of Bioactive Compounds Synthesized by Nonribosomal Peptide Synthetases and Type-I Polyketide Synthases Derived from Marine Microbiomes.

    Science.gov (United States)

    Amoutzias, Grigoris D; Chaliotis, Anargyros; Mossialos, Dimitris

    2016-04-16

    Considering that 70% of our planet's surface is covered by oceans, it is likely that undiscovered biodiversity is still enormous. A large portion of marine biodiversity consists of microbiomes. They are very attractive targets of bioprospecting because they are able to produce a vast repertoire of secondary metabolites in order to adapt in diverse environments. In many cases secondary metabolites of pharmaceutical and biotechnological interest such as nonribosomal peptides (NRPs) and polyketides (PKs) are synthesized by multimodular enzymes named nonribosomal peptide synthetases (NRPSes) and type-I polyketide synthases (PKSes-I), respectively. Novel findings regarding the mechanisms underlying NRPS and PKS evolution demonstrate how microorganisms could leverage their metabolic potential. Moreover, these findings could facilitate synthetic biology approaches leading to novel bioactive compounds. Ongoing advances in bioinformatics and next-generation sequencing (NGS) technologies are driving the discovery of NRPs and PKs derived from marine microbiomes mainly through two strategies: genome-mining and metagenomics. Microbial genomes are now sequenced at an unprecedented rate and this vast quantity of biological information can be analyzed through genome mining in order to identify gene clusters encoding NRPSes and PKSes of interest. On the other hand, metagenomics is a fast-growing research field which directly studies microbial genomes and their products present in marine environments using culture-independent approaches. The aim of this review is to examine recent developments regarding discovery strategies of bioactive compounds synthesized by NRPS and type-I PKS derived from marine microbiomes and to highlight the vast diversity of NRPSes and PKSes present in marine environments by giving examples of recently discovered bioactive compounds.

  20. Evolution of a double amino acid substitution in the 5-enolpyruvylshikimate-3-phosphate synthase in Eleusine indica conferring high-level glyphosate resistance.

    Science.gov (United States)

    Yu, Qin; Jalaludin, Adam; Han, Heping; Chen, Ming; Sammons, R Douglas; Powles, Stephen B

    2015-04-01

    Glyphosate is the most important and widely used herbicide in world agriculture. Intensive glyphosate selection has resulted in the widespread evolution of glyphosate-resistant weed populations, threatening the sustainability of this valuable once-in-a-century agrochemical. Field-evolved glyphosate resistance due to known resistance mechanisms is generally low to modest. Here, working with a highly glyphosate-resistant Eleusine indica population, we identified a double amino acid substitution (T102I+P106S [TIPS]) in the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene in glyphosate-resistant individuals. This TIPS mutation recreates the biotechnology-engineered commercial first generation glyphosate-tolerant EPSPS in corn (Zea mays) and now in other crops. In E. indica, the naturally evolved TIPS mutants are highly (more than 180-fold) resistant to glyphosate compared with the wild type and more resistant (more than 32-fold) than the previously known P106S mutants. The E. indica TIPS EPSPS showed very high-level (2,647-fold) in vitro resistance to glyphosate relative to the wild type and is more resistant (600-fold) than the P106S variant. The evolution of the TIPS mutation in crop fields under glyphosate selection is likely a sequential event, with the P106S mutation being selected first and fixed, followed by the T102I mutation to create the highly resistant TIPS EPSPS. The sequential evolution of the TIPS mutation endowing high-level glyphosate resistance is an important mechanism by which plants adapt to intense herbicide selection and a dramatic example of evolution in action.

  1. Early Growth Response1and Fatty Acid Synthase Expression is Altered in Tumor Adjacent Prostate Tissue and Indicates Field Cancerization

    Science.gov (United States)

    Jones, Anna C.; Trujillo, Kristina A.; Phillips, Genevieve K.; Fleet, Trisha M.; Murton, Jaclyn K.; Severns, Virginia; Shah, Satyan K.; Davis, Michael S.; Smith, Anthony Y.; Griffith, Jeffrey K.; Fischer, Edgar G.; Bisoffi, Marco

    2011-01-01

    BACKGROUND Field cancerization denotes the occurrence of molecular alterations in histologically normal tissues adjacent to tumors. In prostate cancer, identification of field cancerization has several potential clinical applications. However, prostate field cancerization remains ill defined. Our previous work has shown up-regulated mRNA of the transcription factor early growth response 1 (EGR-1) and the lipogenic enzyme fatty acid synthase (FAS) in tissues adjacent to prostate cancer. METHODS Immunofluorescence data were analyzed quantitatively by spectral imaging and linear unmixing to determine the protein expression levels of EGR-1 and FAS in human cancerous, histologically normal adjacent, and disease-free prostate tissues. RESULTS EGR-1 expression was elevated in both structurally intact tumor adjacent (1.6× on average) and in tumor (3.0× on average) tissues compared to disease-free tissues. In addition, the ratio of cytoplasmic versus nuclear EGR-1 expression was elevated in both tumor adjacent and tumor tissues. Similarly, FAS expression was elevated in both tumor adjacent (2.7× on average) and in tumor (2.5× on average) compared to disease-free tissues. CONCLUSIONS EGR-1 and FAS expression is similarly deregulated in tumor and structurally intact adjacent prostate tissues and defines field cancerization. In cases with high suspicion of prostate cancer but negative biopsy, identification of field cancerization could help clinicians target areas for repeat biopsy. Field cancerization at surgical margins on prostatectomy specimen should also be looked at as a predictor of cancer recurrence. EGR-1 and FAS could also serve as molecular targets for chemoprevention. PMID:22127986

  2. Gibberellic Acid, Synthetic Auxins, and Ethylene Differentially Modulate α-l-Arabinofuranosidase Activities in Antisense 1-Aminocyclopropane-1-Carboxylic Acid Synthase Tomato Pericarp Discs1

    Science.gov (United States)

    Sozzi, Gabriel O.; Greve, L. Carl; Prody, Gerry A.; Labavitch, John M.

    2002-01-01

    α-l-Arabinofuranosidases (α-Afs) are plant enzymes capable of releasing terminal arabinofuranosyl residues from cell wall matrix polymers, as well as from different glycoconjugates. Three different α-Af isoforms were distinguished by size exclusion chromatography of protein extracts from control tomatoes (Lycopersicon esculentum) and an ethylene synthesis-suppressed (ESS) line expressing an antisense 1-aminocyclopropane-1-carboxylic synthase transgene. α-Af I and II are active throughout fruit ontogeny. α-Af I is the first Zn-dependent cell wall enzyme isolated from tomato pericarp tissues, thus suggesting the involvement of zinc in fruit cell wall metabolism. This isoform is inhibited by 1,10-phenanthroline, but remains stable in the presence of NaCl and sucrose. α-Af II activity accounts for over 80% of the total α-Af activity in 10-d-old fruit, but activity drops during ripening. In contrast, α-Af III is ethylene dependent and specifically active during ripening. α-Af I released monosaccharide arabinose from KOH-soluble polysaccharides from tomato cell walls, whereas α-Af II and III acted on Na2CO3-soluble pectins. Different α-Af isoform responses to gibberellic acid, synthetic auxins, and ethylene were followed by using a novel ESS mature-green tomato pericarp disc system. α-Af I and II activity increased when gibberellic acid or 2,4-dichlorophenoxyacetic acid was applied, whereas ethylene treatment enhanced only α-Af III activity. Results suggest that tomato α-Afs are encoded by a gene family under differential hormonal controls, and probably have different in vivo functions. The ESS pericarp explant system allows comprehensive studies involving effects of physiological levels of different growth regulators on gene expression and enzyme activity with negligible wound-induced ethylene production. PMID:12114586

  3. Vascular relaxation induced by C-type natriuretic peptide involves the ca2+/NO-synthase/NO pathway.

    Directory of Open Access Journals (Sweden)

    Fernanda A Andrade

    Full Text Available AIMS: C-type natriuretic peptide (CNP and nitric oxide (NO are endothelium-derived factors that play important roles in the regulation of vascular tone and arterial blood pressure. We hypothesized that NO produced by the endothelial NO-synthase (NOS-3 contributes to the relaxation induced by CNP in isolated rat aorta via activation of endothelial NPR-C receptor. Therefore, the aim of this study was to investigate the putative contribution of NO through NPR-C activation in the CNP induced relaxation in isolated conductance artery. MAIN METHODS: Concentration-effect curves for CNP were constructed in aortic rings isolated from rats. Confocal microscopy was used to analyze the cytosolic calcium mobilization induced by CNP. The phosphorylation of the residue Ser1177 of NOS was analyzed by Western blot and the expression and localization of NPR-C receptors was analyzed by immunohistochemistry. KEY FINDINGS: CNP was less potent in inducing relaxation in denuded endothelium aortic rings than in intact ones. L-NAME attenuated the potency of CNP and similar results were obtained in the presence of hydroxocobalamin, an intracellular NO0 scavenger. CNP did not change the phosphorylation of Ser1177, the activation site of NOS-3, when compared with control. The addition of CNP produced an increase in [Ca2+]c in endothelial cells and a decrease in [Ca2+]c in vascular smooth muscle cells. The NPR-C-receptors are expressed in endothelial and adventitial rat aortas. SIGNIFICANCE: These results suggest that CNP-induced relaxation in intact aorta isolated from rats involves NO production due to [Ca2+]c increase in endothelial cells possibly through NPR-C activation expressed in these cells. The present study provides a breakthrough in the understanding of the close relationship between the vascular actions of nitric oxide and CNP.

  4. Gene-gene interactions of fatty acid synthase (FASN) using multifactor-dimensionality reduction method in Korean cattle.

    Science.gov (United States)

    Lee, Jeayoung; Jin, Mehyun; Lee, Yoonseok; Ha, Jaejung; Yeo, Jungsou; Oh, Dongyep

    2014-01-01

    We examined the gene-gene interactions of five exonic single nucleotide polymorphisms (SNPs) in the gene encoding fatty acid synthase using 513 Korean cattle and using the model free and the non-parametrical multifactor dimensionality reduction method for the analysis. The five SNPs of g.12870 T>C, g.13126 T>C, g.15532 C>A, g.16907 T>C and g.17924 G>A associated with a variety of fatty acid compositions and marbling score were used in this study. The two-factor interaction between g.13126 T>C and g.15532 C>A had the highest training-balanced among the five-factor models and a testing-balanced accuracy at 70.18 % on C18:1 with a cross-validation consistency of 10 out of 10. Also, the two-factor interaction between g.13126 T>C and g.15532 C>A had the highest testing-balanced accuracy at 68.59 % with a 10 out of 10 cross-validation consistency, than any other models on MUFA. In MS, a single SNP g.15532 C>A had the best accuracy at 58.85 % and the two-factor interaction model g.12870 T>C and g.15532 C>A had the highest testing-balanced accuracy at 64.00 %. The three-factor interaction model g.12870 T>C, g.13126 T>C and g.15532 C>A was recorded as having a high testing-balanced accuracy of 63.24 %, but it was lower than the two-factor interaction model. We used likelihood ratio tests for interaction, and Chi square tests to validate our results, with all tests showing statistical significance. We also compared this with mean scores between the high-risk trait group and low-risk trait group. The genotypes of TTCA, TTAA and TCAA at g.15532 and g.13126 on C18:1, genotypes TTCC, TTCA, TTAA, TCAA CCAA at g.15532 and g.13126 on MUFA and genotypes CCCC, TCCA, CCCA, TTAA, TCAA and CCAA at g.15532 and g.12870 on MS were recommended for the genetic improvement of beef quality.

  5. 脂肪酸合酶与冠心病的关系%Fatty Acid Synthase:Association with Coronary Heart Disease

    Institute of Scientific and Technical Information of China (English)

    杜建青; 赵婷婷

    2011-01-01

    脂肪酸合酶是催化内源性脂肪酸合成的关键酶,由其介导生成的饱和脂肪酸是动脉粥样斑块的构成成分之一.脂肪酸合酶还通过影响巨噬细胞对氧化低密度脂蛋白的摄取及胆固醇流出,参与粥样斑块的形成.此外,脂肪酸舍酶参与脂类代谢,抑制该酶活性具有减轻体重、增加胰岛素敏感性等作用,可使肥胖、糖尿病等冠心痛的危险因素逆转,因此,脂肪酸合酶与冠心病的发生发展密切相关.%Deregulation of fatty acid synthase (FASN) catalyzed de novo fatty acids biogenesis could play a central role in the pathogenesis of atherosclerosis. We reviewed pharmacological and genetic alterations of FASN activity that have been shown to significantly influence artherosclerosis and its risk factors including obesity, type 2 diabetes. First,the endogenous fatty acids which are catalyzed by the key enzyme FASN are one of atheroaclerotic plaque compositions.Secondly, FASN influences the oxidized low density lipoprotein intake and cholesterol efflux in macrophage, which would absolutely affect the plaque formation. Thirdly, FASN plays a key role in monocytes differentiation. Inhibitting FASN may reduce the formation of foam cells. In addition, FASN involved in lipid metabolism is also associated with metabolic diseases, such as obesity and diabetes which are the risk factors for coronary heart disease. We propose that the development or the progression of artherosclerosis can be prevented or reversed by the modulation of FASN status. The use of FASN inhibitors might be a valuable therapeutic approach for coronary disease.

  6. Caffeine synthase and related methyltransferases in plants.

    Science.gov (United States)

    Misako, Kato; Kouichi, Mizuno

    2004-05-01

    Caffeine (1,3,7-trimethylxanthine) is a purine alkaloid present in high concentrations in tea and coffee and it is also found in a number of beverages such as coca cola. It is necessary to elucidate the caffeine biosynthetic pathway and to clone the genes related to the production of caffeine not only to determine the metabolism of the purine alkaloid but also to control the content of caffeine in tea and coffee. The available data support the operation of a xanthosine-->7-methylxanthosine-->7-methylxanthine-->theobromine-->caffeine pathway as the major route to caffeine. Since the caffeine biosynthetic pathway contains three S-adenosyl-L-methionine (SAM) dependent methylation steps, N-methyltransferases play important roles. This review focuses on the enzymes and genes involved in the methylation of purine ring. Caffeine synthase, the SAM-dependent methyltransferase involved in the last two steps of caffeine biosynthesis, was originally purified from young tea leaves (Camellia sinensis). The isolated cDNA, termed TCS1, consists of 1,483 base pairs and encodes a protein of 369 amino acids. Subsequently, the homologous genes that encode caffeine biosynthetic enzymes from coffee (Coffea arabica) were isolated. The recombinant proteins are classified into the three types on the basis of their substrate specificity i.e. 7-methylxanthosine synthase, theobromine synthase and caffeine synthase. The predicted amino acid sequences of caffeine biosynthetic enzymes derived from C. arabica exhibit more than 80% homology with those of the clones and but show only 40% homology with TCS1 derived from C. sinensis. In addition, they share 40% homology with the amino acid sequences of salicylic carboxyl methyltransferase, benzoic acid carboxyl methyltransferase and jasmonic acid carboxyl methyltransferase which belong to a family of motif B' methyltransferases which are novel plant methyltransferases with motif B' instead of motif B as the conserved region.

  7. Solution Structure of the Tandem Acyl Carrier Protein Domains from a Polyunsaturated Fatty Acid Synthase Reveals Beads-on-a-String Configuration

    KAUST Repository

    Trujillo, Uldaeliz

    2013-02-28

    The polyunsaturated fatty acid (PUFA) synthases from deep-sea bacteria invariably contain multiple acyl carrier protein (ACP) domains in tandem. This conserved tandem arrangement has been implicated in both amplification of fatty acid production (additive effect) and in structural stabilization of the multidomain protein (synergistic effect). While the more accepted model is one in which domains act independently, recent reports suggest that ACP domains may form higher oligomers. Elucidating the three-dimensional structure of tandem arrangements may therefore give important insights into the functional relevance of these structures, and hence guide bioengineering strategies. In an effort to elucidate the three-dimensional structure of tandem repeats from deep-sea anaerobic bacteria, we have expressed and purified a fragment consisting of five tandem ACP domains from the PUFA synthase from Photobacterium profundum. Analysis of the tandem ACP fragment by analytical gel filtration chromatography showed a retention time suggestive of a multimeric protein. However, small angle X-ray scattering (SAXS) revealed that the multi-ACP fragment is an elongated monomer which does not form a globular unit. Stokes radii calculated from atomic monomeric SAXS models were comparable to those measured by analytical gel filtration chromatography, showing that in the gel filtration experiment, the molecular weight was overestimated due to the elongated protein shape. Thermal denaturation monitored by circular dichroism showed that unfolding of the tandem construct was not cooperative, and that the tandem arrangement did not stabilize the protein. Taken together, these data are consistent with an elongated beads-on-a-string arrangement of the tandem ACP domains in PUFA synthases, and speak against synergistic biocatalytic effects promoted by quaternary structuring. Thus, it is possible to envision bioengineering strategies which simply involve the artificial linking of multiple ACP

  8. Solution structure of the tandem acyl carrier protein domains from a polyunsaturated fatty acid synthase reveals beads-on-a-string configuration.

    Directory of Open Access Journals (Sweden)

    Uldaeliz Trujillo

    Full Text Available The polyunsaturated fatty acid (PUFA synthases from deep-sea bacteria invariably contain multiple acyl carrier protein (ACP domains in tandem. This conserved tandem arrangement has been implicated in both amplification of fatty acid production (additive effect and in structural stabilization of the multidomain protein (synergistic effect. While the more accepted model is one in which domains act independently, recent reports suggest that ACP domains may form higher oligomers. Elucidating the three-dimensional structure of tandem arrangements may therefore give important insights into the functional relevance of these structures, and hence guide bioengineering strategies. In an effort to elucidate the three-dimensional structure of tandem repeats from deep-sea anaerobic bacteria, we have expressed and purified a fragment consisting of five tandem ACP domains from the PUFA synthase from Photobacterium profundum. Analysis of the tandem ACP fragment by analytical gel filtration chromatography showed a retention time suggestive of a multimeric protein. However, small angle X-ray scattering (SAXS revealed that the multi-ACP fragment is an elongated monomer which does not form a globular unit. Stokes radii calculated from atomic monomeric SAXS models were comparable to those measured by analytical gel filtration chromatography, showing that in the gel filtration experiment, the molecular weight was overestimated due to the elongated protein shape. Thermal denaturation monitored by circular dichroism showed that unfolding of the tandem construct was not cooperative, and that the tandem arrangement did not stabilize the protein. Taken together, these data are consistent with an elongated beads-on-a-string arrangement of the tandem ACP domains in PUFA synthases, and speak against synergistic biocatalytic effects promoted by quaternary structuring. Thus, it is possible to envision bioengineering strategies which simply involve the artificial linking of

  9. Genetic enhancement of palmitic acid accumulation in cotton seed oil through RNAi down-regulation of ghKAS2 encoding β-ketoacyl-ACP synthase II (KASII).

    Science.gov (United States)

    Liu, Qing; Wu, Man; Zhang, Baolong; Shrestha, Pushkar; Petrie, James; Green, Allan G; Singh, Surinder P

    2017-01-01

    Palmitic acid (C16:0) already makes up approximately 25% of the total fatty acids in the conventional cotton seed oil. However, further enhancements in palmitic acid content at the expense of the predominant unsaturated fatty acids would provide increased oxidative stability of cotton seed oil and also impart the high melting point required for making margarine, shortening and confectionary products free of trans fatty acids. Seed-specific RNAi-mediated down-regulation of β-ketoacyl-ACP synthase II (KASII) catalysing the elongation of palmitoyl-ACP to stearoyl-ACP has succeeded in dramatically increasing the C16 fatty acid content of cotton seed oil to well beyond its natural limits, reaching up to 65% of total fatty acids. The elevated C16 levels were comprised of predominantly palmitic acid (C16:0, 51%) and to a lesser extent palmitoleic acid (C16:1, 11%) and hexadecadienoic acid (C16:2, 3%), and were stably inherited. Despite of the dramatic alteration of fatty acid composition and a slight yet significant reduction in oil content in these high-palmitic (HP) lines, seed germination remained unaffected. Regiochemical analysis of triacylglycerols (TAG) showed that the increased levels of palmitic acid mainly occurred at the outer positions, while C16:1 and C16:2 were predominantly found in the sn-2 position in both TAG and phosphatidylcholine. Crossing the HP line with previously created high-oleic (HO) and high-stearic (HS) genotypes demonstrated that HP and HO traits could be achieved simultaneously; however, elevation of stearic acid was hindered in the presence of high level of palmitic acid.

  10. Inhibition of de novo Palmitate Synthesis by Fatty Acid Synthase Induces Apoptosis in Tumor Cells by Remodeling Cell Membranes, Inhibiting Signaling Pathways, and Reprogramming Gene Expression

    Directory of Open Access Journals (Sweden)

    Richard Ventura

    2015-08-01

    Research in context: Fatty acid synthase (FASN is a vital enzyme in tumor cell biology; the over-expression of FASN is associated with diminished patient prognosis and resistance to many cancer therapies. Our data demonstrate that selective and potent FASN inhibition with TVB-3166 leads to selective death of tumor cells, without significant effect on normal cells, and inhibits in vivo xenograft tumor growth at well-tolerated doses. Candidate biomarkers for selecting tumors highly sensitive to FASN inhibition are identified. These preclinical data provide mechanistic and pharmacologic evidence that FASN inhibition presents a promising therapeutic strategy for treating a variety of cancers.

  11. A jojoba beta-Ketoacyl-CoA synthase cDNA complements the canola fatty acid elongation mutation in transgenic plants.

    Science.gov (United States)

    Lassner, M W; Lardizabal, K; Metz, J G

    1996-02-01

    beta-Ketoacyl-coenzyme A (CoA) synthase (KCS) catalyzes the condensation of malonyl-CoA with long-chain acyl-CoA. This reaction is the initial step of the microsomal fatty acyl-CoA elongation pathway responsible for formation of very long chain fatty acids (VLCFAs, or fatty acids with chain lengths > 18 carbons). Manipulation of this pathway is significant for agriculture, because it is the basis of conversion of high erucic acid rapeseed into canola. High erucic acid rapeseed oil, used as an industrial feedstock, is rich in VLCFAs, whereas the edible oil extracted from canola is essentially devoid of VLCFAs. Here, we report the cloning of a cDNA from developing jojoba embryos involved in microsomal fatty acid elongation. The jojoba cDNA is homologous to the recently cloned Arabidopsis FATTY ACID ELONGATION1 (FAE1) gene that has been suggested to encode KCS. We characterize the jojoba enzyme and present biochemical data indicating that the jojoba cDNA does indeed encode KCS. Transformation of low erucic acid rapeseed with the jojoba cDNA restored KCS activity to developing embryos and altered the transgenic seed oil composition to contain high levels of VLCFAs. The data reveal the key role KCS plays in determining the chain lengths of fatty acids found in seed oils.

  12. Palmitic acid exerts pro-inflammatory effects on vascular smooth muscle cells by inducing the expression of C-reactive protein, inducible nitric oxide synthase and tumor necrosis factor-α.

    Science.gov (United States)

    Wu, Di; Liu, Juntian; Pang, Xiaoming; Wang, Shuyue; Zhao, Jingjing; Zhang, Xiaolu; Feng, Liuxin

    2014-12-01

    Atherosclerosis is a chronic inflammatory disease in the vessel, and inflammatory cytokines play an important role in the inflammatory process of atherosclerosis. A high level of free fatty acids (FFAs) produced in lipid metabolism disorders are known to participate in the formation of atherosclerosis through multiple bioactivities. As the main saturated fatty acid in FFAs, palmitic acid stimulates the expression of inflammatory cytokines in macrophages. However, it is unclear whether palmitic acid exerts a pro-inflammatory effect on vascular smooth muscle cells (VSMCs). The purpose of the present study was to observe the effect of palmitic acid on the expression of C-reactive protein (CRP), tumor necrosis factor α (TNF-α) and inducible nitric oxide synthase (iNOS) in VSMCs. Rat VSMCs were cultured, and palmitic acid was used as a stimulant for CRP, TNF-α and iNOS expression. mRNA expression was assayed with reverse transcription-polymerase chain reaction, and protein expression was detected with western blot analysis and immunocytochemistry. The results showed that palmitic acid significantly stimulated mRNA and protein expression of CRP, TNF-α and iNOS in VSMCs in time- and concentration-dependent manners, and therefore, palmitic acid is able to exert a pro-inflammatory effect on VSMCs via stimulating CRP, TNF-α and iNOS expression. The findings provide a novel explanation for the direct pro-inflammatory and atherogenic effects of palmitic acid, and for the association with metabolic syndrome, such as type 2 diabetes mellitus, obesity and atherosclerosis. Therefore, the intervention with anti-inflammatory agents may effectively delay the formation and progression of atherosclerosis in patients with metabolic syndrome.

  13. Pseudouridine synthases.

    Science.gov (United States)

    Hamma, Tomoko; Ferré-D'Amaré, Adrian R

    2006-11-01

    Pseudouridine synthases are the enzymes responsible for the most abundant posttranscriptional modification of cellular RNAs. These enzymes catalyze the site-specific isomerization of uridine residues that are already part of an RNA chain, and appear to employ both sequence and structural information to achieve site specificity. Crystallographic analyses have demonstrated that all pseudouridine synthases share a common core fold and active site structure and that this core is modified by peripheral domains, accessory proteins, and guide RNAs to give rise to remarkable substrate versatility.

  14. Identification of the Leishmania major Proteins LmjF07.0430, LmjF07.0440, and LmjF27.2440 as Components of Fatty Acid Synthase II

    Directory of Open Access Journals (Sweden)

    Aner Gurvitz

    2009-01-01

    Full Text Available Leishmania major causes leishmaniasis and is grouped within the Trypanosomatidae family, which also includes the etiologic agent for African sleeping sickness, Trypanosoma brucei. Previous studies on T. brucei showed that acyl carrier protein (ACP of mitochondrial fatty acid synthase type 2 (FASII plays a crucial role in parasite survival. Additionally, 3-oxoacyl-ACP synthase TbKASIII as well as TbHTD2 representing 3-hydroxyacyl-ACP dehydratase were also identified; however, 3-oxoacyl-ACP reductase TbKAR1 has hitherto evaded positive identification. Here, potential Leishmania FASII components LmjF07.0440 and LmjF07.0430 were revealed as 3-hydroxyacyl-ACP dehydratases LmHTD2-1 and LmHTD2-2, respectively, whereas LmjF27.2440 was identified as LmKAR1. These Leishmania proteins were ectopically expressed in Saccharomyces cerevisiae htd2Δ or oar1Δ respiratory deficient cells lacking the corresponding mitochondrial FASII enzymes Htd2p and Oar1p. Yeast mutants producing mitochondrially targeted versions of the parasite proteins resembled the self-complemented cells for respiratory growth. This is the first identification of a FASII-like 3-oxoacyl-ACP reductase from a kinetoplastid parasite.

  15. The Expression of Type-1 and Type-2 Nitric Oxide Synthase in Selected Tissues of the Gastrointestinal Tract during Mixed Mycotoxicosis

    Directory of Open Access Journals (Sweden)

    Magdalena Gajęcka

    2013-11-01

    Full Text Available The aim of the study was to verify the hypothesis that intoxication with low doses of mycotoxins leads to changes in the mRNA expression levels of nitric oxide synthase-1 and nitric oxide synthase-2 genes in tissues of the gastrointestinal tract and the liver. The experiment involved four groups of immature gilts (with body weight of up to 25 kg which were orally administered zearalenone in a daily dose of 40 μg/kg BW (group Z, n = 18, deoxynivalenol at 12 μg/kg BW (group D, n = 18, zearalenone and deoxynivalenol (group M, n = 18 or placebo (group C, n = 21 over a period of 42 days. The lowest mRNA expression levels of nitric oxide synthase-1 and nitric oxide synthase-2 genes were noted in the sixth week of the study, in particular in group M. Our results suggest that the presence of low mycotoxin doses in feed slows down the mRNA expression of both nitric oxide synthase isomers, which probably lowers the concentrations of nitric oxide, a common precursor of inflammation.

  16. Application of chromatography technology in the separation of active alkaloids from Hypecoum leptocarpum and their inhibitory effect on fatty acid synthase.

    Science.gov (United States)

    Zhang, Qiulong; Luan, Guangxiang; Ma, Tao; Hu, Na; Suo, Yourui; Wang, Xiaoyan; Ma, Xiaofeng; Ding, Chenxu

    2015-12-01

    A method that involved the combination of pH-zone-refining counter-current chromatography and semipreparative reversed-phase liquid chromatography has been established for the preparative separation of alkaloids from Hypecoum leptocarpum. From 1.2 g of crude sample, 31 mg N-feruloyltyramine, 27 mg oxohydrastinine, 47 mg hydroprotopine, 25 mg leptopidine, and 18 mg hypecocarpine have been obtained. The structure of the new compound, hypecocarpine, is confirmed based on the analysis of spectroscopic data, including NMR, UV, and IR spectroscopy and positive electrospray ionization mass spectrometry. The known chemical structures were characterized on the basis of (1) H and (13) C NMR spectroscopy. The purities of the five alkaloids are all over 92.7% as determined by high-performance liquid chromatography. The alkaloids' cytotoxicity in breast cancer cells is assessed by using a Cell Counting Kit assay and their inhibitory effect on fatty acid synthase expression is assessed by a Western blot assay. These results suggest that leptopidine could suppress growth and induce cytotoxicity in breast cancer cells and that the cytotoxicity of leptopidine may be related to its inhibitory effect on fatty acid synthase expression.

  17. Three-factor reciprocal cross mapping of a gene that causes expression of feedback-resistant acetohydroxy acid synthase in Escherichia coli K-12.

    Science.gov (United States)

    Jackson, J H; Davis, E J; Madu, A C; Braxter, S E

    1981-01-01

    The ilv-662 allele was previously identified as a mutation that caused acetohydroxy acid synthase activity to be resistant to feedback inhibition by valine (Davis et al. 1977). This allele was mapped between thr and leu by cotransduction analysis and labeled ilvJ. This report describes the mapping of ilvJ relative to genes that lie between thr and leu (ara, carA and pdxA) by three factor reciprocal cross analyses. We find that the probable gene order is thr-carA-pdxA-ilvJ-ara-leu. Although the phenotypic properties of ilvJ662 appear to be quite distinct from brnS, a gene reported to involve branched chain amino acid transport (Guardiola et al. 1974), we do not rule out possible allelism because of the uncertainty of the map position of brnS.

  18. Investigation of a 6-MSA Synthase Gene Cluster in Aspergillus aculeatus Reveals 6-MSA-derived Aculinic Acid, Aculins A-B and Epi-Aculin A.

    Science.gov (United States)

    Petersen, Lene M; Holm, Dorte K; Gotfredsen, Charlotte H; Mortensen, Uffe H; Larsen, Thomas O

    2015-10-12

    Aspergillus aculeatus, a filamentous fungus belonging to the Aspergillus clade Nigri, is an industrial workhorse in enzyme production. Recently we reported a number of secondary metabolites from this fungus; however, its genetic potential for the production of secondary metabolites is vast. In this study we identified a 6-methylsalicylic acid (6-MSA) synthase from A. aculeatus, and verified its functionality by episomal expression in A. aculeatus and heterologous expression in A. nidulans. Feeding studies with fully (13) C-labeled 6-MSA revealed that 6-MSA is incorporated into aculinic acid, which further incorporates into three compounds that we name aculins A and B, and epi-aculin A, described here for the first time. Based on NMR data and bioinformatic studies we propose the structures of the compounds as well as a biosynthetic pathway leading to formation of aculins from 6-MSA.

  19. Hybrid polyketide synthases

    Energy Technology Data Exchange (ETDEWEB)

    Fortman, Jeffrey L.; Hagen, Andrew; Katz, Leonard; Keasling, Jay D.; Poust, Sean; Zhang, Jingwei; Zotchev, Sergey

    2016-05-10

    The present invention provides for a polyketide synthase (PKS) capable of synthesizing an even-chain or odd-chain diacid or lactam or diamine. The present invention also provides for a host cell comprising the PKS and when cultured produces the even-chain diacid, odd-chain diacid, or KAPA. The present invention also provides for a host cell comprising the PKS capable of synthesizing a pimelic acid or KAPA, and when cultured produces biotin.

  20. Flavonoid inhibitors as novel antimycobacterial agents targeting Rv0636, a putative dehydratase enzyme involved in Mycobacterium tuberculosis fatty acid synthase II.

    Science.gov (United States)

    Brown, Alistair K; Papaemmanouil, Athina; Bhowruth, Veemal; Bhatt, Apoorva; Dover, Lynn G; Besra, Gurdyal S

    2007-10-01

    Flavonoids comprise a large group of bioactive polyphenolic plant secondary metabolites. Several of these possess potent in vivo activity against Escherichia coli and Plasmodium falciparum, targeting enzymes involved in fatty acid biosynthesis, such as enoyl-ACP-reductase, beta-ketoacyl-ACP reductase and beta-hydroxyacyl-ACP dehydratase. Herein, we report that butein, isoliquirtigenin, 2,2',4'-trihydroxychalcone and fisetin inhibit the growth of Mycobacterium bovis BCG. Furthermore, in vitro inhibition of the mycolic-acid-producing fatty acid synthase II (FAS-II) of Mycobacterium smegmatis suggests a mode of action related to those observed in E. coli and P. falciparum. Through a bioinformatic approach, we have established the product of Rv0636 as a candidate for the unknown mycobacterial dehydratase, and its overexpression in M. bovis BCG conferred resistance to growth inhibition by butein and isoliquirtigenin, and relieved inhibition of fatty acid and mycolic acid biosynthesis in vivo. Furthermore, after overexpression of Rv0636 in M. smegmatis, FAS-II was less sensitive to these inhibitors in vitro. Overall, the data suggest that these flavonoids are inhibitors of mycobacterial FAS-II and in particular Rv0636, which represents a strong candidate for the beta-hydroxyacyl-ACP dehydratase enzyme of M. tuberculosis FAS-II.

  1. Excess nickel modulates activities of carbohydrate metabolizing enzymes and induces accumulation of sugars by upregulating acid invertase and sucrose synthase in rice seedlings.

    Science.gov (United States)

    Mishra, Pallavi; Dubey, R S

    2013-02-01

    The effects of increasing concentrations of nickel sulfate, NiSO(4) (200 and 400 μM) in the growth medium on the content of starch and sugars and activity levels of enzymes involved in starch and sugar metabolism were examined in seedlings of the two Indica rice cvs. Malviya-36 and Pant-12. During a 5-20 day growth period of seedlings in sand cultures, with Ni treatment, no definite pattern of alteration in starch level could be observed in the seedlings. In both roots and shoots of the seedlings Ni treatment led to a significant decrease in activities of starch degrading enzymes α-amylase, β-amylase, whereas starch phosphorylase activity increased. The contents of reducing, non-reducing, and total sugars increased in Ni-treated rice seedlings with a concomitant increase in the activities of sucrose degrading enzymes acid invertase and sucrose synthase. However, the activity of sucrose synthesizing enzyme sucrose phosphate synthase declined. These results suggest that Ni toxicity in rice seedlings causes marked perturbation in metabolism of carbohydrates leading to increased accumulation of soluble sugars. Such perturbation could serve as a limiting factor for growth of rice seedlings in Ni polluted environments and accumulating soluble sugars could serve as compatible solutes in the cells under Ni toxicity conditions.

  2. Use of dicarboxylic acids in type 2 diabetes.

    Science.gov (United States)

    Mingrone, Geltrude; Castagneto-Gissey, Lidia; Macé, Katherine

    2013-03-01

    Even-number, medium-chain dicarboxylic acids (DAs), naturally occurring in higher plants, are a promising alternative energy substrate. Unlike the homologous fatty acids, DAs are soluble in water as salts. They are β-oxidized, providing acetyl-CoA and succinyl-CoA, the latter being an intermediate of the tricarboxylic acid cycle. Sebacic acid and dodecanedioic acid, DAs with 10 and 12 carbon atoms respectively, provide 6.6 and 7.2 kcal g⁻¹ each; therefore, their energy density is intermediate between glucose and fatty acids. Dicarboxylic acids have been proved to be safe in both experimental animals and humans, and their use has recently been proposed in diabetes. Studies in animals and humans with type 2 diabetes showed that oral administration of sebacic acid improved glycaemic control, probably by enhancing insulin sensitivity, and reduced hepatic gluconeogenesis and glucose output. Moreover, dodecanedioic acid intake reduced muscle fatigue during exercise in subjects with type 2 diabetes, suggesting an improvement of energy utilization and 'metabolic flexibility'. In this article, we review the natural sources of DAs, their fate in animals and humans and their effect in improving glucose metabolism in type 2 diabetes.

  3. Cloning, expression, and characterization of para-aminobenzoic acid (PABA) synthase from Agaricus bisporus 02, a thermotolerant mushroom strain.

    Science.gov (United States)

    Deng, Li-Xin; Shen, Yue-Mao; Song, Si-Yang

    2015-01-01

    The pabS gene of Agaricus bisporus 02 encoding a putative PABA synthase was cloned, and then the recombinant protein was expressed in Escherichia coli BL21 under the control of the T7 promoter. The enzyme with an N-terminal GST tag or His tag, designated GST-AbADCS or His-AbADCS, was purified with glutathione Sepharose 4B or Ni Sepharose 6 Fast Flow. The enzyme was an aminodeoxychorismate synthase, and it was necessary to add with an aminodeoxychorismate lyase for synthesizing PABA. AbADCS has maximum activity at a temperature of approximately 25°C and pH 8.0. Magnesium or manganese ions were necessary for the enzymatic activity. The Michaelis-Menten constant for chorismate was 0.12 mM, and 2.55 mM for glutamine. H2O2 did distinct damage on the activity of the enzyme, which could be slightly recovered by Hsp20. Sulfydryl reagents could remarkably promote its activity, suggesting that cysteine residues are essential for catalytic function.

  4. Modulation of Medium-Chain Fatty Acid Synthesis in Synechococcus sp. PCC 7002 by Replacing FabH with a Chaetoceros ketoacyl-ACP synthase

    Directory of Open Access Journals (Sweden)

    Huiya eGu

    2016-05-01

    Full Text Available The isolation or engineering of algal cells synthesizing high levels of medium-chain fatty acids (MCFAs is attractive to mitigate the high clouding point of longer chain fatty acids in algal based biodiesel. To develop a more informed understanding of MCFA synthesis is photosynthetic microorganisms, we isolated several algae from Great Salt Lake and screened this collection for MCFA accumulation to identify strains naturally accumulating high levels of MCFA. A diatom, Chaetoceros sp. GSL56, accumulated particularly high levels of C14 (up to 40%, with the majority of C14 fatty acids (~2/3 allocated in triacylglycerols. Using whole cell transcriptome sequencing and de novo assembly, putative genes encoding fatty acid synthesis enzymes were identified. Enzymes from this Chaetoceros sp. were expressed in the cyanobacterium Synechococcus sp. PCC 7002 to validate gene function and to determine whether eukaryotic enzymes lacking bacteria evolutionary control mechanisms could be used to improve MCFA production in this promising production strains. Replacement of the Synechococcus 7002 native FabH with a Chaetoceros ketoacyl-ACP synthase III increased MCFA synthesis up to five fold. The level of increase is dependent on promoter strength and culturing conditions.

  5. One type of chalcone synthase gene expressed during embryogenesis regulates the flavonoid accumulation in citrus cell cultures.

    Science.gov (United States)

    Moriguchi, T; Kita, M; Tomono, Y; EndoInagaki, T; Omura, M

    1999-06-01

    To elucidate the relationship between the expression of chalcone synthase (CHS) genes and the production of flavonoid in citrus cell cultures, two cDNA clones encoding CHS were isolated (CitCHS1 and CitCHS2) from the citrus. The accumulation of CitCHS2 mRNA was notably induced by embryogenesis but CitCHS1 mRNA was not. There was no detectable accumulation of flavonoid in the undifferentiated calli, but flavonoid accumulated after the morphological changes to embryoids. These results indicate that two CHS genes differentially expressed during citrus somatic embryogenesis and CitCHS2 may regulate the accumulation of flavonoid in citrus cell cultures.

  6. Efficient production of gamma-aminobutyric acid using Escherichia coli by co-localization of glutamate synthase, glutamate decarboxylase, and GABA transporter.

    Science.gov (United States)

    Dung Pham, Van; Somasundaram, Sivachandiran; Lee, Seung Hwan; Park, Si Jae; Hong, Soon Ho

    2016-01-01

    Gamma-aminobutyric acid (GABA) is an important bio-product, which is used in pharmaceutical formulations, nutritional supplements, and biopolymer monomer. The traditional GABA process involves the decarboxylation of glutamate. However, the direct production of GABA from glucose is a more efficient process. To construct the recombinant strains of Escherichia coli, a novel synthetic scaffold was introduced. By carrying out the co-localization of glutamate synthase, glutamate decarboxylase, and GABA transporter, we redirected the TCA cycle flux to GABA pathway. The genetically engineered E. coli strain produced 1.08 g/L of GABA from 10 g/L of initial glucose. Thus, with the introduction of a synthetic scaffold, we increased GABA production by 2.2-fold. The final GABA concentration was increased by 21.8% by inactivating competing pathways.

  7. Pu-erh tea, green tea, and black tea suppresses hyperlipidemia, hyperleptinemia and fatty acid synthase through activating AMPK in rats fed a high-fructose diet.

    Science.gov (United States)

    Huang, Hsiu-Chen; Lin, Jen-Kun

    2012-02-01

    Although green tea extract has been reported to suppress hyperlipidemia, it is unclear how tea extracts prepared from green, oolong, black and pu-erh teas modulate fatty acid synthase expression in rats fed on a high-fructose diet. In this animal study, we evaluated the hypolipidemic and hypoleptinemia effect of these four different tea leaves fed to male Wistar rats for 12 weeks. The results showed that a fructose-rich diet significantly elevated serum triacylglycerols, cholesterol, insulin, and leptin concentrations, as compared with those in the control group. Interestingly, consuming tea leaves for 12 weeks almost normalized the serum triacylglycerols concentrations. Again, rats fed with fructose/green tea and fructose/pu-erh tea showed the greatest reduction in serum TG, cholesterol, insulin and leptin levels. In contrast, serum cholesterol and insulin concentrations of the fructose/oolong tea-fed rats did not normalize. The relative epididymal adipose tissue weight was lower in all rats supplemented with tea leaves than those fed with fructose alone. There was molecular evidence of improved lipid homeostasis according to fatty acid synthase (FAS) protein expression. Furthermore, supplementation of green, black, and pu-erh tea leaves significantly decreased hepatic FAS mRNA and protein levels, and increased AMPK phosphorylation, compared with those of rats fed with fructose only. These findings suggest that the intake of green, black, and pu-erh tea leaves ameliorated the fructose-induced hyperlipidemia and hyperleptinemia state in part through the suppression of FAS protein levels and increased AMPK phosphorylation.

  8. The Arabidopsis male-sterile mutant dde2-2 is defective in the ALLENE OXIDE SYNTHASE gene encoding one of the key enzymes of the jasmonic acid biosynthesis pathway

    DEFF Research Database (Denmark)

    von Malek, Bernadette; van der Graaff, Eric; Schneitz, Kay;

    2002-01-01

    exhibits a male-sterile phenotype. The dde2-2 phenotype can be rescued by application of methyl jasmonate, indicating that the mutant is affected in jasmonic acid biosynthesis. The combination of genetic mapping and a candidate-gene approach identified a frameshift mutation in the ALLENE OXIDE SYNTHASE...

  9. Chlorogenic acid protection of neuronal nitric oxide synthase-positive neurons in the hippocampus of mice with impaired learning and memory

    Institute of Scientific and Technical Information of China (English)

    Qiuyun Tu; Xiangqi Tang; Zhiping Hu

    2008-01-01

    BACKGROUND: Clinical practice and modern pharmacology have confirmed that ehlorogenic acid can ameliorate learning and memory impairments. OBJECTIVE: To observe the effects of chlorogenic acid on neuronal nitric oxide synthase (nNOS)-positive neurons in the mouse hippocampus, and to investigate the mechanisms underlying the beneficial effects of chlorogenic acid on learning and memory. DESIGN, TIME AND SETTING: The present randomized, controlled, neural cell morphological observation was performed at the Institute of Neurobiology, Central South University between January and May 2005.MATERIALS: Forty-eight female, healthy, adult, Kunming mice were included in this study. Learning and memory impairment was induced with an injection of 0.5 μL kainic acid (0.4 mg/mL) into the hippocampus.METHODS: The mice were randomized into three groups (n = 16): model, control, and chlorogenic acid-treated. At 2 days following learning and memory impairment induction, intragastric administration of physiological saline or chlorogenic acid was performed in the model and chlorogenic acid-treated groups, respectively. The control mice were administered 0.5 μ L physiological saline into the hippocampus, and 2 days later, they received an intragastric administration of physiological saline. Each mouse received two intragastric administrations (1 mL solution once) per day, for a total of 35 days. MAIN OUTCOME MEASURES: Detection of changes in hippocampal and cerebral cortical nNOS neurons by immunohistochemistry; determination of spatial learning and memory utilizing the Y-maze device.RESULTS: At day 7 and 35 after intervention, there was no significant difference in the number of nNOS-positive neurons in the cerebral cortex between the model, chlorogenic acid, and control groups (P > 0.05). Compared with the control group, the number of nNOS-positive neurons in the hippocampal CA1-4 region was significantly less in the model group (P 0.05). At day 7 following intervention, the number

  10. Tamoxifen-induced anorexia is associated with fatty acid synthase inhibition in the ventromedial nucleus of the hypothalamus and accumulation of malonyl-CoA.

    Science.gov (United States)

    López, Miguel; Lelliott, Christopher J; Tovar, Sulay; Kimber, Wendy; Gallego, Rosalía; Virtue, Sam; Blount, Margaret; Vázquez, Maria J; Finer, Nick; Powles, Trevor J; O'Rahilly, Stephen; Saha, Asish K; Diéguez, Carlos; Vidal-Puig, Antonio J

    2006-05-01

    Fatty acid metabolism in the hypothalamus has recently been shown to regulate feeding. The selective estrogen receptor modulator tamoxifen (TMX) exerts a potent anorectic effect. Here, we show that the anorectic effect of TMX is associated with the accumulation of malonyl-CoA in the hypothalamus and inhibition of fatty acid synthase (FAS) expression specifically in the ventromedial nucleus of the hypothalamus (VMN). Furthermore, we demonstrate that FAS mRNA expression is physiologically regulated by fasting and refeeding in the VMN but not in other hypothalamic nuclei. Thus, the VMN appears to be the hypothalamic site where regulation of FAS and feeding converge. Supporting the potential clinical relevance of these observations, reanalysis of a primary breast cancer prevention study showed that obese women treated with TMX gained significantly less body weight over a 6-year period than obese women given placebo. The finding that TMX can modulate appetite through alterations in FAS expression and malonyl-CoA levels suggests a link between hypothalamic sex steroid receptors, fatty acid metabolism, and feeding behavior.

  11. A stilbene synthase allele from a Chinese wild grapevine confers resistance to powdery mildew by recruiting salicylic acid signalling for efficient defence

    Science.gov (United States)

    Jiao, Yuntong; Xu, Weirong; Duan, Dong; Wang, Yuejin; Nick, Peter

    2016-01-01

    Stilbenes are central phytoalexins in Vitis, and induction of the key enzyme stilbene synthase (STS) is pivotal for disease resistance. Here, we address the potential for breeding resistance using an STS allele isolated from Chinese wild grapevine Vitis pseudoreticulata (VpSTS) by comparison with its homologue from Vitis vinifera cv. ‘Carigane’ (VvSTS). Although the coding regions of both alleles are very similar (>99% identity on the amino acid level), the promoter regions are significantly different. By expression in Arabidopsis as a heterologous system, we show that the allele from the wild Chinese grapevine can confer accumulation of stilbenes and resistance against the powdery mildew Golovinomyces cichoracearum, whereas the allele from the vinifera cultivar cannot. To dissect the upstream signalling driving the activation of this promoter, we used a dual-luciferase reporter system in a grapevine cell culture. We show elevated responsiveness of the promoter from the wild grape to salicylic acid (SA) and to the pathogen-associated molecular pattern (PAMP) flg22, equal induction of both alleles by jasmonic acid (JA), and a lack of response to the cell death-inducing elicitor Harpin. This elevated SA response of the VpSTS promoter depends on calcium influx, oxidative burst by RboH, mitogen-activated protein kinase (MAPK) signalling, and JA synthesis. We integrate the data in the context of a model where the resistance of V. pseudoreticulata is linked to a more efficient recruitment of SA signalling for phytoalexin synthesis. PMID:27702992

  12. Ester Cross-Link Profiling of the Cutin Polymer of Wild-Type and Cutin Synthase Tomato Mutants Highlights Different Mechanisms of Polymerization.

    Science.gov (United States)

    Philippe, Glenn; Gaillard, Cédric; Petit, Johann; Geneix, Nathalie; Dalgalarrondo, Michèle; Bres, Cécile; Mauxion, Jean-Philippe; Franke, Rochus; Rothan, Christophe; Schreiber, Lukas; Marion, Didier; Bakan, Bénédicte

    2016-02-01

    Cuticle function is closely related to the structure of the cutin polymer. However, the structure and formation of this hydrophobic polyester of glycerol and hydroxy/epoxy fatty acids has not been fully resolved. An apoplastic GDSL-lipase known as CUTIN SYNTHASE1 (CUS1) is required for cutin deposition in tomato (Solanum lycopersicum) fruit exocarp. In vitro, CUS1 catalyzes the self-transesterification of 2-monoacylglycerol of 9(10),16-dihydroxyhexadecanoic acid, the major tomato cutin monomer. This reaction releases glycerol and leads to the formation of oligomers with the secondary hydroxyl group remaining nonesterified. To check this mechanism in planta, a benzyl etherification of nonesterified hydroxyl groups of glycerol and hydroxy fatty acids was performed within cutin. Remarkably, in addition to a significant decrease in cutin deposition, mid-chain hydroxyl esterification of the dihydroxyhexadecanoic acid was affected in tomato RNA interference and ethyl methanesulfonate-cus1 mutants. Furthermore, in these mutants, the esterification of both sn-1,3 and sn-2 positions of glycerol was impacted, and their cutin contained a higher molar glycerol-to-dihydroxyhexadecanoic acid ratio. Therefore, in planta, CUS1 can catalyze the esterification of both primary and secondary alcohol groups of cutin monomers, and another enzymatic or nonenzymatic mechanism of polymerization may coexist with CUS1-catalyzed polymerization. This mechanism is poorly efficient with secondary alcohol groups and produces polyesters with lower molecular size. Confocal Raman imaging of benzyl etherified cutins showed that the polymerization is heterogenous at the fruit surface. Finally, by comparing tomato mutants either affected or not in cutin polymerization, we concluded that the level of cutin cross-linking had no significant impact on water permeance.

  13. Producing biofuels using polyketide synthases

    Science.gov (United States)

    Katz, Leonard; Fortman, Jeffrey L; Keasling, Jay D

    2013-04-16

    The present invention provides for a non-naturally occurring polyketide synthase (PKS) capable of synthesizing a carboxylic acid or a lactone, and a composition such that a carboxylic acid or lactone is included. The carboxylic acid or lactone, or derivative thereof, is useful as a biofuel. The present invention also provides for a recombinant nucleic acid or vector that encodes such a PKS, and host cells which also have such a recombinant nucleic acid or vector. The present invention also provides for a method of producing such carboxylic acids or lactones using such a PKS.

  14. Four new taraxastane-type triterpenoic acids from Cirsium setosum.

    Science.gov (United States)

    Luan, Na; Wei, Wen-Di; Wang, Ali; Wu, Xiu-Li; Qi, Yan; Li, Jin-Jie; Zheng, Jian-Quan; Shang, Xiao-Ya

    2016-11-01

    Four new taraxastane-type triterpenoids acids 3β,22α-dihydroxy-20-taraxasten-30-oic acid (1), 3β-hydroxy-22-oxo-20-taraxasten-30-oic acid (2), 3-oxo-22α-hydroxy-20- taraxasten-30-oic acid (3), and 3β,19β-dihydroxy-20-taraxasten-30-oic acid (4) were isolated and characterized from Cirsium setosum (Willd.) MB. Their structures were determined by the combination of 1D and 2D NMR experiments ((1)H-(1)HCOSY, HSQC, HMBC and ROESY) and mass spectrometry. Compound 2 exhibited potent selective cytotoxicity against human ovarian cancer cell line A2780 with an IC50 value of 3.9 μM.

  15. Downregulation of cystathionine β-synthase/hydrogen sulfide contributes to rotenone-induced microglia polarization toward M1 type.

    Science.gov (United States)

    Du, Chenchen; Jin, Mengmeng; Hong, Yu; Li, Qian; Wang, Xian-Hui; Xu, Jin-Min; Wang, Fen; Zhang, Ye; Jia, Jia; Liu, Chun-Feng; Hu, Li-Fang

    2014-08-22

    Microglia-mediated neuroinflammation is implicated in the pathogenesis of several neurodegenerative disorders. Microglia can be activated and polarized to exert pro- or anti-inflammatory roles in response to specific stimulus. Rotenone is an environmental toxin that has been shown to activate microglia and neuroinflammation. However, the effects and mechanisms of rotenone on microglia polarization are poorly studied. In the present study, we demonstrated that rotenone enhanced the levels of M1 phenotypic genes including TNF-α, iNOS and COX-2/PGE2 but reduced that of M2 markers such as Ym1/2 and IL-10 in mouse primary and immortalized microglia. Moreover, the transcription and protein expression of cystathionine-β-synthase (CBS), as well as hydrogen sulfide (H2S) production were decreased in rotenone-treated primary microglia. Elevating endogenous H2S via CBS over-expression in immortalized microglia not only reduced the expression of pro-inflammatory M1 genes, but also enhanced the anti-inflammatory M2 marker IL-10 production in response to rotenone stimulation as compared to vector-transfected cells. Similarly, pretreatment with H2S donor NaHS (50, 100 and 500μmol/L) attenuated the increases of M1 gene expression triggered by rotenone treatment, and enhanced the M2 gene Ym1/2 expression in mouse primary microglia. In addition, we observed reactive oxygen species (ROS) scavenger N-acetyl-l-cysteine reversed the down-regulation of CBS and H2S generation caused by rotenone in microglia. NaHS pretreatment also decreased the ROS formation in rotenone-stimulated microglia. Taken together, these results reveal that probably via triggering ROS formation, rotenone suppressed the CBS-H2S pathway and thus promoted microglia polarization toward M1 pro-inflammatory phenotype.

  16. Effect of fish oils containing different amounts of EPA, DHA, and antioxidants on plasma and brain fatty acids and brain nitric oxide synthase activity in rats

    OpenAIRE

    2009-01-01

    Background The interest in n-3 polyunsaturated fatty acids (PUFAs) has expanded significantly in the last few years, due to their many positive effects described. Consequently, the interest in fish oil supplementation has also increased, and many different types of fish oil supplements can be found on the market. Also, it is well known that these types of fatty acids are very easily oxidized, and that stability among supplements varies greatly. Aims of the study In this pilot study we investi...

  17. The role of beta-ketoacyl-acyl carrier protein synthase III in the condensation steps of fatty acid biosynthesis in sunflower.

    Science.gov (United States)

    González-Mellado, Damián; von Wettstein-Knowles, Penny; Garcés, Rafael; Martínez-Force, Enrique

    2010-05-01

    The beta-ketoacyl-acyl carrier protein synthase III (KAS III; EC 2.3.1.180) is a condensing enzyme catalyzing the initial step of fatty acid biosynthesis using acetyl-CoA as primer. To determine the mechanisms involved in the biosynthesis of fatty acids in sunflower (Helianthus annuus L.) developing seeds, a cDNA coding for HaKAS III (EF514400) was isolated, cloned and sequenced. Its protein sequence is as much as 72% identical to other KAS III-like ones such as those from Perilla frutescens, Jatropha curcas, Ricinus communis or Cuphea hookeriana. Phylogenetic study of the HaKAS III homologous proteins infers its origin from cyanobacterial ancestors. A genomic DNA gel blot analysis revealed that HaKAS III is a single copy gene. Expression levels of this gene, examined by Q-PCR, revealed higher levels in developing seeds storing oil than in leaves, stems, roots or seedling cotyledons. Heterologous expression of HaKAS III in Escherichia coli altered their fatty acid content and composition implying an interaction of HaKAS III with the bacterial FAS complex. Testing purified HaKAS III recombinant protein by adding to a reconstituted E. coli FAS system lacking condensation activity revealed a novel substrate specificity. In contrast to all hitherto characterized plant KAS IIIs, the activities of which are limited to the first cycles of intraplastidial fatty acid biosynthesis yielding C6 chains, HaKAS III participates in at least four cycles resulting in C10 chains.

  18. Replacement of two amino acids of 9R-dioxygenase-allene oxide synthase of Aspergillus niger inverts the chirality of the hydroperoxide and the allene oxide.

    Science.gov (United States)

    Sooman, Linda; Wennman, Anneli; Hamberg, Mats; Hoffmann, Inga; Oliw, Ernst H

    2016-02-01

    The genome of Aspergillus niger codes for a fusion protein (EHA25900), which can be aligned with ~50% sequence identity to 9S-dioxygenase (DOX)-allene oxide synthase (AOS) of Fusarium oxysporum, homologues of the Fusarium and Colletotrichum complexes and with over 62% sequence identity to homologues of Aspergilli, including (DOX)-9R-AOS of Aspergillus terreus. The aims were to characterize the enzymatic activities of EHA25900 and to identify crucial amino acids for the stereospecificity. Recombinant EHA25900 oxidized 18:2n-6 sequentially to 9R-hydroperoxy-10(E),12(Z)-octadecadienoic acid (9R-HPODE) and to a 9R(10)-allene oxide. 9S- and 9R-DOX-AOS catalyze abstraction of the pro-R hydrogen at C-11, but the direction of oxygen insertion differs. A comparison between twelve 9-DOX domains of 9S- and 9R-DOX-AOS revealed conserved amino acid differences, which could contribute to the chirality of products. The Gly616Ile replacement of 9R-DOX-AOS (A. niger) increased the biosynthesis of 9S-HPODE and the 9S(10)-allene oxide, whereas the Phe627Leu replacement led to biosynthesis of 9S-HPODE and the 9S(10)-allene oxide as main products. The double mutant (Gly616Ile, Phe627Leu) formed over 90% of the 9S stereoisomer of HPODE. 9S-HPODE was formed by antarafacial hydrogen abstraction and oxygen insertion, i.e., the original H-abstraction was retained but the product chirality was altered. We conclude that 9R-DOX-AOS can be altered to 9S-DOX-AOS by replacement of two amino acids (Gly616Ile, Phe627Leu) in the DOX domain.

  19. Uric acid attenuates nitric oxide production by decreasing the interaction between endothelial nitric oxide synthase and calmodulin in human umbilical vein endothelial cells: a mechanism for uric acid-induced cardiovascular disease development.

    Science.gov (United States)

    Park, Jung-Hyun; Jin, Yoon Mi; Hwang, Soojin; Cho, Du-Hyong; Kang, Duk-Hee; Jo, Inho

    2013-08-01

    The elevated level of uric acid in the body is associated with increased risk of cardiovascular diseases, which is mediated by endothelial dysfunction. However, its underlying mechanism is not fully understood, although dysregulation of endothelial nitric oxide (NO) production is likely to be involved. Using human umbilical vascular endothelial cells (HUVEC), we explored the molecular mechanism of uric acid on endothelial NO synthase (eNOS) activity and NO production. Although high dose of uric acid (12mg/dl for 24h treatment) significantly decreased eNOS activity and NO production, it did not alter eNOS expression and phosphorylations at eNOS-Ser(1177), eNOS-Thr(495) and eNOS-Ser(114). Under this condition, we also found no alterations in the dimerization and acetylation of eNOS, compared with the control. Furthermore, uric acid did not change the activity of arginase II, an enzyme degrading l-arginine, a substrate of eNOS, and intracellular level of calcium, a cofactor for eNOS activation. We also found that uric acid did not alter xanthine oxidase activity, suggesting no involvement of xanthine oxidase-derived O2(-) production in the observed inhibitory effects. In vitro and in cell coimmunoprecipitation studies, however, revealed that uric acid significantly decreased the interaction between eNOS and calmodulin (CaM), an eNOS activator, although it did not change the intracellular CaM level. Like in HUVEC, uric acid also decreased eNOS-CaM interaction in bovine aortic EC. Finally, uric acid attenuated ionomycin-induced increase in the interaction between eNOS and CaM. This study suggests firstly that uric acid decreased eNOS activity and NO production through reducing the binding between eNOS and CaM in EC. Our result may provide molecular mechanism by which uric acid induces endothelial dysfunction.

  20. Thyroid hormone responsive protein Spot14 enhances catalysis of fatty acid synthase in lactating mammary epithelium[S

    OpenAIRE

    Michael C Rudolph; Wellberg, Elizabeth A.; Lewis, Andrew S.; Terrell, Kristina L.; Andrea L Merz; Maluf, N. Karl; Serkova, Natalie J.; Anderson, Steven M.

    2014-01-01

    Thyroid hormone responsive protein Spot 14 has been consistently associated with de novo fatty acid synthesis activity in multiple tissues, including the lactating mammary gland, which synthesizes large quantities of medium chain fatty acids (MCFAs) exclusively via FASN. However, the molecular function of Spot14 remains undefined during lactation. Spot14-null mice produce milk deficient in total triglyceride and de novo MCFA that does not sustain optimal neonatal growth. The lactation defect ...

  1. Heterogeneity in limb fatty acid kinetics in type 2 diabetes

    DEFF Research Database (Denmark)

    Sacchetti, M; Olsen, D B; Saltin, B;

    2005-01-01

    control subjects (n=7) for 5 h under baseline conditions and during a 4-h hyperinsulinaemic-euglycaemic clamp. METHODS: Limb fatty acid kinetics was determined by means of continuous [U-(13)C]palmitate infusion and measurement of arteriovenous differences. RESULTS: The systemic palmitate rate......AIMS/HYPOTHESIS: In order to test the hypothesis that disturbances in skeletal muscle fatty acid metabolism with type 2 diabetes are not equally present in the upper and lower limbs, we studied fatty acid kinetics simultaneously across the arm and leg of type 2 diabetic patients (n=6) and matched...... of appearance was 3.6+/-0.4 and 2.7+/-0.3 micromol.kg lean body mass(-1).min(-1) and decreased during the clamp by 26% (p=0.04) and 43% (ppalmitate uptake across the arm was similar in the two groups, whereas leg palmitate...

  2. Interaction of humic acids and humic-acid-like polymers with herpes simplex virus type 1

    Science.gov (United States)

    Klöcking, Renate; Helbig, Björn

    The study was performed in order to compare the antiviral activity against herpes simplex virus type 1 (HSV-1) of synthetic humic-acid-like polymers to that of their low-molecular-weight basic compounds and naturally occurring humic acids (HA) in vitro. HA from peat water showed a moderate antiviral activity at a minimum effective concentration (MEC) of 20 µg/ml. HA-like polymers, i.e. the oxidation products of caffeic acid (KOP), hydrocaffeic acid (HYKOP), chlorogenic acid (CHOP), 3,4-dihydroxyphenylacetic acid (3,4-DHPOP), nordihydroguaretic acid (NOROP), gentisinic acid (GENOP), pyrogallol (PYROP) and gallic acid (GALOP), generally inhibit virus multiplication, although with different potency and selectivity. Of the substances tested, GENOP, KOP, 3,4-DHPOP and HYKOP with MEC values in the range of 2 to 10 µg/ml, proved to be the most potent HSV-1 inhibitors. Despite its lower antiviral potency (MEC 40 µg/ml), CHOP has a remarkable selectivity due to the high concentration of this polymer that is tolerated by the host cells (>640 µg/ml). As a rule, the antiviral activity of the synthetic compounds was restricted to the polymers and was not preformed in the low-molecular-weight basic compounds. This finding speaks in favour of the formation of antivirally active structures during the oxidative polymerization of phenolic compounds and, indirectly, of corresponding structural parts in different HA-type substances.

  3. Localization of nitric oxide synthase in human skeletal muscle

    DEFF Research Database (Denmark)

    Frandsen, Ulrik; Lopez-Figueroa, M.; Hellsten, Ylva

    1996-01-01

    The present study investigated the cellular localization of the neuronal type I and endothelial type III nitric oxide synthase in human skeletal muscle. Type I NO synthase immunoreactivity was found in the sarcolemma and the cytoplasm of all muscle fibres. Stronger immunoreactivity was expressed...... I NO synthase immunoreactivity and NADPH diaphorase activity. Type III NO synthase immunoreactivity was observed both in the endothelium of larger vessels and of microvessels. The results establish that human skeletal muscle expresses two different constitutive isoforms of NO synthase in different...... endothelium is consistent with a role for NO in the control of blood flow in human skeletal muscle....

  4. The Formation of Pyrroline and Tetrahydropyridine Rings in Amino Acids Catalyzed by Pyrrolysine Synthase (PylD)

    KAUST Repository

    Quitterer, Felix

    2014-06-10

    The dehydrogenase PylD catalyzes the ultimate step of the pyrrolysine pathway by converting the isopeptide L-lysine-Nε-3R-methyl-D-ornithine to the 22nd proteinogenic amino acid. In this study, we demonstrate how PylD can be harnessed to oxidize various isopeptides to novel amino acids by combining chemical synthesis with enzyme kinetics and X-ray crystallography. The data enable a detailed description of the PylD reaction trajectory for the biosynthesis of pyrroline and tetrahydropyridine rings as constituents of pyrrolysine analogues. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Overexpression of fatty acid synthase in human gliomas correlates with the WHO tumor grade and inhibition with Orlistat reduces cell viability and triggers apoptosis.

    Science.gov (United States)

    Grube, Susanne; Dünisch, Pedro; Freitag, Diana; Klausnitzer, Maren; Sakr, Yasser; Walter, Jan; Kalff, Rolf; Ewald, Christian

    2014-06-01

    Fatty acid synthase (FASN), catalyzing the de novo synthesis of fatty acids, is known to be deregulated in several cancers. Inhibition of this enzyme reduces tumor cell proliferation. Unfortunately, adverse effects and chemical instability prevent the in vivo use of the best-known inhibitors, Cerulenin and C75. Orlistat, a drug used for obesity treatment, is also considered as a potential FASN inhibitor, but its impact on glioma cell biology has not yet been described. In this study, we analyzed FASN expression in human glioma samples and primary glioblastoma cell cultures and the effects of FASN inhibition with Orlistat, Cerulenin and C75. Immunohistochemistry followed by densitometric analysis of 20 glioma samples revealed overexpression of FASN that correlated with the WHO tumor grade. Treatment of glioblastoma cells with these inhibitors resulted in a significant, dose-dependent reduction in tumor cell viability and fatty acid synthesis. Compared to Cerulenin and C75, Orlistat was a more potent inhibitor in cell cultures and cell lines. In LN229, cell-growth was reduced by 63.9 ± 8.7 % after 48 h and 200 µM Orlistat compared to controls; in LT68, the reduction in cell growth was 76.3 ± 23.7 %. Nuclear fragmentation assay and Western blotting analysis after targeting FASN with Orlistat demonstrated autophagy and apoptosis. Organotypic slice cultures treated with Orlistat showed reduced proliferation after Ki67 staining and increased caspase-3 cleavage. Our results suggest that FASN may be a therapeutic target in malignant gliomas and identify Orlistat as a possible anti-tumor drug in this setting.

  6. Mechanistic effects of amino acids and glucose in a novel glutaric aciduria type 1 cell model.

    Directory of Open Access Journals (Sweden)

    Xi Fu

    Full Text Available Acute neurological crises involving striatal degeneration induced by a deficiency of glutaryl-CoA dehydrogenase (GCDH and the accumulation of glutaric (GA and 3-hydroxyglutaric acid (3-OHGA are considered to be the most striking features of glutaric aciduria type I (GA1. In the present study, we investigated the mechanisms of apoptosis and energy metabolism impairment in our novel GA1 neuronal model. We also explored the effects of appropriate amounts of amino acids (2 mM arginine, 2 mM homoarginine, 0.45 g/L tyrosine and 10 mM leucine and 2 g/L glucose on these cells. Our results revealed that the novel GA1 neuronal model effectively simulates the hypermetabolic state of GA1. We found that leucine, tyrosine, arginine, homoarginine or glucose treatment of the GA1 model cells reduced the gene expression of caspase-3, caspase-8, caspase-9, bax, fos, and jun and restored the intracellular NADH and ATP levels. Tyrosine, arginine or homoarginine treatment in particular showed anti-apoptotic effects; increased α-ketoglutarate dehydrogenase complex (OGDC, fumarase (FH, and citrate synthase (CS expression; and relieved the observed impairment in energy metabolism. To the best of our knowledge, this study is the first to investigate the protective mechanisms of amino acids and glucose in GA1 at the cellular level from the point of view of apoptosis and energy metabolism. Our data support the results of previous studies, indicating that supplementation of arginine and homoarginine as a dietary control strategy can have a therapeutic effect on GA1. All of these findings facilitate the understanding of cell apoptosis and energy metabolism impairment in GA1 and reveal new therapeutic perspectives for this disease.

  7. Mechanistic effects of amino acids and glucose in a novel glutaric aciduria type 1 cell model.

    Science.gov (United States)

    Fu, Xi; Gao, Hongjie; Tian, Fengyan; Gao, Jinzhi; Lou, Liping; Liang, Yan; Ning, Qin; Luo, Xiaoping

    2014-01-01

    Acute neurological crises involving striatal degeneration induced by a deficiency of glutaryl-CoA dehydrogenase (GCDH) and the accumulation of glutaric (GA) and 3-hydroxyglutaric acid (3-OHGA) are considered to be the most striking features of glutaric aciduria type I (GA1). In the present study, we investigated the mechanisms of apoptosis and energy metabolism impairment in our novel GA1 neuronal model. We also explored the effects of appropriate amounts of amino acids (2 mM arginine, 2 mM homoarginine, 0.45 g/L tyrosine and 10 mM leucine) and 2 g/L glucose on these cells. Our results revealed that the novel GA1 neuronal model effectively simulates the hypermetabolic state of GA1. We found that leucine, tyrosine, arginine, homoarginine or glucose treatment of the GA1 model cells reduced the gene expression of caspase-3, caspase-8, caspase-9, bax, fos, and jun and restored the intracellular NADH and ATP levels. Tyrosine, arginine or homoarginine treatment in particular showed anti-apoptotic effects; increased α-ketoglutarate dehydrogenase complex (OGDC), fumarase (FH), and citrate synthase (CS) expression; and relieved the observed impairment in energy metabolism. To the best of our knowledge, this study is the first to investigate the protective mechanisms of amino acids and glucose in GA1 at the cellular level from the point of view of apoptosis and energy metabolism. Our data support the results of previous studies, indicating that supplementation of arginine and homoarginine as a dietary control strategy can have a therapeutic effect on GA1. All of these findings facilitate the understanding of cell apoptosis and energy metabolism impairment in GA1 and reveal new therapeutic perspectives for this disease.

  8. Chitinase-like (CTL) and cellulose synthase (CESA) gene expression in gelatinous-type cellulosic walls of flax (Linum usitatissimum L.) bast fibers.

    Science.gov (United States)

    Mokshina, Natalia; Gorshkova, Tatyana; Deyholos, Michael K

    2014-01-01

    Plant chitinases (EC 3.2.1.14) and chitinase-like (CTL) proteins have diverse functions including cell wall biosynthesis and disease resistance. We analyzed the expression of 34 chitinase and chitinase-like genes of flax (collectively referred to as LusCTLs), belonging to glycoside hydrolase family 19 (GH19). Analysis of the transcript expression patterns of LusCTLs in the stem and other tissues identified three transcripts (LusCTL19, LusCTL20, LusCTL21) that were highly enriched in developing bast fibers, which form cellulose-rich gelatinous-type cell walls. The same three genes had low relative expression in tissues with primary cell walls and in xylem, which forms a xylan type of secondary cell wall. Phylogenetic analysis of the LusCTLs identified a flax-specific sub-group that was not represented in any of other genomes queried. To provide further context for the gene expression analysis, we also conducted phylogenetic and expression analysis of the cellulose synthase (CESA) family genes of flax, and found that expression of secondary wall-type LusCESAs (LusCESA4, LusCESA7 and LusCESA8) was correlated with the expression of two LusCTLs (LusCTL1, LusCTL2) that were the most highly enriched in xylem. The expression of LusCTL19, LusCTL20, and LusCTL21 was not correlated with that of any CESA subgroup. These results defined a distinct type of CTLs that may have novel functions specific to the development of the gelatinous (G-type) cellulosic walls.

  9. Chitinase-like (CTL and cellulose synthase (CESA gene expression in gelatinous-type cellulosic walls of flax (Linum usitatissimum L. bast fibers.

    Directory of Open Access Journals (Sweden)

    Natalia Mokshina

    Full Text Available Plant chitinases (EC 3.2.1.14 and chitinase-like (CTL proteins have diverse functions including cell wall biosynthesis and disease resistance. We analyzed the expression of 34 chitinase and chitinase-like genes of flax (collectively referred to as LusCTLs, belonging to glycoside hydrolase family 19 (GH19. Analysis of the transcript expression patterns of LusCTLs in the stem and other tissues identified three transcripts (LusCTL19, LusCTL20, LusCTL21 that were highly enriched in developing bast fibers, which form cellulose-rich gelatinous-type cell walls. The same three genes had low relative expression in tissues with primary cell walls and in xylem, which forms a xylan type of secondary cell wall. Phylogenetic analysis of the LusCTLs identified a flax-specific sub-group that was not represented in any of other genomes queried. To provide further context for the gene expression analysis, we also conducted phylogenetic and expression analysis of the cellulose synthase (CESA family genes of flax, and found that expression of secondary wall-type LusCESAs (LusCESA4, LusCESA7 and LusCESA8 was correlated with the expression of two LusCTLs (LusCTL1, LusCTL2 that were the most highly enriched in xylem. The expression of LusCTL19, LusCTL20, and LusCTL21 was not correlated with that of any CESA subgroup. These results defined a distinct type of CTLs that may have novel functions specific to the development of the gelatinous (G-type cellulosic walls.

  10. TNF-Mediated Restriction of Arginase 1 Expression in Myeloid Cells Triggers Type 2 NO Synthase Activity at the Site of Infection.

    Science.gov (United States)

    Schleicher, Ulrike; Paduch, Katrin; Debus, Andrea; Obermeyer, Stephanie; König, Till; Kling, Jessica C; Ribechini, Eliana; Dudziak, Diana; Mougiakakos, Dimitrios; Murray, Peter J; Ostuni, Renato; Körner, Heinrich; Bogdan, Christian

    2016-05-01

    Neutralization or deletion of tumor necrosis factor (TNF) causes loss of control of intracellular pathogens in mice and humans, but the underlying mechanisms are incompletely understood. Here, we found that TNF antagonized alternative activation of macrophages and dendritic cells by IL-4. TNF inhibited IL-4-induced arginase 1 (Arg1) expression by decreasing histone acetylation, without affecting STAT6 phosphorylation and nuclear translocation. In Leishmania major-infected C57BL/6 wild-type mice, type 2 nitric oxide (NO) synthase (NOS2) was detected in inflammatory dendritic cells or macrophages, some of which co-expressed Arg1. In TNF-deficient mice, Arg1 was hyperexpressed, causing an impaired production of NO in situ. A similar phenotype was seen in L. major-infected BALB/c mice. Arg1 deletion in hematopoietic cells protected these mice from an otherwise lethal disease, although their disease-mediating T cell response (Th2, Treg) was maintained. Thus, deletion or TNF-mediated restriction of Arg1 unleashes the production of NO by NOS2, which is critical for pathogen control.

  11. TNF-Mediated Restriction of Arginase 1 Expression in Myeloid Cells Triggers Type 2 NO Synthase Activity at the Site of Infection

    Directory of Open Access Journals (Sweden)

    Ulrike Schleicher

    2016-05-01

    Full Text Available Neutralization or deletion of tumor necrosis factor (TNF causes loss of control of intracellular pathogens in mice and humans, but the underlying mechanisms are incompletely understood. Here, we found that TNF antagonized alternative activation of macrophages and dendritic cells by IL-4. TNF inhibited IL-4-induced arginase 1 (Arg1 expression by decreasing histone acetylation, without affecting STAT6 phosphorylation and nuclear translocation. In Leishmania major-infected C57BL/6 wild-type mice, type 2 nitric oxide (NO synthase (NOS2 was detected in inflammatory dendritic cells or macrophages, some of which co-expressed Arg1. In TNF-deficient mice, Arg1 was hyperexpressed, causing an impaired production of NO in situ. A similar phenotype was seen in L. major-infected BALB/c mice. Arg1 deletion in hematopoietic cells protected these mice from an otherwise lethal disease, although their disease-mediating T cell response (Th2, Treg was maintained. Thus, deletion or TNF-mediated restriction of Arg1 unleashes the production of NO by NOS2, which is critical for pathogen control.

  12. [Overexpression of four fatty acid synthase genes elevated the efficiency of long-chain polyunsaturated fatty acids biosynthesis in mammalian cells].

    Science.gov (United States)

    Zhu, Guiming; Saleh, Abdulmomen Ali Mohammed; Bahwal, Said Ahmed; Wang, Kunfu; Wang, Mingfu; Wang, Didi; Ge, Tangdong; Sun, Jie

    2014-09-01

    Three long-chain polyunsaturated fatty acids, docosahexaenoic acid (DHA, 22:6n-3), eicosapentaenoic acid (EPA, 20:5n-3) and arachidonic acid (ARA, 20:4n-6), are the most biologically active polyunsaturated fatty acids in the body. They are important in developing and maintaining the brain function, and in preventing and treating many diseases such as cardiovascular disease, inflammation and cancer. Although mammals can biosynthesize these long-chain polyunsaturated fatty acids, the efficiency is very low and dietary intake is needed to meet the requirement. In this study, a multiple-genes expression vector carrying mammalian A6/A5 fatty acid desaturases and multiple-genes expression vector carrying mammalian Δ6/Δ5 fatty acid desaturases and Δ6/Δ5 fatty acid elongases coding genes was used to transfect HEK293T cells, then the overexpression of the target genes was detected. GC-MS analysis shows that the biosynthesis efficiency and level of DHA, EPA and ARA were significantly increased in cells transfected with the multiple-genes expression vector. Particularly, DHA level in these cells was 2.5 times higher than in the control cells. This study indicates mammal possess a certain mechanism for suppression of high level of biosynthesis of long chain polyunsaturated fatty acids, and the overexpression of Δ6/Δ5 fatty acid desaturases and Δ6/Δ5 fatty acid elongases broke this suppression mechanism so that the level of DHA, EPA and ARA was significantly increased. This study also provides a basis for potential applications of this gene construct in transgenic animal to produce high level of these long-chain polyunsaturated fatty acid.

  13. Inhibition of fatty acid synthase by Orlistat accelerates gastric tumor cell apoptosis in culture and increases survival rates in gastric tumor bearing mice in vivo.

    Science.gov (United States)

    Dowling, Shawn; Cox, James; Cenedella, Richard J

    2009-06-01

    Orlistat, an anti-obesity drug, is a potent inhibitor of fatty acid synthase (FAS) and tumor cell viability. It can also induce apoptotic cancer cell death. We examined the effects of Orlistat on cultured NUGC-3 gastric cancer cells. We identified that inhibition of FAS via Orlistat exposure results in rapid cellular damage preceded by a direct but short-lived autophagic response. The Orlistat induced damage can be reversed through the addition of lipid containing media in a process that normally leads to cell death. By limiting exogenous lipid availability and inhibiting FAS using Orlistat, we demonstrated both a greater sensitivity and amplified cancer cell death by activation of apoptosis. We have identified "windows of opportunity" at which time apoptosis can be aborted and cells can be reversed from the death pathway. However, when challenged beyond the window of recovery, cell death becomes all but certain as the ability to be rescued decreases considerably. In vivo examination of Orlistat's ability to inhibit gastrointestinal cancer was examined using heterozygous male C57BL/6J APC-Min mice, which spontaneously develop a fatal gastrointestinal cancer. Mice were fed either a high fat (11%) or low fat (1.2%) diet containing no Orlistat or 0.5 mg Orlistat/g of chow. Orlistat treated mice fed the high fat, but not low fat diet, survived 7-10% longer than the untreated controls.

  14. The metastasis inducer CCN1 (CYR61) activates the fatty acid synthase (FASN)-driven lipogenic phenotype in breast cancer cells

    Science.gov (United States)

    Menendez, Javier A.; Vellon, Luciano; Espinoza, Ingrid; Lupu, Ruth

    2016-01-01

    The angiogenic inducer CCN1 (Cysteine-rich 61, CYR61) is differentially activated in metastatic breast carcinomas. However, little is known about the precise mechanisms that underlie the pro-metastatic actions of CCN1. Here, we investigated the impact of CCN1 expression on fatty acid synthase (FASN), a metabolic oncogene thought to provide cancer cells with proliferative and survival advantages. Forced expression of CCN1 in MCF-7 cells robustly up-regulated FASN protein expression and also significantly increased FASN gene promoter activity 2- to 3-fold, whereas deletion of the sterol response element-binding protein (SREBP) binding site in the FASN promoter completely abrogated CCN1-driven transcriptional activation. Pharmacological blockade of MAPK or PI-3'K activation similarly prevented the ability of CCN1 to induce FASN gene activation. Pharmacological inhibition of FASN activity with the mycotoxin cerulenin or the small compound C75 reversed CCN1-induced acquisition of estrogen independence and resistance to hormone therapies such as tamoxifen and fulvestrant in anchorage-independent growth assays. This study uncovers FASNdependent endogenous lipogenesis as a new mechanism controlling the metastatic phenotype promoted by CCN1. Because estrogen independence and progression to a metastatic phenotype are hallmarks of therapeutic resistance and mortality in breast cancer, this previously unrecognized CCN1-driven lipogenic phenotype represents a novel metabolic target to clinically manage metastatic disease progression.

  15. The central administration of C75, a fatty acid synthase inhibitor, activates sympathetic outflow and thermogenesis in interscapular brown adipose tissue.

    Science.gov (United States)

    Cassolla, Priscila; Uchoa, Ernane Torres; Mansur Machado, Frederico Sander; Guimarães, Juliana Bohnen; Rissato Garófalo, Maria Antonieta; de Almeida Brito, Nilton; Kagohara Elias, Lucila Leico; Coimbra, Cândido Celso; do Carmo Kettelhut, Isis; Carvalho Navegantes, Luiz Carlos

    2013-12-01

    The present work investigated the participation of interscapular brown adipose tissue (IBAT), which is an important site for thermogenesis, in the anti-obesity effects of C75, a synthetic inhibitor of fatty acid synthase (FAS). We report that a single intracerebroventricular (i.c.v.) injection of C75 induced hypophagia and weight loss in fasted male Wistar rats. Furthermore, C75 induced a rapid increase in core body temperature and an increase in heat dissipation. In parallel, C75 stimulated IBAT thermogenesis, which was evidenced by a marked increase in the IBAT temperature that preceded the rise in the core body temperature and an increase in the mRNA levels of uncoupling protein-1. As with C75, an i.c.v. injection of cerulenin, a natural FAS inhibitor, increased the core body and IBAT temperatures. The sympathetic IBAT denervation attenuated all of the thermoregulatory effects of FAS inhibitors as well as the C75 effect on weight loss and hypophagia. C75 induced the expression of Fos in the paraventricular nucleus, preoptic area, dorsomedial nucleus, ventromedial nucleus, and raphé pallidus, all of which support a central role of FAS in regulating IBAT thermogenesis. These data indicate a role for IBAT in the increase in body temperature and hypophagia that is induced by FAS inhibitors and suggest new mechanisms explaining the weight loss induced by these compounds.

  16. Involvement of Salicylic Acid on Antioxidant and Anticancer Properties, Anthocyanin Production and Chalcone Synthase Activity in Ginger (Zingiber officinale Roscoe Varieties

    Directory of Open Access Journals (Sweden)

    Ehsan Karimi

    2012-11-01

    Full Text Available The effect of foliar application of salicylic acid (SA at different concentrations (10−3 M and 10−5 M was investigated on the production of secondary metabolites (flavonoids, chalcone synthase (CHS activity, antioxidant activity and anticancer activity (against breast cancer cell lines MCF-7 and MDA-MB-231 in two varieties of Malaysian ginger, namely Halia Bentong and Halia Bara. The results of high performance liquid chromatography (HPLC analysis showed that application of SA induced the synthesis of anthocyanin and fisetin in both varieties. Anthocyanin and fisetin were not detected in the control plants. Accordingly, the concentrations of some flavonoids (rutin and apigenin decreased significantly in plants treated with different concentrations of SA. The present study showed that SA enhanced the chalcone synthase (CHS enzyme activity (involving flavonoid synthesis and recorded the highest activity value of 5.77 nkat /mg protein in Halia Bara with the 10−5 M SA treatment. As the SA concentration was decreased from 10−3 M to 10−5 M, the free radical scavenging power (FRAP increased about 23% in Halia Bentong and 10.6% in Halia Bara. At a concentration of 350 μg mL−1, the DPPH antioxidant activity recorded the highest value of 58.30%–72.90% with the 10−5 M SA treatment followed by the 10−3 M SA (52.14%–63.66% treatment. The lowest value was recorded in the untreated control plants (42.5%–46.7%. These results indicate that SA can act not only as an inducer but also as an inhibitor of secondary metabolites. Meanwhile, the highest anticancer activity against MCF-7 and MDA-MB-231 cell lines was observed for H. Bara extracts treated with 10−5 M SA with values of 61.53 and 59.88%, respectively. The results suggest that the high anticancer activity in these varieties may be related to the high concentration of potent anticancer components including fisetin and anthocyanin. The results thus indicate that the synthesis of

  17. The Studies of A New Type of Crystalline Antimonic Acid

    Institute of Scientific and Technical Information of China (English)

    LIUXiaozhen; ZHOUJiayin; 等

    1993-01-01

    A new type of crystalline antimonic acid Sb2O5·3H2O was synthesized.The composition,crystal structure,the equilibrium distribution coefficients for sodium and potassium ions and the ion-exchange capacity of this exchanger were determined.With this exchanger,sodium inos were removed from potassium chloride,and the content of sodium chloride was reduced from 3.24% to 0.02%.Compared with other ion-exchange materials,the crystalline antimonic acid gives and unusual selectivity for potassium and sodium ions. The different compositions and properties of antimonic acid exchangers are obtained through different preparing conditions and its crystalline formula of Sb2O5·4H2O(C-SbA1) is currently accepted.This paper reports a new type of crystalline antimonic acid-Sb2O5·3H2O(C-SbA2),synthesized by an improved Kuzin′s method.Sodium ions are removed from potassium chloride with C-SbA2.The exchange efficiency is better than that of C-SbA1.

  18. NIFLUMIC ACID BLOCKS NATIVE AND RECOMBINANT T-TYPE CHANNELS

    OpenAIRE

    Balderas, E; Arteaga-Tlecuitl, R; Rivera, M; Gomora, JC; Darszon, A.

    2012-01-01

    Voltage-dependent calcium channels are widely distributed in animal cells, including spermatozoa. Calcium is fundamental in many sperm functions such as: motility, capacitation and the acrosome reaction, all essential for fertilization. Pharmacological evidence has suggested T-type calcium channels participate in the acrosome reaction. Niflumic acid (NA), a non-steroidal anti-inflammatory drug commonly used as chloride channel blocker, blocks T-currents in mouse spermatogenic cells and Cl− ch...

  19. Generation of stable 'low phytic acid' transgenic rice through antisense repression of the 1D-myo-inositol 3-phosphate synthase gene (RINO1) using the 18-kDa oleosin promoter.

    Science.gov (United States)

    Kuwano, Mio; Mimura, Tetsuro; Takaiwa, Fumio; Yoshida, Kaoru T

    2009-01-01

    Phytic acid acts as the major storage form of phosphorus in plant seeds and is poorly digested by monogastric animals. The degradation of phytic acid in animal diets is necessary to overcome both environmental and nutritional issues. The enzyme 1D-myo-inositol 3-phosphate [Ins(3)P(1)] synthase (EC 5.5.1.4) catalyses the first step of myo-inositol biosynthesis and directs phytic acid biosynthesis in seeds. The rice Ins(3)P(1) synthase gene (RINO1) is highly expressed in developing seed embryos and in the aleurone layer, where phytic acid is synthesized and stored. In rice seeds, 18-kDa oleosin (Ole18) is expressed in a seed-specific manner, and its transcripts are restricted to the embryo and the aleurone layer. Therefore, to effectively suppress phytic acid biosynthesis, antisense RINO1 cDNA was expressed under the control of the Ole18 promoter, directing the same spatial pattern in seeds as RINO1 in transgenic rice plants. The generated transgenic rice plants showed strong 'low phytic acid' (lpa) phenotypes, in which seed phytic acid was reduced by 68% and free available phosphate was concomitantly increased. No negative effects on seed weight, germination or plant growth were observed. The available phosphate levels of the stable transgenic plants surpassed those of currently available rice lpa mutants.

  20. Cloning, expression and functional identification of a type Ⅲ polyketide synthase gene from Huperzia serrata%千层塔中Ⅲ型聚酮合酶基因的克隆、表达与功能鉴定

    Institute of Scientific and Technical Information of China (English)

    叶金翠; 张萍; 孙洁胤; 郭潮潭; 陈国神; 阿部郁朗; 野口博司

    2011-01-01

    Ⅲ型聚酮合酶是以合成聚酮类化合物为主的一类重要生物合成酶.本文利用逆转录聚合酶链反应从中草药千层塔新鲜嫩叶中扩增聚酮合酶基因,得到一个Ⅲ型聚酮合酶全长cDNA.该基因全长1 212 bp,编码404个氨基酸.与已知的其他植物来源的聚酮合酶氨基酸序列有约50%~66%的同源性.cDNA经双酶切后克隆至pQE81L,并导入大肠杆菌(E.coli) M15中表达,产生大量带寡聚组氨酸标记的重组酶,重组酶分子质量大小约为46.4 kDa.酶活性鉴定研究表明,该重组酶可催化芳香族底物、脂肪族底物生成系列非天然聚酮产物,尤其是其可催化N-甲基邻氨基苯甲酰CoA和丙二酰CoA生成1,3-二羟基-N-甲基-吖啶酮,吖啶酮生物碱一直被认为只能由吖啶酮合酶合成.该工作为研究千层塔中Ⅲ型聚酮合酶在天然药物石杉碱甲生物合成中的作用奠定基础.%A Cdna encoding novel type III polyketide synthase (PKS) was cloned and sequenced from young leaves of Chinese club moss Huperzia serrata (Thunb.) Trev. By RT-PCR using degenerated primers based on the conserved sequences of known CHSs, and named as H. Serrata PKS2. The terminal sequences of Cdna were obtained by the 3'- and 5'-RACE method. The full-length Cdna ofH, serrata PKS2 contained a 1 212 bp open reading frame encoding a 46.4 kDa protein with 404 amino acids. The deduced amino acid sequence of H. Serrata PKS2 showed 50%-66% identities to those of other chalcone synthase super family enzymes of plant origin. The recombinant H. Serrata PKS2 was functionally expressed in Escherichia coli with an additional hexahistidine tag at the N-terminus and showed unusually versatile catalytic potency to produce various aromatic tetraketides, including chalcones, benzophenones, phloroglucinols, and acridones. In particular, the enzyme accepted bulky starter substrates N-methylanthraniloyl-CoA, and carried out three condensations with malonyl-CoA to produce 1

  1. A Mutant of Hepatitis B Virus X Protein (HBxΔ127 Promotes Cell Growth through A Positive Feedback Loop Involving 5-Lipoxygenase and Fatty Acid Synthase

    Directory of Open Access Journals (Sweden)

    Qi Wang

    2010-02-01

    Full Text Available Hepatocellular carcinoma (HCC is one of the most common malignant tumors worldwide. Hepatitis B virus X protein (HBx contributes to the development of HCC, whereas HBx with COOH-terminal deletion is a frequent event in the HCC tissues. Previously, we identified a natural mutant of HBx-truncated 27 amino acids at the COOH-terminal (termed HBxΔ127, which strongly enhanced cell growth. In the present study, we focused on investigating the mechanism. Accordingly, fatty acid synthase (FAS plays a crucial role in cancer cell survival and proliferation; thus, we examined the signaling pathways involving FAS. Our data showed that HBxΔ127 strongly increased the transcriptional activities of FAS in human hepatoma HepG2 and H7402 cells. Moreover, we found that 5-lipoxygenase (5-LOX was responsible for the up-regulation of FAS by using MK886 (an inhibitor of 5-LOX and 5-LOX small interfering RNA. We observed that HBxΔ127 could upregulate 5-LOX through phosphorylated extracellular signal-regulated protein kinases 1/2 and thus resulted in the increase of released leukotriene B4 (LTB4, a metabolite of 5-LOX by ELISA. The additional LTB4 could upregulate the expression of FAS in the cells as well. Interestingly, we found that FAS was able to upregulate the expression of 5-LOX in a feedback manner by using cerulenin (an inhibitor of FAS. Collectively, HBxΔ127 promotes cell growth through a positive feedback loop involving 5-LOX and FAS, in which released LTB4 is involved in the up-regulation of FAS. Thus, our finding provides a new insight into the mechanism involving the promotion of cell growth mediated by HBxΔ127.

  2. Sequence analysis and structure prediction of type II Pseudomonas sp. USM 4–55 PHA synthase and an insight into its catalytic mechanism

    Directory of Open Access Journals (Sweden)

    Ahmad Khairudin Nurul

    2006-11-01

    Full Text Available Abstract Background Polyhydroxyalkanoates (PHA, are biodegradable polyesters derived from many microorganisms such as the pseudomonads. These polyesters are in great demand especially in the packaging industries, the medical line as well as the paint industries. The enzyme responsible in catalyzing the formation of PHA is PHA synthase. Due to the limited structural information, its functional properties including catalysis are lacking. Therefore, this study seeks to investigate the structural properties as well as its catalytic mechanism by predicting the three-dimensional (3D model of the Type II Pseudomonas sp. USM 4–55 PHA synthase 1 (PhaC1P.sp USM 4–55. Results Sequence analysis demonstrated that PhaC1P.sp USM 4–55 lacked similarity with all known structures in databases. PSI-BLAST and HMM Superfamily analyses demonstrated that this enzyme belongs to the alpha/beta hydrolase fold family. Threading approach revealed that the most suitable template to use was the human gastric lipase (PDB ID: 1HLG. The superimposition of the predicted PhaC1P.sp USM 4–55 model with 1HLG covering 86.2% of the backbone atoms showed an RMSD of 1.15 Å. The catalytic residues comprising of Cys296, Asp451 and His479 were found to be conserved and located adjacent to each other. In addition to this, an extension to the catalytic mechanism was also proposed whereby two tetrahedral intermediates were believed to form during the PHA biosynthesis. These transition state intermediates were further postulated to be stabilized by the formation of oxyanion holes. Based on the sequence analysis and the deduced model, Ser297 was postulated to contribute to the formation of the oxyanion hole. Conclusion The 3D model of the core region of PhaC1P.sp USM 4–55 from residue 267 to residue 484 was developed using computational techniques and the locations of the catalytic residues were identified. Results from this study for the first time highlighted Ser297 potentially

  3. Mutational analysis of a monoterpene synthase reaction: altered catalysis through directed mutagenesis of (-)-pinene synthase from Abies grandis.

    Science.gov (United States)

    Hyatt, David C; Croteau, Rodney

    2005-07-15

    Two monoterpene synthases, (-)-pinene synthase and (-)-camphene synthase, from grand fir (Abies grandis) produce different product mixtures despite having highly homologous amino acid sequences and, presumably, very similar three-dimensional structures. The major product of (-)-camphene synthase, (-)-camphene, and the major products of (-)-pinene synthase, (-)-alpha-pinene, and (-)-beta-pinene, arise through distinct mechanistic variations of the electrophilic reaction cascade that is common to terpenoid synthases. Structural modeling followed by directed mutagenesis in (-)-pinene synthase was used to replace selected amino acid residues with the corresponding residues from (-)-camphene synthase in an effort to identify the amino acids responsible for the catalytic differences. This approach produced an enzyme in which more than half of the product was channeled through an alternative pathway. It was also shown that several (-)-pinene synthase to (-)-camphene synthase amino acid substitutions were necessary before catalysis was significantly altered. The data support a model in which the collective action of many key amino acids, located both in and distant from the active site pocket, regulate the course of the electrophilic reaction cascade.

  4. Functional Characterization of Sesquiterpene Synthase from Polygonum minus

    Directory of Open Access Journals (Sweden)

    Su-Fang Ee

    2014-01-01

    Full Text Available Polygonum minus is an aromatic plant, which contains high abundance of terpenoids, especially the sesquiterpenes C15H24. Sesquiterpenes were believed to contribute to the many useful biological properties in plants. This study aimed to functionally characterize a full length sesquiterpene synthase gene from P. minus. P. minus sesquiterpene synthase (PmSTS has a complete open reading frame (ORF of 1689 base pairs encoding a 562 amino acid protein. Similar to other sesquiterpene synthases, PmSTS has two large domains: the N-terminal domain and the C-terminal metal-binding domain. It also consists of three conserved motifs: the DDXXD, NSE/DTE, and RXR. A three-dimensional protein model for PmSTS built clearly distinguished the two main domains, where conserved motifs were highlighted. We also constructed a phylogenetic tree, which showed that PmSTS belongs to the angiosperm sesquiterpene synthase subfamily Tps-a. To examine the function of PmSTS, we expressed this gene in Arabidopsis thaliana. Two transgenic lines, designated as OE3 and OE7, were further characterized, both molecularly and functionally. The transgenic plants demonstrated smaller basal rosette leaves, shorter and fewer flowering stems, and fewer seeds compared to wild type plants. Gas chromatography-mass spectrometry analysis of the transgenic plants showed that PmSTS was responsible for the production of β-sesquiphellandrene.

  5. Structural basis for morpheein-type allosteric regulation of Escherichia coli glucosamine-6-phosphate synthase: equilibrium between inactive hexamer and active dimer.

    Science.gov (United States)

    Mouilleron, Stéphane; Badet-Denisot, Marie-Ange; Pecqueur, Ludovic; Madiona, Karine; Assrir, Nadine; Badet, Bernard; Golinelli-Pimpaneau, Béatrice

    2012-10-01

    The amino-terminal cysteine of glucosamine-6-phosphate synthase (GlmS) acts as a nucleophile to release and transfer ammonia from glutamine to fructose 6-phosphate through a channel. The crystal structure of the C1A mutant of Escherichia coli GlmS, solved at 2.5 Å resolution, is organized as a hexamer, where the glutaminase domains adopt an inactive conformation. Although the wild-type enzyme is active as a dimer, size exclusion chromatography, dynamic and quasi-elastic light scattering, native polyacrylamide gel electrophoresis, and ultracentrifugation data show that the dimer is in equilibrium with a hexameric state, in vitro and in cellulo. The previously determined structures of the wild-type enzyme, alone or in complex with glucosamine 6-phosphate, are also consistent with a hexameric assembly that is catalytically inactive because the ammonia channel is not formed. The shift of the equilibrium toward the hexameric form in the presence of cyclic glucosamine 6-phosphate, together with the decrease of the specific activity with increasing enzyme concentration, strongly supports product inhibition through hexamer stabilization. Altogether, our data allow us to propose a morpheein model, in which the active dimer can rearrange into a transiently stable form, which has the propensity to form an inactive hexamer. This would account for a physiologically relevant allosteric regulation of E. coli GlmS. Finally, in addition to cyclic glucose 6-phosphate bound at the active site, the hexameric organization of E. coli GlmS enables the binding of another linear sugar molecule. Targeting this sugar-binding site to stabilize the inactive hexameric state is therefore suggested for the development of specific antibacterial inhibitors.

  6. Inhibition of flower formation by antisense repression of mitochondrial citrate synthase in transgenic potato plants leads to a specific disintegration of the ovary tissues of flowers.

    OpenAIRE

    Landschütze, V; Willmitzer, L.; Müller-Röber, B

    1995-01-01

    The tricarboxylic acid (TCA) cycle constitutes a major component of the mitochondrial metabolism of eucaryotes, including higher plants. To analyze the importance of this pathway, we down-regulated mitochondrial citrate synthase (mCS; EC 4.1.3.7), the first enzyme of the TCA cycle, in transgenic potato plants using an antisense RNA approach. Several transformants were identified with reduced citrate synthase activity (down to approximately 6% of wild-type activity). These plants were indistin...

  7. Obesity, type 2 diabetes, and impaired insulin-stimulated blood flow: role of skeletal muscle NO synthase and endothelin-1.

    Science.gov (United States)

    Reynolds, Leryn J; Credeur, Daniel P; Manrique, Camila; Padilla, Jaume; Fadel, Paul J; Thyfault, John P

    2017-01-01

    Increased endothelin-1 (ET-1) and reduced endothelial nitric oxide phosphorylation (peNOS) are hypothesized to reduce insulin-stimulated blood flow in type 2 diabetes (T2D), but studies examining these links in humans are limited. We sought to assess basal and insulin-stimulated endothelial signaling proteins (ET-1 and peNOS) in skeletal muscle from T2D patients. Ten obese T2D [glucose disposal rate (GDR): 6.6 ± 1.6 mg·kg lean body mass (LBM)(-1)·min(-1)] and 11 lean insulin-sensitive subjects (Lean GDR: 12.9 ± 1.2 mg·kg LBM(-1)·min(-1)) underwent a hyperinsulinemic-euglycemic clamp with vastus lateralis biopsies taken before and 60 min into the clamp. Basal biopsies were also taken in 11 medication-naïve, obese, non-T2D subjects. ET-1, peNOS (Ser1177), and eNOS protein and mRNA were measured from skeletal muscle samples containing native microvessels. Femoral artery blood flow was assessed by duplex Doppler ultrasound. Insulin-stimulated blood flow was reduced in obese T2D (Lean: +50.7 ± 6.5% baseline, T2D: +20.8 ± 5.2% baseline, P 0.05). Obese non-T2D subjects tended to also display elevated basal ET-1 (P = 0.06). In summary, higher basal skeletal muscle expression of ET-1 and reduced peNOS/eNOS may contribute to a reduced insulin-stimulated leg blood flow response in obese T2D patients.

  8. Fetal and neonatal exposure to nicotine leads to augmented hepatic and circulating triglycerides in adult male offspring due to increased expression of fatty acid synthase

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Noelle [Department of Physiology and Pharmacology, The University of Western Ontario (Canada); Department of Obstetrics and Gynecology, The University of Western Ontario (Canada); The Lawson Health Research Institute, The University of Western Ontario (Canada); Nicholson, Catherine J. [Department of Obstetrics and Gynecology, McMaster University (Canada); Wong, Michael [Department of Physiology and Pharmacology, The University of Western Ontario (Canada); Department of Obstetrics and Gynecology, The University of Western Ontario (Canada); The Lawson Health Research Institute, The University of Western Ontario (Canada); Holloway, Alison C. [Department of Obstetrics and Gynecology, McMaster University (Canada); Hardy, Daniel B., E-mail: Daniel.Hardy@schulich.uwo.ca [Department of Physiology and Pharmacology, The University of Western Ontario (Canada); Department of Obstetrics and Gynecology, The University of Western Ontario (Canada); The Children' s Health Research Institute, The University of Western Ontario (Canada); The Lawson Health Research Institute, The University of Western Ontario (Canada)

    2014-02-15

    While nicotine replacement therapy is assumed to be a safer alternative to smoking during pregnancy, the long-term consequences for the offspring remain elusive. Animal studies now suggest that maternal nicotine exposure during perinatal life leads to a wide range of adverse outcomes for the offspring including increased adiposity. The focus of this study was to investigate if nicotine exposure during pregnancy and lactation leads to alterations in hepatic triglyceride synthesis. Female Wistar rats were randomly assigned to receive daily subcutaneous injections of saline (vehicle) or nicotine bitartrate (1 mg/kg/day) for two weeks prior to mating until weaning. At postnatal day 180 (PND 180), nicotine exposed offspring exhibited significantly elevated levels of circulating and hepatic triglycerides in the male offspring. This was concomitant with increased expression of fatty acid synthase (FAS), the critical hepatic enzyme in de novo triglyceride synthesis. Given that FAS is regulated by the nuclear receptor Liver X receptor (LXRα), we measured LXRα expression in both control and nicotine-exposed offspring. Nicotine exposure during pregnancy and lactation led to an increase in hepatic LXRα protein expression and enriched binding to the putative LXRE element on the FAS promoter in PND 180 male offspring. This was also associated with significantly enhanced acetylation of histone H3 [K9,14] surrounding the FAS promoter, a hallmark of chromatin activation. Collectively, these findings suggest that nicotine exposure during pregnancy and lactation leads to an increase in circulating and hepatic triglycerides long-term via changes in the transcriptional and epigenetic regulation of the hepatic lipogenic pathway. - Highlights: • Our data reveals the links nicotine exposure in utero and long-term hypertriglyceridemia. • It is due to nicotine-induced augmented expression of hepatic FAS and LXRα activity. • Moreover, this involves nicotine-induced enhanced

  9. Influence of fatty acid synthase inhibitor orlistat on the DNA repair enzyme O6-methylguanine-DNA methyltransferase in human normal or malignant cells in vitro.

    Science.gov (United States)

    Cioccoloni, Giorgia; Bonmassar, Laura; Pagani, Elena; Caporali, Simona; Fuggetta, Maria Pia; Bonmassar, Enzo; D'Atri, Stefania; Aquino, Angelo

    2015-08-01

    Tetrahydrolipstatin (orlistat), an inhibitor of lipases and fatty acid synthase, is used orally for long-term treatment of obesity. Although the drug possesses striking antitumor activities in vitro against human cancer cells and in vitro and in vivo against animal tumors, it also induces precancerous lesions in rat colon. Therefore, we tested the in vitro effect of orlistat on the expression of O6-methylguanine-DNA methyltransferase (MGMT), a DNA repair enzyme that plays an essential role in the control of mutagenesis and carcinogenesis. Western blot analysis demonstrated that 2-day continuous exposure to 40 µM orlistat did not affect MGMT levels in a human melanoma cell line, but downregulated the repair protein by 30-70% in human peripheral blood mononuclear cells, in two leukemia and two colon cancer cell lines. On the other hand, orlistat did not alter noticeably MGMT mRNA expression. Differently from lomeguatrib (a false substrate, strong inhibitor of MGMT) orlistat did not reduce substantially MGMT function after 2-h exposure of target cells to the agent, suggesting that this drug is not a competitive inhibitor of the repair protein. Combined treatment with orlistat and lomeguatrib showed additive reduction of MGMT levels. More importantly, orlistat-mediated downregulation of MGMT protein expression was markedly amplified when the drug was combined with a DNA methylating agent endowed with carcinogenic properties such as temozolomide. In conclusion, even if orlistat is scarcely absorbed by oral route, it is possible that this drug could reduce local MGMT-mediated protection against DNA damage provoked by DNA methylating compounds on gastrointestinal tract epithelial cells, thus favoring chemical carcinogenesis.

  10. Fatty acid synthase/oxidized low-density lipoprotein as metabolic oncogenes linking obesity to colon cancer via NF-kappa B in Egyptians.

    Science.gov (United States)

    Keshk, Walaa Arafa; Zineldeen, Doaa Hussein; Wasfy, Rania E L-sayed; El-Khadrawy, Osama Helmy

    2014-10-01

    Obesity is a major health problem which heightens the risk of several chronic illnesses including cancer development particularly colon cancer. The underlying pathophysiology of obesity associated colon cancer remains to be elucidated. The purpose of this current study was to determine fatty acid synthase (FASN) activity/expression, oxidized low-density lipoprotein (ox-LDL) level and redox status under the context of anthropometric measurements and lipid profile to find their potential role as interacting biomarkers relating obesity to colon cancer initiation and progression via nuclear factor kappa-B (NF-κB) signaling. This study was conducted upon Egyptian individuals; 30 obese subjects with colon cancer, 11 nonobese and 11 obese subjects without colon cancer. FASN gene expression, NF-κB immunoreactivity, and serum ox-LDL level were estimated by real-time PCR, immunohistochemistry and immunoassay, respectively. FASN activity, glycemic status, obesity, and oxidative stress indices were also assessed. It was found that FASN expression and activity were statistically increased in obese with colon cancer (P=0.021 and 0.018, respectively), with statistically significant increase in patients with advanced grading. Moreover, NF-κB immunoreactivity and serum ox-LDL level were significantly increased in obese colon cancer patients with significantly higher levels in those with advanced grading (all Pcancer. These results revealed that FASN and ox-LDL as well as oxidative stress may increase the risk of obesity related colon cancer, particularly via NF-κB signaling and could be used as potential predictive and prognostic biomarkers for obesity complicated with colon cancer.

  11. Infection with HIV and HCV enhances the release of fatty acid synthase into circulation: evidence for a novel indicator of viral infection

    Directory of Open Access Journals (Sweden)

    Aragonès Gerard

    2010-08-01

    Full Text Available Abstract Background Fatty acid synthase (FASN is an enzyme synthesized by the liver and plays an important role in lipogenesis. The present study aimed to investigate whether serum FASN concentration may provide a direct link between HIV and/or HCV viral infections and lipid metabolic disorders commonly observed in HIV/HCV-infected patients. Methods We evaluated serum FASN concentration in 191 consecutive HIV-infected patients in the absence or presence of HCV co-infection. For comparison, 102 uninfected controls were included. Metabolic and inflammatory phenotype was also compared with respect to the presence of HCV co-infection. Results Serum FASN concentration was significantly higher in HIV-infected patients than in healthy participants and HCV co-infected patients showed higher levels than those without co-infection. Levels were also affected by treatment regimen, but marginally influenced by virological variables. Insulin concentration was the sole variable among metabolic parameters that demonstrated a significant correlation with serum FASN concentrations. Serum alanine aminotransferase (ALT values correlated significantly with serum FASN concentration and provided the best discrimination with respect to the presence or absence of HCV co-infection. In multivariate analysis, only ALT, monocyte chemoattractant protein-1 (MCP-1 and the presence of antiretroviral treatment regimen significantly contributed to explain serum FASN concentration in HIV/HCV co-infected patients. Conclusion Serum FASN concentration is significantly increased in HIV-infected individuals. The release of FASN into the circulation is further enhanced in patients who are co-infected with HCV. Subsequent studies should explore the usefulness of this indicator to monitor the effect of viral infections on disease progression and survival.

  12. Combined Phosphatase and Tensin Homolog (PTEN Loss and Fatty Acid Synthase (FAS Overexpression Worsens the Prognosis of Chinese Patients with Hepatocellular Carcinoma

    Directory of Open Access Journals (Sweden)

    Xuehua Zhu

    2012-08-01

    Full Text Available We aimed to investigate the expression pattern of phosphatase and tensin homolog (PTEN, to evaluate the relationship between PTEN expression and clinicopathological characteristics, including fatty acid synthase (FAS expression, and to determine the correlations of PTEN and FAS expression with survival in Chinese patients with hepatocellular carcinoma (HCC. The expression patterns of PTEN and FAS were determined using tissue microarrays and immunohistochemistry. The expression of PTEN was compared with the clinicopathological characteristics of HCC, including FAS expression. Receiver operator characteristic curves were used to calculate the clinical sensitivity and specificity of PTEN expression. Kaplan-Meier survival curves were constructed to evaluate the correlations of PTEN loss and FAS overexpression with overall survival. We found that the loss of PTEN expression occurred predominantly in the cytoplasm, while FAS was mainly localized to the cytoplasm. Cytoplasmic and total PTEN expression levels were significantly decreased in HCC compared with adjacent non-neoplastic tissue (both, p < 0.0001. Decreased cytoplasmic and total PTEN expression showed significant clinical sensitivity and specificity for HCC (both, p < 0.0001. Downregulation of PTEN in HCC relative to non-neoplastic tissue was significantly correlated with histological grade (p = 0.043 for histological grades I–II versus grade III. Loss of total PTEN was significantly correlated with FAS overexpression (p = 0.014. Loss of PTEN was also associated with poor prognosis of patients with poorly differentiated HCC (p = 0.049. Moreover, loss of PTEN combined with FAS overexpression was associated with significantly worse prognosis compared with other HCC cases (p = 0.011. Our data indicate that PTEN may serve as a potential diagnostic and prognostic marker of HCC. Upregulating PTEN expression and inhibiting FAS

  13. The Effect of Ethylene and Propylene Pulses on Respiration, Ripening Advancement, Ethylene-Forming Enzyme, and 1-Aminocyclopropane-1-carboxylic Acid Synthase Activity in Avocado Fruit.

    Science.gov (United States)

    Starrett, D A; Laties, G G

    1991-03-01

    When early-season avocado fruit (Persea americana Mill. cv Hass) were treated with ethylene or propylene for 24 hours immediately on picking, the time to the onset of the respiratory climacteric, i.e. the lag period, remained unchanged compared with that in untreated fruit. When fruit were pulsed 24 hours after picking, on the other hand, the lag period was shortened. In both cases, however, a 24 hour ethylene or propylene pulse induced a transient increase in respiration, called the pulse-peak, unaccompanied by ethylene production (IL Eaks [1980] Am Soc Hortic Sci 105: 744-747). The pulse also caused a sharp rise in ethylene-forming enzyme activity in both cases, without any increase in the low level of 1-aminocyclopropane-1-carboxylic acid synthase activity. Thus, the shortening of the lag period by an ethylene pulse is not due to an effect of ethylene on either of the two key enzymes in ethylene biosynthesis. A comparison of two-dimensional polyacrylamide gel electrophoresis polypeptide profiles of in vitro translation products of poly(A(+)) mRNA from control and ethylene-pulsed fruit showed both up- and down-regulation in response to ethylene pulsing of a number of genes expressed during the ripening syndrome. It is proposed that the pulse-peak or its underlying events reflect an intrinsic element in the ripening process that in late-season or continuously ethylene-treated fruit may be subsumed in the overall climacteric response. A computerized system that allows continuous readout of multiple samples has established that the continued presentation of exogeneous ethylene or propylene to preclimacteric fruit elicits a dual respiration response comprising the merged pulse-peak and climacteric peak in series. The sequential removal of cores from a single fruit has proven an unsatisfactory sampling procedure inasmuch as coring induces wound ethylene, evokes a positive respiration response, and advances ripening.

  14. Serous tubal intraepithelial carcinoma upregulates markers associated with high-grade serous carcinomas including Rsf-1 (HBXAP), cyclin E and fatty acid synthase.

    Science.gov (United States)

    Sehdev, Ann Smith; Kurman, Robert J; Kuhn, Elisabetta; Shih, Ie-Ming

    2010-06-01

    Serous tubal intraepithelial carcinoma (STIC) has been proposed as a precursor for many pelvic high-grade serous carcinomas. Our previous analysis of the ovarian cancer genome identified several genes with oncogenic potential that are amplified and/or overexpressed in the majority of high-grade serous carcinomas. Determining whether these genes are upregulated in STICs is important in further elucidating the relationship of STICs to high-grade serous carcinomas and is fundamental in understanding the molecular pathogenesis of high-grade serous carcinomas. In this study, 37 morphologically defined STICs were obtained from 23 patients with stage IIIC/IV high-grade serous carcinomas. Both STICs and the high-grade serous carcinomas were analyzed for expression of Rsf-1 (HBXAP), cyclin E, fatty acid synthase (FASN) and mucin-4. In addition, they were examined for expression of established markers including p53, Ki-67 and p16. We found that diffuse nuclear p53 and p16 immunoreactivity was observed in 27 (75%) of 36 and 18 (55%) of 33 STICs, respectively, whereas an elevated Ki-67 labeling index (>or=10%) was detected in 29 (78%) of 37 STICs. Cyclin E nuclear staining was seen in 24 (77%) of 35 STICs, whereas normal tubal epithelial cells were all negative. Increased Rsf-1 and FASN immunoreactivity occurred in 63%, and 62% of STICs, respectively, compared with adjacent normal-appearing tubal epithelium. Interestingly, only one STIC showed increased mucin-4 immunoreactivity. Carcinomas, when compared with STICs, overexpressed p16, Rsf-1, cyclin E and FASN in a higher proportion of cases. In conclusion, STICs express several markers including Rsf-1, cyclin E and FASN in high-grade serous carcinomas. In contrast, mucin-4 immunoreactivity either did not change or was reduced in most STICs. These results suggest that overexpression of Rsf-1, cyclin E and FASN occurs early in tumor progression.

  15. Valproic acid-mediated transcriptional regulation of human GM3 synthase (hST3Gal V) in SK-N-BE(2)-C human neuroblastoma cells

    Institute of Scientific and Technical Information of China (English)

    Haw-young KWON; Nam-young KANG; Hyun-mi DAE; Kyoung-sook KIM; Cheorl-ho KIM; Su-il DO; Young-choon LEE

    2008-01-01

    Aim:To investigate whether valproic acid (VPA) modulates human GM3 syn-thase (hST3Gal V) mRNA expression, as a part of ganglioside GM3 biosynthe-sis, in human neuroblastoma cells. Methods: Using RT-PCR and immunofluo-rescent confocal microscopy, we examined hST3Gal V mRNA and GM3 levels during VPA-induced differentiation of human neuroblastoma SK-N-BE(2)-C cells. We characterized the VPA-inducible promoter region within the hST3-Gal V gene using luciferase constructs carrying 5'-deletions of the hST3Gal V promoter. Results: RT-PCR indicated that VPA-mediated hST3Gal V induction is transcriptionally regulated. Functional analysis of the 5'-flanking region of the hST3Gal V gene demonstrated that the -177 to -83 region, which contains a cAMP-responsive element (CRE) at -143, functions as the VPA-inducible promoter by actively binding CRE binding protein (CREB). In addition, site-directed mutagenesis and electrophoretic mobility shift assay indicated that the CRE at -143 is crucial for the VPA-induced expression of hST3Gal V in SK-N-BE(2)-C cells. Conclusion: Our results isolated the core promoter region in the hST3Gal V promoter, a CRE at -143, and demonstrated that it is essential for transcriptional activation of hST3Gal V in VPA-induced SK-N-BE(2)-C cells. Subsequent CREB binding to this CRE mediates VPA-dependent upregulation of hST3Gal V gene expression.

  16. 中长链聚羟基脂肪酸酯(mcl PHA)在嗜水气单胞菌Ⅰ型PHA合酶缺失突变株中的合成%Synthesis of Medium-chain-length Polyhydroxyalkanoate (mci PHA) in Type Ⅰ PHA Synthase Negative Mutant of Aeromonas hydrophila

    Institute of Scientific and Technical Information of China (English)

    胡风庆; 游松; 陈国强

    2005-01-01

    拥有Ⅰ型聚羟基脂肪酸酯(PHA)合酶基因的嗜水气单胞菌CGMCC0911株可利用月桂酸而不能利用葡萄糖作为碳源积累PHBHHx.将氯霉素抗性基因(Cm)插入到该基因中,获得带有Ⅰ型PHA合酶断裂基因(phaC::Cm)的自杀质粒pFH10.自杀质粒pFH10通过接合作用转入嗜水气单胞菌CGMCC0911株中并发生体内同源重组,Cm被整合到基因组上,获得Ⅰ型PHA合酶缺失突变株.DNA序列测定证明了这一结果.GC分析表明,突变株不再产生PHBHHx,但却可利用月桂酸或葡萄糖积累中长链PHA,明显表明野生型嗜水气单胞菌基因组中存在另一个编码Ⅱ型PHA合酶的基因,且只有Ⅰ型PHA合酶被钝化后,这个功能被隐藏的Ⅱ型PHA合酶才可在细胞中发挥作用.%Aeromonas hydrophila CGMCC 0911 possessing type Ⅰ polyhydroxyalkanoate (PHA) synthase gene phaC) only accumulate copolyesters consisting of 3-hydroxybutyrate (3HB) and 3-hydroxyhexanoate (3HHx), abbreviated as PHBHHx,from lauric acid as sole carbon source but not from glucose. The gene encoding type Ⅰ PHA synthase was interrupted by insertion of a chloramphenicol resistance gene (Cm). Conjugation of suicide plasmid pFH10 transformed A. hydrophila CGMCC 0911into a recombinant organism with the disrupted type Ⅰ PHA synthase gene (phaC:: Cm ), through an in vivo homologous recombination process, type Ⅰ phaC of A. hydrophila genome was replaced by the disrupted phaC, and Cm gene was integrated into the genome of A. hydrophila, resulting in type Ⅰ phaC-negative mutant, which was proved by DNA sequencing. Results of GC analysis showed that this mutant could not accumulate PHBHHx again but accumulate medium-chain-length (mcl) PHA from lauric acid or glucose as carbon source, clearly indicating the existence of another type Ⅱ PHA synthase in the wild type A.hydrophila. It will play its function and accumulate mcl PHA only when type Ⅰ PHA synthase was inactivated.

  17. Identification and characterization of two bisabolene synthases from linear glandular trichomes of sunflower (Helianthus annuus L., Asteraceae).

    Science.gov (United States)

    Aschenbrenner, Anna-Katharina; Kwon, Moonhyuk; Conrad, Jürgen; Ro, Dae-Kyun; Spring, Otmar

    2016-04-01

    Sunflower is known to produce a variety of bisabolene-type sesquiterpenes and accumulates these substances in trichomes of leaves, stems and flowering parts. A bioinformatics approach was used to identify the enzyme responsible for the initial step in the biosynthesis of these compounds from its precursor farnesyl pyrophosphate. Based on sequence similarity with a known bisabolene synthases from Arabidopsis thaliana AtTPS12, candidate genes of Helianthus were searched in EST-database and used to design specific primers. PCR experiments identified two candidates in the RNA pool of linear glandular trichomes of sunflower. Their sequences contained the typical motifs of sesquiterpene synthases and their expression in yeast functionally characterized them as bisabolene synthases. Spectroscopic analysis identified the stereochemistry of the product of both enzymes as (Z)-γ-bisabolene. The origin of the two sunflower bisabolene synthase genes from the transcripts of linear trichomes indicates that they may be involved in the synthesis of sesquiterpenes produced in these trichomes. Comparison of the amino acid sequences of the sunflower bisabolene synthases showed high similarity with sesquiterpene synthases from other Asteracean species and indicated putative evolutionary origin from a β-farnesene synthase.

  18. Fatty acid synthase is a key target in multiple essential tumor functions of prostate cancer: uptake of radiolabeled acetate as a predictor of the targeted therapy outcome.

    Directory of Open Access Journals (Sweden)

    Yukie Yoshii

    Full Text Available Fatty acid synthase (FASN expression is elevated in several cancers, and this over-expression is associated with poor prognosis. Inhibitors of FASN, such as orlistat, reportedly show antitumor effects against cancers that over-express FASN, making FASN a promising therapeutic target. However, large variations in FASN expression levels in individual tumors have been observed, and methods to predict FASN-targeted therapy outcome before treatment are required to avoid unnecessary treatment. In addition, how FASN inhibition affects tumor progression remains unclear. Here, we showed the method to predict FASN-targeted therapy outcome using radiolabeled acetate uptake and presented mechanisms of FASN inhibition with human prostate cancer cell lines, to provide the treatment strategy of FASN-targeted therapy. We revealed that tumor uptake of radiolabeled acetate reflected the FASN expression levels and sensitivity to FASN-targeted therapy with orlistat in vitro and in vivo. FASN-targeted therapy was noticeably effective against tumors with high FASN expression, which was indicated by high acetate uptake. To examine mechanisms, we established FASN knockdown prostate cancer cells by transduction of short-hairpin RNA against FASN and investigated the characteristics by analyses on morphology and cell behavior and microarray-based gene expression profiling. FASN inhibition not only suppressed cell proliferation but prevented pseudopodia formation and suppressed cell adhesion, migration, and invasion. FASN inhibition also suppressed genes involved in production of intracellular second messenger arachidonic acid and androgen hormones, both of which promote tumor progression. Collectively, our data demonstrated that uptake of radiolabeled acetate is a useful predictor of FASN-targeted therapy outcome. This suggests that [1-(11C]acetate positron emission tomography (PET could be a powerful tool to accomplish personalized FASN-targeted therapy by non

  19. Isolation of the GFA1 gene encoding glucosamine-6-phosphate synthase of Sporothrix schenckii and its expression in Saccharomyces cerevisiae.

    Science.gov (United States)

    Sánchez-López, Juan Francisco; González-Ibarra, Joaquín; Álvarez-Vargas, Aurelio; Milewski, Slawomir; Villagómez-Castro, Julio César; Cano-Canchola, Carmen; López-Romero, Everardo

    2015-06-01

    Glucosamine-6-phosphate synthase (GlcN-6-P synthase) is an essential enzyme involved in cell wall biogenesis that has been proposed as a strategic target for antifungal chemotherapy. Here we describe the cloning and functional characterization of Sporothrix schenckii GFA1 gene which was isolated from a genomic library of the fungus. The gene encodes a predicted protein of 708 amino acids that is homologous to GlcN-6-P synthases from other sources. The recombinant enzyme restored glucosamine prototrophy of the Saccharomyces cerevisiae gfa1 null mutant. Purification and biochemical analysis of the recombinant enzyme revealed some differences from the wild type enzyme, such as improved stability and less sensitivity to UDP-GlcNAc. The sensitivity of the recombinant enzyme to the selective inhibitor FMDP [N(3)-(4-methoxyfumaroyl)-l-2,3-diaminopropanoic acid] and other properties were similar to those previously reported for the wild type enzyme.

  20. Human Lipocalin-Type Prostaglandin D Synthase-Based Drug Delivery System for Poorly Water-Soluble Anti-Cancer Drug SN-38.

    Science.gov (United States)

    Nakatsuji, Masatoshi; Inoue, Haruka; Kohno, Masaki; Saito, Mayu; Tsuge, Syogo; Shimizu, Shota; Ishida, Atsuko; Ishibashi, Osamu; Inui, Takashi

    2015-01-01

    Lipocalin-type prostaglandin D synthase (L-PGDS) is a member of the lipocalin superfamily, which is composed of secretory transporter proteins, and binds a wide variety of small hydrophobic molecules. Using this function, we have reported the feasibility of using L-PGDS as a novel drug delivery vehicle for poorly water-soluble drugs. In this study, we show the development of a drug delivery system using L-PGDS, one that enables the direct clinical use of 7-ethyl-10-hydroxy-camptothecin (SN-38), a poorly water-soluble anti-cancer drug. In the presence of 2 mM L-PGDS, the concentration of SN-38 in PBS increased 1,130-fold as compared with that in PBS. Calorimetric experiments revealed that L-PGDS bound SN-38 at a molecular ratio of 1:3 with a dissociation constant value of 60 μM. The results of an in vitro growth inhibition assay revealed that the SN-38/L-PGDS complexes showed high anti-tumor activity against 3 human cancer cell lines, i.e., Colo201, MDA-MB-231, and PC-3 with a potency similar to that of SN-38 used alone. The intravenous administration of SN-38/L-PGDS complexes to mice bearing Colo201 tumors showed a pronounced anti-tumor effect. Intestinal mucositis, which is one of the side effects of this drug, was not observed in mice administered SN-38/L-PGDS complexes. Taken together, L-PGDS enables the direct usage of SN-38 with reduced side effects.

  1. Human Lipocalin-Type Prostaglandin D Synthase-Based Drug Delivery System for Poorly Water-Soluble Anti-Cancer Drug SN-38.

    Directory of Open Access Journals (Sweden)

    Masatoshi Nakatsuji

    Full Text Available Lipocalin-type prostaglandin D synthase (L-PGDS is a member of the lipocalin superfamily, which is composed of secretory transporter proteins, and binds a wide variety of small hydrophobic molecules. Using this function, we have reported the feasibility of using L-PGDS as a novel drug delivery vehicle for poorly water-soluble drugs. In this study, we show the development of a drug delivery system using L-PGDS, one that enables the direct clinical use of 7-ethyl-10-hydroxy-camptothecin (SN-38, a poorly water-soluble anti-cancer drug. In the presence of 2 mM L-PGDS, the concentration of SN-38 in PBS increased 1,130-fold as compared with that in PBS. Calorimetric experiments revealed that L-PGDS bound SN-38 at a molecular ratio of 1:3 with a dissociation constant value of 60 μM. The results of an in vitro growth inhibition assay revealed that the SN-38/L-PGDS complexes showed high anti-tumor activity against 3 human cancer cell lines, i.e., Colo201, MDA-MB-231, and PC-3 with a potency similar to that of SN-38 used alone. The intravenous administration of SN-38/L-PGDS complexes to mice bearing Colo201 tumors showed a pronounced anti-tumor effect. Intestinal mucositis, which is one of the side effects of this drug, was not observed in mice administered SN-38/L-PGDS complexes. Taken together, L-PGDS enables the direct usage of SN-38 with reduced side effects.

  2. Altering small and medium alcohol selectivity in the wax ester synthase.

    Science.gov (United States)

    Barney, Brett M; Ohlert, Janet M; Timler, Jacobe G; Lijewski, Amelia M

    2015-11-01

    The bifunctional wax ester synthase/acyl-coenzyme A:diacylglycerol acyltransferase (WS/DGAT or wax ester synthase) catalyzes the terminal reaction in the bacterial wax ester biosynthetic pathway, utilizing a range of alcohols and fatty acyl-CoAs to synthesize the corresponding wax ester. The wild-type wax ester synthase Maqu_0168 from Marinobacter aquaeolei VT8 exhibits a preference for longer fatty alcohols, while applications with smaller alcohols would yield products with desired biotechnological properties. Small and medium chain length alcohol substrates are much poorer substrates for the native enzyme, which may hinder broad application of the wax ester synthase in many proposed biosynthetic schemes. Developing approaches to improve enzyme activity toward specific smaller alcohol substrates first requires a clear understanding of which amino acids of the primary sequences of these enzymes contribute to substrate specificity in the native enzyme. In this report, we surveyed a range of potential residues and identified the leucine at position 356 and methionine at position 405 in Maqu_0168 as residues that affected selectivity toward small, branched, and aromatic alcohols when substituted with different amino acids. This analysis provides evidence of residues that line the binding site for wax ester synthase, which will aid rational approaches to improve this enzyme with specific substrates.

  3. Dodecanedioic acid overcomes metabolic inflexibility in type 2 diabetic subjects.

    Science.gov (United States)

    Salinari, Serenella; Bertuzzi, Alessandro; Gandolfi, Alberto; Greco, Aldo V; Scarfone, Antonino; Manco, Melania; Mingrone, Geltrude

    2006-11-01

    Metabolically healthy skeletal muscle possesses the ability to switch easily between glucose and fat oxidation in response to homeostatic signals. In type 2 diabetes mellitus and obesity, the skeletal muscle shows a great reduction in this metabolic flexibility. A substrate like dodecanedioic acid (C-12), able to increase skeletal muscle glycogen stores via succinyl-CoA formation, might both postpone the fatigue and increase fatty acid utilization, since it does not affect insulin secretion. In healthy volunteers and in type 2 diabetic subjects, the effect of an oral C-12 load was compared with a glucose or water load during prolonged, moderate-intensity, physical exercise. C-12 metabolism was analyzed by a mathematical model. After C-12, diabetics were able to complete the 2 h of exercise. Nonesterified fatty acids increased both during and after the exercise in the C-12 session. C-12 oxidation provided 14% of total energy expenditure, and the sum of C-12 plus lipids oxidized after the C-12 meal was significantly greater than lipids oxidized after the glucose meal (P < 0.025). The fraction of C-12 that entered the central compartment was 47% of that ingested. During the first phase of the exercise ( approximately 60 min), the mean C-12 clearance from the central compartment toward tissues was 2.57 and 1.30 l/min during the second phase of the exercise. In conclusion, C-12 seems to be a suitable energy substrate during exercise, since it reduces muscle fatigue, is rapidly oxidized, and does not stimulate insulin secretion, which implies that lipolysis is not inhibited as reported after glucose ingestion.

  4. Alteration of Polyketide Stereochemistry from anti to syn by a Ketoreductase Domain Exchange in a Type I Modular Polyketide Synthase Subunit.

    Science.gov (United States)

    Eng, Clara H; Yuzawa, Satoshi; Wang, George; Baidoo, Edward E K; Katz, Leonard; Keasling, Jay D

    2016-03-29

    Polyketide natural products have broad applications in medicine. Exploiting the modular nature of polyketide synthases to alter stereospecificity is an attractive strategy for obtaining natural product analogues with altered pharmaceutical properties. We demonstrate that by retaining a dimerization element present in LipPks1+TE, we are able to use a ketoreductase domain exchange to alter α-methyl group stereochemistry with unprecedented retention of activity and simultaneously achieve a novel alteration of polyketide product stereochemistry from anti to syn. The substrate promiscuity of LipPks1+TE further provided a unique opportunity to investigate the substrate dependence of ketoreductase activity in a polyketide synthase module context.

  5. OsJAR1 and OsJAR2 are jasmonyl-L-isoleucine synthases involved in wound- and pathogen-induced jasmonic acid signalling.

    Science.gov (United States)

    Wakuta, Shinji; Suzuki, Erika; Saburi, Wataru; Matsuura, Hideyuki; Nabeta, Kensuke; Imai, Ryozo; Matsui, Hirokazu

    2011-06-17

    The synthesis of JA-Ile was catalysed by JA-Ile synthase, which is a member of the group I GH3 family of proteins. Here, we showed evidence that OsGH3.5 (OsJAR1) and OsGH3.3 (OsJAR2) are the functional JA-Ile synthases in rice, using recombinant proteins. The expression levels of OsJAR1 and OsJAR2 were induced in response to wounding with the concomitant accumulation of JA-Ile. In contrast, only the expression of OsJAR1 was associated with the accumulation of JA-Ile after blast infection. Our data suggest that these two JA-Ile synthases are differentially involved in the activation of JA signalling in response to wounding and pathogen challenge in rice.

  6. Thymidylate synthase inhibition triggers apoptosis via caspases-8 and -9 in both wild-type and mutant p53 colon cancer cell lines.

    NARCIS (Netherlands)

    Backus, HH; Wouters, D.; Ferreira, C.G.; Houten, van VM; Brakenhoff, R.H.; Pinedo, H.M.; Peters, G.J.

    2003-01-01

    Thymidylate synthase (TS) is an important target for chemotherapy and increased levels are associated with resistance to colorectal cancer chemotherapy. TS can be inhibited by 5-fluorouracil (5-FU) and antifolates, ultimately resulting in apoptosis. We aimed to clarify whether activation of caspases

  7. Fatty Acid Synthase and Hormone-sensitive Lipase Expression in Liver Are Involved in Zinc-α2-glycoprotein-induced Body Fat Loss in Obese Mice

    Institute of Scientific and Technical Information of China (English)

    Feng-ying Gong; Jie-ying Deng; Hui-juan Zhu; Hui Pan; Lin-jie Wang; Hong-bo Yang

    2010-01-01

    Objective To explore the effects of zinc-a2-glycoprotein (ZAG) on body weight and body fat in high-fat-diet (HFD)-induced obesity in mice and the possible mechanism.Methods Thirty-six male mice were fed with standard food (SF) (n=9) and HFD (n=27), respec-tively. Five weeks later, 9 mice fed with HFD were subjected to ZAG expression plasmid DNA transfection by liposome transfection method, and another 9 mice to negative control plasmid transfection. Two weeks later, serum ZAG level in the mice was assayed by Western blot, and the effects of ZAG over-expression on body weight, body fat, serum biochemical indexes, and adipose tissue of obese mice were evaluated. The mRNA expressions of fatty acid synthase (FAS) and hormone-sensitive lipase (HSL) in liver tissue were de-termined by reverse transcription-polymerase chain reaction.Results Serum ZAG level significantly lowered in simple HFD-fed mice in comparison to SF-fed mice (0.51±0.10 AU vs. 0.75±0.07 AU, P<0.01). Further statistical analysis demonstrated that ZAG level was negatively correlated with body weight (r =-0.56, P<0.001), epididymal fat mass (r=-0. 67, P<0.001), percentage of epididymal fat (r=-0.65, P<0.001 ), and increased weight (r=-0.57, P<0.001) in simple SF-and HFD-fed mice. ZAG over-expression in obese mice reduced body weight and the percentage of epididy-mal fat. Furthermore, FAS mRNA expression decreased (P<0.01) and HSL mRNA expression increased (P<0.001) in the liver in ZAG over-expressing mice.Conclusions ZAG is closely related to obesity. Serum ZAG level is inversely correlated with body weight and percentage of body fat. The action of ZAG is associated with reduced FAS expression and in-creased HSL expression in the liver of obese mice.

  8. Niflumic acid blocks native and recombinant T-type channels.

    Science.gov (United States)

    Balderas, Enrique; Ateaga-Tlecuitl, Rogelio; Rivera, Manuel; Gomora, Juan C; Darszon, Alberto

    2012-06-01

    Voltage-dependent calcium channels are widely distributed in animal cells, including spermatozoa. Calcium is fundamental in many sperm functions such as: motility, capacitation, and the acrosome reaction (AR), all essential for fertilization. Pharmacological evidence has suggested T-type calcium channels participate in the AR. Niflumic acid (NA), a non-steroidal anti-inflammatory drug commonly used as chloride channel blocker, blocks T-currents in mouse spermatogenic cells and Cl(-) channels in testicular sperm. Here we examine the mechanism of NA blockade and explore if it can be used to separate the contribution of different Ca(V)3 members previously detected in these cells. Electrophysiological patch-clamp recordings were performed in isolated mouse spermatogenic cells and in HEK cells heterologously expressing Ca(V)3 channels. NA blocks mouse spermatogenic cell T-type currents with an IC(50) of 73.5 µM, without major voltage-dependent effects. The NA blockade is more potent in the open and in the inactivated state than in the closed state of the T-type channels. Interestingly, we found that heterologously expressed Ca(V)3.1 and Ca(V)3.3 channels were more sensitive to NA than Ca(V)3.2 channels, and this drug substantially slowed the recovery from inactivation of the three isoforms. Molecular docking modeling of drug-channel binding predicts that NA binds preferentially to the extracellular face of Ca(V)3.1 channels. The biophysical characteristics of mouse spermatogenic cell T-type currents more closely resemble those from heterologously expressed Ca(V)3.1 channels, including their sensitivity to NA. As Ca(V)3.1 null mice maintain their spermatogenic cell T-currents, it is likely that a novel Ca(V)3.2 isoform is responsible for them.

  9. Implications of secondary structure prediction and amino acid sequence comparison of class I and class II phosphoribosyl diphosphate synthases on catalysis, regulation, and quaternary structure

    DEFF Research Database (Denmark)

    Krath, B N; Hove-Jensen, B

    2001-01-01

    Spinach 5-phospho-D-ribosyl alpha-1-diphosphate (PRPP) synthase isozyme 4 was synthesized in Escherichia coli and purified to near homogeneity. The activity of the enzyme is independent of P(i); it is inhibited by ADP in a competitive manner, indicating a lack of an allosteric site; and it accepts...

  10. Fatty acid biosynthesis in Pseudomonas aeruginosa: cloning and characterization of the fabAB operon encoding beta-hydroxyacyl-acyl carrier protein dehydratase (FabA) and beta-ketoacyl-acyl carrier protein synthase I (FabB).

    OpenAIRE

    Hoang, T.T.; Schweizer, H P

    1997-01-01

    The Pseudomonas aeruginosa fabA and fabB genes, encoding beta-hydroxyacyl-acyl carrier protein dehydratase and beta-ketoacyl-acyl carrier protein synthase I, respectively, were cloned, sequenced, and expressed in Escherichia coli. Northern analysis demonstrated that fabA and fabB are cotranscribed and most probably form a fabAB operon. The FabA and FabB proteins were similar in size and amino acid composition to their counterparts from Escherichia coli and to the putative homologs from Haemop...

  11. Light- and metabolism-related regulation of the chloroplast ATP synthase has distinct mechanisms and functions.

    Science.gov (United States)

    Kohzuma, Kaori; Dal Bosco, Cristina; Meurer, Jörg; Kramer, David M

    2013-05-01

    The chloroplast CF0-CF1-ATP synthase (ATP synthase) is activated in the light and inactivated in the dark by thioredoxin-mediated redox modulation of a disulfide bridge on its γ subunit. The activity of the ATP synthase is also fine-tuned during steady-state photosynthesis in response to metabolic changes, e.g. altering CO2 levels to adjust the thylakoid proton gradient and thus the regulation of light harvesting and electron transfer. The mechanism of this fine-tuning is unknown. We test here the possibility that it also involves redox modulation. We found that modifying the Arabidopsis thaliana γ subunit by mutating three highly conserved acidic amino acids, D211V, E212L, and E226L, resulted in a mutant, termed mothra, in which ATP synthase which lacked light-dark regulation had relatively small effects on maximal activity in vivo. In situ equilibrium redox titrations and thiol redox-sensitive labeling studies showed that the γ subunit disulfide/sulfhydryl couple in the modified ATP synthase has a more reducing redox potential and thus remains predominantly oxidized under physiological conditions, implying that the highly conserved acidic residues in the γ subunit influence thiol redox potential. In contrast to its altered light-dark regulation, mothra retained wild-type fine-tuning of ATP synthase activity in response to changes in ambient CO2 concentrations, indicating that the light-dark- and metabolic-related regulation occur through different mechanisms, possibly via small molecule allosteric effectors or covalent modification.

  12. Toward amino acid typing for proteins in FFLUX.

    Science.gov (United States)

    Fletcher, Timothy L; Popelier, Paul L A

    2017-03-05

    Continuing the development of the FFLUX, a multipolar polarizable force field driven by machine learning, we present a modern approach to atom-typing and building transferable models for predicting atomic properties in proteins. Amino acid atomic charges in a peptide chain respond to the substitution of a neighboring residue and this response can be categorized in a manner similar to atom-typing. Using a machine learning method called kriging, we are able to build predictive models for an atom that is defined, not only by its local environment, but also by its neighboring residues, for a minimal additional computational cost. We found that prediction errors were up to 11 times lower when using a model specific to the correct group of neighboring residues, with a mean prediction of ∼0.0015 au. This finding suggests that atoms in a force field should be defined by more than just their immediate atomic neighbors. When comparing an atom in a single alanine to an analogous atom in a deca-alanine helix, the mean difference in charge is 0.026 au. Meanwhile, the same difference between a trialanine and a deca-alanine helix is only 0.012 au. When compared to deca-alanine models, the transferable models are up to 20 times faster to train, and require significantly less ab initio calculation, providing a practical route to modeling large biological systems. © 2016 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc.

  13. Inhibition of Fatty Acid Synthase in vitro by Xuezhiling Tablets%血脂灵片对脂肪酸合酶的体外抑制作用

    Institute of Scientific and Technical Information of China (English)

    王鹏; 高敏艳; 高岚; 肖学凤

    2013-01-01

    Objective: To study the inhibition of fatty acid synthase ( FAS) by Xuezhiling tablets in vitro, and explore its mechanism of action. Method: The ultraviolet spectroscopy was used to evaluate the activity of FAS through monitoring the alteration of absorbance ( A) value of reduced nicotinamide-adenine dinucleotide phosphate ( NADPH ) and the substrates were respectively acetyl coenzyme A ( AcCoA ) , malonyl-CoA (MalCoA) , acetoacetyl-coenzymeA ( AcAcCoA) , ethyl acetoacetate, ethyl crotonate, NADPH for different active sites. The inhibition of FAS by overall reduction and different active sites was separately detected after the treatment with different doses of Xuezhiling tablets. Result: The activity of FAS could be inhibited by Xuezhiling tablets. After the treatment with Xuezhiling tablets (150 mg·L-1 ) , the inhibition ratio was 51% with manner if time and dose relationship. For the different active sites of FAS, Xuezhiling tablets displayed different abilities. It showed more potential in inhibiting the enoyl reduction and AcAcCoA reduction than keto-acyl reduction, and it was also dose dependent for the different active sites. The residual activity of different active sites was less than 70% , and more than 50% , when FAS was treated with Xuezhiling tablets at the concentration of 150 mg ·L-1 . Conclusion: FAS can be inhibited by Xuezhiling tablets, and this ability was attributed to inhibit the different active sites of FAS. This article prove that the ratiocination about the lowering blood lipids of Xuezhiling tablets is related to FAS and it can be a reference for Xuezhiling tablets used for obesity and other disease that related to FAS.%目的:研究血脂灵片对脂肪酸合酶(fatty acid synthase,FAS)的体外抑制作用,并初步探索其作用机制.方法:以乙酰辅酶A(AcCoA),丙二酰辅酶A(MalCoA),乙酰乙酰辅酶A(AcAcCoA),乙酰乙酸乙酯,丁烯酸乙酯,原型辅酶Ⅱ(NADPH)等为底物,采用紫外分光光度法,通过测定340

  14. Heteropoly acids of the Keggin type with N-substitutedβ-amminoethylphosphonic acids as coordinate center

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Organophosphorus-heteropolytungstic acids of 1 : 12 of P/W ratio, with N-substituted 2-amminoethylphosphonic acids R2R'N+CH2CH2PO3H-(R = R' = H; R = Me, R' = H; R = R' = Me;R = H, R' = Me2CH; R = H, R' = CH3(CH2)2CH2) as coordinate centers were prepared, and char-acterized by means of elemental analysis, IR, UV spectroscopy, TG and DSC thermal analysis.The results indicate that these organophosphorous-HPAs possess Keggin type structure, and theirstoichiometric formulation is R2R'N+CH2CH2PO3H-·W12O36 ·nH2O. The organic side chain with theammino-group R2R'N+CH2CH2-and the phosphono-group-PO3H-participate altogether in the for-mation of the primary structure of the heteropoly anion. In other words, the entirety of eachcompound R2R'N+CH2CH2PO3H-is as the core or coordinate center of the heteropoly anions. Thenumber of crystal water in the HPA was affected obviously by the N-substituents of the organo-phosphonic acids.

  15. OsJAR1 and OsJAR2 are jasmonyl-L-isoleucine synthases involved in wound- and pathogen-induced jasmonic acid signalling

    OpenAIRE

    Wakuta, Shinji; Suzuki, Erika [UNIFESP; Saburi, Wataru; Matsuura, Hideyuki; Nabeta, Kensuke; Imai, Ryozo; Matsui, Hirokazu

    2011-01-01

    The synthesis of JA-Ile was catalysed by JA-Ile synthase, which is a member of the group I GH3 family of proteins. Here, we showed evidence that OsGH3.5 (OsJAR1) and OsGH3.3 (OsJAR2) are the functional JA-Ile synthases in rice, using recombinant proteins. The expression levels of OsJAR1 and OsJAR2 were induced in response to wounding with the concomitant accumulation of JA-Ile. In contrast, only the expression of OsJAR1 was associated with the accumulation of JA-Ile after blast infection. Our...

  16. Use of dicarboxylic acids in type 2 diabetes

    OpenAIRE

    Mingrone, Geltrude; Castagneto‐Gissey, Lidia; Macé, Katherine

    2013-01-01

    Even‐number, medium‐chain dicarboxylic acids (DAs), naturally occurring in higher plants, are a promising alternative energy substrate. Unlike the homologous fatty acids, DAs are soluble in water as salts. They are β‐oxidized, providing acetyl‐CoA and succinyl‐CoA, the latter being an intermediate of the tricarboxylic acid cycle. Sebacic acid and dodecanedioic acid, DAs with 10 and 12 carbon atoms respectively, provide 6.6 and 7.2 kcal g−1 each; therefore, their energy density is intermediate...

  17. Pharmacological and small interference RNA-mediated inhibition of breast cancer-associated fatty acid synthase (oncogenic antigen-519) synergistically enhances Taxol (paclitaxel)-induced cytotoxicity.

    Science.gov (United States)

    Menendez, Javier A; Vellon, Luciano; Colomer, Ramon; Lupu, Ruth

    2005-05-20

    The relationship between breast cancer-associated fatty acid synthase (FAS; oncogenic antigen-519) and chemotherapy-induced cell damage has not been studied. We examined the ability of C75, a synthetic slow-binding inhibitor of FAS activity, to modulate the cytotoxic activity of the microtubule-interfering agent Taxol (paclitaxel) in SK-Br3, MDA-MB-231, MCF-7 and multidrug-resistant MDR-1 (P-Glycoprotein)-overexpressing MCF-7/AdrR breast cancer cells. When the combination of C75 with Taxol in either concurrent (C75 + Taxol 24 hr) or sequential (C75 24 hr --> Taxol 24 hr) schedules were tested for synergism, addition or antagonism using the isobologram and the median-effect plot analyses, co-exposure of C75 and Taxol mostly demonstrated synergistic effects, whereas sequential exposure to C75 followed by Taxol mainly showed additive or antagonistic interactions. Because the nature of the cytotoxic interactions was definitely schedule-dependent in MCF-7 cells, we next evaluated the effects of C75 on Taxol-induced apoptosis as well as Taxol-activated cell death and cell survival-signaling pathways in this breast cancer cell model. An ELISA for histone-associated DNA fragments demonstrated that C75 and Taxol co-exposure caused a synergistic enhancement of apoptotic cell death, whereas C75 pre-treatment did not enhance the apoptosis-inducing activity of Taxol. Co-exposure to C75 and Taxol induced a remarkable nuclear accumulation of activated p38 mitogen-activated protein kinase (p38 MAPK), which was accompanied by a synergistic nuclear accumulation of the p53 tumor-suppressor protein that was phosphorylated at Ser46, a p38 MAPK-regulated pro-apoptotic modification of p53. As single agents, FAS blocker C75 and Taxol induced a significant stimulation of the proliferation and cell survival mitogen-activated protein kinase extracellular signal-regulated kinase (ERK1/ERK2 MAPK) activity, whereas, in combination, they interfered with ERK1/ERK2 activation. Moreover, the

  18. Predictive Value of Serum Sialic Acid in Type-2 Diabetes Mellitus and Its Complication (Nephropathy)

    OpenAIRE

    K, Prajna; Kumar J., Ashok; Rai, Srinidhi; Shetty, Shobith Kumar; Rai, Tirthal; Shrinidhi,; Begum, Mohamedi; MD, Shashikala

    2013-01-01

    Introduction: Sialic acid levels are increased in type-2 diabetes mellitus and its estimation helps in predicting the occurrence of microvascular complication such as diabetic nephropathy. The present study compared the levels of sialic acid, glycated haemoglobin, serum creatinine and urine microalbumin: in type-2 diabetics without any complications; in type-2 diabetics with nephropathy; and in age and sex matched healthy individual (controls).

  19. Aldosterone synthase C-344T, angiotensin II type 1 receptor A1166C and 11- hydroxysteroid dehydrogenase G534A gene polymorphisms and essential hypertension in the population of Odisha, India

    Indian Academy of Sciences (India)

    Manisha Patnaik; Pallabi Pati; Surendra N. Swain; Manoj K. Mohapatra; Bhagirathi Dwibedi; Shantanu K. Kar; Manoranjan Ranjit

    2014-12-01

    Essential hypertension which accounts 90–95% of the total hypertension cases is affected by both genetic and environmental factors. This study was undertaken to investigate the association of aldosterone synthase C-344T, angiotensin II type I receptor A1166C and 11- hydroxysteroid dehydrogenase type 2 G534A polymorphisms with essential hypertension in the population of Odisha, India. A total of 246 hypertensive subjects (males, 159; females, 87) and 274 normal healthy individuals (males, 158; females, 116) were enrolled in this study based on the inclusion and exclusion criteria. Analysis of genetic and biochemical data revealed that in this population the CT and TT genotypes of aldosterone synthase C-344T polymorphism, frequency of alcohol consumption and aldosterone levels were significantly high among the total as well as male hypertensives, while the AC and CC genotypes of angiotensin II type I receptor A1166C polymorphism were significantly high among the total as well as female hypertensives. High density lipoprotein levels were higher in male hypertensives.

  20. Aldosterone synthase C-344T, angiotensin II type 1 receptor A1166C and 11- hydroxysteroid dehydrogenase G534A gene polymorphisms and essential hypertension in the population of Odisha, India

    Indian Academy of Sciences (India)

    Manisha Patnaik; Pallabi Pati; Surendra N. Swain; Manoj K. Mohapatra; Bhagirathi Dwibedi; Shantanu K. Kar; Manoranjan Ranjit

    2015-06-01

    Essential hypertension which accounts 90–95% of the total hypertension cases is affected by both genetic and environmental factors. This study was undertaken to investigate the association of aldosterone synthase C-344T, angiotensin II type I receptor A1166C and 11- hydroxysteroid dehydrogenase type 2 G534A polymorphisms with essential hypertension in the population of Odisha, India. A total of 246 hypertensive subjects (males, 159; females, 87) and 274 normal healthy individuals (males, 158; females, 116) were enrolled in this study based on the inclusion and exclusion criteria. Analysis of genetic and biochemical data revealed that in this population the CT and TT genotypes of aldosterone synthase C-344T polymorphism, frequency of alcohol consumption and aldosterone levels were significantly high among the total as well as male hypertensives, while the AC and CC genotypes of angiotensin II type I receptor A1166C polymorphism were significantly high among the total as well as female hypertensives. High density lipoprotein levels were higher in male hypertensives.

  1. Electron transfer in acetohydroxy acid synthase as a side reaction of catalysis. Implications for the reactivity and partitioning of the carbanion/enamine form of (alpha-hydroxyethyl)thiamin diphosphate in a "nonredox" flavoenzyme.

    Science.gov (United States)

    Tittmann, Kai; Schröder, Kathrin; Golbik, Ralph; McCourt, Jennifer; Kaplun, Alexander; Duggleby, Ronald G; Barak, Ze'ev; Chipman, David M; Hübner, Gerhard

    2004-07-13

    Acetohydroxy acid synthases (AHAS) are thiamin diphosphate- (ThDP-) and FAD-dependent enzymes that catalyze the first common step of branched-chain amino acid biosynthesis in plants, bacteria, and fungi. Although the flavin cofactor is not chemically involved in the physiological reaction of AHAS, it has been shown to be essential for the structural integrity and activity of the enzyme. Here, we report that the enzyme-bound FAD in AHAS is reduced in the course of catalysis in a side reaction. The reduction of the enzyme-bound flavin during turnover of different substrates under aerobic and anaerobic conditions was characterized by stopped-flow kinetics using the intrinsic FAD absorbance. Reduction of enzyme-bound FAD proceeds with a net rate constant of k' = 0.2 s(-1) in the presence of oxygen and approximately 1 s(-1) under anaerobic conditions. No transient flavin radicals are detectable during the reduction process while time-resolved absorbance spectra are recorded. Reconstitution of the binary enzyme-FAD complex with the chemically synthesized intermediate 2-(hydroxyethyl)-ThDP also results in a reduction of the flavin. These data provide evidence for the first time that the key catalytic intermediate 2-(hydroxyethyl)-ThDP in the carbanionic/enamine form is not only subject to covalent addition of 2-keto acids and an oxygenase side reaction but also transfers electrons to the adjacent FAD in an intramolecular redox reaction yielding 2-acetyl-ThDP and reduced FAD. The detection of the electron transfer supports the idea of a common ancestor of acetohydroxy acid synthase and pyruvate oxidase, a homologous ThDP- and FAD-dependent enzyme that, in contrast to AHASs, catalyzes a reaction that relies on intercofactor electron transfer.

  2. The folding type of a protein is relevant to the amino acid composition

    OpenAIRE

    Nakashima, Hiroshi; Nishikawa, Ken; Ooi, Tatsuo

    1986-01-01

    The folding types of 135 proteins, the three-dimensional structures of which are known, were analyzed in terms of the amino acid composition. The amino acid composition of a protein was expressed as a point in a multidimensional space spanned with 20 axes, on which the corresponding contents of 20 amino acids in the protein were represented. The distribution pattern of proteins in this composition space was examined in relation to five folding types, , ß, /ß, +ß, and irregular type. The resul...

  3. Monoterpene synthases from grand fir (Abies grandis). cDNA isolation, characterization, and functional expression of myrcene synthase, (-)-(4S)-limonene synthase, and (-)-(1S,5S)-pinene synthase.

    Science.gov (United States)

    Bohlmann, J; Steele, C L; Croteau, R

    1997-08-29

    Grand fir (Abies grandis) has been developed as a model system for studying defensive oleoresin formation in conifers in response to insect attack or other injury. The turpentine fraction of the oleoresin is a complex mixture of monoterpene (C10) olefins in which (-)-limonene and (-)-alpha- and (-)-beta-pinene are prominent components; (-)-limonene and (-)-pinene synthase activities are also induced upon stem wounding. A similarity based cloning strategy yielded three new cDNA species from a wounded stem cDNA library that appeared to encode three distinct monoterpene synthases. After expression in Escherichia coli and enzyme assay with geranyl diphosphate as substrate, subsequent analysis of the terpene products by chiral phase gas chromatography and mass spectrometry showed that these sequences encoded a (-)-limonene synthase, a myrcene synthase, and a (-)-pinene synthase that produces both alpha-pinene and beta-pinene. In properties and reaction stereochemistry, the recombinant enzymes resemble the corresponding native monoterpene synthases of wound-induced grand fir stem. The deduced amino acid sequences indicated the limonene synthase to be 637 residues in length (73.5 kDa), the myrcene synthase to be 627 residues in length (72.5 kDa), and the pinene synthase to be 628 residues in length (71.5 kDa); all of these monoterpene synthases appear to be translated as preproteins bearing an amino-terminal plastid targeting sequence. Sequence comparison revealed that these monoterpene synthases from grand fir resemble sesquiterpene (C15) synthases and diterpene (C20) synthases from conifers more closely than other monoterpene synthases from angiosperm species. This similarity between extant monoterpene, sesquiterpene, and diterpene synthases of gymnosperms is surprising since functional diversification of this enzyme class is assumed to have occurred over 300 million years ago. Wound-induced accumulation of transcripts for monoterpene synthases was demonstrated by RNA

  4. Increased production of wax esters in transgenic tobacco plants by expression of a fatty acid reductase:wax synthase gene fusion.

    Science.gov (United States)

    Aslan, Selcuk; Hofvander, Per; Dutta, Paresh; Sun, Chuanxin; Sitbon, Folke

    2015-12-01

    Wax esters are hydrophobic lipids consisting of a fatty acid moiety linked to a fatty alcohol with an ester bond. Plant-derived wax esters are today of particular concern for their potential as cost-effective and sustainable sources of lubricants. However, this aspect is hampered by the fact that the level of wax esters in plants generally is too low to allow commercial exploitation. To investigate whether wax ester biosynthesis can be increased in plants using transgenic approaches, we have here exploited a fusion between two bacterial genes together encoding a single wax ester-forming enzyme, and targeted the resulting protein to chloroplasts in stably transformed tobacco (Nicotiana benthamiana) plants. Compared to wild-type controls, transgenic plants showed both in leaves and stems a significant increase in the total level of wax esters, being eight-fold at the whole plant level. The profiles of fatty acid methyl ester and fatty alcohol in wax esters were related, and C16 and C18 molecules constituted predominant forms. Strong transformants displayed certain developmental aberrations, such as stunted growth and chlorotic leaves and stems. These negative effects were associated with an accumulation of fatty alcohols, suggesting that an adequate balance between formation and esterification of fatty alcohols is crucial for a high wax ester production. The results show that wax ester engineering in transgenic plants is feasible, and suggest that higher yields may become achieved in the near future.

  5. Assessment of the role in protection and pathogenesis of the Chlamydia muridarum V-type ATP synthase subunit A (AtpA) (TC0582).

    Science.gov (United States)

    Cheng, Chunmei; Jain, Pooja; Pal, Sukumar; Tifrea, Delia; Sun, Guifeng; Teng, Andy A; Liang, Xiaowu; Felgner, Philip L; de la Maza, Luis M

    2014-02-01

    A novel Chlamydia muridarum antigen (TC0582) was used to vaccinate BALB/c mice. Mice were also immunized with other components of the ATP synthase complex (TC0580, TC0581, and TC0584), or with the major outer membrane protein (MOMP). TC0582 was also formulated in combination with TC0580, TC0581 or MOMP. TC0582 alone, or in combination with the other antigens, elicited strong Chlamydia-specific humoral and cellular immune responses. Vaccinated animals were challenged intranasally and the course of the infection was followed for 10 days. Based on percentage change in body weight, lung weight, and number of Chlamydia inclusion forming units recovered from the lungs, mice immunized with TC0582, TC0581 or MOMP, as single antigens, showed significant protection. Mice immunized with combinations of two antigens were also protected but the level of protection was not additive. TC0582 has sequence homology with the eukaryotic ATP synthase subunit A (AtpA). Therefore, to determine if immunization with TC0582, or with Chlamydia, elicited antibodies that cross-reacted with the mouse AtpA, the two proteins were printed on a microarray. Sera from mice immunized with TC0582 and/or live Chlamydia, strongly reacted with TC0582 but did not recognize the mouse AtpA. In conclusion, TC0582 may be considered as a Chlamydia vaccine candidate.

  6. Metabolic Engineering of Plant-derived (E)-β-farnesene Synthase Genes for a Novel Type of Aphid-resistant Genetically Modified Crop Plants

    Institute of Scientific and Technical Information of China (English)

    Xiu-Dao Yu; John Pickett; You-Zhi Ma; Toby Bruce; Johnathan Napier; Huw D.Jones; Lan-Qin Xia

    2012-01-01

    Aphids are major agricultural pests that cause significant yield losses of crop plants each year.Excessive dependence on insecticides for long-term aphid control is undesirable because of the development of insecticide resistance,the potential negative effects on non-target organisms and environmental pollution.Transgenic crops engineered for resistance to aphids via a non-toxic mode of action could be an efficient alternative strategy.(E)-β-Farnesene (EβF) synthases catalyze the formation of EβF,which for many pest aphids is the main component of the alarm pheromone involved in the chemical communication within these species.EβF can also be synthesized by certain plants but is then normally contaminated with inhibitory compounds.Engineering of crop plants capable of synthesizing and emitting EβF could cause repulsion of aphids and also the attraction of natural enemies that use EβF as a foraging cue,thus minimizing aphid infestation.In this review,the effects of aphids on host plants,plants' defenses against aphid herbivory and the recruitment of natural enemies for aphid control in an agricultural setting are briefly introduced.Furthermore,the plant-derived EβF synthase genes cloned to date along with their potential roles in generating novel aphid resistance via genetically modified approaches are discussed.

  7. Biological Function of Acetic Acid-Improvement in Obesity and Glucose Tolerance by Acetic Acid in Type 2 Diabetic Rats.

    Science.gov (United States)

    Yamashita, Hiromi

    2016-07-29

    Fatty acids derived from adipose tissue are oxidized by β-oxidation to form ketone bodies as final products under the starving condition. Previously, we found that free acetic acid was formed concomitantly with the production of ketone bodies in isolated rat liver perfusion, and mitochondrial acetyl CoA hydrolase was appeared to be involved with the acetic acid production. It was revealed that acetic acid was formed as a final product of enhanced β-oxidation of fatty acids and utilized as a fuel in extrahepatic tissues under the starving condition. Under the fed condition, β-oxidation is suppressed and acetic acid production is decreased. When acetic acid was taken daily by obesity-linked type 2 diabetic Otsuka Long-Evans Tokushima Fatty (OLETF) rats under the fed condition, it protected OLETF rats against obesity. Furthermore, acetic acid contributed to protect from the accumulation of lipid in the liver as well as abdominal fat in OLETF rats. Transcripts of lipogenic genes in the liver were decreased, while transcripts of myoglobin and Glut4 genes in abdominal muscles were increased in the acetic acid-administered OLETF rats. It is indicated that exogenously administered acetic acid would have effects on lipid metabolism in both the liver and the skeletal muscles, and have function that works against obesity and obesity-linked type 2 diabetes.

  8. Urinary liver-type fatty acid-binding protein predicts progression to nephropathy in type 1 diabetic patients

    DEFF Research Database (Denmark)

    Nielsen, Stine Elkjaer; Sugaya, Takeshi; Hovind, Peter;

    2010-01-01

    Urinary liver-type fatty acid-binding protein (u-LFABP) is a marker of tubulointerstitial inflammation and has been shown to be increased in patients with type 1 diabetes and is further increased in patients who progress to micro- and macroalbuminuria. Our aim was to evaluate u-LFABP as a predict...

  9. Urinary liver-type fatty acid-binding protein predicts progression to nephropathy in type 1 diabetic patients

    DEFF Research Database (Denmark)

    Nielsen, Stine Elkjaer; Sugaya, Takeshi; Hovind, Peter;

    2010-01-01

    Urinary liver-type fatty acid-binding protein (u-LFABP) is a marker of tubulointerstitial inflammation and has been shown to be increased in patients with type 1 diabetes and is further increased in patients who progress to micro- and macroalbuminuria. Our aim was to evaluate u-LFABP as a predictor...

  10. [Four cases of aldosterone synthase deficiency in childhood].

    Science.gov (United States)

    Collinet, E; Pelissier, P; Richard, O; Gay, C; Pugeat, M; Morel, Y; Stephan, J-L

    2012-11-01

    Neonatal salt-wasting syndromes are rare but potentially serious conditions. Isolated hypoaldosteronism is an autosomal recessive inherited disorder of terminal aldosterone synthesis, leading to selective aldosterone deficiency. Two different biochemical forms of this disease have been described, called aldosterone synthase deficiency or corticosterone methyl oxydase, types I and II. In type I, there is no aldosterone synthase activity and the 18 hydroxycorticosterone (18 OHB) level is low, whereas in type II, a residual activity of aldosterone synthase persists and 18 OHB is overproduced. We report on four patients with isolated hypoaldosteronism. In 2 of them, who were recently diagnosed with aldosterone synthase deficit, we discuss the symptoms and treatment. The 2 other patients are now adults. We discuss the long-term outcome, the quality of adult life, aldosterone synthase deficits, as well as the pathophysiology and molecular analysis.

  11. Bacillus caldolyticus prs gene encoding phosphoribosyldiphosphate synthase

    DEFF Research Database (Denmark)

    Krath, Britta N.; Hove-Jensen, Bjarne

    1996-01-01

    The prs gene, encoding phosphoribosyl-diphosphate (PRPP) synthase, as well as the flanking DNA sequences were cloned and sequenced from the Gram-positive thermophile, Bacillus caldolyticus. Comparison with the homologous sequences from the mesophile, Bacillus subtilis, revealed a gene (gca......D) encoding N-acetylglucosamine-l-phosphate uridyltransferase upstream of prs, and a gene homologous to ctc downstream of prs. cDNA synthesis with a B. caldolyticus gcaD-prs-ctc-specified mRNA as template, followed by amplification utilising the polymerase chain reaction indicated that the three genes are co......-transcribed. Comparison of amino acid sequences revealed a high similarity among PRPP synthases across a wide phylogenetic range. An E. coli strain harbouring the B. caldolyticus prs gene in a multicopy plasmid produced PRPP synthase activity 33-fold over the activity of a haploid B. caldolyticus strain. B. caldolyticus...

  12. Nucleic acid (cDNA) and amino acid sequences of alpha-type gliadins from wheat (Triticum aestivum).

    OpenAIRE

    Kasarda, D.D.; Okita, T W; Bernardin, J. E.; Baecker, P A; Nimmo, C C; Lew, E J; Dietler, M D; Greene, F C

    1984-01-01

    The complete amino acid sequence for an alpha-type gliadin protein of wheat (Triticum aestivum Linnaeus) endosperm has been derived from a cloned cDNA sequence. An additional cDNA clone that corresponds to about 75% of a similar alpha-type gliadin has been sequenced and shows some important differences. About 97% of the composite sequence of A-gliadin (an alpha-type gliadin fraction) has also been obtained by direct amino acid sequencing. This sequence shows a high degree of similarity with a...

  13. Nucleic acid (cDNA) and amino acid sequences of alpha-type gliadins from wheat (Triticum aestivum).

    Science.gov (United States)

    Kasarda, D D; Okita, T W; Bernardin, J E; Baecker, P A; Nimmo, C C; Lew, E J; Dietler, M D; Greene, F C

    1984-01-01

    The complete amino acid sequence for an alpha-type gliadin protein of wheat (Triticum aestivum Linnaeus) endosperm has been derived from a cloned cDNA sequence. An additional cDNA clone that corresponds to about 75% of a similar alpha-type gliadin has been sequenced and shows some important differences. About 97% of the composite sequence of A-gliadin (an alpha-type gliadin fraction) has also been obtained by direct amino acid sequencing. This sequence shows a high degree of similarity with amino acid sequences derived from both cDNA clones and is virtually identical to one of them. On the basis of sequence information, after loss of the signal sequence, the mature alpha-type gliadins may be divided into five different domains, two of which may have evolved from an ancestral gliadin gene, whereas the remaining three contain repeating sequences that may have developed independently. Images PMID:6589619

  14. Domain analysis of 3 Keto Acyl-CoA synthase for structural variations in Vitis vinifera and Oryza brachyantha using comparative modelling.

    Science.gov (United States)

    Sagar, Mamta; Pandey, Neetesh; Qamar, Naseha; Singh, Brijendra; Shukla, Akanksha

    2015-03-01

    The long chain fatty acids incorporated into plant lipids are derived from the iterative addition of C2 units which is provided by malonyl-CoA to an acyl-CoA after interactions with 3-ketoacyl-CoA synthase (KCS), found in several plants. This study provides functional characterization of three 3 ketoacyl CoA synthase like proteins in Vitis vinifera (one) and Oryza brachyantha (two proteins). Sequence analysis reveals that protein of Oryza brachyantha shows 96% similarity to a hypothetical protein in Sorghum bicolor; total 11 homologs were predicted in Sorghum bicolor. Conserved domain prediction confirm the presence of FAE1/Type III polyketide synthase-like protein, Thiolase-like, subgroup; Thiolase-like and 3-Oxoacyl-ACP synthase III, C-terminal and chalcone synthase like domain but very long chain 3-keto acyl CoA domain is absent. All three proteins were found to have Chalcone and stilbene synthases C terminal domain which is similar to domain of thiolase and β keto acyl synthase. Its N terminal domain is absent in J3M9Z7 protein of Oryza brachyantha and F6HH63 protein of Vitis vinifera. Differences in N-terminal domain is responsible for distinguish activity. The J3MF16 protein of Oryza brachyantha contains N terminal domain and C terminal domain and characterized using annotation of these domains. Domains Gcs (streptomyces coelicolor) and Chalcone-stilbene synthases (KAS) in 2-pyrone synthase (Gerbera hybrid) and chalcone synthase 2 (Medicago sativa) were found to be present in three proteins. This similarity points toward anthocyanin biosynthetic process. Similarity to chalcone synthase 2 reveals its possible role in Naringenine and Chalcone synthase like activity. In 3 keto acyl CoA synthase of Oryza brachyantha. Active site residues C-240, H-407, N-447 are present in J3MF16 protein that are common in these three protein at different positions. Structural variations among dimer interface, product binding site, malonyl-CoA binding sites, were predicted in

  15. Cloning and Expression of Poly-glutamic Acid Synthase Gene in Escherichia coli%γ-PGA合成酶基因在大肠杆菌中的克隆和表达

    Institute of Scientific and Technical Information of China (English)

    乔广军; 汪晨; 周志蕙; 张凯; 蔡恒

    2013-01-01

      研究了γ-PGA合成酶基因pgsBCA在大肠杆菌中的克隆和表达,以pET28a(+)为载体,构建表达载体pET28a (+)-pgsBCA,导入宿主Escherichia coli Rosetta中,诱导使之表达.将发酵液离心去除菌体,得到上清液用旋转蒸发仪浓缩后,采用SDS-PAGE电泳检测重组菌E.coli Rosetta/pET28a-pgsBCA产生的γ-PGA分子量在200-300kDa之间,将产物水解,采用薄层层析法鉴定产物由单一的谷氨酸组成,表明γ-PGA合成酶基因pgsBCA在大肠杆菌中成功表达.%Studied poly-glutamic acid synthase gene pgsBCA cloned and expressed in the the E.coli, pET28a (+) was selected as the carrier to construct the expression vector pET28a (+)-pgsBCA and to be imported into host E. coli Rosetta, and induced it to express. Dealing with fermentation broth, centrifuged to remove bacteria body and obtained supernatant, using SDS-PAGE electrophores to detect the PGA molacular weight between 200-300kDa pro-duced by recombinant bacteria, hydrolysised the product, using the thin-layer chromatography identification, we found that the product was composed by a single glutamic acid, which showed that-PGA synthase gene pgsBCA was successfully expressed in E.coli.

  16. Characteristics of inositol phosphorylceramide synthase and effects of aureobasidin A on growth and pathogenicity of Botrytis cinerea.

    Science.gov (United States)

    Wang, Xin-hui; Guo, Xing-Jun; Li, Hong-Ye; Gou, Ping

    2015-01-01

    Inositol phosphorylceramide (IPC) synthase is the key enzyme with highly conserved sequences, which is involved in fungal sphingolipid biosynthesis. The antibiotic aureobasidin A (AbA) induces the death of fungi through inhibiting IPC synthase activity. The mutations of AUR1 gene coding IPC synthase in fungi and protozoa causes a resistance to AbA. However, the mechanism of AbA resistance is still elusive. In this paper, we generated two mutants of Botrytis cinerea with AbA-resistance, BcAUR1a and BcAUR1b, through UV irradiation. BcAUR1a lost an intron and BcAUR1b had three amino acid mutations (L197P, F288S and T323A) in the AUR1 gene. AbA strongly inhibits the activity of IPC synthase in wild-type B. cinerea, which leads to distinct changes in cell morphology, including the delay in conidial germination, excessive branching near the tip of the germ tube and mycelium, and the inhibition of the mycelium growth. Further, AbA prevents the infection of wild-type B. cinerea in tomato fruits via reducing oxalic acid secretion and the activity of cellulase and pectinase. On the contrary, AbA has no effect on the growth and pathogenicity of the two mutants. Although both mutants show a similar AbA resistance, the molecular mechanisms might be different between the two mutants.

  17. An investigation into eukaryotic pseudouridine synthases.

    Science.gov (United States)

    King, Ross D; Lu, Chuan

    2014-08-01

    A common post-transcriptional modification of RNA is the conversion of uridine to its isomer pseudouridine. We investigated the biological significance of eukaryotic pseudouridine synthases using the yeast Saccharomyces cerevisiae. We conducted a comprehensive statistical analysis on growth data from automated perturbation (gene deletion) experiments, and used bi-logistic curve analysis to characterise the yeast phenotypes. The deletant strains displayed different alteration in growth properties, including in some cases enhanced growth and/or biphasic growth curves not seen in wild-type strains under matched conditions. These results demonstrate that disrupting pseudouridine synthases can have a significant qualitative effect on growth. We further investigated the significance of post-transcriptional pseudouridine modification through investigation of the scientific literature. We found that (1) In Toxoplasma gondii, a pseudouridine synthase gene is critical in cellular differentiation between the two asexual forms: Tachyzoites and bradyzoites; (2) Mutation of pseudouridine synthase genes has also been implicated in human diseases (mitochondrial myopathy and sideroblastic anemia (MLASA); dyskeratosis congenita). Taken together, these results are consistent with pseudouridine synthases having a Gene Ontology function of "biological regulation".

  18. Central nervous system lipocalin-type prostaglandin D2-synthase is correlated with orexigenic neuropeptides, visceral adiposity and markers of the hypothalamic-pituitary-adrenal axis in obese humans.

    Science.gov (United States)

    Elias, E; Benrick, A; Behre, C J; Ekman, R; Zetterberg, H; Stenlöf, K; Wallenius, V

    2011-06-01

    Lipocalin-type prostaglandin D2-synthase (L-PGDS) is the main producer of prostaglandin D2 (PGD2) in the central nervous system (CNS). Animal data suggest effects of central nervous L-PGDS in the regulation of food intake and obesity. No human data are available. We hypothesised that a role for CNS L-PGDS in metabolic function in humans would be reflected by correlations with known orexigenic neuropeptides. Cerebrospinal fluid (CSF) and serum samples were retrieved from 26 subjects in a weight loss study, comprising a 3-week dietary lead-in followed by 12-weeks of leptin or placebo treatment. At baseline, CSF L-PGDS was positively correlated with neuropeptide Y (NPY) (ρ = 0.695, P obesity by interaction with the neuroendocrine circuits regulating appetite and fat distribution. Further interventional studies will be needed to characterise these interactions in more detail.

  19. Phylogeny of type I polyketide synthases (PKSs) in fungal entomopathogens and expression analysis of PKS genes in Beauveria bassiana BCC 2660.

    Science.gov (United States)

    Punya, Juntira; Swangmaneecharern, Pratchya; Pinsupa, Suparat; Nitistaporn, Pornpen; Phonghanpot, Suranat; Kunathigan, Viyada; Cheevadhanarak, Supapon; Tanticharoen, Morakot; Amnuaykanjanasin, Alongkorn

    2015-06-01

    Entomopathogenic fungi are able to invade and kill insects. Various secondary metabolites can mediate the interaction of a fungal pathogen with an insect host and also help the fungus compete with other microbes. Here we screened 23 isolates of entomopathogenic fungi for polyketide synthase (PKS) genes and amplified 72 PKS gene fragments using degenerate PCR. We performed a phylogenetic analysis of conserved ketosynthase and acyltransferase regions in these 72 sequences and 72 PKSs identified from four insect fungal genome sequences. The resulting genealogy indicated 47 orthologous groups with 99-100 % bootstrap support, suggesting shared biosynthesis of identical or closely related compounds from different fungi. Three insect-specific groups were identified among the PKSs in reducing clades IIa, IIb, and III, which comprised PKSs from 12, 9, and 30 fungal isolates, respectively. A IIa-IIb pair could be found in seven fungi. Expression analyses revealed that eleven out of twelve PKS genes identified in Beauveria bassiana BCC 2660 were expressed in culture. PKS genes from insect-specific clades IIa and IIb were expressed only in insect-containing medium, while others were expressed only in PDB or in CYB, PDB and SDY. The data suggest the potential production of several polyketides in culture.

  20. Treatment of Type 2 Diabetes by Free Fatty Acid Receptor Agonists

    OpenAIRE

    Kenneth R. Watterson; Hudson, Brian D.; Ulven, Trond; Milligan, Graeme

    2014-01-01

    Dietary free fatty acids (FFAs), such as ω-3 fatty acids, regulate metabolic and anti-inflammatory processes, with many of these effects attributed to FFAs interacting with a family of G protein-coupled receptors. Selective synthetic ligands for Free Fatty Acid receptors (FFA1-4) have consequently been developed as potential treatments for type 2 diabetes (T2D). In particular, clinical studies show that Fasiglifam, an agonist of the long chain FFA receptor, FFA1, improved glycaemic control an...

  1. Peroxisomal and mitochondrial citrate synthase in CAM plants.

    Science.gov (United States)

    Zafra, M F; Segovia, J L; Alejandre, M J; García-Peregrín, E

    1981-12-01

    Citrate synthase wa studied for the first time in peroxisomes and mitochondria of crassulacean acid metabolism plants. Cellular organelles were isolated from Agave americana leaves by sucrose density gradient centrifugation and characterized by the use of catalase and cytochrome oxidase as marker enzymes, respectively. 48,000 X g centrifugation caused the breakdown of the cellular organelles. The presence of a glyoxylate cycle enzyme (citrate synthase) and a glycollate pathway enzyme (catalase) in the same organelles, besides the absence of another glyoxalate cycle enzyme (malate synthase) is reported for the first time, suggesting that peroxisomal and glyoxysomal proteins are synthesized at the same time and housed in he same organelle.

  2. The wax ester synthase/acyl coenzyme A:diacylglycerol acyltransferase from Acinetobacter sp. strain ADP1: characterization of a novel type of acyltransferase.

    Science.gov (United States)

    Stöveken, Tim; Kalscheuer, Rainer; Malkus, Ursula; Reichelt, Rudolf; Steinbüchel, Alexander

    2005-02-01

    The wax ester synthase/acyl coenzyme A (acyl-CoA):diacylglycerol acyltransferase (WS/DGAT) catalyzes the final steps in triacylglycerol (TAG) and wax ester (WE) biosynthesis in the gram-negative bacterium Acinetobacter sp. strain ADP1. It constitutes a novel class of acyltransferases which is fundamentally different from acyltransferases involved in TAG and WE synthesis in eukaryotes. The enzyme was purified by a three-step purification protocol to apparent homogeneity from the soluble fraction of recombinant Escherichia coli Rosetta (DE3)pLysS (pET23a::atfA). Purified WS/DGAT revealed a remarkably low substrate specificity, accepting a broad range of various substances as alternative acceptor molecules. Besides having DGAT and WS activity, the enzyme possesses acyl-CoA:monoacylglycerol acyltransferase (MGAT) activity. The sn-1 and sn-3 positions of acylglycerols are accepted with higher specificity than the sn-2 position. Linear alcohols ranging from ethanol to triacontanol are efficiently acylated by the enzyme, which exhibits highest specificities towards medium-chain-length alcohols. The acylation of cyclic and aromatic alcohols, such as cyclohexanol or phenylethanol, further underlines the unspecific character of this enzyme. The broad range of possible substrates may lead to biotechnological production of interesting wax ester derivatives. Determination of the native molecular weight revealed organization as a homodimer. The large number of WS/DGAT-homologous genes identified in pathogenic mycobacteria and their possible importance for the pathogenesis and latency of these bacteria makes the purified WS/DGAT from Acinetobacter sp. strain ADP1 a valuable model for studying this group of proteins in pathogenic mycobacteria.

  3. The folding type of a protein is relevant to the amino acid composition.

    Science.gov (United States)

    Nakashima, H; Nishikawa, K; Ooi, T

    1986-01-01

    The folding types of 135 proteins, the three-dimensional structures of which are known, were analyzed in terms of the amino acid composition. The amino acid composition of a protein was expressed as a point in a multidimensional space spanned with 20 axes, on which the corresponding contents of 20 amino acids in the protein were represented. The distribution pattern of proteins in this composition space was examined in relation to five folding types, alpha, beta, alpha/beta, alpha + beta, and irregular type. The results show that amino acid compositions of the alpha, beta, and alpha/beta types are located in different regions in the composition space, thus allowing distinct separation of proteins depending on the folding types. The points representing proteins of the alpha + beta and irregular types, however, are widely scattered in the space, and the existing regions overlap with those of the other folding types. A simple method of utilizing the "distance" in the space was found to be convenient for classification of proteins into the five folding types. The assignment of the folding type with this method gave an accuracy of 70% in the coincidence with the experimental data.

  4. Redirection of the Reaction Specificity of a Thermophilic Acetolactate Synthase toward Acetaldehyde Formation.

    Directory of Open Access Journals (Sweden)

    Maria Cheng

    Full Text Available Acetolactate synthase and pyruvate decarboxylase are thiamine pyrophosphate-dependent enzymes that convert pyruvate into acetolactate and acetaldehyde, respectively. Although the former are encoded in the genomes of many thermophiles and hyperthermophiles, the latter has been found only in mesophilic organisms. In this study, the reaction specificity of acetolactate synthase from Thermus thermophilus was redirected to catalyze acetaldehyde formation to develop a thermophilic pyruvate decarboxylase. Error-prone PCR and mutant library screening led to the identification of a quadruple mutant with 3.1-fold higher acetaldehyde-forming activity than the wild-type. Site-directed mutagenesis experiments revealed that the increased activity of the mutant was due to H474R amino acid substitution, which likely generated two new hydrogen bonds near the thiamine pyrophosphate-binding site. These hydrogen bonds might result in the better accessibility of H+ to the substrate-cofactor-enzyme intermediate and a shift in the reaction specificity of the enzyme.

  5. Influence of dietary protein type and iron source on the absorption of amino acids and minerals.

    Science.gov (United States)

    Pérez-Llamas, F; Garaulet, M; Martínez, J A; Marín, J F; Larqué, E; Zamora, S

    2001-12-01

    The apparent digestibility coefficient (ADC) of amino acids and the balance of minerals (calcium, phosphorus, magnesium and iron) has been determined in rats fed four diets differing in the protein type (casein or soy protein) and iron source (ferrous sulphate or lactate) in order to study the possible interactions of these nutrients. The availability of amino acids, especially essential amino acids, was greater in the diet made with animal protein (casein). The iron source also affected the absorption of most amino acids in all the diets assayed with ferrous sulphate being greater. The balance of iron, magnesium and phosphorus was higher in the diets containing animal protein. The retention of calcium and magnesium was significantly greater when ferrous sulphate was used as iron source. These results demonstrate the important interaction between amino acids and minerals and between the minerals themselves, which must be carefully studied when selecting different types of protein or mineral sources in human or animal nutrition.

  6. The crystal structure of human GDP-L-fucose synthase.

    Science.gov (United States)

    Zhou, Huan; Sun, Lihua; Li, Jian; Xu, Chunyan; Yu, Feng; Liu, Yahui; Ji, Chaoneng; He, Jianhua

    2013-09-01

    Human GDP-l-fucose synthase, also known as FX protein, synthesizes GDP-l-fucose from its substrate GDP-4-keto-6-deoxy-d-mannose. The reaction involves epimerization at both C-3 and C-5 followed by an NADPH-dependent reduction of the carbonyl at C-4. In this paper, the first crystal structure of human FX protein was determined at 2.37 Å resolution. The asymmetric unit of the crystal structure contains four molecules which form two homodimers. Each molecule consists of two domains, a Rossmann-fold NADPH-binding motif and a carboxyl terminal domain. Compared with the Escherichia coli GDP-l-fucose synthase, the overall structures of these two enzymes have four major differences. There are four loops in the structure of human FX protein corresponding to two α-helices and two β-sheets in that of the E. coli enzyme. Besides, there are seven different amino acid residues binding with NAPDH comparing human FX protein with that from E. coli. The structure of human FX reveals the key catalytic residues and could be useful for the design of drugs for the treatment of inflammation, auto-immune diseases, and possibly certain types of cancer.

  7. Heat transfer, erosion and acid condensation characteristics for novel H-type finned oval tube

    Science.gov (United States)

    Wang, Y.; Zhao, X.; Tang, G.

    2015-09-01

    Low efficiency of heat transfer, acid corrosion and erosion of economizers affect the economy and security in coal-fired power plants significantly. The H-type finned oval tube is proposed to alleviate these problems. Based on the H-type finned oval tube, we investigated three novel types of fins, including bleeding dimples, longitudinal vortex generators (LVGs), and compound dimple-LVG. We considered the three aspects together, and obtained the heat transfer, acid condensation rate and erosion loss. The results show that the tube bank with the new structured fins can improve the performance on the three aspects, and the compound dimple-LVG performs the highest comprehensive effect.

  8. L-Amino acid oxidases from microbial sources: types, properties, functions, and applications.

    Science.gov (United States)

    Hossain, Gazi Sakir; Li, Jianghua; Shin, Hyun-dong; Du, Guocheng; Liu, Long; Chen, Jian

    2014-02-01

    L-Amino acid oxidases (LAAOs), which catalyze the stereospecific oxidative deamination of L-amino acids to α-keto acids and ammonia, are flavin adenine dinucleotide-containing homodimeric proteins. L-Amino acid oxidases are widely distributed in diverse organisms and have a range of properties. Because expressing LAAOs as recombinant proteins in heterologous hosts is difficult, their biotechnological applications have not been thoroughly advanced. LAAOs are thought to contribute to amino acid catabolism, enhance iron acquisition, display antimicrobial activity, and catalyze keto acid production, among other roles. Here, we review the types, properties, structures, biological functions, heterologous expression, and applications of LAAOs obtained from microbial sources. We expect this review to increase interest in LAAO studies.

  9. Heteropoly acids of the Keggin type with N-substituted

    Institute of Scientific and Technical Information of China (English)

    FU; Xiangkai

    2001-01-01

    [1]Hartman, P., Perdok, G., On the relationship between structure and morphology of crystals, Acta Cryst., 1955, 8: 525-529.[2]Woensdregt, C. F., Computation of surface of energies in an electrostatic point charge model, Ⅱ. Application to zircon (ZrSiO4), Phys. Chem. Minerals, 1992, 19: 417-423.[3]Kern, R., The equilibrium form of a crystal, in Morphology of Crystal (ed. Sunnagawa, I.), Tokyo: Terra Scientific Publishing Company, 1970, 77-206.[4]Machenzie, J. K., Moore, J. W., Nickolas, J. F., Bond broken at atomically flat crystal surface, I. Face-centered and body-centered cubic crystal, J. Phys. Chem. Solids, 1962, 23: 185-196.[5]?. Machenzie, J. K., Nicholas, J. F., Bond broken at atomically flat crystal surface, ?. Crystals containing many atoms in a primitive unit cell, J. Phys. Chem. Solids, 1962, 23: 197-205.[6]Hazen, R. M., Finger, L. W., Crystal structure and compressibility of zircon at high pressure, Am. Mineral, 1979, 64:196-201.[7]Pupin, J. P., Zircon and granite petrology, Contrib. Mineral Petrol., 1980, 73: 207-220.[8]Wang, X., Kienast, J. R., Morphology and geochemistry of zircon: a case study on zircon from the microgranitoid enclaves,Science in China, Series D, 1999, 42(5): 544-552.[9]Wang, X., Li, W. X., Discovery of the { 211 }-type of zircon and its petrogenetic implication, Chinese Sci. Bull., 2001 (inpress).[10]Wang, X., Quantitative description of zircon morphology and its dynamics analysis, Science in China, Series D, 1998,41(4): 422-428.

  10. The mycosubtilin synthetase of Bacillus subtilis ATCC6633 : A multifunctional hybrid between a peptide synthetase, an amino transferase, and a fatty acid synthase

    NARCIS (Netherlands)

    Duitman, EH; Hamoen, LW; Rembold, M; Venema, G; Seitz, H; Saenger, W; Bernhard, F; Reinhardt, R; Schmidt, M; Ullrich, C; Stein, T; Leenders, F; Vater, J

    1999-01-01

    Bacillus subtilis strain ATCC6633 has been identified as a producer of mycosubtilin, a potent antifungal peptide antibiotic. Mycosubtilin, which belongs to the iturin family of lipopeptide antibiotics, is characterized by a p-amino fatty acid moiety linked to the circular heptapeptide Asn-Tyr-Asn-Cl

  11. Isolation and expression of the Pneumocystis carinii thymidylate synthase gene

    DEFF Research Database (Denmark)

    Edman, U; Edman, J C; Lundgren, B;

    1989-01-01

    The thymidylate synthase (TS) gene from Pneumocystis carinii has been isolated from complementary and genomic DNA libraries and expressed in Escherichia coli. The coding sequence of TS is 891 nucleotides, encoding a 297-amino acid protein of Mr 34,269. The deduced amino acid sequence is similar...

  12. Role of cysteine residues in pseudouridine synthases of different families.

    Science.gov (United States)

    Ramamurthy, V; Swann, S L; Spedaliere, C J; Mueller, E G

    1999-10-01

    The pseudouridine synthases catalyze the isomerization of uridine to pseudouridine in RNA molecules. An attractive mechanism was proposed based on that of thymidylate synthase, in which the thiol(ate) group of a cysteine side chain serves as the nucleophile in a Michael addition to C6 of the isomerized uridine. Such a role for cysteine in the pseudouridine synthase TruA (also named Psi synthase I) has been discredited by site-directed mutagenesis, but sequence alignments have led to the conclusion that there are four distinct "families" of pseudouridine synthases that share no statistically significant global sequence similarity. It was, therefore, necessary to probe the role of cysteine residues in pseudouridine synthases of the families that do not include TruA. We examined the enzymes RluA and TruB, which are members of different families than TruA and each other. Substitution of cysteine for amino acids with nonnucleophilic side chains did not significantly alter the catalytic activity of either pseudouridine synthase. We conclude, therefore, that neither TruB nor RluA require thiol(ate) groups to effect catalysis, excluding their participation in a Michael addition to C6 of uridine, although not eliminating that mechanism (with an alternate nucleophile) from future consideration.

  13. The serum uric acid concentration is not causally linked to diabetic nephropathy in type 1 diabetes.

    Science.gov (United States)

    Ahola, Aila J; Sandholm, Niina; Forsblom, Carol; Harjutsalo, Valma; Dahlström, Emma; Groop, Per-Henrik

    2017-02-21

    Previous studies have shown a relationship between uric acid concentration and progression of renal disease. Here we studied causality between the serum uric acid concentration and progression of diabetic nephropathy in 3895 individuals with type 1 diabetes in the FinnDiane Study. The renal status was assessed with the urinary albumin excretion rate and estimated glomerular filtration rate (eGFR) at baseline and at the end of the follow-up. Based on previous genomewide association studies on serum uric acid concentration, 23 single nucleotide polymorphisms (SNPs) with good imputation quality were selected for the SNP score. This score was used to assess the causality between serum uric acid and renal complications using a Mendelian randomization approach. At baseline, the serum uric acid concentration was higher with worsening renal status. In multivariable Cox regression analyses, baseline serum uric acid concentration was not independently associated with progression of diabetic nephropathy over a mean follow-up of 7 years. However, over the same period, baseline serum uric acid was independently associated with the decline in eGFR. In the cross-sectional logistic regression analyses, the SNP score was associated with the serum uric acid concentration. Nevertheless, the Mendelian randomization showed no causality between uric acid and diabetic nephropathy, eGFR categories, or eGFR as a continuous variable. Thus, our results suggest that the serum uric acid concentration is not causally related to diabetic nephropathy but is a downstream marker of kidney damage.

  14. Active site modification of the β-ketoacyl-ACP synthase FabF3 of Streptomyces coelicolor affects the fatty acid chain length of the CDA lipopeptides.

    Science.gov (United States)

    Lewis, Richard A; Nunns, Laura; Thirlway, Jenny; Carroll, Kathleen; Smith, Colin P; Micklefield, Jason

    2011-02-14

    Using site directed mutagenesis we altered an active site residue (Phe107) of the enzyme encoded by fabF3 (SCO3248) in the Streptomyces coelicolor gene cluster required for biosynthesis of the calcium dependent antibiotics (CDAs), successfully generating two novel CDA derivatives comprising truncated (C4) lipid side chains and confirming that fabF3 encodes a KAS-II homologue that is involved in determining CDA fatty acid chain length.

  15. Two branches of the lupeol synthase gene in the molecular evolution of plant oxidosqualene cyclases.

    Science.gov (United States)

    Shibuya, M; Zhang, H; Endo, A; Shishikura, K; Kushiro, T; Ebizuka, Y

    1999-11-01

    Two new triterpene synthase cDNAs, named as OEW and TRW, were cloned from olive leaves (Olea europaea) and from dandelion roots (Taraxacum officinale), respectively, by the PCR method with primers designed from the conserved sequences found in the known oxidosqualene cyclases. Their ORFs consisted of 2274 bp nucleotides and coded for 758 amino acid long polypeptides. They shared high sequence identity (78%) to each other, while they showed only about 60% identities to the known triterpene synthases LUPI (lupeol synthase clone from Arabidopsis thaliana) and PNY (beta-amyrin synthase clone from Panax ginseng) at amino acid level. To determine the enzyme functions of the translates, they were expressed in an ERG7 deficient yeast mutant. Accumulation of lupeol in the cells of yeast transformants proved both of these clones code for lupeol synthase proteins. An EST (expression sequence tag) clone isolated from Medicago truncatula roots as a homologue of cycloartenol synthase gene, exhibits high sequence identity (75-77%) to these two lupeol synthase cDNAs, suggesting it to be another lupeol synthase clone. Comparatively low identity (approximately 57%) of LUP1 from Arabidopsis thaliana to either one of these clones leaves LUP1 as a distinct clone among lupeol synthases. From these sequence comparisons, now we propose that two branches of lupeol synthase gene have been generated in higher plants during the course of evolution.

  16. Structure of dimeric, recombinant Sulfolobus solfataricus phosphoribosyl diphosphate synthase

    DEFF Research Database (Denmark)

    Andersen, Rune W.; Lo Leggio, Leila; Hove-Jensen, Bjarne

    2015-01-01

    PRPP synthase as a search model. The two amino acid sequences share 35 % identity. The resulting asymmetric unit consists of three separated dimers. The protein was co-crystallised in the presence of AMP and ribose 5-phosphate, but in the electron density map of the active site only AMP and a sulphate......The enzyme 5-phosphoribosyl-1-α-diphosphate (PRPP) synthase (EC 2.7.6.1) catalyses the Mg2+-dependent transfer of a diphosphoryl group from ATP to the C1 hydroxyl group of ribose 5-phosphate resulting in the production of PRPP and AMP. A nucleotide sequence specifying Sulfolobus solfataricus PRPP....... A bent dimer oligomerisation was revealed, which seems to be an abundant feature among PRPP synthases for defining the adenine specificity of the substrate ATP. Molecular replacement was used to determine the S. solfataricus PRPP synthase structure with a monomer subunit of Methanocaldococcus jannaschii...

  17. Pravastatin activates platelet nitric oxide synthase (NOS) in patients with type 2 diabetes mellitus and NOS activation is accompanied by serine phosphorylation

    Institute of Scientific and Technical Information of China (English)

    YAO Kang; XU Biao; Gao Ling; GE Jun-bo

    2005-01-01

    @@ Statins cause reductions in myocardial infarction and also morbidity and mortality of type 2 diabetes related to atheromatous disease and its thrombotic complications beyond those predicted by reductions in low density lipoprotein cholesterol (LDL).1,2 It has been suggested that the protective mechanism(s) may relate to improved endothelial function and/or antithrombotic effects, but the mechanism is not clear.

  18. Reduced plasma adiponectin concentrations may contribute to impaired insulin activation of glycogen synthase in skeletal muscle of patients with type 2 diabetes

    DEFF Research Database (Denmark)

    Højlund, K.; Frystyk, J.; Levin, K.

    2006-01-01

    AIMS/HYPOTHESIS: Circulating levels of adiponectin are negatively associated with multiple indices of insulin resistance, and the concentration is reduced in humans with insulin resistance and type 2 diabetes. However, the mechanisms by which adiponectin improves insulin sensitivity remain unclea...

  19. Cleavage of the Carboxyl-Terminus of LEACS2, a Tomato 1-Aminocycl opropane-1-Carboxylic Acid Synthase Isomer, by a 64-kDa Tomato Metalloprotease Produces a Truncated but Active Enzyme

    Institute of Scientific and Technical Information of China (English)

    Jian-Feng LI; Robert QI; Liang-Hu QU; Autar K Mattoo; Ning LI

    2005-01-01

    l-Aminocyclopropane-1-carboxylic acid (ACC) synthase (ACS) is the principal enzyme in phytohormone ethylene biosynthesis. Previous studies have shown that the hypervariable C-terminus of ACS is proteolytically processed in vivo. However, the protease responsible for this has not yet been identified. In the present study, we investigated the processing of the 55-kDa full-length tomato ACS (LeACS2) into 52-, 50- and 49-kDa truncated isoforms in ripening tomato (Lycopersicon esculentum Mill. cv.Cooperation 903) fruit using the sodium dodecyl sulfate-boiling method. Meanwhile, an LeACS2-processing protease was purified via multi-step column chromatography from tomato fruit. Subsequent biochemical analysis of the 64-kDa purified protease revealed that it is a metalloprotease active at multiple cleavage sites within the hypervariable C-terminus of LeACS2. N-terminal sequencing and matrix-assisted laser desorption/ionization time-of-flight analysis indicated that the LeACS2-processing metalloprotease cleaves at the C-terminal sites Lys438, Glu447, Lys448, Asn456, Ser460, Ser462, Lys463, and Leu474, but does not cleave the Nterminus of LeACS2. Four C-terminus-deleted (26-50 amino acids) LeACS2 fusion proteins were overproduced and subjected to proteolysis by this metalloprotease to identify the multiple cleavage sites located on the N-terminal side of the phosphorylation site Ser460. The results indisputably confirmed the presence of cleavage sites within the region between the α-helix domain (H14) and Ser460 for this metalloprotease.Furhermore, the resulting C-terminally truncated LeACS2 isoforms were active enzymatically. Because this protease could produce LeACS2 isoforms in vitro similar to those detected in vivo, it is proposed that this metalloprotease may be involved in the proteolysis of LeACS2 in vivo.

  20. The role of ß-ketoacyl-acyl carrier protein synthase III in the condensation steps of fatty acid biosynthesis in sunflower

    DEFF Research Database (Denmark)

    González-Mellado, Damián; von Wettstein, Penelope Margaret; Garcés, Rafael;

    2010-01-01

    a novel substrate specificity. In contrast to all hitherto characterized plant KAS IIIs, the activities of which are limited to the first cycles of intraplastidial fatty acid biosynthesis yielding C6 chains, HaKAS III participates in at least four cycles resulting in C10 chains....... proteins infers its origin from cyanobacterial ancestors. A genomic DNA gel blot analysis revealed that HaKAS III is a single copy gene. Expression levels of this gene, examined by Q-PCR, revealed higher levels in developing seeds storing oil than in leaves, stems, roots or seedling cotyledons...

  1. Niflumic acid differentially modulates two types of skeletal ryanodine-sensitive Ca(2+)-release channels.

    Science.gov (United States)

    Oba, T

    1997-11-01

    The effects of niflumic acid on ryanodine receptors (RyRs) of frog skeletal muscle were studied by incorporating sarcoplasmic reticulum (SR) vesicles into planar lipid bilayers. Frog muscle had two distinct types of RyRs in the SR: one showed a bell-shaped channel activation curve against cytoplasmic Ca2+ or niflumic acid, and its mean open probability (Po) was increased by perchlorate at 20-30 mM (termed "alpha-like" RyR); the other showed a sigmoidal activation curve against Ca2+ or niflumic acid, with no effect on perchlorate (termed "beta-like" RyR). The unitary conductance and reversal potential of both channel types were unaffected after exposure to niflumic acid when clamped at 0 mV. When clamped at more positive potentials, the beta-like RyR channel rectified this, increasing the unitary current. Treatment with niflumic acid did not inhibit the response of both channels to Ca2+ release channel modulators such as caffeine, ryanodine, and ruthenium red. The different effects of niflumic acid on Po and the unitary current amplitude in both types of channels may be attributable to the lack or the presence of inactivation sites and/or distinct responses to agonists.

  2. Mutations in the 4-hydroxyphenylpyruvic acid dioxygenase gene are responsible for tyrosinemia type III and hawkinsinuria.

    Science.gov (United States)

    Tomoeda, K; Awata, H; Matsuura, T; Matsuda, I; Ploechl, E; Milovac, T; Boneh, A; Scott, C R; Danks, D M; Endo, F

    2000-11-01

    The enzyme 4-hydroxyphenylpyruvic acid dioxygenase (HPD) catalyzes the reaction of 4-hydroxyphenylpyruvic acid to homogentisic acid in the tyrosine catabolism pathway. A deficiency in the catalytic activity of HPD may lead to tyrosinemia type III, an autosomal recessive disorder characterized by elevated levels of blood tyrosine and massive excretion of tyrosine derivatives into urine. It has been postulated that hawkinsinuria, an autosomal dominant disorder characterized by the excretion of 'hawkinsin,' may also be a result of HPD deficiency. Hawkinsin is a sulfur amino acid identified as (2-l-cystein-S-yl, 4-dihydroxycyclohex-5-en-1-yl)acetic acid. Patients with hawkinsinuria excrete this metabolite in their urine throughout their life, although symptoms of metabolic acidosis and tyrosinemia improve in the first year of life. We performed analyses of the HPD gene in a patient with tyrosinemia type III and two unrelated patients with hawkinsinuria. A homozygous missense mutation predicting an Ala to Val change at codon 268 (A268V) in the HPD gene was found in the patient with tyrosinemia type III. A heterozygous missense mutation predicting an Ala to Thr change at codon 33 (A33T) was found in the same HPD gene in the two patients with hawkinsinuria. These findings support the hypothesis that alterations in the structure and activity of HPD are causally related to two different metabolic disorders, tyrosinemia type III and hawkinsinuria.

  3. Prediction algorithm for amino acid types with their secondary structure in proteins (PLATON) using chemical shifts.

    Science.gov (United States)

    Labudde, D; Leitner, D; Krüger, M; Oschkinat, H

    2003-01-01

    The algorithm PLATON is able to assign sets of chemical shifts derived from a single residue to amino acid types with its secondary structure (amino acid species). A subsequent ranking procedure using optionally two different penalty functions yields predictions for possible amino acid species for the given set of chemical shifts. This was demonstrated in the case of the alpha-spectrin SH3 domain and applied to 9 further protein data sets taken from the BioMagRes database. A database consisting of reference chemical shift patterns (reference CSPs) was generated from assigned chemical shifts of proteins with known 3D-structure. This reference CSP database is used in our approach for extracting distributions of amino acid types with their most likely secondary structure elements (namely alpha-helix, beta-sheet, and coil) for single amino acids by comparison with query CSPs. Results obtained for the 10 investigated proteins indicates that the percentage of correct amino acid species in the first three positions in the ranking list, ranges from 71.4% to 93.2% for the more favorable penalty function. Where only the top result of the ranking list for these 10 proteins is considered, 36.5% to 83.1% of the amino acid species are correctly predicted. The main advantage of our approach, over other methods that rely on average chemical shift values is the ability to increase database content by incorporating newly derived CSPs, and therefore to improve PLATON's performance over time.

  4. Regulation of resin acid synthesis in Pinus densiflora by differential transcription of genes encoding multiple 1-deoxy-D-xylulose 5-phosphate synthase and 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate reductase genes.

    Science.gov (United States)

    Kim, Yeon-Bok; Kim, Sang-Min; Kang, Min-Kyoung; Kuzuyama, Tomohisa; Lee, Jong Kyu; Park, Seung-Chan; Shin, Sang-Chul; Kim, Soo-Un

    2009-05-01

    Pinus densiflora Siebold et Zucc. is the major green canopy species in the mountainous area of Korea. To assess the response of resin acid biosynthetic genes to mechanical and chemical stimuli, we cloned cDNAs of genes encoding enzymes involved in the 2-C-methyl-d-erythritol 4-phosphate (MEP) pathway (1-deoxy-d-xylulose 5-phosphate synthase (PdDXS), 1-deoxy-d-xylulose 5-phosphate reductoisomerase (PdDXR) and 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate reductase (PdHDR)) by the rapid amplification of cDNA ends (RACE) technique. In addition, we cloned the gene encoding abietadiene synthase (PdABS) as a marker for the site of pine resin biosynthesis. PdHDR and PdDXS occurred as two gene families. In the phylogenetic trees, PdDXSs, PdDXR and PdHDRs each formed a separate clade from their respective angiosperm homologs. PdDXS2, PdHDR2 and PdDXR were most actively transcribed in stem wood, whereas PdABS was specifically transcribed. The abundance of PdDXS2 transcripts in wood in the resting state was generally 50-fold higher than the abundance of PdDXS1 transcripts, and PdHDR2 transcripts were more abundant by an order of magnitude in wood than in other tissues, with the ratio of PdHDR2 to PdHDR1 transcripts in wood being about 1. Application of 1 mM methyl jasmonate (MeJA) selectively enhanced the transcript levels of PdDXS2 and PdHDR2 in wood. The ratios of PdDXS2 to PdDXS1 and PdHDR2 to PdHDR1 reached 900 and 20, respectively, on the second day after MeJA treatment, whereas the transcript level of PdABS increased twofold by 3 days after MeJA treatment. Wounding of the stem differentially enhanced the transcript ratios of PdDXS2 to PdDXS1 and PdHDR2 to PdHDR1 to 300 and 70, respectively. The increase in the transcript levels of the MEP pathway genes in response to wounding was accompanied by two orders of magnitude increase in PdABS transcripts. These observations indicated that resin acid biosynthesis activity, represented by PdABS transcription, was correlated

  5. In silico discovery and in vitro activity of inhibitors against Mycobacterium tuberculosis 7,8-diaminopelargonic acid synthase (Mtb BioA

    Directory of Open Access Journals (Sweden)

    Billones JB

    2017-03-01

    Full Text Available Junie B Billones,1,2 Maria Constancia O Carrillo,1 Voltaire G Organo,1 Jamie Bernadette A Sy,1 Nina Abigail B Clavio,1 Stephani Joy Y Macalino,1 Inno A Emnacen,1 Alexandra P Lee,1 Paul Kenny L Ko,1 Gisela P Concepcion3 1OVPAA-EIDR Program, “Computer-Aided Discovery of Compounds for the Treatment of Tuberculosis in the Philippines”, Department of Physical Sciences and Mathematics, College of Arts and Sciences, University of the Philippines Manila, Manila, Philippines; 2Institute of Pharmaceutical Sciences, National Institutes of Health, University of the Philippines Manila, Manila, Philippines; 3Marine Science Institute, College of Science, University of the Philippines Diliman, Quezon City, Philippines Abstract: Computer-aided drug discovery and development approaches such as virtual screening, molecular docking, and in silico drug property calculations have been utilized in this effort to discover new lead compounds against tuberculosis. The enzyme 7,8-diaminopelargonic acid aminotransferase (BioA in Mycobacterium tuberculosis (Mtb, primarily involved in the lipid biosynthesis pathway, was chosen as the drug target due to the fact that humans are not capable of synthesizing biotin endogenously. The computational screening of 4.5 million compounds from the Enamine REAL database has ultimately yielded 45 high-scoring, high-affinity compounds with desirable in silico absorption, distribution, metabolism, excretion, and toxicity properties. Seventeen of the 45 compounds were subjected to bioactivity validation using the resazurin microtiter assay. Among the 4 actives, compound 7 ((Z-N-(2-isopropoxyphenyl-2-oxo-2-((3-(trifluoromethylcyclohexylaminoacetimidic acid displayed inhibitory activity up to 83% at 10 µg/mL concentration against the growth of the Mtb H37Ra strain. Keywords: CADDD, ADMET, TOPKAT, BioA inhibitor, structure-based pharmacophore, pharmacophore, molecular docking, resazurin microtiter assay

  6. Relationship between Sialic acid and metabolic variables in Indian type 2 diabetic patients

    Directory of Open Access Journals (Sweden)

    Nayak B Shivananda

    2005-08-01

    Full Text Available Abstract Background Plasma sialic acid is a marker of the acute phase response. Objective is to study the relationship between sialic acid relationship with metabolic variables in Indian type 2 diabetes with and without microvascular complications. Research design and Methods Fasting Venous blood samples were taken from 200 subjects of which 50 were of diabetes mellitus (DM and nephropathy patients, 50 patients with type 2 diabetes and retinopathy, 50 patients with type 2 diabetes without any complications and 50 healthy individuals without diabetes. The Indian subject's aged 15–60 years with type 2 diabetes were recruited for the study. Simultaneously urine samples were also collected from each of the subjects. All the blood samples were analyzed for total cholesterol, triglyceride (TG, low-density lipoprotein (LDL, high-density lipoprotein (HDL, fasting and postprandial glucose on fully automated analyzer. Serum and urine sialic acid along with microalbumin levels were also estimated. Results There was a significantly increasing trend of plasma and urine sialic acid with severity of nephropathy (P 1c, serum triglyceride and cholesterol concentrations, waist-to-hip ratio and hypertension. Significant correlations were found between sialic acid concentration and cardiovascular risk factors like LDL and TG in the diabetic subjects. Conclusion The main finding of this study is that elevated serum and urinary sialic acid and microalbumin concentrations were strongly related to the presence of microvascular complications like diabetic nephropathy and retinopathy and cardiovascular risk factors in Indian type 2 diabetic subjects. Further study of acute-phase response markers and mediators as indicators or predictors of diabetic microvascular complications is therefore justified.

  7. Homocysteine homeostasis in the rat is maintained by compensatory changes in cystathionine β-synthase, betaine-homocysteine methyltransferase, and phosphatidylethanolamine N-methyltransferase gene transcription occurring in response to maternal protein and folic acid intake during pregnancy and fat intake after weaning.

    Science.gov (United States)

    Chmurzynska, Agata; Malinowska, Anna M

    2011-07-01

    The reactions of the methionine/homocysteine pathway are mediated by several enzymes, including phosphatidylethanolamine N-methyltransferase, cystathionine β-synthase, and betaine-homocysteine methyltransferase. Homocysteine homeostasis is regulated by these enzymes. We hypothesized here that the protein and folic acid content in the maternal diet affects methionine/homocysteine metabolism in the progeny. To test this hypothesis, pregnant rats were fed a diet with normal protein and normal folic acid levels (a modified casein-based AIN-93G diet), a protein-restricted and normal folic acid diet, a protein-restricted and folic acid-supplemented diet, or a normal protein and folic acid-supplemented diet. The progeny were fed either the modified AIN-93G diet or a high-fat lard-based diet. Progeny were analyzed for expression of the phosphatidylethanolamine N-methyltransferase, cystathionine β-synthase, and betaine-homocysteine methyltransferase genes in the liver and for serum homocysteine concentration. Interactions between prenatal and postnatal nutrition were also determined. The progeny of the dams fed the diets supplemented with folic acid showed decreased expression of all 3 genes (P homocysteine concentrations were approximately 15% higher in the male rats (P homocysteine concentrations.

  8. Two amino acid residues confer type specificity to a neutralizing, conformationally dependent epitope on human papillomavirus type 11.

    Science.gov (United States)

    Ludmerer, S W; Benincasa, D; Mark, G E

    1996-01-01

    Characterization of virus binding by neutralizing antibodies is important both in understanding early events in viral infectivity and in development of vaccines. Neutralizing monoclonal antibodies (MAbs) to human papillomavirus type 11 (HPV11) have been described, but mapping the binding site has been difficult because of the conformational nature of key type-specific neutralization epitopes on the L1 coat protein. We have determined those residues of the L1 protein of HPV11 which confer type specificity to the binding of HPV11-neutralizing MAbs. Binding of three HPV11-specific neutralizing MAbs could be redirected to HPV6 L1 virus-like particles in which as few as two substitutions of corresponding amino acid residues from HPV11 L1 have been made, thus demonstrating the importance of these residues to MAb binding through the transfer of a conformationally dependent epitope. In addition, a fourth neutralizing MAb could be distinguished from the other neutralizing MAbs in terms of the amino acid residues which affect binding, suggesting the possibility that it neutralizes HPV11 through a different mechanism. PMID:8676509

  9. Prenyldiphosphate synthases and gibberellin biosynthesis

    NARCIS (Netherlands)

    van Schie, C.C.N.; Haring, M.A.; Schuurink, R.C.; Bach, T.J.; Rohmer, M.

    2013-01-01

    Gibberellins are derived from the diterpene precursor geranylgeranyl diphophosphate (GGPP). GGPP is converted to ent-kaurene, which contains the basic structure of gibberellins, in the plastids by the combined actions of copalyl diphosphate synthase (CPS) and ent-kaurene synthase (KS). Generally, ge

  10. Molecular cloning, functional expression and characterization of (E)-beta farnesene synthase from Citrus junos.

    Science.gov (United States)

    Maruyama, T; Ito, M; Honda, G

    2001-10-01

    We cloned the gene of the acyclic sesquiterpene synthase, (E)-beta-farnesene synthase (CJFS) from Yuzu (Citrus junos, Rutaceae). The function of CJFS was elucidated by the preparation of recombinant protein and subsequent enzyme assay. CJFS consisted of 1867 nucleotides including 1680 bp of coding sequence encoding a protein of 560 amino acids with a molecular weight of 62 kDa. The deduced amino acid sequence possessed characteristic amino acid residues, such as the DDxxD motif, which are highly conserved among terpene synthases. This is the first report of the cloning of a terpene synthase from a Rutaceous plant. A possible reaction mechanism for terpene biosynthesis is also discussed on the basis of sequence comparison of CJFS with known sesquiterpene synthase genes.

  11. Non-enzymatic modifications of prostaglandin H synthase 1 affect bifunctional enzyme activity - Implications for the sensitivity of blood platelets to acetylsalicylic acid.

    Science.gov (United States)

    Kassassir, Hassan; Siewiera, Karolina; Talar, Marcin; Stec-Martyna, Emilia; Pawlowska, Zofia; Watala, Cezary

    2016-06-25

    Due to its ability to inhibit the blood platelet PGHS-1, acetylsalicylic acid (ASA, Aspirin(®)) is widely used as a preventive agent in atherothrombotic diseases. However, its beneficial effects seem to be lower in diabetic patients, suggesting that protein glycation may impair effective ASA-mediated acetylation process. On the other hand, it is proposed that ASA can prevent some of the late complications of diabetes by lowering the extent of glycation at protein free amino groups. The aim of this work was to evaluate the extents of non-enzymatic N-glycosylation (glycation) and acetylation of blood platelet PGHS-1 (COX-1) and the competition between glycation and acetylation was investigated in order to demonstrate how these two reactions may compete against platelet PGHS-1. When PGHS-1 was incubated with glycating/acetylating agents (glucose, Glu; 1,6-bisphosphofructose, 1,6-BPF; methylglyoxal, MGO, acetylsalicylic acid, ASA), the enzyme was modified in 13.4 ± 1.6, 5.3 ± 0.5, 10.7 ± 1.2 and 6.4 ± 1.1 mol/mol protein, respectively, and its activity was significantly reduced. The prior glycation/carbonylation of PGHS-1 with Glu, 1,6-BPF or MGO decreased the extent of acetylation from 6.4 ± 1.1 down to 2.5 ± 0.2, 3.6 ± 0.3 and 5.2 ± 0.2 mol/mol protein, respectively, but the enzyme still remained susceptible to the subsequent inhibition of its activity with ASA. When PGHS-1 was first acetylated with ASA and then incubated with glycating/carbonylating agents, we observed the following reductions in the enzyme modifications: from 13.4 ± 1.6 to 8.7 ± 0.6 mol/mol protein for Glu, from 5.3 ± 0.5 to 3.9 ± 0.3 mol/mol protein for 1,6-BPF and from 10.7 ± 1.2 to 7.5 ± 0.5 mol/mol protein for MGO, however subsequent glycation/carbonylation did not significantly affect PGHS-1 function. Overall, our outcomes allow to better understand the structural aspects of the chemical competition between glycation and acetylation of PGHS-1.

  12. Subcellular localization of the homocitrate synthase in Penicillium chrysogenum.

    Science.gov (United States)

    Bañuelos, O; Casqueiro, J; Steidl, S; Gutiérrez, S; Brakhage, A; Martín, J F

    2002-01-01

    There are conflicting reports regarding the cellular localization in Saccharomyces cerevisiae and filamentous fungi of homocitrate synthase, the first enzyme in the lysine biosynthetic pathway. The homocitrate synthase (HS) gene (lys1) of Penicillium chrysogenum was disrupted in three transformants (HS(-)) of the Wis 54-1255 pyrG strain. The three mutants named HS1(-), HS2(-) and HS3(-) all lacked homocitrate synthase activity and showed lysine auxotrophy, indicating that there is a single gene for homocitrate synthase in P. chrysogenum. The lys1 ORF was fused in frame to the gene for the green fluorescent protein (GFP) gene of the jellyfish Aequorea victoria. Homocitrate synthase-deficient mutants transformed with a plasmid containing the lys1-GFP fusion recovered prototrophy and showed similar levels of homocitrate synthase activity to the parental strain Wis 54-1255, indicating that the hybrid protein retains the biological function of wild-type homocitrate synthase. Immunoblotting analysis revealed that the HS-GFP fusion protein is maintained intact and does not release the GFP moiety. Fluorescence microscopy analysis of the transformants showed that homocitrate synthase was mainly located in the cytoplasm in P. chrysogenum; in S. cerevisiae the enzyme is targeted to the nucleus. The control nuclear protein StuA was properly targeted to the nucleus when the StuA (targeting domain)-GFP hybrid protein was expressed in P. chrysogenum. The difference in localization of homocitrate synthase between P. chrysogenum and S. cerevisiae suggests that this protein may play a regulatory function, in addition to its catalytic function, in S. cerevisiae but not in P. chrysogenum.

  13. Use of linalool synthase in genetic engineering of scent production

    Energy Technology Data Exchange (ETDEWEB)

    Pichersky, Eran (Chelsea, MI)

    1998-01-01

    A purified S-linalool synthase polypeptide from Clarkia breweri is disclosed as is the recombinant polypeptide and nucleic acid sequences encoding the polypeptide. Also disclosed are antibodies immunoreactive with the purified peptide and with recombinant versions of the polypeptide. Methods of using the nucleic acid sequences, as well as methods of enhancing the smell and the flavor of plants expressing the nucleic acid sequences are also disclosed.

  14. Use of linalool synthase in genetic engineering of scent production

    Energy Technology Data Exchange (ETDEWEB)

    Pichersky, E.

    1998-12-15

    A purified S-linalool synthase polypeptide from Clarkia breweri is disclosed as is the recombinant polypeptide and nucleic acid sequences encoding the polypeptide. Also disclosed are antibodies immunoreactive with the purified peptide and with recombinant versions of the polypeptide. Methods of using the nucleic acid sequences, as well as methods of enhancing the smell and the flavor of plants expressing the nucleic acid sequences are also disclosed. 5 figs.

  15. Type 2 diabetes associated changes in the plasma non-esterified fatty acids, oxylipins and endocannabinoids

    Science.gov (United States)

    Type 2 diabetes (T2D) has profound effects on metabolism that can be detected in plasma. While increases in circulating non-esterified fatty acids (NEFA) are well described in T2D, effects on circulating signaling lipids have received little attention. Oxylipins and endocannabinoids are classes of ...

  16. Urinary markers of nucleic acid oxidation and cancer in type 2 diabetes

    Directory of Open Access Journals (Sweden)

    Kasper Broedbaek

    2015-04-01

    Conclusions: Urinary excretion of the nucleic acid oxidation markers 8-oxodG and 8-oxoGuo at the time of diagnosis was not associated with cancer overall in type 2 diabetes patients. For site-specific cancers, risk elevations were seen for breast cancer (8-oxodG. These findings should be examined in future and larger studies.

  17. Analysis of the ligand binding properties of recombinant bovine liver-type fatty acid binding protein

    DEFF Research Database (Denmark)

    Rolf, B; Oudenampsen-Krüger, E; Börchers, T

    1995-01-01

    The coding part of the cDNA for bovine liver-type fatty acid binding protein (L-FABP) has been amplified by RT-PCR, cloned and used for the construction of an Escherichia coli (E. coli) expression system. The recombinant protein made up to 25% of the soluble E. coli proteins and could be isolated...

  18. Physics of soft hyaluronic acid-collagen type II double network gels

    Science.gov (United States)

    Morozova, Svetlana; Muthukumar, Murugappan

    2015-03-01

    Many biological hydrogels are made up of multiple interpenetrating, charged components. We study the swelling, elastic diffusion, mechanical, and optical behaviors of 100 mol% ionizable hyaluronic acid (HA) and collagen type II fiber networks. Dilute, 0.05-0.5 wt% hyaluronic acid networks are extremely sensitive to solution salt concentration, but are stable at pH above 2. When swelled in 0.1M NaCl, single-network hyaluronic acid gels follow scaling laws relevant to high salt semidilute solutions; the elastic shear modulus G' and diffusion constant D scale with the volume fraction ϕ as G' ~ϕ 9 / 4 and D ~ϕ 3 / 4 , respectively. With the addition of a collagen fiber network, we find that the hyaluronic acid network swells to suspend the rigid collagen fibers, providing extra strength to the hydrogel. Results on swelling equilibria, elasticity, and collective diffusion on these double network hydrogels will be presented.

  19. Postprandial Plasma Concentrations of Individual Bile Acids and FGF-19 in Patients With Type 2 Diabetes

    DEFF Research Database (Denmark)

    Sonne, David P; van Nierop, F Samuel; Kulik, Willem

    2016-01-01

    CONTEXT: Bile acids regulate lipid and carbohydrate metabolism by interaction with membrane or intracellular proteins including the nuclear farnesoid X receptor (FXR). Postprandial activation of ileal FXR leads to secretion of fibroblast growth factor 19 (FGF-19), a gut hormone that may be implic......CONTEXT: Bile acids regulate lipid and carbohydrate metabolism by interaction with membrane or intracellular proteins including the nuclear farnesoid X receptor (FXR). Postprandial activation of ileal FXR leads to secretion of fibroblast growth factor 19 (FGF-19), a gut hormone that may...... be implicated in postprandial glucose metabolism. OBJECTIVE: To describe postprandial plasma concentrations of 12 individual bile acids and FGF-19 in patients with type 2 diabetes (T2D) and healthy controls. DESIGN AND SETTING: Descriptive study, performed at the Center for Diabetes Research, Gentofte Hospital...... and FGF-19 concentrations. RESULTS: Postprandial total bile acid concentrations increased with increasing meal fat content (P

  20. Thymoquinone Inhibits Escherichia coli ATP Synthase and Cell Growth.

    Directory of Open Access Journals (Sweden)

    Zulfiqar Ahmad

    Full Text Available We examined the thymoquinone induced inhibition of purified F1 or membrane bound F1FO E. coli ATP synthase. Both purified F1 and membrane bound F1FO were completely inhibited by thymoquinone with no residual ATPase activity. The process of inhibition was fully reversible and identical in both membrane bound F1Fo and purified F1 preparations. Moreover, thymoquinone induced inhibition of ATP synthase expressing wild-type E. coli cell growth and non-inhibition of ATPase gene deleted null control cells demonstrates that ATP synthase is a molecular target for thymoquinone. This also links the beneficial dietary based antimicrobial and anticancer effects of thymoquinone to its inhibitory action on ATP synthase.

  1. Thymoquinone Inhibits Escherichia coli ATP Synthase and Cell Growth.

    Science.gov (United States)

    Ahmad, Zulfiqar; Laughlin, Thomas F; Kady, Ismail O

    2015-01-01

    We examined the thymoquinone induced inhibition of purified F1 or membrane bound F1FO E. coli ATP synthase. Both purified F1 and membrane bound F1FO were completely inhibited by thymoquinone with no residual ATPase activity. The process of inhibition was fully reversible and identical in both membrane bound F1Fo and purified F1 preparations. Moreover, thymoquinone induced inhibition of ATP synthase expressing wild-type E. coli cell growth and non-inhibition of ATPase gene deleted null control cells demonstrates that ATP synthase is a molecular target for thymoquinone. This also links the beneficial dietary based antimicrobial and anticancer effects of thymoquinone to its inhibitory action on ATP synthase.

  2. Prostaglandin H synthase immunoreactivity in human gut. An immunohistochemical study

    DEFF Research Database (Denmark)

    Mikkelsen, H B; Rumessen, J J; Qvortrup, Klaus

    1991-01-01

    Prostaglandins exhibit a variety of actions on intestinal smooth muscle depending upon the type, dose and muscle layer studied. As the cellular origin of prostaglandin H (PGH) synthase has not been established with certainty in the human gut wall, we studied the localization of PGH synthase...... in the human duodenum, jejunum, ileum and colon by immunohistochemistry. PGH synthase immunoreactivity appeared to be similar in all segments of the intestine. Most smooth muscle cells seemed to contain PGH synthase; however, the reaction in the lamina muscularis mucosae was much stronger than...... in the longitudinal and circular muscle layers. Endothelial cells in capillaries and larger vessels showed a positive reaction. In addition, unidentified cells in subserosa, at the level of Auerbach's plexus and in the submucosa were stained. We concluded that the smooth muscle cells of the human gut has a rather...

  3. Mammalian N-acetylglutamate synthase.

    Science.gov (United States)

    Morizono, Hiroki; Caldovic, Ljubica; Shi, Dashuang; Tuchman, Mendel

    2004-04-01

    N-Acetylglutamate synthase (NAGS, E.C. 2.3.1.1) is a mitochondrial enzyme that catalyzes the formation of N-acetylglutamate (NAG), an essential allosteric activator of carbamylphosphate synthetase I (CPSI). The mouse and human NAGS genes have been identified based on similarity to regions of NAGS from Neurospora crassa and cloned from liver cDNA libraries. These genes were shown to complement an argA- (NAGS) deficient Escherichia coli strain, and enzymatic activity of the proteins was confirmed by a new stable isotope dilution assay. The deduced amino acid sequence of mammalian NAGS contains a putative mitochondrial-targeting signal at the N-terminus. The mouse NAGS preprotein was overexpressed in insect cells to determine post-translational modifications and two processed proteins with different N-terminal truncations have been identified. Sequence analysis using a hidden Markov model suggests that the vertebrate NAGS protein contains domains with a carbamate kinase fold and an acyl-CoA N-acyltransferase fold, and protein crystallization experiments are currently underway. Inherited NAGS deficiency results in hyperammonemia, presumably due to the loss of CPSI activity. We, and others, have recently identified mutations in families with neonatal and late-onset NAGS deficiency and the identification of the gene has now made carrier testing and prenatal diagnosis feasible. A structural analog of NAG, carbamylglutamate, has been shown to bind and activate CPSI, and several patients have been reported to respond favorably to this drug (Carbaglu).

  4. Folic acid: a marker of endothelial function in type 2 diabetes?

    Directory of Open Access Journals (Sweden)

    Arduino A Mangoni

    2005-04-01

    Full Text Available Arduino A Mangoni1, Roy A Sherwood2, Belinda Asonganyi2, Emma L Ouldred3, Stephen Thomas4, Stephen HD Jackson31Department of Clinical Pharmacology, Centre for Neuroscience, School of Medicine, Flinders University, Adelaide, SA, Australia; 2Clinical Biochemistry, King’s College Hospital, London, UK; 3Department of Health Care of the Elderly, Guy’s, King’s, and St Thomas’ School of Medicine, King’s College, London, UK; 4Department of Diabetic Medicine, King’s College Hospital, London, UKObjectives: Endothelial dysfunction is a common feature of type 2 diabetes. Recent studies suggest that the B-vitamin folic acid exerts direct beneficial effects on endothelial function, beyond the well known homocysteine lowering effects. Therefore, folic acid might represent a novel “biomarker” of endothelial function. We sought to determine whether plasma levels of folic acid determine endothelial-dependent vasodilation in patients with type 2 diabetes.Methods: Forearm arterial blood flow (FABF was measured at baseline and during intrabrachial infusion of the endothelial-dependent vasodilator acetylcholine (15 µg/min and the endothelial-independent vasodilator sodium nitroprusside (2 µg/min in 26 type 2 diabetic patients (age 56.5 ± 0.9 years, means ± SEM with no history of cardiovascular disease.Results: FABF ratio (ie, the ratio between the infused and control forearm FABF significantly increased during acetylcholine (1.10 ± 0.04 vs 1.52 ± 0.07, p < 0.001 and sodium nitroprusside (1.12 ± 0.11 vs 1.62 ± 0.06, p < 0.001 infusions. After correcting for age, gender, diabetes duration, smoking, hypertension, body mass index, microalbuminuria, glycated hemoglobin, low-density lipoprotein cholesterol, and homocysteine, multiple regression analysis showed that plasma folic acid concentration was the only independent determinant (p = 0.037, R2 = 0.22 of acetylcholine-mediated, but not sodium nitroprusside-mediated, vasodilatation

  5. Glycosyltransferases A and B: Four Critical Amino Acids Determine Blood Type

    Science.gov (United States)

    Rose, Natisha L.; Palcic, Monica M.; Evans, Stephen V.

    2005-12-01

    Human A, B, and O blood type is determined by the presence or absence of distinct carbohydrate structures on red blood cells. Type O individuals have α-fucose(1→2)galactose disaccharides [O(H) structures] on their cell surfaces while in type A or B individuals, the O antigen is capped by the addition of an α- N -acetylgalactosamine or α-galactose residue, respectively. The addition of these monosaccharides is catalyzed by glycosyltransferase A (GTA) or glycosyltransferase B (GTB). These are homologous enzymes differing by only 4 amino acids out of 354 that change the specificity from GTA to GTB. In this review the chemistry of the blood group ABO system and the role of GTA, GTB, and the four critical amino acids in determining blood group status are discussed. See JCE Featured Molecules .

  6. Synthesis and Monolayer Behaviors of Succinic Acid-Type Gemini Surfactants Containing Semifluoroalkyl Groups.

    Science.gov (United States)

    Kawase, Tokuzo; Nagase, Youhei; Oida, Tatsuo

    2016-01-01

    In this work, novel succinic acid-type gemini surfactants containing semifluoroalkyl groups, dl- and meso-2,3-bis[Rf-(CH2)n]-succinic acids (Rf = C4F9, C6F13, C8F17; n = 2, 9), were successfully synthesized, and the effects of Rf, methylene chain length (n), and stereochemistry on their monolayer behaviors were studied. Critical micelle concentrations (CMC) of dl- and meso-2,3-bis[C4F9(CH2)9]-succinic acids were one order of magnitude smaller than that of the corresponding 1+1 type surfactant, C4F9(CH2)9COOH. From surface pressure-area (π-A) measurements, the lift-off areas of the geminis were found to decrease in the order C4F9 ≥ C6F13 > C8F17, regardless of methylene chain length and stereochemistry. The zero-pressure molecular areas of the geminis were twice those of the corresponding 1+1 type surfactants. Based on Gibbs compression modulus analysis, it was clarified that 2,3-bis[C8F17(CH2)n]-succinic gemini with short methylene chains (n = 2) would form more rigid monolayers than those having long methylene chains (n = 9). Unlike for 2,3-bis(alkyl)-succinic acids, the effects of stereochemistry on the monolayer behavior of semifluoroalkylated geminis were small.

  7. Catabolite control protein E (CcpE) is a LysR-type transcriptional regulator of tricarboxylic acid cycle activity in Staphylococcus aureus.

    Science.gov (United States)

    Hartmann, Torsten; Zhang, Bo; Baronian, Grégory; Schulthess, Bettina; Homerova, Dagmar; Grubmüller, Stephanie; Kutzner, Erika; Gaupp, Rosmarie; Bertram, Ralph; Powers, Robert; Eisenreich, Wolfgang; Kormanec, Jan; Herrmann, Mathias; Molle, Virginie; Somerville, Greg A; Bischoff, Markus

    2013-12-13

    The tricarboxylic acid cycle (TCA cycle) is a central metabolic pathway that provides energy, reducing potential, and biosynthetic intermediates. In Staphylococcus aureus, TCA cycle activity is controlled by several regulators (e.g. CcpA, CodY, and RpiRc) in response to the availability of sugars, amino acids, and environmental stress. Developing a bioinformatic search for additional carbon catabolite-responsive regulators in S. aureus, we identified a LysR-type regulator, catabolite control protein E (CcpE), with homology to the Bacillus subtilis CcpC regulator. Inactivation of ccpE in S. aureus strain Newman revealed that CcpE is a positive transcriptional effector of the first two enzymes of the TCA cycle, aconitase (citB) and to a lesser extent citrate synthase (citZ). Consistent with the transcriptional data, aconitase activity dramatically decreased in the ccpE mutant relative to the wild-type strain. The effect of ccpE inactivation on citB transcription and the lesser effect on citZ transcription were also reflected in electrophoretic mobility shift assays where CcpE bound to the citB promoter but not the citZ promoter. Metabolomic studies showed that inactivation of ccpE resulted in increased intracellular concentrations of acetate, citrate, lactate, and alanine, consistent with a redirection of carbon away from the TCA cycle. Taken together, our data suggest that CcpE is a major direct positive regulator of the TCA cycle gene citB.

  8. AUTOANTIBODIES TO GLUTAMIC ACID DECARBOXYLASE AS A PATHOGENETIC MARKER OF TYPE I DIABETES MELLITUS

    Directory of Open Access Journals (Sweden)

    N. V. Piven

    2011-01-01

    Full Text Available Abstract. A new method of enzyme-linked immunosorbent assay (in solid-phase ELISA format has been developed to determine concentrations of autoantibodies to glutamic acid decarboxylase, as well as an evidencebased methodology is proposed for its medical implications, as a quantitative pathogenetic predictive marker of autoimmune diagnostics in type 1 diabetes mellitus. This technique could be implied for serial production of diagnostic reagent kits, aimed for detection of autoantibodies to glutamic acid decarboxylase by means of ELISA approach. (Med. Immunol., 2011, vol. 13, N 2-3, pp 257-260

  9. Linoleic acid-induced expression of inducible nitric oxide synthase and cyclooxygenase II via p42/44 mitogen-activated protein kinase and nuclear factor-kappaB pathway in retinal pigment epithelial cells.

    Science.gov (United States)

    Fang, I-Mo; Yang, Chang-Hao; Yang, Chung-May; Chen, Muh-Shy

    2007-11-01

    High linoleic acid (LA) intake is known to correlate with age-related macular degeneration (AMD), but the molecular mechanisms remain unclear. This study was conducted to investigate the effects of LA on expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase II (COX-2) and their associated signaling pathways in human retinal pigment epithelial (RPE) cells. ARPE-19 cells were treated with different concentrations of LA. Expressions of iNOS and COX-2 were examined using semiquantitative reverse transcription polymerase chain reaction (RT-PCR) and Western blot analysis. Concentrations of nitric oxide (NO) and prostaglandin E(2) (PGE(2)) in the culture medium were determined by enzyme-link immunosorbent assay (ELISA). Activation of p42/44, p38, JNK mitogen-activated protein kinase (MAPK) and nuclear factors (NF)-kappaB were evaluated by Western blot analysis and electrophoretic mobility shift assay (EMSA). We found that LA induced expression of iNOS and COX-2 in RPE cells at the mRNA and protein levels in a time-and dose-dependent manner. Upregulation of iNOS and COX-2 resulted in increased production of NO and PGE(2). Moreover, LA caused degradation of IkappaB and increased NF-kappaB DNA binding activity. Effects of LA-induced iNOS and COX-2 expression were inhibited by a NF-kappaB inhibitor, pyrrolidine dithiocarbamate (PDTC). LA activated p42/44, but not p38 or JNK MAPK. Inhibition of p42/44 activity by PD98059 significantly reduced LA-induced activation of NF-kappaB. Linoleic acid-induced expression of iNOS and COX-2 as well as PGE(2) and NO release in RPE cells were sequentially mediated through activation of p42/p44, MAPK, then NF-kappaB. These results may provide new insights into both mechanisms of LA action on RPE cells and pathogenesis of age-related macular degeneration.

  10. Treatment of type 2 diabetes by free Fatty Acid receptor agonists

    DEFF Research Database (Denmark)

    Watterson, Kenneth R; Hudson, Brian D; Ulven, Trond

    2014-01-01

    Dietary free fatty acids (FFAs), such as ω-3 fatty acids, regulate metabolic and anti-inflammatory processes, with many of these effects attributed to FFAs interacting with a family of G protein-coupled receptors. Selective synthetic ligands for free fatty acid receptors (FFA1-4) have consequently...... been developed as potential treatments for type 2 diabetes (T2D). In particular, clinical studies show that Fasiglifam, an agonist of the long-chain FFA receptor, FFA1, improved glycemic control and reduced HbA1c levels in T2D patients, with a reduced risk of hypoglycemia. However, this ligand...... was removed from clinical trials due to potential liver toxicity and determining if this is a target or a ligand-specific feature is now of major importance. Pre-clinical studies also show that FFA4 agonism increases insulin sensitivity, induces weight loss, and reduces inflammation and the metabolic and anti...

  11. Increased VLDL-TG fatty acid storage in skeletal muscle in men with type 2 diabetes

    DEFF Research Database (Denmark)

    Andersen, Iben R; Søndergaard, Esben; Sørensen, Lars P

    2016-01-01

    -TG storage rate and LPL activity or other storage factors in muscle or adipose tissue. However, LPL activity correlated with fractional VLDL-TG storage in abdominal fat (p=0.04). CONCLUSIONS: Men with type 2 diabetes have increased VLDL-TG storage in muscle tissue, potentially contributing to increased......CONTEXT: Lipoprotein lipase (LPL) activity is considered the rate-limiting step of very-low-density-lipoprotein triglycerides (VLDL-TG) tissue storage, and has been suggested to relate to the development of obesity as well as insulin resistance and type 2 diabetes. OBJECTIVE: The objective...... of the study was to assess the relationship between the quantitative storage of VLDL-TG fatty acids and LPL activity and other storage factors in muscle and adipose tissue. In addition, we examine whether such relations were influenced by type 2 diabetes. DESIGN: 23 men (12 with type 2 diabetes, 11 non...

  12. Characterization of olivetol synthase, a polyketide synthase putatively involved in cannabinoid biosynthetic pathway.

    Science.gov (United States)

    Taura, Futoshi; Tanaka, Shinji; Taguchi, Chiho; Fukamizu, Tomohide; Tanaka, Hiroyuki; Shoyama, Yukihiro; Morimoto, Satoshi

    2009-06-18

    Alkylresorcinol moieties of cannabinoids are derived from olivetolic acid (OLA), a polyketide metabolite. However, the polyketide synthase (PKS) responsible for OLA biosynthesis has not been identified. In the present study, a cDNA encoding a novel PKS, olivetol synthase (OLS), was cloned from Cannabis sativa. Recombinant OLS did not produce OLA, but synthesized olivetol, the decarboxylated form of OLA, as the major reaction product. Interestingly, it was also confirmed that the crude enzyme extracts from flowers and rapidly expanding leaves, the cannabinoid-producing tissues of C. sativa, also exhibited olivetol-producing activity, suggesting that the native OLS is functionally expressed in these tissues. The possibility that OLS could be involved in OLA biosynthesis was discussed based on its catalytic properties and expression profile.

  13. 75 FR 22814 - Guidance for Industry: Nucleic Acid Testing (NAT) for Human Immunodeficiency Virus Type 1 (HIV-1...

    Science.gov (United States)

    2010-04-30

    ...: Nucleic Acid Testing (NAT) for Human Immunodeficiency Virus Type 1 (HIV-1) and Hepatitis C Virus (HCV... memoranda entitled ``Revised Recommendations for the Prevention of Human Immunodeficiency Virus (HIV-1...: Nucleic Acid Testing (NAT) for Human Immunodeficiency Virus Type 1 (HIV-1) and Hepatitis C Virus...

  14. Synthesis of Thermostable Azo-type Photoswitches towards Photoreaulatina Nucleic Acid Structures

    Institute of Scientific and Technical Information of China (English)

    WANG Qi; GAO Shuang; ZHOU Kai; CHEN Wenbin; NIU Congwei; XI Zhen

    2009-01-01

    In order to design efficient and thermostable azo-type regulators,a series of azo-type compounds were synthesized and characterized.While introducing an inductive electron-withdrawing group to an azobenzene para or meta-position,the obtained compound can be an excellent photoswitch.3,3'-Azo-di-benzyl alcohol was designed and synthesized as one of therrnostable and efficient photoswitches,which can efficiently reversibly photoregulate the nucleic acid structure with its cis-isomer being sufficiently stable at physiological temperature.

  15. Preparation et modefication des materiaux mesoporeux de type -15-Application en catalyse acide.

    OpenAIRE

    2015-01-01

    Le premier volet est une contribution à létude de matériaux mésoporeux présentant un potentiel principalement dans le clomaine de la catalyse acide -Nous sommees intéressés principalement qans le mésoporeux de type SBA-15. Etant donné que les matériaux si SBA15 sont de composition purement siliculée.

  16. Urinary liver-type fatty acid-binding protein change in gestational diabetes mellitus.

    Science.gov (United States)

    Fu, Wen-Jin; Wang, Du-Juan; Deng, Ren-Tang; Huang, Zhi-Hong; Chen, Mei-Lian; Jang, You-Ming; Wen, Shu; Yang, Hong-Ling; Huang, Xian-zhang

    2015-09-01

    We compared urinary liver-type fatty acid-binding protein (L-FABP) among non-pregnant and pregnant women with and without gestational diabetes mellitus (GDM). Higher urinary L-FABP was found in pregnant with and without GDM, and considerably higher urinary L-FABP was found in the GDM group compared with the non-GDM group. Hyperglycemia and anemia were related with high urinary L-FABP expression.

  17. MUSIC in triple-resonance experiments: amino acid type-selective (1)H-(15)N correlations

    Science.gov (United States)

    Schubert; Smalla; Schmieder; Oschkinat

    1999-11-01

    Amino acid type-selective triple-resonance experiments can be of great help for the assignment of protein spectra, since they help to remove ambiguities in either manual or automated assignment procedures. Here, modified triple-resonance experiments that yield amino acid type-selective (1)H-(15)N correlations are presented. They are based on novel coherence transfer schemes, the MUSIC pulse sequence elements, that replace the initial INEPT transfer and are selective for XH(2) or XH(3) (X can be (15)N or (13)C). The desired amino acid type is thereby selected based on the topology of the side chain. Experiments for Gly (G-HSQC); Ala (A-HSQC); Thr, Val, Ile, and Ala (TAVI-HSQC); Thr and Ala (TA-HSQC), as well as Asn and Gln (N-HSQC and QN-HSQC), are described. The new experiments are recorded as two-dimensional experiments and therefore need only small amounts of spectrometer time. The performance of the experiments is demonstrated with the application to two protein domains. Copyright 1999 Academic Press.

  18. Effects of Glutamic Acid on C-type Inactivation of Kvl.4△N Channel

    Institute of Scientific and Technical Information of China (English)

    Cheng Ye; Xiaoyan Li; Zhouwu Shu; Xuejun Jiang

    2008-01-01

    Objectives Acidosis has an inhibitory effect on the inactivation of Kvl.4 AN channel through the position H508.So in order to show the effects of glutamic acid on the mutant Kv 1.4 channel that lacks N-type inactivation(Kvl.4A2-146),we studied in the expression system of the Xenopus oocytes.Methods The two-electrode voltage-clamp technique(TEV)was used to record the currents.Results Acidosis increased fKvl.4 △2-146 C-type inactivation.After application of glutamic acid(1 mmol/L) to Kvl.4 △2-146 increased C-type inactivation further,changed inactivation time constants from (2.02±0.39s)to(1.71±0.23 s)(P<0.05)at +50my,and shifted the steadystate inactivation curves of Kvl.4 △N to positive potential,which was from(-44.30±0.59 mV) to(-39.88±0.29 mV)(P<0.05 ).and slowed the rate of recovery from inactivation,which was from(1.64±0.19s) to (1.91±0.23 s)(P<0.05).Conclusions Together,these results suggest that 1 mmol/L glutamic acid accelerates the Ctype inactivation of Kvl.4 AN in pH 6.8.

  19. Renal liver-type fatty acid binding protein (L-FABP) attenuates acute kidney injury in aristolochic acid nephrotoxicity.

    Science.gov (United States)

    Matsui, Katsuomi; Kamijo-Ikemorif, Atsuko; Sugaya, Takeshi; Yasuda, Takashi; Kimura, Kenjiro

    2011-03-01

    Injection of aristolochic acid (AA) in mice causes AA-induced nephrotoxicity, in which oxidative stress contributes to development of tubulointerstitial damage (TID). Liver-type fatty acid binding protein (L-FABP) is expressed in human proximal tubules and has an endogenous antioxidative function. The renoprotection of renal L-FABP was examined in a model of AA-induced nephrotoxicity. Established human L-FABP (hL-FABP) transgenic (Tg) mice and wild-type (WT) mice were treated with AA for up to 5 days. Mice were sacrificed on days 1, 3, and 5 after the start of AA injection. Although mouse L-FABP was not expressed in proximal tubules of WT mice, hL-FABP was expressed in proximal tubules of Tg mice. The expression of renal hL-FABP was significantly increased in Tg mice administered AA (Tg-AA), compared with the control (saline-treated Tg mice). In WT-AA mice, there was high urinary excretion of N(ε)-(hexanoyl)-lysine, the production of heme oxygenase-1 and receptor for advanced glycation end products increased, and TID was provoked. In contrast, renal hL-FABP in Tg-AA mice suppressed production of N(ε)-(hexanoyl)lysine, heme oxygenase-1, and receptor for advanced glycation end products. Renal dysfunction was significantly milder in Tg-AA mice than in WT-AA mice. The degree of TID was significantly attenuated in Tg-AA mice, compared with WT-AA. In conclusion, renal hL-FABP reduced the oxidative stress in AA-induced nephrotoxicity and attenuated TID.

  20. Crystalline and structural properties of acid-modified lotus rhizome C-type starch.

    Science.gov (United States)

    Cai, Jinwen; Cai, Canhui; Man, Jianmin; Yang, Yang; Zhang, Fengmin; Wei, Cunxu

    2014-02-15

    The crystalline and structural properties of acid-modified C-type starch from lotus rhizomes were investigated using a combination of techniques. The degradation of granule during hydrolysis began from the end distant from the hilum and then propagated into the center of granule, accompanied by loss of birefringence. The crystallinity changed from C-type to A-type via CA-type during hydrolysis. At the early stage of hydrolysis, the amylose content substantially reduced, the peak and conclusion gelatinization temperatures increased, and the enthalpy decreased. During hydrolysis, the double helix content gradually increased and the amorphous component decreased, the lamellar peak intensity firstly increased and then decreased accompanied by hydrolysis of amorphous and crystalline regions. This study elucidated that B-type allomorph was mainly arranged in the distal region of eccentric hilum, A-type allomorph was mainly located in the periphery of hilum end, and the center of granule was a mixed distribution of A- and B-type allomorphs.

  1. Corrosion resistance of the composite materials: nanocrystalline powder – polymer type in acid environment

    Directory of Open Access Journals (Sweden)

    B. Ziębowicz

    2009-10-01

    Full Text Available Purpose: The paper presents corrosion resistance of composite materials Fe73.5Cu1Nb3Si13.5B9 – PEHD type in sulphuric acid and hydrochloric acid environments.Design/methodology/approach: Composite materials Fe73.5Cu1Nb3Si13.5B9 – PEHD type were manufactured by one-sided uniaxal pressing. The amount of polymer matrix was 2.5%, 5.0%, 7.5%, wt. Powder of the Fe73.5Cu1Nb3Si13.5B9 was made by the high-energy grinding in the shaker type 8000SPEX CertiPrep Mixer/Mill for 1 h, 3 h, 5 h. Composite materials were placed in a corrosive environment and two tests were carried out as specified below: test at the temperature of 25°C, 0.1 M solution of hydrochloric acid HCl, time 348 h; test temperature 25°C, 0.1 M solution of sulphuric acid H2SO4, time 348 h, test temperature 25°C.Findings: Obtained results of corrosion resistance allow to evaluate corrosion wear of composite materials FINEMET (Fe73.5Cu1Nb3Si13.5B9 – PEHD in acidic solutions of 0.1M HCl and 0.1M H2SO4. It was found that the composite materials with 7.5% wt. of polyethylene portion show the best corrosion resistance.Research limitations/implications: Composite materials Fe73.5Cu1Nb3Si13.5B9– PEHD type manufacturing greatly expand the application possibilities of soft magnetic materials nanocrystalline powders however further examination to obtain improved properties of magnetic composite materials and investigations of new machines and devices constructions with these materials elements are still needed.Originality/value: Results allow to complete data concerning composite materials nanocrystalline powder – polymer type which are an attractive alternative for traditional materials with specific magnetic properties. Results are the base for further investigations of the impact of corrosion environment on the magnetic properties such composite materials.

  2. Identification and characterization of a full-length cDNA encoding for an auxin-induced 1-aminocyclopropane-1-carboxylate synthase from etiolated mung bean hypocotyl segments and expression of its mRNA in response to indole-3-acetic acid.

    Science.gov (United States)

    Botella, J R; Arteca, J M; Schlagnhaufer, C D; Arteca, R N; Phillips, A T

    1992-11-01

    1-Aminocyclopropane-1-carboxylate (ACC) synthase (EC 4.4.1.14) is the key regulatory enzyme in the ethylene biosynthetic pathway. The identification and characterization of a full-length cDNA (pAIM-1) 1941 bp in length for indole-3-acetic acid (IAA)-induced ACC synthase is described in this paper. The pAIM-1 clone has an 87 bp leader and a 402 bp trailing sequence. The open reading frame is 1452 bp long encoding for a 54.6 kDa polypeptide (484 amino acids) which has a calculated isoelectric point of 6.0. In vitro transcription and translation experiments support the calculated molecular weight and show that the enzyme does not undergo processing. Eleven of the twelve amino acid residues which are conserved in aminotransferases are found in pAIM-1. The sequence for pMAC-1 which is one of the 5 genes we have identified in mung bean is contained in pAIM-1. pAIM-1 shares between 52 to 65% homology with previously reported sequences for ACC synthase at the protein level. There is little detectable pAIM-1 message found in untreated mung bean tissues; however, expression is apparent within 30 min following the addition of 10 microM IAA reaching a peak after approximately 5 h with a slight decrease in message after 12 h. These changes in message correlate with changes in ACC levels found in these tissues following treatment with 10 microM IAA.

  3. Molecular cloning and functional expression of geranylgeranyl pyrophosphate synthase from Coleus forskohlii Briq

    Directory of Open Access Journals (Sweden)

    Kawamukai Makoto

    2004-11-01

    Full Text Available Abstract Background Isopentenyl diphosphate (IPP, a common biosynthetic precursor to the labdane diterpene forskolin, has been biosynthesised via a non-mevalonate pathway. Geranylgeranyl diphosphate (GGPP synthase is an important branch point enzyme in terpenoid biosynthesis. Therefore, GGPP synthase is thought to be a key enzyme in biosynthesis of forskolin. Herein we report the first confirmation of the GGPP synthase gene in Coleus forskohlii Briq. Results The open reading frame for full-length GGPP synthase encodes a protein of 359 amino acids, in which 1,077 nucleotides long with calculated molecular mass of 39.3 kDa. Alignments of C. forskohlii GGPP synthase amino acid sequences revealed high homologies with other plant GGPP synthases. Several highly conserved regions, including two aspartate-rich motifs were identified. Transient expression of the N-terminal region of C. forskohlii GGPP synthase-GFP fusion protein in tobacco cells demonstrated subcellular localization in the chloroplast. Carotenoid production was observed in Escherichia coli harboring pACCAR25ΔcrtE from Erwinia uredovora and plasmid carrying C. forskohlii GGPP synthase. These results suggested that cDNA encoded functional GGPP synthase. Furthermore, C. forskohlii GGPP synthase expression was strong in leaves, decreased in stems and very little expression was observed in roots. Conclusion This investigation proposed that forskolin was synthesised via a non-mevalonate pathway. GGPP synthase is thought to be involved in the biosynthesis of forskolin, which is primarily synthesised in the leaves and subsequently accumulates in the stems and roots.

  4. From NMR chemical shifts to amino acid types: Investigation of the predictive power carried by nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Marin, Antoine; Malliavin, Therese E. [Institut de Biologie Physico-Chimique, Laboratoire de Biochimie Theorique, CNRS UPR 9080 (France)], E-mail: therese.malliavin@ibpc.fr; Nicolas, Pierre; Delsuc, Marc-Andre [INRA - Domaine de Vilvert, Unite Mathematique Informatique et Genome (France)

    2004-09-15

    An approach to automatic prediction of the amino acid type from NMR chemical shift values of its nuclei is presented here, in the frame of a model to calculate the probability of an amino acid type given the set of chemical shifts. The method relies on systematic use of all chemical shift values contained in the BioMagResBank (BMRB). Two programs were designed, one (BMRB stats) for extracting statistical chemical shift parameters from the BMRB and another one (RESCUE2) for computing the probabilities of each amino acid type, given a set of chemical shifts. The Bayesian prediction scheme presented here is compared to other methods already proposed: PROTYP (Grzesiek and Bax, J. Biomol. NMR, 3, 185-204, 1993) RESCUE (Pons and Delsuc, J. Biomol. NMR, 15, 15-26, 1999) and PLATON (Labudde et al., J. Biomol. NMR, 25, 41-53, 2003) and is found to be more sensitive and more specific. Using this scheme, we tested various sets of nuclei. The two nuclei carrying the most information are C{sub {beta}} and H{sub {beta}}, in agreement with observations made in Grzesiek and Bax, 1993. Based on four nuclei: H{sub {beta}}, C{sub {beta}}, C{sub {alpha}} and C', it is possible to increase correct predictions to a rate of more than 75%. Taking into account the correlations between the nuclei chemical shifts has only a slight impact on the percentage of correct predictions: indeed, the largest correlation coefficients display similar features on all amino acids.

  5. Bacillus caldolyticus prs gene encoding phosphoribosyl-diphosphate synthase

    DEFF Research Database (Denmark)

    Krath, Britta N.; Hove-Jensen, Bjarne

    1996-01-01

    The prs gene, encoding phosphoribosyl-diphosphate (PRPP) synthase, as well as the flanking DNA sequences were cloned and sequenced from the Gram-positive thermophile, Bacillus caldolyticus. Comparison with the homologous sequences from the mesophile, Bacillus subtilis, revealed a gene (gca......D) encoding N-acetylglucosamine-1-phosphate uridyltransferase upstream of prs, and a gene homologous to ctc downstream of prs. cDNA synthesis with a B. caldolyticus gcaD-prs-ctc-specified mRNA as template, followed by amplification utilising the polymerase chain reaction indicated that the three genes are co......-transcribed. Comparison of amino acid sequences revealed a high similarity among PRPP synthases across a wide phylogenetic range. An E. coli strain harbouring the B. caldolyticus prs gene in a multicopy plasmid produced PRPP synthase activity 33-fold over the activity of a haploid B. caldolyticus strain. B. caldolyticus...

  6. Fatty Acid Incubation of Myotubues from Humans with Type 2 Diabetes Leads to Enhanced Release of Beta Oxidation Products Due to Impaired Fatty Acid Oxidation

    DEFF Research Database (Denmark)

    Wensaas, Andreas J; Rustan, Arild C; Just, Marlene;

    2008-01-01

    these processes. Research Design and Methods: We examined fatty acid and glucose metabolism, and gene expression in cultured human skeletal muscle cells from control and T2D individuals after four days preincubation with EPA or TTA. Results: T2D myotubes exhibited reduced formation of CO(2) from palmitic acid (PA......Objective: Increased availability of fatty acids is important for accumulation of intracellular lipids and development of insulin resistance in human myotubes. It is unknown whether different types of fatty acids like eicosapentaenoic acid (EPA) or tetradecylthioacetic acid (TTA) influence....... EPA markedly enhanced TAG accumulation in myotubes, more pronounced in T2D cells. TAG accumulation and fatty acid oxidation were inversely correlated only after EPA preincubation, and total level of acyl-CoA was reduced. Glucose oxidation (CO(2) formation) was enhanced and lactate production decreased...

  7. Influence of phenolic acids on indole acetic acid production and on the type III secretion system gene transcription in food-associated Pseudomonas fluorescens KM05.

    Science.gov (United States)

    Myszka, Kamila; Schmidt, Marcin T; Olejnik-Schmidt, Agnieszka K; Leja, Katarzyna; Czaczyk, Katarzyna

    2014-12-01

    The purpose of these investigations was to evaluate the reduction capability of phenolic acids (ferulic, chlorogenic, gallic, and p-coumaric acids) on indole acetic acid synthesis by food-associated Pseudomonas fluorescens KM05. Specific genetic primer for the type III secretion system (TTSS) in P. fluorescens KM05 was designed and the influence of phenolic acids on its expression was investigated. In the work the ferulic and chlorogenic acids at the concentration of 0.02 and 0.04 μg/ml affected on bacterial growth pattern and the signal molecules production. The phenolic acids, that were appreciable effective against P. fluorescens KM05 indole acetic acid production, significantly suppressed TTSS gene.

  8. Hyaluronic Acid as a Target for Intervention in Prostate Cancer Metastases

    Science.gov (United States)

    2012-06-01

    AD_________________ Award Number: W81XWH-08-1-0287 TITLE: Hyaluronic Acid as a Target for...DATE June 2012 2. REPORT TYPE Final 3. DATES COVERED 1 June 2008 – 31 May 2012 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Hyaluronic Acid as a...synthase (HAS) and hyaluronic acid (HA) are upregulated in metastatic prostate cancer cells. 7-Hydroxy-4-Methyl Coumarin (HMC) is an inhibitor of

  9. Relationship of plasma creatinine and lactic acid in type 2 diabetic patients without renal dysfunction

    Institute of Scientific and Technical Information of China (English)

    LIU Fang; LU Jun-xi; TANG Jun-ling; LI Li; LU Hui-juan; HOU Xu-hong; JIA Wei-ping; XIANG Kun-san

    2009-01-01

    Background As one of most widely-used biguanides,metformin can induce the lactic acidosis in patients with renal failure though its incidence is very low.However,lactic acidemia induced by mefformin was reported in patients without renal dysfunction.It is unclear that whether lactatemia exists in diabetic patients with normal renal function in Chinese or not and its influencing factors.This study aimed to clarify the influencing factors of lactic acid,and identify a practiced clinical marker to predict the hyperlactacidemia in diabetics with normal renal function.Methods The clinical data and venous blood samples of 1024 type 2 diabetic patients treated with(n=426)or without metformin(n=599)were collected.The lactic acid was assayed by enzyme-electrode method.The biochemical indexes included creatinine(Cr)and hepatase were measured with enzymatic procedures.The lactic acid concentrations of different Cr subgroups were compared,and the correlation and receiver operating characteristic curve analysis were used.Results The mean lactic acid level and the proportion of hyperlactatemia of metformin group were significantly higher than that of non-metformin group(P<0.01),but no lactic acidosis was found in all patients.The correlation and multiple stepwise regression analysis indicated that the correlative factors of lactic acid in turn were Cr,metformin,alanine transferase(ALT),body mass index(BMI),Urine albumin(Ualb),and blood urea nitrogen(BUN)in total patients;and Cr,ALT,BMI and BUN in non-metformin treated patients;Cr and ALT in metformin-group.The lactate concentration increased with the increment of Cr levels,and reached its peak at Cr 111-130 μmol/L,and the optimal cutoff of Cr in predicting hyperlactacidemia was 96.5 μmol/L.Conclusions Metformin can increase the incidence of lactatemia in type 2 diabetic patients without renal dysfunction.Cr,ALT,and BMI are independent associated factors of blood lactic acid levels.There is low proportion of lactatemia in

  10. A new member of the chalcone synthase (CHS family in sugarcane

    Directory of Open Access Journals (Sweden)

    Contessotto Miriam G.G.

    2001-01-01

    Full Text Available Sequences from the sugarcane expressed sequence tag (SUCEST database were analyzed based on their identities to genes encoding chalcone-synthase-like enzymes. The sorghum (Sorghum bicolor chalcone-synthase (CHS, EC 2.3.1.74 protein sequence (gi|12229613 was used to search the SUCEST database for clusters of sequencing reads that were most similar to chalcone synthase. We found 121 reads with homology to sorghum chalcone synthase, which we were then able to sort into 14 clusters which themselves were divided into two groups (group 1 and group 2 based on the similarity of their deduced amino acid sequences. Clusters in group 1 were more similar to the sorghum enzyme than those in group 2, having the consensus sequence of the active site of chalcone and stilbene synthase. Analysis of gene expression (based on the number of reads from a specific library present in each group indicated that most of the group 1 reads were from sugarcane flower and root libraries. Group 2 clusters were more similar to the amino acid sequence of an uncharacterized pathogen-induced protein (PI1, gi|9855801 from the S. bicolor expressed sequence tag (EST database. The group 2 clusters sequences and PI1 proteins are 90% identical, having two amino acid changes at the chalcone and stilbene synthase consensi but conserving the cysteine residue at the active site. The PI1 EST has not been previously associated with chalcone synthase and has a different consensus sequence from the previously described chalcone synthase of sorghum. Most of the group 2 reads were from libraries prepared from sugarcane roots and plants infected with Herbaspirillum rubrisubalbicans and Gluconacetobacter diazotroficans. Our results indicate that we have identified a sugarcane chalcone synthase similar to the pathogen-induced PI1 protein found in the sorghum cDNA libraries, and it appears that both proteins represent new members of the chalcone and stilbene synthase super-family.

  11. FUNGAL POPULATION, AFLATOXIN AND FREE FATTY ACID CONTENTS OF PEANUTS PACKED IN DIFFERENT BAG TYPES

    Directory of Open Access Journals (Sweden)

    SONIA S.P. BULAONG

    2002-01-01

    Full Text Available Shelled peanuts of Gajah var. with initial moisture content of 7% were stored at 11 kg/bag in four bag types namely: jute bag, polypropylene bag, jute bag doubled with thin polyethylene (PE, and jute bag doubled with thick PE. Storage was done for six months under warehouse conditions with monitoring of relative humidity and temperature. Samples taken at the be ginning of storage and every month thereafter were analyzed for moisture content, fungal population, aflatoxin and free fatty acid contents. Statistical analyses showed that moisture content, fungal population, and free fatty acid contents were signifi cantly higher in jute and polypropylene bags than in PE-dou,bled jute bags. No significant differences were obtained in aflatoxin contents among bag types but at the end of six months storage, toxin level in jute bag exceeded the 30 ppb limit. Polypropylene had second highest toxin level at 23 ppb. The PE-doubled bags ha d 17 and 19 ppb total aflatoxins for thin and thick films, respectively. The results indicated that the immediate packag ing of dried shelled peanuts at safe moisture level in plastic films with water vapor transmission rated of 1 g/m2/24 hr or lower is recommended. This p ackaging will delay critical increases in moisture content, fungal population, aflatoxin and free fatty acid contents of peanut kernels at ambient storage conditions.

  12. Treatment of Type 2 Diabetes by Free Fatty Acid Receptor Agonists

    Science.gov (United States)

    Watterson, Kenneth R.; Hudson, Brian D.; Ulven, Trond; Milligan, Graeme

    2014-01-01

    Dietary free fatty acids (FFAs), such as ω-3 fatty acids, regulate metabolic and anti-inflammatory processes, with many of these effects attributed to FFAs interacting with a family of G protein-coupled receptors. Selective synthetic ligands for free fatty acid receptors (FFA1-4) have consequently been developed as potential treatments for type 2 diabetes (T2D). In particular, clinical studies show that Fasiglifam, an agonist of the long-chain FFA receptor, FFA1, improved glycemic control and reduced HbA1c levels in T2D patients, with a reduced risk of hypoglycemia. However, this ligand was removed from clinical trials due to potential liver toxicity and determining if this is a target or a ligand-specific feature is now of major importance. Pre-clinical studies also show that FFA4 agonism increases insulin sensitivity, induces weight loss, and reduces inflammation and the metabolic and anti-inflammatory effects of short chain fatty acids (SCFAs) are linked with FFA2 and FFA3 activation. In this review, we therefore show that FFA receptor agonism is a potential clinical target for T2D treatment and discuss ongoing drug development programs within industry and academia aimed at improving the safety and effectiveness of these potential treatments. PMID:25221541

  13. Durability improvement assessment in different high strength bacterial structural concrete grades against different types of acids

    Indian Academy of Sciences (India)

    Ramin Andalib; M Zaimi Abd Majid; A Keyvanfar; Amirreza Talaiekhozan; Mohd Warid Hussin; A Shafaghat; Rosli Mohd Zin; Chew Tin Lee; Mohammad Ali Fulazzaky; Hasrul Haidar Ismail

    2014-12-01

    This paper provides an insight into a new biotechnological method based on calcite precipitation for achieving high strength bio-concrete durability. It is very clear that mineral precipitation has the potential to enhance construction material resistance towards degradation procedures. The appropriate microbial cell concentration (30 * 105 cells/ml) was introduced onto different structural concrete grades (40, 45 and 50 MPa) by mixing water. In order to study the durability of structural concrete against aggressive agents, specimens were immersed in different types of acids solution (5% H2SO4 and HCl) to compare their effects on 60th, 90th and 120th day. In general, sulphuric acid and hydrochloric acid are known to be the most aggressive natural threats from industrial waters which can penetrate concrete to transfer the soluble calcium salts away from the cement matrix. The experimental results demonstrated that bio-concrete has less weight and strength losses when compared to the ordinary Portland cement concrete without microorganism. It was also found that maximum compressive strength and weight loss occurred during H2SO4 acid immersion as compared to HCl immersion. The density and uniformity of bio-concrete were examined using ultrasonic pulse velocity (UPV) test. Microstructure chemical analysis was also quantified by energy dispersive spectrometer (EDS) to justify the durability improvement in bacterial concrete. It was observed that less sulphur and chloride were noticed in bacterial concrete against H2SO4 and HCl, respectively in comparison to the ordinary Portland cement concrete due to calcite deposition.

  14. EFFECTS OF SURFACTANT AND ACID TYPE ON PREPARATION OF CHITOSAN MICROCAPSULES

    Institute of Scientific and Technical Information of China (English)

    Zhenqiu Yang; Baozhen Song; Qiaoxia Li; Honglei Fan; Fan Ouyang

    2004-01-01

    Chitosan microcapsules were prepared by a method involving emulsification and crosslinking. The effects of surfactants and acid type for dissolving chitosan on the characteristics of chitosan microcapsules were investigated.The results showed that the mixed surfactant consisting of Span80 and Tween60 had an obvious effect on reducing the size of the microcapsules. The two-surfactant complex, formed on the basis of hydrogen bonding, strengthened the interfacial membrane in the emulsion, thus decreasing not only the size of the microcapsules but also the coalescence of dispersed chitosan liquid drops. In the case of monoacid such as hydrochloric acid or acetic acid for dissolving chitosan,the chitosan microcapsules obtained were spherical in shape with smooth surfaces. For diacids or triacid, the chitosan microcapsules obtained were also spherical, but their surfaces were covered by folds and crinkles. The number of carboxyl groups in the acids used influenced the chemical crosslinking between chitosan and the crosslinker (glutaraldehyde) as well as the morphology of the particles. For diacids or triacid, physical crosslinking occured due to electrostatic force, accompanied by substantial decrease of covalent crosslinking, leading to decreased strength of the microcapsules as shown by the collapse of microcapsule walls and the formation of multiple folds and crinkles on their surfaces.

  15. Heart-type Fatty Acid-binding Protein Is Essential for Efficient Brown Adipose Tissue Fatty Acid Oxidation and Cold Tolerance*

    OpenAIRE

    Vergnes, Laurent; Chin, Robert; Young, Stephen G.; Reue, Karen

    2010-01-01

    Brown adipose tissue has a central role in thermogenesis to maintain body temperature through energy dissipation in small mammals and has recently been verified to function in adult humans as well. Here, we demonstrate that the heart-type fatty acid-binding protein, FABP3, is essential for cold tolerance and efficient fatty acid oxidation in mouse brown adipose tissue, despite the abundant expression of adipose-type fatty acid-binding protein, FABP4 (also known as aP2). Fabp3−/− mice exhibit ...

  16. Selective Michael-type addition of a D-glucuronic acid derivative in the synthesis of model substances for uronic acid containing polysaccharides

    Directory of Open Access Journals (Sweden)

    2008-08-01

    Full Text Available A flexible protocol for the preparation of model substances for uronic acid containing polysaccharides is presented. We have synthesized a D-glucuronic acid derivative which is designed so that it easily can be conjugated with different structures and architectures by selective Michael-type addition. By successful coupling of the glucuronic acid derivative to polyethylene glycol with high degree of conversion, products were obtained that were easily characterized and which resembled polysaccharides in terms of solubility and purification methods that could be employed. The model substance can potentially be used to facilitate optimization of low-degree modification reactions of high molecular weight D-glucuronic acid containing polysaccharides.

  17. Structure and Function of Fusicoccadiene Synthase, a Hexameric Bifunctional Diterpene Synthase.

    Science.gov (United States)

    Chen, Mengbin; Chou, Wayne K W; Toyomasu, Tomonobu; Cane, David E; Christianson, David W

    2016-04-15

    Fusicoccin A is a diterpene glucoside phytotoxin generated by the fungal pathogen Phomopsis amygdali that causes the plant disease constriction canker, first discovered in New Jersey peach orchards in the 1930s. Fusicoccin A is also an emerging new lead in cancer chemotherapy. The hydrocarbon precursor of fusicoccin A is the tricyclic diterpene fusicoccadiene, which is generated by a bifunctional terpenoid synthase. Here, we report X-ray crystal structures of the individual catalytic domains of fusicoccadiene synthase: the C-terminal domain is a chain elongation enzyme that generates geranylgeranyl diphosphate, and the N-terminal domain catalyzes the cyclization of geranylgeranyl diphosphate to form fusicoccadiene. Crystal structures of each domain complexed with bisphosphonate substrate analogues suggest that three metal ions and three positively charged amino acid side chains trigger substrate ionization in each active site. While in vitro incubations reveal that the cyclase domain can utilize farnesyl diphosphate and geranyl diphosphate as surrogate substrates, these shorter isoprenoid diphosphates are mainly converted into acyclic alcohol or hydrocarbon products. Gel filtration chromatography and analytical ultracentrifugation experiments indicate that full-length fusicoccadiene synthase adopts hexameric quaternary structure, and small-angle X-ray scattering data yield a well-defined molecular envelope illustrating a plausible model for hexamer assembly.

  18. Three types of mycolic acid from Mycobacterium tuberculosis Brévanne: implications for structure-function relationships in pathogenesis.

    Science.gov (United States)

    Toubiana, R; Berlan, J; Sato, H; Strain, M

    1979-01-01

    Saponification of the chloroform-soluble wax from Mycobacterium tuberculosis Brévanne led to the isolation of three classes of mycolic acid containing characteristic functional groups along the methylene backbone: type alpha (two cyclopropane rings); type beta (methoxyl, methyl, and cyclopropane); and type gamma (ketone, methyl, and cyclopropane). The structures of these acids were elucidated principally by mass spectrometry. The high mass region of the keto mycolate is presented showing the meromycolal and molecular ion regions. This is first time a molecular peak for this mycolic acid has been reported. The structure of the keto mycolate was further substantiated by study of the mass spectral fragmentation of its dithioketal derivative. Within each type of acid, a series of homologs was encountered, varying according to the number of methylene units in the backbone chain. Chromatographic and infrared spectrophotometric evidence is presented for the alkali-induced isomerization of the three types of mycolates. Images PMID:110779

  19. Tetrahymena thermophila acidic ribosomal protein L37 contains an archaebacterial type of C-terminus

    DEFF Research Database (Denmark)

    Hansen, T S; Andreasen, P H; Dreisig, H;

    1991-01-01

    We have cloned and characterized a Tetrahymena thermophila macronuclear gene (L37) encoding the acidic ribosomal protein (A-protein) L37. The gene contains a single intron located in the 3'-part of the coding region. Two major and three minor transcription start points (tsp) were mapped 39 to 63...... nucleotides upstream from the translational start codon. The uppermost tsp mapped to the first T in a putative T. thermophila RNA polymerase II initiator element, TATAA. The coding region of L37 predicts a protein of 109 amino acid (aa) residues. A substantial part of the deduced aa sequence was verified...... by protein sequencing. The T. thermophila L37 clearly belongs to the P1-type family of eukaryotic A-proteins, but the C-terminal region has the hallmarks of archaebacterial A-proteins....

  20. Mismatch discrimination in fluorescent in situ hybridization using different types of nucleic acids

    DEFF Research Database (Denmark)

    Fontenete, Sílvia; Joana, Barros; Pedro, Madureira

    2015-01-01

    in biological targets, Helicobacter pylori and Helicobacter acinonychis. This is also the first study where unlocked nucleic acids (UNA) were used as chemistry modification in oligonucleotides for FISH methodologies. The effectiveness in detecting the specific target and in mismatch discrimination appears...... acid monomers might be crucial to the success of the analysis. To achieve the expected accuracy in detection, FISH probes should have high binding affinity towards their complementary strands and discriminate effectively the noncomplementary strands. In this study, we investigate the effect...... of different chemical modifications in fluorescent probes on their ability to successfully detect the complementary target and discriminate the mismatched base pairs by FISH. To our knowledge, this paper presents the first study where this analysis is performed with different types of FISH probes directly...

  1. Brain-type and liver-type fatty acid-binding proteins: new tumor markers for renal cancer?

    Directory of Open Access Journals (Sweden)

    Moch Holger

    2009-07-01

    Full Text Available Abstract Background Renal cell carcinoma (RCC is the most common renal neoplasm. Cancer tissue is often characterized by altered energy regulation. Fatty acid-binding proteins (FABP are involved in the intracellular transport of fatty acids (FA. We examined the level of brain-type (B and liver-type (L FABP mRNA and the protein expression profiles of both FABPs in renal cell carcinoma. Methods Paired tissue samples of cancerous and noncancerous kidney parts were investigated. Quantitative RT-PCR, immunohistochemistry and western blotting were used to determine B- and L-FABP in tumor and normal tissues. The tissue microarray (TMA contained 272 clinico-pathologically characterized renal cell carcinomas of the clear cell, papillary and chromophobe subtype. SPSS 17.0 was used to apply crosstables (χ2-test, correlations and survival analyses. Results B-FABP mRNA was significantly up-regulated in renal cell carcinoma. In normal tissue B-FABP mRNA was very low or often not detectable. RCC with a high tumor grading (G3 + G4 showed significantly lower B-FABP mRNA compared with those with a low grading (G1 + G2. Western blotting analysis detected B-FABP in 78% of the cases with a very strong band but in the corresponding normal tissue it was weak or not detectable. L-FABP showed an inverse relationship for mRNA quantification and western blotting. A strong B-FABP staining was present in 52% of the tumor tissues contained in the TMA. In normal renal tissue, L-FABP showed a moderate to strong immunoreactivity in proximal tubuli. L-FABP was expressed at lower rates compared with the normal tissues in 30.5% of all tumors. There was no correlation between patient survival times and the staining intensity of both FABPs. Conclusion While B-FABP is over expressed in renal cell carcinoma in comparison to normal renal tissues L-FABP appears to be reduced in tumor tissue. Although the expression behavior was not related to the survival outcome of the RCC patients

  2. Pharmacological blockade of fatty acid synthase (FASN) reverses acquired autoresistance to trastuzumab (Herceptin by transcriptionally inhibiting 'HER2 super-expression' occurring in high-dose trastuzumab-conditioned SKBR3/Tzb100 breast cancer cells.

    Science.gov (United States)

    Vazquez-Martin, Alejandro; Colomer, Ramon; Brunet, Joan; Menendez, Javier A

    2007-10-01

    Elucidating the mechanisms underlying resistance to the human epidermal growth factor receptor 2 (HER2)-targeted antibody trastuzumab (Tzb; Herceptin) is a major challenge that is beginning to be addressed. This dilemma is becoming increasingly important as recent studies strongly support a role for Tzb in the adjuvant setting for HER2-overexpressing early-stage breast cancers. We previously reported that pharmacological and RNA interference-induced inhibition of tumor-associated fatty acid synthase (FASN; Oncogenic antigen-519), a key metabolic enzyme catalyzing the synthesis of long-chain saturated fatty acids, drastically down-regulates HER2 expression in human breast cancer cells bearing HER2 gene amplification. Given that FASN blockade was found to suppress HER2 overexpression by attenuating the promoter activity of the HER2 gene, we here envisioned that this mechanism of action may represent a valuable strategy in breast cancers that have progressed while under Tzb. We created a preclinical model of Tzb resistance by continuously growing HER2-overexpressing SKBR3 breast cancer cells in the presence of clinically relevant concentrations of Tzb (20-185 microg/ml Tzb). This pool of Tzb-conditioned SKBR3 cells, which optimally grows now in the presence of 100 microg/ml trastuzumab (SKBR3/Tzb100 cells), exhibited HER2 levels notably higher (approximately 2-fold) than those found in SKBR3 parental cells. Real-time polymerase chain reaction studies showed that up-regulation of HER2 mRNA levels closely correlated with HER2 protein up-regulation in SKBR3/Tzb100 cells, thus suggesting that 'HER2 super-expression' upon acquisition of autoresistance to Tzb resulted, at least in part, from up-regulatory effects in the transcriptional rate of the HER2 gene. SKBR3/Tzb100 cells did not exhibit cross-resistance to C75, a small-compound specifically inhibiting FASN activity. On the contrary, SKBR3/Tzb100 cells showed a remarkably increased sensitivity (approximately 3-fold) to

  3. Food preservatives sodium benzoate and propionic acid and colorant curcumin suppress Th1-type immune response in vitro.

    Science.gov (United States)

    Maier, Elisabeth; Kurz, Katharina; Jenny, Marcel; Schennach, Harald; Ueberall, Florian; Fuchs, Dietmar

    2010-07-01

    Food preservatives sodium benzoate and propionic acid and colorant curcumin are demonstrated to suppress in a dose-dependent manner Th1-type immune response in human peripheral blood mononuclear cells (PBMC) in vitro. Results show an anti-inflammatory property of compounds which however could shift the Th1-Th2-type immune balance towards Th2-type immunity.

  4. Type 2 diabetes associated changes in the plasma non-esterified fatty acids, oxylipins and endocannabinoids.

    Directory of Open Access Journals (Sweden)

    Dmitry Grapov

    Full Text Available Type 2 diabetes has profound effects on metabolism that can be detected in plasma. While increases in circulating non-esterified fatty acids (NEFA are well-described in diabetes, effects on signaling lipids have received little attention. Oxylipins and endocannabinoids are classes of bioactive fatty acid metabolites with many structural members that influence insulin signaling, adipose function and inflammation through autocrine, paracrine and endocrine mechanisms. To link diabetes-associated changes in plasma NEFA and signaling lipids, we quantitatively targeted >150 plasma lipidome components in age- and body mass index-matched, overweight to obese, non-diabetic (n = 12 and type 2 diabetic (n = 43 African-American women. Diabetes related NEFA patterns indicated ∼60% increase in steroyl-CoA desaturase activity and ∼40% decrease in very long chain polyunsaturated fatty acid chain shortening, patterns previously associated with the development of nonalcoholic fatty liver disease. Further, epoxides and ketones of eighteen carbon polyunsaturated fatty acids were elevated >80% in diabetes and strongly correlated with changes in NEFA, consistent with their liberation during adipose lipolysis. Endocannabinoid behavior differed by class with diabetes increasing an array of N-acylethanolamides which were positively correlated with pro-inflammatory 5-lipooxygenase-derived metabolites, while monoacylglycerols were negatively correlated with body mass. These results clearly show that diabetes not only results in an increase in plasma NEFA, but shifts the plasma lipidomic profiles in ways that reflect the biochemical and physiological changes of this pathological state which are independent of obesity associated changes.

  5. Type 2 diabetes associated changes in the plasma non-esterified fatty acids, oxylipins and endocannabinoids.

    Science.gov (United States)

    Grapov, Dmitry; Adams, Sean H; Pedersen, Theresa L; Garvey, W Timothy; Newman, John W

    2012-01-01

    Type 2 diabetes has profound effects on metabolism that can be detected in plasma. While increases in circulating non-esterified fatty acids (NEFA) are well-described in diabetes, effects on signaling lipids have received little attention. Oxylipins and endocannabinoids are classes of bioactive fatty acid metabolites with many structural members that influence insulin signaling, adipose function and inflammation through autocrine, paracrine and endocrine mechanisms. To link diabetes-associated changes in plasma NEFA and signaling lipids, we quantitatively targeted >150 plasma lipidome components in age- and body mass index-matched, overweight to obese, non-diabetic (n = 12) and type 2 diabetic (n = 43) African-American women. Diabetes related NEFA patterns indicated ∼60% increase in steroyl-CoA desaturase activity and ∼40% decrease in very long chain polyunsaturated fatty acid chain shortening, patterns previously associated with the development of nonalcoholic fatty liver disease. Further, epoxides and ketones of eighteen carbon polyunsaturated fatty acids were elevated >80% in diabetes and strongly correlated with changes in NEFA, consistent with their liberation during adipose lipolysis. Endocannabinoid behavior differed by class with diabetes increasing an array of N-acylethanolamides which were positively correlated with pro-inflammatory 5-lipooxygenase-derived metabolites, while monoacylglycerols were negatively correlated with body mass. These results clearly show that diabetes not only results in an increase in plasma NEFA, but shifts the plasma lipidomic profiles in ways that reflect the biochemical and physiological changes of this pathological state which are independent of obesity associated changes.

  6. Role of Modular Polyketide Synthases in the Production of Polyether Ladder Compounds in Ciguatoxin-producing Gambierdiscus polynesiensis and G.excentricus (Dinophyceae).

    Science.gov (United States)

    Kohli, Gurjeet S; Campbell, Katrina; John, Uwe; Smith, Kirsty F; Fraga, Santiago; Rhodes, Lesley L; Murray, Shauna A

    2017-02-17

    Gambierdiscus, a benthic dinoflagellate, produces ciguatoxins that cause the human illness Ciguatera. Ciguatoxins are polyether ladder compounds that have a polyketide origin, indicating that polyketide synthases (PKS) are involved in their production. We sequenced transcriptomes of G. excentricus and G. polynesiensis and found 264 contigs encoding single domain ketoacyl synthases (KS; G. excentricus: 106, G. polynesiensis: 143) and ketoreductases (KR; G. excentricus: 7, G. polynesiensis: 8) with sequence similarity to type I PKSs, as reported in other dinoflagellates. Additionally, 24 contigs (G. excentricus: 3, G. polynesiensis: 21) encoding multiple PKS domains (forming typical type I PKSs modules) were found. The proposed structure produced by one of these megasynthases resembles a partial carbon backbone of a polyether ladder compound. Seventeen contigs encoding single domain KS, KR, s-malonyltransacylase, dehydratase and enoyl-reductase with sequence similarity to type II fatty acid synthases (FAS) in plants were found. Type I PKS and type II FAS genes were distinguished based on the arrangement of domains on the contigs and their sequence similarity and phylogenetic clustering with known PKS/FAS genes in other organisms. This differentiation of PKS and FAS pathways in Gambierdiscus is important, as it will facilitate approaches to investigating toxin biosynthesis pathways in dinoflagellates. This article is protected by copyright. All rights reserved.

  7. Eicosapentaenoic acid improves glycemic control in elderly bedridden patients with type 2 diabetes.

    Science.gov (United States)

    Ogawa, Susumu; Abe, Takaaki; Nako, Kazuhiro; Okamura, Masashi; Senda, Miho; Sakamoto, Takuya; Ito, Sadayoshi

    2013-01-01

    Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are ω3-polyunsaturated fatty acids mainly contained in the blue-backed fish oil, and are effective in decreasing the lipids disorder and the cardiovascular incidence among diabetic patients. Moreover, it has been suggested that EPA and DHA may improve the insulin resistance and glucose metabolism. However, the clinical effects of EPA and DHA on glucose metabolism remain unclear. We aimed to clarify the effects of EPA/DHA treatment on glycemic control in type 2 diabetes mellitus. This study was a multicenter prospective randomized controlled trial involving 30 elderly type 2 diabetic patients on a liquid diet. Their exercises were almost zero and the content of their meals was strictly managed and understood well. Therefore, the difference by the individual's life was a minimum. The subjects were divided into two groups: those receiving EPA/DHA-rich liquid diet [EPA/DHA (+)] or liquid diet lacking EPA/DHA [EPA/DHA (-)]. Changes in factors related to glucose and lipid metabolism were assessed after the three-month study. Serum concentrations of EPA rose in EPA/DHA (+), although the levels of DHA and fasting C-peptide remained unchanged in EPA/DHA (+). In addition, there was a significant decline in the fasting plasma glucose (FPG), hemoglobin A1c (HbA1c), fasting remnant-like particles and apolipoprotein (apo) B in EPA/DHA (+), compared with the values in EPA/DHA (-). EPA/DHA-rich diet might improve glucose metabolism in elderly type 2 diabetic patients on a liquid diet. This phenomenon may be due to the improved insulin resistance mediated by the rise in serum EPA concentrations.

  8. Hydrodeoxygenation of fatty acid esters catalyzed by Ni on nano-sized MFI type zeolites

    Energy Technology Data Exchange (ETDEWEB)

    Schreiber, Moritz W.; Rodriguez-Niño, Daniella; Gutiérrez, Oliver Y.; Lercher, Johannes A.

    2016-01-01

    The impact of support morphology and composition on the intrinsic activity of Ni supported on MFI-type zeolite was explored in the hydrodeoxygenation of methyl stearate, tristearate, and algae oil (mixture of triglycerides). The nano-sized structure of the support (self-pillared nanosheets) is beneficial for the activity of the catalysts. Higher Ni dispersion and concomitant higher reaction rates were obtained on nano-structured supports than on zeolite with conventional morphology. Rates normalized to accessible Ni atoms (TOF), however, varied little with support morphology. Acidity of the support increases the rate of Ni-catalyzed C-O hydrogenolysis per surface metal site.

  9. Liver-type fatty acid binding protein interacts with hepatocyte nuclear factor 4α

    OpenAIRE

    McIntosh, Avery L.; Petrescu, Anca D.; Hostetler, Heather A.; Kier, Ann B.; Schroeder, Friedhelm

    2013-01-01

    Hepatocyte nuclear factor 4α (HNF4α) regulates liver type fatty acid binding protein (L-FABP) gene expression. Conversely as shown herein, L-FABP structurally and functionally also interacts with HNF4α. Fluorescence resonance energy transfer (FRET) between Cy3-HNF4α (donor) and Cy5-L-FABP (acceptor) as well as FRET microscopy detected L-FABP in close proximity (~80 Å) to HNF4α, binding with high affinity Kd ~250–300 nM. Circular dichroism (CD) determined that the HNF4α/L-FABP interaction alte...

  10. Impaired glycogen synthase activity and mitochondrial dysfunction in skeletal muscle

    DEFF Research Database (Denmark)

    Højlund, Kurt; Beck-Nielsen, Henning

    2006-01-01

    expression analysis and proteomics have pointed to abnormalities in mitochondrial oxidative phosphorylation and cellular stress in muscle of type 2 diabetic subjects, and recent work suggests that impaired mitochondrial activity is another early defect in the pathogenesis of type 2 diabetes. This review...... will discuss the latest advances in the understanding of the molecular mechanisms underlying insulin resistance in human skeletal muscle in type 2 diabetes with focus on possible links between impaired glycogen synthase activity and mitochondrial dysfunction....

  11. Effect of heat stress on amino acid digestibility and transporters in meat-type chickens.

    Science.gov (United States)

    Habashy, W S; Milfort, M C; Adomako, K; Attia, Y A; Rekaya, R; Aggrey, S E

    2017-03-02

    The present study was conducted to investigate the effect of heat stress (HS) on performance, digestibility, and molecular transporters of amino acids in broilers. Cobb 500 chicks were raised from hatch till 13 d in floor pens. At d 14, 48 birds were randomly and equally divided between a control group (25°C) and a HS treatment group (35°C). Birds in both treatment classes were individually caged and fed ad libitum on a diet containing 18.7% CP and 3,560 Kcal ME/Kg. Five birds per treatment at one and 12 d post treatment were euthanized and the Pectoralis major (P. major) and ileum were sampled for gene expression analysis. At d 33, ileal contents were collected and used for digestibility analysis. Broilers under HS had reduced growth and feed intake compared to controls. Although the apparent ileal digestibility (AID) was consistently higher for all amino acids in the HS group, it was not significant except for hydroxylysine. The amino acid consumption and retention were significantly lower in the HS group when compared to the control group. Meanwhile, the retention of amino acids per BWG was higher in the HS group when compared to the control group except for hydroxylysine and ornithine. The dynamics of amino acid transporters in the P. major and ileum was influenced by HS. In P. major and ileum tissues at d one, transporters SNAT1, SNAT2, SNAT7, TAT1, and b0,+AT, were down-regulated in the HS group. Meanwhile, LAT4 and B0AT were down-regulated only in the P. major in the treatment group. The amino acid transporters B0AT and SNAT7 at d 12 post HS were down-regulated in the P. major and ileum, but SNAT2 was down-regulated only in the ileum and TAT1 was down-regulated only in the P. major compared with the control group. These changes in amino acid transporters may explain the reduced growth in meat type chickens under heat stress.

  12. Strain typing of acetic acid bacteria responsible for vinegar production by the submerged elaboration method.

    Science.gov (United States)

    Fernández-Pérez, Rocío; Torres, Carmen; Sanz, Susana; Ruiz-Larrea, Fernanda

    2010-12-01

    Strain typing of 103 acetic acid bacteria isolates from vinegars elaborated by the submerged method from ciders, wines and spirit ethanol, was carried on in this study. Two different molecular methods were utilised: pulsed field gel electrophoresis (PFGE) of total DNA digests with a number of restriction enzymes, and enterobacterial repetitive intergenic consensus (ERIC) - PCR analysis. The comparative study of both methods showed that restriction fragment PFGE of SpeI digests of total DNA was a suitable method for strain typing and for determining which strains were present in vinegar fermentations. Results showed that strains of the species Gluconacetobacter europaeus were the most frequent leader strains of fermentations by the submerged method in the studied vinegars, and among them strain R1 was the predominant one. Results showed as well that mixed populations (at least two different strains) occurred in vinegars from cider and wine, whereas unique strains were found in spirit vinegars, which offered the most stressing conditions for bacterial growth.

  13. Highly Divergent Mitochondrial ATP Synthase Complexes in Tetrahymena thermophila

    NARCIS (Netherlands)

    Nina, Praveen Balabaskaran; Dudkina, Natalya V.; Kane, Lesley A.; van Eyk, Jennifer E.; Boekema, Egbert J.; Mather, Michael W.; Vaidya, Akhil B.; Eisen, Jonathan A.

    2010-01-01

    The F-type ATP synthase complex is a rotary nano-motor driven by proton motive force to synthesize ATP. Its F(1) sector catalyzes ATP synthesis, whereas the F(o) sector conducts the protons and provides a stator for the rotary action of the complex. Components of both F(1) and F(o) sectors are highl

  14. Properties of phosphorylated thymidylate synthase

    DEFF Research Database (Denmark)

    Frączyk, Tomasz; Ruman, Tomasz; Wilk, Piotr;

    2015-01-01

    Thymidylate synthase (TS) may undergo phosphorylation endogenously in mammalian cells, and as a recombinant protein expressed in bacterial cells, as indicated by the reaction of purified enzyme protein with Pro-Q® Diamond Phosphoprotein Gel Stain (PGS). With recombinant human, mouse, rat, Trichin......Thymidylate synthase (TS) may undergo phosphorylation endogenously in mammalian cells, and as a recombinant protein expressed in bacterial cells, as indicated by the reaction of purified enzyme protein with Pro-Q® Diamond Phosphoprotein Gel Stain (PGS). With recombinant human, mouse, rat...

  15. Thymoquinone Inhibits Escherichia coli ATP Synthase and Cell Growth

    OpenAIRE

    2015-01-01

    We examined the thymoquinone induced inhibition of purified F1 or membrane bound F1FO E. coli ATP synthase. Both purified F1 and membrane bound F1FO were completely inhibited by thymoquinone with no residual ATPase activity. The process of inhibition was fully reversible and identical in both membrane bound F1Fo and purified F1 preparations. Moreover, thymoquinone induced inhibition of ATP synthase expressing wild-type E. coli cell growth and non-inhibition of ATPase gene deleted null control...

  16. Differential expression of biphenyl synthase gene family members in fire-blight-infected apple 'Holsteiner Cox'.

    Science.gov (United States)

    Chizzali, Cornelia; Gaid, Mariam M; Belkheir, Asma K; Hänsch, Robert; Richter, Klaus; Flachowsky, Henryk; Peil, Andreas; Hanke, Magda-Viola; Liu, Benye; Beerhues, Ludger

    2012-02-01

    Fire blight, caused by the bacterium Erwinia amylovora, is a devastating disease of apple (Malus × domestica). The phytoalexins of apple are biphenyls and dibenzofurans, whose carbon skeleton is formed by biphenyl synthase (BIS), a type III polyketide synthase. In the recently published genome sequence of apple 'Golden Delicious', nine BIS genes and four BIS gene fragments were detected. The nine genes fall into four subfamilies, referred to as MdBIS1 to MdBIS4. In a phylogenetic tree, the BIS amino acid sequences from apple and Sorbus aucuparia formed an individual cluster within the clade of the functionally diverse type III polyketide synthases. cDNAs encoding MdBIS1 to MdBIS4 were cloned from fire-blight-infected shoots of apple 'Holsteiner Cox,' heterologously expressed in Escherichia coli, and functionally analyzed. Benzoyl-coenzyme A and salicoyl-coenzyme A were the preferred starter substrates. In response to inoculation with E. amylovora, the BIS3 gene was expressed in stems of cv Holsteiner Cox, with highest transcript levels in the transition zone between necrotic and healthy tissues. The transition zone was the accumulation site of biphenyl and dibenzofuran phytoalexins. Leaves contained transcripts for BIS2 but failed to form immunodetectable amounts of BIS protein. In cell cultures of apple 'Cox Orange,' expression of the BIS1 to BIS3 genes was observed after the addition of an autoclaved E. amylovora suspension. Using immunofluorescence localization under a confocal laser-scanning microscope, the BIS3 protein in the transition zone of stems was detected in the parenchyma of the bark. Dot-shaped immunofluorescence was confined to the junctions between neighboring cortical parenchyma cells.

  17. Replacement of amino acid sequence features of a- and c-subunits of ATP synthases of Alkaliphilic Bacillus with the Bacillus consensus sequence results in defective oxidative phosphorylation and non-fermentative growth at pH 10.5.

    Science.gov (United States)

    Wang, ZhenXiong; Hicks, David B; Guffanti, Arthur A; Baldwin, Katisha; Krulwich, Terry Ann

    2004-06-18

    Mitchell's (Mitchell, P. (1961) Nature 191, 144-148) chemiosmotic model of energy coupling posits a bulk electrochemical proton gradient (Deltap) as the sole driving force for proton-coupled ATP synthesis via oxidative phosphorylation (OXPHOS) and for other bioenergetic work. Two properties of proton-coupled OXPHOS by alkaliphilic Bacillus species pose a challenge to this tenet: robust ATP synthesis at pH 10.5 that does not correlate with the magnitude of the Deltap and the failure of artificially imposed potentials to substitute for respiration-generated potentials in energizing ATP synthesis at high pH (Krulwich, T. (1995) Mol. Microbiol. 15, 403-410). Here we show that these properties, in alkaliphilic Bacillus pseudofirmus OF4, depend upon alkaliphile-specific features in the proton pathway through the a- and c-subunits of ATP synthase. Site-directed changes were made in six such features to the corresponding sequence in Bacillus megaterium, which reflects the consensus sequence for non-alkaliphilic Bacillus. Five of the six single mutants assembled an active ATPase/ATP synthase, and four of these mutants exhibited a specific defect in non-fermentative growth at high pH. Most of these mutants lost the ability to generate the high phosphorylation potentials at low bulk Deltap that are characteristic of alkaliphiles. The aLys(180) and aGly(212) residues that are predicted to be in the proton uptake pathway of the a-subunit were specifically implicated in pH-dependent restriction of proton flux through the ATP synthase to and from the bulk phase. The evidence included greatly enhanced ATP synthesis in response to an artificially imposed potential at high pH. The findings demonstrate that the ATP synthase of extreme alkaliphiles has special features that are required for non-fermentative growth and OXPHOS at high pH.

  18. Genetics Home Reference: GM3 synthase deficiency

    Science.gov (United States)

    ... Facebook Share on Twitter Your Guide to Understanding Genetic Conditions Search MENU Toggle navigation Home Page Search ... Conditions Genes Chromosomes & mtDNA Resources Help Me Understand Genetics Home Health Conditions GM3 synthase deficiency GM3 synthase ...

  19. New oleanan-type triterpene and cincholic acid glycosides from Peruvian "Uña de Gato" (Uncaria tomentosa).

    Science.gov (United States)

    Kitajima, Mariko; Hashimoto, Ken-Ichiro; Sandoval, Manuel; Aimi, Norio; Takayama, Hiromitsu

    2004-10-01

    A new oleanan-type triterpene and three new cincholic acid glycosides were isolated from Peruvian "Una de Gato" (Cat's claw, plant of origin: Uncaria tomentosa), a traditional herbal medicine in Peru. Their structures were determined by spectroscopic analysis.

  20. (+)-Dehydroabietic Acid, an Abietane-Type Diterpene, Inhibits Staphylococcus aureus Biofilms in Vitro

    Science.gov (United States)

    Fallarero, Adyary; Skogman, Malena; Kujala, Janni; Rajaratnam, Mohanathas; Moreira, Vânia M.; Yli-Kauhaluoma, Jari; Vuorela, Pia

    2013-01-01

    Potent drugs are desperately needed to counteract bacterial biofilm infections, especially those caused by gram-positive organisms, such as Staphylococcus aureus. Moreover, anti-biofilm compounds/agents that can be used as chemical tools are also needed for basic in vitro or in vivo studies aimed at exploring biofilms behavior and functionability. In this contribution, a collection of naturally-occurring abietane-type diterpenes and their derivatives was tested against S. aureus biofilms using a platform consisting of two phenotypic assays that have been previously published by our group. Three active compounds were identified: nordehydroabietylamine (1), (+)-dehydroabietic acid (2) and (+)-dehydroabietylamine (3) that prevented biofilm formation in the low micromolar range, and unlike typical antibiotics, only 2 to 4-fold higher concentrations were needed to significantly reduce viability and biomass of existing biofilms. Compound 2, (+)-dehydroabietic acid, was the most selective towards biofilm bacteria, achieving high killing efficacy (based on log Reduction values) and it was best tolerated by three different mammalian cell lines. Since (+)-dehydroabietic acid is an easily available compound, it holds great potential to be used as a molecular probe in biofilms-related studies as well as to serve as inspirational chemical model for the development of potent drug candidates. PMID:23739682

  1. (+-Dehydroabietic Acid, an Abietane-Type Diterpene, Inhibits Staphylococcus aureus Biofilms in Vitro

    Directory of Open Access Journals (Sweden)

    Pia Vuorela

    2013-06-01

    Full Text Available Potent drugs are desperately needed to counteract bacterial biofilm infections, especially those caused by gram-positive organisms, such as Staphylococcus aureus. Moreover, anti-biofilm compounds/agents that can be used as chemical tools are also needed for basic in vitro or in vivo studies aimed at exploring biofilms behavior and functionability. In this contribution, a collection of naturally-occurring abietane-type diterpenes and their derivatives was tested against S. aureus biofilms using a platform consisting of two phenotypic assays that have been previously published by our group. Three active compounds were identified: nordehydroabietylamine (1, (+-dehydroabietic acid (2 and (+-dehydroabietylamine (3 that prevented biofilm formation in the low micromolar range, and unlike typical antibiotics, only 2 to 4-fold higher concentrations were needed to significantly reduce viability and biomass of existing biofilms. Compound 2, (+-dehydroabietic acid, was the most selective towards biofilm bacteria, achieving high killing efficacy (based on log Reduction values and it was best tolerated by three different mammalian cell lines. Since (+-dehydroabietic acid is an easily available compound, it holds great potential to be used as a molecular probe in biofilms-related studies as well as to serve as inspirational chemical model for the development of potent drug candidates.

  2. Cardioprotective effect of the PPAR ligand tetradecylthioacetic acid in type 2 diabetic mice.

    Science.gov (United States)

    Khalid, Ahmed M; Hafstad, Anne Dragøy; Larsen, Terje S; Severson, David L; Boardman, Neoma; Hagve, Martin; Berge, Rolf K; Aasum, Ellen

    2011-06-01

    Tetradecylthioacetic acid (TTA) is a novel peroxisome proliferator-activated receptor (PPAR) ligand with marked hypolipidemic and insulin-sensitizing effects in obese models. TTA has recently been shown to attenuate dyslipidemia in patients with type 2 diabetes, corroborating the potential for TTA in antidiabetic therapy. In a recent study on normal mice, we showed that TTA increased myocardial fatty acid (FA) oxidation, which was associated with decreased cardiac efficiency and impaired postischemic functional recovery. The aim of the present study was, therefore, to elucidate the effects of TTA treatment (0.5%, 8 days) on cardiac metabolism and function in a hyperlipidemic type 2 diabetic model. We found that TTA treatment increased myocardial FA oxidation, not only in nondiabetic (db/+) mice but also in diabetic (db/db) mice, despite a clear lipid-lowering effect. Although TTA had deleterious effects in hearts from nondiabetic mice (decreased efficiency and impaired mitochondrial respiratory capacity), these effects were not observed in db/db hearts. In db/db hearts, TTA improved ischemic tolerance, an effect that is most likely related to the antioxidant property of TTA. The present study strongly advocates the need for investigation of the cardiac effects of PPAR ligands used in antidiabetic/hypolipidemic therapy, because of their pleiotropic properties.

  3. Amino acid adsorption on mesoporous materials: influence of types of amino acids, modification of mesoporous materials, and solution conditions.

    Science.gov (United States)

    Gao, Qiang; Xu, Wujun; Xu, Yao; Wu, Dong; Sun, Yuhan; Deng, Feng; Shen, Wanling

    2008-02-21

    In order to disclose the dominant interfacial interaction between amino acids and ordered mesoporous materials, the adsorption behaviors of five amino acids on four mesoporous materials were investigated in aqueous solutions with adjustable amino acid concentration, ion strength, and pH. The selected amino acids were acidic amino acid glutamic acid (Glu), basic amino acid arginine (Arg), and neutral amino acids phenylalanine (Phe), leucine (Leu), and alanine (Ala), and the selected mesoporous materials were SBA-15, Al-SBA-15, CH3(10%)-SBA-15, and CH3(20%)-SBA-15. The adsorption capacities of Glu and Arg were strongly dependent on pH and surface charge of the mesoporous adsorbent. The adsorption of Phe showed pH insensitivity but depended on the surface organic functionalization of mesoporous adsorbent. On the basis of the theoretical analysis about the interaction between amino acid and adsorbent, such a remarkable difference was attributed to the different nature of the interaction between amino acid and adsorbent. Arg could be readily adsorbed on the surface of SBA-15, especially Al-SBA-15, under appropriate pH in which the electrostatic interaction was predominant. The driving force of Phe adsorption on mesoporous adsorbent mainly came from the hydrophobic interaction. Therefore, the adsorption capability of Arg decreased with increasing ion strength of solution, while the adsorption capability of Phe increased with the increasing degree of CH3 functionalization on SBA-15. For neutral amino acid Phe, Ala, and Leu, the adsorption capability increased with the increase of the length of their side chains, which was another evidence of hydrophobic effect. Thus, all the adsorption of amino acids on mesoporous silica materials can be decided by the combined influence of two fundamental interactions: electrostatic attraction and hydrophobic effect.

  4. Potential Biomarker of L type Amino Acid Transporter 1 in Breast Cancer Progression

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Zhongxing; Cho, Heidi T.; Williams, Larry; Zhu, Aizhi; Liang, Ke; Huang, Ke; Wu, Hui; Jiang, Chunsu; Hong, Samuel; Crowe, Ronald; Goodman, Mark M.; Shim, Hyunsuk [Emory Univ. School of Medicine, Atlanta (United States)

    2011-06-15

    L type amino acid transporter 1 (LAT1) is essential for the transport of large neutral amino acids. However, its role in breast cancer growth remains largely unknown. The purpose of the study is to investigate whether LAT1 is a potential biomarker for the diagnosis and treatment of breast cancer. LAT1 mRNA and protein levels in breast cancer cell lines and tissues were analyzed. In addition, the effects of targeting LAT1 for the inhibition of breast cancer cell tumorigenesis were assessed with soft agar assay. The imaging of xenograft with 1 amino 3 [{sup 18F}]fluorocyclo butane 1 carboxylic acid ([{sup 18F}]FACBC) PET was assessed for its diagnostic biomarker potential. Normal breast tissue or low malignant cell lines expressed low levels of LAT1 mRNA and protein, while highly malignant cancer cell lines and high grade breast cancer tissue expressed high levels of LAT1. In addition, higher expression levels of LAT1 in breast cancer tissues were consistent with advanced stage breast cancer. Furtermore, the blockade of LAT1 with its inhibitor, 2 amino bicyclo[2.2.1]heptane 2 carboxylic acid (BCH), or the knockdown of LAT1 with siRNA, inhibited proliferation and tumorigenesis of breast cancer cells. A leucine analog, [{sup 18F}]FACBC, has been demonstrated to be an excellent PET tracer for the non invasive imaging og malignant breast cancer using an orthotopic animal model. The overexpression of LAT1 is required for the progression of breast cancer. LAT1 represents a potential biomarker for therapy and diagnosis of breast cancer. [{sup 18F}]FACBC that correlates with LAT1 function is a potential PET tracer for malignant breast tumor imaging.

  5. Molecular cloning of magnesium-independent type 2 phosphatidic acid phosphatases from airway smooth muscle.

    Science.gov (United States)

    Tate, R J; Tolan, D; Pyne, S

    1999-07-01

    Members of the type 2 phosphatidic acid phosphatase (PAP2) family catalyse the dephosphorylation of phosphatidic acid (PA), lysophosphatidate and sphingosine 1-phosphate. Here, we demonstrate the presence of a Mg(2+)-independent and N-ethymaleimide-insensitive PAP2 activity in cultured guinea-pig airway smooth muscle (ASM) cells. Two PAP2 cDNAs of 923 and 926 base pairs were identified and subsequently cloned from these cells. The ORF of the 923 base pair cDNA encoded a protein of 285 amino acids (Mr = 32.1 kDa), which had 94% homology with human PAP2a (hPAP2a) and which probably represents a guinea-pig specific PAP2a (gpPAP2a1). The ORF of the 926 base pair cDNA encoded a protein of 286 amino acids (Mr = 32.1 kDa) which had 84% and 91% homology with hPAP2a and gpPAP2a1, respectively. This protein, termed gpPAP2a2, has two regions (aa 21-33 and 51-74) of marked divergence and altered hydrophobicity compared with hPAP2a and gpPAP2a1. This occurs in the predicted first and second transmembrane domains and at the extremes of the first outer loop. Other significant differences between gpPAP2a1/2 and hPAP2a, hPAP2b and hPAP2c occur at the cytoplasmic C-terminal. Transient expression of gpPAP2a2 in Cos-7 cells resulted in an approx. 4-fold increase in Mg(2+)-independent PAP activity, thereby confirming that gpPAP2a2 is another catalytically active member of an extended PAP2 family.

  6. Chondroitin sulfate synthase-2 is necessary for chain extension of chondroitin sulfate but not critical for skeletal development.

    Directory of Open Access Journals (Sweden)

    Hiroyasu Ogawa

    Full Text Available Chondroitin sulfate (CS is a linear polysaccharide consisting of repeating disaccharide units of N-acetyl-D-galactosamine and D-glucuronic acid residues, modified with sulfated residues at various positions. Based on its structural diversity in chain length and sulfation patterns, CS provides specific biological functions in cell adhesion, morphogenesis, neural network formation, and cell division. To date, six glycosyltransferases are known to be involved in the biosynthesis of chondroitin saccharide chains, and a hetero-oligomer complex of chondroitin sulfate synthase-1 (CSS1/chondroitin synthase-1 and chondroitin sulfate synthase-2 (CSS2/chondroitin polymerizing factor is known to have the strongest polymerizing activity. Here, we generated and analyzed CSS2(-/- mice. Although they were viable and fertile, exhibiting no overt morphological abnormalities or osteoarthritis, their cartilage contained CS chains with a shorter length and at a similar number to wild type. Further analysis using CSS2(-/- chondrocyte culture systems, together with siRNA of CSS1, revealed the presence of two CS chain species in length, suggesting two steps of CS chain polymerization; i.e., elongation from the linkage region up to Mr ∼10,000, and further extension. There, CSS2 mainly participated in the extension, whereas CSS1 participated in both the extension and the initiation. Our study demonstrates the distinct function of CSS1 and CSS2, providing a clue in the elucidation of the mechanism of CS biosynthesis.

  7. 1-Deoxy-D-xylulose-5-phosphate synthase, a limiting enzyme for plastidic isoprenoid biosynthesis in plants.

    Science.gov (United States)

    Estévez, J M; Cantero, A; Reindl, A; Reichler, S; León, P

    2001-06-22

    The initial step of the plastidic 2C-methyl-D-erythritol 4-phosphate (MEP) pathway that produces isopentenyl diphosphate is catalyzed by 1-deoxy-d-xylulose-5-phosphate synthase. To investigate whether or not 1-deoxy-d-xylulose-5-phosphate synthase catalyzes a limiting step in the MEP pathway in plants, we produced transgenic Arabidopsis plants that over- or underexpress this enzyme. Compared with non-transgenic wild-type plants, the transgenic plants accumulate different levels of various isoprenoids such as chlorophylls, tocopherols, carotenoids, abscisic acid, and gibberellins. Phenotypically, the transgenic plants had slight alterations in growth and germination rates. Because the levels of several plastidic isoprenoids correlate with changes in 1-deoxy-D-xylulose-5-phosphate synthase levels, we conclude that this enzyme catalyzes one of the rate-limiting steps of the MEP biosynthetic pathway. Furthermore, since the product of the MEP pathway is isopentenyl diphosphate, our results suggest that in plastids the pool of isopentenyl diphosphate is limiting to isprenoid production.

  8. Crystallization and preliminary X-ray diffraction studies of polyketide synthase-1 (PKS-1) from Cannabis sativa

    Energy Technology Data Exchange (ETDEWEB)

    Taguchi, Chiho [Faculty of Pharmaceutical Sciences, Kyushu University (Japan); Quantum Beam Science Directorate, Japan Atomic Energy Agency (Japan); Taura, Futoshi [Faculty of Pharmaceutical Sciences, Kyushu University (Japan); Tamada, Taro; Shoyama, Yoshinari [Quantum Beam Science Directorate, Japan Atomic Energy Agency (Japan); Shoyama, Yukihiro; Tanaka, Hiroyuki [Faculty of Pharmaceutical Sciences, Kyushu University (Japan); Kuroki, Ryota, E-mail: kuroki.ryota@jaea.go.jp [Quantum Beam Science Directorate, Japan Atomic Energy Agency (Japan); Morimoto, Satoshi [Faculty of Pharmaceutical Sciences, Kyushu University (Japan)

    2008-03-01

    Polyketide synthase-1 from C. sativa has been crystallized. The crystal diffracted to 1.55 Å resolution with sufficient quality for further structure determination. Polyketide synthase-1 (PKS-1) is a novel type III polyketide synthase that catalyzes the biosynthesis of hexanoyl triacetic acid lactone in Cannabis sativa (Mexican strain). PKS-1 was overproduced in Escherichia coli, purified and finally crystallized in two different space groups. The crystal obtained in 0.1 M HEPES buffer pH 7.5 containing 0.2 M calcium acetate and 20%(w/v) polyethylene glycol 3350 diffracted to 1.65 Å resolution and belonged to space group P1, with unit-cell parameters a = 54.3, b = 59.3, c = 62.6 Å, α = 69, β = 81, γ = 80°. Another crystal obtained in 0.1 M HEPES buffer pH 7.5 containing 0.2 M sodium chloride and 20%(w/v) polyethylene glycol 3350 diffracted to 1.55 Å resolution and belonged to space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 54.3, b = 110, c = 130 Å. These data will enable us to determine the crystal structure of PKS-1.

  9. Crystal structure of TruD, a novel pseudouridine synthase with a new protein fold.

    Science.gov (United States)

    Kaya, Yusuf; Del Campo, Mark; Ofengand, James; Malhotra, Arun

    2004-04-30

    TruD, a recently discovered novel pseudouridine synthase in Escherichia coli, is responsible for modifying uridine13 in tRNA(Glu) to pseudouridine. It has little sequence homology with the other 10 pseudouridine synthases in E. coli which themselves have been grouped into four related protein families. Crystal structure determination of TruD revealed a two domain structure consisting of a catalytic domain that differs in sequence but is structurally very similar to the catalytic domain of other pseudouridine synthases and a second large domain (149 amino acids, 43% of total) with a novel alpha/beta fold that up to now has not been found in any other protein.

  10. Acid diffusion into rice boluses is influenced by rice type, variety, and presence of α-amylase.

    Science.gov (United States)

    Mennah-Govela, Yamile A; Bornhorst, Gail M; Singh, R Paul

    2015-02-01

    Breakdown of rice during gastric digestion may be influenced by rice structure, presence of salivary α-amylase, and hydrolysis by gastric acid. During mastication, saliva is mixed with rice, allowing α-amylase to begin starch hydrolysis. This hydrolysis may continue in the gastric environment depending on the rate at which gastric acid penetrates into the rice bolus. The objective of this study was to determine the acid uptake into rice boluses with and without α-amylase in saliva. Two types each of brown and white rice (medium and long grain), were formed into a cylindrical-shaped bolus. Each bolus was sealed on all sides except one to allow one-dimensional mass transfer, and incubated by immersion in simulated gastric juice at 37 °C under static conditions. Acidity of the boluses was measured by titration after 1 to 96 h of incubation. Effective diffusivity of the gastric juice through the bolus was estimated using MATLAB. Average acidity values ranged from 0.04 mg HCl/g dry matter (medium grain white rice, no incubation) to 10.01 mg HCl/g dry matter (long-grain brown rice, 72 h incubation). The rice type, presence of α-amylase, and incubation time all significantly influenced rice bolus acidity (P starch hydrolysis by α-amylase may continue in the stomach before the gastric acid penetrates the rice bolus, and the rate of acid uptake will depend on the type of rice consumed.

  11. Serum uric acid as a predictor for development of diabetic nephropathy in type 1 diabetes: an inception cohort study

    DEFF Research Database (Denmark)

    Hovind, Peter; Rossing, Peter; Tarnow, Lise;

    2009-01-01

    OBJECTIVE: Experimental and clinical studies have suggested that uric acid may contribute to the development of hypertension and kidney disease. Whether uric acid has a causal role in the development of diabetic nephropathy is not known. The objective of the present study is to evaluate uric acid...... level; P = 0.04). Adjustment for confounders did not change the estimate significantly. CONCLUSIONS: Uric acid level soon after onset of type 1 diabetes is independently associated with risk for later development of diabetic nephropathy....... as a predictor of persistent micro- and macroalbuminuria. RESEARCH DESIGN AND METHODS: This prospective observational follow-up study consisted of an inception cohort of 277 patients followed from onset of type 1 diabetes. Of these, 270 patients had blood samples taken at baseline. In seven cases, uric acid...

  12. Evaluation of mono or mixed cultures of lactic acid bacteria in type II sourdough system.

    Science.gov (United States)

    Ekinci, Raci; Şimşek, Ömer; Küçükçuban, Ayca; Nas, Sebahattin

    2016-01-01

    The aim of this study was to evaluate the use of mono and mixed lactic acid bacteria (LAB) cultures to determine suitable LAB combinations for a type II sourdough system. In this context, previously isolated sourdough LAB strains with antimicrobial activity, which included Lactobacillus plantarum PFC22, Lactobacillus brevis PFC31, Pediococcus acidilactici PFC38, and Lactobacillus sanfranciscensis PFC80, were used as mono or mixed culture combinations in a fermentation system to produce type II sourdough, and subsequently in bread dough production. Compared to the monoculture fermentation of dough, the use of mixed cultures shortened the adaptation period by half. In addition, the use of mixed cultures ensured higher microbial viability, and enhanced the fruity flavor during bread dough production. It was determined that the combination of L. plantarum PFC22 + P. acidilactici PFC38 + L. sanfranciscensis PFC80 is a promising culture mixture that can be used in the production of type II sourdough systems, and that may also contribute to an increase in metabolic activity during bread production process.

  13. [L-type fatty acid binding protein (L-FABP) and kidney disease].

    Science.gov (United States)

    Kamijo-Ikemori, Atsuko; Sugaya, Takeshi; Kimura, Kenjiro

    2014-02-01

    Liver-type fatty acid binding protein (L-FABP) is expressed in the cytoplasm of human renal proximal tubules. Renal L-FABP expression is up-regulated and urinary excretion of renal L-FABP is increased by various stressors, such as urinary protein, hyperglycemia, tubular ischemia, toxins, and salt-sensitive hypertension, which lead to the progression of kidney disease. Urinary L-FABP levels accurately reflect the degree of tubulointerstitial damage and are strongly correlated with the prognosis of chronic kidney disease (CKD) patients in clinical studies. In patients with type I or type II diabetes, urinary L-FABP levels were reported to be significantly higher in patients with normal levels of urinary albumin than in those with microalbuminuria. Urinary L-FABP may be useful for the early detection of diabetic nephropathy. Furthermore, in a longitudinal study, a higher level of urinary L-FABP was found to be a risk factor for the progression of diabetic nephropathy. With respect to acute kidney disease (AKI), urinary L-FABP facilitates the early detection of AKI before an increase in serum creatinine. Therefore, urinary L-FABP was approved as a new tubular biomarker by the Ministry of Health, Labour and Welfare of Japan.

  14. Clavulanic acid production by the MMS 150 mutant obtained from wild type Streptomyces clavuligerus ATCC 27064.

    Science.gov (United States)

    da Silva Vasconcelos, Eliton; de Lima, Vanderlei Aparecido; Goto, Leandro Seiji; Cruz-Hernández, Isara Lourdes; Hokka, Carlos Osamu

    2013-12-01

    Clavulanic acid (CA) is a powerful inhibitor of the beta-lactamases, enzymes produced by bacteria resistants to penicillin and cefalosporin. This molecule is produced industrially by strains of Streptomyces clavuligerus in complex media which carbon and nitrogen resources are supplied by inexpensive compounds still providing high productivity. The genetic production improvement using physical and chemical mutagenic agents is an important strategy in programs of industrial production development of bioactive metabolites. However, parental strains are susceptible to loss of their original productivity due genetic instability phenomenona. In this work, some S. clavuligerus mutant strains obtained by treatment with UV light and with MMS are compared with the wild type (Streptomyces clavuligerus ATCC 27064). The results indicated that the random mutations originated some strains with different phenotypes, most divergent demonstrated by the mutants strains named AC116, MMS 150 and MMS 54, that exhibited lack of pigmentation in their mature spores. Also, the strain MMS 150 presented a larger production of CA when cultivated in semi-synthetics media. Using other media, the wild type strain obtained a larger CA production. Besides, using the modifed complex media the MMS 150 strain showed changes in its lipolitic activity and a larger production of CA. The studies also allowed finding the best conditions for a lipase activity exhibited by wild type S. clavuligerus and the MMS150 mutant.

  15. Clavulanic acid production by the MMS 150 mutant obtained from wild type Streptomyces clavuligerus ATCC 27064

    Directory of Open Access Journals (Sweden)

    Eliton da Silva Vasconcelos

    2013-12-01

    Full Text Available Clavulanic acid (CA is a powerful inhibitor of the beta-lactamases, enzymes produced by bacteria resistants to penicillin and cefalosporin. This molecule is produced industrially by strains of Streptomyces clavuligerus in complex media which carbon and nitrogen resources are supplied by inexpensive compounds still providing high productivity. The genetic production improvement using physical and chemical mutagenic agents is an important strategy in programs of industrial production development of bioactive metabolites. However, parental strains are susceptible to loss of their original productivity due genetic instability phenomenona. In this work, some S. clavuligerus mutant strains obtained by treatment with UV light and with MMS are compared with the wild type (Streptomyces clavuligerus ATCC 27064. The results indicated that the random mutations originated some strains with different phenotypes, most divergent demonstrated by the mutants strains named AC116, MMS 150 and MMS 54, that exhibited lack of pigmentation in their mature spores. Also, the strain MMS 150 presented a larger production of CA when cultivated in semi-synthetics media. Using other media, the wild type strain obtained a larger CA production. Besides, using the modifed complex media the MMS 150 strain showed changes in its lipolitic activity and a larger production of CA. The studies also allowed finding the best conditions for a lipase activity exhibited by wild type S. clavuligerus and the MMS150 mutant.

  16. Partition dataset according to amino acid type improves the prediction of deleterious non-synonymous SNPs

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jing; Li, Yuan-Yuan [School of Biotechnology, East China University of Science and Technology, Shanghai 200237 (China); Shanghai Center for Bioinformation Technology, Shanghai 200235 (China); Li, Yi-Xue, E-mail: yxli@sibs.ac.cn [School of Biotechnology, East China University of Science and Technology, Shanghai 200237 (China); Shanghai Center for Bioinformation Technology, Shanghai 200235 (China); Ye, Zhi-Qiang, E-mail: yezq@pkusz.edu.cn [Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055 (China); Key Laboratory of Systems Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031 (China)

    2012-03-02

    Highlights: Black-Right-Pointing-Pointer Proper dataset partition can improve the prediction of deleterious nsSNPs. Black-Right-Pointing-Pointer Partition according to original residue type at nsSNP is a good criterion. Black-Right-Pointing-Pointer Similar strategy is supposed promising in other machine learning problems. -- Abstract: Many non-synonymous SNPs (nsSNPs) are associated with diseases, and numerous machine learning methods have been applied to train classifiers for sorting disease-associated nsSNPs from neutral ones. The continuously accumulated nsSNP data allows us to further explore better prediction approaches. In this work, we partitioned the training data into 20 subsets according to either original or substituted amino acid type at the nsSNP site. Using support vector machine (SVM), training classification models on each subset resulted in an overall accuracy of 76.3% or 74.9% depending on the two different partition criteria, while training on the whole dataset obtained an accuracy of only 72.6%. Moreover, the dataset was also randomly divided into 20 subsets, but the corresponding accuracy was only 73.2%. Our results demonstrated that partitioning the whole training dataset into subsets properly, i.e., according to the residue type at the nsSNP site, will improve the performance of the trained classifiers significantly, which should be valuable in developing better tools for predicting the disease-association of nsSNPs.

  17. Cloning and characterization of squalene synthase and cycloartenol synthase from Siraitia grosvenorii

    Directory of Open Access Journals (Sweden)

    Huan Zhao

    2017-03-01

    Full Text Available Mogrosides and steroid saponins are tetracyclic triterpenoids found in Siraitia grosvenorii. Squalene synthase (SQS and cycloartenol synthase (CAS are key enzymes in triterpenoid and steroid biosynthesis. In this study, full-length cDNAs of SgSQS and SgCAS were cloned by a rapid amplification of cDNA-ends with polymerase chain reaction (RACE-PCR approach. The SgSQS cDNA has a 1254 bp open reading frame (ORF encoding 417 amino acids, and the SgCAS cDNA contains a 2298 bp ORF encoding 765 amino acids. Bioinformatic analysis showed that the deduced SgSQS protein has two transmembrane regions in the C-terminal. Both SgSQS and SgCAS have significantly higher levels in fruits than in other tissues, suggesting that steroids and mogrosides are competitors for the same precursors in fruits. Combined in silico prediction and subcellular localization, experiments in tobacco indicated that SgSQS was probably in the cytoplasm or on the cytoskeleton, and SgCAS was likely located in the nucleus or cytosol. These results will provide a foundation for further study of SgSQS and SgCAS gene functions in S. grosvenorii, and may facilitate improvements in mogroside content in fruit by regulating gene expression.

  18. Chemical diversity of labdane-type bicyclic diterpene biosynthesis in Actinomycetales microorganisms.

    Science.gov (United States)

    Yamada, Yuuki; Komatsu, Mamoru; Ikeda, Haruo

    2016-07-01

    Five pairs of bacterial type-A and type-B diterpene synthases have been characterized: BAD86798/BAD86797, AHK61133/AHK61132, BAB39207/BAB39206, CldD/CldB and RmnD/RmnB, and are involved in the formation of pimara-9(11),15-diene, terpente-3,13,15-triene and labda-8(17),12(E),14-triene. Mining of bacterial genome data revealed an additional four pairs of type-A and type-B diterpene synthases: Sros_3191/Sros_3192 of Streptosporangium roseum DSM 43021, Sare_1287/Sare_1288 of Salinispora arenicola CNS-205, SCLAV_5671/SCLAV_5672 and SCLAV_p0491/SCLAV_p0490 of Streptomyces clavuligerus ATCC 27064. Since SCLAV_p0491/SCLAV_p0490 is similar to the labdane-type diterpene synthase pairs, CldD/CldB and RmnD/RmnB based on the alignment of the deduced amino acid sequences and phylogenetic analyses of the aligned sequences, these predicted diterpene synthases were characterized by an enzymatic reaction using a pair of recombinant type-A and type-B diterpene synthases prepared in Escherichia coli and the heterologous expression of two genes encoding type-A and type-B diterpene synthases in an engineered Streptomyces host. The generation of labda-8(17),12(E),14-triene (1) by CldB and CldD was reconfirmed by enzymatic synthesis. Furthermore, labda-8(17),13(16),14-triene (2) was generated by SCLAV_p0491 and CldB, and ladba-7,12(E),14-triene (3) by CldD and SCLAV_p0490. SCLAV_p0491 and SCLAV_p0490 catalyzed the generation of the novel diterpene hydrocarbon, labda-7,13(16),14-triene (4).

  19. Toxicogenomic profiling of perfluorononanoic acid in wild-type and PPARa-null mice

    Science.gov (United States)

    Perfluorononanoic acid (PFNA) is a ubiquitous environmental contaminant and a developmental toxicant in laboratory animals. Like other perfluoroalkyl acids (PFAAs) such as perfluorooctane sulfonate (PFOA) and perfluoroalkyl acid (PFOS), PFNA is a known activator ofperoxisome prol...

  20. A domain swapping approach to elucidate differential regiospecific hydroxylation by geraniol and linalool synthases from perilla.

    Science.gov (United States)

    Sato-Masumoto, Naoko; Ito, Michiho

    2014-06-01

    Geraniol and linalool are acyclic monoterpenes found in plant essential oils that have attracted much attention for their commercial use and in pharmaceutical studies. They are synthesized from geranyl diphosphate (GDP) by geraniol and linalool synthases, respectively. Both synthases are very similar at the amino acid level and share the same substrate; however, the position of the GDP to which they introduce hydroxyl groups is different. In this study, the mechanisms underlying the regiospecific hydroxylation of geraniol and linalool synthases were investigated using a domain swapping approach and site-directed mutagenesis in perilla. Sequences of the synthases were divided into ten domains (domains I to IV-4), and each corresponding domain was exchanged between both enzymes. It was shown that different regions were important for the formation of geraniol and linalool, namely, domains IV-1 and -4 for geraniol, and domains III-b, III-d, and IV-4 for linalool. These results suggested that the conformation of carbocation intermediates and their electron localization were seemingly to be different between geraniol and linalool synthases. Further, five amino acids in domain IV-4 were apparently indispensable for the formation of geraniol and linalool. According to three-dimensional structural models of the synthases, these five residues seemed to be responsible for the different spatial arrangement of the amino acid at H524 in the case of geraniol synthase, while N526 is the corresponding residue in linalool synthase. These results suggested that the side-chains of these five amino acids, in combination with several relevant domains, localized the positive charge in the carbocation intermediate to determine the position of the introduced hydroxyl group.

  1. Dihydrodipicolinate synthase in opaque and floury maize mutants

    NARCIS (Netherlands)

    Varisi, V.A.; Medici, L.O.; Meer, van der I.M.; Lea, P.J.; Azevedo, J.L.

    2007-01-01

    Dihydrodipicolinate synthase (DHDPS, EC 4.2.1.52) was isolated and studied in four high-lysine maize mutants (Oh43o1, Oh43o2, Oh43fl1 and Oh43fl2). The activity of DHDPS was analyzed at 16, 20, and 24 DAP and characterized in the presence of the amino acids, lysine, S-(2-aminoethyl)-l-cysteine (AEC)

  2. Herbs as new type of green inhibitors for acidic corrosion of steel

    Energy Technology Data Exchange (ETDEWEB)

    Khamis, E. [Faculty of Science, Chemistry Department, Alexandria University, P.O. Box 426 Ibrahimia Alexandria 21321 (Egypt); AlAndis, N. [College of Science, Chemistry Department, King Saud University (Saudi Arabia)

    2002-09-01

    Corrosion inhibition of steel in sulphuric acid by six different herb plants has been studied using a.c and d.c electrochemical techniques. The environmentally friendly investigated compounds are namely: thyme, coriander, hibiscus, anis, black cumin and Garden cress. Electrochemical impedance spectroscopy has been successfully used to evaluate the performance of these compounds. The ac measurements showed that the dissolution process is activation controlled. Bode and theta diagrams show only one time constant ({tau}). Potentiodynamic polarization curves indicate that the studied compounds are mixed-type inhibitors. The order of increasing inhibition efficiency was correlated with the change of the constituent active materials of the compounds. Thyme, which contains the powerful antiseptic thymol as the active ingredient, offers excellent protection for steel surface. (Abstract Copyright [2002], Wiley Periodicals, Inc.)

  3. Evolution of the C(4) photosynthetic mechanism: are there really three C(4) acid decarboxylation types?

    Science.gov (United States)

    Furbank, Robert T

    2011-05-01

    Some of the most productive plants on the planet use a variant of photosynthesis known as the C(4) pathway. This photosynthetic mechanism uses a biochemical pump to concentrate CO(2) to levels up to 10-fold atmospheric in specialized cells of the leaf where Rubisco, the primary enzyme of C(3) photosynthesis, is located. The basic biochemical pathways underlying this process, discovered more than 40 years ago, have been extensively studied and, based on these pathways, C(4) plants have been subdivided into two broad groups according to the species of C(4) acid produced in the mesophyll cells and into three groups according to the enzyme used to decarboxylate C(4) acids in the bundle sheath to release CO(2). Recent molecular, biochemical, and physiological data indicate that these three decarboxylation types may not be rigidly genetically determined, that the possibility of flexibility between the pathways exists and that this may potentially be both developmentally and environmentally controlled. This evidence is synthesized here and the implications for C(4) engineering discussed.

  4. New Capoamycin-Type Antibiotics and Polyene Acids from Marine Streptomyces fradiae PTZ0025

    Directory of Open Access Journals (Sweden)

    Zhizhen Zhang

    2012-10-01

    Full Text Available Capoamycin-type antibiotics (2–5 and polyene acids (6, 7 were isolated from marine Streptomyces fradiae strain PTZ0025. Their structures were established by extensive nuclear magnetic resonance (NMR and high resolution electron spray ionization mass spectroscopy (HRESIMS analyses and chemical degradation. Compounds 3, 4, 6, 7 were found to be new and named as fradimycins A (3 and B (4, and fradic acids A (6 and B (7. Compounds 3–5 showed in vitro antimicrobial activity against Staphylococcus aureus with a minimal inhibitory concentration (MIC of 2.0 to 6.0 μg/mL. Interestingly, Compounds 3–5 also significantly inhibited cell growth of colon cancer and glioma with IC50 values ranging from 0.13 to 6.46 μM. Fradimycin B (4, the most active compound, was further determined to arrest cell cycle and induce apoptosis in tumor cells. The results indicated that fradimycin B (4 arrested the cell cycle at the G0/G1 phase and induced apoptosis and necrosis in colon cancer and glioma cells. Taken together, the results demonstrated that the marine natural products 3–5, particularly fradimycin B (4, possessed potent antimicrobial and antitumor activities.

  5. Synthesis and Characterization of Vanadium Substituted Dawson-Type Heteropoly Acid (Mo, As)

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jing; LI Juan; YU Li-qiong; WEI Xian-yin; LIU Li-ping; HUANG Ru-dan

    2006-01-01

    Five novel vanadium substituted series of Dawson-type heteropoly acid H7 [As2Mo17VO62 ]·10H2O (1), H8 [As2Mo16V2O62]·7H2O (2), H9 [As2Mo15V3O62 ]·8H2O (3), H8 [As2Mo14V4O62 H2]·7H2O (4), H9 [As2Mo13V5O62H2]·10H2O(5) were prepared respectively in aqueous solution. When magnetic stirring and pH meter monitoring, all reactants mixed and controled different pH, then the mixture was refluxed for 10 h, later extracted by aether when it cooled, finally, it could be recrystaled by 0.5 96 sulphuic acid solution, then yielded productions that we need. Compounds ( 1 ) - (5) were characterized by elemental analysis, thermogravimetic analysis (TGA), infrared spectroscopy (IR), ultraviolet and visible spectroscopy(UV-Vis), X-ray powder diffraction analysis, 51V nuclear magnetic resonance (51V NMR) structure analysis. The study indicates that these compounds possess Dawson structures. 51V NMR spectra reveals that V atom is polar-site substituted indeed.

  6. Preparation and photochromism of Keggin-type molybdphosphoric acid/silica mesoporous composite thin films

    Institute of Scientific and Technical Information of China (English)

    ZHANG XueAo; WU WenJian; MAN YaHui; TIAN Tian; TIAN XiaoZhou; WANG JianFang

    2007-01-01

    Using tetraethoxysilane and 3-aminopropyltriethoxysilane as the silica sources, amino-functionalized organic/inorganic hybrid mesoporous silica thin films with 2-dimensional hexagonal structure have been synthesized by evaporation induced self-assembly process in the presence of cetyltrimethyl ammonium bromide templates under acid conditions. The Keggin-type molybdphosphoric acid (PMo) is incorporated into the mesoporous silica thin films with amino-groups by wetness impregnation, and the PMo/silica mesoporous composite thin films are obtained. The results of X-ray diffraction (XRD),high resolution transmission electron microscopy (HRTEM), and Fourier transform infrared (FTIR)spectra indicate the PMo molecules maintain Keggin structure and are homogeneously distributed inside mesopores. The composite thin films possess excellent reversible photochromic properties, and change from colorless to blue under ultraviolet irradiation. The photochromic mechanism of the composite thin films is studied by ultraviolet-visible (UV-vis), electron spin resonance (ESR) and X-ray photoelectron spectroscopy (XPS) spectra. It is shown that intervalence charge transfer (IVCT) and ligand-to-metal charge transfer (LMCT) are the main reasons of photochromism. PMo anions interact strongly with amino-groups of the mesoporous suface via hydrogen bond and electrostatic force. After ultraviolet irradiation, the charge transfer occurs by reduction of heteropolyanions accompanying the formation of heteropolyblues with multivalence Mo(Ⅵ, Ⅴ), and the bleaching process of composite thin films is closely related to the presence of oxygen.

  7. Preparation and photochromism of Keggin-type molybdphosphoric acid/silica mesoporous composite thin films

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Using tetraethoxysilane and 3-aminopropyltriethoxysilane as the silica sources, amino-functionalized organic/inorganic hybrid mesoporous silica thin films with 2-dimensional hexagonal structure have been synthesized by evaporation induced self-assembly process in the presence of cetyltrimethyl ammonium bromide templates under acid conditions. The Keggin-type molybdphosphoric acid (PMo) is incorporated into the mesoporous silica thin films with amino-groups by wetness impregnation, and the PMo/silica mesoporous composite thin films are obtained. The results of X-ray diffraction (XRD), high resolution transmission electron microscopy (HRTEM), and Fourier transform infrared (FTIR) spectra indicate the PMo molecules maintain Keggin structure and are homogeneously distributed inside mesopores. The composite thin films possess excellent reversible photochromic properties, and change from colorless to blue under ultraviolet irradiation. The photochromic mechanism of the composite thin films is studied by ultraviolet-visible (UV-vis), electron spin resonance (ESR) and X-ray photoelectron spectroscopy (XPS) spectra. It is shown that intervalence charge transfer (IVCT) and ligand-to-metal charge transfer (LMCT) are the main reasons of photochromism. PMo anions interact strongly with amino-groups of the mesoporous suface via hydrogen bond and electrostatic force. After ultraviolet irradiation, the charge transfer occurs by reduction of heteropolyanions accompanying the formation of heteropolyblues with multivalence Mo(VI, V), and the bleaching process of composite thin films is closely related to the presence of oxygen.

  8. Low removal of acidic and hydrophilic pharmaceutical products by various types of municipal wastewater treatment plants

    Directory of Open Access Journals (Sweden)

    Christian Gagnon

    2012-03-01

    Full Text Available Pharmaceutical substances represent a risk for aquatic environments and their potential impacts on the receiving environment are poorly understood. Municipal effluents are important sources of contaminants including common pharmaceuticals like anti-inflammatory and anti-convulsive substances. The removal of pharmaceuticals, particularly those highly soluble can represent a great challenge to conventional wastewater treatment processes. Hydrophilic drugs (e.g. acidic drugs have properties that can highly influence removal efficiencies of treatment plants. The performance of different wastewater treatment processes for the removal of specific pharmaceutical products that are expected to be poorly removed was investigated. The obtained results were compared to inherent properties of the studied substances. Clofibric acid, carbamazepine, diclofenac, ibuprofen and naproxen were largely found in physicochemical primary-treated effluents at concentrations ranging from 77 to 2384 ng/L. This treatment type showed removal yields lower than 30%. On the other hand, biological treatments with activated sludge under aerobic conditions resulted in much better removal rates (>50% for 5 of the 8 studied substances. Interestingly, this latter type of process showed evidence of selectivity with respect to the size (R2=0.7388, solubility (R2=0.6812, and partitioning (R2=0.9999 of the removed substances; the smallest and least sorbed substances seemed to be removed at better rates, while the persistent carbamazepine (392 ng/L and diclofenac (66 ng/L were poorly removed (<10% after biological treatment. In the case of treatment by aerated lagoons, the most abundant substances were the highly soluble hydroxy-ibuprofen (350-3321 ng/L, followed by naproxen (42-413 n/L and carbamazepine (254-386 ng/L. In order to assess the impacts of all these contaminants of various properties on the environment and human health, we need to better understand the chemical and physical

  9. Identification of type-2 phosphatidic acid phosphohydrolase (PAPH-2) in neutrophil plasma membranes.

    Science.gov (United States)

    Boder, E; Taylor, G; Akard, L; Jansen, J; English, D

    1994-11-01

    Plasma membrane phosphatidic acid phosphohydrolase (PAPH) plays an important role in signal transduction by converting phosphatidic acid to diacylglycerol. PAPH-2, a Mg(2+)-independent, detergent-dependent enzyme involved in cellular signal transduction, is reportedly absent from the plasma membranes of neutrophilic leukocytes, a cell that responds to metabolic stimulation with abundant phospholipase D-dependent diacylglycerol generation. The present study was designed to resolve this discrepancy, focusing on the influence of cellular disruption techniques, detergent availability and cation sensitivity on the apparent distribution of PAPH in neutrophil subcellular fractions. The results clearly indicate the presence of two distinct types of PAPH within the particulate and cytosolic fractions of disrupted cells. Unlike the cytosolic enzyme, the particulate enzymes was not potentiated by magnesium and was strongly detergent-dependent. The soluble and particulate enzymes displayed dissimilar pH profiles. Separation of neutrophil particulate material into fractions rich in plasma membranes, specific granules and azurophilic granules by high speed discontinuous density gradient centrifugation revealed that the majority of the particulate activity was confined to plasma membranes. This activity was not inhibited by pretreatment with n-ethyl-maleimide in concentrations as high as 25 mM. PAPH activity recovered in the cytosolic fraction of disrupted neutrophils was almost completely inhibited by 5.0 mM n-ethylmaleimide. We conclude that resting neutrophils possess n-ethylmaleimide-resistant PAPH (type 2) within their plasma membranes. This enzyme may markedly influence the kinetics of cell activation by metabolizing second messengers generated as a result of activation of plasma membrane phospholipase D.

  10. Insights into the subunit in-teractions of the chloroplast ATP synthase

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Subunit interactions of the chloroplast F0F1- ATP synthase were studied using the yeast two-hybrid system. The coding sequences of all the nine subunits of spinach chloroplast ATP synthase were cloned in two-hybrid vectors. The vectors were transformed into the yeast strains HF7c and SFY526 by various pairwise combinations, and the protein interactions were analyzed by measuring the yeast growth on minimal SD medium without serine, lucine and histidine. Interactions of γ Subunit with wild type or two truncated mutants of γ sununit, △εN21 and △εC45, which lose their abilities to inhibit the ATP hydrolysis, were also detected by in vitro and in vivo binding assay. The present results are largely accordant to the common structure model of F0F1-ATP synthase. Different from that in the E. Coli F0F1-ATP synthase, the δ subunit of chloroplast ATP syn- thase could interact with β,γ,ε and all the CF0 subunits in the two-hybrid system. These results suggested that though the chloroplast ATP synthase shares the similar structure and composition of subunits with the enzyme from E. Coli, it may be different in the subunit interactions and con- formational change during catalysis between these two sources of ATP synthase. Based on the present results and our knowledge of structure model of E. Coli ATP synthase, a deduced structure model of chloroplast ATP synthase was proposed.

  11. Molecular cloning and expression profile of ß-ketoacyl-acp synthase gene from tung tree (Vernicia fordii Hemsl.)

    Science.gov (United States)

    Tung tree (Vernicia fordii) is an important woody oil tree. Tung tree seeds contain 50-60% oil with approximately 80 mole a-eleostearic acid (9cis, 11trans, 13trans octadecatrienoic acid). Fatty acid synthesis is catalyzed by the concerted action of acetyl-CoA carboxylase and fatty acid synthase, a ...

  12. The pseudouridine synthases: revisiting a mechanism that seemed settled.

    Science.gov (United States)

    Spedaliere, Christopher J; Ginter, Joy M; Johnston, Murray V; Mueller, Eugene G

    2004-10-13

    RNA containing 5-fluorouridine, [f 5U]RNA, has been used as a mechanistic probe for the pseudouridine synthases, which convert uridine in RNA to its C-glycoside isomer, pseudouridine. Hydrated products of f 5U were attributed to ester hydrolysis of a covalent complex between an essential aspartic acid residue and f 5U, and the results were construed as strong support for a mechanism involving Michael addition by the aspartic acid residue. Labeling studies with [18O]water are now reported that rule out such ester hydrolysis in one pseudouridine synthase, TruB. The aspartic acid residue does not become labeled, and the hydroxyl group in the hydrated product of f 5U derives directly from solvent. The hydrated product, therefore, cannot be construed to support Michael addition during the conversion of uridine to pseudouridine, but the results do not rule out such a mechanism. A hypothesis is offered for the seemingly disparate behavior of different pseudouridine synthases toward [f 5U]RNA.

  13. [Identification and characterization of intraspecific variability of the sucrose synthase gene Sus4 of potato (Solanum tuberosum)].

    Science.gov (United States)

    Boris, K V; Ryzhova, N N; Kochieva, E Z

    2011-02-01

    Nucleotide and amino acid variability of fragments of the Sus4 gene encoding the sucrose synthase enzyme was studied in 24 potato cultivars selected in Russia and other countries and differing in starch content in tubers. Both SNPs and indels were detected in a chosen Sus4 gene fragment including the sequence from exon 3 to exon 6 and corresponding to the main part of the sucrose synthase domain. Four types of Sus4 sequences were revealed depending on the presence of an insertion in introns 4 and 5 and of the mononucleotide octamer (T)8 in intron 5. Differentiation of these sequences was confirmed by statistical methods. Sixteen amino acid substitutions were identified in the translated sequence, of which eleven were nonsynonymous. Specific varietal nucleotide and amino acid substitutions were also revealed, which can be used in future for marking potato cultivars/genotypes. No direct associations between the mutational changes and the starch content were found in the potato cultivars studied by us.

  14. Heart-type fatty acid-binding protein is essential for efficient brown adipose tissue fatty acid oxidation and cold tolerance.

    Science.gov (United States)

    Vergnes, Laurent; Chin, Robert; Young, Stephen G; Reue, Karen

    2011-01-07

    Brown adipose tissue has a central role in thermogenesis to maintain body temperature through energy dissipation in small mammals and has recently been verified to function in adult humans as well. Here, we demonstrate that the heart-type fatty acid-binding protein, FABP3, is essential for cold tolerance and efficient fatty acid oxidation in mouse brown adipose tissue, despite the abundant expression of adipose-type fatty acid-binding protein, FABP4 (also known as aP2). Fabp3(-/-) mice exhibit extreme cold sensitivity despite induction of uncoupling and oxidative genes and hydrolysis of brown adipose tissue lipid stores. However, using FABP3 gain- and loss-of-function approaches in brown adipocytes, we detected a correlation between FABP3 levels and the utilization of exogenous fatty acids. Thus, Fabp3(-/-) brown adipocytes fail to oxidize exogenously supplied fatty acids, whereas enhanced Fabp3 expression promotes more efficient oxidation. These results suggest that FABP3 levels are a determinant of fatty acid oxidation efficiency by brown adipose tissue and that FABP3 represents a potential target for modulation of energy dissipation.

  15. Impact of nutrient excess and endothelial nitric oxide synthase on the plasma metabolite profile in mice

    Directory of Open Access Journals (Sweden)

    Brian E Sansbury

    2014-11-01

    Full Text Available An increase in calorie consumption is associated with the recent rise in obesity prevalence. However, our current understanding of the effects of nutrient excess on major metabolic pathways appears insufficient to develop safe and effective metabolic interventions to prevent obesity. Hence, we sought to identify systemic metabolic changes caused by nutrient excess and to determine how endothelial nitric oxide synthase (eNOS—which has anti-obesogenic properties—affects systemic metabolism by measuring plasma metabolites. Wild-type (WT and eNOS transgenic (eNOS-TG mice were placed on low fat or high fat diets for six weeks, and plasma metabolites were measured using an unbiased metabolomic approach. High fat feeding in WT mice led to significant increases in fat mass, which was associated with significantly lower plasma levels of 1,5-anhydroglucitol, lysophospholipids, 3-dehydrocarnitine, and bile acids, as well as branched chain amino acids (BCAAs and their metabolites. Plasma levels of several lipids including sphingomyelins, stearoylcarnitine, dihomo-linoleate and metabolites associated with oxidative stress were increased by high fat diet. In comparison with low fat-fed WT mice, eNOS-TG mice showed lower levels of several free fatty acids, but in contrast, the levels of bile acids, amino acids, and BCAA catabolites were increased. When placed on a high fat diet, eNOS overexpressing mice showed remarkably higher levels of plasma bile acids and elevated levels of plasma BCAAs and their catabolites compared with WT mice. Treatment with GW4064, an inhibitor of bile acid synthesis, decreased plasma bile acid levels but was not sufficient to reverse the anti-obesogenic effects of eNOS overexpression. These findings reveal unique metabolic changes in response to high fat diet and eNOS overexpression and suggest that the anti-obesity effects of eNOS are likely independent of changes in the bile acid pool.

  16. Bile acid sequestrants and the treatment of type 2 diabetes mellitus

    NARCIS (Netherlands)

    Staels, Bart; Kuipers, Folkert

    2007-01-01

    Bile acids promote bile formation and facilitate dietary lipid absorption. Animal and human studies showing disturbed bile acid metabolism in diabetes mellitus suggest a link between bile acids and glucose control. Bile acids are activating ligands of the farnesoid X receptor (FXR), a nuclear recept

  17. Diversity of lactic acid bacteria in two Flemish artisan raw milk Gouda-type cheeses.

    Science.gov (United States)

    Van Hoorde, Koenraad; Verstraete, Tine; Vandamme, Peter; Huys, Geert

    2008-10-01

    PCR-denaturing gradient gel electrophoresis (PCR-DGGE) was used to study the diversity of lactic acid bacteria (LAB) in two Flemish artisan raw milk Gouda-type cheeses. In parallel, conventional culturing was performed. Isolates were identified using (GTG)(5)-PCR and sequence analysis of 16S rRNA and pheS genes. Discriminant analysis revealed some differences in overall LAB diversity between the two batches and between the two cheeses. Within each batch, the diversity of 8- and 12-week-old cheeses was relatively similar. Conventional isolation mainly revealed the presence of Lactobacillus paracasei, Lactobacillus plantarum, Lactobacillus brevis, Lactobacillus rhamnosus and Pediococcus pentosaceus. PCR-DGGE revealed the presence of three species of which no isolates were recovered, i.e. Enterococcus faecalis, Lactobacillus parabuchneri and Lactobacillus gallinarum. Conversely, not all isolated bacteria were detected by PCR-DGGE. We recommend the integrated use of culture-dependent and -independent approaches to maximally encompass the taxonomic spectrum of LAB occurring in Gouda-type and other cheeses.

  18. Acarbose Isolation with Gel Type Strong Acid Cation Exchange Resin:Equilibrium, Kinetic and Thermodynamic Studies

    Institute of Scientific and Technical Information of China (English)

    王亚军; 于蕾; 郑裕国; 王远山; 沈寅初

    2013-01-01

    Acarbose, a potentα-glucosidase inhibitor, is widely used as an oral anti-diabetic drug for the treatment of the type 2, non-insulin-dependent diabetes. In this work, a gel type strong acid cation exchange resin 001×4 was applied to isolate acarbose from fermentation broth. It was demonstrated that cation exchanger 001×4 displayed a large adsorption capacity and quick exchange rate for acarbose. The static adsorption equilibrium data were well fitted to the Langmuir equation. Column adsorption experiments demonstrated that high dynamic adsorption capacity was reached at bed height of 104.4 mm, feed flow rate of 1.0 ml·min-1 and acarbose concentration of 4.0 mg·ml-1. Under the optimized conditions, the column chromatography packed with cation exchanger 001×4 recovered 74.3%(by mass) of acarbose from Actinoplanes utahensis ZJB-08196 fermentation broth with purity of 80.1%(by mass), demonstrating great potential in the practical applications in acarbose separation.

  19. Thermal Behaviour of Some New Polyoxometalate Complexes of Ciprofloxacin with Keggin-type Heteropoly Acids

    Institute of Scientific and Technical Information of China (English)

    WANG Dun-jia; FANG Zheng-dong; HAN De-yan

    2005-01-01

    Four polyoxometalate complexes, (CPFX·HCl)3H4SiW12O40, (CPFX·HCl)3H3PW12O40, (CPFX·HCl)3H3PMo12O40 and (CPFX·HCl)4H4SiMo12O40, were prepared from ciprofloxacin hydrochloride(CPFX·HCl) reacting with HnXM12O40·nH2O(X=P,Si; M=W,Mo) in an aqueous solution, and characterized by elemental analysis, IR spectrometry and TG-DTA. The IR spectrum confirms the presence of Keggin-type anions of heteropoly acids and the characteristic functional groups of ciprofloxacin. The TG/DTA curves show that their thermal decomposition is a multi-step process including simultaneous collapse of the Keggin-type structure. At first, these compounds had a mass loss of water molecules, then several other mass losses occurred due to the decomposition of ciprofloxacin hydrochloride and its fragments with the degradation of Keggin anions. The end product of decomposition is the mixture of WO3(or MoO3) and SiO2(or P2O5), identified by X-ray diffraction and IR spectroscopy. The possible thermal decomposition mechanisms of these complexes are proposed. This study exemplified that the thermal stability of the complexes containing tungsten is much better than that of the complexes containing molybdenum.

  20. Inhibitory and excitatory amino acids in the cerebrospinal fluid of children with two types of cerebral palsy

    Institute of Scientific and Technical Information of China (English)

    Haibin Yuan; Li Wang; Fei Yin; Li Li; Jing Peng

    2008-01-01

    imbalance of excitatory amino acids and inhibitory amino acids in their CSF: an increase in glutamic acid and aspartic acid, and a decrease in GABA. Amino acid levels are different in the CSF in varied types of cerebral palsy.

  1. Sequential elevation of autoantibodies to thyroglobulin and glutamic acid decarboxylase in type 1 diabetes

    Institute of Scientific and Technical Information of China (English)

    Eiji; Kawasaki; Jun-ichi; Yasui; Masako; Tsurumaru; Haruko; Takashima; Toshiyuki; Ikeoka; Fumi; Mori; Satoru; Akazawa; Ikuko; Ueki; Masakazu; Kobayashi; Hironaga; Kuwahara; Norio; Abiru; Hironori; Yamasaki; Atsushi; Kawakami

    2013-01-01

    We have previously reported the high levels of glutamic acid decarboxylase 65 autoantibodies(GAD65A)in patients with type 1 diabetes and autoimmune thyroid disease.Here we describe a 32-year-old Japanese female with a thirteen-year history of type 1 diabetes whose levels of GAD65A were elevated just after the emergence of anti-thyroid autoimmunity.At 19 years of age,she developed diabetic ketoacidosis and was diagnosed with type 1 diabetes.She had GAD65A,insulinoma-associated antigen-2 autoantibodies(IA-2A),and zinc transporter-8 autoantibodies(ZnT8A),but was negative for antibodies to thyroid peroxidase(TPOAb)and thyroglobulin(TGAb)at disease onset.ZnT8A and IA-2A turned negative 2-3 years after the onset,whereas GAD65A were persistently positive at lower level(approximately 40 U/mL).However,just after the emergence of TGAb at disease duration of 12.5 years,GAD65A levels were reelevated up to5717 U/mL in the absence of ZnT8A and IA-2A.Her thyroid function was normal and TPOAb were consistently negative.She has a HLA-DRB1*03:01/*04:01-DQB1*02:01/*03:02 genotype.Persistent positivity for GAD65A might be associated with increased risk to develop anti-thyroid autoimmunity.

  2. Understanding plant cellulose synthases through a comprehensive investigation of the cellulose synthase family sequences.

    Directory of Open Access Journals (Sweden)

    Andrew eCarroll

    2011-03-01

    Full Text Available The development of cellulose as an organizing structure in the plant cell wall was a key event in both the initial colonization and the subsequent domination of the terrestrial ecosystem by vascular plants. A wealth of experimental data has demonstrated the complicated genetic interactions required to form the large synthetic complex that synthesizes cellulose. However, these results are lacking an extensive analysis of the evolution, specialization, and regulation of the proteins that compose this complex. Here we perform an in-depth analysis of the sequences in the cellulose synthase (CesA family. We investigate the phylogeny of the CesA family, with emphasis on evolutionary specialization. We define specialized subfamilies and identify the class-specific regions within the CesA sequence that may explain this specialization. We investigate changes in regulation of CesAs by looking at the conservation of proposed phosphorylation sites. We investigate the conservation of sites where mutations have been documented that impair cellulose synthase function, and compare these sites to those observed in the closest cellulose synthase-like (Csl families to better understand what regions may separate the CesAs from other Csls. Finally we identify two positions with strong conservation of the aromatic trait, but lacking conservation of amino acid identity, which may represent residues important for positioning the sugar substrate for catalysis. These analyses provide useful tools for understanding characterized mutations and post-translational modifications, and for informing further experiments to probe CesA assembly, regulation, and function through site-directed mutagenesis or domain swapping experiments.

  3. Functions of Ceramide Synthase Paralogs YPR114w and YJR116w of Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Mallela, Shamroop K; Almeida, Reinaldo; Ejsing, Christer S;

    2016-01-01

    Ceramide is synthesized in yeast by two redundant acyl-CoA dependent synthases, Lag1 and Lac1. In lag1∆ lac1∆ cells, free fatty acids and sphingoid bases are elevated, and ceramides are produced through the redundant alkaline ceramidases Ypc1 and Ydc1, working backwards. Even with all four...... of these genes deleted, cells are surviving and continue to contain small amounts of complex sphingolipids. Here we show that these residual sphingolipids are not synthesized by YPR114w or YJR116w, proteins of unknown function showing a high degree of homology to Lag1 and Lac1. Indeed, the hextuple lag1∆ lac1...... type, before and after diauxic shift. Ypr114w∆/ypr114w∆ have an increased chronological life span. Thus, Yjr116w and Ypr114w are related, but not functionally redundant....

  4. The thanatos mutation in Arabidopsis thaliana cellulose synthase 3 (AtCesA3) has a dominant-negative effect on cellulose synthesis and plant growth.

    Science.gov (United States)

    Daras, Gerasimos; Rigas, Stamatis; Penning, Bryan; Milioni, Dimitra; McCann, Maureen C; Carpita, Nicholas C; Fasseas, Constantinos; Hatzopoulos, Polydefkis

    2009-01-01

    Genetic functional analyses of mutants in plant genes encoding cellulose synthases (CesAs) have suggested that cellulose deposition requires the activity of multiple CesA proteins. Here, a genetic screen has led to the identification of thanatos (than), a semi-dominant mutant of Arabidopsis thaliana with impaired growth of seedlings. Homozygous seedlings of than germinate and grow but do not survive. In contrast to other CesA mutants, heterozygous plants are dwarfed and display a radially swollen root phenotype. Cellulose content is reduced by approximately one-fifth in heterozygous and by two-fifths in homozygous plants, showing gene-dosage dependence. Map-based cloning revealed an amino acid substitution (P578S) in the catalytic domain of the AtCesA3 gene, indicating a critical role for this residue in the structure and function of the cellulose synthase complex. Ab initio analysis of the AtCesA3 subdomain flanking the conserved proline residue predicted that the amino acid substitution to serine alters protein secondary structure in the catalytic domain. Gene dosage-dependent expression of the AtCesA3 mutant gene in wild-type A. thaliana plants resulted in a than dominant-negative phenotype. We propose that the incorporation of a mis-folded CesA3 subunit into the cellulose synthase complex may stall or prevent the formation of functional rosette complexes.

  5. Effects of truncated mutants of the ε subunit of chloroplast ATP synthase on the fast phase of millisecond delayed light emission of chloroplast and its ATP synthesis ability

    Institute of Scientific and Technical Information of China (English)

    ZENG Xiaomei; SHI Xiaobing; SHEN Yungang

    2004-01-01

    The ε subunit of the chloroplast ATP synthase and the truncated ε mutants which lack some amino acid residues from the N-terminus or C-terminus were overexpressed in E. coli. When the ε subunit or the truncated ε proteins was added to the spinach chloroplast suspension, both the intensity of the fast phase of millisecond delayed light emission (ms-DLE) and the cyclic and noncyclic photophosphorylation activity of chloroplast were enhanced. With an increase in the number of residues deleted from the N-terminus, the enhancement effect of the N-terminal truncated proteins decreased gradually. For the C-terminal truncated proteins, the enhancement effect increased gradually with an increase in the number of residues deleted from the C-terminus. Besides, the ATP synthesis activity of ε-deficient membrane reconstituted with the ε subunit or the truncated ε proteins was compared. The ATP synthesis activity of reconstituted membrane with the N-terminal truncated proteins decreased gradually as the number of residues deleted from the N-terminus increased. For the C-terminal truncated proteins, the ATP synthesis activity of reconstituted membrane increased gradually with an increase in the number of residues deleted from the C-terminus, but was still lower than that of the wild type ε protein. These results suggested that: (a) the N-terminal domain of the ε subunit of the chloroplast ATP synthase could affect the ATP synthesis activity of ATP synthase by regulating the efficiency of blocking proton leakage of ε subunit; and (b) the C-terminal domain of the ε subunit of the chloroplast ATP synthase had a subtle function in modulating the ATP synthesis ability of ATP synthase.

  6. A study on lithium/air secondary batteries - Stability of NASICON-type glass ceramics in acid solutions

    Energy Technology Data Exchange (ETDEWEB)

    Shimonishi, Y.; Zhang, T.; Imanishi, N.; Hirano, A.; Takeda, Y.; Yamamoto, O. [Department of Chemistry, Faculty of Engineering, Mie University, 1577 Kurimamachiay-cho, Tsu, Mie 514-8507 (Japan); Johnson, P.; Sammes, N. [Department of Metallurgical and Materials Engineering, Colorado School of Mines, 1500 Illinois Street, Golden, CO 80401 (United States)

    2010-09-15

    The stability of a NASICON-type lithium ion conducting solid electrolyte, Li{sub 1+x+y}Ti{sub 2-x}Al{sub x}P{sub 3-y}Si{sub y}O{sub 12} (LTAP), in acetic acid and formic acid solutions was examined. XRD patterns of the LTAP powders immersed in 100% acetic acid and formic acid at 50 C for 4 months showed no change as compared to the pristine LTAP. However, the electrical conductivity of LTAP drastically decreased. On the other hand, no significant electrical conductivity change of LTAP immersed in lithium formate saturated formic acid-water solution was observed, and the electrical conductivity of LTAP immersed in lithium acetate saturated acetic acid-water increased. Cyclic voltammogram tests suggested that acetic acid was stable up to a high potential, but formic acid decomposed under the decomposition potential of water. The acetic acid solution was considered to be a candidate for the active material in the air electrode of lithium-air rechargeable batteries. The cell reaction was considered as 2Li + 2 CH{sub 3}COOH + 1/2O{sub 2} = 2CH{sub 3}COOLi + H{sub 2}O. The energy density of this lithium-air system is calculated to be 1477 Wh kg{sup -1} from the weights of Li and CH{sub 3}COOH, and an observed open-circuit voltage of 3.69 V. (author)

  7. The key role of Cosmc and T-synthase in mucin-type O-glycan biosynthesis--implications in human diseases%Cosmc和T合酶在黏蛋白型O-聚糖合成中的重要作用及其与人类疾病的相关性

    Institute of Scientific and Technical Information of China (English)

    巨同忠; Richard D. Cummings; 靳嘉巍; 查锡良

    2011-01-01

    Mucin type O-glycans, primarily derived from the core 1 structure, play pivotal functions in many biological processes. The T-synthase (core 1 p3-galactosyltransferase) is the key enzyme responsible for synthesizing the core 1 O-glycan Galpl,3GalNAcal-Ser/Thr (T antigen) through addition of Gal to GalNAcal-Ser/ Thr (Tn antigen). Interestingly, formation of active T-synthase in human and other vertebrates requires a specific molecular chaperone, Cosmc. Dysfunction of Cosmc results in an inactive T-synthase leading to expression of the Tn antigen and its sialylated version, sialylTn (STn, Neu5Aca2,6GalNAcal-Ser/Thr). This review summarizes the current understanding of the T-synthase and Cosmc regarding their biochemistry and biology, as well as their roles in human diseases, such as Tn syndrome, igA nephropathy, and human tumors, which are associated with expression of abnormal O-glycans.%从核心1结构(Galβl,3GaINAcαl-O-Ser/Thr,core 1 structure,T antigen)中衍生出来的黏蛋白型0-聚糖在很多生理过程中发挥重要的生物学功能.T-合酶(core 1 β3-galactosyltransferase,Tsynthase)是合成核心1结构的唯一糖基转移酶,它主要的功能是将半乳糖(Galactose)添加到GaINAcαI-Ser/Thr (Tn抗原)糖链上.但是在人体和其他脊椎动物中有活性的T-合酶的形成需要一个重要的伴侣分子Cosmc ; Cosmc功能丧失将直接导致T-合酶失活,其结果是机体细胞只能合成Tn抗原以及唾液酰化Tn (sialylTn,STn,Neu5Aca2,6GaINAca1-O-Ser/Thr).综述目前对T-合酶和Cosmc的研究以及在人类疾病(如异常O-聚糖表达相关的Tn综合征、IgA肾病和肿瘤)发生发展中的作用.

  8. [The profile of plasma non-esterified fatty acids in children with different terms of type 1 diabetes mellitus].

    Science.gov (United States)

    Akmurzina, V A; Petryairina, E E; Saveliev, S V; Selishcheva, A A

    2016-01-01

    Composition and quantitative content of non-esterified fatty acids (NEFA) were investigated in plasma samples of healthy children (12) and children with type 1 diabetes mellitus (DM1) (31) by gas chromatography (GC) after preliminary NEFA solid-phase extraction from plasma lipids. There was a significant (p1) 1.6-fold increase in the total level of NEFA regardless of the disease duration. In the group of DM1 children with the disease period less than 1 year there was an increase in the arachidonic acid (20:4) content (30%) and the oleic acid trans-isomer (18:1) content (82%), and also a decrease in the docosahexaenoic acid (22:6 n3) content (26% ) and the docosapentaenoic acids (22:5 n-6) content (60%). In the group of DM1 children with prolonged course of this disease the altered NEFA levels returned to the normal level.

  9. Reconstituted high-density lipoprotein infusion modulates fatty acid metabolism in patients with type 2 diabetes mellitus

    DEFF Research Database (Denmark)

    Drew, BG; Carey, AL; Natoli, AK

    2011-01-01

    of endogenous fat stores. rHDL infusion inhibits fasting-induced lipolysis and oxidation in patients with type 2 diabetes, potentially through both AMPK activation in adipose tissue and elevation of plasma insulin. The phospholipid component of rHDL also has the potentially undesirable effect of increasing...... investigated the effect of rHDL infusion on fatty acid oxidation and lipolysis. Thirteen patients with type 2 diabetes received separate infusions of rHDL and placebo in a randomized, cross-over study. Fatty acid metabolism was assessed using steady-state tracer methodology, and plasma lipids were measured...

  10. Different response to acetic acid stress in Saccharomyces cerevisiae wild-type and l-ascorbic acid-producing strains.

    Science.gov (United States)

    Martani, Francesca; Fossati, Tiziana; Posteri, Riccardo; Signori, Lorenzo; Porro, Danilo; Branduardi, Paola

    2013-09-01

    Biotechnological processes are of increasing significance for industrial production of fine and bulk chemicals, including biofuels. Unfortunately, under operative conditions microorganisms meet multiple stresses, such as non-optimal pH, temperature, oxygenation and osmotic stress. Moreover, they have to face inhibitory compounds released during the pretreatment of lignocellulosic biomasses, which constitute the preferential substrate for second-generation processes. Inhibitors include furan derivatives, phenolic compounds and weak organic acids, among which acetic acid is one of the most abundant and detrimental for cells. They impair cellular metabolism and growth, reducing the productivity of the process: therefore, the development of robust cell factories with improved production rates and resistance is of crucial importance. Here we show that a yeast strain engineered to endogenously produce vitamin C exhibits an increased tolerance compared to the parental strain when exposed to acetic acid at moderately toxic concentrations, measured as viability on plates. Starting from this evidence, we investigated more deeply: (a) the nature and levels of reactive oxygen species (ROS); (b) the activation of enzymes that act directly as detoxifiers of reactive oxygen species, such as superoxide dismutase (SOD) and catalase, in parental and engineered strains during acetic acid stress. The data indicate that the engineered strain can better recover from stress by limiting ROS accumulation, independently from SOD activation. The engineered yeast can be proposed as a model for further investigating direct and indirect mechanism(s) by which an antioxidant can rescue cells from organic acid damage; moreover, these studies will possibly provide additional targets for further strain improvements.

  11. Dietary supplementation with long-chain monounsaturated fatty acids attenuates obesity-related metabolic dysfunction and increases expression of PPAR gamma in adipose tissue in type 2 diabetic KK-Ay mice

    Directory of Open Access Journals (Sweden)

    Yang Zhi-Hong

    2013-01-01

    Full Text Available Abstract The objective of present study was to examine the effect of long-chain monounsaturated fatty acids (LC-MUFAs with chain lengths longer than 18 (i.e., C20:1 and C22:1 isomers combined on obesity-related metabolic dysfunction and its molecular mechanisms. Type-2 diabetic KK-Ay mice (n = 20 were randomly assigned to the 7% soybean oil-diet group (control group and 4% LC-MUFA concentrate-supplemented-diet group (LC-MUFA group. At 8 weeks on the diet, the results showed that plasma, liver and adipose tissue levels of C20:1 and C22:1 isomers increased significantly with LC-MUFA treatment. Supplementation with LC-MUFAs markedly reduced white fat pad weight as well as adipocyte size in the mice. The levels of plasma free fatty acids, insulin, and leptin concentration in the obese diabetic mice of the LC-MUFA group were also decreased as compared with the mice in the soybean oil-diet control group. Dietary LC-MUFAs significantly increased the mRNA expression of peroxisome proliferator-activated receptor gamma (Pparg, lipoprotein lipase (Lpl, fatty acid transport protein (Fatp, fatty acid translocase/CD36 (Cd36, as well as mRNA expression of genes involved in lipid oxidation such as carnitine palmitoyltransferase-1A (Cpt1a and citrate synthase (Cs, and decreased the mRNA expression of inflammatory marker serum amyloid A 3 (Saa3 in the adipose tissues of diabetic mice. The results suggest that LC-MUFAs may ameliorate obesity-related metabolic dysfunction partly through increased expression of Pparg as well as its target genes, and decreased inflammatory marker expression in white adipose tissue.

  12. Serum Uric Acid Levels and Diabetic Peripheral Neuropathy in Type 2 Diabetes: a Systematic Review and Meta-analysis.

    Science.gov (United States)

    Yu, Shuai; Chen, Ying; Hou, Xu; Xu, Donghua; Che, Kui; Li, Changgui; Yan, Shengli; Wang, Yangang; Wang, Bin

    2016-03-01

    Previous studies suggested a possible association between serum uric acid levels and peripheral neuropathy in patients with type 2 diabetes, but no definite evidence was available. A systematic review and meta-analysis of relevant studies were performed to comprehensively estimate the association. Pubmed, Web of Science, Embase, and China Biology Medicine (CBM) databases were searched for eligible studies. Study-specific data were combined using random-effect or fixed-effect models of meta-analysis according to between-study heterogeneity. Twelve studies were finally included into the meta-analysis, which involved a total of 1388 type 2 diabetic patients with peripheral neuropathy and 4746 patients without peripheral neuropathy. Meta-analysis showed that there were obvious increased serum uric acid levels in diabetic patients with peripheral neuropathy (weighted mean difference [WMD] = 50.03 μmol/L, 95% confidence interval [95%CI] 22.14-77.93, P = 0.0004). Hyperuricemia was also significantly associated with increased risk of peripheral neuropathy in patients with type 2 diabetes (risk ratio [RR] = 2.83, 95%CI 2.13-3.76, P peripheral neuropathy in type 2 diabetic patients (RR = 1.95, 95%CI 1.23-3.11, P = 0.005). Type 2 diabetic patients with peripheral neuropathy have obvious increased serum uric acid levels, and hyperuricemia is associated with increased risk of peripheral neuropathy. Further prospective cohort studies are needed to validate the impact of serum uric acid levels on peripheral neuropathy risk.

  13. Pseudouridines and pseudouridine synthases of the ribosome.

    Science.gov (United States)

    Ofengand, J; Malhotra, A; Remme, J; Gutgsell, N S; Del Campo, M; Jean-Charles, S; Peil, L; Kaya, Y

    2001-01-01

    psi are ubiquitous in ribosomal RNA. Eubacteria, Archaea, and eukaryotes all contain psi, although their number varies widely, with eukaryotes having the most. The small ribosomal subunit can apparently do without psi in some organisms, even though others have as many as 40 or more. Large subunits appear to need at least one psi but can have up to 50-60. psi is made by a set of site-specific enzymes in eubacteria, and in eukaryotes by a single enzyme complexed with auxiliary proteins and specificity-conferring guide RNAs. The mechanism is not known in Archaea, but based on an analysis of the kinds of psi synthases found in sequenced archaeal genomes, it is likely to involve use of guide RNAs. All psi synthases can be classified into one of four related groups, virtually all of which have a conserved aspartate residue in a conserved sequence motif. The aspartate is essential for psi formation in all twelve synthases examined so far. When the need for psi in E. coli was examined, the only synthase whose absence caused a major decrease in growth rate under normal conditions was RluD, the synthase that makes psi 1911, psi 1915, and psi 1917 in the helix 69 end-loop. This growth defect was the result of a major failure in assembly of the large ribosomal subunit. The defect could be prevented by supplying the rluD structural gene in trans, and also by providing a point mutant gene that made a synthase unable to make psi. Therefore, the RluD synthase protein appears to be directly involved in 50S subunit assembly, possibly as an RNA chaperone, and this activity is independent of its ability to form psi. This result is not without precedent. Depletion of PET56, a 2'-O-methyltransferase specific for G2251 (E. coli numbering) in yeast mitochondria virtually blocks 50S subunit assembly and mitochondrial function (Sirum-Connolly et al. 1995), but the methylation activity of the enzyme is not required (T. Mason, pers. comm.). The absence of FtsJ, a heat shock protein that makes

  14. Composite polyether electrolytes with a poly(styrenesulfonate) lithium salt and Lewis acid type additive

    Energy Technology Data Exchange (ETDEWEB)

    Prosini, Pier Paolo; Banow, Branimir

    2003-06-15

    A poly(styrenesulfonate) lithium salt was tested as a single-ion conductor in a poly(ethylene oxide)/poly(ethylene glycol) dimethyl ether matrix. Impedance spectroscopy and voltage step polarization were used to characterize the composite electrolytes. A specific conductivity of about 7x10{sup -8} S cm{sup -1} was evaluated at 70 deg. C. The very low conductivity was attributed to the poor solubility of Li{sup +} in the polymer matrix. AlCl{sub 3} was added to the polymer electrolyte to increase the salt dissolution. The addition of the Lewis acid strongly increases the conductivity and a specific conductivity of about 4x10{sup -6} S cm{sup -1} was measured at 20 deg. C. For temperature lower than 60 deg. C, the specific conductivity dependence with increasing temperature follows an Arrhenius-type behavior. An activation energy of about 55.6 kJ mol{sup -1} was calculated. A very similar activation energy (60.3 kJ mol{sup -1}) was found for the charge transfer resistance. The transport properties of the polymer electrolyte were tested by applying a d.c. voltage step to a symmetrical lithium cell. The current at the applied voltage decreased with time. The decrease was related to an increase in the cell resistance due to the continuous growth of a passivation layer on the lithium surface.

  15. Adsorption behavior of ytterbium (Ⅲ) on gel-type weak acid resin

    Institute of Scientific and Technical Information of China (English)

    ZHENG Zhanwang; XIONG Chunhua

    2011-01-01

    The adsorption and desorption behaviors of Yb(Ⅲ) on gel-type weak acid resin (110) were investigated. The influence of operational conditions such as contact time, initial concentration of Yb(Ⅲ), initial pH of solution and temperature on the adsorption of Yb(Ⅲ) were also examined. The results showed that the optimal adsorption condition of 110 resin for Yb(Ⅲ) was achieved at pH=5.5 in HAc-NaAc medium. The maximum uptake capacity of Yb(ⅢI) was 265.8 mg/g at 298 K. Yb(Ⅲ) could be eluted by using 3.0 mol/L HCI solution and the 110 resin could be regenerated and reused. The adsorption of Yb(Ⅲ) followed the Langmuir isotherm, and the correlation coefficients were evaluated. Various thermodynamic parameters such as standard enthalpy change (△H), standard entropy change (△S) and standard free energy change (△G) were evaluated. The adsorption of Yb(Ⅲ) on the 110 resin was found to be endothermic in nature. Thomas model was successfully applied to experimental data to predict the breakthrough curves and to determine the characteristics parameters of the column useful for process design. And the resin sample both before and after adsorption was described by IR spectroscopy.

  16. Heterologous production of human papillomavirus type-16 L1 protein by a lactic acid bacterium

    Directory of Open Access Journals (Sweden)

    Bermúdez-Humarán Luis G

    2009-08-01

    Full Text Available Abstract Background The expression of vaccine antigens in lactic acid bacteria (LAB is a safe and cost-effective alternative to traditional expression systems. In this study, we investigated i the expression of Human papillomavirus type 16 (HPV-16 L1 major capsid protein in the model LAB Lactococcus lactis and ii the ability of the resulting recombinant strain to produce either capsomer-or virus-like particles (VLPs. Results and conclusion HPV-16 L1 gene was cloned into two vectors, pCYT and pSEC, designed for controlled intra- or extracellular heterologous expression in L. lactis, respectively. The capacity of L. lactis harboring either pCYT:L1 or pSEC:L1 plasmid to accumulate L1 in the cytoplasm and supernatant samples was confirmed by Western blot assays. Electron microscopy analysis suggests that, L1 protein produced by recombinant lactococci can self-assemble into structures morphologically similar to VLPs intracellularly. The presence of conformational epitopes on the L. lactis-derived VLPs was confirmed by ELISA using an anti-HPV16 L1 capsid antigen antibody. Our results support the feasibility of using recombinant food-grade LAB, such as L. lactis, for the production of L1-based VLPs and open the possibility for the development of a new safe mucosal vector for HPV-16 prophylactic vaccination.

  17. Blood groups and red cell acid phosphatase types in a Mixteca population resident in Mexico City.

    Science.gov (United States)

    Buentello, L.; García, P.; Lisker, R.; Salamanca, F.; Peñaloza, R.

    1999-01-01

    Several blood groups, ABO, Rh, Ss, Fy, Jk, and red cell acid phosphatase (ACP) types were studied in a native Mixteca population that has resided in Mexico City since 1950. Gene frequencies were obtained and used to establish admixture estimates with blacks and whites. The subjects came from three different geographical areas: High Mixteca, Low Mixteca, and Coast Mixteca. All frequencies were in Hardy-Weinberg equilibrium. The difference in the ABO frequencies was statistically significant when subjects from the three areas were compared simultaneously. Rh frequencies differed only between the High and the Low Mixteca populations. The ACP frequencies were similar between the Low Mixteca population and a previously reported Mestizo population. However, there were significant differences between the High Mixteca group and a Mestizo population, all the subjects being from Oaxaca. This is the first report of Ss, Fy, Jk, and ACP frequencies in a Mixteca population. Am. J. Hum. Biol. 11:525-529, 1999. Copyright 1999 Wiley-Liss, Inc.

  18. Oxygen reduction behavior of rutile-type iridium oxide in sulfuric acid solution

    Energy Technology Data Exchange (ETDEWEB)

    Yoshinaga, Norihiro; Sugimoto, Wataru [Department of Fine Materials Engineering, Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda 386-8567 (Japan); Takasu, Yoshio [Department of Fine Materials Engineering, Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda 386-8567 (Japan)], E-mail: ytakasu@shinshu-u.ac.jp

    2008-12-30

    Two different forms of rutile-type iridium oxide catalysts were prepared: IrO{sub 2}-coated titanium plate electrocatalysts prepared by a dip-coating method (IrO{sub 2}/Ti) and iridium oxide nanoparticles (IrO{sub 2}) prepared by a wet method, the Adams fusion method. The catalytic behavior of the oxygen reduction reaction (ORR) was evaluated by cyclic voltammetry in 0.5 M H{sub 2}SO{sub 4} at 60 deg. C. Both catalysts were found to exhibit considerable activity for the ORR; however, the former oxide electrodes showed higher activity than the latter ones. All the IrO{sub 2}/Ti catalyst electrodes heat-treated at a temperature between 400 deg. C and 550 deg. C showed ca. 0.84 V (vs. RHE) of the onset potential for the ORR, E{sub ORR}, where the reduction current of oxygen had begun to be observed during the cathodic potential sweep of the test electrodes. It has been confirmed clearly that IrO{sub 2}, but neither metallic Ir nor the hydrated IrO{sub 2}, behaves as an active catalyst for the ORR in an acidic solution. It was also demonstrated that the enlargement of the surface area of the IrO{sub 2}/Ti with the help of lanthanum is effective for the enhancement of the catalytic activity in the reaction.

  19. Treatment with alpha-lipoic acid reduces asymmetric dimethylarginine in patients with type 2 diabetes mellitus.

    Science.gov (United States)

    Mittermayer, Friedrich; Pleiner, Johannes; Francesconi, Mario; Wolzt, Michael

    2010-01-01

    Elevated asymmetric dimethylarginine (ADMA) concentrations predict cardiovascular events in patients with type 2 diabetes mellitus (T2DM). It has been shown that alpha-lipoic acid (ALA) improves endothelial function and oxidative stress in these patients. The present study investigated if ALA reduces ADMA in patients with T2DM. Plasma concentrations of ADMA, L-arginine and symmetric dimethylarginine (SDMA) were determined in a double-blind, randomized, placebo-controlled study in patients with T2DM. Intravenous ALA (n = 16) or placebo (n = 14) was administered daily for 3 weeks. ALA reduced ADMA while no change was observed with placebo (mean change -0.05 micromol/1[95% CI: -0.01; -0.09] vs. 0.01 micromol/1 [95% CI: -0.05; -0.03]; ANOVA p = 0.031). SDMA and L-arginine were not affected by ALA. In conclusion ALA treatment reduces ADMA in patients with T2DM. Long-term studies need to demonstrate if ALA may cause cardiovascular risk reduction.

  20. Structural Characterisation of the Beta-Ketoacyl-Acyl Carrier Protein Synthases, FabF and FabH, of Yersinia pestis

    OpenAIRE

    Jeffrey D. Nanson; Himiari, Zainab; Swarbrick, Crystall M. D.; Forwood, Jade K.

    2015-01-01

    Yersinia pestis, the causative agent of bubonic, pneumonic, and septicaemic plague, remains a major public health threat, with outbreaks of disease occurring in China, Madagascar, and Peru in the last five years. The existence of multidrug resistant Y. pestis and the potential of this bacterium as a bioterrorism agent illustrates the need for new antimicrobials. The β-ketoacyl-acyl carrier protein synthases, FabB, FabF, and FabH, catalyse the elongation of fatty acids as part of the type II f...

  1. Human acid alpha-glucosidase from rabbit milk has therapeutic effect in mice with glycogen storage disease type II

    NARCIS (Netherlands)

    A.G.A. Bijvoet (Agnes); A.J.J. Reuser (Arnold); H. van Hirtum (Hans); M.A. Kroos (Marian); E.H. van de Kamp; O. Schoneveld; P. Visser (Pim); J.P. Brakenhoff (Just); M. Weggeman; E.J.J.M. van Corven (Emiel); A.T. van der Ploeg (Ans)

    1999-01-01

    textabstractPompe's disease or glycogen storage disease type II (GSDII) belongs to the family of inherited lysosomal storage diseases. The underlying deficiency of acid alpha-glucosidase leads in different degrees of severity to glycogen storage in heart, skeletal and s

  2. On the neurotoxicity of glutaric, 3-hydroxyglutaric, and trans-glutaconic acids in glutaric acidemia type 1

    DEFF Research Database (Denmark)

    Lund, Trine Meldgaard; Christensen, E; Kristensen, A S;

    2004-01-01

    Glutaric acidemia type 1 (GA1) is an autosomal recessively inherited deficiency of glutaryl-CoA dehydrogenase. Accumulating metabolites, 3-hydroxyglutaric (3-OH-GA), glutaric (GA), and trans-glutaconic (TG) acids, have been proposed to be involved in the development of the striatal degeneration s...

  3. Inulin-type fructans modulate intestinal Bifidobacterium species populations and decrease fecal short-chain fatty acids in obese women

    NARCIS (Netherlands)

    Salazar, N.; Dewulf, E.M.; Neyrinck, A.M.; Bindels, L.B.; Cani, P.D.; Mahillon, J.; Vos, de W.M.; Thissen, J.P.; Gueimonde, M.; Reyes-Gavilán, de los C.G.; Delzenne, N.M.

    2015-01-01

    Background & aims : Inulin-type fructans (ITF) prebiotics promote changes in the composition and activity of the gut microbiota. The aim of this study was to determine variations on fecal short chain fatty acids (SCFA) concentration in obese women treated with ITF and to explore associations bet

  4. Weight reduction and the impaired plasma-derived free fatty acid oxidation in type 2 diabetic subjects

    NARCIS (Netherlands)

    Blaak, EE; Wolffenbuttel, BHR; Saris, WHM; Pelsers, MMAL; Wagenmakers, AJM

    2001-01-01

    In a previous study the oxidation of plasma free fatty acids (FFA) under baseline conditions and during exercise was lower in type 2 diabetic subjects compared with weight-matched controls. The present study intended to investigate the effect of weight reduction (very low calorie diet) on plasma FFA

  5. Altered expression of the caffeine synthase gene in a naturally caffeine-free mutant of Coffea arabica

    Directory of Open Access Journals (Sweden)

    Mirian Perez Maluf

    2009-01-01

    Full Text Available In this work, we studied the biosynthesis of caffeine by examining the expression of genes involved in this biosynthetic pathway in coffee fruits containing normal or low levels of this substance. The amplification of gene-specific transcripts during fruit development revealed that low-caffeine fruits had a lower expression of the theobromine synthase and caffeine synthase genes and also contained an extra transcript of the caffeine synthase gene. This extra transcript contained only part of exon 1 and all of exon 3. The sequence of the mutant caffeine synthase gene revealed the substitution of isoleucine for valine in the enzyme active site that probably interfered with enzymatic activity. These findings indicate that the absence of caffeine in these mutants probably resulted from a combination of transcriptional regulation and the presence of mutations in the caffeine synthase amino acid sequence.

  6. Transcriptional regulation of mitochondrial HMG-CoA synthase in the control of ketogenesis.

    Science.gov (United States)

    Hegardt, F G

    1998-10-01

    Mitochondrial and cytosolic HMG-CoA synthases are encoded by two different genes. Control of ketogenesis is exerted by transcriptional regulation of mitochondrial HMG-CoA synthase. Fasting, cAMP, and fatty acids increase its transcriptional rate, while refeeding and insulin repress it. Fatty acids increase transcription through peroxisomal proliferator regulatory element (PPRE), to which peroxisome proliferator activated receptor (PPAR) can bind. Other transcription factors such as chicken ovalbumin upstream promoter transcription factor (COUP-TF) and hepatocyte nuclear factor 4 (HNF-4) compete for the PPRE site, modulating the response of PPAR.

  7. Vanillin formation from ferulic acid in Vanilla planifolia is catalysed by a single enzyme

    DEFF Research Database (Denmark)

    Gallage, Nethaji J; Hansen, Esben H; Kannangara, Rubini;

    2014-01-01

    Vanillin is a popular and valuable flavour compound. It is the key constituent of the natural vanilla flavour obtained from cured vanilla pods. Here we show that a single hydratase/lyase type enzyme designated vanillin synthase (VpVAN) catalyses direct conversion of ferulic acid and its glucoside...... into vanillin and its glucoside, respectively. The enzyme shows high sequence similarity to cysteine proteinases and is specific to the substitution pattern at the aromatic ring and does not metabolize caffeic acid and p-coumaric acid as demonstrated by coupled transcription/translation assays. VpVAN localizes......-glucosyltransferases result in vanillyl alcohol glucoside formation from endogenous ferulic acid. A gene encoding an enzyme showing 71% sequence identity to VpVAN was identified in another vanillin-producing plant species Glechoma hederacea and was also shown to be a vanillin synthase as demonstrated by transient expression...

  8. 土壤宏基因组文库的构建及格尔德霉素类PKS基因的初步筛选%Construction of a soil metagenomic library and preliminary screening of geldanamycin-like type-I polyketide synthase gene

    Institute of Scientific and Technical Information of China (English)

    林灵; 陈菲菲; 王以光; 赫卫清; 王相晶

    2011-01-01

    目的 构建土壤宏基因组文库并对格尔德霉素类I型聚酮合系(polyketide synthase,PKS)基因进行初步筛选研究.方法 直接提取土壤样品中宏基因组DNA,以Fosmid为载体,构建宏基因组文库.根据格尔德霉素的I型PKS基因的保守序列设计引物,使用菌落PCR方法直接筛选所获得的宏基因组文库.结果 成功构建了土壤宏基因组文库,获得约6800个克隆子,其平均插入片段在25kb以上,覆盖至少170Mb的基因组信息.通过PKS基因筛选,获得了新的PKS基因片段.结论 本文报道了土壤宏基因组文库的成功构建,并为利用宏基因组技术寻找新的聚酮类次级代谢产物的生物合成基因,以便于其异源表达或组合生物合成新的聚酮类次级代谢产物奠定基础.%Objective Construction of a soil metagenomic library and preliminary screening of geldanamycinlike type-Ⅰ polyketide synthase genes.Methods A metagenomic library was constructed by inserting the metagenomic DNA directly extracted from soil into Fosmid vector, and then transduced into E.coli EPI300.The primers for screening polyketide synthase (PKS) genes were designed according to the conserved region of geldanamycin type Ⅰ PKS genes.Colony-PCR was performed for screening the metagenomic library.Results A soil metagenomic library was constructed successfully, which was consisted of about 6800 clones containing over 25kb inserted exogenous DNA on average, and covered almost 170Mb genomic information.And a new PKS gene fragment was obtained by screening from metagenomic library.Conclusion The strategy for finding novel PKS gene using metagenomic-technology was reported in this study and could facilitate to heterologous expressing or combinatorial biosynthesis of novel polyketide secondary metabolites.

  9. Effect of nucleic acid binding dyes on DNA extraction, amplification, and STR typing.

    Science.gov (United States)

    Haines, Alicia M; Tobe, Shanan S; Kobus, Hilton J; Linacre, Adrian

    2015-10-01

    We report on the effects of six dyes used in the detection of DNA on the process of DNA extraction, amplification, and detection of STR loci. While dyes can be used to detect the presence of DNA, their use is restricted if they adversely affect subsequent DNA typing processes. Diamond™ Nucleic Acid Dye, GelGreen™, GelRed™, RedSafe™, SYBR(®) Green I, and EvaGreen™ were evaluated in this study. The percentage of dye removed during the extraction process was determined to be: 70.3% for SYBR(®) Green I; 99.6% for RedSafe™; 99.4% for EvaGreen™; 52.7% for Diamond™ Dye; 50.6% for GelRed™, and; could not be determined for GelGreen™. It was then assumed that the amount of dye in the fluorescent quantification assay had no effect on the DNA signal. The presence of all six dyes was then reviewed for their effect on DNA extraction. The t-test showed no significant difference between the dyes and the control. These extracts were then STR profiled and all dyes and control produced full DNA profiles. STR loci in the presence of GelGreen(TM) at 1X concentration showed increased amplification products in comparison to the control samples. Full STR profiles were detected in the presence of EvaGreen™ (1X), although with reduced amplification products. RedSafe™ (1X), Diamond™ Dye (1X), and SYBR(®) Green I (1X) all exhibited varying degrees of locus drop-out with GelRed™ generating no loci at all. We provide recommendations for the best dye to visualize the presence of DNA profile as a biological stain and its subsequent amplification and detection.

  10. Heterooligomeric phosphoribosyl diphosphate synthase of Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Hove-Jensen, Bjarne

    2004-01-01

    The yeast Saccharomyces cerevisiae contains five phosphoribosyl diphosphate (PRPP) synthase-homologous genes (PRS1-5), which specify PRPP synthase subunits 1-5. Expression of the five S. cerevisiae PRS genes individually in an Escherichia coli PRPP-less strain (Deltaprs) showed that a single PRS...

  11. Succession of Soil Acidity Quality and its Influence on Soil Phosphorus Types

    Institute of Scientific and Technical Information of China (English)

    DUANWenbiao; CHENLixin

    2004-01-01

    Succession rules of soil acidity quality of larch plantations in first rotation at different development stages, succession rules of soil acidity quality of young stand of larch plantations in second rotation and the relationship between soil acidity and various forms of organic phosphorus and inorganic phosphorus were studied in mountainous area of eastern part of Northeastern China. The results showed that active acidity (pH value) inrhizosphere soil decreased continually with stand age increasing from young stand, half-mature stand, near mature stand to mature stand, but active acidity (pH value) in non-rhizosphere soil, exchange acidity, exchangeable aluminium, total hydrolytic acidity, and the ratio of exchange acidity and total hydrolytic acidity in rhizosphere soil and in non-rhizosphere soil increased apparently; total organic P, moderately resistant organic P, and highly resistant organic P in soil decreased at all age stages in larch plantations when soil acidity added. For rhizosphere soil of all stands of larch plantations at different development stages,there was positive correlation between Ca-P (except in young stand), Al-P(except in half-mature stand), Fe-P (except in near mature stand and mature stand), O-P (except in young stand), and soil active acidity,respectively; For rhizosphere soil, there was negative correlation between Ca-P (except in half-mature stand), Al-P(except in young stand), O-P, and exchange acidity, exchangeable aluminium, there was also negative correlation between Ca-P, Al-P(except in young stand and half-mature stand), Fe-P, O-P, and total hydrolytic acidity respectively. For rhizosphere soil, the correlation coefficient between Ca-P, O-P and total hydrolytic aciditydecreased, respectively, as stand ages up and that between Fe-P and exchange acidity,exchangeable aluminium increased, respectively, as stand ages grew. For non-rhizosphere soil, there was not significant correlation between soil acidity and various forms of

  12. Effect of gamma-aminobutyric acid B receptor on nitric oxide/nitric oxide synthase system during recurrent febrile seizures%反复热性惊厥过程中γ-氨基丁酸B受体对一氧化氮/一氧化氮合酶体系的调节作用

    Institute of Scientific and Technical Information of China (English)

    韩颖; 秦炯; 卜定方; 杨志仙; 常杏芝; 杜军保

    2006-01-01

    目的:探讨γ-氨基丁酸B受体(γ-aminobutyric acid B receptor,GABABR)对热性惊厥(febrile seizure,FS)大鼠一氧化氮(nitric oxide,NO)/一氧化氮合酶(nitric oxide synthase,NOS)体系表达的影响.方法:将21 d龄SD大鼠随机分为对照组、FS组、FS+巴氯芬(baclofen)组和FS+法克罗芬(phaclofen)组.采用热水浴诱导大鼠FS,隔日诱导1次,共10次.采用分光光度计法测定大鼠血浆中NO含量;用原位杂交方法观察神经元型一氧化氮合酶(neuronal nitric oxide synthase,nNOS)mRNA表达情况;用免疫组化方法观察nNOS蛋白表达情况.结果:FS+baclofen组NO含量低于FS组[(19.02±9.31)μmol/L比(40.03±9.12)μmol/L],同时nNOS蛋白和mRNA表达也较FS组减弱;而FS+phaclofen组NO含量高于FS组[(66.46±8.15)μmol/L比(40.03±9.12)μmol/L],同时nNOS蛋白和mRNA表达也较FS组增强.结论:反复热性惊厥过程中,GABABR的改变可影响NO/NOS体系的表达.

  13. Dietary fat type, meat quality and fatty acid metabolism in swine

    NARCIS (Netherlands)

    Mitchaothai, J.

    2007-01-01

    This thesis focuses on the replacement of animal fat by vegetable oil in the diet for growing-finishing pigs. Generally, but not exclusively, fats of animal origin contain higher proportions of saturated fatty acids (SFA) than vegetable oils that are commonly rich in polyunsaturated fatty acids (PUF

  14. Nucleic acids encoding mosaic clade M human immunodeficiency virus type 1 (HIV-1) envelope immunogens

    Science.gov (United States)

    Korber, Bette T; Fischer, William; Liao, Hua-Xin; Haynes, Barton F; Letvin, Norman; Hahn, Beatrice H

    2015-04-21

    The present invention relates to nucleic acids encoding mosaic clade M HIV-1 Env polypeptides and to compositions and vectors comprising same. The nucleic acids of the invention are suitable for use in inducing an immune response to HIV-1 in a human.

  15. CJ-15,183, a new inhibitor of squalene synthase produced by a fungus, Aspergillus aculeatus.

    Science.gov (United States)

    Watanabe, S; Hirai, H; Ishiguro, M; Kambara, T; Kojima, Y; Matsunaga, T; Nishida, H; Suzuki, Y; Sugiura, A; Harwood, H J; Huang, L H; Kojima, N

    2001-11-01

    A new squalene synthase (SSase) inhibitor, CJ-15,183 (I) was isolated from the fermentation broth of a fungus, Aspergillus aculeatus CL38916. The compound potently inhibited rat liver and Candida albicans microsomal SSases and also inhibited the human enzyme. It also showed antifungal activities against filamentous fungi and a yeast. The structure was determined to be an aliphatic tetracarboxylic acid compound consisting of an alkyl gamma-lactone, malic acid and isocitric acid moieties by spectroscopic studies.

  16. Expression of a mutant form of cellulose synthase AtCesA7 causes dominant negative effect on cellulose biosynthesis.

    Science.gov (United States)

    Zhong, Ruiqin; Morrison, W Herbert; Freshour, Glenn D; Hahn, Michael G; Ye, Zheng-Hua

    2003-06-01

    Cellulose synthase catalytic subunits (CesAs) have been implicated in catalyzing the biosynthesis of cellulose, the major component of plant cell walls. Interactions between CesA subunits are thought to be required for normal cellulose synthesis, which suggests that incorporation of defective CesA subunits into cellulose synthase complex could potentially cause a dominant effect on cellulose synthesis. However, all CesA mutants so far reported have been shown to be recessive in terms of cellulose synthesis. In the course of studying the molecular mechanisms regulating secondary wall formation in fibers, we have found that a mutant allele of AtCesA7 gene in the fra5 (fragile fiber 5) mutant causes a semidominant phenotype in the reduction of fiber cell wall thickness and cellulose content. The fra5 missense mutation occurred in a conserved amino acid located in the second cytoplasmic domain of AtCesA7. Overexpression of the fra5 mutant cDNA in wild-type plants not only reduced secondary wall thickness and cellulose content but also decreased primary wall thickness and cell elongation. In contrast, overexpression of the fra6 mutant form of AtCesA8 did not cause any reduction in cell wall thickness and cellulose content. These results suggest that the fra5 mutant protein may interfere with the function of endogenous wild-type CesA proteins, thus resulting in a dominant negative effect on cellulose biosynthesis.

  17. Structure of dimeric, recombinant Sulfolobus solfataricus phosphoribosyl diphosphate synthase: a bent dimer defining the adenine specificity of the substrate ATP.

    Science.gov (United States)

    Andersen, Rune W; Leggio, Leila Lo; Hove-Jensen, Bjarne; Kadziola, Anders

    2015-03-01

    The enzyme 5-phosphoribosyl-1-α-diphosphate (PRPP) synthase (EC 2.7.6.1) catalyses the Mg(2+)-dependent transfer of a diphosphoryl group from ATP to the C1 hydroxyl group of ribose 5-phosphate resulting in the production of PRPP and AMP. A nucleotide sequence specifying Sulfolobus solfataricus PRPP synthase was synthesised in vitro with optimised codon usage for expression in Escherichia coli. Following expression of the gene in E. coli PRPP synthase was purified by heat treatment and ammonium sulphate precipitation and the structure of S. solfataricus PRPP synthase was determined at 2.8 Å resolution. A bent dimer oligomerisation was revealed, which seems to be an abundant feature among PRPP synthases for defining the adenine specificity of the substrate ATP. Molecular replacement was used to determine the S. solfataricus PRPP synthase structure with a monomer subunit of Methanocaldococcus jannaschii PRPP synthase as a search model. The two amino acid sequences share 35 % identity. The resulting asymmetric unit consists of three separated dimers. The protein was co-crystallised in the presence of AMP and ribose 5-phosphate, but in the electron density map of the active site only AMP and a sulphate ion were observed. Sulphate ion, reminiscent of the ammonium sulphate precipitation step of the purification, seems to bind tightly and, therefore, presumably occupies and blocks the ribose 5-phosphate binding site. The activity of S. solfataricus PRPP synthase is independent of phosphate ion.

  18. Mechanism of Germacradien-4-ol Synthase-Controlled Water Capture

    Science.gov (United States)

    2016-01-01

    The sesquiterpene synthase germacradiene-4-ol synthase (GdolS) from Streptomyces citricolor is one of only a few known high-fidelity terpene synthases that convert farnesyl diphosphate (FDP) into a single hydroxylated product. Crystals of unliganded GdolS-E248A diffracted to 1.50 Å and revealed a typical class 1 sesquiterpene synthase fold with the active site in an open conformation. The metal binding motifs were identified as D80DQFD and N218DVRSFAQE. Some bound water molecules were evident in the X-ray crystal structure, but none were obviously positioned to quench a putative final carbocation intermediate. Incubations in H218O generated labeled product, confirming that the alcohol functionality arises from nucleophilic capture of the final carbocation by water originating from solution. Site-directed mutagenesis of amino acid residues from both within the metal binding motifs and without identified by sequence alignment with aristolochene synthase from Aspergillus terreus generated mostly functional germacradien-4-ol synthases. Only GdolS-N218Q generated radically different products (∼50% germacrene A), but no direct evidence of the mechanism of incorporation of water into the active site was obtained. Fluorinated FDP analogues 2F-FDP and 15,15,15-F3-FDP were potent noncompetitive inhibitors of GdolS. 12,13-DiF-FDP generated 12,13-(E)-β-farnesene upon being incubated with GdolS, suggesting stepwise formation of the germacryl cation during the catalytic cycle. Incubation of GdolS with [1-2H2]FDP and (R)-[1-2H]FDP demonstrated that following germacryl cation formation a [1,3]-hydride shift generates the final carbocation prior to nucleophilic capture. The stereochemistry of this shift is not defined, and the deuteron in the final product was scrambled. Because no clear candidate residue for binding of a nucleophilic water molecule in the active site and no significant perturbation of product distribution from the replacement of active site residues were

  19. A New Type of Dibenzoyl Tartaric Acid Selective Electrode Baded on Polymer Membrane Containing Calix[4] arene lonophore

    Institute of Scientific and Technical Information of China (English)

    Meng; Ling-zhi; Mei; Gong-xiong; 等

    2003-01-01

    A new type of dibenzoyl tartaric acid selective electrode has been developed. Three double-arm calix [4] arene derivatives were employed as the neutral ionophores. The poly(vinyl chloride) membrane electrode containing an amide derivative of calix [4] arene as the neutral carrier and a dibutyl phthalate as the plasticizer exhibited the highest sensitivity for dibenzoyl tartaric acid. The slope of linear portion was 27.8mV per concertration decade. The electrode has a fast response and a long lifetime.

  20. Structural conversion and intramolecular electron transfer in ferrocenylanthraquinones triggered by Keggin type of heteropoly acid serving as proton source

    Institute of Scientific and Technical Information of China (English)

    LIU Shuxia; LI Dehui; SU Zhongmin; WANG Enbo

    2004-01-01

    Intramolecular electron transfer triggered by proton and the mechanism of structural conversion in a ethynylene-bridged ferrocene-anthraquinone organic electron donor(D)-acceptor(A) g-conjugated system (1-FcAq) in the presence of a Keggin type heteropoly acid as proton source are discussed. Heteropoly acids can stabilize the protonated ethynylene-bridged ferrocene-anthraquinone conjugated complex, and the stable protonated complex has been isolated in air and characterized by elemental analyses, IR,1H NMR, and CV. Upon the inducement of proton, electron transfer from ferrocene moiety (Fc) to anthraquinone moiety (Aq) causes the rearrangement of the conjugated system to create a fulvene-cumulene structuere.

  1. Suppression of allene oxide synthase 3 in potato increases degree of arbuscular mycorrhizal fungal colonization.

    Science.gov (United States)

    Morcillo, Rafael Jorge León; Navarrete, María Isabel Tamayo; Bote, Juan Antonio Ocampo; Monguio, Salomé Prat; García-Garrido, José Manuel

    2016-01-15

    Arbuscular mycorrhizal (AM) is a mutually beneficial interaction among higher plants and soil fungi of the phylum Glomeromycota. Numerous studies have pointed that jasmonic acid plays an important role in the development of the intraradical fungus. This compound belongs to a group of biologically active compounds known as oxylipins which are derived from the oxidative metabolism of polyunsaturated fatty acids. Studies of the regulatory role played by oxylipins in AM colonization have generally focused on jasmonates, while few studies exist on the 9-LOX pathway of oxylipins during AM formation. Here, the cDNA of Allene oxide synthase 3 (AOS3), a key enzyme in the 9-LOX pathway, was used in the RNA interference (RNAi) system to transform potato plants in order to suppress its expression. Results show increases in AOS3 gene expression and 9-LOX products in roots of wild type potato mycorrhizal plants. The suppression of AOS3 gene expression increases the percentage of root with mycorrhizal colonization at early stages of AM formation. AOS3 RNA interference lead to an induction of LOXA and 13-LOX genes, a reduction in AOS3 derived 9-LOX oxylipin compounds and an increase in jasmonic acid content, suggesting compensation between 9 and 13-LOX pathways. The results in a whole support the hypothesis of a regulatory role for the 9-LOX oxylipin pathway during mycorrhization.

  2. Differential expression of two genes for 1-aminocyclopropane-1-carboxylate synthase in tomato fruits

    Energy Technology Data Exchange (ETDEWEB)

    Olson, D.C.; White, J.A.; Edelman, L.; Kende, H. (Michigan State Univ., East Lansing (United States)); Harkins, R.N. (Berlex Biosciences, Alameda, CA (United States))

    1991-06-15

    1-Aminocyclopropane-1-carboxylate synthase is the regulated enzyme in the biosynthetic pathway of the plant hormone ethylene. A full-length cDNA encoding this enzyme has been cloned from tomato fruits. The authors report here the complete nucleotide and derived amino acid sequences of a cDNA encoding a second isoform of ACC synthase from tomato fruits. The cDNAs coding for both isoforms contain highly conserved regions that are surrounded by regions of low homology, especially at the 5{prime} and 3{prime} ends. Gene-specific probes were constructed to examine the expression of transcripts encoding the two ACC synthase isoforms under two conditions of enhanced ethylene formation--namely, during fruit ripening and in response to mechanical stress (wounding). The level of mRNA encoding both isoforms, ACC synthase 1 and 2, increased during ripening. In contrast, wounding caused an increase in only the level of mRNA coding for ACC synthase 1. Blot analysis of genomic DNA digested with restriction enzymes confirmed that ACC synthase 1 and 2 are encoded by different genes.

  3. Product Variability of the ‘Cineole Cassette'Monoterpene Synthases of Related Nicotiana Species

    Institute of Scientific and Technical Information of China (English)

    Anke F(a)hnrich; Katrin Krause; Birgit Piechulla

    2011-01-01

    Nicotiana species of the section Alatae characteristically emit the floral scent compounds of the ‘cineole cassere' comprising 1,8-cineole,limonene,myrcene,α-pinene,β-pinene,sabinene,and α-terpineol.We successfully isolated genes of Nicotiana alata and Nicotiana langsdorfii that encoded enzymes,which produced the characteristic monoterpenes of this ‘cineole cassette' with α-terpineol being most abundant in the volatile spectra.The amino acid sequences of both terpineol synthases were 99% identical.The enzymes cluster in a monophyletic branch together with the closely related cineole synthase of Nicotiana suaveolens and monoterpene synthase 1 of Solanum lycopersicum.The cyclization reactions (α-terpineol to 1,8-cineole) of the terpineol synthases of N.alata and N.langsdorfii were less efficient compared to the ‘cineole cassette′ monoterpene synthases of Arabidopsis thaliana,N.suaveolens,Salvia fruticosa,Salvia officinalis,and Citrus unshiu.The terpineol synthases of N.alata and N.langsdorfii were localized in pistils and in the adaxial and abaxial epidermis of the petals.The enzyme activities reached their maxima at the second day after anthesis when flowers were fully opened and the enzyme activity in N.alata was highest at the transition from day to night (diurnal rhythm).

  4. Dysregulation of lipid and amino acid metabolism precedes islet autoimmunity in children who later progress to type 1 diabetes

    Science.gov (United States)

    Orešič, Matej; Simell, Satu; Sysi-Aho, Marko; Näntö-Salonen, Kirsti; Seppänen-Laakso, Tuulikki; Parikka, Vilhelmiina; Katajamaa, Mikko; Hekkala, Anne; Mattila, Ismo; Keskinen, Päivi; Yetukuri, Laxman; Reinikainen, Arja; Lähde, Jyrki; Suortti, Tapani; Hakalax, Jari; Simell, Tuula; Hyöty, Heikki; Veijola, Riitta; Ilonen, Jorma; Lahesmaa, Riitta; Knip, Mikael; Simell, Olli

    2008-01-01

    The risk determinants of type 1 diabetes, initiators of autoimmune response, mechanisms regulating progress toward β cell failure, and factors determining time of presentation of clinical diabetes are poorly understood. We investigated changes in the serum metabolome prospectively in children who later progressed to type 1 diabetes. Serum metabolite profiles were compared between sample series drawn from 56 children who progressed to type 1 diabetes and 73 controls who remained nondiabetic and permanently autoantibody negative. Individuals who developed diabetes had reduced serum levels of succinic acid and phosphatidylcholine (PC) at birth, reduced levels of triglycerides and antioxidant ether phospholipids throughout the follow up, and increased levels of proinflammatory lysoPCs several months before seroconversion to autoantibody positivity. The lipid changes were not attributable to HLA-associated genetic risk. The appearance of insulin and glutamic acid decarboxylase autoantibodies was preceded by diminished ketoleucine and elevated glutamic acid. The metabolic profile was partially normalized after the seroconversion. Autoimmunity may thus be a relatively late response to the early metabolic disturbances. Recognition of these preautoimmune alterations may aid in studies of disease pathogenesis and may open a time window for novel type 1 diabetes prevention strategies. PMID:19075291

  5. [Study on the acid hydrolysis, fiber remodeling and bionics mineralization of rat tail tendon collagen type Ⅰ].

    Science.gov (United States)

    Zhang, Zhan; Zhang, Chun; Guo, Qiaofeng

    2016-05-25

    Objective: To produce bionic bone material that is consistent with human bone in chemical composition and molecular structure using rat tail tendon collagen type Ⅰ. Methods: The type Ⅰcollagen derived from rat tail was extracted by acetic acid to form collagen fibers. The reconstructed collagen fibers were placed in the mineralized solution to mimic bone mineralization for 2-6 days. Bone mineralization was observed by transmission electron microscopy and electron diffraction.Results: Collagen fibers with characteristic D-Band structure were reconstructed by using rat tail tendon collagen type Ⅰ extracted with acid hydrolysis method. Transmission electron microscopy and electron diffraction showed that calcium hydroxyapatite precursor infiltrated into the collagen fibers, and the collagen fibers were partially mineralized after 2 days of mineralization; the collagen fibers were completely mineralized and bionic bone material of typeⅠ collagen/calcium hydroxyapatite was formed after 6 days of mineralization.Conclusion: The collagen type Ⅰ can be extracted from rat tail tendon by acid hydrolysis method, and can be reformed and mineralized to form the bionic bone material which mimics human bone in chemical composition and the molecular structure.

  6. Modified cellulose synthase gene from Arabidopsis thaliana confers herbicide resistance to plants

    Science.gov (United States)

    Somerville, Chris R.; Scheible, Wolf

    2007-07-10

    Cellulose synthase ("CS"), a key enzyme in the biosynthesis of cellulose in plants is inhibited by herbicides comprising thiazolidinones such as 5-tert-butyl-carbamoyloxy-3-(3-trifluromethyl)phenyl-4-thiazolidinone (TZ), isoxaben and 2,6-dichlorobenzonitrile (DCB). Two mutant genes encoding isoxaben and TZ-resistant cellulose synthase have been isolated from isoxaben and TZ-resistant Arabidopsis thaliana mutants. When compared with the gene coding for isoxaben or TZ-sensitive cellulose synthase, one of the resistant CS genes contains a point mutation, wherein glycine residue 998 is replaced by an aspartic acid. The other resistant mutation is due to a threonine to isoleucine change at amino acid residue 942. The mutant CS gene can be used to impart herbicide resistance to a plant; thereby permitting the utilization of the herbicide as a single application at a concentration which ensures the complete or substantially complete killing of weeds, while leaving the transgenic crop plant essentially undamaged.

  7. Probing the Mechanism of the Mycobacterium tuberculosis [beta]-Ketoacyl-Acyl Carrier Protein Synthase III mtFabH: Factors Influencing Catalysis and Substrate Specificity

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Alistair K.; Sridharan, Sudharsan; Kremer, Laurent; Lindenberg, Sandra; Dover, Lynn G.; Sacchettini, James C.; Besra, Gurdyal S. (TAM); (Birmingham); (CNRS)

    2010-11-30

    Mycolic acids are the dominant feature of the Mycobacterium tuberculosis cell wall. These {alpha}-alkyl, {beta}-hydroxy fatty acids are formed by the condensation of two fatty acids, a long meromycolic acid and a shorter C{sub 24}-C{sub 26} fatty acid. The component fatty acids are produced via a combination of type I and II fatty acid synthases (FAS) with FAS-I products being elongated by FAS-II toward meromycolic acids. The {beta}-ketoacyl-acyl carrier protein (ACP) synthase III encoded by mtfabH (mtFabH) links FAS-I and FAS-II, catalyzing the condensation of FAS-I-derived acyl-CoAs with malonyl-acyl carrier protein (ACP). The acyl-CoA chain length specificity of mtFabH was assessed in vitro; the enzyme extended longer, physiologically relevant acyl-CoA primers when paired with AcpM, its natural partner, than with Escherichia coli ACP. The ability of the enzyme to use E. coli ACP suggests that a similar mode of binding is likely with both ACPs, yet it is clear that unique factors inherent to AcpM modulate the substrate specificity of mtFabH. Mutation of proposed key mtFabH residues was used to define their catalytic roles. Substitution of supposed acyl-CoA binding residues reduced transacylation, with double substitutions totally abrogating activity. Mutation of Arg{sup 46} revealed its more critical role in malonyl-AcpM decarboxylation than in the acyl-CoA binding role. Interestingly, this effect was suppressed intragenically by Arg{sup 161} {yields} Ala substitution. Our structural studies suggested that His{sup 258}, previously implicated in malonyl-ACP decarboxylation, also acts as an anchor point for a network of water molecules that we propose promotes deprotonation and transacylation of Cys{sup 122}.

  8. Overexpression of Citrus junos mitochondrial citrate synthase gene in Nicotiana benthamiana confers aluminum tolerance.

    Science.gov (United States)

    Deng, Wei; Luo, Keming; Li, Zhengguo; Yang, Yingwu; Hu, Nan; Wu, Yu

    2009-07-01

    Aluminum (Al) toxicity is one of the major factors that limit plant growth in acid soils. Al-induced release of organic acids into rhizosphere from the root apex has been identified as a major Al-tolerance mechanism in many plant species. In this study, Al tolerance of Yuzu (Citrus Junos Sieb. ex Tanaka) was tested on the basis of root elongation and the results demonstrated that Yuzu was Al tolerant compared with other plant species. Exposure to Al triggered the exudation of citrate from the Yuzu root. Thus, the mechanism of Al tolerance in Yuzu involved an Al-inducible increase in citrate release. Aluminum also elicited an increase of citrate content and increased the expression level of mitochondrial citrate synthase (CjCS) gene and enzyme activity in Yuzu. The CjCS gene was cloned from Yuzu and overexpressed in Nicotiana benthamiana using Agrobacterium tumefaciens-mediated methods. Increased expression level of the CjCS gene and enhanced enzyme activity were observed in transgenic plants compared with the wild-type plants. Root growth experiments showed that transgenic plants have enhanced levels of Al tolerance. The transgenic Nicotiana plants showed increased levels of citrate in roots compared to wild-type plants. The exudation of citrate from roots of the transgenic plants significantly increased when exposed to Al. The results with transgenic plants suggest that overexpression of mitochondrial CS can be a useful tool to achieve Al tolerance.

  9. Protocatechuic acid exerts a cardioprotective effect in type 1 diabetic rats.

    Science.gov (United States)

    Semaming, Yoswaris; Kumfu, Sirinart; Pannangpetch, Patchareewan; Chattipakorn, Siriporn C; Chattipakorn, Nipon

    2014-10-01

    Oxidative stress has been shown to play an important role in the pathogenesis of diabetes-induced cardiac dysfunction. Protocatechuic acid (PCA) is a phenolic compound, a main metabolite of anthocyanin, which has been reported to display various pharmacological properties. We proposed the hypothesis that PCA exerts cardioprotection in type 1 diabetic (T1DM) rats. T1DM was induced in male Sprague-Dawley rats by a single i.p. injection of 50 mg/kg streptozotocin (STZ) and groups of these animals received the following treatments for 12 weeks: i) oral administration of vehicle, ii) oral administration of PCA at a dose of 50  mg/kg per day, iii) oral administration of PCA at a dose of 100 mg/kg per day, iv) s.c. injection of insulin at a dose of 4 U/kg per day, and v) a combination of PCA, 100 mg/kg per day and insulin, 4 U/kg per day. Metabolic parameters, results from echocardiography, and heart rate variability were monitored every 4 weeks, and the HbA1c, cardiac malondialdehyde (MDA), cardiac mitochondrial function, and cardiac BAX/BCL2 expression were evaluated at the end of treatment. PCA, insulin, and combined drug treatments significantly improved metabolic parameters and cardiac function as shown by increased percentage fractional shortening and percentage left ventricular ejection fraction and decreased low-frequency:high-frequency ratio in T1DM rats. Moreover, all treatments significantly decreased plasma HbA1c and cardiac MDA levels, improved cardiac mitochondrial function, and increased BCL2 expression. Our results demonstrated for the first time, to our knowledge, the efficacy of PCA in improving cardiac function and cardiac autonomic balance, preventing cardiac mitochondrial dysfunction, and increasing anti-apoptotic protein in STZ-induced T1DM rats. Thus, PCA possesses a potential cardioprotective effect and could restore cardiac function when combined with insulin treatment. These findings indicated that supplementation with PCA might be

  10. Maslinic Acid, a Natural Phytoalexin-Type Triterpene from Olives — A Promising Nutraceutical?

    Directory of Open Access Journals (Sweden)

    Glòria Lozano-Mena

    2014-08-01

    Full Text Available Maslinic acid is a pentacyclic triterpene found in a variety of natural sources, ranging from herbal remedies used in traditional Asian medicine to edible vegetables and fruits present in the Mediterranean diet. In recent years, several studies have proved that maslinic acid exerts a wide range of biological activities, i.e. antitumor, antidiabetic, antioxidant, cardioprotective, neuroprotective, antiparasitic and growth-stimulating. Experimental models used for the assessment of maslinic acid effects include established cell lines, which have been often used to elucidate the underlying mechanisms of action, and also animal models of different disorders, which have confirmed the effects of the triterpene in vivo. Overall, and supported by the lack of adverse effects in mice, the results provide evidence of the potential of maslinic acid as a nutraceutical, not only for health promotion, but also as a therapeutic adjuvant in the treatment of several disorders.

  11. SERUM URIC ACID LEVE LS IN TYPE - 2 DIABETES MELLITUS AND ITS ASSOCIATION WITH CAR DIOVASCULAR DISEASE

    Directory of Open Access Journals (Sweden)

    Basawaraj

    2015-04-01

    Full Text Available BACKGROUND : Cardiovascular disease is the leading cause of morbidity and mortality especially in diabetic patients. The association between increased serum uric acid (SUA levels and cardiovascular risk has been reported for decad es. Several large studies have provided conflicting results regarding the clinical significance of elevated SUA levels in cardiovascular disease (CVD. The aim of this study was to investigate the relationship between SUA and CVD in diabetic patient. OBJEC TIVES: To estimate the level of serum uric acid in Type 2 Diabetes mellitus. To establish the association of elevated serum uric acid concentration as a risk factor for CAD in type – 2 diabetes patients. To establish the association of uric acid level in relation to other risk factors of coronary artery disease in type - 2 diabetes patients. METHODS: This is a cr oss sectional study conducted is people with type 2 diabetes mellitus . Clinical and biochemical parameters like serum uric acid , lipid profile , fasting blood sugar and post prandial blood sugar were compared between subjects with and without coronary arter y disease . Statistical analysis included usage of students test and chi square test . RESULTS: Among males in hyperuricemia group , 24 . 5% were obese , 51 . 5% were smoker , 20% were alcoholic 28 . 5% were hypertensive and 84 . 3% had coronary artery disease as compa red to patient with normal uric acid group 10% were obese , 37 . 2% were smokers , 30% were alcoholic , 17 . 2% were hypertensive and 26% had coronary artery disease . This shows increased incidence of hypertension , coronary artery disease and obesity in patient who have increased uric acid . Biochemical profiles in patient with hyperuricemia and patient with normal uric acid is as follows . FBS ( 184 . 8 Vs . 152 . 4 mg % , PPBS ( 274 . 9 Vs . 258 . 6 mg % , TC ( 207 . 3 Vs . 181 . 6 mg % , TGL ( 185 . 7 Vs . 148 . 6 mg % , LDL ( 136 . 7 Vs . 127 . 1 mg % , HDL ( 40 . 05 V s. 40 . 87

  12. New type of chitosan/2-hydroxypropyl-β-cyclodextrin composite membrane for gallic acid encapsulation and controlled release.

    Science.gov (United States)

    Paun, Gabriela; Neagu, Elena; Tache, Andreia; Radu, G L

    2014-01-01

    A new type of chitosan/2-hydroxypropyl-β-cyclodextrin composite membrane have been developed for the encapsulation and controlled release of gallic acid. The morphology of the composite membrane was investigated by infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM), whereas swelling gallic acid and release properties were investigated by UV-visible spectroscopy. The release behavior with pH changes was also explored. The composite membrane based on chitosan/2-hydroxypropyl-β-cyclodextrin with gallic acid included showed improved antioxidant capacities compared to